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The goal of image retrieval and matching is to find and locate object instances

in images from a large-scale image database. While visual features are abundant,

how to combine them to improve performance by individual features remains a

challenging task. In this work, we focus on leveraging multiple features for accurate

and efficient image retrieval and matching.

We first propose two graph-based approaches to rerank initially retrieved im-

ages for generic image retrieval. In the graph, vertices are images while edges are

similarities between image pairs. Our first approach employs a mixture Markov

model based on a random walk model on multiple graphs to fuse graphs. We in-

troduce a probabilistic model to compute the importance of each feature for graph

fusion under a naive Bayesian formulation, which requires statistics of similarities

from a manually labeled dataset containing irrelevant images. To reduce human

labeling, we further propose a fully unsupervised reranking algorithm based on a

submodular objective function that can be efficiently optimized by greedy algorithm.

By maximizing an information gain term over the graph, our submodular function



favors a subset of database images that are similar to query images and resemble

each other. The function also exploits the rank relationships of images from multiple

ranked lists obtained by different features.

We then study a more well-defined application, person re-identification, where

the database contains labeled images of human bodies captured by multiple cameras.

Re-identifications from multiple cameras are regarded as related tasks to exploit

shared information. We apply a novel multi-task learning algorithm using both

low level features and attributes. A low rank attribute embedding is joint learned

within the multi-task learning formulation to embed original binary attributes to a

continuous attribute space, where incorrect and incomplete attributes are rectified

and recovered.

To locate objects in images, we design an object detector based on object pro-

posals and deep convolutional neural networks (CNN) in view of the emergence of

deep networks. We improve a Fast RCNN framework and investigate two new strate-

gies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and

cascaded rejection classifiers (CRC). The SDP improves detection accuracy by ex-

ploiting appropriate convolutional features depending on the scale of input object

proposals. The CRC effectively utilizes convolutional features and greatly eliminates

negative proposals in a cascaded manner, while maintaining a high recall for true

objects. The two strategies together improve the detection accuracy and reduce the

computational cost.
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Chapter 1: Introduction

In this work, we research on two fundamental aspects of computer vision:

searching for similar images from a database, and detecting and recognizing objects

from images. The two aspects are different in that the former focuses on comparing

and inferring the similarity of images, while the latter learns to precisely locate ob-

jects in images. Nevertheless, both involve analyzing and understanding the content

of images for decision making, and are closely related in a practical vision system.

Formally, the process that using images as input without textual information to

search for similar images is referred to as content-based image retrieval. As for

object detection, it has been extensively studied and there are abundant research

works. Here we limit our focus to the approaches based on deep neural networks that

have gained great popularity recently and shown excellent performance on various

vision tasks.

1.0.1 Content-based Image Retrieval

Content-based image retrieval has been studied for decades due to its impor-

tance in practical applications, such as commercial search engines, marketing and

branding, and near-duplicate removal. A content-based image retrieval system gen-

1



erally works as follows. First, visual features are extracted from database and query

images as image representation. Second, for database images, feature vectors are

stored and usually indexed in an optimized way to describe the structure of database

for efficient retrieval. Finally, visually similar images are discovered and ranked by

calculating the distances between the feature vectors of query images and database

images. Database images with smaller distance to the query image are deemed as

more similar and thus ranked higher.

Regarding features, most of existing approaches adopt a single feature such as

bag-of-words (BoW) [1,3,4,8–10], Fisher vectors (FV) [11,12], vector locally aggre-

gated descriptors (VLAD) [13], or their improved versions [14–16]. However, these

methods heavily relies on keypoint detectors, thus are not robust enough against

blurred images due to camera motion and objects that occupies only a small portion

of the entire image. In these cases, only a limited number of or even no keypoints

can be extracted, which makes the keypoint-based approaches vulnerable. On the

other hand, global features, such as color histograms, are more powerful to capture

higher level information compared to local features, which may help us locate the

correct object accurately and retrieve them effectively. Nevertheless, global features

ignore the subtle details of objects, which are crucial in image retrieval to accurately

discriminate different objects. Therefore, a single feature may not effectively handle

all the different variations and thus combining multiple complementary features is

a way to exploit the information that cannot be found by a single feature alone.

Generally, there are two ways of combining multiple features: early fusion

and late fusion. In early fusion, weights for multiple feature vectors are learned
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from training data and used to concatenate raw feature vectors. In contrast, only

pairwise similarities between images with respect to multiple features are taken

into consideration for combining initial results from individual features. Since it

is more flexible and feature-agnostic, we choose late fusion for multi-feature fusion,

and propose several approaches for various image search scenarios, including generic

image retrieval and a more well-defined problem, person re-identification.

1.0.2 Object Detection with Deep Neural Networks

Object detection has been extensively studied due to its importance in image

analysis and understanding. Before the emergence of deep neural networks, the

deformable part model (DPM) [17] with hand-crafted features, such as histogram of

gradients (HoG), has been the state-of-the-art object detector for decades. With the

extraordinary representative and discriminative capability of deep neural networks,

the effort on designing features and choosing appropriate learning algorithms to

obtain an effective object detector switches to tunning network architectures and

learning parameters. In this way, one can easily obtain a powerful object detector

that allows end-to-end detection without much human intervention.

Nevertheless, designing an effective and efficient object detector based on deep

neural networks still remains a challenging problem. Although deep networks pro-

vides highly discriminative features, yet the computational cost still remains too

large to detect objects for practical use. We address the problem of high com-

putational cost and propose a new approach to accelerate detection, apart from
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improving the detection accuracy.

1.1 Outline of Thesis

In Chapter 2, we propose a simple yet effective framework for multi-feature

fusion based on graphical models for generic image retrieval, which requires similar-

ities from annotated similar/dissimilar image pairs from a training database. This

chapter is based on our work in [18]. For each feature, given the query and ini-

tially retrieved images, we construct an undirected graph whose vertices represent

these images and in which edge strength is the pairwise similarity score between

images. We employ a mixture Markov model, which is based on a random walk

model on multiple graphs, to fuse multiple graphs into one. We introduce a prob-

abilistic model to compute the importance of each feature under a naive Bayesian

formulation that depends only on the statistics of similarity scores inferred from

the annotated similar/dissimilar image pairs. The probability of walking between

graphs is determined by the probabilistic model that measures the probability of a

given similarity from similar images or dissimilar images.

In Chapter 3, we present a fully unsupervised approach without the require-

ment of annotated similar/dissimilar pairs of images, which is based on our work

in [19]. In this approach, we construct a submodular objective function that con-

sists of two terms: an information gain term and a relative ranking consistency

term. To compute the information gain, we again represent each initial ranked list

as an undirected graph, where the structure is then modeled as a transition matrix
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under the assumption of a random walk on a graph. We select a subset of retrieved

images by maximizing the information gain over the graph, which maximizes the

mutual information between the selected subset and unselected nodes in the graph.

The relative ranking consistency term exploits inter-relationships among multiple

ranked lists obtained by different features. If relative ranks between two images

are consistent across multiple ranked lists, the ranking relationship between them

is considered reliable and captured by the relative ranking consistency term. Addi-

tionally, the relative ranking consistency term encourages selecting images that are

similar to the query but only found and highly ranked by a small number of features.

The final submodular objective function combines both the relationships among re-

trieved images from a single feature and the relative ranks of image pairs across

different features, thereby improving initial retrieval results obtained by multiple

independent features.

In Chapter 4, we focus on a more well-defined problem, person re-identification,

which can be considered as a special case of generic image retrieval. This chapter

is based on our work in [20]. In person re-identification, the database usually con-

tains a lot of well labeled data that allows more sophisticated learning algorithms.

Apart from low level features, we incorporate high level semantics, referred to as

attributes, into the framework in view of their discriminative power and consistency

across different representation spaces. Specifically, we propose a novel multi-task

learning framework with low rank attribute embedding for person re-identification.

Re-identifications from multiple cameras are regarded as related tasks to exploit

shared information to improve accuracy. Since attributes are generally correlated,
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we introduce a low rank attribute embedding into the multi-task learning formu-

lation to embed original binary attributes to a continuous attribute space, where

incorrect and incomplete attributes are rectified and recovered to better describe

people. Low level features and embedded attributes are concatenated to form the

final feature vectors. The learning objective function consists of a quadratic loss

regarding class labels and an attribute embedding error, which is solved by an al-

ternating optimization procedure.

Going one step further from finding similar images from the database, we

would like to localize objects in images and recognize their categories. In Chapter 5,

we propose an object detector based on deep convolutional neural networks (CNN).

This chapter is based on our work in [21]. Inspired by the recent progress in object

detection with CNNs, we investigate two new strategies to detect objects accurately

and efficiently using deep CNNs: 1) scale-dependent pooling and 2) layer-wise cas-

caded rejection classifiers. The scale-dependent pooling (SDP) improves detection

accuracy by exploiting appropriate convolutional features depending on the scale of

the candidate object proposal. The cascaded rejection classifiers (CRC) effectively

utilize convolutional features and eliminate negative bounding boxes in a cascaded

manner, which greatly speeds up the detection while maintaining high accuracy. In

combination of the two, our method achieves significantly better accuracy compared

to other state-of-the-arts in two challenging datasets, while being more efficient.

Chapter 6 provides the conclusion to the thesis.
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Chapter 2: Image Retrieval by Mixture Markov Model and Diffusion

2.1 Introduction

The image retrieval task focuses on searching for same/similar images given

a query image without textual information at the instance-level, which contains

a particular object, rather than at the category-level, where we only need to dif-

ferentiate from object categories, such as persons, animals and scenes. The bag-

of-words (BOW) representation [8] based on local features, such as the SIFT de-

scriptor [22], is widely used in retrieval systems. Numerous improvements with

respect to performance and scalability of the original BOW representation have

been proposed [1, 3, 4, 9, 10]. To reduce the dimensionality of the standard BOW

representation that requires millions of visual words, Jégou et al. [13] introduced

the vector of locally aggregate descriptors (VLAD) to achieve a trade-off between

memory footprint and retrieval performance. Despite their power in capturing local

patterns of an object, local features such as SIFT and VLAD descriptors may not be

suitable for describing the global characteristics of an image, which are well captured

by global features. We present an example showing that different types of objects

have different appearance information, thus requiring different types of features. In

Figure 2.1, we show several images from two logo categories, pepsi and apple. The

7



Figure 2.1: Samples of pepsi and apple logos. Note that the pepsi logos exhibit
various scale and rotational changes but the color distribution is relatively constant.
In contrast, the apple logos exhibit varied colors, but consistent shape.

apple logo is of various colors, while its shape is relatively consistent across different

samples. Therefore, shape descriptors are more appropriate to describe apple logos

than color features. In contrast, the pepsi logo has a distinct color distribution that

is composed of blue, red and white, although it exhibits various scale and rotational

changes. In this case, as a global feature, color is more powerful to capture higher

level information compared to local features, which may help us locate the correct

logos accurately and retrieve them effectively.

However, how to combine multiple features still remains an open question.

Usually, to better capture distinctive local and global patterns of images from a

large collection of images, the dimensionality of feature vectors has to be extremely

high. One has to use millions of visual words for constructing BoW vectors or tens

of thousands of dimensions for Fisher Vectors (FV) [23] to obtain good performance.

It is prohibitively expensive both to store all feature vectors for a database contain-

ing millions of images, as well as to learn weights from those features using any

classifiers. In addition, due to large variation of dimensionality among different fea-

tures, it is even more challenging to determine the relative importance of individual

features if they are simply concatenated, since the performance of the concatenated
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feature is prone to be dominated by high dimensional features such as BoW vectors.

Furthermore, for retrieval tasks, we can only obtain a limited amount of labeled

samples because manual annotation for millions of images is impractical, while the

appearance of database images can be quite diverse. Moreover, we do not have

any prior information of and cannot make any assumption on the characteristics

of queries, which might be very different from the database images. Learning on a

small set of annotated samples, which do not sufficiently represent the characteristics

of the entire database and queries, is likely to generalize poorly.

In this chapter, we present a retrieval and reranking approach that utilizes

pairwise similarity scores between images using multiple features rather than directly

combining raw feature vectors. By introducing additional supervised information,

we are able to combine similarity scores effectively, which leads to more accurate

retrieval results compared with existing methods.

2.2 Related Work

2.2.1 Image Retrieval by Single Feature

We first introduce and discuss several types of features widely used in classic

image retrieval systems to provide a better context of our work. The BoW feature

is usually adopted as an image representation. Similarities between BoW feature

vectors of a query image and dataset images are then computed for retrieval [8].

With BoW representations, Sivic et al. [8] applied standard term frequency-inverse

document frequency (tf-idf) method to image retrieval. A hierarchical clustering
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algorithm [9] was then proposed to construct a vocabulary tree which reduces the

computational cost and is scalable to large scale datasets. Contextual weighting [10]

was further applied to vocabulary trees to increase the discriminative ability of

visual words. Instead of quantizing a descriptor to a single visual word, assigning

it to multiple words results in more discriminative BoW vectors and thus achieves

better performance [2, 24]. To compensate for the spatial information loss in the

standard BoW-based approach, spatial verification [1] was proposed to match SIFT

descriptors between images at the cost of extra storage space and computation

time. Query expansion [3–5] has been widely applied to rerank initially retrieved

images, where a small portion of top ranked images serve as additional queries and

are fed into the retrieval system again to further explore similar images. Bundling

min-hash [25] was also proposed to group locally close keypoints and encode them

using min-hash. A few works attempt to address the “burstiness problem”, where a

large amount of keypoints from repetitive patterns in the background dominate the

image representation. A statistical model was learned in [26] to down-weight the

scores of keypoints which are frequently matched in incorrect detections. Multiple

match removal (MMR) [24] was also proposed, where each keypoint votes only once

for an image in the database, so that repetitive matches from a few keypoints can

be effectively removed. Some improvements such as Hamming embedding with

geometric constraints [6], dataset-side feature augmentation [5] and co-occurrences

of visual words [14] have achieved state-of-the-art results.

Focusing on feature design, Jégou et al. [13] proposed the vector locally ag-

gregated descriptor (VLAD) as a compact representation. It achieved good results
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while requiring less storage compared to the BoW feature. Improvements on VLAD

have been presented, including PCA and whitening [14] and signed square root

(SSR) on VLAD vectors [15]. Multi-VLAD [16] was later proposed to construct and

match VLAD features of multiple levels from an image to improve localization accu-

racy. RootSIFT [5] was proposed to address the burstiness problem with standard

BoW features by using the Hellinger kernel on the original SIFT. GIST descriptors

and Fisher Vector (FV) have also been evaluated for large-scale image retrieval.

2.2.2 Image Retrieval by Multiple Features

Although a single feature can achieve good retrieval results, better performance

is anticipated if retrieved results from multiple features are properly fused. This is

because they usually describe images from complementary perspectives. Recent

works on fusing multiple features for image retrieval have been proposed, such as

multi-modal graph learning [27], query-specific graph fusion [28] and co-regularized

multi-graph learning [29]. In [12], multiple attribute features are combined by aver-

aging outputs of SVM classifiers. The score vector is then concatenated with Fisher

Vectors after normalization and dimensionality reduction. Graph-based techniques

are also widely used in the literature. Wang et al. [27] proposed a graph-based

learning algorithm to infer weights of features. Weights of individual features are

learned statistically from the retrieved results given a large set of queries, and thus

this method is not flexible if we do not have any information of queries beforehand.

Zhang et al. [28] converted initial ranked lists by individual features to undirected
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graphs by calculating the k-reciprocal nearest neighbors of each image, so that the

connectivity of vertices in each graph captures the relationships among database

images. Similarities between images are evaluated by Jaccard similarity instead

of original similarities from comparing distance between feature vectors. Multiple

graphs are then equally summed up. However, Jaccard similarity is too coarse to

describe the pairwise relationships of images as it only captures the graph structure

rather than the degree of similarity. Deng et al. [29] imposed intra-graph and inter-

graph constraints in a supervised learning framework which requires image attribute

information. A complicated multi-graph learning algorithm with co-regularization

was applied to learn a weight matrix from multiple graphs. Attributes serve as

weak labels to learn the most representative images from graphs, which are called

“anchor” images, to align multiple graphs. Similarly, Zhang et al. [30] also utilized

attributes learned from a large dataset apart from the retrieval database. 1000 at-

tributes are learned from ImageNet database, so that each image in the retrieval

database can be represented as a 1000-dimensional feature vector. Nearest neigh-

bors of each database image are obtained by comparing the attribute vectors. These

nearest neighbors provide additional information to refine the inverted file that is

originally constructed by SIFT visual words. Recently, Zheng et al. [31] constructed

a 2D indexing file using SIFT and color visual words. Similar to computing SIFT

descriptors, color features are extracted around each detected keypoints and clus-

tered to form color dictionary. Different from the previous works using a 1D inverted

indexing file, the 2D indexing file indexes two features jointly as a regular grid, while

each feature occupies one dimension of the grid. Therefore, only images with same
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visual words from both features can be matched. However, it is not clear how to

deal with more than two features.

2.2.3 Multi-feature Learning

With respect to multi-feature learning, there are numerous feature fusion algo-

rithms available, while we limit our focus only on some representative works closely

related to our work. Multi-kernel learning (MKL) [32–34] was widely used to find

the optimal combination of kernels for image classification, where each feature type

can be mapped to different kernels. Partial Least Squares (PLS) analysis [35] was

applied to dimension reduction of a high dimensional vector formed by multiple

feature vectors, which implicitly selects the most important features. Canonical

Correlation Analysis (CCA) [36] was also effective to learn relationships of two sets

of features. A hierarchical regression algorithm was proposed in [37] to exploit the

information from individual features, where the manifold structure of different fea-

ture spaces is preserved. For cartoon image retrieval, Yang et al. [38] proposed a

bi-distance metric learning algorithm to learn a distance metric from heterogeneous

features. Ye et al. [39] decomposed multiple score matrices by multiple features as

a low rank matrix plus feature-specific sparse errors. Fernando et al. [40] proposed

to learn logistic regression models with sparsity regularization to determine weights

for visual words from multiple dictionaries for image classification.
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2.3 Proposed Approach

2.3.1 Overview

We present a supervised, data-driven approach to fuse multiple features to

rerank database images based on a graph representation. For each feature, given

the query and initially retrieved images, we construct an undirected graph whose

vertices represent these images and in which edge strength is the pairwise similarity

score between images. We employ a mixture Markov model to combine multiple

graphs into one. In contrast to [28], where graphs are equally weighted, we in-

troduce a probabilistic model to compute the importance of each feature under a

naive Bayesian formulation, which depends only on the statistics of image simi-

larity scores. Despite its simplicity, the proposed probabilistic model consistently

improves retrieval performance after reranking. Instead of reranking the retrieved

images directly from the fused graph, we employ an iterative diffusion algorithm,

which propagates similarity scores throughout the graph to alleviate the effect of

noise. This further improves the retrieval performance. In particular, we apply the

locally constrained diffusion process (LCDP) [41] on the localized K-NN graph to

obtain the refined similarity scores.

2.3.2 Graph Construction

Given a query image, an initial retrieval algorithm is performed to rank im-

ages from a dataset according to the similarity scores between the query image and
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dataset images. Suppose we have r features, each of which is a type of feature focus-

ing on a specific aspect of an image. For each feature Mm, the similarity between

images Ii and Ij, denoted as smi,j, where 0 ≤ smi,j ≤ 1, is obtained by comparing two

feature vectors. Generally, the initial rankings produced from different features will

not agree; our hope is that by appropriately fusing them we will obtain an overall

more accurate ranking.

From initial retrieval results of all r features, we obtain n unique images totally,

including the initial query. The pairwise relationships with respect to feature Mm

among these images is represented by a graph Gm = (Vm, Em, em) where vertices Vm

are images connected by edges Em with edge strength em. The em is the similarity

between two images under feature Mm. The original dataset may contain millions

of images, resulting in a very long ranked list of retrieved images for each query

and thus a huge graph. Therefore, based on an estimation or prior knowledge of

the possible number of similar images in the database, we only choose the top L

retrieved images for each feature to construct a tractable graph. The ranked list

of top L retrieved images is referred as a short list. We denote the union of nodes

from all graphs as V . For each graph Gm, we add vertices which are from V but

not initially retrieved by featureMm into the graph. Edges connecting a previously

missing vertex and initially retrieved vertices in the graph are also added. In this

way, we complete each graph with missing vertices, so that each graph has the

same set of vertices V . Even if short lists from multiple features are disjoint, by

completing graphs, we include pairwise relationships between vertices in these short

lists and may still improve performance.
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Each graph can be represented as a symmetric matrix Sm ∈ Rn×n with diag-

onal elements smi,i = 1, known as an affinity matrix. Each element in the affinity

matrix Sm represents the edge strength between nodes vi and vj in the graph. The

i-th row in the affinity matrix Sm contains similarity scores between image Ii and

all other images (including Ii itself). For r features, we have a set of r graphs

G = {G1, G2, ..., Gr} corresponding to a set of affinity matrices S = {S1,S2, ...,Sr}

of the same size. The similarity score smi,j between a query Ii and a dataset image

Ij that was not retrieved by feature Mm is simply set to 0.

2.3.3 Multi-feature Graph Fusion

After obtaining affinity matrices in S from Section 2.3.2, our goal is to fuse

graphs in G using these matrices. Affinity matrices should be complementary and

not too sparse, so that our approach can better utilize and propagate relationships

of dataset images to achieve large improvement. Due to different scaling of similar-

ity scores from different features, it is difficult to directly determine weights for the

affinity matrices. We instead adopt a probabilistic approach based on the mixture

Markov model inspired by [42]. The model is essentially a random walk on multiple

graphs. Note that Harel and Koren [43] also adopts random walk to cluster spatial

data, but on a single graph rather than multiple graphs. Suppose a walker is at

vertex vi ∈ V in graph Gm. In the next step, it has 1) a certain probability pm(vi)

of staying in the same graph Gm and then walks to another vertex vj in this graph

with transition probability pm(vj|vi), or 2) probability pm′(vi) of switching to graph
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Figure 2.2: Illustration of mixture Markov model on two graphs.

Gm′ and then walks from vi to vj in graph Gm′ with transition probability pm′(vj|vi).

Intuitively, sitting at a vertex, the walker first decides which graph to land in, jumps

to that graph (or stays in the same graph), and then decides which neighboring ver-

tex to go to according to the graph’s affinity matrix. Mathematically, this procedure

of walking from vi to vj across all graphs can be represented as

p(vj|vi) =
∑

m
pm(vj|vi)pm(vi), (2.1)

where p(vj|vi) is the transition probability of walking from vi to vj in the fused

graph. pm(vi) is the probability of switching to (or staying in) graph Gm when the

walker is at vertex vi. It is the probability of switching between graphs. An intuitive

illustration is presented in Figure 2.2.

Our next task is to compute the transition probability p(vj|vi). Intuitively,

p(vj|vi) should be related to the edges between vi and its neighbors. We resort to

“degree of a vertex” and “volume of a graph” to explain our approach of computing

p(vj|vi). The degree of vi in Gm is the sum of edge strength of all vertices connected

to vi, dm(vi) =
∑

j em(vi, vj). The volume of graph Gm is the sum of all edge

strength in the graph, volmV =
∑

vi,vj∈V em(vi, vj) =
∑

vi∈V dm(vi). The transition
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probability is then written as

pm(vj|vi) = em(vi, vj)/dm(vi). (2.2)

After a number of steps, the random walk model will reach a stationary state where

the stationary probability at vertex vi is defined as

πm(vi) = dm(vi)/volmV. (2.3)

Suppose the stationary probability of the fused graph is a linear combination of

stationary probabilities of all graphs, π(vi) =
∑

mwm(vi)πm(vi), where wm(vi) is the

weight for vertex vi ∈ V in graph Gm, wm(vi) ≤ 1 and
∑

mwm(vi) = 1. For a node in

a graph, higher stationary probability implies higher probability of switching to (or

staying in) this graph, so that pm(vi) ∝ πm(vi). Without other prior knowledge, we

can estimate the probability pm(vi) by linearly weighting the ratio of the stationary

probability of an individual graph to that of the fused graph as

pm(vi) = wm(vi)
πm(vi)

π(vi)
. (2.4)

Plugging (2.2), (2.3) and (2.4) into (2.1), we obtain

p(vj|vi) =
1

π(vi)

∑
m
wm(vi)

em(vi, vj)

volmV
. (2.5)
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We introduce the edge strength between vertices vi and vj in the fused graph as

e(vi, vj) =
∑

m
wm(vi)

em(vi, vj)

volmV
(2.6)

and obtain p(vj|vi) = e(vi, vj)/π(vi). The volume of the fused graph is 1. The affinity

matrix of the fused graph is not symmetric due to the use of transition probability

(the transition probabilities from vi to vj and vj to vi may not be the same). So

e(vi, vj) can be regarded as the weight of a directed edge. The mixture Markov

model on the undirected graphs reduces to a convex combination of normalized

affinity matrices. Therefore, we normalize all affinity matrices Sm to Tm by Tm =

Sm/volmV , and discuss how to determine the weight wm(vi) for each vi in graph Gm

in the next section.

2.3.4 Feature Weight Calculation

To obtain the weight wm(vi), we describe a probabilistic model to determine

the query-specific weights which measure the importance of a feature for a particular

query. Our model is based only on the statistics of data and does not require any

learning.

For a query image Ii, we let P be the set of images similar to Ii, and let Q

be the set of images which are dissimilar from Ii. Given a similarity score smi,j of

feature Mm (graph Gm), the likelihood of a retrieved image Ij belonging to P or

Q is denoted as p(Ij ∈ P|si,j) and p(Ij ∈ Q|si,j). By Bayes’ theorem, we have

p(Ij ∈ P|smi,j) = p(smi,j|Ij ∈ P)p(Ij ∈ P)/p(smi,j) and p(Ij ∈ Q|smi,j) = p(smi,j|Ij ∈
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Q)p(Ij ∈ Q)/p(smi,j). We define ρm(i, j) as the ratio of p(Ij ∈ P|smi,j) to p(Ij ∈ Q|smi,j)

ρm(i, j) =
p(Ij ∈ P|smi,j)
p(Ij ∈ Q|smi,j)

=
p(smi,j|Ij ∈ P)p(Ij ∈ P)

p(smi,j|Ij ∈ Q)p(Ij ∈ Q)
(2.7)

where p(Ij ∈ P) and p(Ij ∈ Q) represent the marginal probability of image Ij

being a similar image or a dissimilar image given a query image. The marginal

probabilities can be obtained by prior knowledge or an estimation of the portion

of similar images that should be returned given a specific query. For examples, if

we know there are 10% similar images given a query, we set p(Ij ∈ P) = 0.1 and

p(Ij ∈ Q) = 0.9.

To obtain p(smi,j|Ij ∈ P) and p(smi,j|Ij ∈ Q), we make the assumption that

the similarity scores between two similar images and those between two dissimilar

images come from different distributions. To proceed, we manually annotate a set

of pairs of similar images from the dataset offline to obtain the similarity scores of

similar images. Additionally, we compute similarity scores between dataset images

and images from an unrelated dataset (selected from the Caltech-101 dataset [44])

to obtain the similarity scores between dissimilar images. We approximate the

distributions of the two sets of similarity scores as Gaussian distributions, NP ∼

(µP , σ
2
P) and NQ ∼ (µQ, σ

2
Q). Note that we use a Gaussian assumption for simplicity

and efficiency, and will show that it works well in our experiments. Other data fitting

algorithms can be applied to better capture the underlying distributions at the cost
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of efficiency. In this way, (2.7) can be rewritten as

ρm(i, j) = γ
p(smi,j|NP)

p(smi,j|NQ)
= γ

σQKP(smi,j)

σPKQ(smi,j)
, (2.8)

where γ =
p(Ij∈P)
p(Ij∈Q) , KP(smi,j) = exp(−(smi,j − µP)2/σ2

P) and KQ(smi,j) = exp(−(smi,j −

µQ)2/σ2
Q).

In practice, we do not compute ρm(i, j) for every retrieved image Ij. Instead,

for a query image Ii, we compute the mean of the K largest similarity scores as s̄mi ,

which indicates how reliable this ranked list is regarding the query image Ii. By

substituting smi,j with s̄mi in (2.8), we have a query-specific confidence score ρm(i) by

(2.8), which is denoted as ρm(vi) with the graph representation. The query-specific

weight of a query vi in graph Gm is computed by wm(vi) = ρm(vi)/
∑
ρm(vi). In

our work, the query-specific weight is only assigned to the query node in a graph.

However, it is also applicable to non-query nodes, although there is no need to adjust

fusion weights for non-query nodes as they are excluded during evaluation. For a

non-query image vj in graph Gm, we simply use equal weight wm(vj) = 1/r for r

features. Therefore, we obtain a weight vector

wm = (wm(v1), wm(v2), ..., wm(vn))> (2.9)

computed from all vertices for each graph Gm. The normalized affinity matrix of
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the fused graph T is subsequently calculated as

T =
∑

m
diag(wm) ·Tm (2.10)

where the i-th diagonal element in diag(wm) ∈ Rn×n corresponds to wm(vi). This

process is equivalent to assigning different weights for a row from different features

when combining affinity matrices. Our approach does not assign a single weight

for each feature, thereby capturing more query-dependent information from the

similarity scores.

2.3.5 Diffusion Process

From the new affinity matrix T obtained in (2.10), we can directly infer a

new ranking. Nevertheless, the results can be improved by applying a diffusion

process to T to reduce noise. The basic idea is to propagate the similarity score

of a vertex to its neighboring vertices until a stationary state is reached. Here we

employ an iterative diffusion process for efficiency. Given T, the transition matrix

is defined as P = D−1T, where D is a diagonal matrix whose i-th diagonal element

d(i, i) = d(vi), where d(vi) is the degree of vertex vi in the fused graph. We build

a matrix Wt = (f t1 f t2 · · · f tn)>, where f ti is a column vector indicating the

probability of being at a vertex starting from vertex vi after t steps. We employ the

LCDP algorithm [41], which iteratively updates Wt by Wt+1 = PKW
tP>K , where

PK is the transition matrix for the K-NN graph GK built by only keeping similarity

scores of each node and its K nearest neighbors. The edge strength e(vi, vj) = 0
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Algorithm 1 Multi-feature Re-ranking with Diffusion

Input: r affinity matrices S = {S1,S2, ...,Sr} representing r graphs G, the query

image Ii

Output: Re-ranked results for Ii

1: for m = 1 to r do

2: Normalize Sm to Tm (Section 2.3.3);

3: Compute the mean of the K largest similarity scores from Tm for Ii as s̄mi ;

4: Compute query-specific confidence ρm(vi) by (2.8);

5: Compute the weight vector wm in (2.9), where wm(vi) = ρm(vi)/
∑
ρm(vi)

for the query node and wm(vi) = 1/r for non-query nodes.

6: end for

7: Obtain the affinity matrix T of the fused graph by (2.10);

8: Apply diffusion process to T;

9: Infer new ranks from T for the query Ii by sorting similarity scores of the row

associated with query node.

if vertex vj does not belong to the K-NNs of vi, and W0 = PK . Details can be

found in [41]. The diffusion terminates after a pre-defined number of iterations or

if W does not change. The diffused matrix is used to re-rank retrieved images to

obtain the final results by sorting diffused similarity values of the row associated

with the query node. The entire procedure of our fusion approach is presented in

Algorithm 1.
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2.4 Experiments

In this section, we evaluate our algorithm on several image retrieval datasets

and compare it with a few state-of-the-art approaches.

2.4.1 Datasets

We test our approach on four widely used datasets, which are the Holidays [6],

UKbench [9], Oxford5k [1] and Paris6k [2] datasets. The Holidays dataset is com-

posed of 1491 images labeled as 500 categories, where each category consists no

more than 10 images of an object, such as buildings, famous landmarks and natural

scenes. The first image in each category is used as query to search for database

images containing the same object. For each query, the remaining 1490 images are

considered as database images. Note that most images from the same category in

the Holidays dataset are under slight viewpoint and illumination change, which is

usually referred to as near-duplicate scenario. Therefore, the retrieval task is less

challenging compared to other datasets.

The UKbench dataset contains 10200 images from 2550 categories (objects or

natural scenes) with 4 images for each object or scene, taken under different view-

points and lighting conditions. Images are ordered so that the first image from each

category is used as query to retrieve the remaining 3 images of the same category.

Compared with the Holidays dataset, images in the UKbench dataset exhibit more

various pose and illumination changes.

The Oxford5k dataset consists of 5062 photos of famous Oxford landmarks.

24



Groundtruth is provided for 11 different landmarks, each of which has 5 queries,

resulting in 55 queries, while the remaining images serve as database images. Due

to significant viewpoint change amongst images of the same landmark, it is very

challenging to retrieve and highly rank all similar images given a query. In addition,

different landmarks may look similar in some cases, making accurate retrieval more

difficult.

Similar to Oxford5k dataset, the Paris6k dataset contains 6412 photos of fa-

mous buildings in Paris, of which 55 photos serve as queries. The queries also consist

of 11 different landmarks, each of which contains 5 images.

It should be noted that the query region of Oxford5k and Paris6k datasets is

only part of an image, provided by groundtruth, which is different from Holidays

and UKbench datasets, where the entire image is used as a query. The retrieval task

is more challenging for Oxford5k and Paris6k datasets since the query regions and

correctly matched regions in database images may take only a small portion of the

entire image. Therefore, the large amount of background may introduce noise that

makes successfully finding the correct matches difficult. Moreover, the viewpoint

significantly changes across images, while images in Holidays and UKbench datasets

are mostly near-duplicate.

2.4.2 Experimental Setup

We use 2 local features and 2 global features that are widely used in existing

image retrieval systems. For local features, we use Hessian affine feature point
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extractor and the 128-dimension SIFT descriptor [45] to compute BOW features.

We use the visual words provided by [45] except on Holidays dataset where we train

a 1M vocabulary by approximate k-means (AKM) [1]. Single assignment and tf-

idf weighting are applied to construct BOW vectors. We adopt the 8192-dimension

VLAD descriptor with signed square root (SSR), computed with 64 clusters provided

by [15], For global features, we use GIST descriptor [46] and HSV color histograms.

The GIST descriptor is 1192-dimension while the color histogram is 4000-dimension

with 40 bins for H and 10 bins for S and V components.

We compute cosine similarity between two BOW vectors. For other features,

we compute the Euclidean distance xd between two feature vectors and convert it

to a similarity score by exp(−xd/σ). Our algorithm is not sensitive to σ, as we

will show in the experiments. For simplicity, we set σP = σQ = 1 and fix them

throughout all experiments. The parameter K, denoting the number of neighboring

vertices in the K-NN graph and the number of top largest similarity scores of a

query, is set to 6 for Holidays and UKbench, and 40 for Oxford5k and Paris6k. The

length of the short list of retrieved images L is set to 700 for Holidays and UKbench,

and 5000 for Oxford5k and Paris6k. Similarity scores between dataset images are

computed offline, while the scores between queries and dataset images are computed

online during retrieval. Graphs G are constructed during reranking using computed

similarity scores.

For evaluation metrics, we use N-S score [9] on UKbench dataset, which mea-

sures the recall of the top 4 retrieved images, and mean average precision (mAP)

on other 3 datasets.
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2.4.3 Comparison with Existing Approaches

First, we compare our method with a few existing approaches. The quantita-

tive comparison is shown in Table 2.1. The baselines using individual features in our

work are initial retrieval results from pairwise similarities without any other tech-

niques, i.e., spatial verification (SV), query expansion (QE), multiple assignment

(MA) or weak geometric consistency (WGC), etc. However, most other approaches

using a single feature rely on various additional improvements. In particular, we

compare with [28] and [30] which also exploit multiple features to improve retrieval

performance. We will show that our fusion algorithm greatly improves baselines’

performance and outperforms state-of-the-art approaches even we only uses similar-

ity scores. Note that we are not designing superior baselines, which is outside the

scope of this work.

As shown in Table 2.1, the BOW representation achieves the best retrieval

performance among all baselines across different datasets, while GIST and color

features are not discriminative enough. Nevertheless, our multi-feature fusion al-

gorithm significantly improves the final retrieval performance on all datasets and

outperforms state-of-the-art algorithms. On Holidays and UKbench datasets, we

obtain 88.3% mAP and 3.86 N-S score respectively, which are the best reported re-

sults to our knowledge. Compared to the best baseline (BOW), our fusion improves

the results by 14.4% on Holidays and 10.3% on UKbench with a simple probabilistic

model. In contrast, the relative improvements by [28] that is also based on graph

fusion are 9.2% (77.5% to 84.6%) on Holidays and 6.5% (3.54 to 3.77) on UKbench,
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Table 2.1: Comparisons with state-of-the-art approaches. We use N-S score on
UKbench, and mAP (in %) on other datasets. “-” means the results are not reported.
B, SV, MA, QE and WGC stand for baseline (single feature), spatial verification [1],
multiple assignment [2], query expansion [3–5] and weakly geometric consistency [6].

Methods Holidays UKbench Oxford5k Paris6k
B

as
el

in
e

BOW [45] 77.2 3.50 67.4 69.3

VLAD [15] 55.9 3.22 32.6 38.0

GIST [47] 35.0 1.96 24.2 19.2

Color 55.8 3.09 8.5 8.4

B
+

S
V

/M
A

/Q
E

/W
G

C

Philbin et al. [1] - 3.45 66.4 -

Jégou et al. [6] 75.1 - 54.7 -

Jégou et al. [24] 84.8 3.64 68.5 -

Qin et al. [45] - 3.67 81.4 80.3

Chum et al. [3] - - 82.7 80.5

Mikulik et al. [48] 75.8 - 84.9 82.4

Qin et al. [49] 82.1 - 78.0 73.6

Tolias et al. [50] 88.0 - 83.8 80.5

F
u
si

on

Ours 88.3 3.86 76.2 83.3

Zhang et al. [28] 84.6 3.77 - -

Zhang et al. [30] 80.9 3.60 68.7 -

while they are 9.6% (73.8% to 80.9%) and 5.4% (3.42 to 3.6) by [30]. Compared to

other single feature based methods with sophisticated processing steps, our fusion

depends only on similarity scores to calculate query-specific weights and perform
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diffusion process, and exploits more reliable information about the relationships

among images, thus producing better retrieval results.

On Oxford5k and Paris6k datasets, the color feature only achieves 8.5% and

8.4% mAP due to large viewpoint changes, cluttered background and a constrained

region of interest (ROI) for query. Additionally, the performance of GIST and

VLAD features also drops. Different from [28], we do not specifically remove an

inferior feature, but include all features in the fusion without any bias, even though

the color feature performs much worse than others. It is clear that our fusion still

greatly improves final retrieval performance. Our experiments clearly shows that our

fusion is very robust and is not deteriorated by a single inferior feature (color). It

improves the best baseline (BOW) by 13.1% and achieves 76.2% mAP on Oxford5k,

which outperforms [30] and is comparable to other state-of-the-art approaches. On

Paris6k, our fusion brings the mAP from 69.3% by the best baseline (BOW) up

to 83.3% without spatial verification, query expansion and other techniques, which

is a 20.1% relative improvement. The performance gain is larger than that on

the near-duplicate datasets where individual features have already achieved good

performance due to less variance, making the potential of fusion limited. In contrast,

on Oxford5k and Paris6k, a single feature is often not powerful enough to distinguish

different images and multiple features better complement each other. An example

of reranking result is shown in Figure 2.3.
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Figure 2.3: An example of retrieved images by four features and our fusion method
on Holidays dataset [6]. The left-most image is the query. Retrieved images are
ranked higher if they have high similarity scores with the query. Images with red
bounding boxes are correct matches.

2.5 Discussion and Analysis

In this section, we conduct further experiments to diagnose our approach and

analyze the effect of its components, so that we can have a better understanding of

its performance.

2.5.1 Contributions of Individual Components

We first evaluate the importance of individual components of the proposed

method. We conduct additional experiments by adding or removing a component

and measuring how accuracy changes. The configurations are detailed as follows.

With the original affinity matrices from multiple features, the accuracy can be mea-

sured by selecting the maximal mAP among all baselines, denoted as B. The ap-
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proaches by fusion with equal weights and query-specific weights are denoted as

EW and QW, respectively, where results are directly inferred from the combined

affinity matrix without diffusion. Both the EW and QW approaches use all dataset

images. Two variants using a short list are denoted as SL+QW and SL+EW. Our

entire framework is denoted as SL+QW+DP, while the variant using EW and SL

for diffusion is denoted as SL+EW+DP. The comparisons on the test datasets are

shown in Table 2.2.

We can see that both QW and DP contribute to the improvements while

using a proper SL also increases accuracy. Specifically, in most cases, results by

QW are better than those by EW, showing the effectiveness of our probabilistic

model derived from statistics of similarity scores. Additionally, if there are a large

number of relevant images to be retrieved for a query (Oxford5k and Paris6K), we

need to include more images in the short list to obtain good results; otherwise the

performance drops below the best baseline because many similar images are excluded

from the fused graph. In contrast, a small short list is sufficient when there are only

a few similar images to be retrieved. Therefore, we can control the length of short

list to achieve a trade-off between computational complexity and accuracy.

2.5.2 Parameter Evaluation

The proposed method has several parameters to set: the length of the short

list L, the number of nearest neighbors K in K-NN graph and σ for converting

the Euclidean distance to similarity score for VLAD, GIST and color features. To
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Table 2.2: Retrieval performance by different variants of the proposed method. N-S
score on UKbench, and mAP (in %) on other datasets.

Methods SL length L Holidays UKbench Oxford5k Paris6k

B - 77.2 3.50 67.4 69.3

EW - 81.1 3.72 69.2 68.1

QW - 84.0 3.76 70.3 71.2

SL+EW

700 82.1 3.76 63.7 65.7

1500 - 3.76 64.3 66.0

5000 - 3.75 69.1 67.6

SL+QW

700 83.6 3.77 65.6 67.5

1500 - 3.77 65.3 68.9

5000 - 3.77 70.3 69.6

SL+EW+DP

700 86.4 3.84 73.2 80.1

1500 - 3.84 73.8 80.8

5000 - 3.84 74.0 81.4

SL+QW+DP

700 88.3 3.86 75.2 82.0

1500 - 3.86 75.7 82.6

5000 - 3.85 76.2 83.3

evaluate the sensitivity of our method to these parameters, we conduct experiments

by changing one parameter at a time. The retrieval results regarding different L

are shown in Table 2.2. Performance by changing other parameters are shown in

Figure 2.4.
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Figure 2.4: Performance under different σ for VLAD, GIST and color, and K for
K-NN graph used in the diffusion process.

Our method is robust and not sensitive to these parameters as long as they are

in a reasonable range. In particular, performance does not change much even when

σ is 4 times of its optimal value, meaning that we can safely fix a larger σ for all

datasets without sacrificing accuracy too much. In all experiments, σ is empirically

set to 0.5, 0.34 and 0.14 for VLAD, GIST and color features. Additionally, on

Oxford5k and Paris6k datasets which consist of a large number of similar images for

each query, we need a large K to include them in the graph and highly rank them
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Figure 2.5: Performance of different feature combinations with respect to varying
K. B, V, G and C stand for BOW, VLAD, GIST and color features.

after re-ranking. In contrast, on Holidays and UKbench datasets which only contain

a small number of similar images, a small K is sufficient to include most of them in

the graph; otherwise similarity scores of those similar images will be contaminated

by irrelevant images if K is too large.

2.5.3 Combinations of Features

We conduct experiments using different feature combinations to further ver-

ify the effectiveness of our fusion algorithm. In Figure 2.5, we show the perfor-
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mance using 4 combinations of features which fuse 3 or 4 types of features. Since

VLAD+GIST+color performs much worse than other combinations, we do not dis-

play its results in the figure for better visualization 1. In most cases, fusing features

from all 4 features achieves the best results, especially on Holidays and UKbench

datasets, which verifies that our fusion algorithm is very robust and is not easily

affected by an inferior feature (color in this case). Moreover, our fusion successfully

exploits complementary information from multiple features, thereby greatly improv-

ing the performance compared to combinations of 3 features. Only when K becomes

very large, the performance by fusing all 4 features is slightly worse than that by

other combinations due to large amount of noise from multiple features. Note that

our fusion does not set any restrictions on the number or type of features to be

fused.

2.6 Summary

In this Chapter, we have introduced an image reranking algorithm by multi-

feature fusion with diffusion for image retrieval. We exploit the pairwise similarity

scores between images to infer their relationships. Initial ranks from one feature are

represented as an undirected graph where edge strength is similarity score. Graphs

are combined by a mixture Markov model where the query-specific weight is calcu-

lated by a probabilistic model utilizing the statistics of similarity scores. Diffusion

is then applied to the fused graph to reduce noise. Our approach significantly and

1The best results by VLAD+GIST+color are 52.4%, 2.91, 30.5% and 40.3% on Holidays, UK-
bench, Oxford5k and Paris6k datasets.
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consistently improves the performance of baselines and is very robust to variations

in its parameters.
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Chapter 3: Image Retrieval by Submodular Reranking

3.1 Overview

In the previous chapter, we have introduced a supervised reranking algorithms

to improve initial retrieval results from multiple features, where a set of irrelevant

images are manually annotated for computing the combination weights of features.

However, the supervised approach is not feasible enough when there is no anno-

tation available. Moreover, it is time-consuming to collect a large set of images

and impractical to ensure they are irrelevant to the database images if the retrieval

database is already very large.

To address the aforementioned drawbacks, we attempt to reduce the effort of

human labeling and propose an unsupervised retrieval algorithm in this chapter.

Given initial ranked lists from multiple features, we only utilize the pairwise image

similarities of the query and initially retrieved database images without any super-

vised information. Similar to the proposed approach in Chapter 2, this approach is

also based on graph representations of initial retrieval results. In short, we formu-

late the reranking problem as selecting and rearranging a subset of retrieved images

from initial ranked lists obtained from multiple features. We further cast the sub-

set selection problem as optimizing an objective function that is constructed as a
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submodular and non-decreasing function. Our submodular objective function uti-

lizes similarities of pairs of images to exploit relationships between retrieved images

within each feature. It also considers the relative ranking between retrieved images

across multiple ranked lists. Due to the diminishing returns property of submodular

functions, the optimization can be efficiently solved by simple greedy algorithm with

performance guarantee.

3.2 Related Work

Since we have already discussed a few previous works on multi-feature fusion

for image retrieval in Chapter 2, we will focus on submodular optimization and

classic reranking algorithms in this section.

3.2.1 Submodular Optimization

Submodularity, as a discrete analog of convexity, is widely studied in combina-

torial optimization [51] due to its diminishing returns property: adding an element

to a smaller set contributes more than adding it to a larger set. It is initially

applied to machine learning tasks to solve complicated optimization problems effi-

ciently. Later on, various submodular functions have been proposed and successfully

applied to many vision applications, such as image segmentation [52,53], superpixel

segmentation and clustering [54, 55], dictionary selection/learning [56, 57], saliency

detection [58], object recognition [59] and video hashing [60]. A few works applied

submodular functions to diversified ranking [61–63], where elements in the reranked
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list are similar to the query but also diversified. For diversified ranking, submod-

ular functions are designed to seek a trade-off between similarity and diversity. It

should be noted that [61–63] are not similar to our submodular reranking, since we

encourage elements in the reranked list to be similar to the query and homogeneous

rather than diversified.

3.2.2 Image Reranking

For image reranking, [64] proposed a click boosting method using the user

click data to help rerank initially retrieved images by textual and visual features,

which may not be applicable when click data is missing. Voravuthikunchai et al. [65]

proposed to mining frequent closed patterns as image representations, and designed

a scoring function to rerank images using mined patterns. Yu et al. [66] adopted

a hypergraph-based sparse coding algorithm to predict clicks using multiple visual

features. An initial ranked list is reranked based on predicted clicks of retrieved

images. Multi-feature fusion is also widely used in image retrieval. Wang et al. [27]

designed a graph-based learning algorithm for inferring weights of features, which

requires a large number of queries beforehand to estimate relevance scores of initially

retrieved images. Similarly, Chavez et al. [67] utilized a Markov random field and

manual relevance feedback to combine retrieval results by visual and textual features.
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3.3 Proposed Approach

3.3.1 Preliminaries

Before introducing our approach, we would like to explain a few definitions

regarding submodularity and monotonicity to help understanding the formulation

of our proposed approach.

Submodularity. Let V be a finite set. A set function f : 2V → R is submod-

ular if it satisfies f(S ∪ a)− f(S) ≥ f(T ∪ a)− f(T ) for all S ⊂ T ⊆ V , a ∈ V\T .

This is called the diminishing returns property : adding a to a small set has a bigger

impact than adding it to a larger set. The gain of the function value f(S ∪a)−f(S)

is called the marginal gain of f when adding a to S.

Monotonicity. A set function f : 2V → R is monotone (or non-decreasing)

if for every S ⊆ T ⊆ V , f(S) ≤ f(T ) and f(∅) = 0.

3.3.2 Information Gain with Graphical Models

Given M features, we obtain M initial ranked lists of retrieved images for each

query image. For efficient reranking, we select only the top K retrieved images from

each ranked list. Note that the top K images are generally not the same across

different features. Given an initial ranked list consisting of K retrieved images from

feature m, we represent it as an undirected graph Gm = (Vm, Em) where nodes

vm ∈ Vm are images and em(i, j) ∈ Em denotes the edge that connects vm(i) and

vm(j) (see Figure 3.1). An affinity matrix Am ∈ RK×K is used to represent the graph
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Figure 3.1: Graph representations of multiple ranked lists.

with the element am(i, j) corresponding to the edge weight of em(i, j), which is the

pairwise similarity between images vm(i) and vm(j)1. To facilitate the objective

function construction (see Section 3.3.2), we do not include self-loops em(i, i) of

nodes vm(i) in the graph. Therefore, am(i, i) is set to 0. For notational convenience,

we denote V as the union of all nodes from the M undirected graphs, so that

V = V1 ∪V2 ∪ · · · ∪ VM . We aim to select a subset of nodes S from V which are the

most similar to the query image and arrange them in order to obtain the reranked

result. Furthermore, U denotes the set of images which are not selected, so that

U ∩ S = ∅ and V = S ∪ U .

Given M graphs, we seek a method to combine them so that complementary

features may help discover images similar to the query in a joint manner. Although

the same graph construction is used for all ranked lists, pairwise similarities from

different features are usually of incomparable scales, making a direct graph com-

bination infeasible. To address this problem, we resort to information gain theory

with graphical models [68], which is based on a simple probabilistic model.

We start from the random walk model on a graph Gm. The random walk model

1Please see experiment section about how to compute pairwise similarities.
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can be interpreted as a Markov process: a walker stays at a node in the graph at

time t and randomly walks to one of its neighboring nodes under some probability

at time t + 1. The probability of “walking” between nodes is called the transition

probability and is defined as Pm = D−1m Am, where Dm ∈ RK×K is a diagonal

matrix with the diagonal element dm(i, i) =
∑

j am(i, j). The transition matrix

Pm is a row-stochastic matrix indicating the transition probabilities of a random

walk on the graph. pm(i, j) represents the conditional probability of walking from

node vm(i) to node vm(j), which indicates the similarity between vm(i) and vm(j)

based on the observation of vm(i). With the transition matrix Pm, edge weights are

converted to probabilities. Then we adopt information gain as a direct measure of

the value of information of our graphical models. We start from a single graph Gm,

and define the information gain as

Fm(S) = H(Vm\S)−H(Vm\S|S) (3.1)

where S is the subset we select from V , and Vm\S is the set Vm with S removed.

H(Vm\S) is the entropy of unselected nodes in graph Gm. H(Vm\S|S) is the con-

ditional entropy of remaining nodes on graph Gm after we have observed S. Specif-

ically, H(Vm\S|S) and H(Vm\S) are defined as

H(Vm\S|S) = −
∑

v∈Vm\S,s∈S

pm(v, s) log pm(v|s)

H(Vm\S) = −
∑

v∈Vm\S

pm(v) log pm(v)

(3.2)
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where pm(v, s) = pm(v|s)pm(s). pm(v|s) is the transition probability of walking to a

node v in graph Gm when the walker is at node s. pm(s) and pm(v) are the marginal

probabilities of nodes s and v being similar to the query from feature m. pm(v|s) can

be directly obtained from Pm. To calculate the marginal probability pm(v), we use

the normalized similarities between the query and retrieved images. We denote the

similarities between the top K retrieved images and the query image from feature

m as cm = (cm,1, cm,2, ..., cm,K)>. `1 normalization is then applied to cm to obtain

pm(v) = cm,v/|cm|1.

We have the following proposition stating that the information gain with our

graphical model is submodular.

Proposition 1. Fm : 2Vm → R is a submodular and monotone function.

The proof is presented in the Appendix. Fm is essentially the mutual informa-

tion I(Vm\S;S) capturing the mutual dependence between subset S and unselected

nodes Vm\S, which measures how much S is representative of the graph with re-

spect to the query. That Fm is non-decreasing is obvious, because the addition of

any node to S always provides information or does not provide information at all,

since “information never hurts”. Submodularity comes from the observation that

the information gain of adding a node to S becomes less in a later stage because it

is more likely similar to elements in S as S grows.

To combine graphs, we need to determine the importance of each graph. Here

we adopt the heuristic of simply summing up the information gains of the individual
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graphs to obtain the total information gain:

R(S) = −
∑
m

(
∑
v∈V\S

pm(v) log pm(v)−
∑

v∈V\S,s∈S

pm(v, s) log pm(v|s)) (3.3)

The information gain on a graph takes relationships between dataset images into

account, so it propagates information about a dataset image to its neighbors, and

better exploits dataset images that are similar to the query than simple pairwise

comparisons. The combination seeks an agreement with respect to pairwise simi-

larities derived from multiple features, so explores relationships of features to some

extent. Note that since the top K images retrieved from different features may not

be the same, pm(v) and pm(v|s) are set to 0 if an image is not included in graph Gm,

so it does not contribute to the objective function. An image discovered by most

features contributes more to the information gain, therefore is selected to be in S

with greater chance.

Since Fm(S) is submodular and monotonically increasing, the linear combina-

tion of submodular functions, R(S), is also submodular and non-decreasing. Since

the information gain exploits the pairwise relationships between retrieved images,

maximizing R(S) is equivalent to selecting a group of images that are similar to the

query and closely related to each other. Intuitive examples are shown in Figure 3.2.

The number next to the edges is weight (similarity) between nodes. The marginal

probability of all nodes is set to 1/4. Four cases of selection are presented, where

the corresponding value of Fm(S) is shown under each sub figure. By computing the

information gain, we observe that it prefers images that are closely related to each
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Figure 3.2: The importance of information gain for selecting nodes into subset S.
Red dots represent the selected subset S while white dots are remaining nodes Vm\S.

other to be selected into S, resulting in a compact cluster. Therefore, relationships

of dataset images are exploited to facilitate reranking.

3.3.3 Relative Ranking Consistency

Simply summing up initial ranks obtained from different features for an image

is not suitable, as a higher rank may be overly diluted by other lower ranks. Al-

though complementary information from multiple features is used by integrating the

Fm(S), information gain does not completely utilize the inter-relationships between

features. Additionally, it only considers pairwise similarities between images. How-

ever, the initial ranks of retrieved images from different features provide additional

information that can further improve performance. For example, an image that is

similar to the query and ranked lower by one feature may be ranked higher when it

is perceived from a different perspective (i.e., different feature). We propose a sim-

ple yet effective relative ranking consistency measure to model inter-relationships of

multiple ranked lists.

Our measure is based on two criterion. First, relationships of relative ranks
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Figure 3.3: The effectiveness of the relative ranking consistency measure. See text
for details.

between retrieved images should be maintained. Images with similar ranks in the

initial ranked lists from different features should also be ranked closely after rerank-

ing. Second, images with consistent ranks across multiple features should have

their ranks preserved after reranking. An image that is similar to the query but

highly ranked by only a smaller number of features should also be captured. In con-

trast to the information gain term, this relative ranking consistency measure models

inter-relationships of features at a higher level: using ranks themselves rather than

pairwise similarities between images.

Again, as in Section 2.3.2, we only consider the top K images from each ranked

list and denote V as the union of all retrieved images. Our goal is to select a subset

of retrieved images S ⊆ V . We first define the relative ranking between a pair of

images and then use it to measure the “inter-rank” consensus amongst multiple

ranked lists.
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Let rm ∈ RK denote the positions of the top K images in the initial ranked

list by feature m, rm = (rm,1, rm,2, ..., rm,K)>, where rm,i is the position of image

Ii in the m-th ranked list. Smaller value means higher rank. The relative ranking

between two images is defined as

rrm(vi, vj) = |rm,vi − rm,vj |, vi, vj ∈ V (3.4)

where vi and vj correspond to images Ii and Ij in the graph representations. If

either vi or vj is not included in the top K images by feature m, rrm(vi, vj) is set to

K. The relative ranking considers the difference between ranks of retrieved images.

Similarly, for feature m′, we also have the relative ranking, rrm′(vi, vj), of the same

image pair in a different feature. On the one hand, the consensus between rrm(vi, vj)

and rrm′(vi, vj) indicates that the rank relationship between vi and vj is reliable

and should be maintained after reranking, which is related to the “consistency”

between ranked lists. On the other hand, we also aim to discover images which are

similar to the query but highly ranked by only a small number of features, thereby

capturing the “distinctiveness” of specific features. To enforce both consistency and

distinctiveness constraints, we define a relative ranking consistency measure across

multiple ranked lists as

C(vi, vj) =
1

Z

∑
m,m′∈M,m6=m′

1− min(rrm, rrm′)

K
(3.5)

where Z = M(M−1)
2

is a normalization factor corresponding to the number of all
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possible feature pairs. With this measure, if images Ii and Ij are ranked similarly

across multiple features, they will also have similar ranks in the reranked list, i.e.,

they both will be selected and highly ranked in S or both will be excluded from S.

This results from the constraint on relative ranking consistency. Now consider the

situation in which an image Ii is ranked closely to a visually similar image Ij only in

a small number of features. In this case, we still discover such similarity due to the

use of the min function, and rank these images appropriately. If either vi or vj is not

included in the top K images by features m and m′, 1− min(rrm,rrm′ )
K

= 0, which indi-

cates that these two images have disparate ranks and should contribute nothing to

the objective function. Therefore, we take the inter-relationships amongst multiple

ranked lists into account with respect to the relative ranking between two images.

Several examples are shown in Figure 3.3. In Figure 3.3, the set V contains K = 100

images, from which we need to select an image into S, which currently contains two

images. Starting from initial ranks from the three features, we compute the relative

ranking consistency measure between images in V and S. For illustration purposes,

we only show the values of the relative ranking consistency measure for 3 images (I1,

I2 and I3) in the set V . I1 in V , which is initially ranked close to images in S across

all features, has the largest relative ranking consistency C. The relative ranking

consistency of I3, which is highly ranked by only a single feature, is larger than that

of I2 in V , which is lower ranked by all features. Therefore, the relative ranking

consistency term favors adding I1 to S as it produces the largest function value

for T (S). Then it favors adding I3 over I2, which has the smallest function value.

Our relative ranking consistency successfully captures inter-relationships amongst
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multiple ranked lists and uses them to select images.

Finally, we define a set function based on the rank biased overlap (RBO) sim-

ilarity [69], incorporating the aforementioned relative ranking consistency measure.

RBO similarity was proposed in [69] but they did not observe or take advantage of

its submodularity property. We extend the basic idea from [69] that highly ranked

images should be more important than lower ranked images in our objective func-

tion. Suppose the images in S are ordered and that the position of image Ii in the

new ranked list is rvi . The relative ranking consistency term is defined as

T (S) = (1− q)
∑|S|

s=1
qs · 1

s

∑
vi,vj∈S,rvi<rvj=s

C(vi, vj) (3.6)

where the term 1
s

∑
vi,vj∈S,rvi<rvj=s

C(vi, vj) allows us to select the image vj with new

rank s and compute the average relative ranking measure between vj and all other

s images with higher new ranks than vj (see Figure 3.3). |S| is the cardinality of

S. With the requirement that highly ranked images should have more weight in the

objective function than lower ranked images, we introduce a weight parameter q for

each image according to its new rank in S. q controls the steepness of weight decay,

so that a higher ranked image contributes more to the function value. Starting from

the top ranked image with s = 1, the function assigns weight qs to this image vj

and iteratively computes the average relative ranking between vj and other higher

ranked images vi (rvi < rvj). Maximizing this function leads to a subset of images S,

where images are highly ranked and similarly ranked with each other in the initial

ranked list. Since at least two images are needed to compute the relative ranking
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consistency measure, a phantom item vp is included into S to select the first image.

In practice, we use the query itself as the phantom with rank rvp = 0. Then we have

the following proposition with the proof in the Appendix.

Proposition 2. T : 2V → R is a submodular and monotone function if elements in

S are ordered with respect to a phantom item vp ∈ S and rvp = 0.

3.3.4 Optimization

Combining the information gain and relative ranking consistency terms, we

obtain the final objective function Q(S) = R(S)+λT (S) for the reranking problem.

The solution is obtained by maximizing the objective function:

max
S

R(S) + λT (S)

s.t. S ⊆ V , |S| ≤ Ks

(3.7)

where λ is a pre-defined weighting factor balancing the two terms. Ks is the largest

number of selected images, which means we only select and rerank at most Ks

images. (3.7) is submodular and non-decreasing since it is a linear combination

of submodular and non-decreasing functions. Direct optimization of (3.7) is an

NP-hard problem, but it can be approximately optimized by a greedy algorithm.

Starting from an empty set S = ∅, the greedy algorithm iteratively adds a new

element to S which provides the largest marginal gain at each iteration, until Ks

elements have been selected. Specifically, during each iteration, we search for an

image a∗ ∈ V\S, which gives the largest combined marginal gain from the infor-
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Algorithm 2 Submodular Reranking

Input: Graphs {G1, ...,GM}, initial ranked lists {r1, ..., rM}, Ks and λ.

Output: Reranked list r and final retrieved images S.

1: Initialize S ← ∅, ρcur ← 0, r← 0;

2: while |S|<Ks do

3: a∗ = arg max
S∪{a}∈V

Q(S ∪ {a})−Q(S);

4: if Q(S ∪ {a∗}) ≤ Q(S) then

5: break;

6: end if

7: ρcur ← ρcur + 1;

8: S ← S ∪ {a∗}; ra∗ ← ρcur;

9: end while

mation gain and relative ranking consistency terms, add it to S and set its rank to

ra∗ = ρcur, where ρcur indicates the iteration step. The iteration terminates when

|S| = Ks. The reranked images are those from S, and ranks are also obtained. We

can tune Ks to control the efficiency and accuracy of the algorithm. The entire

process is presented in Algorithm 2. The constraint on the number of reranked

images leads to a uniform matriodM = (V , I), where I is the collection of subsets

S ⊆ V satisfying the constraint that the number of reranked images is less than

Ks. Maximizing a submodular function with a uniform matriod constraint yields a

(1− 1/e) approximation to the optimal solution [51].

To further accelerate the optimization, we adopt lazy evaluation [57] to avoid
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recomputing the function value for each node a∗ ∈ V\S during each iteration. The

basic idea is maintaining a list of images with corresponding marginal gains in de-

scending order. Only the top image is re-evaluated during each iteration. Other

images are evaluated only if the top image does not remain at the top after re-

evaluation. Lazy evaluation is based on the diminishing returns property: the

function value of an element cannot increase during iterations. The lazy greedy

algorithm leads to a speed-up of more than 40, as we will show in the experiments.

3.4 Experiments

3.4.1 Experimental Setup

As in Chapter 2, we again evaluate our submodular reranking algorithm on

the 4 public datasets: Holidays [6], UKbench [9], Oxford5k [1] and Paris6k [2], using

the same features, and follow the same evaluation protocol. q in (3.6) is set to 0.9

and λ in (3.7) is set to 0.01, both fixed in all experiments. K equals the number

of dataset images in each dataset; while smaller value can be used for very large

datasets. Ks = 1000 for all datasets.

3.4.2 Comparison with Existing Approaches

As in Chapter 2, our primary focus is a retrieval algorithm that reranks

database images and improves retrieval performance of multiple ranked lists ob-

tained by multiple independent features. Although our implementation depends

only on pairwise similarities without spatial verification and query expansion, the
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performance by our submodular reranking is comparable to other state-of-the-art

approaches using a single feature, as shown in Table 3.1. Since there are limited

methods for reranking by fusion for natural image retrieval, we only compare our

algorithm to [28], which is also an unsupervised reranking method using multiple

features, as shown in Table 3.1. Note that [29] is not directly comparable as it

requires image attributes for learning.

It is clear that our reranking algorithm outperforms [28], although we com-

bine inferior individual features compared to [28]2. Results by our reranking are also

comparable to other state-of-the-art approaches, even we only use pairwise similar-

ities without any learning and post-processing techniques, such as query expansion

and spatial verification. We improve the best single feature (BoW) by 10.0%, 8.0%,

10.2% and 7.9% on the four datasets, respectively. Additionally, without specifically

inferring weight for each feature, our reranking algorithm is very robust against infe-

rior features, such as the color feature on Oxford5k and Paris6k, which only achieves

less than 9% mAP. Although results on Oxford dataset by several approaches using

a single feature [45, 49, 70] are better than those by our reranking algorithm, note

that our reranking algorithm does not require SIFT descriptors or BoW vectors

as [45,49,70] did, as long as we have pairwise similarities of pairs of images. There-

fore, for the scenarios where original features cannot be stored and loaded efficiently

due to limited resources, i.e., mobile computing, our algorithm is more suitable

than [45,49,70] for improving initial retrieval results. It is reasonable to expect that

2In [28], BoW achieved 77.5% mAP on Holidays and 3.54 N-S on UKbench, while color achieved
62.6% and 3.17, respectively. N-S score by GIST is 2.21 on UKbench.
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Table 3.1: Comparisons with state-of-the-art approaches. We use N-S score on
UKbench, and mAP (in %) on other datasets. “-” means the results are not reported.
B, SV, MA, QE and WGC stand for baseline (single feature), spatial verification [1],
multiple assignment [2], query expansion [3–5] and weakly geometric consistency [6].
Results using individual terms of our objective function are shown in the last two
rows.

Methods Holidays UKbench Oxford5k Paris6k

B
as

el
in

e BOW [45] 77.2 3.50 67.4 69.3

VLAD [15] 55.9 3.22 32.6 38.0

GIST [47] 35.0 1.96 24.2 19.2

Color 55.8 3.09 8.5 8.4

B
+

S
V

/M
A

/Q
E

/W
G

C

Philbin et al. [1] - 3.45 66.4 -

Jégou et al. [6] 75.1 - 54.7 -

Jégou et al. [24] 84.8 3.64 68.5 -

Wang et al. [10] 78.0 3.56 - -

Shen et al. [70] 76.2 3.52 75.2 74.1

Qin et al. [49] 82.1 - 78.0 73.6

Jégou et al. [14] 61.4 3.36 41.3 -

F
u
si

on

Ours 84.9 3.78 74.3 74.8

Zhang et al. [28] 84.6 3.77 - -

Zhang et al. [30] 80.9 3.60 68.7 -

IG 83.9 3.75 68.5 64.6

RRC 73.1 3.54 33.0 39.2
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a higher accuracy might be obtained if we apply our reranking algorithm to fuse

features which achieve better individual performance.

3.5 Discussion and Analysis

In this section, we show experimental results on how the performance changes

with respect to each individual component and parameter variance.

3.5.1 Contribution of Individual Components

Our objective function consists of two terms: information gain and relative

ranking consistency. These are complementary: the information gain term explores

relationships between images and features at a fine level by using pairwise simi-

larities, while the relative ranking consistency term exploits the inter-relationships

between initial ranked lists in a coarser level as it only uses the ranks themselves.

As shown in Table 2.1, by combining the two terms, our algorithm outperforms each

individual term and achieves the best accuracy. In addition, it is reasonable that the

performance by information gain term is better than that by relative ranking consis-

tency term, since pairwise image similarities, which are continuous values, provide

finer details than discrete ranks. Nevertheless, only using information gain does not

produce good results on all the datasets, especially on Oxford5k and Paris6k. This

reveals that rank information is complementary to information gain in matching

images with significant viewpoint change.

55



Table 3.2: Comparison of results by our reranking algorithm and other rank aggre-
gation approaches. Runtime (in second) of reranking 1000 images for a single query
using direct greedy optimization and lazy evaluation is shown in the right-most
columns.

Datasets Mean [71] Median [72] Geo-mean [72] Robust [73] Ours

Holidays 59.2 71.7 76.4 71.5 84.9

UKbench 2.89 3.47 3.50 3.33 3.78

Oxford5k 18.6 34.7 40.5 35.6 74.3

Paris6k 24.4 38.5 46.6 39.8 74.8

3.5.2 Comparison with Other Reranking Algorithms

We also compare the reranking accuracy of our reranking algorithm with other

rank aggregation baseline approaches that combine multiple ranked lists. We use

5 rank aggregation approaches for comparison: mean rank aggregation [71], me-

dian rank aggregation [72], geometric mean rank aggregation [72] and robust rank

aggregation [73]. The results are shown in Table 3.2.

Our reranking algorithm outperforms all other rank aggregation approaches

that do not as effectively use the inter-relationships amongst multiple ranked lists.

The results by mean rank aggregation are even much worse than those by a single

feature (BoW), showing that a higher rank is overly diluted by other lower ranks.

Incorporating the information gain and relative ranking consistency, our algorithm

effectively exploits relationships of image pairs and multiple ranked lists at both a

fine and a coarse level, leading to a higher retrieval accuracy.
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Figure 3.4: (a) Change of mAP with respect to Ks. (b) Average reranking time for
a single query with respect to Ks. (c) Change of mAP with respect to λ. Best view
in color.

3.5.3 Parameter Evaluation

The parameter Ks controls the number of images to be reranked, which affects

efficiency and reranking accuracy. Smaller Ks leads to fast convergence but may not

discover images similar to queries but lower ranked since it discards a large number

of initially retrieved images. We investigate the accuracy and execution time of our

reranking with respect to Ks.

The retrieval accuracy in terms of mAP and average reranking time for a

single query as Ks is varied are shown in Figure 3.4(a), where Ks ranges from 10

to 1000. As we perform reranking on more images, the chance of discovering a

similar but lower ranked image increases. Therefore, the mAP gradually improves.

More specifically, the mAP rapidly increases as Ks increases from 10 to 500 for Ox-

ford5k and Paris6k datasets. When more images are included in reranking after this

point, the improvement of mAP is only incremental, showing that reranking images
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that are significantly lower ranked does not much benefit retrieval performance. In

comparison, the mAP for Holidays and UKbench datasets reaches its highest value

when Ks < 100 and remains almost constant thereafter. Images in the Oxford5k

and Paris6k datasets have significant variance and each query has a large number

of similar dataset images that can be retrieved. Images similar to the query can

only be better discovered by a deeper inspection of initial ranked lists. In contrast,

similar images in the Holidays and UKbench datasets are near-duplicates, and most

queries have fewer than 10 similar images that are already highly ranked in the

initial ranked lists. Therefore, only a smaller number of initially retrieved images

need to be reranked.

To evaluate execution time, we calculate the average time spent to rerank Ks

retrieved images for a single query in each dataset. From Figure 3.4(b), it is not

surprising that reranking a larger number of images takes more time. Nevertheless,

our algorithm achieves sublinear time to rerank retrieved images for a single query

with respect to Ks, showing the efficiency of the greedy algorithm with lazy evalu-

ation. Furthermore, it takes the lazy evaluation less than 1.5 seconds on a desktop

with 3.4GHz CPU to rerank as many as 1000 images without any code optimization.

Therefore, our reranking algorithm is scalable for large-scale image reranking tasks.

In (3.7), we balance the information gain and relative ranking consistency by

parameter λ. Since λ controls the importance of individual terms, it also affects

the reranking accuracy. We investigate the change of reranking performance with

respect to λ, as shown in Figure 3.4(c). Our reranking algorithm is very robust:

changing λ within a wide range does not affect the mAP too much, therefore we
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Table 3.3: Average reranking time (in second) for a single query by direct optimiza-
tion and lazy evaluation.

Holidays UKbench Oxford5k Paris6k

direct 9.46 67.63 38.33 47.12

lazy 0.23 1.62 0.73 0.85

speed-up 41× 42× 53× 55×

do not need to specifically tune λ to obtain good results. The change of mAP with

respect to different λ is at most 5-6%.

3.5.4 Time Analysis

As stated in Section 3.3.4, we adopt a lazy evaluation approach to accelerate

the optimization process. To show its effectiveness, we compare the reranking time

for a single query by direct greedy optimization and lazy evaluation on the same

machine, as shown in Table 3.3.

On all datasets, the lazy evaluation achieves more than a 40-fold speed-up com-

pared to direct optimization. On the Oxford5k and Paris6k datasets, the lazy eval-

uation achieves more than a 50-fold speed-up. Therefore, our submodular reranking

algorithm is very efficient and scalable for larger-scale reranking problems. With

proper code optimization and parallel computing, our algorithm can be easily ap-

plied to reranking multiple ranked lists for real-time search engines.
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3.6 Summary

In this chapter, we have addressed the problem of reranking images that are

initially ranked by multiple features by maximizing a submodular and monotone

objective function. Our objective function is composed of an information gain term

and a relative ranking consistency term. The information gain term utilizes rela-

tionships of initially retrieved images based on a random walk model on a graph.

Based on this term, an image initially lower ranked but resembling other retrieved

images that are similar to the query will have higher rank after reranking. The rel-

ative ranking consistency term measures the relative ranking between two initially

retrieved images across multiple ranked lists. It maintains the consistency of rela-

tive ranks between two images during reranking, and also captures a high rank of

an image that is similar to the query but only discovered by one or a few features.

The objective function can be efficiently maximized by a lazy greedy algorithm,

leading to an ordered subset of initially retrieved images. Experiments show that

our reranking algorithm improves overall retrieval accuracy and is computationally

efficient.

60



Chapter 4: Multi-task Learning with Attribute Embedding for Per-

son Re-identification

4.1 Background

In previous chapters, we have proposed two approaches to combine multiple

features for generic image retrieval, where objects in images are not limited to spe-

cific categories. In this chapter, we focus on a more well-defined problem, person

re-identification, which can be considered as a special application of generic image

retrieval. The aim of person re-identification is to identify a person in a probe

image/video by searching for the most similar instances from a gallery set. Here

probe and gallery in person re-identification scenario are the same as query and

database in image retrieval, respectively. The person re-identification problem is

different from generic image retrieval in that: 1) database images only contain the

full body of different persons that are taken by multiple non-overlapping cameras,

2) database images are well-labeled with persons’ identities, and 3) the person in

a probe image is guaranteed to be included in the gallery set. Due to such differ-

ences, traditional image retrieval algorithms are usually not directly applicable to

person re-identification tasks. In addition, it is non-trivial to design an effective
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re-identification algorithm due to large appearance, pose and illumination change

across images from different cameras.

Nevertheless, even though the appearance of a person greatly changes, high

level semantic concepts with respect to the person are relatively stable and con-

sistent across different cameras. Such semantic concepts, referred to as attributes,

have been widely applied to various vision applications, such as image classification

and object detection, and shown promising results. When we describe an image or

object by attributes, we obtain a vector in which each dimension indicates whether

the corresponding attribute is present or not (or, more generally, its likelihood).

In addition, it is intuitive that some attributes frequently co-occur, leading to a

few subsets which contain related attributes while are mutually independent. For

example, the attribute female is likely to be highly related to the attribute long

hair rather than short hair. We show that by utilizing correlations of attributes, at-

tributes of the same person from different cameras can be embedded into a low rank

space, where embedded attributes are more accurate and informative for matching.

Through the low rank attribute space, we can better match samples of the same

person from one camera to another. Additionally, using this low rank embedding,

we can prune noisy attributes and recover missing attributes that are introduced by

inaccurate human annotation.

However, it is computationally expensive to infer attribute correlations using

each pair of cameras, which also ignores the relationship of more than two cameras.

To utilize relationships of features and attributes more efficiently for matching in-

stances across cameras, we employ the Multi-Task Learning (MTL) [74] algorithm,
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where one jointly learns solutions to multiple related tasks which benefit each other.

MTL has been shown successful in discovering latent relationships among tasks,

which cannot be found by learning each task independently. It has been widely

applied to machine learning [75,76] and computer vision [77,78]. In addition, MTL

is particularly suitable for the situation in which only a limited amount of training

data is available for each task. By considering re-identifications from multiple cam-

eras as tasks, the MTL framework can be naturally adapted to exploit features and

attributes shared across cameras by learning from multiple cameras simultaneously.

4.2 Related Work

4.2.1 Person Re-identification

Person re-identification is an important research topic for video surveillance.

Feature design and distance measure are two key components in solving this problem.

As for feature design, different kinds of features have been tailored and employed in

previous work, including histogram features from various color and textture chan-

nels [79, 80], symmetry-driven accumulation of local features [81], features from

body parts with pictorial structures [82] to estimate human body configuration,

and space-time features from person tracklets [83], etc. To use multiple features,

Gray et al. [79] selected a subset of features by boosting for matching pedestrian

images, while Liu et al. [84] learned person-specific weights to fuse multiple features

to improve the description power of multiple features.

Considering distance measures, some works focus on learning an optimal dis-
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tance metric to measure the similarity between images from two cameras. Pairwise

Constrained Component Analysis [85] and Relaxed Pairwise Metric Learning [86]

learn a projection from high-dimensional input space to a low-dimensional space,

where the distance between pairs of data points satisfies pre-defined constraints.

The Locally-Adaptive Decision Function in [87] jointly learns a distance metric and

a locally adaptive thresholding rule. A Probabilistic Relative Distance Comparison

model [88] attempts to maximize the likelihood of a true match which has a rel-

atively smaller distance than a false match. A statistical inference perspective is

applied in [89] to address the metric learning problem. Kernel-based distance learn-

ing has also been used [90] to handle linearly non-separable data. More recently,

Zhao et al. [91] proposed learning mid-level filters, which mainly focuses on cross-

view invariance and considers geometric configurations of body parts through patch

matching. A deep learning framework to learn filter pairs that encode photometric

transforms is presented in [92]. There are also approaches investigating a large

camera network with more than two cameras for re-identification [93–96].

4.2.2 Attributes

Attributes are semantic concepts of objects, which are manually defined or

directly learned from low level features. Previous work has investigated the cor-

relations of attributes to improve the performance of zero/one-shot learning for

attribute-based classification [97–102]. For person re-identification, attributes are

powerful in preserving consistent representations of the same person and capturing
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differences among different people [103–106]. However, attributes are mostly used

as additional information in conjunction with low level features without considering

their correlations. Although a few approaches to object classification have modeled

attribute correlations [107–109], to the best of our knowledge, no work has utilized

both low level features and attribute correlations across cameras for re-identification

in a principled way.

4.2.3 Multi-Task Learning

Multi-Task Learning has been extensively studied. Representative work in-

cludes clustered MTL [110], Robust MTL [111] and trace norm regularization [112].

To model the shared information across tasks, a shared low rank structure is widely

assumed [113, 114]. Kernel method has also been utilized to deal with linearly

non-separable features [115, 116]. Dictionary learning [117] and tree sparsity con-

straint [118] are also incorporated into standard MTL framework. Chen et al. [119]

applied MTL to jointly learn attribute correlations and ranking functions for image

ranking. Hwang et al. [120] considered attribute classifiers as auxiliary tasks to ob-

ject classifiers and adopted MTL to learn a shared structure for better classification

and attribute prediction. Both [119] and [120] assumed attributes are related tasks

while we regard cameras as tasks and infer attribute correlations by low rank embed-

ding. For person re-identification, the multi-task support vector ranking adopted

in [121] ranks individuals by transferring information of matched/unmatched image

pairs from source domain to target domain. Ma et al. [122] also applied multi-task
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learning to replace the universal distance metric for all cameras by multiple Maha-

lanobis distance metrics, which are different, but related, for camera pairs. We note

that our approach is fundamentally different from [121] in that we explicitly model

attribute correlations shared by multiple cameras, as well as low level features, with-

out using image pairs. In addition, we seek a shared structure in terms of both low

level features and attributes across multiple cameras rather than learning a metric

for each pair of cameras, which can be computationally expensive.

4.3 Proposed Approach

4.3.1 Overview

In this section, we will present a Multi-Task Learning algorithm with LOw

Rank Attribute Embedding (MTL-LORAE) for person re-identification. We aim

to discover shared information amongst cameras that are treated as related tasks.

Given images of people from multiple cameras, we learn a discriminative model using

MTL, so that the relationships among images from these cameras can be utilized to

improve the quality of the learned model. Both low level features and attributes are

used in our MTL objective function. Our low rank attribute embedding is included

into the objective function as well to discover relationships of attributes from mul-

tiple cameras jointly. In the embedded space, attributes of the same person from

different cameras become closer, while attributes of different people become more

distinct. Inaccurate and incomplete attributes can be rectified and recovered as

well. The low rank structure of the embedding ensures that only a small number
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of “latent” attributes contribute to the classification. We present an efficient al-

ternating optimization method to solve the MTL-LORAE objective function. We

evaluate MTL-LORAE on four person re-identification datasets and demonstrate

that MTL-LORAE produces promising results.

4.3.2 Problem Formulation

We first formulate re-identification as a classification problem by learning a set

of classifiers using images from multiple cameras, where a classifier corresponds to a

specific person. Each gallery and probe image is then represented by a vector com-

posed of outputs of these classifiers. By computing distance between vectors of probe

and gallery images, we find and rank gallery images to complete re-identification.

For simplicity, we do not distinguish between cameras and tasks, and use them

interchangeably.

We are given L learning tasks {T 1, T 2, ..., T L} sharing the same feature space.

Our goal is to learn multi-class classifiers on a specific task using information from

all tasks. In a typical multi-class setting, all tasks have the same set of C classes

(persons). In a supervised one-vs-all manner, for the l-th task T l, we start from

binary classification by considering images belonging to the c-th class as positive

samples and images from all the other classes in this task as negative samples, where

there are totally nl labeled training samples. By simultaneously learning multiple

tasks, our method is able to effectively transfer information from one task to another

task, which is particularly desirable when training data from a task is limited. In the
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following, we omit the class index c from all notation for clarity. For each training

sample from the l-th task T l, we have a low level feature vector xli ∈ Rd and a label

yli ∈ {−1, 1}, where 1 indicates this sample is from the c-th class and -1 otherwise.

In addition, each sample has a binary attribute vector ali ∈ {0, 1}k, which may be

semantic and labeled by humans or correspond to learned binary codes such as [123].

For each dimension of ali, 1 denotes that the corresponding attribute is present and

0 otherwise. A predictor fl with respect to the task T l will then be learned.

We can improve the discriminative and generalization ability of predictors by

exploiting the relationship amongst tasks. In this way, information from task T i is

transferred to some other task T j, where training samples may be limited, so that

learning the predictor fj will benefit from learning on both T i and T j simultaneously.

This motivates us to adopt MTL to address the problem of matching images from

different cameras. In the subsequent sections, we will first introduce the low rank

attribute embedding (LORAE), followed by the complete MTL formulation, the

optimization algorithm and re-identification process.

4.3.3 Low Rank Attribute Embedding

A simple approach to combine low level features and attributes is to con-

catenate the feature vectors and original attribute vectors. However, attributes

are usually inaccurate or incomplete due to the difficulty of obtaining exhaustive

semantic concepts and possible inconsistency between human annotators. The ab-

sence of an attribute for an instance does not necessarily indicate that the instance
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does not have that attribute, which could be incorrectly interpreted by the learning

algorithm. Similarly, the presence of an attribute may be noise due to incorrect

annotation. Therefore, the learned model based on the original attributes may not

describe the instance accurately. Since there are a large number of attributes, they

are typically related, which means some attributes often co-occur across different

tasks. In this way, the presence of an attribute implies the presence of other at-

tributes that are closely related, which helps to recover missing attributes. On

the other hand, some attributes are highly independent, so that they do not occur

simultaneously, which helps to remove noisy attributes.

Following [124], we learn a low rank attribute space to embed the original

binary attributes into continuous attributes using attribute dependencies. In par-

ticular, there exists a transformation matrix Z in the low rank space converting

an original attribute vector into a new vector with continuous values. The trans-

formation matrix should capture correlations between all attributes pairs since an

attribute can be affected by multiple pairs of other attributes globally. Moreover,

groups of attributes can be independent from each other, suggesting the low rank

property of the transformation matrix. The refined attributes capture relationships

of related attributes and preserve more accurate information.

Formally, given an attribute vector ali from task T l, the linear embedding is

parameterized as

φZ(ali) = Z>ali s.t. rank(Z) ≤ r, (4.1)

where Z ∈ Rk×k is the transformation matrix, and rank(Z) is the rank of Z. We use
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Figure 4.1: Illustration of low rank attribute embedding with three attribute vec-
tors from task T1 as examples. With the learned transformation matrix, the original
binary attributes are converted to continuous attributes. Semantically related at-
tributes are recovered even though they are absent in the original attribute vectors,
i.e., the attribute female is non-zero in the embedded attribute vector due to the
presence of both skirt and handbag, even though its value is 0 in the original attribute
vector a13.

linear embeddings although kernel methods can also be applied. The rank constraint

imposed on Z ensures that Z is low rank, which means there exists a row Zi,: (or a

column Z:,i) that is a linear combination of other rows (or columns). Therefore, the

parameters required for a good embedding are fewer than k × k, which reduces the

computational complexity. In this way, we obtain a refined attribute vector with

continuous values, which better describes attribute correlations with missing values

recovered and noise reduced. An intuitive illustration of the low rank embedding

is presented in Figure 4.1, where missing values are successfully recovered in the

embedded continuous attributes.
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4.3.4 Multi-Task Learning with Low Rank Attribute Embedding

The goal of MTL is to learn task-specific predictors simultaneously using the

correlations among tasks, so that the shared information can be transferred among

tasks. To obtain an accurate transformation matrix Z for attribute embedding, we

propose a unified MTL framework that utilizes attribute correlations across multiple

tasks, as well as training task-specific predictors at the same time. For simplicity, we

assume a linear classifier for each learning task T l represented by a weight vector wl.

For notational convenience, we concatenate the embedded attribute vector φZ(ali)

with xli to form a new vector x̃li = [xli;φZ(ali)] ∈ Rd+k. Therefore, we have wl ∈

Rd+k. We define the loss function as `(yli, a
l
i, x̃

l
i,Z) which can be any smooth and

convex function measuring the discrepancy between groundtruth and predictions

from learning. Specifically, we define the loss function as

`(yli, a
l
i, x̃

l
i,Z) =

1

2
(||yli −wl>x̃li||2 + γ||ali − Z>ali||2). (4.2)

The first term ||yli −wl>x̃li||2 is the quadratic loss from applying the learned weight

vector wl to the newly constructed sample x̃li. The second term ||ali − Z>ali||2 is

the attribute embedding error, which regularizes the difference between original

attributes and refined attributes obtained from the linear embedding through Z.

The results from the embedding should not deviate from the original attributes too

much. γ controls the contributions of the two terms.

We denote all the task-specific wl as a single weight matrix W = [w1,w2, ...,wL] ∈
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R(d+k)×L. Since tasks have shared information and each task also has specific struc-

ture, similar to [114], we assume W is composed of a low rank matrix shared by

all tasks and a task-specific sparse component representing the incoherence intro-

duced by individual tasks. Formally, W can be decomposed into a low rank matrix

R ∈ R(d+k)×L and a sparse component S ∈ R(d+k)×L. Therefore, we have W = R+S.

Intuitively, non-zeros entries in S indicate the task-specific incoherence between the

task and the shared low rank structure. The formulation of MTL-LORAE is then

given by

min
R,S,Z

∑L
l=1

∑nl
i=1 `(y

l
i, a

l
i, x̃

l
i,Z) + λ||S||0

s.t. W = R + S, rank(R) ≤ r1, rank(Z) ≤ r2,

(4.3)

where λ is a trade-off parameter controlling the importance of the regularization.

r1 and r2 constrain the matrices R and Z to be low rank. ||S||0 is the `0-norm of S,

which counts the number of non-zero entries of S.

Solving Problem (4.3) is NP-hard since it is non-convex and non-smooth due

to the sparse regularization and low rank constraints. It can be converted into a

computationally tractable one by convex relaxation. First, since the `1-norm is a

convex envelop of `0-norm, ||S||0 is replaced by ||S||1, which is the sum of all non-

zero values. Second, the standard convex relaxation for the matrix rank is to use

the nuclear norm (trace norm) || · ||∗ =
∑

i σi, which is the sum of the singular values

of a matrix. We then obtain

min
R,S,Z

∑L
l=1

∑nl
i=1 `(y

l
i, a

l
i, x̃

l
i,Z) + λ||S||1

s.t. W = R + S, ||R||∗ ≤ r1, ||Z||∗ ≤ r2,

(4.4)
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which is our complete MTL-LORAE formulation. For notational convenience, we

denote the value of the objective function as F . By minimizing (4.4), we obtain the

desired weight matrix W and transformation matrix Z.

4.3.5 Optimization

The optimization of Problem (4.4) is difficult because W (i.e., R and S)

and Z are coupled together by x̃li. However, by alternating between optimizing the

objective function with respect to one variable and fixing the other one, the problem

is solvable. When fixing Z, ||ali − Z>ali||2 becomes a constant so it can be omitted.

x̃li is also constant with respect to wl, so that it can be regarded as an ordinary

training sample. By removing the nuclear norm constraint on Z, Problem (4.4)

reduces to the standard MTL formulation under the assumption of shared low rank

structure plus incoherent sparse values

min
W

∑L
l=1

∑nl
i=1 `

′(yli, x̃
l
i) + λ||S||1

s.t. W = R + S, ||R||∗ ≤ r1

, (4.5)

where `′(yli, x̃
l
i) = 1

2
||yli −wl>x̃li||2. Problem (4.5) can be solved by the MixedNorm

approach from [114]. Details can be found in [114].

When fixing W, both R and S become constant, so we can remove the con-

straints related to them. Therefore, we obtain the objective function

min
Z

∑L
l=1

∑nl
i=1 `(y

l
i, a

l
i, x̃

l
i,Z)

s.t. ||Z||∗ ≤ r2

. (4.6)
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Relaxing the constraint as a regularization term, we obtain

min
Z

∑L
l=1

∑nl
i=1 `(y

l
i, a

l
i, x̃

l
i,Z) + β||Z||∗ . (4.7)

With the nuclear norm regularization, the optimal transformation matrix Z will

not degenerate to a trivial solution, i.e., an identity matrix I. However, due to the

non-smooth nuclear constraint on Z, it is not easy to optimize (4.7). For clarity of

notation, we denote the loss function with respect to Z as `Z, and the regularization

term as hZ = ||Z||∗. Problem (4.7) is then rewritten as

min
Z

`Z + βhZ . (4.8)

`Z is convex, differentiable and Lipschitz continuous. hZ is convex but non-differentiable.

Thus, (4.8) can be solved by the proximal gradient method iteratively.

First, we represent the gradient of `Z with respect to Z as ∂Z`. According

to the proximal gradient algorithm, at each iteration step j, we then have Zj =

proxtj(Zj−1 − tj∂Zj−1
`), where tj > 0 is the step size and j is the iteration index.

proxtj is a proximal operator, defined as

arg min
Z

`Zj−1
+ 〈∂Zj−1

`,Z− Zj−1〉

+ 1
2tj
||Z− Zj−1||2F + βhZ

, (4.9)

where 〈·, ·〉 is the inner product. (4.9) finds the Z that minimizes the surrogate of

the loss function ` at point Zj−1 plus a quadratic proximal regularization term and
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the non-smooth regularization term. (4.9) can be simplified to

arg min
Z

1
2tj
||Z− (Zj−1 − tj`Zj−1

)||2F + βhZ . (4.10)

It is clear that (4.10) can be effectively solved by performing SVD on Zj−1− tj`Zj−1

and then soft-thresholding the singular values.

In practice, we adopt the Accelerated Gradient Method (AGM) [112] to ac-

celerate the optimization. AGM adaptively estimates the step size and introduces

the search point Z̃j that is a linear combination of the latest two approximations

Zj−1 and Zj−2, Z̃j = Zj−1 + (
αj−1−1
αj

)(Zj−1 − Zj−2). Here, αj−1 and αj control the

combination weights of the previous two approximations, which are also updated

iteratively by αj =
1+
√

1+4α2
j−1

2
with α0 = 1. The gradient in the j-th iteration is

then performed on Z̃j instead of Zj, where Z̃1 = Z0.

The gradient ∂Z` is explicitly computed as

∂Z` = (yli −wl>x̃li)
∂wl>x̃li
∂Z

+ γ
∂Z>ali
∂Z

(ali − Z>ali)
>

= (yli −wl>x̃li)
∂wl>

φ Z>ali
∂Z

+ γ
∂Z>ali
∂Z

(ali − Z>ali)
>

= (yli −wl>x̃li)a
l
iw

l>
φ + γali(a

l
i − Z>ali)

>

= ali[w
l>
φ (yli −wl>x̃li) + γ(ali − Z>ali)

>],

(4.11)

where wl
φ ∈ Rk is part of the weight vector wl corresponding to the embedded

attribute φZ(ali). When the optimization for Z converges, we update Z, fix it and

minimize the objective function for W. The optimization will stop after a pre-

defined iteration number P or when the difference ∆F = Fj−1 − Fj > 0 between
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Algorithm 3 Multi-Task Learning with Low Rank Attribute Embedding (MTL-

LORAE)

Input: Training data samples {xli, ali, yli} for all L tasks, initial Z0 and W0, iteration

number P and threshold th > 0 to control iteration step.

Output: Learned Z and W.

1: Z← Z0, W←W0;

2: Evaluate objective function F0 using Z and W;

3: for j = 1 to P do

4: Optimize (4.5) when fixing Z by MixedNorm [114];

5: Update W←Wj;

6: Optimize (4.6) when fixing W by AGM algorithm [112];

7: Update Z← Zj;

8: Evaluate objective function Fj;

9: Calculate ∆F = Fj−1 − Fj;

10: if ∆F < th then

11: break;

12: end if

13: end for

consecutive values of the objective function is below a threshold. The entire opti-

mization process is summarized in Algorithm 3.
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4.3.6 Re-identification Process

With C training classes (persons), we obtain C class-specific weight matrices

and transformation matrices, each of which is denoted as W(c) = [w1
(c),w

2
(c), ···,wL

(c)]

and Z(c), respectively, by performing the optimization with respect to each class.

Given an image taken by the l′-th camera, l′ = 1, 2, · · ·, L, which is either from the

gallery or the probe set, we first extract low level feature xl
′

and attribute vector

al
′
. By applying the transformation matrices, we convert our feature and attribute

vectors to a new set of vectors, denoted as X̃l′ = [x̃l
′

(1), x̃
l′

(2), · · ·, x̃l
′

(C)] ∈ R(d+k)×C ,

where the c-th column x̃l
′

(c) = [xl
′
;Z>(c)a

l′ ] is the concatenation of the feature vector

and the embedded attribute vector using the c-th transformation matrix Z(c). We

further select weight vectors with respect to l′-th task from C weight matrices, and

multiply them with the new vectors to obtain a score vector s as

s = [wl′>
(1) x̃

l′

(1),w
l′>
(2) x̃

l′

(2), · · ·,wl′>
(C)x̃

l′

(C)],
(4.12)

where wl′

(c) is the column weight vector extracted from W(c) corresponding to the

l′-th task T l′ trained for the c-th class. Therefore, each image is finally represented

by a C-dimensional score vector s, similar to the reference coding method in [125]

and [126]. The similarity between a gallery image and a probe image is then mea-

sured by the Euclidean distance between two score vectors. Note that the classes in

the training set can be the same as or disjoint from those in the gallery and probe

sets.
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For multi-shot scenarios, multiple images are presented for each probe/gallery.

Given a probe image set containing mp images, the re-identification process needs

to aggregate image-level similarities to rank the gallery image sets. To this end,

we adopt the following voting scheme. We first compute the distances between mp

probe images and all gallery images, and then apply a Gaussian kernel to convert

the distances to similarities. To obtain a single similarity between the probe and a

gallery image set of mg images, we sum up all mp ×mg similarities and divide the

sum by the number of gallery images, mg, to discount the affect of a gallery set that

contains many images.

4.4 Experiments

4.4.1 Datasets

We evaluate our approach on 4 public datasets, iLIDS-VID [83], PRID [127]

and VIPeR [128] and SAIVT-SoftBio [93]. The iLIDS-VID dataset consists of 600

image sets for 300 people from two cameras at an airport, which is designed for

multi-shot re-identification. Each person has two image sets from the two cam-

eras respectively, where each image set contains 23 to 192 images, sampled from a

short video taken within a few seconds. The PRID dataset is used for single-shot

scenario; it contains images of different people from two cameras, A and B, under

different illumination and background conditions. There are 385 and 749 people

appearing in cameras A and B, respectively, of which 200 appear in both cameras.

The VIPeR dataset contains 632 persons from two cameras, with only one image
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per person in each camera. The SAIVT-SoftBio dataset is also designed for multi-

shot re-identification, where images are also extracted from a short video containing

a person. There are 152 people from 8 different cameras. Since not every per-

son appears in all cameras, following the evaluation setting in [96], we select those

appearing in three cameras (#3, #5 and #8) as our evaluation set.

4.4.2 Implementation Details

We use a 2784-dimensional color and texture descriptor [79] as our low level

feature representation. It is composed of 8 color channels (RGB, HSV and YCbCr 1)

and 19 texture channels (Gabor and Schmid). As for attributes, we learn binary

SVMs as in [105] to predict the same 20-bit attributes in [105] for PRID and 90-

bit attributes in [129] for VIPeR. For other datasets, we learn attribute functions

by [130] in an unsupervised manner on the training set and generate 32-bit at-

tributes. Following the standard evaluation protocols, we randomly select 150, 100

and 316 persons appearing in all cameras as our training set for iLIDS-VID, PRID

and VIPeR, respectively, while the remaining 150, 649 and 316 persons serve as the

test set (galleries and probes). All the results are averaged over 10 random train-

ing/test splits. Parameters for learning are empirically set via cross-validation and

fixed for all experiments. r1 = 2, r2 = 5 and λ = 0.3 in (4.3). γ = 0.5 in (4.2).

Iteration number P = 500 and threshold th = 10−5 in Algorithm 3.

1Only one of the luminance channels (V and Y) is used.
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4.4.3 Experimental Results

4.4.3.1 iLIDS-VID

Among 150 persons in the test set, image sets from one camera are used as

the probe set, while those from another camera serve as the gallery set. We first

compare our approach with 8 completing methods for multi-short re-identification:

Salience Matching (Salmatch) [131], Learning Mid-level Filters (LMF) [91], Multi-

short Symmetry-driven Accumulation of Local Features (MS-SDALF) [81], Multi-

short color with RankSVM (MS-color+RSVM) [83], Multi-short color&LBP with

RankSVM (MS-color&LBP+RSVM) [83], color&LBP with Dynamic Time Warping

(Color&LBP+DTW) [86], HoGHoF with DTW (HOGHOF+DTW) [132], color&LBP

with Discriminative Video fragments selection and Ranking (MS-color&LBP+DVR) [83].

We use cumulative match characteristic (CMC) curves to evaluate performance, and

show experimental results in Figure 4.2 and Table 4.1.

Our MTL-LOREA approach produces the best results consistently in terms

of matching rate with respect to varying ranks. Specifically, when inspecting the

matching rate at rank 1 and rank 5, we find a relatively large improvement com-

pared to the best existing method, MS-color&LBP+DVR. Specifically, our method

successfully increases the rank 1 accuracy from 34.5% to 43.0%, resulting in an 8.5%

improvement. In addition, we obtain nearly 100% matching rate at rank 50, while

most compared methods can only achieve 80% matching rate or even less.
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Figure 4.2: CMC curves of our approach and state-of-the-art approaches on the
iLIDS-VID dataset (top) and PRID dataset (bottom).
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Table 4.1: CMC scores of ranks from 1 to 50 on the iLIDS-VID dataset. Numbers
indicate the percentage (%) of correct matches within a specific rank.

Rank 1 5 10 20 30 50

Salmatch [131] 8.0 24.8 35.4 52.9 61.3 74.8

LMF [91] 11.7 29.0 40.3 53.4 64.3 78.8

MS-SDALF [81] 5.1 19.0 27.1 37.9 47.5 62.4

MS-color+RSVM [83] 16.4 37.3 48.5 62.6 70.7 80.6

MS-color&LBP+RSVM [83] 20.0 44.0 52.7 68.0 78.7 84.7

Color&LBP+DTW [83] 9.3 21.6 29.5 43.0 49.1 61.0

HoGHoF+DTW [83] 5.3 16.0 29.7 44.7 53.1 66.7

MS-color&LBP+DVR [83] 34.5 56.4 67.0 77.4 84.0 91.7

MTL-LOREA 43.0 60.0 70.2 85.3 90.2 96.3

4.4.3.2 PRID

Following the protocol in [127], we use images of 100 persons from camera A as

the probe set, and 649 persons in camera B as the gallery set, excluding all training

samples. We compare our algorithm with 11 learning-based methods 2: Relaxed

Pairwise Metric Learning (RPML) [86], Probabilistic Relative Distance Compari-

son (PRDC) [88], RankSVM (RSVM) [133], Salmatch [131], LMF [91], Pairwise

Constrained Component Analysis (PCCA) [85], regularized PCCA (rPCCA) [90],

Keep It Simple and Straightforward MEtric (KISSME) [89], kernel Local Fisher

2We do not compare with DVR [83] because DVR only uses 89 persons for testing.
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Table 4.2: CMC scores of ranks from 1 to 50 on the PRID dataset. Numbers indicate
the percentage (%) of correct matches within a specific rank.

Rank 1 5 10 20 30 50

RPML [86] 4.8 14.3 21.6 30.2 37.2 48.1

PRDC [88] 4.5 12.6 19.7 29.5 35.8 46.0

RSVM [133] 6.8 16.5 22.7 31.5 38.4 49.3

Salmatch [131] 4.9 17.5 26.1 33.9 40.5 47.8

LMF [91] 12.5 23.9 30.7 36.5 42.6 51.6

PCCA [85] 3.5 10.9 17.9 27.1 34.2 45.0

rPCCA [90] 3.8 12.3 18.3 27.5 35.2 45.4

KISSME [89] 4.1 12.8 21.1 31.8 40.7 52.5

kLFDA [90] 7.6 18.9 25.6 37.4 46.7 58.5

MFA [90] 7.2 18.7 27.6 39.1 47.4 58.7

KCCA [134] 14.5 34.3 46.7 59.1 67.2 75.4

MTL-LOREA 18.0 37.4 50.1 66.6 73.1 82.3

Discriminant Classifier (kLFDA) [90], Marginal Fisher Analysis (MFA) [90] and

Kernel Canonical Correlation Analysis (KCCA) [134]. We again use CMC curves

to evaluate performance, as shown in Figure 4.2 and Table 4.2.

Our MTL-LOREA approach outperforms all existing methods by a large mar-

gin. In particular, our approach achieves 50% matching rate at rank 10, while the

matching rate of most other approaches is less than 30%. Except for our approach
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and KCCA, all other methods are only able to obtain a 50% matching rate as far

as rank 55. Our approach also consistently outperforms KCCA, which currently

holds state-of-the-art performance, from the beginning. Specifically, on average the

absolute improvement in terms of matching rate by our approach over KCCA is 6%,

where the margin gradually increases as we move from lower ranks to higher ranks.

Notably, the relative improvement by our approach over KCCA is nearly 10%. In

terms of the accuracy at rank 1 and rank 5, our approach achieves a matching rate

18% at rank 1 and 37.4% at rank 5, respectively, leading to a 3.5% and 3.1% perfor-

mance gain at rank 1 and rank 5 over KCCA. When evaluated with more retrieved

samples, our approach still secures the best performance. Pairwise distance met-

ric learning based on camera pairs is clearly not powerful enough to obtain good

results. Although using kernel tricks, without fully investigating the relationships

of features and attributes from multiple cameras, KCCA cannot improve the per-

formance much. The experiments further verify that MTL-LOREA, which learns

attribute correlations in an MTL setting with low rank embedding, successfully ex-

ploits relationships among attributes, thus producing a more discriminative model.

Since all the competing methods only use low level features while MTL-

LOREA adopts both low level features and attributes, we conduct additional ex-

periments on the PRID dataset, where semantic attributes are provided, to verify

that the performance boost by MTL-LOREA results from our learning framework

rather than attributes only. We collect publicly available implementations of 5 ex-

isting approaches, which are Salmatch [131], LMF [91], rPCCA [90], kLFDA [90]

and MFA [90]. We concatenate the original binary attribute vectors and low level
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Figure 4.3: CMC curves of our approach and 5 state-of-the-art approaches with
attributes added on the PRID dataset.

features used by each approach to form a set of new feature vectors, while keeping

other parts of each implementation unchanged. For fair comparison, we use the de-

fault parameter setting provided by original authors for each implementation. The

comparisons are shown in Figure 4.3 and Table 4.3.

With attribute added, all the 5 compared methods produce better results,

justifying the use of attributes. Nevertheless, the performance of the 5 compared

methods is still worse than that of our MTL-LOREA approach, which again verifies

that our learning framework with MTL and low rank attribute embedding is effec-

tive in utilizing shared information amongst tasks, as well as exploiting attribute

correlations, to improve the re-identification accuracy.
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Table 4.3: CMC scores of our approach and 5 state-of-the-art approaches with
attributes added at ranks from 1 to 50 on the PRID dataset. Numbers indicate the
percentage (%) of correct matches within a specific rank. “Att” indicates attributes
are added to the original features.

Rank 1 5 10 20 30 50

Salmatch [131] 4.9 17.5 26.1 33.9 40.5 47.8

Salmatch+Att 9.6 22.6 30.2 38.8 44.8 53.1

LMF [91] 12.5 23.9 30.7 36.5 42.6 51.6

LMF+Att 15.0 26.2 33.6 39.3 44.1 54.7

rPCCA [90] 3.8 12.3 18.3 27.5 35.2 45.4

rPCCA+Att 8.7 14.4 20.8 31.5 36.0 46.7

kLFDA [90] 7.6 18.9 25.6 37.4 46.7 58.5

kLFDA+Att 9.4 22.0 30.2 44.1 53.9 66.8

MFA [90] 7.2 18.7 27.6 39.1 47.4 58.7

MFA+Att 10.7 22.1 32.0 47.3 53.8 63.7

MTL-LOREA 18.0 37.4 50.1 66.6 73.1 82.3

4.4.3.3 VIPeR

Since our approach requires multiple images to learn the MTL model, we apply

data augmentation to generate enough training samples for MTL-LORAE. For each

training image, we apply horizontal and vertical translation t ∈ {−6,−3, 0, 3, 6}

pixels and clockwise rotation r ∈ {−5, 0, 5} degrees, resulting in totally 75 images.

We compare MTL-LORAE with 4 best-performing methods, including 2 recent ones:
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Table 4.4: CMC scores of ranks from 1 to 20 on the VIPeR dataset. Numbers
indicate the percentage (%) of correct matches within a specific rank.

Rank 1 5 10 20

kLFDA [90] 32.2 65.8 79.7 90.9

KCCA [134] 37.3 71.4 84.6 92.3

LX [135] 40.0 68.9 80.5 91.1

TSR [136] 31.6 68.6 82.8 94.6

MTL-LORAE 42.3 72.2 81.6 89.6

LOMO+XQDA (LX) [135] and TSR [136], as shown in Table 4.4. Our MTL-LORAE

achieves the best accuracy at rank 1 and rank 5, outperforming existing methods

by a large margin, and comparable results at rank 10 and rank 20.

4.4.3.4 SAIVT-SoftBio

We use half of the people as the training set and the remaining half as the test

set. In the test set, each image set serves as the probe while all the remaining image

sets are regarded as the gallery. For fair comparison, we evaluate the performance

using precision, recall and F1-score by regarding the identification problem as a clas-

sification problem as [96] does, instead of CMC score that is not applicable to the

scenario with more than two cameras. We compare our algorithm to RSVM [133],

KISSME [89], RSVM with Conditional Random Field (R-CRF) [96], and KISSME

with Conditional Random Field (K-CRF) [96]. Results by our approach and other
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competing methods with respect to each pair of cameras, as well as results averaged

over all possible camera pairs, are presented in Table ??. Our MTL-LOREA is able

to achieve the best F1-score, outperforming the best existing method, K-CRF, by

4.6%. In addition, MTL-LOREA achieves the second best recall rate and compa-

rable precision rate. Without explicitly handling pairs of cameras, MTL-LOREA

still successfully captures the relationship between two cameras and significantly

improves the performance, which verifies our approach of exploiting shared infor-

mation across cameras and further justifies the use of MTL. We also note that our

learning framework can learn the models for all cameras simultaneously regardless of

the number of cameras, which is more computationally efficient than existing meth-

ods that explicitly deal with all pairs of cameras. In addition to the comparisons in

terms of precision, recall and F1-score averaged over all camera pairs in our paper,

we further show comparisons of our approach and other competing methods with

respect to each pair of cameras separately in Table 4.5. Compared with 4 competing

methods, our MTL-LOREA approach achieves better or comparable precision and

recall, and the best F1-score on all the three camera pairs, showing its outstanding

capability of discovering and identifying a person accurately.

4.5 Discussions and Analysis

We conduct further experiments to better understand the characteristics of

our MTL-LOREA formulation and analyze the contribution of its individual com-

ponents.
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Table 4.5: Comparison of precision, recall and F1-score (in %) regarding all camera
pairs by existing methods and our approach on SAIVT-SoftBio dataset. C3, C5
and C8 represent cameras #3, #5 and #8.

RSVM [133] KISSME [89] R-CRF [96] K-CRF [96] MTL-LOREA

C3-C5

Precision 14.9 15.9 37.2 38.0 38.1

Recall 24.7 50.3 15.5 28.5 75.1

F1-score 15.9 23.4 18.2 30.3 50.5

C3-C8

Precision 27.7 20.7 55.4 48.4 41.0

Recall 29.4 70.1 43.1 51.1 65.6

F1-score 20.1 31.0 43.4 47.6 50.4

C5-C8

Precision 25.7 19.9 45.2 47.1 36.8

Recall 43.4 65.4 30.8 44.7 53.8

F1-score 24.6 29.6 32.4 43.7 43.7

Average

Precision 22.0 19.7 53.7 50.3 45.2

Recall 42.1 66.1 39.4 49.8 63.7

F1-score 26.2 29.5 42.0 48.3 52.9
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4.5.1 Convergence Analysis

Our original formulation in (4.4) is difficult to optimize. However, by alternat-

ing between optimizing the objective function with respect to one variable and fixing

the other one, we can solve this problem. When fixing Z, we obtain Problem (4.5)

as shown in the submission, which can be solved by MixedNorm approach in [114].

The optimization algorithm of MixedNorm approach [114] guarantees the global

convergence with a convergence rate O(1/k2), where k is the iteration number. On

the other hand, when fixing W, both the loss function `Z and regularization term hZ

in Problem (4.8) are convex, so that a global optimal is available. By adopting the

Accelerated Gradient Method (AGM) in [112], we can achieve a convergence rate as

O(1/k2). Proofs with respect to the convergence rate can be found in [112], [114]

and [137]. Therefore, our approach will find the global optimal via alternating op-

timization.

To investigate the convergence performance of MTL-LOREA, we visualize

the change of objective function value during the optimization in Figure 4.4. The

optimization is conducted regarding a randomly selected person from the training

set on the iLIDS-VID and PRID datasets, respectively. The objective function

value quickly decreases and reaches its minimal after a few iterations, verifying the

effectiveness of our optimization strategy.
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Figure 4.4: Change of objective function value during optimization on the iLIDS-
VID dataset (top) and PRID dataset (bottom).
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4.5.2 Analysis on the Transformation Matrix

Based on the assumption that attributes are usually correlated, the learned

low rank matrix Z should preserve attribution correlations well. In Figure 4.5, we

show the full learned transformation matrix Z averaged over 100 people from the

training set on PRID since the attributes are manually defined and have semantic

meaning. Since the data-driven attributes learned by [130] do not preserve clear

semantic meaning, we do not show the learned transformation matrix here. Clearly,

some attributes are closely related so that they have higher correlation score, i.e.,

the attributes shorts and barelegs, since they should frequently co-occur. In contrast,

a person cannot wear light bottoms (or light shirt) and dark bottoms (or dark shirt)

at the same time so that these two attributes have negative correlation. As another

example, the attribute skirt has positive correlation with the attribute barelegs,

while it has negative correlation with the attribute male. Similarly, it is also reason-

able that the attribute hassatchel has negative correlation with both the attributes

hashandbagcarrierbag and hasbackpack since a person is unlikely to carry different

bags simultaneously. The learned transformation matrix captures the correlations

amongst attributes well and thus improves the quality of the original attributes,

which justifies the effectiveness of the low rank structure of the embedding space

and our learning framework.
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Figure 4.5: Attribute correlations learned on the PRID dataset. Larger values
indicate two attribute are more positively correlated.

4.5.3 Evaluation of Individual Components

To verify the effect of individual components in our framework and show that

each of them contributes to the performance boost, we evaluate three variants of our

approach. Instead of MTL, we assume tasks are independent and learn classifiers

for each task separately while keeping other components unchanged, so that the

learning is based on single tasks (STL). We also use the original attributes without
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embedding, and discard the embedding error term in the objective function in (4.2)

to have another variant, MTL-Att. In addition, we remove the low rank constraint

on Z in (4.4), which embeds original attributes to a possible full rank space by

making attributes highly uncorrelated. We denote this variant as MTL-FR. We

then evaluate the three variants on iLIDS-VID and PRID to see how each component

affects the performance.

We show CMC scores at some ranks in Table 4.6 and display the CMC curves

in Figure 4.6. The results by STL are always worse than those by MTL-LOREA and

other two MTL-based variants, which indicates that learning related tasks simulta-

neously successfully exploits shared information amongst tasks and thus increases

the discriminative ability of the learned model. We also find that MTL-FR is inferior

to MTL-Att, suggesting that assuming attributes are uncorrelated is unreasonable

and even hurts performance. However, only using the original attributes without

investigating their correlations, MTL-Att cannot produce the best results, although

it already outperforms most existing approaches. The experiments reveal that in-

dividual components, i.e., MTL and low rank embedding, are integrated into our

formulation in a principled way and together improve the performance.

4.6 Summary

In this chapter, we have proposed a multi-task learning (MTL) formulation

with low rank attribute embedding for person re-identification. Multiple cameras

are treated as related tasks, whose relationships are decomposed as a low rank struc-
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Figure 4.6: CMC scores by STL, MTL-Att, MTL-FR and the complete MTL-
LOREA on the iLIDS-VID dataset (top) and PRID dataset (bottom).

ture shared by all tasks and task-specific sparse components for individual tasks by

MTL. Both low level features and semantic/data-driven attributes are used. We

have further proposed a low rank attribute embedding that learns attributes corre-

lations to convert original binary attributes to continuous attributes, where incorrect

and incomplete attributes are rectified and recovered. Our objective function can
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Table 4.6: CMC scores of ranks from 1 to 50 on the iLIDS-VID and PRID datasets
by STL, MTL-Att, MTL-FR and the complete MTL-LOREA. Numbers indicate
the percentage (%) of correct matches within a specific rank.

iLIDS-VID

Rank 1 5 10 20 30 50

STL 14.7 42.7 41.8 58.5 83.5 91.7

MTL-FR 37.7 54.0 47.4 64.9 85.3 92.5

MTL-Att 40.5 54.9 47.5 64.2 84.2 91.2

MTL-LOREA 43.0 60.0 70.2 85.3 90.2 96.3

PRID

Rank 1 5 10 20 30 50

STL 11.3 27.9 41.8 53.0 68.5 74.6

MTL-FR 11.3 34.1 47.4 61.1 69.8 79.0

MTL-Att 12.2 34.7 47.5 61.7 70.9 79.8

MTL-LOREA 18.0 37.4 50.1 66.6 73.1 82.3

be effectively solved by an alternating optimization under proper relaxation. Ex-

periments on four datasets have demonstrated the outstanding performance and

robustness of the proposed approach.
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Chapter 5: Efficient Object Detection by Deep Neural Networks

5.1 Background

In previous chapters, we have discussed problems related to generic image

retrieval and person re-identification, and proposed three approaches to improve

the retrieval performance. Besides searching for images containing the same object

from the database, it is also critical to detect and recognize objects for better image

understanding. In this chapter, we focus on object detection, where the goal is to

find and locate instances of specific types of objects, such as cars, pedestrians and

animals 1.

Traditionally, designing an object detector involves feature design and choos-

ing learning algorithms, where the two components are usually independent. Any

machine learning algorithms can be applied regardless of the type of features used.

Designing robust and discriminative hand-crafted features has been an extremely

challenging task. Although numerous research works have proposed various kinds

of features, the deformable part model (DPM) [17] with hand-crafted features, such

as histogram of gradients (HoG), has been the state-of-the-art object detector for

decades.

1This work was done when the author was an intern in NEC Laboratories America, Inc.
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Recently, deep convolutional neural network (CNN) [138,139] has emerged as

a powerful tool that enables end-to-end training/testing and replaces both features

design and learning algorithm selection. CNN has contributed much to various

computer vision problems including image classification, object detection, semantic

segmentation, video recognition, etc., thanks to its capability to learn discriminative

features (or representations) at different levels of granularities. A number of recent

studies [140, 141] suggest that high level visual semantics (such as motif, parts,

or objects) are appearing in the middle of deep architecture which in turn provide

strong cues to recognize complex visual concepts. Leveraging on the representational

power of CNN, a number of methods are proposed to detect objects in natural images

using CNN [7,142–145]. Although CNN provides highly discriminative features, yet

the computational cost still remains too large to detect objects in real time.

In this chapter, we aim to reduce the computational complexity of the CNN

model based on the recent Fast RCNN framework [7], as well improving detection

accuracy. The scenario here is autonomous driving, which means we only focus

on detecting cars, trucks, pedestrians and cyclists, etc. Our framework discovers

and locates objects in images from a large number of object proposals as input,

where the proposals are rectangular bounding boxes of different sizes and aspect

ratios. We investigate two new strategies to detect objects accurately and efficiently

using deep convolutional neural network: 1) scale-dependent pooling and 2) layer-

wise cascaded rejection classifiers. The scale-dependent pooling (SDP) improves

detection accuracy by exploiting appropriate convolutional features depending on

the scale of the candidate object proposal. The cascaded rejection classifiers (CRC)
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effectively utilize convolutional features and eliminate negative object proposals in

a cascaded manner, which greatly speeds up the detection while maintaining high

accuracy.

5.2 Related Work

5.2.1 CNN for Object Detection

With the exceptional power on image classification, CNN has been applied

to object detection and achieves promising results [7, 142, 144, 146–148]. In [146],

detection was treated as a regression problem to object bounding box masks. A

deep neural network is learned to generate object boxes and then precisely localize

them. Erhan et al. [144] designed a deep network to propose class-agnostic bounding

boxes for generic object detection. Sermanet et al. [149] used a regression network

pre-trained for classification tasks to predict object bounding boxes in an exhaustive

way, which could be computationally expensive. Each bounding box is associated

with a confidence score indicating the presence of an object class. Recently, Girshick

et al. [142] proposed the R-CNN framework that uses a number of object proposals

generated by selective search to fine-tune a pre-trained network for detection tasks.

Zhang et al. [145] extended R-CNN by gradually generating bounding boxes within

a search region and imposing a structured loss to penalize localization inaccuracy

in network fine-tuning. To reduce the cost of doing forward pass for each proposal

in R-CNN, Fast RCNN [7] has been proposed by sharing convolutional features

and pooling object proposals only from the last convolutional layer. More recently,
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Faster RCNN [150] replaces the object proposals generated by selective search by a

region proposal network (RPN) and achieves further speed-up.

5.2.2 Neural Network Cascades

The Viola-Jones cascaded face detector [151] and its extensions [152,153] have

been widely used for decades. The idea of eliminating candidates by combining

a series of simple features has recently been applied to CNNs. Sun et al. [154]

presented an ensemble of networks by combining networks that focus on different

facial parts for facial point detection. Facial points are first coarsely predicted

and then gradually refined by a 3-level cascade of CNNs. Li et al. [155] used a

shallow detection network with small scale input images to first reject easy non-face

samples, and then apply two deeper networks to eliminate more negatives while

maintaining a high recall. To further improve detection accuracy, a calibration

network is appended after each detection network for bounding box calibration.

More recently, Angelova et al. [156] combined a tiny deep network and a modified

AlexNet to achieve real-time pedestrian detection. The tiny deep network aims to

remove a large number of candidates and leave a manageable size of candidates for

the large network to evaluate. Our approach is significantly different from prior

methods in that we consider cascaded classifiers by utilizing features from different

convolutional layers within a single network, that does not introduce any additional

computation.
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5.2.3 Using Convolutional Features

Rather than using only the outputs from fully-connected (fc) layers, a few

works exploit features from different convolutional layers, either by concatenating

them or by other popular encoding techniques. One of the most representative

works is [157], where neuron activations at a pixel of different feature maps are

concatenated as a vector as a pixel descriptor (called “Hypercolumn”) for precise

localization and segmentation. Xu et al. [158] extracted convolutional features in

the same way and encode these feature vectors by VLAD and Fisher vector for effi-

cient video event detection. In [159], an approach called DeepProposal is presented

to generate object proposals in a coarse-to-fine manner. Proposals are first gener-

ated in higher level convolutional layers that preserve more semantic information,

and are gradually refined in lower layers that provides better localization. Similarly,

Karianakis et al. [160] used features from lower-level convolutional layers to generate

object proposals by sliding window and remove background proposals, while refin-

ing them using higher-level convolutional features in a hierarchical way. For edge

detection, Bertasius et al. [161] extracted a sub-volume from every convolutional

layers, perform three types of pooling and again concatenate these values into a

single vector, which is further fed into fc layers. In contrast to these works, our

approach does not explicitly combine convolutional features, but learns classifiers

separately.
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5.3 Proposed Approach

5.3.1 R-CNN and Fast RCNN

Since our framework is inspired by two recent CNN-based object detectors:

R-CNN [142] and Fast RCNN [7], we will first briefly introduce the two detectors,

along with their advantages and drawbacks. R-CNN [142] has been proposed for

object detection and achieved promising results, where a pre-trained network is

fine-tuned to classify thousands of object proposals. However, both training and

testing suffer from low efficiency since the network performs a forward pass on every

single object proposal independently. Convolutional filters are repeatedly applied

to a large number of object proposals, which is computational expensive. In order

to reduce the computational cost, recent CNN based object detectors, such as Fast

RCNN [7] and Spatial pyramid pooling networks (SPPnet) [143], share the features

generated by convolutional layers and apply a multi-class classifier for each candidate

proposal. In Fast RCNN, convolutional operations are done only once on the whole

image. Features for object proposals are pooled from the feature maps of the last

convolutional layer and fed into fully-connected layers (fc) to evaluate the likelihood

of object categories. Compared to previous CNN based detector [142], these methods

improve efficiency in the order of magnitude via shared convolutional layers. For

instance, Fast RCNN achieves 3× and 10 ∼ 100× speedup at training and test

stage, respectively. In order to deal with scale variation, multi-scale image inputs

are often used where one set of convolutional features are obtained per image scale.
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Despite its success, these approaches have certain drawbacks that make them less

flexible. First, Fast RCNN does not handle small objects well. Since the candidate

bounding boxes are pooled directly from the last convolutional feature maps rather

than being warped into a canonical size, they may not contain enough information

for decision if the boxes are too small. Multi-scale input scheme fundamentally limits

the applicability of very deep architecture like [162] due to memory constraints and

introduces additional computational burden. In addition, pooling a huge number of

candidate bounding boxes and feeding them into high-dimensional fc layers can be

extremely time-consuming.

5.3.2 Overview of Our Framework

In this work, we address the aforementioned drawbacks and propose a new

CNN architecture for accurate and efficient object detection in images. The first

contribution is that, unlike previous works, our method produces only one set of

convolutional features for an image while handling the scale variation via multiple

scale-dependent classifiers. Our intuition is that visual semantic concepts of an

object can emerge in different convolutional layers depending on the size of the target

objects, if proper supervision is provided in the training process. For instance, if a

target object is small, we may observe a strong activation of convolutional neurons

in earlier layers (e.g. conv3 ) that encodes specific parts of an object. On the other

hand, if a target object is large, the same part concept will emerge in much later

layers (e.g. conv5 ). Based on this intuition, we represent a candidate object proposal
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(bounding box) using the convolutional features pooled from a layer corresponding to

its scale (scale-dependent pooling (SDP)). The pooled features are fed into multiple

scale-dependent object classifiers to evaluate the likelihood of object categories. As

for the second contribution, we present a novel cascaded rejection classifiers (CRC)

where the cascading direction is defined over the convolutional layers in the CNN.

We treat the convolutional features in each layer as weak classifiers in the spirit

of boosting classifiers [163]. Although the features from the earlier convolutional

layers might be too weak to make a strong evaluation of an object category, they

are still useful to quickly reject easy negatives. Combining the two strategies, we

can explicitly utilize the convolutional features at all layers instead of using only

the last one as previous works do. Our method is illustrated in Figure 5.1. We will

elaborate the two contributions in the following sections.

5.3.3 Scale-Dependent Pooling

5.3.3.1 Motivation

To handle scale variation, previous works [164,165] often adopt a sliding win-

dow technique with image pyramids to handle scale variation of target objects. Sim-

ilar techniques are applied in recent CNN based object recognition methods: they

treat the last convolutional layer’s outputs (conv5 of AlexNet) as the features to

describe an object and apply a classifier (fc layers) on top of the extracted features.

R-CNN [142] warps the image patch within a bounding box that produces

fixed dimensional feature output for the classification. The independent warping
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Figure 5.1: We present a fast and accurate object detection method using the con-
volutional neural network. Our method exploits the convolutional features in all
layers to reject easy negatives via cascaded rejection classifiers and evaluate surviv-
ing proposals using our scale-dependent pooling method.
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process prohibits us to share any convolutional operations across proposals in the

same image, which fundamentally limits the efficiency. In contrast, SPPnet and Fast

RCNN [7, 143] share the convolutional features in an image and pool the features

at the last convolutional layer to describe an object. In these methods, the scale

variation is tackled either via image pyramid inputs or brute-force learning method

which directly learns the scale variation via convolutional filters. However, the image

pyramid introduces additional computational burden and requires large amount of

GPU memories, and brute-force learning via convolutional filters is difficult.

5.3.3.2 Structure of Scale-Dependent Pooling

To alleviate the aforementioned drawbacks of R-CNN and Fast RCNN, we

introduce a scale-dependent pooling (SDP) technique (illustrated in the Figure 5.2)

to effectively handle the scale variation in object detection problem. Our method

is built upon Fast RCNN that pools the features for each object proposal from the

last convolutional layer of CNN. The region inside of each proposal is divided into

a spatial grid (7× 7 or 6× 6) and features are pooled using max-pooling over each

grid. Our SDP method examines the scale (height) of each object proposal and pools

the features from a corresponding convolutional layer depending on the height. For

instance, if an object proposal has a height between 0 to 64 pixels, the features are

pooled from the 3rd convolutional layer of CNN (SDP 3). On the other hand, if an

object proposal has a height larger than 128 pixels, we pool the features from the last

convolutional layer (SDP 5) (see Figure 5.2). The fully-connected layers attached
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Figure 5.2: Details of our scale-dependent pooling (SDP) model on 16-layer VGG
net (VGG16). For better illustration, we show the groups of convolutional filters
between max pooling layers as a cube, where filters are arranged side-by-side, sep-
arated by lines.

to SDPs have their own set of parameters so as to learn scale-specific classification

models from different sets of feature inputs.

We present our SDP model based on VGG16 [162] in Figure 5.2. This SDP

model has 3 branches after conv2, conv3 and conv5, denoted as SDP 2, SDP 3 and

SDP 5. Each branch consists of a RoI pooling layer connected to 2 successive fc

layers with ReLU activations and dropout layers for calculating class scores and

bounding box regressors, similarly to [7]. We initialize the model parameters of

convolutional layers and the fc layers in the SDP 5 with the ImageNet pre-trained

model of VGG16 [162], while the fc layers in the SDP 2 and SDP 3 are randomly

initialized. During the fine-tuning, input object proposals are first distributed into

3 groups based on their height and then fed into corresponding RoI pooling layer

to pool the features from corresponding convolutional outputs. Gradients are back-

propagated from 3 branches to update corresponding fc layers and convolutional

filters. By providing supervision about the scale of input object proposals, we explic-

itly enforce neurons to learn for different scales of objects, so that the convolutional
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layers are able to discover small objects at an early stage.

5.3.3.3 Advantages of Scale-Dependent Pooling

The main benefit of SDP is that we can effectively tackle the scale variation

in target objects while computing the convolutional features only once per image.

Instead of artificially resizing the image inputs in order to obtain a proper feature

description as in the image pyramid technique, the SDP selects a proper feature

layer to describe an object proposal. It helps us to save additional computational

cost and memory overhead caused by redundant convolutional operations.

Another benefit is that the SDP enables us to have a compact and consistent

representation of object proposals. Since the brute-force approach of Fast-RCNN [7]

pools the features for object proposals from the last convolutional layer, often the

same convolutional features are repeated over the spatial grid if an object proposal

is very small. The max-pooling or multiple pixel stride in convolutional layers

progressively reduces the spatial resolution of the convolutional features over layers.

Thus, at the last convolutional layer, there are only one feature corresponding to a

large number of pixels (16 pixels for both AlexNet [138] and VGG16 [162]). In the

extreme case, if the object proposal is as small as 16×16 pixels, all the grid features

may be filled with a repeating single convolutaional feature value. Learning from

such an irregular description of object examples may prohibit us from learning a

strong classification model. Since the SDPs distribute the proposals depending on

the scale, we can provide more consistent signal through the learning process, which
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leads to a better detection model.

The idea of using intermediate convolutional layers to complement high level

convolutional features has also been recently exploited for image classification and

segmentation [157, 166], video event detection [158] and image retrieval [167, 168].

We note that our approach is different from previous works in that we are not

simply combining convolutional features from different layers, but adding additional

fc layers on top of convolutional layers to enforce the neurons to learn scale-specific

patterns during the training process.

5.3.4 Cascaded Rejection Classifiers

5.3.4.1 Motivation

One major computational bottleneck in our SDP method and Fast RCNN [7]

framework is on the evaluation of individual bounding box proposals using high

dimensional fc layers. When there are thousands or tens of thousands of object

proposals, time spent for the per-proposal evaluation dominates in the entire de-

tection process (see Table 5.5). Therefore, we introduce a novel cascaded rejection

classifier (CRC) scheme that requires minimal amount of additional computation.

Cascaded detection framework has been widely adopted in visual detection problems

that include [151–153]. The core idea is to use as little computation as possible to

reduce object proposals quickly and use complex and time-consuming features for

only few highly likely candidate proposals. Recently, a few methods [154–156] are

proposed to use cascaded detection framework with CNN, but most of them em-
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ploy another shallower network to “preprocess” object proposals and use a deeper

architecture to evaluate surviving candidates. Unlike the others, we exploit the con-

volutional features in earlier layers to build the cascaded rejection classifiers. Our

model does not require any additional shallow networks or additional convolutional

feature computation.

5.3.4.2 Learning Cascaded Rejection Classifiers

We adopt the popular discrete AdaBoost [163] algorithm to learn CRCs after

each convolutional layer. Following the intuition of our SDP models, we learn sep-

arate rejection classifiers per scale-group (Rl
s where s and l represent a scale-group

and the convolutional layer) in order to keep the classifiers compact while effective

(see Figure 5.3). In the following paragraphs, we assume that we have a CNN model

trained with SDPs without loss of generality. The rejection threshold of each Rl
s is

trained to keep 99% of positive examples using 50 weak-learners.

Let us first define necessary notations to learn a CRC Rl
s. Suppose we have

N proposals belonging to a scale group s, B = [B1, B2, ..., BN ] and corresponding

foreground label yi, i = 1, ..., N . yi = 1 if it contains a foreground object and yi = 0,

otherwise. We pool the corresponding features xi for Bi ∈ B from convolutional

layer l using the CNN model trained with our SDPs. In our experiments, we use the

RoI Pooling scheme of [7], which gives m×m×c dimensional features, where m = 7

and c is the number of channels in the convolutional layer. Through this process, we

obtain a training dataset of X = [x1,x2, ...,xN ] ∈ Rm2c×N , and Y = {0, 1} ∈ RN .
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Figure 5.3: Structure of the rejection classifier approximation by network layers.
Blue cuboid corresponds to a proposal on the feature maps. Color squares are
feature points that need to be pooled out to form the feature vector.

Given the training dataset, we learn a linear boosting classifier Rl
s with [163]

that aggregates a set of weak learners’ responses, Rl
s(x) =

∑T
t=1wtht(x), where ht

is a weak learner, wt is the corresponding weight and the output is the classification

score. In this work, a weak learner ht is a decision stump that outputs 1 if the

value xv at the vth feature dimension is greater than a decision threshold δv and -1

otherwise, that can be written as ht(x) = sign(xv − δv). We learn 50 weak-learners

per Rl
s. After learning the boosting classifier, we train the rejection threshold that

keeps 99% of positive training examples. All surviving training examples are passed

to train the rejection classifier Rl+1
s in the next layer. In order to learn progressively

stronger rejection classifier without additional computational cost, the weak learners

used in the previous Rl
s are used to initialize the boosting classifier Rl+1

s in the next
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layer.

5.3.4.3 Cascaded Rejection Classifiers in Testing

Since we know which features must be pooled after training the CRCs, we

pool only the necessary features in the testing time. We implement a feature pooling

layer (see Figure 5.3) that pools the convolutional features at specific locations in the

feature maps according to trained boosting classifiers. The pooled features are then

rearranged as a feature vector. Given the 50 dimensional pool of weak learners,

we approximate the boosting classifier with 2 fc layers and a hyperbolic tangent

tanh layer, so as to utilize the computational modules in the CNN framework. The

first fc layer applies the translation of the features with δv, which is followed by

the tanh layer that approximates the sign function. In this way, we successfully

approximate the behavior of weak learners by neural network layers. Finally, all

the weak learners are aggregated via the last fc layer to produce the final boosting

classification score using w. If available (l > 1), the previous rejection classifier

Rl−1
s score is added to the output of the current classifier Rl

s before rejecting an

object proposal. The detailed structure of the CRC is illustrated in Figure 5.3. We

observe that the cascaded rejection classifiers achieve about 3.2× speedup for the

proposal evaluation (4.6× when combined with truncated SVD [7], see Table. 5.5)

with a marginal loss of accuracy.
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5.4 Experiments

5.4.1 Experimental Setup

5.4.1.1 Datasets

We evaluate our model with SDP and CRC on two datasets: KITTI detection

benchmark [169] and a newly collected Inner-city dataset. The KITTI dataset is

composed of 7481 images for training, and 7518 images for testing. The training

dataset contains 28742, 4487, and 1627 number of car, pedestrian and cyclist anno-

tations. Since the groundtruth annotation of testing set is not publicly available, we

use the training/validation split of [170] for the analysis. For more thorough analy-

sis, we have collected a new dataset (Inner-city). The dataset contains 24509 images

which are collected using a camera mounted on a car. The dataset is composed of

16028 training and 8481 testing images which contains 60658, 36547, 16842, and

14414 numbers of car, person, bike and truck instances, respectively. The images

are sub-sampled 15 frames apart from 47 number of video sequences to avoid having

highly correlated images.

5.4.1.2 Networks

Our CNN model is initialized with a deep network architecture (VGG16 [162])

trained on the ImageNet classification dataset [171]. Rather than having SDP

branches for all convolutional layers, we add 3 SDP branches after 3 convolutional

layers before max pooling, which are conv3 3 (SDP 3), conv4 3 (SDP 4) and conv5 3
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(SDP 5) of VGG16, to ensure the features are discriminative enough. We use scale

groups of height between [0, 64) for SDP 3, [64, 128) for SDP 4, and [128,∞) for

SDP 5. The fc layers in the SDP 5 are initialized with the pre-trained model param-

eters, while the fc layers in the SDP 3 and SDP 4 are randomly initialized. All the

fc layers have 4096 dimensional outputs. After fine-tuning, we train rejection clas-

sifiers for each scale group using the convolutional features from conv1 2, conv2 2,

conv3 3, conv4 3 and conv5 3, resulting in 12 rejection classifiers.

5.4.1.3 Training Parameters

Following the procedure introduced in [7], we randomly sample two images,

from which we randomly sample 128 positive and negative object proposals per

scale group as a minibatch. The negative object proposals are sampled from all the

proposals that have less than 0.5 overlap with any positive groundtruth annotation.

For all the experiments, we use initial learning rate of 0.0005 and decrease it by

0.1 after every 30K iterations. We use the momentum 0.9 and the weight decay

0.0005. The final model is obtained after 90K iterations. We found that using

smaller dropout ratio helps to improve the detection accuracy in our experiments,

so we use a dropout ratio 0.25 after fc layers for all the experiments. For boosting

rejection classifiers, we use 50 weak learners corresponding to 50 locations in the

feature maps.

As for object proposals, we obtain the bounding box proposals using Edge-

box [172] and augment them with ACF [165] detection outputs trained for Car and
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Person categories. We observe that using only generic box proposal methods often

misses small target objects, which leads to poor detection accuracy.

5.4.2 Detection Results

We first discuss the detection accuracy on the KITTI train/validation dataset

and the Inner-city dataset. We mainly compare our model against two baselines

using Fast RCNN models [7] with AlexNet [138] and VGG16 [162] architectures.

For the KITTI train/validation experiment, all the training and testing images are

rescaled to 500 pixel height which produces the best accuracy given GPU (K40/K80)

memory constraints. Since AlexNet architecture consumes much less memory, we use

multi-scale image inputs of 400, 800, 1200, 1600 pixel heights input for the AlexNet

baseline to handle scale variation as well as possible. In the Inner-city experiments,

we keep the original size of images (420 pixel height) for the VGG16 baseline and

use 420, 840, 1260, 1680 pixels for the AlexNet baseline. In order to highlight the

challenges posed by scale variation, we present the accuracy comparison over differ-

ent size groups in Table 5.1 and 5.2. Following KITTI [169] evaluation protocol, we

use 0.7 overlap ratio for the Car category and 0.5 for the others in the evaluation.

In the Inner-city evaluation, we use 0.5 overlap ratio across all categories.

5.4.2.1 Results by SDP

Table 5.1 and 5.2 show that the multi-scale image input baseline with AlexNet

architecture (FRCN [7]+AlexNet) achieves similar detection accuracy across differ-
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ent scale groups, since features are pooled at appropriate scales. On the other hand,

deeper architecture with a single image input baseline (FRCN [7]+VGG16) achieves

higher accuracy on larger objects exploiting the rich semantic features, but performs

relatively poorly on small objects. We believe this is due to the difficulty in learning

visual concepts at various scales via a single final layer. In contrast, our SDP model

with the same VGG16 architecture achieves highest accuracy on almost all scale

groups over all the categories.

More importantly, we greatly improve the detection accuracy on the smallest

scale group by 5 ∼ 20% thanks to the use of SDP branches attached to the inter-

mediate convolultional layers, which confirms our hypothesis that small objects can

be better recognized at lower layers if proper supervision is provided in the train-

ing process. Another important observation is that we achieve larger improvement

on the Car category which has the largest number of training examples. Since our

model has additional parameters to be trained (fc parameters in SDP 3 and SDP 4),

we expect that our model will improve even more when more training examples are

provided. This is demonstrated in the experiments on Inner-city dataset (see Ta-

ble 5.1 and 5.2) that contains larger number of training examples. A few qualitative

results are presented in Figure 5.4.

5.4.2.2 Results by CRC

Next, we evaluate the performance of our cascaded rejection classifiers (CRC).

As described in Section 5.3.4, we reject object proposals through our CRCs through-
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Table 5.1: Detection AP (%) of baselines and our models on KITTI validation
set, divided by size groups. S1, S2, S3, S4 and S indicate the size group of
[0, 64), [64, 128), [128, 256), [256,∞) and [0,∞). We use 4 scale image pyramid
for FRCN [7]+AlexNet and 1 scale image input for the others.

FRCN [7]+AlexNet FRCN [7]+VGG16 SDP SDP+CRC SDP+CRC ft

Inputs 4 1 1 1 1

C
a
r

S1 52.8 42.2 64.2 63.9 63.9

S2 60.7 70.0 74.4 74.3 74.2

S3 75.8 85.1 86.0 85.8 85.5

S4 55.5 65.9 68.4 68.2 62.9

S 61.6 62.3 73.7 73.5 73.7

P
ed
es
tr
ia
n

S1 19.7 12.6 17.3 17.5 17.6

S2 47.5 55.9 58.4 52.0 50.0

S3 88.4 94.6 94.9 93.7 93.4

S4 24.1 44.9 44.8 45.9 61.0

S 61.4 66.8 66.9 65.5 65.9

C
yc
li
st

S1 42.0 29.1 37.5 35.1 35.8

S2 51.6 63.8 67.3 65.7 66.5

S3 44.9 68.7 68.6 69.2 67.6

S4 0.0 0.0 0.0 0.0 0.0

S 46.5 48.8 54.6 52.9 53.1

mAP S 56.5 59.3 65.1 64.0 64.2
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Table 5.2: Detection AP (%) of baselines and our models on the Inner-city dataset,
divided by size groups. S1, S2, S3, S4 and S indicate the size group of [0, 64),
[64, 128), [128, 256), [256,∞) and [0,∞). We use 4 scale image pyramid for
FRCN [7]+AlexNet and 1 scale image input for the others.

FRCN [7]+AlexNet FRCN [7]+VGG16 SDP SDP+CRC SDP+CRC ft

Inputs 4 1 1 1 1

C
a
r

S1 74.6 63.9 76.2 75.7 75.0

S2 78.9 80.0 84.2 83.8 84.1

S3 82.9 86.4 86.9 86.5 87.2

S4 94.9 93.7 95.2 95.0 95.6

S 82.4 80.5 85.5 85.0 84.9

P
ed
es
tr
ia
n

S1 43.9 35.2 51.1 50.9 51.1

S2 69.1 71.3 78.0 75.9 76.7

S3 77.8 83.3 83.0 80.2 80.2

S4 75.4 77.3 81.5 78.3 77.8

S 63.7 64.3 73.9 71.7 72.2

B
ik
e

S1 26.2 28.2 40.3 38.4 41.6

S2 42.3 57.5 65.4 61.5 64.6

S3 45.9 68.7 65.2 63.7 64.7

S4 2.2 0.5 43.2 41.5 46.9

S 36.3 50.6 57.9 55.1 58.2

T
ru
ck

S1 28.7 26.0 44.1 43.9 45.8

S2 51.5 62.1 67.0 66.8 69.1

S3 60.0 70.0 71.5 71.0 69.9

S4 67.0 54.0 75.1 75.6 74.2

S 48.7 53.6 65.6 65.5 66.4

mAP S 55.0 62.2 70.7 69.3 70.4
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KITTI Examples: Car, Pedestrian, Cyclist
Fast RCNN SDP

Inner-city Examples: Car, Person, Bike, Truck
Fast RCNN SDP

Figure 5.4: Qualitative results on KITTI validation set and Inner-city dataset using
FRCN [7]+VGG16 baseline and our SDP model. We obtain the detection threshold
for visualization at the precision 0.8. Notice that our method with SDP detect small
objects much better than the baseline method. The figure is best shown in color.
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out the convolutional layers. With the CRC modules (denoted as SDP+CRC in

Table 5.1 and 5.2), the performance decreases very marginally, indicating that the

rejection classifiers successfully eliminate negative proposals while maintaining a

high recall rate for positives (see Table 5.4 for details), even though we only use 50

feature dimensions at each convolutional layer. The results demonstrate that the

intermediate convolutional layers can be exploited in a hierarchical way.

5.4.2.3 Fine-tuning with CRC

We further fine-tune the network with trained CRC modules to see if it can

further improve performance. The CRC modules can serve as a hard-negative mining

process to learn better classification model in the network, since many easy negatives

are rejected before reaching the SDP modules. Instead of randomly sampling 128

proposals in the training process, we sample 128 proposals from survived proposals

after using all the CRCs. We run the fine-tuning for additional 50K iterations with

initial learning rate 0.0001 with step size 20K iterations. We freeze the learning

rate of convolutional layers to avoid CRC parameters being invalid after the fine-

tuning. We observe that the additional fine-tuning (SDP+CRC ft) helps to improve

the accuracy over the SDP+CRC variant marginally. In KITTI testing results (see

Table 5.3), we observe larger improvement with the additional fine-tuning. We

believe that it will achieve more improvement, if all the model parameters including

CRC modules are trained properly.
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5.4.2.4 Test Set Evaluation

To compare with existing approaches on KITTI test set, we train our SDP

and CRC models on the full training set, and evaluate it on the test set. The results

are shown in Table 5.3. We use the same configuration and learning parameters as

in the previous experiments. Without using any stereo information, our approach

outperforms all compared methods on all levels of difficulties and achieves the best

results. In particular, our method using SDP again outperforms the Fast-RCNN

baseline by 9% on average, verifying the effectiveness of the SDP module. Notably,

our method improves AP by 16.7% over Fast-RCNN baseline on Hard case of Car

category, where most samples are of small size or occluded. This is a clear evidence

showing the discriminative power of our SDP module.

5.5 Discussion and Analysis

In this section, we conduct additional experiments to further analyze and

better understand the proposed approach.

5.5.1 Rejection Ratio

By using CRCs, we aim to improve the efficiency for the proposal evaluation

by progressively reducing the number of proposals. In Table 5.4, we analyze the per-

centage of surviving proposals with respect to the initial number of input proposals

after applying CRCs, as well as the corresponding recall rate of positives after each

CRC. The table shows that our CRCs successfully reject a large number of input
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Table 5.3: Detection AP (%) of the other state-of-the-art approaches and our method
on KITTI test set. Following KITTI protocol, results are grouped into three levels
of difficulties: Easy (E), Moderate (M) and Hard (H).

Car Pedestrian Cyclist

Method E M H E M H E M H

Regionlet [173] 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83

DPM-VOC+VP [174] 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

3DVP [170] 87.46 75.77 65.38 - - - - - -

SubCat [175] 84.14 75.46 59.71 - - - - - -

CompACT-Deep [176] - - - 70.69 58.74 52.71 - - -

DeepParts [177] - - - 70.49 58.67 52.78 - - -

FRCN [7]+VGG16 85.98 72.32 60.16 75.50 62.53 58.14 68.82 54.21 47.98

SDP 88.34 81.69 69.72 76.89 64.44 59.72 70.13 60.08 52.93

SDP+CRC 88.33 81.17 70.00 76.28 63.12 58.30 71.06 60.24 53.17

SDP+CRC ft 90.33 83.53 71.13 77.74 64.19 59.27 74.08 61.31 53.97

proposals while keeping a high recall for the true objects. For each scale group,

CRCs can remove over 70 ∼ 80% input proposals, so that only around 20 ∼ 30%

proposals go through fc layers that are computationally expensive.

5.5.2 Runtime Efficiency

We investigate the efficiency gain introduced by CRCs. Table 5.5 analyzes

detailed computational breakdown of various methods. We measure the time spent
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Table 5.4: Percentage (%) of surviving proposals after applying CRC, and the cor-
responding recall rate (%) on KITTI validation set. R[n1,n2) refers to the rejection
classifier for the scale group [n1, n2).

R[0,64) R[64,128) R[128,∞) Overall

Layer ratio recall ratio recall ratio recall ratio recall

conv1 2 66.2 97.6 83.9 98.1 94.8 100 81.6 98.6

conv2 2 44.2 95.5 59.2 96.2 92.9 99.7 65.4 97.1

conv3 3 16.7 92.1 25.1 93.4 72.3 96.5 38.0 94.0

conv4 3 - - 12.6 90.3 48.6 92.0 30.6 91.2

conv5 3 - - - - 28.8 89.9 28.8 89.9

in each component of the network, such as convolutional operations, fc layer com-

putations, pre- and post-processing, etc. We compare our CRCs with the truncated

SVD approach [7] that aims to reduce the dimensionality of fc layers. We follow

the strategy in [7] to keep the top 1024 singular values from the 1st fc layer and

the top 256 singular values from the 2nd fc with respect to each SDP branch. In

addition, we combine CRC and SVD, i.e., using CRC to eliminate proposals and

SVD to compress fc layers in SDPs, to achieve further speed-up. We include the

baseline methods without SVD as a reference.

The truncated SVD approach alone achieves about 2.3× gain in proposal eval-

uations. The CRC modules alone obtain 3.2× speed-up for the same operation. We

gain 4 ∼ 5× speed-up for each SDP by rejecting 70 ∼ 80% of proposals, but the

additional computation introduced by CRC reduces the overall gain slightly. When
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Table 5.5: Runtime comparison (ms per image) among the baseline methods, our
method with truncated SVD [7], our method with CRC and SVD+CRC on KITTI
dataset. fcS, fcM , and fcL refer to the SDP classifiers for the scale group [0, 64), [64,
128), [128, ∞), respectively. “box eval.” represents the time spent for individual
box evaluation including fc layers and CRC rejections. The times were measured
using an Nvidia K40 GPU under the same experimental environment.

Component conv fc fcS fcM fcL rej. box eval. misc. total

[7]+AlexNet 799 512 0 0 0 0 512 164 1476

[7]+VGG16 282 719 0 0 0 0 719 21 1022

SDP 286 0 204 254 283 0 741 90 1117

SVD 285 0 97 116 114 0 327 95 707

speedup 1.0 - 2.10 2.19 2.48 - 2.27 0.95 1.58

CRC 282 0 44 46 63 79 232 27 541

speedup 1.0 - 4.64 5.52 4.49 - 3.19 3.33 2.06

SVD+CRC 283 0 24 25 31 81 161 27 471

speedup 1.0 - 8.50 10.16 9.13 - 4.60 3.33 2.37

combining SVD and CRC, we obtain 4.6× efficiency gain in proposal evaluations

and 2.4× in total (including conv operations).

5.5.3 Speed versus Accuracy

Next, we show the change of detection accuracy and speed with respect to

varying rejection ratios. To do this, we use a fixed rejection ratio for each rejection

classifier and deactivate the corresponding learned rejection threshold. In particular,
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given a number of proposals, we first apply the rejection classifier at a layer to

obtain classification scores. Then we rank the proposals based on the classification

scores, where proposals with larger scores are ranked higher. All proposals ranked

at the bottom K% are removed regardless of the rejection threshold. The remaining

proposals go through to next layers. In the experiments, we set K = 30, 50, 70, 90,

which means we reject 30%, 50%, 70% or 90% proposals at each layer. We evaluate

both our CRCs and CRCs+SVD variants, and compare them with baselines in terms

of accuracy and running speed in Figure 5.5.

We observe that even we reject 30% proposals at each layer, which results

in removing 83% proposals totally for the largest size group of proposals, we still

achieve reasonable accuracy. While using more aggressive rejection ratios speeds up

the detection, it greatly affects the accuracy. By learning proper rejection thresholds

from trained CRCs, we obtain a good trade-off between detection accuracy and

detection speed without explicitly tuning the rejection ratio.

5.6 Summary

In this chapter, we have investigated two new strategies to detect objects ef-

ficiently using deep convolutional neural network, 1) scale-dependent pooling and

2) layer-wise cascaded rejection classifiers. The scale-dependent pooling (SDP) im-

proves detection accuracy especially on small objects by fine-tuning a network with

scale-specific branches attached after several convolutional layers. The cascaded re-

jection classifiers (CRC) effectively utilize convolutional features and eliminate neg-

125



Figure 5.5: Detection AP (%) vs. running speed (fps) with respect to different
variants of our SDP models and other baselines on KITTI validation set. SDP
and SDP+SVD indicate our SDP model with VGG16, and the same model after
applying truncated SVD. SDP+CRC* and SDP+CRC+SVD* indicate the SDP
models using CRCs with pre-trained rejection thresholds at each layer. SDP+CRC
and SDP+CRC+SVD denote the SDP models using CRCs with varying rejection
ratio fixed at each layer.

ative object proposals in a cascaded manner, which greatly speeds up the detection

while maintaining high accuracy. Our experimental evaluation clearly demonstrates

the benefits of SDP and CRC in CNN based object detection.
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Chapter 6: Conclusion

Image retrieval and matching is an important topic in computer vision and has

various practical applications, which involves searching and locating for same/similar

objects in images. With multiple features available, how to effectively combine them

to achieve better results remains a challenging problem. In this work, we focused on

leveraging multiple features to improve performance and reduce computational cost

with respect to two applications: content-based image retrieval and reranking, and

object detection in images. We proposed several approaches to achieve this goal.

(1) We have proposed a supervised multi-feature fusion algorithm based on

graphical models for generic image retrieval. We employ a mixture Markov model

based on a random walk model on multiple graphs to fuse graphs. We also introduce

a probabilistic model to compute the importance of each feature for graph fusion

under a naive Bayesian formulation, and employ an iterative diffusion algorithm

alleviate the effect of noise.

(2) To reduce human labeling, we have proposed a fully unsupervised reranking

approach based on a submodular objective function that consists of two terms: an

information gain term and a relative ranking consistency term. We select a subset

from initially retrieved images by maximizing the mutual information (information
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gain) between the selected subset and unselected nodes in graph representations.

The relative ranking consistency term exploits the inter-relationships among mul-

tiple ranked lists obtained by different features. The final submodular objective

function combines both the relationships among retrieved images from a single fea-

ture and the relative ranks of images across different features, thereby improving

initial retrieval results obtained by multiple independent features.

(3) We have then studied a practical application of generic image retrieval:

person re-identification, where the database usually contains well labeled data that

allows more sophisticated learning algorithms. We have applied the multi-task

learning algorithm using both low level features and attributes. A low rank at-

tribute embedding has been introduced into the multi-task learning formulation

to embed original binary attributes to a continuous attribute space, where incor-

rect and incomplete attributes are rectified and recovered to better describe people.

Re-identifications from multiple cameras are regarded as related tasks to exploit

shared information to improve re-identification accuracy. Specifically, we propose a

novel multi-task learning with low rank attribute embedding framework for person

re-identification.

(4) To accurately locate objects in images, We have proposed an object de-

tector based on deep convolutional neural networks (CNN). We improve the recent

Fast RCNN framework and investigate two new strategies to detect objects accu-

rately and efficiently: 1) scale-dependent pooling and 2) layer-wise cascaded rejec-

tion classifiers. The scale-dependent pooling (SDP) improves detection accuracy

by exploiting appropriate convolutional features depending on the scale of input
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object proposals. The cascaded rejection classifiers (CRC) effectively utilize con-

volutional features and eliminate negative proposals in a cascaded manner, which

greatly speeds up the detection while maintaining high accuracy. In combination

of the two, our method achieves significantly better accuracy compared to other

state-of-the-arts in two challenging datasets, while being more efficient.
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Appendix A: Proof of Propositions

A.1 Proof of PROPOSITION 1

A.1.1 Monotonicity

Proof. We have

Fm(S) = H(Vm\S)−H(Vm\S|S) = I(Vm\S;S)

for graph Gm, where I(Vm\S;S) is the mutual information between Vm\S and S.

As proved in [51], I(Vm\S;S) is monotonic when |Vm| is larger than 2|S|, which is

the case in our framework. This completes the proof of the monotonicity property

of Fm(S).

A.1.2 Submodularity

Proof. We prove the submodularity by showing: for any S1 ⊂ S2 and a given

example a ∈ Vm\S2, we have

Fm(S1 ∪ {a})− Fm(S1) ≥ Fm(S2 ∪ {a})− Fm(S2)
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We have

(Fm(S1 ∪ {a})− Fm(S1))− (Fm(S2 ∪ {a})− Fm(S2))

= (H(a|S1)−H(a|Vm\{S1 ∪ a}))

− (H(a|S2)−H(a|Vm\{S2 ∪ a}))

= (H(a|S1)−H(a|S2))

+ (H(a|Vm\{S2 ∪ a})−H(a|Vm\{S1 ∪ a}))

= H1 +H2

Since conditioning always reduces entropy, H(a|S1) ≥ H(a|S2), so that H1 ≥ 0.

Vm\{S2∪a} ⊂ Vm\{S1∪a}, so that we have H(a|Vm\{S2∪a}) ≥ H(a|Vm\{S1∪a}),

leading to H2 ≥ 0. Therefore, H1 + H2 ≥ 0, which completes the proof of the

submodularity property of Fm(S).

A.2 Proof of PROPOSITION 2

A.2.1 Monotonicity

Proof. We prove that T (S) is monotonically increasing by showing T (S ∪ {a}) ≥

T (S), for all a ∈ V\S and S ⊆ V . Let |S| denote the cardinality of S. Since items

in S are ordered, we assume the rank of a in S ∪ {a} as ra = |S|+ 1 without loss of
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generality. We have

T (S ∪ {a})− T (S)

=(1− q)
∑|S|+1

s=1
qs · 1

s

∑
vi,vj∈S∪{a},rvi<rvj=s

C(vi, vj)

− (1− q)
∑|S|

s=1
qs · 1

s

∑
vi,vj∈S,rvi<rvj=s

C(vi, vj)

=(1− q) · q|S|+1 · 1

|S|+ 1

∑
vi∈S,rvi<ra=|S|+1

C(vi, a)

Since C(vi, a) ≥ 0, 1−q > 0 and q|S|+1 > 0, we can easily have T (S∪{a})−T (S) ≥ 0

and T (∅) = 0. This completes the proof of monotonically increasing property of

T (S).

A.2.2 Submodularity

Proof. We prove the submodularity by showing: for any S1 ⊂ S2 and a given

example a ∈ V\S2, we have

T (S1 ∪ {a})− T (S1) ≥ T (S2 ∪ {a})− T (S2)

From the derivation for monotonicity, we have

T (S1 ∪ {a})− T (S1)

=(1− q) · q|S1|+1 · 1

|S1|+ 1

∑
vi∈S1,rvi<ra=|S1|+1

C(vi, a)
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and

T (S2 ∪ {a})− T (S2)

=(1− q) · q|S2|+1 · 1

|S2|+ 1

∑
vi∈S2,rvi<ra=|S2|+1

C(vi, a)

For notational simplicity, we let n1 = |S1|+ 1 and n2 = |S2|+ 1. Define

k1 =
1

n1

∑
vi∈S1,rvi<ra=n1

C(vi, a)

k2 =
1

n2

∑
vi∈S2,rvi<ra=n2

C(vi, a)

as the average relative ranking measure between a and all items in S1 and S2,

respectively. Then k1 and k2 can be represented as

k2 =
1

n2

(n1k1 +
∑

vi∈S2\S1,rvi<ra=n2

C(vi, a))

Suppose |S2| = |S1|+n, C(vi, a) can be considered as a random variable φ ∈ [0, 1], so

that we have k2 = 1
n2

(n1k1 +
∑

n φ), where the upper bound of
∑

n φ is nk1. Hence

(T (S1 ∪ {a})− T (S1))− (T (S2 ∪ {a})− T (S2))

=(1− q) · q|S1|(k1 − qnk2)

Since (1−q) > 0 and q|S1| > 0, we only need to prove k1−qnk2 ≥ 0. Let k1−qnk2 =

k1 − qn n1k1+
∑
n φ

n2
, which reaches its minimum when

∑
n φ reaches its upper bound.
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In this case, we have

k1 − qnk2 = k1 − qn
n1k1 + nk1

n2

= k1(1− qn) ≥ 0

This completes the proof of submodularity property of T (S).
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[14] Hervé Jégou and Ondrej Chum. Negative evidences and co-occurences in
image retrieval: The benefit of PCA and whitening. In ECCV, pages 774–787,
2012.
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