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ABSTRACT 

An innovative sensor network consists of soft elastomeric capacitors (SECs) has been 

proposed for large scale civil infrastructures such as wind turbines. Each SEC unit is able to 

convert a change in local strain into a change in capacitance due to geometric deformation of the 

patch. Since each SEC unit measures unidirectional strain under the covered surface, a method is 

needed to be developed in order to decompose strain into principle components. 

To perform the strain decomposition task, a strain surface fitting algorithm using 

polynomial interpolation functions has been developed. Firstly, the proposed algorithm was 

validated on both symmetrical and nonsymmetrical plates under various loading conditions. The 

strain polynomial functions used for plates were assumed based on the classic plate theory. By 

minimizing the errors between real and estimated strain values, a coefficient matrix was 

estimated and used to estimate bi-dimensional strains. The results of predicted strains showed 

good agreement with real strain data extracted from the finite element models. Once the 

algorithm was validated, multiple ways of sensor arrangements were performed in order to 

investigate the effects of sensor placement on estimating accuracy. It is found that the estimating 

accuracy can be improved if either the inner sensors were staggered or the amount of boundary 

sensors was reduced. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Wind energy has become a big investment not only in the United States but all around 

the world. As one of the fastest growing renewable energy sources, the worldwide wind 

capacity reached 254,000 MW by the end of June 2012, out of which 16,546 MW were 

added in the first six months of 2012. According to World Wind Energy Association [1], the 

overall growth rate of wind energy in 2011 reached 20.3%. With wind being a strong 

resource of energy, it needs to be as efficient and reliable as possible, especially with the 

increase in use. Chia Chen et al. (2008) talked about many hardships to take into account 

when operating turbines efficiently and effectively including: the difficulty of inspections 

and maintenance, the susceptibility to accidents with maintenance workers and/or the public, 

the location of turbines in remote areas with limited access for repair, the large size of 

structures, the out-of-service time, and the frequency of unexpected failure [2]. A vital area 

of concern is regular maintenance and repair, especially of the turbine blades. Electrical 

components tend to have the highest failure rates. Drivetrains and blades, however, tend to 

create the longest out-of-service time and cost the most to repair. Turbine blades generally 

account for 15-20% of the total cost of the turbine and are a key component to the generation 

of energy [2]. Today the size of wind turbine blade is increasing in order to achieve a better 

energy harvesting effectiveness. At the same time, it dramatically increases the difficulties of 

routine maintenances that are required periodically. The failure of blades can also lead to 
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secondary failures of other components as well as potentially leading to failure of the whole 

tower. 

In order to make turbines safer and more efficient, they must be monitored on a 

regular basis to track the operational and structural health at any given time. Considered from 

both safe and economical aspects, a monitoring technique needs to be employed to minimize 

downtime as well as to decrease unexpected breakdowns. Structural health monitoring (SHM) 

is a technique that implements damage detection and condition assessment for engineering 

structures. The SHM process consists of the observation of a structure over time by 

periodically recorded measurements, the extraction of damage related features from the 

measurements, and the determination of current conditions of the structures using statistical 

analysis of extracted features [3]. For most of existing SHM solutions, the most fundamental 

challenge is that damage is usually a local phenomenon and might have minor effects on 

lower-frequency global response of structures, which is measured by the entire system. The 

majority of the current literature over last 30 years, however, have focused more on 

identifying damage on global basis [3]. In the meantime, the features selection and damage 

data collection for complicated structures are difficult due to unknown behaviors and a 

limited number of sensor locations. In fact, it is hard to employ a technique like fiber-optic 

over a large scale structure due to economic issues. Thus, there is a demand to develop a 

sensing solution designed especially for large scale civil infrastructures. It should be cost-

effective and should have capabilities to extract damage features on a local basis. At this 

point, a sensing network comprising soft elastomeric capacities (SECs) has been introduced. 
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1.2 Problem Statement 

Because current application of sensing solutions to large scale structural health 

monitoring are limited by economic and/or technical challenges, a group of bio-inspired 

sensing skin has been developed for a cost-effective sensor network specifically designed for 

strain sensing wind turbine blades. The network consists of soft elastomeric capacitors (SECs) 

deployed in array form. Each SEC is fabricated from a nanocomposite mix of SEBs, which is 

used to fabricate dielectric and electrodes. The sensing principle is that when the monitored 

surface deforms, each SEC unit is able to catch the change in capacitance by the change in 

geometry. Capacitance signals then can be transformed into strain signals. Capacitance data 

will be collected using an off-the-shelf data acquisition system (ACAM PCap01). 

Transformation from capacitances to strain data is performed using MATLAB. The 

capacitance   of a SEC is written as [4]:  

      
 

 
                                                                    

Where,  , is the nominal capacitance of an SEC,    = 8.854 pF/m is the vacuum 

permittivity,    is the dimensionless polymer relative permittivity, and        is the area of 

an SEC with width w and length l. Since SEC is attached to monitoring surface using epoxy, 

we could assume that only length and thickness are changed with no change in width. In 

addition, it is assumable that elastomer is incompressible so that the volume of SEC remains 

the same after geometry deforms. Through these relations, capacitance signals are 

transformed to strain signals, and unidirectional strain is able to be obtained. Since it is very 

common that biaxial stress states happen in structural components, normal stresses and 
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strains are necessarily obtained in order to perform stress analysis that is a primary of 

comparison with criterion of failure. Therefore, a method that can decompose the 

unidirectional strain needs to be developed and evaluated. Also, the influence of sensor 

arrangement for estimating accuracy is to be investigated. 

1.3 Research Objectives and Scopes 

The objectives of this research are to develop a technique that is able to decompose 

the strain signals measured by SEC networks and to investigate the effect of the sensor 

placement on estimating accuracy. A strain fitting algorithm was proposed and adopted to 

perform the task. Classical thin plate theory has been applied to assume polynomial functions 

for strain. The effectiveness of the proposed algorithm was evaluated on a geometrically 

skewed plate that was designed based on a CX-100 wind turbine blade. The influences of 

material properties, arbitrary loading, and geometry variation were discussed in terms of 

estimating accuracy as well. Another purpose of the study is to investigate the effects of 

sensor placement for estimating accuracy of the proposed algorithm. 

1.4 Thesis Organization 

The thesis is organized as follows: CHAPTER 2 provides background information on 

various topics including: SHM applications for wind turbine blades, existing sensor types, 

and backgrounds of SECs networks. CHAPTER 3 introduces the principles of the proposed 

algorithm as well as the application of the algorithm on a FEA based rectangular plate. The 
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decomposing accuracy of the algorithm was evaluated and discussed for the different loading 

cases. CHAPTER 4 illustrates the effect of different sensor placements on estimating 

accuracy. The results were compared with uniform sensor arrangement and two sensor 

arrangements have shown positive effects on estimating accuracy. CHAPTER 5 presents the 

application of the algorithm on a blade-shaped plate as well as the verification of 

improvement by applying the two positive sensor arrangement. CHAPTER 6 concludes the 

study and provides several recommendations regarding the applications. Finally, future 

research work is suggested. 
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CHAPTER 2 BACKGROUND INFORMATION 

2.1 SHM Application for Wind Turbine Blades 

Structural health monitoring (SHM) is a reliable technique that implements damage 

detection and condition assessment especially for engineering structures. According to Charkes 

R. et al. (2007), the SHM process consists of the observation of a structure over time by 

periodically recorded measurements, the extraction of damage related features from the 

measurements, and the determination of current conditions of the structures using statistical 

analysis of extracted features. One of the most popular application fields of SHM is for wind 

turbine systems because wind energy is becoming more and more important among other 

renewable energies because of its mature technology, good infrastructures, and cost-

competitiveness.  As wind turbines increase in blade size, which lead to more effective wind 

energy harvesting, and the cost of initial investment for wind turbine system correspondingly 

increases. This increase results in more demand for monitoring the operational condition of the 

wind turbine blades. In this section, monitoring methods using different types of sensors are 

reviewed. 

2.1.1 Optical fiber sensors 

The optical fiber can be made of either plastic or glass and is widely used for fiber-optic 

communication that allows signals transmit over much longer distance but with much less loss 

than other types of wired or wireless communication. Optical fiber sensors are fiber-based 
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techniques for sensing typically mechanical strain, load or temperature. It can be attached to the 

surface of structural components like wind turbine blades to measure strain and load. According 

to [5], the general principle of these types of sensors is that they use light instead of electricity 

from a laser or other sources to transfer information through an optical fiber. The signal will 

experience tiny change to its parameters either from its fiber or several fiber Bragg gratings, and 

the changes are transferred and captured by a detector arrangement. The light source will lose 

optical power when it is traveling through a plastic optical fiber. The level of reduction depends 

on the surface strain of the optical fiber. By utilizing this feature, a type of strain sensor can be 

developed. For example, if a piece of optical fiber is attached on the surface of a structure and is 

receiving a light source generated by an emitting diode, the light is focused through lens and 

incident to a photo detector and the power of the light is measured by an optical power meter; 

one can capture the change of power due to the optical fiber’s change in strain, which can be 

used to detect damage in a structure [6]. Figure 1 illustrates the propagation process of rays in a 

deformed optical fiber, and the reduction of power is due to leaked rays. Figure 2 illustrates the 

relationship between optical power and strain. Normalized optical power decreases linearly 

against strain up to 10000 με and then starts to drop faster nonlinearly. 

 

Figure 1: Propagation of rays in deformed optical fiber [6]. 



8 

 

Figure 2: Optical power and strain relation [6]. 

In particular, one of the most common optical fiber types is optical fiber Bragg grating 

sensor (FBG). FBGs are small optical fiber pieces (10mm in length) that are spatially arranged 

with various refractive index in the core (Figure 3). It works like a light reflector, and the 

reflection ratio can be maximized at a specific wavelength. The shift of peak then can be related 

to applied external load, induced strain or varied temperature [5]. Usually, at a wavelength of 

1550nm, FBG sensors have a temperature sensitivity around 10pm/ ºC and strain sensitivity 

around 1.2pm/   [5]. For pure strain sensing, the accuracy is sufficient in that its resolution can 

be the range of a few   . 
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Figure 3: Transmission and reflection spectra of a FBG [5]. 

For application of turbine blades, FBGs offer several advantages over the conventional 

sensors: (1) FBGs have immunity to electromagnetic and lightning interferences [5]; (2) FBGs 

are resistant to corrosion and integration into composite material of the blades with minimal 

degradation to the host materials [5]; (3) because measured information is encoded in the 

wavelength of reflected light, FBGs are immune to drifts and no down-lead sensitivity is 

included [7]; and (4) a combination of several gratings into a single fiber is possible so that FBG 

systems have the capacities of outputting a large amount of sensors simultaneously through few 

fibers, which reduces the requirements of cables and initial installations [7]. The cost for a group 

of this type of sensors, however, is still too expensive for SHM application on a large scale wind 

turbine blades. In addition, FBGs are sensitive to temperature changes, which may have negative 

influence on sensing accuracy [8]. 
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2.1.2 Acoustic emission monitoring 

According to Wikipedia [9], acoustic emission (AE) is a phenomenon in which transient 

elastic waves are generated by materials when energy in a material or on its surface is released 

suddenly. This process could be a result of external forces, deformation, cracking, debonding, 

delamination or others that occur to materials.  AE is widely used for study in inspection, system 

feedback, and process monitoring. For SHM on turbine blades, piezoelectric sensors are 

commonly applied to detect stress waves within a structure. According to the research of P.A. 

Joosse et al. (2002), certification tests on small wind turbine blades were conducted using AE 

monitoring technique. The sensing system was identified as a considerable method towards 

understanding the damage mechanisms of the blades because of its sensitivity and ability to 

detect much weaker signals than those normally audible to test engineers [10]. The practical 

benefits of AE monitoring by piezoelectric sensors were concluded in a research project by Erik 

R. et al. (2004). According to these researchers, the benefits of piezoelectric sensors include their 

capability to detect the high frequency component of stress released waves produced by 

materials undergoing energy loss. Also, clustered AE events, which were emitted at a low load 

level, were recognized around certain points coinciding with eventual failure locations, which 

was shown useful for predicting the potential failure points of a structure [11]. It was also 

observed that multiple piezoceramic sensors are able to connected together to each other in a 

array pattern, and thus the amount of data acquisition channels can be reduced, and cost-

effectiveness is improved [12]. In reference [13], the application of an acoustic emission test  on 

a stationary in-service turbine blade is presented. The real-time monitoring of the blade is proved 

to be feasible using a radio telemetry system to transfer AE signals from operating blades to the 

ground without loss in resolution. The results showed that AE signals captured from the rotating 
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blade have an acceptable level of noise under low or moderate wind speed. Problems related to 

temporary loss of signals and sensor attachments, however, still need to be resolved. Also, in 

order to evaluate the effectiveness of such a system for application on large scale structures, an 

economic solution needs to be carried out. 

2.1.3 Electrical resistance-based damage detection 

Electrical resistance-based damage detection is a method capable of detecting local 

damage on a structure. In reference [14], the authors utilized high electric conductivity 

characteristic of carbon fiber reinforced polymer (CFRP), and they developed an electrical 

impedance change method for identifying a delamination location and size of beam-type 

specimens. As illustrated in figure 4, several electrodes were attached by copper foil on the 

surface of the specimens in order to detect the change of electric resistance. It is noticeable that 

all the electrodes were mounted on one side of the specimen, which could be a representation of 

modeling sensors placement on a turbine blade. The change in electric resistance between each 

electrode under different delamination cases was measured, and then it was used to analyze 

relations between electric resistance change and delamination events. It was the prediction of 

delamination location and size that comprises one of the inverse problems where response 

surface methodology is applied. A set of tests were conducted, and the results show that 

electrical impedance change method was able to detect delamination in composites. Moreover, a 

certain amount of electrodes was required to obtain an acceptable performance. 
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Figure 4: Schematic representation of electrical impedance change method for identification of 

delamination [14]. 

Ryosuke M et al. [15] proposed a wireless system consists of CFRP composite laminates 

and a ceramic oscillating circuit for in-service wind turbine blades monitoring. The basic sensing 

principle is that a delamination crack of composite induces change in electric resistance and 

oscillating frequency of the circuit so that signal receiver can capture the variation. Theoretically, 

the electric resistance along fiber orientation is negligible, and as in transverse orientation, it is 

infinite if carbon fiber alignments are perfectly straight. In practice, electrical resistance in 

transverse direction is still much larger than one in the fiber orientation, even though carbon 

fibers are not perfectly oriented. The fiber-contact-network between plies could be hindered if 

delamination crack occurs, as illustrated in Figure 5. This occurrence results in increased 

electrical resistance in the carbon laminated composites as measured by oscillating circuits. The 

ceramic oscillator is the key role in transmitting signals of electrical resistance change into a 

change of oscillating frequency to the receiver. The entire process is illustrated in Figure 6 as 

follows. 
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Figure 5: Schematic Presentation of a carbon composite when electrical current is applied. (a) 

Electrical network of the fiber in a CERP laminate. (b) Electrical network is broken with a 

delamination [15]. 

 

Figure 6: Electrical resistance-based wireless delamination detecting system [15]. 
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2.2 Soft Elastomeric Capacitors (SECs) 

2.2.1 Introduction 

As literature review in previous section implies, when implementing a long-term SHM 

system for geometrically large scale civil structures, the task is becoming more complicated in 

terms of the cost-effectiveness of existing automotive monitoring solutions. The concepts of oft 

elastomeric sensors have been proposed previously in multiple literature in which a patch 

antenna is designed and functions as a transducer that encodes surface strain into its resonant 

frequency [16]. Also a self-healing sensor skin that is fabricated using copper-clad polyimide 

sheets has been presented for damage detection using this skin [17].  In reference [18], a 

composite electrical resistance strain sensor based on single wall nanotubes (SWNTs) was 

formed and experimentally tested, and results showed that it is able to detect a small crack 

through its under dynamic loading. 

 

In order to achieve the objective of this study, an innovative sensor network comprised of 

multiple soft elastomeric capacities (SECs) has been designed and presented for large-scale 

application, more specifically, for wind turbine blades. The objective is to provide a cost-

effective solution for SHM application. Additionally, a group of SECs are deployed and 

distributed in array form and used as surface strain gauges. The fabrication will be presented, and 

discussion about sensing principle and sensor performance follow that presentation. 
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2.2.2 Sensor fabrication 

The SEC proposed by authors [4] consists of three layers: a nanocomposite mix 

elastomer serving as dielectric for the capacitor, which is sandwiched between two high-

conductive electrodes. A thermoplastic elastomer (SEBS Dryflex 500120, ρ = 930 kg/m
3
) is used 

to form nanocomposite mix. It is doped with titanium dioxide (TiO2 - Sachtleben R 320 D) in 

order to enhance permittivity and robustness in the material with respect to mechanical 

tempering. The electrodes are composed from same SEBS mix but with a certain concentration 

of carbon black (CB) particles. Figure 7 shows the completed process of SEC fabrication. It is 

started with a dissolution of SEBS using toluene solution. Part of the solution is used to produce 

dielectric with a mixing of TiO2 whereas sonication is performed to disperse the particles. SEBS-

TiO2 solution is then drop-casted on a glass surface, which is coated with Teflon sheet. At the 

same time, CB particles are added to the rest of the SEBS/toluene solution to increase 

conductivity of the mix, and it is dispersed using ultrasonic tip. Once SEBS-TiO2 solution is 

dried completely, the CB solution will be painted on both sides of the polymer. At last, two 

copper strip cables are attached on two corners of the patch. A completed sample of SEC is 

shown in Figure 8. Each SEC has dimension of 7 cm by 7 cm. 
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Figure 7: Fabrication process of SEC using drop casting method [4]. 

 

 

 

 
Figure 8: SEC sample. 
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2.2.3 Sensing principles 

As mentioned in CHAPTER 1, the capacitance of a SEC can be expressed as: 

       
 

 
                                                                     

Where C is the nominal capacitance of an SEC,   = 8.854 pF/m is the vacuum 

permittivity,    is the dimensionless polymer relative permittivity, and       is the area of 

an SEC with width w and length l, and h is the height. As illustrated in Figure 9, the height h 

consists of the height of dielectric   , and the height of the conductive plates   , (     +    ). 

 

 

Figure 9: Schematic of deformations for SEC unit [19]. 

An SEC is then adhered on the sensing surface in the   -plane using epoxy when 

applying it, and the geometry change in x and y directions will lead to strain in both directions, 

   and   . In the meantime, strain    will be induced only depending on the effect of Poisson’s 

ratio of SEBs (         [20]). Since SEC is mechanically modeled to be an incompressible 

solid, the volume remains the same (    ) after SEC deforms   ,    and   : 

    =                                                                                                              
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Expending the expression shown above, vanishing higher order terms and combining like 

terms: 

                                                                       

Dividing Eq. (3) by       successively, the expression reads: 

 
  

 
 

  

 
 

  

 
                                                          

A small change of capacitance C can be expressed from Eq. (1) using differential ∆C: 
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]
 

  
                                           

Simplify Eq. (5) and divide by       successively for both numerator and denominator; 

also, eliminate term 
  

 
 in denominator since it is relatively small compare to 1: 

  

 
 

  

 
 

  

 
 

    

  
 

  

 
                                              

If vanishes term 
    

  
, substitute the expression of - 

  

 
 from Eq. (4) into Eq. (6), then a 

new relationship occurs between change in capacitance and strain    and   with a gauge factor 

of 2: 

  

 
  (     )    

  

 
                                               

Because    represents SEC readings since it only measures unidirectional strain,  the 

expression reads Eq. (7) as: 

  

  
         

  

  
 

     

 
                                             

Up until now, one can relate change in capacitance to strain with a gauge factor of 2 

according to Eq. (7). The transformations shown in Eq. (8) represent the sensitivity of the sensor. 

It is possible to enhance the sensitivity in the following ways: (1) decrease the thickness of the 
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sensor; (2) increase the width of the sensor; (3) improve the dielectric permittivity. Also, ±20% 

of variance of sensitivity is expected because of manual fabrication discrepancy [4]. 

2.2.4 Data acquisition system (DAQ) 

The data acquisition system (DAQ) used for data collection is Acam PCap01-EVA-KIT. 

It consists of a main board, a plug-in module, a Windows-based evaluation software, and the 

PICOPROG programming device. The PICOPROG device is used to connect the DAQ system to 

the PC through a USB interface. The computer software offers user-friendly options and 

configurations for a single PCap01 chip for capacitance measurement. For SECs, one side of 

electrical wires are soldered and connected to two copper cables on SECs, with the other side 

connected to a bread board with multiple channels. The devices and the channels connections for 

SECs are presented in Figure 10: 

 

 

Figure 10: DAQ Acam PCap01-EVA-KIT [21]. 
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2.3 Model Characterization and Experimental Verification 

2.3.1 Model characterization 

Based on the Eq. (7) derived in previous section, we are able to assume that strain data 

from one SEC satisfy the following equilibrium equation: 

 

   =   +                                                                          

 

    is in a unit of microstrain and is calculated by   = 
  

       
 . As long as the data taken 

from SECs were obtained, they are validated using the following equilibrium equation: 

 

   
       

 
 

       

 
                                                 

 

Where,             are readings from two RSGs along x-direction around a SEC, 

            are readings from two RSGs along y-direction around a SEC. 

2.3.2 Experimental model verification 

An aluminum plate with dimensions of 18 in.  12 in.  0.5 in. was selected to perform 

static loading tests. The plate was fixed on one of the short edges. The monitored plate surface 

was sanded and coated with acrylic enamel. The proposed sensors network was developed on the 

coated plate surface. Six soft elastomeric capacitors (SECs) were deployed by distributing a thin 

layer of epoxy on the plate surface, and they were numbered in two rows longitudinally. 

Seventeen resistance strain gauges (RSGs) were mounted and coated with water-proof solutions. 

Four RSGs were assigned to each SEC in order to measure strain along x and y directions, two 

RSGs for each direction. The AutoCAD drawing was provided below in Figure 11 with 

dimensions in details. The experimental setup for the entire plate is shown in the Figure 12. 
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Figure 11: Aluminum plate dimension and distributions of SECs & RSGs. 

 

Figure 12: Experimental setup of the aluminum plate, SECs and RSGs. 
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The tests were conducted under three loading cases: point load at the center of the plate 

tip, point load at two corners of the plate tip. The load was applied by a hand-operated hydraulic 

test system. Tests were repeated three times for each loading case. 

For SEC, data were obtained using an off-the-shelf data acquisition system (ACAM 

PCap01), sampled at 250.523 Hz. Strain gauges data were acquired using a Hewlett-Packard 

3852 data acquisition system sampled at 2.176 Hz. The readings from SECs were to be 

compared against RSGs with resolution of 1µɛ (Vishay Micro-Measurements, CEA-06-500UW-

120). 

2.3.3 Results and conclusions 

Once the capacitance signals were recorded by DAQ, they were imported in MATLAB. 

The environmental noises of the signals were filtered by filter function by creating a numerator 

coefficient vector and a denominator coefficient vector in MATLAB. Strain signals could then 

be achieved after the transformation operation occurred in MATLAB. Strain data from RSGs 

were also recorded and compared with strains measured by SECs. Results from SEC #5 were 

taken and presented in Figure 13: 
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Figure 13: Strain results comparison between SEC #5 and surrounding RSGs. 

 

As we can see in the figure, blue, pink and green lines represent the results from SEC #4, 

RSGs in the x-direction and RSGs in the y-directions respectively. According to the results from 

RSGs, 870   and -70   are identified to be the maximum values for    and    . A set of 

unidirectional strain data were calculated by averaging the strains from RSGs for both directions 

  and  , and it was visualized with a red line. By comparing the blue line and the red line, it is 

evident that the measurements taken by SEC unit have good agreements in values taken from 

traditional resistive strain gauges. Therefore, it can be concluded that the characterization of the 

model, which is shown in Eq. (9), has been approved to be rational to a certain extent. Once the 

assumption is validated, it can be then used to develop a strain fitting algorithm for strain 

decomposing assignment. The process will be presented in details in CHAPTER 3. 
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CHAPTER 3 ALGORITHM DEVELOPMENT AND VALIDATION ON SYMMETRICAL 

PLATE 

3.1 Introduction 

An algorithm that is based upon least square estimation has been developed to fit the 

strain surface, and then it was applied to decompose the unidirectional strain signals into two 

normal directions by estimating the coefficient matrix. According to Jingzhe Wu [22], both 

polynomial and biharmonic formulations can perform the task while a polynomial formulation 

works more accurately and effectively. Therefore, only polynomial formulation will be used in 

this study. The unidirectional strain signals were simulated using a FEM of a cantilever plate. 

The boundary conditions were determined as fixed-free because it is the same boundary 

conditions as wind turbine blades. Therefore, the flexural analysis on the plate is of considerable 

importance. Also, a simple plate is an ideal model to be investigated for verifying the proposed 

algorithm for strain decomposition of an SEC unit. To perform a decent analysis of a simple 

plate, it is important to employ a powerful computer-aided tool in order to predict the behavior of 

plate accurately. Finite element (FE) software is one of the most reliable choices to analyze the 

behavior of the plate. A cantilever plate with 0.805m (length) by 0.7m (width) by 0.02m 

(thickness) was taken and analyzed using FE software ANSYS. The fixed-free boundary 

conditions were decided in order to simulate the behavior of the wind turbine blade in the real 

applications. The general aluminum material properties were used to specify a  real constant of 

the element. Three different loading cases were applied to simulate various loading conditions in 

realistic situations as well as to test the performance of the proposed algorithm: (1) a 
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concentrated load at the center tip, (2) a concentrated load at the corner tip, and (3) a uniform 

pressure over the entire plate,. First the finite element modeling of the cantilever plate in ANSYS 

will be demonstrated. Afterwards, the development of the algorithm is provided in details 

because the algorithm can be applied once the unidirectional strain signals were extracted from 

FE analysis results. Lastly, the decomposed results are described in how they were obtained and 

compared with exact values from ANSYS under different loading cases. 

3.2 Rectangular Plate Modeling in ANSYS 

Starting with a simple situation, an aluminum plate with dimensions of 0.805m (length) 

by 0.7m (width) by 0.02m (thickness) was examined. The dimension of the plate was designed 

on purpose in order to have enough space to adopt a 7 by 8 matrix of SECs. The fixed-free 

boundary conditions were determined in order to be consistent with the boundary conditions for 

wind turbine blades. The material properties can be found in Table 1.  

Table 1: Material properties of aluminum. 

Density (kg/m
3
) 2700 

Young’s Modulus (Pa) 7 10
10

 

Poisson Ratio 0.35 

 

In ANSYS, the model was created by defining the dimensions of the plate using Create-

Area command.  Element type SHELL181 was used to define the plate. According to the 

ANSYS user manual, SHELL181 is a suitable element for analyzing thin shell structures. Each 

element has four nodes with 6 DOFs for each node (translations in x, y, z and rotations in x, y, z). 

It is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in 
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shell thickness is also accounted for nonlinear analysis. In addition, SHELL181 can be used for 

layered applications for modeling composite material properties like those in a wind turbine 

blade. The geometry, node locations, and the element coordinate system for SHELL181 are 

shown in Figure 14. For element type options, bending and membrane were chosen for K1 

(element stiffness) and all layers were used for K8 (storage of layer data), respectively. 

 

Figure 14: Geometry, node locations and element coordinate system for SHELL181. 

Once the element type was assigned to the model, material properties and real constant 

were specified. In this case, linear isotropic material was used. Mesh was generated by defining 

mesh size manually as 0.035m for considering both computing effectiveness and convenience of 

assigning SECs locations. The boundary conditions were that one of the short edges was fixed 

and the other threes boundaries were free. The completed plate finite element model is shown in 

Figure 15.  Geometry, element size, and boundary conditions are included. 
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Figure 15: Completed finite element model of the plate. 

3.3 Dynamic Analysis Configuration in ANSYS 

Transient dynamic in ANSYS is a technique that can be used to determine the dynamic 

response of a structure under any general time-dependent loads. For our case, it is well-suited to 

perform an analysis that needs to determine time varying strain. The basic equation of motion 

solved by transient dynamic analysis is the following: 

  ̈    ̇                                                                  

In total, three different loading cases were performed on the plate: (1) a concentrated load 

at the center tip, (2) a concentrated load at the corner tip, and (3) a uniform pressure over the 

entire plate. The basic format of harmonic equation was used for load functions:      

          Based on the classical thin plate theory, it was considered to be a small deflection if 

the maximum plate deflection is relatively small when comparing against its thickness, 0.02m in 

this case. Therefore, multiple harmonic load equations were assumed, tested, and adjusted, and 
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three final versions listed in Table 2 are utilized. Maximum deflection of the plate for each case 

was calculated in ANSYS, and it was recognized with an acceptable level comparing it to plate 

thickness. 

Table 2: Harmonic load functions for three loading cases. 

Loading Cases Load Functions, (N), (N/m
2
) Maximum Deflection (m) 

Point Load at Center Tip                       0.0102 

Point Load at Corner Tip                       0.0099 

Uniform Pressure on plate                        0.0104 

 

The solutions control configuration for transient analysis was demonstrated, and it is 

shown in the following figures. The duration for dynamic analysis was 10 seconds with 0.2 

seconds of time increment, which results in 50 load substeps in total. Ramped loading was 

selected, and it increased the load linearly from the previous substep’s level to the most current 

substep’s final value. Nodal and element solutions for strain, stress and displacement were 

written into the results files for every load substep. Furthermore, it is also necessary to point out 

that when extracting results from ANSYS, nodal strains were taken from the top layer of the 

plate on a global coordinate basis. 

 

Figure 16: Solution control of transient analysis in ANSYS. 
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3.4 Strain fitting Algorithm 

3.4.1 Applications of least square estimation 

Least square estimation is a very common method utilized to find the approximate 

solution for overdetermined systems. The main process involves estimating parameters by 

minimizing the sum of the squares of the errors between the observed data and the expected data. 

The method has been widely used in structural engineering, such as in shape reconstruction. 

Tessler et al. used a least squares variational method for the inverse problem of full-filled 

reconstruction of elastic deformations in plates and shells. The authors used a completed set of 

strain measurements that are consistent with first order shear deformation theory to minimize the 

errors. A simple plate subjects bending was taken as an example to demonstrate how the 

displacement solution was reconstructed from the discrete strain measurements using the 

proposed algorithm. The results show that the method is able to exactly predict the displacement 

response, if the exact strains are used. The authors also concluded that the proposed algorithm 

can be used for real-time structural health monitoring applications with the full power of the 

finite element method [23]. Glaser R et al. developed a least square-based method that uses strain 

or/and curvature data to reconstruct the shape of a beam. The study compared the reconstruction 

results using three sets of input: (1) displacement, (2) strain, and (3) a combination of 

displacement and strain. Moreover, the proposed method was compared against traditional 

reconstructions techniques using position data and combined data as input. The goal was to 

develop an efficient method for real-time shape monitoring of beam type structures [24]. Nishio 

M et al. presented a shape reconstruction algorithm using a finite element model of the target 

structure. The application of the algorithm, which started with estimating the strain functions 
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using least square estimator, was conducted on a composite laminate specimen. The input strain 

data were acquired by a group of Brillouin-scattering-based optical fiber sensors, which were 

embedded into the specimen. It was found that the accuracy of reconstruction can be greatly 

improved by using weight values that were determined from the non-uniformity index of the 

strain distribution profile [25]. According to Jones R T et al. [26], a strain surface fitting 

algorithm had been developed to determine the full deformation filed of a cantilever plate, which 

subjects arbitrary loading conditions. Sixteen fiber bragg grating sensors were mounted on the 

target plate to harvest the strain information. A two-dimensional polynomial function was 

assumed to represent the normal strain in longitudinal direction. Sequentially, the coefficients of 

the assumed function were evaluated by minimizing errors between measured strain values and 

predicted values. Based on the plate theory, the displacement field can be derived by integrating 

the strain function twice. By comparing the results with experimental data, it is found that the 

algorithm is able to predict the displacement with acceptable accuracy. 

 

The strain surface fitting algorithm utilized in this thesis is also based upon least square 

estimation. It will be presented and illustrated in details in the following section. 
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3.4.2 Strain fitting algorithm development 

The bidirectional nodal strain data that extracted from ANSYS simulation were used to 

construct signals for SECs by summing strain in x and y directions, from Eq. (9): 

                                                                             

The relationship shown above was drawn from the sensing principal and assumption 

made in CHAPTER 2. Two polynomial functions that represent strain in x and y directions are 

needed to be assumed in order to create and fit strain map of the plate. Also, based on the 

classical plate theory, the following relationships exists between strain and displacement [27]:  

     
   

   
            

   

   
                                                

Where,           denote to normal strain in x and y directions,   represents out-of-plane 

displacement, and   is the distance from the surface to the centroid of the plate. Therefore, a 

polynomial function that is able to represent the displacement of cantilever plate needs to be 

developed. Selecting the order of the polynomial displacement model requires satisfying 

completeness and compatibility conditions. In addition, the pattern of the function should be 

independent of the orientation of the local coordinate system. which is the geometric isotropy 

property. Pascal triangle for two-dimensional polynomial equation was therefore used as a basic 

rule. In accordance with the results taken from multiple tests using various trial functions, the 

order of the function was optimized as sixth for the plate in both x and y orientations: 

       ∑      
   

 

       

                                                            

Where               are parameters that need to be solved. It is needed to notice 

that      should be eliminated due to cantilever plate boundary conditions at the fixed end, x and 
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y are coordinates at node of interest. The polynomial functions for    and    then can be 

obtained by taking partial differential equations showing in Eq. (12) with respect to x and y, 

respectively, and they are represented in the following form: 

                                                                            

                                                                            

 By summing Eqs. (14) and (15): 

                                                                          

Where,   ,    and    are sensor placement matrices. As soon as the strain functions were 

defined, strain map for the plate was fitted using least square algorithm by first estimating 

coefficients   matrices by minimizing error   for   sensors: 

  ∑      ̂ 
                                                            

 

 

 

Where, the hat denotes an estimated value for i
th

 sensor, Eq. (17) leads to: 

 ̂                                                                          

Before estimating  matrix, boundary conditions for plate boundaries need to be 

investigated and enforced into the coordinate matrix. 

At the fixed end,     : 
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At the top and bottom edges: 

  

  
     or                                                                                                          

Where,   is the Poisson’s ratio of aluminum, Eq. (20) was obtained by substituting 

     into the following stress strain relationship [28]: 

   
 

    
(      )                                                    

Where   is Young’s modulus. Eq. (21) was yielded by solving constitutive equations 

through Hooke’s law for stress components   ,    [28]. 

At the free end: 

  

  
  

 

 
         (  

 

 
)                                                  

Similarly, Eq. (22) can be derived by substituting      into: 

   
 

    
(      )                                                      

In accordance to Huang et.al (2003) [29], stress singularities in elastic plate frequently 

occur due to boundary conditions along the plate edges, especially for sharp corners. Based on 

the investigation of simulation results extracted from ANSYS, the BCs on two corners along 

fixed end were interfered by BCs on the two sides and the fixed end. Thus, it was determined to 

take it into account by averaging BCs in Eqs. (19) and (20) for fixed end corners: 

  

  
  

 

 
          (  

 

 
)                                                
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For two corner nodes on the free tip, the BCs appear to change unpredictably by 

investigating the simulation results. Consequently, no BCs were enforced for those two corners. 

Once aforementioned boundary conditions were enforced into the coordinate matrix, matrix   

can be obtained and then   ̂ and   ̂ were able to be evaluated by substituting           back 

into Eqs. (14) and (15). The results of estimated strain map are presented in the next several 

sections regarding different loading cases and sensor arrangements for the rectangular cantilever 

plate. 

3.5 Validation of the Proposed Algorithm 

A group of the sensors consisting of 56 SECs were deployed to perform multiple test to 

evaluate the performance as well as to verify the accuracy of the proposed strain fitting algorithm. 

The sensors were uniformly organized in a 7 by 8 matrix form. The total number of the sensors 

was decided by considering both estimating accuracy and computational effectiveness. 

One of the governing factors to achieve decent estimations in strain fitting algorithm is 

evaluation of coefficient matrix  , which involves the inversion problem of coordinate matrix  . 

In fact, the strain between adjacent SEC units along x or y direction is approximate linearly 

distributed for small deformation. In other words, one or more predictor variables in the model 

are correlated so that one could be linearly estimated from the others with a nontrivial degree of 

accuracy. In this case, a multicollinearity problem usually arises when an approximate linear 

relationship exists among one or more independent predictor variables. This problem could lead 

to inaccurate results of matrix inversion, or even results in an invertible matrix due to a high 

degree of multicollinearity. Consequently, boundary conditions of bending thin plates were 
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implemented and enforced into coordinate matrices in order to make the matrix invertible by 

increasing the rank. As it has been mentioned in the previous section, boundary conditions for 

two corners along fixed edge were derived by combining the boundary conditions along fixed 

end and top/bottom side, and no BCs were enforced for the two corner nodes along the free tip. 

 

Considerations for arranging SECs around boundaries were taken from both idealized 

and realistic points of view: (1) For an idealized situation, the sensors should be placed right on 

the four boundaries (see Figure 17) in order to yield strain information as accurately as possible 

when enforcing boundary conditions; in other words, the closer the sensors are placed on 

boundaries, the more accurately the measured strain can match with theoretical boundary 

conditions; (2) In reality, it is difficult to attach sensors right on the boundaries due to the relative 

large dimension of SECs (7cm by 7cm); thus, all SECs along four sides have been moved toward 

the inner area of the plate by 3.5cm, as is given in Figure 18.  
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Figure 17: Arrangement of SECs (idealized). 

 
Figure 18: Arrangement of SECs (realistic). 
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3.5.1 Results of idealized secs arrangement for all load cases 

Three transient load cases given in Table 2 were applied out-of-plane in sequence to the 

plate. The load locations on the plate are shown in Figure 19. The real bidirectional strain data 

were extracted and compared with estimated bidirectional strain obtained using proposed 

algorithm. The results from all three load cases were presented and compared simultaneously. 

The results for strain surface plots included strain data from all sensors; meanwhile the contour 

plots and time series plots for mean absolute percentage error, and root mean square of absolute 

error were only presented for inner sensor locations. In other words, strain data from all sensors 

located on four boundaries were excluded. 

 

 
Figure 19: Schematic of three load cases on the plate. 
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3.5.1.1 Strain Surface Fitting Results 

 

 

 
Figure 20: StrainX strain fitting for all load cases: center tip, corner tip, pressure (idealized). 
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Figure 21: StrainY strain fitting for all load cases: center tip, corner tip, pressure (idealized). 
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The surface fitting results shown above for both x- and y-directions are taken at the 30
th

 

load step, which corresponds to the peak load amplitude. From the plots, the maximum strain in 

x-direction takes place near the clamped edge and decreases to zero at the tip of the plate, which 

makes sense because the stress in x-direction is maximum at the fixed-end and minimal at the 

free-tip; the trend is shown to be opposite for strain y of inner plate area. It starts from zero at the 

fixed end and keeps increasing toward the free end. In the meantime, strain y near the top and the 

bottom free sides show the same tendency with strain in x-direction, which matches the assumed 

boundary conditions for the thin plate. In general, the estimated strains have good agreements 

with the real strain data for all three loading cases. By comparing the results for both directions, 

it is found that the overall predicting accuracy for strain x is better than strain y. In addition, 

strain x around internal area and boundaries close to the second half of the plate has been 

underestimated, which is in accordance of overestimations of strain y for the same region. For 

concentrated load on both center and corner tip, we can see the estimating error becomes 

relatively large at the points where the loads are applied as well as for boundary corners. 

Moreover, it is noticed that under the corner concentrated load, there is a spike in strain y at left 

bottom corner along clamped edge. This spike is probably because the combination BCs for 

these two nodes can no longer hold since the corner load is inducing torsion effect for the plate 

while the BCs are derived from thin plate bending behaviors. 
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3.5.1.2 Mean Absolute Percentage Error (MAPE) on Entire Plate 

The percentage error of estimation for each sensor node has been calculated for each time 

step, and the mean value was obtained by averaging absolute percentage error for all nodes from 

all time steps. The equation of MAPE is given as follows: 

     
 

 
∑|

   ̂

 
|      

 

   

                                               

Where n = 50, which is the total number of time steps. It should be noticed that MAPE is 

only calculated for inner sensor locations, that is, strain data from all sensors located on four 

boundaries are excluded. 

Contour plots of MAPE for   and   are presented in Figure 22 and Figure 23, 

respectively. The distributions of errors for load cases of center tip and pressure are 

approximately symmetrical along the center line of the plate which coincides with the author’s 

expectation because both load cases were generating almost pure bending. It can be easily 

observed that the maximum percentage errors are concentrated at two corner nodes along the free 

edge for both    and   . This concentration is probably because no BCs were applicable for these 

two corner nodes when performing boundary condition enforcement. Consequently, the 

operation of matrix inversion could be inaccurate due to information absence for the two free tip 

corners. From the contour plots, it is noticeable that the regions close to these two corners have 

been influenced accordingly, and errors were gradually decreasing toward the clamped edge of 

the plate. For   , 45% is recognized as the maximum percentage error in the load case of uniform 

pressure; meanwhile the maximum error of 126% occurs at points where the corner tip load was 

applied. For   , however, the maximum error of 22% from corner load case is marked as the 
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smallest error compared to the others. Thus, it can be concluded that torsion of the plate has 

much more effect for   than   . The estimating accuracy for inner plate area has been identified 

as more sensitive to the two free corners under center tip loading than the other two load cases. 

In terms of overall performance, the algorithm works more steadily under uniform pressure 

loading since the percentage error for both   and εy are pretty close. More importantly, the errors 

of areas near clamped edge have been controlled within 5% and 20% for   and   , which is 

meaningful since areas near the fixed-end are vulnerable and suffer significant stresses. 
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Figure 22: StrainX MAPE for all loading cases: center tip, corner tip, pressure (idealized). 
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Figure 23: StrainY MAPE for all load cases: center tip, corner tip, pressure (idealized). 
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3.5.1.3 Mean Absolute Percentage Error (MAPE) on Entire Plate over Time Series 

In the previous section, the percentage error has been presented over the entire plate by 

averaging all the time steps for each sensor node. At this point, only one percentage error has 

been calculated for the entire plate by averaging all sensor nodes for each load step. Then, Figure 

24 and Figure 25 were obtained by plotting each percentage error versus each load step for all 

three load cases; and also, only the data from inner sensor nodes were extracted and presented. 

These plots are helpful to investigate and understand how the amplitude of load affects the 

estimating accuracy of the algorithm. 

As we can see in the plots, the blue line represents the MAPE over all the plate, while the 

green line shows the load amplitude’s change over time series. For   , the percentage errors are 

roughly around 9.3%, 2.1% and 5.1% for the center load, the corner load, and the pressure 

respectively; in the meantime, 22%, 16.8% and 9.3% are marked on the plots for   under three 

load cases. Hence, it is undeniable that the performance of the algorithm performs better under 

uniform pressure than under concentrated load in terms of both directions. In addition, the 

algorithm has been validated since the errors are shown to be very stable over the change of 

amplitudes of all loading cases, namely, the accuracy level of the algorithm is independent of 

load amplitudes. Lastly, we can clearly observe that there are two noticeable spikes in each plot 

at the point which load amplitude is zero. The errors were either suddenly dropping or jumping 

for all loading cases, while the magnitude of errors changed are relatively small, probably 

because of the effect of zero load amplitudes, which result in zero strains over the plate. The 

specific reason still needs to be investigated. The points adjacent to zero load points, however, 

are shown to have no affect possible. Thus, the spikes could be negligible because no significant 

events will happen when applied loads are almost zero. 
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Figure 24: StrainX MAPE MPAE of entire plate over load steps for all load cases: center tip, 

corner tip, pressure (idealized). 
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Figure 25: StrainY MAPE MPAE of entire plate over load steps for all load cases: center tip, 

corner tip, pressure (idealized). 
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3.5.2 Results of realistic secs arrangement for all load cases 

3.5.2.1 Strain Surface Fitting Results 

 

 

 
Figure 26: StrainX strain fitting for all load cases: center tip, corner tip, pressure (realistic). 
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.  

 
Figure 27: StrainY strain fitting for all load cases: center tip, corner tip, pressure (realistic). 
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As shown in Figure 26 and Figure 27, the trends and the shapes for realistic sensor 

arrangement are very similar to the results shown in the previous section for idealized sensor 

arrangement. By comparing results from two sensor arrangements, however, we found that the 

algorithm is generally overestimating for    (underestimating for   ) under realistic arrangement 

while is shown to be underestimating for    (overestimating for   ) under idealized sensor 

placement. 

3.5.2.2 Mean Absolute Percentage Error (MAPE) on Entire Plate 

The mean absolute percentage error contour plots are presented in Figures 28 and 29. The 

maximum error for    is 25% under center load and for    is 190% under the corner load. It also 

can be easily observed that for each load case, the large errors of    focus on most of tip areas. 

By contrast, the large errors for    are unlikely following a certain pattern, but most of large 

errors concentrate close to fixed end. For the center tip load, the errors are also relatively large 

around two free end corners, which are not showing for the other two load cases. In addition, the 

distribution of the error of    is more discrete on the entire plate than   . The error map for    

under pressure has a minimum range of 2% to 12% whereas the minimum error range for    is 

from 4% to 47% for the center load. In the case of corner load, the estimating accuracy of    is 

more sensitive than the one of   for the effect of torsion. Taken as a whole, the performance of 

the algorithm under pressure is relatively better for both directions in terms of the fact that most 

of the errors are under 7% for    and under 30% for   . 
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Figure 28: StrainX MAPE for all load cases: center tip, corner tip, pressure (realistic). 
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Figure 29: StrainY MAPE for all load cases: center tip, corner tip, pressure (realistic). 
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3.5.2.3 Mean Absolute Percentage Error (MAPE) on Entire Plate over Time Series 

 

 

 
Figure 30: StrainX MAPE vs load steps comparison for: center tip, corner tip, pressure (realistic). 
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Figure 31: StrainY MAPE vs load steps comparison for: center tip, corner tip, pressure (realistic). 
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As discussed in the previous section regarding the spikes in the MAPE versus time series 

plots shown in Figures 30 and 31, the spikes might be negligible since the spikes appear when 

the external applied loads are almost zero. The errors for both directions appear to be stable over 

the load steps under all load cases. For   , the errors are pretty similar to each other in three 

cases, and the minimum error is 5.45% from the corner load. Nevertheless, the errors varied for 

   with a maximum of 58% and a minimum of 18%. In the case of corner load, the change of 

errors over load steps is not as stable as it is in the other two, especially for points near zero load 

point. 

3.5.3 Comparison of results from idealized and realistic arrangements 

It is obvious that the results from both sensor arrangement types are different than each 

other. Therefore, the percentage error was calculated and compared between two different sensor 

arrangements in Tables 3–5 shown below. The calculation procedure is demonstrated here: First, 

the mean absolute percentage error for all inner sensors on the plate under one load step were 

calculated and averaged so that one averaging percentage error can be obtained for entire plate at 

one load step; then the first step was repeated for all fifty load steps; and finally the mean value 

was taken for these fifty averaged errors so that one overall percentage error was able to be 

defined for the entire plate under all load steps. This procedure has been applied for each load 

case as well as for each sensor arrangement. Similarly, the aforementioned process was also 

utilized to get standard deviations for percentage errors. 
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Table 3: Results comparison for two sensor arrangements under center tip load. 

Sensor Arrangement 

Point load at center tip 

Percentage error (%) 

Mean* Standard Deviation* 

x y x y 

Idealized 9.13 21.54 0.29 0.81 

Realistic 5.84 18.36 1.01 2.23 

 

Table 4: Results comparison for two sensor arrangements under corner tip load. 

Sensor Arrangement 

Point load at one tip corner 

Percentage error (%) 

Mean* Standard Deviation* 

x y x y 

Idealized 2.30 16.49 1.63 1.90 

Realistic 5.45 56.83 0.15 5.52 

 

Table 5: Results comparison for two sensor arrangements under uniform pressure. 

Sensor Arrangement 

Pressure over full plate 

Percentage error (%) 

Mean* Standard Deviation* 

x y x y 

Idealized 5.17 9.39 0.05 0.21 

Realistic 5.72 31.07 0.12 0.63 

 

* denotes that values are calculated from absolute percentage errors. 

 

For the center tip load, we can see that the mean errors for idealized arrangement are 

larger than the errors for realistic arrangement. While for standard deviation of percentage error, 

the one from the idealized case is much smaller than the one from the realistic case, which means 

the errors are more dispersed in the realistic case than the idealized case. By comparing the 

percentage errors between two directions, it was found that the errors for    are much larger than 

the errors for   .  In the case of corner load, the mean errors for idealized case are much bigger 

than the errors for realistic case. The same trend has been shown for standard deviation except 
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for percentage error for x. In general, the performance of the algorithm is better as well as more 

stable for the idealized case.  It is noticeable that the percentage errors of    are much bigger 

than those of   , especially for the realistic case. The maximum difference is more than 10 times. 

Again, this change could be because of high sensitivity of the algorithm for torsional load. It is 

clear that all the mean and standard deviation values for the idealized case are smaller than those 

values for the realistic case when subjecting uniform pressure over the entire plate. The standard 

deviation of percentage error for the idealized case was calculated as 0.05, which means the 

errors are very close to their expected value.  

 

In comparing the three tables, it is not hard to reveal that the algorithm is functioning 

more accurately and with stability under uniform pressure. For different arrangements of sensors 

on the boundaries, estimation under the idealized case shows better agreements with real values 

than the realistic case. For all load cases and sensor arrangements, the accuracy of estimation is 

shown to be more accurate for    than   . Furthermore, the accuracy of estimating for    is more 

sensitive to sensor arrangement than it is for   . 
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CHAPTER 4 THE EFFECTS OF SENSOR ARRANGEMENT ON ESTIMATING 

ACCURACY 

4.1 Introduction 

A capable SHM system should be designed to monitor the properties of the structure. The 

performance of an SHM system essentially relies on the quality of information that can be 

extracted from the sensor data. This quality depends on type, number, and the location of sensors 

chosen for the structure. In some cases, engineering assessment and judgment are the basis of 

sensor location selection [30], while lots of efforts that focus on the development of various 

methodologies of optimal sensor placement (OSP) have been done in past several years. Starting 

from simple visual inspection and observation, new science-based methods were developed 

including Modal Kinetic energy (MKE) methods, which uses mode shapes to find the locations 

with the highest amplitudes and considers that for sensor placement [31]. Heo et al. [32] derived 

a kinetic energy optimization technique and applied it to real experimental data obtained from a 

model of an asymmetric long span bridge. Another method proposed by Carne uses the 

minimization of the off-diagonal terms in the modal assurance criterion matrix as a measure of 

the effectiveness of a sensor configuration [33]. One of the most cited OSP approaches was 

proposed by Kammer [34]. This method computes the modal contribution for each sensor pattern 

and eliminates the patterns with no significant contribution. The selected configuration 

maximizes the trace and determinant and minimizes the condition number of the Fisher 

information matrix corresponding to the target modal partitions. Genetic algorithms and neural 

networks were also utilized to an optimal location of the sensors [35, 36]. Cobb and Liebst  
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proposed a method that prioritizes the degrees of freedom to find the OSP [37]. The analyses 

were based on an eigenvector sensitivity analysis of a finite element model of the structure. Also,  

static flexibility approach was proposed by Flanigan [38]. This method optimizes the static 

transformation matrix assuming that the best degrees of freedom (DOFs) are those in which the 

finite element model mode shapes can be represented as a linear combination of static flexibility 

shapes. A reduced number of DOFs can be obtained using Guyan reduction by minimizing fitting 

errors of the least squares equation. The DOFs obtained are considered to be the sensor locations. 

In most cases, the sensors deployed on the structures are installed permanently, and 

especially for large scale structures like wind turbine blades, the sensors are mounted sparsely or 

much less than the locations that are available on the structures [39]. One of the reasons for this 

fact is the ineffective high cost for large amount of sensors and their data acquisition instruments. 

Also, the regular maintenances for large amount of sensors could be difficult due to the limited 

accessibility of the structures. In addition, for the integrity of wired sensors, interference needs to 

be prevented from providing special care for the routing of the sensor cables, especially for 

optical fiber sensors [40].  

4.2 Proposed arrangements of SECs 

In this study, various arrangements of SECs were generated and utilized to perform strain 

decomposition tasks using proposed strain fitting algorithm. The decomposing strain results from 

uniform sensor placement were used as a basis to compare with results obtained from the other 

sensor arrangements. The idealized sensor placement on boundaries were used as a base pattern 

since it is able to obtain more accurate BCs if considering the possibility of deploying traditional 
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resistive strain gauges on the boundaries to extract the BCs. At the same time, the influence of 

boundary qualities on estimating accuracy can be excluded, and so univariate analysis can be 

achieved. Moreover, idealized boundary placement of SECs saves more inner spaces for a 

variety of SECs arrangement approaches. The uniform pressure load case was applied in that the 

performance of the algorithm is relatively more stable compared to the other two. 

Instead of using the OSP technologies reviewed and mentioned previously, the SECs 

were arranged more on an information basis, which involves visual inspection and observation. 

The rationale is that extracted information from sensors will be different due to various sensor 

arrangements, and then the effect of arrangements of SECs on the estimating accuracy can be 

investigated. 

4.2.1 Sensor amount remains the same as the uniform arrangement 

First, different placement methods were examined in the case that the total number of the 

sensors (fifty six) maintains the same. As shown in the Figures 32 and 33, 26 SECs were placed 

on the boundaries in the same way as idealized uniform arrangement. 30 inner SECs were either 

concentrated on fixed-free ends (Figure 32) or stagger-distributed (Figure 33). The rationale for 

arrangement #1 is that the more the sensors were concentrated on fixed and free end, the more 

strain information should be extracted since the strains reach maximum at the fixed end for    

and at the free end for   . 
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Figure 32: SEC arrangement #1: 56 SECs, fixed-free enhanced. 

        

 
Figure 33: SEC arrangement #2: 56 SECs, inner staggered. 
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The strain signals from these SECs were constructed from FEA and were used to 

decompose the strains using proposed algorithm. The results were compared against uniform 

sensor placement and were presented in Figures 34–39. 

The strain fitting 3D plots in Figures 34 and 35 shows that the two surfaces that represent 

real strain and estimated strain are close to each other for all three cases. The overlapped areas, 

however, between two surfaces were varying from each case. For   , the algorithm tends to 

overestimate the strains around fixed and free tip ends when comparing to the results from 

uniform sensor placement; in the meantime, the    were underestimated around fixed corners and 

the center area of the free tip. No certain pattern, however, can be found about how the 

estimation errors change near the fixed corners. 
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Figure 34: StrainX strain fitting for uniform pressure: uniform, arrangement #1, #2. 
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Figure 35: StrainY strain fitting for uniform pressure: uniform, arrangement #1, #2. 
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Figure 36: StrainX MAPE comparison for uniform pressure: uniform, arrangement #1, #2. 
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Figure 37: StrainY MAPE comparison for uniform pressure: uniform, arrangement #1, #2. 
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By looking at the maximum percentage errors showing in Figure 36, one may note that 

the maximum percentage error of arrangement #2 has the smallest value of 30% while the results 

from the uniform arrangement seem to have the largest percentage error around 45%. For all 

three cases, the maximum errors concentrated around two free corners, which can be explained 

by boundary condition absence of these two locations. The same trend can be found in MAPE 

map for    . Arrangement #2 has the lowest maximum error of 33%, and the uniform 

arrangement has the largest maximum error of 57%. Besides the two free corners, percentage 

errors have tended to increase near the fixed end in both arrangements #1 and #2. Further study 

is needed to explain the phenomenon. The author thinks that the increase may be because of 

more sensors near the fixed end. The    is minimal at the fixed, however, so that the system is 

not receiving the accurate boundary conditions. 
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Figure 38: StrainX MAPE vs load steps comparison under uniform pressure for: uniform, 

arrangement #1, #2. 



69 

 

 

 

Figure 39: StrainY MAPE vs load steps comparison under uniform pressure for: uniform, 

arrangement #1, #2. 
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The performance of the algorithm can be seen more clearly in Figures 38 and 39 with 

load steps displayed. In Figure 38, the error from arrangement #2 has the lowest value around 

4.4%. In contrast, arrangement #1 did not improve the estimating accuracy but increased the 

error instead when compared to the results shown for the uniform arrangement. The same trend 

is showing in Figure 39 for    , but it is hard to tell the difference between uniform arrangement 

and arrangement #1. The resutls comparision will be provided in Section 4.3. 
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4.2.2 Various sensor amount 

Secondly, as shown in Figures 40 and 41 in the next page, thirty inner sensors remained 

the same arrangement as idealized uniform placement, but the number of sensors on the 

boundaries has been diminished, which resulted in a reduced total number of the SECs. The 

rationale is that to test if the algorithm is able to accomplish the task with reduced information 

extracted from the system, better cost-effectiveness of the system can be achieved. 
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Figure 40: SEC arrangement #3: 48 SECs, boundary diminished. 

 

Figure 41: SEC arrangement #4: 44 SECs, boundary diminished. 



73 

The same decomposing process has been applied to both cases, and the estimating results 

were shown as follows. Also, the results were compared against the uniform arrangement. First, 

the 3D surface strain maps for two directions are presented in Figures 42 and 43. It is obvious 

that the algorithm tended to overestimate     but to underestimate     in arrangement #3. In 

arrangement #4 near the center areas, the   was underestimated and the     was overestimated. 

The surfaces from arrangement #4 showed some differences than the other two cases. The 

MAPE contour plots were presented right after 3D surface plots to investigate the difference. 
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Figure 42: StrainX strain fitting for uniform pressure: uniform, arrangement #3, #4 
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Figure 43: StrainY strain fitting for uniform pressure: uniform, arrangement #3, #4 
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Figure 44: StrainX MAPE comparison for uniform pressure: uniform, arrangement #3, #4. 
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Figure 45: StrainY MAPE comparison for uniform pressure: uniform, arrangement #3, #4. 
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As shown in Figures 44 and 45, arrangement #3 has the lowest maximum percentage 

error among three cases for both directions. In contrast, the maximum estimating errors became 

extremely large for     and     in arrangement #4. In addition, the overall errors showing in the 

blue areas in case #4 fell in the range of 0-50%, which is much larger compared to the other two. 

Moreover, the maximum error focused only on the upper tip corner in case #4. 

In order to compare the overall performance of the algorithm, the errors were plotted 

versus the load steps in Figures 46 and 47. According to the blue lines, the case #4 has reduced 

the percentage error for both     and     by comparing to the uniform case. Again, the estimating 

accuracy of the algorithm is independent of the load amplitude except for load steps that have 

zero magnitude. 
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Figure 46: StrainX MAPE vs load steps comparison under uniform pressure for: uniform, 

arrangement #3, #4. 
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Figure 47: StrainY MAPE vs load steps comparison under uniform pressure for: uniform, 

arrangement #3, #4. 
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4.3 Results Comparison for Uniform and Proposed Arrangements  

In this section, the results were summarized by averaging percentage error for all 50 load 

steps. Thus,  the values from each case could be compared in Table 6 as follows: 

Table 6: MAPE Comparison for different sensor arrangements. 

Sensor Arrangement 

Pressure over full plate 

Percentage error (%) 

Determinant of (   )** Mean* Standard Deviation* 

x y x y 

Uniform Arrangement 5.17 9.39 0.05 0.21 1.0621E-223 

Fixed-free Enhanced #1 5.37 9.14 0.21 0.24 5.2171E-224 

Inner Staggered #2 4.36 8.31 0.13 0.1 1.3491E-221 

Boundary Diminished #3 4.06 7.39 0.04 0.25 8.7096E-234 

Boundary Diminished #4 14.16 25.46 4.81 5.13 4.8642E-244 

 

* denotes that values are calculated from absolute percentage errors. 

** Matrix   is the sensor placement matrix. 

 

By comparing the mean value of percentage errors for both    and   , it is obvious that 

arrangement #2 and #3 are helpful for improving the estimating accuracy of the algorithm. The 

MAPEs for     and    from boundary diminished arrangement #3 are the lowest in comparison 

to other cases. For inner staggered arrangement #2, the mean error has been decreased by 15.7% 

for   , and by 11.5% for    when compared against the uniform arrangement. By looking at the 

standard deviation of MAPE, the errors of inner staggered arrangement #2 for    appear to be 

more discrete from the mean value; while for   , it has the smallest standard deviation with 0.1.   

In order to investigate the effect of the sensor placement on estimating accuracy, the 

determinant of sensor placement matrix     has been calculated for each arrangement. It needs 

to be clarified that the determinant of     was taken before B.Cs had been enforced. Thus   was 

not invertible since the determinant was almost zero for each case, as showing in Table 6. In the 
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comparison of first three cases, which have same sensor amount, it is found that the larger the 

determinant is, the more accurate the algorithm estimated. According to the theory, square matrix 

is not invertible if and only if the determinant is zero, which provides the support to the 

statement that the further the determinant to zero, the more accurate inversion result can be 

obtained. The error of case #3, however, has been recognized as the smallest while it has the 

second largest determinant. This feature is probably because the sensor amount of case #3 is 

different than the uniform arrangement. Therefore, their determinants are not comparable. At last, 

the inversion of   in case #4 was not unique due to rank deficiency. As a result, the estimating 

accuracy was much lower than other cases. 
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CHAPTER 5 VERIFICATION OF THE ALGORITHM USING PROPOSED SENSOR 

ARRANGEMENTS ON BLADE-SHAPED PLATE  

5.1 Introduction 

In CHAPTER 3 and 4, the proposed strain-fitting algorithm was shown to be validated 

for performing the strain decomposition task on an aluminum thin plate under different sensor 

arrangements. The decomposed results have shown good agreements with the real bidirectional 

strain data extracted from ANSYS. In addition, inner staggered and boundary diminished sensor 

placements were identified as two cases which can improve the estimating accuracy. 

In this chapter, the algorithm and the effect of two arrangements will be verified on a 

tapered plate. The tapered plate was designed based on CX-100 wind turbine blade that was 

manufactured by TPI Composites in July 2004. The overall baseline geometry of CX-100 blade 

was developed and designed based on ERS-100 blade [41] but with adjustments of the root 

transition area and the tips of the blade. The CX-100 is a 9-meter wind turbine blade comprised 

of fiber glass composite materials. In accordance with the corresponding project report provided 

by Sandia National Laboratories, the detailed design specifications of the CX-100 blade were 

obtained, and then have then been used to outline and create a tapered plate with the same 

external geometry of the blade model using multiple key points extracted. The detailed design 

and development of the plate will be discussed later. It is intended that the plate was designed to 

simulate the behavior of the wind turbine blade to some extent as well as to verify the feasibility 

of the application of the proposed strain-fitting algorithm. In order to provide practical and 

realistic results, the real wind speed data were acquired from the National Oceanic and 
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Atmospheric Administration’s (NOAA) database to imitate the realistic loading environment of 

wind turbine blade. Once all the information were imported and built in ANSYS, the model was 

analyzed using similar dynamic configurations as used in CHAPTER 3 for the rectangular thin 

plate. Subsequently, the results of decomposed strain data using the proposed algorithm were 

presented and compared with the real strain data obtained from ANSYS. Mean average 

percentage error contour plots were provided and the estimating accuracy was discussed 

afterwards. 

The study on this blade-shaped plate is important and helpful for understanding the 

behavior of the blade and for acquiring first-hand experience on application of the proposed 

strain decomposition algorithm on a real wind turbine blades in the future. 
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5.2 Blade-shaped Plate Development and Modeling in ANSYS 

5.2.1 Plate geometry 

The conventional carbon-spar CX-100 is a type of wind turbine blade which is created 

from the baseline external geometry of ERS-100 blade with several modifications at the root and 

tip sections. According to design specifications provided by Sandia National Laboratories [42], 

the CX-100 blade has a length of 9 meters and incorporates with S-series airfoils provided by 

National Renewable Energy Laboratory (NREL). Three types of airfoils, S821, S819 and S820, 

have been used for the in-board region (21% to 40%), 70% and 95% radius, respectively. The 

cross-section dimensions of the blade, including chord length and twist angles, are listed in Table 

7. The assignment of airfoils for the three regions are given in the table as well. It is worth 

mentioning that the root section (up to station 400) has been simplified with a circle cross section 

with a radius of 0.3m. 

Table 7: Modified CX-100 baseline platform dimensions. 

Station (mm) Chord Length (m) Twist(deg.) Airfoils 

0 0.300 0 
Circle 

400 0.300 0 

1000 0.569 20.8 

S821 

1400 0.860 17.5 

1800 1.033 14.7 

2200 0.969 12.4 

3200 0.833 8.3 

4200 0.705 5.8 

5200 0.582 4 

6200 0.463 2.7 
S819 

7200 0.346 1.4 

8200 0.232 0.4 
S820 

9000 0.120 0 
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Based on the cross-section dimensions shown above, six key points have been selected 

and used to generate the blade-shaped plate geometry: two key points, which are able to 

represent the width of the blade cross sections, were selected at each station 0mm (root), 

1800mm (the widest) and 900mm (tip). The completed geometry is given in Figure 48. The plate 

has a length of 9m, a root width of 0.3m, a tip width of 0.12m and the widest width of 1.033m, 

which are the same values as chord lengths in Table 7. The thickness of the plate was determined 

as 0.035m which was based on the blade lamina thicknesses provided by the blade manufacturer. 

See the next section for details. 

 

 

Figure 48: Blade-shaped plate geometry and dimensions. 

 

5.2.2 Plate materials 

The conventional fiberglass materials were used for blade-shaped plate, with consistent 

mechanical properties assumed for CX-100 blade materials. As stated in [42], micromechanics 
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calculations have been used to yield the stiffness of the unidirectional carbon-fiber material. The 

laminated material properties were obtained from [42], and are listed in Table 8. 

Table 8: Lamina material properties for blade-shaped plate [42]. 

Materia

l # 

Layer 

# 
Material Name 

Ex 

(GPa) 

Ey 

(Gpa) 

Gxy 

(Gpa) 
νxy 

Density 

(kg/m
3
) 

Ply 

thickness 

(mm) 

1 11 Gel coat 3.44 3.44 1.38 0.30 1230 0.26 

3 10 Random mat 7.58 7.58 4.00 0.30 1687 0.76 

5 9 end-grain balsa 0.12 0.12 0.02 0.30 230 12.80 

6 7,8 
DBM1708(±45° 

fiberglass) 
9.58 9.58 6.89 0.39 1814 0.89 

7 5,6 
DBM1208(±45° 

fiberglass) 
9.58 9.58 6.89 0.39 1814 0.56 

8 4 C520 (0° fiberglass) 37.30 7.60 6.89 0.31 1874 9.20 

10 
3, 2, 

1 

Carbon-fiberglass triaxial 

fabric 
84.10 8.76 4.38 0.25 3469 

2.8, 3.2, 

2.8 

 

 

The material properties shown above are used to input into ANSYS material model 

database. By summarizing the thickness of each layer, one can get the total thickness of 

34.72mm for the plate. The material number and layer number shown in the table were used only 

for alignment between material properties and layer thickness when configuring the section 

properties for SHELL181 in ANSYS. It is important that orthotropic material should be specified 

to the model instead of isotropic material, which was used for rectangular aluminum plate 

discussed in CHAPTER 3. Consequently, elastic moduli, shear moduli, and Poisson’s ratios in 

three directions were required to be calculated. The information provided in above table, 

however, is not enough to determine shear moduli for the other two directions since the 

mechanical properties of orthotropic materials are largely dependent on how the fiber is oriented. 

Therefore, the material properties have been simplified by assuming transverse isotropic 

characteristic, which means the material properties are almost the same in any other directions 
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than the direction of perpendicular to the fiber’s orientation. In addition, Poisson’s ratio was 

assumed to be the same for each direction as well. As a result, directions y and z were equivalent, 

and the isotropic condition can be achieved. 

 

                                                                              

                                                                             

    
  

        
                                                               

The material model was created for the plate as long as all the mechanical properties 

were obtained. Moreover, it is noticeable that for DBM1708 and DBM1208 fiber glasses, two 

section layers were generated with ±45° of fiber’s orientation. It is the same orientation for 

carbon-fiberglass triaxial fabric: ±45° and 0° were used to establish three layers. A layout of all 

section layers generated by various materials is clearly shown in Figure 49. 

 
Figure 49: Lamina layout for blade-shaped plate. 



89 

5.2.3 Plate modeling and dynamic analysis configuration 

The geometry and material information provided in the previous two sections were 

inputted into ANSYS platform. Mesh size was manually controlled as 0.1m by considering both 

analyzing accuracy and computational resources. The mesh attributes were configured using 

Cartesian coordinates system and material 1 (Gel Coat) since it is for the top layer. Moreover, the 

mapped mesh was employed instead of free mesh so that it is convenient to assign sensor 

locations according to mapped nodes. Once the settings were completed, the mesh was created 

automatically. The finite element model of the plate model is shown in Figure 50. 

 

 
Figure 50: Finite element model of the plate with 0.1m mapped mesh. 

 

The solutions control configuration in ANSYS APDL for transient analysis used in this 

chapter is similar to the one used in CHAPTER 3 but with transient options of stepped loading 

instead of ramped loading. The duration for dynamic analysis was 10 seconds with a 0.2 seconds 

time increment, which resulted in 50 load substeps in total. Nodal and element solutions for 
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strain, stress and displacement were written into results files for every load substep. Furthermore, 

when extracting the results from ANSYS, nodal strains were taken from the top layer of the plate 

on global coordinate basis. 
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5.3 Performance of Strain Fitting Algorithm on the Blade-shaped Plate 

5.3.1 Wind turbulence simulation 

The hybrid wind turbulence data that obtained from National Oceanic and Atmospheric 

Administration were used to simulate the realistic loading conditions of the wind turbine blades 

near off shore. The station FTPC1 (San Francisco, CA) was selected to extract the wind speed 

data that were sampled every 6 minutes. The simulation process mainly includes two parts: (1) 

identifying the physical appearance of the real wind speed by smoothing the wind speed time 

history data; and (2) producing turbulence spectrum to correlate with smoothed wind speed time 

history. As a result, the hybrid wind speed can be simulated as shown in Figure 51. Accordingly, 

the wind pressure can be generated based upon the wind speed, (Figure 52). 
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Figure 51: Simulated wind speed versus time. 

 
Figure 52: Simulated wind pressure versus time. 

 

Figures 53 and 54 show two sets of wind pressures with 10-sec duration randomly 

extracted from the original data at 5Hz. In order to generate arbitrary wind load, the plate was 

divided into two regions such that two sets of wind pressure were applied perpendicularly to the 

plate (see Figure 55). 
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Figure 53: Random wind pressure #1, 10 sec @5Hz. 

 

Figure 54: Random wind pressure #2, 10 sec @5Hz. 
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Figure 55: Loading condition of the plate. 

5.3.2 Uniform and proposed sensor arrangements 

As presented and discussed in CHAPTER 4, the strain decomposing results taken from 

uniform sensor placement were compared against the results from different sensor arrangements. 

The results show that the estimating accuracy has been improved by either staggering the inner 

sensors or diminishing the sensors on the plate boundaries. This conclusion was verified again in 

this chapter by rearranging the sensors in the same way that was used in CHAPTER 4 on the 

blade-shaped plate. 

First, the uniform sensor arrangement will be illustrated. Due to the mapped mesh, the 

plate was equally divided into spaces with a distance of 0.1m longitudinally, and it was divided 

into 10 segments transversely. Considering the real size of an SEC, sensors were distributed 

every three nodes with a distance of 0.3m along the top and bottom edges. Then the inner sensor 

arrays were created based on the boundary sensor locations. The number of sensors along each 

cross section was customized in order to fit the corresponding width. The total number of sensors 
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were 142. The uniform arrangement is demonstrated in the first plot in Figure 56. For the second 

arrangement, the total number of sensors remained the same as in the uniform arrangement but 

with sensors staggered within the area of the plate. The last way is that the arrangement of all the 

inner sensors followed the same pattern as in uniform arrangement but with boundary sensors 

diminished from 62 to 43. As shown in Figure 56, the differences among three arrangements can 

be easily seen. In addition, only idealized boundary sensor arrangement has been used in order to 

perform a univariate test since: (1) the accuracy of the assumed boundary conditions will be 

affected if realistic boundary sensor placement is applied; (2) it is difficult to control the distance 

between the sensors and the boundaries to be consistent if applying realistic sensor arrangement 

due to the mapped mesh. 

 

Figure 56: Sensor arrangements for blade-shaped plate. 
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5.3.3 Strain decomposing results comparison for different sensor arrangements 

The dynamic analysis was performed using simulated wind turbulence in ANSYS, and 

bidirectional nodal elastic strain data were exported from the top layer of the plate. The proposed 

strain fitting algorithm was then applied to conduct the strain decomposition tasks. The 

procedures were repeated three times for all three different sensor arrangements. Multiple trials 

have been completed, and it is found that a polynomial function with 7
th

 order produces better 

results than a polynomial function with 6
th

 order. This finding might result because of the 

complexity of the skewed plate behavior. Therefore, the 7
th

 order polynomial function was used 

to assume displacement function. The results from the uniform sensor arrangement were 

compared against the two proposed arrangements. As the same in CHAPTER 3, the 

decomposing results were presented in the following forms: (1) 3D surface strain map; (2) 

MAPE contour plot; (3) MAPE versus load steps. 

5.3.3.1 Strain Surface Fitting Results 

The 3D surface strain map plots for three cases are shown below. One can see that the 

strains tend to decrease from the maximum value at the fixed end towards the tip of the plate, 

and a sudden change appears at the boundary of two loads due to the different wind load 

magnitudes. By looking at the two strain surfaces for both x and y directions in each plot, it is 

obvious that the estimating errors are fairly large near the fixed end. For strain x, the algorithm 

was underestimating the strain near the fixed end and was overestimating the strain near the free 

tip, see Figure 57. Also, strains on the inner areas close to the middle of the second part of the 

plate have shown to be underestimated, and the area appears to decrease if the sensor 

arrangements changed. The reason for this inner area shows the different trend than the 
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neighbors, and it is probably because strain y has been overfitted by using a 7
th

 order of 

polynomial displacement function, as could be seen in Figure 58. 
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Figure 57: StrainX strain fitting for uniform pressure: uniform, arrangement #1, #2 
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Figure 58: StrainY strain fitting for uniform pressure: uniform, arrangement #1, #2 
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5.3.3.2 Mean Absolute Percentage Error (MAPE) on Entire Plate 

 

 

 

Figure 59: StrainX MAPE comparison for uniform pressure: uniform, arrangement #1, #2 

 

 
Figure 60: StrainY MAPE comparison for uniform pressure: uniform, arrangement #1, #2 
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Figures 59 and 60 show the contour plots of mean average percentage error for the inner 

plate area. For   , the maximum error occurs close to the area, which has a sudden geometry 

change. The maximum error for   , however, is located at x = 4.5m. Again, it could be explained 

that the strain y has been overfitted by using a higher degree polynomial function.  Comparing 

the three sensor arrangements, the maximum errors for both    and    occurred to the staggered 

inner sensor arrangement with a value around 1000%. Boundary diminished arrangement seems 

to have the smallest errors. In addition, for   , the errors near free tip are relatively large. Due to 

the low resolution for most of the plate area, it is not rational to conclude the performance of two 

proposed sensor arrangements only based upon the maximum errors. Thus, the same contour 

plots were presented in the next page using color bars with limited maximum value of 100%. 
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Figure 61: StrainX MAPE comparison for uniform pressure: uniform, arrangement #1, #2 (scaled) 

 

 

 
Figure 62: StrainY MAPE comparison for uniform pressure: uniform, arrangement #1, #2 (scaled) 
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As shown in Figures 61 and 62, the contour plots are more comparable among three 

arrangement cases. For   , the errors are large at the free tip and the section with sudden 

geometry change. This feature coincides with the author’s prediction because stress singularities 

always arise around the sharp corners for plates. The same tendency can be found in    contour 

plots but with large errors (around 70%) near the fixed end as well. This tendency is probably 

because the estimating accuracy of the algorithm will be deficient when    is very small at the 

fixed end. Furthermore, the dark red areas shown in the    contour plot, which represent errors 

larger than 100%, concentrated on the free tip of the plate. It can be explained that the sensor 

quantities near the tip are very low due to limited space so that not enough information can be 

captured and used for estimation process. At last, it is obvious that the estimating accuracy has 

been improved using proposed sensor arrangements by looking at the error distributions shown 

in the contour plots, especially for inner staggered arrangement. The detailed comparison is 

provided in Table 9.   
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5.3.3.3 Mean Absolute Percentage Error (MAPE) on Entire Plate over Time Series 

 

 

 
Figure 63: StrainX MAPE vs time comparison for uniform pressure: uniform, arrangement #1, 

#2 
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Figure 64: StrainY MAPE vs time comparison for uniform pressure: uniform, arrangement #1, 

#2 
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Two parts of wind load were applied on the two areas of the plate. The smaller wind load 

1 was assigned to the area close to fixed, and the larger one (wind load 2) was distributed on the 

second part of the plate. In Figures 63 and 64, the MAPE of the entire plate over 50 load steps 

were plotted against the two wind load cases. It is clearly shown that the magnitudes of the wind 

loads were arbitrary so that it can simulate the realistic loading condition of the wind turbine 

blades. It is noticeable that a spike occurred at the third load step where wind load 1 almost 

equals zero while wind load 2 reaches the maximum negative value of 50Pa. The negative sign 

means the wind pressure is pulling the plate towards the positive z axis which resulted in 

compression on the top surface of the plate. For the other smaller spikes shown in the figures, 

one can find that these spikes usually occurred at the points where the summation of two wind 

loads are almost zero. The same situation has been encountered in CHAPTER 3 when applying 

the algorithm on the rectangular plate. In comparison of the MAPE for all three arrangement 

cases, the MAPE of    from inner staggered arrangement seems to be the most stable one over 

the change in load magnitudes. In general, the overall performance of the algorithm for    is 

more stable than    when evaluating over load variance. Due to the difficulty of identifying the 

MAPE values in the plots for each case, the following table is provided in order to compare the 

estimating accuracy of each arrangement more efficiently. 

Table 9: Results comparison for blade-shaped plate among three sensor arrangements. 

Sensor Arrangement 

Random Wind Pressure on Entire Plate 

Determinant of (   ) 
Percentage error (%) 

Mean* Standard Deviation* 

x y x y 

Uniform_142nodes 35.39 95.87 625.78 637.88 1.3098E+17 

Inner staggered 32.01 85.85 813.89 609.24 1.6698E+26 

Boundary Diminished 33.17 79.73 625.30 420.80 3.8841E+20 

* denotes that values are calculated from absolute percentage errors. 
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Table 9 provides a detailed results comparison among three arrangements with mean 

errors by all load steps and the corresponding standard deviation. Apparently, the results from 

uniform sensor arrangement have the maximum percentage errors of 35.39% and 95.87% for    

and    respectively. In the meantime, 32.01% is identified as the minimum error for    and 79.73% 

for   . It is shown that both proposed arrangements have improved the estimating accuracy of 

the algorithm. For inner staggered arrangement, error for    has been reduced by 9.6% and error 

for    has been reduced by 10.5%. Similarly, for boundary diminished arrangement, error for    

has been decreased by 6.3% and error for    has been decreased by 16.8%. One can conclude 

that the estimating accuracy for    is more sensitive than   . Lastly, the determinant of   was 

calculated for each case, and it has shown the same results as those shown in Chapter 4: the inner 

staggered and boundary diminished sensor arrangements can increase the determinant of  , 

which results in more accurate matrix inversion. 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

A sensing network consisting of a group of soft elastomeric capacitors (SECs) has been 

presented. This thesis introduces a study that has successfully utilized a proposed strain-fitting 

algorithm to decompose the unidirectional strains measured by SEC unit. The effect of different 

sensor placements has been investigated. Numerical simulations have been conducted on a 

rectangular plate with isotropic material properties and a blade-shaped plate with orthotropic 

laminated materials. The proposed strain-fitting algorithm then has been applied and validated to 

perform the strain decomposition tasks for both plates under various sensor arrangements. 

Several conclusions can be drawn as follows. 

In general, for all load cases and sensor arrangements, the estimating accuracy of the 

proposed strain fitting algorithm is shown to be more accurate for    than it is for   . Meanwhile, 

the estimating accuracy can be improved by either staggering the inner sensors or diminishing 

boundary sensors on the plates. Furthermore, the algorithm performs better under pure bending 

loads (center tip point load, uniform pressure) than under torsional load (corner tip point load). 

Lastly, the estimating accuracy of the algorithm for    is more sensitive to sensor arrangement 

than it is for   . 

 



109 

6.1.1 Conclusions from validation on rectangular plate 

The estimating accuracy of the algorithm varies with different loading cases. Based on the 

results from rectangular plate, it is found that the estimating errors become relative large at the 

regions where the concentrated loads are applied. Also, the maximum percentage error always 

occurs at the two corners along the free tip for both    and   . All of these findings are probably 

because the stress singularities always arise in two situations in structural analysis: (1) the 

concentrated load or moment acting upon plates and shells; (2) the sharp corners. For the 

maximum errors around free tip corners, it also can be explained that there are no applicable 

boundary conditions for these two nodes to be enforced. Therefore, the inversion results of 

matrices could be inaccurate due to a multicollinearity problem. Moreover, a spike has been 

found on the error contour plot for    at the left bottom corner along the fixed end under the 

corner tip point load. This spike is probably because the BCs for two free end corners cannot 

hold anymore since the corner point load is inducing torsion effect while the applied BCs were 

derived from thin plate theory with bending behaviors. In addition, by comparing the MAPE 

contour plots for three load cases, the estimating accuracy for     near the tip region of the plate 

is more sensitive than it is for   . 

If comparing the estimating mean absolute percentage error (MAPE) of the entire plate 

against a time series, several spikes can be easily observed at the time points where the load 

magnitude is zero. It is probably because no strain has been induced so that the program acquires 

useless data when applying the algorithm. Since no significant events will happen when applied 

loads are zero, however, these spikes are negligible. In contrast, the MAPEs at the other time 
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steps are fairly consistent; namely, the performance of the algorithm is stable over the change in 

load and is independent of load magnitudes. 

 

According to the results obtained from the idealized and the realistic boundary sensor 

arrangements, it can be concluded that the estimating accuracy of the algorithm is higher in the 

idealized case than it is in the realistic case. Obviously, it is because the closer the sensors locate 

to the boundaries, the more accurate BCs they can obtain. Moreover, it shows that the algorithm 

is most likely to overestimate    (underestimate     in the realistic boundary sensor arrangement, 

and to underestimate    (overestimate   ) in the idealized boundary sensor arrangement. 

Four ways of sensor placement have been performed and examined in terms of the number 

and locations of the sensors. It can be concluded that the inner staggered and boundary 

diminished sensor placements showed the positive effects on the estimating accuracy by 

increasing the determinant of sensor placement matrix. Moreover, some additional arrangement 

ways have been applied, and it is found that: (1) the proposed algorithm is not functioning 

properly if the total number of sensors on the boundaries is equal or greater than the amount of 

inner sensors; (2) under same arrangement of boundary sensors, the estimation is more precise if 

inner sensors are stagger-distributed and placed relatively close to fixed and free edges; (3) the 

error of estimation can be reduced if sensors on the boundaries are diminished possibly because 

of the imperfection of the plate’s BCs obtained from the theory and consequently, it will lead to 

less accurate inversion results of coordinate matrices if more data on the boundaries are enforced; 

and (4) it is found that, a certain amount of sensors is required to be placed on the boundaries in 

order to ensure the full rank of the coordinate matrices. Otherwise the inversion results will be 

incorrect. Taking the rectangular plate as an example, besides four SECs located on the corners, 
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at least two more SECs for fixed and free edges, and three more SECs for top and bottom edges 

are required to perform accurate strain decomposition task. 

6.1.2 Conclusions from verification on blade-shaped plate 

Once the algorithm was validated on a rectangular plate, it has been applied to a blade-

shaped plate with random wind pressure. Two positive sensor arrangements were verified as well. 

The results show that the algorithm has successfully decomposed the unidirectional strains with 

acceptable accuracy. This result means that the proposed algorithm is capable of performing the 

strain decomposition tasks for SEC networks regardless of material properties, loading 

circumstances, and geometry variations. The decomposing accuracy of the algorithm, however, 

will be highly affected by the aforementioned three factors. More importantly, the results 

verified that the two positive sensor arrangements successfully improved the estimating accuracy 

by increasing the determinant of the sensor placement matrix, which leads to more accurate 

matrix inversion. Additionally, compared with results obtained from the rectangular plate, the 

estimating accuracy of the blade-shaped plate is relatively low. This low estimating accuracy can 

be explained in that the shear deformation has been ignored when performing the numerical 

simulation as well as when assuming the displacement function. It might have accountable 

influence on the results, however, due to the thickness of the plate. Moreover, it is found that the 

estimating errors are relative large near the free tip of the plate. On one hand, this large 

estimating error is because of the effects of stress singularities near the tip corners; on the other 

hand, the amount of sensors located near the tip has been reduced a lot so that the information 

collected is not sufficient to conduct a good estimation. 
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6.2 Recommendations 

According to the conclusions drawn in the previous section, several recommendations can 

be suggested to enhance the performance of the proposed algorithm as well as to improve the 

estimating accuracy. First of all, sensors should be placed as close as possible to the structure’s 

boundaries so that accurate boundary conditions can be acquired in order to perform inversion of 

coordinate matrices precisely. In the case of limited spaces for SECs, one can be considered to 

employ traditional resistive strain gauges (RSGs) on the boundaries. Furthermore, due to the 

small size of the RSGs, they can be placed close enough to the boundaries. Therefore, the quality 

of boundary conditions can be ensured. Secondly, when applying sensors on the boundaries, it is 

not suggested to attach them around sharp corners or near regions that have sudden geometry 

change. This suggestion is because stress singularities always occur at these locations, and it will 

result in providing inaccurate boundary conditions to the system. Additionally, either using 

staggered inner sensor arrangement or diminishing the amount of sensors on the boundaries is 

most likely to improve the performance of the algorithm. Lastly, it has been observed that 

unusual estimating errors will occur when the applied load is zero. Therefore, the external loads 

should be monitored at all time so that the points that have zero load magnitude can be identified 

and corresponding estimating error spikes can be diminished when evaluating the performance of 

the algorithm. 
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6.3 Future Work 

In order to obtain good decomposing results, a better understanding of the behaviors of the 

plates with different material properties and arbitrary geometries is necessary. The algorithm 

should be tested using a numerical simulation that accounts for shear deformation of plates. In 

addition, the application of the proposed algorithm using experimental strain data obtained from 

thin plates under various configurations (ex, load conditions, material properties, and arbitrary 

geometries) could provide practical first-hand experience. Furthermore, validation of the 

algorithm on a real wind turbine blade model will be necessary in order to eventually accomplish 

the strain decomposition task in the realistic circumstances. 
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