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ABSTRACT 

 

Multi-span Pre-tensioned Pre-stressed Concrete Beam (PPCB) bridges made 

continuous usually experience a negative live load moment region over the intermediate 

support. Conventional thinking dictates that sufficient reinforcement must be provided in 

this region to satisfy the strength and serviceability requirements associated with the tensile 

stresses in the deck. The AASHTO LRFD bridge design manual recommends negative 

moment reinforcement be extended beyond the inflection point. Based upon satisfactory 

previous performance and judgment, the Iowa DOT OBS currently terminates b2 

reinforcement at 1/8 of the span length. Although the Iowa DOT policy results in 

approximately 50% shorter b2 reinforcement than the AASHTO LRFD specifications, the 

Iowa DOT has not experienced any significant deck cracking over the intermediate 

supports. 

The primary objective of this project is to investigate the Iowa DOT OBS policy 

regarding the required amount of b2 reinforcement to provide the continuity over bridge 

deck. Other parameters, such as termination length, termination pattern and effects of the 

secondary moments were also studied. Live load tests on five bridges were carried out. The 

data were used to calibrate three-dimensional finite element models of two bridges. A 

parametric study was conducted on the bridges with uncracked deck, a cracked deck, and 

a cracked deck with cracked diaphragm. The general conclusions were as follows. 

 The parametric study results show an increased area of the b2 reinforcement slightly 

reduces the strain over the pier. Whereas, increased length and staggered reinforcement 

pattern slightly reduce the strains of the deck at 1/8 of the span length. 

 Secondary moments affect the behavior in the negative moment region.  The impact may 

be significant enough that the deck over piers may never experience a tensile stress.  

 Finite element results suggested that the transverse field cracks over the pier and at 1/8 

of the span length, are mainly due to the deck shrinkage. 

 Bridges with higher skew angles have lower strains over the intermediate supports. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

For design, multi-span Pre-tensioned Pre-stressed Concrete Beam (PPCB) bridges 

are usually assumed to experience two different stages of behavior. During the first stage, 

the PPCB girders are placed on supports, and are assumed to behave as a simply-supported 

span to resist the self-weight of the structure. After the concrete deck is placed and fully 

cured, the bridge moves to the second stage, during which it behaves like a fully continuous 

structure over the intermediate support to resist the live loads and superimposed dead loads 

of the post deck construction. 

During the second stage, the structure will experience negative moments over the 

intermediate supports and as a result reinforcement must be provided to satisfy the strength 

and serviceability requirements within the negative moment region. According to the Iowa 

Department of Transportation (DOT) Office of Bridges and Structures (OBS) bridge design 

manual, continuous longitudinal reinforcement (b1 reinforcement) is provided over the top 

and bottom of the entire deck. In addition to the b1 reinforcement, negative moment 

reinforcement (b2 reinforcement) is provided for strength over the intermediate supports 

and to control the cracks due to negative moments. 

The amount of b2 reinforcement is designed based on the negative moments at the 

intermediate supports due to the live load and superimposed dead load. However, current 

OBS policy regarding the termination of the b2 reinforcement is, in many cases, based 

upon anecdotal evidence of previous satisfactory previous performance. As per Iowa DOT 

OBS bridge design manual 5.4.2.4.1.7, the b2 reinforcement is terminated at 1/8 of the span 

length, which, perhaps not coincidentally, is also generally the location of allowable deck 

construction joints. However, AASHTO 5.14.1.4.8 states that, “Longitudinal 

reinforcement used for the negative moment connection over an interior pier shall be 

anchored in regions of the slab that are in compression at strength limit state and shall 

satisfy the requirements of AASHTO 5.11.1.2.3. The termination of this reinforcement 

shall be staggered.” [1]. AASHTO 5.11.1.2.3 further describes the development length of 

b2 reinforcement as, “At least one third of the total reinforcement provided for the negative 

moment at a support shall have an embedment length beyond the point of inflection not 



2 

 

 

less than, (1) The effective depth of the member (2) 12.0 times of the nominal diameter of 

bar (3) 0.0625 times the clear span” [1]. 

The distance to the inflection point of a two-span continuous beam under uniformly 

distributed load is about 1/4 of the span, which is about twice the length prescribed by the 

Iowa DOT. Although the Iowa DOT policy results in shorter b2 reinforcement than the 

AASHTO LRFD specifications, the Iowa DOT has not experienced any significant deck 

cracking in the negative moment regions of PPCB bridges.  

1.2 Objectives of the Research 

Because the Iowa DOT OBS has observed satisfactory historical performance of 

PPCB bridges there is a desire to provide research evidence as to appropriateness of current 

OBS policy.  Further, there is a desire to potentially modify current OBS policy if one is 

justified.  The objectives of this work are to: 

 Investigate the Iowa DOT OBS policy regarding the required amount of b2 

reinforcement to provide the continuity over bridge deck. 

 Investigate OBS policy regarding the termination length of b2 reinforcement at the 1/8 

span location. 

 Investigate the impact of the termination pattern of the b2 reinforcement. 

 Investigate the effect of secondary moments on the performance of the PPCB bridges. 

1.3 Research Plan 

To achieve the research objectives a total of four tasks were undertaken.   Each task 

was molded based on lessons learned from each previous task. 

 Task 1 – Information gathering 

A literature search was conducted to collect information on the design of negative 

moment reinforcement for PPCB bridges. The current domestic state-of-the-practice with 

regard to continuity and associated design of b2 reinforcement and termination were also 

collected through a web based survey. 

 Task 2 – Field test and inspection 

Field tests and inspections were conducted on five bridges with diverse geometric 

properties as width, length, skew angle, girder type, number of spans and number of girders 
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to study the actual behavior of typical PPCBs. Strain gauges were installed on the deck and 

girders at several transverse sections. A known truck then crossed the bridge along several 

longitudinal paths, generating longitudinal strain profiles. Strain profiles were used to study 

general bridge performance and, later, to calibrate the analytical models. 

 Task 3 – Analytical modeling 

Based on the field test observations, two bridges were selected for finite element 

modeling. Finite element models were highly discretized in such a way that the behavior 

of an individual b2 reinforcement could be evaluated. Finite element models calibrated 

from the live load were then used to conduct a parametric study.  

 Task 4 – Reporting the recommendations 

A final report was developed to present all the observations, conclusions and 

recommendations on the design of negative bending moment b2 reinforcement of the 

multi-span continuous PPCB bridges. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction to Transverse Cracks on Bridge Decks 

Most concrete bridge decks develop transverse cracks at an early stage. According 

to the literature, the predominant mode of deck cracking is transverse cracking, which 

usually occurs over the transverse reinforcement. It has been estimated that more than 

100,000 bridges in the United States have transverse cracks on their decks. 

These cracks accelerate the corrosion of the reinforcement, especially where 

deicing chemicals are applied, and then reduce the service life of the structure, while 

increasing the maintenance costs. Freeze-thaw cycles of water inside the cracks also reduce 

the service life of the structure. 

Although transverse cracks in bridge decks are a concern among designers and 

researchers, the effects of numerous contributing factors and mitigation procedures are not 

yet fully understood. The material and mix design, construction practices and 

environmental conditions and structural design factors are the primary causes of the 

transverse cracks. Additional factors are listed in Table 1 [2].  

Table 1. Cause of transverse cracks on bridge decks [2] 

Material and mix design 
Construction practices and 

environmental conditions 
Structural design factors 

Aggregates 
Weather condition and 

concrete temperature 

Girder type, boundary 

conditions and spacing 

Water content Curing 
Shear studs configuration 

and properties 

Cement type Pour length and sequence Concrete cover 

Cement content Time of casting Deck thickness 

Water/Cement ratio Finishing 

Reinforcement type, 

spacing, size and 

distribution 

Concrete strength Vibration of fresh concrete Section stiffness 

Slump Construction loads 
Vibration and impact 

characteristics 

Air content Form type Traffic 
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2.1.1 Material and Mix Design 

Most research work has been conducted on material and mix design to determine 

why transverse cracks occur on bridge decks. Several researchers found that the aggregates 

in the concrete lead to deck cracking [3]. Suggestions showed that the larger size of 

aggregates with high specific gravity and low shrinkage aggregates may minimize the deck 

cracking.  

Babaei et al. [3] suggested the maximum water content as 12 lb/ft3. Higher cement 

content induces higher temperature throughout the hydration processes and leads to drying 

shrinkage and thereby cracks in the concrete deck. French et al. [4] and Babaei et al. [3] 

provided an acceptable cement content range of 22 lb/ft3 to 28 lb/ft3 to minimize the 

concrete deck cracking. Schmitt et al. [5] found that an increase in water content increases 

deck cracking and recommended to not exceed 27% of both water and cement content of 

the total concrete volume. Reduction in the water/cement ratio reduces the shrinkage. 

Schmitt et al. [5] suggested a water/cement ratio of 0.40 to 0.48 to minimize the deck 

cracking. 

The compressive strength of the concrete is another factor that is thought to affect 

deck cracking. However, there is no general conclusion among the researchers on this 

factor. Schmitt et al. [5] observed an increase in deck cracking due to an increase in 

compressive strength. Krauss et al. [6] proposed to use low early strength concrete to 

minimize deck cracking. The slump of a concrete mix is also a factor which leads to 

concrete cracking. Among different conclusions on the effect of the slump, most of the 

researchers noticed that the higher the slump level, the more deck cracks [7]. 

Cheng et al. [8] and Schmitt et al. [5] observed deck cracking can be reduced by 

increasing the air content of the concrete. Schmitt et al. [5] proposed to use at least 6% air 

content. Similarly, Babaei et al. [3] proposed 5.5% - 6.0% air content to minimize cracking. 

2.1.2 Construction Practices and Environmental Conditions 

The temperature of the concrete is an important factor that affects cracking. After 

concrete placement, the temperature of the deck increases due to hydration. However, the 

temperature of the girders remains almost unchanged. The larger the temperature 

difference between the deck and the girders the greater the chance for deck cracking. 
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French et al. [4] suggested 40℉ as the minimum temperature and 90℉ as the maximum 

temperature for concrete deck placement. Babaei et al. [3] recommended to maintain the 

temperature difference between the deck and girders below 22℉ for at least 24 hours to 

minimize the deck cracking. 

High temperature with low humidity and high wind speed increase the evaporation 

of water from plastic concrete, which lead to the formation of plastic shrinkage cracks. 

Several researchers recommended that special attention be given when the evaporation rate 

exceeds 0.2 lb/ft2/h for normal concrete and 0.1 lb/ft2/h for concrete with low water/cement 

ratios [6].  

Several studies showed that concrete placement length and sequence may have 

some effect on deck cracking. Kochanski et al. [9] suggested that concrete pour rates 

greater than 0.6 span length/hour minimize the cracking of the concrete deck. Based on an 

analytical study Issa [7] concluded that placing concrete first in the positive moment region 

will reduce the deck cracking. Ramey et al. [10] recommended a detailed procedure to 

minimize cracking. 

Some studies illustrate the effect of form type on the deck cracking. Frosch et al. 

[11] showed that stay-in-place forms increase deck cracking and suggested other form 

types for deck construction. 

2.1.3 Structural Design Factors 

Very little research has been carried out on the effects of the structural design 

factors such as girder type, shear studs configuration, deck thickness, reinforcement size, 

type and vibrations on deck cracking. 

Concrete has a lower thermal conductivity than steel. Therefore, bridges with steel 

girders experience more deck cracking than the concrete girder bridges due to the high 

temperature gradients [6]. Composite action is achieved through shear studs between the 

deck and the girders. However, these shear studs restrain the shrinkage of the concrete 

deck, which leads to cracking of the concrete deck. Although Krauss et al. [6] did not give 

any recommendations, they stated that the girder restraint and shear stud type can cause a 
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significant amount of cracking. French et al. [4] recommended fewer studs with smaller 

row length, but specific guidelines were not given.  

Higher deck thicknesses decrease transverse cracking. This may be due to the 

increased deck/girder stiffness ratio [2]. Konchanski et al. [9] recommended to use 8.5in. 

to 9in. decks, whereas French et al. [4] suggested that deck thicknesses greater than 6.25in. 

perform well. 

Several researchers have observed that reinforcement size, type and distribution 

affect deck concrete cracking. With the increase of bar size cracking will increase. Several 

researchers suggested the use of No.5 reinforcement as the maximum reinforcement size 

for the longitudinal reinforcement [9] [10]. However, Karuss et al. [6] recommended to use 

No. 4 bars as the largest reinforcement with 6in. spacing to minimize deck cracking. Ramey 

et al. [10] gave detailed guide lines for reinforcement detailing to decrease cracking 

tendency. 

Researchers illustrated that the vibration and impact characteristics of the live loads 

on the super-structure effect deck cracking. Babaei et al. [3] suggested the use of vibrations 

with low amplitude and frequency to compact the concrete to minimize the deck cracking. 

Mckeel [12] observed that bridges carrying a large number of trucks at high speeds 

experience more deck cracking. 

2.2 Transverse Cracks at the Intermediate Supports of PPCB Bridges 

According to the literature, two primary concepts can be found related to the design 

of the reinforcement at the intermediate supports of PPCB bridges: design of continuity 

reinforcement at the bottom of the connection and design of continuity reinforcement at 

the top of the connection. 

2.2.1 Design of the Reinforcement at the Bottom of the Continuity Connection 

According to the Michael D McDonagh et al. [13], time dependent moments due to 

creep of the girders and differential shrinkage between the deck and the girders play an 

important role on the design of the reinforcement at the bottom of the continuity 

connection. Creep of the girders induces a positive secondary moment, whereas differential 

shrinkage generates a negative secondary moment at the bottom of the continuity 
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connection. A PCA report [14] showed that the positive secondary moments are usually 

greater than the negative secondary moments. Further, based on an experimental and 

analytical research on the behavior of joint less integral abutment bridges, Ralph G Oesterle 

et al. [15] concluded that the negative moment induced by the live load can be significantly 

reduced by the time dependent load effects. 

Unfortunately, the time dependent secondary moments mentioned above cannot be 

calculated reliably. Several methods have been proposed to calculate these secondary 

moments. The Portland Cement Association (PCA) method [14] is the most popular 

method. Construction Technology Laboratory (CTL) method, NCHRP Report 322 

guidelines and RMCALC software [13] by Washington DOT are also available to estimate 

the secondary moments..  

The positive moment continuity connection varies from state to state. Makarand 

Hastak et al [16] conducted research to study the different types of positive moment 

connections used around the country and also to identify the possible potential problems 

associated with those connections. Charles D Newhouse [17] conducted research which 

involved a comparison of different methods used to calculate the secondary moments. The 

results were used to develop three different types of continuity connection details at the 

bottom of the intermediate support. Recently, Chebole [18] conducted research to 

investigate the accuracy of the calculation methods of the secondary moments. A program 

was developed to enhance the estimation accuracy of the secondary moments. Hyo-

Gyoung Kwak et al. [19] developed an analytical model to simulate the time dependent 

effects of creep, shrinkage and concrete cracking of PPCB bridges. The model was 

calibrated experimentally. Researchers concluded that the positive reinforcing steel at the 

support has no significant effect on the resulting negative moment. 

2.2.2 Design of the Reinforcement at the Top of the Continuity Connection 

No research was found that addressed the design of reinforcement at the top of the 

continuity connection (b2 reinforcement). If fact, no guidelines on the design of 

reinforcement at the top of the continuity connection are given in the AASHTO LRFD 

design speciation. Iowa DOT designs the reinforcement by assuming a fully cracked 
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section as shown in Figure 1. With a detailed design example, W.G Wassef et al. [20] used 

this same design procedure to calculate the required negative moment reinforcement.  

 

Figure 1. Force diagram at continuity connection 

As mentioned in the CHAPTER 1, guidance is given in the AASHTO LRFD 

specification regarding the termination point and pattern of the b2 reinforcement. However, 

the Iowa DOT uses reinforcement approximately 50% less than the recommended length, 

without experiencing significant cracks.  In the detailed design example, W.G Wassef et 

al. [20] do not provide any details regarding the termination of the b2 reinforcement. 

2.3 State-of-Practice on Negative Moment Reinforcement Design 

The Bridge Engineering Center (BEC) of Iowa State University in cooperation with 

the Iowa Highway Research Board conducted a web based survey to identify the state-of-

practice on continuity considerations and negative moment reinforcement (b2 

reinforcement), with emphasis on the design policies and practices associated with 

designing multi-span PPCB bridges. As a summary, around 45% of respondents assume 

that adjacent spans act as simple spans for non-composite dead loads and are continuous 

for composite dead and live loads in the design of the b2 reinforcement for multi-span 

PPCB bridges. Simple span for all dead loads and continuous for all live loads was assumed 

by 30% of respondents. Further, 20% respondents assumed simple spans for all loads. 

Extension of the bottom pre-stressing strands with the girder end embedded into the 

diaphragm plus additional negative moment reinforcement in the deck were the most 

commonly used continuity connection details. Different DOTs use various practices to 

terminate the b2 reinforcement. For example, in addition to the embedment length, North 

Cross section Cracked section Force diagram 

𝐴𝑆𝐹𝑆 

𝐴𝑐 0.85𝑓𝐶
′.  

NA 
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Carolina DOT uses 1/3 the span for termination of the b2 reinforcement, whereas Kansas 

DOT uses 1/4 span, both near the point of inflection. Delaware DOT, Nevada DOT and 

several other DOTs follow the AASHTO LRFD guide lines to terminate the b2 

reinforcement (CHAPTER 1). New Mexico DOT uses the lengths as per the CONSPAN 

bridge design software. Michigan DOT and Pennsylvania DOT use staggered b2 

reinforcement pattern to minimize the transverse cracking. 
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CHAPTER 3. FIELD TEST 

3.1 Introduction 

Five bridges with different characteristics (Appendix) were selected for the field 

test as listed in Table 2. These bridges were selected because they have differing numbers 

of spans, span lengths, widths, skew angles, number of girders and girder types. However, 

the length of the negative moment b2 reinforcement (Figure 2) is approximately the same. 

As a result, it was anticipated that the field testing program would allow the research team 

to investigate the effects of bridge characteristics on the negative bending behavior. It is 

also worth noting that in addition to allowing one-to-one comparisons the field test results 

will also be used to calibrate the subsequently described finite element models. 

Table 2. Bridge characteristics 

Bridge # 1 2 3 4 5 

Location 

On C50 I80 
Meredith 

Drive 

Mt Pleasant 

bypass 
US20 

Over US218 US65 I35/80 Big Creek 
Whiskey 

Creek 

Spans 2 2 2 3 3 

Length / (ft) 277 316 270 215 203 

Width / (ft) 47.2 76.5 82 42.5 43.2 

Skew / (deg) 24 42 5 36 0 

No: of girders  6 11 11 6 6 

Type of girders BTE BTE BTD DM LXD 

Length of b2 / (ft) 35 39 36 30 29 

 

3.2 Instrumentation  

During testing strain gauges were installed at two general locations: on the top 

surface of the bridge deck in the negative bending region and on the girders. To study the 

effects of the b2 reinforcement and to generally aid in understanding bridge deck behavior, 

a set of strain gauges was placed on the deck top surface 1 ft inside and 1 ft outside the end 
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of the b2 reinforcement. Another set of strain gauges was located over the pier, which 

helped to capture the strain response over the pier.  

 

Figure 2. Typical deck gauge installation plan 

 

 

 

 

 

 

 

 

To investigate the behavior of the principal strains, several rosettes were also 

installed 1ft inside and 1ft outside at the end of the b2 reinforcement. 

Open to traffic 

Typical b2 reinforcement 

Deck gauge location 

Figure 3. Strain gauges end of the b2 bar Figure 4. Cover plate to prevent damage 
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In addition to the sensors placed on the deck, several gauges were attached to the 

girders at the mid-span location and near one of the piers. As shown in Figure 6, gauges 

were attached to both top and bottom flanges.   

 

Figure 6. Typical girder gauge location 

A summary of the number of deck gauges, girder gauges, dummy gauges and 

rosettes used in field tests on each bridge is listed in Table 3. Further, details of gauge 

location for each bridge is shown in Appendix. 

 

 

 

Figure 5. Rosette near b2 reinforcement 
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Table 3. Summary of gauges 

Bridge # Total gauges attached Rosettes 
Dummy 

gauges 

 On deck On girders   

1 46 16 8 - 

2 43 32 4 - 

3 37 28 6 7 

4 46 20 8 6 

5 55 20 10 4 

 

3.3 Loading of the Bridge 

Once all the strain gauges were installed, standard snooper truck provided by the 

Iowa DOT (Figure 7) crossed the bridge along multiple transverse paths at a crawl speed. 

Details of the Load Cases (LC) for each bridge test are given in Appendix.  

 

Figure 7. Details of the loading truck 

3.4 Longitudinal Strain Profiles of Deck Gauges  

According to the strain profiles of the deck gauges (Appendix), almost every gauge 

on the bridge deck showed an expected strain variation (Figure 8). It was found that the 

strain gauges at the outside of the b2 reinforcement show a little higher magnitude than the 

strain magnitude of the gauges in the inside of the b2 reinforcement. Even though the field 

17 ft 4.5 ft 

8.8 k 9.3 k 

6 ft 

9.3 k 
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tests involved 5 bridges with different properties, the strain profiles of the deck gauges look 

similar in terms of pattern and sometimes magnitudes. This suggests that the effect of the 

negative moment b2 reinforcement may not be affected by the properties of the bridges, 

such as number of spans, span lengths, widths, skew angles, number of girders and girder 

types. 

 

Figure 8. Typical strain variation of deck gauges 

3.5 Longitudinal Strain Profiles of Girder Gauges 

Strain variation of the girder gauges also showed an expected variation pattern 

(Figure 9). No significant difference was found among gauges on other bridges 

(Appendix).  
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Figure 9. Typical strain variation of girder gauges 

3.6 Longitudinal Strain Profiles of Rosettes 

In the absence of knowing the principal strain directions before designing an 

experiment, one needs three independent strain measurements to calculate the principal 

strains at a particular location. A strain gauge rosette is an arrangement of multiple closely-

placed gauges, which can be used to obtain those independent strain measurements. During 

the field test 45° rectangular strain gauge rosettes were used to determine the principal 

strains in the bridge deck (Figure 10). The magnitude and the direction of the principal 

strains of the rosettes location are calculated using [21], 

∈1,2=
∈𝐴+∈𝐵

2
±

1

√2
√(∈𝐴−∈𝐵)2 + (∈𝐵+∈𝐶)2    …….. (1) 

𝜙 =
1

2
tan−1 (

∈𝐴−2∈𝐵+∈𝐶

∈𝐴−∈𝐶
)    …….. (2) 

∈𝐴, ∈𝐵 , ∈𝐶  = Strain gauge data of the rosettes 

∈1 = Major principal strain 

∈2 = Minor principal strain 

𝜙 = Angle to the major principal strain 
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Figure 10. 45° rectangular strain gauge rosettes 

Based on the principal strain profiles, no significant difference was observed 

between the inside and outside rosettes at the end of the b2 reinforcement. However, in 

two-span bridges, when truck axle was in the vicinity of the rosettes, an expected strain 

variation was observed (Figure 11). But when the truck axle was away from the rosettes, 

major and minor principal strains of approximately the same magnitudes with opposite 

signs were observed (Figure 12). In the three-span bridges, approximately same principal 

strain magnitudes with opposite with signs was observed (Figure 13 and Figure 14). 
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Figure 11. Typical variation of principal strains for two-span bridges with truck axle closer 

to rosettes 

 

Figure 12. Typical variation of principal strains for two-span bridges with truck axle away 

from rosettes 
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Figure 13. Typical variation of principal strains for three-span bridges with truck axle away 

from rosettes 

 

Figure 14. Typical variation of principal strains for three-span bridges with truck axle 

closer to rosettes 
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CHAPTER 4. FINITE ELEMENT MODEL OF THE BRIDGES 

4.1 Introduction  

A significant effort of the research was to investigate the effects of b2 reinforcement 

on both skewed and non-skewed bridges with Bulb Tee girders. Bridge #3 (Bridge A) and 

Bridge #2 (Bridge B) have similar characteristics (Table 2), except that Bridge A has a 5 

degree skew angle, whereas Bridge B has a 42 degree skew angle. Bridge A and Bridge B 

were used to investigate the role of skew angle on the negative bending behavior of the 

PPCB bridges. ANSYS Mechanical APDL 14.5, a general purpose finite element package, 

was used to develop the three-dimensional finite element models of Bridge A and Bridge 

B. CHAPTER 4 describes the construction and calibration of the finite element model of 

Bridge A and Bridge B. The analysis results of Bridge A and Bridge B will be discussed 

in CHAPTER 5. 

4.2 Finite Element Model of Bridge A 

4.2.1 Element Type Selection 

Bridge A consists of a continuous concrete deck, b2 reinforcement, guard rails, 

precast pre-stressed girders, pier diaphragm, pier cap, pier columns, footings, piles, 

abutments and wing walls. Of these components, the pier cap, pier columns, footings, piles 

and wing walls were not discretely modeled, but were approximated within the boundary 

condition parameters. The elements used to model all the components of Bridge A are 

listed in Table 4. 

Table 4. Type of elements used in the analysis 

Shell 181 element Beam 188 element 

Deck Girder top flange 

Pier diaphragm Girder bottom flange 

Abutment Intermediate diaphragm 

Guard rails b2 reinforcement 

Girder web  
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4.2.2 Properties of the Elements  

Shell 181 element [22] 

The Shell 181 element is a structural element with four nodes in 3D space, with 

each node having six degrees of freedom. This element is suitable for the analysis of thin 

to moderately-thick shell structures. It can be used in linear and nonlinear applications, 

which involve large rotations and large strains. The Shell 181 element has the capacity to 

model layered applications, such as modeling of composite shells and sandwich 

constructions.  

Beam 188 element [22] 

This is a structural element with two nodes in 3D space. Each node has six degrees 

of freedom and one optional degree of freedom to provide warping freedom. This element 

can be used to analyze slender to moderately-thick beam structures. Beam 188 element is 

based on Timoshenko beam theory; hence, this element can deal with shear deformation 

effects. This element is suitable for linear and non-linear applications which involve large 

rotations and strains. 

4.2.3 Material Properties 

According to the structural drawings, Bridge A consists of pre-stressed girders with 

a specified compressive strength (fC
′ ) of 9 ksi. The specified compressive strength of the 

deck concrete is 4 ksi. Reinforcing steel with a 60 ksi yield strength was used for all mild 

steel reinforcement. An ultimate strength of 270 ksi was used for all high-strength strands 

specified in the pre-stressed girders. 

Reinforcement in each component of the bridge, except the b2 reinforcement, was 

smeared into the associated finite element. To this end an effective modulus of elasticity 

of each component of the bridge was determined by, 

Eeff =
ACEC + ASES

AC + AS
 

Where,  

Eeff = Effective modulus of elasticity 

AC  = Area of concrete 

………….. (1) 
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AS  = Area of steel 

EC  = Modulus of elasticity of concrete 

ES  = Modulus of elasticity of steel 

4.2.4 Finite Element Model 

Figure 15 shows a plan view of the finite element model of Bridge A. The bridge 

deck was meshed with 6 in. (Z direction) by 9 in. (X direction) shell elements. 

 

Figure 15. Finite element model of the Bridge A: Plan view 

Figure 16 shows the finite element model of all the components of the bridge, 

except the abutments and the b2 reinforcement. 

 

Figure 16. Cross section A-A 
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A schematic deck girder cross section with the actual reinforcement is shown in 

Figure 17. The idealized bridge deck and girder model, and b2 reinforcement are shown in 

Figure 18. Instead of actual b2 reinforcement spacing, equal 9 in. spacing was used in the 

finite element model however it is important to note that the total amount of reinforcement 

area remains the same. The connection between the bridge deck and girders was made 

using rigid elements, which transfer the degrees of freedom of the master nodes (nodes of 

the deck elements) to the slave nodes (nodes of the top flange elements). 

 

Figure 17. Actual deck, girder and b2 reinforcement 

 

Figure 18. Idealized deck, girder and b2 reinforcement 

b1 b2 

9” 
b2 reinforcement 

(Beam 188) 
Rigid link 

Shell 181 Beam 188 
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Figure 16 illustrates the idealization of the pier diaphragm. Elements in the pier 

diaphragm were meshed with 6.5 in. (Y direction) by 9 in. (X direction) elements. The 

girder webs were also meshed with shell elements with 6.5 in. (Y direction) and 9 in. (X 

direction) dimensions. Figure 19 shows the finite element model of the abutment. To make 

the nodes of the deck and girder web coincide, the abutment was meshed with shell 

elements, having 6.5 in. (Y direction) and 9 in. (X direction) dimensions. 

 

Figure 19. Finite element model of the abutment 

4.2.5 Support Conditions of the Finite Element Model 

4.2.5.1 Support Condition at the Pier Diaphragm 

The girders of Bridge A are connected to the pier cap through a pintle, which 

restrains the three translational degrees of freedom at the end of the girders. The pier cap 

is supported on five pier columns, which are connected to the pile foundation. The support 

conditions for the girders at the pier were approximated by a roller support, which 

restrained the Y direction translation (Figure 20) from movement. 

Abutment 

(Shell 181) 

X 

Y 
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Figure 20. Support condition at the pier diaphragm 

4.2.5.2 Support Conditions at the Abutment 

Bridge A is an integral abutment bridge. The bottom of the abutment is supported 

on soil and connected to 21 piles, which are 3.9 ft apart. Also, the ends of the abutments 

are connected to the wing walls. As an approximation, the soil forces were neglected and 

the nodes of the abutments at the pile head locations were restrained in the Y direction as 

shown in Figure 21.  

 

Figure 21. Support conditions at the abutment 
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4.2.6 Loading Conditions 

Four main loading types were applied to the finite element model. The moving 

truck load was modeled with load steps and with point loads at the truck wheel locations 

(Figure 7). A uniform surface load was also used for several analyses. Temperature load 

was applied as a body force. Shrinkage load was applied as an equivalent temperature load.  

4.2.7 Calibration of the Model for Field Test 

Calibration of the finite element model from the field test results (CHAPTER 3) 

involved using data from three sets of gauges: deck gauges, girder gauges and rosettes. 

During the calibration process, strain values from the finite element model at the gauge 

locations were compared with the strain gauge values for all load cases. As described in 

CHAPTER 3, gauges close to the truck axle show larger strain magnitudes than gauges 

away from the truck axle. In addition to making qualitative assessments regarding the 

accuracy of the model, peak strain values were used to calculate the percentage strain 

difference between the finite element model and the field test results.  

Strain difference percentage =  
|∈FEM−∈Field Test|

∈Field Test
× 100 ………. (2) 

4.2.7.1 Calibration for the Deck Gauges 

The calibration results of the deck gauges are presented in this section. The 

comparison of typical finite element results and field test results from the deck gauges, 

which are in the vicinity of the truck axles is shown in Figure 22 and Figure 23. Figure 24 

shows the comparisons of typical strain variation of the deck gauges away from the truck 

axles. As should be evident by reviewing these results the finite element results of the deck 

gauges are in agreement with the field test results.  As a result, no changes to the model 

were made. 
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Figure 22. Strain variation of deck gauges (G1 and G11) close to axles, (LC1) 

 

Figure 23. Strain variation of deck gauges (G2 and G12) close to axles, (LC1) 
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Figure 24. Strain variation of deck gauges (G5 and G15) away from axles, (LC1) 

4.2.7.2 Calibration for the Girder Gauges 

Calibration results for the girder gauges are presented in this section. According to 

Figure 25, field test results for the gauges at the top flange at the pier and mid span locations 

agree with the FEM results. However, strain magnitudes of those gauges are very small.  

 

Figure 25. Strain variation of girder gauges (G1 and G15) close to axles, (LC1) 
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Figure 26 and Figure 27 show the finite element and field test results of girder 

gauges “close” to the truck axles. The pattern of both the finite element and field test results 

are similar. But, there is a maximum of 30% average strain difference between FEM results 

and field test results. 

 

Figure 26. Strain variation of girder gauges (G8 and G22) close to axles, (LC1) 

 

Figure 27. Strain variation of girder gauges (G9 and G23) close to axles, (LC1) 
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Since the Modulus of Elasticity (E) is equal to 57000√fc
′, the specified 

characteristic strength of the concrete, fc
′ of the girders (and, thereby, E) was changed to 

minimize the percentage strain difference. Figure 28 and Figure 29 show the strain variation 

of the girder gauge near the pier (G8) and the girder gauge at the mid span (G22) 

respectively, with various girder fc
′ values. These results shows that with the increase of fc

′ 

of the girders, the strain values approach the field test results which indicates that the 

stiffness (E) of the girders is larger than the specified plan values might indicate.  

 

Figure 28. Strain variation of girder gauge G8 with different girder 𝒇
𝒄

′  
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Figure 29. Strain variation of girder gauge G22 with different girder 𝒇𝒄
′  

Importantly, Figure 30 and Figure 31 show that the change of the strength and 

Modulus of Elasticity of the girder does not significantly affect the strain in the deck.  

 

Figure 30. Strain variation of deck gauge G1 with different girder 𝒇
𝒄

′  
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Figure 31. Strain variation of deck gauge G11 with different girder 𝒇
𝒄

′  

Figure 32 shows the variation of the average percentage difference of peak strain 

with the girder strength. Beyond a 15 ksi of girder concrete strength, the average percentage 

strain difference is less than 15%. Since the strength of the girders beyond 15 ksi is not 

realistic, it was decided to use 12 ksi for the girder strength, which gives about a 23% 

average difference in the strain peak. 
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Figure 32. Variation of average % difference with the girder strength 

The support conditions at the abutments were changed from rollers (Figure 21) to: 

(1) pinned and (2) fixed conditions in an attempt to reduce the average percentage. Figure 

33 and Figure 34 show the strain variation of the girder gauges at the pier and mid-span 

sections for these different abutment support conditions. There is no significant difference 

between the results for the pinned support and the fixed support condition. Both conditions 

reduce the difference between the FEM results and the field test results.  
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Figure 33. Strain variation of girder gauge G8 with abutment boundary conditions 

𝒇𝒄
′ = 𝟏𝟐𝒌𝒔𝒊 

 

Figure 34. Strain variation of girder gauge G22 with abutment boundary conditions  
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According to Figure 35, deck strains near the end of the b2 reinforcement do not 

significantly change with the type of the support conditions at the abutments. Figure 36 

shows that a change of support condition at the abutment affects the deck strains around 

the pier.  

 

Figure 35. Strain variation of deck gauge G1 with abutment boundary conditions 

𝒇𝒄
′ = 𝟏𝟐𝒌𝒔𝒊 
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Figure 36. Strain variation of deck gauge G11 with abutment boundary conditions 

𝒇𝒄
′ = 𝟏𝟐𝒌𝒔𝒊 

A summary of the calibration results is shown in Table 5. According to these 

results, Case 6 shows an average of 10% strain difference between the FEM and field test 

results for both deck and girder gauges. Therefore, Case 6 was selected to continue with 

the next steps of the research. 
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Table 5. Summary of calibration results 

 

fc
′ of the 

girders 

(ksi) 

Average error 

percentage 

(based on 

girder gauges) 

(%) 

Average error 

percentage 

(based on 

deck gauges) 

(%) 

Boundary conditions 

Restraint at the 

abutment  

(on piles) 

Restraint  at the 

pier 

 (under the girders) 

1 9 30 - Roller Roller 

2 11 25 - Roller Roller 

3 13 20 - Roller Roller 

4 15 15 - Roller Roller 

5 12 25 10 Roller Roller 

6 12 10 10 Pinned Roller 

7 12 10 15 Fixed Roller 

 

4.2.7.3 Calibration of the Rosettes 

Comparisons were made between the FEM and field test results of the major 

principal strains (ε1) calculated from the individual sensors comprising the rosettes. 

According to Figure 37 and Figure 38 a significant difference between the FEM and field 

test results for the principal strains up to the 150 ft truck position can be observed. 

Elsewhere the finite element results reasonably predict the field test behavior. 
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Figure 37. Variation of principal strains of rosette R5 for LC1 

 

Figure 38. Variation of principal strains of rosette R6 for LC1 

4.2.8 Comparison of Cracking Strain with Field Cracks 

The finite element analysis results were also compared with the cracking strain to 
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Center (BEC) staff and the Bridge Condition Reports of 2010 and 2012, and from Iowa 

DOT OBS Bridge Maintenance and Inspection Unit.  

4.2.8.1 Crack Map 

Five significant transverse cracks, namely C1 to C5, were found on the bridge deck 

through field inspection (Figure 39). The Bridge Condition Report of 2010 indicated only 

one transverse crack (C3) on the bridge deck. The Bridge Condition Report of 2012 

described the same crack with no other cracks having been reported.  

 

 

Figure 39. Crack map 

4.2.8.2 Comparison with Live Load 

Comparison of the cracks began with live load on the bridge. The following 

relationship can be used to calculate the approximate cracking strain of concrete. 

Region P 

Pier End of the b2 

C3 

C2 

C1 

C5 

C4 

Pier 
End of the b2 
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Cracking strain of the concrete =  
7.5 √fc

′

57000 √fc
′

 ≈ 130μϵ …………. (3) 

fc
′ = specified strength of the concrete 

The truck used during the field test (Figure 7) was not large enough to generate 

strains in the bridge deck that would causing cracking of the deck. Therefore, a large truck 

load, HS20 (Figure 40) was used to study the relationship with deck strain and for 

conceptual crack calibration.  

 

Figure 40. Details of the HS20 truck loading 

The HS20 design truck load consists of variable distances (v) between the rear 

axles, which can vary from 14 ft to 30 ft. The distance v was selected in such a way that 

produced the largest effect on the structure. To find the distance v, number of HS20 trucks 

and locations of the HS20 trucks which produced the worst effect on the structure, one 

HS20 truck with variable distance v equal to 14 ft was run along Lane#1 and Lane#2. Then 

the major principal strains over the pier and at the end of the b2 reinforcement were 

recorded. Later, the same procedure was conducted with a 30 ft variable axle distance HS20 

truck. Figure 41 and Figure 42 show typical major principal variations for locations at the 

end of the b2 reinforcement and over pier with one HS20 truck. The HS20 truck with a 14 

ft axle spacing induces larger strains than the HS20 truck with a 30 ft axle. Eight trucks 

were placed at 112 ft and 196 ft positions on Lane #1 to Lane #4 to induce the maximum 

strain due to the live load. 

14ft v ft 

8 k 32 k 

6 ft 

32 k 



41 

 

 

 

Figure 41. Typical variation of ε1 strain for truck over Lane1, end of the b2 reinforcement 

 

Figure 42. Typical variation of ε1 strain for truck over Lane1, at the pier 

Strain in the bridge deck was large at the locations of these concentrated forces, 

causing local stress concentrations that were not the focus of this project. Therefore, a 
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applied to avoid these stress concentrations. The deck strain in the longitudinal direction 

(Z direction) (εZ), over the pier and at the 18 ft location of the b2 reinforcement, from the 

eight HS20 truck loadings are compared to the results from the equivalent UDL, in Figure 

43. 

 

Figure 43. Strain due to equivalent eight HS20 truck loads 

Figure 44 illustrates the major principal strain distribution of Region P, which 

shows the finite element analysis results predicts no cracking strains at the field crack 

locations with equivalent UDL. 
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Figure 44. Major principal strain variation around Region P, equivalent UDL  

4.2.8.3 Comparison with Temperature Load 

As explained at the beginning of CHAPTER 4, rigid links were used to make the 

connection between the bridge deck and the girders. However, rigid links do not contain 

any material properties. Hence, rigid links cannot be used in an analysis where temperature 

effects are involved. During the calibration of temperature, the rigid links were replaced 

with Beam 188 element with large stiffness. 

Cold weather condition is generate tensile stresses over the intermediate support. A 

−80 ℉ temperature difference due to 60 ℉ average construction temperature and -20 ℉ 

average cold weather condition was applied to the model to investigate the cracking due to 

the temperature. The strains induced by the cold temperature were not large enough to 

simulate the cracking strain on the bridge deck (Figure 45). 
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Figure 45. Major principal strain variation around Region P due to cold weather  

4.2.8.4 Comparison with Shrinkage Load 

According to literature, approximately 50% of the shrinkage of concrete decks 

takes place during the 56 days following deck placement. The bridge was loaded with a 

56-day shrinkage load. To calculate the shrinkage, the following relationship given in the 

AASHTO LRFD specification was used.  

(∈𝑠ℎ)𝑡 = −𝑘𝑠𝑘ℎ (
𝑡

35+𝑡
) × 0.51 × 10−3 = -0.000134 ………. (4) 

 

Where: 

(∈𝑠ℎ)𝑡 = shrinkage strain at time 𝑡 (56 days) 

𝑘𝑠 = Volume/surface ratio factor (0.46) 

𝑘ℎ = Humidity factor (0.93) 

Shrinkage load was applied to the model as an equivalent temperature load 

calculated using Equation 5. 

𝑇𝑒𝑞𝑢 =
(∈𝑠ℎ)𝑡

𝛼⁄  = -24.5℉…………. (5) 

Where: 

C1 C4 

C2 

C3 

C5 

5με - 
20με 

35με - 

40με 
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𝑇𝑒𝑞𝑢 = equivalent temperature    

𝛼 = Coefficient of thermal conductivity (0.0000055/℉) 

According to Figure 46, the 56 days of shrinkage load can be used to simulate the 

transverse cracks of the bridge deck, because concrete strains are in the vicinity of the 

cracking strain. 

 

Figure 46. Major principal strain variation around Region P, due to shrinkage after 56 days 

4.3 Finite Element Model of Bridge B 

The major difference between Bridge A and Bridge B is that Bridge B has a higher 

skew angle (42 degrees) than Bridge A (5 degrees). Some other minor differences between 

these two bridges are listed in Table 6.  The goal of conducting detailed analysis of Bridge 

B was to evaluate the influence of skew on the negative moment region behavior in PPCB. 
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Table 6. Comparisons of the properties of Bridge A and Bridge B 

Properties Bridge A Bridge B 

Span (ft) 136 156 

Girder height (in.) 54 63 

Average b2 reinforcement spacing (in.) 9 6 

Length of the b2 reinforcement (ft) 36 38 

Total b2 reinforcement (in2/in) 0.140 0.187 

Total deck reinforcement (in2/in) 0.205 0.252 

 

The finite element model of Bridge B was developed similarly to how the finite 

element model of Bridge A was developed.  Figure 47 shows a plan view of the finite 

element model of Bridge B. The deck of Bridge B was modeled with 6 in. (Z direction) by 

6 in. (X direction) shell elements. 

 

Figure 47. Finite element model of the Bridge B: Plan view 

Recall that Bridge A has one b2 reinforcement layer (Figure 17). Bridge B has two 

b2 reinforcement layers, one layer above and one below the middle of the deck thickness. 

However, both b2 reinforcement layers are very close to the center of the deck.  As a result, 

X 

Z 

Bridge deck 

(Shell 181) 

Plan view 
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both b2 reinforcement layers were modeled as one b2 reinforcement layer located near the 

centroid of the concrete deck.  

The live load calibration results of Bridge A were used to establish the initial 

conditions for Bridge B. As mentioned in Case 6 (Table 5), pinned supports at the 

abutments and roller supports at the pier were also used as the support conditions of Bridge 

B. The strength of the girders was as assumed to be 12 ksi, as it was for Bridge A.  

4.3.1 Calibration of Bridge B 

4.3.1.1 Calibration for the Deck Gauges 

Typical calibration results of the deck gauges are presented in this section for deck 

gauges G1, G 15, G5, and G19 for LC1. Figure 48 shows typical strain comparisons for 

strain sensors located near the truck load (i.e., G1 and G15). Figure 49 shows similar 

comparisons for strain sensors located away from the truck load. In general there were very 

small differences between the fields collected data and the analytical predictions. 

 

Figure 48. Strain variation of deck gauges (G1 and G15) closer to axles, (LC1) 
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Figure 49. Strain variation of deck gauges (G5 and G19) away from axles, (LC1) 

4.3.1.2 Calibration for the Girder Gauges 

Analytical and field test results for several of the Bridge B girder gauges are 

presented in Figure 50 and Figure 51. These show the strain comparisons of girder gauges 

close to the truck axles and away from the truck axles, respectively. As can be seen, the 

finite element results are generally in good agreement with the field test results. 

 

Figure 50. Strain variation of girder gauges (G9 and G25) closer to axles, (LC1) 
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Figure 51. Strain variation of girder gauges (G12 and G28) away from axles, (LC1) 

4.3.1.3 Calibration for the rosettes 

Comparisons were made between the FEM and the major principal strains (ε1) 

determined from field test results. According to Figure 52, there is a significant difference 

between the FEM and field test results of the principal strains around the pier. Other than 

that, the finite element model predicts the field test results of the rosettes.  

 

Figure 52. Variation of principal strains of rosette R2 for LC1 
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Collectively the above mentioned results for Bridge B show that the deck gauges 

had small differences and the girder gauges were in agreement with the field test results. 

However, in an attempt to minimize the differences further three conditions (Table 7) were 

in an attempt to the strain prediction within the deck.  

Table 7. Calibration types of Bridge B 

Type 
𝑓𝐶

′ of the 

deck (psi) 

Boundary conditions 

Restraint at the abutment 

(on piles) 

Restraint  at the pier 

(under the girders) 

1 4000 UX, UY, UZ UY 

2 5000 UX, UY, UZ UY 

3 4000 
UX, UY, UZ 

θX, θY, θZ 
UY 

 

Figure 53 shows the comparison of the finite element results of gauge G1 for the 

different calibration types. No significant strain difference can be observed. Therefore, 

Type 1 was selected for use in the parametric study of Bridge B. 

 

Figure 53. Strain variation of girder gauge G1 with different calibration types 
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CHAPTER 5. PARAMETRIC STUDY 

5.1 Model Configuration 

The main objective of this research project was to investigate various aspects of the 

so-called b2 reinforcement used in the negative moment region of PPCB bridges. To 

accomplish, this a parametric study was conducted using the basic model described 

previously.  To fully understand the behavior of the bridge in multiple “states”, three 

different model configurations were utilized: (1) Model 1 - an uncracked deck model, (2) 

Model 2 - cracked deck model and (3) Model 3 - cracked deck with cracked pier diaphragm 

model. In many ways these three models were interpretations of how several states of 

behavior would be translated into a theoretical model. 

5.1.1 Model 1 - Uncracked deck model 

The parametric study was first conducted on the calibrated bridge models which 

consist of fully uncracked section properties. In many ways the Model 1 configuration is 

based upon the field observed behavior (e.g., minimal deck cracking, etc.) and based upon 

previously observed behavior in similar bridges.  In the following sections a detailed 

summary of the results associated with Model 1 will be given. However, in brief, based on 

the parametric study results of Bridge A with an uncracked deck model, one can conclude 

that negative moment b2 reinforcement does not significantly affect the behavior of the 

bridge deck before cracking. This is probably because the negative moment b2 

reinforcement represents a very small increase in the stiffness of the uncracked concrete 

deck. As a result, the parametric study was continued by assuming a fully cracked deck 

(Model 2) in the negative moment region.  The goal with Model 2 was to accentuate the 

contribution of the b2 bars by reducing the stiffness of the surrounding deck concrete to 

zero (i.e., a fully cracked state).  The length, area and distribution pattern of the b2 

reinforcement were the main parameters of the study. 

5.1.2 Model 2 - Cracked deck model 

The parametric study with a cracked deck over the pier (Figure 54) was conducted 

following the set of steps shown in Figure 55. The parametric study was carried out for 

both live load and a 56 day shrinkage load.  
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Figure 54. Cracked deck condition 

 

Figure 55. Method to determine cracked section 

Step 1: 

The equivalent UDL of 0.0004 ksi over the four lanes was used to determine the 

region of the deck that might experience tensile strains.     
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Step 2: 

The longitudinal strain (εZ) of the bridge deck along five longitudinal lines is shown 

in Figure 56, which indicated that Region Q, on the deck, under tensile strain was 

approximately 30 ft on each side of the pier. 

 

Figure 56. Negative moment region over pier  

Step 3: 

The effective moment of inertia of the uncracked bridge deck (IUncracked) and 

cracked deck (ICracked) was then calculated. The Modulus of Elasticity (E) of the uncracked 

bridge deck finite elements was proportioned by the ICracked IUncracked⁄   ratio (0.006) to 

calculate the cracked section properties for Region Q.  

Step 4; 

The equivalent UDL of 0.0004 ksi was again placed on the model with the updated 

cracked section properties in Region Q.  

Step 5: 

The negative bending moment region with cracked section properties (Region R) 
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uncracked section properties (Region Q); i.e., about 30 ft to each side of the pier.  Thus, it 

was determined that the Region Q approximation was good. 

Step 6; 

A parametric study of Bridge A with the cracked deck in Region Q was then 

conducted. The length, area and distribution pattern of the b2 reinforcement were the main 

parameters of the study.  

5.1.3 Model 3 - Cracked deck with cracked pier diaphragm model 

Following extensive discussions with the Iowa DOT, it was determined that the 

Iowa DOT designs the continuity connection at the pier diaphragm by assuming a fully 

cracked deck and diaphragm (i.e., the girders resist no tension). Therefore, a cracked deck 

with a cracked pier diaphragm at the pier was studied to simulate the conditions assumed 

during design (Figure 57).  In this work it was assumed that the diaphragm had cracked to 

over ½ of the total girder depth. 

 

Figure 57. Uncracked deck condition 

5.2 Parametric Study of Bridge A  

The parametric study was conducted with live load (Equivalent UDL, CHAPTER 

4) and 56 days shrinkage load (CHAPTER 4) to specifically investigate the effects of the 

length (L), area (A) and distribution pattern of the b2 reinforcement on the negative 

bending behavior of PPCB bridges. By changing the parameters, the average longitudinal 
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strain (εz) over the pier, at the 1/8 span location and at the 1/4 span location (Figure 58) 

were compared to formulate conclusions. 

 

Figure 58. Parametric study region 

5.2.1 Live Load 

Figure 59(a) shows the major principal strain (ε1) distribution of Bridge A with an 

uncracked deck (Model 1) due to the equivalent UDL. Strains are smaller than the cracking 

strain (Equation 3) over the pier and at the 1/8 span location of the deck. Figure 59(b) 

shows the ε1 strain distribution of Bridge A with twice the length of the b2 reinforcement. 

The strain distribution pattern and magnitude are similar to the strain distribution for the 

as-built b2 reinforcement length (Figure 59(a)). The strain distribution of Bridge A with 

twice the b2 reinforcement area is shown in Figure 59(c). When compared with the strain 

distribution of the as-built b2 reinforcement area (Figure 59(a)), no significant difference 

can be observed. Figure 59(d) shows the ε1 strain distribution of Bridge A with 36 ft and 

72 ft staggered b2 reinforcement. When compared with the strain distribution of the as-

built b2 reinforcement distribution pattern (Figure 59(a)), no significant difference can be 

observed. 
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Figure 59. Variation of ε1 of Bridge A of Model 1, Load = Equivalent UDL
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Table 8 illustrates the average longitudinal strains (εz) at three different locations 

on Bridge A with the as-built properties, twice the length, twice the area, and a staggered 

distribution pattern of the b2 reinforcement using the three different, previously described 

models under live load (Equivalent UDL, CHAPTER 4). Compared to Model 1, much 

higher strains were observed on the top surface of the bridge deck of Model 2 and Model 

3. As can be seen sometimes the strains are much larger than the cracking strain (130 με) 

indicating that it may be possible to develop cracks.  Further, these analysis result would 

seem to indicate that once cracking starts (i.e., you move from Model 1 condition to Model 

2 condition to Model 3 condition) that cracks could be expected to continue to develop and 

grown.  This may be true even without an increase in external loads.  In general the higher 

strains over the pier and girders (regardless of the model type) would seem to indicate a 

higher density of cracks and/or wider cracks occurs in these areas. As one would expect 

the parametric study results under live load indicate higher tensile strains over the pier for 

all model configurations. Further, at the 1/8 span location, the results indicate an 

approximately 20% to 30% lower tensile strains than those at the pier. Even further, at the 

1/4 span the deck appears to be in compression under the simulated live load.  

The length of the b2 reinforcement was changed into twice the as-built b2 

reinforcement length to investigate the effect of the b2 reinforcement length. Recall that 

the as-built b2 reinforcement was terminated at the 1/8 span location. Therefore termination 

point of the b2 reinforcement with twice the initial length would be at 1/4 span location 

from the pier. Compared to the results from the as-built condition, Model 1 does not show 

a significant different difference due to a lengthening of the b2 reinforcement. Model 2 and 

Model 3 show a significant reduction in average longitudinal strain only at the 1/8 span 

location. 

The effect of the b2 reinforcement area was studied by doubling the as-built b2 

reinforcement area. Due to the change of b2 reinforcement area no significant strain 

difference is observed over in Model 1. Compared to the as-built condition, Model 2 and 

Model 3 show a small reduction of longitudinal strain over the pier. 

The b2 reinforcement was terminated at 1/8 span and 1/4 span locations to develop 

the staggered reinforcement distribution pattern. Recall that the as-built b2 reinforcement 
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distribution pattern was consist of uniform b2 reinforcement which are terminated at 1/8 

span location. Compared to the as-built condition no noticeable strain difference were 

found in Model 1. Average longitudinal strains only at 1/8 span location were increased in 

Model 2 and Model 3.  

Table 8. Average longitudinal strain (με) of Bridge A due to the live load 

parameter 

Model 1 Model 2 Model 3 

Pier 
1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 

As-built 26.0 6.5 -9.0 196.8 39.3 -12.4 304.2 94.2 -12.1 

Twice 

length  
26.0 6.2 -8.7 198.3 8.5 -11.8 258.6 6.0 -14.1 

Twice area  24.9 6.6 -8.8 152.1 48.9 -12.2 196.7 56.5 -14.0 

Staggered 

b2 at 1/8 

span and 1/4 

span 

26.0 6.4 -8.9 197.8 22.1 -12.1 258.5 20.7 -14.5 

 

5.2.2 Shrinkage Load 

To investigate the effect of the b2 reinforcement, a shrinkage load at 56 days 

(CHAPTER 4) was applied to the bridge deck. As shown in Figure 60(a), strains over the 

pier and at the 1/8 span location of the b2 reinforcement are in the vicinity of the cracking 

strain of the concrete (Equation 3). Figure 60(b) presents the strain distribution with twice 

the length of b2 reinforcement. Compared to Figure 60(a), no significant strain difference 

is observed over the pier. Little difference can be found at the 1/8 span location of the b2 

reinforcement. The strain distribution of Bridge A with twice the b2 reinforcement area is 

shown in Figure 60(c). Compared with Figure 60(a), there is no noticeable difference 

between the strain distributions. The major principal strain distribution of Bridge A with 

staggered b2 reinforcement area is shown in Figure 60(d). Compared to Figure 60(a), no 
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significant strain difference can be found over the pier. Small differences can be found at 

the 1/8 span location of the b2 reinforcement.



  

 

 

Figure 60. Variation of ε1 of Bridge A of Model 1, Load = Shrinkage (56 days) 
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Table 9 presents the average longitudinal strains (εz) at three different locations 

on Bridge A with the as-built properties, twice the length, twice the area, and staggered 

distribution pattern of the b2 reinforcement using the three different, previously 

described models for 56 days shrinkage load (CHAPTER 4). Similar to the live load 

study results, the parametric study results of Model 1 due to the 56 days shrinkage load 

does not significantly affect the behavior of the bridge. Results shows the tensile strains 

with the highest strain occurring at the 1/8 span location. Compared to the results from 

the as-built condition, a change in b2 reinforcement length with either Model 2 or 

Model 3 shows a significant reduction in average longitudinal strain only at 1/8 span 

location. Whereas no significant difference can be observed due to the change in b2 

reinforcement area or pattern of Model 2 and Model 3.  

Table 9. Average longitudinal strain (με) of Bridge A due to 56 days shrinkage 

load 

parameter 

Model 1 Model 2 Model 3 

Pier 
1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 

As-built 86.2 103.0 96.0 112.2 218.2 52.3 174.6 254.8 52.4 

Twice 

length  
85.7 106.9 97.1 127.1 187.1 57.8 161.0 185.9 56.3 

Twice area  87.4 106.6 95.6 107.7 227.9 52.5 130.3 233.9 51.3 

Staggered 

b2 at 1/8 

span and 

1/4 span 

85.9 106.4 96.4 121.5 225.3 55.0 155.2 225.2 53.4 

 

5.2.3 Summary 

A parametric study of Bridge A was conducted by changing the length, area and 

distribution pattern of the b2 reinforcement. Three different types of conditions, 

namely: (1) Model 1 -Uncracked deck, (2) Model 2 - Cracked deck and (3) Model 3 - 

Cracked deck with cracked diaphragm, were used in the study of the strain distribution 

and magnitude in the negative bending moment region. The bridge with the uncracked 

deck showed no significant difference in the strain distribution due to the live load and 
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the 56 days shrinkage load. Both the cracked deck and the cracked deck with cracked 

pier diaphragm models show similar strain distributions, except that the cracked deck 

with cracked pier diaphragm condition shows slightly larger strains over the girders. 

The results show that an increase of b2 reinforcement area reduces the strain 

magnitudes over the pier, whereas an increase of length of the b2 reinforcement 

decreases the strain level at the 1/8 span location of the b2 reinforcement. The staggered 

b2 reinforcement distribution pattern also reduces the strains at the 1/8 span location of 

the b2 reinforcement. 

5.3 Parametric Study of Bridge B 

The parametric study of Bridge B was conducted similar to the parametric study 

of Bridge A by changing the length (L), area (A) and distribution pattern of the b2 

reinforcement and considering the differences in behavior under live load (Equivalent 

UDL, CHAPTER 4) and 56 days shrinkage load (CHAPTER 4).  

5.3.1 Live Load 

Figure 61 shows the major principal strain distribution around Region P (Figure 

58) of the uncracked Bridge B due to live load. Comparing Figure 59 with Figure 61, 

one can observe a significant reduction of strain over the pier. Also of importance is to 

note that the strains are lower than the cracking strain (Equation 3) over the pier and at 

the 1/8 span location of the deck. Figure 61 (b), (c), (d) show the ε1 strain distribution 

of Bridge B with twice the length, twice the area and staggered b2 reinforcement at 1/4 

span and 1/8 span locations respectively. When compared with the strain distribution 

of the as-built b2 reinforcement condition (Figure 61(a)), no significant difference can 

be observed. 

 

 

 

  

 

 

 



 

 

 

Figure 61. Variation of ε1 of Bridge B of Model 1, Load = Equivalent UDL
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Table 10 present the average longitudinal strains (εz) at three different locations 

on Bridge B with the as-built properties, twice the length, twice the area, and a staggered 

distribution pattern of the b2 reinforcement for the previously described three different 

models under live load (Equivalent UDL, CHAPTER 4). Similar to Bridge A results, 

compared to Model 1, much higher strains were observed on the top surface of the 

bridge deck of Model 2 and Model 3, indicating possible crack development (depending 

upon whether one initially assume cracking or not). The parametric study results under 

live load indicate higher tensile strains over the pier for all model configurations. At 

the 1/8 span location, the results indicate an approximately lower tensile strains than 

those at the pier. Whereas at the 1/4 span the deck appears to be in compression under 

the simulated live load. Similar to Bridge A parametric study results, changing the b2 

reinforcement parameters does not show a significant difference when Model 1 is used. 

Twice the b2 reinforcement length show a significant reduction in average longitudinal 

strain only at the 1/8 span location for Model 2 and Model 3. Compared to the as-built 

condition, Model 2 and Model 3 show a small reduction of longitudinal strain over the 

pier due to doubling the as-built b2 reinforcement area. Compared to the as-built 

condition, the staggered b2 reinforcement pattern shows lower longitudinal strains only 

at 1/8 span location in Model 2 and Model 3.  

Table 10. Average longitudinal strain (με) of Bridge B due to the live load 

parameter 

Model 1 Model 2 Model 3 

Pier 
1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 

As-built 15.4 9.8 -4.8 31.6 76.2 -33.2 37.8 82.1 -35.4 

Twice 

length  
15.4 6.6 -3.2 33.2 2.0 4.2 39.1 1.8 7.2 

Twice area  15.4 9.8 -4.8 31.6 76.2 -33.2 37.8 82.1 -35.4 

Staggered 

b2 at 1/8 

span and 

1/4 span 

24.3 10.3 -6.1 160.9 31.1 -34.8 219.4 32.9 -49.3 
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5.3.2 Shrinkage Load 

A simulated shrinkage load at 56 days was also applied to Bridge B as part of 

the parametric study. Figure 62 presents the strain distribution around the negative 

moment region (Region P). Compared to Figure 60, a small increase in strain magnitude 

over the pier can be observed. The parametric study was carried out by changing the 

length (L) Figure 62(b), area (A) Figure 62(c) and distribution pattern of the b2 

reinforcement Figure 62(d). No significant differences were observed. 

 

 

 

 

 

 



 

 

 

Figure 62. Variation of ε1 of Bridge B of Model 1, Load = Shrinkage (56 days)
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Table 11 shows the average longitudinal strains (εz) at three different locations 

on Bridge B for the previously described models due to the 56 days shrinkage load 

(CHAPTER 4). The parametric study results of Model 1 due to the 56 days shrinkage 

load does not significantly affect the behavior of the bridge. Due to the shrinkage load 

higher tensile strains were observed at the 1/8 span location. Compared with the as-

built condition, twice b2 reinforcement length of either Model 2 or Model 3 shows a 

significant reduction in average longitudinal strain only at 1/8 span location. Whereas 

no significant difference can be observed due to the change in b2 reinforcement area or 

pattern of Model 2 and Model 3.  

Table 11. Average longitudinal strain (με) of Bridge B due to 56 days shrinkage 

load 

parameter 

Model 1 Model 2 Model 3 

Pier 
1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 
Pier 

1/8 

span 

1/4 

span 

As-built 78.8 118.4 100.3 95.1 239.4 235.7 97.4 242.4 234.6 

Twice 

length  
76.9 124.5 107.9 97.6 146.7 479.2 99.8 146.6 480.7 

Twice area  78.8 118.4 100.3 95.1 239.4 235.7 97.4 242.4 234.6 

Staggered 

b2 at 1/8 

span and 

1/4 span 

73.6 114.7 102.6 112.0 196.5 351.4 138.1 197.5 343.9 

 

5.3.3 Summary 

Bridge B was used to study the effect of skew angle on the negative moment of 

the PPCB bridge decks. The parametric study of Bridge B was conducted similar to the 

parametric study of Bridge A. The results are similar, except that Bridge B shows 

smaller strains over the pier due to the live load. However, compared to Bridge A, a 

slight increase in strains over the pier, due to 56 days shrinkage load of Bridge B, can 

be observed. 
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CHAPTER 6. EVALUATION OF SECONDARY MOMENTS OF BRIDGE A 

6.1 Calculation of Secondary Moments Based on PCA Method 

Multi-span PPCB bridges made continuous for live load have been shown to be 

effective in reducing construction and maintenance costs, while also typically 

improving ride quality. As discussed in CHAPTER 1, construction of this type of 

bridges involve two primary stages. During the first stage, the PPCB girders are placed 

on supports (Figure 63(a)) and they behave like a simply supported structure. After the 

concrete deck is placed and fully cured, the bridge moves to the second stage and it 

behaves like a fully continuous structure over the intermediate support (Figure 63(c)).  

 

Figure 63. Construction sequence of PPCB bridge decks [17] 

During the first stage the pre-stressed girders experience upward deformation, 

mainly due to creep of the pre-stressing force (Figure 64(a) and Figure 64(b)), which is 

partially counteract by the dead load creep. After the continuity connection is made, 

upward creep deformation will continue and ultimately induce a positive moment at the 

continuity connection over the pier (Figure 64(c) and Figure 65).  

(a) Pre-stressed girders on sub-structure  

(b) Negative moment reinforcement over pier 

(c) After the cast-in-place deck placement 
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Figure 64. Development of deformations and restraint moments in a two-span 
continuous beam [17] 

 

Figure 65. Secondary positive moment due to creep [23] 

After the concrete deck placement, differential shrinkage occurs between the 

concrete deck and girders due to the age difference of the concrete. This situation 

creates a negative secondary moment at the continuity connection (Figure 66). 

 

Figure 66. Secondary negative moment due to differential shrinkage [23] 
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(c) Final deformation and secondary moment after continuity 
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According to the Michael D McDonagh et al. [13] in a PCA report [14], when 

combined and summed these secondary moments from creep and differential shrinkage 

may reduce the total  moment at the continuity connection – even to the point where 

the regions over the pier never experience a total negative moment. It is further 

suspected that the reduction of total negative moment due to the secondary positive 

moment effects might move the point of inflection and reduce the amount and extent of 

deck cracking in the regions over and near the piers.  To illustrate the general impact of 

considering secondary moments during bridge design, the calculation of the secondary 

moments at the intermediate support of an interior girder of Bridge A (on Meredith 

Drive, over I35/80) is presented in the following sections.  The reader is advised to 

consider the impact these secondary moments might have on the design of negative 

moment b2 reinforcement. 

6.1.1 Design Data 

The calculations shown in the following subsections follow the method 

summarized by the PCA report mentioned above.  As with any such calculation, there 

are several important pieces of design information needed.  The information below, 

which was taken from the Bridge A plans and other sources, provides the information 

needed. 

Material properties 

Material properties Value / (psi) 

Deck concrete strength at 28 days 4,000 

Diaphragm concrete strength at 28 days 4,000 

Pre-stressed concrete girder strength at release 8,000 

Pre-stressed concrete girder strength at 28 days 9,000 
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Section properties 

 

Figure 67. Section properties 

Section properties Non-composite Composite 

Area, A (in2) 748.8 1468.8 

Neutral axis from bottom, Yb (in) 24.64 41.00 

Moment of inertia, I (in4) 285860   

 

Pre-stressing properties (Provided by the Iowa DOT) 

Pre-stressing steel area (in2/strand) 0.28 

Initial per-stress (ksi/strand) 196 

Final per-stress after losses (ksi/strand) 165 

Final pre-stressing force after losses (kip/strand) 46.7 

No. of strands, Draped 14 

No. of strands, Straight 42 

P1 (kip) 653.8 

P2 (kip) 1961.40 

P3 (kip) 70.51 

(a) Non-composite section (b) Composite section 

Composite neutral axis 

Non-composite neutral axis 



72 

 

 

 

Figure 68. Tendon profile 

L1 = 54.5 ft L2 = 27.0 ft L = 136.0 ft 

d1 = 8.0 in. d2 = 41.0 in. d3 = 46.0 in. 

 

6.1.2 Design Assumptions 

For the calculations summarized below it has been assumed that the pre-

stressing force was released 2 days after concrete placement.  Further, it was assumed 

that the continuity connection was constructed 28 days after the pre-stress was applied.  

As should be clear, these represent important “dates” and deviation from them can have 

a notable impact on the results. 

6.1.3 Calculation of Positive Secondary Moment at Intermediate Support  

As discussed earlier, the secondary positive moments for Bridge A occur due to 

creep of the pre-stressed girders (MC). Further, the creep due to the pre-stressed force 

(MC1) is in the opposite direction to the creep due to dead load (MC2). Calculation of 

each of these components using elastic structural analysis considering monolithic 

behavior of the deck and girders are given below.  

6.1.3.1 Due to the Pre-Stressed Force Creep 

Slope due to the pre-stressing force (Figure 69(a)) at the intermediate support 

for a simple span beam is determined using the M/EI diagram. A similar method can 

be used to calculate the slope at the intermediate support due to the restraining moment 

(Figure 69(b)).  
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Figure 69. Variation of slope due pre-stressing creep [14] 

θ1 =  
1

2EI
(P1d1L − P2d2L − P3L1

2 − P3L1L2)  θ2 = −
MC1L

3EI
 

These slopes should be equal and opposite to ensure that equilibrium and compatibility 

are maintained. Therefore, the secondary moment due to pre-stressing creep is, 

MC1 = - 
3𝐸𝐼

𝐿
(𝜃1) 

𝜃1  = 
1

2𝐸𝐼
(𝑃1𝑑1𝐿 − 𝑃2𝑑2𝐿 − 𝑃3𝐿1

2 − 𝑃3𝐿1𝐿2)     

 = 
−148870260

2𝐸𝐼
 

Positive secondary moment at intermediate 

support due to pre-stressed creep, MC1 
= −

3𝐸𝐼

𝐿
(𝜃1)  

 = 11928.7 kip-ft 

6.1.3.2 Due to the Dead Load Creep  

Slope due to dead load creep (Figure 70(a)) and due to the secondary moment 

(MC2) (Figure 70(b)) at the intermediate support for a simple span beam can similarly 

be determined from the M/EI diagram. 

 

Figure 70. Variation of slope due dead load creep [14] 
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θ3 =
MDL

3EI
 θ4 = −

MC2L

3EI
 

 

Once again, after the continuity connection made, these slopes should be equal 

and opposite to ensure equilibrium and compatibility are maintained. Therefore, the 

secondary moment due to dead load creep is, 

         MC2          = -MD 

Dead load moment at mid-span,  MD 

Girder = 
748.8

144
× 0.150 ×

1362

8
 

 = 1803.36 kip-ft 

Deck = 
90×8

144
× 0.150 ×

1362

8
 

 = 1734.00 kip-ft 

Total = 1803.36 + 1734.00 

 = 3537.36  kip-ft 

Positive secondary moment at intermediate 

support due to dead load creep, MC2 
= -1.0 × 3537.36 

 = -3537.36 kip-ft 

6.1.4 Calculation of Negative Secondary Moment at Intermediate Support  

As discussed earlier, a negative secondary moment due to differential shrinkage 

between the cast-in-place deck and the concrete girders is also created in PPCB. 

According to the PCI report the negative secondary moment can be calculate by the 

following. 

MS = 𝜖𝑔 × 𝐸𝑏 × 𝐴𝑏 × (𝑒2
′ +

𝑡

2
) 

Where, 

𝜖𝑔   = Differential shrinkage strain 

𝐸𝑏   = Elastic modulus of the concrete deck 

𝐴𝑏  = Cross-sectional area of the concrete deck 

(𝑒2
′ +

𝑡

2
) = Distance between the mid-depth of the slab and centroid of the composite 

section 

𝑡  = Thickness of the concrete deck 
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According to the PCA report, in the lack of test data the ultimate shrinkage at 

50% relative humidity can be taken as 0.0006 in. / in., in post construction analyses it 

should ideally be corrected with the shrinkage humidity correction factor (Figure 10, 

[23]) that accounts for the actual conditions present and final creep/shrinkage 

adjustment factor (Figure 8, [23]), which allows to accommodate the amount of deck 

shrinkage has already take place since the deck placement at the time the post-

construction analysis is completed. 

Final creep/shrinkage  adjustment factor (Figure 

8, [23]) 
= 0.4 

Shrinkage humidity correction factor (Figure 10, 

[23]) 
= 1.0 

𝜖𝑔  = 1.0 × 0.4 × 0.0006 

 = 0.00024 in. / in. 

Negative secondary moment at intermediate 

support due to pre-stressed creep, MS 
= 

0.00024×3605000×720×17

1000×12
 

 = 882.50 kip-ft 

6.1.5 Calculation of Creep Factors 

The factor ϕ is defined as the ratio of creep strain to elastic strain. The factor ϕ 

describes the amount of creep strain still to occur compared with the original elastic 

strain. 

𝜙 =
∈𝐶𝑟𝑒𝑒𝑝

∈𝐸𝑙𝑎𝑠𝑡𝑖𝑐
=∈𝐶𝑟𝑒𝑒𝑝× 𝐸 

Where, 

∈𝐶𝑟𝑒𝑒𝑝   = Creep strain  

𝐸  = Elastic modulus at the continuity connection established 

In most design work, the elastic modulus is used to predict the creep value for 

the concrete mix at 28 days (Figure 5, [23]). Further, the 20 year creep value is typically 

taken as the ultimate creep of the concrete.  

Elastic modulus at strand release = 5407494.80 psi 

Specific creep at 20 years (Figure 5, [23]) = 0.16 × 10−6 in. / in. / psi 
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As mentioned before, if a post-construction analysis is ever completed the 

specific creep value should be adjusted with pre-stressed release adjustment factor 

(Figure 6, [23]) to account for the time when the girders were pre-stressed. In this 

sample calculation it was assumed that the pre-stressing force was released at 2 days 

after casting of the girders. In this sample calculation it was assumed that the continuity 

connection was constructed 28 days after the pre-stress was applied.  The pertinent 

adjustment factors are then: 

Pre-stressed release adjustment factor 

(Figure 6, [23]) 
= 1.66 

Volume / surface adjustment factor (Figure 

7, [23]) 
= 1.20 

Final creep/shrinkage  adjustment factor 

(Figure 8, [23]) 
= 0.6 

 

Therefore, final creep strain and the factor ϕ can be calculated as follows. 

∈𝐶𝑟𝑒𝑒𝑝   = 0.6 × 1.20 × 1.66 × 0.16 × 10−6 

 = 0.191 × 10−6 in. / in. / psi 

ϕ = 0.191 × 10−6 × 57000 × √9000 

 = 1.03 

Having the factor ϕ evaluated, the Creep factor, (1 − 𝑒−𝜙) and the Shrinkage factor, 

(
1−𝑒−𝜙

𝜙
) can be calculated as follows. 

Creep factor, (1 − 𝑒−𝜙) = (1 − 𝑒−1.03) 

 = 0.64 

Shrinkage factor, (
1−𝑒−𝜙

𝜙
) = (

1−𝑒−1.03

1.03
) 

 = 0.62 
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6.1.6 Final Secondary Moment 

According to the PCA report the resultant secondary moments can be calculated 

as follows. 

M Final, Secondary = (MC1 - MC2) × (1 − 𝑒𝜙) - MS × (
1−𝑒𝜙

𝜙
)  

M Final, Secondary = (11928.7 − 3537.36) × 0.64 − 882.50 × 0.62 + 0 

 = 4823.3 kip-ft 

6.1.7 Live Load Moment  

The negative moment at the intermediate support of Bridge A due to the live 

load was calculated using BEC Analysis program (A live load structural analysis 

program for bridge structures). In this case Bridge A was treated as a two span 

continuous beam (Figure 71) having a composite deck girder cross-section as shown in 

Figure 67. As shown in Figure 71, HS 20 truck load was used for the analysis. The live 

load negative moment over the intermediate support of Bridge A was calculated as -

922.71 kip-ft.   

 

Figure 71. Simplified model of Bridge A used to calculate live load negative moment 

According to the calculated secondary moments based PCA method, five times 

larger positive moments due to secondary effects than the live load negative moment 

was observed to exist at the intermediate pier. This imply that the secondary moments 

play an important role of the structural behavior of PPCB bridges. Usually, the negative 

moment deck reinforcement design based on the live load negative moments at the 

intermediate support only. Therefore, if one can take advantage of the fact that these 

secondary moments are present, lesser amount of negative moment reinforcement will 

be expected.  It may even be possible that the deck over the piers may never actually 

experience tensile stresses. However this secondary moments are highly time-

14 ft 14 ft 

32 
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32 

kip 
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kip 
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dependent and many uncertainties are associated with it. Therefore further 

field/laboratory tests may be required to confidently consider the secondary moments 

in the negative moment reinforcement design process.   
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CHAPTER 7. EFFECTS OF THE CONTINUITY DIAPHRAGM 

7.1 Introduction 

A Cast in Place (CIP) continuity diaphragm at the intermediate support are 

present in most PPCB continuous bridges built in the United States. Generally, the 

diaphragm is integrated with the deck through continuous reinforcement and tied to the 

girders with anchor bars. Depending upon the bridge type, some diaphragms are post-

tensioned and some of them have non-pre-stressed reinforcement. Continuity 

diaphragms are supposed to improve the load distribution and load carrying capacity 

due to both lateral loads (wind load) and vertical load (traffic) on the bridge, while 

minimizing the installation of expansion joints and maintenance cost. Improved riding 

quality and enhanced structural redundancy are some other advantages of the continuity 

diaphragm [25].  

Several problems are associated with the continuity diaphragm. First, AASHTO 

specification does not specify the effect of diaphragms on the load distribution factor 

calculations and capacity evaluations [26] [27]. AASHTO LRFD specification does not 

specify the strength of the concrete in the continuity diaphragm. Wassef et al. [20] also 

stated that the diaphragm concrete has higher strength compared to the unconfined 

concrete strength measured during typical concrete cylinder test, due to the 

confinements in the diaphragm. However design of the girders and design of deck 

continuity reinforcement does not account for the diaphragms effects. Continuity 

diaphragms have construction and detailing problems, especially with the increase of 

the skew angle girder spacing get reduce, construction process get more difficult and 

diaphragms become less effective in carrying and distributing the loads [28]. Therefore 

effect of the continuity diaphragm on the behavior of the PPCB bridges is questionable.  

7.2 Objective 

Investigate the effect of the continuity diaphragm on the behavior of continuous 

PPCB bridges. 
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7.3 Research Plan 

Task 1 – Literature review 

A literature review was conducted to collect the information on the effects of 

the continuity diaphragm on the negative moment behavior of the continuous PPCB 

bridges. 

Task 2 – Analytical study  

Finite element models of two bridges (Bridge A and Bridge B, CHAPTER 4), 

were analyzed with and without continuity diaphragm to investigate the effects of the 

continuity diaphragm on the negative moment behavior of the continuous PPCB 

bridges.  

7.4 Literature Review 

Cai et al. [26] conducted research to determine the effect of the intermediate 

diaphragms and skew angle on the behavior of the pre-stressed concrete bridges. Six 

bridges with different girder types, span length, number of lanes, skew angles and 

diaphragm layouts were considered. Finite element models of these bridges developed 

with shell elements (deck) and beam elements (girders, diaphragm and parapets). The 

composite action was modeled by the rigid links. Four types of diaphragm conditions 

considered in the finite element model are listed in Table 12.  

Table 12. Diaphragm conditions 

Type Condition 

Case A Only end diaphragm 

Case B Case A + Intermediate diaphragm non-composite with the slab 

Case C Case D with 1/3 intermediate diaphragm stiffness 

Case D Case A + Intermediate diaphragm composite with the slab 

 

Maximum strains at the bottom of the girders and load distribution factors 

obtained from finite element analysis for each case compared with the field test results. 

Researchers observed that changing the diaphragm condition from Case A to Case D 

significantly reduced the maximum strains and load distribution factors. Further, they 

observed that Case B predicted reasonable results for all bridges. Parametric studies 

showed that the intermediate diaphragm type can noticeably change the maximum 
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strain and strain distribution pattern. Parametric study of the bridge performance also 

studied by changing the skew angle and number of intermediate diaphragms. 

Researchers observed that with the absence of intermediate diaphragms, increased skew 

angles decreased the maximum strain and load distribution factors. When the 

intermediate diaphragm present it may have opposite effect. Therefore effects of the 

diaphragms are more significant in the non-skew bridges than the skewed bridges. 

Barr et al. [27] evaluated the effects of intermediate diaphragms, end 

diaphragms, continuity diaphragm, skew angle and load type on the live load 

distribution factors of pre-stressed concrete bridges. A three span pre-stressed concrete 

bridge was used in the study. A finite element model of the bridge was developed with 

shell elements (deck, intermediate diaphragms, and pier diaphragms) and beam 

elements (girders, pier cap, columns). Rigid links were used to model the composite 

action. The finite element model was validated with field tests on the bridge. The 

parametric study involved 24 variations of the bridge model. Researchers observed that 

the continuity diaphragm increased the live load distribution factors at the exterior 

girders and decreased the live load distribution factors at the interior girders. In all 

cases, an increase of skew angle decreased the live load distribution factors of the 

bridge, implying that the continuity diaphragm is less effective in bridges with large 

skew angles. 

Saber et al. [28] conducted research on pre-stressed continuous concrete bridges 

to investigate the load transfer mechanism through the full depth of the continuity 

diaphragm and the effect of the skew angle. A three-dimensional finite element model 

was developed with plate elements (deck), solid elements (girders) and beam elements 

(continuity diaphragm). The parametric study involved 16 combinations of bridge 

models with different skew angles, girder spacing, span length and diaphragm 

conditions. According to Saber et al. [29], in bridges without a continuity diaphragm 

have a gap between the girders. A finite element model with a gap between ends of the 

girders allows the girders to rotate more, where the actual connection slightly restrains 

the rotation of the girder ends. Therefore, pre-stressed girders over the intermediate 

supports were modeled as continuous girders even there is no continuity diaphragm. 

For each case the bridge deck was continuous over the intermediate support. Effects of 

the continuity diaphragm on the pre-stressed bridges were evaluated based on the 

maximum stress and maximum deflections of the girders. Researchers observed a 1% 
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to 3% increase of maximum tensile stress and a 0.2% decrease of maximum 

compressive stress due to the continuity diaphragm. Maximum deflection of the girders 

increased by 0.1% with no continuity diaphragm condition. Researchers concluded that 

the continuity diaphragm has negligible effect on the maximum stress and defection of 

the girders and the continuity diaphragm with skew angle greater than 20 degree will 

be ineffective in pre-stressed bridges.  

Later Saber et al. [25] conducted the field verification of the effect of the 

continuity diaphragm on pre-stressed concrete bridges. A pre-stressed concrete bridge 

with 48 degree skew angle with a continuity diaphragm selected for the study. A three 

dimensional finite element model similar to their previous study was developed and 

verified with the field test results. During the parametric study, stresses of the girders, 

stresses of the deck and deflection of the girders were compared with and without the 

continuity diaphragm conditions. Compared to the continuity diaphragm condition, the 

maximum stress of the girders without continuity diaphragm condition did not exceed 

8%. Whereas, maximum stresses of the deck did not exceed 5% and maximum 

deflection of the girders were below 6%. Therefore researchers concluded that the 

effects of continuity diaphragm on the bridge performance is negligible, particularly in 

bridges with large skew angles. Researchers suggested that the continuity diaphragm 

can be eliminated unless it is necessary for construction, erection lateral stability or 

earthquake loads. Further, a link slab was proposed to improve the riding quality and 

reduce the maintenance cost without a continuity diaphragms. 

F. M. Russo [23] discussed three different continuity connection types in pre-

stressed concrete bridges, namely: (1) Full section continuity, (2) Deck only continuity, 

(3) No cast in place (CIP) deck continuity. Full section continuity is achieved with a 

continuity diaphragm at the intermediate support (Figure 72(a)). The deck only 

continuity concept (Figure 72 (b)), also known as the link slab concept, is constructed 

with continuous bridge deck and girder ends are not connected. Continuity and the 

required strength is achieved through the deck reinforcement. No CIP deck continuity 

(Figure 72(c) is achieved with the continuity diaphragm, which is not integral with the 

bridge deck. Extended pre-stressed strands are used to support the positive moment, 

whereas top flange reinforcement is used to support the negative moments at the 

intermediate support. Oesterle et al. [30] proposed several connection types for negative 

moment connection.   
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Figure 72. Types of continuity connections [23] 

7.5 Analytical Study 

According to the parametric study results in CHAPTER 5, the negative moment 

b2 reinforcement does not significantly affect the negative bending behavior of the pre-

stressed continuous bridges. However the complex behavior of the continuity 

diaphragm may affect the behavior of the negative moment region in the continuous 

PPCB bridges. In this section, the effect of the continuity diaphragm on pre-stressed 

concrete bridges were investigated by analyzing Bridge A and Bridge B with and 

without continuity diaphragm conditions.  

7.5.1 Finite Element Models 

Finite element models of Bridge A and Bridge B with continuity diaphragms 

(Figure 73(a)) were discussed in CHAPTER 4. Similar procedure was used to model 

the finite element models of Bridge A and Bridge B without the continuity diaphragm 

(Figure 73(b)). Pinned support conditions were used at the abutments, whereas roller 

support conditions were applied to the ends of the girders at the intermediate supports. 

 

Figure 73. Finite element model at the intermediate support 
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7.6 Finite Element Analysis Results 

The effect of the continuity diaphragm were evaluated based on three strains, 

namely: (1) longitudinal strain of the deck over the pier, (2) longitudinal strain of the 

deck at the 1/8 of the span location (3) longitudinal strain of the girders at the mid-span 

location.  

Figure 74 shows variation of the longitudinal strain in the deck over the pier for 

four different bridge configurations. Without the continuity diaphragm both Bridge A 

and Bridge B show significant increase of the longitudinal strain of the deck. Compared 

to the Bridge A without the diaphragm, Bridge B without diaphragm shows 

approximately same peak strains, probably because of the skew angle effect of Bridge 

B.  

 

Figure 74. Longitudinal strain variation over the pier 

The variation of longitudinal strains of the deck at the 1/8 span location of 

bridges are shown in Figure 75. Both Bridge A and Bridge B with continuity diaphragm 

experience similar tensile strains variations. Whereas without the continuity diaphragm, 

Bridge A and Bridge B experience compressive strains. Compared to the Bridge B 

without diaphragm, significant strain observed in Bridge A from transverse distance 50 

ft to 80 ft. This might be due to the intermediate guard rail on the deck of the Bridge A. 
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Figure 75. Longitudinal strain variation at the 1/8 span location 

Longitudinal strain variations at mid-span of the bottom fiber of each girder are 

shown in Figure 76. Bridges without continuity diaphragm show higher strains than 

bridges with continuity diaphragm, probably because of bridge without continuity 

diaphragm behave as a simply supported structure. Further, the bridge with higher skew 

angle (Bridge B) shows higher strains than the bridge with smaller skew angle (Bridge 

A).  
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Figure 76. Strain of the girder mid-span 

7.7 Summary 

Bridge A and Bridge B with the continuity diaphragm and without the 

continuity diaphragm were analyzed to investigate the effects of the behavior of PPCB 

bridges. Longitudinal strains of the deck over the pier, at 1/8 span location and bottom 

of the girders at the mid-span were used to obtain the conclusions. Compared to the 

bridges with continuity diaphragm, bridges without the continuity diaphragm 

experienced higher strains. Skew bridges had smaller strains over the piers than non-

skew bridges. However, slightly larger strain in the girders at the mid span was 

observed. 

7.8 Conclusions 

According to the analytical study, the continuity diaphragm of the multi-span 

pre-stressed concrete bridge made continuous is effective in reducing the strain of the 

bridge on the bridge deck and girders. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

Multi-span Pre-tensioned Pre-stressed Concrete Beam (PPCB) bridges made 

continuous for live load usually experience a negative live load moment region over the 

intermediate supports. Sufficient reinforcement (longitudinal continuous deck 

reinforcement (b1) plus additional longitudinal reinforcement over the intermediate 

supports (b2)) must be provided to satisfy the strength and serviceability requirements 

within this negative moment region. The AASHTO LRFD bridge design manual 

recommends that the negative moment reinforcement be extended beyond the inflection 

point. Based upon satisfactory previous performance and judgment, the Iowa 

Department of Transportation (DOT) Office of Bridges and Structures (OBS) 

terminates the b2 reinforcement at 1/8 of the span length (which does not meet current 

AASHTO recommendations). Although the Iowa DOT policy results in approximately 

50% shorter b2 reinforcement than the AASHTO LRFD specifications, the Iowa DOT 

has not experienced any significant deck cracking over the intermediate supports. The 

objectives of the project are as follows. 

 Investigate the Iowa DOT OBS policy regarding the required amount of b2 

reinforcement to provide negative moment continuity. 

 Investigate OBS policy regarding the termination length of b2 reinforcement. 

 Investigate the impact of the termination pattern of the b2 reinforcement. 

 Investigate the effect of secondary moments on the performance of the PPCB 

bridges. 

8.1 Summary 

8.1.1 Literature Review 

In PPCB bridges, the predominant mode of deck cracking is transverse cracking, 

which usually occurs over the transverse reinforcement. The effects of numerous 

contributing factors and mitigation procedures are not yet fully understood. Most 

research work has focused on the construction materials, mix designs, construction 

practices, and environmental conditions during construction to determine why 

transverse cracks occur on bridge decks. Very little research has been carried out on the 

effects of structural design factors such as girder type, shear stud configuration, deck 

thickness, reinforcement size and type, and the effect of vibrations on deck cracking.  
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Secondary moments due to creep of the girders as well as differential shrinkage 

between the deck and the girders are known to play an important role in the design of 

the reinforcement at the bottom of the continuity connection. Several research projects 

developed and improved methods to calculate the secondary moments and some of 

them developed more efficient positive moment connections to mitigate the cracks at 

the bottom of the continuity connection due to these secondary moments. Researchers 

have also concluded that the positive reinforcing steel at the support has no significant 

effect on the resulting negative moment.  

8.1.2 Field Test 

Five bridges with different characteristics (numbers of spans, span lengths, 

widths, skew angles, number of girders and girder types) were used during a field test 

program to investigate the effects of various bridge characteristics on the negative 

bending behavior near the piers. To investigate the effects of the b2 reinforcement, a 

suite of strain gauges, including rosettes, were placed on the deck top surface 1 ft inside 

and 1 ft outside the end of the b2 reinforcement. Another set of strain gauges were 

located over on the top surface of the deck over the pier. Girder strain gauges were also 

attached to both top and bottom flanges at a mid-span location and at one depth of the 

girder away from the pier. A standard snooper truck provided by the Iowa DOT crossed 

the bridge along multiple transverse paths at a crawl speed to generate pseudo-static 

strain responses in the test bridges.  

Even though the field tests involved five bridges with different properties, the 

strain profiles of the deck gauges and girder gauges look similar in terms of pattern and 

magnitudes. For example, the strain gauges outside of the b2 reinforcement showed 

slightly higher strains than the strains inside of the b2 reinforcement. When the truck 

axles were in the vicinity of the rosettes, an expected compression and tension behavior 

of the bridge was observed in the two-span bridges. Major and minor principal strains 

of approximately the same magnitudes with opposite signs were observed when the 

truck axles were away from the rosettes. In the three-span bridges, principal strains of 

the same magnitudes with opposite signs were always observed. 

8.1.3 Calibration  

A significant focus of the research was to investigate the effects of b2 

reinforcement on both skewed and non-skewed bridges with Bulb Tee girders. Out of 
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the five field tested bridge, two bridges - Bridge A (on Meredith Drive, over I35/80) 

with a smaller skew angle and Bridge B (on I80, over US65) with a larger skew angle 

- were selected for further study with the finite element models.  

8.1.3.1 Bridge A 

A finite element model of Bridge A was calibrated with the field test results in 

the vicinity of negative moment region. The field test results from the deck gauges 

agreed with the finite element results. Initially, strain differences were found in the 

girder gauges. Therefore, the Modulus of Elasticity of the girders were increased and 

the support conditions were modified to minimize the difference between the finite 

element model and the field test. 

The finite element model was then compared with the cracking strain of the 

concrete (130με) to simulate the transverse field cracks. It was found that a Uniformly 

Distributed Load (UDL) approximately equivalent to eight HS20 trucks was not 

sufficient to produce cracking strains. Further an 80 degree temperature drop was also 

found to not be sufficient to develop cracks. Since 50% of the shrinkage of concrete 

decks takes place during 56 days following deck placement, a deck shrinkage load of 

56 days applied to the model and it was found that this amount of deck shrinkage had 

the potential to induce strain that exceeded cracking levels. 

8.1.3.2 Bridge B 

The live load calibration results of Bridge A were used as the initial conditions 

for calibrating Bridge B, followed by a refined calibration with Bridge B field test 

results. It was found that the finite element results of Bridge B are agreed with the field 

test results. 

8.1.4 Parametric Study 

8.1.4.1 Bridge A 

Three different conditions for Bridge A were used in the parametric study: (1) 

Model 1 - Uncracked deck, (2) Model 2 - Cracked deck and (3) Model 3 - Cracked deck 

with cracked diaphragm. The length, area and distribution pattern of the b2 

reinforcement were the primary parameters of the study. Linear static analysis was used 

to conduct the parametric study with live load (equivalent UDL) and 56-days shrinkage 

load. The parametric study results showed that Model 1 had no significant difference 

in the strain distribution due to both live load and 56 days shrinkage load.  
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Both Model 1 and Model 2 show similar strain distributions. An increase of b2 

reinforcement area slightly reduces the strain magnitudes over the pier. Increased length 

of b2 reinforcement slightly reduce the strains of the deck at 1/8 of the span location. 

Staggered b2 reinforcement pattern also slightly reduces the strains of the deck at 1/8 

of the span location.  

8.1.4.2 Bridge B 

The parametric study of Bridge B was conducted similar to that for Bridge A, 

more importantly to investigate the effect of skew angle on the negative moment 

behavior. Results of the parametric study of Bridge B are similar to Bridge A, except 

Bridge B shows smaller strains over the pier due to the live load and slightly larger 

strains over the pier due to the shrinkage load. 

8.1.5 Secondary Moment 

Compared to the AASHTO guidelines, the Iowa DOT approximately uses b2 

reinforcement that is approximately one half specified. However, no significant effect 

of the b2 reinforcement was observed in the parametric study nor had any anecdotal 

evidence been identified to suggest that the b2 reinforcement was not behaving well. It 

was suspected that secondary moments may be positively impacting the negative 

moment performance of these bridges. Among the many calculation methods, The PCA 

method was used to illustrate the effects of the secondary moments on the design of b2 

reinforcement. Final secondary moment at the intermediate support of Bridge A was 

calculated as 4823.3 kip-ft and live load negative moment was calculated as -922.71 

kip-ft. Based upon these results it appears that the sol-called secondary moments may 

actually be large enough to counteract any negative moments resulting from live load.  

The consequence of this is that it may be possible for bridge decks over piers to never 

actually experience tensile stresses.  However, due to uncertainties associated with 

these secondary moments, further laboratory/field test may be required to improve gain 

confidence in the consideration of secondary moments during design. 

8.1.6 Effect of the Continuity Diaphragm 

Throughout the parametric study, no significant effect of the b2 reinforcement 

was observed for both skewed and non-skewed bridges.  This may be due to the 

complex behavior of the continuity diaphragms of the PPCB bridges. An evaluation of 

the effects of the continuity diaphragm on PPCB Bridges was conducted with a 
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literature search and analytical study. Analytical model involve both Bridge A and 

Bridge B with and without the continuity diaphragm. Longitudinal strain over the pier, 

at the 1/8 span location and longitudinal strain bottom fiber of girders at mid-span was 

used to formulate the conclusions.  

According to the literature, several people concluded that the continuity 

diaphragm has a small effect on behavior of the PPCB bridges and increased skew angle 

will decreased the stresses of the bridge deck. One group of researchers concluded that 

the continuity diaphragm has no effect on the behavior of the PPCB Bridges, 

particularly in bridges with skew angles greater than 20 degrees. Therefore bridge 

designer may design the bridges as link-slab bridges.  

Based on the analytical study it was found that the continuity diaphragm has a 

noticeable effect on the PPCB bridges. Further, compared to the non-skewed bridge 

(Bridge A) the skewed bridge (Bridge B) smaller strain over the pier, but larger strains 

at the bottom fiber of girders at mid-span. No significant effect at the 1/8 span location 

was observed. 

8.2 Conclusions 

 The parametric study results show an increased area of the b2 reinforcement slightly 

reduces the strain over the pier. Whereas, increased length and staggered 

reinforcement pattern slightly reduce the strains of the deck at 1/8 of the span length. 

 Secondary moments affect the behavior in the negative moment region.  The impact 

may be significant enough such that no tensile stresses in the deck may be 

experienced. 

 Finite element results suggested that the transverse field cracks over the pier and at 

1/8 of the span length, are mainly due to deck shrinkage. 

 Bridges with higher skew angles have lower strains over the intermediate supports. 

8.3 Recommendations 

Based on the finite element results, termination of b2 reinforcement at 1/8 of 

the span length is acceptable. Based on the confidence level in predicting the secondary 

moments, the amount and length of the b2 reinforcement may be reduced. Further field 

tests and laboratory tests are recommended.  
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APPENDIX: DETAILED FIELD TEST RESULTS 

A summary of the field test results is presented in Chapter 3. This Appendix is 

summarized the field test results of each bridge. A plan view of the bridge, locations of 

the deck gauges, locations of the girder gauges, locations of the rosettes and load case 

details are also included. Results of deck gauges and girder gauges are given only for 

the Load Case 1 (LC1). Results of the LC4 are approximately symmetric with LC1 

results.  

Bridge 1; On C50, Over US218 

 

Plan view of the Bridge 1 

 

 

 

Bridge 1; Instrumentation plan of deck gauges 
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Pier 

Pier 
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Typical longitudinal strains variation of deck gauges closer to the truck axle (LC1) 

 

 

Typical longitudinal strains variation of deck gauges away from the truck axle (LC1) 
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Bridge 1; Instrument plan of girder gauges 

 

Typical strain variation of girder gauges of Bridge 1 (LC1) 
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Bridge 1; Instrumentation plan of the rosettes 

 

Typical variation of principal strains of rosettes (R7); closer to truck axle (LC4) 

 

Typical variation of principal strains of rosettes (R7); away from truck axle (LC1) 
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Bridge 2; On I80, Over US65 

 

Plan view of the Bridge 2 

 

 

 

Bridge 2; Instrumentation plan of deck gauges 
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Typical longitudinal strains variation of deck gauges closer to the truck axle (LC1) 

 

 

Typical longitudinal strains variation of deck gauges away from the truck axle (LC1) 
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Bridge 2; Instrument plan of girder gauges 

 

Typical strain variation of girder gauges of Bridge 2 (LC1) 
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Bridge 2; Instrumentation plan of the rosettes 

 

Typical variation of principal strains of rosettes (R4); closer to truck axle (LC1) 

 

Typical variation of principal strains of rosettes (R4); away from truck axle (LC6) 
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Bridge 3; On Meredith Drive, Over I35/80 

 

Plan view of the Bridge 3 

 

 

 

Bridge 3; Instrumentation plan of deck gauges 
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Typical longitudinal strains variation of deck gauges closer to the truck axle (LC1) 

 

 

Typical longitudinal strains variation of deck gauges away from the truck axle (LC1) 

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300

L
o
n

g
it

u
d
in

al
 S

tr
ai

n
 (

μ
ε)

Truck Position (ft)

G2 G7

G12 G17

G22

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300

L
o
n

g
it

u
d

in
al

 S
tr

ai
n

 (
μ

ε)

Truck Position (ft)

G5 G10

G15 G20

G25



102 

 

 

 

Bridge 3; Instrument plan of girder gauges 
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Typical strain variation of girder gauges of Bridge 3 (LC1) 

 

Bridge 3; Instrumentation plan of the rosettes 

 

Typical variation of principal strains of rosettes (R6); closer to truck axle (LC4) 

 

Typical variation of principal strains of rosettes (R6); away from truck axle (LC1) 
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Bridge 4; On Mt Pleasant bypass, Over Big Creek 

 

Plan view of the Bridge 4 

 

 

 

Bridge 4; Instrumentation plan of deck gauges 
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Typical longitudinal strains variation of deck gauges closer to the truck axle (LC1) 

 

 

 

Typical longitudinal strains variation of deck gauges away from the truck axle (LC1) 
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Bridge 4; Instrument plan of girder gauges 

 

Typical strain variation of girder gauges of Bridge 4 (LC1) 
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Bridge 4; Instrumentation plan of the rosettes 

 

Typical variation of principal strains of rosettes (R6); closer to truck axle (LC4) 

 

Typical variation of principal strains of rosettes (R8); away from truck axle (LC1) 
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Bridge 5; On US20, Over Big Whiskey Creek 

 

Plan view of the Bridge 5 

 

 

 

Bridge 5; Instrumentation plan of deck gauges 
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Typical longitudinal strains variation of deck gauges closer to the truck axle (LC1) 

 

 

 

Typical longitudinal strains variation of deck gauges away from the truck axle (LC1) 
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Bridge 5; Instrument plan of girder gauges 

 

Typical strain variation of girder gauges of Bridge 5 (LC1) 
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Bridge 5; Instrumentation plan of the rosettes 

 

Typical variation of principal strains of rosettes (R9); closer to truck axle (LC4) 

 

Typical variation of principal strains of rosettes (R9); away from truck axle (LC1) 
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