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ABSTRACT 

 Accelerated Bridge Construction (ABC) utilizing precast components continues 

to be used as an effective tool for bridge construction due to time and cost saving 

techniques as well as the reduction of environmental impacts.  However, in seismic 

regions, the use of precast members and ABC methods are limited due to concerns about 

poor performance of connections primarily between cap beam and girders. With 

sponsorship from the California Department of Transportation (Caltrans), two alternative 

connections between precast bulb tee girders and bridge cap were designed utilizing 

extended girder prestressed strands. The connections were designed to resist positive 

moments at the girder to cap connection. Positive moments occur at the connection when 

seismic forces cause upward deflection of the precast girders resulting in tension forces 

along the bottom of the girder to cap connection. The tension forces cause damage to the 

connection and can also unseat or disconnect the girders from the cap beam resulting in 

span collapse. The two connections were designed to minimized connection damage and 

prevent unseating of the girders.  In one connection the extended strands were curved 

and relied on bond strength for anchorage along the 60 in. embedment length. The other 

connection consisted of spliced strands with anchor plates and chucks which relied on 

the transfer of forces through strand splices. Both connections also included three 

grouted dowel bars placed through the girder web. The connections were designed to 

provide adequate seismic moment resistance up to a combined load of gravity, horizontal 

ground acceleration corresponding to the column overstrength moment, as well as shear 

and moment values up to 0.5g vertical acceleration. A 40% scale test unit was 

constructed in the Iowa State University structures laboratory and the two connections 

were tested. An analytical model was formulated to analytically quantify the behavior of 

each connection. The results of the tests showed that both connections had adequate 

capacity to resist horizontal and vertical ground acceleration forces as specified in 

current Caltrans seismic design criteria. Adjustments were made to the analytical model 

based on results of the test to improve the accuracy of the model. The overall results of 
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the test demonstrate that ABC methods can be safely implemented in high seismic 

regions and be relied upon for dependable performance.  
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 - INTRODUCTION 

1.1 General 
The design and repair of bridges across the United States is a continual process. 

Currently, one in nine bridges in the U.S. is rated as structurally deficient by the 

American Society of Civil Engineers (ASCE).  Many of the bridges within in the U.S. 

will need to receive significant repairs or be replaced in the next ten years (ASCE, 

2014). A large number of these bridges are highway bridges which represent a vital part 

of the transportation and economic systems. Current onsite construction practices are not 

able to accommodate the rate at which bridges must be repaired or replaced. New 

construction practices and techniques must be implemented to ensure the reliability and 

durability of the nation’s infrastructure. 

1.2 Accelerated Bridge Construction 
In an effort to improve the efficiency of building bridges, accelerated bridge 

construction (ABC) practices have been developed and deployed across the U.S. ABC 

uses prefabricated bridge members that are manufactured offsite in a controlled 

environment and then shipped to the construction site and assembled (Culmo, 2011). 

This reduces onsite construction time, avoids long traffic detours, and minimizes 

environmental impacts. The goal of ABC construction is to close the gap between the 

number of new bridges needed and the number of bridges actually being built. 

Prefabricated members used in ABC systems can be made of concrete or steel and 

the size of the members varies according the design of the project. One option that is 

widely implemented is the use of precast concrete beams combined with a precast or 

cast-in-place deck as shown in Figure 1.1. A benefit of this design is that only a small 

amount of concrete to connect the beams is poured at the construction site. Concrete is a 

versatile material that can be conformed to meet the constraints of multiple projects, and 

precast plants are usually located in close proximity to major cities to allow for easy 

transportation to the work site. For the construction of highway bridges, precast concrete 

is a viable solution. Challenges have occurred when using precast concrete bridges in 
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certain areas, however, especially in seismic regions such as the state of California 

where earthquakes are common. 

 

 

 

 

 

 

 

 

 

1.3 ABC in California 
The state of California has a long history of earthquakes and seismic activity. In 

the past 25 years, California has experienced two major earthquakes: the Northridge 

earthquake of 1994 and the Loma Prieta earthquake of 1989. Both caused significant 

structural damage to bridges as shown in Figure 1.2 and 1.3, billions of dollars in 

economic loss, and resulted in a combined 120 fatalities (USGS 2010). Seismic damage 

to bridges causes loss of life, endangers public safety, and also causes many economic 

issues. Damaged bridges must be repaired or replaced and traffic must be rerouted which 

challenges the traffic capacity of alternate roadways. California has recognized the 

benefits that ABC provides to recover quickly from earthquakes and also to replace 

deteriorating bridges to prevent future seismic damage.  However, due to the 

requirements of design for bridges in seismic regions, the benefits of ABC are not able 

to be fully realized.  

 

Cast-in-place deck 

On-site 
concrete 
pour 

Figure 1.1: Concrete precast bridge members (Snyder, 2010) 
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The California Department of Transportation (Caltrans) has developed guidelines 

known as the Seismic Design Criteria (SDC) to ensure that bridges can adequately resist 

seismic forces (Caltrans, 2010). The requirements outlined in Caltrans SDC are 

specifically determined for what is defined as an “Ordinary Bridge” built either by 

traditional onsite construction techniques or ABC. A specific definition of an Ordinary 

Bridge can be found in Caltrans SDC, but for the purposes of this thesis it will be 

assumed that the concepts and designs discussed fall within the proper criteria and 

Figure 1.3: Damage to Cypress Street Viaduct in Oakland 
California (USGS, 1999) 

Figure 1.2: Bridge collapse during Northridge 
earthquake (USGS, 2010) 
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therefore must meet SDC requirements. In order to better understand the SDC and how 

the requirements relate to ABC methods, a brief overview of seismic design philosophy 

for bridges is needed. 

 Seismic Design Philosophy 

The design philosophy with which many of the existing California bridges were 

built was based on ensuring an entirely elastic structural response to seismic forces. 

However, performance of bridges during earthquakes as well as experimental research 

has shown that seismic forces were often underestimated resulting in a high damage rate 

(Priestley, 1996). In many cases, elastic design utilizing correct seismic forces would 

have resulted in a bridge that was not economical to build. For this reason, others design 

philosophies were developed including one known as capacity design. Capacity design 

allows for a region of flexural inelastic response (also known as a plastic hinge) within a 

structural member at  predetermined locations and prevents plastic hinges from forming 

in other locations by use of an appropriate strength margin (Priestley, 1996).  

1.3.1.1 Plastic Hinges 

The development of plastic hinges as an inelastic response mechanism enables the 

structure to dissipate energy caused by the ground motion of an earthquake. In the 

capacity design of bridges, plastic hinges are usually developed at the bottom and /or top 

of bridge columns to allow for easy inspection and repair of the structure after an 

earthquake. Plastic hinges can be developed in the superstructure of a bridge as well. 

The superstructure usually consists of the bridge girders and deck with a bent cap 

connecting the girders to the columns as shown in Figure 1.4. However, developing 

hinges in the superstructure is often discouraged due to the difficulty of assessing 

damage and making repairs.  
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Figure 1.4: Typical superstructure construction (Federal Highway Administration, 2013) 

1.3.1.2 Superstructure Classification 

A superstructure can be classified according to its ability to transfer moments.  If 

the connection between the girders and cap beam is able to resist an applied moment it is 

known as a fixed connection or integral superstructure. If the connection has no moment 

resistance it is referred to as a pinned connection or non-integral superstructure. A 

benefit of an integral superstructure in seismic design is that the moment resistance 

provided by the fixed connection allows for an additional plastic hinge to form at the top 

of the bridge column. The second plastic hinge facilitates additional energy dissipation 

which allows a designer to use a smaller column cross-section as well as a smaller 

footing; it is also possible to have a plastic hinge develop at the top of the column and 

have a pinned base resulting in reduced foundations costs (Priestley, 1996). These 

benefits can make the structure more economical but is not possible with a non-integral 

superstructure.  

1.3.1.3 Positive and Negative Moments 

At an integral girder to cap connection, both positive and negative moments are 

generated in the superstructure. Negative moments are caused by dead and live loads, 

result in downward deflection of the bridge girders, and are increased by seismic ground 

motion. Positive moments are caused by earthquake ground motion, live loads, and 

volumetric changes in the concrete and result in upward deflection of a bridge girder. 

Negative moments at precast connections have been traditionally resisted by 

reinforcement placed in the bridge deck which runs continuously over the girder to cap 
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connection. Designing for positive moment resistance is more difficult due to a lack of 

continuity over the bottom region of the girder to cap connection. Cast-in-place bridges 

are able to provide positive moment resistance by placing standard mild steel 

reinforcement at the bottom of the cap to girder interface during construction. However, 

ABC construction does not readily provide this opportunity since the beams are precast. 

 SDC Requirements 

The SDC requirements established by Caltrans state that for precast girders the 

superstructure should be considered pinned or non-integral based on the assumption that 

under seismic activity adequate positive moment capacity cannot be developed 

(Caltrans, 2010). This means that by following the SDC guidelines the column of a 

bridge built with precast girders can only develop a single plastic hinge at its base and 

designers cannot take advantage of the smaller members and economy provided by an 

integral superstructure. 

Another issue addressed by SDC is vertical acceleration. Positive and negative 

moments generated in a bridge superstructure by seismic ground motion are caused by 

two components: horizontal and vertical ground acceleration. SDC guidelines require 

that all bridges account for horizontal ground acceleration. It also requires vertical 

acceleration to be accounted for if the site where the bridge is to be built has a peak rock 

acceleration of 0.6g or greater. Vertical acceleration is measured as a percentage of 

gravity. For example, a vertical acceleration noted as 0.25g means that the bridge 

experiences an additional 25% of the load due to gravity or a 125% gravity load. If 

vertical acceleration must be accounted for per SDC, then longitudinal side 

reinforcement in the girders must be added and be capable of resisting 125% of the dead 

load shear, by means of shear friction, at the girder to cap connection. SDC also requires 

that the added side reinforcement extend continuously beyond the face of the cap by 2.5 

times the depth of the superstructure. The added requirements for vertical acceleration 

are difficult to include in precast members and also make the connection region very 

congested and costly. The added reinforcement is easier to install with traditional cast-

in-place construction than with ABC methods. 



7 
 

When current SDC guidelines are considered, ABC methods become less 

advantageous. First, the pinned superstructure requires larger members and prevents the 

designer from utilizing cost savings available from an integral superstructure. Secondly, 

if vertical acceleration is considered the extra longitudinal steel becomes harder to place 

than in traditional cast-in-place construction. These two requirements prevent the state of 

California from fully exercising the benefits of ABC methods and make traditional cast-

in-place construction more economical despite savings in the time of construction for 

ABC methods. In order to fully utilize the benefits of ABC, adequate positive moment 

resistance and sufficient shear capacity to resist vertical acceleration must be developed 

for precast members in seismic regions. 

1.4 Precast Positive Moment Connections 
Different solutions have been tested to adequately resist positive moments at the 

girder to cap connection for precast members. These solutions include extending mild 

steel reinforcement from the end of a precast girder (Figure 1.5), extending the 

prestressed strands in a girder (Figure 1.5), placing ducts through the girder and cap and 

then grouting unstressed prestressing strands inside the ducts, and also using dowel bars 

which are placed through the web of the girder and embedded in the cap beam (Figure 

1.5).  

 
Figure 1.5: Extended mild steel reinforcing bars (left) (NCHRP, 2004); extended strands and dowel 

bars placed through the girder web (right) 

Extending mild steel reinforcement from precast girders is not favorable for 

precast plants. Special formwork must be made and protruding rebar makes moving and 
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storing the member more challenging. Extended strands are a viable option to form this 

connection and do not require any changes to standard formwork. For normal precast 

girders, strands are typically cut at the girder face after the concrete has cured but it is 

fairly simple to leave a length of strand extending from the girder. However, the 

protruding strands can cause the movement and storage of the girder to be more 

cumbersome. Installing ducts in the girders and strands is another good option as strands 

can be placed inside the ducts and grouted into place. However, there must be room for 

the ducts to be placed in the girders and the grout must be pumped through the ducts for 

an extended length. It is possible for the grout to leave gaps or voids along the strand 

when a long pumping length is required. The placement of dowel bars through the web 

of the girder are fairly easy to install. Pipe inserts are placed through the girder web 

before casting and the dowel bars are then inserted through the pipes and grouted in 

place. The only drawback from this option is that no steel is extending longitudinally 

from the bottom of the girder into the cap beam. However, the location of the dowel bars 

allows them to be combined with any of the other methods discussed for resisting 

positive moment. 

1.5 Scope of Research 
The scope of the following research, with sponsorship provided by Caltrans, was 

to develop ABC girder to bent cap connections that create an integral superstructure by 

resisting positive moments at the girder to cap connections. Positive moments are caused 

by horizontal and vertical acceleration ground motion. Development of fixed 

superstructure connections for ABC precast girders will allow implementation of smaller 

column and/or footing members just as for traditional cast-in-place construction. The 

two connection details presented use prestressing strands extended from the girders and 

anchored in the bent cap along with dowel bars to provide positive moment resistance. 

Extended strands were chosen for ease of construction because they do not require 

changes in formwork or the addition of ducts at the precast plant. To provide further 

advantage in using ABC precast members, the target value for vertical acceleration was 

selected to be 0.5g which well exceeds current Caltrans SDC requirements and provides 
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an alternative solution to adding longitudinal girder side reinforcement for resisting 

vertical acceleration. Successful design and testing of the connections would enable the 

benefits of ABC to be fully utilized in areas that experience high seismic forces. 

A prototype bridge was developed using the current Caltrans bridge design 

approach using California bulb-tee girders with a cast-in-place bent cap. Negative 

moment resistance was provided by a cast-in-place deck while positive moment 

resistance was provided by the combination of extended strands and dowel action. After 

development of the prototype, a 40% test unit was designed and tested at the Iowa State 

University (ISU) structures laboratory. Analysis of the girder to cap connection was also 

conducted prior to testing to adequately predict the behavior of the connection region 

and highlight any potential problems that might be encountered during testing.  

 As a part of testing, the connections were loaded to target shear and moment 

values in order to fully quantify the capacity of each design. Upon completion of the test, 

conclusions and recommendations were formulated to assist Caltrans in analyzing and 

implementing the connections details. Adjustments were also made to the analysis 

process for predicting the connection behavior in order to benefit future analytical work.  

1.6 Thesis Layout 
 A literature review of past research regarding positive moment resistance by use 

of extended strands for both seismic and non-seismic applications is provided in Chapter 

2. Chapter 3 provides details regarding the prototype as well as the design, construction, 

and instrumentation of the test unit. Chapter 3 also provides the test unit loading protocol 

and details regarding the analysis conducted to predict connection behavior. Testing and 

performance of each connection is included in Chapter 4 along with comparisons to the 

predicted connection behavior. Finally, Chapter 5 provides conclusions drawn from the 

project and recommendations both for implementation in the field as well as further 

testing.  
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 - LITERATURE REVIEW 

2.1 Introduction 
 To better evaluate the use of extended strands to form a positive moment girder 

to cap connection, a review of literature on the subject was performed. Current design 

practices are discussed first, followed by research regarding both seismic positive 

moment resistance of precast girders and extended strand moment resistance. It was 

found that limited amount of research has been conducted in relation to the use of 

extended strands to resist seismic forces. Much of the previous research conducted 

focused on resisting positive moments with other mechanisms or solely focused on the 

use of extended strands to resist forces due to creep, shrinkage, and temperature 

differentials but not seismic loading. Details of each topic will be discussed in the 

following sections. 

2.2 Current Design Practice 
 California Department of Transportation 

The California Department of Transportation (Caltrans) follows the SDC 

guidelines (Caltrans, 2010) described earlier, as well as Caltrans Bridge Design Aids 

(BDA) (Caltans, 2012) when designing precast concrete girder bridges with positive 

moment connections. In the current Caltrans design, the girder to cap connection is 

treated as pinned and dowel bars are placed transversely through the web of the girder as 

shown in Figure 2.1. This provides some positive moment resistance but no other 

positive moment mechanisms are currently specified in Caltrans SDC. The lack of 

positive moment design details is a result of treating the precast girder connections as 

pinned and also likely due to the limited amount of research and testing regarding 

specific positive moment mechanisms such as extended strands and reinforcing bars. 

 
Figure 2.1: Current Caltrans connection detail 

Cap Beam 

Girders 
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 Washington State Department of Transportation 

 The Washington State Department of Transportation (WSDOT) is currently 

designing bridges using extended strands to form positive moment connections. These 

connections are designed for use at intermediate piers of bridges with prestressed girders 

(Khaleghi, 2012). Three methods of design for connection details are specified by 

WSDOT design policy as shown in Figure 2.2, Figure 2.3, and Figure 2.4. 

 

 
Figure 2.2: Extended Strand Overlap Detail (Khaleghi, 2012) 

 

 

Figure 2.3: Strand Tie Detail (Khaleghi, 2012) 
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Figure 2.4: Integral diaphragm and crossbeam detail (Khaleghi, 2012) 

The first method utilizes extended strands that overlap strands from the girders 

on the opposite side of the cap beam. This detail is allowed for any width of cap beam 

and for bridges without skew or horizontal curvature. The second method uses strand 

ties for cases in which bridge skew or horizontal curvature would cause the strands to 

cross. Strand ties require a cap beam that is at least six feet wide. If the width of the cap 

beam is less than six feet, strand ties are allowed as long as a minimum of 8 in. of lap is 

provided between the strand tie and extended strand. If 8 in. of lap is not provided the 

effectiveness of the tie is reduced in proportion to the reduction in lap length. The third 

method specifies that any additional design forces beyond the capacity of the strand ties 

used in the second method must be carried by crossbeam ties. A maximum area of 

crossbeam ties that can be considered effective for carrying strand forces is specified by 

Equation 2.1. An increase in the width of the crossbeam is required if sufficient 

resistance cannot be developed using crossbeam ties (Khaleghi, 2012). 

𝐴𝐴𝑠𝑠 =  1
2
�𝐴𝐴𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑛𝑛𝑠𝑠

𝑓𝑓𝑦𝑦𝑦𝑦
�    (2.1) 

where: 

 Aps = area of strand ties, in2 

 ns = number of extended strands that are spliced with strand and crossbeam ties 

 fpy = yield strength of extended strands, ksi 

 fye = expected yield strength of reinforcement, ksi 
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If crossbeam ties are used, two-thirds of the As value calculated in Equation 2.1 must be 

placed directly below the girder and the remaining reinforcement must be placed outside 

the width of the bottom flange. These design details have not been experimentally tested 

but are currently used in practice by the Washington DOT. 

2.3 Seismic Positive Moment Research 
 Spliced girder test 

In 1999, Caltrans funded a research project at UCSD to develop precast spliced 

girder bridges in which the girders and connection diaphragms are post-tensioned 

together (Holombo, 1999). Two prototypes were developed with one utilizing bulb-tee 

girders and the other bathtub girders. A schematic of the prototypes is shown in Figure 

2.5.  Spliced girders were viewed as a possible alternative to traditional precast girder 

bridges because the self-weight of the superstructure was able to be supported 

continuously across the bent cap.  

 
Figure 2.5: Schematic of prototype bridges (Holombo, 1999) 
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The use of spliced girders changes the moment profile of the bridge and results in 

a higher negative moment at the girder to cap connection due to the dead load. The 

redistribution of dead load also results in a smaller positive moment demand due to 

seismic activity as shown in Figure 2.6. The increased negative moment demand can 

then be resisted with reinforcement in the bridge deck while less resistance is needed for 

positive moment (Holombo, 1999). Other benefits of using spliced girder bridges include 

longer span lengths, since the girders are spliced on site and therefore not limited by 

hauling limits, and reduced cost since the sections can be made continuous for self-

weight moments reduces the superstructure depth (Holombo, 1999). 

 
Figure 2.6: Moment profile comparison 

Two 40% scale test units were constructed and tested at the structures lab of 

UCSD. One unit used Modified Florida bulb-tee girders while the second unit was built 

using bathtub girders. After construction was complete, both units were subject to 
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horizontal displacement cycles. Horizontal actuators applied the push and pull forces to 

generated target connection moments while vertical actuators provided the appropriate 

shear forces as shown in Figure 2.7. As the test units approached failure due to 

horizontal displacement, the testing was stopped and the location of the actuators was 

changed to determine the capacity of the superstructure by pushing and pulling vertically 

as shown in Figure 2.8. 

  

 

 

 

 

 

 

 

 

 

 

 

In the horizontal displacement cycles, both the bathtub and bulb-tee units were 

able to reach a higher displacement ductility than the design ductility of µΔ=4. The bulb-

tee reached a ductility of µΔ=8 while the bathtub unit reached a ductility of µΔ=6. Only 

minor cracking was observed at the girder to cap interface and many of the cracks closed 

after the testing loads were removed. When the actuators were moved to the vertical 

position and the capacity of the superstructure was tested, the bulb-tee reached the 

actuator displacement limits of µΔ=2.5 and µΔ=1.5 in the push and pull directions 

without spalling any concrete around the section (Figure 2.9). The maximum positive 

Figure 2.7: Spliced girder test setup (Holombo, 1999) 

Figure 2.8: New location of actuators (Holombo, 1999) 
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moment reached by the connection was around 243 k-ft as shown in Figure 2.10. The 

bathtub unit experienced plastic hinge failure at a ductility of µΔ=2.4 in the pull direction 

with spalling around the girder to cap interface as shown in Figure 2.11 and Figure 2.12. 

The maximum positive moment reached was 300 k-ft as shown in Figure 2.13.   Results 

from both of the horizontal and vertical displacement show that the spliced girders were 

adequate to resist design level earthquakes.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10: Moment-rotation response of bulb-tee girder (Holombo, 1999) 

Figure 2.9: Bulb-tee test unit (Holombo, 1999) 
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Figure 2.11: Spalling of bathtub girder at cap interface (Holombo, 1999) 

 
 

 

 

 

 

 

 

 

 
Figure 2.13: Moment-rotation response of bathtub girder (Holombo, 1999) 

Figure 2.12: Bathtub test unit (Holombo, 1999) 
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 Caltrans system test 

In 2010, a joint project between ISU and the University of California San Diego 

(UCSD) was sponsored by Caltrans for the purpose of verifying that girder to cap 

positive moment connections could be established to create an integral superstructure 

and allow plastic hinge formation in both the top and bottom of bridge columns. This 

project, known as the system test, was conducted at UCSD and included the design, 

construction, and testing of a bridge column and five girder superstructure. A prototype 

structure was developed to accurately represent existing Caltrans bridges as shown in 

Figure 2.14. Dapped end California I-girders were used in the design as well as an 

inverted tee cap beam. The deepest I-girder was chosen to create the largest possible 

demand at the girder to cap beam connection. A 50% scale test unit was then designed to 

adequately capture the behavior of the girder to cap connections and identify whether the 

superstructure would remain integral under high loads. The test unit consisted of a single 

column, cap beam, five girders on each side of the cap, and a deck overlaying the entire 

superstructure. Only a single section of the prototype structure was represented, as 

outlined in Figure 2.15 because it was determined that the highest moment and shear 

values experienced by the bridge would occur at this section.  

Figure 2.15: System test prototype (Snyder, 2010) 

Figure 2.14: Test unit section for the system test (Snyder, 2010) 
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The test unit constructed at UCSD consisted of two different girder to cap 

connection details. One detail was the current connection used by Caltrans which was 

expected to behave as a pinned connection and labeled the “as-built” connection, and the 

other was an experimental connection utilizing grouted unstressed strands and labeled as 

the “improved” connection. The as-built connection consisted of three dowel bars placed 

transversely through the girder web. The improved connection had the same dowel bars 

as the as-built but also had four unstressed strands that ran along the bottom of the cap 

and girder. Two ducts were placed in the members prior to casting of the girders and cap 

and two strands were then run through each duct and grouted in place. Simplified details 

of the connections are shown in Figure 2.16.  

The test unit was then subject to dead loads and loads generated by horizontal 

ground motion. The results of the test showed that both connections details behaved as 

fixed connections resulting in an integral superstructure which allowed a plastic hinge to 

form in both the top and bottom of the column with a maximum displacement ductility 

of 10. The fixed behavior of the as-built connection was not expected since it had been 

designed to behave as a pinned connection. Both connections were damaged after 

reaching a displacement ductility of 10, but the full capacity of the connections had not 

yet been reached. In order to fully quantify the connection, vertical forces were applied 

to each set of girders in increments. In this manner, the capacity of the as-built 

connection was fully quantified; however, the improved connection was not able to be 

fully quantified because of instability developed within the test unit. Final condition of 

Figure 2.16: Simplified system test details: as-built (left); grouted strand (right) 
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the test unit is shown in Figure 2.17 along with the final capacity of each connection in 

Figure 2.18 and Figure 2.19. More detailed results as well as information regarding the 

design of the prototype and test unit can be found in “Seismic Performance of an I-

Girder to Inverted-T Bent Cap Connection” by R Snyder et. al (R. Snyder, 2011). 

 

 

 

 

 

 

 

 
Figure 2.17: Test unit for system test (Snyder, 2010) 

 
 
 
 
 
 
 
 
 
 

 

Figure 2.18: Positive moment response of connections established from vertical disp. test                
(R. Snyder, 2011) 

 
Figure 2.19: Negative moment response of connections established from vertical disp. test                

(R. Snyder, 2011) 

As-built 

  

Improved 
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 Connection tests 

The system test showed that the superstructure of the prototype bridge will 

remain integral and elastic allowing for the formation of two plastic hinges at the ends of 

the bridge column during seismic loading.  However, the full capacity of the grouted 

strand connection was not able to be determined. With support from Caltrans, it was 

determined that ISU would conduct further testing to quantify this connection and also 

develop new connection details. A total of six positive moment connections, including 

the improved connection, were designed in order to help understand the best way to 

create positive moment continuity for precast girders. The resistance of each connection 

to forces generated by vertical acceleration effects was also examined. This series of 

tests will be referred to as the connection tests. One goal of the connection tests was to 

fully quantify the shear and moment capacity of individual girder to cap connections to 

ensure that each connection remained elastic well beyond the formation of plastic hinges 

developed in the system test. The second goal was to demonstrate that each connection 

had adequate shear and moment capacity when subjected to 0.5g vertical acceleration in 

addition to horizontal ground acceleration. Meeting the second goal would eliminate the 

need for added side longitudinal girder mild steel reinforcement currently required by 

Caltrans SDC.  Full quantification of the connections would also allow for improved 

design of integral bridge superstructures.  

Since the goal of the tests was to quantify the behavior of the connections, the 

formation of column plastic hinges was not necessary. Therefore a short square column 

was designed which would remain elastic throughout the test to enable the connections 

to be fully quantified. In order to perform individual testing of the connections, each 

girder had its own bridge deck. The width of each bridge deck was determined based on 

the percentage of the entire bridge load that a single girder would carry. 

The first test unit was designed using a 50% scale model of the same prototype 

used in the system test (Figure 2.20) and consisted of a footing, column, cap beam, and 

two girders with individual decks shown in Figure 2.21. An inverted cap beam and 

California I-girders were used to duplicate the system test.  
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Figure 2.21: CT1 test setup 

The two connection details designed for CT1 were the grouted unstressed strand 

connection (GUSC) or improved connection from the system test and the looped 

unstressed strand connection (LUSC) which was designed by Caltrans. The LUSC 

connection had unstressed strand loops cast inside the girders and also protruding from 

the corbel of the cap beam. The loops overlapped when the members were placed and 

four dowel bars were run transversely through the loops as shown in Figure 2.22. The 

loops confined the concrete around the dowel bars in order to provide positive moment 

resistance. 

 

 

 

 

 

 

Figure 2.20: Test unit section for CT1 

Figure 2.22: GUSC (left) and LUSC (right) connections tested in CT1 
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The CT1 test unit was constructed in the ISU structures lab and utilized ABC 

components including a precast cap beam and precast I-girders. The precast cap beam 

contained ducts that slid over extended column reinforcement and then were filled with 

grout to establish a secure column to cap connection. A diaphragm was then poured to 

attach the I-girders to the cap beam. After pouring the individual bridge decks and 

setting up the necessary instrumentation, the CT1 test unit was tested according to a 

loading protocol that included dead loads, horizontal ground acceleration, and vertical 

ground acceleration. 

Both connections for CT1 performed well and provided adequate positive 

moment resistance beyond the as-built connection from the system test. Comparison of 

the moment values and corresponding deflections near the center of the girder are shown 

in Figure 2.23 and Figure 2.24. The performance of the connections ensured that the 

superstructure of the bridge would remain elastic well beyond the moment necessary to 

form a plastic hinge in the top of the column. Further details regarding specifics of 

design, construction, and results are detailed in “Integral precast girder-to-cap 

connections for accelerated bridge construction in seismic region” by Justin 

Vanderwerff, 2014. 

 

Figure 2.23: Negative moment vs. displacement performance of GUSC and LUSC connections 
compared to system test 
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Figure 2.24: Positive moment vs. displacement performance of GUSC and LUSC connections 

compared to system test 

2.4 Extended Strand Research 
While the previously discussed research focused on seismic moment resistance of 

precast girders by various mechanisms, the following two tests examine the capacity of 

extended strands to resist positive moments due to volume changes caused by creep, 

temperature shrinkage, and loading in spans away from the supports.  

One of the first tests was conducted by Salmons at the University of Missouri in 

1974 to provide reinforcement to resist volume changes at precast girder to cap 

connection regions. The test had two phases, the first phase investigated the bond of 

untensioned prestressing strands in concrete and the second phase specifically looked at 

using extended strands at the girder to cap connection. In the first phase, 69 specimens 

were tested with consideration given to the configuration of embedded strands, 

embedment length, diameter of the strand, and strength of concrete (Salmons, 1974).  

Pull out tests were conducted after the strands were cast into the concrete. The 

study tested strands with three different end conditions: strand bent at 90° over a 

reinforcing bar, straight strand, and frayed strand. The 90° strand was found to be the 

strongest followed by the straight strand and then the frayed strand.  It was found for the 

sizes of strand tested (3/8”, 7/16”, 1/2”, and 0.6”) that the strand diameter had no effect 

on the slip of the strand in relation to the stress in the steel. The study also concluded 

that concrete strength (3,750-6,900 psi) had  no effect on the bond of the strand in 
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relation to slip (Salmons, 1974). Phase 1 of the test provided recommendations for 

embedment length of the strands to prevent slip: 

90° bent strand: 

Le = 0.163fs + 8.25 in.      (2.2) 

Straight strand: 

Le = 0.337fs + 8.00 in.      (2.3) 

Frayed strand: 

Le = 0.552fs + 5.50 in.      (2.4) 

fs = loaded end steel stress in ksi 

 Le = total embedment length in inches 

The second phase of the test involved testing of short I-girder sections which 

were placed end to end and embedded in a diaphragm.A total of six test specimens were 

constructed, three utilized a slab over the girders and diaphragm, while the other three 

were tested without a slab as shown in Figure 2.25 and Figure 2.26. The diaphragm was 

2 ft. 6 in. wide and 8 ft. long, while the slab was 6.5 in. deep. 

 
Figure 2.25: I-girder with slab extended strand test specimen (Salmons, 1974) 

 
 Figure 2.26: I-girder without slab extended strand test specimens (Salmons, 1974) 
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Each specimen contained a different number of 0.5 in. diameter, 270 ksi relaxed 

prestressing strands which were embedded at different lengths as shown in Table 2-1. 

Test specimens S1-S3 are I-girder sections that were tested with slabs while O1-O3 are 

I-girder sections tested without slabs. Each girder specimens was subjected to flexural 

loading and it was found that the specimens with more strands were able to carry higher 

moments due to increased stiffness values. The ultimate moments established from the 

flexural loading of the test specimens are shown in the Mact column of Table 2-2.   
Table 2-1: Number of strands and embedment length for each girder specimen (Salmons, 1974) 

Specimen 
 No. of 
Strand 

Embedment 
Length (in.) 

S1 4 30 
S2 2 30 
S3 2 24 
O4 2 30 
O5 4 30 
O6 7 24 

 
Table 2-2: Cracking and ultimate moment values for each girder specimen (Salmons, 1974) 

Specimen 
 No. of 
Strand 

Embedment 
Length (in.) 

Cracking 
Moment (k-ft) 

Ultimate 
Moment (k-ft) 

S1 4 30 252 489 
S2 2 30 238 349 
S3 2 24 252 369 
O4 2 30 135 207 
O5 4 30 150 327 
O6 7 24 180 442 

Other notable observations included that a larger number of strands in the 

connection region was not detrimental to the integrity of the connection and that tension 

forces transferred into the diaphragm tended to dimish rapidly as the loads were 

increased (Salmons, 1974). In all the tests, failure occurred when the I-girder and 

diaphragm split and the girder was pulled away from the specimen. It was also noted that 

the slab caused a notable change in the compressives strain distribution with the slab 

distributing the strain over a larger width. Overall, the test showed that extended strands 
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were able to be adequately resist positive moments caused by volume change at the 

girder to cap connection (Salmons, 1974).  

Another set of tests of positive moment connections to resist creep, shrinkage, 

and temperature effects was performed by the Transportation Research Board in 2004 

and published in the NCHRP 519 report. The first part of the study included a survey 

about continuous superstructure connections with positive moment reinforcement used 

by state DOTs and private contractors, fabricators, and designers (NCHRP, 2004). The 

survey found that the majority of positive moment connections built consisted of bent 

bars or extended bent strands as shown in Figure 2.27 and Figure 2.28. The most 

common types of girders used in the survey were I-girders and bulb-tee girders. 

 
Figure 2.27: Bent reinforcing bar connection (NCHRP, 2004) 

 

 

 

 

 

 

Figure 2.28: Bent strand connection with diaphragm formwork (NCHRP, 2004) 

The second part of the test included the construction and testing of six short 

specimens which consisted of two 16-ft long I-girders joined by a diaphragm as well as 

two 50-ft specimens (NCHRP, 2004). For each specimen, the ends of the girders were 

Bent Strands Formwork supports 
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always ten inches apart but the width of the diaphragm was varied in order to investigate 

its effect on the connection.  

Two of the 16-ft long girders used 0.5 in. diameter, 270 ksi relaxed strands that 

were extended from the girders and bent with one specimen having a 10 in. diaphragm 

and the other having a 22 in. diaphragm. The bent strands had a total length of 26 in. 

with 8 in. before the 90° bend and 18 in. after the bend. A total of six strands were used 

in each connection and the strand was bent in the field using a hydraulic hand tool. The 

other four 16-ft connections used bent bars with various diaphragm widths and 

reinforcement details. For each specimen, a deck slab was cast over the beams and 

diaphragm. The 16-ft specimens were tested as cantilever beams and subjected to cyclic 

loading as shown in Figure 2.29 (NCHRP, 2004). The loading was made up of three 

distinct phases. In the first phase the girders were cycled between the positive and 

negative live load moments without considering time dependent effects. The second 

phase considered creep, shrinkage, and temperature change and cycled the girder to the 

positive cracking moment (Mcr) of the girder (NCHRP, 2004). The third phase took into 

account the maximum positive and negative moments generated by live loads combined 

with the maximum positive moment generated by creep, shrinkage, and temperature 

change. The girders were cycled to these combined maximum moment values until 

failure. The total number of cycles at the combine maximum moment was then 

compared for each specimen and is shown in Table 2-3. 

 
Figure 2.29: Cyclic loading cycle used to test strand or bar capacity in 16-ft specimens (NCHRP, 

2004) 
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Table 2-3: Results and descriptions of 16-ft specimens (NCHRP, 2004) 

Specimen 
Number 

Type of 
Specimen 

Diaphragm 
Width (in.) 

Girder End 
Embedment 

(in.) 
Special 
Feature 

Cycles to 
Failure 

1 Bent strand 10 0 None 16,000 
2 Bent bar 10 0 None 25,000 
3 Bent strand 22 6 None 55,000 
4 Bent bar 22 6 None 11,600 

5 Bent bar 22 6 

Extra 
Stirrups in 
diaphragm 56,000 

6 Bent bar 26 8 Web bars 133,000 
 

The 50-ft specimens were constructed using the bent strand detail and bent bar 

detail.  Both specimens had a standard 10 in. diaphragm and a deck slab. The bent strand 

connection consisted of ten 0.5 in. diameter strands with the same 26 in. length as the 

16-ft specimens.  The 50-ft specimens were loaded in a similar manner to the 16-ft. 

However, instead of cycling the loads when the maximum moment values were reached, 

the load was gradually increased beyond the maximum values until failure. The bent 

strand connection reached a maximum positive moment of approximately 1400 k-ft. One 

of the concerns while testing the 50-ft specimens was the loss of continuity over the 

connection region once positive moment cracking occurred. However, both connections 

did not experience any loss of continuity until failure of the connection was reached.  

Many conclusions were drawn from the testing of the 16-ft and 50-ft specimens. 

It was observed that for both size specimens that the bent strand and bent bar 

connections provided adequate positive moment capacity to resist creep, shrinkage, and 

temperature effects in the girder. The 16-ft specimens were able to withstand over 

10,000 cycles at maximum moment values and the 50-ft specimens both withstood a 

maximum positive moment of around two times Mcr (NCHRP, 2004).  Considering 

constructability, the bent strand connections were easy to fabricate and the length of the 

bent strands was determined using Equations 2.2 - 2.4 from Salmon’s report mentioned 

earlier. It was found that the bent bar connections were harder to construct and required 

asymmetrical spacing to allow the two girders to mesh together. The asymmetrical 



30 
 

spacing resulted in asymmetrical stresses and cracking; however, this problem could be 

avoided if a wider diaphragm was used (NCHRP, 2004). It was also concluded that the 

embedment length of the girders in the diaphragm reduced the stress in the connection 

and allowed for higher cycling of loads in the 16-ft specimens before failure. However, 

the report suggests that quantifying the reduction in stress was difficult and therefore the 

effect of diaphragm embedment should not be considered in the design of the 

connections.  

Finally, one of the 16-ft test specimens contained dowel bars that were placed 

transversely through the web of the girder and embedded in the diaphragm. It was noted 

that these bars significantly improved the behavior of the connections (Table 2-3). 

However, they also caused a large amount of cracking in the girder which may not be 

desirable (NCHRP, 2004). The report concluded that each connection tested was 

sufficient and that the selection of specific details should be left to the preference of the 

designer. The end of the report also discussed the application of the test results to 

seismic regions. The authors state that the work done in the tests may be relevant to 

seismic design but that proper detailing of the connection region and further testing 

would need to be performed. It is also observed that the bent strand connections tend to 

slip under cyclic loading in the 16-ft tests but specific slip values related to the applied 

girder force were not provided. 
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 – PROTOTYPE STRUCTURE AND TEST CONFIGURATION 

3.1 Introduction 
Following the review of previously conducted research, an experimental 

investigation was performed to design and test two positive moment connections for 

ABC girders using prestressed extended strands and dowel bars. A prototype structure 

was first designed, followed by the design, construction, and instrumentation of a 40% 

scale test unit. A loading protocol was then developed along with an analytical model to 

predict the behavior of each connection. Details of each component of the investigation 

are discussed in the following sections. 

3.2 Prototype Design 
 General 

The current connection test is an extension of the system test performed at UCSD 

which was discussed in a previous section. The system test, as outlined in Snyder et al. 

2011, provided overall superstructure behavior and column response of a single column 

bent. It showed that the superstructure would remain fixed under high seismic loads and 

allow a second plastic hinge to develop at the top of the bridge column. The connection 

tests were developed to further understand and quantify the response of specific girder to 

cap connections within the superstructure. The first set of connection tests (CT1) 

investigated the improved detail used in the system test (known as the GUSC 

connection) as well as a detail designed by Caltrans (LUSC connection). The results of 

CT1 showed that both connections acted as fixed connections, as opposed to degrading 

to a pin connection, and had adequate capacity to resist shear and moment values 

corresponding to the combined loads of gravity, horizontal seismic, and vertical 

acceleration of 0.5g. For both the system test and CT1, the same prototype structure was 

used as shown in Figure 3.1.  

 

 

 

Figure 3.1: System test prototype design 
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The system test prototype superstructure was designed in accordance with current 

Caltrans standards, had a maximum possible span length of 112 ft, and consisted of five 

dapped end I-girders. A five girder superstructure was used based on calculations which 

showed that five girders would provide the maximum bridge width allowed for a single 

column bent. Discussion following the completion of CT1 examined the possibility of 

extending the findings to bridges with longer span lengths which would in turn generate 

larger connection forces. The 112 ft prototype span length of the first test unit was 

actually longer than the preferred span length for I-girders which Caltrans specifies to be 

95 ft. However, use of the 112 ft span ensured that the connections would work well for 

any I-girder bridge (Caltans, 2012). Bridges using bulb-tee or wide-flange girders with 

span lengths of up to 150 ft are not uncommon in California. Therefore it was decided to 

use bulb-tee girders for the second connection test with a 150 ft prototype span length in 

order to accurately investigate the connection behavior for longer bridge spans.  

The 150 ft span length required use of California Bulb-Tee 85 girders (CA-BT85) 

which are the largest bulb-tee girders currently used in the state of California. To 

replicate the system test, a single column bent was used for the bulb-tee prototype along 

with the maximum superstructure width which again corresponded to five girders. The 

maximum girder size and span length generated the maximum moment possible at the 

girder to cap connection region for a single column bent, bulb-tee girder bridge. Since 

the system test provided a fully designed prototype structure, the design of the bulb-tee 

prototype followed the system test design. In order to adequately design the bulb-tee 

prototype, the scale factors listed in Table 3-1 were formulated to appropriately increase 

the dimensions of the system test. The scale factors provided very close approximation 

for superstructure length and depth as well as the appropriate section areas. 
Table 3-1: System test prototype scale factors 

Parameter Scale Factor 
Length 1.34 
Area 1.8 
Stress 1 
Force 1.8 
Moment 2.41 
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Using details from the system test, along with the appropriate scale factors shown 

above, the bulb-tee prototype structure was developed as shown in Figure 3.2. Specific 

design considerations for sections of the bridge including the column, girders and deck, 

bent cap, and connection regions are discussed in the following sections. 

 
Figure 3.2: Bulb-tee prototype structure 

 Column Design 

In the system test, a circular column was designed with plastic hinge locations at 

both the top and bottom of the column and a column overstrength moment of 17,662 k-ft 

(Thiemann, 2009). The scale factors listed in Table 3-1 and the overstrength moment 

from the system test were used to determine the overstrength moment for the bulb-tee 

prototype. The overstrength moment was found to be 42565 k-ft. It was not necessary to 

scale the column height from the system test, therefore the bulb-tee prototype had a 

clearance height of 19 ft 3 in. Scaling of the column section area resulted in a possible 

column diameter ranging from 6-8 ft depending on the reinforcement detail and plastic 

hinge design method. A specific column detail was not necessary for this connection test 

since the column overstrength moment and clearance height would be sufficient to 

adequately design the test unit.  

 Bent Cap Design 

The main goal of the connection tests was to investigate different girder to cap 

connections in order to identify the best options for ABC construction. The system test 

used a precast inverted tee bent cap while the CT1 test unit utilized a precast inverted-tee 

bent cap. Both cap details provided a bearing surface for dapped end I-girders. To better 

understand how the bearing surface affected the cap connection and to further evaluate 

the benefits of the inverted-tee, the bulb-tee prototype was designed with a cast-in-place, 

square bent cap and girders without dapped or end blocks. The square bent cap 
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eliminated the bearing surface provided by the inverted-tee and the girders without end 

blocks provided an opportunity to investigate the effectiveness of the girder to cap 

connections excluding end blocks. Due to the cast-in-place cap beam, a set of reference 

drawings was provided by Caltrans and were used to supplement the system test 

reinforcement details. The drawings contained details for a proposed widening project of 

interstate I-215/I-10 in California. The widening project used a square cap that would be 

added to an existing multi-column bent. By scaling the system test cap beam and 

referencing the provided Caltrans drawings, the dimensions and details of the cap beam 

were determined. The depth of the cap was 7 ft 0-5/8 in. to correspond with the CA-

BT85 girders, and the cap length was set to 34 ft 5 in. to accommodate five girders with 

8 ft center-to-center spacing. The ends of the bulb-tee girders were extended into the cap 

beam a length of 1 ft 4 in. 

 Girder and Deck Design 

The CA-BT85 girders were designed according to dimensions specified in 

Caltrans Bridge Design Aids (BDA) (Caltans, 2012) and did not include an end block as 

mentioned previously. The details of the girder reinforcement were slightly different 

then the system test due to the change from an I-girder to the bulb-tee. The reference 

drawings provided by Caltrans included details of bulb-tee girder reinforcement for CA-

BT73 girders and were able to be used in combination with the system test drawings to 

correctly detail reinforcement for the CA-BT85 girders. The deck dimensions from the 

system test were not scaled since a typical 8 in. thick deck was used for the bulb-tee 

prototype in order to follow current Caltrans design standards. 

 Connection Design 

3.2.5.1 General 

The design of the connections was completed based on a combination of current 

field practices and research results. Each connection would experience both positive and 

negative moments and needed to be designed accordingly. The magnitudes of the 

positive and negative design moments are normally calculated based on the distribution 
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of moment generated by horizontal seismic forces at the connection region. In the report 

by Snyder et. al., percentages of the column overstrength moment were used with 45% 

corresponding to the positive moment and 55% to the negative moment. These 

percentages however, do not account for the effects of vertical seismic acceleration. 

Results from CT1 were examined and it was found through a force based approach that 

the percentages changed to 30% for positive moment and 70% for negative moment if 

vertical acceleration was considered. The shift in percentage of moment can be attributed 

to the vertical acceleration in the positive moment direction being counteracted by the 

mass of the structure. However, it is important to note that the overstrength moment 

value increases if vertical acceleration is considered. The higher overstrength moment 

results in the 30% moment due to vertical acceleration being higher than the 45% 

moment due to only horizontal forces. Equations 3.1 and 3.2 were used to calculate the 

positive and negative design moments of the bulb-tee prototype. 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑝𝑝% ∗ 𝑀𝑀𝑜𝑜    (3.1) 

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑛𝑛𝑛𝑛𝑛𝑛% ∗ 𝑀𝑀𝑜𝑜    (3.2) 

 Mpos = positive design moment 

 Mneg = negative design moment 

 Mo = column overstrength moment 

 pos% = percentage of overstrength moment applied in positive direction 

 neg% = percentage of overstrength moment applied in negative direction 

Applied percentages: 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 =  0.30 ∗ 42565 = 12770 k-ft 

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 =  0.70 ∗ 42565 = 29796 k-ft 

The connection negative moment would be resisted by the deck reinforcement. To obtain 

the negative moment for a single girder, the total negative design moment was 

multiplied by a distribution factor of 0.24. The distribution factor is a result of previous 

research by Vanderwerff et. al 2014, and resulted in a single girder negative design 

moment of 7150 k-ft. An equivalent stress block approach was then used to calculate an 
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appropriate steel area and compression block depth. The girder and cap act as a 

composite section and therefore are assumed to be similar to a T-beam. Equation 3.3 and 

3.4 were both solved for the area of steel and then set equal to each other to determine 

the appropriate area of steel and compression block depth. A more detailed calculation is 

presented in Appendix A. 

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 =  𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
�                      (3.3) 

    𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 = 0.85𝑓𝑓′𝑐𝑐𝑎𝑎𝑏𝑏𝑓𝑓    (3.4) 

 Mneg = Negative design moment  

 As = Area of steel 

 fy = yield strength of steel 

 d = depth from center of deck steel to bottom of girder 

 a = depth of compressive block 

 𝑓𝑓′𝑐𝑐= compressive strength of concrete 

 bf = width of lower flange 

 Solving Equations 3.3 and 3.4 resulted in a steel area of 15.56 in.2 per girder and an 

equivalent compression block depth of 10.24 in. The total area of deck steel compares 

well to the system test which was not designed for vertical acceleration and had a total 

area of 12.7 in.2 per girder.  

To resist positive moment, both extended 0.6 in. diameter strands and dowel bars 

were implemented in the connection. In the system test, as well as in the GUSC 

connection test from CT1, three dowel bars were placed transversely through the web of 

each girder. Results from the tests showed that the dowel bars provided significant 

positive moment capacity and therefore would reduce the required number of extended 

strands needed in the connection. For this reason, the same size dowel bars as the system 

test were included in the bulb-tee connections. By examining data from the system test 

and CT1, it was determined that the dowel bars would provide a moment resistance of 
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1280 k-ft per girder. The positive moment requirement for a single girder was calculated 

by multiplying the previously calculated positive design moment (Mpos) by the 

distribution factor of 0.24 and was found to be 3065 k-ft. Equations 3.5 and 3.6 were 

then formulated using an equivalent stress block approach with the assumptions that the 

girder and deck would again act as a composite section and that the compressive area of 

the section would occur within the deck slab. Equations 3.5 and 3.6 were then set equal 

to each other and solved to provide the total number of strands required for each girder. 

Derivation and detailed calculations are again included in Appendix A.  

𝑁𝑁𝑠𝑠 = �𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑀𝑀𝐷𝐷𝐷𝐷�/(𝑓𝑓𝑦𝑦𝑦𝑦 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ (𝑑𝑑𝑠𝑠 −
𝑎𝑎
2

))  (3.5) 

   𝑁𝑁𝑠𝑠 =  0.85 𝑓𝑓′𝑐𝑐𝑏𝑏𝑑𝑑∗𝑎𝑎
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗𝑓𝑓𝑦𝑦𝑦𝑦

            (3.6) 

 Ns = number of strands  

 MDA = dowel action moment resistance 

 fys = yield strength of strand  

 Astrand = area of single prestressing strand  

 ds = depth from top of deck to centroid of strands 

a = depth of compression block 

bd = effective width of bridge deck for a single girder 

Solving Equations 3.5 and 3.6 resulted in the use of five 0.6 in. diameter strands per 

girder with a compressive block depth of 0.71 inches. 

3.2.5.2 ESBF Connection 

The first connection, labeled as the Extended Strand Bent with Free end (ESBF) 

connection, is shown in Figure 3.3. The connection utilizes extended strands bent at 90 

degrees, three grouted bars placed through the girder web, and crossties which connect 

the dowel bars on each side of the cap beam.  
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Figure 3.3: ESBF connection schematic 

Precast girder connections with extended strands bent at 90 degrees have been 

designed and tested to resist positive moments resulting from volume changes caused by 

creep, temperature shrinkage, and loading in spans away from the supports. The bent 

strand connection performed well in these tests (NCHRP, 2004); however, the concept 

had not yet been tested for seismic loading. The goal of the ESBF connection design was 

to extend the bent strand detail to seismic applications and determine the bent strand 

performance under larger loads caused by seismic action. Dowel bars were also included 

in the design of the connection in order to decrease the number of extended strands 

required for positive moment resistance and thereby reduce congestion at the connection 

region. 

The extended strands in the ESBF connection rely on development length for 

anchorage in the bent cap. Development length of an extended strand is the length 

required for proper anchorage based on the bond strength between the strands and 

concrete. The 90 degree bend in the strand allows for a longer development length 

within the cap beam and also provides tension continuity in the superstructure as the 

strands from girders on opposite sides of the bent cap overlap. 
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Current research conducted at ISU provided recommended development lengths 

for different sizes and configurations of strands. The recommendations were based on a 

series of pull-out tests performed on strands. For the 0.6 in. diameter strands used in the 

prototype, the recommended development length of a curved strand was 70 in. This 

length is conservative when compared to the length of 52.5 in. suggested by using 

Equation 2.2 (Salmons, 1974). The initial placement of the strands was designed to be 

under the longitudinal reinforcement bars in the cap beam so that the strands could be 

bent around the longitudinal bars as shown in Figure 3.3. For placing the bent extended 

strands, strands can be bent at 90 degrees and set in place prior to assembling the cap 

reinforcement or the strands can also be threaded through the completed cap 

reinforcement.  

3.2.5.3 ESSP Connection 

The second connection, known as the Extended Strand with Splice and end Plate 

(ESSP) connection, is shown in Figure 3.4. The extended strands and addition of strand 

ties in this connection were designed according to details used by the Washington 

Department of Transportation (WSDOT) (Khaleghi, 2012).  

 
Figure 3.4: ESSP connection schematic 
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For the ESSP connection, WSDOT has provided design recommendations, but the 

connection detail has not been experimentally verified. The detail is beneficial to bridges 

where congestion of cap beam reinforcement makes it difficult to extend strands further 

into the cap beam to provide tension continuity. Experimental verification of the 

capacity of the connection will validate the design guidelines specified by WSDOT and 

also provide a better understanding of how force would transfer through the connection. 

In the ESSP connection, the prestressed strands from the girders extend a short 

distance into each side of the cap beam and are anchored with plates and strand chucks. 

Strand ties are placed to overlap the extended strands on both sides of the cap and create 

tension continuity along the bottom of the cap beam as shown in Figure 3.4. The strand 

ties are also anchored on both ends with a plate and anchor chuck. The WSDOT design 

does not include dowel bars, but based on the system test each girder contains three 

dowel bars connected with crossties in order to reduce the required number of extended 

strands. 

The spliced strand concept relies on the idea that the tension force developed in the 

strand under positive moment will transfer from the extended girder strand into the 

strand tie through a manner similar to a strut-and-tie model as shown in Figure 3.5. The 

plate and anchor chuck on each end of the strand tie provide anchorage and resist the 

tension force generated by positive moment. The vertical component of the strut is 

assumed to be negligible due to the close proximity of the strands. WSDOT guidelines 

state that there must be at least 8 in. of overlap between the extended strands and the 

strand tie. It is not clarified if the 8 in. includes the plate and chuck anchorage, so it is 

assumed that there must be 8 in. between the anchor plates of the extended strand and 

strand tie. The strand ties allow for flexibility in the placement of the strands if the 

connection region is congested or if the girder strands cannot extend straight into the 

cap. In these cases, the strand ties can be moved as long as the ends remain reasonably 

close to the strands extending from the girder. It is likely that placement of the strands 

and strand ties would need to be completed prior to the completion of the cap 

reinforcement due to space required to place the anchor plates and chucks. 
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3.3 Test Unit Design 

 Introduction 

Based on the prototype bridge dimensions presented in Figure 3.2, a 40% scale test 

unit was designed. The design was based on the region of the prototype where moments 

in the girder to cap connection would be the highest during seismic activity. This region 

was determined to be located at Bent 3 as indicated in Figure 3.7.  

 
Figure 3.6: Region of highest forces during seismic activity 

In designing the test unit, consideration was given to positioning girders on both 

sides of the cap beam or only on a single side. It was decided to place girders on only 

one side of the cap beam in order to simplify testing because placing girders on both 

sides of the cap would require simultaneous testing of opposing girders. Therefore the 

test unit was designed with two girders placed on one side of the cap beam. One girder 

would test the ESBF connection, and the other the ESSP connection. Each girder was 

designed with an individual deck to prevent interaction between connections. The factors 

shown in Table 3-2 were used to design the test unit by appropriately scaling the 

prototype structure. Details regarding the design of the girders, test unit connections, 

Strand tie 

Extended girder strand 

Tension tie 

Tension tie 

Figure 3.5: Strut and tie model 

Tension force transfer 
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column and footing, and cap beam are discussed in the following sections. A complete 

set of drawings for the test unit are attached in Appendix B. 
Table 3-2: Test unit scale factors 

Parameter Scale Factor 
Length 0.4 
Area 0.16 
Stress 1 
Force 0.16 
Moment 0.064 
Uniform Load 0.4 
Displacement 0.4 

 Girder Design 

The first members of the test unit to be designed were the precast girders. The scale 

factors listed in Table 3-2 were used to scale the girder dimensions which resulted in the 

scaled girder cross-section shown in Figure 3.8.  

 

 

 

 

 

 

 

 

 

 

 

Half of the 150 ft prototype span was scaled for design of the test unit as shown in 

Figure 3.7 since, due to symmetry, the moment behavior of the girder could be 

accurately represented without considering the entire span length. Scaling half the 150 ft 

span length resulted in a 30 ft test unit girder, but also required the design of the 

Figure 3.7: Cross-sections of prototype girder (left) and scaled test unit girder (right)  
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prestressed strands in the girder to be adjusted due to the shorter girder length. The 

prestressing force from the prototype girder was scaled for the test unit and 3/8 in. 

strands were selected to provide the appropriate strand area. Next, the permissible 

stresses at transfer were checked and it was found that the extreme fiber stresses in 

tension were too high. To solve this problem, the number of strands in the girder was 

reduced until the stresses fell within the required range. The final design of the girder 

resulted in the use of ten 3/8 in. strands instead of thirteen strands in the bottom flange of 

the girder. The reduction in strands resulted in a decrease of approximately 18% in the 

overall girder moment capacity. The negative cracking moment of the girder at the 

connection interface was calculated to be 287 k-ft with a positive cracking moment of 

158 k-ft. 

   Scaling of the girder reinforcement resulted in the use of wire mesh since standard 

rebar sizes were too large. Wire mesh was previously used in the system test girders as 

well as the girders for CT1 without encountering any problems. At one end of each 

girder, 1 in. diameter holes were placed to allow for the insertion of dowel bars. 

 Connection Design 

Both the ESSP and ESBF connections were designed based on the scaled 

prototype positive and negative design moments using Equations 3.1-3.6. The test unit 

column overstrength moment was calculated using Equation 3.7. 

𝑀𝑀𝑜𝑜
𝑡𝑡 =  𝑀𝑀𝑜𝑜 ∗ 𝑠𝑠𝑠𝑠 ∗ 𝑑𝑑𝑑𝑑 ∗ 𝑛𝑛    (3.7)  

Mt
o = test unit column overstrength moment 

sf = prototype to test unit scale factor 

df = load distribution factor  

n = number of girders 

𝑀𝑀𝑜𝑜
𝑡𝑡 =  42565 ∗ 0.064 ∗ 0.24 ∗ 2 = 1308 k-ft 

Positive and negative design moments were then calculated: 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 =  0.30 ∗ 1308 = 393 k-ft 

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 =  0.70 ∗ 1308 = 916 k-ft 
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For the design negative moment the required amount of deck steel was calculated in the 

same manner as the prototype structure. The amount of deck steel that coincided to the 

negative design moment and allowed for even distribution across the width of the deck 

was calculated to be 5.26 in.2, which results in a moment capacity of 940 k-ft.  

Design of the connection for positive moment also followed the prototype design 

process using 3/8 in. strands. The moment resistance from dowel action needed to be 

calculated at the test unit scale and was found to be 160 k-ft for a single girder based on 

data from the system test and CT1. The number of strands per connection was then 

calculated in the same manner as the prototype structure and 5 strands were found to be 

required for each girder.  

The embedment length of the curved strands for the ESBF connection was also 

based on current research at ISU and set at the recommended length of 60 inches. For the 

ESSP connection, the minimum overlap length of the strand ties and extended strands at 

the prototype level was specified by WSDOT as 8 in. For the test unit the overlap length 

was not scaled but instead was kept at the minimum prototype length of 8 in. to ensure 

integrity of the connection and facilitate force transfer from the extended strands to the 

strand ties. 

After determining the amount of deck steel and the number of strands, the 

embedment length of the girder into the cap beam was scaled to 6.4 in. The embedment 

length of the girder has a direct impact on the amount dowel action developed for 

positive moments. One of the ways in which positive moment connections can be better 

designed is to gain an improved understanding of dowel action. Data from the CT1 

GUSC test provided useful information regarding dowel action behavior, however, the 

GUSC connection had a larger embedment length of 12 in. In order to generate dowel 

action behavior comparable to the GUSC connection, the embedment length was 

increased to 9 in. The embedment length could have been increased to 12 in. for direct 

comparison. However, this would have created an unnecessarily large cap width at the 

prototype level. While the 9 in. embedment length corresponds to an increased prototype 
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cap width, the increase was more reasonable than 12 in. and still allowed for adequate 

comparison of dowel action behavior.  

 Column and Footing Design 

3.3.4.1 General 

Since the testing focused on the connections, the column was designed to remain 

elastic throughout the test and the footing was then designed to resist the overstrength 

moment of the column. As the test unit was being designed, planning was underway for 

the design of a third connection test. With this in mind, the footing and column of the 

test unit were designed to be reused after completion of the ESBF and ESSP connection 

tests. A cast-in-place square column and footing were chosen and post-tensioning ducts 

were inserted in the column and footing for placement of 2 in. diameter, 150 ksi post-

tensioning bars. As shown in Figure 3.8, the post-tensioning bars would be anchored in a 

pocket underneath the footing, run through the column, and be extended through the top 

of ducts. The bars would be post-tensioned to secure the cap to the column and also 

provide column moment resistance. At the completion of the test, the tension in the bars 

would be released, the cap beam removed, and the footing and the column reused. 

 
Figure 3.8: Post-tensioning bar schematic 
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3.3.4.2 Column Design 

The column was designed based on the expected connection positive and negative 

moments. The negative design moment would produce the largest force at the column 

cross-section and was calculated to be 940 k-ft. Inelastic behavior of the connection 

could cause a large negative moment with a maximum value of 1410 k-ft assuming all 

the deck steel reaches an ultimate stress of 99 ksi. Therefore, the column design moment 

was taken to be 1410 k-ft.  

A 3 ft x 3 ft square column section was chosen and twelve round 2.37 in. ducts were 

placed in the column as shown in Figure 3.9. A check was performed for the post-

tensioning force required in the bars to meet the design moment of 1410 k-ft by using 

stress calculations and setting Equations 3.7 and 3.8 equal to each other. 

 
Figure 3.9: Column cross-section 

Equation 3.7 assumes that the moment is applied diagonally from one corner of the 

column due to the girders being tested individually: 

𝜎𝜎 =  (𝑀𝑀𝑜𝑜
𝑡𝑡 ∗ 𝑦𝑦)/𝐼𝐼   (3.7) 

 σ = bending stress 

 y = distance from centroid to point of bending (measured diagonally) 

 I = moment of inertia of column section 

𝜎𝜎 = (1410 ∗ 12 𝑖𝑖𝑖𝑖./𝑓𝑓𝑓𝑓 ∗ 25.45 𝑖𝑖𝑖𝑖. )/139986𝑖𝑖𝑖𝑖.4 = 3.07 ksi 

Equation 3.8 was used to check the required force in prestressing bars: 

𝑃𝑃 = (𝐴𝐴 ∗ 𝜎𝜎)/𝑛𝑛𝑏𝑏           (3.8) 
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 P = force in bars 
 A = area of column section 
 nb = number of bars 

𝑃𝑃 = 1296 𝑖𝑖𝑖𝑖.2∗3.07 𝑘𝑘𝑘𝑘𝑘𝑘
12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

= 332 kips 
      

A single 2 in. diameter, 150 ksi post-tensioning bar yields at a force of 308 kips. 

Therefore the post-tensioning bars would not be able to resist the design moment of 

1410 k-ft. A lower force in the bars of 275 kips corresponded to a column moment 

resistance of 1170 k-ft. This moment resistance was above the negative design moment 

of 940 k-ft and also allowed for some inelastic behavior in the negative direction. It was 

decided that the moment of 1170 k-ft would be acceptable for the test in order to prevent 

yielding of the post-tensioning bars or increasing the column dimensions. Stirrups were 

then added to the design at 3” on center spacing. 

3.3.4.3 Footing Design  

The design of the footing was based on column design moment of 1410 k-ft in 

order to be conservative. The layout of the ISU laboratory strong floor, which has tie 

down locations spaced every 3 feet, was also considered in the design. The footing was 

designed as an 8 ft x 8 ft x 2 ft square and the reinforcement details were calculated 

using Equations 3.9-3.12. 

Force developed at tie down locations: 

𝐹𝐹𝑐𝑐 =  𝑀𝑀𝑜𝑜
𝑡𝑡/𝑠𝑠    (3.9) 

 Fc = Force couple developed at tie down locations 

 s = largest spacing between tie downs 

𝐹𝐹𝑐𝑐 = 1410
6 𝑓𝑓𝑓𝑓

 = 235 kips 

Calculation of moment at column face: 

                                         𝑀𝑀𝑐𝑐𝑐𝑐 =  𝐹𝐹𝑐𝑐 ∗ ℎ           (3.10) 

 Mcf = Moment at column face due to tie down force 

 h = height of footing 

𝑀𝑀𝑐𝑐𝑐𝑐 =  235 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 24 𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 = 5640 k-in. 
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Equivalent stress block equations were used for calculating moment capacity: 

𝑎𝑎 =  𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦
0.85∗𝑓𝑓𝑐𝑐′∗𝑏𝑏

    (3.11) 

𝑀𝑀𝑐𝑐𝑐𝑐 =  𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦(𝑑𝑑 − 𝑎𝑎
2

)    (3.12) 

a = depth of equivalent stress block 

 As = area of steel 

 fy = yield stress of steel 

 𝑓𝑓′𝑐𝑐= concrete strength 

 b = effective width of footing (distance between tie down locations) 

 d = depth from top of footing to location of tension steel 

The following values were used for each variable: 

Mcf = 5640 k-in 

fy = 60 ksi 

 f’c = 4 ksi 

 b = 72 inches 

 d = 21 inches (assuming 3 in. was used for clear cover and stirrups) 

Iteration of As was performed to reach a solution: 

 As = 4.5 in.2 

 a = 1.21 inches 

The area of steel (As) was then divided by the effective width (b) to provide a required 

amount of 0.75 in.2 of steel per foot. Two #6 bars spaced at 6 inches meets this 

requirement. Although #6 bars were specified, a miscalculation caused #7 bars to be 

used. This did not adversely affect the design or construction of the footing, but did 

provide the footing with extra moment capacity. Stirrups were added to the footing 

according to current Caltrans design details. A 44 in. x 44 in. x 7 in. block out was left 

underneath the footing to anchor the column post-tensioning bars as shown in Figure 

3.10. 
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Figure 3.10: Footing block out detail 

 Cap Beam Design 

The cap beam for the test unit was also scaled from the prototype structure. Post-

tensioning ducts were placed at the center of the beam to allow connection to the 

column. The cap reinforcement was detailed to accommodate the two girders which 

were attached 4 feet on either side of the column centerline to allow construction of each 

girder with its own deck. The cap had a design width of 54 in., height of 37.25 in., and 

length of 12 ft 4 inches. 

Design for torsional forces within the cap was required since girders were only 

attached to one side of the cap beam and each girder would reach full flexural capacity 

as a girder-deck composite member. The torsional resistance of the cap needed to be 

greater or equal to the design moment of the column since the moment at the connection 

would be roughly equivalent to the cap beam torsion. The Priestley method, based on 

plastic shear friction, was used to approximate the torsional capacity by dividing the cap 

beam into triangular quadrants as shown in Figure 3.11 (Priestley, 1996).  

 
Figure 3.11: Cap beam section with triangular quadrants  
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Torsional resistance of the cap beam was then calculated using the following equations: 

𝑇𝑇 =  𝐹𝐹1𝑥𝑥1 + 𝐹𝐹2𝑦𝑦2 + 𝐹𝐹3𝑥𝑥3 + 𝐹𝐹4𝑦𝑦4   (3.13) 

 T = torsional capacity 

 Fi = force component of triangular area (Figure 3.12) 

 xi,yi = distance from section centroid to triangle centroid 

Equation 3.13 can also be rewritten as: 

𝑇𝑇 = 𝜇𝜇𝜇𝜇
𝐴𝐴

 (𝐴𝐴1𝑥𝑥1 + 𝐴𝐴2𝑦𝑦2 + 𝐴𝐴3𝑥𝑥3 + 𝐴𝐴4𝑦𝑦4)     (3.13a) 

P = clamping force 

 μ = coefficient of friction of cap interface 

 Ai = triangular area of cap beam  

𝑃𝑃 = 𝐹𝐹 +  𝑉𝑉𝑇𝑇 + 0.0006𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠    (3.14) 

 F = cap beam prestressing force 

 VT = column transverse shear force 

 Es = modulus of elasticity of steel 

 Ast = total area of cap beam longitudinal reinforcement 

Since no prestressing force is applied to the cap and the column transverse shear is 

assumed to be zero: 

𝑃𝑃 = 0.0006𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠 

𝑃𝑃 = 0.0006(29000 𝑘𝑘𝑘𝑘𝑘𝑘)(22.88 𝑖𝑖𝑖𝑖.2 ) = 398 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

Two more equations were then used to solve for torsion: 

𝑉𝑉𝑣𝑣 =  𝐹𝐹1 − 𝐹𝐹3 = 𝜇𝜇𝜇𝜇
𝐴𝐴

(𝐴𝐴1 − 𝐴𝐴3)   (3.15) 

𝑉𝑉𝐿𝐿 =  𝐹𝐹2 − 𝐹𝐹4 = 𝜇𝜇𝜇𝜇
𝐴𝐴

(𝐴𝐴2 − 𝐴𝐴4)   (3.16) 
 Vv = vertical shear 

 VL = lateral shear 

No lateral shear would be experienced by the cap beam, therefore F2 is equal to F4 and 

A2 is equal to A4. Equations 3.13a, 3.15, and 3.16 were then used along with the 

following values and iterated to calculate a cap torsional capacity of 670 k-ft. 
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 μ = 1.4  (Priestley, 1996)  

 A = 2012 in.2 

 V
v = 110 kips 

 xi,yi = calculated based on areas A1-A4 

Since the torsional capacity of the cap was lower than the column design moment, 

longitudinal post-tensioning ducts were added to the design. The ducts were designed for 

six 1-3/8 in. diameter Diwidag bars that would be post-tensioned to 80 kips each. The 

post-tensioning added 480 kips to the clamping force (P) and increased the torsional 

capacity of the cap beam to 1537 k-ft, which was greater than the required value of the 

column design moment. It was determined that the post-tensioning of the Diwidag bars 

would not need to take place until loads higher than the combination of gravity, 

horizontal seismic, and 0.5g vertical acceleration were applied to the test unit. 

3.4 Test Unit Construction 

 Construction sequence 

Construction of the test unit took place in the ISU structures laboratory. The 

reinforcement cage for the footing and column were tied as a single piece and a wood 

insert was placed at the bottom of the footing to form a 7” pocket for the post-tensioning 

anchorage. Steel plates with holes at the post-tensioning bar locations were placed on top 

of the wood insert (Figure 3.12). The plates would be cast into the footing and provide a 

bearing surface for the post-tensioning anchors. Twelve 59 mm post-tensioning ducts 

were tied to the column stirrups and PVC tubes were inserted in the footing 

reinforcement to allow the footing to be secured to the strong floor of the laboratory. The 

column post-tensioning bars were then set in the ducts to ensure that the ducts stayed 

straight during the both the footing and column concrete pours. 
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Figure 3.12: Wood insert details 

The footing was poured first and a second pour was done a week later for the 

column (Figure 3.13). Once the concrete had cured and the formwork was removed, the 

footing was moved to the test location within the laboratory. The footing was lifted so 

that nuts and washers could be attached to anchor the post-tensioning bars inside the 7” 

pocket. The footing was then set in place, a layer of hydrostone was poured underneath 

to ensure a level bearing surface, and the footing was secured to the laboratory strong 

floor.  

The cap beam was constructed following the completion of the footing. Most of the 

reinforcement cage was tied on the floor (Figure 3.14) with ducts set in place for both 

the column and longitudinal post-tensioning. A platform was constructed around the cap 

beam and the cap was then lifted and lowered into place over the column post-tensioning 

bars (Figure 3.15). Strain gages were attached at specific locations on the cap and a 

portion of the cap steel was left unfinished until the girders were set in place. 
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Figure 3.13: Footing and Column pour 

 
Figure 3.14: Cap beam reinforcement cage 

 
Figure 3.15: Cap beam set in place on platform over column bars 
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The precast girders were cast at Cretex Concrete Products in Iowa Falls, Iowa and 

shipped to the ISU structures lab. A visit was made to the precast plant before pouring of 

the girders to attach instrumentation and ensure correct placement of rebar (Figure 3.16).  

 
Figure 3.16: Girder strand layout and rebar cage 

The girders arrived at the ISU laboratory with six of the ten strands extending 8 

feet from each girder. Since six strands were extended but only five were needed for the 

connection, the strand in the upper row that would be located furthest away from the test 

unit column was cut. The girders were then placed on temporary formwork and the five 

remaining strands were instrumented and extended into the cap beam according to each 

connection detail. The bent strands from the ESBF connection were curved and threaded 

through the cap reinforcement (Figure 3.17). For the ESSP connection (Figure 3.18) 

strand chucks were welded to anchor plates and then attached to the strand ties and 

extended strands. Two additional strands were also added on the back side of the cap to 

simulate opposite girder strands as shown in Figure 3.19. The added strands were 

instrumented to see if any force would be transferred from the ESSP connection to the 

opposite side of the cap beam. If force is transferred all the way through the cap, it could 

result in force interaction between girders on each side of the cap beam and result in a 

decreased connection moment capacity. 
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Figure 3.17: ESBF connection prior to cutting one strand and inserting strands into cap beam 

 
Figure 3.18: ESSP connection prior to cutting one strand and attaching anchor plates and chucks 

 
Figure 3.19: Additional strands on back side of cap beam 
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Before the remainder of the cap reinforcement was added, the dowel bars were 

instrumented, inserted through the web of the girders, and grouted in place. The rest of 

the cap reinforcement was then added and the cap formwork was fabricated and set into 

place. The longitudinal cap post-tensioning bars were also inserted to make sure that the 

ducts remained straight during the concrete pour. The deck formwork was constructed 

with bridge hangars, brackets, and plywood. Deck reinforcement was placed over the 

girders and tied both along the girder and into the cap beam (Figure 3.20). The 

reinforcement was instrumented and plastic inserts were placed in the formwork to allow 

actuators to be attached to each girder. The cap and girder concrete were then placed in 

one continuous pour and allowed to cure (Figure 3.21). 

 
Figure 3.20: Deck formwork and rebar 

 
Figure 3.21: Completed cap and deck concrete pour 
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 Construction challenges 

A few challenges occurred during construction. One of these challenges was the 

placement of the strands in the ESSP connection. It was decided to place the strands 

after constructing the cap reinforcement cage. Once the anchor plates and chucks were 

attached to the strands it was difficult to slide the extended strands into place due to the 

tight spacing of the cap reinforcement. The cap steel spacing also made it difficult to 

place the strand ties. Eventually the strands were able to be placed correctly by 

temporarily removing some of the cap reinforcement. The problem could have been 

prevented by placing the strands prior to constructing the cap reinforcement. 

A second challenge occurred during the concrete pour of the cap beam and deck. 

Two trucks were used to bring the concrete to the ISU laboratories. Plasticizer was 

added to the first truck, but the mix started to stiffen very quickly upon placement. The 

stiffness of the concrete prevented it from flowing freely through the tight cap 

reinforcement. A larger amount of plasticizer was added to the second truck and no 

problems were experienced. However, after the concrete cured, gaps and honeycombing 

were found in areas on the cap where the concrete from the first truck had been poured. 

The cap was repaired by patching the gaps with concrete and filling in the honeycomb 

areas with high-strength grout. To prevent this problem in the future it is recommended 

that a retardant be added to the concrete mix along with the plasticizer to allow proper 

pour time. 

3.5 Instrumentation 

 General 

To capture the behavior of the girder to cap beam connections in the test unit, 

instrumentation was attached both internally and externally. The internal instrumentation 

consisted of strain gages placed on rebar, extended strands, and dowel bars. The external 

instrumentation included DCDT’s, string pots, and an Optotrak camera system. 
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 Internal Instrumentation 

Strain gages were placed in specific locations to capture the response of the cap 

beam. On the cap longitudinal reinforcement, gages were placed to capture the torsional 

behavior as shown in Figure 3.22. Gage labels are shown with CTL corresponding to 

gages placed on the cap top longitudinal reinforcement and CBL corresponding to the 

cap bottom longitudinal reinforcement. At girder connection regions, gages were placed 

at and around the girder interface on the cap transverse reinforcement to monitor the 

effects of the girder movement as shown in Figure 3.23. The gage labels indicate either 

the spliced strand (CTSS) or curved strand (CTCS) connection. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Cap longitudinal gages 

Figure 3.23: Cap stirrup gages 
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For the ESBF connection, the two middle extended strands in the bottom row 

were instrumented. Gages were placed at the connection interface between the girder and 

cap and also 15 inches on either side of the bend as shown in Figure 3.24. The gage 

labels CS1-CS3 correspond to the middle strand closest to the column. For the ESSP 

connection, instrumentation was placed on the same strands as the ESBF connection. 

Gages were placed at the connection interface, at plate and chuck locations, and also at 

two additional points on the stand ties to monitor the transfer of tension force as shown 

in Figure 3.25. Gage labels SS1-SS2 and SS5-SS8 were located on the strand furthest 

from the test unit column. 

 
Figure 3.24: ESBF extended strand gages 

 
Figure 3.25: ESSP strand gages 

For both connections gages were also placed on the dowel bars and crossties as 

shown in Figure 3.26. Gage labels are only shown for the ESBF connection (indicated 



60 
 

by “CS” in label name) but gages were placed in the same locations for the ESSP 

connection. Three crosstie gages (CSC1-CSC3) were added with CSC1 and CSC3 

placed on the column side of the connection and CSC2 placed on the lowest crosstie at 

the outside of the connection. A larger number of gages were placed on the lower dowel 

bars to better quantify the dowel resistance for positive moments. 

 
 
 

 

 

 

 

  

 

 

 

 

 

 

Gages were also placed on the prestressing strands inside the girders as shown 

in Figure 3.27. The gages were attached after the strands were pulled to the proper 

prestressing force but before the girder concrete was cast. Strands were placed 1, 2, 4, 

and 15 feet from end of the girder and were located on the center strand noted in Figure 

3.28. These gages would monitor the length of strain penetration into the girder caused 

by tension forces under positive moments. Gages were also placed on the top layer of 

deck steel to monitor the condition deck reinforcement under negative moments as 

shown in Figure 3.29. 

Figure 3.26: Dowel and crosstie gages 
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Figure 3.27: Girder strand gages 

 
Figure 3.28: Girder cross section 

 
Figure 3.29: Deck steel gages 
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 External Instrumentation 

To record movement of the girder at the girder to cap interface, three DCDT 

linear displacement transducers were used. One was located underneath the girder to cap 

connection as shown in Figure 3.30, another of at the top of the girder to cap connection, 

and a third was located on top of the deck at the edge of the cap beam (Figure 3.31). 

DCDT’s were also placed at the column to cap connection to monitor the movement of 

the cap beam and ensure that the column post-tensioning bars were not overloaded. For 

the ESSP connection, a DCDT was placed on one of the additional strands at the 

backside of the cap beam (Figure 3.19) and a load cell was placed on the second in order 

to monitor possible load transfer from the connection region through the strand ties. 

 
 

 

 

 

 

 

 
 

Figure 3.30: DCDT at underside of girder to cap connection 

 
Figure 3.31: DCDT's on top of girder and deck 

String pots were used to measure displacement at various points on the test unit and 

along the girders. Four string pots were placed horizontally on the sides of the cap beam 

Cap beam 

Girder 
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along with two vertical string pots under the cap to monitor rotation. Two additional 

string pots were also placed horizontally at the actuator locations to monitor out-of-plane 

movement of the girders. Lastly, a string pot was placed vertically under the girder at 

each actuator location to record vertical displacements (Figure 3.32 and Figure 3.33). 

 
Figure 3.32: Locations of horizontal string pots 

 
Figure 3.33: Location of vertical string pots 

 

An Optotrak camera system was used to record 3-dimensional movement on the 

surface of the connection region. LED sensors were glued to the inside region of each 

connection as shown in Figure 3.34. During the testing of each connection, the Optotrak  
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camera recorded the movement of the LED’s which would allow surface displacements 

and cracking to be measured. 

 
Figure 3.34: LED configuration at connection region 

3.6 Material Strength 
Material strengths for the members of the test unit were recorded throughout the 

construction process and also on the day of testing as shown in Table 3-3. The 

reinforcement used throughout the project is A706 steel and all the strands were 270 ksi 

low-relaxation strands. 
Table 3-3: Material strengths 

Member   Strength (psi) 
  Release 7 day 28 day Test day 

Footing - 3093 4258 - 
Column - 3478 4302 - 
Cap Beam and deck - 3618 4319 4505 
ESBF girder 6665 12410 12577 10085 
ESSP girder 6665 12410 12843 11201 
Dowel bar grout - - - 6553 
Cap and Deck Steel (A706) yield 60000 ultimate 90000 
270 ksi Relaxed Strands yield 230000  ultimate 250000 
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3.7 Loading Protocol 

To test the capacity of the connections, each girder would be individually tested by 

pushing and pulling a pair of actuators pseudo-statically as shown in Figure 3.35. The 

actuator forces applied to the test unit would correspond to target shear and moment 

values determined by the loading protocol. The test unit was a scaled representation of 

the prototype structure, therefore the target moment and shear values were also scaled 

from the prototype level. Prototype loads resulting from gravity, horizontal ground 

acceleration, and vertical ground acceleration forces were calculated. Each type of load 

will be discussed in the following sections. 

 
Figure 3.35: Test unit setup 

 Gravity Load 

The calculation of gravity load for a bridge utilizing precast concrete girders 

depends on the type of cap beam selected and how the girders are supported throughout 

the construction process. For a cast-in-place cap beam, there are three phases of 

construction. In the first phase, the girders are lifted into place and supported by 

falsework as shown in steps 1-2 of Figure 3.36. The end condition of these girders is 

considered to be pinned and the self-weight of the girders does not cause any moment to 

be generated at the connection. In steps 3-4 the cast-in-place cap beam, abutments, and 
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deck are poured. The girders will rotate a small amount due to the added weight of the 

deck, but it is assumed that any rotation of the girder takes place before the cap and deck 

fully cure. Due to this assumption the girder and deck do not create any gravity moment 

at the connection region because rotation took place before the connection became fixed. 

 

Figure 3.36: Construction sequence (California Department of Transportation, 2013) 

The third phase includes step 5 in which the falsework is removed and a wearing 

surface and barriers are place on top of the deck. A gravity moment is generated at the 

connection region by the weight of the girder, deck, wearing surface and barriers. A 

precast cap beam follows the same construction process, but provides a permanent 

bearing surface for the girders which eliminates the need for falsework. The bearing 

surface provided by the precast cap reduces the gravity moment at the connection 
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because the girder and deck self-weight continue to be supported by the cap beam and no 

rotation occurs due to the removal of the falsework. The gravity moment for a precast 

cap is produced by the weight of the bearing surface and barriers.  

For the test unit a precast cap was used, however, when comparing the maximum 

positive moment generated for each type of cap beam, a precast cap beam is the worst 

case scenario. This is because in order for a connection to be subject to positive 

moments the gravity moment of a structure must first be overcome. A precast cap has a 

lower gravity moment due to the bearing surface provided for the girders and therefore 

requires a greater positive moment capacity. It was decided to test the ESBF and ESSP 

connections for the worst case possible to determine the capacity and performance of 

each connection. Therefore the self-weight of the wearing surface and barrier were used 

to produce the gravity moment and shear values for the loading protocol. 

 Horizontal Ground Motion 

The previously mentioned system test was used to calculate forces caused by 

horizontal ground motion acting longitudinal to the bridge girders. Results of the system 

test gave the largest horizontal force experienced by a single girder in the system test 

prototype. This force was then multiplied by the appropriate scale factor to convert the 

force to the current prototype. The scaled force was converted to the connection moment 

value by multiplying by half the height of the prototype column since it was assumed 

that a plastic hinge would form at each end of the column. The resulting moment was 

then multiplied by the factor of 0.45 for the positive direction and 0.55 for the negative 

direction (Snyder, 2010) in order to distribute the horizontal seismic forces and then 

scaled for application to the test unit.  

 Vertical Ground Motion 

The vertical ground acceleration forces were calculated based on the mass of the 

prototype structure. Target values for vertical acceleration were 0.5g and 1.0g. Since 

weight is mass multiplied by acceleration, the entire self-weight of the prototype girder 

and slab was multiplied by 1.5 and 2.0 respectively. The multiplied self-weights were 
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then used to calculated moment and shear values for the connection region which 

corresponded to the fixed-fixed end condition of the girders and scaled to be applied to 

the test unit. 

 Combination of Forces for Loading Protocol 

Upon determining the gravity, horizontal seismic, and vertical seismic target 

moment and shear values, a loading protocol was developed by combining each load. 

Figure 3.37-3.42 show the progression of adding horizontal and vertical seismic forces 

to the gravity load at the connection region. The graphs are formulated to show two 30 ft 

girders which meet at the connection region located where the distance equals zero. The 

graphs do not show forces in the cap beam, instead zero is taken to represent the end of 

each girder at the connection region. For the test unit, each girder was attached to two 

actuators and cantilevered from the bent cap. The actuators had the option of being 

controlled by either force or displacement input values. Force values were used to match 

the moment applied to the test unit with scaled loads calculated from the prototype. It is 

important to note that the loads applied by the actuators only matched the prototype 

loads in the connection region in order to simplify the testing.  

 
Figure 3.37: Gravity moment along the girders and at the connection 
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Figure 3.38: Gravity shear along the girders and at the connection 

 
Figure 3.39: Gravity + horizontal moment along the girders and at the connection 

   

Figure 3.40: Gravity + horizontal shear along the girders and at the connection 
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Figure 3.41: Gravity + horizontal + 0.5g vertical moment along the girders and at the connection 

 
Figure 3.42: Gravity + horizontal + 0.5g vertical shear along the girders and at the connection 

Four target moment and shear values are shown in Table 3-4 which represent a 

gradual increase in force and the target levels of girder performance. The target values, 

with the exception of the gravity load, each contained values for positive moment, 

positive shear, negative moment and negative shear in order to accurately simulate the 

reversal of forces that the prototype structure would experience.  

Table 3-4: Target Moment and Shear Values 

Target Values Positive 
Moment (k-ft) 

Positive 
Shear (k) 

Negative 
Moment (k-ft) 

Negative 
Shear (k) 

Gravity (G) - - -130.00 -27.5 
G + Horizontal Seismic (H) 23.5 -22.3 -317.50 -33.7 
G + H + 0.5g Vertical Seismic (0.5gV) 160.8 -8.6 -454.90 -47.4 
G + H + 1.0g Vertical Seismic (1.0gV) 298.1 5.1 -592.20 -61.2 
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After applying the gravity load, a series of four load steps were exercised as the 

load was increased to the next target value. Each load step contained both a positive and 

negative moment value which the girder was cycled between three times. The cycling of 

actuators was performed in order to simulate seismic activity and fully exercise the 

connection. The actuators are labeled by color and located along the length of the girder. 

The blue actuator was located 13.5 ft from the connection interface while the black 

actuator was located 28.5 ft from the interface. The connection interface was assumed to 

be located at the end of the girder embedded in the cap beam. An example of the four 

load steps between gravity and the horizontal seismic target values (G+H) is shown in 

Table 3-5. For the actuator forces a positive value indicated that the actuator would push 

down while negative indicated that the actuator would pull up. An extra load step was 

added between 0.5g and 1.0g vertical acceleration in order to provide more details 

regarding the connection performance beyond the target value of 0.5g. The loading 

protocol for the entire testing sequence is included in Appendix C, however a graphical 

representation is provided in Figure 3.43. In order to fully quantify each connection 

detail, the actuators would be switched to displacement control when the connections 

exhibited inelastic behavior. Each connection would then be exercised to failure. A 

loading sequence for the displacement cycles is shown in Figure 3.44. Negative 

displacements correspond to an upward displacement of the girder which generated a 

positive moment. 
Table 3-5: Loading protocol example 

Force (kips)       
Blue Actuator Black Actuator Target Moment Shear 

32.5 -16.5 Gravity (G) -134.55 -27.07 
32.5 -14.70       

32.95 -18.20       
32.5 -14.70 

Load Step 1 
    

32.95 -18.20     
32.5 -14.70   -185.85 -28.87 

32.95 -18.20   -92.18 -25.82 
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Table 3.5 continued 

Force (kips)       
Blue Actuator Black Actuator Target Moment Shear 

32.5 -12.90       
33.4 -19.90       
32.5 -12.90 Load Step 2     
33.4 -19.90       
32.5 -12.90   -237.15 -30.67 
33.4 -19.90   -49.8 -32.5 
32.5 -11.10       

33.85 -21.60       
32.5 -11.10 Load Step 3     

33.85 -21.60       
32.5 -11.10   -288.45 -32.47 

33.85 -21.60   -7.425 -23.32 
32.5 -9.3       
34.3 -22.3       
32.5 -9.3 Load Step 4     
34.3 -22.3 Horizontal Seismic (H)     
32.5 -9.3   -339.75 -34.27 
34.3 -23.3   34.95 -22.07 
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Figure 3.43: Force control loading protocol 
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Figure 3.44: Displacement control loading protocol 

3.8 Strain Penetration Analysis  

 Overview 

In order to predict the behavior of each connection, a force based design 

approach was developed for the ESSP and ESBF girder to cap connections. The design 

approach utilized the relationship between strain penetration of rebar or strand and the 

corresponding moment applied to the connection. The method was designed to be 

applicable at both the test unit and prototype level and included application for both 

positive and negative moments. 

 Positive moment resistance  

For the design of positive moment resistance, a method was developed based on 

the relationship between horizontal girder displacement and strain penetration in the 

extended girder strands. The relationship provides a force based approach to predict the 

displacement of the girder for positive moments and also includes the moment resistance 

from the dowel action in the connection. 

3.8.2.1 Dowel action 

For the strain penetration analysis, the moment resistance due to dowel action 

was quantified. Dowel action includes interaction between the dowel bars and 

surrounding concrete as well as concrete friction between the cap and girder. The ESBF 
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and ESSP test unit connections contained three #4 dowel bars positioned as shown in 

Figure 3.45 and in both connections the girder extends into the cap beam 9 in. To 

calculate the moment resistance due to the dowel action, the first part of Equation 4.1 

from ACI 318-11 was used to first calculate the shear resistance of the dowel bars. The 

calculated dowel bar shear resistance is assumed to be in the horizontal direction to 

counteract the tension force developed at the bottom edge of the girder due to positive 

moments. Calculation of the shear resistance assumed that only the bottom dowel bar 

and half of the middle dowel would be effective to resist positive moment. The dowel 

yield stress was assumed to be 66 ksi.  

 

 

 

 

 

 

 

𝑉𝑉 = 0.8𝐴𝐴𝑣𝑣𝑣𝑣𝑓𝑓𝑦𝑦 + 𝐴𝐴𝑐𝑐𝐾𝐾1   (4.1)  

V = shear resistance 

 Avf = area of steel reinforcement crossing shear interface 

 fy = yield strength of steel reinforcement 

 Ac = area of concrete resisting shear through friction 

 K1 = friction coefficient factor 

Dowel bar shear friction resistance: 

𝑉𝑉 = 0.8 ∗ 0.3𝑖𝑖𝑖𝑖.2∗ 66 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 31.68 kips 

To determine the moment resistance of the dowel bars, the calculated shear force 

was multiplied by the distance from the top edge of the deck to the force location as 

shown in Figure 3.46. The location of the shear force was assumed to be at the lower 

dowel bar with the resulting lever arm of 32.25 in.  The resulting yield moment 

Figure 3.45: Dowel location 
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resistance was 85.14 k-ft. The second portion of Equation 4.1, which considers concrete 

friction, was also originally calculated and combined with the dowel bar moment 

resistance. However, the resulting moment resistance was not comparable to observed 

results from the system and GUSC tests, therefore it was decided to use a multiplier to 

account for the moment contribution of concrete friction. Based on observed system and 

GUSC test results, the multiplier was determined to be 1.2 which resulted in a dowel 

action yield moment of 102 k-ft. The ultimate moment resistance due to dowel action 

was then calculated. It was assumed that the dowel bars would reach a yield stress of 99 

ksi and the ultimate moment capacity was calculated to be 153 k-ft. 

 

 

 

 

 

 
 

Figure 3.46: Lever arm distances for moment calculations 

3.8.2.2 Extended Strands  
The moment resistance of the extended strands can be calculated using the 

equivalent stress block approach and considering the number and location of the 

extended strands. However, in order to predict the behavior of the connection, strain 

penetration values were used to predict the horizontal displacement of the girder and 

subsequent connection rotation. 

The first step was to establish a value for the equivalent strain penetration length 

(Leq) at the test unit level. Equivalent strain penetration length is an approximate length 

corresponding to an idealized strain distribution that results from a debonding of a strand 

or reinforcing bar at the interface of two members. Figure 3.47 shows the debonded 

region of a reinforcing bar, the true strain distribution, and also the resulting idealized 

strain distribution. The equivalent strain penetration length Leq is equal to Lua+Lui+Lua 

Dowel 
Shear Force 
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where Lui is the debonded length of the rebar or strand and lua is a length of constant 

strain that is assumed to be equivalent to the actual strain distribution. As the bar or 

strand debonds, a gap will form between the two connected members. The relationship 

used to relate the gap length to the strain in the reinforcement is based on the idealized 

strain distribution length Leq as shown in Equation 4.2: 

ɛ =  𝛿𝛿/𝐿𝐿𝑒𝑒𝑒𝑒    (4.2) 

ɛ = strand strain  

δ = horizontal displacement or gap opening 

Leq = equivalent strain penetration length 

 
Figure 3.47: Strain penetration strain distribution (Snyder, 2010) 

Results from the GUSC test were used to formulate values for Leq for a 3/8 in. 

strand which were determined to be 17 inches at yield condition and 31 inches at yield 

condition. Strain values corresponding to the yield and ultimate condition of the strand 

were then substituted into Equation 4.2 using the formulated Leq values to determine the 

predicted horizontal displacement values for the ESBF and ESSP connections. The strain 

values and corresponding horizontal displacements are shown in Table 3-6. To predict 

the overall behavior of the connections, the moment resistance of the extended strands 
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and dowel action were combined. The rotation of the connection was calculated by 

dividing the horizontal displacement from strain penetration by the distance from the top 

of the deck to the centroid of the bottom strand. It was assumed that the yield and 

ultimate moments due to dowel action would occur at the same rotation values as the 

yield and ultimate moments of the extended strands. The resulting moment-rotation 

behavior of the connection is shown in Figure 3.48. 

Table 3-6: Strain and horizontal displacement 
 
 
 
 
 

 

 
 
 

Figure 3.48 Predicted positive moment connection behavior 

 Negative moment resistance 

For the ESBF and ESSP connections, negative moment resistance is provided by 

the deck steel. It is possible that the dowel bars also contribute some negative moment 

resistance, however, due to the stiffness of the deck, it is assumed that the contribution 

of the dowel bars is negligible. The yield and ultimate negative moment capacities were 

calculated to be 940 k-ft and 1410 k-ft respectively and a curvature was calculated for 

each moment value using an equivalent stress block approach and Equation 4.3.  
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𝜑𝜑 =  𝜖𝜖𝑐𝑐
𝑐𝑐

                       (4.3) 

𝜑𝜑 = curvature 

𝜖𝜖𝑐𝑐 = concrete strain at yield or ultimate condition 

 c = neutral axis depth of the section 

Curvature values were found to be 81.16 x 10-6 and 519.3 x 10-6 at yield and 

ultimate conditions respectively and were then used along with strain penetration 

equations 4.4 and 4.5 to predict the rotation of the connection. The resulting moment-

rotation behavior in the negative direction is shown in Figure 3.49. 

𝜃𝜃𝑦𝑦𝑦𝑦  = (0.08𝐿𝐿 + 0.15𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) ∗ 𝜑𝜑𝜑𝜑   (4.4) 

𝜃𝜃𝑢𝑢𝑢𝑢 = 0.15𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝜑𝜑𝜑𝜑 + (0.08𝐿𝐿 + 0.15𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) ∗ 𝜑𝜑𝜑𝜑    (4.5) 

θyp = rotation due strain penetration at yield condition 

θup = rotation due to strain penetration at ultimate condition 

L = length of girder 

fy = yield stress of deck steel 

db = largest diameter of deck steel reinforcement 

φe = elastic curvature of girder at connection region  

         𝜑𝜑𝜑𝜑 = curvature of section at yield for 𝜃𝜃𝑦𝑦𝑦𝑦 

         𝜑𝜑𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
940 𝑘𝑘−𝑓𝑓𝑓𝑓

∗ 1410 k-ft for 𝜃𝜃𝑢𝑢𝑢𝑢 

φp = plastic curvature of girder at connection region  

 𝜑𝜑𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 −  𝜑𝜑𝑒𝑒 
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Figure 3.49: Predicted negative moment behavior of connection 
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 – EXPERIMENTAL TESTING AND RESULTS 

4.1 Introduction 
Following the completion of the test unit construction and analysis, the two loading 

actuators were attached to frames and secured to the strong floor of the ISU laboratory. 

The actuators were attached to a single girder and lateral braces were placed between the 

load frames as shown in Figure 4-1 to prevent out of plane movement. Instrumentation 

was then connected to external data acquisition systems and a post-tensioning force of 

200 kips was applied to each of the twelve column bars in a series of four steps as shown 

in Table 4-1. The column capacity after post-tensioning was 850 k-ft which would be 

sufficient for testing until displacement cycles were reached. 

 
Figure 4.1: Test setup 

Table 4-1: Post-tensioning sequence 

Step 
Post-tensioning 

force (kips) 
1 25 
2 75 
3 120 
4 200 
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4.2 ESBF Connection Observations 
For testing of the connections, the first step of the test was to apply a gravity 

load. A full gravity load was applied to the ESBF connection and no damage to the test 

unit was observed, with the exception of a couple small hairline cracks at the top of the 

deck. The actuator loads were then stepped from gravity to horizontal seismic (G+H). 

Under negative moment a small amount of cracks appeared in the top and bottom of the 

deck close to the connection region but the girder did not crack. For positive moments 

no damage or gap opening was observed. 

 Loads were then stepped from G+H to G+H+0.5gV as shown in Table 4-2. 

Girder cracking began under negative moments at step H1. Girder and deck cracking 

continued as the load increased. The cracking started close to the connection and then 

gradually extending along the girder toward the blue actuator as shown in Figure 4-2. A 

small amount of torsional cracks in the cap were also observed under increase of 

negative moment. For positive moments a hairline gap began to form between the girder 

and cap at step H2. The crack widened to 1/16” at the last step of 0.5gV. No other 

damage around the connection was observed under positive moment.  
Table 4-2: Load steps from G+H to G+H+0.5gV 

  Actuator Forces (k) Target Values 
Load Step Blue Black Moment (k-ft) Shear (k) 

G+H 32.5 -9.3 -339.75 -34.27 
  34.3 -22.3 34.95 -22.07 

H1 36.9 -10.2 -373.5 -37.77 
  30.4 -22.7 70.5 -18.77 

H2 41.3 -11.2 -404.4 -41.17 
  26.6 -22.2 107.55 -15.47 

H3 45.6 -12.1 -436.8 -44.57 
  22.7 -21.6 143.1 -12.17 

G+H+0.5gV 50.0 -13.0 -470.55 -48.07 
  18.8 -21.0 178.65 -8.87 
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Figure 4.2: Deck cracking extending from connection region 

After reaching 0.5gV, the cap was post-tensioned to provide higher torsional 

capacity before increasing the loads to G+H+1.0gV. Load steps are again provided in 

Table 4-3. Under negative moments, cracking in the girder and deck increased slowly as 

the applied moment was increased. As positive moments increased, cracking of the cap 

cover concrete around the girder occurred at V4 as shown in Figure 4-3. The bottom of 

the girder next to the connection started to crack at 1.0gV and the gap between the girder 

and cap increased slightly to 3/32” (Figure 4-4). The connection appeared to still be 

behaving elastically in both the positive and negative directions at 1.0gV. After 

G+H+1.0gV was reached, the black actuator was switched to displacement control to 

further exercise the connection. 
Table 4-3: Load steps from 0.5gV to 1.0gV 

  Actuator Forces (k)   Target Values   
Load Step Blue Black Moment (k-ft) Shear (k) 

0.5gV 50.0 -13.0 -470.55 -48.07 
  18.8 -21.0 178.65 -8.87 

V1 53.4 -13.65 -497.93 -50.82 
  14.94 -20.1 205.11 -5.91 

V2 56.8 -14.3 -525.3 -53.57 
  11.08 -19.2 231.57 -2.95 

V3 60.2 -14.95 -552.68 -56.32 
  7.22 -18.3 258.08 0.01 

V4 63.6 -15.6 -580.05 -59.07 
  3.36 -17.4 284.49 2.97 

1.0gV 67 -16.25 -607.43 -61.82 
  -0.5 -16.5 310.95 5.93 
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Figure 4.4: Cracking along bottom of girder 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Cracking of cap cover concrete 

 
  

 

 

 

 

 

 

 

 

For the displacement load steps, positive displacement corresponded to 

downward movement of the girder and negative moment while negative displacements 

corresponded to upward movement of the girder and positive moment. The blue actuator 

was cycled between constant force values in order to apply a consistent shear at the 

connection interface. The steps of loading for the displacement cycles are shown in  

Table 4-4. At step D3 in the positive moment direction, the gap between the bottom of 

the girder and the cap increased to 3/16” and the girder continued to crack across the 

bottom face as shown in Figure 4-5. After cycling at load step D3, softening was 

observed in both the positive and negative moment directions and the cracking in the cap 

cover concrete around the girder increased. At load step D4, under negative moments, 

Cap  

Bottom flange 
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Cap  

Girder 

Cracking 
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Figure 4.5: Girder gap opening of 3/16" 

spalling occurred under the cap and cracks extended further along the girder and deck 

towards the blue actuator as shown in Figure 4-6 and Figure 4-7.  

Table 4-4: Displacement load steps 

  Constant force (k) Displacement (in.) 
Load 
Step Blue Actuator Black Actuator 
D1 40 2 
  -22 -1 

D2 40 3 
  -22 -1.5 

D3 40 4 
  -22 -2 

D4 40 6 
  -22 -3 

D5 40 9 
  -22 -4.5 

D6 40 12 
  -22 -6 

D7 40 15 
  -22 -7.5 
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Figure 4.7: Extended deck cracking 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.6: Spalling at bottom of girder and cap 

 

 

 

 

 

 

 

 

During load step D5 the girder started to pull away from the deck under negative 

moment cycles, and a 1/8” gap was observed. As the displacement cycles continued, 

spalling of the cap cover concrete around and underneath the girder increased. Also, one 

of the extended strands partially fractured under positive moment as shown in Figure 

4-8. The LED’s for the NDI system were removed at this time to prevent damage to the 

attached wires. At load step D7 spalling continued and the gap due to vertical slip of the 

girder was 3/8” under negative moments (Figure 4-9). The positive moment at D7 

caused two more of the extended strands to fracture. The connection was no longer able 

to maintain a large positive moment and the negative moment capacity was also 

decreasing due to the large amount of cap cover concrete spalling around the girder. The 

Girder 

Girder 

Cap 
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Figure 4.9: Vertical slip of girder and separation from deck 

Figure 4.10: Fractured extended strands 

testing was terminated since full capacity of the connection was reached. Figure 4-10 

and Figure 4-11 show the final condition of the connection. 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.8: Partial extended strand fracture 
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Figure 4.11: Final condition of connection region 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

4.3 ESSP Connection Observations 
The ESSP connection was tested in a similar manner to the ESBF connection. To 

begin the test, the actuators were placed in force control and a gravity load was applied. 

However, as the first load steps were applied a large amount of cracks began to appear 

on the deck and girder. The load was slightly increased and even more cracks appear as 

shown in Figure 4-12. At this point, the testing was stopped due to the concern that too 

large of forces were being input into the connection since little to no cracking should 

have occurred at such a low load level.  

Figure 4.12: Cracking caused by overloading 
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Figure 4.13: Girder to cap gap 

After checking the loading and test equipment, it was found that the loading pin 

on the blue actuator was rotated and caused the blue actuator to apply incorrect forces 

and overload the connection. The overloading was high enough to cause permanent 

deformation of the test unit including yielding of a small amount of deck steel as well as 

a displacement near the end of the girder close to 1.0 inch. The extent of the connection 

damage was not immediately clear but preliminary estimates showed that a 600-700 k-ft 

negative moment was applied to the connection instead of the gravity moment of 130 k-

ft. The loading pin was corrected and the testing resumed. Further details regarding the 

effects of the overloading will be discussed with the results of the test. 

 When testing resumed, the connection was subject to gravity (G) loads and then 

gradually increased up to G + horizontal seismic (H). No new cracks were observed in 

the negative moment direction since the overloading moment exceeded the gravity plus 

horizontal seismic moment. The connection did not show any cracking in the positive 

moment direction. The connection moments were then stepped from G+H, to G+H+0.5g 

vertical acceleration (0.5gV). For negative moments some new girder and deck cracks 

appeared at 0.5gV. In the positive moment direction a gap started to open between the 

end of the girder and the cap beam. At 0.5gV the crack was 1/16” wide as shown in 

Figure 4-13. In both the positive and negative moment directions the behavior of the 

connection remained elastic. 
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After reaching 0.5gV, testing stopped temporarily and the cap was post-tensioned 

to provide adequate torsional capacity for higher moments. Testing continued and the 

connection was subject to increasing moments up to G+H+1.0g vertical acceleration 

(1.0gV).  Table 4-5 shows each load step from 0.5gV to 1.0gV and the corresponding 

moment and shear values.  
Table 4-5: Load steps from 0.5gV to 1.0gV 

  Actuator Forces (k) Target Values 
Load Step Blue Black Moment (k-ft) Shear (k) 

0.5gV 50.0 -13.0 -470.55 -48.07 
  18.8 -21.0 178.65 -8.87 

V1 53.4 -13.65 -497.93 -50.82 
  14.94 -20.1 205.11 -5.91 

V2 56.8 -14.3 -525.3 -53.57 
  11.08 -19.2 231.57 -2.95 

V3 60.2 -14.95 -552.68 -56.32 
  7.22 -18.3 258.08 0.01 

V4 63.6 -15.6 -580.05 -59.07 
  3.36 -17.4 284.49 2.97 

1.0gV 67 -16.25 -607.43 -61.82 
  -0.5 -16.5 310.95 5.93 

As the magnitude of the moments increased in the negative direction, deck 

cracking continued to increase and extend farther from the connection region. The 

connection still behaved elastically in this direction without showing any signs of 

strength loss. In the positive moment direction the gap between the girder and cap 

continued to increase. At step V4 the gap had increased to 1/4” and cracks began to 

appear in the cap concrete adjacent to the girders (Figure 4-14). The connection was then 

cycled between positive and negative moments two more times. At the end of the cycle 

the gap had widened to 5/16” (Figure 4-15) and the cap cover concrete next to the girder 

began to spall (Figure 4-16). At this time the connection began to soften and behave in 

an inelastic manner. At this point in the test, the black actuator was switched to 

displacement control in order to be able to better exercise the inelastic action of the 

connection. The loading protocol for displacement cycles is shown in Table 4-6. Just as 
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for force control, each step was cycled between positive and negative displacement three 

times.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14: Cracking of cap cover concrete adjacent to girder 
 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.15: Gap (5/16”) between girder and cap beam 

 
 

 

 
 
 
 
 
 
 

 
 

 
Figure 4.16: Spalling of cap cover concrete 
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Figure 4.17: Cracking at bottom of girder 

Table 4-6: Displacement load steps 

  Constant force (k) Displacement (in.) 
Load Step Blue Actuator Black Actuator 

D1 40 3.25 
  -22 -1 

D2 40 4 
  -22 -2 

D3 40 6 
  -22 -3 

D4 40 9 
  -22 -4.5 

D5 40 12 
  -22 -6 

D6 40 15 
  -22 -7.5 

 

As the displacement cycles progressed, the positive moment at step D2 (+4 in./-2 

in.) caused cracking at the bottom of the girder near the connection region as shown in 

Figure 4-17. The cap cover concrete around the girder also continued to spall (Figure 

4-18). The LEDs from the NDI system that were positioned on cap were removed at this 

time to prevent damage due to spalling.  
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Figure 4.19: Spalling of concrete and mushrooming of strands 

Figure 4.18: Continued spalling of cap cover concrete 

 

 

 

 

 

 

 

 

At step D3 (+6 in./-3 in.), the bottom of the girder began to spall near the 

connection region along with the bottom of the cap. The spalling caused a loss of 

compression area for the girder under negative moment and resulted in the mushrooming 

of the extended strands as shown in Figure 4-19. The loss of compression area also 

caused the negative moment capacity to decrease as the lever arm was shortened. In the 

positive moment direction one extended strand snapped causing a decrease in moment 

capacity but the other four strands remained intact. 
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Figure 4.20: Final condition of connection region (upper - cap adjacent to girder; lower left – 
underside of girder to cap connection; lower right – separation of girder from deck) 

In the last three displacement steps, large amounts of spalling occurred in the 

cover concrete at the girder interface which fully exposed the dowel bars. The moment 

capacity in both the positive and negative direction continued to decrease and separation 

between the girder and deck was also observed under negative moment. The girder was 

able to reach a final displacement step of +15 in./-7.5 in. but the strength of the 

connection had already significantly decreased. The final condition of the connection is 

shown in Figure 4-20.  
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4.4 ESBF Test Results 
 General 

Results and behavior of the ESBF and ESSP connections will be summarized in 

the following sections according to positive and negative moments. During processing of 

data from the test results, it was found that the self-weight of the prototype wearing 

surface had not been correctly calculated which resulted in an underestimation of 

moments for the loading protocol. It was found that the moments applied to the test unit 

were on average 15% smaller than the actual prototype loads. The shear values were on 

average 3% smaller than the actual prototype loads.  The results summarized in the 

following sections will be reported with regard to the corrected loading protocol which is 

also included in Appendix C. In the following sections, behavior of specific connection 

details will be discussed along with failure mechanisms of both details. Comparisons to 

predicted responses will be provided as well as recommendations for improving the 

performance of the connections. 

 Positive Moment Response 

The ESBF connection performed well under positive moment and remained 

elastic up to the combined loads of gravity, horizontal seismic corresponding to the 

column overstrength moment, and 0.72g vertical acceleration. Figure 4-21 shows the 

moment-rotation behavior of the connection as well as moments corresponding to 

different loading levels. The maximum positive moment capacity reached by the 

connection was 416 k-ft. 

 

Figure 4.21: Positive moment vs. rotation response of ESBF connection 
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 Behavior of Strands and Dowel Action 

The response of the extended strands and dowel action was examined to further 

understand the behavior of the connection during positive moments. The yield moment 

of the connection was defined as the moment at which inelastic behavior began and was 

found to be 286 k-ft. At this moment value, the strain in the extended strands at the 

connection interface was 3100 µɛ and the dowel bar strain was 1800 µɛ as shown in 

Figure 4.22. These strain values were then converted to stresses and moment resistance 

using Equation 4.1 and an equivalent stress block approach. It was found at the yielding 

of the connection that the moment resistance of the strands was 111 k-ft and the moment 

resistance due to dowel action was 175 k-ft.  

 
Figure 4.22: Strand strain and dowel bar response 
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connection is very close to the yield point of the dowel bars. After the connection yields 

and the connection loads continue to rise, the strain in the strand increases due to the 

diminishing capacity of the dowel action. To validate this explanation, the calculation 

process performed for the yield point was repeated for the moment values listed in Table 

4-7. The table shows that concrete friction and dowel action account for an average of 

65% of the moment resistance until the dowel bars reach yield stress. Once the dowel 

bars reach yield, the cover concrete around the dowel bars began to crack and the strain 

in the strand increased until the ultimate moment value of the connection was reached. 

Based on strain measured in the extended strands, 70% of the positive moment 

resistance at the connection was carried by the strand at ultimate condition. 
Table 4-7: Mechanism moment values for connection moments approaching yield strength 

Strand 
Moment 

(k-ft) 

Dowel bar 
Moment 

(k-ft) 

Concrete 
Friction 

Moment (k-ft) 

Dowel 
Action 
(D+C) 

Dowel Action 
Moment 

Percentage 
Connection 

Moment (k-ft) 
52.1 18.3 80.4 98.6 65% 150.8 
64.9 28.7 84.1 112.8 63% 177.7 
69.3 22.1 113.6 135.7 66% 205.1 
76.3 31.3 123.3 154.6 67% 230.8 
85.8 43.1 128.9 172.0 67% 257.7 

111.3 62.1 112.8 175.0 61% 286.3 
123.1 77.2 110.11 187.3 60% 310.4 
192.4 75.0 132.3 207.3 52% 399.8 
292.4 128.6 -4.11 124.53 30% 416.9 

The ESBF connection reached ultimate condition in the positive direction with a 

displacement at the black actuator of -3 inches. The girder was then cycled through 

displacement of -4.5, 6, and -7.5 inches. The strand strain continued to increase and the 

concrete adjacent to the girders began to spall. At each displacement cycle beyond -3 in. 

the positive moment capacity of the girder decreased as shown in Figure 4.23. The 

decrease in moment at the displacement of -4.5 in. occurred due to cracking of the 

concrete adjacent to the girder around the lower dowel bar as well as the partial fracture 

of one of the extended strands. At -6 in. of displacement the moment loss was due to the 

continued loss of concrete adjacent to the girder which caused the moment capacity of 
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the dowel bars and concrete friction to decrease. At a displacement of -7.5 inches a large 

drop in capacity was caused by the fracture of a second and third strands. 

 
Figure 4.23: Moment decrease in ESBF connection after ultimate  

4.4.3.1 Strand Anchorage Length  

The strain in the extended strands was examined to better understand the transfer of 

strain along the length of the strand. Strain gages were located at the connection 

interface, 15 in. from the interface, and 45 in. from the interface. Table 4-8 shows the 

strain values for each gage along with the corresponding applied moment. Strain values 

in the table that are listed as 99999 indicate that the gage was no longer reading values 

due to overly high strand strains or damage to the gage. The table shows that strain was 

transferred to the 15 in. gage at relatively low moment values but the 45 in. gage did not 

experience noticeable strains until the strand approached fracture. The fracture of the 

strand shows that the development length of 60 in. was sufficient for anchorage, and the 

data in Table 4-8 indicates that an anchorage length of at least 45 inches is needed to 

prevent slipping of the strand. 
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Table 4-8: Transfer of strain in extended strands 
Strains (μɛ) Connection 

Interface 15 in. 45 in. Moment (k-ft) 
-147 -66 2 70.2 
11 -35 2 110.1 

1471 -7 3 150.8 
1831 525 5 177.7 
1957 720 22 205.1 
2152 1123 22 230.8 
2420 1628 22 257.7 
3141 2164 22 286.3 
2256 2873 23 310.4 
5431 5285 33 399.8 

99999 8251 198 416.9 
99999 3900 1662 388.9 
99999 99999 99999 360.9 

Fracture of Strand 229.0 

4.4.3.2 Spalling of Cover Concrete 

The spalling of the cap cover concrete during positive moment cycles occurred 

due to the location of the cap stirrups. Stirrups were placed adjacent to the top flange of 

the girder; however, no stirrups were placed under the top flange as shown in Figure 

4.24. Lack of stirrups under the top flange resulted in a six inch gap of unreinforced 

cover concrete adjacent to the girder web. The dowel bars were located in this region of 

cover concrete. Movement of the girder and subsequent displacement of the dowel bars 

caused cracking in the unreinforced region which led to spalling of the cover concrete as 

shown in Figure 4.25. This problem could be avoided in the field or in future tests by 

ensuring that the cap stirrups extend all the way under the top flange of the girder and 

are also adjacent to the girder web as indicated in Figure 4.24. 

 

 

 
Current stirrup locations Suggested stirrup 

 
Figure 4.24: Cap stirrup locations 
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Figure 4.25: Spalling of cap cover concrete adjacent to girder 

 Negative Moment Response 

The ESBF connection had considerable negative moment capacity and remained 

elastic up to the combined loads of gravity, horizontal seismic corresponding to the 

column overstrength moment, and 0.71g vertical acceleration. The moment capacity of 

the connection corresponding to the displacement at the black actuator, which was 

located close to the end of the girder, is shown in Figure 4.26 along with lines indicating 

specific load values. The connection reached an ultimate negative moment capacity of 

1032 k-ft. 

 
Figure 4.26: Negative moment vs. displacement of black actuator 
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4.4.4.1 Deck Steel Behavior 

The ultimate capacity of the connection in the negative direction was less than originally 

expected. The yield moment for the deck steel was originally calculated to be 940 k-ft, 

however, the yield moment of the test was around 615 k-ft. The predicted yield moment 

of 940 k-ft assumed that all the deck steel yielded simultaneously. The strains recorded 

in the deck steel during the test indicated that the rebar in the center of the deck reached 

yield sooner than rebar near the edge of the deck as shown in Figure 4.27 where zero 

position represents the center of the deck. The rebar in the middle of the deck began to 

exhibit inelastic behavior before yielding of the outer deck steel which caused the 

connection to behave in an inelastic manner at a lower than predicted moment value of 

615 k-ft.  

 
Figure 4.27: Strain profile of deck steel 
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from the deck and slip vertically. The vertical slip prevented the girder and deck from 

behaving as a fully composite section and reduced the moment resistance in the negative 

moment direction. 

 
Figure 4.28: Spalling at bottom of girder to cap interface 

 ESBF Overall Response 

The ESBF connection remained elastic for positive and negative moments up to 

values equivalent to the combined loads of gravity, horizontal seismic corresponding to 

the column overstrength moment, and vertical acceleration of 0.71g. The connection 

reached a maximum positive moment of 416 k-ft and a maximum negative moment of 

1032 k-ft. The overall moment versus displacement response of the connection is shown 

in Figure 4.29.  

 
Figure 4.29: Moment vs. black actuator displacement of the ESBF connection 
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4.5 ESSP Test Results 

4.5.1.1 General 

The ESSP connection behaved in a similar manner to ESBF connection. However, the 

effects of overloading adversely affected the connection in both the positive and 

negative directions. The overall response of the connection, along with behavior in the 

positive and negative moment directions, will be summarized in a manner similar to the 

ESBF connection.  

4.5.1.2 Positive Moment Response 

The ESSP connection remained elastic in the positive moment direction up to a 

combined load equivalent to gravity, horizontal seismic corresponding to the column 

overstrength moment, and 0.77g vertical acceleration. Figure 5.33 shows the moment 

verses rotation response of the connection as well as specific load levels. The maximum 

moment reached by the connection was 287 k-ft which corresponds to a vertical 

acceleration value of 0.72g vertical acceleration.  

 
Figure 4.30: Moment vs. rotation behavior of ESSP connection 
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Figure 4.31: Crushing of girder concrete 

following the overloading, a strain was present in the dowel bars of approximately 500-

600 µɛ. This caused a slight softening of the connection as well as lower overall moment 

capacity. The lower dowel bar capacity resulted in the bars reaching yield strain at a 

lower moment value. Similar to the ESBF connection, when the dowel bars reach yield 

strain, the concrete surrounding the dowel bars began to crack which resulted in a loss of 

dowel action and an increase in strand strain. The connection behaved similar to the 

ESBF and as the moment increased, the loss of dowel bar strength continued, and the 

concrete began to spall which led to the crushing of the girder concrete in the positive 

moment compression region (Figure 4.31). Crushing of the girder concrete prevented the 

strands from being exercised to full capacity and resulted in a lower ultimate positive 

moment. Comparison of the positive moment response between the two connections is 

shown in Figure 4.32. 

 

 

 

 

 

 
Figure 4.32: Connection behavior comparison of ESBF and ESSP connections 
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Even though the ultimate moment capacity of the strands was not developed, 

strain values of the extended strands and strand ties were compared to validate the 

transfer of force between the two strand members. It was found that the strand ties did 

not experience strain values comparable to the extended strands. In fact, the strain values 

in the strand ties remained constant throughout the test at values ranging from 

approximately 10-50 µɛ. It is possible that the strain transferred to the cap reinforcement 

or that the plate and chuck attached to the extended strand was sufficient for anchorage. 

4.5.1.3 Negative Moment Response 

The negative moment response of the ESSP connection was also very similar to 

the ESBF connection. The overloading at the beginning of the test resulted in yielding of 

some of the deck reinforcement and residual strains ranging from 300-900 µɛ which 

resulted in a lower overall moment capacity. A comparison of the ESSP connection 

behavior to that of the ESBF connection is shown in Figure 4.33 along with target load 

levels. The connection remained elastic up to a load value equivalent to gravity, 

horizontal acceleration corresponding to the column overstrength moment, and vertical 

acceleration of 0.71g. The connection negative yield moment of 615 k-ft was the same 

as the ESBF connection but occurred at a larger vertical displacement due to the 

overloading. The maximum negative moment capacity of the ESSP connection was 936 

k-ft. 

 
Figure 4.33: Negative moment vs. displacement comparison 
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4.5.1.4 Overall Connection Response 

The connection performed reasonably well by remaining elastic to positive 

moment capacity corresponding to 0.72g of vertical acceleration and a negative moment 

capacity corresponding to 0.71g. The maximum capacity of the connection was 286 k-ft 

in the positive moment direction and 936 k-ft in the negative moment direction. The 

connection did rotate more than the ESBF connection as a result of softening due to the 

initial overloading of the connection. The overall behavior of both connection is shown 

in Figure 4.34. 

 
Figure 4.34: Moment vs. black actuator displacement comparison of ESSP and ESBF connections 
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initial stiffness of the connection region. The connection was stiffer than predicted and 

also had smaller yield and ultimate moments than indicated by the model.  

 
Figure 4.35: ESBF vs. predicted positive moment response 

It is possible that the difference in the initial stiffness that occurred in the 

prediction models is due to the choice to utilize the GUSC connection data for 

comparison when the models were formulated. The GUSC connection utilized a dapped 

end with a longer embedment length of the girders into the cap beam. The larger girder 

embedment length provided more surface area for concrete friction resistance and also 

increased the distance between the dowel bars and connection interface as shown in 

Figure 4.36.  
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The stiffness difference between the GUSC and ESBF connection was likely due 

to dowel action resulting from the concrete friction area of each connection and the 

location of the dowel bars. The dowel bars in the ESBF connection are located closer to 

the connection interface as well as in the center of a smaller concrete friction area. Shear 

friction equations from ACI 308-11 were originally used to calculate the resistance of 

the two mechanisms. The shear friction mechanism as defined by ACI assumes that the 

steel rebar acts as a clamping force which enables the frictional resistance between the 

two concrete surfaces (ACI, 2011). The clamping force provided by the dowel bars in 

the ESBF connection is distributed over a smaller area which provides a stiffer 

connection region than the GUSC connection. Also the closer dowel bar location and 

smaller concrete friction resistance of the ESBF connection results in the dowel bars 

experiencing larger amounts of strain at lower rotation values which causing the 

connection to yield under lower loads. 

After further examining the positive behavior of both connections two 

observations were made. The first, as discussed earlier, was that the yield point of the 

connection corresponded to the yielding of the dowel bars. The prediction model based 

the yield point of the connection on the yielding of the extended strands. This difference 

explains the lower yield moment and also partly explains the difference in initial 

stiffness between the two models. The second observation was that the concrete interface 

between the cap and girder provides a significant amount of moment resistance which 

results in a higher moment and stiffer initial stiffness due to dowel action than originally 

predicted. The prediction model was adjusted to include the concrete shear friction 

resistance from Equation 4.1 instead of the multiplication factor of 1.2. In Equation 4.1, 

K1 values of 0.15 and 0.075 and steel stress values of 60 ksi and 90 ksi were used 

respectively at yield and ultimate conditions. The model as was changed to account for 

yielding of the dowel bars as the connection yield point with the distribution of the force 

between the strands and dowel bars calculated according to Table 4-7. The new 

prediction model is shown in Figure 4.37. The model is slightly conservative in regard to 
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rotation and ultimate moment values to prevent predicting a smaller rotation or larger 

moment than what the connection would experience. 

 
Figure 4.37: Improved connection model 

 Negative Moment Response 

The ESBF connection negative moment response was stiffer than the predicted 

behavior of the connection as shown in Figure 4.38. The increase in stiffness could be 

due to the way the girders were loaded. For negative moments the blue actuator pushed 

down while the black actuator pulled up. The strain penetration equations assume that 

the girder is loaded by one load in a single direction. To better predict the rotation of the 

connection it was decided to use the distance from the connection to the blue actuator for 

the variable ‘L’. This would result in only one load on the girder in a single direction. 

The test unit also showed an early yielding of the deck steel as mentioned earlier which 

needed to be accounted for in the prediction model.  
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Figure 4.38: Strain penetration vs. negative moment response 

To account for the early yielding of the deck steel due to an uneven distribution of 

strain, an initial yield point was added to the prediction model. It was assumed that the 

strain would vary linearly across each half of the deck width. Higher strains would occur 

at the center of the deck above the girder, while lower strains would occur near the edge 

of the deck.  The strain distribution was modeled with a linear strain rate of 49.3 µϵ/inch. 

Therefore the initial yield point was determined to be the point at which the steel above 

the girder reached a yield stress of 60 ksi. The resulting moment was calculated to be 

611 k-ft. The second yield point was then taken to be 890 k-ft which was the point at 

which the steel above the girder reached 90 ksi. The ultimate moment achieved in the 

test of 1032 k-ft was used to calculate the curvature at ultimate condition. Equations 4.3 

and 4.4 were then used to the predict connection behavior using the length of 13.5 ft for 

‘L’. The resulting rotation prediction is shown in Figure 4-39. The predicted rotation is 

larger than the actual rotation at the ultimate condition, however testing was stopped 

before the predicted ultimate rotation values were reached due to displacement limits of 

the test unit.  
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Figure 4.39: Improved negative moment prediction 
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 - CONCLUSION 

5.1 Project Overview  
Current Caltrans SDC guidelines specify that bridges designed to use ABC methods with 

precast girders are assumed to be pinned at the girder to cap connection due to 

historically poor performance of the connections when subject to high seismic forces. A 

pinned girder to cap connection only allows a single plastic hinge to form as opposed to 

a fixed girder to cap connection where an additional plastic hinge forms at the top of the 

column. The additional plastic hinge allows a smaller column cross-section and footing 

to be used in design of the bridge. The economy provided by the fixed connection is lost 

when ABC methods are used in accordance with SDC guidelines. To recover the 

benefits provided by ABC construction, two connection details were designed to create 

fixed girder to cap connections using precast girders. Fixed connections require the 

capacity to resist both positive and negative moments. Negative moments will be 

resisted by traditional deck reinforcement placed in the concrete slab which runs 

continuously over the girders and cap beam. For positive moment resistance, the two 

designed connections will use prestressing strands extended from precast girders 

combined with dowel bars placed transversely through the web of each girder.  

A separate SDC requirement states that if vertical acceleration is considered in the 

design of a bridge due to site conditions, additional side longitudinal reinforcement must 

be placed in the girder with the capacity to withstand 125% of the dead load shear. The 

side reinforcement must extended into the cap beam a length of 2.5 times the depth of 

the superstructure which results in congestion and increased labor costs when using 

precast members. One solution to meet this requirement is for precast girders 

connections to have a large enough capacity to resist 125% of the dead load shear and 

thereby eliminate the need for the additional reinforcement. To further increase the 

advantages of using precast ABC methods, the two girder to cap connections designed to 

remain fixed were also designed to withstand moment and shear values corresponding to 

150% dead load (0.5g vertical acceleration). 
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The two connections were designed for a prototype bridge with a 150 ft span 

utilizing CA-BT85 girders. The CA-BT85 girder is the largest bulb-tee girder currently 

used by Caltrans and has a maximum span length of 150 ft. The largest girder and 

longest span provided the maximum possible moment at the connection region. After 

completion of the prototype design, a 40% scale test unit was designed, constructed, and 

tested in the ISU structural laboratory. The test unit consisted of a footing, column, cap 

beam, and two bulb-tee girders with individual decks. One girder was connected to the 

cap beam with the detail known as the ESBF connection. The ESBF connection utilized 

extended strands that were bent at 90 degrees with a development length of 60 in. to 

provide sufficient anchorage. Three dowel bars were also placed transversely through 

the girder web to provide additional moment resistance at the connection interface. The 

second girder connection, known as the ESSP connection detail, incorporated design 

details used by WSDOT. Extended strands extended a short distance into the cap beam 

and then are spliced to transfer forces. Lengths of strands known as strand ties 

overlapped the extended strands to create the splices and both the strand ties and 

extended were anchored by steel plates and anchor chucks. The ESSP connection also 

used three dowel bars for additional positive moment resistance. 

 Once the construction of the test unit was completed, each connection was tested 

individually by applying loads in a series of steps to reach target values. Each step was 

cycled three times to simulate seismic behavior. The target values were: gravity loads 

(G), G + horizontal ground acceleration corresponding to the column overstrength 

moment (H), G + H + 0.5g vertical acceleration, and G + H + 1.0g vertical acceleration. 

Each girder was then subject to displacement cycles until the capacity of the connection 

was reached. The displacement values corresponded to a point of load application 28.5 

feet from the connection. The values were +2/-1, +3/-1.5, +4/-2, +6/-3, +9/-4.5, +12/-6, 

and -15/-7.5 inches and each value was cycled three times. 

Two prediction models for the behavior of the connection were formulated. One 

model examined the strain values in extended strands, dowel bars, and deck steel and 

related those strain values to horizontal girder displacement by using linear rates. The 
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linear rates for each material were then combined to form a predictive model. The 

second method used strain penetration values corresponding to the extended strands 

along with projected strain in the dowel bars to predict the connection behavior. For both 

methods, data from the previously performed GUSC test was used to correctly formulate 

the predictive calculations. Upon completion of testing, the measured response of each 

connection was compared to the predicted behavior in order to verify the accuracy of 

each model and identify any necessary modifications. 

5.2 Summary of Test Results 

 General 

Both the ESBF and ESSP connections performed well and each connection was 

able to resist the moment and shear values corresponding to a combined load of gravity, 

horizontal seismic corresponding to the column overstrength moment, and 0.5g vertical 

acceleration loads. The moment resistance of the connection showed that precast girder 

connections have adequate capacity to resist high seismic forces and can be designed as 

fixed connections. Additionally, both connections had sufficient shear and moment 

capacity at vertical acceleration values above 0.25g which eliminates the need for the 

additional longitudinal reinforcement required by Caltrans SDC.  

 ESBF Connection 

The ESBF connection which incorporated the extended strands bent at 90 

degrees with a development length of 60 in. remained elastic up to a combined load of 

gravity (G), horizontal seismic corresponding to the column overstrength moment (H), 

and 0.96g vertical acceleration. The ultimate capacity of the connection was well over 

values corresponding to G + H + 1.0g vertical acceleration. The failure mechanism of 

the ESBF connection was fracture of the extended strands which validated that for a 3/8 

in diameter bent strand a development length of 60 in. was sufficient.  
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 ESSP Connection 

The ESSP connection which consisted of the spliced strands anchored with plates 

and chucks, had slightly less capacity than the ESBF connection. It is thought that the 

difference in capacity is likely due to the mechanical malfunction at the beginning of the 

test which resulted in overloading of the connection. The connection remained elastic up 

to a combined load of gravity (G), horizontal seismic corresponding to the column 

overstrength moment (H), and 0.77g of vertical acceleration. The ultimate capacity of 

connection in the positive moment direction was G + H + 0.96g with a negative moment 

ultimate capacity well over G + H + 1.0g. The failure of the connection was due to a 

combination of two mechanisms. First, spalling of the cap beam cover concrete occurred 

adjacent to the girder due to the absence of cap stirrups under the top flange of the 

girder. The absence of stirrups resulted in a concrete thickness around the dowel bars 

that was larger than what is normally used for cover concrete. The thick cover concrete 

eventually spalled which exposed the dowel bars and reduced the capacity of the 

connection. Second, crushing of concrete at the end of the girder occurred which reduced 

the lever arm needed to develop adequate moment resistance in the strands and deck 

steel.  

The behavior of the strand splices was examined throughout the test, and it was 

observed that the extended strands did not transfer force to the strand ties as was 

previously purposed but instead experienced very low strains. It appeared that the force 

in the extended strands either transferred to the cap reinforcement or was sufficiently 

anchored by the attached plate and chuck. Therefore, the strand ties which form the 

splices with the extended strands, are not necessary to include in the connection design.   

5.3 Conclusions 
Based on current Caltrans SDC requirements, along with test observations and 

results, the following conclusions have been made: 

• Precast girders used with ABC methods are able to form fixed connections to 

resist high seismic forces contrary to current Caltrans SDC guidelines as 

evidenced by the performance of the ESBF and ESSP connections  
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• Additional longitudinal reinforcement to resist vertical acceleration as specified 

by Caltrans SDC is not necessary when adequate shear and moment capacity can 

be provided by fixed precast girder to cap connections. This was demonstrated by 

the extended strand, ESBF and ESSP connections which provided adequate 

moment and shear capacities up to a combined load of gravity, horizontal seismic 

corresponding to the column overstrength moment, and 0.5g vertical 

acceleration. 

• For a 3/8 in. strand bent at 90 degree, a development length of 60 in. is sufficient 

to for anchorage as evidenced in the ESBF connection 

• The shortened extended strands in the ESSP connection (14 in. length) were 

adequately anchored with a plate and chuck without transferring forces through 

the strand splices 

• Dowel action in both connections affects the initial stiffness of the connection 

and provides 60% of the connection positive moment capacity until yielding of 

the dowel bars after which the capacity of the dowel action decreases  

• Both connection details can be improved by the addition of stirrups under the top 

flange of the girders to prevent spalling of cap cover concrete 

5.4 Recommendations for Future Work 
The results of the ESBF and ESSP connection tests show that ABC methods using 

precast girder to cap connections are economical due to fixed connection behavior and 

the additional capacity to withstand seismic forces corresponding to 0.5g vertical 

acceleration. The results also provide opportunities for future work in area of precast 

girder connections, specifically extended strand connections. It is recommended that a 

test be conducted using the ESSP detail but excluding the strand ties to provide 

information regarding the required embedment length for plate and chuck anchorage. 

During testing, some spalling occurred at the bottom of the connection region at the 

connection interface near the extended strands. In order to reduce damage to the bridge 

and ensure the integrity of the connection, methods of confinement for the extended 

strands at the connection region in both the girder and cap beam could be investigated. 
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As recommended, stirrups should also be added under the top flange of the girder to 

decrease spalling of the cap cover concrete. Finally, new methods for anchorage of 

extended strands in bridge cap beams should be explored to provide more options for 

design and construction of precast girder connections.  Overall, the performance of the 

test ESBF and ESSP connections strongly supports the use of ABC methods as a cost-

effective solution for bridge construction in high seismic regions. 
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APPENDIX A – EQUATIONS AND CALCULATIONS 

Deck steel equations: 

For calculation purposes the bottom flange of the girder was treated as a rectangular flange with a 
height of 10.8 inches. The girder deck is 8” thick with the centroid of deck steel located 4” above the top 
of the girder. 

 

 

Equation 3.3: 

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 =  𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
� 

Mneg = Negative design moment  

 As = Area of steel 

 fy = yield strength of steel 

 d = depth from center of deck steel to bottom of girder 

 a = depth of compressive block 
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7150 ∗ 12
𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓

=  𝐴𝐴𝑠𝑠 ∗ 66 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ �88.625−
𝑎𝑎
2
� 

85800 =  𝐴𝐴𝑠𝑠 ∗ 66 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ �88.625−
𝑎𝑎
2
� 

𝐴𝐴𝑠𝑠 =
85800

66 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ �88.625− 𝑎𝑎
2�

 

Equation 3.4: 

𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 = 0.85𝑓𝑓′𝑐𝑐𝑎𝑎𝑏𝑏𝑓𝑓 

 f’c = compressive strength of concrete 

 bf = width of lower flange 

𝐴𝐴𝑠𝑠 ∗ 66 𝑘𝑘𝑘𝑘𝑘𝑘 = 0.85 ∗ 4 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑎𝑎 ∗ 29.5 

𝐴𝐴𝑠𝑠 ∗ 66 𝑘𝑘𝑘𝑘𝑘𝑘 = 100.3 

𝐴𝐴𝑠𝑠 = 1.52𝑎𝑎 

Set Equations 3.3 and 3.4 equal to each other and solve: 

1.52𝑎𝑎 =
85800

66 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ �88.625− 𝑎𝑎
2�

 

Solved using online solver: 

𝐴𝐴𝑠𝑠 = 15.56 in.2 

a = 10.24 in 

Extended strand equations: 

Centroid of strands is located 4 inches from bottom of girder. The effective girder width was calculated 
based using the same distribution factor of 0.24 with a total deck with of 34.5 feet. 

Derivation of Equation 3.5: 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 =  𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦𝑠𝑠 �𝑑𝑑𝑠𝑠 −
𝑎𝑎
2
� 

 Mtot = total positive moment 

 fys = yield strength of strand 

 As = area of prestressing strands  

 ds = depth from top of deck to centroid of strands 
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a = depth of compression block 

 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 −𝑀𝑀𝐷𝐷𝐷𝐷  

 Mpos = positive design moment 

 MDA = moment resistance of dowel action 

𝐴𝐴𝑠𝑠 =  𝑁𝑁𝑠𝑠 ∗  𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Ns = number of strands  

Astrand = area of a single 0.6 in. diameter prestressing strand 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑀𝑀𝐷𝐷𝐷𝐷 =  𝑁𝑁𝑠𝑠 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑦𝑦𝑦𝑦 ∗ (𝑑𝑑𝑠𝑠 −
𝑎𝑎
2

) 

𝑁𝑁𝑠𝑠 = �𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑀𝑀𝐷𝐷𝐷𝐷�/(𝑓𝑓𝑦𝑦𝑦𝑦 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ (𝑑𝑑𝑠𝑠 −
𝑎𝑎
2

)) 

Equation 3.6: 

𝑎𝑎 =  
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦𝑦𝑦

0.85 ∗ 𝑓𝑓′𝑐𝑐 ∗ 𝑏𝑏𝑑𝑑
 

 bd =  effective width of deck 

𝑎𝑎 =  
𝑁𝑁𝑠𝑠 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑦𝑦𝑦𝑦 

0.85 𝑓𝑓′𝑐𝑐𝑏𝑏𝑑𝑑
 

𝑁𝑁𝑠𝑠 =  
0.85 𝑓𝑓′𝑐𝑐𝑏𝑏𝑑𝑑 ∗ 𝑎𝑎
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑦𝑦𝑦𝑦

 

Solution of equations: 

0.85 ∗ 4 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 100 𝑖𝑖𝑖𝑖.∗ 𝑎𝑎
0.217 ∗ 230

= ((3065− 1280) ∗ 12 𝑖𝑖𝑖𝑖./𝑓𝑓𝑓𝑓)/(230 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 0.217 𝑖𝑖𝑖𝑖.2∗ (88.625− (𝑎𝑎/2) ) 

6.812𝑎𝑎 = 21402/(49.91 ∗ �88.625−
𝑎𝑎
2
�) 

Solved using online solver: 

a = 0.714 

Ns = 5 strands 
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APPENDIX C – LOADING PROTOCOLS 

Original Loading Protocol – Force Control 

  Force (kips)       
Cycle Blue Actuator Black Actuator Stage Moment Shear 

0 0 0 0     
1 -2.0 -5.0   3.45 -4.07 
  0.0 -4.1   -49.2 -7 
  12.3 -8.3   -95.55 -15.07 
  22.4 -12.4   -115.05 -21.07 
  32.5 -16.5 Gravity -134.55 -27.07 
2 32.5 -14.70       
  32.95 -18.20       
3 32.5 -14.70       
  32.95 -18.20       
4 32.5 -14.70   -185.85 -28.87 
  32.95 -18.20   -92.18 -25.82 
5 32.5 -12.90       
  33.4 -19.90       
6 32.5 -12.90       
  33.4 -19.90       
7 32.5 -12.90   -237.15 -30.67 
  33.4 -19.90   -49.8 -32.5 
8 32.5 -11.10       
  33.85 -21.60       
9 32.5 -11.10       
  33.85 -21.60       

10 32.5 -11.10   -288.45 -32.47 
  33.85 -21.60   -7.425 -23.32 

11 32.5 -9.3       
  34.3 -22.3       

12 32.5 -9.3       
  34.3 -22.3       

13 32.5 -9.3   -339.75 -34.27 
  34.3 -23.3 Ultimate (∆µ = 10) 34.95 -22.07 

14 36.9 -10.2       
  30.4 -22.7       

15 36.9 -10.2       
  30.4 -22.7       

16 36.9 -10.2   -373.5 -37.77 
  30.4 -22.7   70.5 -18.77 

17 41.3 -11.2       
  26.6 -22.2       
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  Force (kips)       
Cycle Blue Actuator Black Actuator Stage Moment Shear 

18 41.3 -11.2       
  26.6 -22.2       

19 41.3 -11.2   -404.4 -41.17 
  26.6 -22.2   107.55 -15.47 

20 45.6 -12.1       
  22.7 -21.6       

21 45.6 -12.1       
  22.7 -21.6       

22 45.6 -12.1   -436.8 -44.57 
  22.7 -21.6   143.1 -12.17 

23 50.0 -13.0       
  18.8 -21.0       

24 50.0 -13.0       
  18.8 -21.0       

25 50.0 -13.0   -470.55 -48.07 
  18.8 -21.0 0.5 g 178.65 -8.87 

26 -2.0 -5.0       
  0.0 -4.1       
  12.3 -8.3       
  22.4 -12.4       
  32.5 -16.5 Gravity     

27 50.0 -13.0       
  18.8 -21.0       

28 50.0 -13.0       
  18.8 -21.0       

29 50.0 -13.0   -470.55 -48.07 
  18.8 -21.0 0.5 g 178.65 -8.87 

30 53.4 -13.65       
  14.94 -20.1       

31 53.4 -13.65       
  14.94 -20.1       

32 53.4 -13.65   -497.93 -50.82 
  14.94 -20.1   205.11 -5.91 

33 56.8 -14.3       
  11.08 -19.2       

34 56.8 -14.3       
  11.08 -19.2       

35 56.8 -14.3   -525.3 -53.57 
  11.08 -19.2   231.57 -2.95 
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Force (kips) 

   Cycle Blue Actuator Black Actuator Stage Moment Shear 
36 60.2 -14.95 

   
 

7.22 -18.3 
   37 60.2 -14.95 
   

 
7.22 -18.3 

   38 60.2 -14.95 
 

-552.68 -56.32 

 
7.22 -18.3 

 
258.08 0.01 

39 63.6 -15.6 
   

 
3.36 -17.4 

   40 63.6 -15.6 
   

 
3.36 -17.4 

   41 63.6 -15.6 
 

-580.05 -59.07 

 
3.36 -17.4 

 
284.49 2.97 

42 67 -16.25 
   

 
-0.5 -16.5 

   43 67 -16.25 
   

 
-0.5 -16.5 

   44 67 -16.25 
 

-607.43 -61.82 

 
-0.5 -16.5 1.0 g 310.95 5.93 
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Original Loading Protocol – Displacement Control 

  Force (k) Disp (in)   
  Blue Actuator Black Actuator   

Force  -2 -5   
Control 32.5 -16.5   

Disp  10 0.5   
Control -5 -0.25   

  20 1   
  -10 -0.5   
  30 1.5   
  -15 -0.75   
  40 2 D1 
  -22 -1   
  40 2   
  -22 -1   
  40 2   
  -22 -1   
  40 3 D2 
  -22 -1.5   
  40 3   
  -22 -1.5   
  40 3   
  -22 -1.5   
  40 4 D3 
  -22 -2   
  40 4   
  -22 -2   
  40 4   
  -22 -2   
  40 6 D4 
  -22 -3   
  40 6   
  -22 -3   
  40 6   
  -22 -3   
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  Force (k) Disp (in)   
  Blue Actuator Black Actuator   
  40 9 D5 
  -22 -4.5   
  40 9   
  -22 -4.5   
  40 9   
  -22 -4.5   
        
  40 12 D6 
  -22 -6   
  40 12   
  -22 -6   
  40 12   
  -22 -6   
  40 15 D7 
  -22 -7.5   
  40 15   
  -22 -7.5   
  40 15   
  -22 -7.5   
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Corrected Loading Protocol – Force Control 

  Force (kips)       
Cycle Blue Actuator Black Actuator Stage Moment Shear 

0 0 0 0     
1 -2.0 -5.0   3.45 -4.07 
  0.0 -4.1   -38.1 -6.88 
  12.3 -8.3   -76.2 -13.75 
  22.4 -12.4   -114.3 -20.63 
  32.5 -16.5 Gravity -152.4 -27.5 
2 32.5 -14.70       
  32.95 -18.20       
3 32.5 -14.70       
  32.95 -18.20       
4 32.5 -14.70   -192.73 -28.825 
  32.95 -18.20   -119.98 -26.4 
5 32.5 -12.90       
  33.4 -19.90       
6 32.5 -12.90       
  33.4 -19.90       
7 32.5 -12.90   -233.05 -30.15 
  33.4 -19.90   -87.55 -25.3 
8 32.5 -11.10       
  33.85 -21.60       
9 32.5 -11.10       
  33.85 -21.60       

10 32.5 -11.10   -273.375 -31.475 
  33.85 -21.60   -55.125 -24.2 

11 32.5 -9.3       
  34.3 -22.3       

12 32.5 -9.3       
  34.3 -22.3       

13 32.5 -9.3   -313.7 -32.8 
  34.3 -23.3 Ultimate (∆µ = 10) -22.7 -23.1 

14 36.9 -10.2       
  30.4 -22.7       

15 36.9 -10.2       
  30.4 -22.7       

16 36.9 -10.2   -363.05 -36.25 
  30.4 -22.7   27.23 -19.65 

17 41.3 -11.2       
  26.6 -22.2       
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  Force (kips)       
Cycle Blue Actuator Black Actuator Stage Moment Shear 

18 41.3 -11.2       
  26.6 -22.2       

19 41.3 -11.2   -412.4 -39.7 
  26.6 -22.2   77.15 -16.2 

20 45.6 -12.1       
  22.7 -21.6       

21 45.6 -12.1       
  22.7 -21.6       

22 45.6 -12.1   -461.75 -43.15 
  22.7 -21.6   127.075 -12.75 

23 50.0 -13.0       
  18.8 -21.0       

24 50.0 -13.0       
  18.8 -21.0       

25 50.0 -13.0   -511.1 -46.6 
  18.8 -21.0 0.5 g 177 -9.3 

26 -2.0 -5.0       
  0.0 -4.1       
  12.3 -8.3       
  22.4 -12.4       
  32.5 -16.5 Gravity     

27 50.0 -13.0       
  18.8 -21.0       

28 50.0 -13.0       
  18.8 -21.0       

29 50.0 -13.0   -511.1 -46.6 
  18.8 -21.0 0.5 g 177 -9.3 

30 53.4 -13.65       
  14.94 -20.1       

31 53.4 -13.65       
  14.94 -20.1       

32 53.4 -13.65   -550.58 -49.34 
  14.94 -20.1   216.48 -6.56 

33 56.8 -14.3       
  11.08 -19.2       

34 56.8 -14.3       
  11.08 -19.2       

35 56.8 -14.3   -590.06 -52.08 
  11.08 -19.2   255.95 -3.82 
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Force (kips) 

   Cycle Blue Actuator Black Actuator Stage Moment Shear 
36 60.2 -14.95 

   
 

7.22 -18.3 
   37 60.2 -14.95 
   

 
7.22 -18.3 

   38 60.2 -14.95 
 

-629.54 -54.82 

 
7.22 -18.3 

 
295.44 -1.08 

39 63.6 -15.6 
   

 
3.36 -17.4 

   40 63.6 -15.6 
   

 
3.36 -17.4 

   41 63.6 -15.6 
 

-669.02 -57.56 

 
3.36 -17.4 

 
334.92 1.66 

42 67 -16.25 
   

 
-0.5 -16.5 

   43 67 -16.25 
   

 
-0.5 -16.5 

   44 67 -16.25 
 

-708.5 -60.3 

 
-0.5 -16.5 1.0 g 374.4 4.4 

 

*Note: The displacement loading protocol did not require correction 

Comparison of loading protocols: 

  
Negative Moment 

(k-ft) 
Negative Shear 

(kips) 
Positive Moment 

(k-ft) 
Positive Shear 

(kips) 
  Tested Adjusted Tested Adjusted Tested Adjusted Tested Adjusted 

Gravity 
-

134.55 -152.4 -27.07 -27.5 - - - - 

H+G 
-

339.75 -313.7 -34.27 -32.8 34.95 -20.4 -22.07 -23.1 

H+G+0.5gV 
-

470.55 -511.1 -48.07 -46.6 178.65 177 -8.87 -9.3 

H+G+1.0gV 
-

607.43 -708.5 -61.82 -60.3 310.95 374.4 5.93 4.4 
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