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ABSTRACT 

Road roughness is a key parameter for road construction and for assessing ride quality 

during the life of paved and unpaved road systems. The quarter-car model (QC model), is a 

standard mathematical tool for estimating suspension responses and can be used for summative 

or pointwise analysis of vehicle response to road geometry. 

In fact, transportation agencies specify roughness requirements as summative values for 

pavement projects that affect construction practices and contractor pay factors. The 

International Roughness Index (IRI), a summative statistic of quarter-car suspension response, 

is widely used to characterize overall roughness profiles of pavement stretches but does not 

provide sufficient detail about the frequency or spatial distribution of roughness features.  

This research focuses on two pointwise approaches, continuous roughness maps and 

wavelets analysis, that both characterize overall roughness and identify localized features and 

compares these findings with IRI results. Automated algorithms were developed to preform 

finite difference analysis of point cloud data collected by three-dimensional (3D) stationary 

terrestrial laser scans of paved and unpaved roads. This resulted in continuous roughness maps 

that characterized both spatial roughness and localized features. However, to address the 

computational limitations of finite difference analysis, Fourier and wavelets (discrete and 

continuous wavelet transform) analyses were conducted on sample profiles from the federal 

highway administration (FHWA) Long Term Pavement Performance data base. The Fourier 

analysis was performed by transforming profiles into frequency domain and applying the QC 

filter to the transformed profile. The filtered profiles are transformed back to spatial domain to 

inspect the location of high amplitudes in the suspension rate profiles.  
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Finite difference analysis provides suspension responses in spatial domain, on the other 

hand Fourier analysis can be performed in either frequency or spatial domains only. To 

describe the location and frequency content of localized features in a profile, wavelet filters 

were customized to separate the suspension response profiles into sub profiles with known 

frequency bands. Other advantages of wavelets analysis includes data compression, making 

inferences from compressed data, and analyzing short profiles (< 7.6 m). The proposed 

approaches present the basis for developing real-time autonomous algorithms for smoothness 

based quality control and maintenance. 

 



 1 

CHAPTER 1. GENERAL INTRODUCTION 

This dissertation focuses on the development and implementation of image and signal 

processing tools to continually quantify the surface roughness of roads and locate roughness 

features. 

Industry Problem 

Transportation agencies specify roughness requirements for pavement projects, and those 

requirements affect construction practices and contractor pay factors.  

Industry Concerns 

Even pavements that are designed and constructed to very stringent roughness 

specifications always deteriorate and get rougher over time. These deteriorations reduce ride 

quality, safety, and pavement performance and increase both vehicle operation and 

maintenance costs. Accurate evaluation of pavement roughness levels and modes is a key 

factor in optimizing quality control during construction and maintenance decisions 

(Chootinan et al. 2006; Lamptey et al. 2008). 

With the emerging technologies in road construction (e.g., automated machine guidance 

(AMG), light detection and ranging (LIDAR), and 3D modeling), there is a need for a 

systematic approach that quantifies vehicle pavement interaction indices continually and in 

real-time, and uses these indices to take corrective actions for localized features during 

construction (Perera and Kohn 2002).  

Impact on Industry 

Current practice in evaluating pavements serviceability involves either visual inspection 

or expensive setups that require well trained personal. Using roughness indices presents an 
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objective and cost effective alternative (Park et al. 2007). However current roughness indices 

are summary statistics obtained for long sections (e.g., >7.6 m), ignoring the spatial 

variability of roughness. Also the algorithms used to evaluate these indices are not applicable 

for short profiles. Such limitations will result in false decisions during construction and 

maintenance activities, which will directly translate to budget misplacement and unnecessary 

expenditures. With the increasing need for smooth roads and limited budgets, better 

roughness indicators capable of capturing the spatial variability and quantifying localized 

features will reduce the construction and maintenance costs to produce smoother pavements.  

Technical Problem 

Roughness of paved roads is typically quantified by indices such as the International 

Roughness Index (IRI) and Ride Number (RN) (Sayers and Karamihas 1998). Ouyang and 

Madanat (2004) and Gao and Zhang (2013) investigated relationships between IRI values 

(i.e., where higher values indicate more roughness) and serviceability indicators and 

confirmed that higher IRI values correlate with increased vehicle operation and travel delay 

costs. Other researchers (Al-Omari and Darter 1994; Vidya et al. 2013) established 

correlations between IRI and other serviceability indicators (e.g., pavement condition index 

(PCI), present serviceability index (PSI), and present serviceability rating (PSR)) used in 

pavement management systems (Bianchini 2012). 

In terms of structural performance, research by Sun and Deng (1998) showed that for 

vehicles operating at constant speed dynamic load power spectral density (PSD) is 

proportional to pavement PSD. Shi and Cai (2009) also indicated that dynamic loads induced 

by vehicles on rough pavements are significantly higher than static loads. Dynamic loads 

cause fatigue damage of the pavement and accelerates crack propagation (Sun et al. 2003), 
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these cracks are expected to initiate and propagate from localized rough features, because 

dynamic loads peak at these locations.  

Although IRI characterizes the overall roughness profile of a pavement stretch, IRI 

values do not provide sufficient detail about the frequency or location of roughness features. 

PSD on the other hand can include details of the frequency content of a profile, but fails to 

locate rough features. Karamihas et al. (1999) investigated the variability in the IRI values 

for different profiles across the road, and reported that drivers typical wander laterally within 

a range of 50 cm (20 in).  

Another part of the highway network is unpaved roads. Over one third of the roadway 

network in the U.S. is unpaved, and in Iowa approximately 72,000 of 115,000 miles are 

unpaved (Transportation 2012). There is a lack of a common set of criteria, many local 

agencies use visual inspection to estimate an IRI value (Archondo-Callao 1999; Namur and 

de Solminihac 2009; Walker et al. 2002). Some agencies combine visual inspection with 

direct measurement of defects (e.g., pothole depth, corrugation spacing) (Soria and Fontenele 

2003; Woll et al. 2008). Several studies have pointed out the importance of precise 

assessment of unpaved road conditions to help transportation agencies decide whether to 

maintain or upgrade these roads (Archondo-Callao 2007; Huntington and Ksaibati 2011; 

McDonald and Sperry 2013; Zimmerman and Wolters 2004). 

Research Goals and Objectives 

The goal of this research is to develop ways to continuously quantify roughness of both 

paved and unpaved roads at near real-time that will overcome some of the limitations in 

current roughness indices. 

The objectives of this research are to: 
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• Develop new algorithms to quantify roughness of localized features and produce 

continuous roughness profiles and maps. 

• Develop algorithms that convert random 3D point clouds into uniform discrete points 

that can be viewed for analysis as surface grid maps. 

• Study the vehicle response by simulating quarter-car model for different road profiles 

and different simulation parameters. 

• Use wavelet analysis to calculate the vehicle response at each point in a profile. 

• Compare the limitations of quarter-car simulation and wavelets analysis and the 

applicability of these methods in near real-time analysis.  

Significance of the Research 

Owners, contractors, agencies, and AMG equipment manufacturers will benefit from this 

research because it will allow accurate and automated assessment of surface conditions based 

on pavement performance indicators. Continuous roughness assessment will allow 

development of decision support systems to perform quality control autonomously 

(Rasmussen et al. 2013), and will set a step for future developments in predicting pavement 

performance based on construction conditions, which improves the optimized quality control 

and maintenance decisions which produces smooth long lasting roads (Kilpeläinen et al. 

2011).  

The products of this research include an algorithm that provides continuous roughness 

maps obtained using 3D point clouds from terrestrial laser scanners, the maps capture the 

spatial variability of surface roughness and provides a quantitative and visual aiding tool to 

allocate localized features. Another outcome of this research is the use of wavelets analysis 

to design specialized filters capable of analyzing short profiles (<7.6 m) and compressing the 
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data produced, these two characteristics qualifies the new approach for use in accurate real-

time roughness evaluation. 

Background  

Pavement performance evaluation has been a research issue since the early twentieth 

century (Buchanan et al. 1941; Nakamura and Michael 1962). Gillespie et al. (1980) 

described  methods to quantify pavement roughness using time-stable calibrated response-

type systems. After 1986, the International Roughness Index (IRI) was established as a 

standard pavement roughness measurement (Sayers et al. 1986; Sayers et al. 1986). IRI and 

other roughness indices are summary statistics, and since their development the main focus 

was on increasing the measurement accuracy, and the results repeatability. Yet there is less 

agreement on how to quantify local features roughness, even though studies have shown that 

local features are very crucial to human comfort and cause most vehicle fatigue damage 

(Bogsjö and Rychlik 2009; Oijer and Edlund 2004; Steinwolf et al. 2002). 

Unlike paved roads, there are no systematic approaches to quantify unpaved road 

roughness using time-stable indices, therefore the evaluation techniques of these roads vary 

significantly from state to state and county to county, and all the available techniques are 

either subjective or depend on measurements of distress size and not there effect on 

serviceability (Soria and Fontenele 2003; Zhang and Elaksher 2012).  

The subsequent sections provide a background on some of the available techniques for 

assessing road roughness, it includes the field measurements and the indices used to assign 

roughness values for both paved and unpaved roads. Also a background on AMG and the 

role of real time roughness measurements in such systems is presented. 
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Historical Practices for Measuring Roughness 

Quantifying roughness can be achieved either by subjective or objective approaches. 

Subjective approaches are not always reliable or accurate compared to objective approaches, 

but they were used before objective techniques were developed (Nakamura and Michael 

1962) and still are used for unpaved roads due to the difficulties in obtaining profiles for 

those roads (Brooks et al. 2011). More recently basic measurements (e.g., deterioration 

features sizes) and subjective observations are summarized as indices or ratings to quantify 

surface conditions (Sayers and Karamihas 1996; Walker et al. 2002). 

Roughness measurements for paved roads 

As defined by Sayers and Karamihas, “a profiler is an instrument used to produce a series 

of numbers related in a well-defined way to a true profile” (1998). Measuring devices fall 

into two categories, systems that measure the coordinates of points along a linear track 

(geometry-type) and systems that measure the response of mechanical system driven along a 

track (response-type road roughness measure systems; RTRRM systems). 

One of the basic geometry-type systems is the static rod level. In this method the 

elevations of sampled points along a line are recorded, the true elevation of a point is not 

critical, however the change in elevation relative to a reference point is the main concern 

(Gillespie et al. 1987). This technique is physically demanding and time consuming, yet it is 

stable and reliable. ASTM E1364–95 is the standard method to perform static level 

measurements.  

Other geometry-type systems are available, including dipstick, rolling dipstick, rolling 

straightedge, and Hearne straightedge (El-Korchi et al. 2002; El-Korchi and Collura 1998; 
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Perera and Kohn 2002), but all of these devices are relatively time consuming compared to 

inertial profilers. Inertial profilers were developed in the 1960s (Spangler and Kelly 1964), 

and were standardized in ASTM E950, and these profilers are more accurate and faster than 

other profilers, hence the name high-speed profilers (Choubane et al. 2002).  

High-speed profilers consist of four main components: an accelerometer, a non-contact 

height sensor(s), a speedometer, and a computer. The accelerometer measures the vertical 

acceleration of the height sensor. The height sensor(s) records the elevation from the ground 

using laser, infrared, or ultrasonic waves. The longitudinal distance relative to a reference 

point is measured by processing the speedometer readings. The computer processes the 

acceleration data to construct an inertial reference to filter out the height sensor motion due 

to suspension. Finally the computer combines these inputs and produces a sequence of 

distance versus elevation (Baus and Wang 2004). 

RTRRM systems are based on measuring the relative movement between the axle and the 

body of a vehicle or a trailer of one tire (Gillespie et al. 1980). There are different types 

developed; BPR roughmeter (Moyer and Ahlborn 1956), Mays meter (Walker and Hudson 

1973), and the PCA meter (Brokaw 1967). The disadvantage of these systems is the 

variability in the response due to different system parameters such as, suspension rat and tire 

pressure, thus the rating is not time-stable nor transportable. 

Table 1 lists the available ASTM standards for measuring road profiles and surface 

roughness. However, although LIDAR is increasingly employed in the field, there is no 

ASTM standard for using LIDAR technologies in gathering road profiles and assessing 

surface roughness, a gap that needs to be filled. 
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 Researchers have addressed the need to investigate new techniques in profiling using 

different scanning technologies. Some of these studies focused on modifications to inertial 

profilers to involve a broader variety of sensors, such as non-contact wide-footprint and 

multi-point height sensors (Fernando et al. 2014; Fernando and Walker 2013). Chang and 

Chang (2006) investigated the applicability of using stationary three dimensional (3D) laser 

scanning techniques in obtaining IRI. 

Table 1. Methods for measuring road profiles and roughness 

ASTM Designation Title 

E950 / E950M - 09 Standard Test Method for Measuring the Longitudinal Profile of Traveled 
Surfaces with an Accelerometer Established Inertial Profiling Reference. 

E1082 – 90 (2012) Standard Test Method for Measurement of Vehicular Response to Traveled 
Surface Roughness. 

E1215 – 93 (2012) Standard Specification for Trailers Used for Measuring Vehicular Response 
to Road Roughness. 

E1274 - 03(2012) Standard Test Method for Measuring Pavement Roughness Using a 
Profilograph. 

E1364 - 95(2012) Standard Test Method for Measuring Road Roughness by Static Level 
Method. 

E1448 / E1448M - 09 Standard Practice for Calibration of Systems Used for Measuring Vehicular 
Response to Pavement Roughness. 

E1703 / E1703M - 10 Standard Test Method for Measuring Rut-Depth of Pavement Surfaces Using 
a Straightedge. 

E2133 – 03 (2013) Standard Test Method for Using a Rolling Inclinometer to Measure 
Longitudinal and Transverse Profiles of a Traveled Surface. 

E2560 - 13 Standard Specification for Data Format for Pavement Profile. 

Roughness indices 

Roughness indices are numbers calculated to summarize the surface conditions, and 

relate closely to ride quality. Several procedures were developed in the twentieth century to 

assess roads conditions by assigning roughness ratings and calculating index values. 

Roughness ratings normally refer to numbers assigned by subjective evaluation means 

(Bandara and Gunaratne 2001; Nick and Janoff 1983). Subjective ratings are conducted 

according to ASTM E1927 by a panel of pavement experts who rank the ride comfort of a 
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road section on a 0 to 5 scale. Individual ratings are referred to as present serviceability 

ratings (PSR), and the mean panel rating (MPR) is the average of the PSR values. To 

standardize rating procedures some measurements were incorporated to calculate a present 

serviceability index (PSI). 

With the development of profilers, different indices were introduced. The first type was 

based on accumulating the absolute suspension strokes of an RTRRM system and dividing it 

by the traveled distance. The second type of index, including the profile index (PI), ride 

number (RN), international roughness index (IRI), uses mathematical models to simulate 

dynamic systems and calculate their response to measured profiles. 

PI is the standard deviation of a selected frequency band of the PSD function of a road 

profile slope. Although selecting a frequency band attenuates frequencies outside a certain 

range, several frequency ranges have been proposed in the literature to reach the strongest 

correlation to MPR (Janoff 1988; Sayers and Karamihas 1996). RN is the exponential 

transform of PI (Equation 1) that was developed to follow the tradition of rating profiles on a 

0 to 5 scale (Liu and Herman 1999): 

 e PIRN 1605 −=  (1) 

When both the left and right real paths are profiled, the root mean square of those PIs is 

used as a summary index (Equation 2): 

 2

22
rl PIPIPI +

=
 (2) 

IRI utilizes a mathematical model, sometimes called the golden quarter-car model, that 

simulates the dynamic response of a single tire connected to an axle, and the axle is 

connected to suspension system supporting a sprung mass. The accumulated suspension 
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strokes over the traveled distance is the IRI value (Gillespie et al. 1980). IRI has long been 

considered to be stable and empirically correlate with ride quality and vehicle operating cost 

(Gao and Zhang 2013; Ouyang and Madanat 2004). Other studies investigated the use of 

half- and full-car models to account for the other acceleration components (i.e., roll and 

pitch) riders would experience (Capuruço et al. 2005; Sayers 1989). 

Table 2 lists the available ASTM standard procedures for quantifying road roughness. It 

should be noticed that no standard is provided for identifying localized features, which 

indicates the need for such a standard since localized features are of concern.  

Table 2. Methods for analyzing pavement roughness 

ASTM Designation Title 
E1170 – 97 (2012) Standard Practices for Simulating Vehicular Response to Longitudinal 

Profiles of Traveled Surfaces. 
E1489 – 08 (2013) Standard Practice for Computing Ride Number of Roads from Longitudinal 

Profile Measurements Made by an Inertial Profile Measuring Device. 
E1926 - 08 Standard Practice for Computing International Roughness Index of Roads 

from Longitudinal Profile Measurements. 
E1927 – 98 (2012) Standard Guide for Conducting Subjective Pavement Ride Quality Ratings. 
E2034 – 99 (2012) Standard Practices for Simulating Truck Response to Longitudinal Profiles of 

Vehicular Traveled Surfaces. 
E2955 - 13 Standard Practice for Simulating Profilograph Response to Longitudinal 

Profiles of Traveled Surfaces. 

Time-frequency roughness analysis 

For more precise evaluation or investigation, PSD is used to understand both the 

frequency content of a profile and the sources of the frequencies that dominate the roughness 

of the profile. This approach is useful because the dynamic response of a vehicle can be 

found analytically in the frequency domain (Loizos and Plati 2008; Mucka and Granlund 

2012). Transforming from spatial to frequency domain (Fourier transform) eliminates spatial 

localization (i.e., the frequency content of features can be found but not the location of these 

contents). On the other hand, knowing the locations of distinct, especially regular, features 
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(e.g., joints) reveals patterns that can be used as reference points in the frequency domain 

(Kohn et al. 2008). 

Hesami and McManus (2009) considered two signal processing techniques, PSD and 

discrete wavelet transform (DWT) analysis, to quantify road roughness. DWT analysis 

outperformed PSD analysis in verifying road roughness features and locating high frequency 

defects such as cracks and potholes. DWT is computationally efficient and can be carried out 

by simple pyramidal algorithms. Tomiyama et al. (2014) used a lifting wavelet transform 

scheme to analyze sets of data collected with a response type profiler to detect and quantify 

pavement distresses. On average 77.9% of target distresses were identified correctly. Sen et 

al. (2012) used wavelet analysis to assess changes in pavement profile characteristics over 

time, and linked the changes to contributing factors (i.e., traffic loading, climatic conditions, 

pavement composition, and subgrade soil type). These studies suggest that wavelet analysis 

could be a useful technique for determining the location of problematic road segments, 

including unpaved roads, and identifying causes of deterioration. 

Roughness measurements for unpaved roads 

Road geometry (e.g., curves, cross sections) and the surface quality of unpaved roads 

(e.g., corrugation, loose aggregate, ruts, potholes) are the major features that affect road 

users’ travel experience, safety, and vehicle operating costs (Archondo-Callao 2007; 

McDonald and Sperry 2013). There are three approaches to assess unpaved roads visual 

inspection, a combination of visual inspection and direct measurements, and indirect data 

acquisition (Brooks et al. 2011). Visual inspection approaches, such as pavement surface 

evaluation and rating (PASER) systems and road surface management system (RSMS), are 
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very common because they are easy to conduct and do not require specialized equipment 

(Goodspeed et al. 1994; Walker et al. 2002). Despite the ease of these approaches, they 

depend on the experience of the evaluator and fail to accurately quantify the serviceability. 

Combinational approaches, such as Central Federal Lands, the Highway Division–

Objective Rating System, and the Unsurfaced Road Condition Index (URCI), incorporate 

direct measurements collected with a basic measuring kit. These techniques are objective, so 

they are transferable and stable, but they do not necessarily reflect the vehicle/road 

interaction (Eaton and Beaucham 1992; Eaton et al. 1987; Woll et al. 2008). 

Indirect data acquisition methods such as unmanned aerial vehicles (UAV), ground 

penetrating radar (GPR), and accelerometers have been explored for use on unpaved roads 

(Berthelot et al. 2008; Brown et al. 2003; Zhang 2009). Zhang and Elaksher (2012) used a 

UAV-based digital imaging system to create 3D surface models and developed algorithms to 

extract and characterize road features. 

Automate Machine Guidance (AMG) 

In the last decade many construction projects have utilized emerging technologies such 

as, building information model (Chau et al. 2004; Suermann 2009) and intelligent 

compaction (White et al. 2007). These are specific technologies, however the term automated 

machine guidance (AMG) is generic and includes monitoring and controlling the 

construction process using near real-time measurements and feedback loop that can react to 

the encountered conditions (Barrett 2008; Hannon 2007; White and Vennapusa 2009). There 

have been several successful projects that utilized AMG. Anderegg and Kaufmann (2004) 

reported that intelligent compaction can help optimizing the compaction and to prove the 

homogeneity and the achieved compaction degree.  
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Any AMG technology requires the development of real-time or near real-time 

measurements. The reason for using near real-time instead of plain real-time is that in most 

control systems literature, real-time is related to processes occurring at a scale of seconds and 

even milliseconds, the profound limitation to achieve that in construction applications that 

some construction parameters (e.g., roughness) cannot be assigned to a single point unless it 

is defined over a spatial domain with minimum size. Navon and Shpatnitsky (2005) 

investigated the automated measurement of performance parameters for earthmoving 

equipment and indicated the system feasibility and accuracy. Chang et al. (2009) developed a 

robot (Pioneer P3-AT) capable of collecting profile data and provide IRI values 

autonomously.  

Rasmussen et al. (2013) reported several real-time smoothness measuring systems. One 

system, the GOMACO smoothness indicator (GSI), includes up to eight traces, two sonic 

sensors, and a slope sensor on each trace. The Ames Engineering profiler allows multiple 

sensors to be installed across a lane to acquire multiple profiles. Both systems have real-time 

graphics displays and calculate IRI and PI and bump alarms that identify localized features.  

Mathematical Models  

This section will discuss the mathematical formulation behind, quarter-car model, Fourier 

analysis, and wavelets analysis. These tools are the backbone for the new approach proposed. 

Along the discussion a general outline of the developed algorithms will be introduced. 

Finite Difference Algorithm for Quarter-Car Simulations 

The quarter-car model described in ASTM E1170-97 is used to simulate vehicular 

response along a longitudinal profile. This model quantifies rectified slopes at each point 
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along a profile. The dynamic system can be thought of as a mechanical filter that attenuates 

frequencies corresponding to the strokes absorbed by the suspension system and amplifies 

frequencies where the vehicle body resonates (Gillespie 1992; Sayers et al. 1986; Sayers and 

Karamihas 1996). 

Figure 1 presents a schematic of the quarter-car model. The schematic represents a two 

degrees of freedom model where both sprung (Ms) and unsprung (Mu) masses move in the z-

direction. 

 
Figure 1. Quarter-car model. 

Equation 3 is the differential equation of motion, in state-space form, used to determine 

the model response. A FORTRAN code is provided in ASTM E1926-08 to solve this 

equation. To take advantage of the object oriented nature of MATLAB, the code provided in 

ASTM was translated to a MATLAB function. 

 hBAXX ps+=
 (3) 

where 
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where hps is the elevation of the profile after applying the moving average smoother; zs  and 

zu  are the elevations of sprung and unsprung masses; zs  and zu  are elevation time 

derivatives of sprung and unsprung masses; k1 is the tire spring coefficient divided by the 

sprung mass, k2 is the suspension spring coefficient divided by the sprung mass, c is the 

suspension damping rate divided by the sprung mass, and µ is the ratio of unsprung to sprung 

mass.  

Equations 5 through 8 represent the closed form solution of a differential equation in 

state-space form (Murray et al. 1994), this solution can be generalized in a matrix form 

(Equations 9 and 10) for a system of equations.  

 u psxx βα =−
 (5) 

 
[ ]ue ps

t xx βαα =−− 
 

 ueee ps
ttt xx βα ααα −−− =−

 

Based on the chain rule and since x is a function of time; 

 
( )[ ] xxtx
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d

eee ttt αααα −−− −= 
 (6) 

Integrating both sides and introducing a dummy variable τ changing from ti-1 to ti; 

 



16 
 

 
( )[ ] τβτ ατατ d

t

t

t

t
xd

i

i

i

i

uee ps.
11

∫∫
−−

−− =

  

 
( ) ( ) τβαταα d

t

t
xtxt

i

i

ii uetete psii .
1

1 1 ∫
−

− −
−

−− +=

 (7) 

Multiplying both sides by eαti; 
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β and ups are independent on τ, even though ups changes in each step it is an independent 

input and not affected by the solution. Rearrange Equation 8 in matrix notation yields; 

 hXX psii PS += −1  (9)  

where 

 e tAS ∆=  

 ( )BISP A −= −1
 (10) 

X, A, and B are defined in Equation 4, and I is the identity matrix. Rectified slope is defined 

mathematically as the absolute difference in elevation between the sprung and unsprung 

masses divided by the iteration step length (i.e., the second and forth elements in the vector 

X). IRI is the average of all rectified slope values along a profile. IRI is also defined as the 

accumulated suspension strokes divided by the traveled distance. Although the definitions are 

interchangeable, IRI calculated from rectified slope equations allows assigning values to 

points in a profile. 
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Spatial-Frequency Analysis 

Spatial-frequency analysis is another approach to solve a described dynamic system. This 

approach namely depends on transforming the state equations from time to frequency or 

quasi-frequency domain. Such transformation allows deriving analytical forms to solve the 

system instead of iterating in spatial domain. 

Fourier analysis  

The analytical description of quarter-car model is best explained in terms of random 

signal analysis, where Fourier transformation can be a helpful tool for such analysis.  

The basic assumption in this approach is that any profile can be decomposed into 

building sinusoids, for infinite precision the signal should be decomposed to an infinite 

number of sinusoids, however only finite number can be used to describe a signal. 

Equations 11 and 12 represent the forward and backward discrete Fourier transforms of a 

signal (Broughton and Bryan 2011).  
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where the lower case variable x represents the signal in spatial (or time) domain, the 

uppercase variable X represents the function magnitude evaluated in the frequency domain, k 

is the frequency, n is the spatial coordinate (corresponding to time t), N is the number of 

points acquired in a signal, and i is the imaginary number. The forward transformation 

evaluates the signal at each frequency k in the frequency domain, given a signal in the spatial 
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domain. The backward or inverse transformation evaluates the signal at each point n in the 

spatial domain, given the frequency spectrum of the signal. Equation 13 can be rewritten in 

the general form to describe a profile as: 

 
( ) ( )









+= ∑ ϕω nn
n

n tixz A expRe
 (13) 

where A is the amplitude of the signal for a frequency ωn, and φn is a random phase angle in 

the range (-π, π) to allow for phase shift. For sufficiently long profiles that approximately 

satisfy Fourier analyses assumptions the analytical form of the rectified slope is described in 

Equation 14 (Liu and Herman 1998),  
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where; 

 
( )ωω ikjj RAA =

 (15) 

and j is the index at time t, φs is a phase angle function of a sprung mass, and R is the 

response function, described as a band pass filter (Equation 16). Note that the solution is a 

function of time, transformation from time domain to spatial domain is achieved by dividing 

the outputs over a constant speed (80 km/h for golden-car model). 
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Implementing the Fourier analysis here would best suite stationary profiles, where no 

localized features are present or frequency content changes occur as a function of distance.  

For more random profiles where different frequencies are included this approach is expected 

to suffer from higher errors and low resolution in spatial domain due to the boundary 

conditions and the violation of the described assumptions (Stein and Shakarchi 2011). 

Wavelets analysis  

Wavelet transform decomposes data or functions into different waveband frequency 

components (scales), presented in spatial (or time) domains identical to the original spatial 

domain. Wavelets were developed independently in different fields (i.e., pure mathematics, 

physics, and engineering) to overcome the time-frequency resolution issues in Fourier 

analysis (Aslaksen and Klauder 1968; Calderón 1964; Daubechies 1992; Morlet 1983).  

Time-frequency resolution issue in Fourier analysis is due to using infinitely periodic 

functions (i.e., sines and cosines) as building blocks. This assumption induces uncertainty in 

the analysis, where high resolution cannot be achieve simultaneously in both frequency and 

spatial domains. Equation 17 states that as the dispersion of a function in spatial domain 

about a fixed point x0 decreases (i.e., higher resolution) the dispersion of the transformed 

function in the frequency domain about a fixed frequency ξ0 increases to satisfy the 

inequality condition (Pinsky 2002; Stein and Shakarchi 2011). 
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where; 
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To overcome this issue different building blocks (wavelets) are used. Wavelets can be 

thought of as wave pulses that translate in the spatial domain and can change size (dilate or 

shrink). The dispersion of a wavelet is controlled by a scale factor ‘a’, where larger scale 

factors correspond to dilated waves and smaller scale factors correspond to shrunken waves. 

Equation 18 defines a wavelet function with scale factor ‘a’ and translation factor ‘b’, where 

b is the position of the wavelet center.  

 
( ) 






 −

=
a

bx
a

xba ψψ 1
,

 (18) 

Similar to Fourier analysis there are continues and discrete transforms, namely the 

continuous wavelet transform (CWT) and discrete wavelet transform (DWT). Each transform 

is built on assumptions that a wavelet function should satisfy to qualify as a basis for the 

analysis. For most CWT bases have explicit forms defined in spatial or frequency domains. 

For CWT, wavelets should satisfy two conditions; continuity with exponential decay, and 

the integral of ψ(x) should equal to zero. Also it is assumed in the analysis that ψ(x) equals 

zero outside the effective support interval [-A, A]. Morlet wavelet (Equation 19) is described 

as an example due to its wide use. Figure 2 shows the effect of different scales (0.5, 1, and 2) 

on the Morlet wavelet, scale 1 corresponds to the original function with no dilation or 

shrinking.  
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Figure 2. Morlet wavelet with different scales  

CWT projects the signal on the wavelet function defined at different scales. Equation 20 

defines the wavelet transform of a function as the inner product between the original function 

and the wavelet, at a spatial coordinate b and onto a wavelet with scale a. 
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The Fourier transform of a wavelet results in a very narrow frequency band with central 

frequency fc, this frequency is the most dominant frequency component in a wavelet and it 

corresponds to the frequency of a sinusoidal wave that matches the wavelet best (Figure 3). 

Scale factor changes the dominant frequency of a wavelet, the new frequency is referred to as 

pseudo-frequency and it is proportional to 1/a (Equation 21). CWT decomposes a profile into 

‘j’ levels of detail corresponding to different scales (pseudo-frequencies), and the sum of 

these decomposed profiles returns back the original signal.  

 aff c=  (21) 
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Figure 3. Morlet wavelet overlapped with sinusoidal wave with frequency 0.81 

The inverse wavelet transform is defined in Equation (3). The equation provides the form 

to retrieve the full profile, however if a single layer of detail (frequency band) is of interest 

the second integration over all scales, can be eliminated.  
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Discrete wavelet transform and multiresolution analysis 

Unlike CWT bases, DWT bases are constructed iteratively and are not smooth functions 

with explicit form. DWT bases should satisfy a set of conditions given elsewhere in the 

literatures (Boggess 2009; Daubechies 1992). Furthermore, the wavelet family constitutes a 
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sequence of subspaces Vj in Lebesgue space L2(ℝ), where Vj is a subspace of scaling 

functions φ and defined as a linear combination: 
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j
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Where ak are amplitude coefficients and b is the shifting factor that determines the center of 

the function. Subsequently Wj is the subspace of wavelet functions ψ and defined as a linear 

combination: 
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Accordingly the wavelet function can be constructed as a linear combination of scaling 

functions as defined in Equation 25: 

 
( ) ( )lxax j

l l −= ∑ 2φψ
 (25) 

Wj is the orthogonal complement of Vj in Vj+1 as defined in Equation 26. Also from 

Equation 26 it can be seen that Vj is an element of Vj+1. 

 jjj WVV ⊕=+1  (26) 

where ⊕ is the orthogonal sum operator. If the collection of spaces satisfy the following five 

conditions, the analysis is called a multiresolution analysis (Boggess 2009): 

1. Nested: 1+⊂ jj VV  

2. Density: ( )RLV j
2=  

3. Separation: { }0=jV  

4. Scaling: The function f(x) belongs to Vj if and only if the function f (2-jx) belongs to 

V0. 
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5. Orthonormal basis. 

The first condition can be deduced from Equation 25, and means that the content in a 

profile at level j+1 can be composed of two other profiles one projected onto the scaling 

function and one on the wavelet function at level j. The second condition means that the 

whole space can be composed of the subspaces Vj. The third condition means that the 

decomposed profiles do not contain common features and thus each decomposition contains 

a unique set of features. The fourth condition indicates that the scaling of a space will 

correspondingly affect the function contained in the space by a factor 2j. This condition 

corresponds to the down sampling of a profile when using pyramidal algorithms. The fifth 

condition insures that the bases do not interfere and the total energy of decomposed layers 

will be equal to the energy of original profile. 

A road profile can be first filtered using wavelets to obtain layers of details. Since the 

layers are separate and nested for a multiresolution analysis, or approximately separate and 

nested for CWT, a quarter-car filter can be applied for each layer in frequency domain 

separately, and then based on the superposition principle these profiles will constitute the 

original filtered profile in spatial domain. Equation 27 represents the mathematical 

description for a CWT transform, however the exact same concept can be applied to the 

multiresolution analysis.  
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where fQC is the rectified slope, and R0 is the quarter-car filter in spatial domain. The sum 

runs over all possible N layers of details. In addition since the quarter-car filter is linear (a 

linear operator) the order of filtering can be switched as shown in Equation 28. 
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Thus the quarter-car filter can be applied to the wavelet filter and then this new filter (i.e., 

QC-wavelet filter) can be used to decompose a road profile to SR profiles with different 

frequency bands in one step. To achieve that the wavelet filter should be transformed to the 

frequency domain and filtered using the quarter-car filter defined previously in Equation 16, 

then invert the new filter to the spatial domain. Figure 4 shows the original wavelets and QC-

wavelet filters in spatial domain produced by applying the quarter-car filter on db21 and the 

Mexican hat wavelet respectively.  

 
Figure 4. (a) Original Daubechies wavelet basis (db21); (b) db21 wavelet basis after 

applying quarter-car filter to it; (c) original Mexican hat wavelet basis; and (d) 

Mexican hat wavelet basis after applying the quarter-car filter to it. 
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Dissertation Organization 

Following this introductory chapter, four research articles report the results of this study 

(Table 3). 

Table 3. Summary of articles 

Article Title Journal Authors Submission 
Status 

Spatial pavement roughness 
from stationary laser scanning. 

International Journal 
of Pavement 
Engineering 

Ahmad Alhasan, 
David J. White, and Kris 
De Brabanter. 

Published 

Quantifying unpaved road 
roughness from terrestrial laser 
scanning. 

Transportation 
Research Record: 
Journal of the 
Transportation 
Research Board 

Ahmad Alhasan, 
David J. White, and Kris 
De Brabanter. 

In-press 

Continuous wavelet analysis 
of pavement profiles. 

Automation in 
Construction 

Ahmad Alhasan, 
David J. White, and Kris 
De Brabanter. 

Under review 

Wavelet filter design for 
pavement roughness analysis. 

Computer‐Aided 
Civil and 
Infrastructure 
Engineering 

Ahmad Alhasan, 
David J. White, and Kris 
De Brabanter. 

Under review 

Chapter 6 summarizes the outcomes and conclusions derived from this research, 

discusses how these conclusions can be applied in construction practice, and offers 

suggestions for future research. Following a complete references list, an appendix provides 

the algorithms developed in this project.  
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CHAPTER 2. SPATIAL PAVEMENT ROUGHNESS FROM  

STATIONARY LASER SCANNING 

A paper published in The International Journal of Pavement Engineering  

Ahmad Alhasan1,2,3, David J. White4, Kris De Brabanter5 

Abstract 

Pavement roughness is a key parameter for controlling pavement construction processes 

and for assessing ride quality during the life of a pavement system. This paper describes 

algorithms used in processing three-dimensional (3D) stationary terrestrial laser scanning 

(STLS) point clouds to obtain surface maps of point wise indices that characterise pavement 

roughness. The backbone of the analysis is a quarter-car model simulation over a spatial 3D 

mesh grid representing the pavement surface. With the rich data set obtained by 3D scanning, 

the algorithms identify several dynamic responses and inferences (suspension, acceleration 

and jerk) at each point in the domain. Variability in the indices is compared for a “rough” 

pavement and a “smooth” pavement in the spatial domain for different speed simulations of 

the quarter-car model. Results show high spatial variability in the various roughness indices 

both longitudinally and transversely (i.e., different wheel path positions). It is proposed that 

pavement roughness characterisation using a spatial framework coupled with univariate 

statistics provides more details on the severity and location of pavement roughness features 
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compared to the (1D) one-dimensional methods. This paper describes approaches that 

provide an algorithmic framework for others collecting similar STLS 3D spatial data to be 

used in advanced pavement roughness characterisation. 

Keywords: 3D laser scanning, pavement roughness, quarter-car simulation, 

vehicle dynamics, algorithms 

Ride quality is a key indicator of pavement performance and significantly affects 

highway construction practice, contractor payment and maintenance, and pavement 

roughness directly influences ride quality. Gillespie et al. (1980) described methods for using 

time-stable calibrated response-type systems to quantify pavement roughness. In 1986, the 

International Roughness Index (IRI) was established as the standard pavement roughness 

measurement (Sayers et al. 1986; Sayers et al. 1986). The IRI utilises a mathematical model 

that simulates the quarter-car dynamics and accumulates the quarter-car suspension response 

induced by variations in the vertical profile. The current IRI testing method (E950M-09) uses 

an instrumented vehicle to collect data in one or two wheel tracks. 

IRI is widely used because it is considered to be stable and to empirically correlate ride 

quality and vehicle operating costs (Gao and Zhang 2013; Ouyang and Madanat 2004; 

Tsunokawa and Schofer 1994). However, IRI and other roughness indexes are summary 

statistics, and IRI research has mainly focused on improving the accuracy of measurements 

used to calculate IRI and the repeatability of IRI results. Further, there is less agreement on 

how to quantify local roughness features, even though studies have shown that local features 

affect rider comfort, pavement stresses and cause most vehicle fatigue damage (Bogsjö and 

Rychlik 2009; Kuo et al. 2011; Oijer and Edlund 2004; Steinwolf et al. 2002). 
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Some researchers have identified IRI limitations and proposed ways to address them. 

Herabat and Songchitruksa (2003) argued that IRI values are less representative than 

reporting pavement conditions as a single value based on calculations that account for IRI, 

distress, structural capacity and pavement friction. Other studies have demonstrated that 

artificial neural networks effectively relate pavement roughness to variables such as rut 

depth, patching, potholing and cracks, and improve predictions of the pavement roughness 

over time (Attoh‐Okine 2001). Rahim et al. (2009) constructed a nonlinear model to predict 

the IRI of jointed plain concrete pavement (JPCP) sections rehabilitated by the crack, seat 

and overlay technique in different weather zones using several factors (i.e., age, depth of both 

concrete slab and asphalt overlay, base type and equivalent single axle load), and the 

coefficient of determination ranged between 0.5 and 0.62. Byrne et al. (2009) reported that 

seasonal variation influences IRI results; so, the results must be adjusted to account for the 

season when IRI measurements are performed to provide comparable values. 

Some researchers have investigated theoretical models from other disciplines and adapted 

them to simulate vehicle-road interactions. Liu and Herman (1998) introduced a detailed 

theoretical description of vehicle-road interaction and discussed how it would affect human 

comfort. In another study, Liu and Herman (1999) showed that jerk (which is the rate of 

change in acceleration) has a vital role in explaining the serviceability of roads. Ahlin and 

Granlund (2002) analysed profile wave lengths to represent roughness to derive a 

relationships between whole-body vibration and IRI values. Marcondes et al. (1991) used 

spectral analysis to compute the power spectral density (PSD) function of road profiles and 

proposed a set of models for predicting PSD based on pavement type, age and IRI. Sun 

(2003) used linear regression to correlate IRI to PSD roughness. Loizos and Plati (2008) 
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called for a new index that would account for the effects of road roughness on vehicle 

performance at different speeds. 

Recent developments in laser scanning techniques and light detection and ranging 

(LIDAR) sensing have motivated researchers and practitioners to adopt these technologies 

due to the accurate and rich data measurements. Recent studies (Fu et al. 2013; Tsai et al. 

2010; Zalama et al. 2011), have demonstrated the effectiveness of laser scanning and LIDAR 

in identifying geometrical features of interest (e.g., cracks and bumps). Other systems (e.g. 

laser crack measurement system and LCMS) were developed to evaluate the IRI and other 

surface features, by accruing 3D scans and road profiles at highway speed (Laurent et al. 

2014). Other studies have demonstrated how these techniques can be used to characterise 

features of both paved and unpaved roads (Ouyang and Xu 2013; Zhang and Elaksher 2012). 

Researchers have addressed the need to investigate new techniques in profiling using 

different scanning technologies. Some of these studies focused on modifications to inertial 

profilers to involve a broader variety of sensors, such as noncontact, wide footprint and 

multi-point height sensors (Fernando et al. 2014; Fernando and Walker 2013). Also, recent 

studies have investigated the applicability of using stationary three dimensional (3D) laser 

scanning techniques in obtaining IRI (Chang et al. 2006) by selectively extracting track 

profiles. Despite the developments in using 3D laser scanning technology in identifying 

surface features and IRIs it is believed that more information can be inferred from the data 

rich 3D laser point clouds.  

This study will introduce a procedure and associated algorithms used in processing 3D 

point clouds obtained for pavement sections, and to obtain spatial surface maps of point wise 

indices that characterise roughness. The backbone of the indices is a quarter-car model 

 



39 
 

simulation over a 3D mesh grid representing the pavement surface. Based on the simulation, 

several dynamic responses and inferences (suspension, acceleration and jerk) are determined 

at each point in the domain. As part of the study, the variability in the indices is discussed 

and compared for a “smooth” section and a comparatively “rough” section. Roughness 

variations were studied in the spatial domain, at different speeds of the quarter-car model, 

and summarised using univariate statistics. The procedural steps and algorithms are described 

in sufficient detail to allow the reader to replicate the calculations. 

Data Collection Using Stationary Laser Scanner 

LIDAR systems use a laser to measure information (spatial coordinates usually) of a 3D 

space and store the information in a 3D point cloud. The term LIDAR is generic: however, it 

usually refers to the airborne laser scanning technologies or mobile scanners mounted on 

vehicles. An additional configuration for this technology is stationary laser scanning or 

stationary terrestrial laser scanning (STLS), where the laser scanner is fixed at a station with 

known coordinates and based on the distance between the scanner and the detected points, a 

geospatially referenced 3D point cloud is constructed. Trimble CX 3D STLS system was 

used in this study to acquire the 3D laser scans. Figure 5 shows the equipment and set-up. 

The process of scanning starts with an initial scan that acquires reference points in 3D 

space. This initial scan produces a *TZS file that is considered the mother file. Area scans are 

then conducted to acquire denser point clouds for the areas of interest. Criterion specified in 

this study for the point cloud spacing was a maximum spacing of 100 mm in both spatial 

directions (longitudinal and transverse) between two consecutive points in the region of 

interest. By several trials it was found that a density of 50 mm at 100,000 mm for the TZS 

scan and a density of 30 mm at 100,000 mm for the area scans, with approximately 25-m 
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spacing between the stations, produced sufficiently dense clouds to satisfy the 100 mm 

spacing criterion.  

 
Figure 5. Laser scanner setup at “rough” pavement section showing 

scanner, GPS equipment and targets. 

After acquiring the data, the equipment manufacturer’s software (Trimble RealWorks 

8.0) was used to register the point clouds. Registration of clouds is done by identifying 

common targets (spheres as shown in Figure 5) appearing in the *TZS scans of each 

consecutive station that share a common spatial domain with other stations. These targets are 

used as benchmarks to geospatially reference scans by matching the common target locations 

in each scan, and thus stitching the scans to produce a full 3D cloud. Using this process, the 

program was able to automatically detect the targets and align all scans acquired for a 

particular pavement section. Figure 6 shows examples of the registered point clouds. The 

variation in colour indicates the material reflectivity.  
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Figure 6. Registered point clouds for (a) “smooth” pavement and  

(b) “rough” pavement showing target sphere. 

After registration, the point clouds are cleaned of unnecessary data points, where the 

sections of interest should be separated from areas beyond the edges of the sections and noise 

from any passing vehicles that might appear in the scans. The final data points left after 

cleaning were exported in ASCII file format; these files contain the x, y and z coordinates of 

the points in the section under consideration. 

Figure 7(a) shows the “smooth” pavement section with a new full-depth hot-mix asphalt 

(HMA) surface. Approximately 45 meters of this pavement section was evaluated. Figure 
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7(b) shows the “rough” pavement section with an HMA overlay over a jointed plain concrete 

pavement (JPCP) pavement. This section was selected because of the observed rough 

pavement condition and distinct transverse cracking (reflective cracks over the underlying 

jointed pavement). About 60 meters of the east-bound lane was used in the evaluation. Both 

pavement sections were located in central Iowa, USA. 

 
Figure 7. Sections included in the study: (a) new “smooth” full-depth  

HMA pavement and (b) “rough” HMA overly over JPCP. 
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Analysis Approach 

Once the sections were cleaned and exported in ASCII format, the data points were 

further processed through several new algorithms, starting with (1) the visioning algorithm, 

then (2) the simulation algorithm and finally (3) the classification algorithm. Each algorithm 

is described thoroughly in the following subsection. Figure 8 shows the global processing 

algorithm developed for this study. 

 
Figure 8. Global processing algorithm. 
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Visioning Algorithm  

The first step in analysing the data is to form a mesh grid from the discrete measurement 

points. The grid elements have predefined x and y edge dimensions to form a grid region. The 

grid center elevation is calculated as the average of all cloud points falling in that grid region. 

All points are rotated and translated to a local coordinate system corresponding to the 

longitudinal and transverse axes (Zalama et al. 2011). Transformation for high accuracy and 

processing along curves can be achieved by constructing a curvilinear local coordinate 

system; however, for the purposes of this research the origin was translated to the center of 

the cloud and rotation was done for the x and y axes only. The elevation was corrected by 

subtracting the z elevation along a quadratic fit from the z coordinate of the corresponding 

point. Translation for each point can be described using the following vector operation shown 

in Equation (1): 
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where the subscript t indicates the translated coordinates and n is the number of data points to 

be analysed in the point cloud. Spatial coordinates are then rotated by the matrix operation 

presented in Equation (2): 
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The primed variables are centred and rotated. Herein, θ was determined using the 

principle component analysis (PCA) technique (Jolliffe 2005). PCA is based on rotating the 

axes to maximise the variance in the directions of orthogonal axes. PCA was implemented 

for the projection of the points into the x-y plane, where the variance was maximised in the x-

axis direction as provided in Equation (3): 

( )θθθ
θ

sincosmax
2ytxt +=

  (3) 

After transforming the global coordinate system to a local system, least squares 

regression was performed on the points to fit the form shown in Equation (4) ‒ quadratic with 

respect to x (longitudinal direction) and linear with respect to y (transverse direction). This fit 

surface was chosen to account for global vertical curves and side slopes. The lengths of the 

fitted segments were 44.7 and 58.5 m and the widths were 4.7 and 3.3 m. Due to the large 

dimensions of the fitted surfaces, only details with low frequencies have been removed. 

Removing the low frequency contentdoes not affect the analysis results and as for other 

segment dimensions, fitting parameters should be finely tuned to achieve the same purpose 

described here. The corrections can be translated to Equation (5): 
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The double-primed coordinates in Equation 5 represent the corrected coordinates used to 

form the mesh grid for the pavement surface. Constructing a mesh starts by defining the 

boundaries of the section based on the location of extreme points in the cloud, then a grid of 

predefined element size is laid on the surface. Next points in the double-primed matrix are 

assigned to the corresponding grid element and the elevations of the points in a grid are 

averaged and assigned as the element centre elevation. This step simplifies the subsequent 

analysis procedures and reduces the large number of points (original point clouds with 

millions of data points) by about two orders of magnitude, therefore significantly improving 

computation time. 

Figure 9 shows the “rough” pavement section point cloud data after processing in the 

visioning algorithm.  

 
Figure 9. Point cloud data after processing in the visioning algorithm for the “rough” 

pavement section. 
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Simulation Algorithm  

Evaluation of roughness in this study is based on the responses of a mechanical system 

that would approximate the response of a passenger vehicle. The mechanical system 

simulated herein is the quarter-car model described in (ASTM E1926-08). The quarter-car 

model was chosen over other models (i.e., half-car or full-car models) to define point wise 

mechanical responses of a single profile. Other models require incorporation of two or four 

points on a surface to define the mechanical responses for a simulated vehicle, which would 

change the details required to produce spatial maps of pavement roughness. 

Figure 10 presents a schematic of the quarter-car model. Ms and Mu are the sprung and 

unsprung masses, respectively, ks and kt are the suspension and tire spring coefficients, 

respectively, and cs is the suspension damping rate.  

 
Figure 10. Quarter-car model. 

The dynamics of the system can be described by four first-order differential equations 

presented in a matrix form (Sayers and Karamihas 1996) Equations (6)-(9): 
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hBAXX ps+=   (6) 

where; 
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where hps is the elevation of the profile after applying the moving average smoother; zs  and 

zu  are the elevations of sprung and unsprung masses; zs  and zu  are elevation time 

derivatives of sprung and unsprung masses; k1 is the tire spring coefficient divided by the 

sprung mass; k2 is the suspension spring coefficient divided by the sprung mass; c is the 

suspension damping rate divided by the sprung mass; and µ is the ratio of the unsprung to 

sprung mass. FORTRAN code is provided in (ASTM E1926-08) to solve this system. In this 

paper, the code was translated to MATLAB code and used to simulate the quarter-car model 

over each longitudinal strip in the grid. A longitudinal strip is defined as a sequence of grid 

elements in the-x direction having one y coordinate. The longitudinal strips were then used as 

an input file for simulations. This approach leads to a 2D model where the elevation input z is 

a continuous function of the variable x and the fixed coordinate y. However, the discreteness 
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of the measurements and additional discreteness introduced by gridding the data mean that a 

finite number of profiles can be simulated to approximate the continuous 2D function. 

Because each profile is simulated independently, transverse effects such as rolling and pitch 

are not included. 

Indexing Algorithm  

Roughness index values interpreted from the simulation are suspension, which is the 

difference between the rates of change in the sprung and unsprung mass elevations; 

acceleration, which is the rate of change in the suspension; and jerk. These values are based 

on spatial derivatives where the base interval is in the longitudinal direction. In theory, the 

roughness index values are related, where suspension is the derivative of the elevation profile 

with respect to distance; (for time rate it will be with respect to time), and accordingly the 

acceleration would be the second derivative of the profile, etc.  

To emphasise the human comfort level based on suspension values, the roughness index 

values are filtered to amplify and attenuate certain frequencies. The frequency filter can be 

presented by a gain function described in early studies (Liu and Herman 1998). The 

analytical description is best explained in terms of random signal analysis, where Fourier 

analysis techniques can be a helpful tool for such analysis.  

The basic assumption in the approach used is that any profile can be decomposed into 

building sinusoids. For infinite precision, the signal should be decomposed to an infinite 

number of sinusoids; however, only a finite number of sinusoids can be used to describe a 

signal. Equations (10) and (11) represent the forward and backward discrete Fourier 

transforms of a signal.  
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where the lower case variable x represents the signal in spatial (or time) domain, the 

uppercase variable X represents the function magnitude evaluated in the frequency domain, k 

is the frequency, n is the spatial coordinate (corresponding to time t), N is the number of 

points acquired in a signal and I is the imaginary number. The forward transformation 

evaluates the signal at each frequency k in the frequency domain given a signal in the spatial 

domain. The backward or inverse transformation evaluates the signal at each point n in the 

spatial domain given the frequency spectrum of the signal. Equation (11) can be rewritten in 

the general form to describe a profile as: 

( ) ( )






 +∑= ϕω kk

k
k tiAxz expRe   (12) 

where A is the amplitude of the signal for a frequency ωk and φk is a random phase angle in 

the range (-π, π) to allow for phase shift. A periodic sinusoid with an angular frequency ω 

would stimulate the quarter car and induce the state variables described in Equation (7), and 

accordingly three response indices: velocity, acceleration and jerk, which can be identified 

for a single longitudinal profile. For sufficiently long profiles that approximately satisfy 

Fourier analyses assumptions, the exact response for a random profile can be obtained by 

superposition of the constituting sinusoids as described in Equation (13). Formulations of 

Equations (12) and (13) are described in (Liu and Herman 1998)).  
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where; 

( )ωω ik
n
iin RAA =,   (14) 

 

where j is the index at time t, n is the index number (n = 1 for velocity index, n = 2 for 

acceleration and n = 3 for jerk), the superscripts in parenthesis indicate the differentiation 

order, φs is a phase angle function of the frequency and R is the response function that 

depends on the system parameters and can be thought of as a band pass filter in the Fourier 

domain. Velocity index is the time rate at which the sprung mass is moving in the z-direction 

relative to the unsprung mass. This index reflects the suspension rate for a quarter-car model, 

and is commonly known as the average rectified slope (ARS) when transformed to a spatial 

derivative in the x-direction. Rectified slope (velocity index) can be calculated by taking the 

difference between the first and third elements in the state variable vector described in 

Equation (7). Transformation from time domain to spatial domain is achieved by dividing the 

outputs over a constant speed (80 km/h). 

The acceleration index is related to human comfort while traversing the full profile and is 

computed by taking the absolute difference between the second and the fourth elements in 

the state variable vector. Finally, the spatial jerk describes the change in acceleration and thus 

relates to localised features and abrupt changes in the vertical acceleration. Spatial jerk is 

calculated by differentiating the acceleration with respect to x, keeping in mind the proper 

transformation from time domain to spatial domain.  
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Implementing the Fourier analysis here would only suite stationary profiles, where no 

localized features are present or frequency content changes occur as a function of distance. 

For more random profiles, where different frequencies are included, this approach suffers 

from higher errors and low resolution in spatial domain due to the boundary conditions and 

the violation of the described assumptions (Stein and Shakarchi 2011); thus quarter-car 

simulation is preferred in producing the surface maps. 

Results and Discussion  

Visioning Algorithm  

As described previously, the algorithm starts by transforming the global coordinate system 

to a local system, where PCA is implemented to define the rotation angle (θ) required to 

maximise the variance about two orthogonal axes.  

Regression diagnostics show that the assumed parameters of the least squared model are 

significant where p < 0.05 (Table 4). The adjusted R2 are greater than 0.99, which indicates 

that more than 99% of the variation in the data can be explained by the proposed models. 

This step can be embedded as a part of the algorithm, where if a certain parameter is 

insignificant, a new model should be fitted excluding insignificant parameters to reduce the 

variance of the model. For any fitted model, total error is a combination of the irreducible 

error, bias and variance. Irreducible error cannot be controlled; bias is induced by a shift 

between estimated models and real measurements; and variance results from over fitting and 

including insignificant parameters that can induce errors. In this study, irreducible error and 

bias are less important than variance because the key role of the model is to predict the 

surface trend rather than exact positions of the surface. 
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After transforming the global coordinate system to a local system via the data 

modelling, the elevation of each element in the grid is calculated as the average of the 

elevations of the points bounded inside that element. The grid size of the “rough” pavement 

section was 588 x 34 grid regions, where each grid region is 100 mm x 100 mm as mentioned 

before; thus this section is 58.8-m long and 3.4-m wide. The “smooth” pavement section is 

45.0-m long x 4.7-m wide. 

Table 4. Statistic results for quadratic model fit to mesh grid. 

Pavement 
Section  Coefficient Estimated 

Parameter 
Standard 

Error t-value 
Probability 

( t> ) 
Model 

Statistics 
Lincoln Way 

(Rough) 
 
 

β1 2.179x10-8 9.309x10-12 2341 <2x10-16 
R2

adj = 0.999 
F = 5x109 

p < 2 x 10-16 

β2 9.806x10-3 8.648x10-8 113389 <2x10-16 
β3 -2.014x10-2 1.175x10-6 -17135 <2x10-16 
β4 -3.919 2.000x10-3 -1960 <2x10-16 

10th St. 
(Smooth) 

  
 

β1 -1.305x10-8 1.972x10-11 -662 <2x10-16 
R2

adj = 0.994 
F = 9x108 

p < 2 x 10-16 

β2 -9.427x10-3 2.016x10-7 -46753 <2x10-16 
β3 -6.253x10-3 1.070x10-6 -5845.1 <2x10-16 
β4 9.882x10-1 2.166x10-3 456.3 <2x10-16 

 

Simulation Algorithm Results 

As described previously, simulation is conducted using the output grid where each strip 

in the x-direction is considered an independent profile. To validate the simulation algorithm, 

each strip was used as an input to ProVAL 3.4 (2013) to obtain the IRI values. The IRI 

values were compared with the IRI results for each strip obtained from the algorithms, which 

is the average rectified slope at each point along the strip. Traditionally, IRI is obtained using 

a line profile, representing the wheel track. Both right and left wheel tracks can be used to 

compute an average IRI, which is statistically close to the results from the half-car model 

simulation where the profiles should be synchronised to be used as an input for the model. 
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Despite the elegancy and simplicity of the theory underlying IRI, debates are usually 

raised regarding the representativeness of the chosen profile(s), and the repeatability of the 

profile measurement. Figure 11 shows IRI values for multiple wheel tracks across the full 

width of the pavement sections. For the “rough” pavement section, IRI varies from 4.3 to 6.5 

m/km, depending on the selected wheel track. In comparison, the “smooth” pavement IRI 

varies from 1.2 to 2.8 m/km across the width. Figure 11 shows the estimated wheel track 

locations spaced 1.8 m between the axels, and assumed the car is centered in the lane, as 

shown in Figure 11. It can be seen that small shifts in the wheel paths might result in 

appreciable differences.  

 
Figure 11. IRI versus width for both pavement sections included in the study. 

Figure 12 presents a histogram for the IRIs obtained for all wheel tracks for both 

pavement sections. The bin widths were tuned using the method described in Wand (1997). 

High variability in the IRI values across the widths demonstrates that even with 2D analysis 

(e.g., wheel track profiles), it would be hard to specify a single number to characterise the 

 



55 
 

condition. With the results presented here, it is proposed that the mean and standard deviation 

provide useful information to characterise the observed physical variations. 

 
Figure 12. Histogram of IRI values for both pavement sections 

included in the study. 

Indexing Algorithm Results  

Figure 13 and Figure 14 show the surface maps produced from the simulations. These 

maps aid in visualising the spatial roughness based on rideability criteria. Localised areas of 

distress are clearly distinguishable in these maps. Although the maps are highly detailed, they 

suffer from the trade-off between high details (pointwise indices) and the ability to simulate 

full-car models that would include rolling and pitch reactions. This trade-off arises from the 

fact that full car models incorporate multiple points in the analysis to produce one index at 

time t, unlike the quarter-car model, where each instant of time corresponds to a single point. 

Another aspect of that trade-off is how representative this model is to actual ride condition. 

The results obtained are not necessarily equal to the actual vertical acceleration a rider would 
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feel; however, it gives some very good indication and it can be used as an index, where it is 

more important to specify a level of roughness that can be scaled and used for evaluation, 

rather than emulating the exact response. Also, absolute values for all indices are normally 

reported because the normally true values would have averages close to zero, and thus it will 

not reflect the true rideability conditions. It is also more important to evaluate the level of 

severity in the road, unless detailed analysis is needed to evaluate the vehicle behaviour at a 

single feature in the section. 

 
Figure 13. “Smooth” pavement section surface maps of (a) absolute rectified slope, (b) 

absolute acceleration and (c) absolute spatial jerk. 

 



57 
 

The spatial jerk map is obtained by differentiating the acceleration map with respect to x, 

where this differentiation can be done by several numerical differentiation techniques that 

include centered differencing, forward differencing, backward differencing and the 

differentiation in Fourier space, where a vector can be transformed to the Fourier space, then 

each element is multiplied by the frequency it corresponds to and finally Fourier inversion is 

applied to get back a vector congaing the numerical derivatives. Centered differencing was 

chosen due to its simplicity, and it gives good approximations similar to the ones obtained 

using the Fourier conversion. 

 
Figure 14. “Rough” pavement section surface maps of (a) absolute rectified slope, (b) 

absolute acceleration and (c) absolute spatial jerk. 
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It is clear that even though the maps have similar trends there is a phase shift due to 

differentiation; also, the trends do not exactly match, for example, in the “smooth” pavement 

section, the bump in the spatial jerk map between stations 10 and 15 is not as clear in the 

rectified slope map. On the other hand, bumps in the rectified slope map between stations 20 

and 45 have disappeared in the spatial jerk map. Similar features can be observed in the 

“rough” pavement section. This observation emphasises the difference in information carried 

by each index map and the need to utilise the information these indices hold. 

Another aspect that was investigated is the dependency of analysis on speed. For a single 

sinusoid, detection is straightforward; however, for random profiles, the response would 

differ. As shown in Figure 15(smooth) and Figure 16 (rough), the rectified slope increases up 

to a maximum peak and then decreases at higher speeds. The trend of the rectified slope 

curve and some of its features, such as the location and number of peaks depends on the 

profile. This dependency was observed in the surface maps of the same section at different 

speeds, where certain features were amplified at selected speeds, while the others were 

tampered. Such behavior can be explained by the band pass filtering procedure that amplifies 

certain frequencies in favor of other frequencies.  
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Figure 15. “Smooth” pavement index parameters as a function of speed: (a) rectified 

slope, (b) acceleration and (c) spatial jerk. 
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Figure 16. “Rough” pavement index parameters as a function of speed: (a) rectified 

slope; (b) acceleration; and (c) spatial jerk. 
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Acceleration increased in both sections with increase in the speed, reaching an oblique 

asymptote in the given domain; however, the same interaction with the profile input is 

apparent, where the inflection points in the curves are different. The spatial jerk seems to 

reach a horizontal asymptote for the “smooth” section and a peak followed by a slight 

decrease for the “rough” section. It is clear that the spatial jerk is the derivative of 

acceleration; however, it is as clear as the relationship between the rectified slope and 

acceleration because differentiation is done at each point and not on the curve itself and the 

variability between points is confounded between the two curves. 

In all curves, it can be seen that the calculated standard deviation is very high, where 

sometimes it exceeds the mean value of all the readings. To get a better sense of high 

standard deviation, the normalised standard deviations (coefficient of variation) were plotted 

in the same graph, where the values were normalised by dividing over the mean.  

Summary and Conclusions 

Stationary laser scanning techniques were used to acquire 3D point clouds of pavement 

surfaces. These clouds were then filtered to remove noise and arranged to form the input for 

the algorithms developed herein to quantify surface roughness. The point coordinates were 

processed in three stages: visioning, simulation and indexing. In the visioning stage, PCA 

was used to identify the longitudinal direction and then global curves were corrected. Next, 

the points were arranged in grids to simplify the analysis and reduce the large number of 

points to be analysed. Quarter-car model simulation was then performed by passing each 

strip (i.e., wheel track) in the domain in the longitudinal direction to produce a response 

space that describes the vehicle dynamics. Based on the results obtained from the simulation, 

surface maps were produced in the last stage that assign one of three indices to each point on 
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the road surface (rectified slope, acceleration and spatial jerk). Speed effect on the results 

was investigated as part of the study. 

At this stage, high resolution terrestrial laser scans are time-consuming and require 

trained personnel; however, this technique is encouraged for field evaluation during 

construction, especially when measurements cannot be obtained (i.e., fresh PCC pavements 

that cannot support the weight of a profiler) or for monitoring purposes where the locations 

of certain features are of interest. In the near term, newer terrestrial laser scanners will be 

able to reduce the data acquisition time significantly due to faster scanning rates and longer 

ranges.  Further, other laser scanning devices, such as mobile laser scanners and UAV laser 

scanners, might be a faster alternative to acquire laser scans. The analysis algorithms 

presented in this paper are appropriate for any such 3D data set. 

Based on the analysis conducted the following conclusions can be drawn: 

• Three dimensional laser scanning techniques are powerful tools to provide detailed 

measurements, and can be used in the analysis of pavement roughness 

characterisation. 

• The analysis was automated, and it can be developed further to be fully autonomous 

starting from the scanning stage. 

• The proposed analysis technique can be used to identify localized rough features. 

• Filtering of the profiles in Fourier space as a tool to get the spatial indices suffer from 

errors induced by the boundary conditions and high randomness in the input profile. 

• IRI is highly variable across the width of the section for relatively short sections. 

• Each index (rectified slope, acceleration, and spatial jerk) holds different information 

than the other indices and has its own significance. 
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• There is a high interaction between the speed effect and the profile, where each 

section would have unique curves of the indices vs. speed.  

• The proposed technique warrants additional development and verifications to be 

standardized and used as a valuable tool for evaluating rideability and smoothness of 

road surfaces. 
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CHAPTER 3. QUANTIFYING UNPAVED ROAD ROUGHNESS FROM 

TERRESTRIAL LASER SCANNING 

A paper accepted by The Transportation Research Record: Journal of the Transportation 

Research Board 

Ahmad Alhasan1,2,3, David J. White4, Kris De Brabanter5 

Abstract 

Unpaved roads represent a major component of the roadway network in Iowa and require 

regular surface grading to control roughness (e.g., corrugation). This paper presents a study 

that shows how terrestrial laser scanning can characterize road roughness in terms of (1) 

spatially analyzed international roughness index (IRI); (2) fast Fourier transform (FFT) 

spectral analysis; and (3) surface texture characterization using statistical analysis. 

Algorithms are presented for each of the roughness calculations. The spatial nature of 

terrestrial laser scanning makes it possible to determine IRI values along any selected path 

within the scan area. In this study, median IRI values were used to characterize overall road 

roughness. To characterize the nature of road roughness, FFT was used to decompose the 

laser scan height spectrum. Examples are presented for unpaved road sections with a 

relatively smooth surface, a smooth surface with corrugations, an unsystematically rough 

surface, and an unsystematically rough surface with corrugations. Based on the observation 

1 Graduate research assistant, Department of Civil, Construction, and Environmental Engineering, Iowa State 
University. 

2 Primary researcher and author. 
3 Author for correspondence. 
4 Richard L. Handy Professor of Civil Engineering, Department of Civil, Construction, and Environmental 

Engineering, Iowa State University. 
5 Assistant Professor, Department of Statistics, Department of Computer Science, Iowa State University. 

 

                                                 



68 
 

that the surface aggregate materials were segregated, selected small regions were studied 

using a 0.5 mm point spacing scan. These scans were filtered and statistically analysed for 

variations in height using root mean square, skewness, and kurtosis parameters. These 

parameters were studied in relationship to the particle size index values for the surface 

materials for three distinct gradations. The algorithms presented will be of value to terrestrial 

laser scanning users who are interested in characterizing unpaved roadway conditions.  

Key words: unpaved roads, laser scanning, international roughness index, 

algorithms 

In 2012, over one third of the roadway network in the U.S was unpaved, and in Iowa 

approximately 72,000 of 115,000 miles were unpaved (Bureau of Transportation Statistics 

2015; Research and analytics 2012). Road geometry (e.g., curves, cross sections) and the 

surface quality of unpaved roads (e.g., corrugation, loose aggregate, ruts, potholes) are the 

major features that affect road users’ travel experience, safety, and vehicle operating costs 

(Archondo-Callao 2007; McDonald and Sperry 2013). 

The International Roughness Index (IRI) is widely used to assess paved roads because it 

is stable and correlates well with rideability and vehicle operating cost (Dewan and Smith 

2002; Gao and Zhang 2013; Ouyang and Madanat 2004; Sayers and Karamihas 1996). 

Surface features are classified on a scale that ranges from less than 0.5 mm (microtexture); 

0.5 to 50 mm (macrotexture); 50 to 500 mm (megatexture); and 500 mm to 50 m 

(gigatexture). In contrast, IRI values are classified by wavelengths on a scale from 0.1 to 

100 m (i.e., classified as megatexture or gigatexture). As such, IRI values cannot be assigned 

to the wavelengths of aggregates or loose materials that typically fall below 50 mm (i.e., 
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classified macrotexture or microtexture) (2003). Several studies have pointed out the 

importance of precise assessment of unpaved road conditions to help transportation agencies 

decide whether to maintain or upgrade these roads (Archondo-Callao 2007; Huntington and 

Ksaibati 2011; McDonald and Sperry 2013; Zimmerman and Wolters 2004). However, 

despite the lack of a common set of criteria, many local agencies use visual inspection to 

estimate an IRI value (Archondo-Callao 1999; Walker et al. 2002). Some agencies combine 

visual inspection with direct measurement of defects (e.g., pothole depth, corrugation 

spacing) (Soria and Fontenele 2003; Woll et al. 2008).  

Researchers have evaluated non-contact, wide-footprint sensors and multi-point height 

sensors that obtain elevations across tire width unlike traditional profilers where elevations 

are acquired along a line (Fernando and Walker 2013; Fernando et al. 2014). Indirect data 

acquisition methods such as unmanned aerial vehicles (UAV), ground penetrating radar 

(GPR), and accelerometers have been explored for use on unpaved roads (Berthelot et al. 

2008; Brown et al. 2003; Zhang 2009). Zhang and Elaksher (Zhang and Elaksher 2012) used 

a UAV-based digital imaging system to create 3D surface models and developed algorithms 

to extract and characterize road features, but they did not assign IRI values.  

Abbas et al. (Abbas et al. 2007) used X-ray computed tomography to investigate the 

effectiveness of different mathematical methods in describing the 3D surface texture of 

Portland cement concrete pavements. Flintsch et al. (Flintsch et al. 2003) compared two 

indirect data acquisition systems, a circular texture meter and a laser inertial road profiler, to 

measure the macrotexture of hot mix asphalt pavement and concluded that the circular 

texture meter correlated better with the sand patch measurement described in ASTM E-965. 

Chang et al. (Chang et al. 2006) is the only study reported in the literature to use a terrestrial 
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3D laser scanner on a paved road to acquire data points. These data were used to 

systematically and accurately identify surface distresses and generate sample profiles for IRI 

ratings that were verified by matching results obtained from an inertial profiler. The accuracy 

and the ability of the terrestrial 3D scanner to generate multiple profiles suggest this as a 

promising approach to evaluate unpaved roads. 

Laser scanning, or light detection and ranging (LIDAR) systems use a laser beam to 

measure spatial coordinates in three-dimensional (3D) space by calculating the travel time 

and angles of incident and reception. The spatial coordinates are then stored in a 3D point 

cloud. LIDAR technology includes airborne laser scanning devices, mobile scanners, and 

terrestrial laser scanners. The main advantage of terrestrial laser scanning is the ability to 

generate a rich high resolution 3D point cloud for selected road sections. The data enables the 

detection of localized features and distresses, however it requires training demand relatively 

high data storage capacity, and involves specialized techniques for detailed post processing. 

The study reported here used data from a 3D terrestrial laser scanner to develop 2D 

surface maps of rectified slopes (RS) that were averaged in the longitudinal direction to 

calculate IRI values across road sections. Fast Fourier transform (FFT) spectral analysis of 

scanned height values revealed that sources of road roughness can be quantified. Further, a 

method for quantifying surface textures is presented and related to laboratory-confirmed 

gradations of loose surface material. These analysis methods should be of interest to users of 

laser scanners and engineers who want to better understand the range of surface features from 

0.5 mm to 50 m (macrotexture to unevenness) of unpaved roads. 
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Methods 

Data Acquisition 

A Trimble CX 3D light detection and ranging (LIDAR) device was used to acquire data 

points. This system works by sending laser pulses and measuring ranges based on the time 

and angle of the reflected pulse. The CX 3D collects 50,000 points per second and has 360° x 

300° field of view and 80 m range, but 50 m is the furthest distance for acquiring 

representative measurements. Scan density (the distance between measured points) is defined 

as adjacent points spaced at 100 m. The position accuracy of a single point is 4.5 mm at 30 m 

and drops to 7.3 mm at 50 m. The distance accuracy is 1.2 mm at 30 m and drops to 2 mm at 

50 m.  

The main components of the set-up are the scanning device, tripod, power supply, a tablet 

to control and store acquired data, and spherical targets for using multiple stations (Figure 

17). 

 
Figure 17. Trimble CX 3D laser scanner set-up. 
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In this study, scans were performed on two 55 m long rural road sections, 160th and 

170th Streets, near Ames, Iowa. The streets serve residential areas and farms with a few 

agricultural facilities. The surface materials are classified as A-1-a to A-1-b, and generally 

the sections were well maintained and bladed on a regular basis (~ weekly). Both sections 

evaluated in this study were scanned within two days after blading with a motor grader. Two 

stations 15 m apart were selected to cover the full 55 m, and three stages of scanning were 

applied at each station. A full 3D scan was performed in the first stage to acquire data points 

for all objects within range in the field of view. The density of the full scan was 55 mm at 

100 m. In the second stage, high density (30 mm at 100 m) area scans were performed to 

capture the megatexture of the road surface. The third stage acquired denser area scans 

(15 mm at 100 m) on small patches to capture macrotexture data for surface texture analysis. 

Gravel material from the patch areas was carefully scraped from the surfaces to obtain 

representative samples for particle size distribution analysis. 

Analysis Approach 

After the three scanning stages, scans were registered in Trimble RealWorks for initial 

processing and segmentation. Registration overlaps the scans obtained at different stations to 

construct a 3D point cloud (Figure 18). The spherical targets appearing in the data acquired at 

both stations make it possible to combine multiple scans into one spatially referenced dataset. 

Unwanted details (e.g., data points outside the area of interest and those reflected from 

passing vehicles) were removed from the cloud, then the x, y, and z coordinates of points that 

represent the road surface were exported to an ASCII file. 
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Figure 18. Registered point cloud for data acquired from two stations. 

IRI Road Roughness 

ASCII files were imported into MATLAB and processed to construct a grid with 100 mm 

elements in both the x and y directions. The center point of each grid element had an 

elevation equal to the average elevation of all data points in that element. Each strip in the 

longitudinal direction was considered a profile.  

The quarter-car model described in ASTM E1170-97 was used to simulate vehicular 

response along each longitudinal profile. This model quantifies rectified slopes at each point 

along a profile and was run on all profiles across the surface grids. The combined response 

profiles produced a 2D rectified slope map that was attached to the surface grid. This 

dynamic system can be thought of as a mechanical filter that attenuates frequencies that 

correspond to the strokes absorbed by suspension systems and amplifies frequencies where 

the vehicle body resonates (Sayers and Karamihas 1996). 
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Figure 19 presents a schematic of the quarter-car model. The schematic shows a two 

degrees of freedom model where both sprung (Ms) and unsprung (Mu) masses move in the 

z-direction. 

 
Figure 19. Quarter-car model (Alhasan 2015). 

Equation 1 is the differential equation of motion used in analyzing the models response. 

A FORTRAN code is provided in ASTM E1926-08 to solve this equation. The code was 

translated to a MATLAB code and incorporated in the algorithm that produces 2D rectified 

slope maps by looping over all profiles. 
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The dot indicates the time derivative, hps is the elevation of the profile after applying the 

moving average smoother, zs is the elevation of the sprung mass, zu is the elevation of the 

unsprung mass, k1 is the tire spring coefficient divided by the sprung mass, k2 is the 

suspension spring coefficient divided by the sprung mass, c is the suspension damping rate 

divided by the sprung mass, and µ is the ratio of unsprung to sprung mass. 

Rectified slope is defined mathematically as the absolute difference in elevation between 

the sprung and unsprung masses over the distance between the two points, and the average of 

all rectified slope values along a profile is the IRI. Median values are calculated to represent 

the road roughness. For unpaved roads, wheel paths and lanes are ill-defined and normally 

drivers maneuver between lanes to avoid potholes or ruts, thus it is proposed examine IRI 

values for profiles across the full road width. 

FFT Spectral Road Roughness 

To further characterize the nature of road roughness, FFT was used to decompose the 

laser scan height spectrum into the constituent sinusoids (Broughton and Bryan 2011; Liu 

and Herman 1998). Before applying the FFT on the profiles, global curves were removed and 

the deviation for all points was measured from the fitted line representing the global curve. 

Global curves represent the designed vertical curve, which can be assumed as a second 
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degree polynomial. This step is crucial because all points have high altitudes from the 

assumed origin surface, and the distance between the lowest point and the origin appear in 

the analysis as a high amplitude component at frequency zero. Results for the FFT analysis 

were characterized by examining the height amplitude versus spatial frequency plots. 

Based on the results, sections of unpaved road surfaces were identified with the following 

roughness features:  

• a relatively smooth surface,  

• a smooth surface with corrugations,  

• an unsystematically rough surface, and  

• an unsystematically rough surface with corrugations.  

Characterizing the roughness in these terms brings meaning to the surface condition 

assessment and is a link to the source of IRI road roughness. 

Surface Texture Analysis 

Three patches were densely scanned to analyze macrotexture features, and the points in 

these scans were spaced at about 0.5 mm. The scans acquired megatexture information so a 

2D high pass filter was applied on the data. High pass filtering was done by applying a low 

pass filter (smoother) and subtracting the filtered surface from original data as described in 

Equation 3. 

 

( ) ( ) ( )yxPyxPyxP LH ,,, −=   (3) 

Where, P is an original data point defined at x and y, PH is a high pass filtered data point, 

and PL is a point projected on a smoothed-mean surface. A thin-plate smoothing spline was 
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used to fit that surface from the original data. Due to the large number of points in a scan, 

points were sampled to reduce the processing time for surface smoothening. Figure 20 shows 

the sampled points in a patch with the fitted surface. 

 
Figure 20. Photo of the scanned area (top) and the smoothed surface showing sampled 

points (3D representation). 

After filtering the data, all points were shifted to a mean zero plane to simplify areal field 

analysis in three categories: function, height, and volume characteristics. However function-

related data were specifically developed to characterize machined surface roughness so this 

category was outside the scope of this study (Blateyron 2013). Height parameters include: 

root mean square height (Sq), skewness (Ssk), and kurtosis (Sku). Root mean square height 

(Equation 4) is equal to the standard deviation. 
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Where nx and ny represent the spacing between points in x and y directions respectively, 

for equally spaced points in both directions nxny reduces to the total number of points, and z 

is the elevation of the point measured from the mean plane. 

Skewness is a unitless parameter that represents bias in height distribution about the zero 

plane (Equation 5). Gaussian surfaces have zero skewness (Ssk = 0). Negatively skewed 

surfaces (Ssk < 0) would have more peaks, and positively skewed surfaces would have more 

valleys. 
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Equation 6 is the mathematical formula for surface kurtosis. This parameter is positive 

and unitless. Gaussian surfaces have a kurtosis equal to 3,and smaller values indicate a spiky 

surface and larger values indicate bumpy surfaces. 
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Height distribution and material ratio curves were also developed for the patches. Height 

distribution is a histogram calculated across the height. The normalized integral of a 

histogram yields the material distribution curve. 

Results and Discussion 

Road Roughness 

On the rectified slope maps of 160th Street (Figure 21a) and 170th Street (Figure 21b), the 

left lane extends between stations 0 and 3 in the transverse distance, and the right lane 

extends between stations 0 and -3. These maps illustrate road roughness features. For 

example, the central region of 160th Street (Figure 21a) is unsystematically rough compared 
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to the rest of the scanned area with a localized rough region (i.e., a loose pile of aggregate) in 

the left lane between stations 50 and 55. 170th Street (Figure 21b) shows that the section is 

smoother overall with a few defined ridges. 

 
(5a) 

 
(5b) 

Figure 21. Rectified slope maps for 160th Street (5a) and 170th Street (5b). 
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The IRI value of each longitudinal profile is the average of the rectified slope values of 

the profile. A plot of the IRI values versus width for both roads (Figure 22) shows the 

variability of IRI values, and that the higher IRI values between stations -1 and 1 correspond 

with peaks shown on the rectified surface maps. Because IRI values vary widely, plots of IRI 

versus width may better describe surface roughness, and, if a single summary index is 

needed, median IRI values may better describe overall roughness than average IRI values 

(e.g., the median IRI value of 160th Street is 2.60 m/km and is 2.36 m/km for 170th Street). 

Robustness to outliers would be an advantage of median IRI summary values. 

 
Figure 22. IRI vs. width. 

FFT Spectra 

To investigate variability in IRI values, two profiles were analyzed for each section, the 

profile corresponding to maximum IRI value and the profile corresponding to minimum IRI 

value. Each profile was decomposed into its constituent spectrum using the FFT. Presenting 
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the results as height amplitude versus spatial frequency clearly shows different components 

of amplitude and frequency. The threshold for “smooth” was set at amplitude less than 0.4 

mm. “Unsystematically rough” is defines as amplitude greater than 0.4 mm, but variable over 

a range of spatial frequencies. “Corrugation” is defined as amplitude with a central peak of 

greater than 0.7 mm and a spatial frequency of 1.5 to 2.5 (1/m). By examining the results this 

way, the source of roughness can be distinguished. In the future, these features should be 

studied for links to surface material types, trafficking, environmental factors, etc. 

Figure 23 clearly shows that 160th street has a smooth surface with distinct corrugations 

that have a wavelength of approximately 0.5 m. Also it is obvious that the profile at 0.1 m 

from the center is unsymmetrically rough with higher amplitude corrugations and thus it is 

expected to have higher IRI value than the other profile at -2.3 m. It should be noticed that 

these amplitudes are not always equal to the height of corrugation, the actual height is equal 

to the Fourier summation of different amplitudes at different frequencies. 170th street had 

smoother profiles, the profile at 1.9 m is relatively smooth, unlike the other profile at -0.2 m 

that is unsystematically rough. 

One explanation of higher corrugation in the middle of the road would be the higher 

thickness of loose gravel (Mahgoub et al. 2011). It was observed that the routine surface 

grading for this road left more loose material than the outside edges in a crown for drainage. 
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Figure 23. FFT for road profiles in (a) smooth surface with corrugations, (b) 

unsystematically rough surface with corrugations, (c) relatively smooth surface, and (d) 

unsystematically rough surface. 

Surface Texture 

The three patches under consideration were labelled T.P1, T.P2, and T.P3. Loose surface 

materials were scraped gently after scanning and particle size analysis was performed on the 

collected material. Figure 24 shows the grain size distribution curves of the material. T.P3 is 

the finest graded material and T.P2 is the coarsest. According to AASHTO classification 

materials in T.P1 and T.P2 are A-1-a, and material in T.P3 is A-1-b class, based on that and 

the uniformity coefficient, T.P2 is the most well graded and T.P3 has the poorest gradation 

relative to others. 
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Figure 24. Grain size distribution of surface material for the three patches. 

Figure 25 shows the test patch scans with the calculated height parameters. Total height 

indicates the extent of particles protruding from the surface. From the gradation analysis. 

T.P3 had the smallest maximum and nominal aggregate size and accordingly had the smallest 

total height. T.P1 and T.P2 had equal nominal aggregate size, however the largest aggregate 

size was different and thus there is a slight difference in the total height. Based on that it can 

be seen that total height is more sensitive to nominal aggregate size and still could detect the 

maximum aggregate size.  

The root mean square (Sq) relates to the spread of material across the height―surfaces 

with low Sq values have more material lumped in a small height range as compared to 

surfaces with high Sq values. Comparing Sq with grain size distribution shows that with 

higher uniformity coefficient Sq values are lower. Ssk reflects the primary surface texture 

where peak dominant surfaces have positive values while valley dominant surfaces have 

negative values. Surfaces dominated by peaks are expected to form by lifting aggregate and 
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forming a layer of loose aggregates, on the other hand surfaces dominated by valleys are 

expected to form by loss of fines where coarse particles remain intact while fine particles get 

removed. Since all test patches have Sku greater than 3, there are peaks, and T.P1 has the 

most extreme peaks relative to others. This finding supports the field observations. 

 
Figure 25. 3D surfaces for the three patches with the calculated areal parameters. 

Height distribution and material ratio curves (Figure 26) provide a visual mean to better 

understand the properties of surface materials. It can be seen that T.P3 had the narrowest 

distribution curve, and this coincides with the root mean square height values. Skewness 

relates to the symmetry and bias in distribution curves. Kurtosis higher than 3 defines a 

peaked distributions while lower kurtosis value defines flat distributions. The last two 
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parameters are hard to detect visually. It should be mentioned that the size of the histogram 

does not hold significant information for scans with equal densities, it only relates to the 

number of points included in the calculation, and thus the size of the patch. 

 
Figure 26. Height distribution and material ratio curves. 
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Material ratio curves present the cumulative material points above a cutting plain at a 

given height. The slope of the middle region in these curves relates to the smoothness of a 

surface, where lower slopes mean that all measured points appear in a narrow height range 

and thus the surface would be smoother. The curves indicate that the slopes decrease as 

materials get finer. 

Conclusions 

This paper introduces quantitative techniques for evaluating the surface roughness of 

unpaved roads. Methods for characterizing the surface roughness were presented in terms of 

three different analysis techniques: IRI, FFT, and statistical analysis of height measurements. 

The key findings from this research are: 

• Dense point clouds of x,y,z data obtained from terrestrial laser scanning is a 

promising technology to assess a range of surface conditions for unpaved roads.  

• Spatial surface roughness maps were developed using the information obtained from 

the point cloud data.  

• Algorithms used in producing the roughness maps are semi-automated, and further 

developments are expected to introduce fully automated data analysis algorithms. 

• Because IRI values are variable across the road section, selection of a representative 

profile(s) should account for this variability.  

• Corrugation is a major factor that affects ride quality in the absence of other major 

distresses. 

• Fourier analysis can identify corrugation and other forms of roughness. 
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• Areal field parameters hold important characteristics of the surface material, and 

more investigation is needed to correlate areal parameters with surface material 

characteristics and features. 

Recommendations 

At this stage, high resolution terrestrial laser scanning is time consuming and requires 

trained personnel; however, this technique is encouraged for field evaluations to gain better 

understandings of unpaved road performance. In the near term, newer terrestrial laser 

scanners with faster scanning rates and longer ranges will be able to significantly reduce data 

acquisition times. Other laser scanning devices, such as mobile laser scanners and UAV laser 

scanners, might be faster alternatives to terrestrial laser scanners. The analysis algorithms 

presented in this paper are appropriate for any 3D data set. 
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CHAPTER 4. CONTINUOUS WAVELET ANALYSIS OF PAVEMENT PROFILES 

A paper submitted to Automation in Construction  

Ahmad Alhasan1,2,3, David J. White4, Kris De Brabanter 5 

Abstract 

Pavement roughness can be quantified by analyzing the response of vehicle suspensions 

to road geometry or by analyzing basic geometric measurements (e.g., crack width and 

depth). These analyses can be either summative or pointwise. In recent studies, wavelet 

transform has been used to quantify road roughness by correlating the energies of wavebands 

to summative IRI values rather than identifying localized features and their effect on vehicle 

suspension response (SR) using quarter-car (QC) simulations. Because pointwise SR analysis 

can identify localized features, the objective of this study is to investigate the applicability 

and advantages of analyzing asphaltic and Portland cement pavements with QC simulation 

and continuous wavelet transform (CWT). This approach provides spatial assessment of 

roughness as a function of both frequency band and position and allows statistical 

comparisons of SR at different frequency bands. An advantage of this method is analyzing 

relatively short segments which can support near real-time assessment. 
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Pavement surface roughness increases vehicle operation and travel delay costs (Gao and 

Zhang 2013; Ouyang and Madanat 2004); reduces vehicle durability (Bogsjö and Rychlik 

2009; Oijer and Edlund 2004); and reduces ride quality and structural performance (Al-

Omari and Darter 1994). Structural performance diminishes faster on rough roads because 

roughness features increase dynamic stresses that accelerate pavement deterioration (Lin et 

al. 2003). Accurate evaluation of pavement roughness levels and modes is a key factor in 

optimizing maintenance decisions (Chootinan et al. 2006; Kilpeläinen et al. 2011; Lamptey et 

al. 2008). 

Roughness can be quantified by analyzing the response of vehicle suspensions to road 

geometry, using, for example, the quarter- or half-car models or actual vehicle responses, or 

by analyzing basic geometric measurements (e.g., crack and pothole width and depth). These 

analyses can be either summative (i.e., results in summary indices) or pointwise (i.e., results 

in a response profile or map). The most widely used summative method, the International 

Roughness Index (IRI), calculates the average rectified slope (i.e., vehicle suspension rate) of 

a pavement elevation profile, but does not provide sufficient detail to indicate the roughness 

mode or describe localized features (Herabat and Songchitruksa 2003; Nitsche et al. 2014; 

Ueckermann and Steinauer 2008). 

Pointwise analysis of vehicle responses can identify localized features, but this approach 

is still open for research and technology development. Studies of geometry-based pointwise 

quantification have classified pavement features by size and extent (Cheng and Miyojim 
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1998; Cheng et al. 1999; Georgopoulos et al. 1995; Mahler et al. 1991). Tsai et al. (2012) 

developed a crack fundamental element model to extract, cluster, and classify pavement 

cracks. Gavilán et al. (2011) proposed a seed-based linear support vector machine approach 

to develop a fully automated distress classifier that uses textural properties as inputs. 

Radopoulou and Brilakis (2015) developed an automated system to detect road patches from 

video data based on the surface elevation and texture. Zalama et al. (2014) used Gabor filters 

and a statistical learning system that had been trained from a large database to detect 

longitudinal and transverse cracks. Other studies (Nejad and Zakeri 2011; Nejad and Zakeri 

2011) have demonstrated the advantages of using wavelet analysis as inputs to neural 

network schemes in classifying pavement distresses. Bosché and Guenet (Bosché and 

Biotteau 2015) investigated the use of continuous wavelet transform in evaluating surface 

flatness based on terrestrial laser scanning data (Bosché and Guenet 2014). 

Several response-based studies have used signal processing techniques, such as power 

spectral density (PSD) and discrete wavelet transform (DWT), to quantify pavement 

roughness. DWT outperformed PSD analysis in verifying road roughness features and 

detecting localized defects such as cracks and potholes (Hesami and McManus 2009; 

Shokouhi et al. 2005). Wei et al. (2005) calculated energies of wavebands and correlated 

these energies to IRI values. Sen et al. (2012) used wavelet analysis to assess changes in 

pavement elevation profile characteristics over time and linked the changes to traffic loading, 

climate conditions, pavement composition, and subgrade soil type. 

Taken together these studies suggest that wavelet analysis is a promising technique for 

pavement roughness assessment, for locating problematic segments of any road, and for 

identifying possible causes of deterioration. Most previous wavelet analysis studies have 
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used pointwise analysis (i.e., decomposing profiles into wavebands) but have correlated the 

energies of the wavebands to summative IRI values rather than identifying localized features. 

Papagiannakis et al. (2007) used DWT to analyze suspension responses obtained from a 

5-axle semi-trailer truck equipped with an air suspension on the driver axle and a rubber 

suspension on the trailer axles. Total energies of 11 wavebands were calculated and 

compared with dynamic loads. Dynamic loads correlated best with sub-bands with pseudo-

frequencies between 0.65 and 3.76 cycle/m. Tomiyama et al. (2014) analyzed data collected 

with a response-type profiler that used a lifting wavelet transform to detect and quantify 

pavement distresses that identified target distresses with an average accuracy of 78%. 

In this paper, 30 elevation profiles of both asphalt concrete (AC) and Portland cement 

concrete pavements (PCC) sections obtained from the Long Term Pavement Performance 

(LTPP) database (2014) were analyzed with quarter-car simulations and continuous wavelet 

transform (CWT). The simulation results are reported as suspension rate profiles. The 

variance of suspension rate profiles has been used as a summary index because variance is a 

more common statistical parameter. The advantage of this approach is that CWT decomposes 

profiles in greater detail and provides spatial assessment of roughness as a function of both 

frequency band and position.  

Continuous Wavelet Transform 

Wavelet analysis techniques were developed independently in different fields (i.e., pure 

mathematics, physics, and engineering) to overcome the time-frequency resolution issue in 

Fourier analysis (Aslaksen and Klauder 1968; Boggess 2009; Calderón 1964; Daubechies 

1992; Morlet 1983). This issue results from the assumption that sines and cosines, which are 

infinitely periodic functions, are the building blocks for any function. This assumption 
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induces uncertainty in the analysis, where high resolution cannot be achieved simultaneously 

in both the frequency and the spatial domains. Pinsky (2002) and Stein and Shakarchi (2011) 

reported that as the dispersion of a function in the spatial domain about a fixed point x0 

decreases (i.e., higher resolution) the dispersion of the transformed function in the frequency 

domain about a fixed frequency ξ0 increases to satisfy the inequality condition expressed in 

Eq. 1, 

 
( ) ( ) 200 16

1ˆ
π

≥fDfD
 (1) 

where 

 
( ) ( ) ( ) dxxfxxfD 2

2

00 ∫
+∞

∞−

−=
  

 
( ) ( ) ( ) ξξξξ dffD

22

00
ˆˆ ∫

+∞

∞−

−=
  

and f is a signal (profile) in the spatial domain represented as a function of x; f̂  is the 

Fourier transform of the signal; and D0 is the second moment about point x0 or 0ξ .  

Wavelets, which can be thought of as wave pulses that translate in the spatial domain and 

can change size (i.e., dilate or shrink), are used as building blocks to overcome the time-

frequency resolution issue. Wavelets come in families, and for each family there is a wavelet 

function (mother wavelet) and a scaling function (father wavelet), although some continuous 

wavelet families do not include scaling functions. Wavelet dispersion is controlled by a scale 

factor a, where larger scale factors correspond to dilated waves and smaller scale factors 

correspond to shrunken waves. A wavelet function is expressed by Eq. 2, decision  
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where a is the translation factor, b is the position of the wavelet center, and x is a longitudinal 

coordinate in a profile. 

In this study, CWT was used rather than DWT because DWT decomposes data into 

layers at widely spaced discrete frequency bands, which means that fine details at a narrow 

frequency band cannot be examined. However, CWT decomposes profiles into layers at 

closely spaced frequency bands proportional to scale factors, which means that the layers 

have the same length and point spacing as the elevation profile before decomposition. For 

CWT analysis, wavelets should satisfy two conditions: ψ(x) is continuous and has 

exponential decay and the integral of ψ(x) over all space equals zero. CWT analysis also 

assumes that ψ(x) equals zero outside the effective support interval [-A, A]. The Morlet 

wavelet was used in this study because it approximates profiles within a reasonable tolerance. 

Eq. 3 shows the explicit form for Morlet wavelet. 

 ( ) ( )xex
x

5cos2

2−
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Figure 27 shows the Morlet wavelet at three scale factors. Scale factor 1.0 corresponds to 

the original function with no dilation or shrinkage, scale factor 2.0 corresponds to a dilated 

wavelet, and scale factor 0.5 corresponds to a shrunken wavelet. 
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Figure 27. Morlet wavelet comparisons for different scale factors: (left) a = 1 and 2, and 

(right) a = 1 and 0.5. 

The Fourier transform of a wavelet results in a narrow frequency band with a central 

frequency ξc. This frequency is the most dominant frequency component in a wavelet and it 

corresponds to the frequency of a sinusoidal wave that best matches the wavelet (Figure 28). 

Scale factor changes the dominant frequency of a wavelet. The new frequency is referred to 

as the pseudo-frequency (ξ~ ) and is proportional to 1/a (Eq. 4), and the wave period ( λ~ ) is 

proportional to a (Eq. 5).  

 acξξ =
~

 (4) 

 ca ξλ =
~  (5) 
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Figure 28. Morlet wavelet overlapped with sinusoidal wave (frequency = 0. 8125). 

CWT transforms or projects the profile on a wavelet function at different scale factors 

(layers of details) to result in wavelet coefficients that describe the correlation between the 

signal and the wavelet function. Eq. 6 defines the wavelet transform (Wf) of a profile f, at a 

spatial coordinate b and onto a wavelet with a scale factor a. The original profile can be 

retrieved by applying the inverse wavelet transform as defined in Eq. 7.  
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and 
( )xbaψ ,  is the wavelet function complex conjugate and ( )ξψ̂  is the Fourier transform of 

the wavelet function. 

Analysis Approach 

Road Profiles 

Thirty elevation profiles, 15 asphalt concrete (AC) and 15 Portland cement concrete 

(PCC) pavements, with a wide range of IRI values (0.32 m/km to 7.95 m/km) were selected 

from the LTPP database without regard to location or profiling date (Table 5). 

Table 5. LTPP profile information. 

State 
code 

SHRP 
code 

Pavement 
Type  IRI 

State 
code 

SHRP 
code 

Pavement 
Type  IRI 

49 A351 AC 3.23 90 6420 AC 1.78 
49 C331 AC 0.76 06 B441 PCC 7.95 
90 B340 AC 3.11 48 C430 PCC 2.68 
01 0101 AC 0.82 49 E458 PCC 2.31 
04 1062 AC 0.32 06 3005 PCC 4.71 
06 8535 AC 0.93 12 4138 PCC 5.21 
12 4137 AC 0.36 19 0222 PCC 2.10 
25 1002 AC 4.28 19 3055 PCC 0.40 
34 0502 AC 1.24 21 3016 PCC 0.65 
47 3075 AC 2.09 40 0160 PCC 1.27 
48 1065 AC 4.96 42 1613 PCC 1.18 
51 0120 AC 1.05 42 1617 PCC 0.99 
81 0503 AC 2.51 46 0661 PCC 1.20 
85 1801 AC 4.80 49 7083 PCC 1.26 
90 6420 AC 6.05 89 3015 PCC 2.61 

CWT and Profile Decomposition 

Elevation profiles were decomposed into 26 layers of detail (profile 06B441 was 

decomposed into 23 layers due to this pavement sections length being 44.25 m, whereas all 

other sections were 152.55 m). Each layer represents the projection of the elevation profile 

into the wavelet with scale aj, the maximum scale value corresponds to wave period twice the 
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length of the profile. Table 6 represents the scale factors used and the corresponding pseudo-

frequencies and pseudo-periods. 

Table 6. Scale factors, pseudo-frequencies, and pseudo-periods. 

Scale (a) 

Pseudo-
frequency, ξ~  

(cycle/m) 

Pseudo-
period, λ~  

(m) Scale (a) 

Pseudo-
frequency, ξ~  

(cycle/m) 

Pseudo-
period, λ~  

(m) 
0.05 16.25 0.06 4.04 0.20 4.98 
0.07 11.59 0.09 5.67 0.14 6.98 
0.10 8.27 0.12 7.95 0.10 9.78 
0.14 5.90 0.17 11.14 0.07 13.71 
0.19 4.21 0.24 15.62 0.05 19.23 
0.27 3.00 0.33 21.90 0.04 26.96 
0.38 2.14 0.47 30.71 0.03 37.80 
0.53 1.53 0.66 43.05 0.02 52.99 
0.75 1.09 0.92 60.36 0.01 74.29 
1.05 0.78 1.29 84.63 0.01 104.16 
1.47 0.55 1.81 118.65 0.01 146.03 
2.06 0.39 2.53 166.35 <0.01* 204.74 
2.88 0.28 3.55 233.22 <0.01* 287.04 

Note: * values < 0.01 are too small to affect vehicle response 

Elevation profile decomposition and reconstruction were performed in Matlab (2013). 

The algorithm calculates the wavelet coefficient at each point for all scale factors. To acquire 

a layer at a scale factor aj, coefficients are zeroed for all layers with scale factors unequal to 

aj. The new layers are then used to reconstruct a filtered profile. Using this approach, the 

mean elevation of all the layers are equal to the mean elevation of the elevation profile before 

decomposition.  

To reconstruct the elevation profile, all the decomposed layers can be summed, but this 

introduces an approximation error as shown in Eq. 8. The error layer was considered as a 

separate layer to be used in further analysis and define its impact in the simulation results. 
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where fR (aj,x) is the inverted detail layer with scale factor aj; error(x) is the approximation 

error layer; N is the number of the detail layers of a profile; and ( )xf  is the mean elevation 

of the original profile. 

Quarter-Car Filter  

Elevation profiles and their corresponding decomposition layers were filtered using a 

quarter-car (QC) model. This mathematical model simulates a tire with unsprung mass Mu 

and a spring coefficient Ku, connected in series with a Kelvin–Voigt element supporting a 

sprung mass Ms (Figure 29).  

 
Figure 29. Quarter-car model schematic. 

QC model is described in ASTM E 1926-98 to calculate IRI, which is defined as the 

accumulated suspension stroke divided by the traveled distance, or the absolute average 

suspension rate of a filtered elevation profile, QC filter is a band pass filter that attenuates 

certain frequencies and amplifies others (Sayers and Karamihas 1996). The simulation is 

based on solving a first order differential equation (Eq. 9). 
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and hps is the elevation of the profile after applying the moving average smoother; zs  and 

zu  are the elevations of sprung and unsprung masses; zs  and zu  are elevation time 

derivatives of sprung and unsprung masses; k1 is the tire spring coefficient divided by the 

sprung mass, k2 is the suspension spring coefficient divided by the sprung mass, c is the 

suspension damping rate divided by the sprung mass, and µ is the ratio of unsprung to sprung 

mass.  

To calculate the suspension rate (SR) values at each point, the elevation profile is first 

smoothed with a moving average filter that has a base length of 250 mm, then numerical 

simulation generates an SR profile. This simulation was performed on each layer of detail 

along with the original elevation profile. Based on the linear superposition principle, the sum 

of simulated layers equals the simulated elevation profile.  

A summary index of the simulated layers is needed to determine the layers that contribute 

significantly to the SR profile. One of the common summative indices in wavelet analysis is 

the relative wavelet energy (Pj) of each layer (Eq. 10), where relative energy represents the 
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l2-norm (magnitude) squared of the wavelet coefficients in a layer divided by the sum of l2-

norm squared for all layers. However the variance of inverted layers of details was used as a 

summary index because it can be used in other statistical tests (e.g. ANOVA).  
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and N is the number of detail layers and L is the length of the profile. The amplification and 

attenuation behavior of the QC filter on layers at different scale factors is analyzed by 

constructing gain graphs, where the gain value is defined as the ratio of the SR layer variance 

to the elevation layer variance.  

Results and Discussion 

Variance as a Summary Index 

First to validate the use of variance as a summary index, the thirty elevation profiles were 

filtered using the QC filter algorithm. IRIs were calculated as the average of the absolute 

values in the SR profile, the results matched those results obtained from the LTPP database 

(2014). Figure 30(a) shows a strong correlation (R2 = 0.995) between the natural logarithms 

of IRI and SR variance of the filtered elevation profiles. Log transformation was applied 

because the suspension variance values have a growing spread as IRI increase. The variance 

of individual elevation profiles was plotted against IRI values (Figure 30(b)) to show that the 

correlation between the natural logarithm of IRI and its elevation profile variance is not as 
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strong as the correlation between the natural logarithm of IRI and its suspension rate 

variance. This is because not all features in the elevation profiles induce suspension motion 

(Papagiannakis et al. 2007). 

 
Figure 30. Profile variance vs. IRI for (a) suspension rate profiles and (b) elevation 

profiles. 

Two sections, 124138 which is a jointed PCC section and 906420 which is an AC 

section, were studied closely because the PCC section has a lower IRI value compared to the 

AC section, yet the PCC section has a higher variance. The SR profiles of both sections are 

presented in Figure 31. In this case, the PCC profile has more extreme values compared to 
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the ACC profile. This suggests that variance might hold information about the overall 

roughness and the magnitude of extreme values in the SR profile, which indicates localized 

features. 

 
Figure 31. Suspension rate profile for (a) PCC section (124138) and (b) AC section 

(906420).  

Statistical Analysis of AC and PCC Profiles  

To compare the roughness of the AC and PCC sections, hypothesis tests (Welch 

ANOVA) were performed to investigate if the mean value of IRI or SR profile variance were 
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different for AC and PCC at significance level α = 0.05. IRI values do not follow a normal 

distribution and thus the tests were performed on the natural logarithm of IRI values that 

asymptotically follow a normal distribution, normal distribution of the test statistic is 

required for hypothesis testing. Table 7 shows that there is not sufficient evidence to reject 

the null hypothesis (H0) that the summary indices are different for AC and PCC sections.  

Table 7. Welch’s ANOVA results for summary indices. 

Hypothesis Mean summary index F Ratio P-Value 
H0: µln[IRI,AC] = µln[IRI,PCC] 
Ha: µln[IRI,AC] ≠ µln[IRI,PCC] 

IRIAC = 2.39 
IRIPCC = 2.47 0.03 0.86 

H0: µSR Variance, AC = µSR Variance, PCC 
Ha: µSR Variance, AC ≠ µSR Variance, PCC 

SR-VarianceAC = 16.51 
SR-VariancePCC = 20.14 0.12 0.73 

All points in the elevation and SR profiles and layers of details were pooled in two 

distribution families one for AC sections and one for PCC sections. Hypothesis tests 

(Levene’s test) were performed to investigate if the distribution variance of the layers or the 

elevation or SR profiles are different for AC and PCC sections, the null and alternative 

hypotheses are described in Eq. 11. 
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From Table 8 it can be seen that the null hypothesis is rejected for all elevation 

distributions and that AC sections have higher distribution variance compared to PCC except 

for elevation layers corresponding to scales 0.07–0.38, 2.06, and 5.67. Also it can be 

observed that for the SR distributions there is not enough evidence to reject the null 

hypothesis for layers corresponding to scales 0.05, 0.07, and 2.06, and that AC sections have 

higher variance compared to PCC for layers corresponding to scales 0.27, 0.38, and 5.67. 
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Table 8. Levene’s test results for elevation and suspension rate distribution variance. 

Scale, a 
Elevation distribution 

variance (cm2) P-value 
Suspension rate 

distribution variance (cm2) P-value 
AC PCC AC PCC 

0.05 1.70E-05 1.63E-05 <0.01 7.82E-05 7.09E-05 0.96 
0.07 5.17E-05 5.84E-05 <0.01 1.23E-04 1.12E-04 0.19 
0.10 9.53E-05 1.01E-04 <0.01 1.15E-04 1.09E-04 <0.01 
0.14 1.27E-04 1.43E-04 <0.01 1.98E-04 1.87E-04 <0.01 
0.19 1.57E-04 1.99E-04 <0.01 2.28E-04 1.78E-04 <0.01 
0.27 2.26E-04 2.70E-04 <0.01 5.17E-04 5.53E-04 <0.01 
0.38 3.35E-04 3.72E-04 <0.01 6.29E-03 6.34E-03 <0.01 
0.53 4.97E-04 4.77E-04 <0.01 2.75E-02 2.45E-02 <0.01 
0.75 8.66E-04 5.16E-04 <0.01 1.21E-01 7.17E-02 <0.01 
1.05 9.44E-04 6.38E-04 <0.01 3.62E-01 2.59E-01 <0.01 
1.47 1.09E-03 9.77E-04 <0.01 1.36E+00 1.22E+00 <0.01 
2.06 1.62E-03 1.69E-03 <0.01 2.88E+00 3.12E+00 0.46 
2.88 2.51E-03 2.19E-03 <0.01 2.15E+00 1.87E+00 <0.01 
4.04 2.77E-03 2.63E-03 <0.01 8.95E-01 8.46E-01 <0.01 
5.67 3.01E-03 3.81E-03 <0.01 4.33E-01 5.24E-01 <0.01 
7.95 5.64E-03 5.02E-03 <0.01 4.23E-01 3.98E-01 <0.01 

11.14 1.03E-02 4.59E-03 <0.01 5.07E-01 2.32E-01 <0.01 
15.62 1.58E-02 9.63E-03 <0.01 4.35E-01 2.64E-01 <0.01 
21.90 2.70E-02 1.81E-02 <0.01 1.90E-01 1.15E-01 <0.01 
30.71 3.60E-02 1.92E-02 <0.01 1.82E-02 1.26E-02 <0.01 
43.05 8.46E-02 2.44E-02 <0.01 5.71E-03 2.66E-03 <0.01 
60.36 8.40E-02 1.39E-02 <0.01 7.49E-04 1.27E-04 <0.01 
84.63 7.88E-02 1.34E-02 <0.01 3.09E-04 5.45E-05 <0.01 

118.65 3.40E-02 8.83E-03 <0.01 8.37E-06 1.61E-06 <0.01 
166.35 5.62E-02 1.45E-02 <0.01 1.39E-05 2.63E-06 <0.01 
233.22 2.54E-07 6.44E-08 <0.01 6.32E-11 1.17E-11 <0.01 

Full profile 9.48E-01 2.86E-01 <0.01 1.65E+01 1.47E+01 <0.01 
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These statistical tests indicate that although the AC and PCC pavements in this study had 

similar roughness indices, the SR variance in the AC pavements is larger. This finding is 

consistent with earlier work (Darter et al. 1973; Kher and Darter 1973) that compared initial 

AC and PCC serviceability indexes, where AC demonstrated a larger variance compared to 

PCC.  

CWT Contour Plots 

The thirty elevation profiles were decomposed into 26 layers (except for profile 06B441) 

using continuous Morlet wavelet, and the QC filter was applied to each elevation layer to 

obtain SR layers. In the decomposed elevation profiles (left columns in cm) and filtered SR 

layers (right columns in m/km) shown for three AC (Figure 32) and three PCC (Figure 33) 

where X axes are distance and Y axes represent scale factors from zero to 70 for elevation 

and zero to 30 for SR layers. From any point along the X axis, the color scale along the Y 

axis indicates the wavelet content (i.e., analogous to frequency content in Fourier 

terminology) that corresponds to roughness features. As might be expected, at higher scales 

the AC sections exhibit higher variability than the PCC sections; features with longer 

wavelength appear in AC sections as compared to PCC sections, where features have shorter 

wavelengths. 
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Figure 32. Wavelet decomposition amplitude contours for elevation (left) and SR 

profiles (right) in scale-distance domain for three AC sections with low, medium, or 

high roughness. 
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Figure 33. Wavelet decomposition amplitude contours for elevation profiles (left) and 

SR profiles (right) in scale-distance domain for three PCC sections with low, medium, 

or high roughness. 
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Significant Layers of Detail 

To identify the layers with the highest SR magnitudes, the variance of each layer for both 

elevation profiles and SR profiles was calculated, and the percentage of information 

contained in a layer is defined as the ratio of its variance to the sum of all other variances 

including the error profile, and referred to as % variance. 

Figure 34(a) shows two curves representing the average % variance of all elevation layers 

for AC and PCC sections. In general, both curves have dominant peaks around the scale 

factor of 43 (pseudo-frequency 0.019 cycle/m) and at the scale factor 165 (pseudo-frequency 

0.005 cycle/m). It can be seen also that PCC sections had higher average variance up to a 

scale factor 31 (pseudo-frequency 0.027 cycle/m), and AC sections had higher average 

variance at higher scale factors. 

Figure 34(b) shows two curves representing the average % variance of SR layers for AC 

and PCC sections. The figure shows that both types of pavement exhibit similar trends, and 

that the curves have only two peaks occurring at the scale factors 2.06 and 15.62 (pseudo-

frequencies 0.395 and 0.052 cycle/m respectively). These peaks occur at pseudo-frequencies 

approximately equal to the frequencies corresponding to the peaks of the IRI filter (0.42 and 

0.065 cycle/m) where the first peak corresponds to the tire hop mode and the second to the 

body bounce mode of vibration. On average 98% of the variance in the SR profile is 

attributed to the variance in the layers having scale factors between 0.75 and 21.90 (0.04–

1.09 cycle/m). 
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Figure 34. Average % variance of (a) elevation profiles and (b) suspension rate profiles 

at different scales for AC and PCC sections. 

The wavelet analysis can be utilized as a filtering technique, where only the significant 

layers can be superimposed to result in a filtered profile. The derivative of the filtered profile 
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can be used to identify the location of rough features in a road. Figure 35 shows the 

derivatives for the elevation profile (a), the wavelet filtered profile (b), and the SR profile 

from QC simulations (c) for section 06B441. The wavelet filtered elevation profile was 

composed of 10 layers out of the 23 elevation layers (i.e., from scale factor 1.05 to 21.90). 

The cumulative % variance of the elevation layers from scale factor 1.05 to 21.90 is 53%, 

however cumulative % variance of these layers is 99%. It is clear the derivative of the 

wavelet filtered profile is very similar to the SR profile, unlike the derivative of the original 

profile, where it is very noisy and has several high peaks that are attenuated in the SR profile. 

An important application of wavelet filter as described herein is the ability to analyze 

relatively short pavement segments, relative to using the traditional finite difference QC 

simulation. Using the Morlet wavelet, 11 m long profiles (equivalent to 0.5 sec for a vehicle 

traveling at 80 km/hr) can be decomposed to layers with a scale factor up to 21.90. The 

described approach can analyze down to 4 m without a major loss in accuracy. The 

advantage of assessing short segments of pavement is that it support more accurate and near 

real-time analysis that can be used in control system of automated paving machines 

(Rasmussen et al. 2013). 

In theory this can be achieved by segmenting the analyzed section into short profiles, thus 

although CWT is computationally expensive for long profiles, it is not as expensive for short 

profiles, because less layers are required to cover the frequency range. After segmentation, 

analysis can be performed and summarized using CWT coefficients to compress the data, this 

compressed information can be efficiently transferred and utilized to determine the location 

and severity of rough features.  
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Figure 35. Section 06B441: (a) elevation profile derivative, (b) wavelet filtered elevation 

profile derivative, and (c) suspension rate profile from quarter-car simulations.  
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Conclusions 

Thirty road profiles with a wide range of surface roughness and two pavement types (i.e., 

AC and PCC) were decomposed using CWT into different layers of details corresponding to 

distinct frequency band components. These layers were then filtered using a QC model to 

identify the most significant layers that affect that SR profile. This type of analysis has the 

advantage of identifying localized features in the spatial domain and at the target frequency 

bands that affect the ride quality of a road. However the study is limited to CWT and should 

be expanded to include and compare the analysis approach using DWT. Also future work 

should investigate the computational efficiency and provide a framework to use such 

computation in real time. The key conclusions from this study are: 

• For the percent variance of SR profiles, only two narrow peaks appear at scale factors 

2.06 and 15.62 (pseudo-frequencies 0.395 and 0.052 cycle/m respectively), and on 

average 98% of the variance in the SR profiles is attributed to the variance in the 

layers having scale factors between 0.75 and 21.90 (0.75–21.90 cycle/m). 

• Although there is a strong correlation between the variance of SR profiles and IRI 

values, the variance is more sensitive to outliers, as a parameter, variance holds 

information about both the overall roughness and the range of the variance of SR 

profiles indicates localized features. 

• Because high amplitude features in derivatives of elevation profiles might attenuate 

after filtering, not all features in elevation profiles affect ride quality. 

• The SR profiles of the AC sections are more variable than the SR profiles of the PCC 

sections even though the AC and PCC sections have similar average IRI values. 
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• CWT proved to be a valuable tool for examining the details of SR profiles with high 

resolution in both frequency and the spatial domains and for decomposing relatively 

short segments of pavement. 
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CHAPTER 5. WAVELET FILTERS DESIGN FOR PAVEMENT ROUGHNESS 

ANALYSIS 

A paper submitted to computer aided civil and infrastructure engineering 
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Abstract 

Pavement roughness can be quantified by examining built-in or deterioration features that 

affect surface conditions or by analyzing vehicle suspension responses (SR) to surface 

geometry. SR is normally estimated by quarter-car (QC) filtering in the frequency domain or 

by simulating the QC model in the spatial domain using a finite difference (FD) algorithm. 

However, emerging technologies in automated machine guidance require a systematic 

approach to analyze short road segments in both domains simultaneously to quantify overall 

and localized (i.e., spatial) roughness. In this study, multiple wavelet bases were modified in 

the frequency domain to define 116 new filters in the spatial domain that were used to 

analyze 30 road profiles. Performance of these filters in terms of assessing different lengths 

and accurately quantifying localized features was compared to other analysis techniques. 

Filters developed using db21 and morl0 outperformed other approaches in terms of 

consistency of filtering output at short profile lengths.  
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Pavement surface roughness is a key parameter in evaluating and predicting pavement 

performance during its life cycle (Bianchini 2012; Roberts and Attoh‐Okine 1998) and 

pavement quality during construction (Mosa et al. 2013). Roughness increases vehicle 

operation and travel delay costs (Gao and Zhang 2013; Ouyang and Madanat 2004); reduces 

vehicle durability (Bogsjö and Rychlik 2009; Oijer and Edlund 2004); and reduces ride 

quality and structural performance (Al-Omari and Darter 1994).  

Roughness can be quantified by examining built in or deteriorated features for severity 

and extent (e.g., crack and pothole width and depth measurements) or by analyzing vehicle 

suspension responses (SR) to road geometry. SR is typically summarized using an index 

value such as the International Roughness Index (IRI), the most widely used summative 

index that characterizes overall roughness. IRI is defined as the average of absolute rectified 

slopes (i.e., SR) of the pavement profile. Most IRI calculations are based on one of two 

approaches. One way is to calculate an SR profile using fast Fourier transform (FFT) to 

transform a road elevation profile to the frequency domain; applying the quarter-car (QC) 

filter to the transformed profile (Liu and Herman 1998; Liu and Herman 1999); and inverting 

the filtered profile to the spatial domain. Another way is to implement a state space solution 

that solves the differential equations that describe the QC model in an FD algorithm (Sayers 

and Karamihas 1996). However, these IRI calculations do not provide sufficient detail to 

identify localized features (Herabat and Songchitruksa 2003; Nitsche et al. 2014; 

Ueckermann and Steinauer 2008). 
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Quantifying localized features is crucial because they affect human comfort and cause 

vehicle fatigue damage (Bogsjö and Rychlik 2009; Oijer and Edlund 2004; Steinwolf et al. 

2002). Sayers (1990) suggested a continuous roughness profile calculated by applying a 

moving average on SR profiles to detect localized features, and Swan and Karamihas (2003) 

demonstrated the use of continuous roughness profiles to detect localized features for 

smoothness specifications. Although these approaches emphasize the importance of detecting 

localized features, they are based on analyzing long sections and then retrieving localized 

features. However, emerging technologies in road construction, such as automated machine 

guidance (AMG), light detection and ranging (LiDAR), and 3D modeling, require a 

systematic approach that quantifies the roughness of short profiles (< 7.62 m) continually and 

in real time so corrective actions can be taken during construction without having to wait 

until a full section has been profiled (Perera and Kohn 2002; Rasmussen et al. 2013). 

However, the QC filter in the frequency domain can suffer time-frequency uncertainty 

where the accuracy of the analysis decreases as the profile length decreases (Pinsky 2002; 

Stein and Shakarchi 2011). The state space solution is also suspected to suffer from boundary 

problems because the solution has a memory so the starting point of the analysis affects the 

results (Sayers 1990). 

Wavelet analysis techniques were developed independently in different fields (e.g., pure 

mathematics, physics, and engineering) to overcome time-frequency uncertainty problems 

(Aslaksen and Klauder 1968; Boggess 2009; Calderón 1964; Daubechies 1992; Morlet 

1983). Signal processing techniques, such as power spectral density (PSD) estimates and 

discrete wavelet transform (DWT), have been used to quantify pavement roughness. DWT 

outperformed PSD analysis especially in detecting localized defects such as cracks and 
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potholes (Hesami and McManus 2009; Shokouhi et al. 2005). Papagiannakis et al. (2007) 

used DWT to analyze suspension responses obtained from a 5-axle semi-trailer truck. 

Dynamic loads correlated with wavelets of pseudo-frequencies between 0.65 and 

3.76 cycle/m. Wei et al. (2005) correlated IRI to the wave energy at different wavelet 

frequency bands. Tomiyama et al. (2014) used lifting wavelet transform to detect pavement 

distresses from a response type profile.  

Other statistical and signal processing techniques extract and classify pavement defects 

based on geometry and not ride quality (Mahler et al. 1991). Zalama et al. (2014) developed 

a statistical learning system that uses a Gabor filter to detect longitudinal and transverse 

cracks, and Gavilán et al. (2011) developed a fully automated distress classifier that uses 

textural properties as inputs to a linear support vector machine framework. Nejad and Zakeri 

(2011; 2011) demonstrated the advantages of using wavelet analysis results as inputs to 

neural network schemes in classifying pavement distresses. 

However, to date there are no studies that explain the development of a new filter capable 

of decomposing and filtering road profiles in a single step to yield continuous SR profiles at a 

finite number of frequency bands. Further, there are no studies that compare the performance 

of the QC filter in the frequency domain, FD algorithm, continuous wavelet filters, and 

discrete wavelet filters in analyzing road profiles of different lengths. 

In this paper, multiple wavelet bases including wavelets with explicit forms (i.e., 

continuous wavelets) and more complicated, iteratively constructed forms (i.e., discrete 

wavelets) were modified to define 116 new filters in the spatial domain. These filters were 

formulated by transforming the wavelet bases into the frequency domain and applying the 

QC filter to them. The new bases were inverted to the spatial domain to define quarter-car 
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wavelet (QC-wavelet) filters. These new filters were used to analyze 30 AC or PCC road 

profiles obtained from the Long Term Pavement Performance (LTPP) Database (2014) with 

a wide range of surface roughness. The results were compared at varying profile lengths with 

FD algorithm and QC filtering in the frequency domain. The advantages of QC-wavelet 

filters include analyzing short road segments with accuracy and providing high resolution in 

the frequency and spatial domains simultaneously. QC-wavelet filters also identify localized 

features with higher accuracy than the FD algorithm, and the QC-wavelet filters are expected 

to support data compression and allow physical inferences from compressed data. 

Wavelet Analysis  

Wavelet analysis was developed to overcome the time-frequency resolution issue in 

Fourier analysis where high resolution analysis cannot be achieved simultaneously in both 

frequency and time (spatial) domains (Boggess 2009; Daubechies 1992). As analogues to 

sinusoids in Fourier transform, wavelets are the building blocks (bases) from which a signal 

(profile) can be composed. 

Depending on the analysis scheme, there are two main categories of wavelets: wavelets 

used for discrete wavelet transform (DWT) and wavelets used for continuous wavelet 

transform (CWT). Wavelets should satisfy a set of admissibility conditions (Boggess 2009) 

and come in families. For each family there is a wavelet function (mother wavelet) and a 

scaling function (father wavelet), but some continuous wavelet families do not include 

scaling functions and some wavelet forms can be used in both analysis schemes. In this 

study, DWT wavelet functions were constructed iteratively from the scaling function, but 

because CWT wavelet functions have explicit forms, they do not always require scaling 

functions to construct wavelet functions. For CWT and DWT, the wavelet transform projects 

 



125 
 

the profile onto wavelet bases with different scales (i.e., layers of details) that correspond to 

different frequency bands. This results in wavelet coefficients that describe correlations 

between the profiles and the wavelet functions. To retrieve the profile content at a frequency 

band, inverse wavelet transform is applied to the coefficients in that frequency band. This 

process resolves the space-frequency resolution issue and allows identification of features 

within known frequency contents. 

Continuous Wavelet Transform 

The CWT base is a smooth wave pulse (Figure 36) described by explicit equation either 

in the spatial or the frequency domain. The Fourier transform of a wavelet function (i.e., 

( )ξψ̂ ) produces a narrow function in the frequency domain with a central pseudo frequency 

ξc that is the most dominant frequency component in a wavelet function and that corresponds 

to the frequency of the sinusoidal wave segment that best matches the wavelet. The scale 

factor a tunes (dilates) the dominant frequency of a wavelet function, which results in a new 

frequency referred to as pseudo-frequency ξ that is proportional to 1/a. Figure 1 shows how a 

smaller scale factor corresponds to higher frequencies and a narrower wave function. 

 
Figure 36. Mexican hat wavelet function with a scale factor a = 1 and a = 0.5. 
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A wavelet transform (Wf) is defined as the convolution of the wavelet function (ψ) at a 

scale factor a and a location (translation factor) b with the profile (f). Equation (1) represents 

the wavelet transform of a function in the inner product and in the integral notations, and 

Equation (2) defines the dilated wavelet function centered about the translation factor b. 
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where ( )xbaψ ,  is the complex conjugate of the wavelet function. The inverse wavelet 

transform that provides the form to retrieve the original un-decomposed profile is defined in 

Equation (3). However if a single layer of detail (frequency band) is of interest, the second 

integral over the scale factors can be eliminated and each layer is integrated separately. 
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Discrete Wavelet Transform and Multiresolution Analysis 

Unlike CWT, DWT bases are constructed iteratively and are not smooth functions with 

explicit forms and must satisfy a set of admissibility conditions (Boggess 2009). Wavelet 

families constitute a sequence of subspaces Vj in Lebesgue space L2(ℝ), where Vj is a 
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subspace constructed from a linear combination of scaling functions φ as defined in Equation 

(4): 

 
( )∑
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where Αb,j is the amplitude of a scaling function at a level j that corresponds to a frequency 

band determined based on the wavelet family characteristic and a shifting factor b that 

determines the center of the function. Subsequently Wj is the subspace of a linear 

combination of wavelet functions ψ as defined in Equation (5): 
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Accordingly the wavelet function can be constructed as a linear combination of scaling 

functions as defined in Equation (6): 

 ( ) ( )bxAx j
b jbj −= ∑ 2, φψ  (6) 

Wj is the orthogonal complement of Vj in Vj+1 as defined in Equation (7), which also 

shows that Vj is an element of Vj+1. 

 jjj WVV ⊕=+1  (7) 

where ⊕ is the orthogonal sum operator. If the collection of spaces satisfies the following 

five conditions, DWT is referred to as a multiresolution (Boggess 2009): 

1. nested: 1+⊂ jj VV ; 

2. density: jV is dense in L2(ℝ); 

3. separation: { }0=jV ; 
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4. scaling: The function f(x) belongs to Vj if and only if the function f (2-jx) belongs to 

V0; and 

5. orthonormal bases. 

The nested condition can be deduced from Equation (7) that expresses the content in a 

layer at the level j+1 can be composed of two other layers, one projected onto the scaling 

function and the other onto the wavelet function at the level j. The density condition means 

that the whole space can be composed of the subspaces Vj. The separation condition means 

that the decomposed layers do not contain common features such that each decomposition 

contains a unique set of features. The scaling condition means that the scaling of a space will 

correspondingly affect the function contained in the space by a factor 2j that corresponds to 

the down sampling of a profile when using pyramidal algorithms. The orthonormal condition 

ensures that the bases do not interfere and that the total energy of the decomposed layers will 

be equal to the energy of the original un-decomposed profile. 

Analysis Approach 

Road Profiles 

Sixteen asphalt concrete (AC) and 14 Portland cement concrete (PCC) pavements with 

IRI values ranging from 0.32 m/km to 7.95 m/km were selected from the LTPP database 

without regard to the location or profiling date (Table 9). These profiles were analyzed in a 

previous study, but that analysis was limited to decomposing the road profiles and SR 

profiles produced by the FD algorithm using CWT (Alhasan et al. 2015). 

 



129 
 

Table 9. LTPP profile information. 

State 
code 

SHRP 
code 

Pavement 
Type  IRI 

State 
code 

SHRP 
code 

Pavement 
Type  IRI 

49 A351 AC 3.23 90 6420 AC 1.78 
49 C331 AC 0.76 06 B441 PCC 7.95 
90 B340 AC 3.11 48 C430 PCC 2.68 
01 0101 AC 0.82 49 E458 PCC 2.31 
04 1062 AC 0.32 06 3005 PCC 4.71 
06 8535 AC 0.93 12 4138 PCC 5.21 
12 4137 AC 0.36 19 0222 PCC 2.10 
25 1002 AC 4.28 19 3055 PCC 0.40 
34 0502 AC 1.24 21 3016 PCC 0.65 
47 3075 AC 2.09 40 0160 PCC 1.27 
48 1065 AC 4.96 42 1613 PCC 1.18 
51 0120 AC 1.05 42 1617 PCC 0.99 
81 0503 AC 2.51 46 0661 PCC 1.20 
85 1801 AC 4.80 49 7083 PCC 1.26 
90 6420 AC 6.05 89 3015 PCC 2.61 

Quarter-Car Wavelet Filter  

A quarter-car (QC) model was used to evaluate the roughness of the profiles. This 

mathematical model simulates a tire with an unsprung mass Mu and a spring coefficient Ku, 

connected in series with a Kelvin–Voigt element supporting a sprung mass Ms (Figure 37). 

 
Figure 37. Quarter-car model schematic. 
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The QC model can be described as a band pass filter that attenuates certain frequencies 

and amplifies others (Sayers and Karamihas 1996). A filtered road profile is defined as an SR 

profile that consists of a string of rectified slope values. The average of absolute rectified 

slopes in an SR profile is the IRI value. Liu and Herman (1998) defined the QC band pass 

filter in the frequency domain as shown in Equation (9): 

 ( ) ( ) 218
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An elevation profile can be decomposed using CWT or DWT to obtain layers of details. 

Because the layers are separate and nested for DWT or approximately separate and nested for 

CWT, the QC filter can be applied to each layer in the frequency domain separately. Based 

on the superposition principle, these layers constitute the filtered profile in the spatial 

domain. Equation (10) is the mathematical representation of a QC filter applied to the layers 

obtained from a CWT analysis, and the same analogy can be used for a DWT analysis, but 

the filters should be applied to the wavelet and scaling functions and thus define new bases:  
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where fQC is the rectified slope and R0 is the QC filter in the spatial domain. The sum runs 

over all possible N layers of details, and, because the QC filter is linear (a linear operator), 

the order of filtering can be switched as shown in Equation (11). 

 ( ) sbaQC fRbaf 0,, ψ=  (11) 

As such the QC filter can be applied to the wavelet function, and this new filter, the QC-

wavelet filter, can be used to decompose a road profile to SR layers with different frequency 

bands in one step. The wavelet function should be transformed to the frequency domain and 

filtered using the QC filter defined in Equation (9), then inverted to the spatial domain to 

define a QC-wavelet filter in the spatial domain. Figure 3 shows original wavelet functions 

and the QC-wavelet filters produced by applying the QC filter on db21 (Figure 38a and b) 

and the Mexican hat (Figure 38c and d) wavelet functions in the spatial domain. 

 
Figure 38. An (a) original Daubechies wavelet function (db21) and (b) the wavelet 

function after applying QC filter to it, (c) an original Mexican hat wavelet function and 

(d) the wavelet function after applying the QC filter to it. 
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In this study, three continuous and four discrete wavelet families provided in Matlab were 

used to analyze the 30 road profiles. A new filter bank was defined for this purpose. Table 10 

provides a list of the wavelet families used in the analysis. Transforming the continuous 

wavelet functions to the frequency domain is straightforward because the functions have 

explicit forms defined in the spatial domain. However, because discrete wavelet bases are 

defined as functions of the points indices, profile element indices and the distance between 

consecutive points are used to define the spatial coordinate of a point in a wavelet basis, and 

accordingly define the frequency content of a wavelet basis. 

Table 10. Wavelets used to design QC-wavelet filters. 

Analysis 
scheme 

Wavelet 
family Wavelet Matlab name  

Scaling 
function  

Fast 
algorithms 

Continuous 
Wavelet 
Analysis 

Morlet  
Analytical Morlet: morl 
Non-Analytical Morlet: 

morlex and morl0 

Does not 
exist 

Faster than 
traditional 

CWT because 
it utilizes FFT 

mth Order 
Derivative of 

Gaussian  

dog, for 2nd order derivative: 
mexh 

Does not 
exist 

Faster than 
traditional 

CWT because 
it utilizes FFT 

Paul  Paul Does not 
exist 

Faster than 
traditional 

CWT because 
it utilizes FFT 

Discrete 
Wavelet 
Analysis 

Daubechies  db1, db2, … , db45 Exists Available 
Symlet  sym1, sym2, … ,sym45 Exists Available 
Coiflet  coif1, coif2, ... , coif5 Exists Available 

Biorthogonal 
Wavelet 

Pairs 

bior1.1, bior1.3, bior1.5, 
bior2.2, bior2.4, bior2.6, 
bior2.8, bior3.1, bior3.3, 
bior3.3, bior3.5, bior3.7, 
bior3.9, bior4.4, bior5.5, 

bior6.8 

Exists Available 

To examine the accuracy of SR profiles produced by different QC-wavelet filters, all SR 

profiles were compared to the SR profiles produced by QC filtering in the frequency domain 
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and inverted to the spatial domain. Cross-correlation coefficients (Cc) were used as 

comparison criteria, which is a reasonable assumption since FFT analysis for long profiles 

will be sufficient and the boundary effects will be negligible compared to the lengths of the 

profiles. IRI values obtained from the FD algorithm were compared with IRI values obtained 

from the filters because IRI values obtained from the FD algorithm are widely used in most 

commercially available standard packages. 

Further, to capture the effect of the analyzed profile length on the analysis, all profiles 

were analyzed at full length, and then shorter segments of the elevation profiles were isolated 

and analyzed, starting with the middle half, then the middle quarter, and then the middle one 

eighth and so on until reaching a length of 1.75 m. To evaluate the stability and accuracy of 

SR profiles produced at different lengths and using different approaches, Cc values were 

calculated between the SR profiles obtained from the short profile and the rectified slopes at 

the same points analyzed within the full length of the profile. 

Results and Discussion 

Long Profiles Analysis 

Although 116 QC-wavelet filters were developed and tested, the results of 20 filters that 

effectively characterize the results are presented here. The filters were chosen to cover all 

families, and within the family specific wavelets were chosen based on their performance at 

different lengths. The Matlab bior3.1 wavelet basis is included in the summary because of its 

distinctly poor performance in all cases. Table 11 summarizes the sample distribution 

parameters; sample mean, standard deviation and range of Cc between the SR profiles 

produced by QC-wavelet filters and the SR profiles produced by filtering in the frequency 
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domain; and the absolute difference (∆) between the IRI’s obtained from the FD algorithm 

and the IRI obtained from the QC-wavelet filter. 

Table 11.  Summary of results for 20 QC-wavelet filters used to analyze the 30 profiles. 

Wavelet 
basis Cc summary 

∆ = |IRIFD-
IRIQCW| summary 

(m/km) 

Wavelet 
basis Cc summary 

∆ = |IRIFD-
IRIQCW| 

summary (m/km) 
morl 

cC = 1.00 
σCc = 0.00 
RangeCc = 0.01  

∆ = 0.06 
σ∆ = 0.05 
Range∆ = 0.21 

sym22 
cC = 0.98 

σCc = 0.02 
RangeCc = 0.07  

∆ = 0.12 
σ∆ = 0.11 
Range∆ = 0.44 

morl0 
cC = 1.00 

σCc = 0.00 
RangeCc = 0.01  

∆ = 0.20 
σ∆ = 0.13 
Range∆ = 0.44 

sym24 
cC = 0.98 

σCc = 0.02 
RangeCc = 0.07  

∆ = 0.12 
σ∆ = 0.11 
Range∆ = 0.45 

mexh 
cC = 1.00 

σCc = 0.00 
RangeCc = 0.01  

∆ = 0.05 
σ∆ = 0.08 
Range∆ = 0.30 

coif1 
cC = 0.93 

σCc = 0.07 
RangeCc = 0.34  

∆ = 0.07 
σ∆ = 0.10 
Range∆ = 0.48 

paul 
cC = 1.00 

σCc = 0.00 
RangeCc = 0.01  

∆ = 0.04 
σ∆ = 0.06 
Range∆ = 0.23 

coif2 
cC = 0.96 

σCc = 0.04 
RangeCc = 0.15  

∆ = 0.13 
σ∆ = 0.10 
Range∆ = 0.53 

db18 
cC = 0.98 

σCc = 0.01 
RangeCc = 0.05  

∆ = 0.12 
σ∆ = 0.11 
Range∆ = 0.42 

coif3 
cC = 0.97 

σCc = 0.03 
RangeCc = 0.12  

∆ = 0.13 
σ∆ = 0.30 
Range∆ = 1.66 

db21 
cC = 0.99 

σCc = 0.01 
RangeCc = 0.05  

∆ = 0.12 
σ∆ = 0.11 
Range∆ = 0.51 

coif4 
cC = 0.98 

σCc = 0.02 
RangeCc = 0.09  

∆ = 0.14 
σ∆ = 0.34 
Range∆ = 1.88 

db22 
cC = 0.99 

σCc = 0.01 
RangeCc = 0.05  

∆ = 0.12 
σ∆ = 0.12 
Range∆ = 0.51 

bior2.4 
cC = 0.95 

σCc = 0.05 
RangeCc = 0.25  

∆ = 0.16 
σ∆ = 0.12 
Range∆ = 0.50 

db37 
cC = 0.97 

σCc = 0.01 
RangeCc = 0.05  

∆ = 0.67 
σ∆ = 0.62 
Range∆ = 1.97 

bior2.6 
cC = 0.96 

σCc = 0.05 
RangeCc = 0.19  

∆ = 0.09 
σ∆ = 0.08 
Range∆ = 0.32 

sym13 
cC = 0.98 

σCc = 0.02 
RangeCc = 0.09  

∆ = 0.21 
σ∆ = 0.52 
Range∆ = 2.94 

bior3.1 
cC = 0.32 

σCc = 0.19 
RangeCc = 0.72  

∆ = 5.33 
σ∆ = 4.25 
Range∆ = 15.74 

sym14 
cC = 0.98 

σCc = 0.02 
RangeCc = 0.08  

∆ = 0.18 
σ∆ = 0.36 
Range∆ = 2.03 

bior4.4 
cC = 0.96 

σCc = 0.04 
RangeCc = 0.20  

∆ = 0.15 
σ∆ = 0.11 
Range∆ = 0.53 
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Results in Table 11 show that continuous wavelets outperformed all discrete wavelets in 

terms of Cc. This could be due to the underlying nature of the wavelets or the availability of 

an explicit function that allows for a more accurate Fourier transform of the wavelet and 

scaling functions to define the QC-wavelet filter. In this case the discrete wavelet or scaling 

functions sampled at a higher rate may result in a better performance for discrete wavelets.  

Table 11 also shows that high Cc values do not always correspond to high correlations 

between the IRI obtained from the FD algorithm and the QC-wavelet filter. For example, 

although db18 and db37 performed similarly in terms of Cc, the range in the IRI difference 

for db37 is much wider, indicating that db37 results in IRI values are not comparable to the 

IRI values obtained from FD algorithm. Table 11 also shows that bior3.1 performed poorly 

compared to all 116 filters developed. The reason for the poor performance of bior3.1 is that 

biorthogonal pairs are defined as sets of discrete high and low pass filters with values defined 

at distinct points and nothing in between. As such, these filters are discontinuous unlike 

many other discrete wavelets where the function is continually defined however irregular. 

Figure 39 shows the high and low pass analysis filters for bior3.1. This function will suffer 

from dramatic inaccuracies if transformed into frequency domain, and this behavior cannot 

be mitigated using higher sampling rate of the wavelet filters. 
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Figure 39. (a) High pass analysis filter and (b) low pass analysis filter  

for bior3.1 wavelet pair. 

Figure 40 shows the derivative of the elevation profile for section 06B441 and the SR 

profile generated using the FD algorithm, the morl0 basis QC-wavelet filter, and the db21 

basis QC-wavelet filter. Figure 40 also shows that the FD algorithm produced an SR profile 

with a phase shift, meaning that the peaks in the profile derivative (slope) will affect the SR a 

distance ahead, and this phase shift is not consistent. The phase shift varies depending on the 

nature of the profile nature, so if this technique is used for real-time autonomous monitoring 

it will result in spatial misallocation of the roughness. Also, even though using a morl0 basis 

results in a slightly higher Cc, the db21 basis will result in a closer IRI value compared to the 

IRI value obtained from the FD algorithm and QC filtering in the frequency domain (i.e., 

IRIFFT = 7.70 m/km).  

 



137 
 

 
Figure 40. Comparison of (a) profile derivative, (b) rectified slope calculated using FD 

algorithm, (c) rectified slope calculated using QC-wavelet with morl0 basis, and (d) 

rectified slope calculated using QC-wavelet with db12 basis. 

Stability of Analysis of Short Profiles 

To capture the effect of the analyzed profile length on the analysis, the middle half of all 

profiles isolated and analyzed alone, then the middle quarter was isolated and analyzed, and 

so on until reaching the middle 1.75 m. Cc values were then calculated between the short SR 
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profiles and the corresponding points in the SR profile obtained for full length elevation 

profile. Figure 41 presents the average Cc for the 30 profiles in the study at different lengths 

for QC-wavelet filter with morl0 basis and one filter from each discrete family. It should be 

mentioned all continuous wavelets performed closely. It can be seen from the figure that 

morl0 basis filter out performs other filters. Also it can be seen that among discrete wavelet 

bases filters sym13 and db21 performed similarly and better than filters with coif3 and 

bior2.6 bases. 

 
Figure 41. Average cross-correlation coefficient (Cc) versus segmented analyzed length  

for different QC-wavelet filters. 

Figure 42 presents average Cc at different profile lengths for FD solution, QC filter 

applied in frequency domain, and morl0 and db21 wavelet bases QC-wavelet filters. 

Although the FD solution performs better than QC filter applied in frequency domain it 

suffers from a phase shift, while the QC-wavelet filters outperform the other approaches. 
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Figure 42. Average cross-correlation coefficient (Cc) versus segmented analyzed length 

 for four approaches. 

Figure 43 presents the coefficient of variation of Cc at different lengths. Coefficient of 

variation is defined as the sample (30 profiles) standard deviation of Cc divided over the 

sample mean Cc. The figure shows that db21 basis QC-wavelet filter outperforms other filters 

for short profiles and indicates that the solution from the db21 basis QC-wavelet filter is 

more consistent for different profiles. It should be mentioned that although bias and variance 

are two sources of error in analysis, bias indicates a consistent error in the analysis while 

variance describes the fluctuations in the errors.  

Figure 44 presents the SR profiles for the middle 4.78 m in profile 481065. The profiles 

are obtained using QC filter in frequency domain, FD algorithm, QC-wavelet filter with 

morl0 and db21 bases. The dashed lines present the corresponding points in the full length 

SR profile calculated using the same algorithms. It can be seen that QC-wavelet filters are 

performing similar to QC filtering in the frequency domain, and different from the results 
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obtained from the FD algorithm. Also it can be noticed that, FD algorithm produces different 

results for short profiles in the first few points, however the rest of the profile matches well 

with the corresponding points from the full length profile. This behavior of FD algorithm is 

due to the fact that the algorithm autocorrelates the SR profiles for few lags, however once 

the distance exceeds a threshold the rest of the profile is decorrelated. In the other hand 

filtering algorithms analyze features with wavelengths reaching the full length of the short 

profile and thus produces some inaccuracies at different points in the short profile. All in all 

considering all profiles QC-wavelet filters are performing best. 

 
Figure 43. Coefficient of variance for the 30 profiles versus segmented  

analyzed length for different approaches. 
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Figure 44. Rectified slopes calculated for short profiles and obtained from the full 

length profiles using (a) FD algorithm, (b) QC filter and FFT, (c) QC- wavelet with 

morl0 basis, and (d) QC- wavelet with db12 basis. 
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Spatial-Frequency Decomposition Using Wavelet Filters 

One of the major advantages of wavelets analysis is the ability to simultaneously achieve 

high resolution in the spatial and frequency domains. Figure 45(a) shows the wavelet 

coefficients resulting from analyzing the 481065 elevation road profile using db21 wavelet.  

The X axis is the longitudinal distance along the profile. The Y axis indicates frequency band 

levels from one to seven, and the color scale on the right corresponds to the wavelet 

coefficients (amplitude) at analysis levels, which correspond to scale factors. Higher levels 

indicate features with longer wavelengths. 

 From any point along the X axis, the color scale along the Y axis indicates the wavelet 

content (i.e., analogous to frequency content in Fourier terminology) that corresponds to 

roughness features 

 Figure 45(b) represents the wavelet coefficients resulting from analyzing elevation road 

profiles using QC-wavelet filter with db21 basis, this is the decomposition of SR profile at 

different analysis levels.  

 
(a) 
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(b) 

Figure 45. Wavelet decomposition amplitude contours for (a) elevation profile and (b) 

SR profiles using QC-wavelet filter with db21 basis. 

Figure 46(a) presents the wavelet coefficients contour plot resulting from analyzing 

elevation road profile 481065 using morl0 wavelet. The X axis represents the distance along 

the road profile, moving up across the figure the color corresponds to the wavelet coefficient 

(amplitude) at a scale factor a, higher scale factors indicate features with longer wavelengths. 

Figure 46(b) shows the wavelet coefficients resulting from analyzing elevation road profiles 

using QC-wavelet filter with morl0 basis, this is the decomposition of SR profile at different 

scale factors. It can be noticed that these figures provide the advantage of presenting 

continuous scale factor range, also the scale factor can be tied directly to pseudo frequencies 

based on the central frequency of the wavelet, and thus it is more comprehensible and 

appealing than wavelet filters with discrete wavelet bases.  
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Figure 46. Wavelet decomposition amplitude contours for (a) elevation profile and (b) 

suspension rate profiles using QC-wavelet filter with a morl0 basis. 

Conclusions 

Multiple wavelet bases were modified using the QC filter in the frequency domain, 

including filters with explicit forms (continuous wavelets) and more complicated, iteratively 

constructed forms (discrete wavelets). The resulting 116 QC-wavelet filters were used to 

analyze 16 AC and 14 PCC road profiles with a wide range of surface roughness and the 

results were compared with FD algorithm and QC filtering in the frequency domain analyses. 
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All approaches were also tested at varying profile lengths to investigate the suitability of each 

approach in analyzing short segments. Of the 116 QC-wavelet filters, the filter with db21 

basis outperformed other DWT bases, and the filter with morl0 basis outperformed all other 

QC-wavelet filters. 

The key conclusions are as follows:  

• Many wavelets can produce QC-wavelet filters capable of producing rectified slopes 

similar to those produced using QC filter in frequency domain for long enough 

profiles. 

• Although many SR profiles have high cross-correlation coefficients with SR profiles 

produced by QC filtering in frequency domain, they yield different IRI values than 

the IRI values obtained from FD algorithm. 

• FD algorithm produces a phase shift in the SR profiles, which leads to errors in 

identifying localized features. 

• QC-wavelet filters maintain accuracy when analyzing short (i.e., ≤ 4.7 m) profiles.  

• QC-wavelet filters with continuous wavelet bases outperform other approaches at 

varying lengths. 

• QC-wavelet filters provide layers of detail at multiple scale factors or levels that 

correspond to frequency bands to locate features within specific frequency bands. 
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CHAPTER 6. GENERAL CONCLUSIONS 

Road roughness is a key parameter for controlling road construction processes and for 

assessing ride quality during the life of paved and unpaved road systems. The quarter-car 

model was used as the standard mathematical tool for estimating suspension responses (SR), 

which can be used for summative or pointwise analysis of vehicle dynamic responses to road 

geometry. 

In fact, transportation agencies specify roughness requirements as summative values for 

pavement projects that affect construction practices and contractor pay factors. The 

International Roughness Index (IRI), a summative statistic of quarter-car SR, is widely used 

to characterize overall roughness profiles of pavement stretches but does not provide 

sufficient detail about the frequency or spatial distribution of roughness features. This 

research focused on two pointwise approaches, continuous roughness maps and wavelets 

analysis, that both characterize overall roughness and identify localized features and 

compared these findings with IRI results. 

Three dimensional point clouds of paved and unpaved road surfaces were acquired using 

a terrestrial laser scanner. The point clouds were processed in specially developed algorithms 

to simulate the quarter-car model using an FD algorithm to produce continuous roughness 

maps. It was concluded that three dimensional laser scanning techniques are powerful tools 

that provide detailed measurements and can be used to analyze road roughness. Also the 

proposed analysis technique can be used to identify localized rough features. However, 

varying the standard assumed speed of the quarter-car model (Vstandard = 80 km/h) indicated 

that not all features can be examined using SR profiles calculated in spatial domain, and for 
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rural roads using the standard quarter-car speed yielded unexpectedly low IRI values. This 

motivated the use of FFT analysis to examine the road profiles in frequency domain, and it 

was found that the quarter-car filter in frequency domain attenuates many rough features 

including the corrugations that are responsible for the low ride quality.  

The limitations of the FD algorithm and FFT analysis urged the need to use different 

approaches that provide details in both spatial and frequency domains simultaneously. 

Wavelets analysis is the most well established approach to decompose signals (profiles) into 

layers of details with predefined frequency bands. The first intuition was to decompose road 

profiles and SR profiles calculated using the FD algorithm to examine the location of road 

contents at different frequency bands. CWT was performed on sample 30 AC or PCC road 

profiles with a wide range of surface roughness from the FHWA Long Term Pavement 

Performance data base. Further SR profiles were calculated for the layers of details using the 

FD algorithm, which produced the same layers of detail obtained by decomposing the SR 

profiles of original road profiles. This suggests that wavelet transform and quarter-car 

simulations (filtering) are interchangeable processes. 

Despite the high resolution in both frequency and spatial domains obtained from CWT of 

elevation and SR profiles, the process is computationally expensive since it involves two 

steps of analysis, calculating SR profiles and decomposing the profile. Also the described 

approach in utilized FD algorithm, which suffers from phase shifts, and long distance 

autocorrelation of SR profiles. Since the wavelet transform and quarter-car filtering are 

interchangeable, QC-wavelet filters were developed by applying the quarter-car filter to 

CWT and DWT bases in the frequency domain, and inverted back to the spatial domain to 

define filters capable of filtering and decomposing road profiles in a single step. QC-wavelet 
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filters with bases db21 and morl0 were the best performers amongst the 116 filters developed 

in the study. QC-wavelet filters are expected to support data compression and allow physical 

inferences from compressed data. 

At this stage, high resolution terrestrial laser scans are time-consuming and require 

trained personnel; however, this technique is encouraged for field evaluation during 

construction, especially when measurements cannot be obtained (i.e., fresh PCC pavements 

that cannot support the weight of a profiler) or for monitoring purposes where the locations 

of certain features are of interest. In the near term, improved terrestrial laser scanning 

technology with faster scanning rates and longer ranges will be able to reduce the data 

acquisition time significantly. Further, other laser scanning devices, such as mobile lane wide 

laser scanners (e.g. laser crack measurement system) and UAV laser scanners, might be a 

faster alternative to acquire laser scans. Future research should include alternatives to process 

sparse and nonuniform 3D point clouds, alternative approaches might include surface fittings 

or filtering data with variable spacing. 

Also future studies should include improvements on QC-filters, by defining discrete 

wavelets with higher sampling rate. QC-wavelet filters are perfect candidates to perform 

analysis in real-time. The analysis can be achieved by segmenting the road sections into 

shorter segments, that can be processed in real-time. Also QC-wavelet filters promote the 

ability to compress data and make inferences on compressed data since the coefficients tie to 

SR profile content. 
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APPENDIX PSEUDOCODES FOR ANALYSIS ALGORITHMS 

Algorithm 1. Pseudocode for continuous roughness maps 
1: Input: P = [x, y, z] // spatial coordinates of N points in a point cloud 
2: 𝑃𝑃 = 𝑃𝑃 −  𝑃𝑃� // shift the origin to point clod center 
3: 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑃𝑃𝑥𝑥−𝑦𝑦� = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦) // x-y plane variance is the sum of variances in x and 

y  
4: 𝜃𝜃 = arg max

𝜃𝜃∈[0,𝜋𝜋]
(𝑥𝑥 cos 𝜃𝜃 + 𝑦𝑦 sin 𝜃𝜃)2 // maximize the variance in the x direction 

5: 𝑃𝑃 = 𝑅𝑅𝜃𝜃𝑃𝑃 // rotate data using Rθ to define x as longitudinal direction 
6: quadratic surface fit ← S // construct inertial reference 
7: P = P – S   
8: n = (xmax - xmin)/δx, m = (ymax - ymin)/δy // define a grid of size n �  m and spacing δx and 

δy 
9: for i ← 1 to (n) do 
10: for j ← 1 to (m) do 
11: for k ← 1 to (N) 
12: If (i - 1) �  δx < xk < i �  δx & (j - 1) �  δy < yk < j �  δy then 
13: c = c + 1 
14: sum = sum + zk 
15: z i, j = zk / c , x i, j = (i - 0.5) δx , y i, j = (j - 0.5) δy 
16: end if 
17: end for 
17: end for 
18: end for 
19: Return G = [xi, yj, z i,j] // define an elevation mesh grid  
20: for j ← 1 to (m) do 
21: [IRIj , RSi,j]← QCFD (v, zi,j), where i�  [1, n] // input the m profiles in a mesh 

along the x direction in the quarter-car finite difference simulation algorithm to 
get rectified slope at each point for different speeds v. 

22: end for 
23: Return Roughness map = [xi, yj, RS i,j] 
24: Return IRIj   
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Algorithm 2. Pseudocode  for continuous QC-wavelet filtering 
1: Input: (P, wave), where P = [x, z] // spatial coordinates of N points in a profile P and 

wavelet name 
2: 𝜔𝜔𝑖𝑖 = 2𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑥𝑥⁄  where, 𝑖𝑖 ∈ [1,𝑁𝑁 2⁄ ] 
3: 𝜔𝜔 = �0; 𝜔𝜔𝑖𝑖;  −𝜔𝜔𝑗𝑗� where, 𝑖𝑖 ∈ [1,𝑁𝑁 2⁄ ], 𝑗𝑗 ∈ [𝑁𝑁 2⁄ , 1] // define spatial frequency (wave 

number) vector 
4: for k ← 1 to (na,max) // run over defined scales 
5: 𝜓𝜓�𝑎𝑎 ← fft (𝜓𝜓𝑎𝑎) // find the fast Fourier transform of wavelet function at a scale a 
6: 𝑄𝑄𝑄𝑄𝜓𝜓𝑎𝑎 ← ifft �𝑅𝑅0𝜓𝜓�𝑎𝑎� // define the QC-wavelet filter as the Fourier inverse of 

wavelet basis multiplied by QC filter. 
7: Return SRa ← P* 𝑄𝑄𝑄𝑄𝜓𝜓𝑎𝑎 // convolve the profile with the QC-wavelet filter to 

produce a suspension response layer of detail 
8: end for   
7: Return 𝑆𝑆𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄 =  ∑ 𝑆𝑆𝑅𝑅𝑎𝑎𝑛𝑛𝑎𝑎  // define the suspension response profile as the sum of all 

detail layers 
8: SRfft ← ifft �𝑅𝑅0𝑃𝑃�� // calculate the suspension response using Fourier transform 
9: Return Cc ← �𝑆𝑆𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓� �𝜎𝜎𝑆𝑆𝑆𝑆,𝑄𝑄𝑄𝑄𝑄𝑄𝜎𝜎𝑆𝑆𝑆𝑆,𝑓𝑓𝑓𝑓𝑓𝑓��  // calculate the cross correlation 

coefficient at lag 0 
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