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Nonlinearity causes information loss. The phase retrieval problem, or the

phaseless reconstruction problem, seeks to reconstruct a signal from the magnitudes

of linear measurements. With a more complicated design, convolutional neural

networks use nonlinearity to extract useful features. We can model both problems

in a frame-theoretic setting. With the existence of a noise, it is important to study

the stability of the phaseless reconstruction and the feature extraction part of the

convolutional neural networks. We prove the Lipschitz properties in both cases. In

the phaseless reconstruction problem, we show that phase retrievability implies a

bi-Lipschitz reconstruction map, which can be extended to the Euclidean space to

accommodate noises while remaining to be stable. In the deep learning problem,

we set up a general framework for the convolutional neural networks and provide an

approach for computing the Lipschitz constants.
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Chapter 1: Background

1.1 Signal reconstruction without phase

Phase retrieval is a fundamental problem in signal reconstruction. In this

problem we seek to recover the phase of a signal from the magnitude of linear

measurements. It has important applications in X-ray crystallography, quantum

information and speech recognition.

1.1.1 X-ray crystallography

Figure 1.1: The experiment settings for X-ray crystallography.
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X-ray crystallography is an important technique for determining the atomic

and molecular structure of a crystal. Figure 1.1 illustrates the measurement process.

The structure of the crystal causes the X-ray to diffract, and the diffracted pattern is

produced on the far-field. The diffracted pattern only contains the magnitude of the

Fourier transform of the crystal. A detailed description can be found in [49,80,90].

In X-ray crystallography, or more generally, coherent diffractive imaging (CDI),

we only have information on the magnitude of the linearly transformed data. The

phase information is difficult to get by experiment due to the high oscillation rate

(∼ 1015Hz) of the electromagnetic field. Therefore, we seek to regain the phase

information from the magnitude measurements and reconstruct the crystal image.

X-ray crystallography set a start of the phase retrieval problems. The earli-

est and most popular method is the alternating projection algorithms proposed by

Gerchberg and Saxton, later improved by Fienup [49]. There is no guarantee of

convergence in that iteration method, and it does not work well for 3D images. The

phase retrieval problem arouses interests of a lot of mathematicians, and is gradually

generalized to a setting that more applications fit in.

1.1.2 Quantum information

In quantum tomography, the quantum state is identified from the statistics of

the measurements [39, 62]. Suppose we have a d-dimensional Hilbert space H. A

quantum state is a Hermitian matrix ρ with trace tr(ρ) = 1.

The quantum measurements are generally described by positive operator val-
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ued measures (POVM’s). That is,

A = {A1, · · · , Am} (1.1)

where each Ak, k = 1, · · · ,m, is Hermitian. The measurement gives

A(ρ) = (trρA1, · · · , trρAm) . (1.2)

If ρ is a pure state, that is, ρ = |ψ〉〈ψ|, then the recovery of the state falls

into the problem of generalized phase retrieval, as studied in [103]. Moreover, if we

choose to use rank-one POVM’s (Ak = |fk〉〈fk|, k = 1, · · · ,m), then we have

trρAk = |〈ψ|fk〉|2 . (1.3)

In this case, we see that the quantum measurements give (squared) magnitude

of the linear measurements of the state. The reconstruction of the underlying state

is thus modeled by the phase retrieval problem.

1.1.3 Audio signal processing

The phase retrieval problem finds its application in audio processing as well

[16]. In speech recognition, sampled speech signals are first transformed to the

time-frequency domain via discrete windowed Fourier transform. In most signal

enhancement algorithms, we only modify the amplitude of the transformed signal

in the time-frequency domain and keep its noisy phase.

To illustrate, we take the example from [16]. The speech signal is sampled

as {x(t) : t = 0, 1, · · · , T − 1}. The fast windowed Fourier transform gives for
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ω = 0, 1, · · · ,M − 1 that

X(k, w) =
M−1∑
t=0

g(t)x(t+ kN)e−2πiωt/M , k = 0, 1, · · · , T −M
N

. (1.4)

where g is the analysis window function, M is the window size and N is the time

step. In the Ephraim-Malah noise reduction method, we apply a nonlinear transform

on |X(k, ω)| that reads

Y (k, ω) =

√
π

2

v(k, ω)

γ(k, ω)
exp

(
−v(k, ω)

2

)[
(1 + v(k, ω))I0

(
v(k, ω)

2

)
+

v(k, ω)I1

(
v(k, ω)

2

)]
·
∣∣∣X(k, ω)

∣∣∣ , (1.5)

where I0 and I1 are Bessel functions and v and γ are estimates to some SNRs. The

enhanced speech signal is then

x](t) =

(T−M)/N∑
k=0

M−1∑
ω=0

Y (k, ω)
X(k, ω)

|X(k, ω)|
e2πiω(t−kN)/Mh(t− kN) , (1.6)

where h is the synthesis window function. We see that in this example, in the

representation domain, we do some manipulation without using the information

from the phase. In fact, the phase in this case is noisy and it is desired that we do

reconstruction without phase.

1.2 Signal classification using convolutional neural networks

Convolutional neural networks (CNNs) have enjoyed conspicuous success in

various pattern recognition tasks [68,70,78,95]. CNNs are artificial neural networks

that use convolution in place of general matrix multiplication in at least one place
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[54]. The convolution operation, which we denote by ∗, is understood to be

f ∗ g(t) =

∫
f(s)g(t− s)ds

=

∫
f(t− s)g(s)ds ,

(1.7)

where the integral domain and the measure are to be specified depending on the

detailed problem settings. In the discrete 2D case, the convolution reads as a left

multiplication by a Toepliz matrix.

In CNNs, we use convolution between a signal and a filter. The filter in this

case is called the kernel. In most applications, we take kernels of much smaller

size than the input signals. In this case, the machine learning system will have the

sparse connection property (see [54], Chapter 9), which roughly means that a pixel

in the input only affects a few pixels in the output. If we have a deep structure,

then we expect that in shallow layers each pixel in the output relates to only the

neighboring pixels in the input, while in deep layers each pixel is affected by all the

pixels in the input. It is therefore believed that CNNs are able to catch different

levels of features in different layers.

Another property that makes convolution important is its equivariance to

translations (in 1D case, it is said to be time-invariant), which says that the oper-

ation of convolution commutes with translation. Intuitively, if we move the object

by certain pixels, the output will move by the same number of pixels.
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1.2.1 The AlexNet and GoogleNet

The AlexNet (see [68]) and GoogleNet ( [95]) are typical CNNs used in image

classification. While they have different structures and the latter is much deeper

than the former, they do have in common that they both contain convolution layers,

detection layers and pooling layers. Their structures are illustrated in Figure 1.2

and 1.3, respectively.

Figure 1.2: The AlexNet (the structure is the CNN used in [68]).

Figure 1.3: The GoogleNet (the struture is the CNN used in [95]).

In a detector layer, a nonlinear function called the activation function is ap-

plied entriwise to the signal. This function in some cases has biological motivations
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(for instance the rectifier, which is defined to be f(x) = max{0, x}) and in some

cases (such as softmax function) has a probabilistic explanation.

In a pooling layer, the output of the network is replaced with a summary statis-

tic of nearby outputs ( [54], Chapter 9). In both the AlexNet and the GoogleNet,

the maximum of pixels in a certain neighborhood is taken. On one hand, pooling

reduces the computing complexity; on the other hand, it makes the representation

to be approximately invariant to small translations.

In AlexNet and GoogleNet, the coefficients in the network are trained using

certain training data. The representation of images are sent through fully connected

layers and a softmax layer to output the classification results.

1.2.2 The Scattering Transform

The scattering network is a deep neural network introduced in [78]. It has

been successfully applied in several image classification tasks [32, 63].

The scattering network is a CNN because it has convolutional layers, detection

layers as well as pooling layers. It is different from the traditional CNNs for the

following reasons: first, the convolutional layers are prescribed as certain class of

wavelets; second, the nonlinearity is the absolute value instead of the rectifier; third,

in the pooling layer the scattering network uses a lower frequency filter to take local

averages.

An input of a scattering network propagates along the paths from the first

layer of the network to an output. A path is defined as a sequence of filters. For
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instance, in Figure 1.4, (g1,1, g2,1, g3,1, g4,1) is a path, while (g1,2, g2,1, g3,1, g4,1) is not

a path. If the paths are labeled in this way we can denote the path to be the indexes,

for instance, ((1, 1), (2, 1), (3, 1), (4, 1)). Since we have a tree-structured network the

paths are well-defined.

The scattering network is also called a scattering transform. There is a sur-

jective map from Rd+ to the set of all paths (see [78], Chapter 3) and thus the

scattering network is comparable to the traditional Fourier transform.

A typical scattering transform is illustrated in Figure 1.4. We see that it is a

tree-structured CNN and there is an output from every layer. In terms of CNN, we

have only presented the feature extraction of the scattering network, and in practice,

we put a classifier such as a PCA layer or an SVM layer (see [32]) at the bottom.

As can be seen in Figure 1.4, an input signal propagates through the paths of

the network to generate outputs in all the layers. For instance, y4,1 on the top right

corner reads

y4,1(t) = |||f ∗ g1,1| ∗ g2,1| ∗ g3,1| ∗ φ4(t) .

In scattering networks, the filters gi,j’s are taken to be different scales of a mother

wavelet ψ, that is, we take dilations of ψ:

gi,j(t) = ψλi,j(t) := λdi,jψ(λi,jt) , (1.8)

and φi is taken to be a fixed scale of the scaling function φ associated with ψ, that

is,

φi(t) = 2−Jdφ(2−Jt), ∀i = 1, 2, 3, · · · . (1.9)

A scattering network is promising because some good properties can be demon-
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Figure 1.4: The scattering network.

strated. In particular, a scattering transform is approximately invariant to transla-

tions, and stable in correspondence with small deformations. These properties are

important when we want to do image classification because we hope that translations

and deformations will not change the class of an image. However, these properties

hold to be true only if we use specifically designed wavelets. For instance, in 1D

one possibility is to use the cubic spline Battle-Lemarié wavelets (see [44] for an

instruction on how to construct this family of wavelets), with the scaling function

given by

φ̂(ξ) =
16
√

315 sin4( ξ
2
)

√
2πξ4

√
4 cos6( ξ

2
) + 114 cos4(( ξ

2
) + 180 cos2( ξ

2
) + 17

(1.10)
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and the mother wavelet given by

ψ̂(ξ) =
256
√

315√
2π

e
iξ
2

sin8( ξ
4
)

ξ4

(
F ( ξ

4
)

G( ξ
4
)G( ξ

2
)

) 1
2

, (1.11)

where

F (ξ) = 4 sin6(ξ) + 114 sin4(ξ) + 180 sin2(ξ) + 17

and

G(ξ) = 4 cos6(ξ) + 114 cos4(ξ) + 180 cos2(ξ) + 17 .

In practice, specifically in image classification, it is possible to take a Morlet wavelet

and and achieve state-of-the-art result (see [32]).

In a scattering network, the translation invariance is achieved when the pooling

layer contains only extremely low-pass filters. This is not practical and the resulting

feature would be useless because almost all information is lost. Therefore, the

invariance property that makes it work is still mainly the equivariance property due

to the use of convolution.

In [105,106], the authors give a more general structure for scattering networks.

Instead of families of wavelets, the authors consider the filters that compose a semi-

discrete frame. They show the equivariance and stability of a general scattering

network. We discuss the semi-discrete frames in Section 2.1 and compare their

structure with our general framework in Chapter 4.
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Chapter 2: Mathematical Preliminaries

2.1 Frame theory

In [16], the authors study the phase retrieval problem using the frames, which

is a useful tool in applied harmonic analysis and signal processing. An extended

study of frame theory can be found in [37,38,41]. We take the definition for a finite

frame in a Hilbert space.

Definition 2.1.1. Let H be a n-dimensional Hilbert space. F = {f1, f2, . . . , fm} ⊂

H is a frame for H if there exist constants A,B > 0 such that

A ‖x‖2 ≤
m∑
k=1

|〈x, fk〉|2 ≤ B ‖x‖2 (2.1)

for any x ∈ H.

The constants A and B in the above is called lower and upper frame bounds,

respectively. A frame F is tight if it is possible to choose A = B in (2.1). Further,

if the optimal frame bounds are A = B = 1, then the frame is said to be a Parseval

frame. If we only have the second inequality in (2.1), then we call F a Bessel

sequence.

Since we have a finite dimensional space and a finite frame, we have the fol-

lowing equivalent definition given as a lemma.
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Lemma 2.1.2. (see [41], Chapter 1) F is a frame for H if only if it spans H.

Given a frame F = {f1, f2, . . . , fm}, if we consider x ∈ H as a signal, we

can take linear measurements with the frames as 〈x, fk〉 for k = 1, · · · ,m. We can

perfectly reconstruct x in this case.

Definition 2.1.3. Let F = {f1, f2, . . . , fm} be a frame in H. The analysis operator

T associated with F is defined by

T : H → Cm T (x) = {〈x, fk〉}mk=1 ; (2.2)

whereas the synthesis operator T ∗ is defined by

T ∗ : Cm → H T ∗(c) =
m∑
k=1

ckfk . (2.3)

The frame operator S : H → H is defined to be S = T ∗T .

In this case S is always invertible by the definition of frames, and the perfect

reconstruction formula is given by

x = S−1Sx =
m∑
k=1

〈x, fk〉S−1fk . (2.4)

Therefore, we can see that in the case of linear measurements, it is rather

easy to reconstruct the signal. We never lose information (and even have redundant

information) in the process of measurements, and therefore it does not take much

effort to get back. However, if we make nonlinear measurements, the process of

reconstruction will be much more difficult, as we will discuss in later chapters.

For convolutional neural networks, the linear measurements are taken using

convolutions. We introduce the semi-discrete frames as defined in [105,106]. In this

case, we specify the signals to be taken from L2(Rd).
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Definition 2.1.4. Let F = {fk}k∈I ⊂ L1(Rd)∩L2(Rd) where I is an index set that

is at most countable. F is said to form the atoms of a semi-discrete Bessel sequence

if there exists a constant B > 0 such that

∑
k∈I

‖x ∗ fk‖2
2 ≤ B ‖x‖2

2 (2.5)

for any x ∈ L2(H). Further, we say F form the atoms of a semi-discrete frame if

there is also a constant A > 0 such that

A ‖x‖2
2 ≤

∑
k∈I

‖x ∗ fk‖2
2 ≤ B ‖x‖2

2 (2.6)

for any x ∈ L2(H).

If we define the Fourier transform of a function f ∈ L1(Rd) to be

f̂(ω) =

∫
Rd
f(t)e−2πiω·tdt , (2.7)

we have the Parseval’s relation

‖x ∗ fk‖2 =
∥∥∥x̂ · f̂k∥∥∥

2
(2.8)

for each k.

According to the above, it makes sense to consider filters that lie in some

larger space (for instance, that contains “the delta function”) when we talk about

the application in CNNs. We are going to define that space in Chapter 4. We

introduce some preliminary definitions that will be used there.

Definition 2.1.5. (Algebra over a field) Let K be a field. Let V be a vector space

over K equipped with an additional binary operation (called the product)

· : V × V → V . (2.9)
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Then V is said to be an algebra over K if for all x, y, z ∈ V and all a, b ∈ V ,

1. (x+ y) · z = x · z + y · z ;

2. x · (y + z) = x · y + x · z ;

3. (ax) · (by) = (ab)x · y .

Definition 2.1.6. (see [50]) A Banach algebra is an algebra B over C equipped with

a norm with respect to which it is a Banach space and which satisfies

‖xy‖ ≤ ‖x‖ ‖y‖ (2.10)

for all x, y ∈ B.

2.2 Holomorphic functional calculus

Let T be a bounded linear operator on a Banach space, the holomorphic

functional calculus relates a function of T with its spectrum ρ(T ). A detailed study

can be found in [85], Chapter IX. We will mainly focus on the case where A is a

Hermitian matrix.

Definition 2.2.1. Let B be a Banach space and A be a linear operator. The resolvent

transformation of A is defined to be

RA(z) = (A− zI)−1 . (2.11)

The following theorem states a decomposition result for a general linear trans-

formation.
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Theorem 2.2.2. (see [85], Chapter XI.148) Let A be a bounded linear map of the

Banach space B and let ρ and ρ′ be two complementary isolated parts of its spectrum.

Then B = Bρ ⊕ Bρ′ each of which is transformed by A to itself. The projection Pρ

on Bρ is equal to

Pρ = − 1

2πi

∫
∂D

RA(z)dz , (2.12)

taken along the boundary of an arbitrary domain D which is admissible with respect

to A and contains all elements in ρ and no element in ρ′.

In the case where A is a Hermitian matrix, the above theorem reads

Theorem 2.2.3. Let A be an n-by-n Hermitian matrix with spectral decomposition

A =
n∑
j=1

λjPj (2.13)

where λj’s are the eigenvalues of A and Pj’s are the corresponding orthogonal pro-

jections. Then we have for each j = 1, · · · , n that

Pj = − 1

2πi

∫
∂Γj

RA(z)dz , (2.14)

where Γj is a Jordan curve that encloses only one eigenvalue λj.

A Hermitian matrix A has n eigenvalues (counting multiplicities), which we

denote as λj or λj(A) for j = 1, · · · , n. In the following chapters, unless otherwise

specified, we shall always assume that λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

2.3 Lipschitz continuity and extension theorems

The Lipschitz property (see [26]) is closely related to the stability of both the

phaseless reconstruction and the CNN.
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Definition 2.3.1. Let (X, dX) and (Y, dY ) be two metric spaces where dX and dY

are the distance functions respectively. A continuous map f : X → Y is said to be

Lipschitz continuous, or Lipschitz, if

sup
x1,x2∈X

dY (f(x1), f(x2))

dX (x1, x2)
<∞ . (2.15)

In this case, we denote

Lip(f) := sup
x1,x2∈X

dY (f(x1), f(x2))

dX (x1, x2)
. (2.16)

The Lipschitz continuity implies an upper bound. In some cases it makes sense

to introduce a lower bound as well. We define the bi-Lipschitz property as follows.

Definition 2.3.2. Let (X, dX) and (Y, dY ) be two metric spaces where dX and dY

are the distance functions respectively. A continuous map f : X → Y is said to be

bi-Lipschitz, if there exist constants A and B, with 0 < A ≤ B <∞, such that

AdX (x1, x2) ≤ dY (f(x1), f(x2)) ≤ BdX (x1, x2) (2.17)

Obviously, if a function f is bi-Lipschitz, then it is injective. However, in gen-

eral the injectivity of a Lipschitz function does not imply the bi-Lipschitz property.

If a Lipschitz continuous function is defined only on a subspace of a metric

space, under some conditions it is possible to extend the function to the whole space

while keeping the Lipschitz constant. We state the Kirszbraun Theorem (see [104]).

Definition 2.3.3. (The Kirszbraun Property (K)) Let X and Y be two metric

spaces with metric dX and dY respectively. (X, Y ) is said to have Property (K) if

for any pair of families of closed balls {B(xi, ri) : i ∈ I}, {B(yi, ri) : i ∈ I}, such
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that dY (yi, yj) ≤ dX(xi, xj) for each i, j ∈ I, it holds that

⋂
i∈I

B(xi, ri) 6= ∅ ⇒
⋂
i∈I

B(yi, ri) 6= ∅ . (2.18)

In general it may not be obvious whether a given pair of metric spaces satis-

fies the Property (K). Nevertheless, if X and Y are both Hilbert spaces, then the

Property (K) is guaranteed. We state it as a theorem.

Theorem 2.3.4. ( [104], Chapter 10) Suppose X and Y are Hilbert spaces and

dX and dY are the metrics induced by the inner products in each space respectively.

Then (X, Y ) has Property (K).

The Kirszbraun Theorem states the following:

Theorem 2.3.5. ( [104], Chapter 10) Let X and Y be two metric spaces and (X, Y )

has Property (K). Suppose U is a subset of X and f : U → Y is a Lipschitz map.

Then there exists a Lipschitz map F : X → Y which extends f to X such that

F |U = f and Lip(F ) = Lip(f).

2.4 Random processes

Random processes are useful models in signal processing. In this section, we

define the basic concepts that will be used later. We refer to [67] for a detailed

discussion.

Definition 2.4.1. A family of random variables Xt : t ∈ T defined on a common

probability space (Ω,F,P) is called a random process if T is a subset of the real line

and it is called a random field if T is multi-dimensional.
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When there is no misunderstanding, we shall call Xt a random process regard-

less of T. A trajectory of Xt is the realization Xω(t) for some fixed ω ∈ Ω.

Now we introduce the notion of strict and wide sense stationary (SSS and

WSS) processes.

Definition 2.4.2. A random process Xt is called strict sense stationary (SSS) if

for any t1, · · · , tn ∈ T and A1, · · · , An ∈ F the probabilities

P
{
Xt1+τ ∈ A1, · · · , Xtn+τ ∈ An

}
(2.19)

does not depend on τ , where τ ∈ T.

Definition 2.4.3. A random process Xt is called wide sense stationary (WSS)

if there exist a constant (the expectation) µ and a function (the auto-correlation)

R(t), t ∈ T such that E(Xt) = µ and E(XtX̄s) = R(t− s) for all t, s ∈ T.

Obviously, if the second moment is finite, then SSS implies WSS. For a WSS

process, the power spectral density (PSD) is the Fourier transform of the autocor-

relation. This is the Wiener-Khinchin theorem (see [82], Chapter 10):

Theorem 2.4.4. (Wiener-Khinchin) Let X = X(t) be a WSS process. Let SX(ω) :=

limT→∞ E
[∣∣∣(2T )−1

∫ T
−T X(t)e−2πiωtdt

∣∣∣2] be the spectral power density and let RX(t) =

E
[
X(t)X̄(t− τ)

]
be the auto-correlation function. Then

SX(ω) = R̂X(ω) . (2.20)
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Chapter 3: Stable reconstruction for the phase retrieval problem

3.1 Frame settings of the phase retrieval problem

We first give a rigorous setting of the phase retrieval problem, in the language

of frame theory, introduced in Chapter 2.1.

3.1.1 The measurement maps

Let H be a n-dimensional real or complex Hilbert space, in practice H = Rd

or Cn. Assume that F = {f1, · · · , fm} is a frame for H. We denote the nonlinear

measurement maps α and β to be

α : H → Rm, α(x) = (|〈x, fk〉|)1≤k≤m , (3.1)

and

β : H → Rm, β(x) =
(
|〈x, fk〉|2

)
1≤k≤m . (3.2)

We call α the magnitude measurement map and β the square measurement map.

Note that β is the entriwise square of α. Also, there is an ambiguity of a

universal phase, that is,

α(x) = α(eiφx), ∀φ ∈ [0, 2π) . (3.3)
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Therefore, we consider an equivalence relation ∼ defined by x ∼ y if and only if

there is a scalar a with |a| = 1 such that y = ax. Let Ĥ denote the collection of the

equivalence classes and x̂ denote the elements in Ĥ. Now we read α : Ĥ → Rm and

β : Ĥ → Rm.

The phase retrieval problem, or the phaseless reconstruction problem, refers to

analyzing when α (or equivalently, β) is an injective map, and in this case to finding

“good” left inverses. The frame F is said to be phase retrievable if the nonlinear

map α (or β) is injective. We also say α (or β) is phase retrievable in the case.

3.1.2 Distance function of the quotient space

In general, a quotient space induced by an equivalence relation is not neces-

sarily metrizable. Nevertheless, in the setting described above, there are natural

distance functions associated with α and β.

We consider two classes of metrics (distances), respectively:

(1) the class of natural metrics. For every 1 ≤ p ≤ ∞ and x, y ∈ H, we define

Dp(x̂, ŷ) = min
|a|=1
‖x− ay‖p . (3.4)

When no subscript is used, ‖·‖ denotes the Euclidean norm, ‖·‖ = ‖·‖2.

(2) the class of matrix norm induced metrics. For every 1 ≤ p ≤ ∞ and x, y ∈ H,

we define

dp(x̂, ŷ) = ‖xx∗ − yy∗‖p =


(∑n

k=1(σk)
p

)1/p

for 1 ≤ p <∞

max1≤k≤n σk for p =∞
, (3.5)

where (σk)1≤k≤n are the singular values of the operator xx∗ − yy∗, which is of rank
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at most 2. Here x∗ denotes the adjoint of x (see [12] for a detailed discussion), which

is the transpose conjugate of x if H = Rn or Cn.

Our choice in (3.5) corresponds to the class of Schatten norms. In particular,

d∞ corresponds to the operator norm ‖·‖op in Sym(H) = {T : H → H , T = T ∗}; d2

corresponds to the Frobenius norm ‖·‖Fr in Sym(H); d1 corresponds to the nuclear

norm ‖·‖∗ in Sym(H). Specifically, we have

d∞(x, y) = ‖xx∗ − yy∗‖op , d2(x, y) = ‖xx∗ − yy∗‖Fr ,

d1(x, y) = ‖xx∗ − yy∗‖∗ .

Note that the Frobenius norm ‖T‖Fr =
√

tr(TT ∗) induces the Euclidean distance

on Sym(H). As a consequence of Lemma 3.8 in [12], we have:

d∞(x, y) =
1

2
| ‖x‖2 − ‖y‖2 |+ 1

2

√
(‖x‖2 + ‖y‖2)2 − 4| 〈x, y〉 |2 ,

d2(x, y) =

√
‖x‖4 + ‖y‖4 − 2| 〈x, y〉 |2 ,

d1(x, y) =

√
(‖x‖2 + ‖y‖2)2 − 4| 〈x, y〉 |2 .

To study the above distances it is important to study eigenvalues of symmetric

matrices. Let Sp,q(H) denote the set of symmetric operators that have at most

p strictly positive eigenvalues and q strictly negative eigenvalues. In particular,

S1,0(H) is the set of non-negative symmetric operators of rank at most one:

S1,0(H) = {xx∗, x ∈ H} . (3.6)

If H = Rn or Cn, then Sym(H) is the set of n-dimensional Hermitian matrices.

Theorem 3.1.1. We have the following statements regarding Dp and dp:
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1. For each 1 ≤ p ≤ ∞, Dp and dp are well-defined metrics (distances) on Ĥ.

2. (Dp)1≤p≤∞ are equivalent metrics, that is, each Dp induces the same topology

on Ĥ as D1. Additionally, for every 1 ≤ p, q ≤ ∞ the embedding i : (Ĥ, Dp)→

(Ĥ, Dq), i(x) = x, is Lipschitz with Lipschitz constant

LDp,q,n = max(1, n
1
q
− 1
p ). (3.7)

3. For 1 ≤ p ≤ ∞, (dp)1≤p≤∞ are equivalent metrics, that is each dp induces the

same topology on Ĥ as d1. Additionally, for every 1 ≤ p, q ≤ ∞ the embedding

i : (Ĥ, dp)→ (Ĥ, dq), i(x) = x, is Lipschitz with Lipschitz constant

Ldp,q,n = max(1, 2
1
q
− 1
p ). (3.8)

4. The identity map i : (Ĥ, Dp)→ (Ĥ, dp), i(x) = x, is continuous with continu-

ous inverse. However it is not Lipschitz, nor is its inverse.

5. The metric space (Ĥ, Dp) is Lipschitz isomorphic to S1,0(H) endowed with

Schatten norm ‖·‖p. The isomorphism is given by the map

κα : Ĥ → S1,0(H) , κα(x) =


1
‖x‖xx

∗ if x 6= 0

0 if x = 0

. (3.9)

The embedding κα is bi-Lipschitz with the lower Lipschitz constant

min(2
1
2
− 1
p , n

1
p
− 1

2 )

and the upper Lipschitz constant

√
2 max(n

1
2
− 1
p , 2

1
p
− 1

2 ) .
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In particular, for p = 2, the lower Lipschitz constant is 1 and the upper Lips-

chitz constant is
√

2.

6. The metric space (Ĥ, dp) is isometrically isomorphic to S1,0(H) endowed with

Schatten norm ‖·‖p. The isomorphism is given by the map

κβ : Ĥ → S1,0(H) , κβ(x) = xx∗. (3.10)

In particular the metric space (Ĥ, d1) is isometrically isomorphic to S1,0(H)

endowed with the nuclear norm ‖·‖1.

7. The nonlinear map ι : (Ĥ, Dp)→ (Ĥ, dp) defined by

ι(x) =


x√
‖x‖

if x 6= 0

0 if x = 0

is bi-Lipschitz with the lower Lipschitz constant min(2
1
2
− 1
p , n

1
p
− 1

2 ) and the upper

Lipschitz constant
√

2 max(n
1
2
− 1
p , 2

1
p
− 1

2 ).

Proof. 1. The well-defined-ness of the metrics means that the metrics are the

same for different choices inside the equivalence classes and is obvious from the

definition of the metrics. Also immediately seen from the definition, Dp(x̂, ŷ) ≥

0 for any x̂, ŷ ∈ Ĥ and Dp(x̂, ŷ) = 0 if and only if x̂ = ŷ. Also Dp(x̂, ŷ) =

Dp(ŷ, x̂) since ‖x− ay‖p = ‖y − a−1x‖p for any x, y ∈ H, |a| = 1. Moreover,

for any x̂, ŷ, ẑ ∈ Ĥ, fix Dp(x̂, ŷ) = ‖x− ay‖p, Dp(ŷ, ẑ) = ‖z − by‖, then

Dp(x̂, ẑ) ≤
∥∥x− ab−1z

∥∥
p

= ‖bx− az‖p

≤‖bx− aby‖p + ‖aby − az‖p = Dp(x̂, ŷ) +Dp(ŷ, ẑ) .
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Therefore Dp is a metric. dp is also a metric since ‖·‖p in the definition of dp

is the standard Schatten p-norm of a matrix.

2. For p ≤ q, by Hölder’s inequality we have for any x = (x1, x2, ..., xn) ∈ H that∑n
i=1 |xi|p ≤ n(1− p

q
)(
∑n

i=1 |xi|q)
p
q . Thus ‖x‖p ≤ n( 1

p
− 1
q

) ‖x‖q. Also, since ‖·‖p

is homogeneous, we can assume ‖x‖p = 1. Then
∑n

i=1 |xi|q ≤
∑n

i=1 |xi|p = 1.

Thus ‖x‖q ≤ ‖x‖p. Therefore, we have

Dq(x̂, ŷ) = ‖x− a1y‖q ≥ n( 1
q
− 1
p

) ‖x− a1y‖p ≥ n( 1
q
− 1
p

)Dp(x̂, ŷ)

and Dp(x̂, ŷ) = ‖x− a2y‖p ≥ ‖x− a2y‖q ≥ Dq(x̂, ŷ) for some a1, a2 with

magnitude 1. Hence

Dq(x̂, ŷ) ≤ Dp(x̂, ŷ) ≤ n( 1
p
− 1
q

)Dq(x̂, ŷ) .

We see that (Dp)1≤p≤∞ are equivalent. The second part follows then immedi-

ately.

3. The proof is similar to Part 2. Note that there are at most two σi’s that are

nonzero, so we have 2( 1
p
− 1
q

) instead of n( 1
p
− 1
q

).

4. To prove that Dp and dp are equivalent, we need only to show that each open

ball with respect to Dp contains an open ball with respect to dp, and vice

versa. By (ii) and (iii), it is sufficient to consider the case when p = 2.

First, we fix x ∈ H = Cn, r > 0. Let R = min(1, rn−2(2 ‖x‖∞ + 1)−1). Then

for any ŷ such that D2(x̂, ŷ) < R, we take y such that ‖x− y‖ < R, then
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∀1 ≤ i, j ≤ n, |xixj − yiyj| = |xi(xj − yj) + (xi − yi)yj| < |xi|R + R(|xi| +

R) = R(2|xi| + R) ≤ R(2|xi| + 1) ≤ rn−2. Hence d2(x̂, ŷ) = ‖xx∗ − yy∗‖2 <

n2 · rn−2 = r.

On the other hand, we fix x ∈ H = Cn, R > 0. Let r = R2/
√

2. Then for any

ŷ such that d2(x̂, ŷ) < r, we have

(d2(x̂, ŷ))2 = ‖x‖4 + ‖y‖4 − 2|〈x, y〉|2 < r2 =
R4

2
.

But we also have

(D2(x̂, ŷ))2 = min
|a|=1
‖x− ay‖2 =

∥∥∥∥x− 〈x, y〉|〈x, y〉|
y

∥∥∥∥2

= ‖x‖2 + ‖y‖2 − 2|〈x, y〉| ,

so

(D2(x̂, ŷ))4 = ‖x‖4 + ‖y‖4 + 2 ‖x‖2 ‖y‖2 − 4(‖x‖2 + ‖y‖2)|〈x, y〉|+ 4|〈x, y〉|2 .

Since |〈x, y〉| ≤ ‖x‖ ‖y‖ ≤ (‖x‖2+‖y‖2)/2, we can easily check that (D2(x̂, ŷ))4 ≤

2(d2(x̂, ŷ))2 < R4. Hence D2(x̂, ŷ) < R.

Thus D2 and d2 are indeed equivalent metrics. Therefore Dp and dq are equiva-

lent. Also, the imbedding i is not Lipschitz: if we take x = (x1, 0, . . . , 0) ∈ Cn,

then D2(x̂, 0) = |x1|, d2(x̂, 0) = |x1|2.
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5. First, for p = 2, for x̂ 6= ŷ in Ĥ − {0}, we compute the quotient

ρ(x, y) =
‖κα(x)− κα(y)‖2

D2(x, y)2

=

∥∥‖x‖−1 xx∗ − ‖y‖−1 yy∗
∥∥2

‖x‖2 + ‖y‖2 − 2 |〈x, y〉|

=
‖xx∗‖2 ‖y‖2 + ‖x‖2 ‖yy∗‖2 − 2 ‖x‖ ‖y‖ tr(xx∗yy∗)

‖x‖4 ‖y‖2 + ‖x‖2 ‖y‖4 − 2 ‖x‖2 ‖y‖2 |x∗y|

= 1 +
2 ‖x‖ ‖y‖ (‖x‖ ‖y‖ |x∗y| − tr(xx∗yy∗))

‖x‖4 ‖y‖2 + ‖x‖2 ‖y‖4 − 2 ‖x‖2 ‖y‖2 |x∗y|

= 1 +
2 (‖x‖ ‖y‖ |x∗y| − tr(xx∗yy∗))

‖x‖3 ‖y‖+ ‖x‖ ‖y‖3 − 2 ‖x‖ ‖y‖ |x∗y|
,

where we used ‖xx∗‖ = ‖x‖2. For simplicity write a = ‖x‖, b = ‖y‖ and

t = |〈x, y〉| · (‖x‖ ‖y‖)−1. We have a > 0, b > 0 and 0 ≤ t ≤ 1.

Now

ρ(x, y) = 1 +
2(abt− abt2)

a2 + b2 − 2abt
.

Obviously ρ(x, y) ≥ 1. Now we prove that ρ(x, y) ≤ 2. Note that

1 +
2(abt− abt2)

a2 + b2 − 2abt
≤ 2 ⇔ a2 + b2 − 4abt+ 2abt2 ≥ 0 ,

but

a2 + b2 − 4abt+ 2abt2 ≥ 2ab− 4abt+ 2abt2 = 2ab(t− 1)2 ≥ 0,

so we are done. Note that take any x, y with 〈x, y〉 = 0 we would have

ρ(x, y) = 1. On the other hand, taking ‖x‖ = ‖y‖ and let t → 1 we see that

ρ(x, y) = 2− ε is achievable for any small ε > 0. Therefore the constants are

optimal. The case where one of x and y is zero would not break the constraint

of these two constants. Therefore after taking the square root, we get lower

Lipschitz constant 1 and upper Lipschitz constant
√

2.

26



For other p, we use the results in (ii) and (iii) to get that the lower Lips-

chitz constant for κα is min(2
1
2
− 1
p , n

1
p
− 1

2 ) and the upper Lipschitz constant is

√
2 max(n

1
2
− 1
p , 2

1
p
− 1

2 ).

6. This follows directly from the construction of the map.

7. This follows directly from Part 5 and Part 6.

The distance functions that we choose for the phase retrieval setting are natu-

ral. In some other settings, for instance, when we can fix a component of the original

signal (see [52]), we cannot quotient out a global phase and will be forced to use the

Euclidean distance. In this case we do not have the bi-Lipschitz property (see [52])

that is crucial for a stable reconstruction. We discuss the bi-Lipschitz property in

the following sections.

3.1.3 The noisy measurement model

While the choice of p is not important here, we are particularly interested in

D2 (corresponding to the Euclidean distance) and d1 (corresponding to the nuclear

norm) for their importance in various settings in other problems.

In the following sections we are going to establish two important results: first,

a phase retrievable frame always induces a bi-Lipschitz measurement map; second,

the inverse of the measurement map can be extended to the entire Euclidean space

Rm while the Lipschitz constant is increased by only a small number. Specifically,
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suppose a is the lower Lipschitz bound of the measurement map, we get a recon-

struction map ω : Rm → Ĥ such that

Lip(ω) ≤ 8.25

a
. (3.11)

Consider the map α (a similar discussion works for β). Assume an additive

noise model y = α(x)+ν, where ν ∈ Rm is the noise. For a signal x0 ∈ Ĥ, and noise

ν1 ∈ Rm, let y1 = α(x0) + ν1 ∈ Rm be the measurement vector, and let x1 = ω(y1)

be the reconstructed signal. We have

D2(x0, x1) = D2 (ω(α(x0)), ω(y1)) ≤ Lip(ω) · ‖α(x0)− y1‖ = Lip(ω) · ‖ν1‖ .

Figure 3.1 is an illustration of this model. In fact, we have stability in a stronger

sense. If we have two noisy measurements y1 = α(x0) + ν1 and y2 = α(x0) + ν2 of

the signal x0, then

D2(x1, x2) = D2 (ω(y1), ω(y2)) ≤ Lip(ω) · ‖y1 − y2‖ = Lip(ω) · ‖ν1 − ν2‖ .

3.2 Phase retrievability implies bi-Lipschitz property

In this section we study the relation between Phase retrievability and bi-

Lipschitz property. It is obvious that if α and β, as defined in (3.1) and (3.2),

are bi-Lipschitz with respect to the corresponding metrics, then they are phase re-

trievable. We focus on the converse. In this section, we shall assume that α and β

are phase retrievable.

We first define three types of Lipschitz bounds for α and β respectively.
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Figure 3.1: Illustration of the noisy measurement model

Definition 3.2.1. (Lipschitz bounds for α) The following Lipschitz bounds are de-

fined for the measurement α. The square roots of those bounds are called the Lips-

chitz constants.

1. The global lower and upper Lipschitz bounds, respectively:

A0 = inf
x,y∈Ĥ

‖α(x)− α(y)‖2
2

D2(x, y)2
,

B0 = sup
x,y∈Ĥ

‖α(x)− α(y)‖2
2

D2(x, y)2
;

2. The type I local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

A(z) = lim
r→0

inf
x,y∈Ĥ

D2(x,z)<r
D2(y,z)<r

‖α(x)− α(y)‖2
2

D2(x, y)2
,

B(z) = lim
r→0

sup
x,y∈Ĥ

D2(x,z)<r
D2(y,z)<r

‖α(x)− α(y)‖2
2

D2(x, y)2
;
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3. The type II local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

Ã(z) = lim
r→0

inf
x∈Ĥ

D2(x,z)<r

‖α(x)− α(z)‖2
2

D2(x, z)2
,

B̃(z) = lim
r→0

sup
x∈Ĥ

D2(x,z)<r

‖α(x)− α(z)‖2
2

D2(x, z)2
.

Definition 3.2.2. (Lipschitz bounds for β) The following Lipschitz bounds are de-

fined for the measurement β. The square roots of those bounds are called the Lips-

chitz constants.

1. The global lower and upper Lipschitz bounds, respectively:

a0 = inf
x,y∈Ĥ

‖β(x)− β(y)‖2
2

d1(x, y)2
,

b0 = sup
x,y∈Ĥ

‖β(x)− β(y)‖2
2

d1(x, y)2
;

2. The type I local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

a(z) = lim
r→0

inf
x,y∈Ĥ

d1(x,z)<r
d1(y,z)<r

‖β(x)− β(y)‖2
2

d1(x, y)2
,

b(z) = lim
r→0

sup
x,y∈Ĥ

d1(x,z)<r
d1(y,z)<r

‖β(x)− β(y)‖2
2

d1(x, y)2
;

3. The type II local lower and upper Lipschitz bounds at z ∈ Ĥ, respectively:

ã(z) = lim
r→0

inf
x∈Ĥ

d1(x,z)<r

‖β(x)− β(z)‖2
2

d1(x, z)2
,

b̃(z) = lim
r→0

sup
x∈Ĥ

d1(x,z)<r

‖β(x)− β(z)‖2
2

d1(x, z)2
.
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From the definitions, we have the following lemma due to homogeneity.

Lemma 3.2.3. The Lipschitz bounds defined above satisfy the following relations:

1. A0 = A(0), B0 = B(0), a0 = a(0), b0 = b(0).

2. For z 6= 0, A(z) = A(z/ ‖z‖), B(z) = B(z/ ‖z‖), a(z) = a(z/ ‖z‖), b(z) =

b(z/ ‖z‖).

In the following sections we are going to establish the bi-Lipschitz properties

for both α and β, given that they are phase retrievable.

3.2.1 The bi-Lipschitz property for the magnitude measurement map

3.2.1.1 The case H = Rn

For an index set I ⊂ {1, 2, · · · ,m}, let F [I] = {fk, k ∈ I} denote the frame

subset indexed by I. Also, let σ2
1[I] and σ2

n[I] denote the upper and lower frame

bound of the set F [I], respectively. It is straightforward to see that they respectively

correspond to the largest and smallest eigenvalues of
∑

k∈I fkf
∗
k , that is,

σ2
1[I] = λ1

(∑
k∈I

fkf
∗
k

)
(3.12)

and

σ2
n[I] = λn

(∑
k∈I

fkf
∗
k

)
. (3.13)

The following theorem summarizes some of the main results in [19].

Theorem 3.2.4. (see [19]) Let F ⊂ Rn be a phase retrievable frame for Rn. Let A

and B denote its optimal lower and upper frame bound, respectively. Then
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1. For every 0 6= x ∈ Rn, A(x) = σ2
n[supp(α(x))] where supp(α(x)) = {k, 〈x, fk〉 6=

0};

2. For every x ∈ Rn, Ã(x) = A(x);

3. A0 = A(0) = minI⊂{1,2,··· ,m}(σ
2
n[I] + σ2

n[Ic]);

4. For every x ∈ Rn, B(x) = B̃(x) = B;

5. B0 = B(0) = B̃(0) = B.

3.2.1.2 The case H = Cn

We analyze the complex case by doing a realification first. Consider the R-

linear map j : Cn → R2n defined by

j(z) =

 real(z)

imag(z)

 .
This realification is studied in detail in [12]. We call j(z) the realification of z. For

simplicity, in this paper we will denote ξ = j(x), η = j(y), ζ = j(z), ϕ = j(f),

δ = j(d), respectively.

For a frame set F = {f1, f2, · · · , fm}, define the symmetric operator

Φk = ϕkϕ
T
k + Jϕkϕ

T
k J

T , k = 1, 2, · · · ,m.

where

J =

 0 −I

I 0

 (3.14)

is a matrix in R2n×2n.
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Also, define S : R2n → Sym(R2n) by

S(ξ) =


0 , if ξ = 0∑

k:Φkξ 6=0
1

〈Φkξ,ξ〉
Φkξξ

TΦk , if ξ 6= 0

.

We have the following result:

Theorem 3.2.5. Let F ⊂ Cn be a phase retrievable frame for Cn. Let A and B

denote its optimal lower and upper frame bound, respectively. For any z ∈ Cn, let

ζ = j(z) be its realification. Then

1. For every 0 6= z ∈ Cn, A(z) = λ2n−1(S(ζ)) ;

2. A0 = A(0) > 0 ;

3. For every z ∈ Cn, Ã(z) = λ2n−1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
;

4. Ã(0) = A ;

5. For every z ∈ Cn, B(z) = B̃(z) = λ1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
;

6. B0 = B(0) = B̃(0) = B .

To prove the theorem we need the following lemma.

Lemma 3.2.6. Fix x ∈ Cn and z ∈ Cn. Let ξ = j(x) and ζ = j(z) be their

realifications, respectively. Let ξ0 ∈ ξ̂ := {j(x̃) ∈ R2n : x̃ ∈ x̂} be a point in the

equivalence class that satisfies D2(x, z) = ‖ξ0 − ζ‖. Then it is necessary that

〈ξ0, Jζ〉 = 0 (3.15)
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and

〈ξ0, ζ〉 ≥ 0 , (3.16)

where J is defined as in (3.14).

Proof. For θ ∈ [0, 2π) define

U(θ) := cos(θ)I + sin(θ)J .

Then it is easy to compute that

j(eiθx) = U(θ)ξ .

Therefore,

D2(x, z) = min
θ∈[0,2π)

‖U(θ)ξ − ζ‖2 = ‖ξ‖2 + ‖ζ‖2 − 2 max
θ∈[0,2π)

〈U(θ)ξ, ζ〉 .

If 〈U(θ)ξ, ζ〉 is constantly zero, then we are done. Otherwise, note that

max
θ∈[0,2π)

〈U(θ)ξ, ζ〉 =
(
〈ξ, ζ〉2 + 〈Jξ, ζ〉2

) 1
2

and the maximum is achieved at θ = θ0 if and only if

cos(θ0) =
〈ξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

and

sin(θ0) =
〈Jξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

.
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Now we can compute

〈ξ0, Jζ〉 = 〈U(θ0)ξ, Jζ〉

= cos(θ0) 〈ξ, Jζ〉+ sin(θ0) 〈Jξ, Jζ〉

=
〈ξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈ξ, Jζ〉+
〈Jξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈Jξ, Jζ〉

=
〈ξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈−Jξ, ζ〉+
〈Jξ, ζ〉(

〈ξ, ζ〉2 + 〈Jξ, ζ〉2
) 1

2

〈ξ, ζ〉

= 0 .

So we get (3.15). (3.16) is obvious.

Now we are ready to prove the theorem.

Proof. (of Theorem 3.2.5)

1. Denote

p(x, y) :=
‖α(x)− α(y)‖2

D2(x, y)2
, x, y ∈ Cn, x̂ 6= ŷ. (3.17)

We can represent this quotient in terms of ξ and η. It is easy to compute that

p(x, y) = P (ξ, η)

:=

∑m
k=1 〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2

√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

.
(3.18)

Fix r > 0. Take ξ, η ∈ R2n that satisfy

D2(x, z) = ‖ξ − ζ‖ < r

and

D2(y, z) = ‖η − ζ‖ < r .
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Let

µ =
ξ + η

2

and

ν =
ξ − η

2
.

Then ‖ν‖ < r.

Note that for r small enough we have that ‖µ‖ > ‖ν‖ and that

Φkζ 6= 0⇒ Φkµ 6= 0 .
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Thus

P (ξ, η) =

( m∑
k=1

〈Φk(µ+ ν), µ+ ν〉+ 〈Φk(µ− ν), µ− ν〉−

2
√
〈Φk(µ+ ν), µ+ ν〉 〈Φk(µ− ν), µ− ν〉

)
·(

‖µ+ ν‖2 + ‖µ− ν‖2 − 2

√
〈µ+ ν, µ− ν〉2 + 〈µ+ ν, J(µ− ν)〉2

)−1

=

( m∑
k=1

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2
)
·

(
‖µ‖2 + ‖ν‖2 −

√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2 + 4 〈µ, Jν〉2

)−1

≥
( ∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2
)
·

(
‖µ‖2 + ‖ν‖2 −

√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2

)−1

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉−

〈Φkµ, µ〉

√(
1 +
〈Φkν, ν〉
〈Φkµ, µ〉

)2

− 4
〈Φkµ, ν〉2

〈Φkµ, µ〉2

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉−

〈Φkµ, µ〉

√
1 + 2

〈Φkν, ν〉
〈Φkµ, µ〉

+
〈Φkν, ν〉2

〈Φkµ, µ〉2
− 4
〈Φkµ, ν〉2

〈Φkµ, µ〉2

=
1

2 ‖ν‖2

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉−

〈Φkµ, µ〉

(
1 +
〈Φkν, ν〉
〈Φkµ, µ〉

− 2
〈Φkµ, ν〉2

〈Φkµ, µ〉2

)
+O(‖ν‖4)

=
∑

k:Φkζ 6=0

〈Φkµ, ν〉2

〈Φkµ, µ〉 ‖ν‖2 +O(‖ν‖2)

=
1

‖ν‖2 〈S(µ)ν, ν〉+O(‖ν‖2) .
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Note that

|〈Jµ, ν〉| = |〈Jµ, ν〉 − 〈Jζ, ν〉| ≤ ‖Jµ− Jζ‖ ‖ν‖ = ‖µ− ζ‖ ‖ν‖ (3.19)

since 〈Jζ, ν〉 = 0 by Lemma 3.2.6. Together with ‖µ− ζ‖ < r we have

‖PJµν‖ =
|〈Jµ, ν〉|
‖Jµ‖

=
|〈Jµ, ν〉|
‖µ‖

≤ r ‖ν‖
‖µ‖

,

and thus ∥∥P⊥Jµν∥∥2 ≥
(

1− r2

‖µ‖2

)
‖ν‖2 .

As a consequence, we have

P (ξ, η) =
1

‖ν‖2

〈
S(µ)P⊥Jµν, P

⊥
Jµν
〉

+O(‖ν‖2)

≥ 1∥∥P⊥Jµν∥∥2

〈
S(µ)P⊥Jµν, P

⊥
Jµν
〉(

1− r2

‖µ‖2

)
+O(r2)

≥
(

1− r2

‖µ‖2

)
λ2n−1 (S(µ)) +O(r2) .

Take r → 0, by the continuity of eigenvalues with respect to matrix entries we

have that

A(z) ≥ λ2n−1(S(ζ)) . (3.20)

On the other hand, take E2n−1 to be the unit-norm eigenvector correspondent

to λ2n−1(S(ζ)). For each r > 0, take ξ = ζ + r
2
E2n−1 and η = ζ − r

2
E2n−1.

Then

p(x, y) = P (ξ, η) = λ2n−1(S(ζ)) .

Hence

A(z) ≤ λ2n−1(S(ζ)) .
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Together with (3.20) we have

A(z) = λ2n−1(S(ζ)) .

2. Assume on the contrary that A0 = 0, then for any N ∈ N, there exist xN ,

yN ∈ H for which

p(xN , yN) =
‖α(xN)− α(yN)‖2

D2(xN , yN)2
≤ 1

N
. (3.21)

Without loss of generality we assume that ‖xN‖ ≥ ‖yN‖ for each N , for

otherwise we can just swap the role of xN and yN . Also due to homogeneity we

assume ‖xN‖ = 1. By compactness of the closed ball B1(0) = {x ∈ H : ‖x‖ ≤

1} in H = Cn, there exist convergent subsequences of {xN}N∈N and {yN}N∈N,

which to avoid overuse of notations we still denote as {xN}N∈N → x0 ∈ H and

{yN}N∈N → y0 ∈ H.

Since ‖x0‖ = 1 we have from (i) that A(x0) > 0. Note that D2(xN , yN) ≤

‖xN‖ + ‖yN‖ ≤ 2, so by (3.21) we have ‖α(xN)− α(yN)‖ → 0. That is,

‖α(x0)− α(y0)‖ = 0. By injectivity we have x0 = y0 in Ĥ. By Theorem 3.2.5

Part 1,

p(xN , yN) ≥ A(x0)− 1/N > 1/N

for N large enough. This is a contradiction with (3.21).

3. The case z = 0 is an easy computation. We now present the proof for z 6= 0.

First we consider p(x, z) = P (ξ, ζ) as defined in (3.18). Fix r > 0. Take

ξ ∈ R2n that satisfy D2(x, z) = ‖ξ − ζ‖ < r. Let

d = x− z

39



and

δ = j(d) = ξ − ζ .

Note that

P (ξ, ζ) =

∑m
k=1 〈Φkξ, ξ〉+ 〈Φkζ, ζ〉 − 2

√
〈Φkξ, ξ〉 〈Φkζ, ζ〉

‖ξ‖2 + ‖ζ‖2 − 2
√
〈ξ, ζ〉2 + 〈ξ, Jζ〉2

.

We can compute its numerator

m∑
k=1

〈Φkξ, ξ〉+ 〈Φkζ, ζ〉 − 2
√
〈Φkξ, ξ〉 〈Φkζ, ζ〉

=
m∑
k=1

〈Φkζ, ζ〉+ 2 〈Φkζ, δ〉+ 〈Φkδ, δ〉+ 〈Φkζ, ζ〉−

2
√

(〈Φkζ, ζ〉+ 2 〈Φkζ, δ〉+ 〈Φkδ, δ〉) · 〈Φkζ, ζ〉

=
∑

k:Φkζ 6=0

2 〈Φkζ, ζ〉+ 2 〈Φkζ, δ〉+ 〈Φkδ, δ〉−

2 〈Φkζ, ζ〉
(

1 +
〈Φkζ, ζ〉 〈Φkζ, δ〉+ 1

2
〈Φkζ, ζ〉 〈Φkδ, δ〉

〈Φkζ, ζ〉2
−

1

8
· 4 〈Φkζ, ζ〉2 〈Φkζ, δ〉2

〈Φkζ, ζ〉4
+O

(
‖δ‖3))+

∑
k:Φkζ=0

〈Φkδ, δ〉

=
∑

k:Φkζ 6=0

〈Φkζ, δ〉2

〈Φkζ, ζ〉
+

∑
k:Φkζ=0

〈Φkδ, δ〉+O
(
‖δ‖3) ;

and its denominator

‖ξ‖2 + ‖ζ‖2 − 2

√
〈ξ, ζ〉2 + 〈ξ, Jζ〉2

= 2 ‖ζ‖2 + ‖δ‖2 + 2 〈ζ, δ〉 − 2 ‖ζ‖2

(
1+

‖ζ‖2 〈ζ, δ〉+ 1
2
〈ζ, δ〉+ 1

2
〈Jζ, δ〉2

‖ζ‖4 − 4 ‖ζ‖4 〈ζ, δ〉2

8 ‖ζ‖8 +O
(
‖δ‖3))

= ‖δ‖2 +O
(
‖δ‖3) .

We used Lemma 3.2.6 to get 〈Jζ, δ〉 = 0 in the above.
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Take r → 0, we see that

Ã(z) ≥ λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

Let Ẽ2n−1 be the unit-norm eigenvector correspondening to

λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

Note that
〈
Jζ, Ẽ2n−1

〉
= 0 since S(ζ)Jζ = 0 and ΦkJζ = JΦkζ = 0 for each

k with 〈z, fk〉 = 0. Take ξ = ζ + r
2
Ẽ2n−1 for each r, we again also have

Ã(z) ≤ λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

Therefore

Ã(z) = λ2n−1

S(ζ) +
∑

k:〈z,fk〉=0

Φk

 .

4. Take z = 0 in Part 3.

5. B̃(z) can be computed in a similar way as in (iii) (in particular, the expansion

for P (ξ, ζ) is exactly the same). We compute B(z). B(0) is computed in [22],

Lemma 16. Now we consider z 6= 0. Use the same notations as in (3.18).

Fix r > 0. Again, take ξ, η ∈ R2n that satisfy D2(x, z) = ‖ξ − ζ‖ < r and

D2(y, z) = ‖η − ζ‖ < r. Let µ = (ξ + η)/2 and ν = (ξ − η)/2. Also let

δ1 = ξ − ζ and δ2 = η − ζ. Recall that

P (ξ, η) =

∑m
k=1 〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2

√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

=
m∑
k=1

〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2
√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

.
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Now we compute it as
∑m

k=1 =
∑

k:Φkζ 6=0 +
∑

k:Φkζ=0. Again,

∑
k:Φkζ 6=0

〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2
√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

=
∑

k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2

‖µ‖2 + ‖ν‖2 −
√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2 + 4 〈µ, Jν〉2

.

(3.22)

Using the same computation as in (i), we get that the numerator is

∑
k:Φkζ 6=0

〈Φkµ, µ〉+ 〈Φkν, ν〉 −
√

(〈Φkµ, µ〉+ 〈Φkν, ν〉)2 − 4 〈Φkµ, ν〉2

= 2 〈S(µ)ν, ν〉+O(‖ν‖4) .

Since µ 6= 0, the denominator is

‖µ‖2 + ‖ν‖2 −
√
‖µ‖4 + ‖ν‖4 − 2 ‖µ‖2 ‖ν‖2 + 4 〈µ, Jν〉2

= ‖µ‖2 + ‖ν‖2 − ‖µ‖2

√
1 +
‖ν‖4

‖µ‖4 −
2 ‖ν‖2

‖µ‖2 +
4 〈µ, Jν〉2

‖µ‖4

= ‖µ‖2 + ‖ν‖2 − ‖µ‖2

(
1− ‖ν‖

2

‖µ‖2 +
2 〈µ, Jν〉2

‖µ‖4

)
+O(‖ν‖4)

= 2 ‖ν‖2 − 2 〈Jµ, ν〉2

‖µ‖2 +O(‖ν‖4)

= 2 ‖ν‖2 +O(‖ν‖4) by (3.19).

(3.23)

Also we can compute using the denominator as above (note that ν = (δ1 −

δ2)/2) that

∑
k:Φkζ=0

〈Φkξ, ξ〉+ 〈Φkη, η〉 − 2
√
〈Φkξ, ξ〉 〈Φkη, η〉

‖ξ‖2 + ‖η‖2 − 2
√
〈ξ, η〉2 + 〈ξ, Jη〉2

=
∑

k:Φkζ=0

(∥∥∥Φ
1/2
k δ1

∥∥∥− ∥∥∥Φ
1/2
k δ2

∥∥∥)2

‖δ1 − δ2‖2 +O(‖ν‖4)
.

(3.24)
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Now put together (3.22), (3.23) and (3.24), we get

P (ξ, η) =
〈S(µ)ν, ν〉+O(‖ν‖4)

‖ν‖2 +O(‖ν‖4)
+

∑
k:Φkζ=0

(∥∥∥Φ
1/2
k δ1

∥∥∥− ∥∥∥Φ
1/2
k δ2

∥∥∥)2

‖δ1 − δ2‖2 +O(‖ν‖4)
.

Note that (∥∥∥Φ
1/2
k δ1

∥∥∥− ∥∥∥Φ
1/2
k δ2

∥∥∥)2

≤ 〈Φk(δ1 − δ2), δ1 − δ2〉

since it is equivalent to

〈Φkδ1, δ1〉 〈Φkδ2, δ2〉 ≥ (〈Φkδ1, δ2〉)2 , (3.25)

which is the Cauchy-Schwarz inequality. Therefore, we have that

P (ξ, η) ≤

〈
(S(µ) +

∑
k:Φkζ=0 Φk)ν, ν

〉
+O(‖ν‖4)

‖ν‖2 +O(‖ν‖4)

≤ λ1

(
S(µ) +

∑
k:Φkζ=0

Φk

)
+O(r2) .

Take r → 0 we have

B(z) ≤ λ1

(
S(ζ) +

∑
k:Φkζ=0

Φk

)
.

Again we get the other direction of the above inequality by taking ξ = ζ +

r
2
E1 and η = ζ − r

2
E1 for each r > 0 where E1 is the unit-norm eigenvector

correspondent to λ1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
. Note that for each r, the equality

in (3.25) holds for this pair of ξ and η.

6. Take z = 0 in Part 5.
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3.2.2 The bi-Lipschitz property for the square measurement map

The nonlinear map β as defined in (3.2) naturally induces a linear map between

Sym(H) and Rm:

A : Sym(H)→ Rm A(T ) = (〈Tfk, fk〉)1≤k≤m , (3.26)

where Sym(H) is the space of symmetric operator on H. Note that the map β is

injective if and only if A restricted to S1,0(H) is injective.

The following theorem summarizes the results on the bi-Lipschitz properties

for β:

Theorem 3.2.7. (see [12,19]) Let F be a phase retrievable frame for H = Cn. Then

1. the global lower Lipschitz bound a0 > 0;

2. the global upper Lipschitz bound b0 <∞, and

b0 = max
‖x‖=‖y‖=1

m∑
k=1

(real (〈x, fk〉 〈fk, y〉))2

= max
‖x‖=1

m∑
k=1

|〈x, fk〉|4

= ‖T‖4
B(H,l4m) ,

where T : H → Cm is the analysis operator defined by x 7→ (〈x, fk〉)mk=1, and

l4m := (Cm, ‖·‖4).

Remark 3.2.8. An upper bound of b0 is given by

b0 ≤ B

(
max

1≤k≤m
‖fk‖

)2

≤ B2 ,

where B is the upper frame bound of F .
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We give an expression of the local Lipschitz bounds as well. Define R : R2n →

Sym(R2n) by

R(ξ) =
m∑
k=1

Φkξξ
TΦk .

Theorem 3.2.9. Let F be a phase retrievable frame for H = Cn. For every 0 6=

z ∈ H, let ζ = j(z) denote the realification of z. Then

1. a(z) = ã(z) = λ2n−1(R(ζ))/ ‖ζ‖2;

2. b(z) = b̃(z) = λ1(R(ζ))/ ‖ζ‖2;

3. (see [12]) a(0) = a0 = min‖ζ‖=1 λ2n−1 (R(ζ));

4. ã(0) = min‖x‖=1

∑m
k=1 |〈x, fk〉|

4;

5. b(0) = b̃(0) = b0.

Proof. Only the first two parts are nontrivial. We prove them as follows.

Fix z ∈ Cn. Take x = z + d1 and y = z + d2 with ‖d1‖ < r and ‖d2‖ < r for r

small. Let u = x+y = 2z+d1+d2 and v = x−y = d1−d2. Let µ = 2ζ+δ1+δ2 ∈ R2n

and ν = δ1 − δ2 ∈ R2n be the realification of u and v, respectively. Define

ρ(x, y) =
‖β(x)− β(y)‖2

d1(x, y)2
. (3.27)

By the same computation as in [12], Section 4.1, we get

ρ(x, y) = Q(ζ; δ1, δ2)

:=
〈R(2ζ + δ1 + δ2)(δ1 − δ2), δ1 − δ2〉

‖2ζ + δ1 + δ2‖2
〈
P⊥J(2ζ+δ1+δ2)(δ1 − δ2), δ1 − δ2

〉 .

Since

J(2ζ + δ1 + δ2) ∈ ker R(2ζ + δ1 + δ2)
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, we have

Q(ζ; δ1, δ2)

=

〈
R(2ζ + δ1 + δ2)P⊥J(2ζ+δ1+δ2)(δ1 − δ2), P⊥J(2ζ+δ1+δ2)(δ1 − δ2)

〉
‖2ζ + δ1 + δ2‖2

〈
P⊥J(2ζ+δ1+δ2)(δ1 − δ2), δ1 − δ2

〉 .

Now let δ = δ1 + δ2 and ν = δ1 − δ2. Note the set inclusion relation{
δ1, δ2 ∈ R2n : ‖δ‖ < r

2
, ‖ν‖ < r

2
, ν ⊥ J(2ζ + δ)

}
⊂
{
δ1, δ2 ∈ R2n : ‖δ1‖ < r, ‖δ2‖ < r, ν ⊥ J(2ζ + δ)

}
⊂
{
δ1, δ2 ∈ R2n : ‖δ‖ < 2r, ‖ν‖ < 2r, ν ⊥ J(2ζ + δ)

}
.

Thus we have

inf
‖δ‖<2r
‖ν‖<2r

ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) ≤ inf
‖δ1‖<r
‖δ2‖<r

ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) ≤ inf
‖δ‖<r/2
‖ν‖<r/2
ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) .

That is,

inf
‖δ‖<2r

λ2n−1(R(2ζ + δ))

‖2ζ + δ‖2 ≤ inf
‖δ1‖<r
‖δ2‖<r

ν⊥J(2ζ+δ)

Q(ζ; δ1, δ2) ≤ inf
‖δ‖<r/2

λ2n−1(R(2ζ + δ))

‖2ζ + δ‖2 .

Take r → 0, by the continuity of eigenvalues with respect to the matrix entries, we

have

λ2n−1(R(ζ))/ ‖ζ‖2 ≤ a(z) ≤ λ2n−1(R(ζ))/ ‖ζ‖2 .

That is,

a(z) = λ2n−1(R(ζ))/ ‖ζ‖2 .

Now consider

ρ(x, z) =
‖β(x)− β(z)‖2

d1(x, z)2
.

46



For simplicity write δ = δ1. We can compute that

ρ(x, z) = Q(ζ; δ)

=
〈R(2ζ + δ)δ, δ〉

‖2ζ + δ‖2
〈
P⊥J(2ζ+δ)δ, δ

〉
=

〈
R(2ζ + δ)P⊥J(2ζ+δ)δ, P

⊥
J(2ζ+δ)δ

〉
‖2ζ + δ‖2

〈
P⊥J(2ζ+δ)δ, δ

〉 .

Note that

inf
‖δ‖<r

δ⊥J(2ζ+δ)

Q(ζ; δ) ≥ inf
‖σ‖<r

inf
‖δ‖<r

δ⊥J(2ζ+δ)

Q(ζ; δ) = inf
‖σ‖<r

λ2n−1(R(2ζ + δ)) .

Take r → 0 we have that

ã(z) ≥ λ2n−1(R(2ζ))/ ‖2ζ‖2 = λ2n−1(R(ζ))/ ‖ζ‖2 .

On the other hand, take ẽ2n−1 to be a unit-norm eigenvector correspondent to

λ2n−1(R(2ζ)). Then by the continuity of eigenvalues with respect to the matrix

entries, for any ε > 0, there exists t > 0 so that δ = tẽ2n−1 satisfy

〈R(2ζ + δ)δ, δ〉〈
P⊥J(2ζ+δ)δ, δ

〉 ≤ λ2n−1(R(2ζ)) + ε

and from there we have

ã(z) ≤ λ2n−1(R(2ζ))/ ‖2ζ‖2 = λ2n−1(R(ζ))/ ‖ζ‖2 .

Therefore,

ã(z) = λ2n−1(R(ζ))/ ‖ζ‖2 .

In a similar way (replacing infimum by supremum) we also get b(z) and b̃(z)

as stated in the theorem.
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3.3 Global stable reconstruction

The results above show that if the frame F is phase retrievable, then the

nonlinear map α (resp., β) is bi-Lipschitz between the metric spaces (Ĥ,Dp) (resp.,

(Ĥ, dp)) and (Rm, ‖·‖q). Recall that the Lipschitz constants between (Ĥ, D2) (resp.,

(Ĥ, d1)) and (Rm, ‖·‖ = ‖·‖2) are given by
√
A0 (resp.,

√
a0) and

√
B0 (resp.,

√
b0):

√
A0D2(x, y) ≤ ‖α(x)− α(y)‖ ≤

√
B0D2(x, y) , (3.28)

√
a0d1(x, y) ≤ ‖β(x)− β(y)‖ ≤

√
b0d1(x, y) . (3.29)

Clearly the inverse map defined on the range of α (resp., β) from metric space

(α(Ĥ), ‖·‖) (resp., (β(Ĥ), ‖·‖)) to (Ĥ, D2) (resp., (Ĥ, d1)):

ω̃ : α(Ĥ) ⊂ Rm → Ĥ , ω̃(c) = x if α(x) = c ; (3.30)

ψ̃ : β(Ĥ) ⊂ Rm → Ĥ , ψ̃(c) = x if β(x) = c . (3.31)

is Lipschitz with Lipschitz constant 1/
√
A0 (resp., 1/

√
a0). We prove that both

ω̃ and ψ̃ can be extended to the entire Rm as a Lipschitz map, and its Lipschitz

constant is increased by a small factor.

The proof should be easy to establish if we can establish that (Rm,H) has the

Property (K) as defined in Section 2.3. However, the following examples show that

it is not the case.

Example 3.3.1. Property (K) does not hold for Ĥ with norm Dp. Specifically,

(Rm,Rn/ ∼) does not have Property (K). We give a counterexample for m = n =

2, p = 2: Let ỹ1 = (3, 1), ỹ2 = (−1, 1), ỹ3 = (0, 1) be the representatives of three

48



points y1, y2, y3 in R2/ ∼. ThenD2(y1, y2) = 2
√

2, D2(y2, y3) = 1 andD2(y1, y3) = 3.

Consider x1 = (0, 0), x2 = (0,−2
√

2), x3 = (−1,−2
√

2) in R2 with the Euclidean

distance, then we have ‖x1 − x2‖ = 2
√

2, ‖x2 − x3‖ = 1 and ‖x1 − x3‖ = 3. For

r1 =
√

6, r2 = 2−
√

2, r3 =
√

6−
√

3, we see that (1−
√

2, 1 +
√

2) ∈
⋂3
i=1 B(xi, ri)

but
⋂3
i=1B(yi, ri) = ∅. To see

⋂3
i=1B(yi, ri) = ∅, it suffices to look at the upper half

plane in R2. If we look at the upper half plane H, then B(y1, r1) becomes the union

of two parts, namely B(ỹ1, r1)∩H and B(−ỹ1, r1)∩H, and B(yi, ri) becomes B(ỹi, ri)

for i = 2, 3. But (B(ỹ1, r1)∩H)∩B(ỹ2, r2) = ∅ and (B(−ỹ1, r1)∩H)∩B(ỹ3, r3) = ∅.

So we obtain that
⋂3
i=1B(yi, ri) = ∅.

Example 3.3.2. Property (K) does not hold for Ĥ with norm dp. Specifically,

(Rm,Cn/ ∼) does not have Property (K). Let m be any positive integer and n = 2,

p = 2. We want to show that (X, Y ) = (Rm,Cn/ ∼) does not have Property (K).

Let ỹ1 = (1, 0) and ỹ2 = (0,
√

3) be representatives of y1, y2 ∈ Y , respectively. Then

d1(y1, y2) = 4. Pick any two points x1, x2 in X with ‖x1 − x2‖ = 4. Then B(x1, 2)

and B(x2, 2) intersect at x3 = (x1 + x2)/2 ∈ X. It suffices to show that the closed

balls B(y1, 2) and B(y2, 2) have no intersection in H. Assume on the contrary that

the two balls intersect at y3, then pick a representative of y3, say ỹ3 = (a, b) where

a, b ∈ C. It can be computed that

d1(y1, y3) = |a|4 + |b|4 − 2 |a|2 + 2 |b|2 + 2 |a|2 |b|2 + 1 , (3.32)

and

d1(y2, y3) = |a|4 + |b|4 + 6 |a|2 − 6 |b|2 + 2 |a|2 |b|2 + 9 . (3.33)

Set d1(y1, y3) = d1(y2, y3) = 2. Take the difference of the right hand side of (3.32)
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and (3.33), we have |b|2 − |a|2 = 1 and thus |b|2 ≥ 1. However, the right hand side

of (3.32) can be rewritten as (|a|2 + |b|2 − 1)2 + 4 |b|2, so d1(y1, y3) = 2 would imply

that |b|2 ≤ 1/2. This is a contradiction.

Nevertheless, we can still use the Kirszbraun theorem. We need to circumvent

by first constructing a Lipschitz map from the symmetric matrices to the rank-one’s.

This is stated as the following lemma.

Lemma 3.3.3. Consider the spectral decomposition of any self-adjoint operator A

in Sym(H), say A =
∑d

k=1 λm(k)Pk, where λ1 ≥ λ2 ≥ · · · ≥ λn are the n eigenvalues

including multiplicities, and P1,...,Pd are the orthogonal projections associated to the

d distinct eigenvalues. Additionally, m(1) = 1 and m(k + 1) = m(k) + r(k), where

r(k) = rank(Pk) is the multiplicity of eigenvalue λm(k). Then the map

π : Sym(H)→ S1,0(H) , π(A) = (λ1 − λ2)P1 (3.34)

satisfies the following two properties:

1. for 1 ≤ p ≤ ∞, π is Lipschitz continuous from (Sym(H), ‖·‖p) to (S1,0(H), ‖·‖p)

with Lipschitz constant Lip(π) ≤ 3 + 21+ 1
p ;

2. π(A) = A for all A ∈ S1,0(H).

Proof. Part 2 follows directly from the expression of π. We prove Part 1 as follows.

Let A, B ∈ Sym(H) where

A =
d∑

k=1

λm(k)Pk
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and

B =
d′∑

k′=1

µm(k′)Qk′ .

We now show that

‖π(A)− π(B)‖p ≤ (3 + 21+ 1
p ) ‖A−B‖p . (3.35)

Assume λ1 − λ2 ≤ µ1 − µ2. Otherwise switch the notations for A and B. If

µ1 − µ2 = 0 then π(A) = π(B) = 0 and the inequality (3.35) is satisfied. Assume

now µ1 − µ2 > 0. Thus Q1 is of rank 1 and ‖Q1‖p = 1 for all p. First we consider

the case λ1 − λ2 > 0. In this case P1 is of rank 1, and we have

π(A)− π(B) = (λ1 − λ2)P1 − (µ1 − µ2)Q1

= (λ1 − λ2)(P1 −Q1) + (λ1 − µ1 − (λ2 − µ2))Q1 .

(3.36)

Here ‖P1‖∞ = ‖Q1‖∞ = 1. Therefore we have ‖P1 −Q1‖∞ ≤ 1 since P1, Q1 ≥ 0.

From that we have ‖P1 −Q1‖p ≤ 2
1
p . Also, by Weyl’s inequality we have |λi−µi| ≤

‖A−B‖∞ for each i. Apply this to i = 1, 2 we get |λ1−µ1−(λ2−µ2)| ≤ |λ1−µ1|+

|λ2 − µ2| ≤ 2 ‖A−B‖∞. Thus |λ1 − µ1| + |λ2 − µ2| ≤ 2 ‖A−B‖∞ ≤ 2 ‖A−B‖p.

Let g := λ1 − λ2, δ := ‖A−B‖p, then apply the above inequality to (3.36) we get

‖π(A)− π(B)‖p ≤ g ‖P1 −Q1‖p + 2δ ≤ 2
1
p g + 2δ . (3.37)

If 0 < g ≤ (2 + 2−
1
p )δ, then ‖π(A)− π(B)‖p ≤ (21+ 1

p + 3)δ and we are done.

Now we consider the case where g > (2 + 2−
1
p )δ. Note that in this case we

have δ < g/2. Thus we have |λ1 − µ1| < g/2 and |λ2 − µ2| < g/2. That means

µ1 > (λ1+λ2)/2 and µ2 < (λ1+λ2)/2. Therefore, we can use holomorphic functional
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calculus as introduced in Section 2.2 to put

P1 = − 1

2πi

∮
γ

RAdz

and

Q1 = − 1

2πi

∮
γ

RBdz

where RA = (A − zI)−1, RB = (B − zI)−1, and γ = γ(t) is the contour given in

Figure 3.2 (note that γ encloses µ1 but not µ2) and used also by [108]. Therefore

Figure 3.2: Contour for the integrals

we have

‖P1 −Q1‖p ≤
1

2π

∫
I

‖(RA −RB)(γ(t))‖p |γ
′(t)|dt . (3.38)

Now we have

(RA −RB)(z) = RA(z)− (I +RA(z)(B − A))−1RA(z)

=
∑
n≥1

(−1)n(RA(z)(B − A))nRA(z) ,
(3.39)
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since for large L we have

‖RA(z)(B − A)‖∞ ≤ ‖RA(z)‖∞ ‖B − A‖p

≤ δ

dist(z, σ(A))

≤ 2δ

g
<

2

2 + 2−
1
p

< 1 ,

(3.40)

where σ(A) denotes the spectrum of A. Therefore we have

‖(RA −RB)(γ(t))‖p ≤
∑
n≥1

‖RA(γ(t))‖n+1
∞ ‖A−B‖np

=
‖RA(γ(t))‖2

∞ ‖A−B‖p
1− ‖RA(γ(t))‖∞ ‖A−B‖p

<
‖A−B‖p

dist2(γ(t), σ(A))
· (21+ 1

p + 1) ,

(3.41)

since dist(γ(t), σ(A)) ≥ g/2 for each t for large L. Here we used the fact that if we

order the singular values of any matrix X such that σ1(X) ≥ σ2(X) ≥ · · · , then for

any i we have σi(XY ) ≤ σ1(X)σi(Y ), and thus for two operators X, Y ∈ Sym(H),

we have ‖XY ‖p ≤ ‖X‖∞ ‖Y ‖p. Hence by (3.38) and (3.41) we have

‖P1 −Q1‖p ≤ (2
1
p + 2−1)

‖A−B‖p
π

∫
I

1

dist2(γ(t), σ(A))
|γ′(t)|dt . (3.42)

By evaluating the integral and letting L approach infinity for the contour, we have

as in [108] ∫
I

1

dist2(γ(t), σ(A))
|γ′(t)|dt = 2

∫ ∞
0

1

t2 + (g
2
)2
dt

=

[
4

g
arctan

(
2t

g

)]∞
0

=
2π

g
.

(3.43)

Hence

‖P1 −Q1‖p ≤ (2
1
p + 2−1)

‖A−B‖p
π

· 2π

g
= (21+ 1

p + 1)
δ

g
. (3.44)
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Thus by the first inequality in (3.37) and (3.44) we have

‖π(A)− π(B)‖p ≤ (3 + 21+ 1
p )δ .

Now we are left with the case λ1−λ2 = 0 < µ1−µ2. Note that in this case we

have that π(A)− π(B) = −(µ1 − µ2)Q1 = ((λ1 − µ1)− (λ2 − µ2))Q1, and therefore

‖π(A)− π(B)‖p ≤ 2 ‖A−B‖p < (3 + 21+ 1
p ) ‖A−B‖p .

We have proved that ‖π(A)− π(B)‖p ≤ (3 + 21+ 1
p ) ‖A−B‖p. That is to say,

π : (Sym(H), ‖·‖p)→ (S1,0(H), ‖·‖p)

is Lipschitz continuous with

Lip(π) ≤ 3 + 21+ 1
p .

Remark 3.3.4. Numerical experiments suggest that the Lipschitz constant of π is

smaller than 5 for p = ∞. On the other hand, it cannot be smaller than 2 as the

following example shows.

Example 3.3.5. If A =

1 0

0 1

, B =

2 0

0 0

, then π(A) =

0 0

0 0

 and

π(B) =

2 0

0 0

. Here we have ‖π(A)− π(B)‖∞ = 2 and ‖A−B‖∞ = 1. Thus for

this example we have

‖π(A)− π(B)‖∞ = 2 ‖A−B‖∞ .
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Now we are ready to establish the extension result. The precise statement is

given in the following theorem:

Theorem 3.3.6. Let F = {f1, . . . , fm} be a phase retrievable frame for the n di-

mensional Hilbert space H, and let α, β : Ĥ → Rm denote the injective nonlinear

analysis maps as defined in (3.1) and (3.2). Let A0 and a0 denote the positive

constants as in (3.28) and (3.29). Then

1. there exists a Lipschitz continuous function ω : Rm → Ĥ so that ω(α(x)) = x

for all x ∈ Ĥ. For any 1 ≤ p, q ≤ ∞, ω has an upper Lipschitz constant

Lip(ω)p,q between (Rm, ‖·‖p) and (Ĥ, Dq) bounded by:

Lip(ω)p,q ≤


3
√

2+4√
A0
· 2

1
q
− 1

2 ·max(1,m
1
2
− 1
p ) for q ≤ 2;

3
√

2+2
3
2+1

q√
A0

· n
1
2
− 1
q ·max(1,m

1
2
− 1
p ) for q > 2.

(3.45)

Explicitly this means: for q ≤ 2 and for all c, d ∈ Rm:

Dq(ω(c), ω(d)) ≤ 3
√

2 + 4√
A0

· 2
1
q
− 1

2 ·max(1,m
1
2
− 1
p ) ‖c− d‖p , (3.46)

whereas for q > 2 and for all c, d ∈ Rm:

Dq(ω(c), ω(d)) ≤ 3
√

2 + 2
3
2

+ 1
q

√
A0

· n
1
2
− 1
q ·max(1,m

1
2
− 1
p ) ‖c− d‖p . (3.47)

In particular, for p = 2 and q = 2 its Lipschitz constant Lip(ω)2,2 is bounded

by 4+3
√

2√
A0

:

D2(ω(c), ω(d)) ≤ 4 + 3
√

2√
A0

‖c− d‖ . (3.48)

2. there exists a Lipschitz continuous function ψ : Rm → Ĥ so that ψ(β(x)) = x

for all x ∈ Ĥ. For any 1 ≤ p, q ≤ ∞, ψ has an upper Lipschitz constant

55



Lip(ψ)p,q between (Rm, ‖·‖p) and (Ĥ, dq) bounded by:

Lip(ψ)p,q ≤


3+2
√

2√
a0
· 2

1
q
− 1

2 ·max(1,m
1
2
− 1
p ) for q ≤ 2;

3+2
1+1

q
√
a0

max(1,m
1
2
− 1
p ) for q > 2.

(3.49)

Explicitly this means: for q ≤ 2 and for all c, d ∈ Rm:

dq(ψ(c), ψ(d)) ≤ 3 + 2
√

2
√
a0

· 2
1
q
− 1

2 ·max(1,m
1
2
− 1
p ) ‖c− d‖p , (3.50)

whereas for q > 2 and for all c, d ∈ Rm:

dq(ψ(c), ψ(d)) ≤ 3 + 21+ 1
q

√
a0

max(1,m
1
2
− 1
p ) ‖c− d‖p . (3.51)

In particular, for p = 2 and q = 1 its Lipschitz constant Lip(ψ)2,1 is bounded

by 4+3
√

2√
a0

:

d1(ψ(c), ψ(d)) ≤ 4 + 3
√

2
√
a0

‖c− d‖ . (3.52)

Proof. The proof for α and β are the same in essence. For simplicity we do it for β

first.

We need to construct a map ψ : (Rm, ‖·‖p) → (Ĥ, dq) such that ψ(β(x)) = x

for all x ∈ Ĥ, and ψ is Lipschitz continuous. We prove the Lipschitz bound (3.49),

which implies (3.52) for p = 2 and q = 1.

The following construction of ψ is summarized in Figure 3.3.

Set M = β(Ĥ) ⊂ Rm. Due to the bi-Lipschitz property of β, there is a map

ψ̃1 : M → Ĥ that is Lipschitz continuous and satisfies ψ̃1(β(x)) = x for all x ∈ Ĥ.

Additionally, the Lipschitz bound between (M, ‖·‖2) (that is, M with Euclidean

distance) and (Ĥ, d1) is given by 1/
√
a0.
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Figure 3.3: Illustration of the extended Lipschitz map. We omitted the change of

norms. First we construct a map from the image of the nonlinear measurement to

Sym(H), then we use the Kirszbraun Theorem to extend it to Rm, we use π defined

in Lemma 3.3.3 to map it to S1,0(H) and isometrically transform it back to Ĥ.

First we change the metric on Ĥ from d1 to d2 and embed isometrically Ĥ into

Sym(H) with Frobenius norm (i.e. the Euclidean metric):

(M, ‖·‖2)
ψ̃1−→ (Ĥ, d1)

i1,2−→ (Ĥ, d2)
κβ−→ (Sym(H), ‖·‖Fr) , (3.53)

where i1,2(x) = x is the identity of Ĥ and κβ is the isometry (3.10) . We obtain a

map ψ̃2 : (M, ‖·‖2)→ (Sym(H), ‖·‖Fr) of Lipschitz constant

Lip(ψ̃2) ≤ Lip(ψ̃1)Lip(i1,2)Lip(κβ) =
1
√
a0

,
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where we used Lip(i1,2) = Ld1,2,n = 1 by (3.8).

Kirszbraun Theorem extends isometrically ψ̃2 from M to the entire Rm with

Euclidean metric ‖·‖. Thus we obtain a Lipschitz map ψ2 : (Rm, ‖·‖)→ (Sym(H), ‖·‖Fr)

of Lipschitz constant Lip(ψ2) = Lip(ψ̃2) ≤ 1√
a0

such that ψ2(β(x)) = xx∗ for all

x ∈ Ĥ.

The third step is to piece together ψ2 with norm changing identities. For q ≤ 2

we consider the following maps:

(Rm, ‖·‖p)
jp,2−→ (Rm, ‖·‖2)

ψ2−→ (Sym(H), ‖·‖Fr)

π−→ (S1,0(H), ‖·‖Fr)
κ−1
β−→ (Ĥ, d2)

i2,q−→ (Ĥ, dq) ,
(3.54)

where jp,2 and i2,q are identity maps on the respective spaces that change the metric

and π is the map defined in Eq. (3.34). The map ψ claimed by Theorem 3.3.6 is

obtained by composing:

ψ : (Rm, ‖·‖p)→ (Ĥ, dq) , ψ = i2,q · κ−1
β · π · ψ2 · jp,2 .

Its Lipschitz constant is bounded by

Lip(ψ)p,q ≤ Lip(jp,2)Lip(ψ2)Lip(π)Lip(κ−1
β )Lip(i2,q)

≤ max(1,m
1
2
− 1
p )

1
√
a0

· (3 + 2
√

2) · 1 · 2
1
q
− 1

2 .

Hence we obtained (3.50). The other equation (3.52) follows for p = 2 and q = 1.

For q > 2 we use:

(Rm, ‖·‖p)
jp,2−→ (Rm, ‖·‖2)

ψ2−→ (Sym(H), ‖·‖Fr)

I2,q−→ (Sym(H), ‖·‖q)
π−→ (S1,0(H), ‖·‖q)

κ−1
β−→ (Ĥ, dq) ,

(3.55)
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where jp,2 and I2,q are identity maps on the respective spaces that change the metric.

The map ψ claimed by Theorem 3.3.6 is obtained by composing:

ψ : (Rm, ‖·‖p)→ (Ĥ, dq) , ψ = κ−1
β · π · I2,q · ψ2 · jp,2 .

Its Lipschitz constant is bounded by

Lip(ψ)p,q ≤ Lip(jp,2)Lip(ψ2)Lip(I2,q)Lip(π)Lip(κ−1
β )

≤ max(1,m
1
2
− 1
p )

1
√
a0

· 1 · (3 + 21+ 1
q ) · 1 .

Hence we obtained (3.51).

Replace β by α, ψ by ω, and κβ by κα in the proof above, using the Lipschitz

constants for κα in Proposition 3.1.1, we obtain (3.46) and (3.47).

The theorem above guarantees a Lipschitz extension for both measurements

α and β. In fact this works for more general measurements because we do not

need to assume a rank-1 measurement for our theory to work. For instance, in

quantum tomography as introduced in Section 1.1.2, suppose we have a pure state

ρ = |ψ〉〈ψ|, and the measurements are given as A(ρ) = (trρAk)
m
k=1. Naturally, we

adapt the distance function dp induced by the matrix norms for ρ. Then suppose

the measurement is bi-Lipschitz, we can use the same way as in Theorem 3.3.6 to

extend the inverse map to Rm.
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Chapter 4: Lipschitz properties of Convolutional neural networks

4.1 Motivations for studying the stability of deep networks

Although AlexNet and GoogleNet introduced in Section 1.2 achieve state-of-

the-art classification accuracy, a small variation of an input image may easily cause

classification errors. In [96], the authors found that for AlexNet, a randomly selected

image can be slightly distorted and be classified wrong. We take their illustrating

example as shown in Figure 4.1. In all those examples, a tiny distortion (that cannot

be told by human eyes) on the input image causes the classification to be wrong.

Figure 4.1: The adversarial examples given in [96]. In each group (row) of pictures,

the picture on the left is correctly labeled by AlexNet, the picture on the right is

labeled wrong as “ostrich”, and the picture in the middle show their difference.
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The authors of [96] have studied the upper frame bounds for each layer of the

AlexNet. The following table shows the frame bounds computed numerically.

Figure 4.2: The frame bound for each layer of AlexNet. Taken from [96].

The scattering network has the property that it is approximately translation

invariant and stable to deformation. However, that property depends on a careful

selection of wavelets. Moreover, the feature generating process is fixed for different

problems while the feature selection process is trained from data.

We are interested to see whether we can do feature selection inside the network.

To do this, We do a case study in which we free the dilation factors in a Scattering

Network and train it from data.

We seek to have a scattering network trained for the task of image classifica-

tion. The training and testing data are taken from the MNIST dataset of hand-

written digits. We take a two-layer Scattering Network and put at the bottom an

SVM for classification. The structure is illustrated in Figure 4.3. We take a Morlet

wavelet and train the convolutional filters as dilations of the wavelet. The training

of the dilation factor is done iteratively with the training of the linear SVM, using

both deterministic and stochastic gradient descent.
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Figure 4.3: The structure of the scattering network for our case study. x is the input

signal; hjk’s are the convolutional filters taken to be the dilation of a Morlet wavelet

with trained scales; g is the pooling function followed by a downsampling factor L;

the feature y goes through a linear SVM to generate the classification result.

In our setting, the two-dimensional filters, hjk, are parametrized as dilations of

the tensor products of two one-dimensional wavelets. We use the same pre-defined

wavelet ψ for both. That is,

hjk(t1, t2) = ψλjk,1
⊗ ψλjk,2(t1, t2) = λjk,1λ

j
k,2ψ(λjk,1t1)ψ(λjk,2t2) . (4.1)

The optimization problem associated with the linear SVM is

min
λλλ;w,b

1

2
‖w‖2 + C

N∑
n=1

l(yn, an;w, b) , (4.2)

where

l(y, a;w, b) = max(0, 1− a(b+ 〈w, y〉)) , (4.3)
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and y is the vector composed of the following vectors:

y0 = x ∗ g ;

yj1 =
∣∣x ∗ hj1∣∣ ∗ g , 1 ≤ j ≤ 3 ;

yj2 =
∣∣∣∣∣∣x ∗ hdj/3e1

∣∣∣ ∗ hj2∣∣∣ ∗ g , 1 ≤ j ≤ 9 .

Figure 4.4: The classification results for MNIST. The error rate shows the percent-

age of data correctly labeled. The first row shows the results using the stochastic

gradient descent method, the second row shows the results using the deterministic

gradient descent method, the third row shows the results using libSVM, the fourth

row shows the results where |·| is replaced by |·|2.

The testing results are shown in Figure 4.4. From the testing results, we

see that training a variant version of scattering network is not successful since (1)

the widely-used stochastic gradient descent method works bad (2) the result from

deterministic method does not provide significant improvement from the linear SVM

result. One reason is that the scattering network structure is too restrictive and

learning the dilation factors does not seem to be a well-posed problem. We are
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motivated to develop the theory for a more general model, preferably including all:

AlexNet, GoogleNet and the scattering network.

4.2 A framework for a general convolutional neural network

We consider a CNN that maps the input signal to the representations (of the

features of the signal). In most applications, a fully connected neural network is put

at the bottom of the representations and outputs the classes for the input signal.a

Figure 4.5: The structure of a layer of CNN. A CNN consists of a chain of layers,

which makes the structure “deep”.

The CNN that we consider has a feed-forward structure and the input prop-

agates through several layers. In the CNN, each layer consists of input nodes,

convolutional filters, detection / merge operations, pooling filters, outputs (feature)

and output nodes. We understand each component as follows.

1. The input nodes are signals from the output nodes in the previous layer (it is

the input of the whole network for the first layer).

2. The convolutional filters are the filters that perform convolution with the signal
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from the input nodes. Suppose y is a signal in one of the input nodes, and g

is the filter, the output is

z(t) = y ∗ g(t) =

∫
y(t− s)g(s)ds =

∫
y(s)g(t− s)ds .

3. The detection / merge operations are nonlinear operations applied pointwise

to the output of the convolutional filters. In this stage, several outputs may

be merged by some pointwise operation to produce a single output.

4. The pooling filters lower the dimensionality/bandwidth to generate the out-

puts.

5. The output nodes are signals that are passed to the next layer. The signal on

the output nodes is identical to that on the input nodes of the next layer.

The space of the filters are chosen to be the Banach Algebra of tempered

distributions with an essentially bounded Fourier Transform, that is,

B = {f ∈ S ′(Rd),
∥∥∥f̂∥∥∥

∞
<∞} , (4.4)

with ‖f‖B :=
∥∥∥f̂∥∥∥

∞
for each f ∈ B.

Note that in the above definition we ask f̂ to be an ordinary function so it

makes sense to define its L∞ norm and multiplication. We check that B is indeed a

Banach algebra as follows.

Lemma 4.2.1. B as defined in (4.4) is a Banach algebra, where the + operation is

pointwise addition, and the · operation is the convolution defined by

f ∗ g =
(
f̂ ĝ
)v

, (4.5)
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where “ v ” denotes the inverse Fourier transform.

Proof. Note that B is closed under the convolution in the sense of (4.5) because

f̂ ĝ ∈ L∞(Rd) and therefore is also in S ′(Rd). Since the Fourier transform is an

isomorphism on S ′(Rd), the inverse Fourier transform of f̂ ĝ also lies in S ′(Rd).

After the closedness is clear, it is trivial to check that B is indeed an algebra.

The fact that B is a Banach algebra is due to the norm inequality

∥∥∥f̂ ĝ∥∥∥
∞
≤
∥∥∥f̂∥∥∥

∞

∥∥∥ĝ∥∥∥
∞
. (4.6)

We now return to the settings of CNN. In our framework, there can be three

types of merging. Type I takes inputs y1, · · · , yk from k different channels, apply a

nonlinearity function σ1, · · · , σk respectively, and then take the sum. That is, the

output is

z =
k∑
j=1

σj(yj) . (4.7)

Type II takes inputs y1, · · · , yk from k different channels, apply a nonlinearity, and

then apply a pointwise p-norm aggregation. That is, the output is

z =

(
k∑
j=1

|σj(yj)|p
)1/p

. (4.8)

Type III takes inputs y1, · · · , yk from k different channels, apply a nonlinearity with

L∞ norm bounded by 1, and then apply a pointwise multiplication. That is, the

output is

z =
k∏
j=1

σj(yj) , (4.9)
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Figure 4.6: The three types of merge. Type I is taking sum of three inputs, Type

II is taking p-norm aggregation, Type III is taking pointwise product.

with ‖σj‖∞ ≤ 1 for each j.

We now stop to discuss two widely used operations that can be modeled by

merging, namely, the max pooling and the average pooling. These operations are

illustrated in Figure (4.7).
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Figure 4.7: A toy example that shows how pooling works. The left image is

subdivided into nine regions. The pooling operation outputs one value for each

region. We take the top right corner for example. In the case of max pool-

ing, we have c = max{c1,1, c1,2, c2,1, c2,2}; in the case of average pooling, we have

c = (c1,1 + c1,2 + c2,1 + c2,2)/4.

Max pooling is the operation of taking the maximal element among those in

the same sub-regions. We can use translations and dilation to separate elements in a

sub-region to distinct channels, as illustrated in Figure 4.8. Then a L∞-aggregation

select the largest element and does the max pooling.

Figure 4.8: Max pooling modeled as Type II aggregation using L∞ norm.

Average pooling replaces “taking the max” by “taking the average”. Similarly

to max pooling, it can be done by taking the sum as illustrated in Figure 4.9.
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Figure 4.9: Average pooling modeled as Type I aggregation.

We illustrate the entire structure of an M -layer ConvNet as Figure 4.10.

Figure 4.10: The detail of an M -layer ConvNet. The signals at output nodes are

identical as at input nodes in the next layer. There may or may not be output in

each layer.

Suppose there are nm nodes in the m’s layer (this works for m < M but

m = M is a similar case in which there is no output node). We denote them by

Im = {Nm,1, Nm,2, · · · , Nm,nm}. Then within the layer, each node is connected to

several filters. The filter can be either a pooling filter, or a convolutional filter.

Associated with Nm,n for 1 ≤ k ≤ nm, we denote the pooling filter to be φm,n, and
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the convolutional filters to be Gm,n = {gm,n;1, · · · gm,n;km,n}. Then the set of filters

in the m-th layer is

Gm =
nm⋃
n=1

Gm,n . (4.10)

The filters can be classified into three categories according to the three types

of merging (if a filter is not merged with other filters, then we classify it as Type I).

We denote the sets of all Type-I, II, III filters by τ1, τ2, τ3, respectively.

Note that each filter is associated with one and only one output node. We

use Om = {N ′m,1, N ′m,2, · · · , N ′m,n′m} to denote the set of output nodes of the m-th

layer. Note that n′m = nm+1 and there is a one-one correspondence between Om

and Im+1. The output nodes automatically divides Gm into n′m disjoint subsets

Gm = ∪n
′
m

n′=1G
′
m,n′ , where G′m,n′ is the set of filters merged into N ′m,n′ .

The detail of one layer is illustrated in Figure 4.11.

For each filter gm,n;k, we define the associated multiplier lm,n;k in the following

way: suppose gm,n;k ∈ G′m,n′ , let K =
∣∣G′m,n′∣∣ denote the cardinality of G′m,n′ . Then

lm,n;k =


K , if gm,n;k ∈ τ1 ∪ τ3

Kmax{0,2/p−1} , if gm,n;k ∈ τ2

(4.11)

We define the 1st type Bessel bound for the node Nm,n to be

B(1)
m,n =

∥∥∥∥∥∣∣∣φ̂m,n∣∣∣2 +

km,n∑
k=1

lm,n;kD
−d
m,n;k |ĝm,n;k|2

∥∥∥∥∥
∞

, (4.12)

the 2nd type Bessel bound to be

B(2)
m,n =

∥∥∥∥∥
km,n∑
k=1

lm,n;kD
−d
m,n;k |ĝm,n;k|2

∥∥∥∥∥
∞

, (4.13)
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Figure 4.11: The detail of one layer. N ’s are the input nodes, N ′’s are the out-

put nodes. φ’s and g’s are the filters, D’s are the dilation factors. σ’s are the

nonlinearities.

and the generating bound to be

B(3)
m,n =

∥∥∥φ̂m,n∥∥∥2

∞
. (4.14)

Then we define the 1st type Bessel bound for the m-th layer to be

B(1)
m = max

1≤n≤nm
B(1)
m,n , (4.15)

the 2nd type Bessel bound to be

B(2)
m = max

1≤n≤nm
B(2)
m,n , (4.16)
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and the generating bound to be

B(3)
m = max

1≤n≤nm
B(3)
m,n . (4.17)

4.3 Computation of the Lipschitz constant

Let a CNN defined in the previous section be given. For any input signal f

and f̃ . Let fN be the output for f from the node N , and f̃N be the output for f̃

from the node N . Let V be the collection of all nodes. We say L is a Lipschitz

bound for the CNN if

∑
N∈V

∥∥∥fN − f̃N∥∥∥2

2
≤ L

∥∥∥f − f̃∥∥∥2

2
. (4.18)

Define the map Φ : L2(Rd)→ [L2(Rd)]|V | by

Φ(f) = (fN)N∈V . (4.19)

Then a norm ||| · ||| defined on [L2(Rd)]|V | by

∣∣∣∣∣∣∣∣∣(fN)N∈V

∣∣∣∣∣∣∣∣∣ =

(∑
N∈V

‖fN‖2
2

)1/2

is well defined and
√
L is a Lipschitz constant in the sense that

∣∣∣∣∣∣∣∣∣Φ(f)− Φ(f̃)
∣∣∣∣∣∣∣∣∣ ≤ √L∥∥∥f − f̃∥∥∥

2
. (4.20)

We have the following theorem for computing the Lipschitz bound.

Theorem 4.3.1. Consider a ConvNet with M layers and in the m-th layer it has

1st type Bessel bound B
(1)
m , 2nd type Bessel bound B

(2)
m and generating bound B

(3)
m .
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Then the ConvNet implies a nonlinear map that is Lipschitz continuous, and its

Lipschitz bound is given by the optimal value of the following linear program:

max
M∑
m=1

zm

s.t. y0 = 1

ym + zm ≤ B(1)
m ym−1, 1 ≤ m ≤M − 1

ym ≤ B(2)
m ym−1, 1 ≤ m ≤M − 1

zm ≤ B(3)
m ym−1, 1 ≤ m ≤M

ym, zm ≥ 0, for all m

(4.21)

Proof. We are going to show that the optimal value for the linear program (4.21) is

a Lipschitz bound. In particular, we are going to study the sum
∑

N∈V

∥∥∥fN − f̃N∥∥∥2

2

as
∑M

m=1

∑
N∈Vm

∥∥∥fN − f̃N∥∥∥2

2
.

We take the m-th layer for analysis. With Figure 4.16, we mark the signals

at the input nodes to be hm,1, · · · , hm,nm and the signals at the output nodes to be

h′m,1, · · · , h′m,n′m . We estimate the Lipschitz bound by comparing the output nodes

and input nodes for each layer, and then derive a relation between the outputs and

the input at the very first layer. Note that with our notation here, h1,1 = f and

h̃1,1 = f̃ .

We have three types of merging. We study the relation between the output

and input of the merging blocks. For Type I, see Figure 4.12.

We have

y0 =
K∑
k=1

σk(yk) , (4.22)

73



Figure 4.12: Type I merging. y0 is the sum of σ1(y1), · · · , σK(yK).

and

ỹ0 =
K∑
k=1

σk(ỹk) . (4.23)

Therefore

‖y0 − ỹ0‖2
2 =

∥∥∥∥∥
K∑
k=1

σk(yk)− σk(ỹk)

∥∥∥∥∥
2

2

≤ K
K∑
k=1

‖σk(yk)− σk(ỹk)‖2
2

≤ K
K∑
k=1

‖yk − ỹk‖2
2 .

(4.24)

For Type II, see Figure 4.13.

Figure 4.13: Type II merging. y0 is the aggregate of σ1(y1), · · · , σK(yK) using p-

norm.

We have

y0 =

(
K∑
k=1

|σk(yk)|p
)1/p

, (4.25)
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and

ỹ0 =

(
K∑
k=1

|σk(ỹk)|p
)1/p

, (4.26)

Therefore if p ≤ 2 we have

‖y0 − ỹ0‖2
2

=

∥∥∥∥∥
(

K∑
k=1

|σk(yk)|p
)1/p

−

(
K∑
k=1

|σk(ỹk)|p
)1/p ∥∥∥∥∥

2

2

≤

∥∥∥∥∥(
K∑
k=1

|σk(yk)− σk(ỹk)|p
)1/p

∥∥∥∥∥
2

2

≤ K2/p−1 ·

∥∥∥∥∥(
K∑
k=1

|σk(yk)− σk(ỹk)|2
)1/2

∥∥∥∥∥
2

2

= K2/p−1 ·
K∑
k=1

‖σk(yk)− σk(ỹk)‖2
2

≤ K2/p−1 ·
K∑
k=1

‖yk − ỹk‖2
2 ;

(4.27)

and if p > 2 we have

‖y0 − ỹ0‖2
2

=

∥∥∥∥∥
(

K∑
k=1

|σk(yk)|p
)1/p

−

(
K∑
k=1

|σk(ỹk)|p
)1/p ∥∥∥∥∥

2

2

≤

∥∥∥∥∥(
K∑
k=1

|σk(yk)− σk(ỹk)|p
)1/p

∥∥∥∥∥
2

2

≤

∥∥∥∥∥(
K∑
k=1

|σk(yk)− σk(ỹk)|2
)1/2

∥∥∥∥∥
2

2

=
K∑
k=1

‖σk(yk)− σk(ỹk)‖2
2

≤
K∑
k=1

‖yk − ỹk‖2
2 .

(4.28)

For Type III, see Figure 4.14.
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Figure 4.14: Type III merging. y0 is the product of σ1(y1), · · · , σK(yK), with

‖σj‖∞ ≤ 1 for j = 1, · · · , K.

We have y0 =
∏K

k=1 σk(yk) and ỹ0 =
∏K

k=1 σk(ỹk). Therefore,

‖y0 − ỹ0‖2

=

∥∥∥∥∥
K∏
k=1

σk(yk)−
K∏
k=1

σk(ỹk)

∥∥∥∥∥
2

=

∥∥∥∥∥
K∏
k=1

σk(yk) +
K−1∑
J=1

[
−

J∏
k=1

σk(yk)
K∏

k=J+1

σk(ỹk) +
J∏
k=1

σk(yk)
K∏

k=J+1

σk(ỹk)
]

+
K∏
k=1

σk(ỹk)

∥∥∥∥∥
2

=

∥∥∥∥∥
K−1∏
k=1

σk(yk) · (σK(yK)− σK(ỹK)) +
K−1∑
J=2

J−1∏
k=1

σk(yk) · (σJ(yJ)− σJ(ỹJ)) ·
K∏

k=J+1

σk(ỹk)+

(σ1(y1)− σ1(ỹ1)) ·
K∏
k=2

σk(ỹk)

∥∥∥∥∥
2

≤
K−1∏
k=1

‖σk(yk)‖∞ · ‖σK(yK)− σK(ỹK)‖2 +

K−1∑
J=2

J−1∏
k=1

‖σk(yk)‖∞ ·
K∏

k=J+1

‖σk(ỹk)‖∞ · ‖σJ(yJ)− σJ(ỹJ)‖2 +

K∏
k=2

‖σk(ỹk)‖∞ · ‖σ1(y1)− σ1(ỹ1)‖2

≤
K∑
k=1

‖σk(yk)− σk(ỹk)‖2

≤
K∑
k=1

‖yk − ỹk‖2 ,

(4.29)
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and thus

‖y0 − ỹ0‖2
2 ≤ K

K∑
k=1

‖yk − ỹk‖2
2 . (4.30)

For the downsampling / dilation operation, see Figure 4.15. We have

Figure 4.15: Downsampling / dilation. f (2) is the downsampled version of f (1).

∥∥∥f (2) − f̃ (2)
∥∥∥2

2
=

∫ ∣∣∣f (1)(Dx)− f̃ (1)(Dx)
∣∣∣2 dx

=
1

Dd

∫ ∣∣∣f (1)(x)− f̃ (1)(x)
∣∣∣2 dx

=
1

Dd

∥∥∥f (1) − f̃ (1)
∥∥∥2

2
.

(4.31)

Therefore, when we compare the input nodes and output nodes of the m-th

layer, we have
n′m∑
1

∥∥∥h′m,n − h̃′m,n∥∥∥2

2
+

nm∑
n=1

∥∥fm,n − f ′m,n∥∥2

2

≤ B(1)
m

∥∥∥hm,n − h̃m,n∥∥∥2

2
,

(4.32)

where B
(1)
m is as defined in Equation (4.15).

By the one-one correspondence of the output nodes in the (m + 1)-th layer

and the input nodes in the m-th layer, we know that

nm+1∑
n=1

∥∥∥hm+1,n − h̃m+1,n

∥∥∥2

2
=

n′m∑
n=1

∥∥∥h′m,n − h̃′m,n∥∥∥2

2
, (4.33)

and therefore,

nm+1∑
n=1

∥∥∥hm+1,n − h̃m+1,n

∥∥∥2

2
+

nm∑
n=1

∥∥∥fm,n − f̃m,n∥∥∥2

2

≤ B(1)
m

nm∑
n=1

∥∥∥hm,n − h̃m,n∥∥∥2

2
,

(4.34)
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for 1 ≤ m ≤M − 1.

If we do not consider the output generating, then the forward propagation

relation is
nm∑
n=1

∥∥∥hm+1,n − h̃m+1,n

∥∥∥2

2
≤ B(2)

m

nm∑
n=1

∥∥∥hm,n − h̃m,n∥∥∥2

2
, (4.35)

for 1 ≤ m ≤ M − 1, and similarly, considering the output generating nodes alone

gives
nm∑
n=1

∥∥∥fm,n − f̃m,n∥∥∥2

2
≤ B(3)

m

nm∑
n=1

∥∥∥hm,n − h̃m,n∥∥∥2

2
, (4.36)

for 1 ≤ m ≤M .

Since we would like to compare
∑M

m=1

∑nm
n=1

∥∥∥fm,n − f̃m,n∥∥∥2

2
with

∥∥∥h1,1 − h̃1,1

∥∥∥2

2
,

by (4.34)-(4.36), we see that the maximal value of the linear program (4.21) gives a

Lipschitz bound.

We can also give a Lipschitz bound more explicit to compute.

Corollary 4.3.2. Consider a CNN with M layers and in the m-th layer it has 1st

type Bessel bound Bm. Then the CNN induces a nonlinear map that is Lipschitz

continuous, and its Lipschitz bound is given by

M∏
m=1

max{1, Bm} . (4.37)

Proof. From the definitions of B
(1)
m,n, B

(2)
m,n and B

(3)
m,n (4.12)-(4.14) it is obvious that

B(1)
m,n ≤ B(2)

m,n +B(3)
m,n (4.38)

and from (4.15)-(4.17) we have hence

B(1)
m ≤ B(2)

m +B(3)
m (4.39)

78



Figure 4.16: Details of one layer with signals marked as blue.

for each m. Then note that if {ym}M−1
m=0 and {zm}M−1

m=0 are the maximums of the

linear program (4.21), then

zm ≤ B(1)
m ym−1 − ym, 1 ≤ m ≤M − 1, (4.40)

and

zM ≤ B
(1)
M yM−1 (4.41)

(note that B
(1)
M = B

(3)
M ).
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We take the sum over all m’s to get (denote yM = 0)

M∑
m=1

zm ≤
M∑
m=1

B(1)
m ym−1 − ym

=
M−1∑
m=0

B
(1)
m+1ym −

M−1∑
m=1

ym

= B
(1)
1 +

M−1∑
m=1

(B
(1)
m+1 − 1)ym .

(4.42)

Also, ym ≤ B
(2)
m ym−1 implies ym ≤ B

(1)
m ym−1, so

M∑
m=1

zm ≤ B
(1)
1 +

M−1∑
m=1

(max{1, B(1)
m+1} − 1)·

m∏
m′=1

max{1, B(1)
m′ }

=
M∏
m=1

max{1, B(1)
m } .

(4.43)

4.4 Examples

The Scattering Network, AlexNet and GoogleNet as introduced in Section 1.2

all fall in our general framework. In particular, Scattering network is a 1-Lipschitz

map. In each layer the filters come from the wavelets used in multi-resolution

analysis. A natural choice of wavelets has B
(1)
m,n = B

(2)
m,n = B

(3)
m,n = 1, for all m,n.

Therefore, the optimal solution in the linear program (4.21) is 1. The Alexnet and

GoogleNet do not generate outputs in each layer except for the last one. Therefore,

B
(1)
m,n = B

(3)
m,n for each 1 ≤ m ≤ M − 1. In this case, the result in Corollary 4.3.2

gives the optimal Lipschitz bound in the linear program (4.21).
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4.4.1 A three-layer Scattering Network

Given a CNN, We can use three different approaches to estimate the Lipschitz

constant. The first is by propagating backward from the outputs (either analytically

or numerically) and collecting the Lipschitz constants of all the outputs. The second

is by directly applying what we have discussed in Section 4.2. The third is by

deriving a lower bound for L, either because of the specifies of the network or by

numerical simulating.

We first give an example of a scattering network of three layers. The structure

is the same as Figure 1.4. We consider the 1D case and the wavelet given by the

Haar wavelets with the scaling function

φ(t) =


1, if 0 ≤ t < 1

0, otherwise

(4.44)

and the mother wavelet

ψ(t) =



1, if 0 ≤ t < 1/2

−1, if 1/2 ≤ t < 1

0, otherwise

. (4.45)

In our convention, the sinc function is defined as

sinc(x) =


sin(πx)

(πx)
, if x 6= 0

0, if x = 0

. (4.46)

We first look at real input functions. In this case the Haar wavelets φ and ψ

readily satisfies the unitarity condition given as Equation (2.7) in [78]. Recall that
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in the scattering network the convolutional filters are given by scales of the mother

wavelet ψ:

ψ2j(x) = 2djψ(2jx) , (4.47)

and the output generating filter is given by a scale of the scaling function φ:

φ2−J (x) = 2−dJφ(2−Jx) . (4.48)

Take J = 3 in our example and consider all possible three-layer paths for j =

0,−1,−2. We have three branches from each node. Therefore we have outputs from

1 + 3 + 32 + 33 = 40 nodes.

To convert the settings to our notations discussed in this chapter, we have a

three-layer convolutional network (as in Section 2) for which the filters are given by

g1,l1 , l1 ∈ {1, 2, 3}, g2,l2 , l2 ∈ {1, · · · , 9} and g3,l3 , l3 ∈ {1, · · · , 27}, where

gm,l =



ψ, if mod (l, 3) = 1;

ψ2−1 , if mod (l, 3) = 2;

ψ2−2 , if mod (l, 3) = 0.

q = ((1, l1), (2, l2), (3, l3)) is a path if and only if l2 ∈ {3l1 − k, k = 1, 2, 3} and

l3 ∈ {3l2−k, k = 1, 2, 3}. q = ((1, l1), (2, l2)) is a path if and only if l2 ∈ {3l1−k, k =
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1, 2, 3}. The set of all paths is

Q =
{
∅, {(1, 1)}, {(1, 2)}, {(1, 3)}, {(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 1), (2, 3)},

{(1, 2), (2, 4)}, {(1, 2), (2, 5)}, {(1, 2), (2, 6)}, {(1, 3), (2, 7)},

{(1, 3), (2, 8)}, {(1, 3), (2, 9)}
} ⋃

{
(1, l1), (2, l2), (3, l3), 1 ≤ l1 ≤ 3, l2 ∈ {3l1 − k, k = 1, 2, 3},

l3 ∈ {3l2 − k, k = 1, 2, 3}
}
.

Also, for the output generation, φ1 = φ2 = φ3 = φ4 = 2−Jφ(2−J ·). An illustration

of the network is as in Figure 4.17, which appeared also as Figure 1.4.

Figure 4.17: The three-layer scattering network in the example.

The first approach. We know that we have a set of 40 paths, each generating

an output. We can track back from each output to the input and compute a Lipschitz

83



bound, and then collect all the bound to compute a total bound. To do so, we

use backpropagation and the chain rule. Note that ψ2j(t) = 2jψ(2jt) and thus

‖ψ‖1 = ‖ψ2j‖1 = 1. Therefore ‖gm,l‖1 = 1 for all m, l. Similarly, ‖φj‖1 = 1 for all

j. Let y’s denote the outputs and z’s denote the intermediate values, as marked in

Figure 4.17. Note that each y is associated with a unique path. Consider two inputs

f and f̃ , and r ≥ 1. Take a path q = ((1, l1), (2, l2), (3, l3)) we have

‖y4,l3 − ỹ4,l3‖r = ‖(z3,l3 − z̃3,l3) ∗ φ4‖r

≤ ‖z3,l3 − z̃3,l3‖r ‖φ4‖1 = ‖z3,l3 − z̃3,l3‖r ;

‖z3,l3 − z̃3,l3‖r = ‖|z2,l2 ∗ g3,l3| − |z̃2,l2 ∗ g3,l3|‖r

≤ ‖z2,l2 − z̃2,l2‖r ‖g3,l3‖1 = ‖z2,l2 − z̃2,l2‖r ;

‖z2,l2 − z̃2,l2‖r = ‖|z1,l1 ∗ g2,l2| − |z̃1,l1 ∗ g2,l2|‖r

≤ ‖z1,l1 − z̃1,l1‖r ‖g2,l2‖1 = ‖z1,l1 − z̃1,l1‖r ;

‖z1,l1 − z̃1,l3‖r =
∥∥∥|f ∗ g1,l1| −

∣∣∣f̃ ∗ g1,l1

∣∣∣∥∥∥
r

≤
∥∥∥f − f̃∥∥∥

r

∥∥∥g1,l1

∥∥∥
1

=
∥∥∥f − f̃∥∥∥

r
.

and similarly for all output ym,lm ’s. Therefore, we have

∣∣∣∣∣∣∣∣∣Φ(f)− Φ(f̃)
∣∣∣∣∣∣∣∣∣2 =

∑
m,lm

∣∣∣∣∣∣ym,lm − ỹm,lm∣∣∣∣∣∣2
2
≤ 40

∥∥∥f − f̃∥∥∥2

2
.

The second approach. According to the result from multi-resolution anal-

ysis (see [24, 44, 77]), we have
∣∣∣φ̂2−J (ω)

∣∣∣ +
∑0

j=−2

∣∣∣ψ̂2j(ω)
∣∣∣2 ≤ 1 (plotted in Figure

4.18), we have the first-type Bessel bounds for all layers are equal to 1. Indeed, we
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can compute that

∣∣∣φ̂2−J (ω)
∣∣∣+

0∑
j=−2

∣∣∣ψ̂2j(ω)
∣∣∣2 = sinc2(8ω) + sinc2(ω/2) sin2(πω/2)+

sinc2(ω) sin2(πω) + sinc2(2ω) sin2(2πω) .

Thus in this way, according to our discussion in Section 2, we have
∣∣∣∣∣∣∣∣∣Φ(f) −

Φ(f̃)
∣∣∣∣∣∣∣∣∣2 ≤ ∥∥∥f − f̃∥∥∥2

2
.

Figure 4.18: Plot of
∣∣∣φ̂2−J (ω)

∣∣∣+
∑0

j=−2

∣∣∣ψ̂2j(ω)
∣∣∣2

The third approach. A lower bound for the Lipschitz constant is derived

by considering only the output y1,1 from the input layer. Obviously

∣∣∣∣∣∣∣∣∣Φ(f)− Φ(f̃)
∣∣∣∣∣∣∣∣∣2 ≥ ∥∥∥(f − f̃) ∗ φ1

∥∥∥2

1
.

Thus

sup
f 6=f̃

∣∣∣∣∣∣∣∣∣Φ(f)− Φ(f̃)
∣∣∣∣∣∣∣∣∣2∥∥∥f − f̃∥∥∥2

2

≥ sup
f 6=f̃

∥∥∥(f − f̃) ∗ φ1

∥∥∥2

1∥∥∥f − f̃∥∥∥2

2

=
∥∥∥φ̂1

∥∥∥2

∞
= 1 .

Therefore, 1 is the exact Lipschitz bound (and Lipschitz constant) in our example.
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4.4.2 A general three-layer CNN

We now give an example of how to compute the Lipschitz constant as in Figure

4.19. In Figure 4.19 f is the input, y’s are the outputs and z’s are the intermediate

values within the network. We assume that p ≥ 2.

Figure 4.19: An example of a three-layer CNN. σ denotes the nonlinear pointwise

function tanh.

Again we use three approaches to estimate the Lipschitz constant.

The first approach. In this approach we do not analyze the network by

layers, but directly look at the outputs. We make use of the following rules: (1)

backpropagation using the product rule and the chain rule; (2) each p-norm block

is a multi-input-single-output nonlinear system with Lipschitz constant 1 for each

channel.
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Take two signals f and f̃ . We use ỹ’s and z̃’s to denote the outputs and

intermediate values corresponding to f̃ . Starting from the leftmost channels, we

have for the first layer that

|y1 − ỹ1| =
∣∣∣(f − f̃) ∗ φ1

∣∣∣ ,
and thus for any 1 ≤ r ≤ ∞,

‖y1 − ỹ1‖r ≤
∥∥∥f − f̃∥∥∥

r
‖φ1‖1 . (4.49)

For the second layer we have

|y2,1 − ỹ2,1| = |(z1,1 − z̃1,1) ∗ φ2,2| ,

and thus

‖y2,1 − ỹ2,1‖r ≤ ‖z1,1 − z̃1,1‖r ‖φ2‖1 .

With

‖z1,1 − z̃1,1‖r ≤
∥∥∥f − f̃∥∥∥

r
‖g1,1‖1 ,

we have

‖y2,1 − ỹ2,1‖r ≤
∥∥∥f − f̃∥∥∥

r
‖g1,1‖1 ‖φ2‖1 . (4.50)

Similarly,

‖y2,2 − ỹ2,2‖r ≤ ‖z1,2 − z̃1,2‖r ‖φ2‖1 ,

and with

|z1,2 − z̃1,2| =
∣∣∣ (|f ∗ g1,2|p + |f ∗ g1,3|p + |f ∗ g1,4|p)1/p−(∣∣∣f̃ ∗ g1,2

∣∣∣p +
∣∣∣f̃ ∗ g1,3

∣∣∣p +
∣∣∣f̃ ∗ g1,4

∣∣∣p)1/p ∣∣∣
≤
(∣∣∣(f − f̃) ∗ g1,2

∣∣∣p +
∣∣∣(f − f̃) ∗ g1,3

∣∣∣p +
∣∣∣(f − f̃) ∗ g1,4

∣∣∣p)1/p

≤
∣∣∣(f − f̃) ∗ g1,2

∣∣∣+
∣∣∣(f − f̃) ∗ g1,3

∣∣∣+
∣∣∣(f − f̃) ∗ g1,4

∣∣∣
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we have

‖z1,2 − z̃1,2‖r ≤
∥∥∥f − f̃∥∥∥ (‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) .

Therefore

‖y2,2 − ỹ2,2‖r ≤
∥∥∥f − f̃∥∥∥ (‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) ‖φ2‖1 . (4.51)

For the third layer we have

‖y3,1 − ỹ3,1‖r ≤ ‖z2,1 − z̃2,1‖r ‖φ3‖1 .

With

‖z2,1 − z̃2,1‖r ≤ ‖z1,1 − z̃1,1‖r ‖g2,1‖1 ,

we have

‖y3,1 − ỹ3,1‖r ≤
∥∥∥f − f̃∥∥∥

r
‖g1,1‖1 ‖g2,1‖1 ‖φ3‖1 . (4.52)

Also,

|z2,2 − z̃2,2| =
∣∣∣ (|z1,1 ∗ g2,2|p + |z1,1 ∗ g2,3|p + |z1,2 ∗ g2,4|p)1/p−

(|z̃1,1 ∗ g2,2|p + |z̃1,1 ∗ g2,3|p + |z̃1,2 ∗ g2,4|p)1/p
∣∣∣

≤ (|(z1,1 − z̃1,1) ∗ g2,2|p + |(z1,1 − z̃1,1) ∗ g2,3|p + |(z1,2 − z̃1,2) ∗ g2,4|p)1/p

≤ |(z1,1 − z̃1,1) ∗ g2,2|+ |(z1,1 − z̃1,1) ∗ g2,3|+ |(z1,2 − z̃1,2) ∗ g2,4| ,

which gives

‖z2,2 − z̃2,2‖r ≤ ‖z1,1 − z̃1,1‖r (‖g2,2‖1 + ‖g2,3‖1) + ‖z1,2 − z̃1,2‖r ‖g2,4‖1 .

A more obvious relation is

‖z2,3 − z̃2,3‖r ≤ ‖z1,2 − z̃1,2‖r ‖g2,5‖1 .
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Since tanh has value bounded in [−1, 1], the L∞ norm at z2,2 and z2,3 are bounded

above by 1, and therefore we have

‖z2,4 − z̃2,4‖r = ‖z2,3z2,2 − z̃2,3z̃2,2‖r

= ‖z2,3z2,2 − z̃2,3z2,2 + z̃2,3z2,2 − z̃2,3z̃2,2‖r

≤ ‖z2,3 − z̃2,3‖r ‖z2,2‖∞ + ‖z̃2,3‖∞ ‖z2,2 − z̃2,2‖r

≤ ‖z2,2 − z̃2,2‖r + ‖z2,3 − z̃2,3‖r ,

and consequently we have

‖y3,2 − ỹ3,2‖r ≤ ‖z2,4 − z̃2,4‖r ‖φ3‖1

≤ (‖z2,2 − z̃2,2‖r + ‖z2,3 − z̃2,3‖r) ‖φ3‖1

≤ ‖z1,1 − z̃1,1‖r (‖g2,2‖1 + ‖g2,3‖1) ‖φ3‖1 +

‖z1,2 − z̃1,2‖r (‖g2,4‖1 + ‖g2,5‖1) ‖φ3‖1

≤
∥∥∥f − f̃∥∥∥

r

(
‖g1,1‖1 (‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)
‖φ3‖1 .

(4.53)
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Collecting (4.49)-(4.53) we have

∑
m,l

‖ym,l − ỹm,l‖r ≤
∥∥∥f − f̃∥∥∥

r

(
‖φ1‖1 + ‖g1,1‖1 ‖φ2‖1 +

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) ‖φ2‖1 +

‖g1,1‖1 ‖g2,1‖1 ‖φ3‖1 +
(
‖g1,1‖1 (‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)
‖φ3‖1

)
=
∥∥∥f − f̃∥∥∥

r

(
‖φ1‖1 + (‖g1,1‖1 + ‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) ‖φ2‖1 +(

‖g1,1‖1 (‖g2,1‖1 + ‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)
‖φ3‖1

)
.

On the other hand we also have∣∣∣∣∣∣∣∣∣Φ(f)− Φ(f̃)
∣∣∣∣∣∣∣∣∣2 =

∑
m,l

‖ym,l − ỹm,l‖2
2

≤
∥∥∥f − f̃∥∥∥2

2

(
‖φ1‖2

1 + ‖g1,1‖2
1 ‖φ2‖2

1 +

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)2 ‖φ2‖2
1 +

‖g1,1‖2
1 ‖g2,1‖2

1 ‖φ3‖2
1 +

(
‖g1,1‖1 (‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)2

‖φ3‖2
1

)
.

(4.54)

The second approach. To apply our formula, we first add δ’s and form a

network as in Figure 4.20. We have a four-layer network and as we have discussed,
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we can compute, since p ≥ 2, that

B̃1 =

∥∥∥∥|ĝ1,1|2 + |ĝ1,2|2 + |ĝ1,3|2 + |ĝ1,4|2 +
∣∣∣φ̂1

∣∣∣2∥∥∥∥
∞

;

B̃2 = max

{
1,

∥∥∥∥|ĝ2,1|2 + |ĝ2,2|2 + |ĝ2,3|2 +
∣∣∣φ̂2

∣∣∣2∥∥∥∥
∞
,

∥∥∥∥|ĝ2,4|2 + |ĝ2,5|2 +
∣∣∣φ̂2

∣∣∣2∥∥∥∥
∞

}
;

B̃3 = max

{
2,
∥∥∥φ̂3

∥∥∥2

∞

}
;

B̃4 = max

{
1,
∥∥∥φ̂3

∥∥∥2

∞

}
.

Then the Lipschitz constant is given by (B̃1B̃2B̃3B̃4)1/2, that is,

∣∣∣∣∣∣∣∣∣Φ(f)− Φ(f̃)
∣∣∣∣∣∣∣∣∣2 ≤ (B̃1B̃2B̃3B̃4)

∥∥∥f − f̃∥∥∥2

2
. (4.55)

Figure 4.20: Equivalence of the example. We can clearly see four layers from this

illustration.

The third approach. In general (4.55) provides a more optimal bound than

(4.54) because the latter does not consider the intrinsic relations of the filters that
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are grouped together in the same layer. The actual Lipschitz bound can depend

on the actual design of filters, not only on the Bessel bounds. We do a numerical

experiment in which the Fourier transform of the filters in the same layer are the

(smoothed) characteristic functions supported disjointly in the frequency domain.

Define F (ω) = exp(4ω2/(4ω2− 1)) ·χ(−1/2,0)(ω) (as illustrated in Figure 4.21),

and G(ω) = F (−ω). The filters are defined in the Fourier domain to be

φ̂1(ω) = F (ω + 1) + χ(−1,1)(ω) +G(ω − 1)

ĝ1,1(ω) = F (ω + 3) + χ(−3,−2)(ω) +G(ω + 2) + F (ω − 2) + χ(2,3)(ω) +G(ω − 3)

ĝ1,2(ω) = F (ω + 5) + χ(−5,−4)(ω) +G(ω + 4) + F (ω − 4) + χ(4,5)(ω) +G(ω − 5)

ĝ1,3(ω) = F (ω + 7) + χ(−7,−6)(ω) +G(ω + 6) + F (ω − 6) + χ(6,7)(ω) +G(ω − 7)

ĝ1,4(ω) = F (ω + 9) + χ(−9,−8)(ω) +G(ω + 8) + F (ω − 8) + χ(8,9)(ω) +G(ω − 9)

φ̂2(ω) = F (ω + 2) + χ(−2,2)(ω) +G(ω − 2)

ĝ2,1(ω) = F (ω + 4) + χ(−4,−3)(ω) +G(ω + 3) + F (ω − 3) + χ(3,4)(ω) +G(ω − 4)

ĝ2,2(ω) = F (ω + 6) + χ(−6,−5)(ω) +G(ω + 5) + F (ω − 5) + χ(5,6)(ω) +G(ω − 6)

ĝ2,3(ω) = F (ω + 8) + χ(−8,−7)(ω) +G(ω + 7) + F (ω − 7) + χ(7,8)(ω) +G(ω − 8)

ĝ2,4(ω) = F (ω + 5) + χ(−5,−3)(ω) +G(ω + 3) + F (ω − 3) + χ(3,5)(ω) +G(ω − 5)

ĝ2,5(ω) = F (ω + 8) + χ(−8,−6)(ω) +G(ω + 6) + F (ω − 6) + χ(6,8)(ω) +G(ω − 8)

φ̂3(ω) = F (ω + 9) + χ(−9,9)(ω) +G(ω − 9)

Then each function is in C∞C (R̂).

We numerically compute the L1 norms of the inverse transform of the above

functions using IFFT and numerical integration with stepsize 0.025: ‖φ1‖1 = 1.8265,
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Figure 4.21: An illustration of F (ω). The functions we define in the Fourier domain

are composed of the translations of F and a reflected version of F .

‖g1,1‖1 = 2.0781, ‖g1,2‖1 = 2.0808, ‖g1,3‖1 = 2.0518, ‖g1,4‖1 = 2.0720, ‖φ2‖1 =

2.0572, ‖g2,1‖1 = 2.0784, ‖g2,2‖1 = 2.0734, ‖g2,3‖1 = 2.0889, ‖g2,4‖1 = 2.2390,

‖g2,5‖1 = 2.3175, ‖φ3‖1 = 2.6378. Then the constant on the right-hand side of

Inequality (4.54) is 966.26, and by taking the square root we conclude that the

Lipschitz constant computed using the first approach is less than or equal to Γ1 =

31.1.

It is no effort to conclude that in the second approach, B̃1 = B̃2 = B̃4 = 1

and B̃3 = 2. Therefore the Lipschitz constant computed using the second approach
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is Γ2 =
√

2.

A numerical experiment suggests that the Lipschitz bound associated with our

setting of filters is about Γ3 = 1.1937. In the experiment we numerically compute

the output of the network and record the largest ratio |||Φ(f) − Φ(f̃)|||/||f − f̃ ||2

over one million iterations. Numerically, we consider the range [−20, 20] for both

the time domain and the frequency domain and take stepsize to be 0.025. For each

iteration we generate two randomly signals on [−20, 20] with stepsize 1 and then

upsample to the same scale with stepsize 0.025.

We conclude that the näıve first approach may lead to a much larger Lipschitz

bound for analysis, and the second approach gives a more reasonable estimation.

4.4.3 A comparison between Theorem 4.3.1 and Corollary 4.3.2

In the examples above, the approximation in Corollary 4.3.2 readily gives the

tightest Lipschitz bound. However, it is not always the case. We shall use the same

network as in the last example but a different group of filters.

Define the function on the Fourier domain supported on (−1, 1) as

F (ω) = exp

(
4ω2 + 4ω + 1

4ω2 + 4ω

)
χ(−1,−1/2)(ω)+

χ(−1/2,1/2)(ω)+

exp

(
4ω2 − 4ω + 1

4ω2 − 4ω

)
χ(1/2,1)(ω)

(4.56)

as illustrated in Figure 4.22.
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Figure 4.22: An illustration of F (ω). The functions we define in the Fourier domain

all shape like F and are composed of translations of (part of) F .

With that done, we define the filters in the Fourier domain to be

φ̂1(ω) = F (ω)

ĝ1,j(ω) = F (ω + 2j − 1/2) + F (ω − 2j + 1/2)

j = 1, 2, 3, 4.
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φ̂2(ω) = exp

(
4ω2 + 12ω + 9

4ω2 + 12ω + 8

)
χ(−2,−3/2)(ω)+

χ(−3/2,3/2)(ω)+

exp

(
4ω2 − 12ω + 9

4ω2 − 12ω + 8

)
χ(3/2,2)(ω)

ĝ2,j(ω) = F (ω + 2j) + F (ω − 2j)

j = 1, 2, 3.

ĝ2,4(ω) = F (ω + 2) + F (ω − 2)

ĝ2,5(ω) = F (ω + 5) + F (ω − 5)

φ̂3(ω) = exp

(
4ω2 + 20ω + 25

4ω2 + 20ω + 24

)
χ(−3,−5/2)(ω)+

χ(−5/2,5/2)(ω)+

exp

(
4ω2 − 20ω + 25

4ω2 − 20ω + 25

)
χ(5/2,3)(ω) .

Then we have B
(1)
m = 2 exp(−1/3), B

(2)
m = B

(3)
m = 1 for each m. We execute a linear

program using MATLAB and find out that the optimal Lipschitz bound is 2.2992,

while the Lipschitz bound as derived in Corollary 4.3.2 is 8[exp(−1/3)]3 = 2.9430.

Therefore, in general the output of the linear program (4.21) is more optimal than

the product given in Corollary 4.3.2.

4.5 Stationary processes

Signals (audio or image) are often modeled as random processes [82]. In our

case, there are two ways to model the input signal of a CNN: one is to consider

X(t) as a random process (field) with some underlying space (Ω,F,P) with finite
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second-order moments (see [78], Chapter 4); the other is to regard X as a random

variable such that

X : (Ω,F,P)→ L2(Rd) .

The latter treatment makes it easy to make use of concentration inequalities (see

[71,72]). We shall present the former model for our general framework of CNN. We

find out that the analysis is much parallel to the way

In this section, we shall use the notation X(t) to emphasize the time (space)

variable t ∈ Rd and Xt(ω) to emphasize ω ∈ Ω. In general, if we have dilations for

random processes then after we merge the signals we lose stationarity. Thus in the

section we assume that there is no dilation in our CNN.

Fix a trajectory X(t) = Xω(t) for some ω ∈ Ω. Then we can define Φ(X) the

same way as in (4.19). We first show that the output of a CNN is SSS provided that

the input X is SSS. This is stated as the following lemma.

Lemma 4.5.1. Suppose there is no dilation in CNN. If X is an SSS process, then

so is Φ(X).

Proof. This lemma lies on the following two facts.

1. If X is SSS, then σ(X(t)), where σ is a pointwise function, is also SSS;

2. If X is SSS, then X ∗ g(t) defined as

(X ∗ g)ω(t) =

∫
Xω(t− s)g(s)ds , (4.57)

is also SSS.
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To see 1, we need to show

P
{
σ(Xt1+τ ) ∈ A1, · · · , σ(Xtn+τ ) ∈ An

}
= P

{
σ(Xt1) ∈ A1, · · · , σ(Xtn) ∈ An

} (4.58)

for any t1, · · · , tn, τ ∈ Rd and any A1, · · · , An ∈ F. Let Bj = σ−1(Aj) = {c ∈ C :

σ(c) ∈ Aj} for j = 1, · · · , n. The above equality reads

P
{
Xt1+τ ∈ B1, · · · , Xtn+τ ∈ Bn

}
= P

{
Xt1 ∈ B1, · · · , Xtn ∈ Bn

}
,

(4.59)

which holds true due to the assumption that X is SSS.

To see 2, note that since X is SSS there exists a semigroup of measure-preserving

transformation {
T t : Ω→ Ω

}
t∈Rd

associated with X such that

T sT t = T s+t

for each s, t ∈ Rd; and a function f such that

f(T tω) = Xt(ω) , (4.60)

for each ω ∈ Ω, t ∈ Rd. Thus

X ∗ g(t) =

∫
f
(
T t−sω

)
g(s)ds . (4.61)

For any t1, · · · , tn ∈ Rd, A1, · · · , An ∈ F, let

Ω̃τ = {ω ∈ Ω : (X ∗ g)t1+τ (ω) ∈ A1, · · · , (X ∗ g)tn+τ (ω) ∈ An} . (4.62)
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For ω ∈ Ω̃τ , note that T τω satisfies

(X ∗ g)t1(ω) ∈ A1, · · · , (X ∗ g)tn(ω) ∈ An .

Since T τ is measure-preserving, we have P(Ω̃τ ) = P(Ω̃0). Thus X ∗ g is SSS.

Given the two facts, the lemma is proved by tracking from the input to each

output of the CNN.

Theorem 4.5.2. Assume there is no dilation in CNN. Let X and Y be SSS processes

with finite second-order moments. Then

E
(∣∣∣∣∣∣∣∣∣Φ(X)− Φ(Y )

∣∣∣∣∣∣∣∣∣2) ≤ L · E
(
|X − Y |2

)
. (4.63)

In particular, |||Φ(X)|||2 ≤ L · E
(
|X|2

)
.

Proof. Since the input X and Y are SSS, so are the signals at all input and output

nodes of the CNN. Therefore we can use the Wiener-Khinchin Theorem (Theorem

2.4.4) to relate the auto-correlation with the power spectrum.

Consider an SSS process Z that are filtered by some fixed g ∈ B. Denote

W = Z ∗ g. Then by Theorem 2.4.4 we have RW (0) =
∫
ŜW (ω)dω. Note that we

have the transfer relation

ŜW (ω) = ŜZ(ω) · |ĝ(ω)|2 . (4.64)

That is to say,

E
(
|W |2

)
=

∫
R̂W (ω) |ĝ(ω)|2 dω . (4.65)

More generally, due to linearity of E, if we have two inputs Z and Z̃ and a family
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of filters {gj}j∈J , we have

E

(∑
j

∣∣∣Z ∗ gj − Z̃ ∗ gj∣∣∣2) =
∑
j

∫
ŜZ−Z̃(ω) |ĝj(ω)|2 dω

=

∫
ŜZ−Z̃(ω)

∑
j

|ĝj|2 (ω)dω

≤
∫
ŜZ−Z̃(ω)dω ·

∥∥∥∥∥∑
j

|ĝj|2
∥∥∥∥∥
∞

= E
(∣∣∣Z − Z̃∣∣∣2) · ∥∥∥∥∥∑

j

|ĝj|2
∥∥∥∥∥
∞

.

(4.66)

With this, we can compare the correlation on the first input nodes with the outputs

of the CNN similar to what we did in the proof of Theorem 4.3.1. Note that

for merging, the inequalities (4.24), (4.27), (4.28), (4.30) still hold when ‖·‖2
2 are

replaced with E |·|2.
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