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ABSTRACT 

 

 To cultivate more microalgae and at the same time optimize the land use, the optimal 

light exposure duration and frequency are important factors in the design a photobioreactor 

which contained two parts was tested. One part of the PBR was exposed to the light, while 

another part of the PBR was placed underground without light.  Different daily exposure 

durations (8 hours, 7 hours, 6 hours, and 5 hours) and different exposure frequencies (53 

cycles/hour, 70 cycles/hour, 88 cycles/hour, and 105 cycles/hour) were investigated. A 

comparison of the growth rates and biomass characteristics of microalgae under different 

light conditions showed that, the biomass concentration in the aqueous phase can reach up to 

3.5g/L when the daily light duration was 7 hours and frequency was 70 cycles/hour. This 

experimental result implies that the concept of this two portions photobioreactor can work to 

produce microalgae biomass under certain light exposure durations and frequencies. It is a 

new approach to discover the light-dark cycle for microalgae growing. 
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CHAPTER I 

 INTRODUCTION  

 

1.1. Research Description 

 To save cultivated land area for microalgae, a new photobioreactor (PBR), containing 

two parts was tested. One part of the PBR was exposed to the light, while another part of the 

PBR was placed underground without light. To determine that the PBR was appropriate, the 

optimal light exposure duration and frequency were investigated. The microalgae cell density 

and cell productivity were measured under different light exposure conditions along with the 

biomass production contents as presented in Chapter III.  

 

1.2. Thesis Organization 

 In Chapter II, literature was reviewed to introduce all information of microalgae. 

Chapter III introduces the materials and methods were used in this research. For example, 

how the microalgae was cultured and collected, how the PBRs were operated, and how 

analysis was performed. In Chapter IV, the data shown under each light exposure condition 

(different light exposure duration and different light exposure frequency), with compared 

with cell density, cell productivity, cell number counting, protein content and fatty acids 

content. In Chapter V, general conclusions are drawn and future researches are 

recommended.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1. Introduction of Microalgae 

 Microalgae is a class of plants distributed widely in both terrestrial and marine 

environments. Currently more than 40 different species of microalgae were studied for 

multiple purposes such as fresh water environmental protection and biomass production 

content analysis. Because autotrophic microalgae produces polysaccharides, protein, lipid, it 

has a promising future in the area of food, medicine, genetic engineering and biodiesel. 

(Lavens and Sorgeloos, 1996)  

 Microalgae can be classified into eight classes and 32 genera as shown in Table 2.1, 

According to the table, the size of microalgae ranges from a few micrometers to more than 

100µm. This list contains species of diatoms, flagellated, chlorococcalean green algae, and 

filamentous blue-green algae. (Laven and Sorgeloos, 1996) 

Table 2.1 Major classes and genera of micro-algae cultured in aquaculture (Laven and 

Sorgeloos, 1996). 

Class Bacillariophyceae Haptophyceae Chrysophyceae Prasinophyceae Cryptophyceae 

Genus 

Skeletonema Isochrysis 
Monochrysis 

(Pavlova) 

Tetraselmis 

(Platymonas) 
Chroomonas 

Thalassiosira Pseudoisochrysis 
 

Pyramimonas Cryptomonas 

Phaeodactylum Dicrateria 
 

Micromonas Rhodomonas 

Chaetoceros 
    

Cylindrotheca 
    

Bellerochea 
    

Actinocyclus 
    

Nitzchia 
    

Cyclotella         

Class Cryptophyceae Xanthophyceae Chlorophyceae Cyanophyceae   

Genus 
Chlamydomonas Chl. Olisthodiscus Carteria Spirulina   

    Dunaliella     
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2.2. Introduction of Biodiesel. 

The demand for energy is increasing incredibly, especially in recent decades, while 

environmental problems are also important issues to be concerned with, so renewable and 

low pollution energy, such as wind energy, solar energy and geothermal energy must be 

explored. As a renewable energy, biodiesel is considered a potential alternative diesel fuel 

globally. For example, in the United States, the production of biodiesel is as high as 691 

million gallons in 2008, even though the annual production decreased to as low as 490 

million gallons in 2009, the total high production amount is still outstanding (Ethier et al., 

2011).   

Numerous researches showed that biodiesel has advantages over our current main 

energy, – petroleum. As a renewable energy source, biodiesel is an environmentally – 

friendly energy. Biodiesel releases less greenhouse gas, discharges less carbon dioxide and 

low content sulfur, while also decreasing the discharge of sulfur and carbon monoxide 

content. Technically speaking, 90% of air toxicity and 95% of cancers can be decreased by 

biodiesel (Huang et al., 2010). What’s more, biodiesel has no need to face the shortage, it can 

be supplied sustainably. Further, biodiesel has great potential in the energy market since the 

price of fossil fuel will be incredibly high based on its shortage and the highly increased 

energy demand, but with biodiesel as a renewable energy source the rising price will not be 

an issue.  

 

2.3. Introduction of Microalgae Biodiesel   

Microalgae biodiesel is one technology in the biodiesel field and a lot of researchers 

use microalgae to produce chemicals, oils and polysaccharides (Borowitzka, 1922 & Munro 
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et al., 1999).  Although some researches show crops such as corn, soybean and animal fats 

can produce oil, use as renewable biodiesel after treatment (Ma and Hanna, 1999). These 

biodiesel cannot meet the increased energy demand since their production is too low, even 

for the vehicle usage. With photosynthesis, microalgae absorb light to produce oil. However, 

its efficiency is much better than crops plants, and the capacity of producing oil is also better 

than the crops plants. (Chisti, 2007). The land usage is also an important issue, comparing to 

microalgae oil extraction, and large cultivation area needs more crop oil. To meet the demand 

of 50% of U.S. transportation fuel, the cultivation area of different crops and microalgae are 

presented in Table 2.2. From the table, if using oil – palm as biodiesel source, 24% of the 

total cropping area is still under 50% of U.S. transportation fuel demand although it has the 

highest oil yield level. However, if using microalgae as biodiesel source, the required area of 

land is as low as 1% - 2.5% of the total cropland to meet the same transport fuel demand. 

(Chisti, 2007) 

Table 2.2 Comparison of some sources of biodiesel. (Chisti, 2007) 

 

Microalgae oils have its advantages. For example, the constitution of microalgae is 

very similar to vegetable oils, and the composition of microalgae is relative single. What’s 
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more, under center operation control, microalgae oil production can be reach to as high as 

85% of the dry weigh. Last, less cycle time is needed for microalgae. (Huang et al., 2010) 

Thus, considering the satiation of increasing energy demand and cultivation land area 

requirement, microalgae as renewable biodiesel seems to be the most appropriate source to 

take place of petroleum. Microalgae biodiesel technology is a hot topic which gains 

numerous attentions recently, a lot of interests on the oil production capability of microalgae 

to. Microalgae biodiesel has disadvantages such as algal lipids have less fuel value rather 

than diesel fuel.  Also, the production of algal lipids is hard to meet economic challenges 

because the price for harvesting and dewatering are high, and application for oil extraction is 

not mature. The photo reactor design for microalgae also needs more experiments. 

 

2.4.  Important Component of Microalgae – Lipid and Protein 

Generally speaking, under a favorable culture condition, the biomass of microalgae 

contains protein (30 – 50 %), carbohydrates (20 -40%) and lipids (8 – 15%) (Hu, 2004).  

Microalgae diesel technology is using the lipids extract from microalgae biomass. Most 

species of microalgae have oil levels as 20–50% while some species oil content in 

microalgae (such as Schizochytrium sp.) can exceed 80% of dry biomass weight. Oil 

productivity is defined as the mass of oil produced by unit volume of the microalgae at one 

day, which relates to the oil content of the biomass and the algal growth rate (Chen, 2011). 

High oil productive microalgae are good for biodiesel production. It is necessary to have an 

ability to economically produce large amount of oil-rich microalgae biomass to produce algal 

oils. (Chisti, 2007) 
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 Protein content various based on different microalgae species, from 15-71% of dry 

weight. According to recent researches, algal protein is considered as an optimal source for 

animal feed since algal protein has been estimated that has a considerable profile of amino 

acid (Gross, 2013). In 2007, 30% of the global algal was cultured for animal feed because of 

the protein content of algae. (Gross, 2013 & Becker, 2007) 

 

2.5.  Photosynthetic  

 The photosynthetic is a progress for green plant using light energy to convert carbon 

dioxide and water to organic compound (typically glucose), while releases oxygen gas. The 

basic chemical equation can be summarized as below (Carvalho et al., 2011): 

6H2O + 6CO2 → C6H12O6+ 6O2 

 There are two phases of photosynthetic, the first stage is photoreaction. During this 

stage, the chlorophyll in green plants can produce electronic in order to convert the light 

energy of sunlight into electrical energy. The electrons will be transported though thylakoid 

membrane, while transfer the  proton from chloroplast stroma to thylakoid lumen, to build 

electrochemical proton gradient for ATP synthesis. The last step of photoreaction is electrons 

accepted by NADP
+
, it will be reduced to NADPH. In photoreaction, water can be 

decomposed into oxygen and hydrogen, oxygen is released out of absorbed by the 

chlorophyll molecules is also further converted to chemical energy, and these chemical 

energy can be stored in the adenosine triphosphate. The chemical equation of photoreaction 

can be summarized as below: 

 

2H2O→4 [H] +O2↑ 
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ADP + Pi → ATP 

 

 The second stage of photosynthetic is dark reaction, it is a cycle that continuous 

consumption of ATP and NADPH and CO2 fixation reaction while produce glucose, also 

known as the “Calvin cycle”. Because of Calvin observed the process how CO2 converted 

into organic using “C” labeled CO2. In the dark reaction phase, hydrogen reduction cannot 

directly reduce the carbon dioxide which is absorbed through the stoma by the green plants 

from the air. It must first combine with the C5 (a five-carbon compound, ribulose 

diphosphate) in the plant, this process is called the fixation of carbon dioxide. After a carbon 

dioxide molecule is fixed by a C5 molecule, two C3 (a three-carbon compound, 12 

glyceraldehyde 3 - phosphate) molecule will be formed. With enzyme catalysis, C3 molecule 

will receive energy which is released by ATP hydrogen reduction. Subsequently, a number of 

reduced C3 will form carbohydrate; the rest C3 will change back to C5 again, so that the dark 

reaction stage preceded continuously, named carbon-fixation reaction. Carbon fixation 

reaction began in the chloroplast stoma, finished in the cytoplasmic matrix. In this dark stage, 

the reactions ATP and NADPH which are produced in photoreaction as energy, and also fix 

CO2 to transform them into glucose , the process does not require light that the reason why it 

is called dark reaction. The chemical equation of dark reaction can be summarized as below:  

 

CO2 + C5→ 2C3 

C3+ [H] →（CH2O）+ C5 

 

The dark reaction time will be influenced with shortage of light, because of the lack 
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of ATP which generated in photoreaction. But not the carbon procedure will not stop 

immediately when the light disappear because the residual ATP part will continue to provide 

the conditions for the carbon reaction. Carbon reaction will stop if the situation of light 

shortage period is a long time (Carvalho et al., 2011).  

According to the discussion above and back to microalgae growth, long dark reaction 

period will lead biomass loss, while the growth rate of microalgae decreasing because the 

respiration processes of microalgae will produce more carbon dioxide. The growth of 

microalgae will be considerable if the light/dark cycle can be controlled well. Several lab 

researches have been worked on the light/dark cycle. (Carvalho et al., 2011) 

 

2.6. Microalgae Growth Factor 

2.6.1. Nitrogen/phosphorus nutrient  

 Nitrogen is an essential element for growth of microalgae. Nitrogen has a wide 

source; some species of microalgae can fix the nitrogen gas in the air though nitrogen 

fixation process for their own use. The increased amount of nitrogen content in growing 

conditions will increase the growth of microalgae. The form of nitrogen also can affect 

growth of microalgae: NH4– N, NH3– N and NH can also be useful nutrient element for 

microalgae, according to research, the NH4– N is easier for microalgae to absorb than NH3– 

N. (Dortch, 1990 & McCarthy and Wynne, 1982) 

 Optimal phosphorus concentration is conducive to growth of microalgae. When TP ≤ 

0.045mg/L, the microalgae growth will be prohibited. High concentration of phosphorus TP 

≥ 1.65mg/L also cannot significantly promote microalgae growth rate (Dortch, 1990). When 

TP equals to 0.02mg/L, microalgae can grow well, but the concentration of phosphorus has 

no promotion to growth rate of algae when TP ≥ 0.2mg/L (Xu et al., 2006). Microalgae also 
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select different formation of phosphorus, using different phosphors source to study, the result 

of research showed that dipotassium hydrogen phosphate is the biggest consumption for 

microalgae, which means this form of phosphorus is useful for microalgae growing (Wu et 

al., 2012). 

 In aquatic ecosystems, in addition to nitrogen and phosphorus element, the ratio to 

nitrogen and phosphorus is also used as a key factor to test the density of microalgae cell 

density (Tilman, 1982, Hosub, 2007). The nitrogen and phosphorus ratio (N / P) directly 

affect the growth of microalgae, composition of cells and nutrient uptake (Anderson, 2003). 

According to Redfield’s law, the atomic ratio C: N: P in algae cells is 106:16:1, when the 

N/P ratio exceeds 16, concentration of phosphorus will be considered as a limited factor. If 

less than 16, nitrogen content needs to be controlled to make sure optimal growing condition 

for microalgae (Redfield et al., 1963). However, different species of microalgae has different 

atomic ratio in cells, the requirement for nitrogen and phosphorus will be various (Sun et al., 

2006). 

2.6.2. Character of light 

Light is an essential key for growth of microalgae. Microalgae uses light to process 

the photosynthetic, but the light energy cannot be stored by microalgae, so the light should be 

supplied sustainably. The microalgae cannot use all the supplied light because microalgae 

cannot absorb all the photons, and too much light will cause light inhibition for the surface 

layer of microalgae. The inner portion microalgae cannot reach the light and lack of photons.   

Below is the electromagnetic radiation spectrum of light, as showed in Figure2.1. 

Through the photosynthetic process, for autotrophic microalgae to convert carbon dioxide in 

the air into organic compounds, visible light is the main source of energy (Carvalho et al., 
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2011) since the chlorophylls, phycobilins and carotenoids in microalgae can be absorbed in 

the visible light range (Table 2.3).  

 
Figure 2.1. Whole electromagnetic spectrum with detailed spectral pattern of visible light. 

(Carvalho et al., 2011)  

 

 

Table 2.3 Photonic features of major pigments in microalgae. (Carvalho et al., 2011) 

 
 

 Light saturation is defined by a saturation constant of light (Figure 2.2), which is the 

intensity of light where the specific biomass growth rate is 50% of its pick value, μmax. 

Light saturation constants for growth rate of microalgae tend to be less than the maximum 

sunlight intensity level which happens in the middle of the day.  
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When the light intensity above a certain value, continue increasing in light intensity 

level will decrease the microalgae growth rate actually (Figure 2.2.). This is called 

photoinhibition phenomenon. Microalgae become photoinhibited when light intensities a 

little bit higher than the light intensity at the specific growth rate peaks. Because of excessive 

light source, photoinhibition phenomenon will cause generally reversible damage to the 

photosynthetic process (Rubio et al., 2003). Avoiding photoinhibition can help to increase 

the daily growth rate of microalgae biomass. (Chisti, 2007) 

 

Figure 2.2. Effect of light intensity on specific growth rate of microalgae. (Chisti, 2007) 

 

2.6.3. Temperature  

With the light intensity changing, temperature is an environmental factor which 

indirectly affects growth of microalgae (Huang et al., 2008). According to Takemura’s study 

on the effects of temperature on the maximum rate of photosynthesis of microalgae in Lake 

Kasumigaura, the results shows that when the temperature of water lower than 4 
°
C the 

photosynthesis of microalgae was completely inhibited. When the temperature is between 4 
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°
C to 11 

°
C, photosynthesis is substantially inhibited. After temperature is higher than 11 

°
C, 

the relationship between temperature and growth of microalgae is linear (Takemura et al., 

1985). Temperature determines the activity and reaction rates of intracellular enzyme, which 

will have an influence on algal photosynthesis, respiration intensity, affect the growth of 

microalgae and to limit its distribution (Tan et al., 2009).  

2.6.4. pH and salinity 

 Water pH related to growth of microalgae tightly. Through photosynthetic, the pH 

will be changed, which is already discussed in photosynthetic part. The pH value will also 

affect the growth rate of microalgae, it will be easier for microalgae to capture CO2 in the 

atmosphere when the growing condition is alkaline, which can produce more biomass (Zang 

et al., 2011 & Melack, 1981). With the increase of pH, CO2 into water transferred into HCO3 

-
 which is the mainly existing formation of carbon in weak alkaline. And this also can be used 

by microalgae majorly. But according to Liu’s study, the content of chlorophyll of 

microalgae will decrease when the pH value goes from 8.5 to 9.5 (Liu et al., 2005).   

  Microalgae has its own system to adjust salinity range. Generally, seawater 

microalgae can tolerate higher salinity rather than fresh water microalgae (Zhu et al., 2003). 

Studies showed that microalgae has its own optimal growth salinity, when salinity higher or 

lower than this will be harmful to algal growing rate. For example, when in the low salinity 

growing condition, it will be helpful for algal growth with the addition of NaCl and NaSO4 

but when the salinity higher than 6g/L, the growth rate of microalgae will be prohibited (Liu 

et al., 2006).  

2.6.5. Mixing 
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 Shading is a problem in growth of microalgae, it will prohibit microalgae to absorb 

light effectively, and it will affect biomass production. In general, microalgae grow well in 

lake or stream because of the dynamics of water (Wang, 2006). When design the PBRs for 

microalgae, dynamic is also important. Gas mixing can be treat as water dynamic for growth 

of microalgae. Gas mixing in the PBRs can promote every microalgae cell to obtain equal 

light source and nutrient.     

 

2.7. Microalgae Cultivation 

2.7.1. Open ponds 

 As an open pond for microalgae growth, it can be characterized into natural sources 

such as lakes. Shallow big ponds, tanks, circular ponds and Raceway Ponds are the most 

commonly used systems (Demirbas, 2010). Take the raceway ponds for example, the 

application of raceway ponds for microalgae biomass culture was used as early as 1950s. The 

depth of a raceway pond is about 0.3 m, which is made of a closed loop recirculation 

channel. As shown in Figure 2.3.  As the arrows show, flow is moved around bends in the 

channel by baffles placed. The raceway channels are made of concrete or compacted earth 

along with the plastic. The culture is fed in front of the paddlewheel at the daytime, and the 

broth is behind the paddlewheel (Chisti, 2007). According to Sheehan’s study, the production 

of microalgae biomass for producing biodiesel is evaluated that the Raceway ponds cost less 

money than PBRs, which is introduced below. However, the productivity of biomass is also 

lower than PBRs. (Sheehan etal. 1998.)   
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Figure 2.3. Arial view of a raceway pond (Chisti, 2007) 

2.7.2. Photobioreactors 

 The applications of PBRs for producing large amount of microalgae biomass are 

successful. (Molina et al., 2000) Compare to open ponds, PBRs is more expensive but 

produces more biomass, single-species culture of microalgae is allowed by PBRs for 

prolonged durations (Chisti, 2007). Under certain good control of PBRs, the production of 

long chain fatty acids and high value such as DHA and EPA is highly recommended. (Huang 

et al., 2010) PBRs can be characterized as tubular PBRs, flat-plate PBRs, internally 

illuminated PBRs and vertical-column PBRs based on the shape and working theory.  

2.7.2.1. Tubular PBRs 

 Tubular PBRs, as shown in Figure 2.4, is designed for mass cultures for outdoor use. 

It has large illumination surface area, and relatively low cost. However, it requires large 

space to set up and the temperature control for tubular PBRs is not well established. 

Additionally, it can increase the PH of the culture, which can cause re-carbonation of the 

cultures and as a result, raise the price for the reactor. (Ugwu et al., 2008) 
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Figure 2.4. A tubular PBR with parallel run horizontal tubes. (Ogbonna et al., 1999) 

2.7.2.2. Flat-plate PBRs 

Flat-plate PBRs, as the name shows, has large surface area for illumination. It always 

made of transparent materials in order to maximize of receiving solar light. It is good for 

outdoor culture and immobilization of algae, relatively low cost and easy to maintain. 

However, the temperature control is still an issue. What’s more, there is a possibility to 

hydrodynamic stress to some algal strains. (Ugwu et al., 2008) 

2.7.2.3. Internally-illuminated PBRs 

As shown in Figure 2.5., the Internally-illuminated PBRs can be illuminated 

internally with fluorescent lamps. The research (Ogbonna et al., 1999) shows that it can 

utilize energy of both artificial and solar light, which means the artificial light can be used as 

back up source to improve the light intensity continuously, both daytime and nighttime.   
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Figure 2.5. Schematic diagram of an internally illuminated PBRs. (Ogbonna et al., 1999) 

2.7.2.4. Vertical-column PBRs 

Vertical-column PBRs are usually small in size, relatively low cost and user friendly 

(Sánchez et al., 2002). The advantages of vertical-column PBRs can be summarized as good 

mix ability with low energy, high mass transfer, and good temperature control and photo-

inhibition &photo-oxidation reduction. However, Vertical-column PBRs have smaller 

surface area for illumination and some sophisticated materials are needed for construction.   

 

2.8. Light / Dark Cycle for Microalgae 

It is no doubt that the light factor plays an important role in photosynthetic progress 

of microalgae. In order to produce high level of microalgae biomass, the efficiency of PBRs 

and illumination is required. Using light and dark cycle pattern for illumination design has 

been studied for a long time (Kok, 1953). So far, the researchers focused on changing light 

intensity, using short alternated light dark time as light source for cultivation of microalgae, 

such as flashing light. Attitudes on flashing light are summarized as follows. First, when 

using flashing light for microalgae’s photosynthesis, the efficiency is never higher than using 

http://www.sciencedirect.com/science/article/pii/S0960852407001368#bib58
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steady light as light resource which with same intensity or with equal average light intensity 

Second, with same light intensity for both flashing light and steady light, the capability of 

microalgae to absorb the flashing light is higher than when microalgae utilized continues 

illumination. Third, when the incident intensity is high enough, there is no need to require a 

strict flash time to achieve an outstanding efficiency boost. Fourth, flashing light is approved 

to have some other advantages over steady light resource, powder consumption will be 

reduced on according to existence of off-cycle. Because of lower heat generation, cooling 

system is not needed which will save a big amount of costs and also make the process being 

easier; instantaneous photosynthetic photo flux will be increased. However, during lab 

experiments, it is hard to calculate the flash light intensities since the flashing light intensity 

changes quickly timely, and there is a long dark period existing comparatively, which may 

interrupt the quantum sensor from averaging the light over a cycle. Therefore, more detailed 

researches should be studied on maximum and average light intensities, duty cycles and 

frequency also need to be tested before accomplish the advantage of using flashing light on 

growth of microalgae. (Kim et al., 2005)  

Finding critical cell density of microalgae is a profitable engineering tool for flashing 

light in algal application. The critical cell density of microalgae can be calculated using cell 

concentration, average cell volume, and the surface/volume ratio of a culture reactor. Based 

on estimating critical microalgae cell density and specific oxygen production rate, the 

effectiveness of flashing light for photosynthetic efficiency can be tested. With increased 

instantaneous photosynthetic photo flux, the specific oxygen production rate was enhanced 

under flashing light. Under different frequencies and duty cycles, the efficiency of 

photosynthetic per unit volume was relatively constant, which is around 0.8 mol  O2 μm
-3

h
-1
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Thus, the flashing light frequency and duty cycle don’t have an obvious improvement on the 

rate of specific oxygen production. Meanwhile, the flashing frequency will influence on the 

specific oxygen production rate a little amount when the frequency is 10 - 50 kHz. (Park and 

Lee, 2001) 

 

2.9. Microalgae Seed – Scenedesmus dimorphus. 

 Scenedesmus dimorphus is a freshwater unicellular microalgae, which belongs to 

Chlorophyceae class. It is a strain of microalgae that can grow rapidly and synthesize 

considerable amount of desirable product such as protein and lipid. The specific growth rates 

have been reported in the range of 0.8 day
-1 

to 1.6 day
-1 

(Welter et al., 2013). The biomass of 

S. dimorphus contains 35% protein, 60% carbohydrate or 37% total lipid (Wang et al., 2013). 

S. dimorphus is tolerant to wide range pH from 6.5 to 8, and also has a great capability of 

tolerance to high gas concentration of carbon dioxide and nitric oxide It can tolerant the 

sulfur dioxide concentration as much as 100 ppm. What’s more, the S. dimorphus is robust to 

mental contamination such as copper (Jiang etal., 2013 & Nalewajko et al., 1997).  

 In tropical countries such as Colombia, in order to solve the problem of lack of water 

for crops, researches are interested on reuse the treated wastewater, which is using S. 

dimorphus to remove ammonia and phosphorus in agroindustrial wastewater. The results 

showed the removal efficiency on ammonia was as high as 95% (Gonzalez et al., 1997), 

while the removal efficiency on phosphorus is 57% (Proulx et al., 1994). S. dimorphus 

presents as a good alternative to treat agroindustrial wastewater, compared to those obtained 

in other studies with cyanpbacteria like Phormidium and Sprirulina. (Gonzalez et al., 1997) 
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 In Kang’s study, the concept of producing S.dimorphus biomass using waste 

ammonia gas from animal house shows a promising result. The microalgae not only can 

remove ammonia gas, but produce biomass as animal feed as well. She also pointed out more 

experiments need to be done since the growth condition for microalgae can be different when 

close to animal house situation in real. Such as the carbon source for microalgae can also 

from CO2 and CH4 that concentration will be high in animal house. (Kang, 2012) 
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1. Cell Strain and Substrate 

The microalga Scenedesmus Dimorphus (UTEX 1237) was used. The microalgae was 

obtained from the culture collection at University of Texas at Austin. The seed of 

S.dimorphus was maintained in 250-ml autoclaved Erlenmeyer flasks. To culture the seed of 

S. dimorphus, 5mL of old S. dimorphus seed was weekly transferred to a 250-mL autoclaved 

Erlenmeyer flask which contained 50mL Bold’s Basal Medium (BBM) (Bold, 1949 & Bold 

and Bischoff, 1963), and was marked as new generation of S.D. seed. All procedures were 

done in sterile environment. The flasks were placed at 25
o
C on an orbital shaker setting at 

200 rpm, the light intensity of continuous illumination was set to 110-120 µmol s
-1

 m
-2

. The 

BBM contained KH2PO4 (17.5 g/L), CaCl2·2H2O (2.5 g/L), MgSO4·7H2O (7.5 g/L), NaNO3 

(25 g/L), K2HPO4 (7.5 g/L), NaCl (2.5 mg/L), EDTA (50 g/L), KOH (31 g/L), FeSO4·7H2O 

(4.98 g/L), H2SO4 (1mL), H3BO3 (11.42 g/L), MoO3 (0.71 g/L), and trace metal solution 

(1ml/L) which includes ZnSO4·7H2O (8.82 g/L), MnCl2·4H2O (1.44 g/L), CuSO4·5H2O 

(1.57 g/L), Co(NO3)2·6H2O (0.49 g/L). The BBM was autoclaved at 270
o
F for one hour.

 

 

3.2. Photobioreactors Setup 

 The microalgae was exposed to different light exposure patterns, the PBRs were glass 

columns (25.4 mm in diameter, 61 cm in length), and working volume was 600 mL. Each 

glass column was paired with same reservoir but different working volume (Figure 3.1.). 

Each set of reactor set included a glass column, a dark medium reservoir, and a recycle pump. 
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The reservoirs were of medium size (0.83 L - 2.284 L in this study); with different active 

volumes set and was completely covered with aluminum foil to avoid exposure to sunlight. 

Two sets of reactor were tested at one time. One lab set was for mainly observation, which 

another was prepared as same as first one to do the repeated lab. Medium was continuously 

re-circulated by the recycle pump from the reservoir to the column. The size of the reservoir 

controled the exposure duration while the pump rate controled light exposure frequency. As 

shown in Figure 3.1, circular bubble tube was fixed on the bottom of the reservoir to make 

sure microalgae not attached on the wall of reservoirs. Additionally, bubble air in the inlet of 

the pump was allowed to prevent microalgae to attach on the wall of photo - reactor columns. 

Brush both reservoirs and photo – reactor column after each lab to make sure there were no 

remain microalgae cell.  

 
Figure 3.1. Schematics of the photobioreactors system for microalgae growing. 
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3.3. Photobioreactors Operation 

 The columns were illuminated by fluorescent lamps (Ecoiux F32T8.SPX50-ECO) 

with an intensity of about 150 µmol m
-2

s
-1

. The culture was mixed at aeration rate of 0.25 

vvm (volume gas / volume liquid / min) (Jiang et al., 213). The flow meter (Cole – Parmer: 

PERI – 010266. Chicago, IL) was used in this study to adjust the gas flow rate, while pH was 

also maintained daily in the certain range of 6.95-7.00 by a pH meter (Jenco, 6230N). A 

room temperate of 25
o
C was maintained during the entire experimental period. 

 

3.3.1. Continuous Culture 

The PBRs was operated in a continuous mode. Since the optimal dilution rate is 0.1 

(Kang, 2012), 10% cell suspension of total sample volume from each reservoir were removed 

daily for cell density tests, and same amount of BBM were added into each reservoir. The 

steady state can be observed after 18 days, at this state sample were collected for protein, 

fatty acid, cell number counting and element content analysis.  

 

3.4. Analysis 

3.4.1. Cell Growth Analysis 

 Optical density of microalgae biomass was measured by spectrophotometer (DU 720, 

Beckman Coulter, Fullerton, CA) at 680 nm (OD680). The sample was diluted in the range 

from 0.1 to 1 to observe the optical density. After getting biomass dry weight, the 

relationship between biomass concentration and optical density can be written as the 

following equation: Y=1.0319X-0.0346 (  = 0.9952), where Y indicates the biomass 
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concentration (g/L) and X indicates the optical density (OD680). Optical density values with 

the dilution factor of 9 were recorded daily, the cell concentration can be calculated from the 

equation, and the cell productivity (g/L•day) can be calculated by the biomass concentration 

multiply the dilution rate 0.1 (Kang, 2012).  

 To make sure whether microalgae was growing to steady status, counting cell number 

of microalgae will be done following Hemocytometer method. According to optical density 

observation, after the microalgae went to steady state, dissolved 10mg freeze-dried sample 

into 5ml distill water, and the density of samples will be 2 g/L.  

 

3.4.2. Biomass Analysis 

 When microalgae grow into steady state, sample will be collected in the following 

five days for biomass analysis. All collected sample were freeze-dried, for fatty acids 

analysis, protein content analysis, and elements (C, H, N, and S) analysis. Fatty acid analysis 

was determined by using the previous protocols (Pyle et al 2008) Protein content was 

calculated as nitrogen percentage × 6.25. Use elemental analyzer to analysis the CHN content 

of biomass, the element analysis was performed in center for sustainable environmental 

technologies. 

 

3.4.3 Statistic Analysis 

 One-way ANOVA was used in this study to test if different light condition will 

change the cell density and cell productivity of S. dimorphus or not. JMP Pro10 was used as 

the statistical analysis tool. The α level was set as 95%, while the p – values of 0.05 will 

indicate if the differences will be significant or not. In this research, S.dimorphus samples 
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were taken every day when the growth rate went to steady state. Duplicate samples for both 

cell growth analysis and biomass analysis.    
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1. Cell Growth Rate in Whole Research 

 Light plays an important role in growth rate of microalgae, as discussed in Chapter II. 

Under different light exposures, durations and exposure frequencies, the growth rate of 

microalgae can vary. Figure 4.1 shows the cell density of the microalgae in the entire 

continuous culture under different growing conditions. In the first stage of this research, 

exposure duration was determined by changing the medium volume of the equipment. The 

equation of daily light duration calculation can be written as follows: 

 

                                Equation 4.1. 

 

Table 4.1 shows the calculations of exposure duration and relative exposure 

frequency when randomly choosing the same pumping rate of 40 ml/sec. After confirming 

optimal exposure duration, exposure frequency was determined under the same light 

exposure duration per day by changing the pumping rate. The research started with durations 

of 10 hours/day, 8 hours/day, and 6 hours/day. The reason for starting with 10 hours/day is 

because normal daylight is around 10 hours/day, and the lab-scale project is a pre-test for 

outdoor scale. When the results showed the cell density has an optimal value at 6 hours/day, 

7 hours/day and 5 hours/day, these two durations were chosen to compare the cell density of 

microalgae under 6 hours/day exposure duration. When the optimal duration equals 7 
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hour/day and the frequency is 70 cycles/hour, based on the changing pumping rate, the 

equation of light exposure frequency calculation can be written as follows: 

 

                              Equation 4.2. 

 

This research tested exposure frequency starting around 70 cycles/hour, and 53 

cycles/hour 105 cycles/hour and 88 cycles/hour were chosen to compare with the cell density 

when the frequency is 70 cycles/hour. Table 4.2 shows the calculations of exposure 

frequency with different pumping rates, but same exposure duration of 7 hours/day. 

 

Table 4.1 Total daily exposure duration (hours) when pumping rate is 40 ml/sec. 

Reservoir 

volume, L 

Total daily 

exposure, hr. 

Light frequency, 

cycles/hr. 

0.83 10 101 

1.2 8 80 

1.455 7 70 

1.8 6 60 

2.284 5 50 

 

Table 4.2 Light exposure frequency when duration is 7 hours/day. 

Pumping rate, mL/sec Light frequency, cycles/hr. 

30 53 

40 70 

50 88 

60 105 
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Figure 4.1. Cell density of S. dimorphus under different exposure condition includes both 

duration and frequency tests  in continuous culture. The dilution rate is 0.1 day
-1 

in the entire 

test. 

 

According to Figure 4.1 above, when light exposure equals 10 hours/day, steady state 

is not unstable and the cell density is too low to collect sufficient samples for further 

analysis, so in the further analysis, samples under this condition were not analyzed more. The 

remaining conditions show a full analysis.  

 

4.2 Cell Growth at Different Light Exposure Duration 

 Exposure duration is a way to find how long the microalgae need the light exposure 

in order to proceed to photosynthesis. Less light exposure duration will affect the growth rate 

of microalgae, as the light is not enough for microalgae to absorb, while too much light 

exposure will cause light prohibition in microalgae. This research uses the autotrophic 
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microalgae species S. dimorphus to test optimal exposure duration first, after determining the 

exposure duration, then tests the exposure frequency next, based on the optimal exposure 

duration. 

 Cell density was calculated every day though the optical density of the microalgae 

sample. As shown in Figure 4.1 above, the steady state of each growing condition occurs 

after 10 days. During each steady state, samples are collected for elemental, protein, and fatty 

acids analysis. 

 Figure 4.2 below shows the cell density and cell productivity of the microalgae S. 

dimorphus under different light exposure durations, from which the cell productivity can be 

calculated as (Kang, 2012): 

 

Biomass productivity = cell density × D                     Equation 4.3.  

 

Where D indicates the dilution rate (day
-1

) which is 0.1 day
-1

 (Kang 2012).  

 

Since the dilution rate (0.1 day
-1

) is
 
used constantly in this entire study, the columns 

of cell density and cell productivity have same area, even though the axis is different. Under 

durations of 5 hours/day and 6 hours/day, the dark reaction of photosynthesis will be 

influenced by the shortage of light, because of the ATP which is generated in photoreaction. 

From 5 hours/day to 7 hours/day, the cell density increases from 0.47 g/L to 3.42 g/L, while 

the cell productivity increases from 0.047 g/L to 0.34 g/L. This occurs because when the light 

supply goes up, the photosynthetic efficiency goes up, and the microalgae can use enough 

light to produce more biomass; hence, this period can be called “light saturation constant” 

(see Chapter II). When the microalgae gets one more hour of exposure duration, at 8 
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hours/day, the cell density drops to 1.38 g/L and cell productivity goes down to 0.138 g/L, 

since the photo-inhibition will occur in the second stage of photosynthesis.   

Cell density also can be determined by counting microalgae cell numbers. Figure 4.3 

shows the cell number counting results when the S. dimorphus reaches steady state under 

different exposure durations. When the duration varies from 5 hours/day to 7 hours/day, cell 

density goes from 1.4 × 10
8  

cells /mL to 1.75 × 10
8  

cells/mL, and when the duration is raised 

to 8 hours/day, the cell density drops to 1.0 × 10
8  

cells/mL. This test of cell density shows 

the same trend as the one depicted in Figure 4.1. Thus, the shortage of a light source will 

decrease the cell density of microalgae, while excessive light will cause photoinhibition. The 

test is done after all conditions are performed: dilute the freeze-dried sample into distilled 

water, so those counting numbers include both live and dead microalgae cell numbers.   

 

Figure 4.2. Cell density and cell productivity under different exposure duration, when 

expousre duration equals to 5, 6, 7 and 8 hrs.  
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Figure 4.3. Microalgae cell number counting underdifferent exposure duration, when 

exposure duration equals to 5, 6, 7 and 8 hrs. 

 

 

4.2.1 Biomass Character at Different Light Exposure Duration 

4.2.1.1 Protein and Fatty Acid Analysis 

Proteins and fatty acids are two important contents in algal biomass. Different species 

of microalgae contain varying percentages of proteins and fatty acids. More efficient 

photosynthesis will produce more proteins and fatty acids. Further, protein-rich biomass can 

be used for both animal feed and human consumption (Singh, 2011). Acoording to Kang’s 

research, the biomass of S.dimorphus offers promising as animal feed, since it has relatively 

balanced amounts of some kinds of protein, such as methionine, isoleucine, and histidine 

with lysine, but more experiments needed to be performed since compare to ideal protein 

contents in animal feed, S.dimorphus biomass contains higher amounts of threonine, leucine, 

valine, and arginine, and lower amounts of cysteine and tryptophan. Figure 4.6 below shows 

the protein and fatty acid percentages of S. dimorphus. The protein percentages under all 



31 

 

 

 

duration conditions are in the range of 25% - 30%, lower than 35%, which was mentioned in 

Chapter II, but according to Bruton et al. (2009), the protein percentage is 8% - 18% of dry 

matter basis for S.dimorphus. Comparing different duration conditions, even the slope of 

trend is small: the trend of protein percentage in Figure 4.6 goes up from 25% to 30% first, 

then drops to 24.5% . The protein percentage under 7 hours of exposure duration daily shows 

a slightly higher result than under other duration conditions.  

However, the percentage of fatty acids in S.dimorphus under different exposure 

durations show little difference; in fact, the percentage of fatty acids are relatively similar in 

this research. The fatty acid composition of S. dimorphus under different exposure durations 

is presented in Table 4.3 below. The algae had a relatively simple fatty acid profile, with 

palmitic acid (C16:0), linoleic acid (C18:2) and alpha-linolenic acid (C18:3) being the major 

fatty acids, and pentadecanoic acid (C15:0), oleic acid (C18:1 cis-9), elaidic acid (C18:1 

trans-9) and arachidic acid (C20:0) being the minor fatty acids. The percentage of elaidic 

acid (C18:1 trans-9), however, at under 7 hours/day duration, is significant higher than other 

duration conditions. The remaining percentages of each individual fatty acid (% TFA, total 

fatty acid) are relatively stable. Thus, with under 7 hours’ exposure duration per day, 

microalgae will produce more elaidic acid (C18:1 trans-9) rather than other conditions. 
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Figure 4.4 Protein percentage and fatty acid percentage in microalgae under different 

exposure duration, when exposure duration equals to 5, 6, 7, and 8 hrs. 

 

 

Table 4.3 Fatty acid composition (%TFA, total fatty acid) of S. dimorphus under different 

exposure duration.  

Fatty Acid Unit 5 hours/day 6hours/day 7hours/day 8hours/day 

C15:0 %TFA 1.1 0.7 0.9 0.7 

C16:0 %TFA 13.5 15.8 17.9 15.7 

C18:1cis %TFA 12.3 14.8 13.5 17.0 

C18:1trans %TFA 1.6 1.3 8.3 1.3 

C18:2 %TFA 11.7 11.9 12.0 10.1 

C20:0 %TFA 0.3 0.7 0.1 0.2 

C18:3 %TFA 20.7 21.8 22.0 18.2 

 

4.2.1.2 Elemantal Analysis 

Figure 4.5 and Figure 4.6 are the test results from elemental analyses. N% in Figure 

4.5 will have the same trend of protein percentage depicted in Figure 4.4, since the nitrogen 

content multiplied by 6.25 is the way to calculate protein content. In this study, N% test and 

protein content test are done in different departments using the same sample; since they have 

same trend, the result is acceptable. N% under 7 hour/day exposure duration is slightly higher 
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than other exposure durations, as was the result for protein percentage. Hydrogen can exist in 

carbonhydrate, fatty acid and protein. H% indicates the efficiency of photosynthesis. In 

Figure 4.5, the H% does not show a significant difference among different exposure 

durations. 

Sulfur is a component of protein such as Methionine and Met+cys and also can be a 

component of amino acids such as Methionine, Cysteine, Taurine and Lanthionine. The 

amino acids content test was not performed in this study. S% under different exposure shows 

no significant under different exposure duraions; it also varies. The C% is most like H%, 

since it can exist in carbonhydrate, fatty acid, and protein, most of the products of 

photosynthsis. So it generally indicates the efficiency of photosynthesis. C% under 7 

hours/day shows a significant difference over other duration conditions, which indicates the 

biomass under this condition is higher than others, and the microalgae process photosynthesis 

occurs very well when the light supply is 7 hours daily.  

 
Figure 4.5. N% and H% in microalgae under different exposure duration, when exposure 

duration equals to 5, 6, 7, and 8 hrs. 
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Figure 4.6. C% and S% in microalgae under different exposure duration, when exposure 

duration equals to 5, 6, 7, and 8 hrs. 

 

 Based on observations of the growth rate of microalgae under different light daily 

exposure durations, 8 hours/day, and 7 hours/day, 6 hours/day and 5 hours/day, the 

S.dimorphus grows well when daily light exposre duration is 7 hours. The cell density and 

cell productivity are obviously high, while protein content and fatty acid content are similar 

to other conditions. Thus, for the second state of this research, 7 hours/day will be used as the 

fixed exposure duration, to discover the optimal exposure frequency.   

 

4.3 Cell Growth under Different Light Frequency  

Changing pumping rate also changes the light exposure frequency for microalgae. 

The research tested exposure frequencies start around 70 cycles/hour, and 53 cycles/hour, 

105 cycles/hour and 88 cycles were chosen as comparisons. Cell density and cell productivity 
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analyses under different light exposure frequencies are shown in Figure 4.7. As with testing 

duration, the dilution rate (0.1 day
-1

) is
 
used constantly in this whole research, so the areas of 

cell density and cell productivity are same even though the axis is different. When frequency 

is 53 cycles/hour, because of light limitation, the dark reaction of photosynthesis will be 

affected. When frequency reaches 70 cycles/hour, light supply is suitable for microalgae, and 

the cell density can be as high as 3.2 g/L and cell productivity can be 0.32 g/L*day
-1

. After 

continued increases of the light frequency, the cell density and cell productivity drop because 

of photoinhibition (see Chapter II).  

Cell density can be determined by counting microalgae cell number. Figure 4.8 shows 

the cell number counting results when the S. dimorphus reaches steady state under different 

exposure durations. The test is performed with a dry sample diluted into distilled water, and 

counting includes both live cells and dead cells. When the light frequency changes from 53 

cycles/hour to 70 cycles/hour, cell density goes from 1.72 × 10
8 

cells /mL to 1.91 × 10
8 

cells/mL, and when frequency increases to 88 cycles/hour, the cell density drops to 1.75 × 

10
8 

cells/mL; when frequency is raised to 105 cycles/hour, the cell density goes lower, to 

1.71 × 10
8
. This is the same result trend shown in Figure 4.7. Thus, the limitation of light 

source will decrease the cell density of microalgae, while excessive light will cause 

photoinhibition and reduce biomass.  
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Figure 4.7. Cell density and cell productivity of microalgae under different exposure 

frequency, when exposure duration is 7 hrs/day.  

 

 
Figure 4.8. Microalgea cell number counting under different exposure frequency, when 

exposure duration is 7 hrs/day. 
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4.3.1 Biomass Analsyis under Different Light Frequency 

4.3.1.1 Protein and Fatty Acids Analysis 

As with biomass analysis when testing light duration, protein and fatty acids are two 

important contents in algal biomass. More efficient photosynthesis will produce more protein 

and fatty acid.  Figure 4.9 below shows the protein and fatty acid percentage of S. dimorphus. 

The protein percentages under different frequencies are in the rage of 25% - 30%, a similar 

result to duration biomass protein analysis. Comparing different light frequency conditions, 

even the trend changes are not significant. The protein percentage under 70 cycles per hours 

exposure frequency shows a slightly higher result than under other duration conditions.  

However, the fatty acids percentage of S.dimorphus under different exposure 

durations still shows little difference; the percentages of fatty acids are relatively similar in 

the frequency tests, as well. The fatty acid composition of S. dimorphus under different 

exposure frequencies is presented in Table 4.4 below. The percentage of elaidic acid (C18:1 

cis) under 70 cycles/hour light frequency is significantly higher than other duration condition, 

but the remaining percentages of each individual fatty acid (% TFA, total fatty acid) are 

relatively similar to other conditions. Thus, under 70 cycles/hour exposure frequency, 

microalgae will produce more elaidic acid (C18:1 cis) than under other conditions. 
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Figure 4.9. Protein percentage and fatty acid percantage of microalgae under different 

frequency, when exposure duration is 7 hrs/day. 

 

Table 4.4 Fatty acid composition (%TFA, total fatty acid) of S. dimorphus at different 

exposure frequency, when exposure duration is 7 hours/day. 

Fatty 

Acid 

Unit 7hr, 

53cycles/hr 

7hr, 

70cycles/hr 

7hr, 

88cycles/hr 

7hr, 

105cycles/hr 

C15:0 %TFA 0.8 0.7 0.8 0.7 

C16:0 %TFA 14.5 15.4 14.5 15.5 

C18:1 cis %TFA 14.5 17.8 14.5 13.6 

C18:1 

trans 

%TFA 1.0 1.3 1.0 1.3 

C18:2 %TFA 11.2 10.9 11.2 10.9 

C20:0 %TFA 0.5 0.5 0.8 0.7 

C18:3 %TFA 20.9 20.4 20.9 20.5 

 

4.3.1.2 Element Content Analysis 

Figure 4.10 and Figure 4.11 are the test results from elemental analysis. N% in Figure 

4.10 will have the same trend of protein percentage shown in Figure 4.9, since the nitrogen 

content multiplied by 6.25 is the way to calculate protein content. N% and H% under 

different exposure light frequencies are relatively similar. Nitrogen and hydrogen molecules 

can exist in carbonhydrates, fatty acids, proteins and amino acids. Further, the hydrogen ion 
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will be produced in the first phase of photosynthesis. H % and N% can indicate the efficiency 

of photosynthesis.  

 As introduced in 4.2.1.2, sulfur exists in photosynthesis production, such as some 

kinds of protein and some amino acids. S% under 70 cycles/hour shows a slight difference 

compared to other exposure frequencies. When the frequency increases, the S% will decrease, 

but when the frequency is decreased, the S content is reduced, as well. The reason for this is 

photosynthesis efficiency. The C% under 70 cycles/hour as frequency shows a significant 

difference compared to other conditions, which means the biomass under this condition is 

high, and the microalgae process photosynthesis very well when light frequency is 70 

cycles/hour.  

 
Figure 4.10. N % and H % of microalgae under different exposure frequency, when 

exposure duration is 7 hrs/day. 
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Figure 4.11. C% and S%  of microalgae under different exposure frequency, when exposure 

duration is 7 hrs/day. 
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Chapter V 

CONCLUSION 

 

The fresh microalgae species S. dimorphus was used in this study to test optimal light 

exposure duration and exposure frequency in order to test the new two portion 

photobioreactor configuration. The statistical analysis indicates that light duration and light 

frequency will have a significant influence on growth rate of microalgae; mean values and 

standard error are from replicate samples. 

 Different daily exposure durations (8 hours, 7 hours, 6 hours, and 5 hours) and 

different exposure frequencies (53 cycles/hour, 70 cycles/hour, 88 cycles/hour, and 105 

cycles/hour) were used during the test. The growth rates of micralgae under different light 

conditions were compared with cell density, cell productivity and cell number counting. As a 

result, when daily light duration is 7 hours and frequency is 70 cycles/hour, the growth rate is 

considerable for  micalalge growth rate and protein content.  

 The productitvty of biomass was controlled by protein content, fatty acid content and 

elemental content analysis (C%, H%, N%, S%). The protein content results show when daily 

exposure duration is 7 hours and frequency is 70 cycles/hour, the protein percentage of 

biomass of microalgae is slightly higher than under other light conditions. It has potential 

ability to be animal feed since the considerable protein content. The fatty acid content 

analysis showed no significant difference between the different light exposure conditions. 

Even when comparing each fatty acid percentage of total fatty acid, some kinds of fatty acid 

under 7 hours daily duration or when frequency is 70 cycles/hour show significant 

differences compared to other light exposure conditions, but the rest of fatty acids are 
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somehow relatively the same or even lower. The result of element content analysis of C% 

shows a higher percentage when daily exposure duration is 7 hours and frequency is 70 

cycles/hour. Nitrogen percentage has same result with protein content. C% and H% results 

showed no difference under different light exposure conditions. Also, the specific growth rate 

under this light exposure condition is 0.38 day -1 , while other research shows specific 

growth rate  for the same microalgae species is 0.32 day-1 (Kang, 2012). 

 Overall, the concept of this two portion photobioreactor are apporaiate to produce 

microalgae biomass under certain light exposure durations and frequencies, It is a new 

approach to discover the light-dark cycle for microalgae growing. Protein content can be 

used in animal feed, while more research needed to be done to test the ability to produce 

biodiesel. What’s more, to make sure this photobioreactor has a promising furture in real 

scale cultivation, more experiments are needed to be studied uncover the relationship 

between exposure duration and frequency. 
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