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ABSTRACT 

 

 Large-area electronics are typically fabricated from petroleum-based polymers. However, 

petroleum has negative impacts on the environment and is expected to last for only another 80 

years.  Much attention, as a result, has been brought to minimize the usage of petroleum-based 

products and move towards environmental friendly products. This thesis presents a bio-based 

soft elastic capacitor (SEC), which is flexible and mainly made of water and vegetable oil. The 

SEC is composed of dielectric sandwiched between two electrode layers and it is used in 

structural health monitoring applications. The linearity of the sensor and its ability to transduce 

local strain of large surfaces into change in capacitance is demonstrated in this work. 

Additionally, the materials properties was tested and good physical and chemical properties are 

shown despite a decay of the dielectric that occurs after the first 16 days of fabrication.  
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CHAPTER 1 

INTRODUCTION  

 

Different types of structures, whether they are new or old, may have had or will possibly 

have deficiencies that cannot be identified unless a disaster is experienced. However, economic 

and human losses at that point are significant. The number of causalities and costs can even 

significantly increase when damages occur to critical and large public gathering buildings 

including hospitals, schools, and sports arena. As a result, it is necessary to conduct conditional 

assessment on all structures in order to improve safety and reduce costs as well as enhance 

maintenance and schedule programs.  

 

1.1 Problem Statement 

There are many available techniques and methods available to monitor structures 

including visual inspection, non-destructive evaluations, and most recently sensing system 

technologies.  For sensors, polymers have been receiving growing attention by researchers as a 

new promising material. Polymer-based sensors are suitable for structural health monitoring 

applications due to their high accuracy and sensitivity, and short response time. The problem 

with the most commercially available polymers, however, is that they are derived entirely from 

non-renewable materials and produced from petroleum-based products (Madbouly, 2013) (Xia, 

2010). Petroleum is a useful chemical substance for many important purposes but it is 

also a non-renewable resource with a highly toxic composition to many organisms, 

including humans.  These toxins disturb large amounts of populated areas and ecosystem around 

the globe. In addition, crude oil prices are increasing and they are expected to last for only 80 
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more years (Chiellini, 2006). As a result, there is an urgent need to find environmentally-

friendly, abundant, inexpensive, and renewable products to replace fossil feedstock and ensure 

sustainable development of sensors in structural health monitoring applications in the future.  

 

1.2 Proposed Technology 

  This thesis proposes a soft elastic capacitor (SEC) made from bio-based materials that 

can be applied at large scales to measure local and global strain. The sensor is adhered to a 

structural element and change in strain of the monitored element causes a measurable change in 

capacitance of the sensor. The sensor is mainly made of water and vegetable oil, which are 

abundant and inexpensive. Thus, making the fabrication of the sensor much less costly and 

sustainable in the future.   

  The bio-based SEC has been developed as a possible replacement to a petroleum-based 

SEC previously developed by Laflamme et al (Laflamme, 2012), (Laflamme, 2013), fabricated 

from a styrene-ethylene/butylene-styrene (SEBS) matrix. It was shown that such sensor 

combines the advantages of large area applications, flexibility, and robustness, which result in 

high scalability (Laflamme, 2012), (Laflamme, 2013).   

 

1.3 Thesis Layout 

  This thesis is organized as follows: 

In Chapter 1, the background of structural health monitoring and the advantages of bio-based 

materials in comparison with petroleum-based materials are described.  The mechanism of the 

proposed SEC is also introduced.  

In chapter 2, a review of the available sensors in structural health monitoring applications is 
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presented along with the background of the vegetable oil-based waterborne polyurethane.    

In chapter 3, the background of the sensor is described, which includes a description of the 

material used, sensor fabrication process, sensing principle, and sensor applications.  

In chapter 4, the description of the SEC on a materials perspective, with a discussion on the 

dispersion of the filler and decay of the dielectric is presented. Afterwards, the sensor’s linearity 

is experimentally verified and its theoretical gauge factor is validated. 

In chapter 5, the thesis is concluded.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

CHAPTER 2 

STATE-OF-THE-ART 

 

This chapter is a short version of the work published in the Structural Health Monitoring 

journal by the author (Kharroub, 2014).  

 

2.1 Introduction to Structural Health Monitoring  

Structural Health Monitoring (SHM) is the automated process of structural condition 

assessment, aimed at replacing ineffective and judgment-dependent visual inspections. It is also 

considered as an improvement with respect to non-destructive evaluation techniques (Blitz, 

1996) (Grosse, 2008), which are expensive and require highly-trained inspectors (Rens, 1997). 

Popular real-time SHM techniques include fiber-optics (Li, 2004)(Lopez, 2011)(Glisic, 2012) 

and piezoelectric (giurgiutiu, 2007) sensors, which have shown capability of damage diagnosis, 

but typically require embedment. Surface sensing strategies such as accelerometers (Da, 2009) 

are less expensive to install, but result in a more complex signal processing task that makes 

damage localization difficult. An alternative is the installation of large-area electronics (LAEs), 

which have the potential to detect local damages over a large surface by mimicking the 

biological function of skin (Laflamme, 2012)(Hurlebaus, 2004)(Carlson, 2006)(Tata, 

2009)(Lipomi, 2011)(Hu, 2014)(Zhou, 2011).  

 

2.2 Large-Area Electronics (LAEs) 

  LAEs are enabled by recent advances in conductive polymers (Gangopadhyay, 2000). 

Popular applications in SHM include the utilization of carbon nanotube (CNT) nanocomposites 
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to create resistive strain sensors (Loh, 2009)(Gao, 2010). CNT is typically used due to its 

strength and super-elastic attribute (Kang, 2006), but its utilization results in high fabrication 

costs and difficult scalability.  Capacitance-based strain sensors have been proposed for various 

applications including strain (Arshak, 2000)(Suster, 2006), pressure (Lipomi, 2011), tri-axial 

force (Dobrzynska, 2013), and humidity (Harrey, 2002)(Hong, 2012) sensing. The vast majority 

of the applications utilize petroleum-based polymers (Madbouly, 2013) (Xia, 2010). However, 

with the rapidly growing markets of flexible electronics and sensors, there is an economic and 

social pressure to utilize environmentally-friendly materials to support large-scale deployments.  

 

2.3 Environmentally-Friendly Material 

  With the exception of castor oil, nearly all vegetable oils do not naturally have the 

hydroxyl groups necessary to produce polyurethane dispersions (PUDs). The carbon-carbon 

double bonds and the ester functionality present in triglycerides allow for the introduction of 

such groups, a technique leveraged in the production of the majority of the vegetable oil-based 

polyols. The proposed sensor is a bio-based LAE soft elastomeric capacitor, and its dielectric is 

constituted from a castor oil-based polyurethane (PU) mixed with titanium dioxide (TiO2 or 

titania) particles.  Vegetable oil-based waterborne polyurethane has recently emerged as a new 

branch of PU chemistry in an effort to reduce negative impacts on the environment and minimize 

fabrication costs. This branch has been rapidly growing, driven by the versatility and 

environmental friendliness of these PUs. Here, waterborne castor oil-based PUD is used in order 

to partly eliminate organic solvents in the SEC’s fabrication process (Madbouly, 2013) (Lu, 

2008) (Lu, 2005). This results in the reduction of toxic volatile organic compounds that exist in 

conventional PUs in significant amounts, and minimization of hazardous air pollutants (Lu, 
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2008). Unlike solvent-based PUDs, the aqueous PUDs can be applied with high solids content, 

because their viscosity does not depend on the molecular weight of polyurethane. 
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CHAPTER 3 

BACKGROUND 

 

This chapter is a short version of the work published in the Structural Health Monitoring 

journal by the author (Kharroub, 2014).  

 

3.1 Materials 

Castor oil, isophorone diisocyanate (IPDI), dimethylol propionic acid (DMPA), and 

dibutyltin dilaurate (DBTDL) were obtained from Aldrich Chemical Company (Milwaukee, WI). 

Methyl ethyl ketone (MEK) and triethylamine (TEA) were purchased from Fisher Scientific 

Company (Fair Lawn, NJ). SEBS was acquired from VTC Elastoteknik AB, Sweden, carbon 

black Printex XE 2-B from Orion Engineered Carbons (Kingwood, TX), and TiO2 was purchased 

from Sachteleben Chemie GmbH (Germany). All materials were used as received without further 

purification or analysis. 

Details about the synthesis of castor oil-based PUD can be found in a recent publication 

(Madbouly, 2013). Briefly, the castor oil-based PUD are synthesized by a reaction of IPDI, 

castor oil, and DMPA as internal surfactant. The DMPA incorporates carboxylic functionality in 

the prepolymer backbone. Tertiary amine (e.g., triethylamine, TEA) is then used to neutralize the 

carboxylic groups and produce ionic centres to stabilize the polymer particles in water.  
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TiO2 is then dispersed in the castor oil in order to increase the permittivity of the PU. TiO2 is 

considered as an environmentally-friendly inorganic material (Yang, 2013). The preparation of 

SEC is finalized by sandwiching the dielectric with two conductive electrodes fabricated from a 

carbon black and SEBS mix. Figure 1 illustrates the composition of a bio-based SEC.  

 

Figure 1. A single bio-based SEC 

 

3.2 Sensor Fabrication 

 

The sensor’s fabrication process is shown in Figure 2. Firstly, the dielectric of the 

capacitor (castor oil doped with TiO2) is prepared using a solution casting method. TiO2 

nanoparticles are dissolved using methanol solvent before they are added to the castor oil PU at 

various volume percentages (5%, 10% and 15%) and dispersed using sonication with an 

ultrasonic tip. The resulting homogenous solution is drop-casted onto a glass plate and dried at 

room temperature for about 3 days to allow evaporation of water. Secondly, a 15 ml of 

SEBS/toluene solution is added to 0.79 g of carbon black to create the compliant electrodes. A 

sonication bath (Branson CPXH 2800) is used to disperse the carbon black particles. Finally, the 

carbon black-SEBS solution is sprayed on both surfaces of the dried polymer to form the sensor. 

The typical thickness of the resulting sensor is approximately 400 µm for the dielectric and 100 
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µm per electrode. Two conductive copper tapes are attached to the electrodes during the drying 

process to create mechanical connections for connecting to the data acquisition system (DAQ). 

 

 

Figure 2. Sensor Fabrication 

 

 
 

 

3.3 Electromechanical Model 

 

The sensor behaves as a non-lossy capacitor when operating at relatively low frequencies 

(≤ 1kHz):    

 

 

(1) 

 

where   is the surface area of electrodes with width w and length l, and h is the thickness 

of the dielectric, e0 =8.854 pF/m is the vacuum permittivity and er is the dimensionless relative 
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permittivity of the composite. Assuming small deformation, we can take the derivative of 

equation (1) to obtain the following expression:   

 

 

(2) 

 

 

(3) 

 

where  is the strain in the principal axes illustrated in Figure 3.  The SEC is designed to be 

adhered onto the surface of the monitored structure in the x-y plane using an epoxy. Taking 

Hooke’s Law specialized for plane stress, we obtain an expression for  : 

 

 

(4) 

 

where  is the Poisson’s ratio of the sensor. Substituting equation (4) into equation (3) gives: 

 

  (5) 

 

where   represents the gauge factor. Equation (5) can be rearranged using equation (1) to obtain 

the sensor’s sensitivity: 

 

(6) 
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Equation (6) shows that the sensor’s sensitivity in term of measured strain can be increased by 

increasing the width and length of the sensor, decreasing the thickness of dielectric or increasing 

the permittivity. In addition, equation (5) can be specialized for uniaxial strain along the x-axis of 

a monitored material of significantly higher stiffness (e.g., monitoring of a concrete beam). In 

this case, strain in the y-axis is written as  , where  is the Poisson’s ratio of the 

monitored material. In this case, equation (5) becomes: 

 

 

(7) 

 

Figure 3 illustrates the sensing of the SEC. 

 

Figure 3. Sensing principle 

 

 

 

3.4 Sensor Application 

 

The bio-based SEC can be deployed in a large network configuration to cover and 

monitor surface strain over mesosurfaces. The sensor can be adhered to the structural element 

using an off-the-shelf epoxy. Measurements from the SEC can be used to diagnose and locate 

damage, and reconstruct physics-based features for condition assessment. In prior work on the 
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SEBSbased SEC of size similar to the bio-based SEC presented in this paper, the authors have 

demonstrated the utilization of four SECs deployed in a linear configuration to reconstruct 

deflection shapes (Laflamme, 2013). Example of possible applications include detection and 

localization of fatigue cracks on steel girders and condition assessment of wind turbine blades. 
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CHAPTER 4 

EXPERIMENTAL INVESTIGATION 

 

This chapter is a short version of the work published in the Structural Health Monitoring 

journal by the author (Kharroub, 2014). The tests in this chapter are conducted using SECs that 

are composed of TiO2 as a dielectric sandwiched between two layers of carbon black and SEBS 

mix. 

 

4.1 Material Properties 

4.1.1 Dispersion of filler 

  Morphological inspection of the castor oil-based PU/TiO2 nanocomposites was 

performed using scanning electron microscopy (SEM) for different TiO2 contents. The samples 

were fractured in liquid nitrogen, fixed on the SEM holders, and sputtered with gold. The 

prepared samples were investigated using a field-emission scanning electron microscope (FE-

SEM, FEI Quanta 250) operating at 10 kV under high vacuum. Figure 4 shows typical SEM 

micrographs for PU/TiO2 nanocomposites with 5, 10, and 15 volume% TiO2 to polymer 

contents, taken 3 days after fabrication. Prior experience using a petroleum-based polymer 

matrix showed that 20 volume% led to non-uniform dispersion due to a possible saturation of the 

filler (Laflamme, 2012).  TiO2 is dispersed along the horizontal axis, but appears to have settled 

in the vertical axis. A more uniform dispersion could be obtained by adding a coupling agent in 

the dielectric mix (Saleem, 2014), but such additive would introduce non-environmentally 

friendly chemicals in the process. Other fabrication methods, such as spin coating, could also be 
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considered.  Given the utilization of the sensor in an in-plane mode, uniform dispersion is only 

required along the horizontal axis, yet preferable among the entire volume. The section on 

laboratory verification will confirm the homogeneous in-plane dispersion of the particles by 

demonstrating the linearity of the sensor and verifying the theoretical gauge factor 

experimentally. However, the non-uniform settlement along the sensor’s thickness needs further 

investigation. Figure 5 shows a blow up on the region where TiO2 has settled. The micrograph 

shows well dispersed TiO2 in the PU matrix with an average particle size as small as 200 nm in 

this region. 

 

 

Figure 4. SEM micrographs for PU/TiO2 nanocomposites for different composition 
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Figure 5. SEM micrographs for PU/TiO2 nanocomposites for different composition, blow up on dispersed titania 

particles. 

 

 
4.1.2 Dielectric Properties 

 
Experience with the castor oil-based SECs led to believe that a decay in the materials’ 

dielectric occurred over time, phenomenon never observed with SEBS-based SECs. The change 

in the relative permittivity have been studied over time by recording the value of er over 3 weeks, 

by measuring the sensor’s capacitance and back-calculating er using equation (1). Figure 6 is a 

plot of the average value of relative permittivity for each set of specimens (no recording was 

taken for the 9th and 10th days). The decay of the dielectric value is evident, and stabilizes after 

approximately 16 days. Possible explanations include slow evaporation of the soluble materials 

and reorganization of the filler. All tests discussed in this paper were performed on specimens 

older than 21 days to ensure a stable relative permittivity. 
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Figure 6. Average value of relative permittivity for each set over time 

 

 
4.1.3 Thermogravimetric Analysis  

 

  The thermal stability of PU/TiO2 nanocomposites was investigated using 

thermogravimetric analysis (TGA, model Q50 from TA Instruments, New Castle, DE) over a 

temperature range of 30°C up to 700°C at 20oC/min under nitrogen atmosphere. Figure 7 shows 

a typical TGA measurement for PU/TiO2 nanocomposites for different TiO2 contents.  Results 

show that the pure PU sample is thermally stable at a temperature range up to 250oC.  

Approximately 10 wt% of the sample is degraded at approximately 250–300oC. This process is 

related to the evaporation of soluble materials and unreacted oil fragments. With increasing the 

temperature up to 600 oC, two fast degradation processes were observed. The first one at the 

temperature range of 300–380 oC, where approximately 60 wt% of the sample was lost due to the 
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degradation of the polymer backbone. The second process at approximately 400–600 oC could be 

caused by further decomposition of the PU fragments. The multiple thermal degradation 

processes of bio-based polymers from vegetable oils are very common in literature. The thermal 

stability of these multiple degradation processes increased significantly (i.e., shifted to higher 

temperature ranges) by adding TiO2 as seen in Figure 7. TiO2 increases both the dielectric 

permittivity and the thermal stability of castor oil-based PU. 

 

Figure 7. TGA measurements for PU/TiO2 composites at 20oC/min heating rate under nitrogen atmosphere. 

 

 
 

 

 

 

 

 

 

 

 

 



18 

 

4.2 Laboratory Verification 

 

4.2.1 Experimental Setup 

 

  A free-standing sensor and a bending beam tests were conducted to validate the linearity 

of the proposed SEC over the range 0-6% strain, and verified the gauge factor (equation (7)) by 

deploying the sensor on a simply supported beam subjected to bending.   

 

Free Standing sensor test 

  In the free-standing sensor test, three SEC with 5, 10, and 15 TiO2 volume% were 

clamped separately into an Instron table-top mechanical testing machine (model 5569).  Each of 

the sensor was subjected to six tensile strain cycles (from 1% to 6% strain with 1% strain 

increment), with each strain plateau attained at a loading rate of 5mm/min. This range of strain 

was governed by the allowable elongation of the testing equipment for the sample sizes, and is 

well beyond the failure point of typical structural materials. Data from the SECs were acquired 

using ACAM PCap01 sampled at 95.8 Hz . Figure 8 shows the laboratory setup for the free-

standing sensor test. It is worth noting that equation (7) cannot be verified in a free-standing 

configuration because of the non-uniform distribution of strain within the dielectric. 
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Figure 8. (a). Tensile test laboratory setup; (b) schematic of the clamped SEC on the Instron machine 

 

 

 

Bending Beam test 

 

  In the bending beam test, the SEC specimens were installed onto the bottom surface of a 

simply supported aluminium plate of dimensions (36 x 8 x 0.25 in3) subjected to a four-point 

load setup as shown in figure 9. Each sensor was deployed within the uniform moment region 

using a thin layer of an off-the-shelf epoxy (JB Kwik) after sanding the plate surface and 

applying a primer. Step loads (approximately 20 lb., 40 lb., 60 lb., and 80 lb.) were applied at 

 and    of the length of the plate using a hand operated hydraulic test system (Enerpac). 

Data from the SECs were acquired using an off-the-shelf DAQ (ACAM PCap01). Data from the 

RSGs were acquired using Hewlett-Packard 3852 DAQ.   
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Figure 9. (a) Bending plate test laboratory setup; (b) schematic from side and under the plate (connection sensors-

DAQ only shown for 2 sensors for clarity 

 

 

4.2.2 Results 

  Figures 10 and 11 show the results for the free-standing tests. Figure 10 compares time 

series of strain input and capacitance measurements. Time axes of strain and capacitance were 

manually aligned given the inaccurate synchronization of both DAQs. The comparison of time 

series measurements shows an agreement between the experimental values of strain and 

measured capacitance. There is an upwards slope in the capacitance measurements that becomes 

significant at high levels of strain. This slope is attributed to the viscoelastic behavior of the 

nanocomposite  

  Figure 11 is a plot of the normalized change in capacitance versus strain. Normalized 

measurements provide a better comparison given that equation (7) does not hold in a free-

standing configuration. Data are fitted linearly using a least square estimator. Results show that 

the sensor remains linear of the range 0-6% strain. 
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Figure 10. Strain history of SEC versus Instron RSG (free-standing test). (a) 5% TiO2 content; (b) 10% TiO2 

content; (c) 15% TiO2 content. 

 

 

Figure 11. Verification of Linearity for free-standing bio-based SECs. (a) 5% TiO2 content; (b) 10% TiO2 content; 

(c) 15% TiO2 content. 

 

 

 

Figures 12 and 13 shows the results for the bending beam test. Comparison of time series data 

(Figure 12) also shows agreement between strain load and measured capacitance. A noticeable 

feature in the signals is a drift of the signal after each step load. We hypothesize that this drift is 

caused by the epoxy interface, which results in a slow relaxation process of the dielectric 

following a load step. The experimental gauge factor is obtained by plotting ∆C/C versus strain 

and taking the slope of the linear fit (Figure 13). Considering a value of νm= 0.33 for aluminium 

and ν = 0.45-0.5 for thermosets, the theoretical gauge factor of the castor oil-based SEC is 1.34 < 

λ < 1.49 (equation (7)). Table I summarizes the values obtained in Figure 13. The experimental 

gauge factors are all comprised within 1.34 and 1.49.  Cross-specimens fluctuation can be 
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explained by slight imperfections in the dispersion of the TiO2, and changes in environmental 

conditions (temperature and humidity). 

 

Table I. Strain gauge factors of SEC installed on an aluminium plate 

  5% 10% 15% 

Gauge factor λ  1.415 1.376 1.463  

                                  

 

Figure 12. Strain history of SEC versus RSG (bending plate test). (a) 5% TiO2 content; (b) 10% TiO2 content; (c) 

15% TiO2 content. 
 

Figure 13. Verification of gauge factor for bio-based SEC (bending plate test). (a) 5% TiO2 content; (b) 10% TiO2 

content; (c) 15% TiO2 content. 
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CHAPTER 5 

CONCLUSION 

 

  This chapter is a short version of the work published in the Structural Health Monitoring 

journal by the author (Kharroub, 2014).  

  In this thesis, an inexpensive and bio-renewable material was presented to reduce the 

environmental footprint of large area electronics. The proposed application is an SEC, 

constituted from a dielectric made of castor oil-based PU filled with titanium dioxide, and 

conductive plates made of SEBS filled with carbon black. Such sensor could be deployed in a 

large network configuration to cover large-scale surfaces, enabling monitoring of local strain 

over global areas. 

  The sensor showed to reach stability after approximately 16 days from fabrication. 

Scanning electron microscopy tests showed that all concentrations of TiO2 (5%, 10%, and 15%) 

are dispersed well in the horizontal axis, but appear to have settled in the vertical axis. The 

thermogravimetric analysis showed good physical and chemical properties.  

  Static load tests were conducted on free-standing specimens and on specimens adhered 

onto an aluminium plate subjected to bending. Results from free-standing specimens showed that 

the sensor remained linear of the range 0-6% strain, and bending tests verified the theoretical 

gauge factor experimentally. These results confirmed the good dispersion of the particles within 

the castor oil PU and that the SEC can be used as a strain sensor.   

The proposed castor oil-based SEC constitutes a promising sensor for monitoring of 

mesoscale surfaces. It demonstrates the utilization of bio-based polymers in the fabrication of 

sensors, which can result in important environmental benefits.  Future work include improving 
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the dispersion of the filler in the dielectric and adding a coupling agent to replace the SEBS with 

castor oil in the electrodes.  
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