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Mathematical models of gene regulation are a powerful tool for understand-

ing the complex features of genetic control. While various modeling efforts have

been successful at explaining gene expression dynamics, much less is known about

how evolution shapes the structure of these networks. An important feature of

gene regulatory networks is their stability in response to environmental perturba-

tions. Regulatory systems are thought to have evolved to exist near the transition

between stability and instability, in order to have the required stability to envi-

ronmental fluctuations while also being able to achieve a wide variety of functions

(corresponding to different dynamical patterns). We study a simplified model of

gene network evolution in which links are added via different selection rules. These

growth models are inspired by recent work on ‘explosive’ percolation which shows

that when network links are added through competitive rather than random pro-

cesses, the connectivity phase transition can be significantly delayed, and when it is



reached, it appears to be first order (discontinuous, e.g., going from no failure at all

to large expected failure) instead of second order (continuous, e.g., going from no

failure at all to very small expected failure). We find that by modifying the tradi-

tional framework for networks grown via competitive link addition to capture how

gene networks evolve to avoid damage propagation, we also see significant delays in

the transition that depend on the selection rules, but the transitions always appear

continuous rather than ‘explosive’.
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Chapter 1: Introduction and Background

Changes to gene regulatory networks are thought to be a major driver of evolution-

ary innovation. While various mathematical modeling efforts have been useful for

understanding the dynamics of gene regulatory networks, much less is understood

about how these networks have evolved. In order to gain insights into this process,

we study simple models of gene network evolution in which links are added according

to various selection rules. This chapter provides relevant background for this thesis.

In Section 1.1, we discuss Boolean network models of gene regulation. In Section

1.2, we highlight important structural properties of gene regulatory networks. In

Section 1.3 we review recent work by Pomerance et al. that demonstrates how com-

plex network topology influences stability in Boolean models of genetic control. In

Section 1.4 we highlight how major components of the network change when the

network is directed. In Section 1.5, we discuss how the transition to dynamical in-

stability in Boolean networks can be mapped to a percolation problem. In Section

1.6, we discuss recent studies of ‘explosive’ percolation and how this phenomena

may be relevant in the study of gene network evolution.
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1.1 Boolean models of gene regulation

Boolean networks have been widely used as mathematical models of gene regulation

since their introduction by Kauffman in 1969 [20]. In these models, genes exist in

one of two states: ‘on’, meaning that the gene is expressed or ‘off’, meaning that

the gene is unexpressed. Gene states are synchronously updated at discrete time

steps, and the state of a gene a time t is determined by the states of its inputs at

time t − 1. The interactions between genes are given by a directed network and a

set of deterministic update functions. The network and update functions are meant

to capture the complex biological rules of gene regulation. The update rule for each

gene specifies its state at time t for all possible combinations of its inputs at time

t − 1. For example, the network in figure 1.1 shows that the states of genes B, C

and D can influence the expression of the gene A. Figure 1.1 shows an example

update function (or truth table) for gene A.

Kauffman’s original N −K networks consisted of N nodes (genes), each with

K inputs randomly drawn from the set of N − 1 other genes. In this model, the

update functions are time-independent truth tables in which the 2K entries in the

output column are randomly filled in with a bias b (probability of zero).The state

of the network at each time step t can be represented by an N -vector whose ith

component, xti, 0 or 1, indicates whether gene i is off or on at time t. There are

2N possible network states. Because the system is finite and deterministic, for each

initial condition the system must eventually return to a previously visited state and

the subsequent dynamics will be the same as before. The periodic orbit (or fixed
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Figure 1.1: An example of a network that models a gene A by a corresponding node. It

has three incoming nodes that model genes B, C and D.
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time t time t + 1

gene B gene C gene D gene A

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 1

0 1 1 1

1 0 1 0

1 1 0 1

1 1 1 0

Figure 1.2: Example of a truth table of node A in the network in Figure 1.1. The first

three columns denote the values of the nodes B, C and D. The sets values of the nodes

are listed in lexicographic order by rows.
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Figure 1.3: As the tuning parameter goes through value Pc the order parameter goes

though a phase transition.

point) that is eventually reached is called the ‘attractor’ of the initial condition.

Depending on the parameters K and b, these models can exhibit stable or ‘chaotic’

(unstable) dynamics separated by a critical region (Figure 1.3).

Stability is measured by tracking the normalized Hamming distance, H̄, (i.e.,

fraction of genes whose states differ) as a function of time between two systems

evolved from initially close network states, x0 and x̃0:

H̄(xt, x̃t) =
1

N

N∑
i

|xti − x̃ti|. (1.1)

In stable systems, the Hamming distance decays in time, while for ‘chaotic’ systems,

it grows in time until a saturated level is reached.

In terms of their biological interpretation, the attractors are thought to corre-
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spond to different cell states or different cell types. Real gene networks are thought

to exist near the border between stability and instability. Since cells in general

shouldn’t change state in response to small perturbations like chemical fluctuations,

we expect them to be have some degree of stability. At the same time, we also

expect that cells should be able to achieve a variety of different dynamical patterns

(which are mapped to different functions). The combination of these two desired

features suggests that gene networks may have evolved their structure and dynamics

so that they occupy the ‘critical’ regime.

1.2 Complex structure of regulatory networks

While networks described by Kauffman’s N −K model have simple random struc-

ture, empirically derived gene regulatory networks exhibit much more complex struc-

tures [14] [15] [16] and illustrated in Figure 1.4. In this Section, we discuss important

structural features that are relevant to gene regulatory networks.

For example, many networks, gene regulatory networks included, have degree

distributions that are heavy-tailed [6]. The degree of a node is the number of

other nodes to which it is connected. In heavy-tailed degree distributions, the

median degree is substantially less than the average degree because some nodes

have very high degree even though most have relatively low degrees. In undirected

networks, the distribution of degrees is prescribed by the values pk which specify the

probability that a randomly chosen vertex will have degree k. In directed networks,

the distribution of incoming edges pkin can be different from the distribution of

6



Figure 1.4: Empirically derived gene regulatory network for yeast. The green directed

edges indicates that the origin gene promotes expression of the target gene, red edges

indicates that the source gene inhibits expression of the target gene. Taken from [13].
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outgoing edges pkout .

In N −K networks, the pkin is given by a delta function:

pkin = δ(kin, K) (1.2)

In the the limit of large N , the out degree distribution is described by a Poisson

distribution:

pkout = exp(−K)
Kkout

kout!
. (1.3)

Another important structural property relevant to gene regulatory networks is

assortative mixing. Assortative mixing by degree occurs when nodes connect pref-

erentially to other nodes with similar degree. A network is said to be disassortative

if high degree nodes connect preferentially to low degree nodes. The assortativity

coefficient, r, captures the Pearson correlation of degrees of node pairs connected by

edges. For undirected networks, the assortativity coefficient [6, 7, 8] can be written

as:

r =

∑
jk jk(ejk − qjqk)

σ2
q

, (1.4)

where ejk is the fraction of the links connection a node with remaining degree k

with a node with remaining j. The remaining degree represents the number of

connections from a node reached by following a link, not including the link arrived

on. The variable qk specifies the distribution remaining degree and is given by:

qk =
(k + 1)pk+1∑

j jpj
(1.5)

σq is the standard deviation of this distribution. The value r is 0 for random

(neutral) networks, r > 0 for assortative networks with positive degree correlations

8



Figure 1.5: a) Assortative and b) disassortative network examples. Taken from [5].

between edge-connected node pairs, and r < 0 for disassortative networks with

negative degree correlations. Figure 1.5 illustrates two networks with the same

degree distribution but different levels of assortative mixing.

For directed networks, we can measure the correlation between the in degree

and out degree of source and target nodes connected by a directed link. In addition

to these in-out correlations, we can measure in-in, out-in, and out-out correlations

for source-target pairs connected by edges. In this way, a generalized assortativity

[9] can be defined as follows:

r(α, β) =

∑
i(j

α
i − j̄α)(kβi − k̄β)√∑

i(j
α
i − j̄α)2

√∑
i(k

β
i − k̄β)2

(1.6)

where α, β ∈ in, out, and j̄α and k̄β are the average degrees of α degree of sources

and the β degree of targets, respectively, with the averages calculated over edges.

The value r(in, out) coincides with the directed version of the Newman assortativity

coefficeint, r [6]:
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1.3 How network topology affects stability in gene networks

Network topology is known to affect the transition from stability to instability in

Boolean networks, described above in Sec. 1.1. For N −K networks, Derrida and

Pomeau showed that, for a given value of the bias b, there is a critical number of

connections Kc at which the transition occurs:

Kc =
1

2b(1− b)
. (1.7)

For networks with no correlation between in-degree and out-degree, the same expres-

sion determines the critical average in-degree (and out-degree), 〈kin〉c [24]. Aldana

and Cluzel showed that if correlation exists between node in- and out- degree, a

similar result to Eq. 1.7 holds [12]:

〈K inKout〉
〈K〉

=
1

2p(1− p)
(1.8)

Note that the equation above considers the correlation between the in and out

degrees for individual nodes, not the correlation between the in degree and out

degree of pairs of nodes connected by edges, which is measured by the assortativity

coefficient.

The above results were derived using what is called an ‘annealed’ approxima-

tion: at each time step the output entries of the truth table and randomly redrawn

subject to the bias b and the incoming links are randomly chosen from the set of

remaining nodes.

Pomerance et al. introduced a semi-annealed approximation in order to calcu-

late stability. Their goal was to understand the stability of random update functions
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for a specific network. In the semi-annealed approximation the update functions are

randomized at each time step, but not the topology of the graph. They considered

a generalized model in which the expression bias bi could vary from gene to gene.

An important quantity in the semi-annealed analysis is the sensitivity of a gene,

qi = 2bi(1 − bi) which reflects the probability that a node changes state at time t

given a change in the state of one its inputs at t−1. Because the truth table entries

are randomized at each time step, subject to the bias bi, qi does not depend on time.

If yti represents the probability that the state of i at time t is different along

two trajectories x and x̃ evolved from very close initial conditions, the following

update equation for yi holds for the semi-annealed approximation:

yti = qi

(
1−

∏
j∈Ki

(
1− yt−1j

))
, (1.9)

where Ki denotes the set of nodes with incoming links to i.

The equation is linearized around y(t) = 0 for small perturbations:

yt+1
i ≈ qi

N∑
j=1

Aijyj (1.10)

And thus for Qij = qiAij we have a linear equation yt+1 = Qyt. Then the stability

is defined by the largest λQ:

• λQ > 1, then the zero fixed point is unstable,

• λQ = 1, then the zero fixed point is critical,

• λQ < 1, then the zero fixed point is stable.

This result holds for locally tree-like networks.
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1.4 Connected components in directed and undirected networks

Before we discuss how the transition between stability and instability in Boolean

networks can be mapped to a percolation problem in directed networks, we first

briefly discuss connected components in directed networks and undirected networks.

This set of all nodes that are reachable via a directed path (of any length)

starting at node i is called the OUT component of i and is defined as follows:

OUT(i) = {j|i→ j}

Similarly, a dual concept to OUT , the set of all nodes j from which there is a

directed path (of any length) to node i:

IN(i) = {j|j → i}

For undirected networks,

C(i) ≡ OUT(i) = IN(i).

For directed networks, the strongly connected component of i is the maximal

set of nodes, including i, such that, for every pair of nodes, u and v in the set, there

exists a directed path from u to v and also a directed path from v to u.

SCC(i) = IN(i) ∩OUT(i)

The bow-tie of node i is denoted BT(i) and illustrated in Figure 1.6:

BT(i) = IN(i) ∪OUT(i).

We denote the cardinality of the set as | · |.
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Figure 1.6: Bow-tie structure of node i, in terms of SCC(i), OUT(i), and IN(i).

In the limit of large N , a network is said to percolate if its largest connected

component scales with N . For undirected networks the largest connected component

is called the giant component (GC). For directed networks, we track the sizes of three

different types of components: the giant out component (GOUT), the giant bow-tie

(GBT) and the giant strongly connected component (GSCC):

• |GOUT| = maxi(|OUT|(i))

• |GBT| = maxi(|BT(i)|)

• |GSCC| = maxi(|SCC(i)|)/N

We can consider site or edge percolation on complex networks. In edge perco-

lation, we track the growth of the largest connected component as edges are added

to the systems. In site percolation, we start with a pre-defined network of ‘empty’
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nodes and edges, and we track the growth of network components as nodes are ‘filled

in’. Since we are interested in damage propagation in gene networks, we consider a

node to be ‘filled in’ if it is damaged.

1.5 Mapping Boolean network dynamics to percolation

In 2012, Squires et al. showed that the transition from stability to instability in the

dynamics of Boolean networks can be mapped to an appropriately defined static

site percolation problem [2]. They showed that Eq.1.9 has a similar form to the

condition for site percolation on directed networks.

To begin, Eq. 1.9 can be rewritten without the time dependence:

yi = qi

[
1−

∏
j∈Ki

(1− yj)

]
. (1.11)

Then H̄ = 〈yi〉 represents the fraction of nodes that get damaged in the steady

state. We emphasize that this relation relies on the semi-annealed approximation

of the Boolean dynamics.

Restrepo et al. gave a similar condition for site percolation, also for locally

treelike directed networks:

ηi = 1− qi + qi
∏
j∈Ki

ηj, (1.12)

where ηi is the fraction of site-deleted networks for which node i is not in the

giant out component (GOUT) and qi is the probability that each node is filled in.

|GOUT|/N is the fraction of the nodes in the largest out component in the network

and its expected valueis given by 〈1− ηi〉.
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The equivalence between Eq. 1.11 and Eq. 1.12 shows that if we set 〈yi〉 =

〈1 − ηi〉, that also means H̄ = |GOUT|/N . Hence, the transition from stability

(H̄ = 0) to instability (H̄ > 0) can be mapped onto the percolation transition

for damage propagation in directed networks in which each site is damaged with

probability qi. The percolation transition occurs when |GOUT| scales with N in the

limit of large N , i.e. the transition from |GOUT|/N = 0 to |GOUT|/N | > 0. Here,

GOUT is the largest OUT component in the subnetwork of damaged nodes.

1.6 Explosive percolation transitions in growing networks

Recent work by Achlioptas et al. [19] shows that if edges are added competitively

(described in more detail below) the edge percolation transition appears to be dis-

continuous (first-order) instead of continuous (second-order), as is the case if edges

are added randomly. In our study, we explore how growth of gene networks through

edge selection can be used as a simple model of gene network evolution. We con-

sider extended versions of the competitive processes studied by Achlioptas that take

into account both the directed nature of gene regulatory networks and their need to

avoid the kind of damage propagation discussed in the previous Section. Our exten-

sions are described in the next chapter. Here, we review the well-studied Achlioptas

process.

As with traditional edge percolation, the process starts with N nodes and zero

edges, and then edges are added one at a time. If the edges are added in random

order, we see a continuous phase transition in the growth of the largest connected

15



component, i.e., the giant component. In the Achlioptas competitive process, also

called the Achlioptas Process (AP) links are chosen competitively so as to delay

the onset of the percolation transition. At each step, the best edge is selected from

m = 2 or 3 candidates; m = 1 is the basic random Erdős - Rényi process. For

undirected networks we consider a following process at each time step t:

1. Two candidate edges are chosen at random, i1 − j1 and i2 − j2,

2. If one of the two edges connect nodes in the same connected component, it is

added automatically,

3. Otherwise chose the edge that minimizes the

|C(ik)| × |C(jk)|, k ∈ {1, 2} (1.13)

This process exhibits what is called explosive percolation, meaning that the

phase transition appears discontinuous and is illustrated in Figure 1.7.
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FIG. 1 (color online). The growth of fGC, the fraction of
nodes in the giant component of an undirected network, for
three individual networks with N = 223. The growth process
is repeated using the Erdős-Rényi growth process (red or dark
gray), the Achlioptas process (blue or medium gray), and a
modified Achlioptas process in which three candidate edges,
rather than two, are used at each network growth step (green
or light gray).

[13–21], many of which are believed to exhibit genuine
first-order transitions.
In this paper, we extend the Achlioptas process to di-

rected networks. In a directed network, each edge can
only be traversed in one direction. Directed networks
are widely used to model gene regulation, food webs, neu-
ral networks, citation networks, the world-wide web, and
other systems. However, the existing literature on explo-
sive percolation is exclusively focused on undirected net-
works. Here, we explore a generalization of the Achliop-
tas process to directed networks and study the scaling
properties of this process. We find that competitive edge
percolation on directed networks shares some of the qual-
itative features of the Achlioptas process on undirected
networks, but these features are far less pronounced.
Because many modified percolation models exhibit un-

usual phase transitions, models with significantly differ-
ent properties have all been labeled explosive in the lit-
erature. For the purposes of this paper, the adjective
“explosive” will refer to the unusual features which dis-
tinguish the critical behavior of the Achlioptas process
from both ordinary percolation as well as truly discontin-
uous models. These features are discussed further in the
Results. We have termed the behavior of our directed-
network model “weakly explosive” because it shares some
of these qualities, but only to a limited extent.

II. METHODS

In order to define an Achlioptas-like process on di-
rected networks, we first need to define connectedness
on a directed network. Although there is a single unam-
biguous definition of a “connected component” for undi-

Giant Strongly 
Connected Component 

(GSCC)

Giant in-component (GIN)

Giant out-component (GOUT)

FIG. 2 (color online). An illustration of the “bow-tie” struc-
ture of the giant component in a directed network above the
percolation threshold (see text).

rected networks, there are multiple related definitions for
directed networks [1]. In the algorithms discussed be-
low, we will study four different types of structures to
which a node may belong. In the giant component, these
structures are commonly illustrated with the well-known
“bow-tie diagram” (Fig. 2) [22]. First, the in-component
of a node i, IN(i), is the set of all nodes which have
paths to i. Likewise, the out-component of i, OUT(i),
is the set of all nodes which can be reached on paths
from i. Next, the strongly connected component of i,
SCC(i), is the intersection of IN(i) and OUT(i). Fi-
nally, we define the full bow-tie, BT(i), to be the union
of IN(i) and OUT(i) [23]. Each of these structures is
in some sense analogous to the connected component in
undirected networks. This comparison extends to the
percolation transition in the directed Erdős-Rényi pro-
cess, in which directed edges are successively added be-
tween randomly selected, unconnected pairs of nodes.
At the critical point, a giant strongly connected com-
ponent (GSCC), giant in-component (GIN), and giant
out-component (GOUT) form simultaneously [1], com-
prising the giant bow-tie (GBT). For convenience below,
we will use G to denote any one of the parts of the giant
component of a directed network (GSCC, GIN, GOUT,
or GBT), or for the giant component (GC) of an undi-
rected network. See Table I for a list of acronyms.
Now, we describe a new network growth processes on

directed networks. We will refer to this process as the di-
rected competition process (DCP) to distinguish it from
the Achlioptas process (AP), the Erdős-Rényi process
(ER), and the directed Erdős-Rényi process (DER). It
also consists of repeatedly choosing two random directed
candidate edges i1 → j1 and i2 → j2 from the set of all
distinct unoccupied edges, then selecting one for addition
to the network. As in the Achlioptas process, we auto-
matically select one of the edges if that edge is redundant
to the connectedness of the network, i.e., if there is al-
ready a path from i to j. Otherwise, we select the edge
for which |IN(i)| · |OUT(j)| is minimized. Here, the verti-
cal bars denote cardinality, so |IN(i)| refers to the number
of nodes in IN(i). As in [24, 25], we also consider gener-
alizations of both AP and DCP in which m edges (rather

Figure 1.7: Normal and explosive phase transitions, taken from [1]. ER denotes Erdős

– Rényi (Random) process, AP denotes Achlioptas process (Competitive). The value m

denotes the number of candidate edges considered at every step.
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Chapter 2: Methods

In this chapter we discuss different growth processes as evolution models of gene

regulatory networks. We consider three different kinds of network growth processes:

1. Random, in which directed links between nodes are added between randomly

chosen pairs of nodes.

2. Competitive link addition, in which two ‘potential’ edges are considered and

the one that is expected to delay the transition to instability is added to the

system.

3. Direction selection, in which two nodes are randomly chosen to have an edge

added between them and the direction is selected in order to delay the tran-

sition to instability.

Each of the growth models begin with a specified number of genes N , with each gene

having an bias bi and a corresponding sensitivity qi, which indicates the propensity

for that gene to spread damage through the network. The bias values are used for

damage based processes.

We consider the growth of these networks in two different conditions.

1. Damage propagates through all genes.

18



2. Damage spreads probabilistically through the network, based on the sensitivity

values, qi. In this case, link additions take into account the probabilities of

damage spreading.

In each case we add one edge at a time according to a rule. We then compare

resulting network properties for the different growth rules.

2.1 Random Growth

For the case of random link addition, the growth process proceeds as follows at each

time step:

1. Add a new edge between two randomly selected nodes i and j that are not

already connected by an edge.

2. Keep track of the order parameter, S.

For undirected networks, we consider S to be the size of the the giant compo-

nent, |GC|. The giant component is defined as largest connected component in the

network. For directed networks, S is the size of the giant out component, |GOUT|,

where GOUT is the largest out component of the network.

Each time we start the growth process, we begin with a set of N nodes with

no edges between them.
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2.2 Growth under Selection

As compared to Random link addition, we now consider network growth selection

in which each link is added via a selection process whose objective is to delay the

transition to instability.

2.2.1 Edge Competition

We first consider a rule for Edge Competition in directed networks that is inspired

by the Achlioptas process [19] discussed in Section 1.6. This rule was previously

studied by Squires et al. In this thesis, we extend the results of [1] by analyzing

the structural properties of networks grown according to this rule and also studying

damage propagation in grown networks using a related rule (Section 2.3).

The growth rule for each successive link addition is implemented as follows:

1. Choose two new candidate edges randomly, i1 → j1, i2 → j2, such that both

of them are not in the network already.

2. If there is already a path from ik to jk for one of the k, we choose this edge to

add to the network. If a path exists for both k = 1 and k = 2, we choose one

of the edges at random.

3. Otherwise we choose the more optimal candidate edge based on a fitness func-

tion:

mink=1,2{|IN(ik)| × |OUT (jk)|} (2.1)
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Where |IN(ik)| is the size of the in component of node ik and |OUT(jk)| is the size

of the out component of node jk.

2.2.2 Direction Selection

Here, we consider a process alternative to choosing between two candidate edges in

order to delay the onset of instability, a selection process that minimizes the growth

of GOUT by choosing the direction of the edge between two randomly selected

nodes. For that we choose the edge to go from the node with lower sensitivity to

higher sensitivity.

1. Choose a new edge i→ j randomly.

2. If qj ≥ qi connect the edge in the direction i→ j.

3. If both i and j are damaged update the GOUT.

2.3 Damage Propagation

In the previous section, we considered the growth of GOUT as edges are added

according to different selection rules, assuming that all genes (nodes) are capable of

damage propagation. Here, we study what happens when the genes have different

propensities for propagating damage, which are given by their sensitivity values, qi.

Recall that the sensitivity qi tells us how likely it is for gene i to change state in

response to a change in state of one of its inputs. As before, for growth by selection,

edge are added according to a rule that is designed to delay the onset of global
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damage propagation. Unlike before, the rule now incorporates the gene propensities

for damage propagation.

When we consider probabilisitic damage propagation, we grow the network by

adding edges according to the process described below for Random, Edge Compe-

tition, and Direction Selection, and mark each node i as damaged with probability

qi = 2bi(1 − bi). Here, we modify our definition of GOUT to track the size of

the largest out component for the subnetwork of nodes that are damaged. We as-

sign biases uniformly (b ∼ U [0, 1]), which then gives that the expected value of q,

〈q〉 = 1/4, meaning that approximately a quarter of the nodes will be damaged.

For the Random growth process with probabilistic damage:

1. Each of the N nodes i are marked ‘damaged’ with probability qi. The total

number of damaged nodes is denoted N? (N? ≈ N/4).

2. A random link addition is implemented, as discussed in Section 2.1.

3. When each link is added, the |GOUT|/N? of the damaged subnetwork is cal-

culated. The subnetwork is the set of damaged nodes, and all the edges that

connect pairs of damaged nodes.

Growth via Edge Competition process proceeds as follows:

1. All nodes are marked damaged or not as described above.

2. At each step choose two candidate edges i1 → j1 and i2 → j2.

3. Choose a new edge based on:

min
k=1,2

{qikqjk |IN(ik)| × |OUT (jk)|} (2.2)
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4. If both nodes in the added edge are damaged update |GOUT|/N?.

Since the growth via Direction Selection described in Section 2.2.2 already

incorporates the sensitivity values qi, we don’t need to modify the rule, we just need

to keep track of the size GOUT in the subnetwork of damaged nodes.

For both Edge Competition and Direction Selection, the growth rules take

into account the gene sensitivities in order to limit the damage spread (measured by

the growth of GOUT). In Edge Competition, edges are more likely to be included

if both genes have low sensitivity values (meaning they are less prone to damage

propagation). In Direction Selection, the direction of the edge is selected to run from

the lower sensitivity gene to the higher sensitivity gene because this directionality

reduces the likelihood of damage spreading. We track the growth of GOUT as

well as assortativity coefficients and distribution of strongly connected components

(SCCs). The results are presented in the next chapter.
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Chapter 3: Results

In this chapter we present and analyze numerical results for the growth models

introduced in the previous chapter. In Section 3.1 we show delayed percolation in

undirected network for competitive as compared with random growth processes. We

study the growth of directed networks for both random and selective growth pro-

cesses, under the assumption that damage propagates through all nodes in Section

3.2. We consider the two types of selective growth processes: Edge Competition and

Direction Selection (described in Section 3.2.1 and 3.2.2). In order to compare the

different processes, we study network properties like component sizes and distribu-

tions, and we also track assortativity coefficients during the growth processes. In

Section 3.3, we study growth processes that take into account probabilistic damage

spreading based on the node sensitivity.

3.1 Random and Selective Growth Processes in Undirected Networks

For comparison with the growth of directed networks, out primary interest, we first

recreate the growth of undirected networks for random and competitive processes,

as studied in [1], and described in Section 2.1

Figure 3.1 shows the growth of the giant component as edges are added to the
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system via Random and Competitive processes, for different system sizes (N = 500,

5000, 10000). We see that, compared with the Random growth process, the Com-

petitive process exhibits a delayed transition in the growth of the giant component,

and this transition is more abrupt (or ‘explosive’) when it finally does occur. We

also observe that, as expected, the transition becomes sharper for larger values of

N .

3.2 Random and Selective Growth Processes in Directed Networks

In the previous Section we introduced growth processes for undirected networks.

Now we generalize to directed networks. We consider Random growth and two

types of growth by selection in directed network.

1. Edge Competition – for each step of the growth process two candidate edges are

picked randomly, and one of them is chosen in order to minimize the normalized

size of the giant OUT component, |GOUT|/N , (described in Section 2.2.1).

2. Direction Selection – at each step of the growth process an edge is randomly

picked, and the direction is determined, (described in Section 2.2.2).

picked based on maximizing stability of the network.

The Edge Competition growth process was described in [1], but some of the struc-

tural features we investigate here, like assortativity (described in Section 1.2) were

not shown.

Here, we consider the case in which all nodes spread damage (as described in Section

2.3) before tackling the case of probabilisitic damage spreading in Section 3.3.
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Figure 3.1: In blue is the Competitive growth process. We see that it exhibits a

delayed and more abrupt transition, as compared with the Random process (shown

in black). The thin lines show individual growth processes for individuals networks,

and thick lines show averaged result over 5 runs.
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In Figure ?? we see the growth of the giant out component, GOUT, and the

giant bow-tie, GBT, by selection in red (direction selection) and blue (edge com-

petition) and the Random growth for comparison in black. We see that compared

with the undirected case the Edge Competition growth process the transition does

not appear look as abrupt (although it is still delayed), and in the case of Direction

selection we see that the growth of GOUT and GBT is even further suppressed. For

the Random growth process the transition is smooth for both the growth of GOUT

and GBT with a slightly steeper slope for GBT right after the transition point.

In comparison, for Edge Competition growth model, the GBT size increases more

dramatically at the transition point. The Direction Competition growth process is

very different. Since there are no loops in the network, other than self loops, there

are no SCCs with size greater than one. As a result, the GBT is almost the same

size as the size of the GOUT.

To better understand the structure of the networks growth according to the

different growth rules, we track the in-out assortatitivty coefficients, r(in, out) (Eq.

??), throughout the growth processes (Figure ??). For Random growth, we see

that the assortativity stays near zero, as expected. For Edge Competition, the

assortatitivty starts around zero and decreases until about E/N = 2. This is the

approximate location of the transition in GOUT that we observed in Figure ??.

After the transition, the assortativity begins to increase, but remains negative even

after 5N edges have been added to the system. (We discuss this phenomena in more

detail in Section 3.2.1). In contrast, for the case of Direction Selection, after some

initial fluctuations, the assortativity coefficient decreases almost monotonically.
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Figure 3.3: In-out assortativity coefficients, r(in, out), for average of three growth

processes for N = 2000.
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Figure 3.4: Growth processes in terms of network size. Dotted line denotes N =

1250, dashed N = 2500, N = 5000 nodes accordingly. Each is the result of averaging

over 3 independent experiments (growth processes).

The size of the network is an important feature that affects the accuracy of

the results, as was illustrated in Figure 3.1 for undirected networks.

In Figure 3.4, for the Random case the transition becomes sharper with larger

N , and the difference between the transition for N = 1250 and N = 2500 is visually

much larger than the difference between N = 2500 and N = 5000. Compared with

Random growth for Edge Competition and Direction Selection, the transition occurs

later in the growth process, but does not appear much steeper as in the undirected
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case. In subsequent results, we mostly use N = 5000, unless indicated otherwise.

In this work we do not simulate very large networks, but rather focus on networks

on the order of 1000 nodes, because we are specifically interested in the application

to gene regulatory networks, which are approximately this size.

The rest of the of the chapter provides a more detailed analysis of the processes

introduces above.

3.2.1 Growth via Edge Competition vs. Random Growth

In this Section, we provide more detailed comparison of Random growth process

and Edge Competition growth process. To visualize the difference, we generate

snapshots of the process for a small value of N , keeping in mind that we expect

small network effects. We see differences in the processes, illustrated in Table 3.1.

In Table 3.1 we see that in the beginning of the growth processes at E = 25

the inputs are mostly random, and the competitive process (in this example) has

a larger GOUT component, but in general process at this point (see Figure ??)

we expect to be smaller |GOUT| is smaller for the competitive process before the

transition.

In the later stages of the process, when E = 75, the difference between the sizes of

GOUT are visible the network for the random process is beyond transition point,

and the network for the competitive process is not. In the last row example in Table

3.1, with E = 125, the network of the competitive process has more nodes not in

the GOUT component, than for the random process.
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Properties Edge Competition Random

rc = −0.0827

rrd = 0.0045

|GOUT|c/N = 0.16

|GOUT|rd/N = 0.12 E = 25

rc = −0.2547

rrd = 0.1097

|GOUT|c/N = 0.2

|GOUT|rd/N = 0.46 E = 50

rc = −0.2730

rrd = 0.0064

|GOUT|c/N = 0.5

|GOUT|rd/N = 0.74 E = 75

rc = −0.3446

rrd = −0.1050

|GOUT|c/N = 0.66

|GOUT|rd/N = 0.9 E = 100

rc = −0.2568

rrd = 0.0770

|GOUT|c/N = 0.88

|GOUT|rd/N = 0.94 E = 125

Table 3.1: Edge Competition and Random growth process, with networks shown for

E = 25, 50, 75, 100, 125 edges and N = 50 nodes. The edges added in the current

steps (new edges) are thick, the ones added earlier in thin. The edges in GOUT are

shown in red. The values r denotes assortativity, rd denotes Random, and c – Edge

Competition. 32
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Figure 3.5: Assortativity coefficients averaged over 10 growth processes of network

with Edge Competition for N = 5000.

We consider the assortativity coefficients of the Edge Competition process to

understand the structural properties after transition, in order to quantify the struc-

tural properties of the grown network. In order to do that we trade the assortativity

coefficients r(in, in), r(in, out), r(out, in), and r(out, out), defined in Section 1.2 in

Equation 1.2. The result is shown in Figure 3.5.

Before the transition, that happens at E/N ∼= 2 (see Figure ??) assortativity

coefficients r(in, in) and r(out, out) are slightly positive, r(out, in) is near zero, and

r(in, out) is slightly negative. When E/N is low, the in-out assortativity coeffi-

cient, r(in, out), is negative because the competitive rule minimizes the connections

between nodes with hight in-degree and high out-degree. However, the competi-
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tive rule for edge selection has two major parts, each contributing to the in-out

assortativity coefficient in opposite ways:

1. Add the edge that minimizes the |IN(·)| × |OUT (·)|,

2. Add an edge between a node pair if it is already connected by a path,

The first rule contributes to assortativity being smaller, as it minimizes the

added edges with the |IN(·)| × |OUT (·)| parameter. The second contributes to

making the assortativity coefficient larger, as in this case the network is being filled,

and the edges are added regardless of the IN and the OUT components of the

according edges.

To show that in Figure 3.6 we consider the fraction of the edges that are added

due to (2), i.e. when the edge i→ j is added because there is already a path between

i and j.

We see that the fraction of edges that are added between nodes that already

have a directed path connecting them increases at transition point, and stays at a

large values. The fact that the fraction is large contributes to the in-out assorta-

tivity coefficient growing, because the adding paths between those nodes ’fills in‘

the network and draws edges that have a high |IN(·)| × |OUT (·)| value, causing an

increase of assortativity.

Next we study the ‘main building block’, Strongly Connecting Components,

SCC, of the network at each step of the growth process in order to quantify differ-

ences between the randomly built graph and the network built with edge competi-

tion process. First we consider the SCC size distribution. The SCC’s themselves are
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Figure 3.6: For Edge Competition, the fraction of edges added between already

connected nodes, for groups of edge additions in increments of N/8.
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Figure 3.7: Number of SCC’s averaged over 10 growth processes of network size

5000. Black color shows random growth average, and blue shows edge competition.

thought to control network dynamics, as the interdependence of the nodes within a

given SCC is larger than for nodes in different SCC’s. Notice that in this work we

consider SCC’s of size two or larger.

In Figure 3.7 is a plot of the number of SCC’s for the Random and the Edge

Competition processes, averaged over a number of growth processes. Notice that

for each individual growth process the value is integer, but the average could be

non-integer.

Figure 3.7 illustrates how the number of SCC’s is different for Random and

Competitive growth processes: at the point of the transition the Edge Competition
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exhibits a large burst of SCC formation, while there are only a small number of

SCCs at the transition point of the random process.

Edge competition by design delays transition, but here we also see that the

competition affects the SCC distribution of the network much well beyond transition

point. After the transition we see that there are more SCC’s for Edge Competition

processes, which means that the non-giant SCC’s delay joining the GSCC.

We also consider in Figure 3.8 the size of the largest SCC for both processes,

and illustrate the average size of the components, that are not the Giant Strongly

Connected Component.

The Figure 3.8 shows that for Random growth process the average size of

non-giant SCC’s is small. For the Edge Competition growth process, the average

size of the non-giant SCC is much larger, on the order of 0.2, meaning that the

competition not only contributes to delay of transition, but also to the delay of

adding new components after percolation. After transition the new edges are more

prone to adding edges between non-giant SCC’s, further delaying growth of the giant

SCC.

3.2.2 Growth via Direction Selection vs. Random Growth

The Direction Selection model introduced in the previous chapter has much different

topology than the previous models. As opposed to the random and the competitive

models, the networks in the Direction Selection has tree structure: there are no loops

in the network aside from self-loops, or any SCC’s of size larger than one. This occurs
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because the growth rule forbids adding an edge from a higher sensitivity node to a

lower sensitivity node.

For Direction Selection case the edges only go from nodes with higher sensitiv-

ity values to nodes with lower sensitivity values. So in the network below, in Table

3.2 we consider the network with nodes ordered by sensitivity ascending order. For

comparison we also consider the Random growth process with nodes plotted in a line

with random ordering (as there are no sensitivity values in the Random growth pro-

cess). To measure we keep track of the assortativity coefficient and the |GOUT |/N

parameter.
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Properties Direction Selection Properties Random Graph

|GOUTd|/N = 0.25 |GOUTrd|/N = 0.25

rd = −0.25 rrd = −0.6202

|GOUTd|/N = 0.35 |GOUTrd|/N = 0.55

rd = −0.2325 rrd = 0.5199

|GOUTd|/N = 0.8 |GOUTrd|/N = 0.8

rd = −0.4710 rrd = 0.2860

|GOUTd|/N = 0.9 |GOUTrd|/N = 0.9

rd = −0.428 rrd = −0.0879

Table 3.2: The Direction Selection growth process networks, with 20 nodes, for snapshots of the growth process with E = 10,

E = 20, E = 30 and E = 40 edges. The properties reported are the normalized size of GOUT and the in-out assortativity

coefficient, d stands for Direction Selection growth process, and rd stands for Random growth process.
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Notice, that in the Table 3.2 above, in the column with Directed Selection, as

the number of edges increases, the nodes on the left with high sensitivity parameter

has a high out-degree and low in-degree. The nodes with low sensitivity parameters

on the contrary have high in-degree and low out-degree. We see that the network

becomes more and more disassortative, as high in-degree nodes connect to low in-

degree and high out-degree nodes connect to low out-degree nodes. The increased

propensity toward disassortativity is also illustrated in Figure 3.3.

3.3 Damage Spreading for Different Growth Processes

In the previous Section, we showed how different selection rules resulted in different

transitions in component sizes, for GOUT, GSCC, and GBT, assuming that all

nodes spread damage. In this Section, we consider probabilistic damage spreading

based on the node sensitivity values.

For the Edge Competition growth process in the context of damage propaga-

tion, we modify the growth rule of equation 2.1 to select the edge

min
k=1,2

{qikqjk |IN(ik)| × |OUT (jk)|} (3.1)

For k = {1, 2}. The value qik is the sensitivity value of ik.

Independent of edges have been added according to the growth process rule,

we go designate each node i as damaged with probability qi. This means that

approximately 0.25 of the nodes will be designated as damaged and nodes with

higher sensitivity will be more likely to be damaged. Using this damage demarcation,

we track the sizes of the connected components only including damaged nodes.
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Figure 3.9: Transitions for damage sensitive networks, for network size N = 50000, with

averaging over five growth processes. Individual processes are shown in thin, the average

is shown in thick color.

In Figure 3.9 consider the the |GOUT?|/N?, where N? is the size of the sub-

network of damage-sensitive nodes, and GOUT? is the the biggest OUT component

for only damaged nodes of the network. The competitive process and the damage

spread process can correlate significantly, which we illustrate below.

Notice that in Fig 3.9 the order transitions moments are interchanged from

the order of transitions without damage propagation in Fig ??.

The transition happens at a much larger value of E/N , than non-damaged

process does. The damage based process has transition at E ≈ 4N for random
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Figure 3.10: Assortativity for damage spread networks. Edge Competitions is con-

sidered with probabilistic damage spread.

growth process, at E ≈ 10N and at E ≈ 15N . As discussed in the background, the

size of the damage sensitive subnetwork is on average four times smaller than the

original network, N? ≈ N/4. This means that for the random case the percolation

will happen on average four times slower than in the un-damaged case, E/N ≈ 4.

The subnetwork of the original evolved network that consists of damage sen-

sitive nodes has its own structural properties. In Figure 3.10 we consider the assor-

tativity coefficients.

We see a similar behavior as in networks without damage spread (in Figure
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3.3), but with larger values of assortativity in absolute values. The process is much

longer, goes up to E = 50N?.

In Table 3.3 we illustrate the structure of the Edge Competition growth pro-

cess.
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Properties Random Graph Competitive link addition

rrd = -0.42

|GOUT|rd/N = 0.15

rc = NaN

|GOUT|c/N = 0.1053

rrd = 0.05

|GOUT|rd/N = 0.15

rc = NaN

|GOUT|c/N = 0.1053

(Continued on next page)
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Properties Random Graph Competitive link addition

rrd = 0.14

|GOUT|rd/N = 0.3

rc = 0.3889

|GOUT|c/N = 0.2105

rrd = 0.06

|GOUT|rd/N = 0.3

rc = 0.3858

|GOUT|c/N = 0.2105

(Continued on next page)
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Properties Random Graph Competitive link addition

rrd = -0.11

|GOUT|rd/N = 0.5

rc = 0.1724

|GOUT|c/N = 0.3158

Table 3.3: (Continued from previous page). Random network and competitive link addition. The edges between damaged

nodes are non-dashed, others are dashed. The red nodes and edges are showing the largest OUT component in the damaged

subgraph. Index c stands for Competitive, index rd stands for Random.
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Chapter 4: Conclusions

In this thesis, we studied the growth processes of Boolean networks as simple models

of evolution of gene regulatory networks. The models are based on growth models

in which links are added via different selection rules. The models are inspired by

recent work on ‘explosive’ percolation, which shows that when network links are

added through competitive rather than random processes, the connectivity phase

transition can be significantly delayed, and when it is reached, it appears to be first

order instead of second order. We find that by modifying the traditional framework

for networks grown via competitive link addition to capture how gene networks

evolve to avoid damage propagation, we also see significant delays in the transition

that depend on the selection rules, but the transitions always appears continuous

rather than ‘explosive’. We consider two different selection rules for network growth:

Edge Competition and Direction Selection. We see that both Edge Competition and

Direction Selection delay the onset of the transition to global damage propagation.

If we consider the case in which all genes propagate damage, the damage propaga-

tion is more suppressed for Direction Selection than for Edge Competition. If we

consider that nodes propagate damage probabilistically based on their sensitivities,

and that these sensitivity values influence the growth process, then the reverse is
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true: damage propagation is more suppressed for Edge Competition than for Di-

rection Selection. For both Edge Competition and Direction Selection, we see that

the networks become more and more disassortative as the system approaches the

transition to global damage spreading. For Edge Competition, the assortativity

coefficient begins to increase after the transition, while for Direction Selection, it

continues to decrease even after the transition.
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Glossary of Frequently Used Notation

N number of nodes in a network
E number of edges in a network
kin in-degree
kout out-degree
A adjacency matrix of network
bi bias of node i
qi sensitivity of node i
r assortativity coefficient of a network
H̄ Hamming distance
m number of choices for next generation of the growth process
S order parameter
κ maximum jump
t time
pk degree on node k
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