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ABSTRACT 

As the cost of construction materials continues to rise and place financial constraints 

on transportation agencies, engineers are looking for innovative technologies that minimize 

construction costs and optimize the selection of materials used in asphalt pavements. This 

dissertation includes a selection of four papers that advance the development, application, 

and utilization of innovative asphalt pavement technologies. Among the four papers, three 

subject areas in asphalt materials are examined to cultivate the use of newly-developed 

technologies in the asphalt industry. These include: the robust evaluation of hot mix asphalt 

from multi-state sources that utilize recycled asphalt shingles (RAS), the application and 

evaluation of a crack-relief interlayer asphalt mix design using new polymer technology, and 

the development of a bio-based thermoplastic elastomeric block-copolymer as a modifier for 

asphalt binder. In the case of the bio-based polymer, polymerized triglycerides from soybean 

oil serve as the “rubbery” block to replace butadiene in butadiene-based styrenic block co-

polymers, thereby creating a new thermoplastic elastomeric polymer that is more renewable 

and biodegradable than its petroleum based counterparts. 

For each subject area, laboratory experiments were conducted on experimental 

asphalt materials to determine the performance characteristics for the development and/or 

evaluation of new technologies. The results of each study show the advantage of 

implementing the technologies in pavement applications. Asphalt formulations developed 

with the bio-based block-copolymer demonstrate the block-copolymer’s effectiveness in 

improving the rheological properties of asphalt binder; crack-relief interlayer mixes utilizing 

an improved polymer modified binder formulation are effective in delaying reflective 

cracking in overlay pavement systems; and a variety of asphalt pavements that incorporate 
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RAS alone or in combination with other cost saving technologies can be successfully 

produced and meet laboratory performance testing standards. 
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CHAPTER 1.  GENERAL INTRODUCTION  

New technologies that utilize renewable resources expand the range of alternative 

materials that can be used for pavement design and construction. Utilization of renewable 

materials advances sustainable growth in transportation infrastructure. Sustainable 

infrastructure is also achieved through design methods that both improve the long term 

performance of pavement systems and minimize future construction rehabilitation activities. 

The increased interest in sustainability coupled with the increasing price of asphalt has led 

many owner/agencies and asphalt paving contractors become more interested in 

implementing new technologies for apshalt pavements. Three new technologies that can have 

significant impact toward advancing improved economic, performance, and sustainable 

pavements in the asphalt industry are recycled asphalt shingles (RAS), crack-relief 

interlayers, and the use of bio-based polymer modifiers.  

Recycled Asphalt Shingles in Hot Mix Asphalt 

Transportation agencies in the United States have been increasingly using RAS in hot 

mix asphalt (HMA) applications over the last 25 years. Each year, an estimated 10 million tons of 

post-consumer shingles are placed in landfills in the United States. Post-consumer asphalt 

shingles typically contain 20 to 30 percent asphalt by weight of the shingles, as well as fine 

angular aggregates, mineral filler, polymers, and cellulosic or fiberglass fibers from the shingle 

backing material. Utilization of this waste product presents an opportunity to replace virgin 

asphalt binder with the RAS binder while taking advantage of the additional fibers. Thus a 

material that has historically been deemed a solid waste and has been placed in landfills can 

decrease pavement costs and reduce the burden on ever-decreasing landfill space. 

With these benefits in mind, more state highway agencies are beginning to see the 

potential impact RAS could have in lowering the cost of pavements. However, little information 
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about the performance of pavements with RAS is known because it is a new material that 

agencies are beginning to use. The challenge agencies have when implementing the use of RAS 

materials is developing a construction specification for RAS mixtures that ensures a product with 

similar qualities and performance to non-RAS mixtures. Several nuances about the source and 

processing of RAS make it important for agencies to understand which factors about RAS affect 

the material properties essential for good fatigue and low temperature characteristics. These 

complexities drive the need for a comprehensive study on field produced HMA with RAS 

materials. 

Crack-Relief Interlayer Asphalt Mixes 

Reflective cracking in HMA overlays has been a common cause of poor pavement 

performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays 

when deteriorated portland cement concrete (PCC) is paved over with HMA. The differential 

movement of concrete slabs at PCC joints create microcracks at the bottom of the HMA layer 

that grow and propagate to the surface. Since the rehabilitation strategy for many distressed 

PCC pavements in Iowa is to overlay them with HMA, the prevalent reflective cracking 

distresses has resulted in poor ride quality and increased transportation maintenance costs. 

Different types of mitigation strategies that help delay reflective cracking have been used 

with varying levels of success. One of the more promising approaches used to delay 

reflective cracking is incorporating an asphalt-rich, highly flexible, crack-relief HMA 

interlayer within the asphalt structure that serves as barrier to prevent reflective cracks from 

either forming or propagating to the surface of the overlay. The crack-relief interlayer is an 

asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. It 

is designed to have a high volume of asphalt with a low percentage of air voids and to 

contain a polymer modified binder with a wide temperature performance grade range. 
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The Iowa Department of Transportation recently began to implement a crack-relief 

interlayer mix design specification. However, due to lack of contractor experience, the 

challenging nature of correctly developing the mix design, and a laboratory performance 

specification for the interlayer design, additional research is needed to ensure the interlayer is 

properly designed and to determine the performance benefits of incorporating the interlayer 

into a pavement system. 

Bio-Based Polymer Modifiers 

Asphalt binder used for high-performing pavements needs sufficient properties to 

resist cracking at low temperatures and rutting caused by shear forces from sustained loads at 

high temperatures. To produce an asphalt binder with these performance characteristics, the 

binder is commonly modified with elastomeric polymers to improve its rheological 

properties and lower its temperature susceptibility over a range of in-service pavement 

temperatures.  

The most common elastomeric polymers used for asphalt modification are styrenic 

block copolymers (SBCs). SBCs are composed of blocks of polybutadiene and polystyrene 

to produce styrene-butadiene (SB) diblock polymers and styrene-butadiene-styrene (SBS) 

triblock polymers. The elastic and principal component of SBS polymers is butadiene. For 

the last decade, butadiene prices have fluctuated and significantly increased, leading state 

highway agencies to search for economically viable alternatives to butadiene-based 

materials.  

Recent advances in polymerization techniques have led to the development of 

elastomeric block copolymers produced with polystyrene and polymerized soy-derived 

triglycerides. While the past two decades of plant-oil based polymer research has yielded 
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only thermosets, the newly produced polymers are thermoplastic elastomers that are 

processable at high temperatures. There is excellent potential for the future of these 

biopolymers to serve as economically and environmentally favorable alternatives to their 

petrochemically-derived analogs for asphalt modification. 

Organization of Dissertation 

This dissertation is a compilation of four papers submitted, or to be submitted to 

scientific journals. It is divided into six chapters. Chapter 1 provides a general introduction. 

Chapter 2 contains a paper that evaluates the use of RAS in asphalt mixes. The results are a 

culmination of a comprehensive three year pooled-fund study on the performance of hot mix 

asphalt containing RAS. Seven states participated in the study. Chapter 3 includes a paper 

that evaluates an overlay project in Iowa which used a crack-relief interlayer asphalt mix to 

reduce reflective cracking. Chapter 4 and 5 contain papers that describe the development of a 

bio-based thermoplastic-elastomeric block-copolymer that is derived from soybean oil. 

Formulations of asphalt binder and the biopolymer are developed in the laboratory and tested 

for their rheological properties. General conclusions about each paper are presented in 

Chapter 6. 
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CHAPTER 2.  COMPREHENSIVE FIELD AND LABORATORY 

PERFORMANCE INVESTIGATION OF RECYCLED ASPHALT 

SHINGLE WASTE 

 

Modified from a paper submitted to Resources, Conservation and Recycling, published by 

Elsevier 

 

Andrew A Cascione1 2 and R. Christopher Williams3 

 

Abstract 

In the United States, an estimated nine million metric tons of asphalt shingles are 

buried in landfills each year. Recycling and reusing this construction waste material in 

asphalt pavements could yield significant cost savings while reducing the impact on the 

environment. The components of recycled asphalt shingles (RAS) allow it to be a good 

candidate as a secondary material in hot mix asphalt (HMA). Transportation agencies have 

become increasingly interested in modifying asphalt pavements with RAS, yet they share 

common questions about the effect of RAS on the performance of HMA. In this study, the 

field and laboratory performance of RAS mixes produced from seven different transportation 

agencies was investigated as part of Transportation Pooled Fund TPF-5(213). Field 

                                                

1 Ph.D. candidate, Department of Civil, Construction, and Environmental Engineering, Iowa State University, 

Ames, IA 50011. E-mail: aacascio@iastate.edu 
2 Primary researcher and author 
3 Professor of Civil Engineering, Department of Civil, Construction, and Environmental Engineering, Iowa 

State University, Ames, IA 50011. E-mail: rwilliam@iastate.edu 
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demonstration projects were conducted that evaluated multiple aspects (factors) of RAS that 

could impact pavement performance. Field mixes from each demonstration project were 

sampled and tested for their performance characteristics. Pavement condition surveys were 

also conducted for each project after completion. 

The demonstration projects showed that pavements using RAS alone or in 

combination with other cost saving technologies (e.g., WMA, RAP, GTR, SMA) can be 

successfully produced and meet state agency quality assurance requirements. The RAS mixes 

have very promising prospects since laboratory test results indicate good rutting and fatigue 

cracking resistance with low temperature cracking resistance similar to the mixes without 

RAS. The pavement condition of the mixes in the field after two years corroborated the 

laboratory test results. No signs of rutting, wheel path fatigue cracking, or thermal cracking 

were exhibited in the pavements. However, transverse reflective cracking from the 

underlying jointed concrete pavement was measured in the Missouri, Colorado, Iowa, 

Indiana, and Minnesota projects. 

Introduction 

Waste asphalt shingles have historically been considered a solid waste and placed in 

landfills. In the United States, nine million metric tons (Mt) of asphalt shingle waste are 

generated each year from the renovation and construction of roofs, and another one Mt of 

waste are produced during the manufacturing process of new shingles (National Association 

of Home Builders, 1998). In total, asphalt roofing shingle waste represents up to three 

percent of all construction and demolition debris in the US (Cochran and Townsend, 2010).  

A new sustainable construction technology emerging in the United States is the 

recycling of asphalt roofing shingles for use in asphalt pavements. By diverting waste 
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shingles from landfills and incorporating them into asphalt pavements, what was previously 

considered a solid waste can now be upcycled into the transportation network for 

constructing driving surfaces. This innovative technology reduces the environmental impacts 

resulting from road construction by reducing the amount of virgin materials used in asphalt 

mixes (Sengoz and Topal, 2005). Replacing virgin materials with recycled asphalt shingles 

(RAS) saves resources, reduces the energy burned from using raw materials, eases landfill 

pressures, and reduces the demand of extraction (Huang et al. 2007, Chiu et al. 2008). Using 

RAS in asphalt pavements can also reduce greenhouse gas emissions produced during road 

construction by 9 to 12 percent (US Environmental Protection Agency, 2013). 

Increases in crude petroleum prices have considerably raised the cost of asphalt 

binder in the past several years. This increase, coupled with the advancement of shingle 

processing technology, has created favorable market conditions for RAS to be used in asphalt 

pavements (Hughes 1997, Hansen 2009). From 2009 to 2012, the estimated amount of RAS 

annually used in asphalt pavements in the United States more than doubled, from 0.7 million 

tons to 1.9 tons (Hansen and Copland, 2013). 

The components of RAS allow it to be a good candidate as a secondary (recycled) 

material in asphalt mixtures. Recycled roofing shingles contain between 19 to 31 percent 

asphalt (Brock 2007) and include fine angular granules which can improve the resistance to 

permanent deformation. Shingles also contain fiberglass or cellulose backing, that when 

crushed during the recycling process, break down into fiber-like particles that may improve 

the cracking resistance of asphalt (Cascione et al. 2011).  

With these benefits in mind, more state highway agencies are beginning to see the 

potential impact RAS could have in lowering the costs of pavements. However, little 



8 

 

information about the long-term performance of pavements with RAS is known because it is 

a new material that agencies are beginning to use. The challenge agencies have when 

implanting the use of RAS materials, is developing a construction specification for RAS 

mixtures that ensures a product with similar qualities and performance to non-RAS mixtures. 

Several aspects about the sourcing and processing of RAS make it important for agencies to 

understand which factors about RAS affect the material properties essential for good 

pavement performance. This led to the creation of Transportation Pooled Fund TPF-5(213), a 

partnership of several state agencies in the United States with the goal of researching the 

effects of RAS on the performance of varied asphalt applications. As part of the pooled fund 

research program, multiple state demonstration projects were conducted to provide adequate 

laboratory and field test results to comprehensively answer design, performance, and 

environmental questions about asphalt pavements containing RAS. 

The demonstration projects focused on evaluating different factors of RAS to 

determine how they influence the performance of pavements. RAS factors addressed in the 

different demonstration projects included the evaluation of RAS grind size, percentage of 

RAS in hot mix asphalt (HMA), RAS source (post-consumer versus post-manufacturer), 

RAS in combination with warm mix asphalt technology, RAS as a fiber replacement for 

stone matrix asphalt (SMA) pavements, and RAS in combination with ground tire rubber 

(GTR). Several of the demonstration projects also included control sections to compare 

traditional mix designs containing either recycled asphalt pavement (RAP) only or no 

recycled product to mix designs containing RAS. 
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Literature Review 

Asphalt Shingles 

Understanding the composition and properties of asphalt shingles is necessary for 

fully characterizing asphalt mixtures that incorporate their use. The American Society for 

Testing and Materials (ASTM) has specifications for their production. There are two 

different types of specifications, ASTM D225 which specifies asphalt shingles made with 

organic (cellulose or wood fiber) backing, and ASTM D3462 which specifies asphalt 

shingles made with fiberglass backing. These specifications are fairly broad so the exact 

composition of shingles will vary among different manufacturers.   

Shingles are manufactured by saturating and coating both sides of organic or 

fiberglass backing felt with liquid asphalt. The shingles are then covered with sand and 

crushed-stone granules to increase their durability and resistance to weathering. The 

individual components of asphalt shingles are shown in Figure 1. 

 

Figure 1.  Components of Asphalt Shingles (Grzybowski et al. 2010) 

The percentages of the individual component materials in asphalt shingles are 

different in shingles manufactured with organic felt compared to shingles manufactured with 

fiberglass felt. Brock (2007) summarized the composition of each type of shingles as 
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presented in Table 1. The shingles manufactured with organic felt have substantially more 

liquid asphalt then shingles manufactured with fiberglass felt due to the different absorption 

of the materials. Since asphalt binder is the most valuable product in RAS for paving 

materials, RAS made from organic felt will have a high economic value. RAS made from 

post-consumer shingles also has higher asphalt contents than RAS made from post-

manufactured shingles due to the loss of a portion of the surface granules from weathering. 

McGraw et al. (2007) found similar asphalt contents as Brock in post-manufactured shingles 

and post-consumer shingles after conducting extractions on multiple samples. 

Table 1.  Asphalt Shingle Composition, % (Brock, 2007) 

 Post-Manufacturer 

(Organic) 

Post-Manufacturer 

(Fiberglass) 
Post-Consumer 

Asphalt Cement 30 19 31 

Mineral Filler 26 40 25 

Granules 33 38 32 

Fiberglass Mat 0 2 0 

Cellulose Felt 10 0 12 

Cut-out 1 1 0 

  

The other components used in the manufacturing of shingles are also a valuable 

commodity in HMA. The crushed-stone granules for example can reduce the amount of 

manufactured sand needed for an asphalt mixture. Additionally, the fiberglass or cellulose 

backing in shingles breaks up into fiber-like particles when crushed during the recycling 

process. These fibers are of particular interest to researchers and HMA producers since fibers 

are used as an additive in asphalt with a gap-graded or open-graded aggregate structure to 

prevent drain-down of the asphalt binder. 

The asphalt used to coat the felt material is different than asphalt used in paving 

materials. The asphalt used in roofing shingles is much harder and stiffer because the 

manufacturers use an “air-blown” process to increase the viscosity of the asphalt. The 
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process infuses oxygen into the asphalt which changes the chemical composition of the 

asphalt making it stiffer. Furthermore, post-consumer shingles have been in service for a 

number of years and have undergone additional oxidative aging. As a result, the performance 

grade (PG) of the asphalt binder in RAS is higher than the performance grade of asphalt 

binder used for pavements. This may impact fatigue and low temperature cracking potential 

of asphalt pavements. Asphalt mixtures containing stiffer asphalt binder can exhibit higher 

resistance to rutting but decreased resistance to low temperature cracking and fatigue 

cracking (SHRP-A-367 1994). 

To counter the effect of adding a stiffer binder, a softer virgin asphalt is often used.  

Historically, blending charts have been used in designing HMA with two different grades of 

asphalt binder (The Asphalt Institute 2007). With the advent of performance graded binders, 

“grade bumping” is practiced by agencies as an easy method to account for the introduction 

of the stiffer binder in the mixture matrix. When the percentage of recycled asphalt binder 

exceeds a certain amount, the specified virgin binder performance is reduced one or two 

grades on the low temperature and/or high temperature side. 

To help regulate the amount of recycled asphalt being added to HMA when RAS is 

used so the final blend meets the design criteria, state highway agencies have implemented 

either maximum “percent binder replacement” specifications or maximum RAS percentage 

specifications. Typical percent binder replacement specifications require a maximum of 30 

percent replaced binder as recommended by AASHTO PP53 Design Considerations When 

Using Reclaimed Asphalt Shingles in New Hot Mix Asphalt. Today there are more than 20 

states that have either current specifications, developmental specifications, or are considering 
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the use of RAS in asphalt applications. Table 2 below summarizes the status of state agencies 

that have RAS specifications for asphalt pavements. 

Table 2. State DOT Specifications for RAS 

State State specifications for using RAS1 

Post-Manufacturer RAS (M); Post-Consumer RAS (C) 

AL State Specification allowing 5% M or 3% C 

GA State Specification allowing 5% M or C 

IA State Specification allowing 5% M or C 

IL State Specification allowing 5% M or C 

IN 
State Specification allowing binder replacement of 15% M or C for surface coarse 
mixes (Maximum 25% binder replacement for mixes less than 9 million ESALs) 

KS State Specification allowing 5% M or C 

KY 24% Binder Replacement 

MA State Specification allowing 5% M 

MD State Specification allowing 5% M 

MN State Specification allowing 5% M or C 

MO State Specification allowing 7% M or C 

NC State Specification allowing 5% M or C 

NJ State Specification allowing 5% M 

NH State Specification allowing 0.6% binder replaced with M or C from % of total mix 

NY State Specification allowing 5% M 

OH State Specification allowing 5% M or C 

PA State Specification allowing 5% M or C 

SC State Specification allowing 5% M or C 

TX State Specification allowing 5% M or C 

VA State Specification allowing 5% M or C 

WI 
State Specification allowing binder replacement of 20% M or C  (5% max when used in 
combination with RAP) 

1 Reflects specifications for RAS utilization without RAP. Each state has additional requirements for RAS used 

in combination with RAP and different virgin binder requirements. See state DOT construction specifications 

for details. 

 

While asphalt binder with a higher modulus is desirable for highway pavement 

surface courses at high service temperatures to avoid permanent deformation, stiffer binders 

are susceptible to premature cracking in pavements (Roberts et al. 1996). However, the fibers 

in RAS are desirable for improving the tensile strength and cracking resistance of mixes.  
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The different backings on the shingle will ultimately provide different fiber particles 

in the RAS. Various fiber modifiers, such as cellulose, polyester, and mineral fibers, have 

been widely used in asphalt mixtures (Wu et al. 2007). Incorporating fibers into HMA has 

shown promising fatigue results.  Fibers appear to increase the stiffness of the asphalt binder 

resulting in stiffer mixtures.  This improves the resistance to permanent deformation. The 

tensile strength and toughness of the mixtures with fibers are also improved (Cleven 2000). 

An investigation by Lee et al. (2005) showed that fiber reinforcement extended the fatigue 

life of asphalt mixtures by 20 to 25 percent due to the increase in fracture energy. However, 

fibers with greater tensile strength (polyester, carbon fiber) have improved these properties to 

a greater extent than cellulose fibers (Putman 2004). 

Processing Roofing Waste 

Challenges in utilizing RAS are found to be in the quality control and quality 

assurance of the final product. When RAS is crushed and screened during processing, 

recyclers can change its end-product gradation (grind size).  Obtaining a consistent RAS 

gradation that blends well with the other mix components can be the most challenging aspect 

of processing RAS.  Test results that demonstrate differences between grind size underscore 

the necessity for proper field quality control specifications. 

Sourcing 

Asphalt roofing manufacturers have waste shingles that are accepted by recycling 

asphalt shingle facilities. The shingles are delivered on pallets wrapped in plastic or in roll-

offs with and without the wrapping.  Asphalt contents can vary among different 

manufacturers, and therefore it can be advantageous to stockpile materials from each source 

separately to control the asphalt contents of the final product.  Documentation of the source 
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and tonnages should be required to be kept on file and available for review by environmental 

and transportation agencies.  

For post-consumer shingles, asphalt shingle recycling facilities should be required to 

document the source of the post-consumer shingles accepted at their facilities. Recycling 

facilities should screen in-coming loads to ensure no hazardous materials are accepted and 

loads do not exceed ten percent by weight of non-shingle material.   

Over 60 percent of post-consumer asphalt shingles come from storm damage.  Many 

times these storms can damage newer roofs with recently installed shingles. When loads of 

post-consumer shingles are delivered to a recycling facility due to storm damage, asphalt 

contents and granular material percentages can vary. Newer post-consumer shingles may 

contain lower asphalt contents and lower binder viscosities compared to older post-consumer 

shingles, which may have binder that is stiffer due to more aging and higher asphalt contents. 

Therefore, asphalt shingle recyclers that closely monitor their intake can have better control 

over stockpiling. 

Asbestos Testing and Analysis 

Asphalt shingles manufactured in the United States prior to the mid 1980’s may have 

contained asbestos. As a result, asphalt shingle recycling facilities are required to meet 

Asbestos National Emission Standards for Hazardous Air Pollutants (NESHAP) and 

Occupational Safety and Health Act (OSHA) requirements. NESHAP requirements state that 

asbestos-containing roofing materials may not be ground up for recycling. NESHAP defines 

asbestos-containing material (ACM) as any material containing more than one percent 

asbestos as determined using polarized light microscopy. To ensure that delivered loads of 

post-consumer shingle scrap do not contain asbestos, many state agencies require the owner 
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of the recycling facility to follow a specified sampling and testing plan. Samples are required 

to be obtained and tested for ACM using the polarized light method by an accredited 

laboratory. Typical sampling and testing frequencies require a sample to be obtained every 

50 to 100 tons. In the event that a sample is found to contain greater than one percent ACM, 

the pile is required to be stockpiled separately and disposed of in accordance with state 

environmental regulations. 

The incidence of ACM being found in shingles today is extremely low. Based upon 

available data from Florida, Iowa, Maine, Massachusetts, Minnesota, and Missouri, 1.5 

percent of samples of more than 27,000 loads contained asbestos above the one percent limit 

(Townsend et al 2007). 

Sorting 

Post-manufacturer shingles usually do not have specific sorting protocols since they 

are delivered on pallets and are easily identified as clean of construction debris. However, 

post-manufacturer shingles delivered in roll-offs can include shingle globs, metal, or other 

objects that could damage the industrial grinders used in the processing and are many times 

screened to limit costly repairs. 

Post-consumer shingles are often first sorted by trained personnel to remove all non-

shingle material (i.e. paper, metal, plastic, felt paper). Sorting is done by hand over a 

conveyor belt or on the ground at the time of load dumping and again at the time of grinding 

(Figure 2).  Removing all non-shingle materials is important to the shingle recyclers as 

hammers or other large metal objects incur costly repairs to the industrial grinders and loss of 

time for machines down for repair. Recyclable material such as paper, metals, and plastics 
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can be separated and recovered at a recycling facility. All non-recyclable material can be 

disposed of at a landfill.  

When processing post-consumer shingles, it is especially important that construction 

debris must be removed from the shingle. This includes wood, nails, and other contaminates.  

Usually manual labor is utilized to separate the shingle from the wood. Removal of nails and 

other material removal is accomplished by using magnets at different locations on plant 

conveyer belts before and after the crushing process.   

 

 

Figure 2. Post-consumer shingle manual sorting 

 

Processing 

For shingles to be successfully used in asphalt paving mixtures they need to be 

shredded or ground down to relatively small particle sizes. Different types of industrial 

grinders, including rotary shredders and hammer mills, are used to process shingles. The 
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industrial grinders utilize water nozzles to control dust and reduce heat build-up during the 

grinding process. Post-manufactured RAS can be more challenging to grind due to the softer 

asphalt which can clump together. This may contribute to further heat build-up which 

requires more water and additional screening (Figure 3). In the case of nails present in the 

shingles during the grinding process, grinders can be fitted with pulley magnets and cross-bar 

magnets which can effectively remove them. 

In order to maximize the benefits of RAS, past research has helped identify how HMA 

performance is affected by the grind size of the RAS. Research completed by Button et al. 

(1996) and Abdulshafi et al. (1997) found that a finer grind produced a more consistent and 

better performing mix. Button et al. (1996) also found that the mixes containing a finer grind 

post-consumer RAS increased the tensile strength more than a coarser grind.   

The size of the RAS particle can also be expected to affect the fraction of shingle 

asphalt binder that contributes to the final blended binder. A smaller RAS particle will have a 

larger surface area and more exposed binder.  With more binder exposed on the surface of the 

RAS particle, more binder may be activated and blended with the virgin asphalt.  

AASHTO MP 15-09 Use of Reclaimed Asphalt Shingles as an Additive in Hot Mix 

Asphalt, requires that 100 percent of the RAS pass a 12.5 mm (0.5 inch) sieve. In order to 

realize the benefits of a smaller RAS grind size, some state agencies have adopted a 

construction specification for RAS by specifying 100 percent of the RAS pass either the 9.5 

mm (0.375 inch) sieve or the 4.75 mm (No. 4) size.   
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Figure 3: RAS screening 

 

Storage 

Asphalt shingles can hold up to 20 percent moisture, and so it is important to keep the 

use of water during processing to a minimum. A moisture content of seven percent or less is 

optimum. RAS stockpiles can also absorb moisture from the bottom of the pile so it is 

important to place piles on a non-permeable surface and/or a surface with proper drainage to 

deter standing water. Higher moisture contents can result in clumping, bridging in the bins, 

or slower production rates.  

Moisture contents and clumping can be better controlled when stockpiles are covered. 

Covering the RAS at the asphalt plant can protect it from rain and direct sunlight (Figure 4). 

To help prevent RAS clumping in a stockpile, some agencies allow HMA producers to blend 

in a percentage of sand with RAS stockpile. 
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RAS also has a very limited time in the heating drum in a HMA plant. If the heat 

from the plant burner is working at removing the moisture, there is little time for the heat to 

reduce the viscosity of the RAS binder allowing it to separate from the RAS granules. RAS 

with high moisture contents then ultimately increase the potential for a poor bond between 

the RAS and virgin components. 

 

Figure 4. Covered RAS stockpile 

 

Quality Control for Asphalt Facilities 

It is important to know the properties of RAS prior to use in HMA. Having consistent 

asphalt contents and gradations throughout both post-consumer and post-manufacturer 

stockpiles helps ensure the final HMA end product contains the targeted mix volumetric 

properties and field density. As a result, state agencies require asphalt producers to verify the 

asphalt content, gradation, deleterious materials content, and moisture content of RAS used 

in mix designs. Some agencies such as the Illinois DOT require continual testing of RAS 
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properties (i.e., asphalt content, gradation, Gmm) at specified frequencies as it is being 

stockpiled. If more than 20 percent of the stockpile contains RAS with properties that deviate 

outside the targeted production range, than the stockpile may not be used for DOT projects. 

RAS is typically introduced in the HMA plant through a separate recycling bin and 

can vary depending on plant configurations (e.g., drum plant or batch plant). Many drum 

plant facilities introduce RAS into the drum recycle collar where RAP is normally 

introduced. Load cells or weigh belts measure the amount of RAS as it is metered into the 

collar. Some facilities load RAP over the RAS on the same conveyor belt to eliminate the 

blowing of RAS fines. 

Load cells can give the highest accuracy in weighing the RAS, however, 

inconsistencies can still be found in the ability to keep the flow of RAS even and consistent 

on the belt. This includes bridging and clumping in the bins, which creates uneven 

distribution on the belt and leads to variability in asphalt contents in plant production mixes. 

One strategy to reduce variability on the belt is to use an auger system that distributes the 

RAS onto the belt. 

Higher temperatures at drum plants can help remove moisture from RAS more 

quickly and facilitate the blending of RAS binder with virgin binder. However, agencies are 

becoming increasingly concerned that higher temperatures accelerate RAS aging during 

construction. Additionally, the cost to the asphalt producer to increase temperatures during 

mixing can reduce the savings benefits of RAS both environmentally and economically. 

Experimental Plan 

To evaluate how different factors of RAS materials effect pavement performance, an 

experimental plan was developed where each state highway agency in the pooled fund study 
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proposed a unique field demonstration project that investigated a different aspect of RAS 

mixes.  Field demonstration projects were sponsored by the Department of Transportation 

agencies in Missouri, Iowa, Minnesota, Indiana, Wisconsin, Colorado, and Illinois. The 

asphalt mixes evaluated from each field demonstration project (Table 3) demonstrate the 

experimental plan of agency. 

The Missouri demonstration project investigates how RAS grind size affects 

pavement performance and how replacing five percent RAP with RAS affects the properties 

of the asphalt pavement. The Iowa demonstration project investigates asphalt mixes with an 

increasing percentage of RAS. The Minnesota demonstration project investigates the 

difference between using post-consumer (PC) RAS and post-manufacturer (PM) RAS. The 

Indiana demonstration project investigates replacing RAS with RAP in asphalt mixes and the 

effect of producing RAS at reduced plant temperatures by using warm mix asphalt (WMA) 

foaming technology during production. The Wisconsin demonstration project investigates the 

effect of using Evotherm® 3G chemical WMA additive as a compaction aid at hot mix 

temperatures in mixes that contain RAS. The Colorado demonstration project investigates 

using three percent RAS as a replacement for five percent RAP. The Illinois demonstration 

project investigates using five percent RAS in stone asphalt matrix (SMA) in place of added 

fibers. While SMA mixes are always designed with fibers to prevent drain-down of the 

asphalt binder due to its gap-graded aggregate structure, the Illinois mixes did not contain 

any fibers since RAS has fibers in it. The Illinois project also contained different types of 

mixes to evaluate mixes produced with zero percent RAP versus 11 percent RAP, mixes 

produced in the field versus mixes produced in the laboratory, and mixes produced with 

ground tire rubber (GTR) modified binder versus polymer modified binder. 



 
2
2
 

 

Table 3. Mix design properties 

State 

Agency 
Mix ID % RAS % RAP 

% Total 

Binder 

% Binder 

Replaced 

RAS 

Source 

Mix 

Source 
PG3 % GTR4 

NMAS5 

(mm) 

Design 

Gyrations 

Missouri 15 RAP 0 15 4.3 14.9 - Plant 64-22 10 12.5 80 
Missouri 5 FRAS1/10 RAP 5 10 4.8 30.2 PC2 Plant 64-22 10 12.5 80 

Missouri 5 CRAS2/10 RAP 5 10 4.8 30.2 PC Plant 64-22 10 12.5 80 

Iowa 0 RAS 0 0 5.3 0 - Plant 58-28 - 12.5 76 

Iowa 4 RAS 4 0 5.5 16.3 PC Plant 58-28 - 12.5 76 

Iowa 5 RAS 5 0 5.8 19.4 PC Plant 58-28 - 12.5 76 

Iowa 6 RAS 6 0 5.3 22.8 PC Plant 58-28 - 12.5 76 

Minnesota 30 RAP 0 30 5.5 33.3 - Plant 58-28 - 12.5 90 

Minnesota 5 PC RAS 5 0 3.9 26.0 PC Plant 58-28 - 12.5 90 

Minnesota 5 PM RAS 5 0 4.8 18.8 PM2 Plant 58-28 - 12.5 90 

Indiana 15 RAP HMA 0 15 5.6 19.3 - Plant 70-22 - 9.5 100 

Indiana 3 RAS HMA 3 0 6.0 12.9 PC Plant 70-22 - 9.5 100 

Indiana 3 RAS WMA 3 0 6.0 12.9 PC Plant 70-22 - 9.5 100 

Wisconsin Evotherm® 3G 3 13 4.7 30.4 PC Plant 58-28 - 19.0 75 

Wisconsin No Evotherm® 3 13 4.8 30.4 PC Plant 58-28 - 19.0 75 

Colorado 20 RAP 0 20 4.5 17.6 - Plant 64-28 - 12.5 100 

Colorado 3 RAS/15 RAP 3 15 4.9 23.1 PM Plant 64-28 - 12.5 100 

Illinois 5 RAS/0 RAP Field 5 0 6.0 21.0 PC Plant 70-28 - 12.5 80 

Illinois 5 RAS/0 RAP Lab 5 0 6.2 21.0 PC Lab 70-28 - 12.5 80 

Illinois 5 RAS/0 RAP Lab-GTR 5 0 5.6 21.0 PC Lab 58-28 12 12.5 80 

Illinois 5 RAS/11 RAP Field 5 11 5.6 35.0 PC Plant 70-28 - 12.5 80 
Illinois 5 RAS/11 RAP Lab 5 11 6.3 35.0 PC Lab 70-28 - 12.5 80 

Illinois 5 RAS/11 RAP Lab-GTR 5 11 5.7 35.0 PC Lab 58-28 12 12.5 80 

1FRAS – finely ground RAS; CRAS – coarsely ground RAS   2PC – post consumer; PM – post manufactured 
3PG – performance grade of asphalt binder prior to GTR modification   4GTR – terminally blended ground tire rubber modifier 
5NMAS – nominal maximum aggregate size 
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During each field demonstration project, representative samples of each RAS source 

and asphalt mixture were collected for binder characterization and mixture laboratory 

performance testing. The asphalt was recovered from the RAS and asphalt mixtures following 

AASHTO T164 Method A (Centrifuge Method) by using a blend of toluene and ethanol as the 

extraction solvent. The fines were removed from the binder extract by using a centrifuge at 

high speeds. Solvent was removed from the extract by following the rotovaper recovery 

process in ASTM D5404. The Performance Grade (PG) of the extracted asphalt binders was 

determined by following AASHTO R29 “Standard Practice for Grading or Verifying the 

Performance Grade of an Asphalt Binder”. 

Washed gradations of the aggregates after extractions were also conducted by 

following AASHTO T27. For the RAS samples, a dry gradation was conducted prior to 

extraction to evaluate the grind size distribution of the RAS product. 

Laboratory performance testing was conducted on laboratory compacted samples of 

loose mix collected in the field during the demonstration projects. In the case of the Illinois 

demonstration project, performance testing was conducted on both field and laboratory 

produced mixes. Dynamic modulus tests were conducted to characterize the stiffness of the 

asphalt mixtures over a wide range of temperatures and frequencies. The flow number test 

was conducted to evaluate the permanent deformation resistance of the asphalt mixtures. 

Asphalt mixture durability and resistance to fatigue cracking was evaluated using the four-

point bending beam apparatus. The semi-circular bending (SCB) test was conducted to 

evaluate the low-temperature cracking susceptibility of the asphalt mixtures.  
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Dynamic Modulus 

The dynamic modulus |E*| test was conducted to determine the stress-strain 

relationship of the asphalt mixtures under continuous sinusoidal loading for a wide range of 

temperature and frequency conditions. A higher dynamic modulus indicates that lower strains 

will result in a pavement structure when the asphalt mixture is stressed from repeated traffic 

loading. The mechanistic-empirical pavement design guide (MEPDG) uses |E*| as the 

stiffness parameter to calculate an asphalt pavement’s strains and displacements. 

The test was conducted by following AASHTO T342. Replicate test specimens of 

each asphalt mixture were compacted to 100 mm in diameter and 150 mm in height at 7 ± 0.5 

percent air voids. The specimens were directly compacted to their geometry using a Pine 

gyratory compactor with a compaction mold modified to a 100 mm inner diameter. 

Specimens were tested by applying a continuous sinusoidal load at nine different frequencies 

(0.1, 0.3, 0.5, 1, 3, 5, 10, 20, and 25 Hz) and three different temperatures (4, 21, and 37°C). 

Sample loading was adjusted to produce strains between 50 and 150 μstrain in the sample.  

A UTM-25 servo-hydraulic testing machine from IPC Global, which is capable of 

applying a load up to 25 kN, was used to test asphalt mixture specimens. The UTM-25 was 

housed in an environmental chamber capable of controlling the temperature of the test 

specimens. Three linear variable differential transformers (LVDTs) were mounted between 

gauge points glued to the test specimens to measure the deformations in the sample. The 

LVDTs were spaced 120 degrees apart. Dynamic modulus computer software from IPC 

Global was used to control the load settings and calculation of the dynamic modulus for each 

test run. This is the same software designed to control the Asphalt Mixture Performance 

Tester. 
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The dynamic modulus test data was analyzed to determine which RAS materials and 

other mix treatments affect the mean dynamic modulus values at 37C and 5 Hz. The test 

data was also used to construct master curves, where dynamic modulus data from frequency 

sweeps were shifted to obtain one smooth curve that plots the dynamic modulus over a wide 

frequency range at a designated reference temperature.  

The following sigmoidal function was used to model the mater curves. 

Log|𝐸∗| = 𝛿 +
𝛼

1 + 𝑒𝛽+𝛾(𝑙𝑜𝑔𝑓𝑟)
 

where: 

fr = reduced frequency at the reference temperature; 

δ = minimum value of E*; 

δ +  = maximum value of E*; and 

, γ = parameters describing the shape of the sigmoidal function. 

The following second-order polynomial equation was used to calculate the shift 

factors for each frequency sweep at a fixed temperature. 

log𝑓𝑟 = 𝑙og𝑓 + 𝑎1(𝑇𝑅 − 𝑇) + 𝑎2(𝑇𝑅 − 𝑇)2 

where: 

fr = reduced frequency at the reference temperature; 

f = loading frequency at the test temperature; 

𝑎1, 𝑎2 = the fitting coefficients; 

𝑇𝑅 = the reference temperature, °C; and 

𝑇 = the test temperature, °C. 

The reference temperature was selected as 21°C. Fitting parameters were determined 

using numerical optimization with the “Solver” function in Microsoft Excel.  
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Flow Number 

The flow number test was conducted to measure the permanent deformation 

resistance of the asphalt mixtures. A repeated dynamic load was applied to the specimen for 

up to several thousand load cycles. The flow number was defined as the number of load 

cycles an asphalt mixture can tolerate until it flows. Cumulative permanent deformation in 

the sample was plotted versus load cycles.  The flow number was reached at the onset of 

tertiary flow, which was determined at the cycle corresponding to the lowest cumulative 

percent strain rate. 

Tests were conducted following procedures used in NCHRP Report 465 (Witczak et 

al. 2002). The same specimens used for dynamic modulus test were used for the flow number 

test since the dynamic modulus test is nondestructive. The specimens were placed in the 

UTM-25, unconfined, with a testing temperature of 37°C to simulate the climactic conditions 

that cause pavement to be susceptible to rutting.  An actuator applied a vertical haversine 

pulse load of 600 kPa for 0.1 sec followed by 0.9 sec of dwell time. The loading cycles were 

repeated for a total of 10,000 load cycles or until the specimen reached five percent 

cumulative strain. Three LVDT’s were attached to each sample during the test to measure the 

cumulative strains. 

Four-Point Bending Beam 

Four-point bending beam testing was conducted according to AASHTO T321, 

“Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subjected to 

Repeated Flexural Bending”.  Samples of field produced asphalt were compacted to 7 ± 0.5 

air voids in a linear kneading compactor to obtain a compacted slab with dimensions 380 mm 

in length, 210 mm in width, and 50 mm in height.  Each slab was saw-cut into three beams 
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with dimensions 380 mm in length, 63 mm in width, and 50 mm in height.  Two slabs were 

compacted for each asphalt mixture to produce six beams for testing. 

The equipment used to conduct the four-point bending beam test included a digitally 

controlled, servo-pneumatic closed loop bending beam apparatus from IPC Global.  A 

control data and acquisition system (CDAS) was connected to the bending beam apparatus 

which connected to a computer that controlled the load during the test.  The bending beam 

apparatus was housed in an environmental chamber maintained at the testing temperature of 

20 ± 0.5 °C.  Beams were placed in the environmental chamber at least two hours prior to 

testing to allow them to equilibrate to the testing temperature.  The mode of loading used for 

the test was strain controlled.  Haversine wave pulses were applied to the specimen during 

the test at 10 Hz. 

Testing was conducted at varying strain levels to generate a fatigue curve for each 

asphalt mixture.  For each of the six beam specimens prepared for each asphalt mixture, 

strain levels of 375, 450, 525, 650, 800, and 1000 micro-strains were applied.  Testing at 

these strain levels were repeated for all the mixtures tested except for the two Indiana 

mixtures containing 3% RAS.  Due to a limited amount of material, only 3 three beams of 

these mixtures were tested at 400, 700, and 1000 micro-strain levels. 

During testing of a beam specimen, properties of flexural stiffness, modulus of 

elasticity, dissipated energy, and phase angle were recorded by the software every 10 cycles.  

On the 50th cycle, the stiffness of the beam specimen was recorded as the initial stiffness.  

The beam specimens were tested until failure, which was defined as the cycle corresponding 

to a 50 percent reduction of the initial beam flexural stiffness. 
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A phenomenological approach for fatigue analysis was selected as the chosen 

methodology to evaluate the fatigue life properties of the mixtures. The phenomenological 

approach relates the tensile strain at the bottom of an asphalt pavement layer to the number of 

load repetitions to failure (Ghuzlan et al. 2006). In this approach, fatigue life is plotted versus 

stress or strain on a log-log scale.  

Since strain-controlled was used as the mode of loading, a log-log regression was 

performed between strain and the number of cycles to failure (Nf), (Figure 5). The 

relationship between strain and Nf can be modeled using the power law relationship as 

presented in the following equation.  

2

1
1

K

o
f

N K



 
 
   

where: 

Nf = cycles to failure; 

o = flexural strain; 

K1 = regression constant; and  

K2 = regression constant.  

The fatigue model can be calibrated to relate laboratory to field conditions by 

applying a shift factor, the hypothesis being that laboratory fatigue tests can simulate field 

conditions. Because of the challenging nature of duplicating field conditions in a laboratory, 

no universal shift factor has been measured. Rather, shift factors have ranged between 4 and 

100 (NCHRP 2010). 
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Figure 5. Sample fatigue curve 

 

Pavements that have a higher resistance to tensile strains that develop at the bottom of 

an asphalt layer due to repeated traffic will have a greater resistance to fatigue cracking. 

Therefore, fatigue curves of several asphalt mixtures can be used to rank the mixtures 

resistance to fatigue cracking. However, the results must take into consideration the mode of 

loading. Research from the Strategic Highway Research Program (SHRP) A003-A project 

(Tangella et al. 1990) showed that materials that are more flexible (lower stiffness) perform 

better in constant strain. The constant strain mode of loading best represents the performance 

of thin pavements (less than 4 inches) while the constant stress mode of loading best 

represents the performance of thick pavements (greater than 6 inches). Materials that are 

stiffer may not perform as well under constant strain in the laboratory, but when used in thick 

pavements, lower tensile strains will develop under field loading. Therefore, when fatigue 

testing is done in a constant strain mode of loading, fatigue evaluations should be made in the 

context of the pavement structure. 
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If tensile strains are low enough in a pavement structure, the pavement has the ability 

to heal and therefore no damage cumulates over an indefinite number of load cycles. The 

level of this strain is referred to as the fatigue endurance limit (FEL). Identifying the fatigue 

endurance limit in a laboratory is somewhat elusive because it is impossible to test a sample 

to an infinite number of cycles. The researchers under NCHRP Report 646 (2010) developed 

a practical definition of FEL as the strain level at which a sample could withstand 50 million 

load cycles. If a shift factor of 10 was applied to the test results, it would be estimated that 

the pavement could withstand 500 million loading cycles which represents 40 years of traffic. 

Because it can take up to 50 days of testing to see if a sample reaches 50 million cycles, the 

NCHRP Report 646 researchers developed a procedure to estimate the FEL of asphalt 

mixture from a fatigue curve. They found that the lower 95% prediction limit at 50 million 

load cycles from a regression analysis of fatigue data corresponded reasonably close to the 

FEL. This technique uses the following equation to estimate the fatigue life.  

21 ( )
1ˆLower Prediction Limit

x xot s
o n Sxx

y



  

 

where: 

yo = the one-sided lower 95% prediction interval at the micro-strain level corresponding to 

50,000,000 cycles;  

tα = value of t distribution for n-2 degrees of freedom for a significance level of 0.05; 

s = standard error of the regression analysis; 

n = number of samples; 

Sxx = sum of squares of the x values; 

xo = log 50,000,000; and 
x = average of the fatigue life results. 
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Semi-Circular Bending 

To evaluate the low temperature fracture properties of the mixes, 150 mm diameter 

specimens containing 7 ± 0.5 percent air voids were compacted in Iowa State University’s 

laboratory and delivered to the University of Minnesota for semi-circular bend (SCB) testing. 

SCB tests were conducted by following the procedure in “Investigation of Low Temperature 

Cracking in Asphalt” (Marasteanu et al., 2007). Testing was conducted at four different low 

temperatures: PG low temperature, PG low temperature +4C, PG low temperature +10C, 

and PG low temperature +16C. Replicate specimens were tested at each temperature.  

All tests were performed inside an environmental chamber, and liquid nitrogen was 

used to obtain the required low temperature. The temperature was controlled by the 

environmental chamber temperature controller and verified using an independent platinum 

resistive-thermal-device (RTD) thermometer. The load line displacement (LLD) was 

measured on both faces of the test specimens using a vertically mounted Epsilon 

extensometer with 38 mm gage length and ±1 mm range. One end was mounted on a button 

that was permanently fixed on a specially made frame, and the other end was attached to a 

metal button glued to the sample. The average LLD measurement was used for each 

specimen. The crack mouth opening displacement (CMOD) was recorded by an Epsilon clip 

gage with 10 mm gage length and a +2.5 and -1.0 mm range. The clip gage was attached at 

the bottom of the specimen. A constant CMOD rate of 0.0005mm/s was used and the load 

and load line displacement (P-u), as well as the load versus LLD curves were plotted. A 

contact load with a maximum load of 0.3 kN was applied before the actual loading to ensure 

uniform contact between the loading plate and the specimen. The testing was stopped when 

the load dropped to 0.5 kN in the post peak region. The load and load line displacement data 
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were used to calculate the fracture toughness and fracture energy (Gf). A typical load line 

displacement versus load plot is shown in Figure 6. 

 

Figure 6. Typical LLD versus load plot of three test replicates 

 

Pavement Condition Surveys 

Pavement condition surveys were conducted following the construction of each 

demonstration project and after every winter season to assess the field performance of the 

pavement concerning cracking, rutting, and raveling. The surveys were conducted in 

accordance with the Distress Identification Manual for Long-Term Pavement Performance 

Program by Federal Highway Administration. For each demonstration project, three 500-foot 

sections were randomly selected for each mix type paved. The surveys were conducted in 

these locations. 
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Results and Discussion 

RAS Characterization 

The results of the RAS gradation analysis are presented in Table 4. All the state 

agencies for the demonstration projects specified at least a 12.5 mm minus RAS grind size. 

Both Missouri and Illinois RAS suppliers successfully produced a minus 9.5 mm RAS grind 

size. In the case of the Missouri demonstration project, a minus 9.5 mm grind was compared 

to a minus12.5 mm grind. 

Table 4:  RAS grind sizes 

 Percent Passing Sieve Size 

Sieve 

Size (mm) 

MO MO IA MN MN IN WI CO IL 

PC-CRAS PC-FRAS PC PM PC PC PC PM PC 

19 100 100 100 100 100 100 100 100 100 

12.5 98 100 97 100 100 100 100 99 100 

9.5 94 99 95 95 99 97 99 95 100 

4.75 75 82 84 70 85 74 83 70 91 

2.36 62 67 67 56 73 62 70 55 74 

1.18 42 43 44 32 49 38 47 31 48 
0.6 22 21 22 12 24 18 24 13 24 

0.3 12 12 10 4 10 9 11 6 11 

0.15 5 5 3 1 3 4 3 2 3 

0.075 1.2 0.9 0.6 0.4 0.5 0.7 0.6 0.3 0.5 

PC – post consumer; PM – post manufactured 

CRAS – coarsely ground RAS; FRAS – finely ground RAS 

 

The asphalt contents of the post-manufacturer RAS sources (Minnesota and Colorado) 

range from 14.6 to 18.1 percent asphalt (Figure 7). This is lower than the asphalt content 

measured in the post-consumer RAS sources which range in asphalt content from 20.5 to 

36.7 percent asphalt. RAS from post-consumer shingles will contain a larger percentage of 

asphalt because older shingles were made with a cellulose-fiber paper-backing which absorbs 

more asphalt than currently used fiberglass-mat backing shingles. Also, as shingles age on a 

roof, the loss of aggregate granules increases the percentage of asphalt in the shingle. The 
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larger range in asphalt contents of post-consumer shingles highlights the variability of 

different post-consumer shingle sources and the importance of keeping shingles from 

different sources separate during recycling operations. 

 

Figure 7. RAS percent asphalt content 

 

All the RAS sources were tested for their high temperature PG using the dynamic 

shear rheometer (DSR) (Figure 8). The high temperature PG of the RAS binders is higher 

than traditional paving grade binders. This is expected since the binder in roofing shingles is 

produced with an air-blowing process which oxidizes the asphalt.  

The high temperature PG of the post-consumer RAS binder ranges from 122.2°C to 

146.1°C. These temperatures are noticeably higher than the post-manufacturer RAS binder 

which ranges from 109.1°C to 111.2°C. The post-consumer RAS binders are stiffer because 

they come from in-service roofing shingles that have experienced at least several years of 

aging. Post-manufacturer RAS comes from waste produced during shingle manufacturing. 
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Figure 8. RAS high temperature performance grade 

 

Recovered Asphalt Binder 

The performance grade of the binder extracted from the field samples and the asphalt 

binder used during production is presented in Table 5. When RAS and/or RAP is added to 

the mix designs of each state demonstration project, the binder performance grade increases 

on the high and low side as expected. While the increase on the high PG side will stiffen the 

asphalt mixture to help reduce permanent deformation, the increase on the low PG side could 

increase the low temperature cracking potential of the mixture. 

To compensate for the increased low temperature stiffness due to the addition of RAS 

and/or RAP materials, it is common practice to use a softer virgin binder with a lower PG. 

However, RAS and RAP have different performance grades and asphalt contents. Knowing 

which virgin binder to use or the amount of recycled product to add to the virgin binder is 

necessary to achieve a desired final PG. 

The average results of all the mixes show that for every one percent increase in RAS, 

the low temperature grade will increase 1.9C; and for every one percent increase in RAP, 

the low temperature grade will increase 0.3C. Therefore, based on these mixes, three percent 
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RAS or 20 percent RAP would be the amount of recycled material needed for no more than 

one low temperature grade bump (6C). 

The wide range of asphalt contents in the RAS materials used in this study (from 14.6 

percent to 36.7 percent) demonstrates the importance of evaluating the effects of RAS binder 

based on the percent binder replaced in the mix, rather than the percentage of RAS. The 

average RAS asphalt content was 24.5 percent and the average optimum asphalt content of 

the mixtures was 5.5 percent. Using these values and the binder grading results, for every 1 

percent increase in binder replacement with RAS, the low temperature grade will increase 

0.43 percent. For every 1 percent increase in binder replacement with RAP, the low 

temperature grade will increase 0.3 percent. Therefore, to cap the increase in the low 

temperature performance grade by one grade bump (6C), either a maximum of 14 percent 

binder replacement with RAS binder could be used or a maximum of 20 percent binder 

replacement with RAP binder could be used. 

This above analysis is only based on the average results when using all the data from 

the demonstration projects. It is important to also consider the large differences in material 

properties, sources, and factors in the experimental design for each state’s demonstration 

project. Some demonstration projects used post-consumer RAS while others used post-

manufactured RAS. Also, some demonstration projects used polymers and/or recycled tire 

rubber to modify the virgin binder which may have confounding effects when blended with 

recycled binders. Therefore, the variety of demonstration projects shows the necessity for 

state highway agencies to consider multiple factors when developing a RAS construction 

specification for asphalt pavements.  
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Table 5. Asphalt binder performance grades 

 

 

Aggregate Gradations 

 The aggregate gradations presented in Figure 9 demonstrate the wide range of 

aggregate structures for asphalt mixes utilized in different states. Iowa, Indiana, Minnesota, 

Wisconsin, and Colorado utilize mixes with fine aggregate gradations that extend above the 

restricted zone on a 0.45 power chart, while Missouri mixes and one mix from Minnesota 

utilize course gradations that plot below the restricted zone. The SMA mixes from Illinois 

plot well below the maximum density line to achieve the gap graded aggregate structure for 

SMA mixes. 

State 

Agency 
Mix ID 

PG of Base Binder 

Sampled from HMA Plant 
 

PG of Extracted Binder 

from Field HMA Sample 

High Temp 

°C 

Low Temp 

°C 
 

High Temp 

°C 

Low Temp 

°C 

Missouri 15 RAP 70.3 -22.8  75.0 -16.8 
Missouri 5 FRAS/10 RAP 70.3 -22.8  90.1 -8.7 

Missouri 5 CRAS/10 RAP 70.3 -22.8  88.3 -4.9 

Iowa 0 RAS 61.1 -17.9  73.0 -19.7 

Iowa 4 RAS 61.1 -17.9  75.8 -19.1 

Iowa 5 RAS 61.1 -17.9  81.3 -16.8 

Iowa 6 RAS 61.1 -17.9  86.1 -14.7 

Minnesota 30 RAP 581 -281  68.8 -22.7 

Minnesota 5 PC RAS 581 -281  71.1 -21.2 

Minnesota 5 PM RAS 581 -281  71.3 -21.7 

Indiana 15 RAP HMA 72.2 -24.2  75.6 -20.1 

Indiana 3 RAS HMA 72.2 -24.2  77.6 -14.2 

Indiana 3 RAS WMA 72.2 -24.2  78.8 -15.1 

Wisconsin Evotherm® 3G 60.7 -29.1  68.5 -24.0 

Wisconsin No Evotherm® 60.7 -29.1  69.5 -22.5 

Colorado 20 RAP 66.4 -34.8  67.6 -27.5 

Colorado 3 RAS/15 RAP 66.4 -34.8  71.9 -21.1 

Illinois 5 RAS/0 RAP Field 73.2 -29.9  72.8 -24.3 

Illinois 5 RAS/0 RAP Lab 73.2 -29.9  72.7 -23.7 
Illinois 5 RAS/0 RAP Lab-GTR 73.2 -29.9  77.2 -21.3 

Illinois 5 RAS/11 RAP Field 73.2 -29.9  82.8 -18.1 

Illinois 5 RAS/11 RAP Lab 73.2 -29.9  84.4 -14.5 

Illinois 5 RAS/11 RAP Lab-GTR 73.2 -29.9  81.8 -17.7 
1 Asphalt binder sample was not available. PG58-28 was the specified base binder. 
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Figure 9. Aggregate gradations 
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Dynamic Modulus 

The dynamic modulus master curves presented in Figure 10 show the how the 

modulus of the asphalt mixes decrease with temperature and increase with frequency. The 

dynamic modulus was selected for analysis as a simple performance test to evaluate the 

mixes resistance to permanent deformation. The temperature-frequency combination used for 

the analysis was 37C and 5 Hz, since dynamic modulus values close to this temperature at 5 

Hz have been correlated to the permanent deformation performance of asphalt mixes 

(NCHRP 2002). Figure 11 shows the mean dynamic modulus values and with error bars one 

standard deviation from the mean. The Missouri mixes have the highest dynamic modulus 

values which correlates to their high asphalt binder performance grade and coarse aggregate 

structure. Their high modulus values seem reasonable since they were designed for hotter 

climates and heavier traffic compared to mixes with lower modulus values such as Wisconsin 

or Iowa. 

To statistical analyze the tests results from each demonstration project, a statistical 

analysis was conducted using a one-way analysis of variance (ANOVA) to determine if any 

differences among the mean dynamic modulus values were significant or to due random error.  

The statistical software program JMP (2014) was used to conduct the analysis.  A 95 percent 

significance level was used in the analysis for an alpha value of 0.05. A pair-wise comparison 

was then performed to compare and rank the mix treatment levels within each state with regard 

to dynamic modulus. The outcome is reported in Table 6, in which statistically similar 

treatments are grouped together. Letter A indicates the best performing group of mixtures; 

letter B the second best, and so on. Groups with the same letter are not statistically different, 

whereas mixtures with different letters are statistically different.  
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Figure 10. Dynamic modulus master curves 
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Figure 11. Dynamic modulus at 37C, 5 Hz 

 

The analysis demonstrates that for the Colorado mixes, replacing five percent RAP 

with three percent RAS will significantly increase the dynamic modulus of the HMA, and thus 

may increase the mix’s resistance to permanent deformation. For the Wisconsin mixes, using 

Evotherm® 3G statistically decreased the dynamic modulus of the HMA. Since the two 

Wisconsin mixes were both produced at regular plant temperatures, the only construction 

variable between the mixes was the use of Evotherm® 3G as a compaction aid. For the 

Missouri, Iowa, Indiana, and Minnesota mixes, no statistical differences were measured among 

the treatment groups. 
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Table 6. Statistical grouping of mean E* values 

State 

Agency 
Mix ID 

ANOVA 

p-value 

Tukey 
Statistical 

Rank 

Group 
mean  

E*(MPa) 

Sample 

Size 

Missouri 15 RAP 
0.3441 

A 3243.2 5 
Missouri 5 FRAS/10 RAP A 3495.6 5 

Missouri 5 CRAS/10 RAP A 3126.6 5 

Iowa 0 RAS 

0.8440 

A 1376.6 5 

Iowa 4 RAS A 1160.1 5 

Iowa 5 RAS A 1339.9 5 

Iowa 6 RAS A 1319.8 5 

Minnesota 30 RAP 
0.1146 

A 933.9 5 

Minnesota 5 PC RAS A 1371.4 5 

Minnesota 5 PM RAS A 1401.6 5 

Indiana 15 RAP HMA 
0.0996 

A 3112.3 3 
Indiana 3 RAS HMA A 2349.8 5 

Indiana 3 RAS WMA A 2519.0 5 

Wisconsin No Evotherm® 0.0026 A 1500.0 3 

Wisconsin Evotherm® 3G B 1258.3 3 

Colorado 3 RAS/15 RAP 
0.0121 

A 1587.0 3 

Colorado 20 RAP B 1290.7 3 

Illinois 5 RAS/0 RAP Field 

* 

* 3069.3 3 

Illinois 5 RAS/0 RAP Lab * 4862.0 3 

Illinois 5 RAS/0 RAP Lab-GTR * 3656.8 3 

Illinois 5 RAS/11 RAP Field * 4645.0 3 

Illinois 5 RAS/11 RAP Lab * 4942.0 3 

Illinois 5 RAS/11 RAP Lab-GTR * 4911.7 3 

 

For the Illinois mixes, several statistical models were used to test the additional 

treatment groups of RAP versus no RAP (mix type), laboratory versus field samples (sample 

type), and polymer modified mixes versus GTR modified mixes (binder modification). A one-

way ANOVA analysis was conducted for the RAP treatment group, while a two-way factorial 

ANOVA analysis was conducted to test the main effects of sample type and mix type and their 

interaction. Likewise, a two-way factorial ANOVA analysis was conducted on laboratory 

prepared samples to test for the main effects of binder modification and mix type and their 

interaction. The results demonstration a significant increase in the dynamic modulus when 11 

percent RAP is added to the mixes (Table 7 and 8). There is also a significant difference 
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between lab and field dynamic modulus values indicating that the curing time for laboratory 

prepared samples does not match the amount of curing in field produced samples. The use of 

GTR does not change modulus properties of the mix, and no interaction effects were 

significant. 

Table 7. Main and interaction effects of Illinois E* values 

Test statistic Main effects Interaction effect 

 RAP Level   

p-value 0.0082   

 Sample Type RAP Level Sample Type X RAP Level 
p-value 0.0209 0.0154 0.1829 

 Binder Type RAP Level Binder Type X RAP Level 

p-value 0.1842 0.0640 0.5487 

 

 

Table 8. Illinois statistical grouping of E* values 

Illinois Mix 

Comparisons 

Tukey 
Statistical 

Rank 

Group 
mean  

E*(MPa) 

11 RAP A 2087.0 
0 RAP B 1562.9 

Lab Samples A 2079.5 

Field Samples B 1582.3 

Polymer Modified A 2079.5 

GTR Modified A 1813.0 
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Flow Number 

The mean flow numbers are presented in Figure 12, and the multiple comparisons of 

the mix treatment groups for each state are reported in Table 9. The results demonstrate that 

higher amounts of RAS and/or RAP will increase the flow number, and thus the permanent 

deformation resistance, of the asphalt mixture. For example, as RAS is increased in the mix 

design for the Iowa project, the flow number increases. There is a statistical increase in flow 

number when comparing the means of the zero percent RAS mixes to the six percent RAS 

mixes. Likewise, when 30 percent RAP was replaced with five percent RAS in the Minnesota 

mixes, the flow number also increased. The Minnesota mixes also demonstrate that using 

post-consumer RAS can improve the flow number of an asphalt mix to a greater extent than 

using post-manufacturer RAS. For the Indiana mixes, replacing RAP with RAS also 

improved the flow number of the asphalt mixes. In the case of the Missouri and Illinois 

mixes, the flow numbers of the mixes reached the end of the test at 10,000 load cycles 

without reaching tertiary flow. The strains accumulated in the mixes after 10,000 load cycles 

was very small at less than one percent strain. Hence, the Missouri and Illinois mixes 

exhibited the highest flow numbers. 
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Figure 12. Flow number 

  

0

2000

4000

6000

8000

10000

15 RAP 5 FRAS/10 RAP 5 CRAS/10 RAP

Fl
o

w
 N

u
m

b
er

Missouri

0

2000

4000

6000

8000

10000

0 RAS 4 RAS 5 RAS 6 RAS

Fl
o

w
 N

u
m

b
er

Iowa

0

2000

4000

6000

8000

10000

30 RAP 5 PC RAS 5 PM RAS

Fl
o

w
 N

u
m

b
er

Minnesota

0

2000

4000

6000

8000

10000

15 RAP HMA 3 RAS HMA 3 RAS WMA

Fl
o

w
 N

u
m

b
er

Indiana

0

2000

4000

6000

8000

10000

Evotherm® 3G No Evotherm®

Fl
o

w
 N

u
m

b
er

Wisconsin

0

2000

4000

6000

8000

10000

12000

20 RAP 3 RAS/15 RAP

Fl
o

w
 N

u
m

b
er

Colorado

0

2000

4000

6000

8000

10000

5 RAS/
0 RAP Field

5 RAS/
0 RAP Lab

5 RAS/
0 RAP GTR

Fl
o

w
 N

u
m

b
er

Illinois (No RAP)

0

2000

4000

6000

8000

10000

5 RAS/
11 RAP Field

5 RAS/
11 RAP Lab

5 RAS/
11 RAP GTR

Fl
o

w
 N

u
m

b
er

Illinois (RAP)



46 

 

Table 9. Flow number statistical grouping 

State 

Agency 
Mix ID 

Flow Number 

ANOVA 

p-value 

Tukey 
Statistical 

Rank 

Group mean   

Flow Number 

Sample 

Size 

Missouri 15 RAP 
* 

* >10000 5 
Missouri 5 FRAS/10 RAP * >10000 5 

Missouri 5 CRAS/10 RAP * >10000 5 

Iowa 6 RAS 

0.0007 

A 5899 4 

Iowa 5 RAS A/B 4988 4 

Iowa 4 RAS B/C 2938 4 

Iowa 0 RAS C 711 4 

Minnesota 5 PC RAS 
<0.0001 

A 2497 5 

Minnesota 5 PM RAS B 1700 5 

Minnesota 30 RAP C 767 5 

Indiana 3 RAS WMA 
<0.0001 

A 9986 5 

Indiana 3 RAS HMA A 9865 5 

Indiana 15 RAP B 6578 3 

Wisconsin Evotherm® 3G 0.1425 A 2128 3 

Wisconsin No Evotherm® A 3912 3 

Colorado 20 RAP 
0.4521 

A 7533 3 

Colorado 3 RAS/15 RAP A 9020 3 

Illinois 5 RAS/0 RAP Field 

* 

* 7923 3 

Illinois 5 RAS/0 RAP Lab * >10000 3 

Illinois 5 RAS/0 RAP Lab-GTR * 8737 3 

Illinois 5 RAS/11 RAP Field * >10000 3 

Illinois 5 RAS/11 RAP Lab * >10000 3 

Illinois 5 RAS/11 RAP Lab-GTR * >10000 3 

 

 

Four-Point Bending Beam 

The four-point bending beam results, as presented by the strain versus “loading cycles 

to failure” curves, are reported in Figure 13. The K1 and K2 coefficients, R2 value, and 

predicted endurance limit for all the mixes are presented in Table 10. With exception of the 

Illinois SMA mixes with GTR, all fatigue curves have an R2 value above 0.9. The SMA 

mixes with GTR tended to segregate more than other mixes in the compaction mold resulting 

in higher amounts of variability in the air voids of the performance testing samples.  
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The K1 coefficient of the fatigue model characterizes the flexural modulus, and the 

K2 coefficient indicates the rate of damage accumulation in a sample.  When using this 

relationship as failure criterion for a pavement design, a lower K2 value is more conservative 

as it assumes faster accumulation of fatigue damage.  Suggested values for K2 are 4.477 by 

The Asphalt Institute, 4.0 by Shell, and 3.571 by the University of Nottingham (Huang 

2004).  Carpenter (2006) recommended the Illinois Department of Transportation use a K2 

value in the range of 3.5 to 4.5. All the mixes, with or without RAS, performed well with 

respect to fatigue cracking since all the K2 coefficients are above 4. 

With respect to the predicted fatigue endurance limit of the mixes, the SMA mixes 

from Illinois, in particular, have the greatest endurance limits and thus possess the highest 

fatigue cracking resistance in a strain-controlled environment. In the case of the Iowa, 

Missouri, Minnesota, and Colorado demonstration projects, the RAS mixes exhibited better 

fatigue lives and higher predicted endurance limits than the non-RAS mixes. These results 

demonstrate that mixes containing RAS can possess similar or better fatigue properties to 

mixes without RAS.  

For the Iowa mixes, fatigue life increases with the addition of RAS. Since the fatigue 

tests were conducted in a controlled-strain mode of loading, the results indicate that RAS will 

improve the fatigue life of a thin lift pavement. The four Iowa mixes contain vary similar 

gradations and volumetric properties. They all have approximately the same asphalt content. 

The only difference between the mixes is percentage of RAS. Because RAS contains stiffer 

binder than virgin binder, it is expected that an increase in RAS percentage would increase 

the stiffness of the mixture. Yet, the average initial beam stiffness of the 0% RAS mixture 

was 3497 MPa while the average initial beam stiffness of the 4%, 5%, and 6% RAS mixtures 
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was 3090 MPa, 3106 MPa, and 3156 MPa respectively. Past beam fatigue studies in 

controlled strain mode of loading showed that when stiffness decreases from a change in 

binder type or grade, beam fatigue life is typically increased (SHRP-A-404). These results 

appear to follow the same trend as well, since the mixes with lower initial stiffness 

demonstrated longer fatigue lives. However, as the percentage of RAS increases from 0 to 4 

to 5 percent in the mixture, which stiffens the binder grade, the fatigue life 

uncharacteristically increases.  

A possible explanation of this phenomenon, could be from the complex RAS-

aggregate-binder interactions and the contribution of fibers from the RAS. As the percent 

RAS content increases from 5% to 6%, the fatigue life no longer increases but decreases. 

While still significantly higher than the fatigue life of the 0% RAS mixes, the decrease could 

result from the effect of the stiffer binder (now at 22.8 percent replacement) having a more 

influential effect on the fatigue properties. 

It is also of interest that the 11 percent RAP mixes for Illinois have higher endurance 

limits than the 0 percent RAP mixes. These results are counter intuitive since a higher 

percentage of recycled binder can increase the stiffness of an asphalt mixture and reduce its 

fatigue life in a strain-controlled mode of loading. The RAP mixes may possess higher 

endurance limits because they have a higher total binder content than the non-RAP mixes. 
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Figure 13. Four-point bending beam fatigue curves 
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Table 10. Fatigue model coefficients and predicted endurance limit 

State Agency Mix ID K1 K2 R2 Endurance Limit 

(microstrain) 

Missouri 15 RAP 5.15E-17 6.40 0.968 139 
Missouri 5 FRAS/10 RAP 7.25E-19 6.91 0.992 145 

Missouri 5 CRAS/10 RAP 2.07E-20 7.37 0.968 159 

Iowa 4 RAS 1.43E-13 5.45 0.987 144 

Iowa 6 RAS 6.75E-14 5.68 0.987 182 

Iowa 5 RAS 1.97E-12 5.27 0.982 175 

Iowa 0 RAS 7.07E-14 5.65 0.967 162 

Minnesota 30 RAP 6.66E-11 4.51 0.982 89 

Minnesota 5 PC RAS 2.22E-09 4.19 0.996 123 

Minnesota 5 PM RAS 9.19E-12 4.90 0.994 131 

Indiana 15 RAP HMA 7.04E-12 4.87 0.993 114 

Indiana 3 RAS HMA 1.41E-11 4.77 0.970 118 
Indiana 3 RAS WMA 1.17E-11 4.81 0.985 110 

Wisconsin Evotherm® 3G 1.70E-11 4.74 0.976 74 

Wisconsin No Evotherm® 3.75E-10 4.32 0.984 53 

Colorado 20 RAP 2.34E-13 5.69 0.907 195 

Colorado 3 RAS/15 RAP 9.22E-14 5.89 0.907 244 

Illinois 5 RAS/0 RAP Field 5.97E-16 6.51 0.946 195 

Illinois 5 RAS/0 RAP Lab 2.92E-11 5.07 0.907 138 

Illinois 5 RAS/0 RAP GTR 2.15E-11 4.86 0.593 152 

Illinois 5 RAS/11 RAP Field 2.61E-13 5.64 0.985 208 

Illinois 5 RAS/11 RAP Lab 5.26E-27 9.95 0.996 359 

Illinois 5 RAS/11 RAP GTR 8.29E-20 7.56 0.735 204 

 

Semi-Circular Bending 

The fracture energy results from the semi-circular bend (SCB) tests for each state’s 

mixes are shown in Figure 14. The SCB samples from each state were used to conduct a 

completely randomized two-way factorial statistical experiment with mix type and 

temperature as the treatment groups. In the case of the mixes from Illinois, two additional 

three-way factorial experiments were conducted to test for the effects of sample type (lab vs 

field), temperature, and RAP level and to also test for the effects of binder modification 

(GTR vs polymer), temperature, and RAP level in laboratory prepared samples. The 

significant main effects for each state’s experiment are reported in Table 11. The temperature 

of the SCB test had a significant impact of the facture energy of the mixes from all the states. 
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This indicates that the mixes have a reduced fracture energy, and thus reduced cracking 

resistance, as their temperature decreases.  

Using a pair-wise comparison of the mix type group mean from each state, the mixes 

are ranked according to their fracture energy in Table 12. Mixes from Minnesota have the 

highest fracture energy whereas mixes from Missouri and neighboring states have much 

lower fracture energies. Interestingly, this trend is associated with the geographic location 

where the mixes were designed and placed. For the northern climate states, softer asphalt 

binders were used in the mixes. As demonstrated by the results, the use of a softer asphalt 

binder resulted in mixes with a greater resistance to cracking. 

With respect to the Missouri mixes, when five percent RAP is replaced with RAS, the 

fracture energy does not change. While the mixture with a coarse grind RAS decreases the 

fracture energy from 427 to 378 J/m2, the difference is not statistically significant. The 

Missouri mixes also contain a significant mix type to temperature interaction. As the 

temperature treatment decreases from -6C to -12C, the 15 percent RAP mix significantly 

decreases in fracture energy while the post-manufacturer and post-consumer RAS mixes do 

not. However, from -18C to -22C there are no significant interaction effects among the mix 

types. 

For the Iowa mixes, the 4% RAS mix has the highest fracture energy and the 0% 

RAS mix has the lowest fracture energy. The differences are statistically significant. The 

ranking of the mixtures by fracture energy is almost identical to the ranking of the mixtures 

by fatigue endurance limit, where RAS also has an effect on reducing the cracking 

susceptibility of the mix. These results indicate that small percentages of RAS will either 

decrease or have no detrimental effect on the cracking performance of asphalt pavements. 
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The results of the Minnesota mixes indicate similar low temperature cracking 

resistance between the RAS and RAP mixes. The 30 percent RAP mix has an average 

fracture energy of 741 J/m2. When five percent RAS is used in the mix design in place of 30 

percent RAP, the fracture energy increased to 768 J/m2 for the post-manufacturer RAS mix 

and 777 J/m2 for the post-consumer RAS mix. Since all the mixes are statistically ranked 

with the letter A, no statistical differences exist between the results of the three mixes. 

For the Indiana mixes, when 15 percent RAP is replaced with three percent RAS, the 

fracture energy decreases from 551 to 502 J/m2, although the difference are not statistically 

significant. The SCB test does not detect any difference in low temperature cracking 

performance when either RAS or WMA technology are used in the mixes. 

For the Wisconsin mixes, when Evotherm® 3G is added to the HMA as a compaction 

aid, the fracture energy does not change. While the Evotherm® 3G mix does have a lower 

fracture energy (329 J/m2) than the non-Evotherm® 3G mix (364 J/m2), the difference is not 

statistically significant. Although not statistically significant at the 95% confidence level, 

these results do correlate well with the PG of the extracted binders. The low temperature 

performance grade of the extracted HMA binder containing Evotherm® 3G is higher than the 

extracted HMA binder not containing Evotherm® 3G, thus also indicating slightly lower 

resistance to cracking at low temperatures. 

For the Colorado mixes, when 5 percent RAS with is replaced with 3 percent RAS in 

the HMA, the fracture energy does not statistically change. While the RAS/RAP mixture 

does have a lower fracture energy (318 J/m2) than the RAP only mixture (350 J/m2), the 

difference is not statistically significant. Although not statistically significant at the 95 

percent confidence level, these results also correlate well with the PG of the extracted  
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Figure 14. Fracture energy (Gf) of mixes from each state 
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Table 11. Effects tests from ANOVA analysis of fracture energy 

Main and interaction effects  
Test statistic 
p-value 

Missouri Mix Type 0.0669 

Temperature (°C) 0.0017* 

Missouri Mix Type*Temperature (°C) 0.0363* 

Iowa Mix Type 0.0098* 

Temperature (°C) 0.0001* 

Iowa Mix Type*Temperature (°C) 0.9935 

Minnesota Mix Type 0.7652 

Temperature (°C) <.0001* 

Minnesota Mix Type*Temperature (°C) 0.5085 

Indiana Mix Type 0.1136 

Temperature (°C) <.0001* 

Indiana Mix Type*Temperature (°C) 0.5715 

Wisconsin Mix Type 0.2962 

Temperature (°C) 0.0002* 

Wisconsin Mix Type*Temperature (°C) 0.1946 

Colorado Mix Type 0.0787 

Temperature (°C) 0.0209* 

Colorado Mix Type*Temperature (°C) 0.0619 

Illinois RAP Level 0.0362* 

Temperature (°C) 0.0020* 

Illinois RAP Level *Temperature (°C) 0.2848 

Illinois RAP Level 0.0781 

Temperature (°C) 0.0518 
Illinois RAP Level *Temperature (°C) 0.5596 

Sample Type 0.8072 

Illinois RAP Level*Sample Type 0.4028 

Temperature (°C)*Sample Type 0.1134 

Illinois RAP Level *Temperature (°C)*Sample Type 0.4217 

Illinois RAP Level 0.2254 

Temperature (°C) 0.0517 

Illinois RAP Level *Temperature (°C) 0.5950 

Binder Modification 0.7757 

Illinois RAP Level *Binder Modification 0.9027 

Temperature (°C)*Binder Modification 0.2547 

Illinois RAP Level *Temperature (°C)*Binder Modification 0.2531 

 

binders. The low temperature performance grade of the extracted HMA binder containing 

RAP and RAS is higher than the extracted HMA binder containing RAP only, thus also 

indicating slightly lower resistance to cracking at low temperatures. 
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For the Illinois mixes, when 11 percent RAP is added to the mixes, the fracture 

energy significantly decreases, resulting in a mix with a greater susceptibility to cracking 

(Figure 15). The main effects of binder modification type (GTR vs polymer) and sample type 

(laboratory vs field) were not significant. 

 

Table 12. Ranking of mixes by Gf mean for each demonstration project 

State Agency Mix ID 

Tukey 
Statistical 

Rank 

Group 
mean Gf 

(J/m2) 

Sample 
size at each 

temp. 

Test 

temperatures C 

Missouri 15 RAP A 428 3 
-6, -12,-18,-22 Missouri 5 FRAS/10 RAP A 427 3 

Missouri 5 CRAS/10 RAP A 378 3 

Iowa 0 RAS A 674 3 

-12, -18, -24, -28 
Iowa 4 RAS A/B 659 3 
Iowa 5 RAS A/B 558 3 

Iowa 6 RAS B 531 3 

Minnesota 30 RAP A 741 3 

-12, -18, -24, -28 Minnesota 5 PC RAS A 777 3 

Minnesota 5 PM RAS A 768 3 

Indiana 15 RAP HMA A 551 3 

-6, -12,-18,-22 Indiana 3 RAS HMA A 502 3 

Indiana 3 RAS WMA A 500 3 

Wisconsin Evotherm® 3G A 329 2 
-12, -18, -24, -28 

Wisconsin No Evotherm® A 364 2 

Colorado 20 RAP A 350 2 
-12, -18, -24, -28 

Colorado 3 RAS/15 RAP A 318 2 

Illinois 5 RAS/0 RAP Field * 482 2  

Illinois 5 RAS/0 RAP Lab * 432 2 

-12, -18, -24, -28 

Illinois 5 RAS/0 RAP Lab-GTR * 430 2 
Illinois 5 RAS/11 RAP Field * 337 2 

Illinois 5 RAS/11 RAP Lab * 369 2 

Illinois 5 RAS/11 RAP Lab-GTR * 385 2 
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Figure 15. Fracture energy group means for Illinois mixes by RAP level 

 

 

Pavement Condition Surveys 

The results of the pavement condition surveys for each demonstration project are 

reported in Table 13. The number of pavement surveys conducted for each project was 

dependent on the timing and location of the project. Three post-winter surveys were 

completed for Minnesota and Indiana; two post-winter surveys were completed for Missouri 

and Iowa; and one post-winter survey was completed for Colorado, Illinois and Wisconsin.  

During each survey, there was no measureable amount of permanent deformation. 

The clearest and most telling distress regarding pavement performance for all the projects 

was transverse cracking. This cracking was most likely reflective cracking since all the 

pavements with transverse cracks were asphalt overlays placed over jointed concrete 

pavement. The severity level and linear length of the transverse cracks was measured in each 

section. It is reported in linear feet per 500 feet of one traffic lane width. 

For the Missouri and Minnesota projects, the RAS pavements exhibited more 

cracking than the non-RAS pavements. However, for the Iowa and Indiana projects RAS 

pavements exhibited the same amount of cracking or less than the non-RAS pavements. The 

Indiana WMA pavement with RAS exhibited more cracking than the HMA pavement with  
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Table 13. Pavement transverse cracking 

  Transverse cracking (feet per 500 feet of 1 traffic lane) 

State Agency Mix ID 
After 

construction 

1 winter after 

construction 

2 winter after 

construction 

3 winter after 

construction 

4 winter after 

construction 

Missouri 15 RAP 0 30 46   
Missouri 5 FRAS/10 RAP 0 52 97 - - 

Missouri 5 CRAS/10 RAP 0 41 139 - - 

Iowa 0 RAS 0 144 156 - - 

Iowa 4 RAS 0 137 142 - - 

Iowa 5 RAS 0 148 153 - - 

Iowa 6 RAS 0 146 147 - - 

Minnesota 30 RAP - - - 0 0 
Minnesota 5 PC RAS - - - 143 173 

Minnesota 5 PM RAS - - - 150 199 

Indiana 15 RAP HMA - 4 158 191 - 

Indiana 3 RAS HMA - 35 162 172 - 

Indiana 3 RAS WMA - 47 264 277 - 

Wisconsin Evotherm® 3G 0 0 - - - 

Wisconsin No Evotherm® 0 0 - - - 

Colorado 20 RAP 0 0 - - - 

Colorado 3 RAS/15 RAP 0 25 - - - 

Illinois 0 RAS/5 RAP Field 0 0 - - - 

Illinois 0 RAS/5 RAP Lab 0 0 - - - 
Illinois 0 RAS/5 RAP GTR 0 0 - - - 

Illinois 11 RAS/5 RAP Field 0 0 - - - 

Illinois 11 RAS/5 RAP Lab 0 0 - - - 

Illinois 11 RAS/5 RAP GTR 0 0 - - - 
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RAS. In the case of the Wisconsin project, using Evotherm® with RAS did not decrease the 

pavement performance after one winter season. In the Minnesota project, slightly more 

cracking was observed in the mix using post-manufacturer RAS compared to the mix using 

post-consumer RAS. When taking into consideration the variability of the existing pavement 

condition beneath the asphalt overlays and the small difference in crack length among the 

different mix types for some projects, definitive conclusions about RAS pavements solely 

based on the surveys should be reserved. 

Summary and Conclusions 

This paper presents the results of Transportation Pooled Fund (TPF)-5(213), a 

collaboration of state transportation agencies in the United States with the goal of researching 

the effects of RAS on the performance of asphalt applications. As part of TPF-5(213), each 

state highway agency proposed a unique field demonstration project that investigated 

different aspects of asphalt mixes containing RAS specific to their state needs. The objective 

of these projects was to provide adequate laboratory and field test results to answer design, 

performance, and environmental questions about asphalt pavements with RAS. The 

demonstration projects focused on evaluating different aspects (factors) of RAS that were 

deemed important for each state to move forward with a RAS specification. RAS factors 

addressed in the different demonstration projects included the evaluation of the RAS grind 

size, RAS percentage, RAS source (post-consumer versus post-manufactured), RAS in 

combination with warm mix asphalt technology, RAS as a fiber replacement for stone matrix 

asphalt (SMA) pavements, and RAS in combination with ground tire rubber. Several of the 

demonstrations projects also included control sections to compare traditionally used mix 

designs containing either RAP only or no recycled product to mix designs containing RAS. 
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Field mixes from each demonstration project were sampled for conducting the following 

tests: dynamic modulus, flow number, four-point beam fatigue, semi-circular bending, and 

binder extraction and recovery with subsequent binder characterization. Pavement condition 

surveys were then conducted for each project after completion. The results of the study are 

summarized below: 

 Observations from the demonstration projects show that RAS pavements can be 

successfully produced and meet state agency quality assurance requirements for mix 

asphalt content, gradation, and volumetrics. This includes the SMA mixes produced 

in Illinois which used five percent RAS in place of fibers; the RAS mixes produced in 

Indiana and Wisconsin that used foaming and Evotherm® WMA technologies, 

respectively; and the RAS mixes produced in Missouri which used RAS, RAP, and  

GTR. 

 When RAS is used in HMA, the shingle binder blends with the base binder which 

increases the performance grade of the base binder on the high and low side. The 

average results of all the mixes in the study show that for every 1 percent increase in 

RAS, the low temperature grade of the base binder will increase 1.9C; and for every 

1 percent increase in RAP, the low temperature grade of the base binder will increase 

0.3C. Therefore, on average, 3 percent RAS or 20 percent RAP would be the 

maximum amount of recycled material allowed without requiring a low temperature 

grade bump (6C) in the base binder. This corresponds to a 14 percent binder 

replacement when using RAS and a 20 percent binder replacement when using RAP, 

when considering the average asphalt content values for all the mix designs. 

However, this should only be used as a starting point of estimating how RAS will 
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affect HMA binder since the PG of the asphalt blends did vary among the different 

projects. When estimating how RAS will affect an HMA binder, agencies should 

consider the RAS source (post-manufacturer versus post-consumer) and whether a 

modifier is used in the base asphalt. 

 The flow number and dynamic modulus results from the demonstration project mixes 

show that using RAS or a combination of RAS/RAP in HMA improves its rutting 

resistance. The pavement condition surveys confirmed the high rutting resistance of 

the mixes as there was no measurable amount of wheel path deformation in the 

pavements.  

 All the mixes, with or without RAS, performed well with respect to fatigue cracking 

in the four-point bending beam test. The K2 coefficients ranged from 4.19 to 9.95 and 

the estimated fatigue endurance limits ranged from 53 to 359 micro-strain. The SMA 

mixes from Illinois which used five percent RAS exhibited the most desirable fatigue 

characteristics. In the case of the Indiana demonstration project, the RAS mixes 

performed the same as the RAP mix; and in the case of the Iowa, Missouri, 

Minnesota, and Colorado demonstration projects, the RAS mixes exhibited slightly 

better fatigue lives than the non-RAS mixes. Fibers in the RAS could be contributing 

to the improved mix performance. Based on the four-point bending beam results, 

HMA with RAS should perform as well as HMA without RAS with respect to fatigue 

performance. 

 The SCB test results were evaluated by comparing the low temperature fracture 

energy group means of the mixtures for each demonstration project. There were no 

statistical differences at the 95 percent confidence level among the mix fracture 
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energies for every project except Iowa. For the Iowa mixes, the 0% RAS mix had a 

statistically lower fracture energy than the 4% RAS mix which suggests that RAS can 

improve the fracture resistance of HMA. With regards to the Missouri, Minnesota, 

Indiana, Wisconsin, Illinois, and Colorado demonstration projects, the lack of 

statistical differences in fracture energy indicates that the mixes with RAS have the 

same fracture resistance as the mixes without RAS. Based on the SCB results, the 

addition of RAS materials to HMA is not detrimental to its fracture resistance. 

 The pavement condition surveys in Missouri revealed the pavement containing 

coarsely ground RAS exhibited more transverse cracking than the pavement 

containing finely ground RAS. In both the Missouri and Colorado demonstrations 

projects, the RAS pavements exhibited slightly more cracking than the non-RAS 

pavements. In contrast, the RAS pavements exhibited the same amount of cracking or 

less than the non-RAS pavements for the Iowa, and Indiana demonstration projects. 

In the Indiana project, more cracking was observed for the RAS mix produced with 

foaming WMA technology than the RAS mix produced without foaming. In the 

Minnesota project, slightly more cracking was also observed in the mix using post-

manufacturer RAS compared to the mix using post-consumer RAS. However, when 

taking into consideration the variability of the existing pavement condition beneath 

the asphalt overlays and the small difference in crack length among the different mix 

types for some projects, definitive conclusions about RAS pavements solely based on 

the surveys should be reserved. 
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CHAPTER 3.  PERFORMANCE-BASED DESIGN OF AN ASPHALT 

INTERLAYER FOR JOINTED CONCRETE OVERLAYS 

 

Modified from a paper submitted to the Journal of Materials in Civil Engineering, published 

by the American Society of Civil Engineers (ASCE) 

 

Andrew A Cascione1 2 and R. Christopher Williams3 

 

Abstract 

Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of 

poor pavement performance in Iowa for many years. Reflective cracks commonly occur in 

HMA overlays when deteriorated portland cement concrete is paved over with HMA. This 

results in HMA pavement surfaces with poor ride quality and increased transportation 

maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department 

of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design 

specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can 

resist cracking in high strain loading conditions. In this project, the field performance of an 
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HMA overlay using a one inch interlayer was compared to a conventional HMA overlay 

without an interlayer. Both test sections were constructed on US 169 in Adel, IA as part of an 

Iowa DOT overlay project. The laboratory performance of the interlayer mix design was 

assessed for resistance to cracking from repeated strains by using the four-point bending 

beam apparatus. An HMA using a highly polymer modified binder was designed and shown 

to meet the laboratory performance test criteria. The field performance of the overlay with 

the interlayer exceeded the performance of the conventional overlay that did not have the 

interlayer. After one winter season, 29 percent less reflective cracking was measured in the 

pavement section with the interlayer than the pavement section without the interlayer. The 

level of cracking severity was also reduced by using the interlayer in the overlay. 

Introduction 

Distressed portland cement concrete (PCC) pavements in Iowa are commonly 

rehabilitated with hot mix asphalt (HMA) overlays. HMA overlays are a cost effective 

measure that extend the life of the existing pavement structure and provide a smooth driving 

surface. This method of pavement rehabilitation is accomplished by paving one or more lifts 

of HMA over an existing PCC pavement. 

The service life of an HMA overlay is often reduced from reflective cracking 

occurring at PCC transverse and longitudinal joints. As PCC deteriorates, cracks typically 

form at the joints which create discrete sections of concrete slabs that contract and expand 

due to thermal or moisture changes (Mukhtar et al. 1996). This mechanism of differential 

movement below an HMA overlay induces stress concentrations at the bottom of the HMA 

overlay that are large enough to initiate microcracks in the HMA at the PCC interface. Over 

time, the cracks grow and propagate to the surface of the HMA layer. Reflective cracking is 
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generally not load initiated; however, traffic loading can cause a breakdown of the HMA at 

the initial crack (Huang 2004). 

Reflective cracks are initially low-severity cracks (less than 0.25 in thick) and do not 

influence pavement performance significantly. However, if left unsealed, moisture will 

infiltrate the pavement and increase the crack width. With the application of traffic loads and 

heavier axle loads, the cracks will eventually become moderate to severe (greater than 0.75 in 

thick) and significantly contribute to pavement deterioration (O-Antwi et al. 2007). 

Different types of mitigation strategies that help delay reflective cracking have been used 

with varying levels of success. These include: cracking and seating of the PCC pavement, 

concrete rubbilization (Chen et al. 2014), placement of a geosynthetic fabric (Button et al. 

2006), and sawcutting and sealing of the HMA overlay at the PCC joint locations.  

One of the more promising approaches used to delay reflective cracking is 

incorporating an asphalt-rich, highly flexible, crack-relief HMA interlayer within the asphalt 

structure that serves as barrier to prevent reflective cracks from either forming or propagating 

to the surface of the overlay. A crack-relief interlayer usually contains a nominal maximum 

aggregate size of 4.75mm and is placed either at the bottom of the HMA overlay or between 

the leveling and surface course mixes. Its asphalt-rich properties result in a lower modulus 

material that does not add structural value to the pavement system. Therefore, it is not 

typically placed in a lift thickness greater than one inch. 

Literature Review 

Interlayer HMA mixes should be designed with soft materials that have the ability to 

dissipate excessive stresses induced by cracks or joints (Baek et al. 2011). This has been 
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successfully accomplished by designing an HMA with a low air void content and high 

asphalt content that uses a highly polymer modified asphalt binder (Blankenship et al. 200).  

In 1998 the Missouri Department of Transportation compared an HMA overlay containing a 

crack-relief interlayer with a traditional overlay containing no interlayer on Route I-29 

(MDOT 2000). After three years of service, the interlayer section contained 36 percent less 

reflective cracks than the control section (Blankenship et al. 2005). Wisconsin Department of 

Transportation also documented their use of crack relief interlayers for several overlay 

projects from 1996 to 2002 (Makowski et al. 2005). In three out of four projects, there was a 

clear delay of cracking (42 percent average crack reduction) when using a pavement overlay 

with an interlayer. 

In 2003 the Illinois Department of Transportation constructed an HMA overlay with a 

sand mix interlayer on Illinois Route 130. The sand mix interlayer contained an asphalt 

content of 8.6 percent using a polymer modified PG76-28. After three years, the pavement 

section with the sand mix interlayer contained 21 percent less reflective cracks than the 

control section without the interlayer (Baek et al. 2011). 

Similar crack relief interlayer mixes have also been previously used by the Iowa 

Department of Transportation (Iowa DOT). An overlay containing the STRATA® interlayer 

system was paved in 2001 on Iowa Highway 9 in Decorah, Iowa. A control section 

containing no interlayer was also paved for comparison. After four years, the interlayer 

section contained approximately 54 percent less reflective cracks than the control section 

(Buttlar 2007). 

Some state transportation agencies, such as the Utah DOT, have implanted the use of 

interlayers by creating construction specifications for designing reflective cracking relief 
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bituminous mixtures (Hajj 2008). The specifications for these mix designs meet general 

HMA mix design criteria except the mix is designed to a target air void of 0.5 to 2.5 percent 

at 50 design gyrations along with criteria for VMA, Hveem stability, and flexural beam 

fatigue testing. 

Not all HMA overlays with crack relief interlayers perform comparability or better 

than HMA overlays without interlayers. Blankenship et al. (2005) demonstrated that well 

designed overlays containing highly flexible, asphalt-rich interlayers only substantially 

reduce reflective cracking if the interlayers meet laboratory performance testing criteria on 

the four-point bending beam following AASHTO T-321. Interlayer mixes tested in the four-

point bending beam at 2000 µstrain that experienced a greater than 50 percent reduction in 

flexural stiffness before reaching 100,000 load cycles did not reduce the crack rate growth in 

the HMA overlays in two Wisconsin DOT test sections. However, based on the results of 

Iowa, New Jersey, Illinois, Virginia, and Missouri test sections, interlayer mixes that passed 

100,000 load cycles in the four-point bending beam before experiencing a greater than 50 

percent reduction in flexural stiffness had reduced the average crack rate growth per year in 

the test sections by an average of 52 percent. 

Project Objectives 

In 2012, the Iowa DOT developed a performance-based specification for crack-relief 

interlayer mix designs. To assess the effectiveness of an interlayer, the Iowa DOT selected an 

overlay project on US 169 in Adel, IA in 2013 for conducting a field performance evaluation 

project. The project included two test sections: one section was paved with a traditional 

overlay and a second section was paved with an overlay containing the interlayer. The 

objectives of this project were to assess the interlayer mix design by conducting laboratory 
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performance testing on the four-point bending beam. Following construction of the overlays, 

analysis of pavement cracking in both test sections was conducted by surveying the 

pavement after one winter season and obtaining cores at cracked locations in each test 

section. 

Asphalt Interlayer Description 

Mix Design Specifications 

The interlayer mix design was engineered to follow the Iowa DOT’s Special 

Provision titled “Special Provisions for Reflective Crack Delay System”. The goal of the 

specification is to create a highly flexible, asphalt-rich HMA that meets laboratory 

performance criteria in the four-point bending beam. The material requirements and 

volumetric specifications for the interlayer mix design are listed in Table 14 and 15. The PG+ 

64-34 binder specification is designed to ensure the asphalt binder is polymer modified to 

enhance its elastic properties. The wide performance grade temperature range and polymer 

modification maximizes the asphalt binder’s ability to recover from high levels of stress 

induced from concrete slab movements at pavement joints. By possessing a maximum low 

critical failure temperature of -34C, the binder contains elastic properties at low 

temperatures to recover from deformations caused by thermal and repeated loading stresses. 

By possessing a minimum high failure temperature of 64C, the binder has a high viscosity 

to resist deformation and plastic flow. The 3/8 inch maximum aggregate size allows for 

paving thin lifts that are one inches or less. 
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Table 14. Interlayer mix design specifications 

Asphalt Binder PG+ 64-34 

Gradation Minus 3/8” 

Ndesign 50 gyrations 

Design Target Air Voids 0.5% to 2.0% 

Minimum Voids in the Mineral Aggregate (VMA) 16% 

Minimum Voids Filled with Aggregate (VFA) 70% to 95% 

 

Table 15. Interlayer gradation specification 

Sieve 
Percent Passing 

3/8 inch 100% 

No. 4 80-100% 

No. 8 60-85% 

No. 16 40-70% 

No. 30 25-55% 

No. 50 15-35% 

No. 100 8-20% 

No. 200 6-14% 

 

In addition to volumetric and gradation requirements, the Iowa DOT interlayer mix 

design specification also contains a performance testing requirement using the four-point 

bending beam apparatus (Figure 16) in accordance with AASHTO T-321: Determining the 

fatigue life of compacted HMA subjected to repeated flexural bending. The four-point 

bending beam test was conducted at Iowa State University’s (Iowa State) Advanced Asphalt 

Laboratory on two replicate hot mix asphalt specimens for fatigue resistance. Specimens 

were fabricated using aggregates and asphalt binder supplied by Des Moines Asphalt, Inc. 

An aggregate batch representative of the mix design was mixed with the asphalt binder at 

135°C. After two hours of oven aging at 135°C, the mix was compacted in a linear kneading 

slab compactor to fabricate an asphalt slab within +/-1.0 percent of the design air voids of 2.0 

percent. The slab was subsequently saw cut into beam specimens. Specimens were 
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conditioned and tested in a 20°C environmental test chamber. Two replicate beam specimens 

were tested in the four-point bending beam in a cyclic loading condition at 2000µstrain with 

a 10Hz rate of loading. Cyclic loading of the specimens was complete until the specimens 

either obtained 50 percent of their initial flexural stiffness or passed the Iowa DOT 

specification of 100,000 load cycles without obtaining 50 percent of their initial stiffness. 

The initial flexural stiffness was determined as the average flexural stiffness of the first 200 

cycles. 

 
Figure 16. Four-point bending beam apparatus 

 

Mix Design Assessment 

Des Moines Asphalt, Inc. designed the interlayer mix for the project which contained 

an asphalt content of 7.38 percent and an air void content of 1.5 percent (Table 16). The 

initial binder supplied during the mix design phase, supplied by Bituminous Materials in 

Tama, IA, contained two percent SBS polymer. Initial performance testing of the mix design 

at Iowa State (discussed in the next section) indicated the mix did not meet the four-point 

bending beam testing requirements of passing 100,000 load cycles (Figure 17). The research 

team at Iowa State proposed that either the gradation of the mix design should be adjusted to 
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achieve a higher binder content at a 1.5 percent air void level or the polymer content should 

be increased to five percent. Due to time constraints, the second option was pursued.  

 

Table 16. Interlayer mix design properties 

Asphalt Content 7.38% 

Air Voids 1.5% 

 

A second mix design sample was then batched in the laboratory using a binder 

modified with five percent SBS polymer. The binder was prepared at Iowa State’s laboratory 

using a PG 52-34 for the base asphalt and Kraton D1101 SBS for the polymer. Using a 

laboratory shear mill, the D1101 polymer was blended with the base asphalt for three hours 

at 180C. No crosslinking agent was added during the process. The performance of the new 

mix design in the four-point bending beam improved, but it still not meet the minimum 

100,000 load cycle requirement (Figure 17). 

At this point in the project, the Iowa State research team proposed the asphalt binder 

be modified with Kraton D0243 polymer, a new SBS polymer manufactured by Kraton, Inc. 

that can be formulated with asphalt binder as high as seven to eight percent. High-polymer 

modified mixes using this polymer have demonstrated superior fatigue resistance (Willis et 

al. 2012). Improved mix performance results from the polymer forming a continuous 

elastomeric network within the binder. A third mix design was then batched in the laboratory 

using the same PG 52-34 base binder modified with 7.5 percent D0243. Procedures 

recommended by Kraton were followed for preparing the polymer modified binder in the 

laboratory. No crosslinking agent was added during the process.  
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Figure 17. Four-point bending beam results on different interlayer mixes 

 

The asphalt mix design using the high-polymer modified binder passed the 100,000 

load cycle requirement in the four-point bending beam (Figure 17). A regression analysis of 

the flexural stiffness data was performed in accordance with AASHTO T-321 on each of the 

two beams that were tested (Figures 18 and 19). The regression analysis results are presented 

in Table 17. For the two beam samples tested, both the number of load cycles and the 

regressed failure number of load cycles exceeded the minimum fatigue life of 100,000 load 

cycles. The average regressed failure load cycles for the two beams was 244,623. Once the 

mix design with the 7.5 percent polymer modified binder passed the four-point bending beam 

results, the interlayer was approved by the Iowa DOT for paving. 
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Table 17. Four-point bending beam results on interlayer using 7.5% polymer 

 Beam-1 Beam-2 Average 

Air Voids 1.9 1.7 1.8 

µStrain 2000 2000  

Initial Stiffness (@ 200 Load Cycles) (MPa) 790 828  

Failure Flexural Stiffness (50% of Initial)  (MPa) 395 414  

Load Cycles at end of test 212,970 189,810  

Flexural Stiffness at end of test (MPa) 505 513  

Regressed Failure Load Cycles 156,795 220,512 244,623 

 

 
Figure 18. Stiffness versus load cycles (repetitions), beam-1 

  
Figure 19. Stiffness versus load cycles (repetitions), beam-2 
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Pavement Construction 

Construction of the interlayer was completed by Des Moines asphalt on August, 23 

2013 (Figure 20). The project was located on US 169 in Adel, Iowa from the North Raccoon 

River to the South Raccoon River for a total length of 0.75 miles. The interlayer was part of 

Iowa DOT project MP-169-4(706)—76-25, an HMA resurfacing project which consisted of 

overlaying eight inches of a jointed concrete pavement with four inches of HMA. The project 

was divided into two sections: the northbound and southbound lane from station 101+63.5 to 

121+39.5 was paved with a two inch surface course over a two inch intermediate course; the 

northbound and southbound lane from station 121+39.5 to 141+15 was paved with a two 

inch surface course over the one inch interlayer over a one inch intermediate course (Figures 

21 and 22).  

 

 

Figure 20. Interlayer paving on US 169 
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Figure 21. Cross sections of US 169 HMA resurfacing 

 

 

Figure 22. Satellite view of US 169 project limits 
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A sample of the field produced mix was obtained by the contractor and split between 

the Iowa DOT and Iowa State. As shown in Table 18, quality assurance testing conducted by 

the Iowa DOT revealed the laboratory air voids of the field mix sample was 4.8 percent, 

which was much higher than the 1.0 percent production tolerance. The reason for the high air 

voids is evident from the low asphalt content as measured by the reading from the asphalt 

flow meter at the HMA production plant. The asphalt content was 6.25 percent which was 

outside the production tolerance of 0.3 percent. Iowa State’s laboratory verified the low 

asphalt content by testing the split sample in the ignition furnace. A 6.12 percent asphalt 

content was measured after calibrating the furnace with a dry aggregate batch of the mix 

design. 

Table 18. Quality Assurance Testing Results 

Mix Design Target Values Quality Assurance Test Results 

1.5% air voids 4.8% air voids 

7.38% asphalt content 6.25% (plant flow meter) 

6.12% (laboratory ignition furnace) 

 

Producing the interlayer with high air voids and a low asphalt content resulted in the 

interlayer mix failing the four-point bending beam 100,000 load cycle requirement. The 

average load cycles at 50 percent initial stiffness was only 63,985 for the interlayer mix 

(Table 19). A reduction in asphalt content resulted in a material with a higher air void content 

and a higher flexural stiffness. In a strain-controlled test environment, an increase in these 

two variables will reduce the fatigue life of the pavement (Cooper and Pell 1974). Had the 

volumetrics been closer to the intended design, the performance of the interlayer in the four-

point bending beam would have improved. 
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Table 19. Four-point bending beam results on field produced interlayer 

 Beam-1 Beam-2 Average 

Air Voids 2.3 2.4 2.4 

µStrain 2000 2000  

Initial Stiffness (@ 200 Load Cycles) (Mpa) 1510 1593  

Flexural Stiffness at end of test (Mpa) 684 710  

Load Cycles at 50% of Initial Stiffness 66,120 61,850 63,985 

 

Post-Construction Assessment 

Pavement Condition Survey 

Before and after pictures of the asphalt intermediate (base) course paving were 

captured by Google Street View. Figure 23 shows a screen capture of the PCC pavement on 

US 169 in the future non-interlayer section, dated August 2011, two years before the overlay 

project. Transverse and longitudinal joint deterioration can be seen in the screen capture. 

Joint deterioration of this magnitude is the primary cause of reflective cracking in HMA 

overlays, thereby, making this overlay project a perfect candidate to evaluate the 

effectiveness of a crack-relief interlayer. 

Figure 24 shows a screen captures of the same location in August 2013, at least three 

to four weeks after the intermediate course was paved for the overlay project. In the non-

interlayer pavement section, the intermediate course overlay is two inches thick. The screen 

capture shows the intermediate HMA course to be in good condition. 
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Figure 23. Pre-construction view of non-interlayer section on US 169 

 

 

Figure 24. Post-construction view of intermediate course in non-interlayer section on 

US 169 
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Similar screen captures were obtained from Google Street View images for the 

interlayer overlay section as well (Figures 25 and 26). In Figure 25, a high level of joint 

deterioration can be seen in the future interlayer section. And unlike the non-interlayer 

section, the intermediate course is already cracking in the same construction season (Figure 

26). The difference between the two different overlay sections is the thickness of the 

intermediate course. The intermediate course in the interlayer section was only one inch 

thick, not two inches thick, to provide room for the interlayer. This demonstrates just how 

quickly reflective cracks form in thin overlays (one inches) and is precisely the reason why 

overlays for distressed PCC pavements are designed to have a certain minimum thickness. In 

the case of this project, the overlay thickness design was four inches. However, by waiting 

several weeks between construction of the intermediate course and the surface course, the 

one inch course was thin enough to crack prior to paving the second lift.  

 

 

Figure 25. Pre-construction view of interlayer overlay section on US 169 
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Figure 26. Post-construction view of intermediate course in interlayer section on US 169 

 

A pavement condition survey was conducted in April 2014, one winter season after 

the overlay project was completed, to assess the amount of cracking in the interlayer and 

non-interlayer overlays. Transverse cracking distresses are evident in the pavement as shown 

Figure 27. The cracks are mostly like reflective cracks since the distance (20 feet) between 

the cracks exactly matches the joint spacing of the underlying PCC pavement. 
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Figure 27. Photo of reflective cracks in non-interlayer overlay on US 169 in April 2014 

 

Results of the survey are summarized in Figures 28 and 29. Transverse cracks were 

measured in both the interlayer section and non-interlayer section. The below average 

temperatures Iowa experienced in 2013-2014 winter season may have accelerated the 

severity of the cracking distresses between the end of construction in August 2013 and the 

pavement survey in April 2014. Survey results are presented in Figures 28 and 29. After one 

winter season, more cracking occurred in the pavement with the traditional overlay than in 

the pavement with the crack-relief interlayer. 474 linear feet of transverse cracking was 

measured in the traffic lanes of the interlayer section compared to 336 transverse cracking in 

the non-interlayer test section. These results are particularly positive for the interlayer test 

section since the quality assurance and performance testing results of the field produced mix 

(Table 18 above) revealed the interlayer was low on asphalt content and high on air voids 

with an air void level similar to a traditional HMA mix design. The four-point bending beam 

Pavement condition - April 2014
• South end of project looking south
• Non-interlayer section surface course
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tests also revealed the interlayer did not meet the performance testing requirement. 

Nevertheless, the interlayer test section still contained 29 percent less reflective cracking than 

the non-interlayer test section. Even less cracking would exist in the interlayer overlay had 

the volumetrics of the interlayer been closer to the intended mix design targets. 

Not only do the results of the survey demonstrate that more cracking occur in the 

non-interlayer section, but also the severity level of the cracking was greater in the non-

interlayer section. In the non-interlayer section, 41 percent of the total transverse crack 

lengths measured contained moderate severity cracks. In the interlayer section, 4 percent of 

the total crack lengths measured contained moderate severity cracks. Moderate severity 

cracks have a width between 0.25 and 0.75 inches while low severity cracks have a width 

less than 0.25 inches. 

 

 

Figure 28. Satellite view of transverse cracking on US 169 

US Route 169, Adel, IA, Survey April 25, 2014

Low Severity Transverse Crack ( ≤ 0.25 in)
Moderate Severity Transverse Crack (0.25 ≥ 0.75 in)

No Interlayer (SB & NB Lanes)
Sta. 101+63.50 to 121+39.5

1” Interlayer (SB & NB Lanes)
Sta. 121+39.5 to 141+15
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Figure 29. Total transverse cracking in traffic lanes 

 

Pavement Core Samples 

Subsequent to the pavement condition surveys, cores were obtained at four transverse 

crack locations: two in the interlayer section and two in the non-interlayer section. Broken 

concrete and joint sealant material at the bottom of each HMA core confirmed the cracks 

were above PCC joints and are indeed reflective. A full depth crack was found in the first 

core obtained from the interlayer section as shown in Figure 30a. This indicates the interlayer 

was susceptible to cracking; however, this was not true for all transverse cracked areas. The 

photograph of the second core obtained from the interlayer section (Figure 30b) shows no 

crack in the interlayer mix. While the pavement did crack over the PCC joint, the interlayer 

was effective in preventing the crack from becoming a full depth crack. No cracks were 

visible in the intermediate course, but it is possible a microcrack does exist in the 
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intermediate course and will grow with time. Upon recovering this core from the drill bit, the 

core separated at the surface course and interlayer interface raising the question of possible 

delamination. Delamination can occur due to insufficient bond strength in the tack coat or 

moisture infiltration. Based on a literature review of field investigations for overlay systems 

using an interlayer, delamination of overlays containing crack-relief interlayers has not been 

reported to have occurred at a higher frequency compared to typical overlays. Since this was 

the only core that showed signs of delamination, it may be an isolated incident or may have 

been caused by the force of the core drill.  

 

 
  (a)     (b) 

Figure 30. Cores obtained from pavement section with interlayer in SB lane (a) Sta. 

140+12 (b) Sta. 137+85 

2” Surface Mix 

1” Intermediate Mix 

1” Interlayer Mix 
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The cores shown in Figure 31 were obtained in the non-interlayer section over PCC 

joints. Full depth cracks in both cores indicate the traditional HMA overlay strategy resulted 

in reflective cracking in the overlay. 

 
  (a)     (b) 

Figure 31. Cores obtained from pavement section with no interlayer in SB lane (a) Sta. 

111+86 (b) Sta. 113+98 

 

Economic assessment  

Interlayer mixes will typically cost more than a conventional HMA mixes since 

highly polymer modified asphalt is used in the design. To determine the additional cost of 

using an interlayer, the published bid quantities from Des Moines Asphalt were used to 

analyze the cost differences between the pavement section with and without the interlayer. 

Since the length of the interlayer pavement section was 1975.5 feet and the length of the non-

2” Surface Mix 

2” Intermediate Mix 
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interlayer section was 1976 feet, the bid quantities were appropriately divided for assessing 

the cost of the two pavement sections. 

The total cost for constructing the HMA overlay without the interlayer was 

$157,759.03 and the total cost for constructing the HMA overlay with the interlayer was 

$174,479.61 (Table 20). This equates to a 10.6 percent increase in materials and paving costs 

for constructing an HMA overlay with an interlayer. The benefit of the additional costs was 

realized from the 29 percent reduction in transverse cracking after the first year of paving 

with a decrease in the severity of the transverse cracks (41 percent moderate severity vs. 4 

percent moderate severity). Furthermore, the reduction in cracking would more than likely 

have been greater if the field produced interlayer met the volumetric and laboratory 

performance testing requirements (see Table 18). 

 

Table 20. Interlayer cost comparison from contractor bid tab 

Item Description Quantity (Ton) Unit Price Amount 

Overlay with no Interlayer    

HMA 1/2" Surface Course 817.35 $     55.00  $    44,954.25  

HMA 1/2" Intermediate Course 826.00 $     55.00  $    45,430.00  

Asphalt Binder PG 58-28 126.17 $   534.00  $    67,374.78  

Total    $  157,759.03  

Overlay with Interlayer    

HMA 1/2" Surface Course 817.35  $     55.00   $    44,954.25  

HMA 3/8" Interlayer Course 412.00  $     74.00   $    30,488.00  

HMA 3/8" Intermediate Course 413.80  $     74.00   $    30,621.20  

Asphalt Binder PG 58-28 94.53  $   534.00   $    50,479.02  

Asphalt Binder PG 64-34 24.70  $   726.20   $    17,937.14  

Total    $  174,479.61  
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Conclusions and recommendations 

The Iowa Department of Transportation’s (Iowa DOT) crack-relief interlayer 

specification was structured to create an HMA mix design with a high volume of asphalt and 

low percentage of air voids. This was accomplished, in part, by specifying a low level of 

design gyrations (50 gyrations) for laboratory compaction, a minimum VMA of 16 percent, 

and an air void content less than two percent. Performance testing the interlayer using the 

four-point bending beam ensured the final design is a highly flexible fatigue-resistant asphalt 

mixture.  

For the US 169 HMA overlay project, the initial interlayer mix design failed the 

minimum 100,000 load cycle criteria in the four-point bending beam but eventually passed 

the criteria after the polymer modified binder used for the mix design was re-engineered. 

Rather than using the minimum amount of SBS polymer to formulate a PG 64-34 binder, a 

highly polymer modified binder was designed for the interlayer mix. The polymer used was 

an SBS polymer design by Kraton, Inc. (D0432) which can be added to asphalt at higher 

polymer concentrations without reducing workability. Seven and a half percent of the D0432 

was selected to be blended in a base PG 52-34 binder. Once the new highly polymer 

modified binder was used for the mix design, the average number of load cycles achieved in 

the bending beam apparatus increased from 18,235 to 201,390, thereby passing the 100,000 

load cycle criteria. 

For the US 169 project, the performance of the overlay with the interlayer exceeded 

the performance of the conventional overlay that did not have the interlayer. After one winter 

season, 29 percent less reflective cracking was measured in the pavement section with the 

interlayer than the pavement section without the interlayer. The level of cracking severity 
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was also reduced by using the interlayer in the overlay. In the non-interlayer section, 41 

percent of the total transverse crack lengths measured contained moderate severity cracks. In 

the interlayer section, 4 percent of the total crack lengths measured contained moderate 

severity cracks. Thus, the crack-relief interlayer successfully delayed reflective cracking in 

the HMA overlay.  

Pavement performance improved by using the interlayer in spite of the interlayer not 

meeting the volumetric and laboratory performance testing requirements – the result of a low 

asphalt content during production. Had the volumetrics of the interlayer been closer to the 

mix design targets, the overlay would most likely have exhibited even less cracking. 

Since the cost of using an interlayer only increased the overlay construction costs by 10.6 

percent, this project demonstrates the economic benefit of using an interlayer for HMA 

overlays. Based on the substantial reduction in reflective cracking and only marginal cost 

increases from using the interlayer on US 169, it is recommended that future HMA overlay 

projects in Iowa consider incorporating the crack-relief interlayer to delay reflective 

cracking. The provisional crack-relief interlayer specification drafted by the Iowa 

Department of Transportation proved to be effective in reducing reflective cracking in the 

HMA overlay. Therefore no change in the specification is recommended at this time. 

However, since the field produced interlayer did not meet the four-point bending beam 

performance criteria, this project demonstrates the importance of verifying the laboratory 

fatigue performance of the field produced interlayer. 

For future interlayer mixes that do not initially meet the minimum 100,000 load cycle 

criteria in the four-point bending beam, the number of load cycles the mix design can achieve 

in the performance test can be increased by improving the elastic and fatigue resistant 
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properties of the binder. Based on the laboratory test results for this project, a highly 

modified 7.5 percent SBS asphalt binder formulation can be used to create an interlayer mix 

design that meets four-point bending beam performance criteria. 
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Abstract 

Here we report advances in polymerization technology enabling the synthesis of 

thermoplastic block copolymers (BCPs) comprised of styrene and soybean oil-derived 

triglycerides. These new breeds of biopolymers have elastomeric properties comparable to 

well-established butadiene-based styrenic BCPs (SBS) commonly used for bitumen 

modification. We evaluated the potential of these biopolymers as bitumen modifiers by 
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comparing two commonly used commercial SBS polymers. Rheology of the bitumen-

polymer blends shows the biopolymers improves the complex shear modulus of the bitumen 

to a similar and even greater extent as the SBS polymer. However, the current biopolymer 

formulation and blending technique produces bitumen with a slightly lower elastic response 

than blends prepared with SBS. Our results show excellent potential for the future of these 

biopolymers as economically and environmentally favorable alternatives to their 

petrochemically-derived analogs. 

Introduction 

Bitumen is commonly modified with poly(styrene-block-butadiene-block-styrene) 

(SBS), a thermoplastic elastomer (TPE). Polymer modification is known to substantially 

improve the physical and mechanical properties of bitumen in asphalt paving mixtures. 

Polymer modification increases bitumen elasticity at high temperatures, as a result of an 

increased storage modulus and a decreased phase angle, which improves rutting resistance. It 

also increases the complex modulus, but lowers creep stiffness at low temperatures, 

improving cracking resistance (Isacsson and Lu, 1999). SBS type polymers are typically 

added to asphalt mixtures when additional performance is desired or when optimizing life 

cycle costs is warranted. SBS allows for the production of many specialty mixes including 

cold mixes, emulsion chip seals, and micro-surface mixes. 

SBS TPEs are block copolymers (BCPs) comprised of styrene-butadiene-styrene 

polymer chains that create an ordered morphology of cylindrical glassy polystyrene block 

domains within a rubbery polybutadiene matrix (Bulatovic et al., 2012). SBS polymers are 

thermoplastic, meaning that they can be easily processed at high temperatures due to the 

linear nature of its chains. Upon cooling, the rigid polystyrene end-blocks vitrify and act as 
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anchors for the liquid rubbery domains by providing a restoring force when stretched (Fried, 

2008). SBS is incorporated into bitumen through mixing and shearing at high temperatures to 

uniformly disperse the polymer. When blended with bitumen, the polymer swells within the 

bitumen maltene phase to form a continuous tridimensional polymer network (Lesuer, 2009). 

At high temperatures, the polymer network becomes fluid yet still provides a stiffening effect 

that increases the modulus of the mixture. At low temperatures, a crosslinked network within 

the bitumen redevelops without adversely affecting the low temperature cracking 

performance due to the elastic properties of the polybutadiene (Airey, 2004). The resulting 

performance properties widen the working temperature range of the bitumen-polymer 

system. 

The butadiene monomer used in SBS is derived from petrochemical feedstocks, a 

byproduct of ethylene production. It has been rapidly increasing in price, not only due to 

increases in the price of crude oil, but also global market shifts in supply and demand. As 

shale gas supplies become more abundant, crackers are more commonly using lighter 

petrochemical feeds such as ethane to produce ethylene and its co-products. However, using 

lighter feeds lowers butadiene production, thus tightening the supply (Foster, 2011). Many 

commercially relevant elastomers require polybutadiene for its soft and rubbery properties. 

As a result, there is growing interest in sustainable biopolymers synthesized from plant-based 

feedstocks to replace the need for their petrochemical counterparts, specifically the 

identification of alternative feedstocks that can be made to mimic the properties of 

polybutadiene. 

Linseed, rapeseed, flaxseed, and soybean, are just some of the agriculturally available 

biodegradable and renewable resources composed of triglycerides that can be synthesized 
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into the rubbery component in BCPs. Soybean oil, as an example, is comprised of 86% of 

mono- and poly-unsaturated fatty acids - molecules containing the required double bonds for 

standard polymerization chemistry to produce macromolecules. Nonetheless, the 

multifunctional nature of soybean oil gives it the potential to crosslink with other 

polytriglycerides leading to the formation of a thermoset, an irreversibly and highly 

crosslinked polymer. Larock et al. have shown that a variety of plant oils may be successfully 

polymerized via cationic polymerization into thermosets with a broad spectrum of physical 

properties and aesthetic appearances (Bhuyan et al., 2010).  

In this paper we present the use of polymerized triglycerides to create a polybutadiene 

replacement and its incorporation with styrene to form thermoplastic elastomeric triblock 

copolymers. The objective of this research is to develop a family of biopolymers with similar 

performance properties as SBS that can be used to modify bitumen. 

Biopolymer Synthesis 

Triglyceride oils are composed of three fatty acid chains joined by a glycerol center. 

We make use of triglycerides derived from soybean oil for the synthesis of the BCPs using 

atom transfer radical polymerization (ATRP), a procedure developed by Wang and 

Matyjesewski (1995) at the University of Carnegie Melon. ATRP, a controlled radical 

polymerization technique, allows for the construction of macromolecules with precisely 

defined degrees of polymerization and the ability to form complex molecular architectures 

such as block copolymers (Heimenz and Lodge, 2007). For the synthesis of the polymers, 

soybean oil (Renewable Energy Group, Ames, IA) was purified over basic alumina, followed 

by the epoxidation of the double bonds and subsequent acrylation to yield acrylated 

epoxidized soybean oil (AESO). AESO and styrene were used as the monomers, copper (I) 
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chloride (CuCl) as the catalyst, benzyl chloride as the initiator, copper (II) chloride as the 

counter catalyst, N,N,N’,N",N"-pentamethyldiethylenetriamine (PMDETA) as the ligand, and 

toluene as the solvent during all polymerizations. ATRP polymerization resulted in the 

creation of a hyper-branched, halogen-terminated thermoplastic poly(styrene-block-AESO-

block-styrene) triblock copolymers (S-AESO-S); the halogen termination provides functional 

sites for further chemistry. Even though a highly branched polymer does not disperse as 

finely into bitumen and can be more difficult to incorporate in the blend, it is more effective 

in binder elasticity improvement compared to a linear polymer (Lu and Isacsson, 1997). 

Several polymer parameters determine how a polymer will be effective in bitumen 

modification; these include chain architecture, composition, and the molecular weight 

distribution. SBS copolymers should also meet several requirements to be compatible with 

bitumen: They should be rich in butadiene (generally 60-70%) and the molecular weight of 

the styrene fraction must exceed 10,000 to obtain polystyrene (PS) rich domains 

(Lewandowski, 1994). The (S-AESO-S) biopolymers produced for this study contained 72% 

poly(AESO). Figure 32 shows the increase in molecular weight (number average) and 

polydispersity of the a) styrene homopolymer and b) poly(styrene-block-AESO) diblock as a 

function of time. After approximately 700 minutes, the molecular weight of the polystyrene 

increases well beyond 10,000 daltons and the diblock to 150,000 daltons. 
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a     b 

Figure 32. Molecular weight and polydispersity homopolymer as a function of time for 

a) PS and b) P(S-b-AESO). 

 

Experimental Plan 

To study the effectiveness of the developed S-AESO-S biopolymer as a bitumen 

modifier, blends of bitumen modified with the biopolymer were compared to blends of 

bitumen modified with two commercially available Kraton® SBS polymers, D1101 and 

D1118. Both of these polymers are linear SBS triblock polymers. D1101 has a styrene 

content of 31% by weight of polymer and D1118 has a styrene content of 33% by weight of 

polymer. 

A soft bitumen from a local refinery utilizing a Canadian crude source was used as 

the base bitumen. All bitumen-polymer blends were prepared in the laboratory with a 

Silverson L4RT shear mixer at 3000 rpm. The bitumen was heated to 150°C, and 

approximately 500 grams of bitumen were poured into eight different 0.95 Liter aluminum 

cans for eight 500 gram batches.  Polymers were added to the batches at 3% by total weight 

of the bitumen-polymer blend.  
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Since the optimal blending temperature for the biopolymer was not known, a 

blending temperature study was incorporated into the experimental plan. Two batches were 

prepared with each polymer, with one batch blended for 3 hours at 180°C and the other batch 

blended for 3 hours at 200°C. The remaining two batches were prepared as the control 

treatments with no polymer added. One control treatment batch was immediately tested after 

being poured into the aluminum can, while the other control treatment batch was first placed 

in the shear mixer for 3 hours at 200°C before being tested. No cross-linking agent such as 

sulfur was used during the blending process. The softer base binder should contain a 

relatively low fraction of asphaltenes which will result in improved blend compatibility and 

stability in an SBS polymer system (Alonso et al., 2010). 

After the bitumen-polymer blends were prepared, the complex modulus (G*) and 

phase angle of the blends were measured at high and low temperatures using the dynamic 

shear rheometer (DSR) and bending beam rheometer (BBR). Next, the Multiple Stress Creep 

Recovery (MSCR) test was conducted on rolling thin film oven (RTFO) aged materials by 

following AASHTO TP 70-11. The test was conducted at 46°C due to the high temperature 

grade of the virgin bitumen. The original (no aging) material of each blend was also tested in 

a DSR at multiple temperatures and frequencies so master curves could be constructed that 

characterize the rheological properties of the bitumen-polymer blends over a wide range of 

temperatures. 
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Results and Discussion 

The high temperature stiffness of the bitumen-polymer blends before and after aging 

in the RTFO, 1.0kPa and 2.2kPa respectively, is presented in Figure 33. The virgin bitumen 

Performance Grade (PG) according to AASHTO M320 “Standard Specification for 

Performance Graded Asphalt Binder” is a 46-34 since the original bitumen has a governing 

G*/Sin(δ) value of 51.3°C. After 3 hours of mixing in the shear mill at 200°C, the PG of the 

virgin bitumen only slightly increased to a G*/Sin(δ) value of 52.6°C. This essentially shows 

the blending procedure used in this study does not significantly age harden the bitumen and 

increase the high temperature performance grade. Any increase in complex modulus or 

decrease in phase angle is mostly caused by the polymer influencing the rheological 

properties of the bitumen. 

 

 

Figure 33. High temperature performance grade of bitumen-polymer blends 
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Figure 33 also shows that raising the blending temperature from 180°C to 200°C 

increases the high temperature PG of the bitumen-polymer blends. The two commercial SBS 

blends performed similarly with D1118 having a slightly higher original G*/Sin(δ) value of 

62.0°C when blended at 200°C. The increase in blending temperature had the greatest affect 

on the biopolymer blend.  At 180°C the biopolymer blend original G*/Sin(δ) value was 

55.7°C compared to a value of 62.3°C at 200°C.  A comparison of all the original G*/Sin(δ) 

values show the biopolymer blended at 200°C has the highest PG temperature. 

Figure 34 presents the critical low temperatures with a limiting creep stiffness 

(300MPa) and limiting m-value (0.3) determined at a loading time of 60 seconds in the BBR. 

The critical low temperature of the virgin bitumen is -36.3°C and increases one degree to -

35.3°C after blending for 3 hours in the shear mixer. The critical low temperature also 

increases for each polymer blend when the blending temperature increased from 180°C to 

200°C indicating the increased performance benefits on the high temperature side were 

compromised on the low temperature side.  

With the exception of the biopolymer blends, each bitumen-polymer blend passed the 

-34°C criteria to be graded as a 46-34 bitumen. However, the continuous grade range in 

presented in Table 21 shows the grade range of the biopolymer blended at 200°C is only 

0.3°C less than the D1101 SBS and 1.4°C less than the D1118 SBS. The continuous PG 

range indicates the temperature susceptibly of the biopolymers and their physical 

performance benefit over a working range of temperatures is very close to the commercially 

available SBS polymers. These are results before any study has been conducted to optimize 

the formulation of the S-AESO-S biopolymer as a bitumen modifier.  
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Figure 34. Low temperature performance grade of bitumen-polymer blends 

 

Table 21. Continuous PG range of bitumen-polymer blends 

Bitumen-Polymer Blend 
Continuous Grade 

Range, (°C) 

46-34 Original 87.6 

46-34 blended at 200°C 87.9 

D1101 blended at 180°C 94.2 

D1118 blended at 200°C 95.5 

D1101 blended at 180°C 94.0 

D1118 blended at 200°C 96.6 

S-AESO-S Biopolymer blended at 180°C 89.5 

S-AESO-S Biopolymer blended at 200°C 95.2 
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apply higher levels of strain to capture the stiffening effects and delayed elastic response of 

the polymer in a polymer modified bitumen (D’Angelo et al., 2007). 

The procedure AASHTO TP70-11 “Multiple Stress Creep Recovery (MSCR) Test of 

Asphalt Binder Using a Dynamic Shear Rheometer” was followed for the MSCR test. The 

MSCR procedure measures the creep compliance and elastic response of bitumen by using 

the DSR to test rolling thin-film oven residue at two stress levels at a specified temperature. 

The specified temperature is the high temperature performance grade of the bitumen. Since 

the base bitumen was graded as a PG 46-34, the base bitumen and bitumen-polymer blends 

were tested at 46C. A 25-mm parallel plate geometry with 1-mm gap setting was used in the 

DSR. The MSCR test consists of 20 cyclic stress and recovery periods. For the first 10 

periods, the bitumen samples are tested in shear creep at a stress level of 0.1 kPa for one 

second, followed by nine seconds of recovery. The one-second creep and nine-second 

recovery count as one period. For the next 10 periods, each period consists of a one-second 

3.2 kPa shear creep load, again followed by nine seconds of recovery. 

The non-recoverable creep compliance (Jnr) calculated from the MSCR test is 

presented in Figure 35. The commercial bitumen-polymer blends and biopolymer blend at 

200°C have the lowest Jnr values. Lower Jnr values indicate good resistance to rutting. The 

biopolymer blends along with the commercial blends at 200°C meet the highest traffic level 

criteria of “Extremely Heavy Traffic” since their Jnr values fall below 0.5kPa. 

In addition to the Jnr values, the MSCR test also measures the “recovery” value which 

indicates the percent strain the bitumen recovered during the test. Higher percentages of 

strain recovery indicate the presence of an elastomeric polymer in the bitumen and a quality 

blend between the bitumen and polymer. In Figure 36, the higher blending temperature 
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appears to improve the polymer network established in the binder. Similar results were found 

by D’Angelo and Dongre (2009) in an SBS blending study using the MSCR test. The results 

of this test also show the contrast in elastic recovery between the commercial polymer blends 

(47.8% for D1101 and 48.6% for D1118) and the biopolymer blend (21.1%) at the higher 

blending temperature. 

 

Figure 35. Non-recoverable creep compliance (Jnr) values 

 

Figure 36. Percent recovery of bitumen-polymer blends 
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Figure 37 plots the MSCR recovery as a function of Jnr. The curve in the plot 

represents the recommended minimum percent recovery values a polymer modified bitumen 

should have for sufficient delayed elastic response. Values that plot above the line indicate 

the presence of an elastomeric polymer and a quality bitumen-polymer blend. The 

biopolymer percent recovery does not plot above the curve which means the blending 

procedure and/or biopolymer formulation can be improved upon with further research. The 

commerical polymers are linear and therefore should be more compatible with a bitumen 

than a radial polymer when a crosslinking agent is not used. In contrast, the biopolymer has a 

highly branched network due to the polytriglycerides. A crosslinking agent may improve the 

ability of the biopolymer to form an evenly dispersed and slightly crosslinked network in the 

bitumen. 

Master curves used to analyze the rheological properties of the bitumen-polymer 

blends were constructed from data using the DSR. Frequency sweeps were conducted on 25 

mm plate samples in the materials linear viscoelastic range from 0.1 Hz to 50 Hz at 6°C 

intervals from 16°C to 70°C. The master curve for the complex shear modulus (G*) data was 

constructed using Excel Solver. G* isochrones were shifted to fit the Williams-Landel-Ferry 

(WLF) model with 40°C as the reference temperature. The shift factors were then used to 

shift the phase angle data to build the phase angle master curve. Equation 1 presents the WLF 

equation: 

 𝐿𝑜𝑔 aT =
−𝐶1(𝑇−𝑇𝑟)

𝐶2+𝑇−𝑇𝑟
 [1] 

where; aT= shift factor, C1 and C2= constants, Tr= reference temperature, and T= temperature 

of the material. 
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Figure 37. Percent recovery versus non-recoverable creep compliance 

 

The shear modulus master curves in Figure 38 shows the biopolymer increases the 

stiffness of the bitumen across a wide frequency range. In Figure 39, the biopolymer also 

reduces the phase angle of the bitumen, but not to levels as low as the two SBS polymers. In 

Figure 8, the bitumen modifed with the two SBS polymers have a dip in the phase angle 

showing evidence of the polymer rubbery plateau. There does not appear to be any evidence 

of the rubbery plateau in the biopolymer modified bitumen. Similar to the MSCR recovery 

values, this data indicates the biopolymer may not be providing the bitumen with a sufficient 

elastic response. The lowered phase angle may be the result of the stiffening effect from the 

glassy polystyrene phase. To improve the elasticity of the biopolymer-bitumen blends, future 

studies will be conducted on the blending procedure and formulation of the biopolymer. 
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Figure 38.  Log complex shear modulus (G*) versus log reduced frequency, rad/sec 

 

 

Figure 39. Phase angle versus log reduced frequency, rad/sec 
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Conclusions 

Recent advances in polymerization technology have led to the development of 

thermoplastic elastomeric block copolymers produced with polystyrene and polymerized 

soy-derived triglycerides. In contrast, the past two decades of plant-oil based polymer 

research has yielded only thermosets. Using the polymerized triglycerides, SBS-like triblock 

copolymers were produced where the “B” block was replaced with polymerized soybean oil. 

ATRP polymerization technique was used to synthesize the biopolymers as it allows for the 

construction of macromolecules with precisely defined degrees of polymerization and the 

ability to form complex molecular architectures such as block copolymers. 

A laboratory investigation was conducted to evaluate the effectiveness of the newly 

derived S-AESO-S biopolymer as a bitumen modifier. Bitumen modified with the 

biopolymer was compared to bitumen modified with two commercially available Kraton® 

linear SBS polymers. All bitumen-polymer blends were prepared with bitumen modified with 

3 percent polymer. Rheology test results showed the biopolymer has the ability to widen the 

grade range of bitumen almost identically as the commercially available SBS polymers. 

However, the S-AESO-S biopolymer increased the bitumen low critical temperature 1.4°C 

higher than the D1118 SBS polymer.  

In the phase angle master curves, the commercially available SBS polymers increased 

the elasticity of the bitumen by lowering its phase angle and altering the shape of the curve 

so that it exhibited evidence of a rubbery plateau. While the biopolymers also lowered the 

phase angle of the bitumen, the bitumen-biopolymer blend master curves did not show 

evidence of a rubbery plateau. 
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The MSCR test results showed the biopolymer lowered the Jnr value of the bitumen as 

low as the two commercially available SBS polymers can, indicating the biopolymer has the 

ability to improve rutting resistance of the bitumen as well as the commercially available 

polymers. With respect the elastic response as measured by the MSCR test, the bitumen-

biopolymer blend only contained a 21.1 percent recovery while the bitumen modified with 

D1118 SBS polymer contained a 48.6 recovery. However, the commercially available SBS 

polymers used in this study were linear while the biopolymer was highly branched. A 

crosslinking agent such as sulfur was not used during blending. The future use of a 

crosslinking agent may improve the blend compatibility of the biopolymer more so than the 

commercial polymers because of the branched network in the biopolymer.  

Furthermore, the formulation of the biopolymer has not yet been optimized for bitumen 

blending. Future research can improve upon its molecular architecture, styrene content, and 

molecular weight distribution to ultimately produce an SBS biopolymer that modifies 

bitumen similarly to petrochemical based SBS polymers. 
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CHAPTER 5.  DEVELOPMENT OF BIO-BASED POLYMERS FOR USE 

IN ASPHALT 
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Abstract 

Asphalt binder is typically modified with poly(styrene-butadiene-styrene) (SBS) type 

polymers to improve its rheological properties and performance grade. The elastic and 

principal component of SBS polymers is butadiene. For the last decade, butadiene prices 

have fluctuated and significantly increased, leading state highway agencies to search for 

economically viable alternatives to butadiene based materials. This paper reports the recent 

                                                

1 Ph.D. candidate, Department of Civil, Construction, and Environmental Engineering, Iowa State University, 

Ames, IA 50011. E-mail: aacascio@iastate.edu 

2 Primary researcher for formulating and characterizing blends of bio-polymer modified asphalt binder 

3 Professor of Civil Engineering, Department of Civil, Construction, and Environmental Engineering, Iowa 

State University, Ames, IA 50011. E-mail: rwilliam@iastate.edu 

4 Associate Professor, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 

50011. E-mail: ecochran@iastate.edu 

5 Associate Scientist, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 

50011. E-mail: nacu23@iastate.edu 



113 

 

advances in polymerization techniques that have enabled the synthesis of elastomeric, 

thermoplastic, block-copolymers (BCPs) comprised of styrene and soybean oil, where the 

“B” block in SBS polymers is replaced with polymerized triglycerides derived from soybean 

oil. These new breeds of biopolymers have elastomeric properties comparable to well-

established butadiene-based styrenic BCPs.  

Two types of biopolymer formulations are evaluated for their ability to modify 

asphalt binder. Laboratory blends of asphalt modified with the biopolymers are tested for 

their rheological properties and performance grade. Blends of asphalt modified with the 

biopolymers are compared to blends of asphalt modified with two commonly used 

commercial polymers. The viscoelastic properties of the blends show that biopolymers 

improve the performance grade of the asphalt to a similar and even greater extent as the 

commercial SBS polymers. Results indicate there is an excellent potential for the future of 

these biopolymers as economically and environmentally favorable alternatives to their 

petrochemically-derived analogs. 

Introduction 

The performance of asphalt pavements at in-service temperatures depends on the 

grade of asphalt binder used in the paving mixture. In many cases, the characteristics of 

asphalt binder need to be altered to improve its rheological properties. Asphalt binder needs 

sufficient properties to resist cracking at low temperatures and rutting caused by shear forces 

from sustained loads at high temperatures. The physical properties of asphalt binder are 

typically modified with elastomeric polymers to produce an improved performance grade. 

The most common elastomeric polymers used for asphalt modification are styrenic block 

copolymers (SBC). SBCs are composed of blocks of polybudiene and polystyrene to produce 
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styrene-butadiene (SB) diblock polymers and styrene-butadiene-styrene (SBS) triblock 

polymers. 

In 2008, there was a shortage of SB and SBS polymers for use in the asphalt industry. 

The shortage was due to a lack of global butadiene supply, the principal component of SBC 

grades for asphalt modification. Butadiene is a by-product of the production of ethylene, 

which is produced from the steam cracking process of petroleum based feedstocks. Steam 

cracker facilities can use either liquid petroleum products or gaseous products such as ethane, 

butane, or propane as the raw material to produce ethylene. The by-products that result from 

the steam cracking reaction depend on the composition of the raw material. Butadiene is only 

a by-product when liquid feeds, not gaseous feeds, are used as the raw materials. 

As shale gas supplies become more abundant, crackers are more commonly using 

lighter petrochemical feeds such as ethane to produce ethylene and its by-products. However, 

using lighter feeds lowers butadiene production and tightens the supply (Foster 2011). This 

in-part led to the 2008 butadiene shortage as well as short term closure of some facilities. 

Although the butadiene supply has rebounded since then, it remains volatile and has been 

susceptible to rapid price increases. The butadiene market in the United States is particularly 

sensitive to global supply since butadiene is not substantially produced domestically but 

primarily imported from Asian and European countries. 

As the asphalt industry continues to grow, it will increasingly need SBCs to modify 

asphalt binder. The global asphalt market is projected to reach 118.4 million metric tons by 

2015, according to a January 2011 report by Global Industry Analysts, Inc. With increasing 

growth in the developing markets of China, India, and Eastern Europe, asphalt will be needed 

to construct their roadway infrastructure well into the next decade and beyond. The demand 
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for asphalt, along with the need for improved asphalt pavement performance, will put 

pressure on butadiene supplies that have already experienced shortages. As a result, there is a 

growing need in finding sustainable and renewable SBC alternatives.  

The successful synthesis of elastomeric SBCs requires a polymer like polybutadiene 

for its soft and rubbery properties. With the advent of new polymerization technologies that 

can produce polymers from biorenewable sources rather than petroleum, it may be possible 

to synthesize a biopolymer from plant-based feedstocks that mimics the properties of 

polybutadiene. A bio-based alternative that could replace the petrochemically based 

polybutadiene in SBCs would help solve the economic and environmental concerns of using 

them. 

Indeed, many advances have been made in this area, most notably in the production 

of vegetable-oil-based thermosets via both traditional cationic and free radical 

polymerization routes. Lu and Larock (2009) have shown that a variety of plant oils may be 

successfully polymerized via cationic polymerization into thermosets with a broad spectrum 

of physical properties and aesthetic appearances. While these thermoset materials may 

supplant a number of petrochemically-derived thermosets, the vast majority of commodity 

polymers, including SB and SBS, are thermoplastic materials that can be reheated and 

processed at high temperatures. 

In laboratory studies, the authors have identified soybean oil as a viable renewable 

and biodegradable feedstock that can be polymerized into a material with similar properties 

as polybutadiene. By replacing butadiene with the polymerized soybean oil in the SB and 

SBS block copolymer structure, a new class of renewable elastomeric SBCs is available to be 

used for the asphalt industry as well as many others. 
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Objectives 

This paper documents the development of a polymer modified asphalt using 

innovative thermoplastic-elastomeric SBCs based largely on soybean oil, a renewable and 

biodegradable feedstock. The new class of SBCs contains a biopolymer derived from 

triglycerides in soybean oil that replaces the “B” block polymer (polybutadiene) in the block 

copolymer structure of SB and SBS. The efficacy these soy-based block copolymers as an 

alternative to the traditional polymer modifiers used in the asphalt industry are evaluated 

through laboratory rheology experiments.  

Literature Review 

Asphalt binder is commonly modified with polymers to improve its rheological 

properties in a paving mixture and to lower its temperature susceptibility over a range of in-

service temperatures. Figure 40 compares the stiffness of a conventional asphalt binder to an 

ideal modified asphalt binder at different in-service temperatures. At high temperatures, 

polymer modification increases binder stiffness and elasticity, as a result of an increased 

storage modulus and a decreased phase angle. Both increasing the storage modulus and 

decreasing the phase angle improves rutting resistance of the pavement (Bahia and Anderson 

1995). At low temperatures, polymer modification lowers creep stiffness of the asphalt which 

improves resistance to thermal cracking (Isacsson and Lu 1999).  
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Figure 40. Effects of polymer modification in asphalt binder (after Epps, J.A.) 

 

Polymers are very large molecules formed by linking together multiple small 

molecules called monomers. When a polymer consists of more than one repeating monomer 

unit, either in a random or block arrangement, it is termed a copolymer. The length of the 

polymer chain, monomer sequence, and chemical structure determine the physical properties 

of the resulting polymer. Polymers with blocks of repeating homopolymer chains are termed 

block copolymers (Odian 1991). 

Thermoplastic Elastomers 

The most important block copolymer used in commercial practice is the ABA triblock 

(Hiemenz 2007). The A block is usually polystyrene, and the B block is an elastomer such as 

isoprene or butadiene. Such polymers are known as thermoplastic elastomers. SBS is the 

most widely used thermoplastic elastomer for asphalt modification. It is comprised of 

polystyrene-polybutadiene-polystyrene chains that create an ordered morphology of 

cylindrical glassy polystyrene block domains within a rubbery polybutadiene matrix 

(Bulatovic et al. 2012). The polystyrene end-blocks provide strength to the polymer, while 
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the polybutadiene mid-block gives the material its elasticity (Figure 41). SBS polymers are 

thermoplastic, meaning that they can be easily processed at high temperatures due to the 

linear nature of their chains. When heated above the polystyrene glass transition temperature 

(100C), the crosslinked structure breaks down allowing the polymer to flow. Upon cooling, 

the rigid polystyrene end-blocks vitrify and act as anchors for the liquid rubbery domains by 

providing a restoring force when stretched (Fried 2008). 

 

Figure 41. SBS polymer structure 

 

The mechanism that allows SBS to possess the dual properties of thermoplasticity and 

elasticity in styrenic block copolymer arises from polymer thermodynamics and the chain 

architecture of the polymer. Flory-Huggins theory illustrates that nearly all polymers are 

mutually immiscible, due to the drastic loss of mixing entropy. The chemically dissimilar 

monomer sequences found in the block copolymers may be thought of conceptually as 

immiscible homopolymers bound covalently end-to-end. Due to this constraint, when a block 

copolymer phase separates, incompatible polymer types form meso-domains with a well-
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defined geometry dictated by the block composition and with a size governed by the overall 

molecular weight (Bates et al. 1999). 

In a typical SBS elastomer, the styrene composition is about 10-30 wt% such that 

spherical or cylindrical styrene domains form in a matrix of butadiene. When the temperature 

is below the glass transition temperature of polystyrene (Tg =100°C), the polybutadiene 

matrix is liquid (Tg < -90 °C) but is bound between the vitreous polystyrene spheres, which 

serve as physical crosslinks. When the temperature is above the glass transition temperature 

of polystyrene, the entire elastomer system is molten and may be processed easily. 

Crosslinked poly(soybean oil) has been reported to have Tg values as low as -56 °C (Yang et 

al. 2010). Comparatively, polybutadiene has a Tg of -90°C. Thus, the poly(soybean oil) is an 

excellent candidate to serve as the liquid component in thermoplastic elastomers based on 

styrenic block copolymers. 

SBS is incorporated into asphalt binder, normally between 2 and 5 percent by weight 

of the total binder, through mixing and shearing at high temperatures to uniformly disperse 

the polymer. When blended with asphalt, the polymer swells within the asphalt maltene 

phase to form a continuous tridimensional polymer network (Lesuer 2009). At high 

temperatures, the polymer network becomes fluid yet still provides a stiffening effect that 

increases the modulus of the mixture. At low temperatures, a linked network within the 

asphalt redevelops without adversely affecting the low temperature cracking performance 

due to the elastic properties of the polybutadiene (Airey 2004). The resulting performance 

properties widen the working temperature range of the asphalt/polymer system. 

 

 



120 

 

SBS and Asphalt Compatibility 

The differences in properties such as molecular weight, density, viscosity, and 

solubility coefficients between SBS and asphalt result in two distinct phases when using 

mechanical mixing to obtain SBS-modified asphalt (Sun et al., 2006). This can lead to 

thermodynamically unstable blends that have a tendency to segregate during hot storage 

(160C). For polymers to impart desirable properties to asphalt binder, the binder and the 

polymer must be compatible. Incompatible asphalt-polymer blends lack a homogenous 

network of polymer chains throughout the blend, thereby reducing the polymer’s 

effectiveness, and from a practical perspective, face handling issues.  

Masson et al. (2003) showed that asphalt binder and polymer composition affect the 

stability of the blends. Asphalt binder consists of a complex system of hydrocarbon 

molecules that can be fractionated into asphaltene and maltene components (Hoiberg 1979). 

Asphaltenes are the heaviest components of the asphalt binder matrix and contribute to the 

stiffness of the asphalt, whereas maltenes are the lightest components and consist of 

compounds known as saturates, aromatics, and resins. The asphaltenes are dispersed 

throughout the maltene components in the asphalt matrix. Since the molecular weights of the 

polymeric chains are higher than or similar to those of the asphaltenes, they compete for the 

solvency of the maltene fraction and a phase separation may occur if there is an imbalance 

between the components (Fernandes et al. 2008). Therefore, it is recognized that asphalts 

with a lower asphaltene content and higher aromatics content are more compatible with SBS 

polymers (Alonso et al. 2010). 

Several polymer parameters determine how a polymer will be effective in asphalt 

modification; these include chain architecture, composition, and the molecular weight 
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distribution. Lu and Isacsson (1997) compared branched SBS polymer to linear SBS polymer 

modified asphalt. They concluded that linear SBS polymers displayed a finer dispersion in 

modified asphalt which results in a lower phase separation during hot storage. Masson et al. 

(2003) concluded that the lower stability of branched SBS in asphalt was not necessarily due 

to its branched structure but its high molecular weight. SBS modified asphalt studies have 

reported linear SBS polymers to have molecular weights between 130,000 to 170,000 daltons 

and radial SBS polymers to have molecular weights between 210,000 to 350,000 daltons. 

SBS copolymers should also meet several requirements to be compatible with 

asphalt: they should be rich in butadiene (generally 60-70%) and the molecular weight of the 

styrene fraction must exceed 10,000 daltons to obtain polystyrene rich domains 

(Lewandowski 1994). 

The interaction between asphalt and SB is different from that with SBS (Martinez-

Estrada et al. 2010). Maltenes have a more favorable interaction with the polybutadiene 

block compared with the PS block due to maltenes swelling the polybutadiene block and not 

the polystyrene block. In contrast, asphaltenes are incompatible with both polybutadiene and 

polystyrene. Therefore, interactions between asphalt and SB are more favorable than 

interactions between asphalt and SBS since SB only has one polystyrene block compared to 

the multiple end blocks of SBS. However, SBS is more commonly used for asphalt 

modification due to its ability to form an elastic network through physical entanglements in 

the polymer rich phase. 
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Commercially Available SBS and SB Polymers 

Commercially available SBS and SB copolymers used for modifying asphalt binders 

in the United States are supplied by Kraton Performance Polymers, Inc. (Kraton®). D1101 

and D1118 are commonly used grades of Kraton® for asphalt modification. D1101 is a clear, 

linear triblock copolymer (SBS), and D1118 is a clear, diblock copolymer (SB). Other SB 

and SBS polymers are produced by LG Chem, Korea Kumho Petrochemical Co., Taiwan 

Synthetic Rubber Corporation (TSRC), and others. 

Polymers Synthesized from Vegetable Oils 

Vegetable oils have been considered as monomeric feedstocks for the plastics 

industry for over 20 years. Polymers from vegetable oils have obtained increasing attention 

as public policy makers and corporations alike have been interested in replacing traditional 

petrochemical feedstocks due to their environmental and economic impact.  

To date, moderate success has been achieved through the application of traditional 

cationic and free radical polymerization routes to vegetable oils to yield thermoset plastics 

(i.e., plastics which, once synthesized, permanently retain their shape and are not subject to 

further processing). For example, a variety of polymers, ranging from soft rubbers to hard, 

tough plastics were made by using cationic copolymerization of vegetable oils, mainly 

soybean oil (SBO), using boron triflouridediethyletherate (BFE) as initiator (Andjelkovic et 

al. 2006, Pfister & Larock 2010). Soybean oil-based waterborne polyurethane films were 

synthesized with different properties ranging from elastomeric polymers to rigid plastics by 

changing the polyol functionality and hard segment content of the polymers (Lu et al. 2005, 

Lu et al. 2011). Moreover, soybean oil was used to synthesize different bio-based products 

such as sheet molding composites, elastomers, coatings, foams, etc. (Zhu et al. 2006). Bunker 
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et al. synthesized pressure sensitive adhesives using mini-emulsion polymerization of 

acrylatedmethyloleate, a monoglyceride derived from soybean oil (Bunker et al. 2002, 

Bunker et al. 2003). The polymers produced were comparable to their petroleum 

counterparts. Zhu et al. generated an elastic network based on acrylated oleic methyl ester 

through bulk polymerization using ethylene glycol as the crosslinker, obtaining a high 

molecular weight linear polymer using mini-emulsion polymerization (Zhu et al. 2006). Lu et 

al. created thermosetting resins synthesized from soybean oil that can be used in sheet 

molding compound applications by introducing acid functionality onto the soybean and 

reacting the acid groups with divalent metallic oxides or hydroxides, forming the sheet (Lu et 

al. 2005). Bonnaillie et al. created a thermosetting foam system using a pressurized carbon 

dioxide foaming process of acrylated epoxidized soybean oil (AESO) (Bonnaillie et al. 

2007).  

Uncontrolled chain branching and crosslinking is inevitable by using these 

conventional polymerization routes due to the multifunctional nature of triglycerides, 

multiple initiation sites along the chain backbone, and chain transfer/termination reactions. 

While these thermoset materials may indeed supplant a number of petrochemically-derived 

thermosets, the vast majority of commodity polymers are highly processable thermoplastic 

materials. There is thus a need to develop highly processable thermoplastic and elastomeric 

polymers from vegetable oils with a wide range of applications and physical properties. 

Synthesis of thermoplastic block copolymers 

Soybean oil is particularly suitable for polymerization, because it possesses multiple 

carbon-carbon double bonds that allow for modifications such as conjugation, epoxidation of 

the double bonds, etc. Soybean oils are mixtures of triglycerides containing a number of 
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double bonds that may serve as candidates for polymerization. For the synthesis of the 

polymers, soybean oil was purified over basic alumina, followed by the epoxidation of the 

double bonds and subsequent acrylation to yield acrylated epoxidized soybean oil (AESO). 

The radically polymerizable triglyceride monomer (AESO) was polymerized with 

polystyrene via reversible addition-fragmentation chain-transfer (RAFT) polymerization, in 

the presence of a free radical initiator and a chain transfer agent, to form a thermoplastic 

block copolymer. The polymerizing step was carried out under conditions effective to 

achieve a number average degree of polymerization (Nn) for the thermoplastic block 

copolymer of up to 100,000 repeat units per molecule without gelation. 

Using this process, two types of soy-based, thermoplastic, elastomeric, block 

copolymers were developed:  P(styrene-b-AESO-b-styrene) and P(styrene-b-AESO). Images 

of the final soy-based biopolymers are presented in Figures 42 and 43. The PS-PAESO 

diblock is shown in Figure 42, and the PS-PAESO-PS triblock is shown in Figure 43. 

 

  

Figure 42. PS-PAESO diblock   Figure 43. PS-PAESO-PS triblock 

 

  Table 22 shows the molecular weights and polydispersidy index of the biopolymers 

which are comparative to commercially produced SBCs used for asphalt modification. The 
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results show 33 percent styrene in the PS-PAESO diblock and 49 percent styrene in the PS-

PAESO-PS triblock with molecular weights above 10,000 daltons.  

 

Table 22. Biopolymer molecular weights and styrene contents 

 M.W.a PDIb %Styrenec 1st d 2nd e 

PAESO 29,500 1.39 0 - - 

PS-PAESO 40,980 1.34 33 13,900 - 

PS-PAESO-PS 53,300 1.84 49 13,900 12,200 
aTotal molecular weight of block copolymer 
bTotal molecular weight of block copolymer 
c Percent styrene in block copolymer 
d Molecular weight of styrene in first block 
e Molecular weight of styrene in second block 

 

Experimental Plan 

The PS-PAESO-PS and PS-PAESO biopolymers were blended with asphalt binder to 

evaluate the rheological properties of the biopolymer-asphalt blend and to determine the if 

the biopolymers are suitable for developing a formulation that increases the performance 

grade of the base asphalt binder. Two commercially available Kraton® polymers were also 

blended with the same asphalt binder to compare the biopolymer modified asphalt to 

commercially used polymer asphalt modified. The two Kraton® polymers selected for the 

study were D1101 (SBS triblock) and D1118 (SB diblock). 

A soft asphalt from Flint Hills Resources’ Pine Bend Refinery in Rosemount, 

Minnesota graded as a PG XX-34 was used as the base asphalt. All asphalt-polymer blends 

were prepared in the laboratory with a Silverson L4RT shear mixer at 3000 rpm and 180°C. 

For each polymer-asphalt batch, 500 grams of asphalt was poured into a 1 quart aluminum 

can. Polymer was added to each can at two percent by total weight of the asphalt-polymer 

blend. The high shear mixing process was carried out for 1.5 hours.  
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A control batch of asphalt binder was also prepared to compare the properties of the 

base asphalt to the polymer-asphalt blends. It was processed following the same procedure as 

the polymer-asphalt batches where a 1 quart can of the base asphalt was mixed in the shear 

mixer at 180°C for 1.5 hours. In total, five polymer-asphalt batches were prepared; they are 

as follows: 

XX-34 base asphalt processed in shear mill, 

XX-34  +  SBS Kraton® D1101, 

XX-34  +  SB Kraton® D1118, 

XX-34  +  PS-PAESO-PS, and 

XX-34  +  PS-PAESO 

The subsequent rheological testing of the blends is outlined below in Figure 44 and 

follows the American Association of State Highway and Transportation Officials (AASHTO) 

M 320 testing for determining the performance grade of the modified asphalt binders. The 

polymer-asphalt blends were tested a dynamic shear rheometer (DSR) at high and 

intermediate temperatures and tested in a bending beam rheometer at low temperatures 

(BBR). A rolling thin film oven (RTFO) and pressure aging vessel (PAV) were used to 

conduct simulated aging of the blends representative of the aging of binders that occurs 

during production of asphalt mixtures and the in-situ aging, respectively.  
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Figure 44. Rheological testing of asphalt-polymer blends 

 

Results and Discussion 

Evaluation of Asphalt Modified with the Commercial Polymers 

Prior to evaluating blends of asphalt with the soy-based block copolymer, the XX-34 

base asphalt was blended with Kraton® D1101 SBS triblock and Kraton® D1101 SB diblock 

at different percentages of polymer. The high PG failing temperature for each blend was 

evaluated using the DSR. The high performance grade (PG) temperature of an asphalt 

represents the temperature in degrees Celsius where the phase angle () divided by the 

complex shear modulus (G*) is equal to 1kPa for unaged binders and 2.2kPa for rolling thin 

film oven aged binders. Lower phase angles increase the elastic component of an asphalt 

binder, and higher complex shear modulus values increase the stiffness of the material. Thus, 

the higher the PG failure temperature of an asphalt binder, the greater its ability will be to 

resist pavement rutting from vehicular loading. 
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In Table 23, the DSR results show the unaged XX-34 base asphalt contained a 

continuous high PG of 51.09. Kraton® D1101 SBS polymer was then added to the base 

asphalt at levels of 1, 2, 3, 4, and 5 percent, to evaluate how the percentage of D1101 would 

change the PG of the binder. As expected, the continuous high PG increased as the polymer 

content increased. Similar results were obtained for the RTFO aged D1101 polymer-asphalt 

blends (Table 24). 

Table 23. DSR results for unaged asphalt modified with Kraton® D1101 

Temp Measurement 
Base 

Asphalt 

w/ 1% 
Kraton® 

D1101 

w/ 2% 
Kraton® 

D1101 

w/ 3% 
Kraton® 

D1101 

w/ 4% 
Kraton® 

D1101 

w/ 5% 
Kraton® 

D1101 

46C 

|G*| (Pa) 2023 2816 4500 5152   

 (degrees) 86.36 84.05 79.40 76.44   

G*/sin() (kPa) 2.03 2.83 4.58 5.30   

52C 

|G*| (Pa) 879 1205 1962 2361 3560 4790 

 (degrees) 87.75 85.85 81.85 79.38 64.64 60.63 

G*/sin(Δ) (kPa) 0.88 1.21 1.98 2.40 3.94 5.50 

58C 

|G*| (Pa)  569 928 1141 1946 2703 

 (degrees)  87.01 83.48 81.44 68.8 64.77 

G*/sin() (kPa)  0.57 0.93 1.15 2.09 2.99 

64C 

|G*| (Pa)    588 1076 1532 

 (degrees)    82.36 71.78 68.65 

G*/sin() (kPa)    0.59 1.13 1.65 

70C 

|G*| (Pa)      614 902 

 (degrees)      75.8 70.50 

G*/sin() (kPa)       0.64 0.96 

PG Failing Temp (C) 51.09 53.67 57.42 59.45 65.59 69.7 
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Table 24. DSR results for RTFO aged asphalt modified with Kraton® D1101 

Temp Measurement 
Base 
Asphalt 

w/ 1% 
Kraton® 

D1101 

w/ 2% 
Kraton® 

D1101 

w/ 3% 
Kraton® 

D1101 

w/ 4% 
Kraton® 

D1101 

w/ 5% 
Kraton® 

D1101 

46C |G*| (Pa) 5449 7038 9619 11395   

 (degrees) 81.66 78.49 73.95 70.27   

G*/sin() (kPa) 5.51 7.18 10.01 12.11   

52C |G*| (Pa) 2250 2998 4276 5230 6944 8541 

 (degrees) 84.13 81.33 77.59 74.14 67.80 62.57 

G*/sin() (kPa) 2.26 3.03 4.38 5.44 7.50 9.62 

58C |G*| (Pa) 994 1349 1973 2475 3359 4516 

 (degrees) 86.09 83.87 81.03 78.36 73.11 65.74 

G*/sin() (kPa) 1.00 1.36 2.00 2.53 3.510 4.95 

64C |G*| (Pa)    1198 1653 2442 

 (degrees)    82.06 77.11 70.00 

G*/sin() (kPa)    1.21 1.70 2.60 

70C |G*| (Pa)      1331 

 (degrees)      73.61 

G*/sin() (kPa)      1.39 

PG Failing Temp (C) 52.38 54.45 57.22 59.20 61.89 65.60 

 

Tables 25 and 26 show the DSR results of the unaged and RTFO aged XX-34 base 

asphalt modified with Kraton® D1118 SB polymer, respectively, at polymer contents of 1, 2, 

3, 4, and 5 percent. The D1118 polymer did not increase the grade of the base asphalt as 

much as the D1101 polymer. For example, when 5 percent D1118 polymer was blended with 

the base asphalt, the continuous grade of the base asphalt increased to 62.2C; whereas when 

5 percent D1101 polymer was blended with the base asphalt, the continuous grade of the base 

asphalt increased to 65.6C. The high PG temperatures for the D1101 modified asphalt was 

expected since SBS is known to have a greater ability than SB to from an elastic network of 

physical chain entanglements in the polymer rich phase of an asphalt-polymer blend. 
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Table 25. DSR results for unaged asphalt modified with Kraton® D1118 

Temp Measurement 
Base 
Asphalt 

w/ 1% 
Kraton® 

D1118 

w/ 2% 
Kraton® 

D1118 

w/ 3% 
Kraton® 

D1118 

w/ 4% 
Kraton® 

D1118 

w/ 5% 
Kraton® 

D1118 

46C 

|G*| (Pa) 2023 2674 3170 4745   

 (degrees) 86.36 83.89 81.14 75.27   

G*/sin() (kPa) 2.03 2.69 3.21 4.91   

52C 

|G*| (Pa) 879 1162 1438 2242 2229 2870 

 (degrees) 87.75 85.73 83.54 77.96 75.86 72.95 

G*/sin() (kPa) 0.88 1.17 1.45 2.29 2.299 3.00 

58C 

|G*| (Pa)  546 689 1102 1126 1488 

 (degrees)  87.14 85.49 80.80 77.34 74.26 

G*/sin() (kPa)  0.55 0.69 1.12 1.15 1.55 

64C 

|G*| (Pa)    565 601 812 

 (degrees)    82.42 78.04 74.57 

G*/sin() (kPa)    0.57 0.61 0.84 

Failing Temp (C) 51.09 53.37 55.03 59.12 59.51 62.30 

 

Table 26. DSR results for RTFO aged asphalt modified with Kraton® D1118 

Temp Measurement 
Base 

Asphalt 

w/ 1% 

Kraton® 

D1118 

w/ 2% 

Kraton® 

D1118 

w/ 3% 

Kraton® 

D1118 

w/ 4% 

Kraton® 

D1118 

w/ 5% 

Kraton® 

D1118 

46C 

|G*| (Pa) 5449 7233 8100 10065   

 (degrees) 81.66 78.39 75.76 72.06   

G*/sin() (kPa) 5.51 7.38 8.36 10.58   

52C 

|G*| (Pa) 2250 3091 3575 4666 5079 6319 

 (degrees) 84.13 80.74 77.60 73.72 72.2 68.68 

G*/sin() (kPa) 2.26 2.13 3.66 4.86 5.34 6.78 

58C 

|G*| (Pa) 994 1418 1695 2271 2540 3231 

 (degrees) 86.09 83.05 79.90 76.07 73.96 70.22 

G*/sin() (kPa) 1.00 1.43 1.72 2.34 2.64 3.43 

64C 

|G*| (Pa)    1142 1311 1731 

 (degrees)    78.84 76.43 72.41 

G*/sin() (kPa)    1.16 1.35 1.82 

Failing Temp (C) 52.38 54.74 56.02 58.65 59.67 62.20 

 

The low temperature creep stiffness and the m-value of the base asphalt and Kraton® 

polymer-asphalt blends were evaluated using a bending beam rheometer (BBR) (Table 27). 
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Three percent Kraton® D1101 and D1118 each increased the continuous low temperature PG 

only by about three degrees which kept the low PG at -34C. 

 

Table 27. BBR results for PAV aged asphalt modified with Kraton® D1101 and D1118 

  
Base Asphalt 

w/ 3% Kraton® 

D1101 

w/ 3% Kraton® 

D1118 

Temp Measurement PAV Aged PAV Aged PAV Aged 

-24C 
Stiffness (MPa) 182 -  245 244 245 237 

m-value 0.346 -  0.310 0.306 0.311 0.307 

-30C 
Stiffness (MPa) 479 -  520 489 492 495 

m-value 0.271 -  0.239 0.241 0.244 0.235 

Continuous 

Low Grade (C) 
-37.68 -34.71 -34.78 

 

Evaluation of Asphalt Modified with the Biopolymers 

PS-PAESO and PS-PAESO-PS were blended with the base asphalt to determine how 

the biopolymers affected the base asphalt’s PG. Each biopolymer was added to the base 

asphalt at a polymer content of 2 percent. (The biopolymers were not evaluated in the asphalt 

at multiple contents similarly to the Kraton® polymers, due to limited laboratory production 

capabilities. Since the completion of this study, a larger reactor has been purchased which 

allows for larger biopolymer production capacity.) The blends were compared to the base 

asphalt as well as the base asphalt processed in the shear mill without polymer. The results in 

Table 28 highlight the high heat levels that occur during shear mill processing which cause 

the asphalt to age, resulting in a 2.5 to 3 degree increase of the high PG temperature. 

Although a continuous high PG of 51.09C was measured in the base asphalt with the DSR, 

53.64C should be used as the base asphalt PG for a proper comparison to respective 

polymer modified asphalt blends since all polymer-asphalt blends were processed in a shear 

mill.  
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When two percent PS-PAESO diblock was added to the base asphalt, the base 

asphalt’s continuous high PG increased from 53.64C to 69.08C. The PS-PASEO-PS 

triblock at 2 percent increased the continuous high PG to 70.4C. Both PG values are higher 

than the asphalt modified with 2 percent D1101 and D1118, which were 57.22C and 

55.03C respectively. The higher PG values in the biopolymer modified asphalt are a result 

of a lower phase angle and higher shear modulus value than the Kraton® polymer modified 

asphalt. 

Table 28. DSR results for asphalt modified with biopolymers 

  

Base Asphalt 

Base Asphalt 

processed in 
shear mill w/o 

polymer 

Base Asphalt w/ 
2%PS-PAESO 

Base Asphalt w/ 
2%PS-PAESO-PS  

Temp Measurement Unaged 
RTFO 

Aged 
Unaged 

RTFO 

Aged 
Unaged 

RTFO 

Aged 
Unaged 

RTFO 

Aged 

46C 

|G*| (Pa) 2023 5449 2843 8219         

 (degrees) 86.36 81.66 84.37 79.35         

G*/sin() (kPa) 2.027 5.51 2.857 8.362         

52C 

|G*| (Pa) 879 2250 1214 3383 9599 18900 11250 21275 

 (degrees) 87.75 84.13 86.03 82.24 73.92 67.98 73.12 67.56 

G*/sin() (kPa) 0.88 2.26 1.216 3.414 9.988 20.39 11.76 23.02 

58C 

|G*| (Pa)   994 557.2 1494 4323 8646 5100 9893 

 (degrees)   86.09 87.26 84.55 77.01 71.39 76.34 70.85 

G*/sin() (kPa)   1.00 0.5579 1.501 4.436 9.124 5.248 10.48 

64C 

|G*| (Pa)         2012 4043 2384 4680 

 (degrees)         79.85 74.90 79.40 74.34 

G*/sin() (kPa)         2.04 4.19 2.43 4.86 

70C 

|G*| (Pa)         983 1941 1157 2233 

 (degrees)         82.24 78.23 82.11 77.72 

G*/sin() (kPa)         0.99 1.98 1.17 2.29 

76C 

|G*| (Pa)             583 1094 

 (degrees)             84.44 80.76 

G*/sin() (kPa)             0.59 1.11 

PG Failing Temp (C) 51.09 52.38 53.64 55.26 69.82 69.08 71.42 70.42 
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The asphalt properties from DSR testing at intermediate pavement temperatures on 

PAV aged blends are presented in Table 29. The intermediate PG temperature is calculated 

as the temperature in degrees Celsius where the complex shear modulus multiplied by the 

phase angle equals 5000 kPa. Lower intermediate PG temperatures indicate an asphalt binder 

has a greater ability to deform without building up large stresses. A more compliant material 

will help reduce structural fatigue cracking in pavements. The biopolymers increased the 

intermediate PG temperatures four to six degrees Celsius. The PS-PAESO-PS modified 

asphalt contained a lower continuous PG intermediate temperature (12.96C) than the PS-

PAESO modified asphalt (15.11C). The main factor contributing to this difference was the 

larger G* value component in the PS-PAESO modified asphalt. Although both PS-PAESO 

and PS-PAESO-PS asphalt blends possess similar elastic properties at intermediate 

temperatures as evident from the phase angles, the presence of the second polystyrene block 

in the PS-PAESO-PS may be contributing the polymers ability to form a network of physical 

entanglements throughout the asphalt binder to create a more compliant material at 

intermediate temperatures. 
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Table 29. DSR results for PAV aged asphalt modified with biopolymers 

  

Base Asphalt 

Base Asphalt 
processed in 

shear mill w/o 

polymer 

Base Asphalt w/ 

2%PS-PAESO 

Base Asphalt w/ 

2%PS-PAESO-PS  

Temp Measurement PAV Aged PAV Aged PAV Aged PAV Aged 

22C 

|G*| (Pa) 8.22E+05   3.24E+06 2.49E+06 

 (degrees) 57.71   43.42 43.77 

G*/sin() (kPa) 694.5   2228 1725 

19C 

|G*| (Pa) 1.35E+06   4.80E+06 3.72E+06 

 (degrees) 55.17   41.42 41.77 

G*/sin() (kPa) 1110   3177 2476 

16C 

|G*| (Pa) 2.20E+06 2.47E+06 7.08E+06 5.49E+06 

 (degrees) 52.51 50.26 39.37 39.77 

G*/sin() (kPa) 1748 1894 4490 3510 

13C 

|G*| (Pa) 3.61E+06 3.93E+06 1.03E+07 8.07E+06 

 (degrees) 49.61 47.49 37.39 37.76 

G*/sin() (kPa) 2746 2900 6248 4937 

10C 

|G*| (Pa) 5.80E+06 6.21E+06   1.18E+07 

 (degrees) 46.7 44.68   35.75 

G*/sin() (kPa) 4216 4366   6884 

6C 

|G*| (Pa) 9.13E+06 9.76E+06     

 (degrees) 43.73 41.78     

G*/sin() (kPa) 6310 6495     

PG Failing Temp (C) 8.78 9.02 15.11 12.96 

 

After intermediate temperature testing, the long-term aged biopolymer-asphalt blends 

from the PAV were evaluated for their low temperature properties (Table 30). When the base 

asphalt was processed in the shear mill without polymer, the creep stiffness increased and the 

m-value decreased at low temperatures which resulted in a higher critical cracking 

temperature. The critical cracking temperature is the temperature at which an asphalt binder’s 

creep stiffness is greater than 300 MPa or m-value is less than 0.300. Both the creep stiffness 

and m-value are determined from BBR testing after 60 seconds of loading. Adding two 

percent biopolymers to the base asphalt resulted in the critical cracking temperature 
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increasing from -36.3C to -32.8C for the PS-PAESO modified asphalt and -33.0C for the 

PS-PAESO-PS modified asphalt. 

 

Table 30. BBR results for PAV aged asphalt modified with biopolymers 

  Base Asphalt Base Asphalt 

processed in 

shear mill w/o 

polymer 

Base Asphalt w/ 

2%PS-PAESO 

Base Asphalt w/ 

2%PS-PAESO-PS  

Temp Measurement PAV Aged PAV Aged PAV Aged PAV Aged 

-18C Stiffness (MPa) -  -  - -  117 -  128 -  

m-value -  -   - -  0.360 -  0.336 -  

-24C Stiffness (MPa) 182 -  190 223 267 279 271 274 

m-value 0.346 -  0.319 0.327 0.291 0.280 0.296 0.290 

-30C Stiffness (MPa) 479 -  444 479 471 -   - -  

m-value 0.271 -  0.261 0.267 0.214 -  - -  

Continuous 

Low Grade (C) 
-37.68 -36.34 -32.83 -33.02 

 

A PG temperature grade comparison of the base asphalt, asphalt modified with 

Kraton® polymers, and asphalt modified with the biopolymers, is shown in Figures 45 and 

46. The charts highlight the differences among base asphalt modified with different polymers 

at two percent. The D1101 and D1118 polymers increased the high PG temperature 

approximately one grade, from 51.1C to 57.2C and 55.0C, respectively. For the 

biopolymers, when two percent PS-PAESO was added to the base asphalt, the high PG 

temperature increased from 51.1C to 69.1C; and when two percent PS-PAESO-PS was 

added to the base asphalt, the high PG temperature increased to 70.4C. These increases 

equate to approximately three grade bumps and demonstrate the effectiveness of the 

biopolymers. By adding two percent of either biopolymer to the base asphalt, the increase in 

high temperature PG will enhance the rutting resistance of an asphalt pavement. 
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While the biopolymers were more effective than the Kraton® polymers at increasing 

the high temperature performance grade, the biopolymers increased the low temperature PG 

of the base asphalt one grade while the Kraton® polymers did not (Figure 45). This increase 

in the low temperature PG caused the asphalt binder to be more susceptible to low 

temperature cracking at -34C. The benefit of adding two percent Kraton® polymers was 

increasing the high PG temperature one grade without changing the low PG. Thus the 

Kraton® polymers were effective in reducing the temperature susceptibility of the base 

asphalt. (The Kraton® modified asphalt samples that were tested for low temperature 

properties contained three percent polymer, not two percent polymer. Since additional 

polymer will increase the low temperature PG, the extra 1% polymer in these samples should 

not affect the analysis.) 

Therefore, the biopolymers were more effective than the Kraton® polymers in 

increasing the high temperature, but not as effective in retaining the low stiffness modulus of 

the base asphalt. Adding two percent of either biopolymer to the base asphalt, increased the 

low temperature PG one grade (from -34 to -28). Even so, adding two percent PS-PAESO-PS 

increased the grade range (the high PG minus the low PG) from 88.8 to 103.4 which 

substantially increases the performance temperature range of the base asphalt.  
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Figure 45. Comparison of high temperature continuous performance grades 

  

 

Figure 46. Comparison of low temperature continuous performance grades 
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PAESO-PS were tested on two different DSRs. The results are reported in Table 32. The 

DSR used to obtain the results for column A is the DSR used to obtain all the previously 

mentioned test results in this paper. The DSR used to obtain the results for column B is a 

DSR from a different manufacturer and located in a different laboratory. DSR A measured 

the G*/sin() parameter of the split sample as 4.86 kPa at 64C, and DSR B measured the 

G*/sin() parameter of the split sample as 5.00 kPa at 64C. The range of the two test results 

as a percent of their mean is (d2s%) is 2.84%. This values meet the precision requirement in 

ASTM D7175 “Standard Test Method for Determining the Rheological Properties of Asphalt 

Binder Using a Dynamic Shear Rheometer” for multilaboratory precision which is prescribes 

a maximum d2s% of 22.2% as the greatest difference between two test results that would be 

considered acceptable. 

Table 31. Rheology test results from two different DSRs 

RTFO Aged Base Asphalt w/2% PS-PAESO-PS 

Temp Measurement DSR A DSR B 

52C 

|G*| (Pa) 21275 23502 

 (degrees) 67.56 66.4 

G*/sin() (kPa) 23.02 25.6 

58C 

|G*| (Pa) 9893 10375 

 (degrees) 70.85 69.9 

G*/sin() (kPa) 10.48 11.0 

64C 

|G*| (Pa) 4680 4779.5 

 (degrees) 74.34 72.9 

G*/sin() (kPa) 4.86 5.00 

70C 

|G*| (Pa) 2233 2231.7 

 (degrees) 77.72 75.3 

G*/sin() (kPa) 2.29 2.30 

76C 

|G*| (Pa) 1094 1046.7 

 (degrees) 80.76 76.8 

G*/sin() (kPa) 1.11 1.075 

PG Failing Temp (C) 70.42 70.35 
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Economic Analysis 

The most significant cost in manufacturing SBS polymers is the price of butadiene. 

For the last decade butadiene has been subject to large price fluctuations from crude oil price 

increases and global market shifts in supply and demand. Butadiene supply has been 

tightening due to the abundance of shale gas supplies. Since shale gas has become more 

available, lighter petrochemical feeds such as ethane have been more commonly used as a 

feedstock at cracking facilities to produce ethylene and its co-products that include 

butadiene. However, butadiene is only a co-product when heavier liquid feeds, not lighter 

feeds, are used. The effects this has had on the price of butadiene over the last several years 

are shown in Figure 47. 

 

Figure 47. Commodity costs comparison 
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soybean oil polymer appear to be competitive with modern commodities such as 

polybutadiene (synthetic rubber). Further, the cost of the soybean oil monomer has become 

highly competitive in recent years. As shown in Figure 47, soybean oil as a biomonomer is 

more economical than butadiene monomer feedstocks (e.g., a ton of soybean oil costs less 

than $1,000, whereas a ton of butadiene has cost up to $3,500). The lower raw materials costs 

of soybean oil translate into lower costs of polymer modified asphalt. The handling of 

vegetable oils in producing the bioelastomers and subsequent linking with styrene is also 

much safer and has less impact on the environment.  Thus, the novel soy-based, 

thermoplastic, elastomeric, block copolymers provide a cost-effective, environment-friendly, 

viable alternative for the conventional petrochemically-derived polymeric SBS and SB. With 

future implementation of the developed biopolymers, soybean oil source materials can be 

utilized to produce polymers for commercial use. Preliminary simulations estimate PAESO 

will cost about $2000 per ton as compared with $3200 per ton for polybutadiene. This 

estimate is conservative as it does not consider the reduced amount of storage and handling 

needed for PAESO compared to polybutadiene. Overall, the estimated lower cost of PAESO 

compared to polybutadiene can create improved economic conditions for producing soybeans 

resulting in greater economic opportunities for soy-based biomaterials in the future. 

Conclusions and recommendations 

Recent advances in polymerization technology have led to the development of 

elastomeric block copolymers produced with polystyrene and polymerized soy-derived 

triglycerides. While the past two decades of plant-oil based polymer research has yielded 

only thermosets, the produced polymers are highly processable thermoplastics. They were 

produced by first polymerizing acrylated, epoxidized triglyceride molecules in soybean oil to 
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yield PAESO. SBS-like triblock copolymers were then synthesized by replacing the “B” 

block (typically polybutadiene) in the ABA triblock structure with PAESO to create 

polystyrene-b-polyAESO-b-polystrene (PS-PAESO-PS). Styrene and AESO monomer were 

polymerized using reversible addition-fragmentation chain-transfer polymerization (RAFT), 

in the presence of a free radical imitator and a chain transfer agent, to form the block 

copolymers. The polymerizing step was carried out under conditions effective to achieve a 

number average degree of polymerization (Nn) for the thermoplastic block copolymer of up 

to 100,000 without gelation. Following the same process, SB diblock copolymers were also 

produced using polystyrene and polyAESO. 

A laboratory investigation was conducted to characterize the PS-PAESO-PS and PS-

PASEO biopolymers and to evaluate their effectiveness as a liquid asphalt modifier. Asphalt 

modified with the biopolymers was compared to asphalt modified with two commercially 

available Kraton® polymers, D1101 (SBS) and SB D1118 (SB). Rheology test results 

showed the biopolymer has the ability to widen the grade range of asphalt and reduce its 

temperature susceptibility. The base asphalt tested as a continuous PG 51.1-37.7 for a grade 

range of 88.8C. Adding two percent D1101 to the base asphalt increased its continuous high 

PG to a 57.2C without changing its -34C grade qualification on the low temperature side. 

Adding two percent PS-PAESO-PS to the base asphalt changed its continuous PG to a 70.4-

33.0 for a 103.4C grade range. With the addition of two percent PS-PAESO, the base 

asphalt changed to a continuous PG of 69.1-32.8 for a 101.9C grade range. Thus, 

biopolymers significantly enhanced the performance properties of the base asphalt. By 

adding two percent of either biopolymer to an asphalt binder, the rutting resistance and 

temperature performance range of an asphalt pavement will improve.  
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Currently, at a polymer content of two percent, a base asphalt’s low temperature PG 

may increase one grade, which may warrant the use a softer base asphalt to compensate for 

that effect. As more data from asphalt-modification experiments become available, additional 

or improved polymer formulation designs may be developed. Future research can improve 

upon the biopolymers molecular architecture, styrene content, and molecular weight 

distribution.  
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CHAPTER 6.  GENERAL CONCLUSIONS 

 

Evaluation of Recycled Asphalt Shingles in Hot Mix Asphalt 

To comprehensively answer the design, performance, and environmental questions about 

using RAS in HMA, Transportation Pooled Fund (TPF)-5(213) was created as collaboration 

of seven state transportation agencies in the United States to research the effects of RAS on 

the performance of asphalt applications. As part of TPF-5(213), each state highway agency 

proposed a unique field demonstration project that investigated different aspects of asphalt 

mixes containing RAS specific to their state needs. The demonstration projects of 

Transportation Pooled Fund TPF-5(213) showed that pavements using RAS alone or in 

combination with other cost saving technologies (e.g., WMA, RAP, GTR, SMA) can be 

successfully produced and meet state agency quality assurance requirements for mix asphalt 

content, gradation, and volumetrics. These mixes have very promising prospects since 

laboratory test results indicate good rutting resistance based on the flow number and dynamic 

modulus tests. The mixes also demonstrated good fatigue cracking resistance in the four-

point bending beam apparatus, with the SMA mixes from Illinois (which used 5% RAS and 

no added fibers) exhibiting the most desirable fatigue characteristics. Fracture properties of 

the mixes at low temperatures determined by the SCB fracture energy test showed no 

statistical change in mixes with RAS compared to the mixes without RAS for the Missouri, 

Minnesota, Indiana, Wisconsin, and Colorado projects. Based on the SCB results, the 

addition of RAS materials to HMA is not detrimental to its fracture resistance. 

The test results of the extracted binder from these mixes showed that when RAS is 

used in HMA, the performance grade of the base binder increases on the high and low side. 
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The average results of all the mixes in the study showed that for every 1 percent increase in 

RAS, the low temperature grade of the base binder increased 1.9C; and for every 1 percent 

increase in RAP, the low temperature grade of the base binder increased 0.3C. 

Based on these results, it is recommended that state highway agencies understand the 

material quality and binder characteristics of RAS materials that are being processed in their 

respective state before implanting a RAS specification. Depending on the RAS source and 

the area of the country post-consumer shingles have originated from, the RAS binder 

properties can widely vary. The binder properties of the RAS will help state highway 

agencies determine the amount of RAS that can be added before a softer virgin base binder 

will be needed to ensure the total binder matrix of the hot mix asphalt meets the intended 

performance grade design criteria. As a starting point for state highway agencies that have 

not conducted initial RAS research, a level of three percent RAS or 14 percent binder 

replacement is the maximum recommended amount of RAS binder used in HMA without 

requiring a six degree grade bump in the base binder. 

Delaying Reflective Cracking using Crack-Relief Interlayers  

The laboratory performance of a crack-relief interlayer mix design was assessed for 

resistance to cracking from repeated strains by using the four-point bending beam apparatus. 

The initial interlayer mix design failed the minimum 100,000 load cycle criteria in the four-

point bending beam but eventually passed the criteria after the polymer modified binder was 

re-engineered using SBS polymer Kraton D0432. Afterwards, the average number of load 

cycles achieved in the bending beam apparatus increased from 18,235 to 201,390, thereby 

passing the 100,000 load cycle criteria. 
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Using the interlayer as part of an overlay pavement system on US 169 in Adel, IA 

only increased the overlay construction costs by 10.6 percent while decreasing reflective 

cracking by 29 percent after one winter season. Had the interlayer been produced closer to 

the mix design targets, the overlay would most likely have exhibited even less cracking. 

Based on the substantial reduction in reflective cracking and only marginal cost increases 

from using the interlayer on US 169, it is recommended that future HMA overlay projects in 

Iowa incorporate the crack-relief interlayer to delay reflective cracking. 

The pavement test sections on US 169 should be monitored for cracking at least once 

per year for the next five years to determine the long-term performance of the interlayer and 

non-interlayer overlay test sections. Additionally, more trial projects using the interlayer 

should be conducted to obtain a more complete understanding of how effective the interlayer 

is at delaying reflective cracking.  

For future interlayer mixes that do not initially meet the minimum 100,000 load cycle 

criteria in the four-point bending beam, the number of load cycles the mix design can achieve 

in the performance test can be increased by improving the elastic and fatigue resistant 

properties of the binder. Based on the laboratory test results for this project, this can be 

accomplished by using a high percentage of Kraton D0243 SBS to create a highly polymer 

modified binder. 

Development of Bio-Based Thermoplastic-Elastomeric Block-Copolymers 

The third and fourth paper of this dissertation reports the recent advances in 

polymerization techniques that have enabled the synthesis of elastomeric, thermoplastic, 

block-copolymers comprised of styrene and soybean oil, where the “B” block in SBS 

polymers is replaced with polymerized triglycerides derived from soybean oil. These new 
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breeds of biopolymers have elastomeric properties comparable to well-established butadiene-

based styrenic block-copolymers.  

Thermoplastic-elastomeric block-copolymers were produced using controlled radical 

polymerization techniques of atom transfer radical polymerization (ATRP) and reversible 

addition-fragmentation chain-transfer (RAFT) polymerization to create block copolymers. 

Triblock copolymers were synthesized by polymerizing acrylated epoxidized soybean oil 

(AESO) and styrene monomer to create polystyrene-b-polyAESO-b-polystrene (PS-PAESO-

PS) and its diblock conjugations. Laboratory investigations were conducted to evaluate the 

effectiveness of the newly derived PS-PAESO-PS  and PS-PAESO polymers as asphalt 

modifiers. 

The laboratory results from the third paper demonstrated that adding three percent 

PS-PAESO-PS polymer to asphalt binder increased the low critical temperature of the base 

asphalt binder 3.0C while increasing its high critical temperature 10.8C. This change in 

grade range was similar to SBS’s effect on the asphalt binder. In contrast, the laboratory 

results from the fourth paper demonstrated that adding two percent PS-PAESO-PS to asphalt 

binder increased the low critical temperature of the base asphalt binder 3.3C while 

increasing its high critical temperature 15.2C. The differences between the reported results 

in these two papers is attributed to the differences in materials (both polymer and asphalt 

batches) and asphalt-binder blending processes used between the two studies. Nevertheless, 

the biopolymers significantly enhanced the rheological properties of the base asphalt and 

improved its resistance to shear deformation. Since the critical low temperature of the base 

asphalt increased approximately 3C in both studies from the addition of the PS-PAESO-PS 

modifier, the use of a softer base asphalt binder may be warranted to ensure the base asphalt 
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binder’s low temperature PG does not increase when formulating a polymer modified asphalt 

using the biopolymer.   

Implementation Readiness and Benefits  

Most vegetable oils (e.g. rapeseed, linseed, soybeans) can be used as a triglyceride 

source for polymer synthesis in this process. Soybean oil is used since it is the most abundant 

vegetable oil on earth, and it is readily available in the United States. It currently costs 40 

percent less than butadiene. These lower costs will translate into lower costs of polymer-

modified asphalt. Polymerized triglycerides are also intrinsically renewable, environmentally 

friendly, and safer to handle than butadiene.  

Future Work  

As additional data from asphalt-modification experiments become available, 

additional or improved polymer formulation designs may be developed. Future research can 

improve upon the biopolymers molecular architecture, styrene content, and molecular weight 

distribution.  

A larger reactor has been purchased that is capable of making two kilogram samples, 

which is substantially larger than the approximately 100 gram samples produced for these 

studies. In addition, a pilot plant is currently being constructed that will be able to produce 

even larger quantities of the biopolymers for future research. 

Further work evaluating asphalt mixtures for rutting, low temperature cracking, and 

moisture susceptibility should also be conducted. Based upon the evaluation of the mixture, 

an additional phase of research should include a field demonstration project that tests the 

performance of asphalt pavement containing terminally blended asphalt binder modified with 

the soy-based block copolymers. 
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APPENDIX A.  DYNAMIC MODULUS STATISTICAL OUTPUT 

Oneway Analysis of Missouri Dynamic Modulus (MPa) 37°C, 5 Hz By Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.16291 

Adj Rsquare 0.023395 

Root Mean Square Error 390.3071 

Mean of Response 3288.467 

Observations (or Sum Wgts) 15 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Missouri Mix Type 2 355770.5 177885 1.1677 0.3441 

Error 12 1828075.2 152340   

C. Total 14 2183845.7    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

15 RAP 5 3243.20 174.55 2862.9 3623.5 

5 CRAS/10 RAP 5 3126.60 174.55 2746.3 3506.9 

5 FRAS/10 RAP 5 3495.60 174.55 3115.3 3875.9 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.66776 0.05 

 

 

Connecting Letters Report 
 

Level             Mean 

5 FRAS/10 RAP A      3495.6000 

15 RAP A      3243.2000 

5 CRAS/10 RAP A      3126.6000 

 

Levels not connected by same letter are significantly different. 
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Oneway Analysis of Iowa Dynamic Modulus (MPa) 37°C, 5 Hz By Iowa Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.04869 

Adj Rsquare  -0.12968 

Root Mean Square Error 409.3114 

Mean of Response 1299.105 

Observations (or Sum Wgts) 20 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Iowa Mix Type 3 137196.7 45732 0.2730 0.8440 

Error 16 2680573.4 167536   

C. Total 19 2817770.0    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

0 RAS 5 1376.64 183.05 988.59 1764.7 

4 RAS 5 1160.06 183.05 772.01 1548.1 

5 RAS 5 1339.92 183.05 951.87 1728.0 

6 RAS 5 1319.80 183.05 931.75 1707.8 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.86102 0.05 

 

 

Connecting Letters Report 
 

Level             Mean 

0 RAS A      1376.6400 

5 RAS A      1339.9200 

6 RAS A      1319.8000 

4 RAS A      1160.0600 

 

Levels not connected by same letter are significantly different. 
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Oneway Analysis of Minnesota Dynamic Modulus (MPa) 37°C, 5 Hz By Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.303094 

Adj Rsquare 0.186943 

Root Mean Square Error 362.3303 

Mean of Response 1235.627 

Observations (or Sum Wgts) 15 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Minnesota Mix Type 2 685163.0 342581 2.6095 0.1146 

Error 12 1575399.3 131283   

C. Total 14 2260562.3    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

30 RAP 5 933.88 162.04 580.8 1286.9 

5 PC RAS 5 1371.40 162.04 1018.3 1724.5 

5 PM RAS 5 1401.60 162.04 1048.5 1754.7 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.66776 0.05 

 

 

Connecting Letters Report 
 

Level             Mean 

5 PM RAS A      1401.6000 

5 PC RAS A      1371.4000 

30 RAP A      933.8800 

 

Levels not connected by same letter are significantly different. 
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Oneway Analysis of Indiana Dynamic Modulus (MPa) 37°C, 5 Hz By Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.369499 

Adj Rsquare 0.243398 

Root Mean Square Error 439.5345 

Mean of Response 2590.846 

Observations (or Sum Wgts) 13 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Indiana Mix Type 2 1132172.2 566086 2.9302 0.0996 

Error 10 1931905.5 193191   

C. Total 12 3064077.7    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

15 RAP HMA 3 3112.33 253.77 2546.9 3677.8 

3 RAS HMA 5 2349.80 196.57 1911.8 2787.8 

3 RAS WMA 5 2519.00 196.57 2081.0 2957.0 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.74129 0.05 

 

 

Connecting Letters Report 
 

Level             Mean 

15 RAP HMA A      3112.3333 

3 RAS WMA A      2519.0000 

3 RAS HMA A      2349.8000 

 

Levels not connected by same letter are significantly different. 
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 Oneway Analysis of Wisconsin Dynamic Modulus (MPa) 37°C, 5 Hz By Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.917371 

Adj Rsquare 0.896713 

Root Mean Square Error 44.41471 

Mean of Response 1379.167 

Observations (or Sum Wgts) 6 

 

t Test 
No Evotherm®-Evotherm® 3G 

 

        

Difference 241.667 t Ratio 6.664008 

Std Err Dif 36.264 DF 4 

Upper CL Dif 342.353 Prob > |t| 0.0026* 

Lower CL Dif 140.980 Prob > t 0.0013* 

Confidence 0.95 Prob < t 0.9987 

 
 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Wisconsin Mix Type 1 87604.167 87604.2 44.4090 0.0026* 

Error 4 7890.667 1972.7   

C. Total 5 95494.833    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

Evotherm® 3G 3 1258.33 25.643 1187.1 1329.5 

No Evotherm® 3 1500.00 25.643 1428.8 1571.2 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.77645 0.05 

 

Connecting Letters Report 

Level             Mean 

No Evotherm® A       1500.0000 

Evotherm® 3G   B     1258.3333 
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Oneway Analysis of Colorado Dynamic Modulus (MPa) 37°C, 5 Hz By Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.825569 

Adj Rsquare 0.781961 

Root Mean Square Error 83.41263 

Mean of Response 1438.833 

Observations (or Sum Wgts) 6 

 

t Test 
3 RAS/15 RAP-20 RAP 

        

Difference  -296.33 t Ratio  -4.35105 

Std Err Dif 68.11 DF 4 

Upper CL Dif  -107.24 Prob > |t| 0.0121* 

Lower CL Dif  -485.43 Prob > t 0.9939 

Confidence 0.95 Prob < t 0.0061* 

 
 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Colorado Mix Type 1 131720.17 131720 18.9317 0.0121* 

Error 4 27830.67 6958   

C. Total 5 159550.83    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

20 RAP 3 1587.00 48.158 1453.3 1720.7 

3 RAS/15 RAP 3 1290.67 48.158 1157.0 1424.4 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.77645 0.05 

Connecting Letters Report 
 

Level             Mean 

20 RAP A       1587.0000 

3 RAS/15 RAP   B     1290.6667 
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Oneway Analysis of Illinois Dynamic Modulus (MPa) 37°C, 5 Hz By Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.362256 

Adj Rsquare 0.322397 

Root Mean Square Error 368.7949 

Mean of Response 1824.944 

Observations (or Sum Wgts) 18 

 

t Test 
11 RAP-0 RAP 

 

        

Difference 524.111 t Ratio 3.014704 

Std Err Dif 173.852 DF 16 

Upper CL Dif 892.660 Prob > |t| 0.0082* 

Lower CL Dif 155.562 Prob > t 0.0041* 

Confidence 0.95 Prob < t 0.9959 

 
 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Illinois Mix Type 1 1236116.1 1236116 9.0884 0.0082* 

Error 16 2176154.9 136010   

C. Total 17 3412270.9    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

0 RAP 9 1562.89 122.93 1302.3 1823.5 

11 RAP 9 2087.00 122.93 1826.4 2347.6 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.11991 0.05 

 

Connecting Letters Report 

Level             Mean 

11 RAP A       2087.0000 

0 RAP   B     1562.8889 
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Response Illinois Dynamic Modulus (MPa) 37°C, 5 Hz 

Whole Model 
 

Summary of Fit 
    

RSquare 0.711726 

RSquare Adj 0.603623 

Root Mean Square Error 300.3553 

Mean of Response 1830.917 

Observations (or Sum Wgts) 12 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 3 1781838.3 593946 6.5838 

Error 8 721706.7 90213 Prob > F 

C. Total 11 2503544.9  0.0149* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Sample Type 1 1 741524.08 8.2197 0.0209*  

Illinois Mix Type 1 1 848540.08 9.4059 0.0154*  

Illinois Mix Type*Sample Type 1 1 191774.08 2.1258 0.1829  

 

Sample Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

Field 1582.3333  122.61956 1582.33 

Lab 2079.5000  122.61956 2079.50 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

Lab A       2079.5000 

Field   B     1582.3333 
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Illinois Mix Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

0 RAP 1565.0000  122.61956 1565.00 

11 RAP 2096.8333  122.61956 2096.83 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

11 RAP A       2096.8333 

0 RAP   B     1565.0000 

 

Levels not connected by same letter are significantly different. 

Illinois Mix Type*Sample Type 
 

LS Means Plot 
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Response Illinois Dynamic Modulus (MPa) 37°C, 5 Hz 

Whole Model 
 

Summary of Fit 
    

RSquare 0.470685 

RSquare Adj 0.272192 

Root Mean Square Error 317.6809 

Mean of Response 1946.25 

Observations (or Sum Wgts) 12 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 3 717940.9 239314 2.3713 

Error 8 807369.3 100921 Prob > F 

C. Total 11 1525310.3  0.1463 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Binder Modification 1 1 213066.75 2.1112 0.1843  

Illinois Mix Type 1 1 465314.08 4.6107 0.0640  

Illinois Mix Type*Binder Modification 1 1 39560.08 0.3920 0.5487  

 

Binder Modification 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

GTR 1813.0000  129.69269 1813.00 

Polymer 2079.5000  129.69269 2079.50 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

Polymer A      2079.5000 

GTR A      1813.0000 
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Illinois Mix Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

0 RAP 1749.3333  129.69269 1749.33 

11 RAP 2143.1667  129.69269 2143.17 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

11 RAP A      2143.1667 

0 RAP A      1749.3333 

 

Levels not connected by same letter are significantly different. 

Illinois Mix Type*Binder Modification 
 

LS Means Plot 
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APPENDIX B.  FLOW NUMBER STATISTICAL OUTPUT 

Oneway Analysis of Flow Number By Iowa Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.745595 

Adj Rsquare 0.681994 

Root Mean Square Error 1348.672 

Mean of Response 3633.75 

Observations (or Sum Wgts) 16 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Iowa Mix Type 3 63969367 21323122 11.7230 0.0007* 

Error 12 21826983 1818915.2   

C. Total 15 85796349    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

0 RAS 4 710.75 674.34  -759 2180.0 

4 RAS 4 2937.75 674.34 1468 4407.0 

5 RAS 4 4987.50 674.34 3518 6456.8 

6 RAS 4 5899.00 674.34 4430 7368.3 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.96880 0.05 

 

 

Connecting Letters Report 
 

Level             Mean 

6 RAS A        5899.0000 

5 RAS A B      4987.5000 

4 RAS   B C    2937.7500 

0 RAS     C    710.7500 

 

Levels not connected by same letter are significantly different. 
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Oneway Analysis of Flow Number By Minnesota Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.790821 

Adj Rsquare 0.755958 

Root Mean Square Error 406.5274 

Mean of Response 1654.4 

Observations (or Sum Wgts) 15 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Minnesota Mix Type 2 7497572.8 3748786 22.6835 <.0001* 

Error 12 1983174.8 165265   

C. Total 14 9480747.6    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

30 RAP 5 766.80 181.80 370.7 1162.9 

5 PC RAS 5 2496.80 181.80 2100.7 2892.9 

5 PM RAS 5 1699.60 181.80 1303.5 2095.7 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.66776 0.05 

 

 

Connecting Letters Report 
 

Level             Mean 

5 PC RAS A        2496.8000 

5 PM RAS   B      1699.6000 

30 RAP     C    766.8000 

 

Levels not connected by same letter are significantly different. 
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Oneway Analysis of Flow Number By Indiana Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.938622 

Adj Rsquare 0.926346 

Root Mean Square Error 411.457 

Mean of Response 9153 

Observations (or Sum Wgts) 13 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Indiana Mix Type 2 25889709 12944855 76.4625 <.0001* 

Error 10 1692969 169296.87   

C. Total 12 27582678    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

15 RAP HMA 3 6578.33 237.55 6049.0 7108 

3 RAS HMA 5 9864.60 184.01 9454.6 10275 

3 RAS WMA 5 9986.20 184.01 9576.2 10396 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.74129 0.05 

 

 

Connecting Letters Report 
 

Level     Mean 

3 RAS WMA A   9986.2000 

3 RAS HMA A   9864.6000 

15 RAP HMA   B 6578.3333 

 

Levels not connected by same letter are significantly different. 
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Oneway Analysis of Flow Number By Wisconsin Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.453618 

Adj Rsquare 0.317023 

Root Mean Square Error 1198.984 

Mean of Response 3020.333 

Observations (or Sum Wgts) 6 

 

t Test 
No Evotherm®-Evotherm® 3G 

 

        

Difference 1784.0 t Ratio 1.82233 

Std Err Dif 979.0 DF 4 

Upper CL Dif 4502.0 Prob > |t| 0.1425 

Lower CL Dif  -934.0 Prob > t 0.0712 

Confidence 0.95 Prob < t 0.9288 

 
 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Wisconsin Mix Type 1 4773984 4773984 3.3209 0.1425 

Error 4 5750253 1437563   

C. Total 5 10524237    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

Evotherm® 3G 3 2128.33 692.23 206.4 4050.3 

No Evotherm® 3 3912.33 692.23 1990.4 5834.3 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.77645 0.05 

Connecting Letters Report 
 

Level             Mean 

Evotherm® 3G A      2128.33 

No Evotherm® A      3912.33 
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Oneway Analysis of Flow Number By Colorado Mix Type 
 

Oneway Anova 

Summary of Fit 
    

Rsquare 0.147583 

Adj Rsquare  -0.06552 

Root Mean Square Error 2189.42 

Mean of Response 8276.5 

Observations (or Sum Wgts) 6 

 

t Test 
3 RAS/15 RAP-20 RAP 

       

Difference 1487.7 t Ratio 0.83219 

Std Err Dif 1787.7 DF 4 

Upper CL Dif 6451.0 Prob > |t| 0.4521 

Lower CL Dif  -3475.7 Prob > t 0.2261 

Confidence 0.95 Prob < t 0.7739 

 
 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 

Colorado Mix Type 1 3319728 3319728 0.6925 0.4521 

Error 4 19174233 4793558   

C. Total 5 22493962    

 

Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 

20 RAP 3 7532.67 1264.1 4023.1 11042 

3 RAS/15 RAP 3 9020.33 1264.1 5510.7 12530 

 

Std Error uses a pooled estimate of error variance 

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Confidence Quantile 
q* Alpha 

2.77645 0.05 

 

Connecting Letters Report 
 

Level             Mean 

3 RAS/15 RAP A      9020.3333 

20 RAP A      7532.6667 
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APPENDIX C.  FRACTURE ENERGY STATISTICAL OUTPUT 

Response Missouri Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.642516 

RSquare Adj 0.47867 

Root Mean Square Error 57.3209 

Mean of Response 410.9829 

Observations (or Sum Wgts) 36 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 11 141731.19 12884.7 3.9215 

Error 24 78856.45 3285.7 Prob > F 

C. Total 35 220587.63  0.0025* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Missouri Mix Type 2 2 19940.381 3.0344 0.0669  

Temperature (°C) 3 3 67943.550 6.8929 0.0017*  

Missouri Mix Type*Temperature (°C) 6 6 53847.255 2.7314 0.0363*  

 

Missouri Mix Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

15 RAP 428.10233  16.547118 428.102 

5 CRAS/10 RAP 377.70392  16.547118 377.704 

5 FRAS/10 RAP 427.14250  16.547118 427.143 

 

LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.49729 

Level             Least Sq Mean 

15 RAP A      428.10233 

5 FRAS/10 RAP A      427.14250 

5 CRAS/10 RAP A      377.70392 

 

Temperature (°C) 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

 -12 398.61389  19.106966 398.614 

 -18 361.05478  19.106966 361.055 

 -22 403.64122  19.106966 403.641 

 -6 480.62178  19.106966 480.622 

 

LS Means Plot 

 
 

LSMeans Differences Tukey HSD 
α=0.050   Q=2.75861 

Level             Least Sq Mean 

 -6 A       480.62178 

 -22   B     403.64122 

 -12   B     398.61389 

 -18   B     361.05478 

 

Missouri Mix Type*Temperature (°C) 

LS Means Plot 
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Response Iowa Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.57501 

RSquare Adj 0.375796 

Root Mean Square Error 119.1039 

Mean of Response 606.1071 

Observations (or Sum Wgts) 48 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 15 614183.7 40945.6 2.8864 

Error 32 453943.8 14185.7 Prob > F 

C. Total 47 1068127.5  0.0058* 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Iowa Mix Type 3 3 190635.59 4.4795 0.0098*  

Temperature (°C) 3 3 399070.61 9.3773 0.0001*  

Iowa Mix Type*Temperature (°C) 9 9 24477.53 0.1917 0.9935  

 

Iowa Mix Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

0 RAS 530.57475  34.382339 530.575 

4 RAS 677.14950  34.382339 677.150 

5 RAS 557.73567  34.382339 557.736 

6 RAS 658.96867  34.382339 658.969 

 

LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.70936 

Level             Least Sq Mean 

4 RAS A       677.14950 

6 RAS A B     658.96867 

5 RAS A B     557.73567 

0 RAS   B     530.57475 

 

Temperature (°C) 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

 -12 754.67992  34.382339 754.680 

 -18 591.92675  34.382339 591.927 

 -22 570.13817  34.382339 570.138 

 -28 507.68375  34.382339 507.684 

 

LS Means Plot 

 
 

LSMeans Differences Tukey HSD 
α=0.050   Q=2.70936 

Level             Least Sq Mean 

 -12 A       754.67992 

 -18   B     591.92675 

 -22   B     570.13817 

 -28   B     507.68375 

 

Iowa Mix Type*Temperature (°C) 

LS Means Plot 
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Response Minnesota Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.720038 

RSquare Adj 0.586144 

Root Mean Square Error 135.1554 

Mean of Response 761.6012 

Observations (or Sum Wgts) 35 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 11 1080567.5 98233.4 5.3776 

Error 23 420140.7 18267.0 Prob > F 

C. Total 34 1500708.2  0.0003* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Minesota Mix Type 2 2 9892.63 0.2708 0.7652  

Temperature (°C) 3 3 966828.19 17.6425 <.0001*  

Minesota Mix Type*Temperature (°C) 6 6 99186.95 0.9050 0.5085  

 

Minesota Mix Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

30 RAP 741.04342  39.016007 741.043 

5 PC RAS 781.92613  41.382725 777.167 

5 PM RAS 767.89042  39.016007 767.890 

 

LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.50434 

Level             Least Sq Mean 

5 PC RAS A      781.92613 

5 PM RAS A      767.89042 

30 RAP A      741.04342 

 

Temperature (°C) 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

 -12 1039.5474  45.051804 1039.55 

 -18 733.6458  48.661510 721.07 

 -22 628.8634  45.051804 628.86 

 -28 652.4232  45.051804 652.42 

 

LS Means Plot 

 
 

LSMeans Differences Tukey HSD 
α=0.050   Q=2.76731 

Level             Least Sq Mean 

 -12 A       1039.5474 

 -18   B     733.6458 

 -28   B     652.4232 

 -22   B     628.8634 

 

Minesota Mix Type*Temperature (°C) 

LS Means Plot 
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Response Indiana Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.819167 

RSquare Adj 0.736286 

Root Mean Square Error 65.0618 

Mean of Response 517.4682 

Observations (or Sum Wgts) 36 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 11 460213.15 41837.6 9.8836 

Error 24 101592.92 4233.0 Prob > F 

C. Total 35 561806.06  <.0001* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Indiana Mix Type 2 2 20192.81 2.3851 0.1136  

Temperature (°C) 3 3 419413.49 33.0270 <.0001*  

Indiana Mix Type*Temperature (°C) 6 6 20606.85 0.8113 0.5715  

 

Indiana Mix Type 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

15 RAP HMA 499.57025  18.781725 499.570 

3 RAS HMA 501.89958  18.781725 501.900 

3 RAS WMA 550.93483  18.781725 550.935 

 

LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.49729 

Level             Least Sq Mean 

3 RAS WMA A      550.93483 

3 RAS HMA A      501.89958 

15 RAP HMA A      499.57025 

 

Temperature (°C) 
 

Least Squares Means Table 
Level Least Sq Mean   Std Error Mean 

 -12 500.22644  21.687268 500.226 

 -18 398.16244  21.687268 398.162 

 -22 479.09367  21.687268 479.094 

 -6 692.39033  21.687268 692.390 

 

LS Means Plot 

 
 

LSMeans Differences Tukey HSD 
α=0.050   Q=2.75861 

Level             Least Sq Mean 

 -6 A        692.39033 

 -12   B      500.22644 

 -22   B C    479.09367 

 -18     C    398.16244 

 

Indiana Mix Type*Temperature (°C) 

LS Means Plot 
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Response Wisconsin Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.907451 

RSquare Adj 0.82647 

Root Mean Square Error 63.30432 

Mean of Response 346.9375 

Observations (or Sum Wgts) 16 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 7 314345.44 44906.5 11.2058 

Error 8 32059.50 4007.4 Prob > F 

C. Total 15 346404.94  0.0014* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Wisconsin Mix Type 1 1 5005.56 1.2491 0.2962  

Temperature (°C) 3 3 285450.69 23.7434 0.0002*  

Wisconsin Mix Type*Temperature (°C) 3 3 23889.19 1.9871 0.1946  

 

Wisconsin Mix Type 
 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

No Evotherm® A      364.62500 

Evotherm® 3G A      329.25000 

 

Levels not connected by same letter are significantly different. 
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Temperature (°C) 
 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

 -12 A        564.25000 

 -18   B      347.00000 

 -28   B C    254.25000 

 -22     C    222.25000 

 

Levels not connected by same letter are significantly different. 

Wisconsin Mix Type*Temperature (°C) 
 

 

LS Means Plot 
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Response Colorado Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.802772 

RSquare Adj 0.630198 

Root Mean Square Error 31.64352 

Mean of Response 333.6875 

Observations (or Sum Wgts) 16 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 7 32604.938 4657.85 4.6517 

Error 8 8010.500 1001.31 Prob > F 

C. Total 15 40615.438  0.0232* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Colorado Mix Type 1 1 4064.063 4.0587 0.0787  

Temperature (°C) 3 3 17442.688 5.8066 0.0209*  

Colorado Mix Type*Temperature (°C) 3 3 11098.187 3.6945 0.0619  

 

Colorado Mix Type 
 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

20 RAP A      349.62500 

3 RAS/15 RAP A      317.75000 

 

Levels not connected by same letter are significantly different. 

Temperature (°C) 
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LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.306 

 

Level             Least Sq Mean 

 -12 A       390.00000 

 -18   B     322.75000 

 -22   B     315.50000 

 -28   B     306.50000 

 

Levels not connected by same letter are significantly different. 

Colorado Mix Type*Temperature (°C) 
 

 

LS Means Plot 
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Response Illinois Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.396322 

RSquare Adj 0.290678 

Root Mean Square Error 130.395 

Mean of Response 404.375 

Observations (or Sum Wgts) 48 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 7 446502.9 63786.1 3.7515 

Error 40 680114.3 17002.9 Prob > F 

C. Total 47 1126617.3  0.0033* 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Illinois Mix Type 1 1 79870.08 4.6975 0.0362*  

Temperature (°C) 3 3 299853.42 5.8785 0.0020*  

Illinois Mix Type*Temperature (°C) 3 3 66779.42 1.3092 0.2848  

 

Illinois Mix Type 
 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.02108 

 

Level             Least Sq Mean 

0 RAP/5 RAS A       445.16667 

11 RAP/5 RAS   B     363.58333 

 

Levels not connected by same letter are significantly different. 
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Temperature (°C) 
 

 

LS Means Plot 

 
 

LSMeans Differences Student's t 
α=0.050 t=2.02108 

 

Level             Least Sq Mean 

 -12 A       525.50000 

 -18 A B     422.58333 

 -22   B     346.50000 

 -28   B     322.91667 

 

Levels not connected by same letter are significantly different. 

Illinois Mix Type*Temperature (°C) 
 

 

LS Means Plot 
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Response Illinois Fracture Energy (J/m2) 

Whole Model 
 

Summary of Fit 
    

RSquare 0.619249 

RSquare Adj 0.262296 

Root Mean Square Error 150.3574 

Mean of Response 402.7813 

Observations (or Sum Wgts) 32 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 15 588293.97 39219.6 1.7348 

Error 16 361717.50 22607.3 Prob > F 

C. Total 31 950011.47  0.1426 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Illinois Mix Type 1 1 80100.03 3.5431 0.0781  

Temperature (°C) 3 3 216824.09 3.1970 0.0518  

Illinois Mix Type*Temperature (°C) 3 3 48214.59 0.7109 0.5596  

Sample Type 1 1 1391.28 0.0615 0.8072  

Illinois Mix Type*Sample Type 1 1 16698.78 0.7386 0.4028  

Temperature (°C)*Sample Type 3 3 157801.84 2.3267 0.1134  

Illinois Mix Type*Temperature (°C)*Sample Type 3 3 67263.34 0.9918 0.4217  
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Response Illinois Fracture Energy (J/m2) – for  

Whole Model 
 

Summary of Fit 
    

RSquare 0.581187 

RSquare Adj 0.18855 

Root Mean Square Error 111.036 

Mean of Response 401.875 

Observations (or Sum Wgts) 32 

 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 15 273743.50 18249.6 1.4802 

Error 16 197264.00 12329.0 Prob > F 

C. Total 31 471007.50  0.2224 

 

 

Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   

Illinois Mix Type 1 1 19602.00 1.5899 0.2254  

Temperature (°C) 3 3 118342.50 3.1996 0.0517  

Illinois Mix Type*Temperature (°C) 3 3 24003.00 0.6490 0.5950  

Binder Modification 1 1 1035.13 0.0840 0.7757  

Illinois Mix Type*Binder Modification 1 1 190.13 0.0154 0.9027  

Temperature (°C)*Binder Modification 3 3 55171.38 1.4916 0.2547  

Illinois Mix Type*Temperature (°C)*Binder Modification 3 3 55399.37 1.4978 0.2531  

 

  



182 

 

ACKNOWLEDGEMENTS 

 

I would like to take this opportunity to express my thanks to those who helped me 

during the completion of this research. First and foremost, I would like to thank Dr. 

Christopher Williams for his guidance and support not only during this research, but also 

throughout my undergraduate, graduate studies, and initial stages in my career. I would also 

like to thank my committee members for their understanding and willingness to work with 

me: Dr. Vernon Schaefer, Dr. Eric Cochran, Dr. Robert Stephenson, and Dr. Kejin Wang. 

Most of all, I would like to thank my wife Jerusha for her hours of love, support, and 

patience throughout this experience. I would also like to thank Caleb Douglas, Max 

Prokudin, Sheng Tang, Ashley Buss, Joey Podolsky, Kai Lai Ng, Paul Ledtje, Joana Peralta, 

Jianhua Yu, Matthew Kirby, Rahman Shaidur, Can Chen, and Mohamed Rashwan for their 

friendship, support, and sense of humor. 

 

 

 

 

 


	2014
	Development and evaluation of asphalt technologies utilizing renewable resources and innovative pavement systems
	Andrew Aaron Cascione
	Recommended Citation


	THE DEVELOPMENT AND IMPROVEMENT OF INSTRUCTIONS

