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ABSTRACT 

This dissertation examined drivers’ naturalistic driving behavior on rural two-lane 

curves using the Strategic Highway Research Program 2 Naturalistic Driving Study data. It is 

a state-of-the-art naturalistic driving study that collected more than 3,000 drivers’ daily 

driving behavior over two years in the U.S. The major data sources included vehicle network, 

lane tracking system, front and rear radar, driver demographics, driver surveys, vehicle 

characteristics, and video cameras. This dissertation has three objectives: 1) examine the 

contributing factors to crashes and near-crashes on rural two-lane curves; 2) understand 

drivers’ normal driving behavior on rural two lane curves; 3) evaluate how drivers 

continuously interact with curve geometries using functional data analysis. 

The first study analyzed the crashes and near-crashes on rural two-lane curves using 

logistic regression model. The model was used to predict the binary event outcomes using a 

number of explanatory variables, including driver behavior variables, curve characteristics, 

and traffic environments. The odds ratio of getting involved in safety critical events was 

calculated for each contributing factor. Furthermore, the second study focused on the analysis 

of drivers’ normal curve negotiation behavior on rural two-lane curves. Many important 

relationships were found among curve radius, lateral acceleration, and vehicle speeds. A 

linear mixed model was used to predict mean speeds based on curve geometry and driver 

factors. The third analysis applied functional data analysis method to analyze the time series 

speed data on four example curves. Functional data analysis was found to be a useful method 

to analyze the time series observations and understand driver’s behavior from naturalistic 

driving study. 
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Overall, this dissertation is one of the first studies to investigate drivers’ curve 

negotiation behavior using naturalistic driving study data, and greatly enhanced our 

understanding about the role of driver behavior in the curve negotiation process. This 

dissertation had many important implications for curve geometry design, policy making, and 

advanced vehicle safety system. This dissertation also discussed the opportunities and 

challenges of analyzing the Strategic Highway Research Program 2 Naturalistic Driving 

Study data, and the implications for future research.
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 INTRODUCTION 

The past studies identified human factors as the major contributing factors to 

approximately 90% of crashes (Treat et al., 1979), but the traditional crash data analysis does not 

address human factor very well. Fortunately, the recent development of naturalistic driving study 

(NDS) allows transportation researchers to observe drivers’ daily driving behaviors on roads. 

Naturalistic driving study provides us an unprecedented opportunity to understand how drivers 

interact with vehicle, roadway, and traffic environments. It will lead the future of transportation 

safety research in the next decade (SHRP2, 2015). 

Crash statistics have shown drivers had higher probability getting involved in crashes on 

horizontal curves. According to Federal Highway Administration (FHWA, 2015), the number of 

fatal crashes on horizontal curves was disproportionally higher than tangent segments. 

Understanding the drivers’ driving behavior on horizontal curves was the focus of transportation 

safety researchers in the past decades (Shinar et al., 1977; Levison, 1988; Bonneson et al., 2009), 

but this problem has not been satisfactorily investigated yet. In order to address this knowledge 

gap, this dissertation studied the drivers’ curve negotiation behavior on rural two-lane curves 

using the state-of-the-art Strategic Highway Research Program 2 Naturalistic Driving Study 

(SHRP2 NDS) data. The findings from this dissertation will help us understand the causes of 

curve-related crashes and the drivers’ normal driving behavior on curves. The findings provided 

important insights on better curve geometry design, sign placement, countermeasure selections, 

and transportation policy making. 
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1.1 The Scope of Traffic Safety Problem 

The development of automobile enables people to move freely, but it also threatens 

people’s health and lives on daily basis. Although different definitions had been used in the past, 

in this dissertation, crash is referred to as a vehicle contacts a moving or fixed object resulting in 

measurably transferred or dissipated kinetic energy, which may cause injury, death, and property 

damage (Dingus et al., 2006). According to National Safety Council (2014), the odds of being 

killed in a car crash in a life time is 1 in 112. The U.S. Center for Disease Control (CDC, 2010) 

identified car crash as the leading cause of death for people aged between 1 and 34 years old. 

According to the most recent published NHTSA report Economic and Societal Impact of Motor 

Vehicle Crashes, there were about 33,000 fatalities, 3.9 million injuries, and 24 million damaged 

vehicles in 2010. The economy cost of these crashes was estimated to be $277 billion, which was 

1.9% of U.S. Gross Domestic Product in 2010 (NHTSA, 2014). Therefore, crash is one of the 

biggest societal issues that directly affects everyone’ quality of life. 

Figure 1.1 plots the number of motor vehicle fatalities and fatality rates from 1990 to 

2012 in the U.S.  The fatality rate per 100 million VMT (shown in red line) dropped from 1990 

to 2012. Extensive efforts were conducted by federal, state, local agencies, and Non-Government 

Organizations to reduce the number of crashes on roads. Transportation safety was listed as the 

top priority in the past federal transportation bills: TEA-21 (1998-2003), SAFETEA-LU (2005-

2009), and MAP-21 (2012-2014). Because of the collaboration efforts from all sectors, 

transportation safety in the U.S. has improved steadily in the past many years. 
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Figure 1.1 Fatalities and fatality rate per 100 million VMT from 1990 to 2012 (FHWA, 

2014) 

 

Although the fatality rate was decreasing in the past twenty years, the cost of crashes was 

still a big burden to U.S. society, especially for those who lost their loved ones. Hence, there is 

still a long way to go before achieving zero fatality goal in the U.S. The development of 

naturalistic driving study opened a new research field to help transportation community 

understand the causes of crashes and drivers’ daily driving behaviors. 

1.2 Traditional Safety Analysis and Its Drawbacks 

A number of methods has been used in the past to study transportation safety, including 

crash data analysis, driving simulator study, and instrumented cars. The crash data analysis 

method has been widely used in the past decades to understand the contributing factors to 

crashes, but they also suffered from several limitations to prevent us from further understanding 

the role of human factor in crashes. This section reviewed the pros and cons of the existing safety 
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research methods and why naturalistic driving study provides promising solution to address the 

traffic safety problems. 

1.2.1 Police-reported crash data analysis 

Police-reported crash data is one of the most important source of information for traffic 

safety analysis. For example, Fatality Analysis Reporting System (FARS), maintained by 

National Highway Traffic Safety Administration, is one of the most widely used crash database 

with focus on fatal crashes. In addition, General Estimates System (GES) is another popular 

crash data source that randomly sampled all crashes in the U.S. to represent the national crash 

profile. Furthermore, each state also maintained their own crash data program to identify the 

safety priority areas in each state. The typical variables collected in crash reports are listed in 

Figure 1.2. Those variables are commonly categorized into driver, roadway, vehicle, 

environment, and crash type. 

 

Figure 1.2 Typical variables collected in police-reported crash data 

 

However, crash data analysis has several limitations to prevent us from further 

understanding the cause of crashes. Those limitations include underreporting issue and the lack 
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of driver behavior information in crash database (Ye, F. and Lord, D., 2011). Crash dataset did 

not include all crashes on the public roads. For example, the police officer in Iowa only files a 

crash report when an accident causes death, personal injury, or total property damage of $1500 

or more (Iowa DOT, 2015). The recent finding from the 100-CAR naturalistic driving study 

found 85% of the crashes were not reported to police, which revealed the magnitude of the 

under-reporting issue in crash dataset (Dingus, 2006). Additionally, the pre-crash driver behavior 

information was poorly collected in crash report. Most driver behavior information relied on the 

drivers’ own statement or witness’ testimony, which could be inaccurate or biased for various 

reasons. Therefore, drivers’ contributing factor to crashes is still not well understood in 

transportation safety research community. 

1.2.2 Driving simulator study 

Driving simulator has been widely used in the past years to study drivers’ behaviors in 

the simulated environments. It is a flexible research method that could be used to study a variety 

of topics in traffic safety, including driver’s reaction to different roadway designs and driver 

performance under alcohol influence. The biggest advantage of driving simulator study is the 

ability to simulate dangerous driving scenarios without putting drivers at risks. The experiment 

environment can be relatively easily controlled, so that the cause-effect conclusion could be 

directly drawn from the studies (Fisher et al., 2011). Therefore, driving simulator study has been 

used by many researchers for transportation safety research. Figure 1.3 shows state-of-the-art 

national advanced driving simulator at the University of Iowa. 
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Figure 1.3 National advanced driving simulator at University of Iowa (National Advanced 

Driving Simulator, 2015) 

 

Nevertheless, driving simulator study also suffers several limitations. The findings from 

driving simulator studies are often criticized for its validity in real-world driving conditions. 

Some studies found many drivers had false speed perception and distance perception in driving 

simulator. Most of driving simulator did not incorporate motion perception, which might conflict 

with visual cues. Some participants even experienced motion sickness and discomfort which 

could potentially bias the study results (Casali and Wierwille, 1980; Fisher et al., 2011). 

1.3 The Concept of Naturalistic Driving Study and Its Opportunities 

Naturalistic driving study was introduced in the past few years to better understand the 

causes of crashes and drivers’ daily normal driving behavior. While there is no agreed definition 

for naturalistic driving study, it is often referred to as an unobtrusive observation method which 

studies the drivers’ daily driving behavior in a natural setting without any experiment control 

(Dingus et al, 2014; Schagen et al., 2012; FOT- Wiki, 2014; PROLOGUE, 2009). In a 

naturalistic driving study, drivers do not receive instruction about when, where, and how to drive 
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their vehicles. This allows researchers, at the first time, to observe how drivers naturally interact 

with vehicle, roadway, and traffic environment in their everyday driving activities. 

Recent development in data collection and storage technology allows researchers to 

conduct large-scale naturalistic driving study. The typical data acquisition system (DAS) in 

naturalistic driving study consists of vehicle network, lane tracking system, forward radars, video 

cameras (Figure 1.4), accelerometers, vehicle network information, Geographic Positioning 

System (GPS), eye-tracking system and data storage system.  Most of the variables are collected 

at 10Hz which is every 0.1 second. Naturalistic driving study usually collects very large size of 

data. For instance, SHRP2 NDS collected 4 petabytes (4 million gigabytes) data from more than 

3,000 drivers over 2 years. 

 

Figure 1.4 Four camera views in SHRP2 NDS (Note: Driver in image is a nonparticipant 

employed by coordination contractor) (Dingus et al., 2014) 

 

Naturalistic driving study provides many advantages over the traditional safety analysis 

methods. First and foremost, naturalistic driving study collects a variety of variables regarding 



   8  

drivers’ everyday driving behavior without any experimental control. This information can be 

used to understand how drivers naturally interact with vehicle, roadway, and traffic environments 

in their daily driving activities.  

Second, naturalistic driving study usually collects very large dataset. For example, the 

SHRP2 NDS project collected 4 million gigabytes data from 3000 drivers over two years. It 

covers many roadway types, traffic conditions, and driver behaviors. The SHRP2 NDS is one of 

the largest dataset that had been collected in the transportation research community, but 

analyzing such a large dataset brings many challenges. 

Third, human factor was known to contribute to 90% of crashes, but it is the least 

understood factor in crashes. The in-vehicle cameras in naturalistic driving study provide critical 

information regarding drivers’ in-vehicle behaviors before, during, and after crashes. The 

forward view video also provides critical information about the traffic environments. Above all, 

naturalistic driving study is a new research method that will result in better understanding of the 

causes of crashes and drivers’ everyday driving behaviors. 

The potential users of the study results include transportation agencies, insurance 

companies, and car companies. For example, transportation agencies could use the information 

to develop new safety countermeasures and make better informed public policies. Insurance 

companies could use the information to identify the risky driver groups. Additionally, vehicle 

companies could learn from driver’s interaction with vehicles and traffic environments to 

develop advanced safety systems. 
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1.4 Problem Statement 

The previous section reviewed the scope of traffic safety issue and introduced the concept 

of naturalistic driving study. This section narrows down the focus to the specific traffic safety 

problem on rural two-lane curves.  Horizontal curve has been the spotlight of transportation 

safety research for the past decades (Bonneson et al., 2009; Felipe et al., 2007; Schurr et al., 

2002). Fatality Analysis Reporting System (FARS) reported 8,059 fatal crashes on horizontal 

curves, which accounted for one quarter of all motor vehicle fatalities in 2012. The majority of 

those crashes were located in rural area, especially on rural two-lane roadways. The crash rate on 

horizontal curves was found to be three times higher than the crash rate on tangent roadways 

(FHWA, 2014). Similarly, Farmer and Lund (2002) found the odds of a rollover crashes were 

2.15 to 2.42 times higher on horizontal curves than tangent segments. Therefore, the crash rate 

was disproportionally higher on curves and the drivers were found to have difficulty negotiating 

curves. 

An extensive number of studies has been conducted to study drivers’ behaviors on 

curves. First of all, several researchers found the number of crashes was correlated with curve 

characteristics, including curve radius, degree of curvature, average annual daily traffic (AADT), 

length of curve, shoulder width, grade and tangent distance. (Council et al., 1988; Milton and 

Mannering, 1998; Suh, 2006; Khan et. al., 2013; Schneider, 2010; Torbic, 2004; Zegger, 1991).  

The second group of researchers attempted to explain the drivers’ curve negotiation 

behavior from human factor perspective. They argued that the visually distorted travel lane made 

it more difficult for drivers to recognize the existence and the sharpness of a curve (Charlton S. 
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G., 2007; Hassan, 2003; Hong, 2006; Kandil, 2010; Mars, 2008; Shinar, 1977; Suh, 2006; 

Wooldridge, 2000, Zakowska, 2000).  

Third, many studies predicted vehicle speeds on rural curves using generalized linear 

regression models.  The 85th percentile speeds on curves were predicted based on curve radius, 

degree of curvature, curve length, tangent distance, and speed limits. It was found the drivers 

only reduced vehicle speed for curves with radius less than approximately 1000 feet (Anderson, 

2000; Bella, 2007; Bella, 2013; Bonneson, 2009; Collins, 2007; Donnell, 2007; Fitzpatrick, 

2007; Figueroa, 2005; Felipe, 1998; Montella, 2014; Richard, 2013; Schurr, 2007).  

Fourth, the vehicle lateral position on curves was carefully examined by several 

researchers. Most of them observed curve cutting behavior at mid-point of a curve. Six patterns 

of curve trajectories were identified in those studies (Abele, 2011; Bella, 2013; Bertola, 2012; 

Charlton, 2007; Gunay, 2007;  Hallmark, 2012; Reymond, 2001; Spacek, 2005; Suh, 2006; 

Taylor, 2005). Several low-cost countermeasures were proposed to help drivers keep their lateral 

positions, such as raised pavement marking, rumble strips, dynamics curve warning systems, and 

chevrons (Cheung, 2010; McGee, 2006). 

 

Figure 1.5 Video camera locations on the horizontal curves (Park et al., 2002) 



   11  

However, there were some research gaps in previous studies. First of all, most of 

previous studies collected vehicle speeds using roadside radar guns or road tubes at limited 

number of locations on the curves. One example of this type of experimental setting is illustrated 

in Figure 1.5. The researchers needed to make extrapolation of vehicle speeds between the 

measurement locations. With limited number of measurement locations, it was difficult to 

understand drivers’ curve negotiation behavior as a continuous process. Second, driver 

distraction was cited as the major contributing factors to run-off-road crashes on curves, but 

driver behavior information was not collected in those in-field studies. Third, vehicle dynamics 

was highly correlated over time, but previous research failed to consider the temporal 

correlations of the driving data. The traditional statistical analysis usually summarizes time series 

data at event level, but many important variables were neglected in the aggregated data. It is 

interesting to evaluate driver’s behavior directly from time series data. Those research gaps will 

be addressed in this dissertation using the SHRP2 NDS data. 

1.5 Research Questions 

The objective of this dissertation was to understand drivers’ curve negotiation behavior 

through the analysis of SHRP2 NDS data. There were three research questions in this 

dissertation. The first research question focused on the analysis of cashes and near-crashes on 

rural two-lane curves using logistic regression model. The second research questions conducted 

multivariate analysis of drivers’ daily normal driving behaviors on rural two-lane curves. The 

third research focused on analyzing a group of time series observations using functional data 

analysis (FDA) method. The three research questions are discussed in details in the following 

sections. 
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1.5.1 Research question 1: what are the contributing factors to crashes and near-crashes 

on rural two-lane curves? 

The objective of this research question is to understand the contributing factors to crashes 

and near-crashes on rural two-lane curves using the SHRP2 NDS data. Previous studies 

conducted crash data analysis on curves, but most of the explanatory variables were curve 

geometries. The behavior variables were poorly collected in previous studies. Fortunately, a 

number of important driver behavior variables could be collected in naturalistic driving study. 

The crashes and near-crashes data from the SHRP2 NDS provided in-vehicle drivers’ behavior, 

traffic environment, and roadway conditions. The crash and near-crash data was queried from the 

SHRP2 InSight website. A total number of 176 crashes, 210 near-crashes, and 2,729 balanced-

sample baseline events were included in this analysis. The crashes and near-crashes were 

combined and defined as safety critical events in this study. The multivariate logit model was 

used to predict event outcomes from the explanatory variables. The model found the speeds over 

posted speed limits, wet surface, icy/snowy surface, presence of curb, and visual distraction 

increased the likelihood of safety critical events on rural two-lane curves. Larger radius and 

presence of shoulder were found to decrease the likelihood of safety critical events on rural two-

lane curves. Overall, this is one of the first analyses on the crashes and near-crashes using the 

SHRP2 NDS data. This analysis successfully examined driver behavior variables, roadway 

characteristics, and traffic environments in the logistic regression model. 
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1.5.2 Research question 2: how do drivers normally negotiate different rural two-lane 

curves? 

The objective of this research question is to understand how drivers normally negotiate 

rural two-lane curves. This analysis included more than 10,000 observations from 202 drivers on 

219 curves. The sample size of this study is much larger than any of previous studies. Most of 

previous studies predicted the 85th percentile speeds based on curve geometries. The driver 

demographics information was not available in previous studies. Fortunately, it is possible to 

associate driving data to driver demographics in the SHRP2 NDS. The main data source of this 

study is the time series driving data summarized at event level. Other data sources included 

forward video, drive demographics, vehicle types, and curve geometries. The drivers’ curve 

negotiation behaviors were examined from two aspects: lateral acceleration and vehicle speed. 

The vehicle lateral acceleration was found to be highly correlated with vehicle speeds and curve 

radius. Drivers’ 85th percentile lateral acceleration was also summarized for different curve 

radius. Furthermore, the vehicle speeds were examined on both 45 MPH and 55 MPH roadways. 

The mixed linear model was used to predict vehicles’ mean speeds inside the curves. The tangent 

speed, advisory speed limits, logarithm of radius, car following, and younger drivers were found 

to be statistically significant for predicting vehicle mean speeds on curves. The model 

successfully identified the effect of individual drivers’ speeding behavior on curves. For future 

research, it is recommended to examine vehicle lateral position variable in the analysis. 
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1.5.3 Research question 3: how do drivers interact with curve geometry as a continuous 

process on rural two-lane curves? 

The objective of this research question is to evaluate how drivers interact with curve 

geometry as a continuous process using functional data analysis method. Functional data analysis 

was a relatively new statistical method that was developed in the past twenty years. It allowed 

researchers to ask many interesting research questions directly from time series data, which 

could not be done in traditional statistical analysis. Many researchers are interested in directly 

analyzing the time series data and understanding how drivers react to roadway geometry as a 

continuous process. A majority of the variables collected in the SHRP2 NDS are time series data 

by its nature. This study took the challenge to analyze the time series speed data from the SHRP2 

NDS and understand what driver behaviors can be learned from analyzing the time series data 

using functional data analysis. 

Because building functional data models is a time consuming process, only the vehicle 

speeds from four sample curves were examined in this study. The four rural two-lane curves had 

radius ranged from 117 feet to 1288 feet. The overall goal was to examine the similarities and 

differences between the speed profiles collected on the same curve. This study first discussed 

how to build functional data from discrete time series data. After the functional data were 

created, the mean and confidence interval for a group of functional observations were calculated 

to find the typical driving behavior on a curve. The derivative information was also calculated to 

examine how drivers reacted to the curves differently. Lastly, the functional principal component 

analysis was used to identify different driving patterns on the same curve. In summary, the 

functional data analysis method was found to be a ground breaking research method to 
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summarize the features for a group of time series observations. It is a useful way to illustrate how 

drivers interact with roadway geometries continuously. This methodology has important 

implications for analyzing the time series data from naturalistic driving study. 

1.6 Dissertation Structure 

Chapter 2 reviews the previous studies on drivers’ curve negotiation behavior from three 

aspects: curve perception, vehicle speed, and vehicle lateral position. The major findings and the 

knowledge gaps of previous studies are discussed in this chapter. Chapter 3 reviews the existing 

naturalistic driving studies and then introduces the experimental design, data acquisition system, 

and collected variables from the SHRP2 NDS. Chapter 4 addresses the first research question by 

analyzing crashes and near-crashes using logistic regression model. Chapter 5 focuses on the 

analysis of drivers’ normal curve negotiation behavior using multivariate analysis method. 

Vehicle speed and lateral acceleration are examined in this analysis. The linear mixed model 

successfully predicts vehicle mean speeds on rural two-lane curves. Chapter 6 analyzes time 

series data using functional data analysis. This chapter first introduces the methodology of 

functional data analysis, and it then applies the functional data analysis on four sample curves. 

Finally, Chapter 7 summarizes the major findings and limitations of this dissertation, and 

discusses the recommendations for future research. 
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 LITERATURE REVIEW 

This chapter reviews the literature on drivers’ curve negotiation behavior from three 

aspects: curve perception, vehicle speed, and vehicle lateral position. Section 2.1 discusses the 

human factor studies about how drivers perceive the existence and sharpness of a curve. Section 

2.2 reviews the previous studies on predicting vehicle speeds on curves based on curve 

geometries. Section 2.3 discusses the previous studies on vehicle lateral positions and trajectories 

inside curves. The major findings and limitations of previous studies are also discussed at the end 

of this chapter. 

2.1 Curve Perception 

Many researchers are interested in how drivers perceive and react to different curves. 

Cacciabue (2007) discussed driving tasks in his book Modelling Driver Behavior in Automotive 

Environments and defined driving tasks into three categories, which were drivers’ physical 

ability (size, reach, force, and endurance), perceptual ability (vision, hearing, touch, and 

proprioception), and cognitive ability (memory, attention, and decision). This section discusses 

drivers’ perception of curvature and their eye movement patterns in curve negotiation process. 

Shinar et al. (1977) conducted one of the earliest studies on drivers’ eye movement 

patterns on curves. Five drivers’ gaze behaviors were recorded with a video camera on rural two-

lane curves. The drivers were found to fix their gaze locations on the edge line marking, instead 

of focusing on the line of expansion as they did on tangent roads. Monitoring the edge line 

allowed drivers to quickly react to any lateral drifts on curves. The gaze patterns were also found 

to be different between left turn and right turn curves. 
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Similar conclusions were found in a recent study by Kandil et al. (2010). They examined 

two gaze strategies on curves: tangent points gaze strategy and sampling points gaze strategy. 

The drivers’ eye movement directions and durations were recorded on a head-mounted eye 

tracker. They found half of the drivers used tangent point as their eye fixture point on curves. 

The eye movement patterns were also found to be different on left turn and right turn curves. 

In another study, Mars (2008) instructed the drivers to negotiate curves using different 

eye fixation patterns as shown in Figure 2.1. The five eye fixation patterns included lane center, 

outer point, tangent point, inner point, and innermost point. The standard deviations of lateral 

positions were found to be lowest if the drivers fixed their eye sights at the innermost point. 

 

Figure 2.1 Gaze strategies on curves (Mars, 2008) 

 

Suh et al. (2006) evaluated the relationship between curve geometries, vehicle speeds, 

lateral positions, and eye movement patterns with an on-board eye tracking system. The vehicle 

lateral positions and speeds were measured from roadside cameras. The eye gaze locations were 
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recorded on both tangent segments and curve segments. The eye movement was found to be 

more fixed at sharper curves and night time driving scenarios, which were correlated with higher 

cognitive and visual demands. 

Wooldridge et al. (1981) used vision occlusion technique as a measure of drivers’ visual 

demand to control vehicle’s lateral position. The underlying assumption was that higher 

cognitive demands were correlated with higher visual demands. They tested 24 drivers on both 

isolated single curves and continuous curves. The visual demands were found to be significantly 

higher at curves with smaller radii. 

Vertical slope tends to distort the shape of the curves and mislead the drivers’ judgement 

on curve sharpness. Hassan and Easa (2002) studied the curves with a combination of different 

radii and vertical slopes. They found horizontal curves looked sharper with crest curves, but they 

looked flatter with sag curves as shown in Figure 2.2. Bauer et al. (2013) evaluated the effect of 

vertical curves on the number of crashes. They developed crash modification factors (CMF) for 

vertical grades on rural two-lane roads. The crash rates were found to increase linearly as vertical 

grade increased. 

 

Figure 2.2 Horizontal curves with vertical alignment (Hassan et al., 2002) 
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Lastly, Bertola et al.  (2012) tested the influence of roadway familiarity, driver 

inattention, and driver hurriness on drivers’ performance on curves. Fourteen participants’ were 

asked to solve mathematics problems and perform classification tasks in a driving simulator. 

They used financial incentives to simulate the level of hurriness in driving. It was found the 

drivers who were familiar with the roadways drove faster and also had larger lane deviations. 

They concluded that driver inattention degraded driver’s lane keeping behavior. In summary, the 

human factors were found to play an important role in the curve negotiation process. 

2.2 Vehicle Speed on Curves 

Vehicle speeds on horizontal curves had been investigated extensively in the past studies 

(Anderson et al., 2000; Bella et al., 2006; Lamm et al., 1988; Levison et al., 1998; Torregrosa et 

al., 2013; and Wu et al., 2013). Anderson et al. (2000) evaluated the relationship between speed 

reductions and crash rates on 1,126 curves. They found statistically significant correlation 

between speed reductions and crash rates. The speed reduction was calculated as the speed 

difference between 85th percentile of vehicle speeds on tangent section and the vehicle speeds at 

midpoint of a curve.  

In another study, Hauer (1999) evaluated the relationship between curve radius and the 

number of crashes. The study found smaller curve radius was correlated with higher number of 

crashes. The number of crashes was also in proportion to curve lengths. The speed reductions 

and crash rates were significantly higher on curves with radius less than 300 meters (1000 ft.). 

Numerous studies predicted vehicle speeds based on a number of factors including 

vehicle type, curve geometry, driving comfort, safety, and law enforcement (Levison, 1998). The 

American Association of State Highway and Transportation officials (ASSHTO) published the 
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report A Policy on Geometric Design of Highways and Streets book in 2001. As shown in 

Formula 2.1, they predicted vehicle speeds on curves as a function of side fraction demand, super 

elevation rate, gravitational acceleration, and curve radius. 

𝑣𝑐 = √𝑔𝑅 (𝑓𝐷 +
𝑒

100
)   (Formula 2.1) 

𝑣𝑐 = curve speed, ft/s 

𝑓𝐷 = side friction demand factor (or lateral acceleration); 

e = super elevation rate (percent); 

g = gravitational acceleration (32.2 ft/s2); 

R = radius of curve (ft); 

In addition to the ASSHTO guideline, numerous studies built speed prediction models 

based on curve radius, tangent speed, deflection angel, curve length, sight distance, vertical 

slope, vehicle type, and lane width. Bonneson et al. (2009) predicted vehicle speeds on 55 

horizontal curves on rural two-lane highways. A total of 6,677 passenger car observations were 

collected in this study. The speed prediction model included curve radius, curve length, width of 

traffic lanes and shoulders, super elevation, and vertical grade. The drivers were also found to 

tolerate higher lateral acceleration on low speed curves. 

The tangent distance between consecutive curves was also found to have significant 

impact on vehicle speed. Findley et al. (2012) modeled the spatial relationship of the neighboring 

curves, such as tangent distance, curve direction, radius, and length. They concluded the distance 

to adjacent curves was a reliable indicator for predicting the number of crashes. 
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 Schurr et al. (2002) examined the relationship of curve design, operating speed, and 

posted speed for 56 sites in Nebraska. They installed two detectors at the entry and mid-point of 

the curves. Several linear regression model were used to predict vehicle speeds based on the 

explanatory variables, including guardrail, bridge, traffic control signs, posted speed limit, 

intersection types, and lane width. They also found vehicle speeds were highly correlated with 

deflection angel, curve length, posted speeds, vertical grade, and AADT. They hardly observed 

any speed reduction when the curve radius was larger than 350 meters (1148 feet). 

Fitzpatrick et al. (1999) predicted vehicle speeds as a function of roadway geometry on 

rural two-lane highway. The data was collected at six states, including Minnesota, New York, 

Pennsylvania, Oregon, Washington, and Texas. More than 100 observations were collected at 

each site. The speed data was collected with radar gun and on-pavement piezoelectric sensors. 

They did not find significant impact of spiral curves on the 85th percentile vehicle speed. They 

did not observe speed reduction if the curve radius was larger than 800 meters (2625 feet). 

Significant speed reduction was observed only for curves with radii less than 250 meters (820 

feet). 

In order to improve drivers’ performance on curve negotiation, several researchers 

evaluated different types of speed reduction countermeasures on curves. Charlton (2007) tested 

two groups of treatments in a driving simulator. The first treatment group included different 

types of curve warning signs. The second treatment group included different types of on-

pavement markings. In summary, chevron and rumble strip were found to reduce vehicle speeds 

effectively. The herringbones road marking significantly improved drivers' lane keeping 

behavior on curves. Advanced Curve Sign and Advisory Speed Warning were found to have 
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little impact on vehicle speeds. The conclusion was that more noticeable visual cues were often 

more effective to influence drivers' behaviors on curves. However, the study was conducted on 

driving simulator, which might not represent the real world driving scenarios. 

Researchers were also interested in the influence of curve spiral design on drivers’ curve 

negotiation behavior. Passetti et al. (1999) compared the 85th percentile speeds on 12 curves with 

spiral design and 39 curves without spiral design. Regression model was used to test the effect of 

spiral on vehicle mean speeds, but no statistically significant relationship was found between 

spiral design and vehicle speeds. In a similar study, Council (1998) examined crash data on 

15,000 transition sections in the state of Washington and found spiral design only decreased 

crash rates on the sharp curves. 

Bella et al. (2013) tested drivers’ behavior on curves with different roadway 

configurations. They found the driver behavior was only influenced by cross-sections and 

geometric elements, rather than the roadside environments. They did not find statistically 

significant impact of guardrail on vehicle speeds and lane positions on curves. They also 

confirmed the drivers had tendency to cut the curves on both left turn and right turn curves. 

More recently, the on-board data collection technology allowed researchers to collect 

vehicles’ continuous speeds on curves with instrumented cars. Montella et al. (2015) measured 

the vehicle speeds on curves on 45 horizontal curves in Italy. They found the drivers’ speeds 

were not constant over the curves. They also found significant differences between different 

drivers. This study pointed out the importance to study the continuous speed profile of vehicle 

speeds, which will be addressed later in Chapter 6.  
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Most studies on horizontal curves collected data on passenger cars. Donnell et al. (2001) 

built speed prediction model for trucks on 17 sites. Regression model was used to predict vehicle 

speeds on curves.  They found the degree of curvature and vertical grades had statistically 

significant impact on speed reduction for trucks on curves. 

Several studies also examined the relationship between vehicle speed and vehicle lateral 

acceleration on curves. Felipe et al. (2007) examined driver’s comfortable lateral accelerations 

and vehicle speeds on curves. The drivers were asked to drive the vehicles in a test track at their 

most comfortable speeds and also at their maximum speeds. The test sites had curve radius 

between 16 meters to 100 meters. It was found the lateral acceleration for comfortable driving 

was within 0.35 to 0.40 g. 

In summary, the relationship between curve geometries and vehicle speeds has been 

investigated extensively by previous researchers. The speed prediction models from previous 

studies are summarized in Table 2.1. Most of studies found curve radius, curve length, curve 

deflection angel, and vertical slope had significant impact on vehicle’s speeds on curves. 

However, those studies only predicted vehicle speeds based on curve geometries. It was not clear 

how individual drivers’ driving style influenced vehicle speeds on curves. Additionally, most 

previous studies measured vehicle speeds using roadside equipment, which only collected speed 

data on limited number of locations on curves. The recent development of in-vehicle data 

collection technologies allowed researchers to observe drivers’ continuous speed profile at high 

frequency. The detailed speed data in naturalistic driving studies allows researchers to examine 

drivers’ speeds as a continuous process. 
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Table 2.1 Review of speed prediction models 

Author 

Sample 

Size Formula 

Independent 

Variables 

Bonneson et al. 

(2009) 55 curves 

𝑉𝑐 = 11.0𝑅 (−𝑏2 + √𝑏2
2 +

4𝑐

32.2𝑅
) radius, super 

elevation 

Schurr et al. (2002) 56 curves 

𝑉𝑚𝑑 = 67.4 − 0.1126∆
+ 0.02243𝐿
+ 0.276𝑉𝑝 

deflection angel 

(∆), curve length 

(L), posted speed 

(𝑉𝑝) 

Fitzpatrick et al. 

(1999) 24 curves 

𝑉85 = 56.34 + 0.808𝑅0.5

+ 9.34/𝐴𝐷 

curve radius (R), 

approach 

density(AD) 

Krammes et al. 

(1995) 

138 

curves 

𝑉85 = 102.45 − 1.57𝐷 + 0.0037𝐿
− 0.10𝐼 

degree of 

curvature (D), 

length of 

curvature (L), 

deflection angle 

(I) 

Taragin et al. (1954) 

35 

Curves 𝑉90 = 88.87 ∗
2554.76

𝑅
 radius (R) 

Glennon & Weaver 

(1971) 56 curves 𝑉85 = 103.96 ∗
4524.94

𝑅
 radius (R) 

Lamm et al. (1988) 261 𝑉85 = 94.39 ∗
3189.94

𝑅
 radius (R) 

Ottesen & Krammes 

(2000) 

138 

curves 𝑉85 = 103.64 ∗
3400.73

𝑅
 Radius (R) 
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2.3 Vehicle Lateral Position on Curves 

Vehicle lateral positions was often used as crash surrogate for roadway departure crashes. 

Many studies found the drivers had difficulty to keep their lane positions inside curves. 

Therefore, a number of researchers investigated how drivers kept their lane positions on different 

curves. Gunay et al. (2007) recorded vehicles' lateral positions on curves using video cameras. 

The lane deviation was calculated as the number of pixels between vehicle wheels and the edge 

line of lane marking. The distribution of wheel locations on curves is plotted in Figure 2.3. The 

vehicles were found to shift to the center of the curves at the midpoint of a curve, which is also 

known as curve-cutting behavior. 

 

Figure 2.3 The distribution of wheel position on the study curves (Gunay et al., 2007) 

 

In another study, Hallmark et al. (2012) investigated the relationship between curve speed 

and lateral positions at different locations on curves. Hallmark used the Z-configuration road 

tubes to measure vehicle lateral positions and speeds at three study sites in Iowa. The odds ratios 

of roadway departure events were 2.37 to 4.47 times higher for vehicle traveling 5 mph over 

speed limits. 
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Several researchers attempted to categorize vehicle’s trajectory patterns on curves (Ren, 

2012; Spacek, 2005; Verkehrssicherheit, A., 1980). In a field study, Spacek (2005) measured the 

vehicle lateral positions and speeds with twelve roadside measuring posts. The vehicle dynamics 

were collected on six left turn curves and six right turn curves with curve radius ranged between 

65 meters and 195 meters. Six types of curve negotiation types were identified on left turn curves 

as illustrated in Figure 2.4. The six trajectory patterns included ideal behavior, normal behavior, 

cutting behavior, drifting behavior, swinging behavior, and correcting behavior. In a similar 

study, Ren et al. (2012) developed mathematical models for the six behaviors and simulated the 

results in Matlab. The vehicle trajectories was plotted in Figure 2.5., which was very similar to 

Spacek’s (2005) proposed trajectories. 

 

Figure 2.4 Sketches of six types of trajectories (Spacek, 2005) 
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Figure 2.5 Six patterns of vehicle track behavior on curves simulated in Matlab (Ren et al., 

2012) 

 

Some researchers evaluated the effects of countermeasures on vehicle lateral positions. 

Rumble stripes and rumble strips became more and more popular in recent years to address the 

roadway departure problem. Taylor et al. (2005) evaluated the effects of rumble strips with a 

single paved lane marking and double paved lane marking. The vehicle lateral position was 

measured with road tubes on curves. The rumble strips were found to make drivers move away 

from the edge lines and also resulted in smaller variance of lateral positions. 

In another study, Rasanen et al. (2005) measured vehicle speeds and lateral positions on 

curves before and after milling the rumble strip. They did not find statistically significant 

differences in vehicle speeds, but the curve encroachment rate dropped from 9.2% to 2.5%. The 

standard deviation of lateral positions were also smaller with rumble strip installed on roads. 

Bella (2011) examined different roadway cross-sectional designs and roadside 

environments in a driving simulator study. The driver’s behaviors were found to be influenced 
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by geometric elements, rather than the roadside environments. They did not find the impact of 

guardrail on vehicle speed and lane position. 

Charlton (2007) evaluated different roadway designs on drivers’ speed and lateral 

position on curves. The chevron and rumble strip were found to reduce drivers' speed effectively. 

The herringbones road marking improved drivers' lane keeping behavior significantly. 

Interestingly, advanced curve sign and advisory speed warning sign did not have any significant 

impact on vehicles’ speed. 

2.4 Summary of Major Findings 

This chapter reviewed previous studies on drivers’ curve negotiation behavior from three 

aspects: curve perception, vehicle speed, and vehicle lateral position. A number of important 

findings were discovered in the previous studies. Some of the most important findings are 

summarized in the following paragraphs. 

Section 2.1 reviewed the studies on drivers’ perception of curves from human factor 

perspective. They explained why drivers have difficulty negotiating a curve. Several researchers 

evaluated drivers’ eye movement patterns on curves and found drivers were likely to focus their 

eye sights on edge lines so that they can quickly react to the changes in lateral positions on 

curves (Kandil et al., 2010; Mars et al., 2008; Shinar et al., 1977). Several papers found cognitive 

and visual demand were much higher on sharp curves and night time driving (Suh et al., 2006; 

Wooldridge et al., 1981). The vertical slope was found to distort the shape of a curve severely 

and mislead drivers’ judgement on curve sharpness (Bauer et al., 2013; Hassan and Easa, 2002). 

Lastly, familiarity with roadway, driver inattention, and driver hurriness were found to have 
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significant impact on driving performance (Bertola et al, 2012). Those studies found human 

factor played important roles in the curve negotiation process. 

Section 2.2 focused on the analysis of vehicle speeds on curves and many speed 

prediction models were summarized from these studies. A few studies examined the relationship 

between curve radius and the number of crashes. They found the crash rate increased as curve 

radius decreased, especially for curves with radius less than 1000 feet (Anderson et al., 2000; 

Hauer et al., 1999). Additionally, several studies built speed prediction models with a number of 

explanatory variables as shown in Table 2.1. The important variables included tangent speed, 

vehicle type, curve radius, deflection angel, curve length, sight distance, vertical slope, lane 

width, and presence of shoulder (Bonneson et al., 2009; Findley et al., 2012; Schurr et al., 

2002;). Several researchers examined the effectiveness of different countermeasures for vehicle 

speeds on curves. The rumble strips, chevron, and dynamic speed feedback signs significantly 

reduced drivers’ speed on curves. On the contrary, the spiral curve, advanced curve sign, and 

guardrail did not have significant speed reduction on curves (Bella et al., 2013; Charlton 2007; 

Hallmark et al., 2013; Lamm et al., 1988; Torregrosa et al., 2013, and Wu et al., 2013). Many 

studies only observed significant speed reduction when curve radius was less than 1000 feet 

(Schurr et al., 2002; Fitzpatrick et al., 1999). Several studies examined the relationship between 

vehicle speeds and lateral accelerations on curves. The drivers were found to tolerate higher 

lateral acceleration on curves with smaller radius (Felipe et al., 2007; Raymond et al., 2001). 

Section 2.3 discussed drivers’ lane keeping behavior on curves and summarized several 

vehicle trajectory patterns. Most of the lateral position studies were measured with roadside 

equipment. Curve cutting was found to be a frequent behavior observed in several studies 
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(Gunay et al., 2007; Verkehrssicherheit, 1980; Spacek, 2005). The speeds over speed limits also 

had negative impact on drivers’ lane keeping behavior (Hallmark et al., 2012). Several 

researchers categorized vehicle trajectories into six types, which were ideal behavior, normal 

behavior, cutting behavior, drifting behavior, swinging behavior, and correcting behavior 

(Verkehrssicherheit, 1980; Ren, 2012; Spacek, 2005). Additionally, rumble strip was found to be 

effective to reduce lane encroachment rate on curves (Taylor et al., 2005; Rasanen et al., 2005). 

Guardrail had little effect on vehicle speed and lane keeping behavior (Bella et al., 2011). The 

herringbones roadway marking was found to improve driver’s lane keeping behavior 

significantly (Charlton, 2007). 

In summary, significant amount of attentions was focused on drivers’ behavior on curves 

in the past decades. However, there were still some shortcoming in previous studies. The major 

hurdle of previous studies was the difficulty to collect high quality data. The roadside equipment 

can only measure limited sample size at specific locations on a curve. Additionally, it was 

difficult to collect driver demographics and driver behavior information, so the influence of 

individual driver’s driving style was unknown. Fortunately, the SHRP2 NDS data could be used 

to address these issues and help us better understand the curve negotiation process on rural two-

lane curves. 
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 INTRODUCTION TO THE STRATEGIC HIGHWAY 

RESEARCH PROGRAM 2 NATURALISTIC DRIVING STUDY 

This chapter reviews the previous naturalistic driving studies and lays the foundation for 

the discussion in the next few chapters. Section 3.1 reviews the previous and on-going naturalistic 

driving studies inside and outside U.S. Section 3.2 introduces the experimental design, data 

acquisition system, and the variables collected in the SHRP2 NDS. The pros and cons of the 

SHRP2 NDS data are also discussed by the end of this chapter. 

3.1 Review of Previous Naturalistic Driving Studies 

This section reviews five naturalist driving studies inside and outside U.S. The 100-Car 

Naturalistic Driving Study was one of the first large-scale naturalistic driving studies in the U.S. 

This project is the precursor for the large-scale SHRP2 NDS. Additionally, the Naturalistic 

Teenage Driving Study (NTDS) was conducted by U.S. Department of Health and Human 

Services with more focuses on teenagers’ driving behavior. The three international studies in 

Europe, China, and Canada are still in the data collection phase by the time of writing this 

dissertation. These studies are briefly discussed in this section. It should be noted that there could 

be other naturalistic driving studies and this list might not be comprehensive. 

3.1.1 100-Car naturalistic driving study, U.S. 

The 100-Car Naturalistic Driving Study collected one year’s driving data from 241 

primary and secondary drivers. This study included 43,000 hours’ driving data for approximately 

2 million traveled miles. The data acquisition system used in this study is shown in Figure 3.1. 

This graph shows the central data collection system, in-cabin camera, camera views, and forward 
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radar. The variables collected in this study were vehicle speed, vehicle headway, longitudinal 

and lateral acceleration, GPS, brake activation, turn signal, camera views, and lane position. 

Most of those variables were recorded at 10 Hz, which is every 0.1 second. In addition, the 

drivers were asked to answer questionnaires about their driving history, demographics, and 

driving skills before they entered the study. The variables provided rich information regarding 

how drivers interact with vehicle, roadway, and traffic environments. 

  

Central Data Collection System In-Cabin Camera 

  

Camera Views Forward Radar 

Figure 3.1 Data acquisition system in the 100-Car study (Dingus, 2014) 

 

One of the most frequently asked question was whether the drivers were affected by the 

presence of data acquisition system in their vehicles. This study investigated this issue and found 
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the drivers adapted to the presence of DAS within the first few hours of driving. During one 

year’s study period, 82 crashes were recorded in this study, but only 21% of those crashes were 

reported to the police, which again confirmed the under-reporting issue in police-reported crash 

dataset. 

The most common types of crashes were single vehicle run-off road crashes and rear-

ended crashes. The primary cause of those crash and near-crashes was driver distraction, which 

was a contributing factor to 78% of crashes and 65% of near-crashes. The younger driver group 

aged from 18 to 35 years was found to have disproportionally higher chance to get involved in 

distraction-related crashes than the older driver group (35 years old or above). The use of digital 

device, such as cellphone and music player, was the most frequent type of distraction. However, 

this study only collected drivers’ behavior in Virginia and Washington D.C. areas, which might 

not represent the overall U.S. driver population. Another limitation was the data quality issue 

such as missing data and large noises in the raw data. 

3.1.2 Naturalistic teenage driving study, U.S. 

Naturalistic teenage driving study was conducted by U.S. Department of Health and 

Human Services. The objective of NTDS was to understand teenage drivers’ driving 

performance and the risks associated with driver distractions. The DAS included cameras, radar, 

accelerometer, GPS, lane position sensor, and vehicle network information. This study installed 

data acquisition system on vehicles with 42 newly licensed teenage drivers over 18 months. The 

average age of those drivers was 16.4 years. Additionally, 54 parents participated in the study as 

the control group. This project collected approximately 102,000 trips over 500,000 miles. A total 

number of 40 crashes and 270 near-crashes were collected in this study. The main research 
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questions were to 1) understand the teenage drivers’ exposure to crash and near-crash events; 2) 

identify the influence of secondary tasks on teenager’s driving performance; 3) study the 

influence of teenage passengers on the teenage drivers’ driving performance. 

One of the most interesting results is shown in Figure 3.2, which plots the extreme G-

force events per 100 miles driven by teenage drivers (blue line) and the adult drivers (red line). 

They found the teenage drivers have systematically higher crash risks compared to their parents. 

Interestingly, if the teenage drivers drove with adult passengers inside the vehicles, the crash 

risks dropped dramatically than those teenage drivers who drove themselves. In addition, the 

odds ratio for extreme event was 8.32 for dialing a cellphone, 3.87 for texting, 3.90 for looking at 

roadside object, and 2.99 for eating and drinking. 

 

Figure 3.2 Extreme G-force events per 100 miles for teen drivers, the parents, and the teen 

driver with adult passengers (Simons-Morton et al., 2014) 
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3.1.3 UDRIVE, Europe 

The eUropean naturalistic Driving and Riding for Infrastructure & Vehicle safety and 

Environment (UDRIVE) is the first large-scale naturalistic driving study conducted in Europe. 

The objective of this project is to understand drivers’ daily driving behavior and its influence on 

transportation safety and environment. The UDRIVE focused on five research questions, which 

are 1) crash causation; 2) normal driving behavior; 3) distracted driving; 4) vulnerable road 

users; 5) driving style and eco-driving (Eenink et al., 2014). 

In the UDRIVE Naturalistic Driving Study, the driving data were collected from 2012 to 

2016 in seven countries in Europe. UDRIVE collected driving data from 290 participants with a 

variety of vehicle types, including passenger cars, trucks, and motorcycles. The data acquisition 

system included camera, CAN, GPS, accelerometer, and speed sensors as shown in Figure 3.3. 

The results from this study will guide the future transportation regulation, enforcement, driver 

awareness, driver training, and road design methods in Europe. 

 

Figure 3.3 Data acquisition system in the UDRIVE project (Pierre, G. S., 2014) 
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3.1.4 Shanghai naturalistic driving study, China 

The Shanghai Naturalistic Driving Study is the first naturalistic driving study conducted 

in China, which is a joint effort among Tongji Jiaotong University, Virginia Tech Transportation 

Institute, and General Motor Company. The primary goal of this study was to investigate 

similarities and differences between Chinese drivers and drivers from other countries. Another 

goal of this study was to learn how drivers interact with the advanced safety warning system. 

The study recruited 90 participants over 2 years. Each driver drove the instrumented vehicle for 2 

months. A total of 5 vehicles (2 Buick Lacrosse, 2 Chevy Cruze, and 1 Cadillac) were used in 

this study. This study is still in the data collection phase. 

 

Figure 3.4 Shanghai naturalistic driving study (Fang, 2014) 

3.1.5 Canada naturalistic driving study, Canada 

The Canada naturalistic driving study was conducted in Saskatoon, Canada sponsored by 

Canadian Deputy Ministers of Transport and Highway Safety. A number of 125 drivers 

participated in this study. The data acquisition system was designed by VTTI and thus the 

collected variables was very similar to the 100-Car study. The equipment includes head unit, 

main unit, and front radar. This project is still in the data collection phase. 
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Figure 3.5 Head unit, main unit, and front radar used in Canada naturalistic driving Study 

(Hankey, 2014) 

 

In summary, naturalistic driving study is a relatively new research method that is getting 

more and more popular in recent years. Several studies had been conducted in the U.S. The three 

international naturalistic driving studies are still in the data collection phase. In addition to these 

naturalistic driving studies, the SHRP2 Naturalistic Driving Study is one of the largest 

naturalistic driving studies by far, which will be discussed in details in the next section. 

3.2 Introduction to the SHRP2 Naturalistic Driving Study  

This section introduces the Strategic Highway Research Program 2 Naturalistic Driving 

Study. The information includes study background, data acquisition system, roadway 

information system, driver data, vehicle data, and time series data. The crash and near-crash 

events were extracted from the SHRP2 NDS as a separate dataset. The challenges of working 

with the SHRP2 NDS dataset is discussed at the end of this section. 

3.2.1 Study background 

The Strategic Highway Research Program 2 Naturalistic Driving Study (SHRP2 NDS) is 

state-of-the-art naturalistic driving study and collected more than 4 petabytes (4 million 

gigabytes) data in total. The objective of the SHRP2 NDs is to investigate how drivers interact 
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with vehicle, roadway, traffic conditions, and traffic control devices.  The project helps us 

understand the causes of crashes and the associated risks with different driving behaviors. The 

findings can be used to propose better roadway designs and develop effective safety 

countermeasures. 

The study collected more than 3,092 drivers’ real-world driving data from October 2010 

to November 2013 (Dingus, 2014). A total of 5 million trips, more than 3,900 vehicle years, and 

one million hours of driving data were collected at six study sites in the United State. The study 

sites included Indiana, Pennsylvania, Florida, New York, North Carolina, and Washington State. 

The number of participants at each site is listed in Figure 3.6. Those sites and participants were 

selected as a nationally representative sample for a variety of roadway types, driver 

demographics, weather conditions, and state laws. The detailed data collection plan was 

explained in the report Naturalistic Driving Study: Technical Coordination and Quality Control 

(Dingus et al., 2015). Those participants were recruited with a variety of methods, such as call 

center, emails, websites, flyers, etc. A summary of the recruitment method, age, and sites is 

shown in Table A.1 (Appendix A).  The drivers were compensated with $300 each year. A 

certificate of confidentiality was initiated by the National Institute of Mental Health (NIMH) to 

protect the participant privacy. 

In order to examine the representativeness of the participant group, Antin et al. (2015) 

compared the SHRP2 NDS driving profiles to the national traffic statistics in the report 

Naturalistic Driving Study: Descriptive Comparison of the Study Sample with National Data. 

They concluded that the six study sites were similar to the nation’s temperature patterns, but the 

six sites had more annual rainfall and more urban development area. The comparison SHRP2 
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participants versus U.S. driving population percentages by age groups is shown in Figure A.1 

(Appendix A). 

 
Site 

Primary 

Participant Count 

Buffalo, NY 719 

Tampa, FL 698 

Seattle, WA 676 

Durham, NC 504 

Bloomington, IN 239 

State College, PA 256 
 

 

Figure 3.6 SHRP2 NDS data collection sites and the number of participants (VTTI, 2013) 

 

3.2.2 Data acquisition system  

The data acquisition system (DAS) used in this study was the state-of-the-art data 

collection system, which included forward and rear radar, four video cameras, accelerometer, 

vehicle controller area network, GPS, lane-tracking system, alcohol sensor, incident button, 

illuminance sensor, and data storage system. The DAS equipment and the installation schematic 

is illustrated in Figure 3.7 and Figure 3.8. The forward radar collected vehicle headway and its 

closing rate to the front vehicle. The video cameras recorded in-vehicle driver behavior and 

roadway environments. The accelerometer recorded vehicle’s acceleration and deceleration. The 

vehicle controller area network (CAN) provided a variety of vehicle operating status, such as 

brake activation, electronic stability control, steering wheel angel, etc. The GPS provided vehicle 

locations which is used to link the driving data to the roadway information system (RID). The 

lane-tracking system measured vehicles’ lateral position. The alcohol sensors measured the 
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presence of alcohol to detect drunk driving activities. The illuminance sensor measured forward 

visibility from driver’s view. Lastly, the data from different sources was synthesized into the 

main unit system (NextGen) for processing, recording, and communicating between different 

devices. 

 

Figure 3.7 Data acquisition system components used in the SHRP2 NDS (including 

NextGen, Head Unit, Radar, Network Box, Radar Interface Box (Dingus et al., 2014) 

 

 

Figure 3.8 SHRP2 data acquisition system installation schematic (Antin et al., 2011) 

 

The four cameras played an important role in the SHRP2 NDS project to observe the 

external driving environments and the in-cabinet driver activities. There were four cameras 
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inside the vehicle, including Forward View, In-cabin Driver Face View, Instrument Panel View, 

and Rear View as shown in Figure. 3.9. Those information was extremely useful for researchers 

to understand the context of the driving events. The forward video (upper left quadrant of Figure 

3.9) had a colored view that provided information regarding traffic conditions, roadway types, 

pavement conditions, highway signage location, area types, weather conditions, and other 

unexpected on-road hazard events. Additionally, it was critical to observe drivers’ in-cabin eye-

glance behavior or other secondary tasks using the driver face video (upper right quadrant of 

Figure 3.9). Driver’s distraction behavior was coded form the driver face view, such as eating 

foods, texting, and talking to the passengers. However, a driver might wear sun glass and the eye 

sight direction had to be speculated from drivers’ head positions. The driver face video could 

only be coded by trained data analyst at VTTI Data Secure Enclave. The instrument panel view 

(bottom left quadrant in Figure 3.9) was used to understand drivers’ interaction with steering 

wheels and the infotainment system at the center console. The rear view (bottom right quadrant 

of Figure 3.9) was used to monitor the traffic density and the risks from the following vehicle. 

Lastly, a cabin snap shot was taken at every 10 minutes to record the number of passengers in the 

vehicles. The four camera views were found to be extremely helpful for researchers to 

understand the drivers’ in-vehicle behavior and the context of driving events. The video 

information was lacking in the traditional crash data set. 
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Figure 3.9 Four camera views from the SHRP2 data acquisition system: forward view 

(upper left), in-cabin driver face view (upper right), instrument panel view (bottom left), 

rear view (bottom right). (The driver in the picture is not experimental participant and just 

for demonstration purpose only) (Dingus et al., 2014) 

 

3.2.3 Roadway information database 

Meanwhile, the roadway information database (RID) was also developed in the SHRP2 

NDS project and could be linked to the driving data. The integration of the two data sources 

allowed researchers to identify the locations of interests and examine the driver interactions with 

roadway characteristics. The RID was collected and maintained by Center for Transportation 

Research and Education (CTRE) at Iowa State University. The roadway asset inventory was 

collected by instrumented mobile van driving at posted speed limits (Smadi, 2015). Due to the 

limited resources, only the roadway with high trip densities and greatest research interests were 

collected in this project.  A list of the typical collected variables is shown in Table 3.1. As a 
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result, a total number of 25,076 miles of roadway data and more than 7 million of roadway assets 

were collected in the Geographic Information System (GIS). The colored roadway links in 

Figure 3.10 showed the RID data collected at the six sites. 

Table 3.1 List of collected variables in the roadway information database (RID) 

Curve Radius Lane Types 

Curve Length Shoulder Types 

Curve Point of curvature All Signs on MUTCD 

Curve Point of tangency Guardrails/Barriers 

Curve Direction Intersection Geometry 

Grade Median Types 

Cross-slope/Super 

elevation 

Presence of Rumble 

Strips 

Number of Lanes Presence of Lighting  

Lane Width 
 

 

 

Figure 3.10 A site map shows the RID database in the SHRP2 NDS (Smadi, 2015) 
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3.2.4 Driver data 

According to the SHRP2 NDS Insights website, 3,092 drivers aged from 16 to 95 were 

recorded at six sites. Figure 3.11 shows the distribution of participants’ ages and genders. A 

careful experimental design and recruiting process was conducted to represent the national 

drivers’ demographics. Ideally, the participants should be randomly selected from the population 

of interests, who are all the licensed drivers in the United States. The recruitment methods were 

social media, posting ads on local newspapers, and distributing flyers. The younger drivers and 

older drivers were overrepresented in the study since they are more vulnerable drivers than other 

driver groups. Antin et al. (2014) compared the SHRP2 NDS participants to the national driver 

population and found there were slightly higher proportion of population identifying themselves 

as white and with college degree, and slightly lower proportion of married and full-time 

employed drivers. 

 

Figure 3.11 Drivers demographics by age group and gender (Insight Website, 2014) 
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Table 3.2 List of driver surveys collected in the SHRP2 NDS 

Driver Demographic Questionnaire Driving history Questionnaire 

Medical Conditions & Medications Barkley’s ADHD Screening Test 

Driving Knowledge Survey Risk Perception Questionnaire 

Risk Taking Questionnaire Sensation Seeking Scale Survey 

Physical Strength Tests Driver Behavior Questionnaire 

Visual and Cognitive Tests Sleep Habits Questionnaire 

Medical Conditions and medications  Driver Exit Interview 

Conner’s Continuous Performance Tests Clock Drawing Assessment 

 

In order to better understand the drivers’ driving conditions both physically and 

psychologically, the drivers were asked to fill out several questionnaires and conduct physical 

tests before entering the SHRP2 study. Those information included the driver demographics, 

vision tests, cognitive assessment, physical ability metrics, vehicle characteristics, and post-crash 

survey. The basic driver demographics included gender, driving history, employment status, 

household income, etc. Those information helped us identify the risky or vulnerable driver 

groups prone to crashes. A list of the participant questionnaires and tests are listed in Table 3.2. 

The detailed explanations for the assessment questionnaires and cognitive assessments are listed 

in Table A.2 and Table A.3 (Appendix A). However, none of those driver survey information 

was used in this dissertation. 

3.2.5 Vehicle data 

The SHRP2 vehicle fleet was recruited to represent the national light vehicle 

demographics and vehicle makes, including passenger car, sports utility vehicle, truck, and van. 

Those vehicles were owned by the participants for their daily driving purpose. The distribution 
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of vehicle types in the SHRP2 NDS is shown in Figure 3.12. The percentage of vehicles for 

passenger car, SUV, truck, and van were 71.4%, 19.5%, 5% and 4% respectively. The passenger 

cars are the predominant type of vehicle in the SHRP2 NDS, which followed by SUV, truck, and 

van. However, the SHRP2 NDS oversampled the newer cars between 2006 to 2011 years 

because some of the older cars do not provide vehicle network information. Therefore, the 

sample was slightly biased towards the newer generation of vehicles. A list of SHRP2 NDS 

vehicle by vehicle classes is shown in Table A.4 (Appendix A). 

 

Figure 3.12 Vehicle types in the SHRP2 NDS (SHRP2 InSight, 2014) 

 

3.2.6 Time series DAS data 

Time series DAS data was collected from the GPS, video cameras, vehicle network, and 

vehicle sensors. A list of the most relevant time series variables is shown in Table 3.3. Speed is 

one of the most important variables in the time series dataset. The GPS location information is 

critical to link the driving data to RID data. The accelerometer, gas pedal, and brake pedal are 
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important indicators for drivers’ speed control behavior and evasive maneuver in crashes and 

near-crashes. The lane marking distance can be used to study drivers’ lane keeping behavior. The 

lane marking probability variable indicates the confidence of lane position values from in-field 

measurement. Forward radar also provides critical information to study drivers’ car following 

behavior. Overall, it is a very comprehensive list of variables that could be potentially collected 

on roads. 

Table 3.3 Description of selected time series data from the SHRP2 NDS (Dingus, 2013) 

Variable Description Units Rate Accuracy 

Speed Vehicle speed from GPS meters/second 1Hz +-1km/h 

Heading, GPS 

Compass heading of vehicle from 

GPS degrees 1Hz +-1.5deg 

Acceleration 

Vehicle acceleration in the 

longitudinal direction versus time. meters^2/second 10Hz NA 

Pedal & 

Accelerator 

Position 

Position of the accelerator pedal 

collected from the vehicle 

network and normalized using 

manufacturer specs. percentage Varies NA 

Pedal, Brake On or off press of brake pedal. 1/0 2 Hz NA 

Steering 

Wheel 

Position 

Angular position and direction of 

the steering wheel from neutral 

position degrees 10 Hz NA 

Lane Marking, 

Distance 

Distance from vehicle centerline 

to inside of left side lane marker 

based on vehicle based machine 

vision. cm 10 Hz NA 

Lane Marking, 

Probability 

Probability that vehicle based 

machine vision lane marking 

evaluation is providing correct 

data for the right side lane 

markings. 1 10 Hz NA 

Radar, Range 

Rate 

Range rate to forward radar 

targets measured longitudinally 

from radar. meters/second 10 Hz NA 



   48  

3.2.7 Crashes and near-crashes data 

A number of crash and near-crash events were identified from participant reports, crash 

notification algorithm, and the video reduction from forward view video. As of September 18th, 

2015, a total of 1,465 crashes, 2,682 near-crashes, and 31,925 baseline events were presented on 

the SHRP2 InSight website. Crashes were further categorized into four severity levels: 1) Most 

severe; 2) Police-reportable crashes; 3) Minor Crashes; 4) Low-risk tire strike. The number of 

crashes and near-crashes for each category is illustrated in Figure 3.13. Near-crashes was defined 

as an event requires a rapid evasive maneuver. This is the major data source for the crashes and 

near-crashes analysis in Chapter 4. Additional events are likely to be added to the InSight 

website, but they won’t be included in this dissertation. 

 

Figure 3.13 Crash and near crashes by incident types (SHRP2 InSight, July 2015) 
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3.2.8 Institutional review board (IRB) and other issues 

Since the SHRP2 data contains human subject information, it is important to protect 

participants’ privacy and obtain the IRB approval from the home institution to properly use the 

SHRP2 NDS data. Protecting drivers’ privacy issue was one of the highest priority in this study. 

The participant protection policy strictly followed the Code of Federal Regulations, Title 45 

Public Welfare, Department of Health and Human Services, Part 46, Protection of Human 

Subjects (45 CFR 46). The analysis of SHRP2 data in this dissertation strictly followed the 

approved data analysis plan and data usage agreement submitted to IRB and VTTI. 

3.2.9 The challenges of analyzing the SHRP2 NDS data 

The dataset used in this dissertation was requested in summer 2013.  By the time of 

receiving the data, only one third of the SHRP2 NDS data was available. The radar 

measurements as well as many other variables had not gone through data quality assurance 

process. Hence, it is important to understand the quality of the data before it is analyzed in this 

dissertation. 

Even though naturalistic driving study has many advantages over traditional methods, it 

also had some shortcomings. First of all, it is difficult to draw casual-effect relationship from the 

complex driving environments. For example, the small change in vehicle speed could be caused 

by a variety of reasons in the complex and constantly changing driving environments. Drawing 

causal-effect relationship from the complex driving environments is a challenging task using 

NDS data. 
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Second, the data quality should be carefully controlled before conducing any statistical 

analysis. Some common data quality issues include missing data and large noise from sensor 

data. Missing data is a common issue for many variables, such as GPS locations, steering wheel 

position, and vehicle lateral positions. Some of the missing data were caused by equipment 

malfunction, but some were caused by the absence of detected objects. Outlier values were often 

observed in vehicle sensor data, especially for the front radar and lane position variables. Dingus 

et al. (2014) assessed the quality of the collected data in the SHRP2 NDS Study and the results 

are listed in Table A.5 (Appendix A). 

Third, although one advantage of naturalistic driving study is the large size of the 

collected data, it could also bring challenges for data storage, data management, and statistical 

analysis method. For example, the SHRP2 NDS project collected approximately 4 million GB’s 

data. Even analyzing a subset of the SHRP2 dataset could be a challenge and require certain 

level of database knowledge and programming skills. 

Fourth, choosing appropriate statistical techniques for analyzing large-scale naturalistic 

driving data is a challenge. One way to address this problem is to conduct the multivariate 

analysis at summarized event level. However, most of naturalistic driving data are collected as 

time series data by its nature. Analyzing time series data from naturalistic driving study could be 

a challenging task, which will be addressed in Chapter 6 of this dissertation. 

Last but not least, reducing the naturalistic driving data could be a time consuming 

process. For example, the chapter 5 of this dissertation contained 5 million rows of time series 

data with more 83 columns (variables) collected. Manually reducing the raw data would be time 
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consuming and even impractical sometimes. It is recommended to write programs to batch 

process the raw data in an efficient and consistent manner. 

Overall, it is important to understand the quality of the collected SHRP2 NDS data. The 

missing data and outliers should be carefully processed before conducting any statistical 

analysis. Otherwise, it may come to the biased conclusion. The researchers should be careful 

about the data quality issue in future research. 
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 CRASHES AND NEAR-CRASHES ANALYSIS ON RURAL 

TWO-LANE CURVES 

This chapter focuses on the analysis of crashes and near-crashes on rural two-lane curves 

using the SHRP2 NDS data. Section 4.1 introduces the background of the study. Section 4.2 

discusses the data collection and data reduction process. Section 4.3 describes the initial screen 

of the SHRP2 NDS curve dataset. Section 4.4 focuses on the roadway departure crashes on rural 

two-lane curves. The logistic regression analysis of crashes and near-crashes is shown in Section 

4.5. The discussion of the model results and summary of the findings are presented in Section 4.6 

and Section 4.7. 

4.1 Introduction 

Several studies reviewed the causes of crashes and found human factor was the major 

contributing factor to approximately 90 percent of all crashes (NHTSA, 2008; Hendericks et al., 

2001; Rumar et al., 1985; Salmon et al., 2005; Spainhour et al., 2005; Treat et al., 1979). In one 

of the earliest human factor study in transportation safety, Treat et al. (1979) reviewed 2,258 

crash reports and found human factors contributed to 92.6% of the crashes; Environmental 

factors contributed to 33.8% of the crashes; Vehicle failure accounted for 12.6% of the crashes. 

In a similar study, Rumar et al.’ study (1985) examined the causes of crashes and plotted the 

Veen diagram as shown in Figure 4.1. They found driver errors contributed to 93% of the 

crashes. Roadway factor accounted for 34% of the crashes. Vehicle factor contributed to 12% of 

crashes. It is possible that two or more factors existed in the same crash. In a more recent study, 

NHTSA (2008) again confirmed that human error was a major contributing factor for about 93% 
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of all crashes. Therefore, many previous studies revealed the important role of human factor in 

crashes, but it is also the least understood factor in the causes of crashes. 

 

Figure 4.1 Venn diagram of crash causes by percentage (Rumar, 1985) 

 

The traditional transportation safety analysis relied on police-reported crash data, but 

crash data is known to have a number of limitations. First of all, underreporting is a significant 

issue in crash data set. For example, Iowa only records any crashes causing death, personal 

injury, or total damages over $1500. Many low-cost crashes were not recorded in the crash 

dataset. Second, human factor variables were poorly recorded in crash data. The drivers who 

involved in crashes might deliberately hide the true causes of crashes, or just simply did not 

remember what happened before the crashes. Hence, it is difficult to acquire accurate and 

reliable driver behavior information in crash report. Third, the near-crashes and unsafe driving 

behaviors were not recorded in crash dataset. Near-crash refers to the safety critical event that 

require abrupt evasive maneuver to avoid a crash (VTTI, 2015). Near-crash could provide 

important driver maneuver information for successful crash avoidance, but they were not 

recorded in crash data. Even though crash data is admittedly one of the most important data 
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sources for transportation safety research, it does not provide reliable and accurate driver 

behavior information. 

In order to better understand the role of driver behavior in crashes, Strategic Highway 

Research Program 2 Naturalistic Driving Study (SHRP2 NDS) recorded more than 3,000 

drivers’ daily driving behavior for over two years in the U.S. Approximately 4 million gigabytes 

data were collected in this project. As the date of September 18th, 2015, a total of 1,465 crashes 

and 2,682 near-crashes, and 31,925 baseline events were recorded in the SHRP2 InSight website. 

The SHRP2 NDS data will greatly enhance our knowledge for the role of human factor in 

crashes. 

4.2 Data Collection 

This section discusses the data collection and data reduction process. The main data 

source of the crashes, near-crashes, and baseline events was the SHRP2 InSight website 

(https://insight.shrp2nds.us/home). This website served as the portal for researchers to review the 

collected SHRP2 NDS data. The variables in the SHRP2 NDS can be classified into four groups: 

vehicles, drivers, trips, and events. Vehicle information included vehicle type, make, age, and 

advanced technologies. Driver information included driver age, gender, traffic violation history, 

and driver behavior surveys. Trip information summarized the trips generated in SHRP2 NDS by 

average trip length, mean speed, acceleration, etc. Lastly, the event detail table summarized the 

SHRP2 NDS data at event level. The events included crash, near-crash, and baseline events. 

Additionally, forward view video for each event was also available on the SHRP2 InSight 

website. However, only qualified researchers, who obtained Institution Review Board certificate, 

have access to the event videos. 
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4.2.1 Definition of crash, near-crash, and baseline events 

The events were categorized into three types in this analysis, including crash, near-crash, 

and baseline events. The event types were manually reviewed and analyzed by data reductionist 

at VTTI. A total number of 1,465 crashes, 2,682 near-crashes, and 31,925 baseline events were 

presented on the SHRP2 InSight website as the date of September 18th, 2015. Furthermore, the 

crashes and near-crashes were treated as the same type of event in this study as safety critical 

events. The definitions for crash, near-crash, safety critical event, and baseline events were 

adopted from the SHRP2 InSight website and described in the following paragraphs: 

Crash: Any contacts that the subject vehicle has with an object, either moving or fixed, at 

any speed in which kinetic energy is measurably transferred or dissipated. Also includes 

non-premeditated departures of the roadway where at least one tire leaves the paved or 

intended travel surface of the road. 

Near-Crash: Any circumstance that requires a rapid evasive maneuver by the subject 

vehicle or any other vehicle, pedestrian, cyclist, or animal to avoid a crash. Near 

Crashes must meet the following four criteria: 1) Not a Crash; 2) Not pre-meditated; 3) 

Evasion required; 4) Rapidity required. 

Safety Critical Event: The combination of all crashes and near-crashes was referred as 

safety critical event in this study. 

Baseline: An epoch of data selected for comparison to any of the conflict types listed 

above rather than due to the presence of conflict. For SHRP2, these baselines are 21 

seconds long and were randomly selected with a goal of 20,000 baselines, a minimum of 

1 baseline per driver (SHRP2 InSight Website, 2015). 
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4.2.2 Query of curve-related crashes 

The next step was to query all the curve-related crashes and baseline events from the 

SHRP2 InSight website. In this study, the curve-related crash was defined as any crashes 

occurred on curve alignment, or the pre-incident maneuver was negotiating a curve. The query of 

curve-related crashes from the InSight website is shown in Figure 4.2. As a result, 386 curve-

related crashes (176 crashes and 210 near-crashes) were filtered from the InSight website. It 

should be noted that this step queried all crashes on all types of curves. The roadway departure 

crashes on rural two-lane curves are further filtered in Section 4.4. 

 

Figure 4.2 Filter criteria for curve-related crashes and near-crashes in the SHRP2 NDS 

 

In addition to crash and near-crash data, the baseline event data was also randomly 

sampled from the event table using similar criteria as shown in Figure 4.2, except that the event 

severity is baseline event. The goal of incorporating balanced-sample baseline was to represent 

the participants’ exposure to different driving conditions. A total of 2,729 curve-related baseline 

events were found in the balanced-sample baseline events dataset. Similarly, any baseline events 

near intersections were excluded from the study. Only the events on rural-two lane curves with 
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paved surface were kept in the analysis. Finally, 386 curve-related crashes and 2,729 balanced-

sample baseline events on curves were included in the initial analysis. 

4.2.3 Variables from SHRP2 NDS event table 

The event table data was the main data source used in the crash and near-crash analysis. 

The majority of the event table data was reduced from forward view videos and driver face 

videos. The additional time series data, such as forward radar, accelerometer, gyro, and GPS, 

were also available to help understand the driver maneuver during the events. The variable 

definitions used in the SHRP2 NDS were based on the General Estimate System (GES) dataset 

developed by NHTSA, but modified for the naturalistic driving study data (Dingus et al, 2015). 

 Compared to the traditional crash data analysis, the most valuable information from NDS 

was drivers’ in-vehicle driving behavior before the crashes and near-crashes. The video camera 

and vehicle sensors data provided critical information regarding drivers’ distracted behavior, 

secondary tasks, reaction time, and impairments conditions. The information was not available in 

traditional crash data, but was collected in the SHRP2 NDS data. The precipitating event of the 

baseline events was defined as the event occurred at one second before the baseline event. This 

event table contains 75 variables about the event-related information, although some variables 

are not applicable to the baseline events. The detailed explanation for each variable is listed in 

the report SHRP2 Research Dictionary for Video Reduction Data Version 3.4 (February 2015). 

A complete list of the variables in the event table is shown in Table 4.1.  The following 

paragraphs discuss several important variables provided in the event table. 
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Table 4.1 List of variables from the event detail table 

eventID Roadway Departure Curve-related 

anonymousParticipantID eventSeverity1 eventSeverity2 

eventStart subjectReactionStart impactProximity 

eventEnd preIncidentManeuver maneuverJudgment 

precipitatingEvent vehicle1SubjectConfig vehicle2Config 

vehicle3Config eventNature1 incidentType1 

crashSeverity1 vehicle1EvasiveManeuver1 vehicle1PostManeuver1 

eventNature2 incidentType2 crashSeverity2 

vehicle1EvasiveManeuver2 vehicle1PostManeuver2 airbagDeployment 

vehicleRollover driverBehavior1 driverBehavior2 

driverBehavior3 driverImpairments frontSeatPassengers 

rearSeatPassengers secondaryTask1 secondaryTask1StartTime 

secondaryTask1EndTime secondaryTask1Outcome secondaryTask2 

secondaryTask2StartTime secondaryTask2EndTime secondaryTask2Outcome 

secondaryTask3 secondaryTask3StartTime secondaryTask3EndTime 

secondaryTask3Outcome handsOnTheWheel driverSeatbeltUse 

vehicleContributingFactors infrastructure visualObstructions 

lighting weather surfaceCondition 

trafficFlow trafficDensity trafficControl 

relationToJunction intersectionInfluence alignment 

grade locality constructionZone 

numberOfOtherMotorists numberOfObjectsAnimals fault 

motorist2Location motorist2Type motorist2Maneuver 

motorist2Reaction motorist3Location motorist3Type 

motorist3Maneuver motorist3Reaction finalNarrative 

 

The first group of variables described the nature of the events, including event severity, 

pre-incident maneuver, precipitating event, event nature, incident type, and crash severity. 

Precipitating event start time and end time, and driver reaction time were also coded in the event 
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table. Drivers’ evasive maneuver and crash outcomes were recorded in the table. The second 

group of variables described drivers’ pre-crash behaviors, such as driving behavior, secondary 

tasks, and the duration of each task. The driver behavior included any pre-crash information, 

such as speeding and distracted driving. The secondary tasks specifies driver’s distraction 

behavior, such as calling on a phone and reaching for objects inside vehicle. Some other driver 

behavior variables included hands on the steering wheel and wearing seatbelt. The third group of 

variables described the traffic and roadway environments, such as light, weather, surface 

condition, roadway alignment, traffic flow level, traffic density, etc. These variables helped us 

understand the context of the events. Lastly, a detailed narrative description of the event was also 

included in the table. They were written by the data reductionist at VTTI to describe the crashes 

and near-crashes. The information were critical for researchers to understand the context of the 

events. In addition to the variables that were listed in the event table, several other variables were 

also added into the event table for additional analysis. For example, posted speed limit and 

advisory speed limit were collected from Google Earth and added to the event table dataset. 

4.2.4 Variables from forward video 

A large amount of useful information were manually coded from the forward view video. 

The data coded from the video includes traffic condition, roadway characteristics, and other 

environmental factors. The data were manually coded from the forward video from each event, 

which could be a very time consuming process. A list of variables collected from the forward 

videos is shown in Table 4.2. 
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Table 4.2 Description of the variables from forward view video 

Variables Descriptions 

Pavement Condition 

Pavement damage conditions. 0: normal surface condition;  1: 

moderate damage; 2: severe damage, presence of potholes 

Shoulder Type 

Types of shoulders. 0: Not Paved; 1: Curb; 2: Paved Shoulder; 3: On-

street Parking 

Guardrail Guardrail presence.0: No; 1: Yes 

RPM Raised pavement marking presence. 0: No; 1: Yes 

Rumble Strips Rumble strips presence. 0: No; 1: Centerline; 2: Edge line; 3: Both 

Delineation The visibility of lane delineation. 0: Visible; 1: invisible 

Grade Roadway vertical grade. 0: Flat; 1: Uphill; 2: Downhill 

Chevrons Chevron presence. 0: No; 1: Yes 

Car-following 

Presence of the following car in front. 0: No Car in front; 1: Front Car 

Presence (>100 ft); 2: Closely Followed (<100 ft) 

Car-oncoming Presence of on-coming car in the opposite lane.0: No; 1: Yes 

 

 It should be noticed that the vehicle speed information was accessed from the time series 

data of these events. The concept of safety critical speed was introduced here. In the safety 

critical events, the safety critical speed was defined as the time at which the safety critical events 

occurred. For the baseline events, the critical safety speed was defined as the highest speed 

inside the curves. The speeds might be measured at different locations on the curves, but they all 

represented the safety critical speed in the events. The vehicle speed was defined as when the 

safety critical speed is at least 5 mph higher than posted or advisory speed limits. The definition 

is used consistently in this chapter. 

4.2.5 Variables from Google Earth 

The curve radius variable was not available in the requested event table, but it is 

important to incorporate curve radius into the analysis. Curve radius needs to be measured from 
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Google Earth using the chord-offset method as shown in Figure 4.3. It is a method to calculate 

curve radius based on chord measurement and middle offset measurement method. The curve 

radius in this study was determined from the formula 𝑅 =
𝐿2

8𝑚
+

𝑚

2
, where R is the radius in feet; 

L is the chord length in feet; and m is the middle offset in feet. A single curve was measured 

three times and the averaged value was used as curve radius. 

 

 

Figure 4.3 Curve radius measurement from chord length and offset distance (Google Map, 

2015) 

 

 The variables collected in the SHRP2 NDS project is unique and different from the 

variables collected from traditional crash dataset. Drivers’ in-vehicle driving behavior was coded 

form vehicle forward videos. Vehicle dynamics data was also available from vehicle sensors. 

This is a very detailed crash and near-crash dataset that provided many driver behavior variables 

before, during, and after the events. It will result in many new findings about the role of driver 

behavior in crashes and near-crashes on curves. 
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4.3 Initial Screen of All crashes on All Curves 

The purpose of the exploratory analysis in this section is to summarize the collected 

SHRP2 NDS curve dataset. This initial curve dataset contained 132 crashes and 220 near-crashes 

on all types of curves. Additional 2,373 baseline events were also included in the analysis as the 

control group. It should be noted that the events this section included all crashes on all types of 

curves from the SHRP2 NDS project. In general, 45% percent of the all curve-related crashes 

occurred on left turn curves, while the other 55% of crashes occurred on right turn curves. The 

majority (84%) of crashes and near-crashes events were happened in rural area. Almost half of 

the crashes (46%) occurred under free flow conditions. It was found 93% of the drivers in safety 

critical events worn safety belt properly. Three quarters of the crash events occurred in day time. 

In order to better understand the requested data, the events were further summarized in the 

following paragraphs. 

 The crashes and near-crashes on all curves were further classified into four categories as 

shown in Figure 4.4. There are four levels of severities, including the most severe crashes (level 

1), police-reportable crashes (level 2), minor crashes (level 3) and near-crashes (level 4). It was 

found the most severe type of crashes had the smallest number of events. The near-crash had the 

largest number of events. This phenomenon was referred to as Heinrich’s law in the book 

Industrial Accident Prevention, A scientific Approach (Heinrich, 1931). Heinrich’s law found the 

event frequency decreases as event severity increases. In this curve dataset, for every 7 severe 

crashes, there were 12 police-reportable crashes, 113 minor crashes, and 220 near-crashes as 

shown in Figure 4.4. In this dissertation, both crashes and near-crashes are referred as one event 

type as safety critical event. Guo et al. (2010) evaluated the causes of crashes and near-crashes 
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and concluded that the near-crashes could be used as crash surrogate for crashes in naturalistic 

driving study. This evidence supports the combination of crashes and near-crashes as one event 

category. 

 

Figure 4.4 Crashes and near-crashes by severities 

 

Although all 352 curve-related crashes were physically occurred on curves, the crashes 

were caused by a variety of reasons. The incident types of the curve-related crashes are shown in 

Figure 4.5. The most frequent incident type was roadway departure event. The rear-ended events 

were the second frequent type of events on curves. However, the rear-ended crashes were 

probably caused by traffic conditions rather than the curve geometry, so these events might not 

be included in the final analysis. Similarly, curve design also had little influence for animal-

related crashes. Therefore, they were excluded from the final analysis. The pedestrian-related 

events were also irrelevant to the curve geometries, and they were excluded from the analysis. 
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Figure 4.5 Distribution of curve-related crashes and near-crashes by incident types 

 

 

Figure 4.6 Distribution of curve-related crashes and near-crashes by junction types 

 

The curve-related crashes were further plotted by junction types as shown in Figure 4.6. 

Sixty percent of the curve-related crashes did not related to any junctions. However, the rest 40% 
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of curve-related events were related to certain types of junctions, such as intersection (11%), 

entrance or exit ramps (7%), parking lot (6%), and driveway (5%). The forward view video was 

manually checked to confirm the relation of the crashes to roadway junctions. Since the presence 

of junction could have significant impact on divers’ curve driving behavior, all the junction-

related crashes were excluded from the final analysis. 

 

Figure 4.7 Subset the SHRP2 curve-related events 

 

The requested dataset found some types of crashes had little relationship with the curve 

geometry. For example, rear-ended crashes and animal-related crashes had minimum relationship 

with curve geometry. Those types of crashes should be treated separately. Hence, it was 

determined that only the roadway departure, heads-on collision, and sideswipe events were 

included in the final analysis. Additionally, the events near intersections, roundabout, 

construction zone and parking lots were excluded from the analysis. Only the roadway departure 

crashes on rural two-lane (one lane in each direction) curves were kept in the analysis. The 

forward view videos were carefully reviewed to make sure the selected events followed the 

definition of roadway departure crashes on rural two-lane roads in this study. The reduced rural 

two-lane curve event dataset is illustrated in Figure 4.7. The dataset contains 67 safety critical 

events on rural two-lane curves. For baseline events, the goal was to sample twice the number of 

SHRP2 Roadwway Departure Events on Rural Two-Lane Curves

67 Safety Critical Events 136 Baseline Events

SHRP2 Curve-related Events

352 Safety Critical Events 2373 Baseline Events
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baseline events than the safety critical event, otherwise, the small ratio of safety critical events 

and baseline events could create instability issue for the logistic regression model. Hence, 136 

baseline events were sampled from the 2,373 balanced-sample baseline events. 

4.4 Description of Roadway Departure Crashes on Rural Two-Lane Curves  

This section described the reduced dataset for roadway departure crashes on rural two-

lane curves. After the forward videos were manually reviewed, it was found vehicle speeding, 

drivers’ engagement in secondary tasks, and slippery roadway surface were the major 

contributing factors to roadway departure crashes on rural two-lane curves. 

4.4.1 Speeding 

Speeding was identified as one of the major contributing factors to crashes on curves 

(Council, et al., 1988; Milton and Mannering, 1998; Suh, 2006; Khan et. al., 2013; Schneider, 

2010; Torbic, 2004; Zegger, 1991). The percentage of curve-related crashes by driver behavior is 

illustrated in Figure 4.8. The sum of the percentages was over 100% because multiple driver 

behaviors could occur in the same event. In summary, speeding was a contributing factor to 76% 

of the curve-related crashes and near-crashes. The speeding was defined as driving too fast for 

conditions or driving over posted speed limits (FHWA, 2015). Driver distraction was a 

contributing factor to 21% of the roadway departure events on rural two-lane curves. Other types 

of driver behavior included fatigue driving, improper turn, and aggressive diving. In summary, 

driver behavior was a contributing factor to approximately 91% of the safety critical events on 

rural two-lane curves. This is similar to the findings from previous human factor studies. It 

revealed the important role of driver behavior in safety critical events on rural two-lane curves. 
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Figure 4.8 Distribution of driver behaviors for roadway departure events on rural two-lane 

curves  

 

4.4.2 Secondary tasks 

Another important variable reduced from event table was drivers’ engagement in 

secondary tasks. The information was reduced from driver face video by data reductionists at 

VTTI and provided from the event detail table. Figure 4.9 indicated 64% of drivers engaged in 

secondary tasks in safety critical events. Cell phone-related events was the leading secondary 

behavior in safety critical events. Furthermore, external distraction and interacting with vehicle 

infotainment system had disproportionally higher percentage in safety critical events, which 

indicated higher risks associated with those events. This figure showed that drivers were very 

frequently engaged in secondary tasks whiling driving on rural two-lane curves. 
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Figure 4.9 Distribution of secondary tasks for roadway departure events on rural two-lane 

roadways 

 

4.4.3 Adverse surface conditions 

Adverse surface condition was found to be an important contributing factor to the 

roadway departure events on rural two-lane curves. The percentages of surface conditions 

between baseline events and safety critical events are compared in Figure 4.10. Approximately 

85% of baseline events were on dry surfaces, whereas only 48% of the safety critical events had 

dry surface. The safety critical events were disproportionally higher on wet surface and 

icy/snowy surface. Only 1% of baseline events had icy/snowy surface on rural two-lane curves, 

but it accounted for 22% of safety critical events. The summary statistics showed roadway 

surface friction is an important contributing factor to roadway departure events on rural two-lane 

curves. 
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Figure 4.10 Distribution of surface conditions for roadway departure crashes on rural two-

lane roadways 

 

Overall, this section summarized three important contributing factors and found speeding, 

secondary tasks, and adverse surface conditions were the major contributing factors to roadway 

departure events on rural two-lane curves. The next section examined multiple factors at the 

same time in the logistic regression model.  

4.5 Logistic Regression Analysis of Roadway Departure Crashes on Rural Two-

Lane Curves 

The objective of this study was to understand how driver behavior, roadway 

characteristics, and traffic environments affect the likelihood of roadway departure events on 

rural two-lane curves. As discussed before, the primary data source for roadway departure events 

was the SHRP2 InSight website. The other data sources included the variables coded from 

forward view video, Google Earth, driver demographics, and vehicle types. A total of 104 

variables were collected for initial analysis. This study included 68 roadway departure safety 
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critical events and 136 baseline events on rural two-lane curves. This goal of this section is so 

predict the event outcomes as a function of explanatory variables using logistic regression model. 

The odds ratio was also developed for each contributing factor. 

4.5.1 Background 

Due to the nature of the binary outcome (safety critical event vs. baseline event), logistic 

regression model was selected to predict event types based on explanatory variables, including 

driver behavior, roadway characteristics, and environmental factors. In an earlier study, 

Hallmark et al. (2011) evaluated several statistical methods to evaluate roadway departure events 

using naturalistic driving data. The candidate models included generalized linear model, 

Bayesian model, and regression tree model. The logistic regression model was found to be the 

most appropriate statistical method to analyze the event level of naturalistic driving study data. 

The model applies a logit transformation to the dependent variable Y and predict logit of Y from 

the explanatory variables Xi. The natural log transformation makes the relationship between 

LogitY and Xi linear. Unlike linear regression model, logistic regression model does not assume 

normality, linearity, and homoscedasticity and it can handle many types of relationships between 

independent and dependent variables. However, the independence of observation is a key 

assumption. The model outputs can be interpreted by odds ratio, which indicates the probability 

of an event occurring relative to an event not occurring. The concept of odds ratio can be easily 

understood by transportation practitioners and stakeholders. 
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4.5.2 Data description 

This section included as list of variables that considered in the logistic regression model 

as shown in Table 4.3. Although the whole dataset contained over one hundred variables, only 23 

most relevant variables were tested in the initial analysis. 

Table 4.3  A list of variables included in logistic regression model 

Variables Descriptions 

event ID Unique Event ID 

Participant ID Unique Driver ID 

Event Type Event Types. 0: Baseline event; 1: Safety Critical Events. 

Posted Speed Limit Posted speed limits in the unit of 10 MPH. 

Speeding Speed Speed difference between in-curve speed and posted speed in MPH 

Radius Curve radius in feet 

Pavement Condition Pavement deterioration condition. 0:normal surface condition; 1:moderate 

damage; 2:severe damage, presence of potholes 

Shoulder Type Should Types on curves. 0:Not Paved; 1: Curb; 2: Paved Shoulder; 3: On-

street Parking 

Guardrail Presence of guardrail. 0: No; 1: Yes 

RPM Presence of raised pavement marking. 0: No; 1: Yes 

Rumble Strips Presence of rumble strips. 0: No; 1: Centerline; 2: Edge line; 3: Both 

Delineation Visibility of lane delineation. 0: visible; 1: invisible 

Grade Roadway grade. 0:Flat; 1: Uphill; 2: Downhill 

Chevrons Presence of chevrons. 0: No; 1: Yes 

Car-following The subject was following another vehicle in front. 0: No Car in front; 1: 

Front Car Presence 2: Closely Followed 

Car-oncoming There was an oncoming car from opposite direction. 0: No; 1: Yes 

Distraction Duration The duration of distraction in seconds. 

Secondary Task Types of secondary tasks within 6 seconds before crashes. 

Hands On The Wheel Number of hands on the wheel. 0: Both Hands; 1: Left or right; 2: None 

Driver Seatbelt Use Seatbelt usage. 0: Not worn;  1: Properly worn 

Lighting Lighting types. 0: Daylight; 1: Dusk/Dawn; 2: Darkness 

Surface Condition Roadway surface conditions. 0: Dry; 1: Wet; 2: Icy/Snowy 

Grade Roadway vertical grade. 0: Flat; 1: Uphill; 2: Downhill 

Driver Age Driver age at the start of SHRP2 Study. 

Driver Gender Driver gender. 0: male; 1: Female 

Vehicle Types Vehicle types. 0: Passenger car; 1: Pickup: 2: SUV: 3: MiniVan/Van 
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4.5.3 Logistic regression model 

Logistic regression was used to model the odds of roadway departure event (1 for safety 

critical events and 0 for baseline events). The logistic regression model for is shown as follows. 

log(𝑌) = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 log (𝑜𝑑𝑑𝑠) = 𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 휀𝑖𝑗 

𝑝𝑖 is the probability of safety critical event occurring; 

Y is the odds of a safety critical event occurring; 

𝛽0 is the intercept in the model; 

𝛽𝑘 is the regression coefficient; 

𝑥𝑘 is the categorical or continuous explanatory variables; 

휀𝑖𝑗 follows Bernoulli distribution. 

 Overall, the model coefficients were estimated by maximum likelihood method. The 

outcome variable was coded as binary values (0 and 1). The explanatory variables were coded as 

shown in Table 4.3. The value of coefficient 𝛽𝑘 determined the positive or negative contribution 

to the probability of an event occurring. If the coefficient was positive, larger 𝑥𝑘 was correlated 

to higher probability of roadway departure event. If the coefficient was negative, larger 𝑥𝑘 was 

correlated to lower probability of roadway departure event. Several model diagnostics were used 

to check model goodness-of-fit and the statistical significance for each explanatory variable. The 

model was fitted with glm function in R software. The results were reported as odds ratio, which 

indicated the risks associated with each factor. 
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4.5.4 Model results 

The final logistic regression model predicted the likelihood of roadway departure events 

with 8 explanatory variables as shown in Table 4.4.  The final logistic regression model is shown 

as follows. 

Predicted logit of Roaddway Departure Event

= −7.2178 + 0.9301 ∗ (Speeding Speed) + 1.3378 ∗ (Wet Surface)

+ 3.5269 (IcySnowySurface) − 1.4473 ∗ log(Radius) + 1.5501 ∗ (Curb)

− 1.3303 ∗ (PavedShoulder) + 1.1213 ∗ (Visual Distraction)  

Table 4.4 Logistic regression model results 

Parameter Estimate SE p-value 𝒆𝜷 

𝛽0 (intercept) 7.2178 1.8011 0.000 31745.24 

𝛽1 (Speeding Speed) 0.9301 0.2639 0.000 2.53 

𝛽2 (Wet Surface) 1.3378 0.5919 0.024 3.81 

𝛽3 (Icy/Snowy Surface) 3.5269 1.0286 0.001 34.02 

𝛽4 (Log Radius) -1.4473 0.2939 0.000 0.24 

𝛽5 (Curb) 1.5501 0.6905 0.025 4.71 

𝛽6 (Paved Shoulder) -1.3303 0.5268 0.012 0.26 

𝛽7 (Visual Distraction) 1.1213 0.5868 0.056 3.07 

Number of Observations 215    

Log Likelihood -65.627    

Likelihood ratio test (p value) 142.91(0.000)    

Pseudo R-squared 0.625    

AIC 147.25    

Hosmer & Lemeshow (p value) 9.4898 (0.3027)    

 

The goodness-of-fit of the overall model was checked by the likelihood ratio chi-square 

test. The test compared the model with predictors to the model with intercept parameter only. 
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The p-value of the likelihood ratio test was statistically significant at 0.05 level, which indicates 

the overall model was significantly better than the null model with intercept term only. The 

Hosmer & Lemeshow test had p-value larger than 0.05, which indicated no evidence of poor fit. 

The Log likelihood, AIC, and R-square values were used in model selection. In order to check 

model prediction accuracy, a classification table was used to compare predicted outcomes to the 

observed outcomes. According to the classification table as shown in Table 4.5, the model 

successfully predicted 88% of the roadway departure events and 87% of the baseline events. It 

was concluded that the model fitted the data decently. 

Table 4.5 Classification table for the logistic regression model  

Observed Event Outcome 
Predicted Event Outcome 

% Correct 
Yes No 

Yes 135 18 88% 

No 8 54 87% 

  Overall Correct % 87.6% 

 

All eight independent variables were statistically significant predictors for roadway 

departure events with p-value less than 0.05. The intercept was statistically significant at 0.05 

level, which means the intercept should be kept in the model to improve model fit. The driving 

speeds over posted speed limits were found to be statistically significant in the model. Both wet 

surface and icy/snowy surface contributed to higher likelihood of roadway departure crashes on 

curves. Smaller logarithm of radius increased the likelihood of roadway departure risks. 

Compared to no shoulder scenario, curb increased the likelihood of roadway departure crashes, 

and paved shoulder decreased the likelihood of roadway departure events. It should be noted that 

curb did not directly cause more roadway departure crashes, but the tire-strike with curb events 
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were more likely to get detected by extreme G-force from accelerometer and recorded in the 

event dataset. Finally, visual distraction events were also found to increase the likelihood of 

roadway departure crashes. The visual distraction was defined as visually distracted from 

monitoring roadway conditions. For example, texting on cellphone was defined as visual 

distraction, but talking on hands-free cell phone was not a visual distraction event.  

The odds ratio and the 95% confidence interval are listed in Table 4.6. It is a measure of 

exposure and its associated risks. The odds ratio for speeding over posted speed limits was 2.54. 

In this case, the odds of getting into a roadway departure crashes on rural two-lane curves was 

2.54 times higher for every 10 MPH above posted speed limits. The wet surface on curves also 

increased roadway departure risks by 3.81 times. The icy and snowy surface was more risky than 

wet surface. The odds ratio for icy/snowy surface was 34.08, which indicated the icy/snowy 

surface was a very significant contributing factor to roadway departure crashes on rural two-lane 

curves. In addition, the roadway departure risk was negatively correlated with curve radius. The 

larger logarithm of radius leaded to smaller chance of getting into a roadway departure events. 

The paved shoulder decreased the roadway departure crashes on curves by 0.26. However, the 

paved shoulder tend to have painted lane marking as well, which could help drivers’ lane 

keeping in the curves. It is recommended to separate the effect of paved shoulder and painted 

lane marking in future research. The presence of visual distraction increased the likelihood of 

roadway departure crashes by 3.07. It is interesting to see curb increased the likelihood of 

roadway departure events by 4.71 times. However, curb probably did not cause the roadway 

departure events, but a departure event with curb could be more easily detected by accelerometer 

and saved in the event database. It is recommended to use lane encroachment as surrogate for 

roadway departure events in future study. 
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Table 4.6 The odds ratio estimate with 95% confidence interval 

Parameter Odds Ratio 5% 95% 

𝛽0 (intercept) 1363.47 81.38 31745.24 

𝛽1 (Speeding Speed) 2.54 1.679 4.031 

𝛽2 (Wet Surface) 3.81 1.455 10.343 

𝛽3 (Icy/Snowy Surface) 34.08 7.108 222.38 

𝛽4 (Log Radius) 0.24 0.140 0.371 

𝛽5 (Curb) 4.71 1.539 15.165 

𝛽6 (Paved Shoulder) 0.26 0.108 0.618 

𝛽7 (Visual Distraction) 3.07 1.166 8.128 

 

Nevertheless, some variables had very large confidence interval, such as icy/snowy 

surface and the wet surface. The confident interval for icy/snowy surface was from 7.10 to 

222.37. It was mainly caused by small number of icy/snowy conditions in safety critical events. 

It is recommended to add more safety critical events and baseline events in future study to reduce 

the width of the confidence intervals. 

4.6 Discussion 

The objective of this study was to understand the contributing factors to roadway 

departure crashes on rural two-lane curves using the SHRP2 Naturalistic Driving Study data. 

Previous studies found human factor contribute to 90% of crashes, but they were poorly studied 

in previous research. The analysis of naturalistic driving study data in this analysis revealed 

important information regarding the role of human factor in roadway departure events on rural 

two-lane curves. This study first collected all curve-related crashes, near-crashes, and baseline 

events from the SHRP2 InSight website. The event table included information regarding the 

types of crashes, driver distraction behavior, traffic environment, and weather conditions. The 
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forward view video was also available to understand the scenario before, during, and after the 

events. Speed limits and rumble strips information was retrieved from Google Earth. The driver 

demographics and vehicle types were also linked to each event.  

A number of important findings was discovered in this research. The study first analyzed 

curve-related crashes by crash severity and found it followed the Heinrich’s law. However, not 

all crashes on curves were related to the curve characteristics. Hence, a new dataset was created 

and only included the roadway departure events on rural two-lane curves. Any animal-related 

events or intersection-related events were excluded from the study. The summary statistics found 

driver behavior accounted for 91% of the safety critical events. Speeding and distraction were 

the top two reasons for the roadway departure events on curves. Furthermore, 64% of drivers 

were engaged in secondary tasks before the crashes and near-crashes. The wet surface and 

especially icy and snowy surface had disproportionally higher chance of getting involved in 

roadway departure events on curves.  

The logistic regression model was then used to predict the event outcome (safety critical 

or baseline event) based on explanatory variables. A total of 23 variables were initially tested in 

the model and only 7 of them were found to be statistically significant. The speeding on curves, 

wet surface, icy and snowy surface, presence of curb, and visual distraction were positively 

correlated with higher likelihood of roadway departure crashes on rural two-lane curves. The 

logarithm of radius and paved shoulder contributed to lower likelihood of roadway departure 

crashes. Among the factors, icy and snowy surface had the highest odds ratio of 34.08 with 

confidence interval between 7.108 and 222.38. The overall model prediction accuracy is 87.6%, 

which indicates decent goodness-of-fit of the data. 
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Overall, this research demonstrated the analysis of SHRP2 NDS event data and draw 

safety implications from the crashes and near-crashes analysis. Logistic regression model was 

found to be a useful method to analyze the event level data from naturalistic driving study. The 

naturalistic driving study method had several advantages compared to previous research. First of 

all, it contained critical information about the drivers’ in-vehicle distraction behavior before, 

during, and after the events. Second, SHPR2 NDS collected detailed time series data from 

vehicle sensors, which were not available in traditional crash data analysis. Third, the real-time 

traffic information was observed from the forward view video. The SHRP2 NDS allowed 

researchers to review how drivers interacted with other vehicles in traffic safety. Fourth, the 

detailed driver demographics and driving history information were also available for analysis. 

Lastly, SHRP2 NDS project also collected detailed information from Roadway Information 

Database (RID). The driving behavior data could be linked to roadway characteristics.  

However, there were also several limitations in this study. The most significant limitation 

of the study was the limited number of crash and near-crash events collected in the SHRP2 NDS. 

The small sample size created difficulties for building the statistical inference from the model. 

Furthermore, it was very time-consuming to reduce roadway and driver behavior from forward 

view video and driver face video. The vehicle speed variables were defined as the difference 

between safety critical speed and posted/advisory speed limits. There are other ways to define 

vehicle speeding at fixed points, such as curve PC, but it is not discussed in this analysis. It is 

recommended to conduct sensitivity analysis using different speeding definitions. The sampling 

approach for the baseline events should be carefully interpreted. The sensitivity analysis could be 

conducted to test different sampling plan and see how they affected the odds ratios. Lastly, it is 
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recommended to use lane encroachment as crash surrogate, instead of relying on accelerometer 

data only. 

4.7 Summary 

This study successfully demonstrated the analysis of crashes and near-crashes using the 

SHRP2 NDS data. The newly developed naturalistic driving behavior dataset contained a 

number of invaluable information that was not available in traditional safety analysis. This study 

found speeding on curves, slippery surface, and visual distractions contributed to higher 

likelihood of roadway departure crashes on rural two-lane curves. Larger curve radius and paved 

shoulder decreased the likelihood of roadway departure crashes on rural two-lane curves.  

The research findings had important implications for transportation agencies. First of all, 

it is recommended to remove the ice and snow on sharp curves promptly. Otherwise, the drivers 

should be advised to reduce their speeds significantly on sharp curves when wet or icy/snowy 

surfaces were presented. It is also important to make sure the drivers keep their focus on the 

roads and not visually distracted while negotiating a curve. The likelihood of roadway departure 

crashes on rural two-lane curves also exponentially increases as curve radius decreases. It 

indicates the speed management on the sharp curves with radius less than 1000 feet should be a 

priority for transportation agencies. It is suggested to design small curve radius as less frequent 

as possible.  It is recommended to install paved shoulder on curves. Overall, this study found 

important findings about the causes of drivers’ crashes and near-crashes on rural two-lane curves 

using the SHRP2 NDS data. The next chapter will analyze drivers’ normal driving behavior on 

curves and understand how drivers interact with different curves in normal daily driving 

activities.  
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 MULTIVARAITE ANALYSIS OF DRIVER BEHAVIOR ON 

RURAL TWO-LANE CURVES 

5.1 Introduction 

This chapter focuses on drivers’ normal driving behavior on rural two-lane curves. The 

objective of this chapter is to understand how curve radius influences drivers’ lateral acceleration 

and mean speed on rural two-lane curves using the SHRP2 NDS data. A large number of 11,691 

observations on rural two-lane curves were summarized from 202 drivers on 219 curves. 

Understanding drivers’ normal curve negotiation process can help transportation engineers 

improve curve design and develop safety countermeasures. 

Section 5.1 briefly summarizes the findings of previous studies on rural curves in terms 

of vehicle speed, lateral acceleration, lateral position, and crash data analysis. Section 5.2 

discusses the data collection, data quality assurance, and the descriptions of the collected 

variables. Section 5.3 focuses on the analysis of vehicle lateral accelerations, and Section 5.4 

focuses on the analysis of vehicle speeds. The implications of the findings are discussed in 

Section 5.5, and the conclusion is included in Section 5.6. 

5.1.1 Vehicle speed 

Vehicle speed was identified as one of the most important contributing factors to 

roadway departure crashes on horizontal curves (Fitzpatrick et al., 1999; Zegger et al., 2000). A 

lot of attentions has focused on predicting vehicle speeds based on curve geometries.  In 

summary, previous studies found curve radius, deflection angel, curve length, and tangent speeds 

were the major influencing factors to drivers’ speed choice on curves (Bonneson et al., 2009; 
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Fitzpatrick et al., 1999; Hallmark et al. 2013; Hauer, 1999; Krammes et al., 1995; Lamm and 

Choveini, 1988; Montella et al., 2015; Schurr et al., 2002). In one of the studies, Bonneson et al. 

(2009) found tangent speed, radius, deflection angel, and super elevation rate had significant 

impact on vehicle speeds on curves. The relationship between curve radius and 85th percentile 

speed is shown in Figure 5.1. Schurr et al. (2002) found the drivers only reduced their speeds for 

curves with radius smaller than 350 m (1146 ft). 

 

Figure 5.1 Influence of tangent speeds on curves (Bonneson et al., 2009) 

5.1.2 Lateral positions 

Vehicle lateral position was often used as a crash surrogate for roadway departure 

crashes. Most of previous studies measured vehicle lateral positions from roadside equipment. 

Hallmark et al. (2012) measured the vehicle lateral positions using Z configuration road tubes on 

rural curves. A statistically significant relationship was found between vehicle speeds over 

posted speed limits and lane deviations. Gunay et al. (2007) used roadside camera to study the 

distribution of wheel positions on curves and found the vehicles tended to “cut” the curve at mid-

point of the curves. Furthermore, several researchers studied vehicle trajectories on curves and 
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proposed six patterns of curve negotiation behavior as shown in Figure 5.2. The six patterns 

included curve cutting, swinging, drifting, correcting, normal behavior, and ideal behavior 

(AGVC, 1980; Ren, 2012; Spacek, 2005). 

 

Figure 5.2 Sketches of six types of trajectories (Spacek, 2005) 

5.1.3 Lateral acceleration 

Vehicle lateral acceleration also played an important role in determining vehicle’s speeds 

on curves. In one of an earliest studies in 1930s, the Driver Comfort Speed Method was used to 

establish the advisory speed limits based on drivers’ subjective feeling of outward instability, but 

the method sometimes produces inconsistent and subjective results (FHWA, 2015b). In a more 

recent study, Felipe and Navin (2007) measured drivers’ behavior on a test track. They 

investigated the influence of speed, pavement surface, gender, and curve radius on speed and 

lateral position. The lateral acceleration was found to be the dominant factor for speed selection 

on sharp curves, whereas drivers did not reduce speeds on the relatively flat curves. In this study, 
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the drivers were asked to drive the curves at their comfortable speeds and identified an important 

relationship among curve radius, vehicle speed, and lateral acceleration as shown in Figure 5.3. 

 

Figure 5.3 The relationship between lateral acceleration and speed (Felipe and Navin, 2007) 

5.1.4 Curve-related crash analysis 

Numerous studies conducted statistical analysis on the curve-related crashes. Many 

studies found statistically significant relationship between the number of curve-related crashes 

and small curve radius. Zegger at al. (2000) evaluated 104 fatal and non-fatal crashes and found 

curve radius was a critical geometry factor for increased crash rate. Lamm et al. (1988) examined 

85th percentile speeds, accident rates, and curve radius on 261 rural two-lane curves. They found 

curvature had significant impact on the 85th percentile of speeds and accident rates. Findley et al. 

(2012) modeled the impact of tangent length on the crash rates and found the distance between 

two adjacent curves was a statistically significant predictor for the number of crashes. 
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In addition to curve geometry, curve design consistency is another important concept that 

had been extensively studied by several researchers (Fitzpatrick et al., 1999; Lamm et al., 1988; 

Torregrosa et al., 2013; and Wu et al., 2013). Roadway design consistency is defined as 

consistency between roadway designs and the drivers’ expectation. Several papers found the 

inconsistency of roadway design often resulted in higher number of crashes (Donnell et al., 2009; 

Gibreel et al., 1999; Montella, 2015). Additionally, Anderson and Krammes (2000) investigated 

1,126 rural two-lane curves and found statistically significant linear relationship between speed 

reductions and the accident rates. 

Although previous studies had many important findings regarding drivers’ curve 

negotiation behavior, several limitations were present. First of all, the sample sizes of the 

previous studies were usually smaller than the SHRP2 NDS data. Second, most of the previous 

studies were not able to incorporate driver demographics and vehicle information in the analysis. 

Third, most of previous study collected vehicle dynamics from roadside equipment at several 

locations on the curves. The speeds had to be interpolated between the measurement locations.  

Fortunately, the SHRP2 NDS used advanced data collection technology to collect the 

time series data at high frequency (10 Hz) from vehicle sensors. This level of detailed 

information had never been collected in any previous studies. The SHRP2 NDS data overcomes 

the limitations in previous studies because multiple observations of driver behavior are available, 

driver demographics and vehicle information are included in the collected data, and continuous 

traces of driving behavior are available. 
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5.1.5 Research objectives 

The objective of this study is to understand the drivers’ curve negotiation process and the 

relationship among curve radius, vehicle speed, and vehicle lateral acceleration on rural two-lane 

curves. The SHRP2 Naturalistic Driving Study data provides an in-depth observation about 

drivers’ curve negotiation behavior with detailed second-by-second data and other important 

driver information. This study only focused on the rural two-lane curves on paved roadways. 

Rural roadway was defined as at least one mile outside city limits. The requested driving data 

were available 500 feet before the curve, inside the curve, and 200 feet after the curve. This 

study only included roadways with posted upstream speed limits at either 45 mph or 55 mph. 

This chapter will focus on the following two research questions: 

1) How do drivers maintain vehicles’ lateral accelerations on rural two-lane curves? 

2) What factors influence drivers’ speeds on rural two-lane curves? 

The lateral acceleration analysis in Section 5.4 examined the relationship between curve 

radius, vehicle speed, and vehicle acceleration. The vehicle speed analysis in Section 5.5 

examined the drivers’ speeds on 45 MPH roadways and 55 MPH roadways. A linear mixed 

model was used to predict the mean speed for each individual driving trace. The major findings 

are discussed in Section 5.6. 

5.2 Data Description 

One advantage of the SHRP2 Naturalistic Driving Study is the diversity of collected 

variables, such as vehicle sensor data, driver demographics, and vehicle types. To give an 

example of the magnitude of the SHRP2 NDS data, this rural two-lane curve dataset collected 

over 5 million rows and 83 columns of time series data. Moreover, the video data, driver 
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demographics, vehicle types, and curve geometry data were also available in this analysis. 

Nevertheless, cleaning and processing of such a large dataset is not an easy task. Automatic 

identification and batch processing was used to minimize the manual efforts for data reduction. 

This section discusses data collection, data sources, batch processing, and the data quality 

assurance. 

5.2.1 Data collection 

This study is one of the first analyses on the SHRP2 Naturalistic Driving Study data. This 

data was first requested as part of the effort for the project Analysis of Naturalistic Driving Study 

Data: Roadway Departures on Rural Two-Lane Curves (Hallmark et al., 2014). By the time of 

collecting this data in 2013, only one third of the SHRP2 dataset was collected and available for 

analysis. The five data collection sites included Florida, New York, Indiana, Pennsylvania, and 

North Carolina. The New York state was not included in the analysis because most of the driving 

data was collected in urban roadways in the state of New York. 

In order to request the curve driving data from VTTI, the candidate curves were first 

manually identified from ArcGIS. A polygon was created around the selected study sites. VTTI 

filtered all the driving data within the created polygons. They sent all the time series data in 

4,106 spreadsheets. Each spreadsheet represents one driver drove through one buffer once. One 

spreadsheet could contain multiple curves’ driving data. The time series DAS variables includes 

GPS, accelerometer, event time, forward radar, lane tracking system, steering wheel, and brake 

pedal information. Most of the variables were collected at 10 HZ, which is every 0.1 seconds. 

The forward video data and driver face data were not included in the analysis due to the intense 
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manual efforts to reduce the video data for all 10,000 observations. In summary, a total of 11,691 

driving traces were collected from 202 drivers on 219 curves.  

Several terminologies are used through the discussion, so it is important make 

clarification of the terms. Buffer is the green polygon shape file surround the roadway segment 

as shown in Figure 5.4. It should be noted that one buffer could contain multiple curves. Each 

observation is defined as one driver drove through one curve once. In this case, if a driver drives 

through the buffer once, it creates three observations. 

 

Figure 5.4 Example of segment, buffer, trace, and observations in ArcGIS 

 

5.2.2 Data sources 

The multivariate dataset consisted of three data sources, which include time series driving 

data, driver demographics data, and curve geometry data. The time series driving data contained 

the outputs from the vehicle network and sensors. The driver demographics data contained 
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drivers’ age, gender, and traffic violation history information. The curve geometry dataset had 

curve radius, length, shoulder type, and presence of guardrail. The three datasets were merged 

together and the multivariate dataset allowed researchers to examine the relationship among 

drivers, vehicles, and roadway environments on rural two-lane curves. The variables collected 

from each data source are discussed in the following paragraphs. 

 

Time Series DAS Data 

The times series driving data included the variables from vehicle network and sensors. A 

large number of time series variables were collected in this project, but only the relevant 

variables were presented in Table 5.1. Most of the variables were collected at 10 HZ, which is 

every 0.1 seconds. Some of the variables were collected directly from vehicle sensors, but some 

variables were derived from other variables. It should be noted that vehicle speeds were collected 

from both GPS and vehicle network system. The speed measurement from vehicle network 

system was used in this study because it was more reliable and collected at higher frequency. 

Vehicle acceleration was collected from accelerometer. The distance from the wheels to the lane 

marking was collected from lane tracking system. The front radar was available to measure the 

distance to the front vehicle. Many other variables were collected from the vehicle sensors, but 

will not be discussed here. 
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Table 5.1 Time series driving data 

Variables Description Unit 

Event ID Unique event ID NA 

Time Stamp Integer used to identify one time sample of data 1/1000 

Second 

GPS Latitude/Longitude

  

Vehicle GPS Location Degree 

GPS Speed Vehicle speed from GPS MPH 

Vehicle Network Speed Vehicle speed from vehicle network MPH 

Mean Speed in Curve Average speed inside the curve MPH 

Max Speed in Curve Maximum speed inside the curve MPH 

Min Speed in Curve Minimum speed inside the curve MPH 

Standard Deviation of 

vehicle Speed in Curve 

Standard deviation of speeds inside the curve MPH 

Vehicle Speed at PC Vehicle speed at beginning of the curve MPH 

Tangent Speed Vehicle speeds at 5 seconds before the curve PC MPH 

Speed Reduction Speed difference between tangent speed and the 

beginning of a curve 

MPH 

Acceleration in X 

Direction 

Vehicle acceleration in the longitudinal direction 

versus time 

g 

Acceleration in Y 

Direction 

Vehicle acceleration in the lateral direction versus 

time 

g 

Mean of Lateral 

Acceleration 

Average value of lateral acceleration inside the curve g 

Max of Lateral 

Acceleration 

Average value of lateral acceleration inside the curve g 

Left Lane Marker 

Probability 

Probability that vehicle based machine vision lane 

marking evaluation is providing correct data for the 

left side lane markings 

g 

Left lane to Left Wheel 

Distance 

Distance from vehicle centerline to inside of left side 

lane marker based on vehicle based machine vision 

g 

Maximum Left Distance Maximum of lateral distance inside the curve Meters 

Standard Deviation of Left 

Distance 

Standard Deviation of lateral distance inside the curve Meters 

Vehicle Front Radar Range to forward radar targets measured 

longitudinally from the radar 

Meters 
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Curve Features Data 

In addition to time series DAS data, curve geometry data were also reduced from Google 

Earth and Roadway Information Database. A list of the curve geometry variables is shown in 

Table 5.2. 

Table 5.2 Curve geometry data 

Variables Description Unit 

Curve Direction Curve Direction Left/Right 

Curve Radius Curve radius Feet 

Curve Length Curve length Feet 

Upstream Distance  Upstream distance before the curve Feet 

Downstream Distance  Downstream distance after the curve Feet 

Chevrons Presence of chevrons Yes/No 

Large Arrow Presence of large arrow sign (MUTCD W1.6) 

sign  

Yes/No 

Paved Shoulder Presence of Paved Shoulder Yes/No 

Center Line Rumble 

Strip 

Presence of center line rumble strip Yes/No 

Edge Line Rumble Strip Presence of edge line rumble strip Yes/No 

Guardrail Presence of guardrail Yes/No 

Curve Advisory Sign Presence of curve advisory sign (MUTCD W1.2)  Yes/No 

Advisory Speed Limit Posted curve advisory speed limits MPH 

Upstream Speed Limit Posted upstream speed limits before the curve MPH 

Recommend Speed 

Reduction 

The speed difference between upstream posted 

speed limits and the advisory speed limits. 

MPH 

S Curve A left or right turn curve is followed by another 

curve in the opposite turn direction 

Yes/No 

Compound Curve A left or right turn curve is followed by another 

curve in the same turn direction 

Yes/No 

Curve Intersections Number of intersections inside the curve Integer  

Curve Driveways Number of driveways inside the curve Integer  

 

The curve radius was measured on Google Earth as described in section 4.2. The curve 

upstream distance was measured as the tangent distance from the curve PC to the nearest curve 

or the nearest intersection prior to the curve. Similarly, curve downstream distance was measured 

from curve PT to the nearest curve or the intersection after the curve. Other roadway 
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countermeasures included chevron, curve warning signs, paved shoulder, center line or edge line 

rumble strips, guardrail, posted speed limits, and advisory speed limits. The number of 

driveways or intersections were counted for each curve. The types of curves, such as S curve or 

compound curve, were coded in the dataset. The most relevant roadway characteristics were 

extracted from either Google Earth or Roadway Information Database. However, the super 

elevations of the curves were not collected in this study. After the curve geometry dataset was 

created, it was linked to the time series driving dataset. 

Driver Demographics and Vehicle Types Data 

One advantage of naturalistic driving study data was the access to drivers’ demographics 

and vehicle types. The NDS data contained a number of detailed driver demographics variables 

such as driver age and gender. The drivers were also asked to fill out several survey before they 

participated in the study, such as risk perception questionnaire and driving knowledge tests. 

Additional vehicle information was also available, such as vehicle class, vehicle make, and 

advanced vehicle technologies. Although a large number of driver and vehicle variables were 

collected in SHRP2 NDS, only relevant variables to this study are presented in Table 5.3. 

Table 5.3 Driver demographics and vehicle types 

Variables Description Unit 

Gender Driver gender at time of data collection Male/Female 

Driver Age Driver age at time of data collection Integer Number 

Education Driver education NA 

Years of Driving Number of years driving experience Integer Number 

Number of Crashes Number of previous crashes Integer Number 

Number of Violations Number of previous violations Integer Number 

Vehicle Class Classification of vehicle type based on body 

style 

NA 

Vehicle Make The make of the participant's study vehicle NA 
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 Finally, the information from three different data sources were merged into one dataset. 

Each row in the dataset represented each driver drove through the curve once. This initial dataset 

contains 11,691 observations from 202 drivers on 219 rural two-lane curves. 

 

Figure 5.5 Integration of different data sources 

5.2.3 Batch process of time series data 

Due to the large size of the dataset, it is very labor intensive and time consuming to 

reduce the dataset manually. Therefore, several programming procedures were written to reduce 

the 5 million rows of time series driving data automatically in R software. First of all, it was 

important to identify the time stamps at which the drivers drove through the beginning of a curve 

(PC) and end of a curve (PT). Manual identification of PC and PT from ArcGIS or forward video 

can be a very time-consuming process. In order to address these issues, several automatic 

identification algorithms were written to identify the time stamps at which the drivers drove 

through the PC and PT points. The distances between each GPS point to the known PC and PT 

points were calculated. The nearest GPS points were identified as curve PC or curve PT. The 

formula used to calculate the distance is illustrated in Formula 5.1. If the PC or PT points fell 
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between any two GPS points, an interpolation method was used to identify the nearest 0.1 second 

from the time stamp. Overall, the algorithm successfully identified the curve entering and curve 

exiting time stamp automatically. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑖 − 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑗)2 + (𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑖 − 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑗)2              (Formula 5.1) 

Additionally, it is necessary to identify travel direction from the time series data. 

Normally, the traveled direction was manually coded from forward videos as either left turn or 

right turn curve, but it is too time consuming to manually reduce the 10,000 observations. 

Another programming procedure was written in R to automatically identify the turn direction by 

judging whether the vehicle passed the PC point first or the PT point first. If the driver drove 

through the PC first, then the traveled direction was the same as the default curve direction. 

Conversely, if the driver drove through PT point first, the driving direction was opposite to the 

default curve direction. The sample R code for the aforementioned batch processing is shown in 

Appendix B. Several other algorithms were also developed to identify the upstream speeds and 

summarize the in-curve driving data, but they are not discussed here due to limited space. 

In summary, given the size of the SHRP2 NDS dataset, it is impractical to reduce all raw 

data manually. Even analyzing a subset of the SHRP2 NDS data could be time consuming or 

even impractical sometimes. The automated algorithms allowed researchers to batch process the 

large quantify data in a timely manner. 

5.2.4 Data quality assurance 

Since most of the data were collected from vehicle sensors in real-world driving 

environments, many data quality issues emerged in this data set. The first issue was missing data. 



   94  

For example, the lateral position measurement contained a large quantify of missing data. The 

missing data could be caused by several reasons, including no presence of pavement marking, 

unclear pavement marking, and malfunction of lane tracking system. The second issue was 

outlier measurements. The problem was more significant for forward radar and lane tracking 

system. The vehicle forward radar could wrongly detect a random object in front of the vehicle 

and report outlier values. They should be identified and excluded from the dataset before 

conducting any statistical analysis. In order to gain understanding of the quality of the SHRP2 

NDS data, the percentage of missing data was summarized in Table 5.4. It should be noted that 

the probability for left lane and right lane marking is from 0 to 1024. The lower probability 

indicates less confidence in the measurement and vice versa. The threshold of 1000 is used here 

to summary the availability of high quality data. 

Table 5.4 Summary of data quality for the rural two-lane curve dataset 

Variables Data Availability 

GPS Speed 97.7% 

Left Lane Marking Probability >1000 62.0% 

Right Lane Marking Probability >1000 46.9% 

Lighting Sensor 39.5% 

Gas Pedal 68.3% 

Brake Pedal 37.8% 

Steering Wheel Position 22.4% 

GPS Gyro in Z Direction 39.5% 

Accelerometer X Direction 98.6% 

Accelerometer Y Direction 98.6% 

Accelerometer Z Direction 95.5% 

 



   95  

In summary, vehicle speeds and accelerometer data had decent accuracy, but the lateral 

positions, gas pedal, brake pedal, and steering wheel position had relatively poor quality. In order 

to control the data quality in the analysis, several criteria were used to exclude the missing or 

incomplete data. The percentage of missing GPS data was summarized for each driving trace. 

The driving trace with more than 20% of missing GPS data were removed from the dataset. As a 

result, 9,912 out of 11,691 observations were included in the final analysis. 

5.3 Vehicle Lateral Acceleration Analysis 

This section examines the relationship among vehicle lateral acceleration, curve radius, 

and vehicle speed on rural-two lane curves. A total of 9,587 observations were collected on rural 

two-lane curves with radius ranged from 116 feet to 13,640 feet. The first analysis examines how 

driver’s lateral acceleration is affected by different curve radius. The second analysis investigates 

the relationship between lateral acceleration and vehicle speed. The third analysis develops 

cumulative distribution function of lateral acceleration for different curve radius. 

5.3.1 Lateral acceleration vs. curve radius 

The vehicle lateral acceleration was plotted against curve radius on Figure 5.6. The x-axis 

is the curve radius and the y-axis is the lateral acceleration in the unit of gravity (g). The positive 

value indicates the lateral acceleration to the right side of the sensor, while the negative value 

indicates the lateral acceleration to the left side of the sensor. Figure 5.6 showed the lateral 

accelerations were symmetrical about the x-axis between the left turn curves and the right turn 

curves (both are from the perspective of the driver). Additionally, the magnitude of lateral 

acceleration was found to increase exponentially as the curve radius decreased. The rate of 
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increasing was much higher for the curves with radius less than 1000 feet. The findings indicated 

higher likelihood of loss of vehicle control and drifting off the roads on the curves with radius 

less than 1000 feet. This might explained why there was a large number of roadway departure 

events on curves with radius less than 1000 feet in Chapter 4. 

 

Figure 5.6 Plot of lateral acceleration vs. curve radius 

5.3.2 Lateral acceleration vs. speed 

The vehicle lateral acceleration was plotted against vehicle speeds as show in Figure 5.7. 

Several clusters of data points were found on this plot. Further investigation found the five 

clusters represented different ranges of curve radius. In order to better understand the 

relationship within each cluster, the simple linear regression model was fitted to each cluster. 

The 150-feet cluster had the steepest slope at 0.018. It means the lateral acceleration increased 
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0.018 g for every 1 mpg increases in vehicle speeds. Similarly, the lateral acceleration increased 

0.011 g for every 1 MPH increases on the 250-feet curves. Interestingly, when the curve radius 

was larger than 1000 feet, every 1 MPH increase in vehicle speeds only increased lateral 

acceleration by 0.0009 g. This finding had important implication for why speeding on the sharp 

curves with radius less than 1000 feet was much more dangerous than the speeding on the curves 

with radius larger than 1000 feet. The findings also explained why there were disproportionally 

higher number of safety critical events on the curves with radius less than 1000 feet in Chapter 4. 

 

Figure 5.7 Plot of lateral acceleration vs. speeds 

 

5.3.3 Drivers’ comfortable lateral acceleration on curves 

It is critical to understand the drivers’ preferred lateral acceleration on different curves 

because transportation agencies relied on the lateral acceleration information to set advisory 

speed limits on the curves (FHWA, 2015b). In this study, the curves were categorized into six 
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groups with different ranges of curve radius. The 500-feet curves indicated the curves with 

radius ranged from 0 feet to 500 feet. The 1000-feet curves indicated the curves radius ranged 

from 500 feet to 1000 feet, so forth and so on. The curves with radius larger than 4000 feet was 

put into one single category. 

The cumulative distribution function (CDF) of lateral acceleration for each radius 

category was plotted on Figure 5.8. The distribution function calculated the probability that the 

value was less than or equal to the lateral acceleration value on the x-axis. For example, for those 

drivers who drove on the curves with radius less than 500 feet (the CDF in red color), 50% of the 

drivers had lateral acceleration less than 0.2 g. The CDF was found to be steeper for the group of 

curves with larger radius. On the contrary, the CDF was flatter for the curves with smaller radius. 

The flatter CDF curve indicated the drivers tend to take higher lateral acceleration on those sharp 

curves. 

 

Figure 5.8 Cumulative distribution function of lateral acceleration by curve radius 
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The 85th percentile, 50th percentile, and 15th percentile of drivers’ lateral acceleration by 

curve radius are plotted on Figure 5.9. The drivers were found to tolerate higher lateral 

acceleration on the sharp curves. The 85th percentile line indicates 85th percentile of the drivers 

have lateral acceleration below the blue dotted line. Similarly, the 50th percentile line indicates 

50% of the drivers have lateral acceleration below the orange dotted line. This graphs showed the 

drivers’ comfortable lateral acceleration derived from empirical SHRP2 NDS data. This 

information could be used by transportation agency to set appropriate advisory speed limits on 

curves. 

 

Figure 5.9 Plot of 85th, 50th, and 15th percentile of lateral acceleration by curve radius 

 

 Over all, this section investigated the relationship among vehicle lateral acceleration, 

curve radius, and vehicle speeds. The lateral acceleration was found to increase exponentially as 
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curve radius decreased. The 85th percentile of lateral acceleration was developed to help set 

appropriate advisory speed limits on curves. 

5.4 Vehicle Speed Analysis 

 Speeding has been identified as one of the most critical contributing factor to crashes on 

curves. This section focused on the analysis of vehicle speeds on rural two-lane curves with 45 

MPH upstream speed limit and 55 MPH upstream speed limit. The first research question was to 

understand drivers’ mean speeds and their compliance to advisory speed limits on curves in 

Section 5.4.1 and 5.4.2. Additionally, a linear mixed model was used to predict vehicle speeds on 

45 MPH roadways based on the explanatory variables in Section 5.4.3. 

 

Figure 5.10 Data quality assurance of vehicle speed data 

 

It is important to conduct quality assurance before any statistical analysis. Vehicle speeds 

from vehicle network system were used in this analysis because they were more reliable and also 

collected at higher frequency than the speed data collected from GPS. If more than 10% of the 

speed data were missing, the driving traces were excluded from the analysis.  Additionally, any 

driving traces with more than 20% of missing GPS data were excluded from the analysis. 

Rural Two-Lane Curve Dataset for Speed Analysis

9912 Observations 219 Curves 205 Drivers

SHRP2 Rural Two-Lane Curve Dataset

11691 
Observations 

229 Curves 256 Drivers
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Sometimes the vehicle could be stopped on the roads because of congested traffic, so any driving 

traces with minimum speed less than 10 mph were excluded from the study. Finally, 9,912 out of 

11,691 observations (84.8%) were kept in the dataset as shown in Figure 5.10. The vehicle 

speeds on 55 MPH roadways and 45 MPH roadways were discussed separately in the following 

sections. 

5.4.1 Drivers’ curve negotiation behavior on 55 MPH roadways 

The mean speeds was plotted against curve radius on 55 MPH roadways in Figure 5.11. 

The y-axis is the mean speed on the curves and the x-axis is the curve radius. Each data point 

represents one driver drives through a curve once. There are 6,399 observations on the 55 MPH 

roadways. The majority of the curves had 55 MPH speed limits on curves as indicated by the 

purple color, but some curves had lower advisory speed limits as indicated by other colors. 

Nevertheless, the advisory speed limits were mostly installed on the curves with smaller radius. 

The observations collected in this study had radii ranged from 715 feet to 13,640 feet. None of 

the collected curves had radius smaller than 715 feet. One reason could be that the Manual on 

Uniform Traffic Control Devices (MUTCD) suggested transportation engineers not to design any 

curves less than 1,060 feet on 55 MPH roads. 

A simple linear regression model was fitted to predict mean speed based on curve radius 

variable only. The fitted regression model is shown on Figure 5.11. The slope of the fitted 

regression line is around 0.00013, which indicated very little change in mean speeds as radius 

increased. It is an important finding that curve radius had little influence on vehicle speeds for 

the curves on 55 MPH roadways. Additionally, the variability of vehicle speeds were found to be 

very large even within the same curve radius. It might be caused by different individual driver’s 
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behavior and various traffic conditions. Therefore, it is suggested to investigate how individual 

drivers’ behavior affects vehicle speed on curves. 

 

Figure 5.11 Plot of mean speeds by curve radius on 55 MPH roadways 

 

 

Figure 5.12 Boxplot of mean speeds by advisory speed limits on 55 MPH roadways 
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Furthermore, the boxplot of means speeds were summarized by different advisory speed 

limits on Figure 5.12. It was found the mean speeds were almost the same regardless of the 

advisory speed limits. It indicated drivers’ poor compliance with advisory speed limits. 

Therefore, advisory speed limits were found to be ineffective to reduce drivers’ speeds on 55 

MPH curves. It is suggested to choose alternative countermeasures to reduce drivers’ speed on 

curves. 

5.4.2 Drivers’ curve negotiation behavior on 45 MPH roadways 

The mean speeds versus curve radius on 45 MPH roadways were plotted in Figure 5.13. 

The y-axis is the mean speed on the curves and the x-axis is the curve radius. There were 3,507 

observations on the 45 MPH roadways.  The advisory speed limits were indicated by different 

colors. The mean speeds were found to increases as the curve radius increased from 100 to 2000 

feet, but the curve speeds seemed to level off after the curve radius was above 2000 feet. Again, 

large speed variability was found within the same curve. Therefore, it is important to understand 

how driver factors influenced vehicle speeds on curves. 

The boxplot of mean speeds by advisory speed limits was plotted on Figure 5.14. It was 

found that the drivers reduced their speeds for the advisory speed limits on 45 MPH roads, but 

still drove much higher speeds than the advisory speed limits. However, smaller advisory speed 

limits were also correlated with smaller curve radius, so it was not clear if the speed reduction 

was caused by the advisory speed limits or the smaller curve radius. This problem is further 

investigated in the speed prediction model in the next section. 
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Figure 5.13 Plot of speeds by curve radius on 45 MPH roadways 

 

 

Figure 5.14 Boxplot of mean speeds by advisory speed limits on 45 MPH roadways 
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5.4.3 Speed prediction model 

Most of previous speed prediction models used linear regression model to predict the 85th 

percentile of vehicle speeds on curves (Bonneson, 2009; Krammes, 1996; Fitzpatrick, 1999).  

These studies found the factors influencing vehicle speeds included curve radius, deflection 

angel, curve length, and tangent speeds (Bonneson et al., 2009; Fitzpatrick et al., 1999; Hallmark 

et al. 2013; Hauer, 1999; Krammes et al., 1995; Lamm and Choveini, 1988; Montella et al., 

2015; Schurr et al., 2002;). Instead of predicting the 85th percentile speed for each curve, this 

dissertation focuses on predicting the mean speed for each individual observation at each curve. 

It is a more difficult task than predicting the 85th percentile speed on a curve for a group of 

drivers. Additionally, some observations were collected from the same driver or the same curve, 

so the observations were interdependent from each other. In order to address the interdependency 

issue, linear mixed effect model was used to account for the within-driver correlation and within-

curve correlation. The linear mixed effect mode was a flexible approach to account for different 

types of correlations in the dataset. The details of the linear mixed effect model is discussed 

below. 

Linear Mixed Effect Model 

Mixed effect model is a type of model included both fixed effect terms and random effect 

terms. Fixed effect refers to the effect that is identical across all groups, which has fixed number 

of possible values. For example, driver gender is usually treated as fixed effect. The random 

effect indicates the effect that varies from group to group. The effect is usually randomly drawn 

from a population. For example, the individual driver in the SHRP2 NDS is randomly sampled 
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from a larger driver population in the U.S., so the driver ID was treated as random effect in this 

model. Similarly, the curve ID was also treated as random effect in this model.  

The linear mixed model is similar to a generalized linear regression model, but includes 

both fixed effect and random effect in the same model. The relationships of the independent 

variables are often assumed to be additive. The linear effect model has the form: 

𝑌𝑖𝑗 = 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 … + 𝛽𝑛𝑋𝑛𝑖𝑗 + 𝑏𝑖1𝑍1𝑖𝑗 + 𝑏𝑖2𝑍2𝑖𝑗 + ⋯ 𝑏𝑖𝑛𝑍𝑛𝑖𝑗 + 휀𝑖𝑗 

Where 𝑌𝑖𝑗 is the response variable for the observation j in group i.  𝛽1 to 𝛽𝑛 are the fixed 

effect coefficients. 𝑋1𝑖𝑗 to 𝑋𝑛𝑖𝑗 are the fixed effect variables. 𝑏𝑖1 to 𝑏𝑖𝑛 are the random effects, 

which are assumed to be multivariate normally distributed. 𝑍1𝑖𝑗 to 𝑍𝑛𝑖𝑗 are the random effect 

variables. It is important to note that the fixed effects have fixed coefficient across groups, but 

the random effect has i number of random effects for each i number of groups. 휀𝑖𝑗 is the error 

tem for observation j in group i, which is assumed to be multivariate normally distributed. The 

model is estimated by Restricted Maximum Likelihood method. The variables are selected using 

the stepwise backward selection method. The Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC), and log likelihood tests were used to evaluate the model goodness-

of-fit. The lme4 package in R 3.1.1 was used to fit the linear mixed model. 

Model Results 

The variables listed in Table 5.1, Table 5.2 and Table 5.3 were initially considered in the 

mixed linear model, but only statistically significant variables were kept in the final model. As 

discussed before, driver ID and curve ID were treated as random effect parameters to account for 

the interdependency within the same driver and the same curve. The AIC, BIC, and log-
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likelihood ratio test were used for model comparison and model selection. The model with the 

smallest AIC and BIC values were selected as the final model. The quasi R-squared value is 

0.87, which indicates decent fit of the data. The residual plot was found to be randomly scattered. 

The log-likelihood ratio test was used to test the statistical significance of the random effect 

terms. Both driver factor and curve factor were found to be statistically significant and the 

random effects should be kept in the model. The final model is shown in the following formula. 

𝑀𝑒𝑎𝑛 𝑆𝑝𝑒𝑒𝑑 𝑖𝑗 = 0.447 ∗ 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑆𝑝𝑒𝑒𝑑 + 0.1634 ∗ 𝐴𝑑𝑣𝑖𝑠𝑜𝑟𝑦 𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡𝑠 + 4.634 ∗

𝐿𝑜𝑔 𝑅𝑎𝑑𝑖𝑢𝑠 − 2.782 ∗ 𝐶𝑎𝑟 𝐹𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 − 1.725 ∗ 𝑌𝑜𝑢𝑛𝑔𝑒𝑟 𝐷𝑟𝑖𝑣𝑒𝑟 + 𝐷𝑟𝑖𝑣𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡 𝑖 +

𝐶𝑢𝑟𝑣𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 𝑗  

Table 5.5 Fixed effects of the speed prediction model on rural two-lane curves with 45 

MPH upstream speed limit 

Parameter Estimate S.E. t Value P-Value 5% CI 95% CI 

Tangent Speed 0.447 0.0104 43.251 <0.0001 0.4271 0.4679 

Advisory Speed Limits 0.1634 0.0181 9.053 <0.0001 0.1279 0.1989 

Log Radius 4.634 0.2084 22.233 <0.0001 4.2253 5.0480 

Car Following -2.782 0.2962 -9.392 <0.0001 -3.3645 -2.1987 

Younger Driver -1.725 0.7103 -2.429 0.0162 -3.2668 -0.2705 

 

Five fixed effect parameters were found to be statistically significant in the model. They 

were tangent speed, advisory speed limits, logarithm of radius, car following, and younger 

drivers. The estimates of the coefficients were included in Table 5.5. The tangent speed, advisory 

speed limits, and logarithm of radius were positively contributed to higher mean speeds. The car 

following and younger drivers were negatively contributed to the mean speeds on curves. For 

every 1 mph increase in tangent speed, the vehicle increased its mean speed by 0.447 MPH. For 

every 1 mph increase in the advisory speed limits, the mean speed increased 0.1634 MPH. The 
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mean speed increased 4.634 MPH for every 1 unit increase in logarithm of radius. If the subject 

vehicle was following another vehicle in front, the mean speed was reduced by 2.782 MPH. It 

was also interesting to see younger driver from 16 to 24 years old had 1.725 MPH lower mean 

speed compared to other drivers in the study. It might be due to the lack of experience of driving 

on curves. 

Table 5.6 Random effect estimate from the linear mixed effect model 

Group Variance S.D. 

Drivers (Intercept) 18.697 4.324 

Curve (Intercept) 7.393 2.719 

Residual 31.842 5.643 

 

The random effect estimates from the linear mixed effect model is shown in Table 5.7. 

The mixed effects of driver factor and curve factor were found to be statistically significant, so 

the mixed effects should be kept in the model. The standard deviation of driver factor was 4.324, 

which represents the variability of speeds due to the drivers. The standard deviation for curve 

factor was 2.719, which represented the variability of speeds due to the curves. The standard 

deviation of the residual was 5.643, which represented the variability of speeds that could not be 

explained by the model. In summary, 34% of the variability was explained by the differences in 

drivers. The curve explained 21.4% of variability. The rest 44.6% of variability was the noises 

that was not explained by the model.  

 In order to check the model goodness-of-fit, the observed mean speeds was plotted 

against the predicted mean speeds on Figure 5.15.  It can be seen that the predicted value 

followed the observed observations closely. It concluded that the model fits the observations 

decently. 
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Figure 5.15 Comparison of observed mean speeds to the predicted mean speeds on rural 

two-lane curves (The red dots are predicted value and the black crosses are observed 

values). 

 

The random parameter assigned to each driver could be further investigated in Figure 

5.16. Each row on the y-axis represents one driver. The x-axis represent the drivers’ baseline 

speeds on curves in MPH. As shown in Figure 5.16, some drivers tend to drive faster than other 

drivers while some other drivers tend to drive slower than other drivers on curves. For example, 

the Driver 3 tend to drive approximately 4 mph faster on curves than the average drivers in this 

study. The Driver 496752 tends to drive 5 MPH lower than the average drivers in this study. The 

confidence interval for each driver was also plotted for each driver. Some drivers were found to 

have large confidence intervals, while some drivers had smaller confidence intervals. In general, 

the distribution of drivers’ speeding behavior generally follows normal distribution. This 

methodology had important implications for identifying risky drivers who tended to be speeding 

on curves. 
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Figure 5.16 Plot of random effects for the drivers 

 

Overall, the SHRP2 NDS allowed researchers to examine a number of variables that were 

not available in previous research. The linear mixed model successfully predicted vehicle mean 

speeds on two-lane tangent roadways as a function of driver behavior, roadway characteristics, 

and traffic environments. The individual drivers’ speeding behavior could also be examined in 

random parameters. However, it is recommended to incorporate more drivers in future studies. 

5.5 Discussion 

The objective of this chapter was to understand how curve radius affect drivers’ mean 

speed and lateral acceleration on rural two-lane curves using the SHRP2 NDS data. A total of 

11,691 observations were collected from 202 drivers on 219 curves. This study built one of the 

largest driving dataset that has been collected on rural curve safety research. The findings could 
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be used to help transportation agencies to understand drivers’ behavior on curves and set 

appropriate advisory speed limits for the curves. Two main analyses were presented in this 

chapter: the lateral acceleration analysis and the mean speed analysis. 

The multivariate dataset consisted of data from three sources: time series DAS data, 

curve feature data, and driver demographics data. The time series data set was a big data set that 

contained more than 5 million rows with 83 columns. Manual reduction of such a large dataset 

would be almost impractical. Several batch processing programs were written in R to reduce the 

data for statistical analysis. The quality assurance procedures were also applied to ensure the 

quality of the data is reliable and accurate. In addition to the aggregated time series data, some 

other data sources, such as driver demographics and curve geometries, were also linked to the 

time series driving data. 

The first analysis was vehicle’s lateral acceleration on rural two-lane curves. It was found 

the lateral accretion increased exponentially as curve radius decreased. The relationship between 

lateral acceleration and vehicle speed was found to be dominant by curve radius. It again 

confirmed that the curve radius was a dominant factor for drivers’ behaviors on curves. The 85th 

percentile of vehicle lateral acceleration on different curve radius were plotted in Figure 5.9. The 

magnitude of vehicle lateral acceleration was found to increase exponentially as curve radius 

decreased. This empirical data implied drivers’ comfortable range of lateral acceleration on 

different curve radius. The transportation agencies could use this information to set appropriate 

advisory speed limits on curves. 

The second analysis was vehicle’s mean speeds on curves. There are two scenarios in this 

speed analysis: the roadways with 55 MPH upstream speed limit and the roadways with 45 MPH 
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upstream speed limit. For 55 MPH roadways, the curve radius were above 716 feet because the 

minimum speed limit recommended by MUTCD was 1060 feet, even though some smaller curve 

radius were found in this study. The advisory speed limits were found to be ineffective to 

decrease vehicle speeds. However, the vehicle speed was found to decrease as curve radius 

decreased from 2000 feet to 100 feet on 45 MPH roadways. 

In order to better examine the relationship between curve radius and vehicle speed on 45 

MPH roadways. A linear mixed model was used to predict the mean speeds on curves for each 

observation. The linear mixed model treated the driver factor and curve factor as random effects 

in the model. On one hand, the results found tangent speeds, advisory speed limits, logarithm of 

curve radius were positively correlated to higher mean speeds on curves. On the other hand, car 

following and younger drivers were found to have lower mean speeds on curves. The random 

parameters also revealed the drivers’ baseline speeding behavior on the curves. The linear mixed 

model successfully predicted the mean speeds for each driving trace. The model has important 

implications for curve speed warning system and identifying risky driver groups. 

5.6 Summary 

In summary, this chapter examined the vehicle speed and vehicle lateral acceleration on 

rural two-lane curves. A large dataset was assembled from different sources. The multivariate 

analysis of vehicle speeds and vehicle lateral acceleration provided important insights on drivers’ 

behavior on rural two-lane curves. The findings have important implications for improving curve 

design, developing curve warning system, and identifying risky driver groups. However, the 

lateral positions variables were not included in the analysis and it is recommended to investigate 

how curve radius, vehicle speed, and lateral acceleration affect drivers’ lateral position on curves 
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in future research. The data quality assurance also summarized the data availability in the 

SHRP2 NDS project. It had some practical implications for future researchers to understand the 

quality of the data.  
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 FUNCTIONAL DATA ANALYSIS OF TIME SERIES DATA 

ON RURAL TWO-LANE CURVES 

6.1 Introduction 

Previous chapters mainly focused on the analysis of the summarized event level data. 

However, the majority of the raw data collected in the SHRP2 NDS was time series data, such as 

vehicle speed, vehicle acceleration, and vehicle lateral position variables. The majority of the 

time series data  in the SHRP2 NDS were collected at high frequency at 10 Hz (every 0.1 

second), while some variables were collected at 1 Hz (every 1 second). This raised an interesting 

research question about what driver behavior information can be learned from analyzing the time 

series data. This chapter analyzed time series speed data using functional data analysis. Section 

6.1 introduces the functional data analysis and explained why it is an appropriate method. 

Section 6.2 discusses the time series speed data and the selected sample curves in this study. 

Section 6.3 explains the methodology of functional data analysis, because it is a relative new 

statistical method. The main analyses and findings are presented in Section 6.4. The final 

discussion and conclusion are included in Section 6.5 and Section 6.6. 

6.1.1 Challenges of analyzing time series data in the SHRP2 NDS  

 Use of time series data was not a straight forward task and brought many challenges, 

including missing data, outliers, and the lack of well-established statistical method. First of all, 

the on-road data acquisition system have missing data due to the nature of field data collection. 

For example, the missing data in lateral position measurement could be caused by the 

malfunction of lane tracking system, discontinuities in pavement lane markings, or snow 
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coverage on the lane marking. Second, the collected data could be either inaccurate or contain 

outliers. Outliers are exceptionally high or low values occurring among data that does not fall 

into the normal range of values. The outliers should be spotted and removed before conducting 

any statistical analysis. Third, another challenge is that there was the lack of well-established 

statistical method to analyze time series data. The classical ARIMA (Autoregressive Integrated 

Moving Average) model is mainly used for forecasting purpose, which is very appropriate for 

describing drivers’ behavior on roads. Therefore, analyzing the time series data from the SHRP2 

NDS project is an both interesting and challenging task. 

6.1.2 Introduction to functional data analysis 

Functional data analysis emerged in early 1990s and quickly developed in the past twenty 

years. It is a branch of statistical method that focuses on the analysis of information from 

continuous curves or surfaces. The primary interests of functional data analysis is to understand 

the variations in the underlying process over a group of repeated measurements. In functional 

data analysis, a series of discrete time series observations is converted to a functional 

observation. Recently, this method started emerging in some research fields, such as medical 

field, environmental monitoring, and economic research (Ramsay et al., 2002). Nevertheless, this 

method has not been used in any transportation studies. Ramsay et al. (2005) discussed the 

functional data analysis in his book Functional Data Analysis, and pointed out the method is 

appropriate for the following types of data: 

 High Frequency Measurement. The functional data analysis is appropriate for 

analyzing the time series data collected at high frequency, so that the features of the curve 

or surface are continuously captured in the time series data. 
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 Smooth Process. One important assumption of functional data analysis is that the 

underlying process is a smooth process. The main interest of FDA is to understand how 

the smooth process changes over time.  

 Complex Process that cannot be expressed in Parametric Model. Functional data 

analysis is especially useful when the underlying process is difficult to be expressed in a 

parametric model. It can be used to examine complex process and explain how the 

process changes over time. 

 Repeated observations over the same process. Functional data analysis is appropriate 

when a group of observations were repeatedly measured over the same process. FDA can 

be used to examine the similarity and difference between a set of repeated measures, 

which could not be done in traditional time series analysis. 

 High Dimensions. Functional data analysis can be used to examine the correlation 

between multiple time series variables measured from the same process. For example, it 

is possible to identify the correlation between vehicle lateral acceleration and vehicle 

lateral position collected in the same time period. 

Based on the discussion above, Functional data analysis is an appropriate method for 

analyzing the time series data from the SHRP2 NDS. First of all, the data collected in SHRP2 

NDS has high frequency at 10 Hz, while some variables were collected at 1 Hz. The majority of 

the vehicle sensor data from the SHRP2 NDS followed a smooth underlying process. For 

example, vehicle speeds usually change smoothly over time. Additionally, drivers’ behavior is a 

complex process that cannot be written in a parametric model. As discussed above, functional 

data analysis is appropriate for describing complex underlying process. Furthermore, FDA is a 

very useful tool to summarize the similarities and differences for a group of repeated time series 
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observations measured on the same roadway segment. Finally, many time series variables were 

collected simultaneously in the SHRP2 NDS. FDA can be used to examine how time series 

variables correlated with each other. In summary, functional data analysis is an ideal statistical 

method for analyzing times series data from the SHRP2 Naturalistic Driving Study.  

6.1.3 Example of functional data analysis 

However, the analysis of functional data is not a straightforward task. It involves several 

steps to convert discrete time series data to functional data. Many methods could be used to build 

the best fitted spline function to the discrete time series data. The most popular two methods are 

the B-spline method and Fourier basis method. The development of B-spline function involves 

many steps, including choosing the number of knots, choosing the number of basic functions, 

and panelizing for smoothing curvature. Figure 6.1 plotted a sample of time series speed data and 

the best fitted B-spline function in red color. The development of function data from discrete 

time series data already smooths the noises as part of the first step in FDA. After the functional 

data is created from discrete data, the values can be evaluated at any points from the developed 

best fitted functions. 

 

Figure 6.1 Example of converting discrete speeds profile to functional data on curve NY67a 
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After the discrete raw data is converted into functional data, some functional analysis 

techniques could be used to summarize the mean and confidence interval for a group of 

functional data. The most popular type of functional data analyses is to calculate the average 

functional observation from a group of repeated functional data measured on the same process. 

For example, Figure 6.2 plotted 146 driving traces observed on the same curve. The x-axis is the 

distance to the beginning of the curve. The negative value indicates the distance before the 

beginning of the curve. The positive value indicates the distance after the beginning of the curve. 

The red vertical line indicates the beginning of the curve and the blue vertical line indicates the 

end of the curve. The 146 best fitted B-spline curves are plotted in different colors. The solid 

dark line is the average speed profile calculated from the 146 functional observations. The 

confidence interval of the mean speed profile is shown as the dashed black line. This plot is a 

useful technique to summarize the averaged behavior from a group of time series data and 

examine how drivers change vehicle speeds over time and locations. 

 

Figure 6.2 Plot of 146 speed profiles on the same curve 

Another popular technique with functional data analysis is the use of derivative 

information. It is particular useful for some of the SHRP2 NDS variables, because the derivative 
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of vehicle dynamics often has some meaning explanations. For example, the first derivative of 

vehicle speed indicates vehicle acceleration. A sample vehicle speed profile and the calculated 

first derivative of the vehicle speed are shown in Figure 6.3. Examine vehicle acceleration 

information is a useful way to illustrate how drivers change speeds before, during, and after the 

curves. In this case, the drivers started to slow down for the curves at 400 feet before the curve 

PC, and the deceleration rate increased as they moved closer to the beginning of the curve. The 

maximum deceleration rate occurred at approximately 30 feet before the curve PC. The 

acceleration changed from negative to positive at middle of a curve, which means the drivers 

started to accelerate back to tangent speeds after passing half of the curve. This example 

illustrated the use of derivative information in functional data analysis and found it was a very 

useful way to examine drivers’ behavior as a continuous process. 

 

Figure 6.3 Plot of vehicle speed (top panel) and the first derivative of the vehicle speed 

(bottom panel) 
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Additionally, it is possible to identify different patterns of driver behavior by conducting 

functional principal component analysis (FPCA). Similar to multivariate principal component 

analysis, FPCA examines the major modes of variations in a group of functional data. It is a 

useful way to explore different driving patterns from a large group of repeated time series 

measurements. This technique will be discussed in Section 6.4.6. 

Overall, this chapter has three objectives. The first objective is to develop the best fitted 

B-spline functions from the observed discrete time series data, and summarize the mean speed 

and confidence interval for a group of functional data. The second research objective is to 

calculate the first derivative of vehicle speed and examine how drivers decelerate before the 

curves. The third research objective is to identify the major driving patterns using the functional 

principal component analysis. This dissertation sets an example about how to understand drivers’ 

behavior by analyzing time series data using functional data analysis. The same methodology 

could be applied to examine drivers’ behavior on other types of roadways in future studies 

6.2 Data Description 

This chapter focuses on the analysis of time series data collected from the SHRP2 NDS. 

The data acquisition system in the SHRP2 NDS collected hundreds of time series variables 

simultaneously. It is not feasible to analyze all the time series variables in this dissertation, so 

only the vehicle speed data was analyzed in this study. Speeding on curves has been identified as 

one of the most important contributing factors to roadway departure crashes on curves. It is 

important to understand how drivers manage vehicle speed and react to the curves. Hence, this 

chapter focuses on the analysis of vehicle speeds data on rural two-lane curves. The data used in 

chapter 6 went through the same data quality assurance process as discussed in Chapter 5. 
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A total of over 200 curves was collected in this dissertation. FDA usually involves large 

amount of model building procedures, so it is very time consuming to analyze the observations 

on all curves. Therefore, it was determined to conduct functional data analysis on several sample 

curves. The procedure to select the sample curves is shown in Figure 6.4. 

 

Figure 6.4 The criteria used to select sample curves 

 

The first criteria excluded the curves with 55 MPH upstream speed limits, because the 

analysis in chapter 5 showed the drivers rarely reduced vehicle speeds for curves on the 55 MPH 

roadways. Those curves do not contain the features of our interests. Therefore, the FDA only 

focuses on roadways with 45 MPH upstream speed limits. The second criteria excluded the 

curves with restricted upstream tangent distance. The overall goal of this study was to understand 

how drivers react to different curves, but sometimes the curves were located close to each other, 

so the tangent speed could be influenced by the adjacent curves. Therefore, any curves with 

upstream tangent distance smaller than 300 feet were excluded from the analysis. The third 

criteria excluded the curves with small number of observations. Any curves with less than 20 

Curve radius Less than 1500 Feet
4 Curves

Exclude observations less than 20
19 Curves

Exclude tangent distance less than 300 feet
85 Curves

Exclude 55 MPH upstream speed limit
141 Curves

All collected curves
216 Curves
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observations were excluded from the study. The last criteria only included curves with radius 

between 0 and 1500 feet. Previous analysis found the drivers only had significant speed 

reduction on the curves with radius roughly between 0 to 1500 feet. Finally, four example curves 

were chosen in this study. 

 The characteristics of the four sample curves are shown in Table 6.1. The curves radius 

ranged from 117 feet to 1,288 feet, and the curve length ranged from 186 feet to 584 feet. The 

tangent distance for all curves were greater than 300 feet, so there was no influence from 

adjacent curves or intersections. There were at least 28 observations on each curve. Two of them 

had left turn direction and the other two had right turn direction. 

Table 6.1 List of curve characteristics for the sample curves 

Curve ID Radius 

(Feet) 

Length 

(Feet) 

Curve 

Direction 

Tangent 

Distance 

(Feet) 

Number of 

Observations 

Number 

of Drivers 

1 117 186 Right Turn 6875 95 8 

2 361 276 Left Turn 392 28 1 

3 828 568 Left Turn 11256 27 11 

4 1288 584 Right Turn 3160 42 3 

  

In order to better understand the characteristics of the selected curves, the Google Street 

View were taken from Google Map as shown in Figure 6.5. The pictures were taken from the 

beginning of the curves. It was concluded that the four selected curves had reasonable similar 

features, except for curve radius. This study examined how drivers reacted to the curves with 

different radius. The FDA package in R software was used to fit the models. 
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Curve 1 

 

 

Curve 2 

 

Curve 3 

 

Curve 4 

 

Figure 6.5 Google street view of the four example curves (Google Map, 2014) 
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6.3 Methodology 

This section introduces the methodology for functional data analysis. Section 6.3.1 

discusses how to convert discrete time series data to functional data. The development of 

functional data involves several steps, including choosing the number of basis function, selecting 

the number of knots, and setting the smoothing penalty parameter. Section 6.3.2 discusses how to 

calculate the mean, the standard deviation, and the first derivative of the functional data. Section 

6.3.3 briefly describes the steps to conduct principal component analysis for functional data. The 

functional principal component analysis is mainly used to discover the underlying patterns in a 

group of functional observations. 

6.3.1 Convert the discrete time series data to functional data 

The first step of functional data analysis is to find a continuous function 𝑥(𝑡) to represent 

the discrete time series data𝑦1, 𝑦2, …,𝑦𝑛 at any given time t. For any discrete observations 

𝑦𝑖 over time 𝑡𝑖, the data can be expressed in formula 6.1 

 𝑦𝑖 = 𝑥(𝑡𝑖) + 휀𝑖 (Formula 6.1) 

Formula 6.1 is an important assumption for function data analysis, which means the 

discrete observations 𝑦𝑖 is a function of an underlying smooth process 𝑥(𝑡𝑖) plus noises 휀𝑖. 

Furthermore, the smoothing process 𝑥(𝑡) can be expressed as a function of basis system Φ(𝑡) as 

shown in Formula 6.2. 

 𝑥(𝑡) = ∑ 𝐶𝑗𝜙𝑗(𝑡) = Φ(𝑡)𝐶𝐾
𝑗=1                    (Formula 6.2) 

 



  125  

Where Φ(𝑡) is the predefined basis system and C is the coefficients matrix for observation at 

time j from 1, 2, 3,..., K. The basis function Φ(𝑡) here can be expressed in several methods, 

including Fourier basis and B-spline basis. The Fourier basis fits better for periodic data and has 

excellent computational properties. The B-spline basis is flexible and appropriate for most types 

of data and the constraints are easily defined. In this dissertation, the B-spline was used as basis 

function for developing functional data, and the Fourier basis should have similar results. 

Basis Expansions 

The B-spline function is essentially piecewise polynomials and defined by two 

properties: the location of knots and the polynomial functions. The B-spline method first creates 

a number of knots to divide the time domain into equally spaced subintervals. The polynomial 

segments are fitted within each subinterval and the polynomial segments are required to be 

smoothly connected at the knots. The highest power of the polynomial function is called degree 

and the spline with degree of three is often used to make sure the first derivative and the second 

derivative are smoothly connected at the knots. The number of required basis function equals to 

the sum of polyline order m and the number of interior knots (Ramsay et al., 2015). The scree 

plots used to choose the optimal number of basis functions are shown in the Figure C.1 

(Appendix C). Additionally, the created basis functions are plotted in Figure C.2 (Appendix C). 
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Figure 6.6 The 15 spline basis functions defined over the interval (-500, 500) by 11 interior 

knots. The polynomial segments has order four polynomials. The polynomial values and its 

derivatives were required to be smoothly connected at the interior knots. 

 

Smoothing Penalties 

The overall goal of fitting a B-spline function is to minimize the sum of squared errors 

between the observed value 𝑦𝑖 and the estimated basis function as shown in Formula 6.3. The 

estimation process is essentially an ordinary least-squares estimate problem. 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑥(𝑡𝑖))2 = ∑ (𝑦𝑖 − Φ(𝑡𝑖)𝐶)2𝑛
𝑖=1

𝑛
𝑖=1         (Formula 6.3) 

However, the method could potentially over fit the data and it is important to make sure 

the fitted line are smoothing. Hence, another term is added into Formula 6.3 to control the curve 

smoothness and now the estimation method is called penalized SSE (PENSSE) as shown in 

Formula 6.4. 

𝑃𝐸𝑁𝑆𝑆𝐸 = ∑ (𝑦𝑖 − Φ(𝑡𝑖)𝐶)2𝑛
𝑖=1 + 𝜆𝐽[𝑥]         (Formula 6.4) 

Where 𝐽[𝑥] is a measure of the roughness of the fit and 𝜆 is a tuning parameter. The 

roughness measurement 𝐽[𝑥] is often a measure of curvature of the fitted line, which 
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is∫[𝐷2𝑥(𝑡)]2𝑑𝑡. Now the penalized squared error becomes Formula 6.5, so that the coefficient 

matrix C can be solved from the formula by minimizing PENSSE. 

𝑃𝐸𝑁𝑆𝑆𝐸 = ∑ (𝑦𝑖 − Φ(𝑡𝑖)𝐶)2𝑛
𝑖=1 + 𝜆 ∫[𝐷2𝑥(𝑡)]2𝑑𝑡        (Formula 6.5) 

When 𝜆 gets larger, the roughness of the fit will be penalized heavier and the fitted line 

will be smoother and linear. When 𝜆 gets smaller, the roughness of the fit will be less penalized 

and the fitted line will fit closer to the actual observations. An appropriate tuning parameter 

should be selected to ensure the fitted function does not over fit the noises, and still capture the 

interesting features of the curve. Several cross validation methods were proposed to choose the 

optimal tuning parameter 𝜆, such as ordinary cross validation (OCV), generalized cross 

validation (GCV), AIC and BIC, etc. The GCV is used choose the optimal smoothing parameters 

𝜆 in this dissertation. The GCV can be calculate as Formula 6.6. 

 𝐺𝐶𝑉(𝜆) = (
𝑛

𝑛−𝑑𝑓(𝜆)
) (

𝑆𝑆𝐸

𝑛−𝑑𝑓(𝜆)
)          (Formula 6.6) 

The scree plots used to choose optimal tuning parameters are shown in the Figure C.3 (Appendix 

C). 

 

6.3.2 Calculate the mean, standard deviation, and the derivatives for a group of 

functional data 

This section describes the methods for calculating the mean, standard deviation, and the 

derivatives for a group of functional data. 
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Mean of Functional Data  

The functional mean and functional standard deviation are useful tools to examine the 

variations within a group of repeated time series observations. The functional mean is the point-

wise average for a group of functional data. It represents the mode of variation shared by most 

curves. Let 𝑥𝑖, i=1,2,…,N, represents a set of fitted spline functions to the data. The sample mean 

can be simply expressed as �̅�(𝑡) in Formula (6.7). 

�̅�(𝑡) =
∑ 𝑥𝑖(𝑡)

𝑛
     (Formula 6.7) 

Confidence Interval of Functional Data 

The variance-covariance matrix of the fitted value can be expressed as 𝑉𝑎𝑟[�̂�] =

Φ𝐶Σ𝐶𝑇Φ𝑇.  The pointwise confidence interval can be derived from the variance-covariance 

matrix, and it is an effective way to examine the variability of data over the time domine. 

 �̂�(𝑡) ± 1.96√𝑉𝑎𝑟[�̂�(𝑡)]         (Formula 6.8) 

Covariance of Functional Data 

The covariance for a group of curves summarizes the dependence of records across 

different argument values, which is often referred to time ti. The covariance can be expressed as 

𝑐𝑜𝑣𝑥(𝑡1𝑡2) = (𝑁 − 1)−1 ∑ {𝑥𝑖(𝑡1) − �̅�(𝑡1)}{𝑥𝑖(𝑡2) − �̅�(𝑡2)}𝑁
𝑖=1 . The variance-covariance is 

illustrated on a contour plot in functional data analysis. The diagonal running from lower left to 

upper right in the contour contains the unit values which indicates the correlation between the ti 

and itself. As moving away from the diagonal line in the orthogonal direction for distance 𝛿, it 

indicates the correlation for the time pair ((𝑡 − 𝛿, 𝑡 + 𝛿). 
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Figure 6.7 Contour plot of correlation function across locations for vehicle speeds 

 

Derivative Information of Functional Data 

 Another popular application of functional data analysis is the use of derivative 

information. Calculating the derivatives is an effective way to examine the variations of the 

curves, which indicates the rates of change. The first derivative of the functional data x(t) is 

shown in Formula 6.9. The notion of 𝐷1 means the first derivative of function x(t). The notion of 

𝐿 represents the differential operator L=𝐷1 to the function 𝑥(𝑡). The 𝐿 𝑥(𝑡) is called a forcing 

function. 

𝐿 𝑥(𝑡) = 𝐷1𝑥(𝑡)                     (Formula 6.9) 

Phase plane plot is often a useful way to investigate energy transfer and dissipating by 

plotting the relationship between the functional data and its derivatives. It will be discussed in 

details in Section 6.4.5. 
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6.3.3 Functional principal component analysis 

Functional Principal Component Analysis (FPCA) can be used to identify the strongest 

and most important modes of variations with in a group of curves. It explains the underlying 

patterns in the data and provides different ways to look at the covariance structure. To solve the 

problem mathematically, the FPCA can be defined as the search for a set of mutually orthogonal 

and normalized weight functions 𝜉𝑚. Scree plot is used to find the number of principal 

components that contribute the most to the variance of the data. Sometime, VARIMAX method 

can be applied to attain an interpretable explanation of the dominant modes of variation. 

In general, FPCA problem is equivalent to the numerical problem of solving matrix 

Eigenanalysis. Functional PCA is similar to multivariate PCA except that the summation sign is 

changed to integration sign. The functional principal components can be treated as a set of 

orthogonal basis functions to explain the variance as much as possible at each step. Each weight 

function defines the most important mode of variation in the curves. Smoothing algorithm is 

often applied on the estimated functional principal components, which is also called 

regularization. The goal of regularization is to remove the roughness in the raw PC curves.  The 

steps to build regularized FPCA algorithm is briefly explain as follows: 

Step 1: Build smooth function for the observed data. Expand the observed data xi with respect to 

the basis 𝜙 to obtain coefficient vectors 𝑐𝑖. The simultaneous expansion of all N curves 

can be expressed as 𝑥 = 𝐶𝜙. The variance-covariance function is 𝑣(𝑠, 𝑡) =

𝑁−1 ∑ 𝑥𝑖(𝑠)𝑥𝑖(𝑡)𝑁
𝑖  
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Step 2: The goal is to solve a set of mutually orthogonal and normalized weight functions by 

solving ∫ v(s, t) ξ(t ) dt  = ρ ξ(s), where ρ is eigenvalues and ξ(s) is eigenfunctions of 

the variance covariance function. 

Step 3: For the first PC, the main objective is to find a set of 𝜉𝑖(𝑡) that maximizes 

Var[∫ 𝜉𝑖(𝑡)𝑥𝑗(𝑡)𝑑𝑡], which is also subjected to the unit sum of square constraint. 

Step4: The second PC should be orthogonal to the previous PC, so that the new information 

could be revealed. Therefore, another orthogonal constraint is added as ∫ 𝜉𝑖(𝑡)𝜉𝑙(𝑡)𝑑𝑡 =

0 and∫ 𝜉𝑙
2(𝑡)𝑑𝑡 = 1. 

Step 5: It is optional to use the VARIMAX method to rotate the principal components and make 

it easier to interpret the PCs. 

Step 6: Apply the smoothing operator 𝑆′ to the resulting eigenvectors u. For example, if the 

functional PCA is too rough, the term ‖𝐷2𝜉‖2 can be panelized so that 𝜉 satisfies 

modified eigenequation∫ 𝑣(𝑠, 𝑡)𝜉(𝑡)𝑑𝑡 = 𝜌[𝜉(𝑠) + 𝜆𝐷4𝜉(𝑠)]. 

Step 7: Transform back to find the principal component function 𝜉 with 𝜉(𝑠) = ∑ 𝑦𝑣𝜙𝑣(𝑠)𝜈 =

𝑦′𝜙(𝑠) 

In summary, the theoretical background of functional data analysis is discussed in this 

section. The application of functional data analysis on the SHRP2 NDS data is shown in the 

following section. 
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6.4 Analysis of Time Series Data using Functional Data Analysis 

The application of functional data analysis on the SHRP2 NDS data is presented in this 

section. Section 6.4.1 plotted the discrete raw data on the four sample curves. Section 6.4.2 

plotted the best fitted spline functions for each curve. The mean and confidence interval for a 

group of repeated observations were also plotted on the same graph. Section 6.4.3 calculated the 

first derivative of the speed data, which was vehicle deceleration. Section 6.4.4 examined how 

drivers reduce their speeds for the curves. Another interesting way to examine vehicle dynamics 

on curves was the use of phase plane plot in Section 6.4.5. Finally, functional principal 

component analysis of vehicle speeds was discussed in Section 6.4.6. It showed the functional 

PCA was a very useful tool to discover the underlying patterns in a group of time series 

measurements. 

6.4.1 Plot of raw speeds 

First of all, the discrete time series data of vehicle speeds on the four curves are plotted in 

Figure 6.8. The x-axis is the distance to the beginning of a curve, which is also known as point of 

curvature (PC). The y-axis is the vehicle speeds in MPH. The discrete speed data was plotted on 

the four example curves. The beginning of the curves was labeled as the red vertical line, and the 

end of a curve was labeled as the blue vertical line. In general, the curve radius for Curve 1 is the 

smallest (117 feet) and there is clearly a reduction in speeds in curve 1. As the curve radius 

increases in Curve 2, Curve 3, and Curve 4, the speed reduction effect was less significant. The 

Curve 4 almost had no speed reduction. The curve radius, curve length, and turning direction are 

also labeled on the plot. 
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Figure 6.8 Plot of raw speeds on the curves (R=Radius, L=Length) 
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6.4.2 Plot of fitted functional data, mean speed, and the confidence interval 

The smoothed B-spline function was fitted for each driving trace on the same curve. The 

plots of best fitted functional data on the discrete raw data for the four curves are shown in Figure 

C.4, C.5, C.6, and C.7 in Appendix C. The most frequently used analysis in functional data analysis 

was to identify the average behavior from a group of functional observations. In this case, the 

average vehicle speeds on curve 1 was showed as the solid black line on Figure 6.9. The beginning 

(PC) point and ending (PT) point of a curve were labeled as the red color and blue color on the 

graphs. The pointwise 95% confidence intervals were also plotted as the black dashed lines on the 

graphs. It indicated the range of vehicle speeds at different locations on the curves. 

The plot of vehicle mean speeds and the 95% confidence interval revealed important 

information regarding drivers’ speed behaviors on the curves. The drivers were found to reduce 

their vehicle speeds significantly on curve 1 which has the smallest radius. Curve 2 had larger 

curve radius than curve 1 and less significant speed reduction was observed on curve 2. Curve 3 

had very small speed reduction, and no obvious speed reduction was observed on Curve 4. 

Additionally, the confidence interval also revealed important information about the variability of 

vehicle speeds on the curves. For example, the confidence interval was wider on the tangent 

roadways on curve 1, but it became narrower inside the curve. It indicated the drivers had more 

freedom to choose their operating speed on tangent roadways, but the curve radius limited the 

vehicle speeds into a small range of vehicle speeds inside the curves. However, the curve 4 almost 

had constant confidence interval before and inside the curve, which indicated the curve had little 

effect on the variability of vehicle speeds for curve 4. 
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Curve 1 

 

Curve 2 

 

Curve 3 

 

Curve 4 

  

Figure 6.9 Plot of mean speeds and 95% confidence intervals on the curves 
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 In order to better understand the driver behavior on the four example curves, the 

summary statistics of the mean speed profile is shown in Table 6.2. The tangent speed is 

summarized at 400 feet before the beginning of a curve. The speed reduction is calculated as the 

difference between tangent speed and curve midpoint speed. The width of the 95% confidence 

interval is also shown on the tangent segment and the curve segment. 

 The average tangent speeds was found to be different on the four curves. The curve 1, 3, 

and 4 had tangent speed around 45 MPH, which was very close to the posted speed limits. 

However, the curve 2 had tangent mean speed at 50.46, which was approximately 5 MPH above 

speed limits. The speed reduction for the curves decreased as curve radius increased. Curve 1 

had highest speed reduction at 21.39 MPH, but curve 4 had speed reduction close to 0. The width 

of the 95% confidence interval was also calculated for each curve. The confidence interval on the 

tangent segment was between 8.608 to 11.130 MPH.  The width of the confidence interval at 

midpoint of the curve is shown in the last column. The width of the confidence interval is only 

half of the confidence interval on the tangent segment for curve 1. The confidence intervals 

between the tangent and midpoint were similar for curve 2, 3, and 4.  

Table 6.2 Summary statistics of the mean speed profiles 

Curve ID Tangent 

Speed 

Curve 

Midpoint 

Speed 

Speed 

Reduction 

Width of 

Confidence 

Interval  on 

Tangent 

Width of 

Confidence 

Interval on 

Curve 

Curve 1 45.73 24.34 21.39 ±8.608 ±4.548 

Curve 2 50.46 43.84 6.62 ±13.674 ±11.130 

Curve 3 46.52 44.53 1.99 ±10.638 ±12.538 

Curve 4 44.07 44.55 -0.47 ±9.216 ±7.578 
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6.4.3 Examine the deceleration profile on the curves 

The first derivative of vehicle speed can be calculated from the functional data and the 

derivative information is useful to examine how drivers reduced their speeds for the four curves 

if at all. The first derivative was calculated with the methodology described in Section 6.3.2. The 

vehicle acceleration for each driving trace was calculated from the functional data and plotted in 

Figure 6.10. First of all, the acceleration on curve 1 had strong S-shape curves. The drivers 

decelerated vehicle speeds as they moved closer to the beginning of the curve 1 and reached the 

maximum deceleration rate at roughly 50 feet before the curve. Once the driver passed the 

beginning of the curve 1, the magnitude of deceleration reduced and the deceleration turned into 

acceleration after they passed half of the curve 1. The drivers increased their speeds back to 

tangent speeds after the end point of the curve (PT). However, this phenomenon was less 

significant on Curve 2. Some outliers were also observed with different deceleration behaviors. 

The vehicle deceleration on Curve 3 was not as significant, but one driving trace was found to be 

an outlier than other observations. The deceleration profiles were almost straight horizontal lines 

with deceleration equaled to zero on Curve 4. It showed the drivers did not make speed changes 

at all. 

In summary, the derivative information was proved to be a useful way to understand 

drivers’ interactions with different curves as continuous processes. However, the magnitude of 

deceleration was less significant as the curve radius increased. For curve 4 with radius at 1288 

feet, there was no significant deceleration on the curve. Therefore, it was another evidence that 

the drivers did not reduce speed for the curves with radius approximately larger than 1000 feet. 
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Curve 1 

 

Curve 2 

 

Curve 3 

 

 

Curve 4 

 

  

Figure 6.10 Plot of vehicle acceleration on the curves 
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6.4.4 Vehicle deceleration profile before the curve point of curvature 

In order to further investigate how drivers reduced their speeds and reacted to the curves, 

the plot of the averaged deceleration profile before curve PC was shown on Figure 6.11. In 

general, the deceleration profiles became flatter when curve radius increased. It is clear that the 

curve 1 with the smallest radius had the largest deceleration rate. The magnitude of deceleration 

on curve 1 also increased as they move closer to the beginning of the curve. However, it seemed 

the deceleration profile has two stages with different slopes. The first deceleration slope was 

from -400 feet to -250 feet, which might reflect the drivers’ speed reduction when they first saw 

the curve. The second stage was from -250 feet to -30 feet, which indicates the drivers’ “fine 

tuning” stage to adjust vehicle speed to enter the curve. However, this phenomenon was only 

observed on this curve only and more curves should be included to confirm the speculation. The 

deceleration profile of Curve 2 was relatively flatter to Curve 1. The deceleration profile was 

almost flat on curve 3. The deceleration profile on curve 4 was nearly a straight line, which 

indicated no deceleration for the curve 4. 

 

Figure 6.11 Plot of deceleration profile before the curve PC 



  140  

6.4.5 Phase-plan plot of vehicle dynamics 

Phase plane plot is a useful visualization method to understand the energy transfer and 

dissipating in the curve negotiation process. The x-axis represents the vehicle speeds on the 

curves. The y-axis is the vehicle acceleration on the curve. The time dimension of the driving 

process is expressed by the change in colors. The events started with the green color and ends 

with the red color. The shape of the phase plane plot for Curve 1 had circular shape as shown in 

Figure 6.12. The bottom half of the phase plane plotted indicated the deceleration phase. The 

vehicles reached the minimum speed at the left side of the circle with acceleration equaled to 

zero. After the vehicle passed its minimum speed, the acceleration value turned into positive and 

the vehicle started to accelerate and get back to the tangent speeds. Many patterns of vehicle 

dynamics were found on the curve 1. Some driving traces had larger deceleration value than 

other drivers. There were also a large range of minimum vehicle speeds in the curve. The size of 

the circle indicated the change in vehicle dynamic energy. In conclusion, phase plane plot was a 

useful way to visualize the energy transfer and dissipating on curves. 

 

Figure 6.12 Phase plane plot for the 95 driving traces on curve 1 
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Furthermore, the averaged profile for each curve is shown in Figure 6.13. It represented 

the average drivers’ vehicle dynamics on each curve. It is interesting to see the curve 1 involved 

large speed reduction and also involved higher deceleration and acceleration in the negotiation 

process. The curve 2 had relatively smaller circle, which indicated less speed reduction. Smaller 

acceleration and deceleration involved in the curve negotiation process. The curve 3 had even 

smaller circles. The curve 4 almost had a single point, because it was not associated with any 

speed reduction. Above all, phase-plan plot is a useful way to illustrate vehicle dynamics 

involved in the curve negotiation process. 

  

 
 

 
 

Figure 6.13 Phase plane plot for the four sample curves 
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6.4.6 Functional principal component analysis of vehicle speed 

Functional principal component analysis (FPCA) is a data exploratory method to discover 

the underlying patterns in a group of repeated time series observations measured on the same 

process. The methodology of FPCA was discussed in details in Section 6.3.3. The FPCA can be 

applied to each curve, but this section only used curve 1 as the example curve because it had the 

most interesting features compared to other curves. Scree plot was used to determine the optimal 

number of principal components kept in the model (the scree plot was shown in Figure C.8 in 

Appendix C). The first three principal component were kept in the analysis and they explained 

94.8% of the variability in vehicle speeds. The functional principal component analysis was 

performed using the pca.fd function in FDA package in R. 

 A common way to express the variability in each functional principal component is to 

plot the mean and plus and minus the principal component effect in the component direction. The 

first principal component found the contrast in vehicle speeds in vertical direction. The first 

principal components explained 75.8% of the variability in the functional data. The solid line in 

Figure 6.14 is the mean of the speed profile averaged from the 95 functional observations on 

curve 1. The line labeled as plus signs on the top indicated that any functional observation closed 

to this line will have higher scores in the first principal component. In contrast, the line labeled 

with negative signs on the bottom indicated the curves close to this line had lower values in the 

first principal component. In other words, the first principal component represented the 

differences in the magnitude of vehicle speeds on the curve. 
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Figure 6.14 The first principal component explained 75.8% of the variability 

 

 The second principal component explained 10.3% of the variability in the speed profiles. 

It mainly pointed out the contrast in locations in lateral direction. The driving traces with early 

deceleration had larger score on the second principal component. The driving traces with late 

deceleration had smaller score on the second principal complement. This principal component 

differentiated the effects for the drivers who slowed down for the curve early compared to the 

drivers who slowed down for the curve later. 

 

Figure 6.15 The second principal component explained 10.3 % of the variability 



  144  

 The third principal component explained only 8.6% of the variability in the driving 

traces. This principal component identified the drivers who had larger speed reduction for the 

curve compared to those who had smaller speed reduction for the curve. The drivers who drove 

higher speeds on tangent roadways and smaller speeds inside the curve had higher score on this 

principal component. The drivers who drove lower speeds on tangent roadways and higher 

speeds inside the curves had lower score on this principal component. 

 

Figure 6.16 The third principal component explained 8.6 % of the variability 

 

 Overall, three major driving patterns were found in this analysis. The first mode of 

variation was the magnitude of vehicle speeds. The second major mode of variation was the 

difference between the drivers who slow down for the curve early and the drivers who slow 

down for the curve late. The third mode of variation was not as significant, but it indicated the 

magnitude of speed reduction for the curve. Overall, the FPCA successfully applied on the time 

series data from Curve 1. Three modes of variations were discovered in the analysis.  
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6.5 Discussion 

The objective of this chapter is to analyze the time series data of vehicle speeds on rural 

two-lane curves. The traditional time series data analysis method was mainly used for forecasting 

purpose and it was not appropriate for summarizing the features for a group of time series 

observations. Functional data analysis was a relatively new statistical branch developed in the 

past twenty years. The method had not been used in transportation research field. 

The functional data analysis is most appropriate for analyzing high frequency time series 

data with a smoothing underlying process. It is useful to summarize a group of time series data 

measured repeatedly over the same process. For example, the drivers might drive on the same 

curve for multiple times and it is interesting to summarize the average driving behavior from a 

group of repeated time series observations on the same roadway segments. Additionally, 

functional data analysis is very useful to describe complex process which could not be expressed 

in a simple parametric model. It is also possible to examine the high dimensional data and 

calculate the correlations between the time series variables. The time series data collected from 

the SHRP2 NDS project satisfied almost all criteria mentioned above. This chapter applied the 

functional data analysis to study drivers’ speed behavior on rural two-lane curves using the 

SHRP2 NDS data. Many promising results had been found in this research. 

However, functional data analysis involved several steps to convert discrete time series 

data to functional data. The process included choosing the number of basis function, selecting the 

number of knots, and setting the smoothing penalty parameters. After the functional data was 

built from the discrete time series data, several functional statistical analysis methods were used 

to analyze the created functional observations. The most common type of analyses was 
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calculating the mean and the confidence interval for a group of driving traces. The derivative 

information was also available for analyzing the rate of change for vehicle speeds on the curves. 

Phase plane plot was another way to visualize the relationship between vehicle speed and vehicle 

acceleration. Additionally, the functional principal component analysis was found to be an 

important tool to conduct exploratory analysis on the underlying patterns in a group of time 

series observations. 

Although the driving data were collected on 219 curves, the functional data were not 

applied to all curves. Several criteria were used to select the curves on 45 MPH roadways with at 

least 20 observations on the curve. The chosen curves had at least 300 feet upstream distance. 

Finally, only four rural two-lane curves were chosen for functional data analysis in this 

dissertation.  

First of all, the mean speed and confidence interval were calculated and presented in 

section 6.4.2. The four example curves had curve radius between 117 feet to 1288 feet. 

Significant speed reduction was found on curve 1, which had smallest radius. The speed 

reduction effect was less obvious on curve 2. Only slight speed reduction was observed on curve 

3. No speed reduction was found on curve 4 with the largest radius. 

Second, the first derivative of vehicle speed was discussed in section 6.4.3. The drivers 

were found to start decelerating at roughly 400 feet before the curves. The deceleration rate 

increased as the vehicles moved closer to curve PC. After driving half way through the curve, the 

drivers started accelerating back to tangent speed on curve 1. However, the deceleration profile 

was almost a straight line on curve 4. The phase plane plot was also found to be an effective way 

to visualize the vehicle dynamics on the curves. 
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The third analysis discussed the application of functional principal component analysis 

on curve 1. Similar to multivariate principal component analysis, FPCA is an important tool to 

investigate the underlying patterns in a group of time series observations. The developed 

principal components revealed the important underlying patterns. The first principal component 

explained 75.8% of the data and it indicated the overall magnitude of vehicle speeds on the 

curve. The second principal component explained 10.3% of the variability and it represented the 

drivers who reacted to the curves early compared to the drivers who reduced speed later. The 

third principal component explained the magnitude of speed reduction for the curve. Overall, the 

first three principal components explained 94.5% of the information in the driving data. It 

successfully revealed the important underlying patterns in a group of time series driving data. It 

is recommended to use FPCA to analyze driver behaviors on other curves. 

6.6 Conclusion 

Overall, the functional data analysis method was found to be a very useful and effective 

way to analyze time series data from naturalistic driving study. It successfully summarized the 

mean and confidence interval for a group of time series driving data. The derivative information 

was also available for analysis. Phase plane plot was a useful visualization technique to 

understand the vehicle dynamics on different curves. The FPCA was found to be a useful tool to 

discover the underlying trend the in a group of time series driving data. This dissertation 

demonstrated the functional data analysis as an important analytical tool to examine time series 

data in naturalistic driving study. 

However, the study had some shortcomings. First of all, functional data analysis was a 

relatively complicated statistical method which required several steps to develop functional data 
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from discrete time series data. Because FDA is a relatively new method, it is not incorporated in 

many existing software. The analysis in this chapter used the FDA package in R, which required 

programing skills to apply the method. Second, the sample size included in the dissertation was 

very limited. Only four curves were included for functional data analysis. The general trend can 

be identified from the four curves with different radius. It is recommended to incorporate more 

curves in the analysis. Third, it is recommended to include more variables in the analysis. For 

example, vehicle lateral position variable could be used to study how drivers maintained their 

lane positions in the curves. In conclusion, functional data analysis was found to be a useful 

research tool to examine time series data in naturalistic driving study. 
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 CONCLUSION 

This chapter reviewed the main findings from this dissertation in Section 7.1 and 

discussed the implications for future research in Section 7.2. 

7.1 Summary of Major Findings 

The objective of this dissertation was to understand drivers’ naturalistic driving behavior 

on rural two-lane curves using the state-of-the-art SHRP2 Naturalistic Driving Study data. 

Chapter 1 introduced the transportation safety issue and the background of naturalistic driving 

study. Chapter 2 reviewed the past studies on horizontal curves from three aspects: curve 

perception, vehicle speeds, and vehicle lateral positions. Chapter 3 reviewed some of the existing 

naturalistic driving studies and introduced the SHRP2 Naturalistic Driving Study. Chapter 4 

analyzed the crashes and near-crashes on rural two-lane curves. It mainly focused on analyzing 

the contributing factors to the safety critical events using logistic regression model. Chapter 5 

focuses on drivers’ normal driving behavior on rural two-lane curves. The multivariate analysis 

method was used to analyze drivers’ curve negotiation behavior from vehicle speed and lateral 

acceleration. Chapter 6 took the challenges to analyze time series data using functional data 

analysis and evaluated how drivers interacted with curve geometries as a continuous process. 

FDA was found to be a useful method to analyze time series data from naturalistic driving study. 

Overall, the SHRP2 Naturalistic Driving Study data helped us understand how drivers interact 

with vehicles, roadways, and traffic environments. The major findings and implications from this 

dissertation are discussed in the following sections. 
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7.1.1 Crashes and near-crashes analysis on rural two-lane curves 

The objective of the first study was to understand the causes of crashes and near-crashes 

on rural two-lane curves using the SHRP2 NDS data. A total of 67 safety critical events and 136 

baseline events were included in the final model. The preliminary analysis found speeding was a 

contributing factor to 78% of safety critical events; The engagement in secondary tasks were 

found in 64% of safety critical events; The wet and icy/snowy surface was also overrepresented 

in the safety critical events. The logistic regression model was used to predict the binary event 

outcomes. The model initially considered 24 variables, but only 8 of them were statistically 

significant in the model. The speeding, wet surface, icy/snowy surface, roadway curb, and visual 

distractions increased the likelihood of roadway departure events on rural two-lane curves. On 

the contrary, larger curve radius and paved shoulder decreased the likelihood of roadway 

departure events on rural two-lane curves. 

The odds ratio was calculated for each contributing factor. The likelihood of safety 

critical event was 2.54 times higher if the drivers were driving 10 MPH above posted speed limit. 

The wet roadway surface increased the likelihood of roadway departure events by 3.81 times. 

The icy/snowy surface increased the likelihood by shockingly 34.08 times, but the confidence 

interval was very wide due to the limited sample size. Drivers’ visual distraction also increased 

the crash likelihood by 3.07 times. Curb increased the likelihood of roadway departure events by 

4.71 times. However, the tire-strike events were overrepresented in the dataset, so it is 

recommended to use lane encroachment as crash surrogate in the future study. Additionally, for 

every one unit increase in logarithm of curve radius, the likelihood of involving in safety critical 

events decreased by 0.24 times. The paved shoulder decreased the likelihood by 0.26 times. 

Another important observations in this study was the interaction between multiple factors. For 
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example, the most frequently observed interaction effect was speeding on sharp curves with wet 

or icy/snowy surface. Because of the limited sample size, it was difficult to examine the 

interaction effect in this analysis, but it is recommended to examine the interaction effect in 

future research. 

In summary, this study was one of the first analyses of crashes and near-crashes using the 

large-scale SHRP2 NDS data. The state-of-the-art data set allowed researchers to examine many 

driver behavior variables that were not available in previous studies. This dissertation 

demonstrated the use of logistic regression to analyze event level crash and near-crash data and 

the results were interpreted as odds ratios. The findings suggested that the SHRP2 Naturalistic 

Driving Study provided invaluable information to help understand the role of human factor in 

crashes and near-crashes. 

7.1.2 Multivariate analysis of driver behavior on rural two-lane curves 

The objective of the multivariate analysis was to understand drivers’ normal curve 

negotiation behavior on rural two-lane curves using the SHRP2 NDS data. This study included 

two analyses: lateral acceleration analysis and mean speed analysis. The SHRP2 NDS driving 

data on rural two-lane curves were identified on ArcGIS and requested from VTTI. The major 

data sources included time series driving data, curve geometry, driver demographics, and vehicle 

types. After conducting data assurance, a total of 9,584 observations were included in the final 

dataset. It is one of the largest driving behavior datasets compared to previous studies. 

The first analysis was to understand the relationship among lateral acceleration, vehicle 

speeds, and curve radius. The lateral accelerations were found to increase exponentially as curve 

radius decreased. Especially, the lateral accelerations increased quickly as the curve radius was 
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less than 1000 feet, which indicated higher roadway departure risks associated with these sharp 

curves. It explained why the safety critical events were overrepresented on the curves with radius 

less than 1000 feet as shown in Chapter 4. Additionally, the cumulative distribution of lateral 

acceleration were further examined on different ranges of curve radius. The drivers were found 

to tolerate higher lateral acceleration on the curves with smaller radius. The 85th percentile of 

lateral accelerations on different curve radius were found from the cumulative distribution 

functions. The findings could be used by transportation engineers to set the speed limits on 

curves to make sure the drivers feel comfortable on curves. For future research, it is suggested to 

investigate how lateral acceleration correlated with lane deviation on curves. 

The second analysis was to understand the drivers’ speed choice on rural two-lane curves. 

The analysis only focused on the curves with 45 MPH or 55 MPH upstream speed limits, even 

though the advisory curve speed limits could be different. The preliminary analysis found the 

drivers did not reduce their speeds on curves with 55 MPH upstream speed limits regardless of 

the curve radius. On the other hand, the drivers were found to reduce their speeds on 45 MPH 

upstream speed limits curves as curve radius decreased. In order to examine the contributing 

factors to the speed reduction, the linear mixed model was used to predict drivers’ mean speed 

on curves 45 MPH upstream speed limits. The driver ID and curve ID were treated as random 

effects in the model to account for the interdependence in the observations.  

The results found tangent speed, advisory speed limit, and higher logarithms of curve 

radius were positively correlated to higher mean speeds on curves. The car following and 

younger drivers were correlated with smaller mean speeds on the curves. Although advisory 

speed limits was found to be statistically significant in the model, the vehicle speeds only 
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reduced 1.63 mph for every 10 MPH suggested speed reduction in advisory speed limits. The 

preliminary analysis also found the drivers did not reduce speed at all on 55 MPH upstream 

speed limits. Hence, it was concluded that advisory speed limit was not effective to reduce mean 

speeds on curves. The younger drivers were found to drive slower on curves, which was contrary 

to our expectation, but it might be due to the lack of experience of driving on curves. The 

random effect of the drivers were further examined to identify the risky drivers who tend to drive 

faster than other drivers. The results successfully identified a group of drivers who drove faster 

than the other drivers on curves. 

This analysis is one of the first studies to evaluate drivers’ curve negotiation behavior 

using naturalistic driving study data. This study collected one of the largest multivariate curve 

driving behavior datasets than previous studies. The speed prediction model could be used to 

predict vehicles’ speed based on the explanatory variables. The linear mixed model also 

identified the risky driver groups. This study also demonstrated how to batch process a large 

scale naturalistic driving dataset, which provided important insights for future researchers. 

However, this study also only focused on the rural two-lane curves. It is suggested to analyze 

drivers’ curve negotiation behavior on other types of curves in future research. 

7.1.3 Functional data analysis of time series data on rural two-lane curves 

Many researchers were interested in understanding and summarizing driver behavior by 

analyzing the time series data from naturalistic driving study. This dissertation took the 

challenges to analyze the time series data using a relatively new branch of statistical method 

called functional data analysis. Since this is a recently developed research method in 

transportation research community, this study first reviewed the methodology of functional data 
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analysis. Four sample curves with different curve radius were used in this analysis. Only the 

vehicle speed data was analyzed in this study as an example. The functional data analysis 

involved several steps to convert the discrete time series data to functional data. After the 

functional data were created, the mean and 95% confidence interval for vehicle speed data were 

summarized for each curve. The average speed from a group of drivers were plotted on each of 

the four sample curves. The confidence interval were plotted on the same graph to indicate the 

variability of vehicle speeds on the four curves. This analysis illustrated the drivers’ speed 

behavior on the rural two-lane curves as a continuous process. Curve 1 had the largest speed 

reduction, and curve 4 had no speed reduction at all. The plot of functional mean and confidence 

interval was a useful tool to examine how the drivers changed their speeds in relation to the 

curve geometries. 

Another popular FDA technique was to examine the derivative information of the 

functional data. In this study, the first derivative of vehicle speeds was calculated from the 

functional data, which indicated the vehicle’s deceleration. The plot of first derivative found the 

deceleration behaviors were different on the four sample curves. Significant decelerations were 

observed on curve 1 and curve 2. The drivers were found to slow down for the curves at roughly 

400 feet before the curves on curve 1 and curve 2.  The magnitude of deceleration rates also 

increased as the drivers moved closer to the beginning of the curve PC. However, the 

decelerations were less obvious on curve 3. No deceleration was found on curve 4. Phase plane 

plot was another useful visualization method to examine vehicles’ energy changes on the curves. 

This study conformed to our expectation that the speed reduction was not significant for those 

curves larger than 1000 feet. 
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Finally, the functional principal component analysis was used to identify the major 

driving patterns in a group of time series data on curve 1. The first three principal components 

were identified in this analysis. The first PC represented the magnitude of vehicle speeds on the 

curve. The second PC represented the contrast between the drivers who slow down speeds early 

and the drivers who slowed down speeds later. The third principal component represented the 

magnitude of the speed reduction between the tangent speed and curve speed. Overall, the 

functional principal component analysis identified different patterns of drivers’ behaviors from a 

group of time series observations measured on the same curve. 

Overall, the functional data analysis was found to be a groundbreaking research tool that 

allowed researchers to analyze time series data collected from naturalistic driving study. The 

typical drivers’ behavior could be easily calculated and visualized with the functional data 

analysis methods. The derivative information could provide important insights on the time series 

data. It is especially useful because it is sometimes more important to study the rate of change, 

instead of the absolute value of the variable. The functional principal component analysis 

discovered several important driving patterns on curve 1. A number of visualization tools were 

available to show how drivers interacted with the roadway features. Functional data analysis was 

proved to be an effective way to examine how drivers interact with roadway features. This 

method allowed researchers to examine how a group of drivers reacted to different roadway 

designs, which attracts great interests from transportation agencies. 

7.2 Implications for Future Research 

This dissertation analyzed the drivers’ behavior on rural two-lane roads using the SHRP2 

Naturalistic Driving Study. The crash and near-crash analysis on rural two-lane curves 
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successfully incorporated drivers’ behavior into the analysis, and identified the odds ratio for 

each contributing factor. The results could be used to improve roadway design methods and 

develop safety countermeasures. Additionally, the multivariate analysis analyzed drivers’ normal 

curve negotiation behavior with vehicle lateral accelerations and vehicle speeds. The relationship 

between curve radius, lateral acceleration, and vehicle speeds was carefully investigated in this 

analysis. The findings had important implications for setting curve speed limits, identifying 

dangerous driver groups, and developing crash warning system. Furthermore, functional data 

analysis was used to analyze the time series data from naturalistic driving study. Functional data 

analysis is a relatively new research method that hasn’t been used in transportation research 

community. It was found to be a very useful method to analyze time series data collected from 

naturalistic driving study and help us understand how drivers interact with roadway features and 

traffic environments as a continuous process. Overall, the state-of-the-art SHRP2 naturalistic 

driving study was found to be an important research tool to understand the causes of crashes and 

how drivers interact with vehicle, roadway, and traffic environments. 

Although the SHRP2 NDS data provided unprecedented opportunity to study drivers’ 

naturalistic driving behaviors, there were also many challenges to analyze the SHRP2 NDS data. 

First of all, the quality of collected data should be carefully examined before conducting any 

statistical analysis. The common issues included large noises, sensor malfunction, missing data, 

outliers and omitted variables. Second, the large size of the collected data is an advantage of the 

SHRP2 NDS data, but it also brought many issues for data storage, data management, and data 

analysis. Third, the data collected in the SHRP2 NDS included both structured data (e.g. event 

table data) and unstructured data (e.g. video data). It is a big challenge to mining the diverse 

dataset and find correlations between different variables. Fourth, there are very limited previous 
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studies available in this research field. It is not clear which statistical method is most appropriate 

to analyze NDS data. Lastly, it is often not practical to reduce and clean the data manually. Some 

levels of programming skills would be greatly helpful to reduce a large dataset in a timely 

manner. In addition to transportation safety, this study also sheds lights on other aspects of 

transportation research, including big data, connected vehicles, and autonomous vehicles. 

7.2.1 Implication for big data research 

Due to the recent development in data collection and storage technology, the SHRP2 

NDS collected probably one of the largest data set in transportation research community by far. 

A total of 4 million gigabytes data were collected in the SHRP2 NDS from 3000 drivers over 

two years. The collected variables were also very diverse, including vehicle sensor data, vehicle 

network system data, survey data, and video data. This project raised many issues regarding data 

storage, management, analysis, and visualization. Even analyzing a subset of the SHRP2 data 

could be a challenge for some of the existing software. For example, the multivariate analysis in 

this dissertation had 5 million rows and 83 columns of time series driving data. The big data 

topic is going to be a trend in transportation research, and it is a challenge to uncover the 

underlying valuable information from the large-scale, diverse, and complex dataset. The SHRP2 

NDS is a forerunner for big data research in transportation field. 

7.2.2 Implication for connected vehicle research 

Connected vehicle was emerged as a popular research topic in the past few years. It had 

the potential to transform the way people travel in terms of safety, efficiency, and mobility. The 

SHRP2 NDS research and the connected vehicle research shared similar types of data, so that the 
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research results could benefit from each other. On one hand, the lessons learned from naturalistic 

driving study could be directly transferred to study drivers’ behavior with connected vehicle. On 

the other hand, the collected driving data from connected vehicles could be used to expand the 

existing naturalistic driving study dataset. Therefore, the naturalist driving study research and 

connected vehicle research could benefit from each other. 

7.2.3 Implication for automated vehicle research 

Last but not least, the autonomous driving research could also benefit from the SHRP2 

NDS data. An important topic in autonomous driving research is how to teach the autonomous 

vehicles make decisions in complex traffic environment, and how to create a comfortable riding 

experience for the passengers. The SHRP2 Naturalistic Driving Study dataset is an ideal dataset 

providing information about divers’ decision making in almost all aspects of on-road driving. 

The drivers’ behaviors and decisions could be learned from the naturalistic driving study and 

implemented in autonomous driving scenarios. 

Overall, despite of the challenges, the SHRP2 NDS data provided invaluable information 

to answer a number of critical research questions that could not be studied in traditional research 

methods. The SHRP2 NDS data provided unprecedented opportunity for researchers to learn the 

causes of crashes and how the drivers interact with vehicle, roadway, and traffic environments. 

Naturalistic driving study will lead the traffic safety research in the next decades. The SHRP2 

NDS dataset is expected to lead the transportation safety research in the next decades. 
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APPENDIX A. BACKGROUND OF THE SHRP2 NDS 

Table A.1 Recruitment summary by method, age group, and site (Dingus, 2014) 

Method 

Age 

Group 

State 

College Bloomington Durham Seattle Tampa Buffalo Total 

Calls 

Out 

16–17 1 0 3 1 1 0 6 

18–20 1 5 6 4 4 9 29 

21–25 13 10 13 11 17 19 83 

26–35 47 45 93 56 86 94 421 

36–50 138 109 284 191 222 283 1,227 

51–65 208 168 284 243 297 370 1,570 

66–75 86 68 142 190 213 191 890 

76+ 37 29 42 91 111 88 398 

Subtotal 531 434 867 787 951 1054 4624 

Calls In 

16–17 3 4 23 0 19 5 54 

18–20 11 15 42 0 68 17 153 

21–25 6 9 44 5 75 19 158 

26–35 7 13 49 10 41 32 152 

36–50 9 17 78 21 97 62 284 

51–65 15 16 81 15 148 76 351 

66–75 8 5 72 7 108 48 248 

76+ 4 9 95 2 49 37 196 

Subtotal 63 88 484 60 605 296 1596 

WBST 

16–17 27 44 172 255 282 125 905 

18–20 92 80 188 398 840 413 2,011 

21–25 142 140 290 671 650 584 2,477 

26–35 138 61 339 517 503 508 2,066 

36–50 127 75 427 532 662 396 2,219 

51–65 125 56 220 414 456 269 1,540 

66–75 42 24 100 102 214 70 552 

76+ 27 15 84 117 68 76 387 

Subtotal 720 495 1820 3006 3675 2441 

1215

7 

  Total 1314 1017 3171 3853 5231 3791 

1837

7 
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Table A.2 Assessment questionnaires administered (Dingus, 2014) 

Name Description 

Sleep Questionnaire A questionnaire designed to determine the 

participant’s sleeping patterns, habits, and 

level of fatigue (Appendix B). 

Perception of Risk Survey and Frequency of 

Risky Behavior Questionnaires 

A questionnaire designed to gauge the 

participant’s perception of dangerous or 

unsafe driving behaviors or scenarios and a 

questionnaire designed to gauge the 

frequency and a participant’s willingness to 

engage in dangerous, unsafe, or risky 

behaviors (Appendix C). 

Barkley’s ADHD Quick Screen A short, clinical ADHD screening 

assessment. This screening instrument 

operationalizes ADHD symptoms in terms 

of specific behaviors (Appendix D). 

Sensation Seeking Scale A survey comprising questions to gauge the 

degree to which the participant engages in 

sensation seeking behavior. The test 

measures the participant’s sensory 

stimulation preferences (Appendix E). 

Driving Knowledge A test of knowledge of driving laws and 

appropriate behaviors (Appendix F). 

Medical Conditions and Medications 

Survey and Exit Survey 

Questionnaires designed to obtain 

participants’ self-reported medical history. 

The questions focus on the identification of 

conditions that could affect driving 

performance and safety (Appendix G). 

Modified Manchester Driver Behavior A self-reported driver behavior survey. The 

participant is asked to indicate how often 

he/she commits each described error 

(accidental) or violation (deliberate) 

(Appendix H). 
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Table A.3 Cognitive assessments (Dingus, 2014) 

Assessment Description 

Clock drawing test The participant is presented with pencil and 

paper; on the paper is a circle and nothing 

else. The participant is asked to draw 

numbers in the circle to make the circle look 

like the face of a clock and then draw the 

hands of the clock to read “10 after 11.” 

Conners’ Continuous Performance Test 

Version 5 (CPT II) 

The CPT II is a task-oriented computerized 

assessment of attention disorders and 

neurological functioning. Results indicate 

the likelihood that an individual has an 

attention disorder. 

Visualizing missing information—Motor-

Free Visual Perception Test 

Participants are shown a reference image 

and four similar but incomplete figures. 

Participants are instructed to indicate which 

incomplete figure could be completed to 

duplicate the target figure; only one of the 

incomplete figures can be completed in such 

a way as to form an exact duplicate of the 

target figure. 

Visual information processing speed—

Useful Field of View (UFOV) 

Participants are briefly presented one of two 

very similar target stimuli in the center of 

the display. Simultaneously, a second target 

icon—the same as the central target—is 

presented in one of eight possible peripheral 

locations at varying eccentricities in a 35-

degree region around the central visual 

field. Participants have to identify both what 

the central target is and the location of the 

peripheral target. 

Trail making (Parts A and B) In Part A, participants use a touch screen to 

connect in order (i.e., 1-2- . . . n) a series of 

randomly arranged numbers, then in Part B 

they connect a series of randomly arranged 

numbers and letters in alternating 

progressing sequences (i.e., 1-A-2-B-3 . . . 

n). Time-to-completion of the entire series 

is recorded. 
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Table A.4 SHRP2 NDS vehicle classes (Dingus, 2014) 

Class Definition 

Vehicle 

Count 

Prime 

Vehicles included on the original eligible vehicle 

list for which the Coordination Contractor 

procured PIDs 
1717 

Subprime 

Vehicles manufactured primarily after 2009 for 

which Coordination Contractor was not able to 

procure PIDs but was able to obtain information 

through the CAN communication protocol, an 

industry standard after 2009 

488 

Legacy 

Vehicles manufactured between 1996 and 2008, 

employing an older network for vehicle 

communications 
736 

Basic Vehicles manufactured before 1996 421 

 

 

Table A.5 Quality assessment of select vehicle metrics (07/17/2013) (Dingus, 2014) 

Data Item Good Quality (%) 

Network Speed 97.35% 

Accelerator Position 97.65% 

Turn Signal Status 94.29% 

Brake Pedal 96.15% 

Usable Face Video 99.08% 

Usable Forward Video 97.61% 

Usable Rear Video 94.07% 

Usable Lap Video 99.26% 

Usable IMU (Accelerator, x-axis) 99.27% 

Usable GPS (speed only) 99.06% 
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Figure A.1 SHRP2 participant versus U.S. driving population percentages by age group 

(Dingus et al, 2014) 
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APPENDIX B. SAMPLE R CODE 

#Loop for Curve PC/PT Identification 

#Loop for Interpolation of Time Stamps 

#Loop for Curve Direction Identification 

 

for (i in 1:length(output.list)){ 

  event<-output.list[[i]][c("vtti.latitude", "vtti.longitude")] 

  w <- find.matches(curvepcptlist[c("PC_Lat", "PC_Long")], event,   

maxmatch=2, tol=c(.001,.001)) 

   

  pcpt<-na.omit((data.frame(w$matches)))#identify matched cases 

  pcpt<-cbind(pcpt, na.omit((data.frame(w$distance))))#add match distance 

  pcpt$curveid<-as.numeric(rownames(pcpt)) 

   

  #interpolation of the accurate position 

  pcpt$id<-ifelse(pcpt$Match..1<pcpt$Match..2,  

                  

pcpt$Match..1+as.integer((pcpt$Distance..1)/(pcpt$Distance..1+pcpt$Distance..

2)*10), 

                  pcpt$Match..1-

as.integer((pcpt$Distance..1)/(pcpt$Distance..1+pcpt$Distance..2)*10)) 

   

  #merge the pcpt information with curve information 

  pcpt.merge<-merge(curvepcptlist, pcpt, by.x=c("pcptid"), by.y=c("curveid"), 

all.y=TRUE) 

  pcpt.merge<-pcpt.merge[order(pcpt.merge$Match..1),] 

   

  #create directional label 

  if (nrow(pcpt.merge)%%2==0){ 

    direction<-pcpt.merge[c(TRUE,FALSE),]$Direction_ 

    pcpt.merge[!c(TRUE,FALSE),]$Direction_<-direction}else{ 

      error.obs<-rbind(error.obs, i) 

    } 

   

  #Create PCPT 

  if (nrow(pcpt.merge)>=2){ 

    #create PC/PT label 

    pcpt.merge$pcpt<-NA 

    pcpt.merge[c(TRUE,FALSE),]$pcpt<-'PC' 

    pcpt.merge[!c(TRUE,FALSE),]$pcpt<-'PT' 

  }else{ 

    error.obs<-rbind(error.obs, i) 

  } 

   

  output.list[[i]]$id<-as.numeric(rownames(output.list[[i]])) 

   

  data_list.new[[i]]<-merge(output.list[[i]], pcpt.merge, by.x=c("id"), 

all.x=TRUE) 

   

} 
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APPENDIX C. FUNCTIONAL DATA ANALYSIS MODEL OUTPUTS 

  

Curve 1 Curve 2 

  

Curve 3 Curve 4 

Figure C.1 Scree plot for choosing the optimal number of basis functions 
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Curve 1 

 

Curve 2 

 

Curve 3 

 

Curve 4 

 

Figure C.2 List of basis functions on the four example curves 
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Curve 1 Curve 2 

 
 

Curve 3 Curve 4 

Figure C.3 Scree plot for choosing the optimal turning parameters 
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Figure C.4 Plot of discrete raw time series speed data and best fitted functional data on 

curve 1 
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Figure C.5 Plot of discrete raw time series speed data and best fitted functional data on 

curve 2 
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Figure C.6 Plot of discrete raw time series speed data and best fitted functional data on 

curve 3 
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Figure C.7 Plot of discrete raw time series speed data and best fitted functional data on 

curve 4 
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Figure C.8 Scree plot for choosing optimal number of principal components. The first three 

principal components were chosen for analysis. 

 


	2015
	Modeling drivers’ naturalistic driving behavior on rural two-lane curves
	Bo Wang
	Recommended Citation


	THE DEVELOPMENT AND IMPROVEMENT OF INSTRUCTIONS

