
ABSTRACT

Title of dissertation: APPROXIMATION ALGORITHMS FOR
FACILITY LOCATION AND
CLUSTERING PROBLEMS

Khoa Trinh, Doctor of Philosophy, 2017

Dissertation directed by: Professor Aravind Srinivasan
Department of Computer Science

Facility Location (FL) problems are among the most fundamental problems

in combinatorial optimization. FL problems are also closely related to Clustering

problems. Generally, we are given a set of facilities, a set of clients, and a symmetric

distance metric on these facilities and clients. The goal is to “open” the “best”

subset of facilities, subject to certain budget constraints, and connect all clients

to the opened facilities so that some objective function of the connection costs is

minimized. In this dissertation, we consider generalizations of classical FL problems.

Since these problems are NP-hard, we aim to find good approximate solutions in

polynomial time.

We study the classic k-median problem which asks to find a subset of at

most k facilities such that the sum of connection costs of all clients to the closest

facility is as small as possible. Our main result is a 2.675-approximation algorithm

for this problem. We also consider the Knapsack Median (KM) problem which is a

generalization of the k-median problem. In the KM problem, each facility is assigned

an opening cost. A feasible set of opened facilities should have the total opening

cost at most a given budget. The main technical challenge here is that the natural

LP relaxation has unbounded integrality gap. We propose a 17.46-approximation

algorithm for the KM problem. We also show that, after a preprocessing step, the

integrality gap of the residual instance is bounded by a constant.

The next problem is a generalization of the k-center problem, which is called

the Knapsack Center (KC) problem and has a similar budget constraint as in the

KM problem. Here we want to minimize the maximum distance from any client to

its closest opened facility. The KC problem is well-known to be 3-approximable.

However, the current approximation algorithms for KC are deterministic and it is

not hard to construct instances in which almost all clients have the worst-possible

connection cost. Unfairness also arises in this context: certain clients may consis-

tently get connected to distant centers. We design a randomized algorithm which

guarantees that the expected connection cost of “most” clients will be at most

(1 + 2/e) ≈ 1.74 times the optimal radius and the worst-case distance remains the

same. We also show a similar result for the k-center problem: all clients have ex-

pected approximation ratio about 1.592 with a deterministic upper-bound of 3 in

the worst case.

It is well-known that a few outliers (very distant clients) may result in a

very large optimal radius in the center-type problems. One way to deal with this

issue is to cover only some t out of n clients in the so-called robust model. In this

thesis, we give tight approximation algorithms for both robust k-center and robust

matroid center problems. We also introduce a lottery model in which each client j

wants to be covered with probability at least pj ∈ [0, 1]. We then give randomized

approximation algorithms for center-type problems in this model which match the

worst-case bounds of the robust model and slightly violate the coverage and fairness

constraints.

Several of our results for FL problems in this thesis rely on novel dependent

rounding schemes. We develop these rounding techniques in the general setting and

show that they guarantee new correlation properties. Given the wide applicability

of the standard dependent rounding, we believe that our new techniques are of

independent interests.

APPROXIMATION ALGORITHMS FOR
FACILITY LOCATION AND CLUSTERING PROBLEMS

by

Khoa Trinh

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor Aravind Srinivasan, Chair/Advisor
Professor Samir Khuller
Professor David Mount
Professor Mihai Pop
Professor Alexander Barg

c© Copyright by
Khoa Trinh

2017

To my grandfather Van-Chuc Tran,

who has boosted the love for Science in me.

ii

Acknowledgments

I am grateful to receive tremendous help and support from many people during

my PhD journey, whose names I would like to mention here.

First and foremost, I wholeheartedly thank my advisor Aravind Srinivasan for

his constant encouragement and guidance that helped me overcome the most difficult

times in my study. His wisdom and knowledge in mathematics and computer science

have greatly inspired me. I will cherish all weekly meetings with Aravind, in which he

would patiently listen to my problems and suggest many fruitful ideas. Aravind has

also given me great advice on my career path, helped me find summer internships,

and written recommendation letters when I was applying for a full-time job. I will

remain eternally indebted to Aravind.

I would also like to thank my dear friend and colleague Tommy Pensyl for

our collaboration over the past five years. We have spent countless hours together

exploring and discussing various topics in AVW 3204. Indeed I have learnt a lot

from Tommy. I really appreciate his time and valuable feedbacks to help me improve

my presentation skills and prepare for many technical talks.

I have been very fortunate to collaborate with many amazing researchers. All

chapters in this dissertation are coauthored with Aravind Srinivasan and Tommy

Pensyl. Chapter 4 is also coauthored with Jaros law Byrka and Bartosz Rybicki.

Chapters 5 and 6 are also coauthored with David Harris. I would also like to thank

Bryan Lewis, Madhav Marathe, Pyrros A. Telionis, and Anil Vullikanti for our joint

work on the ETU project.

iii

I would like to thank Samir Khuller, David Mount, Mihai Pop, and Alexander

Barg for being in my dissertation committee.

Many thanks to my labmates: Brian Brubach, Soheil Ehsani, Karthik Abinav

Sankararaman, and Pan Xu for the good times, chit-chats, and lunches together. I

especially want to thank Pan Xu for introducing me many wonderful Chinese and

Korean restaurants. I am a little bit sad that we don’t have any joint paper yet!

Throughout my PhD venture, I had three memorable internships at Oracle

and Microsoft. I want to thank my managers and mentors who hosted me in the

summers of 2014 to 2016, including Dmitry Krylov at Oracle, and Qifa Ke, Krishna

Poola, Sreedal Menon, and Yajun Wang at Microsoft. I thank all of them for their

mentorship and support.

My daily life in the US is so enjoyable thanks to my dear friends (most have

lived in Graduate Hills): Bao Nguyen, Viet-An Nguyen, Lacey Yen Nguyen, My Le,

Chanh Kieu, Sy Mai, Tuyet Le, Huong Vu, Bryan Dzung Ta, and Quang Huynh.

I also thank my parents Thu Tran and Hoa Trinh for their unconditional love,

patience, and continued support during my study.

Finally, my research has been supported in part by the NSF Awards CNS

1010789 and CCF 1422569.

iv

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Facility Location Problems . 2

1.1.1 Summary . 5
1.2 Background and Related Work . 5

1.2.1 FL problems with the min-sum objective function 5
1.2.2 FL problems with the min-max objective function 9
1.2.3 Related Clustering problems 11

1.3 Dissertation outline . 12

2 Dependent Rounding 15
2.1 Overview . 15

2.1.1 Background . 15
2.1.2 Organization . 17

2.2 Weighted Dependent Rounding . 18
2.3 Near Independence via Random Permutation 23

2.3.1 Algorithm . 24
2.3.2 Analysis . 24

2.4 A Motivating Problem . 36
2.5 Partial Negative Correlation . 43

2.5.1 Algorithm . 44
2.5.2 Analysis . 46

2.6 Symmetric Randomized Dependent Rounding 51
2.6.1 Algorithm . 53
2.6.2 Analysis . 54

v

3 The k-median Problem 61
3.1 Problem definition . 61
3.2 Prior work and Our contributions . 61
3.3 An improved bi-point rounding algorithm 63

3.3.1 Preliminaries . 63
3.3.2 Main case: s0 ≥ 5/6, b ∈ [0.508, 3/4], rD ∈ [19/40, 2/3], and

r1 > 1 . 66
3.3.2.1 Main algorithm . 67
3.3.2.2 Bounding the number of opened facilities 69
3.3.2.3 Cost analysis . 75
3.3.2.4 The nonlinear factor-revealing program 84

3.3.3 Algorithms for edge cases . 88
3.4 Dichotomy result . 97

3.4.1 Case 1 . 100
3.4.2 Case 2 . 104
3.4.3 Case 3 . 104

4 The Knapsack Median Problem 107
4.1 Problem definition . 107
4.2 Prior work and Our contributions . 107
4.3 Preliminaries . 109

4.3.1 An LP Relaxation . 109
4.3.2 Kumar’s bound . 110

4.4 Improved approximation algorithms 112
4.4.1 Sparse Instances . 112
4.4.2 Improving Kumar’s bound and modifying the LP relaxation . 116
4.4.3 Filtering Phase . 117
4.4.4 A (23.09 + ε)-approximation algorithm 119
4.4.5 A (17.46+ε)-approximation algorithm via conditioning on the

fractional cluster center . 130
4.5 An improved bi-factor approximation algorithm 136

4.5.1 Pruning “big” facilities and computing a bi-point solution . . 137
4.5.2 Corner cases: a ≤ 1/5 or a ≥ 4/5 139
4.5.3 Main case: a ∈ [1/5, 4/5] . 142

5 The (Multi) Knapsack Center Problem 149
5.1 Problem definition . 149
5.2 Prior work and Our contributions . 150
5.3 Preliminaries . 151
5.4 A fair knapsack-center algorithm for the case m = 1 156

5.4.1 Algorithm . 156
5.4.2 Analysis . 158

5.5 Independent rounding algorithm for the case m ≥ 1 165

vi

6 The k-center Problem 170
6.1 Problem definition . 170
6.2 Prior work and Our contributions . 170
6.3 Preliminaries . 171
6.4 A simple algorithm with expected ratio of 1.6 172

6.4.1 Algorithm . 172
6.4.2 Analysis . 174

6.5 Improved algorithm using partial clusters 177
6.5.1 Algorithm . 177
6.5.2 Analysis . 179
6.5.3 Computer-assisted analysis . 189

7 A Lottery Model for Center-type Problems With Outliers 191
7.1 Overview . 191

7.1.1 The Lottery Model . 193
7.1.2 Our contributions and techniques 194
7.1.3 Organization . 196

7.2 Preliminaries . 196
7.2.1 Matroid polytopes . 196
7.2.2 Filtering algorithm . 198

7.3 The k-center problems with outliers 200
7.3.1 The robust k-center problem 200
7.3.2 The fair robust k-center problem 202

7.4 The Knapsack Center problems with outliers 206
7.4.1 The robust knapsack center problem 206
7.4.2 The fair robust knapsack center problem 208

7.4.2.1 Basic algorithm . 209
7.4.2.2 An algorithm slightly violating the budget constraint 210
7.4.2.3 An algorithm that satisfies the knapsack constraint

exactly . 215
7.5 The Matroid Center problems with outliers 220

7.5.1 The robust matroid center problem 220
7.5.2 The fair robust matroid center problem 222

7.5.2.1 A pseudo-approximation algorithm 223
7.5.2.2 Analysis of PseudoFRMCenterRound 229
7.5.2.3 An algorithm satisfying the matroid constraint exactly236

8 Future Work 241

Bibliography 244

vii

List of Tables

3.1 The main algorithm makes 9 calls to A, with the above parameters. . 67
3.2 Calls of A when r1 ≤ 1. 97

viii

List of Figures

3.1 Illustration of i1, i2, and i3. Observe that d3 ≤ d2 + d(i2, i3) ≤ d2 +
d(i1, i2) ≤ d1 + 2d2. 76

4.1 After the filtering step, the LP solution lie in polytope P which has
“almost” half-integral extreme points. 121

4.2 Our strategy is to randomly round the LP solution into one vertex
(x̂, ŷ) of P and then round it into an integral solution (x̃, ỹ). 122

4.3 Illustration of F ′j , Gj, i1(j), i2(j), and σ(j). 123
4.4 Illustration of a neighborhood graph. All cycles are of size two. 124

7.1 Construction of the multi-bipartite graphH = (L,R, EH) in the main
algorithm. 224

7.2 The left part shows a cycle. The right part shows how the variables
on the cycle are being changed by RoundCycle. 225

7.3 The left part shows a single path. The right part shows how the
variables on the path are being changed by RoundSinglePath. . . 227

7.4 The left part shows an example of two distinct maximal paths chosen
in Case 3. The black edge is common in both paths. The middle
and right parts are two possibilities of rounding y. With probability
δ1/(δ1 + δ2), the strategy in the right part is adopted. Otherwise, the
strategy in the middle part is chosen. 228

ix

List of Notations and Abbreviations

cost(j) the connection cost of client j
costI(j) the connection cost of client j in instance I
costI(S) the cost of solution S for instance I
d(i, j) the distance from (client) j to (facility) i
OPTI the cost of an optimal, integral solution to instance I
OPTf the cost of an optimal, fractional solution to the LP relaxation
KM Knapsack Median
KC Knapsack Center
MKC Multi Knapsack Center
RkCenter Robust k-center
RKnapCenter Robust Knapsack Center
RMatCenter Robust Matroid Center
FRkCenter Fair Robust k-center
FRKnapCenter Fair Robust Knapsack Center
FRMatCenter Fair Robust Matroid Center

x

Chapter 1: Introduction

Combinatorial optimization is an important topic in Computer Science, which

aims to find an optimal object from a finite (but possibly very large) set of ob-

jects. Many notable applications in other fields such as operations research, ma-

chine learning, artificial intelligence, and game theory involve solving discrete opti-

mization problems. Unfortunately, most such optimization problems are NP-hard

(see, e.g., [1–3].) Unless P=NP, which is believed to be highly unlikely by most

researchers, there is no efficient algorithm (i.e., one that can find an optimal so-

lution in polynomial time) for any NP-hard problem. The most popular approach

in this case is to sacrifice the optimality and look for a good approximate solution.

More formally, given an NP-hard minimization problem, we would like to find a

polynomial-time algorithm which is provably guaranteed to return a solution whose

cost is bounded by a small factor α times the optimal cost. We refer to such an al-

gorithm as an α-approximation algorithm. The factor α is called the approximation

ratio or approximation guarantee of the algorithm.

Our goal is to make the approximation ratio as small as possible. However,

approximating an NP-hard problem to below certain threshold can also be NP-

hard. An α-approximation algorithm for an NP-hard problem is said to be tight

1

if there does not exist an (α − ε)-approximation algorithm for any ε > 0, unless

P=NP. Interestingly, not all NP-hard optimization problems are created equal: some

problems can be significantly easier to approximate than others. For example, the

Euclidean traveling salesman problem can be approximated to within a factor (1+ε)

for any ε > 0 [4] while it is NP-hard approximate the maximum maximum clique to

a factor better than O(n1−γ) for any γ > 0 [5].

The main focus of this dissertation is on designing good approximation algo-

rithms for the class of facility-location problems. The rest of this chapter is organized

as follows. Section 1 describes a somewhat general setting for facility-location prob-

lems and their applications. In Section 2, we shall review known results for several

classic facility-location and clustering problems. Then we give an outline of this

dissertation in Section 3.

1.1 Facility Location Problems

Facility Location (FL) problems are among the most fundamental problems

in combinatorial optimization, which have been studied intensively and extensively

in the past few decades. In the general setting, we are given a set of facilities F ,

a set of clients C, and a symmetric distance metric 1 d on F ∪ C. That is, for

any i, j, k ∈ F ∪ C, we have d(i, j) = d(j, i) and d(i, j) + d(j, k) ≥ d(i, k) (triangle

inequality.) The goal is to open a subset of facilities, subject to certain feasibility

constraints, and connect all clients to the open facilities so that some measurement

1Note that most of the Facility Location problems are NP-hard to approximate to within any
constant factor under a general distance function. We only consider metric Facility Location
problems in this dissertation.

2

of the connection cost and the facility opening cost is minimized. Three of the

most well-studied, classic models under this setting are the Uncapacitated Facility

Location (UFL) problem, the k-median problem, and the k-center problem.

In the UFL problem, each facility i ∈ F has an opening cost fi ∈ R+ and our

goal is to minimize the sum of the sum of connection cost from each client to the

nearest open facility plus the total opening facility cost. On the other hand, in the

k-median problem, we do not need to take into account the facility opening cost.

Instead, we have a cardinality constraint saying that at most k facilities could be

open. Moreover, if we change our objective to minimize the maximum distance from

any client to the closest open facility and assume that F = C, then the problem is

known as the k-center problem.

One natural generalization of the k-median and k-center problems is to replace

the cardinality constraint by a knapsack constraint. That is, each facility i will now

have a weight wi ≥ 0. We are given a budget B > 0 and require the total weight of

the solution set to be at most B. Here the two problems are known as the Knapsack

Median (KM) problem and Knapsack Center (KC) problem, respectively.

Another important way to define the feasibility constraint is requiring our

solution to be an independent set of a given matroidM. For example, in the Matroid

Median problem, we look for a set of facilities being a basis of M which minimizes

the total connection cost of all clients. Many other facility location problems, such

as the data placement problem [6,7], the mobile facility location [8,9], the k-median

forest problem [10], and the metric-uniform minimum-latency UFL problem [11], can

be reduced to the Matroid Median problem [12].

3

FL problems have numerous applications in different areas, including Opera-

tional Research [13,14], Computational Biology [15], Computer Vision [16,17], Data

Mining [18], and Network Design [19]. Depending on the context, we may need to

use a variant of the basic models. For example, in certain cases, we may require

that each facility i ∈ F can only serve at most ci > 0 clients. This is called the

capacitated version of the corresponding FL problem. In other applications, we may

want to connect each client j ∈ C to exactly rj > 0 facilities to ensure that j still

gets connected even when rj − 1 facilities serving j in the solution fail. This setting

is called the fault-tolerant version of the original problem.

Another notable application of the FL problems is in the context of epidemic

prevention and mitigation. Suppose we have a set of potential hospital locations

and information about the population demands of some country, which could be

just the number of people living at some location. We already have some models to

predict the spread of some disease, e.g. Ebola, over all people across the country.

Now we look for locations to place the new hospitals which are most effective in

preventing/mitigating the disease. Then FL problems arise naturally in this context.

Facility Location problems are closely related to Clustering problems [20]. For

example, the k-center problem can also be considered a Clustering problem, wherein

the set of given points (which is F = C in this case) is partitioned into at most k

cluster with the objective function being the maximum cluster radius. Moreover,

many techniques in FL problems have been successfully applied in other Clustering

problems [21,22].

4

1.1.1 Summary

In summary, an instance of a FL problem studied in this thesis consists of a

set of facilities F , a set of clients C, and a distance metric d on F ∪ C. We want to

find a set S ⊆ F to minimize one of the following objective functions:

• the min-sum objective function:
∑

j∈Cmini∈S d(i, j),

• the min-max objective function: maxj∈Cmini∈S d(i, j),

subject to one of the following feasibility constraints:

• the cardinality constraint: |S| ≤ k for some given k ∈ Z+,

• the knapsack constraint:
∑

i∈S wi ≤ B for some given weight function w :

F → R+ and B ∈ R+,

• the matroid constraint: S should be a basis of some given matroid M.

1.2 Background and Related Work

Here we review the current approximability results for several classic FL prob-

lems.

1.2.1 FL problems with the min-sum objective function

The UFL problem is known to be NP-hard. Therefore, researchers focus on

designing approximation algorithms which run in polynomial time and produce a

solution whose cost can be bounded a (preferably small) constant factor times the

5

optimal cost. Hochbaum [23] introduced an O(log n)-approximation algorithm in

1982. Then Shmoys, Tardos and Aardal [24] gave the first constant approximation

algorithm based on LP-rounding, where the ratio was 3.16. The approximation

guarantee for UFL was then gradually improved by a series of papers [25–28]. The

current best guarantee is 1.488 by the work of Shi Li [29] which carefully combines

and randomizes JMS algorithm [30] and Byrka’s algorithm [28]. On the negative

side, Guha and Kuller [31] showed the first hardness result for UFL which states that,

unless NP ⊆ DTIME
(
nO(log logn)

)
, the UFL problem cannot be approximated to

within a factor of 1.463. Then Sviridenko [26] improved the condition “NP ⊆

DTIME
(
nO(log logn)

)
” to “P = NP”.

The k-median problem is also known to be NP-hard. The first result for this

problem was an O(log n log log n)-approximation algorithm by Bartal [32]. Charikar,

Guha, Tardos, and Shmoys [33] first gave a 62
3
-approximation algorithm for k-median

by an LP-rounding algorithm. Then, Jain and Vazirani [25] showed that one can

use Lagrangian Relaxation to remove the budget constraint of opening at most k fa-

cilities so that k-median is reduced to a special case of the UFL problem. Next, they

construct the so-called bi-point solution, losing a factor of 3 in the process. Finally,

they round this bi-point solution to an integral feasible solution losing another mul-

tiplicative factor of 2, yielding a 6-approximation. Later, Jain, Mahdian, and Saberi

(JMS [30]) improved the approximation ratio of constructing the bi-point solution

to 2 by an improved greedy algorithm with a clever dual fitting analysis, resulting in

a 4-approximation. Following this, Arya et. al. [34] introduced a local-search-based

(3 + ε)-approximation algorithm.

6

Recently, Li and Svensson [35] give a breakthrough result stating that, given

any α-approximate solution to the k-median problem using k + O(1) facilities, one

can still transform it into an (α + ε)-approximate feasible solution in polynomial

time. By opening a small constant extra number of facilities, Li and Svensson

manage to improve the ratio when rounding the bi-point solution from 3 to 1+
√

3
2

.

Taking in account the factor of 2 when constructing the bi-point solution, this is a

(1 +
√

3 + ε) ≈ (2.73 + ε)-approximation for the k-median problem. The current

best known approximation guarantee is (2.675 + ε), given by Byrka et. al. [36]

In this work, the authors carefully design a set of 9 different rounding strategies

which altogether improve the factor lost when rounding the bi-point solution from

1+
√

3
2
≈ 1.366 to 1.337. On the negative side, Jain, Mahdian, and Saberi [30] showed

that the k-median is NP-hard to approximate to within 1 + 2/e ≈ 1.735.

The Capacitated k-median (CKM) problem is notoriously difficult to approx-

imate. Recall that, in this problem, each facility i ∈ F can only serve at most

ci different clients. There is no known constant approximation algorithm for this

problem so far, nor do we know if such an algorithm exists. All known approxi-

mation algorithms so far either violate the capacitated constraint or the cardinality

constraint. Byrka et. al. give an O(1/ε2)-approximation algorithm by violating the

capacity constraint by a factor of (2+ε) in [37]. Recently, Shi Li [38] shows that there

is an O
(

1
ε2

log 1
ε

)
-approximation algorithm for the CKM problem if allowed to open

(1 + ε)k facilities and each facility may be open twice. A constant approximation

ratio can also be achieved if allowed to violate the capacities by (1 + ε) [39, 40].

On the other hand, the Capacitated facility location problem (CFL) is much

7

easier to approximate. For the special case of uniform capacities, Korupolu et.

al. [41] first gave a constant approximation, whose analysis was later improved by

Chudak and Williamson [42]. The current best approximation ratio for the uniform

CFL problem is 3 by Aggarwal et. al. [43]. For the general CFL problem, the

first constant factor approximation algorithm was given by Pál et. al. [44]. Bansal

et. al. [45] gave the current best 5-approximation algorithm for this problem. All

mentioned algorithms are based on the local search method. The more recent work

by An et. al. [46] introduced the first LP-based algorithm, settling the popular open

question whether there exists such an algorithm for the CFL problem that was raised

in [47]. Also, Svitkina [48] shows that the lower-bounded facility location problem,

where each open facility should be assigned at least B clients, can be reduced to the

CFL problem; and hence, admits a constant approximation guarantee.

The Fault-Tolerant k-median (FTKM) problem is also well-studied in the liter-

ature. As mentioned above, in this variant, we have to connect each client j ∈ C to

at least rj ≥ 1 different facilities. When all rj’s are equal, Swamy and Shmoys [49]

gave a 4-approximation by using the Lagrangian relaxation technique. Then Ha-

jiaghayi et. al. [50] introduced a 93-approximation algorithm for the non-uniform

case, which is currently the best known guarantee.

The Knapsack Median problem was first proposed by Krishnaswamy et. al.

[51]. Although this is a generalization of the k-median problem, we still do not

know a stronger lower-bound than 1 + 2/e for the KM problem. Krishnaswamy et.

al. [51] gave a bicriteria (16+ε)-approximation while violating the budget constraint

by (1 + ε). Then Kumar [52] gave the first constant approximation algorithms for

8

the problem although the ratio was very large – around 2700. Later, the work by

Charikar & Li [53] and Swamy [12] improved the approximation ratio to 34 and

32, respectively. The main challenge when approximating this problem is due to

the unbounded integrality gap of the natural LP relaxation. All approximation

algorithms for the KM problem so far are using Kumar’s bound. This bound allows

us to upper-bound the connection cost of a cluster of nearby clients in terms of the

cost of the optimal integral solution.

1.2.2 FL problems with the min-max objective function

One of the most basic and well-known problems in this class is the k-center

problem. Recall that, in this problem, we have F = C (i.e. each client is also a

center) and want to minimize the maximum radius of all k clusters. The k-center

problem is NP-hard and is 2-approximable [47]. Moreover, unless P = NP, we

cannot approximate it to within factor 2− ε for any ε > 0. If we require that some

clients may not be open as a center (i.e. F 6= C), the problem is known as the

k-supplier problem. It is relatively easy to modify most 2-approximation algorithms

for k-center to obtain 3-approximation algorithms for the case F 6= C. Also, the

lower-bound of k-supplier is known to be 3.

Similar to the KM problem, a natural generalization of the k-center problem

is to assign a weight wj ≥ 0 to each client j ∈ C then require that the total weight

of open centers should not exceed a given budget B. This problem is called the

Knapsack Center problem and has a 3-approximation algorithm [54].

9

The Capacitated k-center problem seems to be easier to approximate than

the CKM problem. It does admit a constant approximation ratio. Khuller and

Sussmann [55] first gave a 6-approximation algorithm for the special case of uniform

capacities. More than a decade later, the breakthrough work by Cygan et. al. [56]

introduced the first constant factor approximation algorithm. Then An et. al. [57]

improved the approximation ratio to 9, using a deterministic LP rounding algorithm.

The Fault-Tolerant k-center with uniform requirements was considered by Sussmann

and Khuller [58]. They gave a 3-approximation algorithm for the problem.

The Matroid Center problem is another generalization of the k-center problem.

In this problem, we replace the cardinality constraint by a matroid constraint. That

is, given matroid M = (F , I) where I is the family of independent sets of the

ground set F , we require any feasible open set of centers to be a member of I.

This problem was first stuided by Chen et. al. [59], who also gave a (tight) 3-

approximation algorithm.

In some cases, a few clients may cause the optimal radius of a k-center instance

to be blown-up significantly. This issue was addressed by Charikar et. al. [60]. They

referred to such clients as outliers and suggested a new model to deal with outliers.

To this end, they introduced the so-called Robust k-center, in which we are also

given an integer t < n and only need to serve at least t clients in C. Then they

gave a 3-approximation algorithm for the Robust k-center problem. Chen et. al. [59]

consider the Robust Matroid Center problem and provide a combinatorial algorithm

which achieves a ratio of 7. Streaming and distributed algorithms for the k-center

problem with outliers have been studied by McCutchen and Khuller [61] and by

10

Malkomes et. al. [62]. (Also, see [63] for a constant factor approximation algorithm

for the k-median problem with outliers.)

Recently, there are new studies about generalizations of the k-center and k-

supplier with outliers. The work by [64] considers the non-uniform k-center problem,

in which we are given a set of radii {r1, r2, . . . , rk} and want to assign these radii

to the chosen k centers so that all points are covered. The authors show that the

problem cannot be approximated to within any constant factor (unless P=NP) and

give a bi-criteria approximation algorithm which achieves an O(1)-approximation

and opens some Θ(1) centers of each radius. Also, Ahmadian and Swamy [65] give

a 5-approximation algorithm for the k-supplier with outliers and with lower-bounds

on the number of connections of each facility. Cygan and Kociumaka [66] show that

there is a constant factor approximation for the Capacitated k-center problem with

outliers.

1.2.3 Related Clustering problems

Depending on the applications, we may need different objective functions than

the min-sum and min-max measurements as in k-median and k-center. A notable

example is the k-sum-radii problem proposed by Charikar and Panigrahy [21]. In

this problem, we want to partition a set of points in a metric space into k clusters

so as to minimize the sum of cluster radii. Using similar ideas in [25] and [30], they

applied the Lagrangian Relaxation technique to remove the cardinality constraint,

used a primal-dual method to obtain a 3-approximation for the UFL-like problem,

11

and then obtained a bi-point solution while only losing a factor (1+ε) in this process.

After rounding the bi-point solution, their algorithm achieves an approximation ratio

of ≈ 3.5. See [67–69] for more recent results on this problem.

Researchers have also tried to include additional requirements to obtain clus-

ters satisfying desirable properties. Aggarwal et. al. [22] study some clustering

problems in which we have a lower-bound on the number of points assigned to each

cluster. For example, in the r-gather problem, we want to partition all given data

points into clusters containing at least r points each so that the maximum radius of

all clusters is minimized. Aggarwal et. al. [22] gave a (tight) 2-approximation algo-

rithm for this problem. Clustering problems have also been studied under various

models (see, e.g., [70–72]).

1.3 Dissertation outline

In this section, we briefly describe the our main technical contributions of the

dissertation and how the next chapters are organized.

Chapter 2 discusses the dependent rounding technique which will be used

extensively in the following chapters. It turns out that several of our FL problems

require a new dependent-rounding method which can both preserve a set of hard

“clustering contraints” and a set of soft knapsack constraints while guaranteeing

“near-negative-correlation” among any subset of the variables. We will first review

the basic dependent rounding scheme. Next, we describe a motivating problem

in the context of FL problems and introduce new dependent rounding algorithms.

12

Finally, we prove the required correlation properties of our rounding schemes. Given

the broad applicability of dependent rounding, we believe that the new techniques

developed in this chapter will be of independent interests.

Chapter 3 presents an improved (2.675+ε)-approximation algorithm for the k-

median problem. We propose a set of 9 different randomized strategies to round the

so-called bi-point solution of any k-median instance. By solving a non-linear factor-

revealing program, we obtain an approximation ratio of 1.3371, which improves

upon the ratio of 1+
√

3
2
≈ 1.366 by Li and Svensson [35]. Taking into account a

factor of 2 lost due to construction of the bi-point solution, this gives a (2.675 + ε)-

approximation algorithm. Using techniques developed in Chapter 2, we also improve

the run-time from nO(1/ε2) to nO((1/ε) log(1/ε)).

In Chapter 4, we introduce a 17.46-approximation algorithm for the Knapsack

Median problem, improving upon the 32-approximation algorithm by Swamy [12].

Our improvement in the approximation ratio comes from a new sparsification step

which strengthens Kumar’s bound, a simple clustering step inspired by [33], and

randomization in the final rounding step. Our preprocessing algorithm yields the

following by-product result: the LP relaxation of any sparsed instances has bounded

integrality gap. We also give a bicriteria (1 +
√

3 + ε)-approximation algorithm if

allowed to violate the knapsack constraint by (1 + ε).

We develop a new randomized algorithm for the Knapsack Center problem

in Chapter 5, which not only matches the tight approximation ratio of 3 but also

guarantees that almost all clients have expected connection cost at most 1 + 2/e ≈

1.735 times the optimal radius. The two main technical ideas here are (i) applying a

13

preprocessing step to ensure each center does not serve too many clients fractionally

and (ii) utilizing the new dependent rounding method in Chapter 2.

Chapter 6 addresses the classic k-center problem. As mentioned before, there

are simple 2-approximation algorithms for this problem. However, to the best of our

knowledge, all of these algorithms are deterministic. For any such algorithm, it is not

difficult to point out an instance in which most of the clients have connection cost

actually matching the worst-case bound. Here we introduce a randomized algorithm

which gives a slightly worse approximation guarantee of 3 but guarantees that all

clients have expected approximation ratio only about 1.596.

Chapter 7 is about the center-type problems with outliers. We give tight ap-

proximation algorithms for the robust k-center and robust matroid center problems.

We also introduce a new lottery model in which each client j requests a “target”

probability pj of being connected in the solution. Then we develop approximation

algorithms for the fair robust k-center, fair robust knapsack center, and fair robust

matroid center problems under this model.

Finally, we conclude the dissertation and discuss future works in Chapter 8.

14

Chapter 2: Dependent Rounding

2.1 Overview

2.1.1 Background

Randomized rounding is a very popular (and powerful) technique in designing

approximation algorithms for NP-hard problems. The technique was first developed

by Raghavan and Thompson [73]. The idea is to first solve the LP relaxation of

our problem. Then the fractional LP solution x ∈ [0, 1]n will be rounded into an

integral solution X ∈ {0, 1}n in a randomized manner. In the original work [73],

each variable xi will be rounded independently so that Pr[Xi = 1] = xi. This

old technique has two main advantages. First, since the marginal probabilities are

preserved, the expected “cost” of X will be equal to the optimal value of the LP

by linearity of expectation. Secondly, one can apply Chernoff-type bounds on any

linear function of X and argue that X is “feasible” with high probability.

In many applications, there are hard constraints which cannot be violated. For

example, we may have a cardinality constraint:
∑n

i=1 Xi ≤ k for some parameter

k ∈ N. The technique by Raghavan and Thompson performs badly in this case as

we have to “condition” on the event that the cardinality constraint is not violated.

15

In a seminal work, Ageev and Sviridenko [74] introduced a deterministic rounding

scheme, called pipage rounding, which allows us to obtain a feasible X with prob-

ability one. Roughly speaking, the idea is to round x iteratively. In each step, we

ensure that (i) at least one variable becomes integral and (ii) x is modified in such

a way that its “cost” (normally a linear function of x) does not increase.

The technique of Ageev and Sviridenko [74] was interpreted probabilistically

in the work of Srinivasan [75] and further developed by Gandhi et. al. [76], giv-

ing rise to dependent-rounding schemes. In the past decade, dependent rounding

techniques have found many applications in combinatorial optimization [53,76–80].

Moreover, researchers have been trying to generalize the technique to make it work

for matroid or matroid-intersection polytopes [81–83] and/or guarantee other corre-

lation/concentration properties [36,82,84,85].

The results by Srinivasan [75] are summarized in the following theorem.

Theorem 2.1.1 (Srinivasan [75]). There exists an algorithm DepRound(x) which

takes as input a vector x ∈ [0, 1]n, and outputs a vector X ∈ {0, 1}n in linear time

with the following properties:

(A1) marginal probabilities are preserved: Pr[Xi = 1] = xi, for all i ∈ [n],

(A2) b∑n
i=1 xic ≤

∑n
i=1Xi ≤ d

∑n
i=1 xie with probability one,

(A3) negative correlation: for any S ⊆ [n], we have

Pr

[∧
i∈S

(Xi = 1)

]
≤
∏
i∈S

xi,

16

and

Pr

[∧
i∈S

(Xi = 0)

]
≤
∏
i∈S

(1− xi).

The third property (A3) says that all variables are negatively correlated. In

particular, this property allows us to apply Chernoff-type concentration bounds for

linear functions of the variables [86].

2.1.2 Organization

Dependent rounding is a crucial tool to design (approximation) algorithms

for facility-location problems in this thesis. In this chapter, we will discuss a new

dependent-rounding technique, called Symmetric Randomized Dependent Rounding

(SRDR), with stronger correlation properties. Both the basic dependent rounding

and SRDR techniques will be applied extensively in later chapters. We also believe

that SRDR is of independent interests.

The rest of this chapter is organized as follows. In Section 2, we review the

weighted dependent rounding algorithm, which is slightly more general than the

rounding scheme in [75]. In Section 3, we show that by randomly permuting the

variables before applying weighted dependent rounding, the resulting variables will

become “nearly” independent. Next, we formally state our basic problem (in the

context of facility-location problems) and motivation for a new technique in Section

4. Then we consider a simple rounding algorithm which guarantees half-negative

correlation among the variables in Section 5. Finally, we develop and analyze the

17

SRDR scheme in Section 6.

2.2 Weighted Dependent Rounding

Here we review the standard weighted dependent rounding algorithm. Suppose

we are given a vector x ∈ [0, 1]n and a “weight” vector a ∈ Rn
+. The goal is to round

x into an integral vector X ∈ {0, 1}n such that both the weighted sum and marginal

probabilities are preserved (i.e.,
∑n

i=1 aiXi =
∑n

i=1 aixi and E[Xi] = xi for i ∈ [n].)

Note that this is always not possible: e.g., consider the case where there is only one

variable x1 = 0.5 with a1 = 1. Thus, we may have to leave one fractional value in

X. Let frac(x) = {i ∈ [n] : 0 < xi < 1} be the set of indicies of fractional variables

of x. The basic algorithm is as follows.

Algorithm 1 Simplify(x, a)

1: Choose any distinct pair i∗, j∗ ∈ frac(x), i∗ 6= j∗

2: Let δ+ ← min{1− xi∗ , (aj∗xj∗)/ai∗}
3: Let δ− ← min{xi∗ , (aj∗(1− xj∗))/ai∗}
4: With probability δ−

δ++δ−
,

X← x + (δ+)ei∗ −
(
ai∗

aj∗
δ+

)
ej∗ ,

else,

X← x− (δ−)ei∗ +

(
ai∗

aj∗
δ−

)
ej∗ .

5: return X

Algorithm 2 WeightedDepRound(x, a)

1: while |frac(x)| ≥ 2 do
2: x← Simplify(x, a)
3: return x

To analyze WeightedDepRound, we need the following lemma.

18

Lemma 2.2.1. Given any vector x ∈ [0, 1]n and a ∈ Rn
+. Suppose X is the output

of Simplify(x, a) and i∗, j∗ are indices chosen during the process. Then we have

Xi∗ , Xj∗ ∈ [0, 1] and at least one of Xi∗ , Xj∗ is in {0, 1}. Also, we have the following

properties

(B1) ai∗Xi∗ + aj∗Xj∗ = ai∗xi∗ + aj∗xj∗,

(B2) E[Xi∗] = xi∗ and E[Xj∗] = xj∗,

(B3) E[Xi∗Xj∗] ≤ xi∗xj∗ and E[(1−Xi∗)(1−Xj∗)] ≤ (1− xi∗)(1− xj∗).

Proof. By definition of δ+ and δ−, we have xi∗+δ+ ≤ 1, xi∗−δ− ≥ 0, xj∗−ai∗δ+/aj∗ ≥

0, and xj∗ + ai∗δ−/aj∗ ≤ 1. It is easy to verify that at least one of Xi∗ , Xj∗ is in

{0, 1}. If the first rule in line 4 is used, we have

ai∗Xi∗ + aj∗Xj∗ = ai∗(xi∗ + δ+) + aj∗(xj∗ − ai∗δ+/aj∗)

= ai∗xi∗ + aj∗xj∗ .

Similarly, the second rule is called, we have

ai∗Xi∗ + aj∗Xj∗ = ai∗(xi∗ − δ−) + aj∗(xj∗ + ai∗δ−/aj∗)

= ai∗xi∗ + aj∗xj∗ .

19

Thus, (B1) holds. By construction, we obtain

E[Xi∗] =
δ−

δ+ + δ−
(xi∗ + δ+) +

δ+

δ+ + δ−
(xi∗ − δ−)

= xi∗ .

Similarly, E[Xj∗] = xj∗ . Finally, we have

E[Xi∗Xj∗] =
δ−

δ+ + δ−
(xi∗ + δ+)

(
xj∗ −

ai∗

aj∗
δ+

)
+

δ+

δ+ + δ−
(xi∗ − δ−)

(
xj∗ +

ai∗

aj∗
δ−

)
= xi∗xj∗ −

ai∗

aj∗
· δ2

+δ−
δ+ + δ−

− ai∗

aj∗
· δ2

−δ+

δ+ + δ−

≤ xi∗xj∗ ,

since both δ+ and δ− are positive. Similarly, E[(1−Xi∗)(1−Xj∗)] ≤ (1− xi∗)(1−

xj∗).

Theorem 2.2.1. Given any vector x ∈ [0, 1]n and a ∈ Rn
+. The algorithm WeightedDepRound(x, a)

will return a (random) vector X ∈ [0, 1]n with at most one floating value in (0, 1) in

linear time such that

(C1) the weighted sum is preserved:
∑n

i=1 aiXi =
∑n

i=1 aixi with probability one,

(C2) the marginal probabilities are preserved: E[Xi] = xi for all i ∈ [n],

(C3) all variables are negatively correlated: for any S ⊆ [n], we have

E

[∏
i∈S

Xi

]
≤
∏
i∈S

xi,

20

and

E

[∏
i∈S

(1−Xi)

]
≤
∏
i∈S

(1− xi).

Proof. By Lemma 2.2.1, at least one new variable will become integral after each

iteration of the while-loop at line 2. Thus, the algorithm terminates after O(n)

time and X has at most one remaining fractional value. Note that there are only

two variables being changed in each iteration and their sum remains unchanged by

Lemma 2.2.1. Then, by induction, (C1) holds.

Now fix any variable xi. In each iteration, either xi is not changed by Simplify

or the expected value of the modified xi remains the same. Again, by induction,

E[Xi] = xi.

Finally, fix any S ⊆ [n]. For k = 0, 1, 2, . . . , n, let X(k) denote the (random)

value of x after k steps. We will prove property (C3) by induction. When k = 0, the

claim is vacuously true. For k ≥ 1, suppose {i∗, j∗} are indices chosen by Simplify

in the k-th iteration. We consider the following cases:

• Case S ∩ {i∗, j∗} = ∅:

E

[∏
i∈S

X
(k)
i

]
=
∏
i∈S

X
(k−1)
i ,

• Case S ∩ {i∗, j∗} = {i∗}:

E

[∏
i∈S

X
(k)
i

]
=

∏
i∈S\{i∗}

X
(k−1)
i E

[
X

(k)
i∗

]
=
∏
i∈S

X
(k−1)
i ,

21

• Case S ∩ {i∗, j∗} = {j∗}:

E

[∏
i∈S

X
(k)
i

]
=

∏
i∈S\{j∗}

X
(k−1)
i E

[
X

(k)
j∗

]
=
∏
i∈S

X
(k−1)
i ,

• Case S ∩ {i∗, j∗} = {i∗, j∗}:

E

[∏
i∈S

X
(k)
i

]
=

∏
i∈S\{i∗,j∗}

X
(k−1)
i E

[
X

(k)
i∗ X

(k)
j∗

]
≤
∏
i∈S

X
(k−1)
i .

Thus, E
[∏

i∈S X
(k)
i

]
≤∏i∈S X

(k−1)
i . Summing over all possible values of X(k−1), we

get

E

[∏
i∈S

X
(k)
i

]
≤ E

[∏
i∈S

X
(k−1)
i

]

≤
∏
i∈S

xi,

by inductive hypothesis. Similarly, we have

E

[∏
i∈S

(1−Xi)

]
≤
∏
i∈S

(1− xi).

22

2.3 Near Independence via Random Permutation

The negative correlation property of WeightedDepRound gives us nice

bounds of E [
∏

iXi] and E [
∏

i(1−Xi)]. However, in certain cases, we may wish to

bound products containing “mixed” factors of both Xi’s and (1 − Xi)’s. (We will

further discuss this issue in the next section.) Note that if all variables were rounded

independently, the expected value of such products would be equal to the product of

xi’s and (1−xi)’s. While this property may not hold true in our dependent rounding

algorithm, we may actually show that the expected value might not deviate too much

from the target product as if the variables are independently rounded.

In this section, we consider a simple modification to the standard weighted

dependent rounding scheme in Section 2.2 which yields the near-independence prop-

erty. The main result is as follows.

Theorem 2.3.1. Suppose we are given any vector x ∈ [0, 1]n and a ∈ Rn
+ such

that mini{xi, 1− xi} ≥ α and maxi ai
mini ai

≤ 1 + α for some constant α ≥ 0. There is an

algorithm which can round x in linear time and return a (random) vector X ∈ [0, 1]n

with at most one floating value in (0, 1) such that

(D1) the weighted sum is preserved:
∑n

i=1 aiXi =
∑n

i=1 aixi with probability one,

(D2) the marginal probabilities are preserved: E[Xi] = xi for all i ∈ [n],

(D3) any “small” subset of variables has the near-independence property: for any

23

disjoint sets S, T ⊆ [n]

(
1− 8t(t− 1)

3nα2

)
λ ≤ E

[∏
i∈S

Xi

∏
i∈T

(1−Xi)

]
≤
(

1 +
8t

3nα2

)t−1

λ,

where t = |S ∪ T |.

2.3.1 Algorithm

The key idea is to permute the variables before applying the procedure sim-

plify on consecutive variables starting from the left.

Algorithm 3 WeightedDepRound2(x, a)

1: Let π be a random permutation of (1, 2, . . . , n)
2: i∗ ← π(1)
3: for j ← 2, 3, . . . , n do
4: j∗ ← π(j)
5: x← Simplify(x, a, i∗, j∗)
6: if xj ∈ (0, 1) then
7: i∗ ← j∗

8: return x

2.3.2 Analysis

In this section, we will prove that WeightedDepRound2 satisfies the prop-

erties stated in Theorem 2.3.1. Using similar arguments as in Section 2.2, it is not

difficult to show the following lemma.

Lemma 2.3.1. Given any vector x ∈ [0, 1]n and a ∈ Rn
+. The algorithm WeightedDepRound2(x, a)

will return a (random) vector X ∈ [0, 1]n with at most one floating value in (0, 1) in

linear time such that

24

(D1) the weighted sum is preserved:
∑n

i=1 aiXi =
∑n

i=1 aixi with probability one,

(D2) the marginal probabilities are preserved: E[Xi] = xi for all i ∈ [n].

So it remains to show the near-independence property. Let us take any x ∈

[0, 1]n, a ∈ Rn
+ such that maxi ai

mini ai
≤ 1+α, where α = mini∈[n]{xi, 1−xi}. Let X be the

resulting vector of WeightedDepRound2(x, a). For any disjoint sets S, T ⊆ [n],

we shall prove that

(
1− 8t(t− 1)

3nα2

)
λ ≤ E

[∏
i∈S

Xi

∏
i∈T

(1−Xi)

]
≤
(

1 +
8t

3nα2

)t−1

λ, (2.1)

where t = |S ∪ T | and λ =
∏

i∈S xi
∏

i∈T (1− xi).

Suppose S ∪ T = {j1, j2, . . . , jt}. Let I := {π−1(j1), π−1(j2), . . . , π−1(jt)} be

the set of “positions” of the variables with respect to π. WLOG, assume that

I = {i1, . . . , it} where i1 < i2 < . . . < it. For the ease of notation, we define

Yj := Xπ(ij) if π−1(ij) ∈ S and Yj := 1 − Xπ(ij) if π−1(ij) ∈ S for j = 1, 2, . . . , t.

Also, define qj := E[Yj] for j ∈ [t]. Then, inequality (2.1) is equivalent to

(
1− 8t(t− 1)

3nα2

) t∏
i=1

qi ≤ E

[
t∏
i=1

Yi

]
≤
(

1 +
8t

3nα2

)t−1 t∏
i=1

qi. (2.2)

In the rest of the analysis, we will analyze the change of x in the algorithm, but

all the definitions of λ and qj’s so far should only depend on the original value of

x. Let Dj = ij+1 − ij for j = 1, 2, . . . , t − 1 and define Dt = 1. Note that Dj is a

random variable which depends on π.

25

We say that a variable xi is fixed if it is rounded to zero or one during the

process. The key observation for this analysis is that, for any subset of t variables

where t is small is enough, the distance between these variables in our permutation

is relatively large. It means that there is a good chance that they will be fixed

before being rounded together by Simplify. Intuitively, this will limit the positive

correlation among the variables.

Lemma 2.3.2. For any j ∈ [t], let Ej denote the (bad) event that xπ(ij) is co-rounded

with xπ(ij+1) by Simplify. Define δj := (1−α)(Dj−2)/2 for j ≤ t− 1 and δt = 0. We

have that Pr[Ej] ≤ δj for all j ∈ [t].

Proof. The claim is vacuously true for j = t. Assume j ≤ t − 1. By construction,

xπ(ij) will be co-rounded with exactly Dj − 1 other variables before meeting xπ(ij+1)

if it does not get fixed. Thus, it suffices to prove that the probability that xπ(ij)

is fixed in two consecutive calls of Simplify, say Simplify(x, a, π(ij), π(`)) and

Simplify(x, a, π(ij), π(` + 1)), where ` ∈ (j, t), is at least α, regardless of the

current value of xπ(ij).

First, let us focus on the call of Simplify(x, a, π(ij), π(`)). For the rest of this

proof, for simplicity, let us just write xij and a` to indicate xπ(ij) and aπ(`). In this

procedure, we set

δ+ = min

{
1− xij ,

a`
aij
x`

}
, δ− = min

{
xij ,

a`
aij

(1− x`)
}
.

Then, with probability δ−/(δ+ + δ−), we update xij ← xij + δ+. With remaining

probability δ+/(δ+ + δ−), we update xij ← xij − δ−. Consider the following cases:

26

• Case 1−xij ≤ a`
aij
x`: we have δ+ = 1−xij . If δ− = xij then xij will be rounded

to zero or one in both cases. Else, δ− = a`
aij

(1− x`), then xij will be equal to

1 with probability at least

δ−
δ+ + δ−

=

a`
aij

(1− x`)
1− xij + a`

aij
(1− x`)

≥
a`
aij

(1− x`)
a`
aij
x` + a`

aij
(1− x`)

= 1− x` ≥ α.

• Case 1 − xij > a`
aij
x`: we have δ+ = a`

aij
x`. If δ− = xij ≤ a`

aij
(1 − x`), then xij

will be equal to 0 with probability at least

δ+

δ+ + δ−
=

a`
aij
x`

a`
aij
x` + xij

≥
a`
aij
x`

a`
aij
x` + a`

aij
(1− x`)

≥ x` ≥ α.

Thus, the only case that Xij does not get fixed by Simplify(x, a, π(ij), π(`)) with

probability at least α (in fact, xij remains fractional with probability one in this

case) is that

a`
aij

(1− x`) < xij < 1− a`
aij
x`.

Suppose this is the case and let x′ij denote the updated value of xij after this step.

Then the algorithm proceeds to call Simplify(x, a, π(ij), π(` + 1)). Using similar

arguments, the only case thatXij does not get fixed by Simplify(x, a, π(ij), π(`+1))

with probability at least α is that

a`+1

aij
(1− x`+1) < x′ij < 1− a`+1

aij
x`+1. (2.3)

Recall there are only two possible ways to update xij :

27

• Case 1: With probability δ−
δ++δ−

, we have

x′ij = xij + δ+

= xij +
a`
aij
x`

>
a`
aij

(1− x`) +
a`
aij
x`

=
a`
aij
≥ 1

1 + α
= 1− 1

1 + α
α ≥ 1− a`+1

aij
x`+1 > x′ij ,

which is a contradiction.

• Case 2: With probability δ+
δ++δ−

, we have

x′ij = xij − δ−

= xij −
a`
aij

(1− x`)

< 1− a`
aij
x` −

a`
aij

(1− x`)

= 1− a`
aij
≤ 1− 1

1 + α
=

1

1 + α
α ≤ a`+1

aij
(1− x`+1) < x′ij ,

which is also a contradiction.

Therefore, inequality (1) does not hold and xij will get fixed in the second call with

probability at least α.

Lemma 2.3.3. Conditioning on any fixed value of π, we have that

t∏
i=1

max{0, qi − δi} ≤ E

[
t∏
i=1

Yi

]
≤

t∏
i=1

(qi + δi).

28

Proof. Recall that qi’s are independent of π as dependent rounding always preserves

the marginals regardless of the order of calling Simplify. We shall prove this claim

by (backward) induction on the number of variables. For k ∈ [t], we let Fk denote

the an arbitrary, attainable configuration of the first k variables Y1, . . . , Yk that has

been produced by the algorithm. Also, define F0 := ∅. We will prove that

t∏
i=k

max{0, qi − δi} ≤ E

[
t∏
i=k

Yi|Fk−1

]
≤

t∏
i=k

(qi + δi).

for all k ∈ [t].

For the base case k = t, observe that E[Yt|Ft−1] = qt and δt = 0. Now, for any

k ≤ t, we can write

E

[
t∏
i=k

Yi|Fk−1

]

= E

[
Yi

t∏
i=k+1

Yi|Fk−1

]

= E

[
Yi

t∏
i=k+1

Yi|Ek ∧ Fk−1

]
Pr[Ek|Fk−1] + E

[
Yi

t∏
i=k+1

Yi|Ēk ∧ Fk−1

]
Pr[Ēk|Fk−1]

= E

[
Yi

t∏
i=k+1

Yi|Ek ∧ Fk−1

]
Pr[Ek]

+
∑
y

yE

[
t∏

i=k+1

Yi|Yk = y ∧ Ēk ∧ Fk−1

]
Pr[Yk = y|Ēk ∧ Fk−1] Pr[Ēk]. (2.4)

29

Upper-bound. We bound the two terms in (2.4) as follows.

E

[
Yi

t∏
i=k+1

Yi|Ek ∧ Fk−1

]
Pr[Ek] ≤ E

[
t∏

i=k+1

Yi|Ek ∧ Fk−1

]
δk

≤ δk

t∏
i=k+1

(qi + δi),

where the second inequality follows from the inductive hypothesis. Also,

∑
y

yE

[
t∏

i=k+1

Yi|Yk = y ∧ Ēk ∧ Fk−1

]
Pr[Yk = y|Fk−1] Pr[Ēk]

≤
t∏

i=k+1

(qi + δi)
∑
y

y Pr[Yk = y|Ēk ∧ Fk−1] Pr[Ēk]

=
t∏

i=k+1

(qi + δi)
∑
y

y Pr[Yk = y ∧ Ēk|Fk−1]

≤
t∏

i=k+1

(qi + δi)
∑
y

y Pr[Yk = y|Fk−1]

=
t∏

i=k+1

(qi + δi)E[Yk|Fk−1] = qk

t∏
i=k+1

(qi + δi),

where the first inequality is due to inductive hypothesis. Plug the two above bounds

into (2.4), we get

E

[
t∏
i=k

Yi|Fk−1

]
≤

t∏
i=k

(qi + δi).

30

Lower-bound. From (2.4), we have

E

[
t∏
i=k

Yi|Fk−1

]

≥
∑
y

yE

[
t∏

i=k+1

Yi|Yk = y ∧ Ēk ∧ Fk−1

]
Pr[Yk = y|Ēk ∧ Fk−1] Pr[Ēk]

≥
t∏

i=k+1

max{0, qi − δi}
∑
y

y Pr[Yk = y|Ēk ∧ Fk−1] Pr[Ēk]

=
t∏

i=k+1

max{0, qi − δi}E[Yk|Ēk ∧ Fk−1] Pr[Ēk]

=
t∏

i=k+1

max{0, qi − δi}(E[Yk|Fk−1]− E[Yk|Ek ∧ Fk−1] Pr[Ek])

≥
t∏

i=k+1

max{0, qi − δi}(qk − δk),

where we use inductive hypothesis for the first inequality and the fact that E[Yk|Ek∧

Fk−1] Pr[Ek] ≤ Pr[Ek] = δk in the final inequality. Since E
[∏t

i=k Yi|Fk−1

]
is non-

negative, we conclude that

E

[
t∏
i=k

Yi|Fk−1

]
≥

t∏
i=k

max{0, qi − δi}.

Theorem 2.3.2 (Sandwich Theorem). We have

t∏
i=1

qi · E
[
t−1∏
i=1

max

{
0, 1− δi

qi

}]
≤ E

[
t∏
i=1

Yi

]
≤

t∏
i=1

qi · E
[
t−1∏
i=1

(
1 +

δi
qi

)]
.

31

Proof. Note that δt = 0 by our definition. For any fixed π, Lemma 2.3.3 gives

t∏
i=1

qi

t−1∏
i=1

max

{
0, 1− δi

qi

}
≤ E

[
t∏
i=1

Yi

]
≤

t∏
i=1

qi

t−1∏
i=1

(
1 +

δi
qi

)
.

The claim follows by taking expectation over random choice of π.

The following technical lemmas will be useful later.

Lemma 2.3.4. For any subset J ⊆ [t− 1] where |J | = s ∈ [1, t], we have

E

[∏
j∈J

δj

]
= E

∏
j∈[s]

δj

 .

Proof. For any S ⊆ [t− 1], let us define

f(S) := E

[∏
j∈S

δj

]
= E

[∏
j∈S

(1− α)(Dj−2)/2

]

= E
[
(1− α)(

∑
j∈S Dj−2s)/2

]
= E

[
(1− α)(D(S)−2s)/2

]
.

Thus, to prove that f(J) = f([s]), it suffices to prove that D(J) and D([s]) have

the same distribution.

Recall that I = {i1, i2, . . . , it} is a random subset of [n] and Dj = ij+1 − ij

is the “distance” between element ij and ij+1. Let Ω denote the sample space of

I (i.e., each event I ∈ Ω is a subset of size t of [n].) For each integer d ∈ [n], let

g(d, S, P) := |{I ∈ P : D(S) = d}|. We claim that g(d, J,Ω) = g(d, [s],Ω). To see

this, note that Ω can be partitioned as Ω =
⋃
i,j∈[n] Ωij where Ωij is the collection

32

of all subsets of size t with the first element being i and the last element being

j. Then Ωij induces all possible sets (D1, D2, . . . , Dt−1) such that Dk ≥ 1 for all

k = 1, . . . , t−1 and D1 + . . .+Dt−1 = j− i− t+1, where each set is counted exactly

once. Therefore, by symmetry, we have g(d, J,Ωij) = g(d, [s],Ωij). Summing over

all Ωij’s gives g(d, J,Ω) = g(d, [s],Ω).

Finally, for all d ∈ [n], we have

Pr[D(J) = d] =
g(d, J,Ω)(

n
t

) =
g(d, [s],Ω)(

n
t

) = Pr[D([s]) = d],

which means that D(J) and D([s]) have the same distribution.

Claim 2.3.1. For 0 ≤ x < 1 and n ≥ 0, we have

∞∑
k=0

(
k + n

n

)
xk =

1

(1− x)n+1
.

Proof. Starting with the well-known series

1 + x+ x2 + . . . =
1

1− x,

we take derivative of both sides n times and divide both sides by n!.

Lemma 2.3.5. For s ≤ t, we have that

E

∏
j∈[s]

δj

 ≤ (8t

3nα

)s
.

33

Proof. Let D′j := Dj−1 be the number of variables between xπ(ij) and xπ(ij+1). Also,

note that
√

1− α ≤ 1− α/2. Then we have

E

∏
j∈[s]

δj

 = E
[
(1− α)(D([s])−2s)/2

]
= E

[
(1− α)(D′([s])−s)/2

]
≤ E

[
(1− α/2)D

′([s])−s
]

=

(
1

1− α/2

)s n−t∑
k=0

Pr[D′1 + . . .+D′s = k](1− α/2)k

=

(
1

1− α/2

)s n−t∑
k=0

(
k+s−1
s−1

)(
n−k−s
t−s

)(
n
t

) (1− α/2)k. (2.5)

Now observe that

(
n−k−s
t−s

)(
n
t

) =
t!(n− k − s)!(n− t)!
(t− s)!n!(n− k − t)!

=
(t− s+ 1) . . . t

(n− s+ 1) . . . n
× (n− k − t+ 1) . . . (n− t)

(n− k − s+ 1) . . . (n− s)

≤
(
t

n

)s
.

Plugging this into 2.5, we obtain

E

∏
j∈[s]

δj

 ≤ (t

n(1− α/2)

)s n−t∑
k=0

(
k + s− 1

s− 1

)
(1− α/2)k

≤
(

t

n(1− α/2)(α/2)

)s
=

(
2t

nα(1− α/2)

)s
≤
(

8t

3nα

)s
.

34

where the penultimate inequality is due to Claim 2.3.1 and the final inequality

follows from the fact that α ≤ 1/2.

We are now ready to prove the required bound (2.2). For the lower-bound,

we shall apply Weierstrass inequality which says that
∏

i(1− xi) ≥ 1−∑i xi where

xi ≤ 1 for all i. By Theorem 2.3.2,

E

[
t∏
i=1

Yi

]
≥

t∏
i=1

qi · E
[
t−1∏
i=1

max

{
0, 1− δi

qi

}]

≥
t∏
i=1

qi · E
[
t−1∏
i=1

max

{
0, 1− δi

α

}]

=
t∏
i=1

qi · E
[
t−1∏
i=1

(
1−min

{
1,
δi
α

})]

≥
t∏
i=1

qi · E
[

1−
t−1∑
i=1

min

{
1,
δi
α

}]

≥
t∏
i=1

qi · E
[

1−
t−1∑
i=1

δi
α

]

=
t∏
i=1

qi ·
(

1− 1

α

t−1∑
i=1

E[δi]

)

=
t∏
i=1

qi ·
(

1− t− 1

α
E[δ1]

)
≥

t∏
i=1

qi ·
(

1− 8t(t− 1)

3nα2

)
,

where the penultimate equality follows from Lemma 2.3.4 and the last inequality is

due to Lemma 2.3.5.

For the upper-bound, we shall expand the product, apply Lemma 2.3.5 for

each term E[
∏
δj] and then collapse them together using the binomial theorem. By

35

Theorem 2.3.2,

E

[
t∏
i=1

Yi

]
≤

t∏
i=1

qi · E
[
t−1∏
i=1

(
1 +

δi
qi

)]

≤
t∏
i=1

qi · E
[
t−1∏
i=1

(
1 +

δi
α

)]

=
t∏
i=1

qi ·

1 +
t−1∑
k=1

(
t

k

)E
[∏

j∈[k] δj

]
αk


≤

t∏
i=1

qi ·
(

1 +
t−1∑
k=1

(
t

k

)(
8t

3nα2

)k)

=
t∏
i=1

qi ·
(

1 +
8t

3nα2

)t−1

.

This concludes the proof of Theorem 2.3.1.

2.4 A Motivating Problem

The main focus of this thesis is on facility-location and clustering problems.

In particular, we study LP rounding algorithms this class of problems. In general,

such methods usually have two main steps. The first step, often called the filtering

step, is to assign each “center” or “facility” to the closest “client”. The set of client

j and all facilities associated with it is called a cluster, denoted as Fj. We also refer

to j as the cluster center of Fj. By the LP constraints, there should be at least

one (fractionally) opened facility inside Fj. We then “filter-out” some clusters to

obtain a maximal collection F ′ of pairwise-disjoint clusters. Note that the clusters

removed in this step must intersect with some cluster in F ′; and hence, one can

bound the distance from their cluster centers to the cluster centers in F ′. The

36

second step involves rounding the fractional solution subject to a budget constraint

(or a matroid constraint, depending on our problem) and a set of cluster constraints.

The idea is to pick exactly one facility inside each cluster Fj ∈ F ′ to open. This

strategy guarantees that (i) each cluster center in F ′ can be served effectively by

a facility in its cluster and (ii) other clients can be connected “indirectly” to the

facilities serving such cluster centers. Indeed, dependent rounding is a natural choice

for this task.

We now formulate our basic problem. Suppose we havem disjoint sets F1, . . . , Fm ⊆

[n], a vector a ∈ Rn
+ for some integer n > 0, and a parameter B > 0. Consider the

following polytope

P =

{
v ∈ [0, 1]n : v(Fj) = 1 ∀j ∈ [m];

n∑
i=1

aivi ≤ B.

}

We are given a point x ∈ P and want to round x into an integral point X inside

P . (Here xi ∈ (0, 1) is the “extent” that we want to pick facility i.) As mentioned

before, P needs not contain any integral points. Fortunately, in our applications, it

suffices to obtain an “almost” integral point with a few remaining fractional values.

It is not difficult to show that all extreme points of P have at most two

fractional value. One can simply decompose x into a convex combination of t ≤ n+1

extreme points of P :

x = p1x1 + p2x2 + . . .+ ptxt,

where p1, . . . , pt ≥ 0 and
∑t

i=1 pi = 1. Now if we randomly pick X := xi with

37

probability pi, we have that E[Xj] = xj for all j ∈ [n]. In some applications (e.g.,

the Knapsack Median problem in Chapter 3), preserving the marginal probabilities

is all we need to obtain the desired results. In many other cases, we may require

negative-correlation between the variables.

To see the importance of the negative-correlation property in our context,

consider any client j which is not a cluster center in F ′. The LP constraint ensures

that x(Fj) = 1. If all xi’s are negative correlated, we have that

Pr[no center in Fj is opened] = E

∏
i∈Fj

(1− xi)


≤
∏
i∈Fj

(1− xi)

≤
∏
i∈Fj

e−xi = 1/e.

Thus, with probability at least 1 − 1/e, client j can be connected to some open

inside its cluster Fj. Only with probability ≤ 1/e, do we need to connect it indi-

rectly via another cluster center in F ′. Similar ideas have been exploited to design

approximation algorithms for various FL problems (see, e.g., [28, 53,78,87]).

In this chapter, we will discuss two approaches to our basic problem. Here we

will try to describe these methods as general-purpose rounding algorithms because

we believe that they are of independent interests.

Approach 1. One key ingredient which makes negative correlation possible in

weighted dependent rounding is that we only change two variables at a time: one is

increased and the other is decreased. As we have extra cluster constraints, this is not

38

always possible anymore. For example, suppose n = 2, a1 = 1, a2 = 2, x1 = x2 = 0.5,

and B = 1.5. If we also require x1 + x2 = 1, then x is already uniquely defined by

two constraints (x1 + x2 = 1 and x1 + 2x2 = 1.5). In this case, we cannot change x

without violating the constraints. This is not surprised as we already know that an

extreme point of P may have two fractional values.

On the other hand, as long as x contains at least 3 floating variables, we still

have some freedom to round it. Consider the following cases:

• Case 1: if there exists a cluster Fj with at least 3 fractional variables, say

x1, x2, and x3, then it is easy to find ~z = (z1, z2, z3) such that, for any δ ∈ R,

(x1 + δz1) + (x2 + δz2) + (x3 + δz3) = x1 + x2 + x3,

and

a1(x1 + δz1) + a2(x2 + δz2) + a3(x3 + δz3) = a1x1 + a2x2 + a3x3.

Thus, we can change these variables, either along ~z or −~z, until one of them

becomes zero or one.

• Case 2: if none of the clusters has ≥ 3 fractional values, there must be two

clusters Fj and Fj′ such that each of them contains 2 floating variables. Sup-

pose Fj contains x1, x2 ∈ (0, 1) and Fj′ contains x3, x4 ∈ (0, 1). Again, in this

39

case, we can find ~z = (z1, z2, z3, z4) such that, for any δ ∈ R, we have

(x1 + δz1) + (x2 + δz2) = x1 + x2,

(x3 + δz3) + (x4 + δz4) = x3 + x4,

a1(x1 + δz1) + a2(x2 + δz2) + a3(x3 + δz3) + a4(x4 + δz4) = a1x1 + a2x2 + a3x3 + a4x4.

(The vector ~z exists as we have 4 variables while there are only 3 constraints.)

Again, we can update x along ~z or −~z until at least one more variable gets

rounded to zero or one.

Observe that there will be exactly two variables which are both increased or de-

creased together in the first case. Similarly, in the second case, rounding x by ~z

will result in exactly two variables increased and two variables decreased. Thus, we

may have two variables moving in the same direction in a single step. This means

that the variables are not negatively correlated anymore. However, as the number

variables that are positively correlated in a single step is still small (two in this case),

we can still prove the following useful property: “all variables xi are half -negatively

correlated.” That is, for any S ⊆ [n], we have

E

[∏
i∈S

xi

]
≤
√∏

i∈S

xi, and E

[∏
i∈S

(1− xi)
]
≤
√∏

i∈S

(1− xi).

In Section 4, we will prove a generalized theorem which states that if there

are at most s variables changing in the same direction at a time, then we still have

40

partial negative correlation among the variables. More formally, for any S ⊆ [n],

E

[∏
i∈S

xi

]
≤
∏
i∈S

x
1/s
i , and E

[∏
i∈S

(1− xi)
]
≤
∏
i∈S

(1− xi)1/s.

Approach 2. In the previous approach, we see how to obtain half -negative corre-

lation property by carefully choosing the variables to co-round in each iteration. In

particular, this leads to a weaker bound on our bad event:

Pr[no center in Fj is opened] = E

∏
i∈Fj

(1− xi)


≤
√∏

i∈Fj

(1− xi) ≤
√∏

i∈Fj

e−xi = e−1/2,

which is much worse than 1/e. Can we still improve this bound? The answer is yes

but with an additional condition: the vector X may now contain some O(1) left-over

fractional values.

First, for each cluster Fk ∈ F ′ let Ck := Fj∩Fk denote the set of facilities in Fk

that j is interested in. Let Yk be the indicator for the event that some facility in Ck is

opened. The probability that no center in Fj is open is now equal to E [
∏

k(1− Yk)].

Now observe that the updating rule in Case 1 of Approach 1 will process only one

cluster Fk ∈ F at a time. So the random variables Yk are pairwise independent in

this case. (While the variables xi’s are not negatively correlated, this fact actually

does not affect our bad event.) Thus, we can repeatedly simplify x by this rule

until each cluster Fk has exactly two fractional variables, say xi1(k) and xi2(k). Also,

41

assume that ai1(k) ≤ ai2(k).

Now we shall not use the second rule in Approach 1 to round x as it would

introduce positive correlation to Yk’s. Instead, for each cluster Fk, let us define Zk to

be the indicator that Zk = 1 if i2(k) is open and Zk = 0 if i1(k) is open. The problem

is now reduced to obtaining such a (random) vector Z that
∑

k Zka
′
k ≤ B′ where

a′k = ai2(k)−ai1(k) and B′ = B−∑k ai1(k) and E[Zk] = zk := xi2(k). Unfortunately, we

cannot simply use the standard weighted dependent rounding to round z. Although

the variable Zk’s will be negatively correlated, this property is not enough to give a

good bound on E [
∏

k(1− Yk)].

Let us analyze E [
∏

k(1− Yk)]. WLOG, we may assume that Ck consists of

either i1(k) or i2(k) but not both of them. (If none of them is in Ck, the factor (1−Yk)

has no contribution to the expression. If both of them are in Ck, then one of them

will be opened and the bad event does not happen.) Let S := {k : i1(k) ∈ Ck} and

T := {k : i2(k) ∈ Ck}. We have

E

[∏
k

(1− Yk)
]

= E

[∏
k∈S

Zk
∏
k∈T

(1− Zk)
]
. (2.6)

So we need a good upper-bound on the RHS of (2.6). The main technical difficulty

here is that we have “mixed” terms of Zk and (1−Zk) in the product. In Section 5, we

will introduce a new dependent rounding technique, called Symmetric Randomized

42

Dependent Rounding (SRDR), which guarantees the following correlation:

E

[∏
k∈S

Zk
∏
k∈T

(1− Zk)
]
≤
(∏
k∈S

zk
∏
k∈T

(1− zk)
)1−1/(t+1)

,

where t is the number of remaining unrounded values in Z. In fact, setting t =

O(1/ε) suffices to obtain an upper-bound of (1/e+ ε) in our problem. Also, the left-

over 2t fractional values in X can be rounded deterministically after a pre-processing

step. See Chapter 5 for further details.

2.5 Partial Negative Correlation

In this section, we study a more general setting in which a vector x ∈ [0, 1]n

is (randomly) rounded into an “almost” integral vector subject to multiple linear

constraints. The main idea is trying to keep the maximum number s of variables

which are updated in the same direction as small as possible in every single step.

Then we can show a trade-off between s and the “amount” of negative correlation.

Specifically, suppose we are given a polytope P = {v ∈ [0, 1]n : Av ≤ b}

where A ∈ Rm×n is an m×n matrix and b ∈ Rn. In most applications, the number

of constraints m is (much) smaller than the number of variables n. Observe that

any extreme point of P should have at most m fractional values in general. Then

the resulting vector may contain up to m fractional values. Here suppose we aim

to round x until it contains at most some t ≥ 0 remaining fractional values. The

actual choice of t may depend on the structure P . For example, we might choose

t = 2 in the motivating problem discussed in Section 3.

43

2.5.1 Algorithm

The rounding algorithm is as follows.

Algorithm 4 Simplify2(x, A,b)

1: Let R = {i ∈ [m] : Aix = bi ∧ ∃j ∈ [n] : xj /∈ {0, 1}, Aij 6= 0} be the set of tight
constraints containing at least one floating variable.

2: Let A′ be the sub-matrix of A containing only rows in R.
3: Let r ∈ Rn be such that

• r 6= 0 and ri = 0 for all i ∈ [n] : xi ∈ {0, 1},
• A′r = 0.

4: Let δ+, δ− > 0 be such that
• x + δ+r ∈ [0, 1]n and x− δ−r ∈ [0, 1]n,
• either x + δ+r has one more integral value or there exists i′ /∈ R such that
Ai′(x + δ+r) = bi′ and Ai(x + δ+r) ≤ bi for all i 6= i′,
• either x− δ−r has one more integral value or there exists i′′ /∈ R such that
Ai′′(x− δ−r) = bi′′ and Ai(x− δ−r) ≤ bi for all i 6= i′′.

5: With probability δ−
δ++δ−

,
X← x + δ+r,

else,
X← x− δ−r.

6: return X

Algorithm 5 GeneralDepRound(x, A,b, t)

1: while |frac(x)| > t do
2: x← Simplify2(x, a)
3: return x

Discussion. We note that the vector r in line 2 of Simplify2 exists as long

as t ≥ |R| (or, more precisely, the number of floating variables is strictly greater

than the row rank of A′.) In addition, we would prefer a direction r that has

as few elements with the same sign as possible because such a vector will limit

positive correlation among changing variables in the process. Next, the magnitudes

δ+, δ− are chosen so that when moving x along r and −r, we either get one more

44

rounded variable or hit a new tight constraint. (Observe that both δ+ and δ− are

finite.) Therefore, the algorithm GeneralDepRound should terminate after at

most m+ n iterations. Our result is summarized in the following theorem.

Theorem 2.5.1. Suppose we are given a matrix A ∈ Rm×n, b ∈ Rn, P = {v ∈

[0, 1]n : Av ≤ b}, and a point x ∈ P. Let t be any integer greater than or equal

to the maximum number of fractional values of any extreme point of P. Then

GeneralDepRound(x, A,b, t) will return a random vector X in O(m + n) time

such that

(C1) X contains at most t fractional values,

(C2) X ∈ P,

(C3) E[Xi] = xi for all i ∈ [n],

(C4) Assume the number of non-zero elements in r which have the same sign is at

most s whenever Simplify2 is executed. Then, for any S ⊆ [n], we have that

E

[∏
i∈S

Xi

]
≤ E

[∏
i∈S

X
1/s
i

]
≤
∏
i∈S

x
1/s
i , (2.7)

and

E

[∏
i∈S

(1−Xi)

]
≤ E

[∏
i∈S

(1−Xi)
1/s

]
≤
∏
i∈S

(1− xi)1/s. (2.8)

45

2.5.2 Analysis

Here we prove Theorem 2.5.1. By the choice of t, whenever the procedure

Simplify2 is called, x is not an extreme point of P . It means that the currently

floating variables are not uniquely defined by A′; and hence, there must exist a

vector r satisfying properties in line 3. Again, the choice of δ+, δ− and the update

rules in line 5 ensure that either we have a new tight constraint or x has a new

rounded variable. Thus, the running time of GeneralDepRound is O(m + n).

Property (C1) satisfied by the condition of the while-loop in line 1.

For property (C2), we prove the invariant that if x ∈ P then the resulting

vector by Simplify2 is also in P . Recall that the output of Simplify2 is either

x+δ+r or x−δ−r. These two vectors are in [0, 1]n by our choice of δ+, δ−. Moreover,

by definition of r, we have A(x + δ+r) = Ax + δ+Ar = Ax ≤ b. Similarly, A(x −

δ−r) ≤ b.

Assuming x′ := Simplify2(x, a), we claim that E[x′i] = xi for all i ∈ [n].

Then property (C3) follows by induction. By construction, we have

E[x′i] =
δ−

δ+ + δ−
(xi + δ+ri) +

δ+

δ+ + δ−
(xi − δ−ri) = xi.

To prove property (C4), we first need the following lemma.

Lemma 2.5.1. The procedure Simplify2(x, a) will return a vector X such that,

for any S ⊆ [n], we have E
[∏

i∈S X
1/s
i

]
≤∏i∈S x

1/s
i .

Proof. Let T := {i ∈ [n] : ri 6= 0} be the set of indices of floating variables which are

46

being changed by the procedure. Also, let S ′ := S∩T . Define g(δ) :=
∏

i∈S′(xi+δri)

and f(δ) := g(δ)1/s be functions of δ ∈ (−δ−, δ+). We first prove that f(δ) is concave

on its domain. The first derivative of g is

g′(δ) =
∑
i∈S′

ri
∏

j∈S′\{i}

(xi + δri)

=
∑
i∈S′

ri
g(δ)

xi + δri
= g(δ)

∑
i∈S′

Ai,

where we define Ai := ri
xi+δri

. By definition of δ− and δ+, the denominator of Ai is

in (0, 1) for all δ ∈ (−δ−, δ+); and hence, Ai is well-defined. Next, we have

g′′(δ) =
∑
i∈S′

ri

 ∏
j∈S′\{i}

(xi + δri)

′

=
∑
i∈S′

ri

 ∑
j∈S′\{i}

rj
∏

k∈S′\{i,j}

(xk + δrk)


=
∑
i∈S′

ri

 ∑
j∈S′\{i}

rj
g(δ)

(xi + δri)(xj + δrj)


= g(δ)

∑
i∈S′

Ai
∑

j∈S′\{i}

Aj

= 2g(δ)
∑

i,j∈S′:i<j

AiAj.

47

Now note that f ′(δ) = 1
s
g(δ)1/s−1g′(δ), and

f ′′(δ) =

(
1

s
g(δ)1/s−1g′(δ)

)′
=

1

s

(
g(δ)1/s−1

)′
g′(δ) +

1

s
g(δ)1/s−1g′′(δ)

=
1

s

(
(1/s− 1)g(δ)1/s−2g′(δ)2 + g(δ)1/s−1g′′(δ)

)
=
g(δ)1/s−2

s

(
1− s
s

g′(δ)2 + g(δ)g′′(δ)

)
=

1

g(δ)2−1/ss2

(
(1− s)g′(δ)2 + sg(δ)g′′(δ)

)
=

1

g(δ)2−1/ss2

(1− s)
(
g(δ)

∑
i∈S′

Ai

)2

+ sg(δ)

(
2g(δ)

∑
i,j∈S′:i<j

AiAj

)
=
g(δ)1/s

s2

(1− s)
(∑
i∈S′

Ai

)2

+ 2s

(∑
i,j∈S′:i<j

AiAj

) .

We will show that f ′′(δ) < 0 for δ ∈ (−δ−, δ+). Let S+ := {i ∈ S ′ : ri > 0} and

48

S− := {i ∈ S ′ : ri < 0}. Recall that |S+|, |S−| ≤ s and S ′ = S+∪S−. Then we have

(1− s)
(∑
i∈S′

Ai

)2

+ 2s

(∑
i,j∈S′:i<j

AiAj

)

= − (s− 1)
∑
i∈S′

A2
i + 2

(∑
i,j∈S′:i<j

AiAj

)

= − (s− 1)

(∑
i∈S+

A2
i +

∑
i∈S−

A2
i

)
+ 2

(∑
i,j∈S′:i<j

AiAj

)

≤ − (|S+| − 1)
∑
i∈S+

A2
i − (|S−| − 1)

∑
i∈S−

A2
i + 2

(∑
i,j∈S′:i<j

AiAj

)

= −
∑

i,j∈S:i<j,rirj>0

(A2
i − 2AiAj + A2

j) + 2

 ∑
i,j∈S:i<j,rirj<0

AiAj


= −

∑
i,j∈S:i<j,rirj>0

(Ai − Aj)2 + 2

 ∑
i,j∈S:i<j,rirj<0

AiAj


< 0,

where the last inequality follows because the sign of Ai is the same as the sign of ri

for all i, implying that the second sum is negative. So f is concave on (−δ−, δ+).

Moreover, since f is right-continuous at −δ− and left-continuous at δ+, we have

δ−
δ+ + δ−

f(δ+) +
δ+

δ+ + δ−
f(−δ−) ≤ f

(
δ−

δ+ + δ−
δ+ +

δ+

δ+ + δ−
(−δ−)

)
= f(0).

49

Finally, we obtain

E

[∏
i∈S

X
1/s
i

]
=
∏

i∈S\S′
x

1/s
i E

[∏
i∈S′

X
1/s
i

]

=
∏

i∈S\S′
x

1/s
i

(
δ−

δ+ + δ−
f(δ+) +

δ+

δ+ + δ−
f(−δ−)

)

≤
∏

i∈S\S′
x

1/s
i f(0) =

∏
i∈S

x
1/s
i .

Now property (C4) follows easily by induction. Let X(k) be the value of x after

k steps. We will show that E

[∏
i∈S

(
X

(k)
i

)1/s
]
≤ ∏i∈S x

1/s
i . The base case when

k = 0 is vacuously true. For k ≥ 1 and a fixed value of X(k−1), by Lemma 2.5.1, we

have

E

[∏
i∈S

(
X

(k)
i

)1/s
]
≤
∏
i∈S

(
X

(k−1)
i

)1/s

.

Summing over all possible values of X(k−1) and by inductive hypothesis, we get

E

[∏
i∈S

(
X

(k)
i

)1/s
]
≤ E

[∏
i∈S

(
X

(k−1)
i

)1/s
]
≤
∏
i∈S

x
1/s
i .

We have thus proved (2.7). The proof of inequality (2.8) is very similar and is

omitted here.

50

2.6 Symmetric Randomized Dependent Rounding

In this section, we introduce the SRDR technique. Given any “weight” vector

a ∈ (R \ {0})n, a fractional vector x ∈ [0, 1]n, and a parameter t, the technique

allows us to efficiently round x into an “almost” integral vector X – one with at

most t fractional values left. Like in standard dependent rounding [75], the expected

value of the Xi’s and the weighted sum are preserved: E[Xi] = xi for all i ∈ [n] and∑
aixi =

∑
aiXi. Moreover, any subset of the variables has the following strong

property:

E

[(∏
i∈S

Xi

∏
i∈T

(1−Xi)
)p]
≤
(∏
i∈S

xi
∏
i∈T

(1− xi)
)p

, (2.9)

where p = 1− 1/(t+ 1), for any S, T ⊆ [n] and S ∩ T = ∅.

Note that if all Xi’s are independent, then the equality holds for all p. Also, the

more variables remain fractional, the closer p is to one. Intuitively, the “amount of

dependence” is proportional to the number of times x is “simplified” in the rounding

algorithm. By introducing an “early” stopping condition, the product in the LHS

gets closer to what it would have been if all the variables are independent. In this

case, the variables are said to be nearly-independent.

We have showed the near-independence property of dependent rounding in

Section 2.3. Recall that the idea is to randomly permute the vector x before ap-

plying the dependent rounding of [75]. Then any two variables are “far” from each

other and unlikely to be rounded together in a single round, which implies that any

small groups of the variables are nearly independent. Our results here are differ-

51

ent in several ways. First, our upper-bound (2.9) only depends on the remaining

number of fractional variables (i.e., is independent of the number of terms n and

of the ratio amax/amin), and the “target” probabilities need not be bounded away

from 0 or 1. Secondly, it does not require the weights to be non-negative as in

WeightedDepRound2.

In each iteration of the standard dependent-rounding technique of [75], we

will co-round two variables, say x1 and x2, in such a way that the sum a1x1 + a2x2

is preserved and the expected values of x1, x2 do not change. If a1a2 > 0, then

an increase in x1 will lead to a decrease in x2 for the sum to remain the same,

and vice versa. This explains why we obtain negative correlation for all techniques

in [36, 75, 76, 83]. Now suppose the weights can be arbitrary and a1a2 < 0. In this

case, to preserve the sum, if we increase x1, we must also increase x2, and vice versa.

Thus, we may have some positive correlation between the variables. Our SRDR

technique employs the following ideas to reduce the “amount of” positive correlation.

First, we randomly pick a pair of (x1, x2) to co-round in each iteration so that the

probability that a1a2 < 0 is only about the 1/2 in worst case. Next, instead of

enforcing either x1 or x2 to be integral after a single step, we allow both x1 and x2 to

remain fractional in some cases. For example, suppose a1 = +1, a2 = −1, x1 = 0.1,

and x2 = 0.2. The normal approach will round (x1, x2) into (0, 0.1) with probability

8/9 and (0.9, 1) with probability 1/9. Our idea is to round this pair “symmetrically”,

getting (0, 0.1) with probability 1/2 and (0.2, 0.3) with probability 1/2; importantly,

this symmetric amount of change (a parameter called δ in SRDR) is chosen globally,

instead of on the particular ai, xi chosen (at random). All of these make our analyses

52

of SRDR possible.

The main results of this section are summarized in the following theorem.

Theorem 2.6.1 (Upper-bound). Given vectors x ∈ [0, 1]n, a = (a1, . . . , an) ∈

(R \ {0})n, and t ∈ N, there exists a randomized algorithm A which can round x

in expected O(n3) time and return a vector X ∈ [0, 1]n with at most t fractional

values. Both the weighted sum and and all the marginal probabilities are preserved:∑
i aiXi =

∑
i aixi and E[Xi] = xi for all i ∈ [n]. Moreover, for any disjoint sets

S, T ⊆ [n], we have

E

[(∏
i∈S

Xi

∏
i∈T

(1−Xi)
)p]
≤
(∏
i∈S

xi
∏
i∈T

(1− xi)
)p

,

where p = 1− 1/(t+ 1). In addition, for n and t sufficiently large, we have

E

[∏
i∈S

Xi

∏
i∈T

(1−Xi)

]
≤
(∏
i∈S

xi
∏
i∈T

(1− xi)
)(

1 +
m log(1/α)

t

)
,

where m = |S ∪ T | and α = mini{xi, 1− xi}.

2.6.1 Algorithm

Suppose we are given vectors x ∈ [0, 1]n and a = (a1, . . . , an) ∈ (R \ {0})n.

The algorithm to round x is as follows.

53

Algorithm 6 SRSimplify(x, a)

1: δ ← min
i∈frac(x)

{|ai|xi, |ai|(1− xi)}
2: Randomly choose a pair i∗, j∗ ∈ frac(x) where i∗ < j∗

3: With probability 1/2,

X← x + (δ/ai∗)ei∗ − (δ/aj∗)ej∗ ,

else,
X← x− (δ/ai∗)ei∗ + (δ/aj∗)ej∗ .

4: return X

Algorithm 7 SRDR(x, a, t)

1: while |frac(x)| > t do
2: x← SRSimplify(x, a)
3: return x

2.6.2 Analysis

Lemma 2.6.1. Given vectors x ∈ [0, 1]n, a = (a1, . . . , an) ∈ (R \ {0})n, and t ∈ N,

the algorithm SRDR will return a vector X ∈ [0, 1]n with at most t fractional values

in expected O(n3) time. Moreover, the weighted sum and marginal probabilities are

both preserved:
∑

i aiXi =
∑

i aixi and E[Xi] = xi for all i.

Proof. Observe that, in the procedure SRSimplify(x, a), δ is chosen to be the

maximum value such that all possible values of X in step 3 of SRSimplify(x, a)

remain in [0, 1]n. At least one of the
(|frac(x)|

2

)
choices of (i∗, j∗) will lead to at

least 1 new integral element in step 3 of SRSimplify. Thus, with probability

at least 2
|frac(x)|2 ≥ 2

n2 , it fixes an element in a single round. In expectation, we

need O(n3) iterations to round all n variables. By construction, the weighted sum∑
i aixi and all marginal probabilities are preserved after every single round. Then

54

∑
i aiXi =

∑
i aixi and E[Xi] = xi for all i by induction.

Next, we prove the following inequality.

Lemma 2.6.2. For all integers k ≥ 1, n ≥ 2, and any p ∈ [0, 1] define fk(n, p) :=

n
(

2p
2k

)
+ (n− 2)

(
p
k

)
(−1)k. We have that fk(n, 1− 1/n) ≤ 0.

Proof. We will prove this lemma by induction. For k = 1, we have

f1(n, 1− 1/n) = n
2(1− 1/n)(2(1− 1/n)− 1)

2
− (n− 2)(1− 1/n)

= (1− 1/n)(n(2− 2/n− 1)− n+ 2) = 0.

For k ≥ 2, we have

(
1− p+ 1

k

)(
fk−1(n, p)− n2p(k − p− 1)

k(2k − 1)

(
2p

2(k − 1)

))
=
k − p− 1

k

(
n

(
2p

2(k − 1)

)
+ (n− 2)

(
p

k − 1

)
(−1)k−1 − n2p(k − p− 1)

k(2k − 1)

(
2p

2(k − 1)

))
= n

(
2p

2(k − 1)

)(
k − p− 1

k
− 2p(k − p− 1)

k(2k − 1)

)
+ (n− 2)

(
p

k − 1

)
p− k + 1

k
(−1)k

= fk(n, p).

It follows that fk(n, p) ≤ 0 when k ≥ 2, n ≥ 1 and p = 1 − 1/n as p+1
k
≤

1, 2p(k−p−1)
k(2k−1)

(
2p

2(k−1)

)
≥ 0, and fk−1(n, p) ≤ 0.

Lemma 2.6.3. Let X be the output of SRSimplify(x, a) for some vectors x ∈

(0, 1)n, a ∈ (R \ {0})n, and n ≥ 2. For any set S ⊆ [n],

E

[(∏
i∈S

Xi

)p]
≤
(∏
i∈S

xi

)p
55

holds for p = 1 − 1
n

. Furthermore, if all weights in {a}i∈S have the same sign, the

inequality holds for p = 1.

Proof. WLOG, assume that all elements of x are floating, i.e. |frac(x)| = n. Fix

a set S ∈ [n]. We will analyze the expected value of Λ :=
∏

i∈S Xi in terms of

λ :=
∏

i∈S xi. Define

bi :=


1/ai i ∈ S

0 i 6∈ S
, Ai := 1 +

biδ

xi
, Bi := 1− biδ

xi
.

Then the expected value of Λp conditioned on particular (i∗, j∗) being chosen is:

E[Λp|(i∗, j∗) = (i, j)] =
1

2
λp
(
xi + biδ

xi

)p(
xj − bjδ
xj

)p
+

1

2
λp
(
xi − biδ
xi

)p(
xj + bjδ

xj

)p
=

1

2
λp(ApiB

p
j +Bp

iA
p
j).

Observe that E[Λ|(i∗, j∗) = (i, j)] = λ
(

1− bibjδ
2

xixj

)
, and if bi and bj have the same

sign (or one or both are 0), then this quantity is at most λ. Thus, if all of {ai}i∈S

have the same sign, SRDR preserves full negative correlation: E[Λ] ≤ λ. (This is

equivalent to the known negative correlation property of the standard positively-

weighted dependent rounding scheme.)

We now continue with the general case. What the proof boils down to is

expanding all terms of the form (1 + x)p using the generalized binomial theorem,

multiplying everything to get a polynomial in x, and then showing (in Lemma 2.6.2)

that p = 1 − 1
n

is the precise value which causes the higher order terms to vanish

56

(and the lower order terms to be negative). The algebra is much cleaner if we first

manipulate the equation before doing any expansions. In the following summations,

i, j ∈ [n]. We have

E[Λp] =
∑
i<j

Pr[{i∗, j∗} = {i, j}]E[Λp|{i∗, j∗} = {i, j}]

=
1(
n
2

) ·∑
i<j

1

2
λp(ApiB

p
j +Bp

iA
p
j)

=
λp

4
(
n
2

) ·∑
i<j

(
(Api +Bp

i)(A
p
j +Bp

j)− (Api −Bp
i)(A

p
j −Bp

j)
)

=
λp

8
(
n
2

) ·((∑
i

(Api +Bp
i)
)2

−
∑
i

(Api +Bp
i)

2 −
(∑

i

(Api −Bp
i)
)2

+
∑
i

(Api −Bp
i)

2

)

≤ λp

8
(
n
2

) ·(n∑
i

(Api +Bp
i)

2 −
∑
i

(Api +Bp
i)

2 +
∑
i

(Api −Bp
i)

2

)

=
λp

8
(
n
2

) ·∑
i

(
n(A2p

i +B2p
i) + 2(n− 2)ApiB

p
i

)
.

To get the penultimate inequality we applied the Cauchy-Schwarz inequality and the

fact that any square is nonnegative. We will show that for the appropriate choice of

p, E[Λp] ≤ λp. We now expand Ai and Bi using the generalized binomial theorem.

57

(Note that biδ
xi
∈ [−1, 1] by our choice of δ.)

E[Λp] ≤ λp

8
(
n
2

) ·∑
i

(
n

(
1 +

biδ

xi

)2p

+ n

(
1− biδ

xi

)2p

+ 2(n− 2)

(
1−

(
biδ

xi

)2
)p)

=
λp

8
(
n
2

) ·∑
i

(
n
∑
k≥0

(
2p

k

)(biδ
xi

)k
+ n

∑
k≥0

(
2p

k

)
(−1)k

(biδ
xi

)k
+

2(n− 2)
∑
k≥0

(
p

k

)
(−1)k

(biδ
xi

)2k
)

=
λp

8
(
n
2

) ·∑
i

(
2n
∑
`≥0

(
2p

2`

)(biδ
xi

)2`

+ 2(n− 2)
∑
k≥0

(
p

k

)
(−1)k

(biδ
xi

)2k
)

=
λp

4
(
n
2

) ·∑
i

∑
k≥0

(
n

(
2p

2k

)
+ (n− 2)

(
p

k

)
(−1)k

)(
biδ

xi

)2k

.

Now fix p = 1− 1/n. By Lemma 2.6.2, we have

E[Λ1−1/n] ≤ λ1−1/n

4
(
n
2

) ·∑
i

∑
k≥0

fk(n, 1− 1/n)

(
biδ

xi

)2k

≤ λ1−1/n

4
(
n
2

) ·∑
i

f0(n, 1− 1/n)

(
biδ

xi

)0

=
λ1−1/n

4
(
n
2

) · n(n+ (n− 2)) = λ1−1/n.

Lemma 2.6.4. Let X be the output of SRSimplify(x, a) for some vectors x ∈

(0, 1)n, a ∈ (R \ {0})n, and n ≥ 2. For any disjoint sets S, T ⊆ [n], we have

E

[(∏
i∈S

Xi

∏
i∈T

(1−Xi)
)p]
≤
(∏
i∈S

xi
∏
i∈T

(1− xi)
)p
,

holds for p = 1 − 1
n

. Furthermore, if all {ai}i∈S are positive (or S = ∅) and all

58

{ai}i∈T are negative (or T = ∅), or vice versa, the inequality holds for p = 1.

Proof. Let us define vectors x′, a′ as

x′i :=


1− xi i ∈ T

xi i 6∈ T
, a′i :=


−ai i ∈ T

ai i 6∈ T
(2.10)

Let X′ := SRSimplify(x′, a′) and X′′ be such that X ′′i = Xi if i /∈ T and X ′′i =

1 − Xi otherwise. It is not hard to verify that X′ and X′′ have the same joint

probability distribution. Then

E

[(∏
i∈S

Xi

∏
i∈T

(1−Xi)
)p]

= E

[(∏
i∈S∪T

X ′i

)p]
≤
(∏
i∈S∪T

x′i

)p
=
(∏
i∈S

xi
∏
i∈T

(1− xi)
)p

holds for p = 1− 1
n
. If all {ai}i∈S are positive and all {ai}i∈T are negative (or vice

versa), then all {a′i}i∈S∪T have the same sign so this holds for p = 1.

We are now ready to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. Let λ :=
∏

i∈S xi
∏

i∈T (1− xi). Observe that the bound in

Lemma 2.6.4 also holds for all values p ∈ [0, 1−1/n] according to Jensen’s inequality.

By induction and using the bound in Lemma 2.6.4 with p = 1 − 1/(t + 1) on each

iteration (which is valid as we have at least t+ 1 fractional values in the last step),

we obtain

E

[(∏
i∈S

Xi

∏
i∈T

(1−Xi)
)p]
≤ λp.

59

For n and t large enough, we have

E

[∏
i∈S

Xi

∏
i∈T

(1−Xi)

]
≤ E

[(∏
i∈S

Xi

∏
i∈T

(1−Xi)
)p]

≤ λ1−1/(t+1) ≈ λ

(
1− log λ

t

)
≤ λ

(
1− logαm

t

)
= λ

(
1 +

m log(1/α)

t

)
.

60

Chapter 3: The k-median Problem

3.1 Problem definition

In this chapter, we study the classic k-median problem. In this problem, we

are given a set F of facilities, a set C of clients, a budget k, and a symmetric

distance-metric d on F ∪ C. The goal is to open a subset of at most k facilities in

F such that the total distance (or connection cost) from each client to its closest

opened facility is minimized. That is, we want a subset S ⊆ F of size at most k,

which minimizes
∑

j∈Cmini∈S d(i, j). Note that the only decision is which subset of

the facilities to open.

This problem is known to be NP-hard, so there has been much work done on

designing approximations with provable performance guarantees; indeed, virtually

every major technique in approximation algorithms has been used and/or developed

for this problem and its variants.

3.2 Prior work and Our contributions

Charikar, Guha, Tardos, and Shmoys used LP-rounding to achieve the first

constant factor approximation ratio of 62
3

[33]. Then, Jain and Vazirani [25] ap-

61

plied Lagrangian Relaxation to remove the hard constraint of opening at most k

facilities, effectively reducing the problem to an easier version known as the Un-

capacitated Facility Location (UFL) problem. Using this technique together with

primal-dual methods for UFL, they first find a bi-point solution, losing a factor of 3.

They then round this bi-point solution to an integral feasible solution losing another

multiplicative factor of 2, yielding a 6-approximation. Later, Jain, Mahdian, and

Saberi (JMS) improved the approximation ratio of constructing the bi-point solu-

tion to 2, resulting in a 4-approximation [30]. Following this, a local-search-based

(3 + ε)-approximation algorithm was developed by Arya et al. [34].

Recently, Li and Svensson’s breakthrough work gave a (1+
√

3+ε)-approximation

algorithm for k-median [35]. To accomplish this, they defined an α-pseudo-approximation

algorithm to be one that is an α-approximation which, however, opens k+O(1) fa-

cilities, and showed – very surprisingly – how to use such an algorithm as a blackbox

to construct a true (α + ε)-approximation algorithm. They then took advantage of

this by giving a bi-point rounding algorithm which opens k + O(1) facilities, but

loses a factor of 1+
√

3
2

+ε instead of the previous 2. Together with the factor of 2 lost

during the JMS bi-point construction algorithm, this yields the final approximation

ratio. Letting N denote the input-size, the runtime of [35] is NO(1/ε2).

In this thesis, we give an improved bi-point rounding step to give an algorithm

for k-median with improved approximation ratio and runtime. Section 4 presents an

improved approximation for rounding bi-point solutions; we obtain 1.3371+ε instead

of 1+
√

3
2

+ ε ∼ 1.366 + ε. This yields a 2 × 1.3371 + ε ∼ (2.675 + ε)-approximation

algorithm for k-median, an improvement over Li and Svensson’s (2.733 + ε). Using

62

our dependent rounding technique in Chapter 2, we also improve dependence of the

run-time on ε from NO(1/ε2) as in [35], to NO((1/ε) log(1/ε)).

3.3 An improved bi-point rounding algorithm

3.3.1 Preliminaries

Convex combinations of two integral solutions, with the corresponding convex

combination of the number of open facilities being k, will be particularly useful for

us.

Definition 3.3.1. (Bi-point solution) Given a k-median instance I, a bi-point so-

lution is a pair F1,F2 ⊆ F such that |F1| ≤ k ≤ |F2|, along with reals a, b ≥ 0 with

a + b = 1 such that a|F1| + b|F2| = k. (That is, the convex combination of the two

“solutions” is feasible for the natural LP relaxation of I.) The cost of this bi-point

solution is defined as aD1 + bD2, where D1 and D2 are the connection costs of F1

and F2 respectively.

We refer to F1,F2, a, b,D1, and D2 as defined in Definition 3.3.1. As an initial

goal (which we will relax shortly), suppose we are interested in an algorithm which

rounds this bi-point solution to an integer solution of cost at most α(aD1 + bD2),

for some α. As already mentioned, such an algorithm can be used to get a (2× α)-

approximation to k-median. Suppose a client j is closest to i1 in solution F1, and i2

in pseudo-solution1 F2. Ideally, one would like to round the bi-point solution in such

a way that i1 is open with probability a, and i2 is open with the remaining probability

1One that may open more than k facilities.

63

b. Then the expected connection cost of j would be exactly its contribution to the

bi-point cost, and we would get a bi-point rounding factor of 1. The problem is

that we cannot directly correlate this pair of events for every single client, while still

opening only k facilities. Jain and Vazirani’s approach is to pair each i1 ∈ F1 with

its closest neighbor in F2, and ensure that one of the two is open [25]. This approach

loses at most a factor of 2, which is equal to the integrality gap of the k-median

LP, and so is the best one might expect. However, Li and Svensson beat this factor

by allowing their algorithm to open k + c facilities. They then give a (surprising)

method to convert such an algorithm to one that satisfies the budget-k constraint,

adding ε to the approximation constant, and a factor of nO(c/ε) to the runtime. This

method actually runs the algorithm on a polynomial number of sub-instances of the

original problem, and thus is not limited by the integrality gap of the original LP.

Thus we obtain our relaxed goal:

Definition 3.3.2. (Relaxed goal) Given a bi-point solution parametrized by F1,F2, a, b,D1,

and D2 as in Definition 3.3.1, round it to an integer pseudo-solution using at most

k+ f(ε) facilities, and of cost at most α(aD1 + bD2) for α ∼ 1.3371. Here, ε > 0 is

an arbitrary constant.

Definition 3.3.3 (Stars). For a given bi-point solution aF1 +bF2, we associate each

facility i2 ∈ F2 to its closest facility i1 ∈ F1 (breaking ties arbitrarily). For each

i ∈ F1, the set of i and its associated facilities in F2 is called a star. We refer to i

as the center of the star and other facilities in the star as leaves. Also let Si denote

the set of leaves of the star with center i.

64

Now we further partition the stars by their number of leaves. Let T0 be the set

of stars with no leaves, T1 be the set of stars with one leaf, and T2 be the set of stars

with at least 2 leaves. We call the stars in T0, T1, T2 as 0-stars, 1-stars, and 2-stars,

respectively. Let C0, C1, C2 be the sets of centers of stars in T0, T1, T2, respectively.

Let L1,L2 be the sets of leaves of stars in T1, T2, respectively. For a client j, let i1(j)

and i2(j) denote the closest facilities to j in F1 and F2 respectively.

We also use the following notations: ∆F := |F2| − |F1|, rD := D2/D1, r0 :=

|C0|/∆F , r1 := |C1|/∆F , r2 := |C2|/∆F , and s0 := 1/(1 + r0). Note that if ∆F = 0,

then |F1| = |F2| = k, and we may simply choose F2 as our solution, which has cost

at most that of the bipoint solution. Thus we assume that ∆F > 0.

Now we describe a set of randomized algorithms to round a bi-point solution

into a pseudo-solution which opens at most k+O(1) facilities. In order to keep the

number of extra facilities bounded, we consider several different cases depending on

certain properties of the bi-point solution. In the main case, we get a 1.3371 + ε

approximation, utilizing WeightedDepRound2 to open only O(log(1/ε)) extra

facilities. In the edge cases, we are able to use weaker, but simpler techniques to

obtain the same bound.

65

3.3.2 Main case: s0 ≥ 5/6, b ∈ [0.508, 3/4], rD ∈ [19/40, 2/3], and

r1 > 1

For each 1-star with center i and leaf i′, we define the following ratio. (Note

that ∆F > 0 implies L2 is nonempty.)

gi =
d(i, i′)

minj∈L2 d(i, j)
.

We partition the set T1 into sets T1A of long stars and T1B of short stars as

follows. We sort all the stars in T1 in decreasing order of gi. Let T1A be the set of

the first da∆F e stars of T1 and T1B := T1 \ T1A. Also let C1A and C1B be the sets

of centers of stars in T1A and T1B, respectively. Similarly, let L1A and L1B be the

corresponding sets of leaves. Note that T1A is well-defined since |T1|/∆F = r1 > 1

implies |T1| > ∆F .

Next, we describe a rounding scheme calledA(p0, p1A, q1A, p1B, q1B, p2, q2) which

is the main procedure of our algorithm. The purpose ofA is to (forX ∈ {0, 1A, 1B, 2})

randomly open roughly pX fraction of facilities in CX , and qX fraction of facilities in

LX , while maintaining the important property that if any leaves of a star are closed,

its center will be opened – except in some cases where we completely close all stars

in T1A.

When p2 6= 0, we further partition T2 into “large” and “small” stars (as in [35]).

For a given parameter η > 0, we say that a star centered at i ∈ C2 is large if |Si| ≥

1/(p2η) and small otherwise. Let β = min{q2, 1−q2} and c = d 16
3β2 e. Then, we group

66

the small stars according to their sizes: For each s = 1, . . . , dlog1+β(1/(p2η))e − 1,

let Gs := {i ∈ C2 : (1 + β)s ≤ |Si| < (1 + β)s+1}.

3.3.2.1 Main algorithm

Below we define Algorithm A and its subroutine Round2Stars. The main

algorithm will simply run A with 9 different sets of parameters and return the

solution with minimum connection cost. We refer to these calls of A as algorithms

A1, · · · ,A9. See Table 3.1 for a complete set of parameters. It is easy to see that

all numbers in the table belong to [0, 1] as b ≥ a, 0 ≤ s0 ≤ 1, and r2 ≥ 0.

Algorithm 8 A(p0, p1A, q1A, p1B, q1B, p2, q2)

1: Randomly open a subset of size dp0|C0|e of C0.
2: Take a random permutation of T1A. Open the centers of the first dp1A|T1A|e

stars and the leaves of the last dq1A|T1A|e.
3: Take a random permutation of T1B. Open the centers of the first dp1B|T1B|e

stars and the leaves of the last dq1B|T1B|e.
4: if p2 = 1 or p2 = 0 then
5: Open all or none of C2, respectively. Also open a random subset of size dq2|L2|e

of L2.
6: else
7: Round2Stars (p2, q2).
8: Return the set of all opened facilities.

Algorithms p0 p1A q1A p1B q1B p2 q2

A1 0 0 1 0 1 as0 1− as0

A2 1 0 1 0 1 1− bs0 bs0

A3 1 0 1 1 0 1− bs0 bs0

A4 1 1 0 0 1 1− bs0 bs0

A5 1 1 0 1 0 1− bs0 bs0

A6 1 1 1 1 0 1− (b− a)s0 (b− a)s0

A7 1 1 0 1 0 1 1
2
bs0

A8 0 0 0 0 1 0 1
A9 a a b a b a b

Table 3.1: The main algorithm makes 9 calls to A, with the above parameters.

67

Algorithm 9 Round2Stars(p2, q2)

1: Open the centers of all large stars. Let C ′2 be the set of these centers, and let
L′2 be the set of their leaves. Randomly open a subset of size dq2(|L′2| − |C ′2|)e
of L′2.

2: for s = 1, . . . , dlog1+β(1/(p2η))e − 1 do
3: Let A,P be vectors with Ai = |Si| − 1 and Pi = q2 for i ∈ Gs.
4: Let X be the vector returned by WeightedDepRound2 on A and P .
5: For all integer elements Xi, if Xi = 1, open all facilities in Si. Else, open the

center i.
6: Let Xi∗ be the fractional element (if any). Open the center of Si∗ and a

random set of size dXi∗ |Si∗|e of Si∗ .
7: Pick min{c, |Gs|} centers of stars in Gs uniformly at random and open them

if not already opened.

The algorithm itself runs in linear time. However, when we use Li and Svens-

son’s algorithm to convert our pseudo-solution to a feasible one, it will take time

O(nO(C/ε)) in total, where C is the number of extra facilities we open. So it is

important that C is a (preferably small) constant. A few of these extra facilities

come from handling basic rounding (e.g. dq2|L2|e), however, the majority come from

handling the positive correlation within the groups Gs. Li and Svensson considered

O(1/η) groups of stars, each with uniform size, bounded the positive correlation

by adding a few extra facilities per group, and showed that the total cost is only

blown up by a factor of (1 + η). The near-independence property gives a bound

on the positive correlation, so that we may compensate for it by adding O(1/β2)

extra facilities per group. Thus, β must be bounded away from zero, which strongly

motivates our restriction of the domain of the main algorithm.

Note that if we run A with parameters p0 = p1A = p1B = p2 = a, and

q1A = q1B = q2 = b, the resulting algorithm is essentially the same as that given

in [35]. (The set of algorithms we use subsumes the need for this one.) The main

68

difference in this case is that we need to open only O(log(1/ε)) extra facilities instead

of O(1/ε).

3.3.2.2 Bounding the number of opened facilities

Since our main algorithm will return one of the solutions by A1, · · · ,A9, we

need to show that none of these will open too many facilities. Algorithm 9 essen-

tially partitions all stars into a constant number of groups. Consider the budget of

each group, which is the expected number of facilities opened in that group if we

independently open each facility in CX with probability pX and each in LX with

qX . We want to show that for each group, the number of facilities opened is always

within an additive constant of that group’s budget. The trickiest groups are the

groups of small stars {Gs}.

Lemma 3.3.1. For each group Gs, let C(s) and L(s) be the set of centers and leaves

of stars in Gs respectively. Then Round2Stars always opens at most p2|C(s)| +

q2|L(s)|+ c+ 2 facilities in C(s) ∪ L(s).

Proof. Since WeightedDepRound2 preserves the weighted sum, we have with

probability 1 that ∑
i∈C(s)

Xi(|Si| − 1) =
∑
i∈C(s)

q2(|Si| − 1).

69

The number of facilities opened in lines 5 and 6 is at most

∑
i∈C(s),i 6=i∗

(
Xi|Si|+ (1−Xi)

)
+ 1 + dXi∗|Si∗|e

≤
∑

i∈C(s),i 6=i∗
Xi(|Si| − 1) + (|C(s)| − 1) + 2 +Xi∗(|Si∗| − 1) +Xi∗

=
∑
i∈C(s)

Xi(|Si| − 1) + (|C(s)| − 1) + 2 +Xi∗

=
∑
i∈C(s)

q2(|Si| − 1) + |C(s)|+ 1 +Xi∗

≤
∑
i∈C(s)

q2(|Si| − 1) + |C(s)|+ 2

=
∑
i∈C(s)

(q2(|Si| − 1) + 1) + 2 =
∑
i∈C(s)

(q2|Si|+ p2) + 2 = p2|C(s)|+ q2|L(s)|+ 2,

where in the penultimate step we have used that p2+q2 = 1 whenever Round2Stars

is called. (This follows from A1 . . .A9, except A7 where Round2Stars would never

be called.) The lemma follows because we open at most c additional facilities in line

7.

Note that the number of groups of small stars is at most log1+β(1/(p2η)), and

we open at most c + 2 = d16/(3β2)e + 2 additional facilities in each group. It is

straightforward to see that the other groups (T1A, T1B, and large stars) only open

a constant number of extra facilities, and so our total budget is violated by only a

constant amount. The following claim shows that β and p2 are strictly greater than

zero (i.e., c and the number of groups are upper-bounded by real constants.)

Claim 3.3.1. When Round2Stars is called, we have β > 1/75 and p2 ≥ 5/24.

70

Proof. Round2Stars is only called during A1, . . . ,A6. (In A7 and A8, line 5 is

called instead.) Consider possible values of p2 and q2 in Table 3.1. Recall that

s0 ∈ [5/6, 1], b ∈ [0.508, 3/4] and a + b = 1. The minimum of β = min{q2, 1 − q2}

is attained in A6 when b = 0.508 and s0 = 5/6; here q2 = (b − a)s0 = (0.508 −

0.492) · 5/6 = 1/75. Also, the minimum of p2 is attained at p2 = as0, a = 1/4, and

s0 = 5/6.

Since we open basically O(1
β3 log(1

η
)) extra facilities, these small lower bounds

lead to poor constants. Significant improvement may be made by further splitting

the cases, and carefully choosing the set of algorithms used in each. However, in

order to avoid further complicating the algorithm and its analysis, we do not attempt

to optimize these values here.

Lemma 3.3.2. For any given set of parameters {p0, p1A, q1A, p1B, q1B, p2, q2} in Ta-

ble 3.1, A will open at most E +O(log(1/η)) facilities with probability 1, where

E := p0|C0|+ p1A|C1A|+ q1A|C1A|+ p1B|C1B|+ q1B|C1B|+ p2|C2|+ q2|L2|.

Proof. We consider Algorithm 17. It is easy to see that

• In line 1, we open at most p0|C0|+ 1 facilities,

• In line 2, we open at most p1A|C1A|+ q1A|C1A|+ 2 facilities,

• In line 3, we open at most p1B|C1B|+ q1B|C1B|+ 2 facilities,

• If line 5 is executed then we open at most p2|C2|+ q2|L2|+ 1 facilities,

71

• Otherwise, Round2Stars is called:

◦ In line 1, the number of opened facilities is

|C ′2|+ dq2(|L′2| − |C ′2|)e ≤ 1 + |C ′2|+ q2(|L′2| − |C ′2|) = p2|C ′2|+ q2|L′2|+ 1,

where the equality follows due to the fact that 1 − q2 = p2 whenever

Round2Stars is called.

◦ By Lemma 3.3.1 and Claim 3.3.1, the number of facilities opened by the

for loop (lines 3 . . . 7) is at most

dlog1+β(1/(p2η))e−1∑
s=1

(p2|C(s)|+ q2|L(s)|+ c+ 2)

=

dlog1+β(1/(p2η))e−1∑
s=1

(p2|C(s)|+ q2|L(s)|) +O(log(1/η)).

The lemma follows by taking the sum of opened facilities in each case.

The O(log(1/η)) term comes as a result of us opening O(log(1/η)) small groups

Gs. The parameters in A1, · · · ,A8 are carefully chosen so that the total budget

E ≈ k in each case. This gives us the following result.

Lemma 3.3.3. Algorithms A1, · · · ,A9 will always open at most k + O(log(1/η))

facilities.

Proof. Since b ∈ [1/2, 3/4] and s0 ≤ 1, p2 is bounded away from 0 in A1, . . . ,A9.

Note that Round2Stars is not called in A7 and A8; at most E + 1 facilities

72

can be opened in these two algorithms. By Lemma 3.3.2, it suffices to show that

E ≤ k+ 1. The proof is straightforward. We substitute the parameters in Table 3.1

and s0 = 1
1+|C0|/∆F

= 1 + |C0|
|C2|−|L2| to compute E in each case. We use simple facts

such as |C1A| = |L1A|, |C1B| = |L1B|, and |C1A|+ |C1B| = |C1| to further simplify the

expression. Also recall that |C1A| = da∆F e, and thus a∆F ≤ |C1A| ≤ a∆F + 1. By

definition, we have ∆F = |L2| − |C0| − |C2| and 2|C2| ≤ |L2|.

• For A1, we have

E = |C1A|+ |C1B|+ as0|C2|+ (1− as0)|L2|

= |C1|+ a|C0|+ a|C2|+ b|L2|

= a(|C0|+ |C1|+ |C2|) + b(|C1|+ |L2|) = a|F1|+ b|F2| = k.

• For A2,A3,A4, and A5, substituting the parameters gives the same E:

E = |C0|+ |C1|+ (1− bs0)|C2|+ bs0|L2|

= |C0| − b|C0|+ |C1|+ |C2| − b|C2|+ b|L2|

= a|F1|+ b|F2| = k.

73

• For A6, we have

E = |C0|+ |C1A|+ |C1A|+ |C1B|+ (1− (b− a)s0)|C2|+ (b− a)s0|L2|

= |C0|+ |C1A|+ |C1|+ (1− (b− a)s0)|C2|+ (b− a)s0|L2|

≤ 1 + |C0|+ a∆F + |C1|+ (1− (b− a)s0)|C2|+ (b− a)s0|L2|

= 1 + |C0| − b|C0|+ |C1|+ |C2| − b|C2|+ b|L2|

= 1 + a|F1|+ b|F2| = k + 1.

• For A7, we have

E = |C0|+ |C1|+ |C2|+
b

2(1/s0)
|L2|

≤ |C0|+ |C1|+ |C2|+
b

1/s0 + r2

|L2|

= |C0| − b|C0|+ |C1|+ |C2| − b|C2|+ b|L2|

= a|F1|+ b|F2| = k.

74

• For A8, we have

E = |C1B|+ |L2|

= |C1| − |C1A|+ |L2|

≤ |C1| − a∆F + |L2|

≤ |C1| −∆F + b∆F + |L2|

= |F1|+ b∆F = k.

• For A9 (this is exactly Li-Svensson algorithm), we have

E = a|C0|+ a|C1|+ b|L1|+ a|C2|+ b|L2|

= a|F1|+ b|F2| = k.

3.3.2.3 Cost analysis

We now derive bounds for the expected connection cost of a single client. For

each client j ∈ C, let i1(j) and i2(j) be the client’s closest facilities in F1 and F2, and

let d1(j) and d2(j) be their respective distances from j. Also let i3(j) be the center

of the star containing i2(j). (Where obvious, we omit the parameter j.) We will

obtain several different upper bounds, depending on the class of the star in which

i1(j) and i2(j) lie.

75

A key characteristic of Algorithm 17 is that for any star in class Y ∈ {1A, 1B, 2},

as long as pY + qY ≥ 1, it will always open either the star’s center or all of the star’s

leaves. By definition of stars, we know i3 is not too far away. We will slightly abuse

notation and let i and ī represent the events that facility i is opened or closed, re-

spectively. By considering these probabilities, we obtain the following two bounds,

similar to the one used in [35]. See Figure 4.4.

jj

i1i1

i2i2

i3i3

d1d1

d2d2

d3d3

Figure 3.1: Illustration of i1, i2, and i3. Observe that d3 ≤ d2 + d(i2, i3) ≤ d2 +
d(i1, i2) ≤ d1 + 2d2.

Lemma 3.3.4. Let j be a client. Suppose we are running one of algorithms A1 to

A7, OR we are running A8 and i2(j) 6∈ L1A. Then the expected connection cost of

j after running Algorithm 17 is bounded above by both c213(j) := d2 + Pr[̄i2](d1 −

d2) + 2 Pr[̄i1ī2]d2 and c123(j) := d1 + Pr[̄i1](d2 − d1) + Pr[̄i1ī2](d1 + d2).

Proof. For all these clients, we know that at least one of i2 or i3 will always be open.

First consider the case that i1 6= i3. Then the facilities are as shown below. Observe

by the construction of stars, i2 cannot be closer to i1 than i3 (otherwise i1 would be

its center). Thus d(i2, i3) ≤ d(i2, i1) ≤ d1 + d2. It follows by the triangle inequality

76

that d(j, i3) ≤ d(j, i2) + d(i2, i3) ≤ d1 + 2d2.

Now let us connect j to i2 if open. Else, connect to i1 if open. Else, connect

to i3. The actual facility which j connects to can only be closer than any of these.

Thus, this yields the following upper bound for the expected connection cost of j.

c213(j) := Pr[i2]d2 + Pr[i1ī2]d1 + Pr[̄i1ī2](d1 + 2d2)

= Pr[i2]d2 + Pr[̄i2]d1 + 2 Pr[̄i1ī2]d2

= d2 + Pr[̄i2](d1 − d2) + 2 Pr[̄i1ī2]d2, (3.1)

where the subscript corresponds to the order in which we try connecting to facilities.

Alternatively, we may connect j first to i1 if open, else i2 if open, else i3. This gives

the equally valid bound

c123(j) := Pr[i1]d1 + Pr[̄i1i2]d2 + Pr[̄i1ī2](d1 + 2d2)

= Pr[i1]d1 + Pr[̄i1]d2 + Pr[̄i1ī2](d1 + d2)

= d1 + Pr[̄i1](d2 − d1) + Pr[̄i1ī2](d1 + d2). (3.2)

Now consider the remaining case that i1 = i3. In this case, at least one of i1 or

i2 will always be open. Again, depending on which facility we attempt to connect

to first, we can obtain either of two bounds:

c21(j) := Pr[i2]d2 + Pr[̄i2]d1 ≤ c213(j)

c12(j) := Pr[i1]d1 + Pr[̄i1]d2 ≤ c123(j).

77

Thus (3.1) and (3.2) are valid bounds in both cases.

In A8, p1A = q1A = 0, meaning all stars in T1A have both center and leaf

closed, so if i2 ∈ L1A the previous bound does not hold. In this case, let i4 be the

closest leaf of a 2-star to i3. Recall the definition of gi; this gives us information on

the distance to i4. Let g := mini∈C1A gi be the minimum value over all stars in T1A.

Then we may bound the cost to i4 (or its center, in the worst case) as follows:

Lemma 3.3.5. Let j be a client such that i2(j) ∈ L1A. Then the expected connection

cost of j, when running A8, is bounded above by c145(j) := d1+Pr[̄i1]
(

2d2 + 1
g
(d1 + d2)

)
+

Pr[̄i1ī4]1
g
(d1 + d2).

Proof. For these clients it is possible that i1, i2 and i3 are all closed. Let i4 be the

closest facility in L2 to i3, and let i5 be the center of i4. Then by definition, we have

gi3 =
d(i3, i2)

d(i3, i4)
.

This yields the following bound on d(i3, i4) (and thus d(i4, i5)):

d(i4, i5) ≤ d(i3, i4) =
1

gi3
d(i2, i3) ≤ 1

g
(d1 + d2).

Now we know that if i4 is closed, then i5 must be open. We also know that i2

and i3 will always be closed. In the case that i1 6= i3 (which is shown above), we

will try connecting, in order, to i1, i4, and i5, connecting to the first one which is

78

open. This yields the following bound:

c145(j) := Pr[i1]d1 + Pr[̄i1i4]

(
d1 + 2d2 +

1

g
(d1 + d2)

)
+ Pr[̄i1ī4]

(
d1 + 2d2 +

2

g
(d1 + d2)

)
=d1 + Pr[̄i1]

(
2d2 +

1

g
(d1 + d2)

)
+ Pr[̄i1ī4]

1

g
(d1 + d2). (3.3)

For the case that i1 = i3, we have the below situation: Here i1 and i2 are always

closed, so we try connecting first to i4, then to i5, giving the following bound:

c45(j) :=d1 +
1

g
(d1 + d2) + Pr[̄i4]

1

g
(d1 + d2).

In this case Pr[̄i1] = 1. Also since i1 ∈ C1A and i4 ∈ L2 are in different types of

stars, they are rounded independently, so Pr[̄i1ī4] = Pr[̄i1] Pr[̄i4] = Pr[̄i4]. Thus,

c45(j) ≤ c145(j), and the claim still holds.

These two lemmas provide a valid bound for all clients. However, the bound

in Lemma 3.3.5 may be very poor if g is small. To balance this, we provide another

bound which does well for small g.

Lemma 3.3.6. Let j be a client such that i1(j) ∈ C1B and i2(j) ∈ L2. Then in all

algorithms, the expected cost of j is bounded above by both of the following:

c210(j) := d2 + Pr[̄i2](d1 − d2) + Pr[̄i1ī2]g(d1 + d2),

c120(j) := d1 + Pr[̄i1](d2 − d1) + Pr[̄i1ī2](d1 − d2 + g(d1 + d2)).

Proof. In this case i1 ∈ C1B. Let i0 be the leaf attached to i1. Again, we know that

79

if i0 is closed, i1 will be open. Recall that by definition gi = d(i,i′)
minj∈L2 d(i,j)

, where i

and i′ are the center and leaf, respectively of a 1-star. Applying this to i1 and i0,

we have

d(i1, i0) = gi1 min
i∈L2

d(i1, i) ≤ g · d(i1, i2) ≤ g(d1 + d2).

Now we may try connecting in order i2, i1, i0, or alternatively, in order i1, i2, i0,

yielding the following bounds:

c210(j) := Pr[i2]d2 + Pr[i1ī2]d1 + Pr[̄i1ī2](d1 + g(d1 + d2))

= d2 + Pr[̄i2](d1 − d2) + Pr[̄i1ī2]g(d1 + d2) (3.4)

c120(j) := Pr[i1]d1 + Pr[̄i1i2]d2 + Pr[̄i1ī2](d1 + g(d1 + d2))

= d1 + Pr[̄i1](d2 − d1) + Pr[̄i1ī2](d1 − d2 + g(d1 + d2)). (3.5)

Note that by definition of i2(j), we can say d2 = d(j, i2) ≤ d(j, i0) ≤ d1 + g(d1 + d2),

which implies (d1 − d2 + g(d1 + d2)) ≥ 0, a fact that will be used later.

(Note: as we observe in the proof of the above, the coefficient (d1−d2 +g(d1 +

d2)) is non-negative.)

The following lemma relates the probabilities in the above bounds to the

parameters of the algorithm. In particular, we take advantage of properties of

WeightedDepRound2 as described in Chapter 2.

Lemma 3.3.7. Let i1 and i2 be any two facilities in F1 and F2, respectively. Let

X, Y ∈ {0, 1A, 1B, 2} be the classes such that i1 ∈ CX and i2 ∈ LY . Then for any

80

A(p0, p1A, q1A, p1B, q1B, p2, q2) in Table 3.1, the following are true:

Pr[̄i1] ≤ 1− pX , (3.6)

Pr[̄i2] ≤ (1 + η)(1− qY), (3.7)

Pr[̄i1ī2] ≤ (1 + η)(1− pX)(1− qY). (3.8)

Proof. Consider i1. Suppose i1 ∈ CX . If X ∈ {0, 1A, 1B}, we have Pr[i1] ≥ pX (by

lines 1, 2, and 3 of Algorithm 17). Otherwise X = 2. If p2 = 0 or p2 = 1, line 5 of

Algorithm 17 is executed and Pr[i1] = p2 exactly. Else, we run Round2Stars. If

i1 is part of a large star, then it is always opened so Pr[̄i1] = 0. Else, i1 is in a small

star, and we have Pr[ī1] ≤ Pr[Xi1 = 1] ≤ E[Xi1] = q2 = 1− p2. This holds because

ī1 only occurs when Xi1 = 1. In all cases (3.6) holds.

Consider i2. Suppose i2 ∈ LY . If Y ∈ {1A, 1B}, we have Pr[i2] ≥ qY . Other-

wise Y = 2. Again, if line 5 of Algorithm 17 is executed, Pr[i2] ≥ q2. Else, we run

Round2Stars. Consider the case that i2 ∈ L′2 is part of a large star. Recall that

large stars have at least 1/(p2η) = 1/((1− q2)η) leaves. Then

Pr[i2] ≥ q2(|L′2| − |C ′2|)
|L′2|

≥ q2 −
|C ′2|
|L′2|

≥ q2 − (1− q2)η = 1− (1− q2)(1 + η).

Otherwise, i2 is part of some small star, with center i3. If Xi3 is 1 or 0, by line 5,

Pr[i2] = Xi3 . If 0 < Xi3 < 1, then by line 6, Pr[i2] ≥ Xi3 . So in any case, we have

Pr[i2|Xi3 = x] ≥ x. Note that each indicator returned by WeightedDepRound2

can only take finitely many values in [0, 1]. Letting U be the set of these values, we

81

have

Pr[i2] =
∑
x∈U

Pr[i2|Xi3 = x] Pr[Xi3 = x] ≥
∑
x∈U

xPr[Xi3 = x] = E[Xi3] = q2.

In all cases (3.7) holds.

Now consider both i1 and i2. There are many cases to consider, but most

of them are easy. If i1 and i2 belong to stars of different classes, then they are

opened independently, so Pr[̄i1ī2] = Pr[̄i1] Pr[̄i2] ≤ (1 + η)(1− pX)(1− qY). For the

remaining cases, i1 ∈ CX and i2 ∈ LX for the same class X ∈ {1A, 1B, 2}. There is

a special case where X = 1A, and we are running A8. In this case, p1A = q1A = 0 so

Pr[̄i1ī2] = 1 = (1 − p1A)(1 − q1A). Otherwise, if X ∈ {1A, 1B}, then at least one of

qX and pX is 1, so all centers or leaves are opened, so Pr[̄i1ī2] = 0.

The remaining case is when X = 2. Notice that line 5 of Algorithm 17 is

called when either p2 = 0 or p2 = 1. The only time p2 = 0 is A8, in which q2 = 1,

so all the leaves are opened and Pr[̄i1ī2] = 0. If p2 = 1, then i1 is always opened

and Pr[̄i1ī2] = 0. Otherwise T2 is divided into one group of large stars, and many

groups Gs of small stars. Again, if i1 and i2 are in different groups, they are rounded

independently. If they are both in a large star, then i1 will always be opened and

Pr[̄i1ī2] = 0. If they are both in the same small star, then the center-or-leaves

property of our algorithm implies they will never both be closed, so Pr[̄i1ī2] = 0.

In the only remaining case, we have that Round2Stars is run (and p2 + q2 =

1), and i1 and i2 lie in separate stars within the same group Gs. Let E be the

event that “i1 is among the c random facilities chosen to be opened in line 7 of

82

Round2Stars”. We first show

Pr[Xi1 = 1 ∧ ī2] ≤
∑
xi1∈U

xi1 Pr[Xi1 = xi1 ∧ ī2]

=
∑
xi1∈U

xi1
∑
xi3∈U

Pr[Xi1 = xi1 ∧ ī2 ∧Xi3 = xi3]

=
∑
xi1∈U

xi1
∑
xi3∈U

Pr[ī2|Xi1 = xi1 ∧Xi3 = xi3] Pr[Xi1 = xi1 ∧Xi3 = xi3]

≤
∑
xi1∈U

xi1
∑
xi3∈U

(1− xi3) Pr[Xi1 = xi1 ∧Xi3 = xi3]

= E[Xi1(1−Xi3)].

If |Gs| ≤ c, then all facilities in Gs will be opened and Pr[ī1ī2] = 0. Otherwise, we

can bound Pr[ī1ī2] as follows. Conditioned on Ē , i1 is closed iff Xi1 = 1. Thus,

Pr[ī1ī2] = Pr[E] Pr[ī1ī2|E] + (1− Pr[E]) Pr[ī1ī2|Ē]

=
c

|Gs|
· 0 +

(
1− c

|Gs|

)
Pr[ī1ī2|Ē]

=

(
1− c

|Gs|

)
Pr[Xi1 = 1 ∧ ī2|Ē]

=

(
1− c

|Gs|

)
Pr[Xi1 = 1 ∧ ī2]

≤
(

1− c

|Gs|

)
E[Xi1(1−Xi3)]

≤
(

1− c

|Gs|

)(
1 +

16

3|Gs|β2

)
(1− p2)(1− q2),

where we use the near-independence property of WeightedDepRound2 in the

last inequality. (There are t = 2 variables of interest, n = |Gs| total variables, and

83

α = min{q2, 1− q2} = β.)

We want to choose c such that
(

1− c
|Gs|

)(
1 + 16

3|Gs|β2

)
≤ 1+η, or equivalently,

c ≥ 16/(3β2)− η|Gs|
1 + 16/(3|Gs|β2)

.

Therefore, our choice of c = d16/(3β2)e implies that (3.8) holds true in all cases.

3.3.2.4 The nonlinear factor-revealing program

Now we will construct a nonlinear program which bounds the ratio between

the total connection cost and the cost of the bi-point solution. We first introduce

some necessary notation. Partition the clients into classes according to the types of

stars in which i1(j) and i2(j) lie:

J (X,Y) := {j ∈ J | i1(j) ∈ CX ∧ i2(j) ∈ LY } ∀X ∈ {0, 1A, 1B, 2}, Y ∈ {1A, 1B, 2}.

Furthermore, since we have multiple cost bounds available, we want to use the one

which will be smallest for each client. Simply put, we want to try connecting the

client to the closest facility first. To this end, we define subclasses for clients who

are closer to either i1(j) or i2(j), respectively:

J P (X,Y) := {j ∈ J (X,Y) | d2(j) ≤ d1(j)} (3.9)

J N(X,Y) := {j ∈ J (X,Y) | d1(j) < d2(j)}. (3.10)

84

For (X, Y) = (1B, 2), we define the subclasses slightly differently. This takes into

account whether each client is closer to i0(j) or i3(j):

J P (1B ,2) := {j ∈ J (1B ,2) | d2 ≤ d1 ∧ d1 + 2d2 ≤ d1 + g(d1 + d2)} (3.11)

J P ′(1B ,2) := {j ∈ J (1B ,2) | d2 ≤ d1 ∧ d1 + g(d1 + d2) < d1 + 2d2} (3.12)

J N(1B ,2) := {j ∈ J (1B ,2) | d1 < d2 ∧ d1 + 2d2 ≤ d1 + g(d1 + d2)} (3.13)

J N ′(1B ,2) := {j ∈ J (1B ,2) | d1 < d2 ∧ d1 + g(d1 + d2) < d1 + 2d2}. (3.14)

Define the following set of classes, observing {J Z}Z∈Z fully partitions the set of

clients.

Z = {P ′(1B, 2), N ′(1B, 2)} ∪
⋃

W∈{P,N}
X∈{0,1A,1B ,2}
Y ∈{1A,1B ,2}

{W (X, Y)}.

For each client class Z ∈ Z, let DZ
1 :=

∑
j∈JZ d1(j) and DZ

2 :=
∑

j∈JZ d2(j), be

the total cost contribution to D1 or D2, respectively, from clients in class JZ . Then

define the following:

CZ
213 := DZ

2 + (1− qY)(DZ
1 −DZ

2) + 2(1− pX)(1− qY)DZ
2

CZ
123 := DZ

1 + (1− pX)(DZ
2 −DZ

1) + (1− pX)(1− qY)(DZ
1 +DZ

2)

CZ
210 := DZ

2 + (1− qY)(DZ
1 −DZ

2) + (1− pX)(1− qY)g(DZ
1 +DZ

2)

CZ
120 := DZ

1 + (1− pX)(DZ
2 −DZ

1) + (1− pX)(1− qY)g(DZ
1 −DZ

2 + g(DZ
1 +DZ

2))

CZ
145 := DZ

1 + (1− pX)

(
2DZ

2 +
1

g
(DZ

1 +DZ
2)

)
+ (1− pX)(1− q2)

1

g
(DZ

1 +DZ
2).

85

Finally, given an algorithm Ai = A(p0, p1A, q1A, p1B, q1B, p2, q2), define

COST1(Ai) :=C
P ′(1B ,2)
210 + C

N ′(1B ,2)
120 +

∑
X∈{0,1A,1B ,2}
Y ∈{1A,1B ,2}

(
C
P (X,Y)
213 + C

N(X,Y)
123

)
, (3.15)

COST2(Ai) :=C
P ′(1B ,2)
210 + C

N ′(1B ,2)
120 +

∑
X∈{0,1A,1B ,2}
Y ∈{1B ,2}

(
C
P (X,Y)
213 + C

N(X,Y)
123

)
+

∑
X∈{0,1A,1B ,2}

C
(X,1A)
145 .

(3.16)

Lemma 3.3.8. For algorithms A1, . . . ,A7 and A9, the total expected cost is bounded

above by (1 + η)COST1(Ai). The expected cost of A8 is bounded above by (1 +

η)COST2(A8).

Proof. Sum the bounds from Lemmas 3.3.4, 3.3.5, and 3.3.6 over each corresponding

client class, and apply the bounds from Lemma 3.3.7. To apply those upper bounds,

we need that the coefficients of Pr[̄i1], Pr[̄i1ī2] (or similar terms) are nonnegative.

This follows by definition of the class being summed over. (For example, for class

P (X, Y), we have d2 ≤ d1, so d1 − d2 ≥ 0.) By linearity of expectation, we get the

total expected cost of the algorithm.

86

Our NLP: max X (3.17)

s.t X ≤ COST1(Ai) ∀i ∈ {1, 2, 3, 4, 5, 6, 7, 9} (3.18)

X ≤ COST2(A8) (3.19)

DZ
2 ≤ DZ

1 ∀Z = P (X, Y) or Z = P ′(1B, 2)

(3.20)

DZ
2 ≥ DZ

1 ∀Z = N(X, Y) or Z = N ′(1B, 2)

(3.21)

(2− g)D
W (1B ,2)
2 ≤ gD

W (1B ,2)
1 ∀W ∈ {P,N} (3.22)

(2− g)D
W (1B ,2)
2 ≥ gD

W (1B ,2)
1 ∀W ∈ {P ′, N ′} (3.23)∑

Z∈Z

DZ
1 =

1

1− b+ brD
(3.24)

∑
Z∈Z

DZ
2 =

rD
1− b+ brD

(3.25)

0.508 ≤ b ≤ 3/4 (3.26)

19/40 ≤ rD ≤ 2/3 (3.27)

5/6 ≤ s0 ≤ 1

g ≥ 0

DZ
1 , D

Z
2 ≥ 0 ∀Z ∈ Z

Lemma 3.3.9. Given a bi-point solution with cost aD1 + bD2 as input, with s0 ≥

5/6, b ∈ [0.508, 3/4], rD ∈ [19/40, 2/3], and r1 > 1, the best solution returned by

87

A1, . . . ,A9 has expected cost E[COST] ≤ X∗ · (1 + η)(aD1 + bD2), where X∗ is the

solution to the above nonlinear program. Furthermore, X∗ ∈ [1.3370, 1.3371].

Proof. Given a bi-point instance aF1+bF2, first normalize all the distances by divid-

ing by aD1 + bD2. This does not change the solution or the ratio of approximation

obtained. Let X be the cost of the solution given by Algorithm 17. Because of the

normalization, X is also the bi-point rounding factor. Constraints (3.18) and (3.19)

must hold because we take the best cost of all algorithms. Lemma 3.3.8 shows that

X may be a factor (1 +η) larger. Constraints (3.20), (3.21), (3.22), and (3.23) must

hold by definition of each client class (see (3.9) through (3.14)). Constraints (3.24)

and (3.25) enforce that the corresponding distance contributions from each client

class sum to D1 and D2 (normalized).

We observe that for a fixed set of values of b, rD, s0, and g, the program

becomes linear. We exploit this with computer-assisted methods (rigorous interval-

arithmetic) and prove that 1.3370 ≤ X∗ ≤ 1.3371.

3.3.3 Algorithms for edge cases

We have several border cases which we handle in a different, generally simpler,

manner. We first prove these two facts:

Claim 3.3.2. r2 ≤ 1/s0.

Proof. By definition of 2-stars, we have |C2| ≤ |L2|/2 which implies |C2| ≤ (|C1| +

|L2|)− (|C0|+ |C1|+ |C2|) + |C0| = ∆F + |C0|. Thus, r2 ≤ 1 + r0 = 1/s0.

Claim 3.3.3. |L2|
∆F
≤ 2

s0
.

88

Proof. Since |L2|/2 ≤ |L2| − |C2| = ∆F + |C0|, we have |L2|
2∆F
≤ 1 + r0 = 1/s0.

Lemma 3.3.10. There is a (1 + η) · 1.3371-approximation algorithm for rounding

the bi-point solution and opens at most k + O(log(1/η)) facilities when either b ≤

0.508, b ≥ 3/4, rD ≤ 19/40, or rD ≥ 2/3.

Proof. Basically, we just return the better solutions between F1 and the one pro-

duced byA′ = A(a, a, b, a, b, a, b). As mentioned before, A′ and Li-Svensson’s round-

ing algorithm are essentially the same, and output a solution with the same upper-

bound on the expected cost:

(1 + η)(ad1 + b(1 + 2a)d2),

The main difference is that A′ only opens at most O(log(1/η)) (instead of O(1/η))

extra facilities.

As in [35], we need to be careful when a or b is close to 0 because the number

of extra facilities opened by A′ is roughly 16
3β2 log1+β(1/(a ·η)), where β = min{a, b}.

We consider two corner cases:

• If 0 ≤ b ≤ 1/4, we can just return F1 as our solution. Note that |F1| ≤ k and

the approximation ratio is d1
ad1+bd2

≤ 1
a

= 1
1−b ≤ 4/3.

• If b ≥ 5/6, we can use the knapsack algorithm described in [35], which only

opens at most k + 2 facilities, to get a 4/3-approximation algorithm. Note

that the approximation ratio of this algorithm is bounded by 1 + 2a ≤ 4/3 as

89

a ≤ 1/6.

• We claim that the above algorithm gives an approximation ratio of 1.337 for

all remaining cases. Note that the cost of this algorithm is at most (1 +

η) min{d1, ad1 + b(1 + 2a)d2}. Thus, it suffices to bound the ratio

f :=
min{d1, ad1 + b(1 + 2a)d2}

ad1 + bd2

= min

{
1

1− b+ brD
,
1− b+ b(1 + 2(1− b))rD

1− b+ brD

}
.

Note that the right-hand-side is a function of b and rD. When b ∈ [1/4, 0.508],

b ∈ [3/4, 5/6], rD ≤ 19/40, or rD ≥ 2/3, that function is at most 1.337 by

elementary calculus.

Observe that

∂

∂rD

(
1

1− b+ brD

)
= − b

(1− b+ brD)2
≤ 0,

and

∂

∂rD

(
1− 2b2rD + b(−1 + 3rD)

1− b+ brD

)
=

2(−1 + b)2b

(1 + b(−1 + rD))2
≥ 0.

It means that, for a fixed value of b, the former is a decreasing function of rD

and the latter is an increasing function of rD. Therefore,

– Case b ∈ [1/4, 0.508] or b ∈ [3/4, 5/6]: The maximum of f will be achieved

90

at some point such that

1

1− b+ brD
=

1− 2b2rD + b(−1 + 3rD)

1− b+ brD
,

or equivalently,

rD =
1

3− 2b
.

Then, in this case,

f ≤ max
b∈[1/4,0.508]∪[3/4,5/6],rD= 1

3−2b

1

1− b+ brD
= 1.33681.

– Case b ∈ [0.508, 3/4] and rD ≤ 19/40: Note that rD ≤ 1
3−2b

which implies

that 1
1−b+brD

≥ 1−2b2rD+b(−1+3rD)
1−b+brD

. Since the RHS is increasing in rD, we

have

f ≤ max
b∈[0.508,3/4],rD=19/40

1− 2b2rD + b(−1 + 3rD)

1− b+ brD
= 1.33294.

– Case b ∈ [0.508, 3/4] and rD ≥ 2/3: Note that rD ≥ 1
3−2b

which implies

that 1
1−b+brD

≤ 1−2b2rD+b(−1+3rD)
1−b+brD

. Since the LHS is decreasing in rD, we

have

f ≤ max
b∈[0.508,3/4],rD=2/3

1

1− b+ brD
=

4

3
≤ 1.33334.

Lemma 3.3.11. There is a (1+η)·1.3371-approximation algorithm for rounding the

91

bi-point solution which opens at most k + O(log(1/η)) facilities when s0 ≤ 5/6, b ∈

[0.508, 3/4], and rD ∈ [19/40, 2/3].

Proof. We show that the better solution returned from a set of 3 algorithms will

be within a factor 1.3371 of the optimal solution. The purpose of this case is to

bound s0 away from 0, so that p2 and q2 in our main case are bounded away from

zero. The first algorithm is a knapsack algorithm in which we open all facilities

in L1 and C2. After that we almost greedily choose some of the 2-stars, close their

centers, and open all their leaves. This algorithm does very well if s0 is small. In the

second algorithm, we open F1 and some additional facilities in L2 which maximize

the saving. In particular, we use the following algorithms:

• Algorithm 1: Open all facilities in L1 and C2. For each client j, if i2(j) ∈ L1,

connect j to i2(j). Otherwise i2(j) is a leaf of a 2-star, let i3 be the center of

this star and connect j to i3. Thus, the total connection cost of the current

solution is upper-bounded by

∑
j:i2(j)∈L1

d2(j) +
∑

j:i2(j)∈L2

(d1(j) + 2d2(j)) = D2 +
∑

j:i2(j)∈L2

(d1(j) + d2(j)).

Now, for each i ∈ C2, if we close facility i and open all of its leaves, the

total cost will be reduced by
∑

j∈δ(Si)(d1(j) + d2(j)), where δ(Si) is the set of

clients j having i2(j) ∈ Si, and we also open additional |Si|− 1 facilities. This

motivates us to solve the following knapsack LP, just as in [35]:

92

maximize
∑
i∈C2

xi

 ∑
j∈δ(Si)

(d1(j) + d2(j))


subject to

∑
i∈C2

xi(|Si| − 1) ≤ k − |L1| − |C2|

0 ≤ xi ≤ 1 ∀i ∈ C2

Note that a basic solution of the above LP only has at most 1 fractional value.

Thus, we can easily obtain it by a greedy method. Let us call this fractional

value xi∗ . Now, for all i ∈ C2, if xi = 0, we keep i opened. If xi = 1, we close

i and open all of its leaves. We also open i∗ and a subset of size dxi∗ |Si∗|e of

Si∗ uniformly at random. It is easy to see that the expected saved cost is at

least the optimal value of the LP by doing so.

• Algorithm 2: Open all facilities in F1. Define the saving of a facility i ∈ L2

be
∑

j∈δ(Si)(d1(j) − d2(j))+. Sort all the facilities in L2 non-increasing by its

saving. Open the first d bs0
2
|L2|e facilities in this order.

Analysis:

• The two algorithms only open k+ 2 facilities. In the first algorithm, we claim

that at most k + 2 facilities will be opened. The first constraint of the LP

guarantee that a fractional solution x will open at most k facilities. The two

extra facilities come from the fact that we open i∗ and take the ceiling of

93

xi∗ |Si∗|. In the second algorithm, we open at most

|F1|+
bs0

2
|L2|+ 1 ≤ |F1|+

b|L2|
2
× 2∆F

|L2|
+ 1

= |F1|+ b∆F + 1 = k + 1,

where the first inequality is due to s0 ≤ 2∆F

|L2| , by Claim 3.3.3.

• Now, we bound the cost of the first algorithm. Let q be the maximum value

such that the solution xi = q for all i ∈ C2 is feasible to the knapsack LP. We

solve for q by requiring

∑
i∈C2

q(|Si| − 1) ≤ k − |L1| − |C2|

⇐⇒ q(|L2| − |C2|) ≤ k − |L1| − |C2|

⇐⇒ q ≤ k − |L1| − |C2|
|L2| − |C2|

=
|F1|+ b∆F − |L1| − |C2|

|L2| − |C2|
=
b∆F + |C0|
|L2| − |C2|

.

Thus, we can set q := b∆F+|C0|
|L2|−|C2| . Note that |L2| − |C2| = |C0|+ ∆F , we have

q =
b∆F + |C0|
|C0|+ ∆F

=
b+ r0

1 + r0

= 1− as0.

Since x = q is a feasible solution, the saved cost is at least

∑
i∈C2

q

 ∑
j∈δ(Si)

(d1(j) + d2(j))

 = (1− as0)
∑

j:i2(j)∈L2

(d1(j) + d2(j)).

94

Therefore, we can upper-bound the cost by

D2 +
∑

j:i2(j)∈L2

(d1(j) + d2(j))− (1− as0)
∑

j:i2(j)∈L2

(d1(j) + d2(j))

= D2 + as0

∑
j:i2(j)∈L2

(d1(j) + d2(j)).

• Recall that the sets δ(Si) are pairwise disjoint. By a simple average argument,

the cost of the second algorithm is upper-bounded by

D1 −
bs0

2

∑
i∈L2

∑
j∈δ(Si)

(d1(j)− d2(j))+ ≤ D1 −
bs0

2

 ∑
j:i2(j)∈L2

(d1(j)− d2(j))


+

.

We run these two algorithms along with A′ = A(a, a, b, a, b, a, b), and use the best

solution of the three. (Again, note that β = min{a, b} ≥ 1/4 and a ≥ 1/4 in

this case.) We can easily formulate an NLP to derive the approximation ratio as

discussed in subsection 3.3.2.3. Using an interval search as before over the interval

0 ≤ s0 ≤ 5/6, b ∈ [0.508, 3/4], rD ∈ [19/40, 2/3], we get an upper-bound of 1.3371

on the factor-revealing NLP. Note that the value of g is irrelevant to any of these

algorithms, so our intervals are over only b, rD and s0. This interval search runs in

seconds and examines about 6400 intervals.

Lemma 3.3.12. There is a (1+η)·1.3371-approximation algorithm for rounding the

bi-point solution which opens at most k + O(log(1/η)) facilities when s0 ≥ 5/6, b ∈

[0.508, 3/4], rD ∈ [19/40, 2/3], and r1 ≤ 1.

95

Proof. We will run the set of 10 algorithms shown in Table 3.2. Obviously, when

Round2Stars is called (only algorithms A′1, A′2,A′7,A′8), we have β = min{q2, 1−

q2} ≥ 5/24 and p2 ≥ 5/24, which are achieved at p2 = as0, a = 1/4, s0 = 5/6. Thus,

it is easy to check that A′1, A′2, and A′4, . . . ,A′8 only open k+O(log(1/η)) facilities.

For A′9 and A′10, using the same argument as in Lemma 3.3.3 and Lemma 3.3.2, we

open at most

|F1|+ b|C1|+O(log(1/η)) ≤ |F1|+ (b/r1)|C1|+O(log(1/η))

= |F1|+ b∆F +O(log(1/η)) = k +O(log(1/η)),

where the first inequality is due to the fact that r1 ≤ 1 in the interval of interest.

Recall that s0 = 1
1+r0

= 1
1+|C0|/∆F

= |L2|−|C2|−|C0|
|L2|−|C2| = 1 − |C0|

|L2|−|C2| . For A′3, we

open at most

|C1|+ |C2|+
1− as0

2
|L2|+O(log(1/η)) = |C1|+ |C2|+

1− a+ a |C0|
|L2|−|C2|

2
|L2|+O(log(1/η))

= |C1|+ |C2|+
b

2
|L2|+ a|C0|

|L2|
2(|L2| − |C2|)

+O(log(1/η))

≤ |C1|+ |C2|+
b

2
|L2|+ a|C0|+O(log(1/η))

= |C1|+ a|C2|+ b|C2|+ b|L2| −
b

2
|L2|+ a|C0|

+O(log(1/η))

≤ |C1|+ a|C2|+ b|L2|+ a|C0|+O(log(1/η))

= k +O(log(1/η)).

96

The approximation ratio will be bounded by an NLP as in our main case. It

is simpler, as we need not consider the distinction between T1A and T1B, or the

value of g. We do an interval search and get an upper-bound of 1.337 when

b ∈ [0.508, 3/4], rD ∈ [19/40, 2/3], and s0 ∈ [5/6, 1].

Algorithms p0 p1A q1A p1B q1B p2 q2

A′1 0 0 1 0 1 as0 1− as0

A′2 0 1 0 1 0 as0 1− as0

A′3 0 0 1 0 1 1 1−as0
2

A′4 0 1 0 1 0 1 1−as0
2

A′5 1 0 1 0 1 1 bs0
2

A′6 1 1 0 1 0 1 bs0
2

A′7 1 0 1 0 1 1− bs0 bs0

A′8 1 1 0 1 0 1− bs0 bs0

A′9 1 1 b 1 b 1 0
A′10 1 b 1 b 1 1 0

Table 3.2: Calls of A when r1 ≤ 1.

The main result in this section is summarized in the following theorem.

Theorem 3.3.1. There is a (1 + η) · 1.3371-approximation algorithm for rounding

the bi-point solution which opens at most k +O(log(1/η)) facilties.

3.4 Dichotomy result

In the last subsections, we introduced a (2.675 + ε)-approximation algorithm

for the k-median problem which runs in nO((1/ε) log(1/ε)) time. Now we show that

by using a simple scaling technique and careful analysis, we can either improve the

runtime by getting rid of the log(1/ε) factor in the power of n, or we can improve the

97

approximation ratio. Our result is summarized in the following theorem. Recall from

the last subsection that, when Round2Stars(p2, q2) is called, β := min{q2, 1− q2}

is strictly bounded away from zero.

Theorem 3.4.1. For any parameter ε > 0 small enough, there exist algorithms Aε

and Bε such that, for any instance I of the k-median problem, either Aε is fast or

Bε is more accurate:

• Aε is a randomized (2.675 + ε)-approximation algorithm which produces a so-

lution to I with constant probability and runs in nO(1/ε) time, or

• Bε is a (2 + ε)-approximation algorithm for I which runs in nO(poly(1/ε)) time.

We say that a star Si with i ∈ C2 is small if 2 ≤ |Si| ≤ c0
η

for some constant

c0 > 0. Otherwise, |Si| > c0
η

and we call it a large star. Again, let C ′2 and L′2 denote

sets of centers and leaves of large stars. Also let C ′′2 and L′′2 be sets of centers and

leaves of small stars.

First, observe that for large stars, we can reuse the following trick: move a

little mass from the leaves to open the center. In other words, we will open C ′2 and

a subset of size dq2(|L′2| − |C ′2|)e of L′2. For i2 ∈ L′2, it is not hard to show that

Pr[i2] ≥ q − pη (i.e. the loss is negligible). We open 1 extra facility in this class.

Recall that A opens at most 4 extra facilities in T0 ∪ T1 ∪ C ′2 ∪ L′2. The question

is can we also reduce the number of extra opened facilities which are part of small

stars (previously, this number was O(log(1/η)))? We consider the following cases.

• Case 1: |C ′′2 | > f(1/η) for some function f = O(poly(1/η)) to be determined.

In this case, we have a lot of small stars. We scale down the probability of

98

opening the leaves by (1−η) and open/close the centers/leaves independently.

That is, for each center i ∈ C ′′2 , we randomly open Si and close center i with

probability (1 − η)q2. (With the remaining probability, we close Si and open

center i.) We show that, with constant probability, the algorithm returns a

feasible solution whose cost is only blown up by a small factor of (1 + η).

• Case 2: |L′2| + |L′′2| ≤ g(1/η) for some function g = O(poly(1/η)) to be

determined. In this case, the number of leaves should be small enough so

that we can simply open all the leaves in L2. The number of extra opened

facilities is O(g(1/η)). However, we achieve a pseudo solution with no loss in

connection cost compared to the bipoint solution.

• Case 3: Neither Case 1 nor Case 2 holds (i.e. |C ′′2 | ≤ f(1/η) and |L′2|+ |L′′2| ≥

g(1/η)). Note that, by definition of small stars,

|L′′2| ≤
c0

η
|C ′′2 | ≤

c0f(1/η)

η
.

This implies that

|L′2| ≥ g(1/η)− |L′′2| ≥ g(1/η)− c0f(1/η)

η
.

Intuitively, the number of centers and leaves of small stars are upper-bounded

by some constant. On the other hand, we have a lower-bound on the number

of leaves of large stars. If we have enough leaves in L′2, we can scale down the

probability to open each facility in L′2 so that all centers in C ′′2 can be opened

99

without violation.

Details of these cases will be showed in the following subsections.

3.4.1 Case 1

For each i ∈ C ′′2 , let Xi be an indicator of the event that we open Si and close

i. (If Xi = 0, we close Si and open i.) The idea is to set each Xi = 1 independently

with probability (1− η)q2.

Lemma 3.4.1. With probability at least 1 − exp
(
−η3(1−η)βf(1/η)

3c0

)
, the algorithm

opens at most p2|C ′′2 |+ q2|L′′2| facilities which are part of small stars.

Proof. Recall that small stars have at most c0/η leaves. The number of opened

facilities which are part of small stars is

X =
∑
i∈C′′2

(Xi|Si|+ (1−Xi)) = |C ′′2 |+
∑
i∈C′′2

Xi(|Si| − 1) = |C ′′2 |+
c0

η

∑
i∈C′′2

Yi,

where Yi = Xi(|Si|−1)
c0/η

. Note that Yi’s take random values in [0, 1]. The expected

100

value of Y =
∑

i∈C′′2
Yi is

µ := E

∑
i∈C′′2

Yi


=
∑
i∈C′′2

E[Xi](|Si| − 1)

c0/η

=
1− η
c0/η

∑
i∈C′′2

q2(|Si| − 1)

=
η(1− η)

c0

q2(|L′′2| − |C ′′2 |)

≥ η(1− η)

c0

q2|C ′′2 | ≥
η(1− η)

c0

βf(1/η),

since each small star has at least 2 leaves. Using Chernoff’s bound, we have

Pr [X > p2|C ′′2 |+ q2|L′′2|] = Pr

[
|C ′′2 |+

c0

η
Y > |C ′′2 |+ q2(|L′′2| − |C ′′2 |)

]
= Pr

[
Y >

η

c0

q2(|L′′2| − |C ′′2 |)
]

= Pr

[
Y >

µ

1− η

]
≤ Pr [Y > (1 + η)µ]

≤ exp

(
−η

2

3
µ

)
≤ exp

(
−η

3(1− η)βf(1/η)

3c0

)
.

To bound the expected connection cost, we need the following lemma.

Lemma 3.4.2. Let i1 and i2 be any facilities in F1 and F2, respectively. Let X, Y ∈

101

{0, 1A, 1B, 2} be the classes such that i1 ∈ CX and i2 ∈ LY . Then the following are

true:

Pr[̄i1] ≤ 1− pX , (3.28)

Pr[̄i2] ≤
(

1 +
1− β
β

η

)
(1− qY), (3.29)

Pr[̄i1ī2] ≤
(

1 +
1− β
β

η

)
(1− pX)(1− qY). (3.30)

Proof. The proof is quite similar to that of lemma 3.3.7.

• Proof of (3.28): We only need to check the case i1 ∈ C ′′2 . It is clear that

Pr[ī1] = (1− η)q2 = 1− p2 − ηq2 ≤ 1− p2.

• Proof of (3.29): We only need to check the case i2 ∈ L′′2. It is clear that

Pr[ī2] = 1− (1− η)q2 ≤
(

1 +
1− β
β

η

)
(1− q2),

since q2 ≤ 1− β.

• Proof of (3.30): i1 and i2 are always opened independently

Pr[ī1ī2] = Pr[ī1] Pr[ī2] ≤
(

1 +
1− β
β

η

)
(1− pX)(1− qY).

102

Corollary 3.4.1. The expected connection cost of the solution returned by the al-

gorithm is at most 1.337 ·
(

1 + 1−β
β
η
)

times the cost of the bipoint solution.

Theorem 3.4.2. There exists a choice of f = O(poly(1/η)) so that, when |C ′′2 | >

f(1/η), the algorithm returns a solution opening at most 4 additional facilities and

having connection cost at most 1.3371 ·
(

1 + 1−β
β
η
)

(1 + η) times the cost of the

bipoint solution with constant positive probability which is a function of η.

Proof. Let f(1/η) = 3c0
η3(1−η)β

ln η−2. Also let E1 be the event “the connection cost is

at most 1.3371 ·
(

1 + 1−β
β
η
)

(1 + η) times the cost of the bipoint solution” and E2

be the event “the algorithm opens at most 4 extra facilities”. By Markov bound,

Pr[E1] ≥ 1− 1

1 + η
.

Note that at most 4 additional facilities in C ′2∪L′2∪T0∪T1A∪T1B could be opened.

By the choice of f and lemma 3.4.1,

Pr[E2] ≥ 1− η2.

Thus,

Pr[E1 ∧ E2] = Pr[E2]− Pr[Ē1 ∧ E2]

≥ Pr[E2]− Pr[Ē1]

≥ (1− η2)− 1

1 + η
= 1− η3 + η2 + 1

η + 1
,

103

which is strictly greater than zero when η is small enough.

3.4.2 Case 2

Assume |L′2|+ |L′′2| ≤ g(1/η) for some g = O(poly(1/η)) to be determined, we

simply open all the facilities in F2. Indeed the number of extra opened facilities is

O(poly(1/η)); however, the solution has cost equal to D2 < aD1 + bD2.

3.4.3 Case 3

If neither Case 1 nor Case 2 holds, we have |C ′′2 | ≤ f(1/η) and |L′2| + |L′′2| ≥

g(1/η). Since |L′′2| ≤ c0
η
|C ′′2 |, we can bound the number of leaves of large stars

|L′2| ≥ g(1/η)− |L′′2| ≥ g(1/η)− c0f(1/η)

η
.

The “budget” to open facilities in the class of large stars is

p2|L′2|+ q2|C ′2| = |C ′2|+ q2(|L′2| − |C ′2|).

Suppose that we want to open each leaf in L′2 with probability q2(1− c1η) for some

constant c1 ≥ 1 and open all the centers in C ′2. Then the remaining budget which

can be used to open other facilities in C ′′2 is

R = |C ′2|+ q2(|L′2| − |C ′2|)− (|C ′2|+ q2(1− c1η)|L′2|)

= c1ηq2|L′2| − q2|C ′2|.

104

To open all centers in C ′′2 , we need to open at most q2|C ′′2 | ≤ q2f(1/η) additional

facilities in C ′′2 , apart from the usual p2|C ′′2 | ones. Thus, it suffices to require that

R ≥ q2f(1/η).

• If |C ′2| ≥ f(1/η)
−1+c0c1

, recall that |L′2| ≥ c0
η
|C ′2|, we have

R ≥ c0c1q2|C ′2| − q2|C ′2|

≥ (c0c1 − 1)q2
f(1/η)

−1 + c0c1

= q2f(1/η).

• Else |C ′2| < f(1/η)
−1+c0c1

, recall that |L′2| ≥ g(1/η)− c0f(1/η)
η

, we can lower-bound R

as follows.

R ≥ c1ηq2|L′2| − q2
f(1/η)

−1 + c0c1

≥ c1ηq2

(
g(1/η)− c0f(1/η)

η

)
− q2

f(1/η)

−1 + c0c1

.

A simple calculation shows that we can choose

g(1/η) =
c2

0c1

η(c0c1 − 1)
f(1/η),

105

then

R ≥ c1ηq2

(
c2

0c1

η(c0c1 − 1)
f(1/η)− c0f(1/η)

η

)
− q2

f(1/η)

−1 + c0c1

=
c2

0c
2
1

c0c1 − 1
q2f(1/η)− c0c1q2f(1/η)− 1

c0c1 − 1
q2f(1/η)

=

(
c2

0c
2
1

c0c1 − 1
− c0c1 −

1

c0c1 − 1

)
q2f(1/η)

=

(
c2

0c
2
1 − c0c1(c0c1 − 1)− 1

c0c1 − 1

)
q2f(1/η)

= q2f(1/η).

Theorem 3.4.3. For any polynomial function f(1/η), let

g(1/η) =
2

η
f(1/η).

If |C ′′2 | ≤ f(1/η) and |L′2|+ |L′′2| ≥ g(1/η), then there is an algorithm which returns a

solution opening at most 4 additional facilities and having expected connection cost

at most 1.337 · (1 + 1−β
β
η)(1 + η) times the cost of the bipoint solution.

Proof. We simply set c0 = 2 and c1 = 1. As discussed above, there are no extra

opened facilities in C ′′2 ∪L′′2. Lemma 3.4.2 also holds in this case and can be used to

bound the expected connection cost.

This implies an approximation algorithm which runs in nO(1/ε) time for k-

median.

106

Chapter 4: The Knapsack Median Problem

4.1 Problem definition

In this chapter, we study a natural generalization of the k-median problem,

known as the Knapsack Median (KM) problem, in which we have a non-negative

weight wi for each facility i ∈ F , and instead of opening k facilities, we require the

sum of weights of the open facilities to be at most a given budget B ∈ R+. In other

words, we would like find a set S ⊆ F such that (a)
∑

j∈Cmin{d(i, j) : i ∈ S} is

minimized and (b)
∑

i∈S wi ≤ B. We shall refer to any facility S as an open facility.

4.2 Prior work and Our contributions

While the KM problem is not known to be harder than k-median, it has thus

far proved more difficult to approximate. The k-median problem was first approx-

imated to within a constant factor 62
3

in 1999 [33], with a series of improvements

leading to the current best-known factor of 2.674 in this work.

The KM problem was first studied in 2011 by Krishnaswamy et. al. [51], who

gave a bicriteria 16 + ε approximation which slightly violated the budget by a factor

of (1 + ε). Then Kumar gave the first true constant factor approximation for the

107

KM problem with a very large approximation ratio (about 2700) [52], subsequently

reduced to 34 by Charikar & Li [53] and then to 32 by Swamy [12].

Our main contribution in this section is a 17.46-approximation algorithm for

the KM problem. This algorithm has a flow similar to Swamy’s: we first get a half-

integral solution (except for a few “bad” facilities), create pairs of half-open facilities,

and then open one facility in each pair. By making several improvements, we reduce

the approximation ratio to 17.46. The first improvement is a simple modification to

the pairing process so that every half-open facility is guaranteed either itself or its

closest neighbor to be open (versus having to go through two “jumps” to get to an

open facility as in [12]). The second improvement is to randomly sample the half-

integral solution and condition on the probability that any given facility is “bad”.

The algorithm can be derandomized with linear loss in the running time.

The third improvement deals with the bad facilities which inevitabley arise due

to the knapsack constraint. All previous algorithms used Kumar’s bound from [52]

to bound the cost of nearby clients when bad facilities must be closed. However, we

show that by using a sparsification technique similar in spirit to - but distinct from

- that used in [35], we can focus on a sub-instance in which the connection costs of

clients are guaranteed to be evenly distributed throughout the instance. This allows

for a much stronger bound than Kumar’s, and also results in an LP with bounded

integrality gap, unlike previous algorithms.

108

4.3 Preliminaries

4.3.1 An LP Relaxation

Let n = |F| + |C| be the size of the instance. For the ease of analysis, we

assume that each client has unit demand. (Note that our algorithm easily extends

to the general case.) For any client j ∈ C, the connection cost of j, denoted as

cost(j), is the distance from j to the nearest open facility in our solution. Again,

the goal is to open a subset S ⊆ F of facilities such that the total connection cost

is minimized, subject to the knapsack constraint
∑

i∈S wi ≤ B.

The natural Linear Program (LP) relaxation of this problem is as follows.

minimize
∑

i∈F ,j∈C

d(i, j)xij

subject to
∑
i∈F

xij = 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F , j ∈ C∑
i∈F

wiyi ≤ B

0 ≤ xij, yi ≤ 1 ∀i ∈ F , j ∈ C

In this LP, xij and yi are indicator variables for the event client j is connected

to facility i and facility i is open, respectively. We shall refer to the yi’s as opening

variables. The first constraint guarantees that each client is connected to some

facility. The second constraint says that client j can only connect to facility i if it

109

is open. The third one is the knapsack constraint.

In this chapter, given a KM instance I = (B,F , C, d, w), let OPTI and OPTf

be the cost of the optimal integral solution and the optimal value of the LP relax-

ation, respectively. Suppose S ⊆ F is a solution to I, let costI(S) :=
∑

j∈C d(j,S)

denote cost of S, where d(j,S) = min{d(i, j) : i ∈ S}. Let (x, y) denote the optimal

(fractional) solution of the LP relaxation. Let Cj :=
∑

i∈F d(i, j)xij be the fractional

connection cost of j. Given S ⊆ F and a vector v ∈ R|F|, let v(S) :=
∑

i∈S vi. From

now on, let us fix any optimal integral solution of the instance for the analysis.

4.3.2 Kumar’s bound

The main technical difficulty of the KM problem is related to the unbounded

integrality gap of the LP relaxation. It is known that this gap remains unbounded

even when we strengthen the LP with knapsack cover inequalities [51]. All previous

constant-factor approximation algorithms for KM rely on Kumar’s bound from [52]

to get around the gap. Specifically, Kumar’s bound is useful to bound the connection

cost of a group of clients via some cluster center in terms of OPTI instead of OPTf .

We now review this bound, and will improve it later.

Lemma 4.3.1. For each client j, we can compute (in polynomial time) an upper-

bound Uj on the connection cost of j in the optimal integral solution (i.e. cost(j) ≤

Uj) such that ∑
j′∈C

max{0, Uj − d(j, j′)} ≤ OPTI .

Proof. We first guess OPTI by enumerating the powers of (1 + ε) for some small

110

constant ε > 0. (We lose a factor of (1 + ε) in the approximation ratio and a factor

of O
(

logn
ε

)
in the running time.) Now fix any optimal solution and assume that j

connects to i and j′ connects to i′. Then, by triangle inequality,

cost(j) = d(i, j) ≤ d(i′, j) ≤ d(j, j′) + d(i′, j′) = d(j, j′) + cost(j′),

or equivalently,

cost(j′) ≥ cost(j)− d(j, j′).

Taking the sum over all j′ 6= j, we have

OPTI ≥
∑
j′ 6=j

max{0, cost(j)− d(j, j′)}.

Then we can simply take Uj such that

OPTI =
∑
j′∈C

max{0, Uj − d(j, j′)}.

(Observe that the RHS is a linear function of Uj.)

We can slightly strengthen the LP relaxation by adding the constraints: xij = 0

for all d(i, j) > Uj. (Unfortunately, the integrality gap is still unbounded after this

step.) Thus we may assume that (x, y) satisfies all these constraints.

Lemma 4.3.2 (Kumar’s bound). Let S be a set of clients and s ∈ S, where d(j, s) ≤

111

βCj for all j ∈ S and some constant β ≥ 1, then

|S|Us ≤ OPTI + β
∑
j∈S

Cj.

Proof.

|S|Us =
∑
j∈S

Us =
∑
j∈S

(Us − d(j, s)) +
∑
j∈S

d(j, s) ≤ OPTI + β
∑
j∈S

Cj,

where we use the property of Us from Lemma 4.3.1 for the last inequality.

This bound allows us to bound the cost of clients which rely on the bad facility.

4.4 Improved approximation algorithms

4.4.1 Sparse Instances

Kumar’s bound can only be tight when the connection cost in the optimal

solution is highly concentrated around a single client. However, if this were the

case, we could guess the client for which this occurs, along with its optimal facility,

which would give us a large advantage. On the other hand, if the connection cost

is evenly distributed, we can greatly strengthen Kumar’s bound. This is the idea

behind our definition of sparse instances below.

Let CBall(j, r) := {k ∈ C : d(j, k) ≤ r} denote the set of clients within radius

of r from client j. Let λj be the connection cost of j in the optimal integral solution.

Also, let i(j) denote the facility serving j in the optimal solution.

112

Definition 4.4.1. Given some constants 0 < δ, ε < 1, we say that a knapsack

median instance I = (B,F , C, d, w) is (δ, ε)-sparse if, for all j ∈ C,

∑
k∈CBall(j,δλj)

(λj − d(j, k)) ≤ εOPTI .

We will show that the integrality gap is bounded on these sparse instances.

We also give a polynomial-time algorithm to sparsify any knapsack median instance.

Moreover, the solution of a sparse instance can be used as a solution of the original

instance with only a small loss in the total cost.

Lemma 4.4.1. Given some knapsack median instance I0 = (B,F , C0, d, w) and

0 < δ, ε < 1, there is an efficient algorithm that outputs O(n2/ε) pairs of (I,F ′),

where I = (B,F , C, d, w) is a new instance with C ⊆ C0, and F ′ ⊆ F is a partial

solution of I, such that at least one of these instances is (δ, ε)-sparse.

Proof. Fix any optimal integral solution of I0. Consider the following algorithm

which transforms I0 into a sparse instance, assuming for now that we know its

optimal solution:

• Initially, C := C0.

• While the instance (B,F , C, d, w) is not sparse, i.e. there exists a “bad”

client j such that
∑

k∈CBall(j,δλj)
(λj − d(j, k)) > εOPTI , remove all clients

in CBall(j, δλj) from C.

Note that this algorithm will terminate after at most 1/ε iterations: for each k ∈

CBall(j, δλj) and its serving facility i(k) in the optimal solution, we have d(j, i(k)) ≤

113

d(j, k) + λk, which implies

∑
k∈CBall(j,δλj)

λk ≥
∑

k∈CBall(j,δλj)

(d(j, i(k))− d(j, k))

≥
∑

k∈CBall(j,δλj)

(λj − d(j, k)) > εOPTI ,

and there can be at most 1/ε such balls.

Now, while we do not know which client j is “bad” and which facility i serves

client j in the optimal solution, we can still “guess” these pairs in O(n2) time in

each iteration. Specifically, we will guess the number of iterations that the above

algorithm terminates and the pair (j, i(j)) in each iteration. There are at most

O(n2/ε) possible cases and we will generate all of these new instances. Finally, we

include all the facilities i(j) during the process into the set F ′ of the corresponding

instance.

The following theorem says that if we have an approximate solution to a sparse

instance, then its cost on the original instance is only blown up by a small constant

factor.

Theorem 4.4.1. Let I = (B,F , C, d, w) be a (δ, ε)-sparse instance obtained from

I0 = (B,F , C0, d, w) (by the procedure in the proof of Lemma 4.4.1) and F ′ be the

corresponding partial solution. If S ⊇ F ′ is any approximate solution to I (including

those open facilities in F ′) such that

costI(S) ≤ αOPTI ,

114

then

costI0(S) ≤ max

{
1 + δ

1− δ , α
}

OPTI0 .

Proof. For any k ∈ C0\C, let CBall(j, δλj) be the ball containing k that was removed

from C0 in the preprocessing phase in Lemma 4.4.1. Recall that i(j) is the facility

serving j in the optimal solution. We have

λk ≥ λj − d(j, k) ≥ (1− δ)λj,

which implies,

d(k, i(j)) ≤ d(j, k) + λj ≤ (1 + δ)λj ≤
1 + δ

1− δλk.

Then, by connecting all k ∈ C0 \ C to the corresponding facility i(j) (which is

guaranteed to be open because i(j) ∈ F ′), we get

costI0(S) =
∑
k∈C0\C

cost(k) +
∑
k∈C

cost(k)

≤ 1 + δ

1− δ
∑
k∈C0\C

λk + αOPTI

≤ 1 + δ

1− δ
∑
k∈C0\C

λk + α
∑
k∈C

λk

≤ max

{
1 + δ

1− δ , α
}

OPTI0 .

Note that our notion of sparsity differs from that of Li and Svensson in several

115

ways. It is client-centric, and removes clients instead of facilities from the instance.

On the negative side, removed clients’ costs blow up by 1+δ
1−δ , so our final approxi-

mation cannot guarantee better.

From now on, assume that we are given some arbitrary knapsack median

instance I0 = (B,F , C0, d, w). We will transform I0 into a (δ, ε)-sparse instance I

and use Theorem 4.4.1 to bound the real cost at the end.

4.4.2 Improving Kumar’s bound and modifying the LP relaxation

Here we will show how to improve Kumar’s bound in sparse instances. Recall

that, for all j ∈ C, we have

∑
k∈CBall(j,δλj)

(λj − d(j, k)) ≤ εOPTI .

Then, as before, we can guess OPTI and take the maximum Uj such that

∑
k∈CBall(j,δUj)

(Uj − d(j, k)) ≤ εOPTI .

(Observe that the LHS is an increasing function of Uj.) Now the constraints xij = 0

for all i ∈ F , j ∈ C : d(i, j) > Uj are valid and we can add these into the LP. We

also add the following constraints: yi = 1 for all facilities i ∈ F ′. From now on,

assume that (x, y) is an optimal solution of this new LP, satisfying all the mentioned

constraints.

Lemma 4.4.2. Let s be any client in sparse instance I and S be a set of clients

116

such that d(j, s) ≤ βCj for all j ∈ S and some constant β ≥ 1. Then

|S|Us ≤ εOPTI +
β

δ

∑
j∈S

Cj.

Proof. Consider the following two cases.

• For clients j ∈ S ′ = S ∩ CBall(s, δUs), by definition of sparsity, we have

|S ′|Us =
∑
j∈S′

(Us − d(j, s)) +
∑
j∈S′

d(j, s)

≤ εOPTI + β
∑
j∈S′

Cj.

• For clients j ∈ S ′′ = S \ CBall(s, δUs), we have βCj ≥ d(j, s) ≥ δUs and we

get an alternative bound Us ≤ β
δ
Cj. Thus,

|S ′′|Us =
∑
j∈S′′

Us ≤
∑
j∈S′′

β

δ
Cj.

The lemma follows by taking the sum of these two cases.

4.4.3 Filtering Phase

We will apply the standard filtering method for facility-location problems (see

[12, 33]). Basically, we choose a subset C ′ ⊆ C such that clients in C ′ are far from

each other. After assigning each facility to the closest client in C ′, it is possible to

lower-bound the opening volume of each cluster. Each client in C ′ is called a cluster

center.

117

Filtering algorithm: Initialize C ′ := C. For each client j ∈ C ′ in increasing

order of Cj, we remove all other clients j′ such that d(j, j′) ≤ 4Cj′ = 4 max{Cj′ , Cj}

from C ′.

For each j ∈ C ′, define Fj := {i ∈ F : d(i, j) = mink∈C′ d(i, k)}, breaking ties

arbitrarily. Let F ′j = {i ∈ Fj : d(i, j) ≤ 2Cj} and γj = mini/∈Fj d(i, j). Then define

Gj = {i ∈ Fj : d(i, j) ≤ γj}. We also reassign yi := xij for i ∈ Gj and yi := 0

otherwise. For j ∈ C ′, let Mj be the set containing j and all clients removed by j in

the filtering process.

We note that the solution (x, y) may not be feasible to the LP anymore after

the reassignment step. For the rest of the paper, we will focus on rounding y into an

integral vector. One important property is that the knapsack constraint still holds.

In other words, the new sum
∑

i∈F wiyi is still at most the budget B. This is due

to the fact that xij ≤ yi. The opening variables only decrease after this step; and

hence, the knapsack constraint will be preserved.

Lemma 4.4.3. We have the following properties:

• All sets Gj are disjoint,

• 1/2 ≤ y(F ′j) and y(Gj) ≤ 1 for all j ∈ C ′.

• F ′j ⊆ Gj for all j ∈ C ′.

Proof. For the first claim, observe that all Fj’s are disjoint andGj ⊆ Fj by definition.

Also, if
∑

i∈F ′j
yi =

∑
i∈F ′j

xij < 1/2, then
∑

i∈F\F ′j
xij > 1/2. Since the radius of F ′j

is 2Cj, this means that Cj > (1/2)(2Cj) = Cj, which is a contradiction. Since we

118

reassign yi := xij for all i ∈ Gj, the volume y(Gj) is now at most 1. Finally, we have

2Cj ≤ γj. Otherwise, let i /∈ Fj be the facility such that γj = d(i, j). Observe that

facility i is claimed by another cluster center, say j′, because d(i, j′) ≤ d(i, j) ≤ 2Cj.

This implies that d(j, j′) ≤ d(i, j) + d(i, j′) ≤ 4Cj, which is a contradiction.

It is clear that for all j, j′ ∈ C ′, d(j, j′) ≥ 4 max{Cj′ , Cj}. Moreover, for each

j ∈ C \ C ′, we can find j′ ∈ C ′, where j′ causes the removal of j, or, in other

words, Cj′ ≤ Cj and d(j, j′) ≤ 4Cj. Assuming that we have a solution S for the

instance I ′ = (B,F , C ′, d, w) where each client j in C ′ has demand mj = |Mj| (i.e.

there are |Mj| copies of j), we can transform it into a solution for I as follows.

Each client j ∈ C \ C ′ will be served by the facility of j′ that removed j. Then

cost(j) = d(j, j′) + cost(j′) ≤ cost(j′) + 4Cj. Therefore,

costI(S) =
∑
j∈C′

cost(j) +
∑
j∈C\C′

cost(j)

≤
∑
j∈C′

cost(j) +
∑
j∈C\C′

(cost(j′(j)) + 4Cj)

≤ costI′(S) + 4OPTf .

where, in the second line, j′(j) is the center in C ′ that removed j.

4.4.4 A (23.09 + ε)-approximation algorithm

In this section, we describe a simple randomized (23.09 + ε)-approximation

algorithm. In the next section, we will derandomize it and give more insights to

further improve the approximation ratio to 17.46 + ε.

119

High-level ideas: We reuse Swamy’s idea from [12] to first obtain an almost

half integral solution ŷ. This solution ŷ has a very nice structure. For example, each

client j only (fractionally) connects to at most 2 facilities, and there is at least a

half-opened facility in each Gj. We shall refer to this set of 2 facilities as a bundle.

In [12], the author applies a standard clustering process to get disjoint bundles and

round ŷ by opening at least one facility per bundle. The drawback of this method is

that we have to pay extra cost for bundles removed in the clustering step. In fact, it

is possible to open at least one facility per bundle without filtering out any bundle.

The idea here is inspired by the work of Charikar et. al [33]. In addition, instead of

picking ŷ deterministically, sampling such a half integral extreme point will be very

helpful for the analysis.

We consider the following polytope.

P = {v ∈ [0, 1]|F| : v(F ′j) ≥ 1/2, v(Gj) ≤ 1, ∀j ∈ C ′;
∑
i∈F

wivi ≤ B}.

Lemma 4.4.4 ([12]). Any extreme point of P is almost half-integral: there exists

at most 1 cluster center s ∈ C ′ such that Gs contains variables /∈ {0, 1
2
, 1}. We call

s a fractional client.

Notice by Lemma 4.4.3 that y ∈ P . By Carathéodory’s theorem, y is a convex

combination of at most t = |F| + 1 extreme points of P . Moreover, there is an

efficient algorithm based on the ellipsoid method to find such a decomposition (e.g.,

see [88]). We apply this algorithm to get extreme points y(1), y(2), . . . , y(t) ∈ P and

120

(x, y)(x, y)

(x0, y0)(x0, y0)

PI0PI0

PP

"almost" half-integral

Figure 4.1: After the filtering step, the LP solution lie in polytope P which has
“almost” half-integral extreme points.

coefficients 0 ≤ p1, . . . , pt ≤ 1,
∑t

i=1 pi = 1, such that

y = p1y
(1) + p2y

(2) + . . .+ pty
(t).

This representation defines a distribution on t extreme points of P . Let Y ∈

[0, 1]F be a random vector where Pr[Y = y(i)] = pi for i = 1, . . . , t. Observe that

Y is almost half-integral. Let s be the fractional client in Y . (We assume that s

exists; otherwise, the cost will only be smaller.)

Defining primary and secondary facilities: For each j ∈ C ′,

• If j 6= s, let i1(j) be any half-integral facility in F ′j (i.e. Yi1(j) = 1/2; such a

facility exists because Y (F ′j) ≥ 1/2). Else (j = s), let i1(j) be the smallest-

weight facility in F ′j with Yi1(j) > 0.

• If Y (i1(j)) = 1, let i2(j) = i1(j).

121

PP

(x̂, ŷ)(x̂, ŷ)

(x0, y0)(x0, y0)
(x̃, ỹ)(x̃, ỹ)

Figure 4.2: Our strategy is to randomly round the LP solution into one vertex (x̂, ŷ)
of P and then round it into an integral solution (x̃, ỹ).

• If Y (Gj) < 1, then let σ(j) be the nearest client to j in C ′. Define i2(j) =

i1(σ(j)).

• If Y (Gj) = 1, then

– If j 6= s, let i2(j) be the other half-integral facility in Gj.

– Else (j = s), let i2(j) be the smallest-weight facility in Gj with Yi2(j) > 0.

If there are ties and i1(j) is among these facilities then we let i2(j) = i1(j).

• We call i1(j), i2(j) the primary facility and the secondary facility of j, respec-

tively.

Constructing the neighborhood graph: Initially, construct the directed graph

G on clients in C ′ such that there is an edge j → σ(j) for each j ∈ C ′ : Y (Gj) < 1.

Note that all vertices in G have outdegree ≤ 1. If Y (Gj) = 1, then vertex j has no

outgoing edge. In this case, we replace j by the edge i1(j)→ i2(j), instead. Finally,

122

FjFj

GjGj

i1(j)i1(j) jj

�j�j

2Cj2Cj

�(j)�(j)

i2(j) = i1(�(j))i2(j) = i1(�(j))

2�j2�j

Figure 4.3: Illustration of F ′j , Gj, i1(j), i2(j), and σ(j).

we relabel all other nodes in G by its primary facility. Now we can think of each

client j ∈ C ′ as an edge from i1(j) to i2(j) in G.

Lemma 4.4.5. Without loss of generality, we can assume that all cycles of G (if

any) are of size 2. This means that G is bipartite.

Proof. Since the maximum outdegree is equal to 1, each (weakly) connected com-

ponent of G has at most 1 cycle. Consider any cycle j → σ(j) → σ2(j) → . . . →

σk(j)→ j. Then it is easy to see that d(j, σ(j)) = d(σk(j), j). The argument holds

for any j in the cycle, and all edges on the cycle have the same length. Then we can

simply redefine σ(σk(j)) := σk−1(j) and get a cycle of size 2 instead. We can also

change the secondary of the client corresponding to the edge (σk(j), j) into σk−1(j)

because they are both at the same distance from it.

We are now ready to describe the main algorithm.

123

jj

�(j)�(j)

Figure 4.4: Illustration of a neighborhood graph. All cycles are of size two.

Algorithm 10 Round(Y)

1: Construct the neighborhood graph G based on Y
2: Let C1, C2 be independent sets which partition G
3: Let W1,W2 be the total weight of the facilities in C1, C2 respectively.
4: if W1 ≤ W2 then
5: return C1

6: else
7: return C2

Theorem 4.4.2. Algorithm 11 returns a feasible solution S where

E[costI0(S)] ≤ max

{
1 + δ

1− δ , 10 + 12/δ + 3ε

}
OPTI0 .

In particular, the approximation ratio is at most (23.087 + 3ε) when setting δ :=

0.916966.

Proof. Assume I is the sparse instance obtained from I0. We will give a proof

of feasibility and a cost analysis. Recall that s is the center where we may have

fractional values Yi with i ∈ Gs.

Feasibility:

124

Algorithm 11 BasicAlgorithm(δ, ε, I0)

1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 4.4.1
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section

4.4.2.
5: Apply the filtering algorithm to get I ′.
6: Use F , C ′ to define the polytope P .
7: Sample a random extreme point Y of P as described above.
8: Let S ′ ←Round(Y)
9: If S ′ is feasible and its cost is smaller than the cost of S then S ← S ′.

10: return S

• For all centers j ∈ C ′ with Y (Gj) < 1, we have

wi1(j) ≤ 2
∑
i∈Gj

Yiwi.

Note that this is true for j 6= s because Yi1(j) = 1/2. Otherwise, j = s, by

definition, wi1(j) is the smallest weight in the set F ′s which has volume at least

1/2. Thus, wi1(j) ≤ 2
∑

i∈F ′s
Yiwi ≤ 2

∑
i∈Gj Yiwi.

• For all centers j ∈ C ′ with Y (Gj) = 1, we have

wi1(j) + wi2(j) ≤ 2
∑
i∈Gj

Yiwi.

The equality happens when j 6= s. Otherwise, j = s, we consider the following

2 cases

– If i1(s) = i2(s) the inequality follows because wi1(j) = wi2(j) ≤
∑

i∈Gj Yiwi.

– Else, we have i2(s) ∈ Gj \ F ′j by definition of i2(s). Since wi1(s) ≥ wi2(s)

125

and Y (F ′s) ≥ 1/2,

1

2
wi1(s) +

1

2
wi2(s) ≤ Y (F ′s)wi1(s) + (1− Y (F ′s))wi2(s)

≤
∑
i∈F ′j

Yiwi +
∑

i∈Gj\F ′j

Yiwi =
∑
i∈Gj

Yiwi.

Recall that each center j ∈ C ′ is accounted for either one vertex i1(j) of G if Y (Gj) <

1 or two vertices i1(j), i2(j) of G if Y (Gj) = 1). Thus, the total weight of all vertices

in G is at most

2
∑
j∈C′

∑
i∈Gj

Yiwi ≤ 2B,

where the last inequality follows because Y ∈ P . It means that either W1 or W2 is

less than or equal to B, and Algorithm 10 always returns a feasible solution.

Cost analysis:

We show that the expected cost of j can be bounded in terms of γj, Uj, and y. For

j ∈ C, let j′(j) denote the cluster center of j and define j′(j) = j if j ∈ C ′. Recall

that in the instance I ′ = (B,F , C ′, d), each client j ∈ C ′ has demand mj = |Mj|.

Notice that

OPTf =
∑
j∈C

Cj ≥
∑
j∈C

Cj′(j) =
∑
j∈C′

mjCj

=
∑
j∈C′

mj

∑
i∈Gj

xijd(i, j) +
∑

i∈F\Gj

xijd(i, j)


≥
∑
j∈C′

mj

∑
i∈Gj

yid(i, j) + γj(1− y(Gj))

 . (4.1)

126

The last inequality follows because, for any center j,
∑

i∈F xij = 1, and γj is the

radius of the ball Gj by definition. Now, for v ∈ [0, 1]F , we define

Bj(v) := mj

∑
i∈Gj

vid(i, j) + γj(1− v(Gj))

 .

Let K(v) =
∑

j∈C′ Bj(v). Recall that E[Yi] = yi for all i ∈ F . By (4.1) and linearity

of expectation, we have

E[K(Y)] = K(y) ≤ OPTf .

Also note that

∑
j∈C′

E[Bj(Y)] =
∑
j∈C′

Bj(y) ≤
∑
j∈C′

mjCj ≤
∑
j∈C′

∑
k∈Mj

Ck =
∑
j∈C

Cj.

Next, we will analyze costI′(S). To this end, we shall bound the connection

cost of a client j in terms of Bj(Y). Algorithm 10 guarantees that, for each j ∈ C ′,

either i1(j) or i2(j) is in S. By construction, d(i1(j), j) ≤ d(i2(j), j). In the worst

case, we may need to connect j to i2(j), and hence cost(j) ≤ djd(i2(j), j) for all

client j.

Fix any client j with Y (Gj) < 1. Recall that γj = mini/∈Fj d(i, j) and σ(j) is

the closest client to j in C ′. Suppose γj = d(i′, j) where i′ ∈ Fj′ for some j′ ∈ C ′. By

definition, d(i′, j′) ≤ γj. Then d(j, σ(j)) ≤ d(j, j′) ≤ d(i′, j) + d(i′, j′) ≤ 2γj. Also,

since i1(σ(j)) ∈ F ′σ(j), we have that d(σ(j), i1(σ(j))) ≤ 2Cσ(j). In addition, recall

that 4 max{Cj, Cσ(j)} ≤ d(j, σ(j)) ≤ 2γj. Thus, 2Cσ(j) ≤ γj. Then the following

127

bound holds when Y (Gj) < 1:

cost(j) ≤ mjd(i2(j), j)

≤ mj(d(j, σ(j)) + d(σ(j), i2(j)))

= mj(d(j, σ(j)) + d(σ(j), i1(σ(j))))

≤ mj(2γj + 2Cσ(j))

≤ 3mjγj.

Consider the following cases.

• If j 6= s, then either Y (Gj) = 1 or Y (Gj) = 1/2.

– Case Y (Gj) = 1: then Yi1(j) = Yi2(j) = 1/2, we have

cost(j) ≤ mjd(i2(j), j) ≤ 2mj

∑
i∈Gj

Yid(i, j) = 2Bj(Y).

– Case Y (Gj) = 1/2: we have

cost(j) ≤ 3mjγj = 6mjγj(1− Y (Gj)) ≤ 6Bj(Y).

• If j = s, we cannot bound the cost in terms of Bj(Y). Instead, we shall use

Kumar’s bound.

– Case Y (Gj) = 1: i2(j) ∈ Gj. Recall that Uj is the upper-bound on the

connection cost of j. Our LP constraints guarantee that xij = 0 for all

128

d(i, j) > Uj. Since Yi2(j) > 0, we also have yi2(j) > 0 or xi2(j)j > 0, which

implies that d(i2(j), j) ≤ Uj. Thus,

cost(j) ≤ mjd(i2(j), j) ≤ mjUj.

– Case Y (Gj) < 1: then there must exists some facility i /∈ Gj such that

xij > 0. Since γj is the radius of Gj, we have γj ≤ d(i, j) ≤ Uj; and

hence,

cost(j) ≤ 3mjγj ≤ 3mjUj.

In either cases, applying the improved Kumar’s bound to the cluster Ms where

d(k, s) ≤ 4Ck for all k ∈Ms, we get

cost(j) ≤ 3mjUj

≤ 3εOPTI +
3 · 4
δ

∑
k∈Ms

Ck

≤ 3εOPTI +
12

δ
OPTf .

Now, we will bound the facility-opening cost. Notice that, for all facilities i ∈ C1∪C2

but at most two facilities i1(s) and i2(s), we have Yi ∈ {1/2, 1}.

129

Then,

E[costI′(S)] ≤
∑

j∈C′:j 6=s

6E[Bj(Y)] + 3εOPTI + (12/δ)OPTf

= 6
∑
j∈C′

Bj(y) + 3εOPTI + (12/δ)OPTf

≤ 6K(y) + 3εOPTI + (12/δ)OPTf

≤ (6 + 12/δ)OPTf + 3εOPTI .

Therefore,

E[costI(S)] ≤ E[costI′(S)] + 4OPTf ≤ (10 + 12/δ)OPTf + 3εOPTI .

Finally, applying Theorem 4.4.1 to S,

E[costI0(S)] ≤ max

{
1 + δ

1− δ , 10 + 12/δ + 3ε

}
OPTI0 .

4.4.5 A (17.46 + ε)-approximation algorithm via conditioning on the

fractional cluster center

Recall that the improved Kumar’s bound for the fractional client s is

|Ms|Us ≤ εOPTI + (4/δ)
∑
j∈Ms

Cj.

130

In Theorem 4.4.2, we upper-bound the term
∑

j∈Ms
Cj by OPTf . However, if this

is tight, then the fractional cost of all other clients not in Ms must be zero and we

should get an improved ratio.

To formalize this idea, let u ∈ C ′ be the client such that
∑

j∈Mu
Cj is maximum.

Let α ∈ [0, 1] such that
∑

j∈Mu
Cj = αOPTf , then

|Ms|Us ≤ εOPTI + (4/δ)αOPTf . (4.2)

The following bound follows immediately by replacing the Kumar’s bound by (4.2)

in the proof of Theorem 4.4.2.

E[costI(S)] ≤ (10 + 12α/δ + 3ε)OPTI . (4.3)

In fact, this bound is only tight when u happens to be the fractional client after

sampling Y . If u is not “fractional”, the second term in the RHS of (4.2) should be

at most (1 − α)OPTf . Indeed, if u is rarely a fractional client, we should obtain a

strictly better bound. To this end, let E be the event that u is the fractional client

after the sampling phase. Let p = Pr[E]. We get the following lemma.

Lemma 4.4.6. Algorithm 11 returns a solution S with

E[costI(S)] ≤ (10 + min{12α/δ, (12/δ)(pα + (1− p)(1− α))}+ 3ε)OPTI .

Proof. We reuse the notations and the connection cost analysis in the proof of

131

Theorem 4.4.2. Recall that E is the event that u is the fractional client. We have

E[costI′(S)|E] ≤ 6
∑

j∈C′:j 6=u

E[Bj(Y)|E] + 3εOPTI + (12α/δ)OPTf .

If Ē happens, assume s 6= u is the fractional one and let Ē(s) denote this event.

Then,

E[costI′(S)|Ē(s)] ≤ 6
∑

j∈C′:j 6=s

E[Bj(Y)|Ē(s)] + 3εOPTI + (12/δ)(1− α)OPTf

≤ 6
∑
j∈C′

E[Bj(Y)|Ē(s)] + 3εOPTI + (12/δ)(1− α)OPTf

Therefore,

E[costI′(S)|Ē] ≤ 6
∑
j∈C′

E[Bj(Y)|Ē] + 3εOPTI + (12/δ)(1− α)OPTf .

Also, (1 − p)E[Bu(Y)|Ē] ≤ E[Bu(Y)] because Bu(Y) is always non-negative. The

132

total expected cost can be bounded as follows.

E[costI′(S)] = pE[costI′(S)|E] + (1− p)E[costI′(S)|Ē]

≤ 6
∑

j∈C′:j 6=u

E[Bj(Y)] + 3εOPTI

+ (12/δ)(pα + (1− p)(1− α))OPTf + 6(1− p)E[Bu(Y)|Ē]

≤ 6
∑
j∈C′

E[Bj(Y)] + 3εOPTI + (12/δ)(pα + (1− p)(1− α))OPTf .

≤ 6K(y) + (3ε+ (12/δ)(pα + (1− p)(1− α)))OPTI

≤ (6 + 3ε+ (12/δ)(pα + (1− p)(1− α)))OPTI . (4.4)

The lemma follows due to (4.3), (4.4), and the fact that E[costI(S)] ≤ E[costI′(S)]+

4OPTf .

Finally, conditioning on the event E , we are able to combine certain terms and

get the following improved bound.

Lemma 4.4.7. Algorithm 11 returns a solution S with

E[costI(S)|E] ≤ (max{6/p, 12/δ}+ 4 + 3ε)OPTI .

Proof. Again, since Bj(Y) ≥ 0 for all j ∈ C ′ and all Y , we have E[Bj(Y)|E] ≤

E[Bj(Y)]/p. Also, recall that E[Bj(Y)] = Bj(y) ≤ djCj ≤
∑

k∈Mj
Ck for any j ∈ C ′.

133

Therefore,

E[costI′(S)|E] ≤ 6
∑

j∈C′:j 6=u

E[Bj(Y)|E] + 3εOPTI + (12/δ)
∑
j∈Mu

Cj

≤ (6/p)
∑

j∈C′:j 6=u

E[Bj(Y)] + 3εOPTI + (12/δ)
∑
j∈Mu

Cj

≤ (6/p)
∑

j∈C:j /∈Mu

Cj + 3εOPTI + (12/δ)
∑
j∈Mu

Cj

≤ max{6/p, 12/δ}
∑
j∈C

Cj + 3εOPTI

≤ max{6/p, 12/δ}OPTf + 3εOPTI

≤ (max{6/p, 12/δ}+ 3ε)OPTI .

The lemma follows since E[costI(S)|E] ≤ E[costI′(S)|E] + 4OPTf .

Now we have all the required ingredients to get an improved approximation

ratio. Algorithm 12 is a derandomized version of Algorithm 11.

Algorithm 12 DeterministicAlgorithm(δ, ε, I0)

1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 4.4.1
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section

4.4.2.
5: Apply the filtering algorithm to get I ′.
6: Use F , C ′ to define the polytope P .
7: Decompose y into a convex combination of extreme points y(1), y(2), . . . , y(t)

of P .
8: for each Y ∈ {y(1), y(2), . . . , y(t)} do
9: Let S ′ ←Round(Y)

10: If S ′ is feasible and its cost is smaller than the cost of S then S ← S ′.
11: return S

134

Theorem 4.4.3. Algorithm 12 returns a feasible solution S where

costI0(S) ≤ (17.46 + 3ε)OPTI0 ,

when setting δ = 0.891647.

Proof. Again, suppose I is a sparse instance obtained from I0. Recall that p =

Pr[E] is the probability that u, the cluster center with maximum fractional cost∑
j∈Mu

Cj = αOPTf , is fractional. Consider the following cases:

• Case p ≤ 1/2: By Lemma 4.4.6 and the fact that Algorithm 12 always returns

a solution S from the same distribution with minimum cost, we have

costI(S) ≤ (10 + min{12α/δ, (12/δ)(pα + (1− p)(1− α))}+ 3ε)OPTI .

By Theorem 4.4.1, the approximation ratio is at most

max

{
1 + δ

1− δ , 10 + 3ε+ min{12α/δ, (12/δ)(pα + (1− p)(1− α))}
}
.

– If α ≤ 1/2, the ratio is at most max
{

1+δ
1−δ , 10 + 3ε+ 6/δ

}
.

– If α ≥ 1/2, we have

(12/δ)(pα + (1− p)(1− α)) = (12/δ)(p(2α− 1)− α + 1) ≤ 6/δ.

Again, the ratio is at most max
{

1+δ
1−δ , 10 + 3ε+ 6/δ

}
.

135

• Case p ≥ 1/2: Observe that the event E does happen for some point in the for

loop at lines 8, 9, and 10. By Lemma 4.4.7 and the fact that 1+2/p = 3 < 12/δ,

we have

costI(S) ≤ (max{6/p, 12/δ}+ 4 + 3ε)OPTI = (12/δ + 4 + 3ε)OPTI .

By Theorem 4.4.1, the approximation ratio is bounded by max
{

1+δ
1−δ ,

12
δ

+ 3ε+ 4
}
.

In all cases, the approximation ratio is at most

max

{
1 + δ

1− δ , 12/δ + 3ε+ 4, 10 + 3ε+ 6/δ

}
≤ 17.4582 + 3ε,

when δ = 0.89167.

Note that in [12], Swamy considered a slightly more general version of KM

where each facility also has an opening cost. It can be shown that Theorem 4.4.3

also extends to this variant.

4.5 An improved bi-factor approximation algorithm

In this section, we show that one can obtain a bi-factor (1+
√

3+ε)-approximation

algorithm for the KM problem if allowed to slightly violate the budget constraint by

a factor of (1 + ε). This algorithm is inspired by the work of Li-Svenssson [35], in

which they gave a (1 +
√

3 + ε)-approximation algorithm for the k-median problem.

The idea is to compute a “bi-point” solution which is a convex combination of a

136

feasible solution and another pseudo solution. Then rounding this solution will re-

sult in a solution whose cost can be bounded by (1 +
√

3 + ε) times the optimal cost

but would slightly violate the knapsack constraint. The rounding step can be done

using SRDR and some O(1) left-over fractional variables will have to be rounded

up to 1, resulting in a small violation in the total weight. In [35], the authors use a

postprocessing step to correct the solution, making the cardinality constraint to be

preserved exactly. However, this step does not seem to work for the knapsack me-

dian problem. We conjecture that the 2.675-approximation algorithm for k-median

in [36] also extends to a bi-factor 2.675-approximation algorithm for KM.

4.5.1 Pruning “big” facilities and computing a bi-point solution

Let I0 = (B0,F0, C, d, w(0)) be any KM instance and ε > 0 be some small

parameter. Let us also fix an optimal integral solution S0 of I0. Note that S0 may

contain at most 1/ε facilities which have weight greater than or equal to εB0. Let

Fε = {i ∈ F0 : w
(0)
i ≥ εB0} and Sε = S0 ∩ Fε. Then |Sε| ≤ 1/ε. Hence one may

“guess” this set Sε in nO(1/ε) time.

From now on, suppose that we already have the “correct” set Sε. Let I =

(B,F , C, d, w) denote the residual instance in which (i) we eliminate all “big” facil-

ities: F = (F0 \ Fε)∪Sε, (ii) B = B0−w(0)(Sε), and (iii) the weights of facilities in

Sε are set to zero: wi = 0 ∀i ∈ Sε and wi = w
(0)
i ∀i ∈ F \ Sε.

Lemma 4.5.1. Suppose there is an algorithm A which returns a solution S = S ′∪S ′′

for the residual instance I where S ′′∩Sε = ∅ and c = |S ′′| is a constant, w(S ′) ≤ B,

137

and costI(S) ≤ αOPTI for some constant α > 0. Then we have that

(i) w(0)(S) ≤ (1 + cε)B0,

(ii) costI0(S) ≤ αOPTI0.

Proof. Since all facilities in S ′′ have weight at most εB0, w(0)(S ′′) ≤ cεB0. Also,

w(S ′) ≤ B = B0 − w(0)(Sε) implies that w(0)(S ′) ≤ w(S ′) + w(0)(Sε) ≤ B0. Thus,

w(0)(S) = w(0)(S ′) + w(0)(S ′′) ≤ (1 + cε)B0.

Now observe that OPTI ≤ OPTI0 because, by construction of I, the chosen

optimal integral of I0 is also a feasible solution of I. Therefore, we have

costI0(S) = costI(S) ≤ αOPTI ≤ αOPTI0 .

In the rest of this section, we aim to design such an algorithmA for the residual

instance I. We now compute the so-called bi-point solution as in [35].

Theorem 4.5.1. There is a polynomial-time algorithm to compute two sets F1,F2 ⊆

F and constants a, b ≥ 0 and a+b = 1 such that w(F1) ≤ B ≤ w(F2), a ·w(F1)+b ·

w(F2) ≤ B and a · costI(F1) + b · costI(F2) ≤ 2OPTI. (The pair (F1,F2) is called

a bi-point solution of I.)

Proof. One can extend the algorithm to construct a bi-point solution for the k-

median problem in [30,47] so that it also works for the weighted case.

138

WLOG, we may assume that d1 ≥ d2. Now for each client j ∈ C, we let

i1(j), i2(j) denote the closest facilities to j in F1 and F2, respectively. Next, we

adopt the definition of stars as in [35]. Each facility i2 ∈ F2 will be associated with

the closest facility i1 ∈ F1, breaking ties arbitrarily. Then, for each facility i ∈ F1,

we define a star centered at i as a set of {i} and its associated facilities, which will

be referred to as leaves. Let Si denote the set of leaves of the star with center i.

Let d1(j) = d(j, i1(j)) and d2(j) = d(j, i2(j)). Finally, define d1 :=
∑

j∈C d1(j) =

costI(F1) and d2 :=
∑

j∈C d2(j) = costI(F2).

4.5.2 Corner cases: a ≤ 1/5 or a ≥ 4/5

Recall that F1 is a feasible solution as w(F1) ≤ B. Suppose we take F1 as our

solution. Consider the following strategy: we connect each client j to the center i

of the star Si where i2(j) ∈ Si. Fix any client j and let Si be the star containing

i2(j). By triangle inequality and definition of stars, we have that

d(j, i) ≤ d(j, i2(j)) + d(i2(j), i)

≤ d2(j) + d(i2(j), i1(j))

≤ d2(j) + d1(j) + d2(j) = 2d2(j) + d1(j).

Therefore, the connection cost of this assignment is bounded by
∑

j∈C(2d2(j) +

d1(j)) = 2d2 + d1. Now assuming we want to close the center i and open all the

facilities Si, how does the connection cost change? Observe that the client j can

now be connected to i2(j) in this case so that we can “save” the cost by (2d2(j) +

139

d1(j)) − d2(j) = d1(j) + d2(j). Our algorithm will aim to find a subset of stars

such that when closing all the centers and opening all the leaves of these stars, the

amount of “saving” is maximized.

For each i ∈ F1, let zi be the indicator for the event that i is closed and all

facilities in Si is opened. Also, define δ(i) := {j ∈ C : i2(j) ∈ Si}. The LP relaxation

for our problem is as follows.

LPstar-rounding : maximize
∑
i∈F1

∑
j∈δ(i)

(d1(j) + d2(j))zi

subject to
∑
i∈F1

(w(Si)− wi) zi ≤ B − w(F1)

0 ≤ zi ≤ 1 ∀i ∈ F1.

We are now ready to describe the algorithm. We first compute a basic optimal

solution z∗ of LPstar-rounding. It is not difficult to see that z∗ has at most one fractional

value. Suppose z∗i∗ is fractional for some i∗ ∈ F1. Consider the following LP.

LPSi∗ : maximize
∑
i∈Si∗

∑
j∈C:i2(j)=i

(d1(j) + d2(j))ti

subject to
∑
i∈Si∗

witi ≤ w(Si∗)zi∗

0 ≤ ti ≤ 1 ∀i ∈ Si∗ .

Next, we compute a basic optimal solution t∗ for LPSi∗ . Again, t∗ contains at most

140

one fractional value. Suppose t∗i∗∗ is fractional for some i∗∗ ∈ Si∗ . Let

S := {i∗, i∗∗} ∪

 ⋃
i∈F1:z∗i =1

Si

 ∪ {i ∈ Si∗ : t∗i = 1}.

Our algorithm will return the solution A := arg minZ∈{S,F1} costI(Z).

Theorem 4.5.2. If a ≤ 1/5 or a ≥ 4/5, then there is a bi-factor (2.73 + ε)-

approximation algorithm for KM.

Proof. Let us analyze the above-mentioned algorithm. Let S ′′ = {i∗, i∗∗}. If wi∗ = 0

or wi∗∗ = 0, then we remove the corresponding facility from S ′′. Let S ′ = S \ S ′′.

By construction and the fact that z∗ and t∗ are feasible solutions of LPstar-rounding

and LPSi∗ respectively, we have that

w(S ′) =
∑

i∈F1:z∗i =1

w(Si) +
∑

i∈Si∗ :t∗i=1

wi

≤
∑

i∈F1:z∗i =1

w(Si) + w(Si∗)z∗i∗

≤ w(F1) +
∑
i∈F1

(w(Si)− wi)z∗i ≤ B.

Next, we claim that the amount of saving by using S will be at least b(d1 + d2); and

hence, costI(S) ≤ 2d2 + d1 − b(d1 + d2) = ad1 + (1 + a)d2. Observe that setting

ti := z∗i∗ for all i ∈ Si∗ gives a feasible solution of LPSi∗ . Thus, the amount of saving

by Si∗ is at least

∑
i∈Si∗

∑
j∈C:i2(j)=i

(d1(j) + d2(j))z∗i∗ =
∑
j∈δ(i∗)

(d1(j) + d2(j))z∗i∗ .

141

Then the amount of saving by S is at least

∑
i∈F1

∑
j∈δ(i)

(d1(j) + d2(j))z∗i ≥
∑
i∈F1

∑
j∈δ(i)

(d1(j) + d2(j))b = b(d1 + d2),

because setting zi := b for all i ∈ F1 also yields a feasible solution of LPstar-rounding.

Since the algorithm will choose the better solution between S and F1, we have

that

costI(A) ≤ min{d1, ad1 + (1 + a)d2}.

Then the approximation ratio with respect to the cost of the bi-point solution is

min

{
d1

ad1 + bd2

,
ad1 + (1 + a)d2

ad1 + bd2

}
≤ max

r≥0,a∈[4/5,1]∨a∈[0,1/5]
min

{
1

a+ (1− a)r
,
a+ (1 + a)r

a+ (1− a)r

}
≤ 15

11
.

Therefore, we have

costI(A) ≤ 15

11
(ad1 + bd2) ≤ 30

11
OPTI < 2.73OPTI .

Finally, the theorem follows from Lemma 4.5.1.

4.5.3 Main case: a ∈ [1/5, 4/5]

In this section, we will apply dependent rounding in such a way that (i) each

facility in F1 is open with probability ≈ a, (ii) each facility in F2 is open with

probability ≈ b, and (iii) the budget is not violated by too much. To this end, for

142

each i ∈ F1, let Zi ∈ {0, 1} be a random indicator for the event “i is closed and all

facilities in Si are open.” (If Zi = 0 then i is open and all facilities in Si are closed.)

Let t ≥ 1 be a constant to be determined. The main algorithm is as follows.

Algorithm 13 RoundStars(t,F1,F2, a, b, B)

1: Initialize zi ← b and ci ← w(Si)− wi for all i ∈ F1

2: Z← SRDR(z, c, t)
3: Let F ′ := {i ∈ F1 : 0 < Zi < 1} be the set of ≤ t left-over fractional values of

Z
4: Let L :=

⋃
i∈F ′ Si

5: for each i ∈ L: set ri ← Zk where k ∈ F ′ is the center of the star containing i
6: R← SRDR(r,w, t)
7: Let L′ := {i ∈ L : 0 < Ri < 1} be the set of ≤ t left-over fractional values of R
8: return S = F ′ ∪ L′ ∪

{⋃
i∈F1:Zi=1 Si

}
∪ {i ∈ L : Ri = 1}

We will now analyze the algorithm RoundStars.

Claim 4.5.1. We have that |F ′ ∪ L′| ≤ 2t and w(S \ (F ′ ∪ L′)) ≤ B.

Proof. The first claim is trivial due to construction of F ′ and L′. By the property

of SRDR, we have

∑
i∈L:Ri=1

wi ≤
∑
i∈L

wiRi =
∑
k∈F ′

w(Sk)Zk.

143

Therefore,

w(S \ (F ′ ∪ L′)) =
∑

i∈F1:Zi=1

w(Si) +
∑

i∈L:Ri=1

wi

≤
∑

i∈F1:Zi=1

w(Si) +
∑
k∈F ′

w(Sk)Zk

=
∑
i∈F1

w(Si)Zi

≤ w(F1) +
∑
i∈F1

(w(Si)− wi)Zi

= w(F1) +
∑
i∈F1

(w(Si)− wi)b

= aw(F1) + bw(F2) ≤ B,

where the penultimate equality follows from the fact that SRDR preserves the

weighted sum of Zi’s.

Now let us fix a client j and analyze the expected connection cost of j. Note

that RoundStars guarantees that whenever a center i of some star is closed, all

of the leaves in Si will be open. Thus, we will use the following strategy to get j

connected: if i2(j) is open, then assign j to i2(j). Else, if i1(j) is open, assign j to

i1(j). Finally, if both i1(j) and i2(j) are closed, the center of the star containing

i2(j), say i, must be open and we connect j to i. For simplicity, let i1, i2 denote the

event that i1(j) and i2(j) are open respectively.

Claim 4.5.2. The following bounds hold:

• Pr[̄i2] ≤ 1− b,

144

• Pr[̄i1ī2] ≤ (1 + 2/t)b(1− b).

Proof. Conditioned on any vector Z returned by SRDR, if Zi ∈ {0, 1} then Pr[̄i2] =

1−Zi. If i ∈ F ′, conditioned on any vector R returned by SRDR, we have Pr[i2] ≥

Ri2(j) because i2(j) will be open even if Ri2(j) is fractional. This implies that Pr[i2] ≥

E[Ri2(j)] = Zi or Pr[̄i2] ≤ 1− Zi. Summing over all possible Z’s, we get

Pr[̄i2] ≤ E[1− Zi] = 1− zi = 1− b.

Again, conditioned on any vector Z, we claim that

Pr[̄i1ī2] ≤ Zi1(j)(1− Zi).

Indeed, if Zi1(j) = 0 or Zi1(j) ∈ (0, 1), then i1(j) will be opened by the algorithm and

Pr[̄i1ī2] = 0. If Zi1(j) = 1, then i1(j) will be closed and Pr[̄i1ī2] = Pr[̄i2] = 1− Zi =

Zi1(j)(1− Zi) as in the above case. Thus, summing over all possible Z’s, we obtain

Pr[̄i1ī2] ≤ E[Zi1(j)(1− Zi)]

≤ (zi1(j)(1− zi))1−1/(t+1)

= (b(1− b))1−1/(t+1),

where the second inequality is due to the near independence property of SRDR.

Since a ∈ [1/5, 4/5], we have b ∈ [1/5, 4/5] and b(1 − b) ≥ 4/25. Hence, (b(1 −

145

b))−1/(t+1) ≤ (4/25)−1/(t+1) ≤ 1 + 2/t. Therefore, we get

Pr[̄i1ī2] ≤ (1 + 2/t)b(1− b).

Now the expected connection cost j can be bounded as follows.

E[costI(j)] ≤ Pr[i2]d2(j) + Pr[i1ī2]d1(j) + Pr[̄i1ī2](2d2(j) + d1(j))

= Pr[i2]d2(j) + Pr[̄i2]d1(j) + 2 Pr[̄i1ī2]d2(j)

= d2(j) + (d1(j)− d2(j)) Pr[̄i2] + 2 Pr[̄i1ī2]d2(j)

≤ d2(j) + (d1(j)− d2(j))(1− b) + (1 + 2/t)b(1− b)(2d2(j)).

Summing over all clients j, we get

E[costI(S)] ≤ d2 + (d1 − d2)(1− b) + (1 + 2/t)b(1− b)(2d2).

Theorem 4.5.3. If a ∈ [1/5, 4/5], then there is a bi-factor (1+
√

3+ε)-approximation

algorithm for KM.

Proof. First of all, we remove all facilities i for which wi = 0 from F ′ and L′.

Observe that Claim 4.5.1 still holds. It means that we can write S = S ′ ∪S ′′ where

S ′′ = F ′ ∪ L′, S ′ = S \ S ′, |S ′′| ≤ 2t, w(S ′) ≤ B and S ′′ does not contain “big

146

facilities”: S ′′ ∪ Sε = ∅. Then, by Lemma 4.5.1, we have

w(0)(S) ≤ (1 + 2tε)B0.

Now suppose we will take the better solution between S and F1 (which is

feasible). In other words, let us consider the set A := arg minZ∈{S,F1} costI(Z). We

have

E[costI(A)] ≤ min{d1, d2 + (d1 − d2)(1− b) + (1 + 2/t)b(1− b)(2d2)}

≤ (1 + 2/t) min{d1, d2 + (d1 − d2)(1− b) + b(1− b)(2d2)}

= (1 + 2/t)(ad1 + bd2) min

{
d1

ad1 + bd2

,
d2 + (d1 − d2)(1− b) + b(1− b)(2d2)

ad1 + bd2

}
≤ (1 + 2/t) · (2OPTI) · C0,

where

C0 = min

{
d1

ad1 + bd2

,
d2 + (d1 − d2)(1− b) + b(1− b)(2d2)

ad1 + bd2

}
= min

{
d1

(1− b)d1 + bd2

,
d2 + (d1 − d2)(1− b) + b(1− b)(2d2)

(1− b)d1 + bd2

}
≤ max

r∈[0,1], b∈[1/5,4/5]
min

{
1

1− b+ br
,
r + (1− r)(1− b) + b(1− b)(2r)

1− b+ br

}
≤ 1 +

√
3

2
.

147

Therefore, we get

E[costI(A)] ≤ (1 + 2/t) · (1 +
√

3) ·OPTI

≤ (1 + 6/t) ·OPTI .

In conclusion, for any γ > 0, setting t = 6/γ and ε = γ/(2t) = γ2/12 gives

(i) w(0)(A) ≤ (1 + γ)B0,

(ii) E[costI(A)] ≤ (1 + γ)OPTI0 .

148

Chapter 5: The (Multi) Knapsack Center Problem

5.1 Problem definition

In this chapter, we consider the Multi Knapsack Center problem (MKC). An

instance I of this problem consists of a set V of n vertices, a symmetric distance

metric d on V , and an m × n weight matrix M , which corresponds to m non-

negative weight functions. We assume that all the weights are scaled so that the

corresponding budgets are equal to one and the entries of M are in [0, 1]. Our goal

is to choose a set S ⊆ V of vertices (which will also be called “centers”) so that (a)

all m knapsack constraints are satisfied — that is, we require that

∑
i∈S

Mki ≤ 1,

for all k = 1, . . . ,m and (b) the maximum connection cost of any vertex (equiva-

lently, the radius for centers in S to cover all vertices in V)

R := max
j∈V

cost(j) = max
j∈V

min
i∈S

d(i, j)

is minimized.

149

5.2 Prior work and Our contributions

The Knapsack Center (KC) problem (i.e., the case m = 1 knapsack constraint)

was first studied by Hochbaum and Shmoys in [54], under the name “weighted k-

center problem”. The authors gave a 3-approximation algorithm for the problem and

proved that this is best possible unless P = NP; see also [58]. More recently, Chen

et. al. [59] considered the above general version with m knapsack constraints. They

showed that this problem is not approximable to within any constant factor, and

gave a pseudo 3-approximation algorithm which may violate all but one knapsack

constraint by a factor of (1 + ε).

Given any instance I of the MKC problem, we let R be the optimal radius. For

the standard KC problem with one constraint, we give a polynomial-time algorithm

which returns a feasible solution such that (1) all vertices are within distance 3R

from some chosen center and (2) almost all vertices have expected connection cost

at most (1 + 2/e)R ≈ 1.74R. We refer this as the fair knapsack-center algorithm.

For the MKC problem, we show that it is possible to obtain a similar result

while slightly violating the knapsack constraints via independent rounding. (Again,

the violation is likely unavoidable because it is NP-hard to approximate this problem

to within any constant factor.)

150

5.3 Preliminaries

Note that there are only
(
n
2

)
possible values for the optimal radius R. Thus,

we can guess this value in O(n2) time. For the rest of this chapter, we assume that

R is the correct optimal radius. Consider the polytope P(I, R) containing points

(x, y), where x ∈ Rn×n and y ∈ Rn, with the following constraints:

(A1)
∑

i∈V :d(i,j)≤R xij = 1 for all j ∈ V , (all clients should get connected to some

center)

(A2) xij ≤ yi for all i, j ∈ V , (vertex j can only connect to center i if it is open)

(A3) My ≤ ~1, (the m knapsack constraints)

(A4) 0 ≤ xij, yi ≤ 1 for all i, j ∈ V .

Note that yi and xij are indicators for the event whether center i is opened

and whether j is connected to i, respectively. By a (standard) trick of splitting the

facilities in Facility-Location problems (see, e.g., [28,50,53]), we may further assume

that

(A5) For all i, j ∈ V , we have xij ∈ {0, yi},

(A6) For all i ∈ V , we have xii = yi.

We provide a proof of this claim here for completeness.

Claim 5.3.1. Given any instance I of the MKC problem and a fractional solution

(x, y) ∈ P(I, R), one can construct another instance I ′ with the set of vertices V ′

of size O(n2) and another solution (x′, y′) such that

151

(i) (x′, y′) ∈ P(I ′, R),

(ii) Any solution of I ′ can be converted into a solution of I without increasing the

objective function,

(iii) For all i, j ∈ V ′, we have x′ij ∈ {0, y′i},

(iv) For all i ∈ V ′, we have x′ii = y′i.

Proof. We will construct I ′ and (x′, y′) as follows. Initially, let V ′ := V . For each

i ∈ V , let j1, j2, . . . , jn ∈ V be such that xij1 ≤ xij2 ≤ . . . ≤ xijn . Now for each jk

in this order, we add a vertex ik into V ′ (if jk = i then simply let ik := i and note

that ik ∈ V ′), which is co-located at i and has the same weight as i in each of the

m knapsack constraints. We then set y′ik := xijk − xijk−1
if k > 1 and y′ik := xijk

otherwise. Also, we set x′ik′jk := y′ik′ for k′ ∈ [1, k] and x′ik′jk := 0 for k′ ∈ [k + 1, n].

(Note that jk ∈ V which implies that jk ∈ V ′. Thus, these assignments are valid.)

Let M ′ denote the new m× n2 weight matrix of vertices in V ′.

In the above step, for each of the original vertex i ∈ V , we have added n− 1

additional copies of i into V ′ and already defined the corresponding assignment

variables x′ for it. Now, for each copy ik of i, we simply connect ik to the same

vertices serving i fractionally: x′vik := x′vi for all v ∈ V ′. By construction, the

properties (iii) and (iv) are satisfied.

Observe that each i ∈ V has n copies in V ′. For any solution of I ′, if we

simply remove the extra ≤ n− 1 copies if they are open, then we obtain a feasible

solution of I with the same cost. Thus, property (ii) is satisfied.

152

We now verify that (x′, y′) ∈ P(I ′, R). Again, by construction, we have

x′ij, y
′
i ∈ [0, 1] and x′ij ≤ y′i for all i, j ∈ V ′. Fix any j ∈ V ′ ∩ V . For any i ∈ V ,

suppose xij is the tij-th smallest value when we process vertex i in the above step.

Note that

tij∑
k=1

y′ik = xij1 + (xij2 − xij1) + . . .+ (xijtij − xijtij−1)

= xijtij = xij.

Then we have

∑
i∈V ′:d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

n∑
k=1

x′ikj

=
∑

i∈V :d(i,j)≤R

tij∑
k=1

x′ikj

=
∑

i∈V :d(i,j)≤R

tij∑
k=1

y′ik

=
∑

i∈V :d(i,j)≤R

xij = 1.

By construction, this equality also holds for all other copies of j in V ′.

Now fix vertex i ∈ V . Recall that all copies of i in V ′ have the same weight

as i in each of the knapsack constraint. Fix any knapsack constraint and suppose

w is the weight of i in this constraint. The contribution of all copies of i in this

153

constraint is

w
n∑
k=1

y′ik = w(xij1 + (xij2 − xij1) + . . .+ (xijn − xijn−1))

= wxijn ≤ wyi.

Therefore, we have M ′y′ ≤My ≤ ~1.

For the rest of this chapter, we assume that properties (A5) and (A6) hold.

Given any LP solution satisfying (A1) – (A6), our goal is to (randomly) round

y to an integral solution. For any j ∈ V , let Fj := {i ∈ V : xij > 0}. We refer to

these sets as clusters. It is easy to verify that y(Fj) = 1 due to (A5). We now form a

subset V ′ ⊆ V such that all the clusters Fj, Fj′ for j, j′ ∈ V ′ are pairwise disjoint, and

such that V ′ is maximal with this property. Let F0 := {i ∈ V | yi > 0, j /∈ ⋃j∈V ′ Fj}.

We note that, by Property (A6), we have that j ∈ Fj if yj > 0, which implies that

F0 and V ′ are disjoint.

Then we partition V into a set of groups. There are two types of groups. First,

for each j ∈ V , we define the group Gj to be simply Fj. Next, for each j ∈ F0, we

create a group Gj which consists of two items, namely j and a new dummy item

Dummy(j), which has y(Dummy(j)) = 1− yj, distance ∞ from all i ∈ V , and zero

weights in all m knapsack constraints. (If we select this dummy item, it simply

means that we do not choose to select item j ∈ F0.)

The following notation will be useful throughout: for any set X ⊆ [n], we

154

define frac(X) to be the set of items i ∈ X such that yi /∈ {0, 1}; here y will always

denote the current value of the vector y ∈ [0, 1]n.

In the first step of our algorithms, we simplify y to reduce the number of

fractional items in eachGj to at mostm+1 (this is automatically the case for j ∈ F0).

This can be done by the following procedure KnapsackIntragroupReduce.

Algorithm 14 KnapsackIntragroupReduce (y,X)

1: while |frac(X)| > m+ 1 do
2: Let δ ∈ Rn, δ 6= 0 be such that Mδ = 0, δ(X) = 0, and δi = 0 ∀i /∈ frac(X)
3: Choose scaling factors a, b > 0 such that

• y + aδ ∈ [0, 1]n and y − bδ ∈ [0, 1]n

• there is at least one entry of y + aδ which is equal to zero or one
• there is at least one entry of y − bδ which is equal to zero or one

4: With probability b
a+b

, update y ← y + aδ; else, update y ← y − bδ.
5: return y

Claim 5.3.2. One can find a vector δ ∈ Rn as claimed in line 2 of KnapsackIn-

tragroupReduce.

Proof. This line is only executed when we have at least m+2 variables in X. On the

other hand, we have only m knapsack constraints (Mδ = 0) and the additional linear

constraint δ(X) = 0. This system is underdetermined and the claim follows.

Claim 5.3.3. Suppose y′ = KnapsackIntragroupReduce(y,X) for any X ⊆

[n]. Then we have y′(X) = y(X) and My = My′ and E[y′i] = yi for all i ∈ V .

Proof. In each round of KnapsackIntragroupReduce, we update y by either

y′ := y + aδ or y′ := y − bδ. Since δ is chosen so that δ(X) = 0, we have y′(X) =

y(X) + aδ(X) = y(X) or y′(X) = y(X)− bδ(X) = y(X). Similarly, as Mδ = 0 we

have My = My′.

155

Also, for any i ∈ V we have

E[y′i] = yi +
b

a+ b
(aδi)−

a

a+ b
(bδi) = yi.

The claim follows by induction on all iterations.

5.4 A fair knapsack-center algorithm for the case m = 1

Now we show that, when m = 1 (the standard Knapsack Center problem),

one can satisfy the knapsack constraint with no violation while guaranteeing that

the expected approximation ratio of at least (1− δ)n vertices is at most 1 + 2/e+ γ

for any γ > 0.

Theorem 5.4.1. For any δ, γ > 0, there exists an algorithm running in n
O
(

1
δγ2

)

time and returns a feasible solution the Knapsack Center problem (i.e., with m = 1

knapsack constraint) such that cost(j) ≤ 3R for all j ∈ V . Moreover, there is a set

U ⊆ V (which is deterministic, not a random variable), such that:

1. |U | ≥ (1− δ)n; and

2. ∀j ∈ U , we have E[cost(j)] ≤ (1 + 2/e+ γ)R.

5.4.1 Algorithm

High-level ideas: First, by a preprocessing step, we find a fractional solution

in which each vertex i with yi > 0 will only serve (fractionally) at most εn other

vertices. Next, we use the procedure KnapsackIntraGroupReduce to reduce

156

the number of fractional variables inside Gj down to 2 for all j ∈ W . Note that

the opening mass y(Gj) = 1 remains unchanged in the process. Define Xj to be

the indicator for choosing the fractional vertex of higher weight in Gj. We then use

SRDR to round vector X into an “almost” integral solution. That is, there will be

at most some O(1) groups Gj containing exactly two fractional vertices. Finally, we

open the vertex with smaller weight in each fractional group.

We let M denote the (only) weight function in this problem. In this subsection,

slightly abusing the notation, we shall also think of M as a vector where Mi denotes

the weight of node i ∈ V .

Algorithm 15 Prune(ε,M, V,S, R)

1: if V = ∅ then
2: return S // we obtain an optimal solution in this case
3: I ′ ← (M,V)
4: if P(I ′, R) 6= ∅ then
5: Compute a solution (x, y) ∈ P(I ′, R)
6: if there exists some center i such that Mi ≤ 1 and |{j ∈ V : xij > 0}| ≥ εn

then
7: Let X ← {j ∈ V : xij > 0}
8: return Prune(ε, M

1−Mi
, V \X,S ∪ {i}, R) if it is not FALSE

9: return Prune(ε,M, V \ {i},S, R))
10: else
11: return (the solution (x, y), the set of remaining vertices V , the scaled

weight matrix M , and the set of open centers S)
12: else
13: return FALSE

The main algorithm is as follows.

(We note that it is formally possible for this process to return S which contains

some dummy items. As these dummy items have infinite distance and zero weight,

they contribute nothing and can simply be discarded.)

157

Algorithm 16 StandardKnapsackSRDR (M,V, t)

1: (x, y, V,M,S0) ← Prune(ε,M, V, ∅, R) and return S if it already covers all
nodes in V

2: for each j ∈ V ′ do update y ←KnapsackIntragroupReduce(y,Gj);
3: for each j ∈ W that |frac(Gj)| = 2 do
4: Suppose Gj = {i1(j), i2(j)} and Mi1(j) ≤Mi2(j)

5: Set xj ← yi2(j) and aj ←Mi2(j) −Mi1(j)

6: X← SRDR(x, a, t)
7: for each j ∈ W that |frac(Gj)| = 2 do
8: Set yi1(j) ← 1−Xj and yi2(j) ← Xj // for the sake of simpler analysis
9: for each j ∈ W that |frac(Gj)| = 2 do

10: Set yi1(j) ← 1 and yi2(j) ← 0
11: return S = {i ∈ V : yi = 1} ∪ S0

5.4.2 Analysis

Lemma 5.4.1. The procedure Prune runs in nO(1/ε) time and will return either an

optimal solution or a set S of open centers along with a fractional solution (x, y) for

the residual instance I ′ = (V, d,m), in which each center i only serves ≤ εn other

vertices fractionally. That is, |{j ∈ V : xij > 0}| ≤ εn for all i ∈ V .

Proof. Fix any optimal solution to the given instance. In Algorithm 15, whenever

we find a vertex i which serves ≥ εn other vertices, we simply guess two cases:

whether or not i is in the optimal solution. Note that for the guess “i is in the

optimal solution”, we open i and remove at least εn other vertices from the instance.

(Because we assume that the budget constraint has RHS value of 1, this requires

rescaling M to M
1−Mi

.)

In the other case, we remove i from V . Observe that if our guess is correct,

P(I ′, R) will not be empty in the next step. The algorithm stops when the current

fractional solution satisfies all the properties in the claim.

158

To bound the running time of this algorithm, we can visualize its execution by

a binary tree in which each node is either a vertex chosen in line 6 or a leaf. Each

non-leaf node of the tree has two children corresponding to two decisions whether

or not it is in the optimal solution. Indeed, the running time of the algorithm is

bounded by the number of paths from the root to any leaf of this tree. Because (i)

the length of any path is at most n and (ii) the number of vertices chosen to be in

the optimal solution in this path is at most 1/ε, the number of such paths is at most

nO(1/ε).

For the rest of this subsection, we will be working on the residual instance

(M,V) returned by Prune. In the first part of the analysis, we show an upper

bound on the probability that a given vertex k ∈ V has no open facility in Fk.

This is done by defining a natural potential function, which is an estimation for this

probability. We will analyze its change after applying SRDR.

For each j ∈ W we let Cj = Fk ∩ Gj be the set of vertices that vertex k is

“interested in.” Let y denote the current fractional solution at the beginning of line

3 of StandardKnapsackSRDR. We define a potential function:

S :=
∏
j∈W

(1− y(Cj)) .

159

Let y′ be the modified vector y after finishing the for-loop at lines 7–8 and

S ′ :=
∏
j∈W

(1− y′(Cj)) .

Lemma 5.4.2. Conditioned on any value of y and S, we have that

E[S ′] ≤ S1−1/(t+1).

Proof. Recall that the algorithm KnapsackIntragroupReduce will reduce the

number of fractional values in all Gj’s to at most 2. Also, y(Gj) = y′(Gj) = 1

for all j ∈ W by Claim 5.3.3. The claim follows immediately from the following

observations:

• If there exists j ∈ W such that y(Cj) = 1, then S = S ′ = 0 and the equality

happens. So let us assume that such a vertex does not exist.

• Any client j ∈ W for which y(Cj) = 0 will have no contribution to both S

and S ′.

• Now let us focus on clients j ∈ W for which y(Cj) ∈ (0, 1). Since |Gj| = 2

and y(Gj) = 1, we have that either i1(j) ∈ Cj or i2(j) ∈ Cj but not both.

Let A = {j ∈ W : i1(j) ∈ Cj} and B = {j ∈ W : i2(j) ∈ Cj}. Observe that

160

A ∩B = ∅ and

S =
∏
j∈W

(1− y(Cj))

=
∏
j∈A

(1− y(Cj))
∏
j∈B

(1− y(Cj))

=
∏
j∈A

(1− yi1(j))
∏
j∈B

(1− yi2(j))

=
∏
j∈A

yi2(j)

∏
j∈B

yi1(j).

Then we have

E[S ′] = E

[∏
j∈A

(1− y′(Cj))
∏
j∈B

(1− y′(Cj))
]

= E

[∏
j∈A

(1− yi1(j))
∏
j∈B

(1− yi2(j))

]

= E

[∏
j∈A

Xj

∏
j∈B

(1−Xj)

]

≤ E

[(∏
j∈A

Xj

∏
j∈B

(1−Xj)

)p]

≤
(∏
j∈A

xj
∏
j∈B

(1− xj)
)p

=

(∏
j∈A

yi2(j)

∏
j∈B

yi1(j)

)p

= Sp,

where p = 1 − 1/(t + 1) and the second inequality follows from the near-

independence property of SRDR.

161

Lemma 5.4.3. We have that

E[S ′] ≤ (1/e)1−1/(t+1).

Proof. Let y0 be the original fractional solution y at line 1 and S0 :=
∏

j∈W (1 −

y0(Cj)). We have S0 ≤
∏

j∈W e
−
∑
i∈Cj

y0i = e−y
0(Fk) = 1/e. Next, since the clusters

Gj are processed independently in line 1, and marginals are preserved by Claim

5.3.3, we have

E[S] =
∏
j∈W

(1− E[y1
i]) =

∏
j∈W

(1− y0
i) = S0 ≤ 1/e.

By Lemma 5.4.2 and Jensen’s inequality, we have

E[S ′] ≤ E[S1−1/(t+1)] ≤ E[S]1−1/(t+1) ≤ (1/e)1−1/(t+1).

Proof of Theorem 5.4.1. Feasibility of S: Recall that after calling the procedure

Prune at line 1, the fractional solution (x, y) is feasible for the residual instance

(V,M). It suffices to show that we do not violate the scaled knapsack constraint

of the residual instance when rounding y. Claim 5.3.3 ensures that the knapsack

constraint is preserved (fractionally) by KnapsackIntraGroupReduce. Sup-

pose that y and y′ are the fractional solution at the beginning of line 3 and line 9,

respectively. Let J = {j ∈ W : |frac(Gj)| = 2} denote the set of nodes considered

162

in the for-loop at line 3. We have

∑
j∈J

(Mi1(j)yi1(j) +Mi2(j)yi2(j)) =
∑
j∈J

(Mi1(j)(1− xj) +Mi2(j)xj)

=
∑
j∈J

(Mi1(j) + ajxj)

=
∑
j∈J

(Mi1(j) + ajXj)

=
∑
j∈J

(Mi1(j)y
′
i1(j) +Mi2(j)y

′
i2(j)),

where the third equality follows from the sum preservation property of SRDR. This

means that the contribution of clients j ∈ J to the knapsack constraint remains the

same at the beginning of line 9. Now, when rounding the last t fractional clusters

Gj in the for-loop at lines 9–10, we always open the node i1(j) and close i2(j) where

Mi1(j) ≤ Mi2(j). Since yi1(j) + yi2(j) = 1, we have that Mi1(j) is bounded by the

fractional contribution of both i1(j) and i2(j) to the knapsack constraint.

Cost analysis: For any k ∈ V , we have cost(k) ≤ R if there is a facility

opened in Fk, and cost(k) ≤ 3R otherwise. (By construction, Fk ∩ Fj 6= ∅ for some

j ∈ V ′ and we always open one center inside Gj. Then the distance from k to this

center is at most d(k, j) + R ≤ 3R by triangle inequality.) Note that there are

at most 2t fractional vertices in V after applying SRDR. For each vertex j, let qj

163

denote the probability that j is still adjacent to such an unrounded vertex. Then

∑
j∈V

qj ≤
∑
j∈V

∑
k∈Fj

Pr[vertex k is fractional] (by the union-bound)

=
∑
k∈V

Pr[vertex k is fractional]
∑
j∈Fk

1

≤ (εn)
∑
k∈V

Pr[vertex k is fractional] (by the pre-processing step)

≤ (2t)εn.

We say that a vertex j is good if qj ≤ 1/t and bad otherwise. Then the number

of bad vertices is at most 2t2εn. We let U be the set of good vertices. Let y′′ be the

vector y after finishing the for-loop at lines 9–10 and let

S ′′ :=
∏
j∈W

(1− y′′(Cj)).

Now fix any k ∈ U . We have that Fk∩S = ∅ iff S ′′ = 1, and S ′′ = 0 otherwise.

Let E denote the event that there are no fractional vertices in Fk before line 9. Note

164

that Pr[E] = 1− qk ≥ 1− 1/t. Then, for t large enough, we have

Pr[S ∩ Fk = ∅] = Pr[S ∩ Fk = ∅ ∧ E] + Pr[S ∩ Fk = ∅ ∧ ¬E]

≤ Pr[S ′′ = 1 ∧ E] + Pr[¬E]

≤ Pr[S ′ = 1 ∧ E] + 1/t (if E then S ′ = S ′′)

≤ E[S ′] + 1/t

≤ (1/e)1−1/(t+1) + 1/t

≤ 1/e+ 2/t,

where we use the fact that e1/(t+1) ≤ 1 + 2/(t + 1) in the last inequality. Thus, we

get

E[cost(k)] ≤ R + (2R) Pr[S ∩ Fk = ∅] ≤ (1 + 2/e+ 2/t)R.

Now for any δ, γ > 0, by setting t = 2/γ and ε = δ
2t2

, the number of bad vertices is

≤ δn and, for any k ∈ U , we have E[cost(k)] ≤ (1 + 2/e + γ)R. The running time

is nO(1/ε) = n
O
(

1
δγ2

)
.

5.5 Independent rounding algorithm for the case m ≥ 1

In this section, we will introduce a simple fair algorithm for the MKC problem

based on independent rounding. The idea is to first get rid of big vertices which

have large weight in some constraint. Then all the weights in the residual instance

will be relative small. This allows us to randomly pick a center in each cluster Fj

165

using the distribution defined by the opening variables. By Chernoff bound, we will

slightly violate some knapsack constraint with high probability.

To this end, we will first enforce the following additional constraint on the

maximum size of the entries of M .

Claim 5.5.1. For any ρ > 0, we can find a solution (x, y) ∈ P(I, R) with properties

(A1) to (A6), which also satisfies the additional property

(A7) For any i ∈ V , if Mki ≥ ρ for any k = 1, . . . ,m, we have yi ∈ {0, 1}.

Also, the running time for this process in nO(m/ρ).

Proof. We say that the vertex i is big if Mki ≥ ρ for some k = 1, . . . ,m. Suppose we

fix any optimal solution S. Observe that there can be at most m/ρ big centers in S.

We can guess the set of such centers in time nO(m/ρ). For any big center i that we

guess is in S, we set yi := 1. Similarly, for any big center that we guess is outside S,

we set yi := 0. This procedure will only check at most nO(m/ρ) possible cases. If our

guess is correct, we have that P(I, R) 6= ∅ with the additional constraints on y.

Suppose (x, y) satisfies all properties (A1) to (A7). The fair algorithm for the

MKC problem is as follows.

Algorithm 17 IndependentRound (y, V ′,M)

1: S ← ∅
2: for i ∈ F0 do
3: With probability yi, S ← S ∪ {i}
4: for j ∈ V ′ do
5: Randomly pick a vertex Xj in Fj s.t. Pr[Xj = i] = yi for all i ∈ Fj // recall

that y(Fj) = 1
6: S ← S ∪ {Xj}
7: return S

166

For any vertex i ∈ V , let Yi be the indicator variable for the event that i ∈ S.

By construction, we have E[Yi] = yi and all variables Yi are negatively correlated.

Claim 5.5.2. For any ε ∈ (0, 1), with probability at least 1−m exp
(
− ε2

3ρ

)
, we have

that
∑

i∈SMki ≤ 1 + ε for all 1 ≤ k ≤ m.

Proof. The kth weight function
∑

i∈SMki = MkY is a sum of negatively-correlated

variables, each of which is bounded in [0, ρ] and which has mean at most 1. Since

the Chernoff-Hoeffding bound holds under negative correlation, we have

Pr[MkY ≥ 1 + ε] = Pr

[
MkY

ρ
≥ (1 + ε)× 1

ρ

]
≤ e−ε

2/(3ρ).

Taking a union bound over all m constraints, the total probability that any of them

is violated by more than ε is at most me−ε
2/(3ρ).

Lemma 5.5.1. For any vertex j ∈ V , we have the conditional expectation

E[cost(j) |MY ≤ ~1 + ε] ≤
(

1 +
2/e

1−m exp(−ε2/(3ρ))

)
R.

Proof. Fix any vertex j ∈ V . Note that y(Fj) = 1. So by negative correlation, the

probability that there are no open centers in Fj is

Pr[Fj ∩ S = ∅] = E

∏
i∈Fj

(1− Yi)


≤
∏
i∈Fj

(1− yi) ≤ e−y(Fj) = 1/e.

167

Then, by Claim 5.5.2, we have

Pr[Fj ∩ S = ∅ |MY ≤ ~1 + ε] =
Pr[Fj ∩ S = ∅ ∧MY ≤ ~1 + ε]

Pr[MY ≤ ~1 + ε]

≤ Pr[Fj ∩ S = ∅]
Pr[MY ≤ ~1 + ε]

≤ 1/e

1−m exp
(
− ε2

3ρ

) .
Recall that cost(j) ≤ 3R with probability one. Therefore,

E[cost(j) |MY ≤ ~1 + ε] ≤ R +
1

e (1−m exp (−ε2/(3ρ)))
× (2R)

=

(
1 +

2/e

1−m exp(−ε2/(3ρ))

)
R.

Theorem 5.5.1. For any 0 < γ ≤ 1/2 and 0 < ε < 1, there is an algorithm running

in expected time nO(m log(m/γ)ε−2), which outputs a solution S satisfying

1. MY ≤ ~1 + ε,

2. ∀j ∈ V : E[cost(j)] ≤ (1 + 2/e+O(γ))R.

Proof. Set ρ = ε2/(3 log(m/γ)) and apply Claim 5.5.1 to achieve a fractional solution

y satisfying (A1) – (A7). Now repeatedly assign S := IndependentRound(y, V ′,M)

until we obtain a solution S satisfying MY ≤ ~1 + ε.

Observe that the resulting distribution on the random variables cost(j) output

by this process is the same as the distribution of cost(j), conditioned on MY ≤ ~1+ε.

168

Applying Lemma 5.5.1, for any j ∈ V , we get

E[cost(j)] ≤
(

1 +
2/e

1−m exp(−ε2/(3ρ))

)
R.

By our choice of ρ, we have m exp
(
− ε2

3ρ

)
≤ γ and hence

E[cost(j)] ≤
(

1 +
2/e

1− γ

)
R ≤ (1 + 2/e+O(γ))R.

Also, the number of repetitions of this process is a geometric random variable,

with success probability equal to the probability that MY ≤ ~1 + ε, which is at least

1−γ ≥ 1/2. So we only need an expected constant number of iterations to succeed.

Therefore, the overall running time is nO(m/ρ) = nO(m log(m/γ)ε−2).

169

Chapter 6: The k-center Problem

6.1 Problem definition

In this chapter, we will discuss a fair algorithm for the k-center problem.

Recall that the k-center problem is a special case of the MKC problem where we only

have one cardinality constraint instead of m knapsack constraints. In particular, an

instance I = (V, d, k) of this problem consists of set V of n vertices, a symmetric

distance metric d on V , and a parameter k ∈ N.

Our objective is to choose a set S ⊆ V of vertices (which will also be called

“centers”) so that (a) at most k centers are opened: |S| ≤ k and (b) the maximum

connection cost of any vertex (equivalently, the radius for centers in S to cover all

vertices in V)

R := max
j∈V

cost(j) = max
j∈V

min
i∈S

d(i, j)

is minimized. We shall refer to centers in S as open centers.

6.2 Prior work and Our contributions

The k-center problem is known to be NP-hard via a reduction from the Dom-

inating Set problem (see, e.g., [89]). The problem can be approximated to within a

170

factor of 2 by very simple greedy algorithms [54, 90, 91]. On the other hand, this is

also the best possible approximation ratio one can obtain unless P=NP [92].

To the best of our knowledge, all the current approximation algorithms for

this problem in the literature are deterministic. For any such algorithm A, it is not

difficult to point out an instance for which the connection cost of almost all vertices

assigned by A matches the worst case bound (i.e., 2 times the optimal radius.)

Our result here will be a fair algorithm. Suppose we are given an instance

I = (V, d, k) of the problem, and suppose we have guessed the optimal radius R.

We show that there is a randomized polynomial-time algorithm that opens at most

k centers with probability one while guaranteeing that (1) all vertices are within

distance 3R from some chosen center and (2) the expected distance E[cost(j)] from

any given vertex j to the nearest open center is at most 1.597R.

We leave it as an open question whether one can improve the worst-case guar-

antee from 3R to 2R while still achieving the expected ratio less than 2.

6.3 Preliminaries

Recall that there are only
(
n
2

)
possible values for the optimal radius R and we

can guess this value R in O(n2) time. Consider the polytope P(I, R) containing

points (x, y), where x ∈ Rn×n and y ∈ Rn, with the following constraints:

(A1)
∑

i∈V :d(i,j)≤R xij = 1 for all j ∈ V , (all vertices should get connected to some

center)

(A2) xij ≤ yi for all i, j ∈ V , (vertex j can only connect to center i if it is open)

171

(A3)
∑

i∈V yi ≤ k, (at most k centers are opened)

(A4) 0 ≤ xij, yi ≤ 1 for all i, j ∈ V .

Since R is the optimal radius, P(I, R) is not empty. Our approach will be to find

a fractional solution in P(I, R) and then use a randomized algorithm to convert it

into an integral solution.

By splitting vertices as needed, we can ensure that we have a fractional solution

which satisfies the additional properties

(A5) For all i, j ∈ V , we have xij ∈ {0, yi},

(A6) For all i ∈ V , we have xii = yi.

For any j ∈ V , let Fj := {j} ∪ {i ∈ V : xij > 0}. We refer to these sets as

clusters, and we refer to j as the cluster center of the cluster Fj. By (A5), (A6),

and (A1), we have y(Fj) = 1 for all j ∈ V .

6.4 A simple algorithm with expected ratio of 1.6

6.4.1 Algorithm

In this section, we will give a simple randomized rounding scheme based on

forming clusters centered around certain vertices.

In the first scheme, we let V ′ ⊆ V be a set of vertices which has the property

that all Fj for j ∈ V ′ are pairwise disjoint, and such that V ′ is maximal with this

property. (This can be formed easily in a greedy way.) We define F0 := V \⋃j∈V ′ Fj.

This is called the set of “unclustered” vertices.

172

One natural idea is to open a random center inside each cluster Fj (all clusters

are processed independently) and apply dependent rounding to choose y(F0) centers

in F0. Now for each vertex j, one can show that the bad event where no center in

Fj is chosen is at most 1/e. In such an event, one can still connect j to some

open center in Fk where Fk ∩ Fj 6= ∅ at distance ≤ 3R from j. Thus, we have

E[cost(j)] ≤ (1− 1/e)R + (1/e)3R = (1 + 2/e)R ≈ 1.73R.

To improve the expected ratio from 1.73 to 1.6, we employ the following idea.

Let q ∈ [0, 1] be a parameter to be determined. For each cluster Fj where j ∈ V ′,

we will open the cluster center j with probability q. With the remaining probability

1−q, we randomly open a center in Fj using the distribution defined by the opening

variables yi. Intuitively, this will increase the chance that any vertex j can connect

to some cluster center k at distance ≤ 2R from k. The formal algorithm is as follows.

Algorithm 18 Round1
(
y, F0,

⋃
j∈V ′ Fj, q

)
1: S ← ∅
2: for j ∈ V ′ do
3: Randomly pick a vertex Xj ∈ Fj and assign S ← S ∪ {Xj} according to the

following distribution

∀i ∈ Fj : Pr[Xj = i] =

{
q + (1− q)yi if i = j

(1− q)yi if i 6= j

// This is a valid probability distribution, as
∑

i∈Fj yi = y(Fj) = 1

4: Let I0 ← DepRound(y, F0)
5: S ← S ∪ I0

6: return S

173

6.4.2 Analysis

Throughout this chapter, we let Yi be an indicator variable for the event that

center i is open.

Claim 6.4.1. Round1 returns a solution S of at most k centers.

Proof. Since the clusters Fj are pairwise disjoint and y(Fj) = 1, we have

∑
j∈V ′

y(Fj) = |V ′|.

Observe that the dependent rounding procedure ensures that

|I0| ≤ dy(F0)e = d
∑
j∈V

yi −
∑
j∈V ′

y(Fj)e ≤ k − |V ′|.

Therefore, we have |S| = |V ′|+ |I0| ≤ |V ′|+ k − |V ′| = k.

Theorem 6.4.1. For q = 0.464587, Round1 returns a solution S such that, for

any j ∈ V , we have

1. cost(j) ≤ 3R,

2. E[cost(j)] ≤ 1.60793R.

Proof. Note that, for any j ∈ V ′, there will be some open center Fj; and hence,

cost(j) ≤ R. Fix any vertex j ∈ V \V ′. Let D denote the set of all i ∈ V ′ such that

Fi ∩ Fj 6= ∅. (D is the set cluster centers which are “close” to j.) By maximality of

V ′, we must have Fi ∩ Fj 6= ∅ for some i ∈ V ′, which implies D 6= ∅.

174

For each i ∈ D, let mi := y(Fi ∩ Fj) and let m0 := y(Fj ∩ F0). As F0 and Fi’s

(where i ∈ V ′) are all pairwise disjoint, we have m0 +
∑

i∈Dmi = y(Fi) = 1.

For each i ∈ D, our rounding step opens exactly one center v ∈ Fi. As every

center in Fj has distance at most R to j, and all centers in Fi has distance at most

2R from each other, it follows that d(j, v) ≤ 3R. Note that

Fj = (F0 ∩ Fj) ∪
⋃
i∈D

(Fi ∩ Fj).

By negative correlation, we have

Pr[cost(j) ≥ 2R] ≤ Pr[no centers in Fj are open]

= E

∏
i∈D

1−
∑

v∈Fi∩Fj

Yv

 ∏
v∈Fj∩F0

(1− Yv)


≤
∏
i∈D

1−
∑

v∈Fi∩Fj

E[Yv]

 ∏
v∈Fj∩F0

(1− E[Yv])

≤
∏
i∈D

1−
∑

v∈Fi∩Fj

(1− q)yv

 ∏
v∈Fj∩F0

(1− yv)

≤
∏
i∈D

(1− (1− q)mi)
∏

v∈Fj∩F0

e−yv

=
∏
i∈D

(1− (1− q)mi)× e−1+
∑
i∈Dmi

= (1/e)
∏
i∈D

emi(1− (1− q)mi),

where in the second inequality, we use the fact that E[Yv] ≥ (1− q)yv.

175

Similarly, if for some i ∈ D we open center i itself, then d(i, j) ≤ 2R and hence

cost(j) ≤ 2R. A necessary condition for cost(j) ≥ 3R is that we do not open any

center in Fj ∪D = (F0 ∩ Fj) ∪
⋃
i∈D(Fi ∩ Fj) ∪D.

Pr[cost(j) ≥ 3R] ≤ Pr[no centers in Fj ∪D are open]

= E

∏
i∈D

1− Yi −
∑

v∈Fi∩Fj\{i}

Yv

 ∏
v∈Fj∩F0

(1− Yv)


≤
∏
i∈D

1− q −
∑

v∈Fi∩Fj\{i}

(1− q)yv

 ∏
v∈Fj∩F0

(1− yv)

≤
∏
i∈D

(1− q − (1− q)mi)
∏

v∈Fj∩F0

e−yv

= (1/e)
∏
i∈D

emi(1− q − (1− q)mi).

Thus, we have that

E[cost(j)] ≤ R(Pr[cost(j) ≥ R] + Pr[cost(j) ≥ 2R] + Pr[cost(j) ≥ 3R])

≤ R

(
1 + (1/e)

∏
i∈D

emi(1− (1− q)mi) + (1/e)
∏
i∈D

emi(1− q − (1− q)mi)

)
.

Let m :=
∑

i∈Dmi, t = |D|, and p = 1 − q = 0.53542. Then, by AM-GM

inequality, we have

E[cost(j)] ≤ R

(
1 + em−1

∏
i∈D

(1− pmi) + em−1
∏
i∈D

(p− pmi)

)

≤ R
(
1 + em−1(1− pm/t)t + em−1(p− pm/t)t

)
.

176

Let f(m, t) := em−1(1 − pm/t)t + em−1(p − pm/t)t. Recall that m ∈ [0, 1]

and t ∈ N. For t ∈ {1, 2, 3, 4}, it is not difficult to check the f(m, t) achieves the

maximum value ≈ 0.60792 at (m = 0.43386, t = 1) and (m = 1, t = 2). For t ≥ 5,

using the fact that (1 + x/n) ≤ ex for any n > 1 and |x| ≤ n, we have

f(m, t) = em−1(1− pm/t)t + em−1(p− pm/t)t

≤ em−1−pm + em−1 · pte−m

= e1−0.53542m + pt/e

≤ e1−0.53542m + 0.0161875

≤ 0.601611.

Therefore, we conclude that E[cost(j)] ≤ 1.60792R.

6.5 Improved algorithm using partial clusters

6.5.1 Algorithm

Here we discuss an improvement on the previous algorithm by using partial

clusters. Observe that so far we have only used full clusters : each cluster Fj for

j ∈ V ′ has opening mass exactly one (i.e., y(Fj) = 1.) For each such cluster, we

have moved some mass of the whole cluster towards increasing the chance of opening

its center. Therefore, for any vertex j ∈ V \ V ′, the chance that j gets connected

to some open center at distance ≤ 2R is improved. One of the worst-case scenarios

in the previous analysis is when Fj intersects with only a few full clusters. In this

177

case, if we can move some mass from Fj ∩F0 towards opening the center j itself, the

expected connection cost of j will be improved. Roughly speaking, the set Fj ∩ F0

will be a partial cluster with center j.

To this end, we use the following greedy algorithm to form both full and partial

clusters.

Algorithm 19 GreedyFormClusters (y)

1: Set U ← V and F ′j ← Fj for all j ∈ V
2: Set G ← ∅ and `← 0
3: while y(U) > 0 do
4: `← `+ 1
5: Find j ∈ U such that y(F ′j) is maximized
6: Set G` ← F ′j ,G ← G ∪G`, z` ← y(F ′j), and π(`)← j
7: Set U ← U \G`

8: for each i ∈ U do F ′i ← F ′i \G`

9: return G, vector z, and vector π

We define g := |G| be the number of clusters. Now, for ` ∈ [1, g], we shall

refer to G` as a full cluster if z` = 1. Otherwise, G` is called a partial cluster. In

both cases, π(`) is called the cluster center of G`. Let pfull and ppartial ∈ [0, 1] be two

random parameters to be determined. The main algorithm is as follows.

178

Algorithm 20 Round2 (y, pfull, ppartial)

1: Run GreedyFormClusters(y) to obtain G`’s and z
2: S ← ∅
3: Z ← DepRound(z)
4: for ` ∈ Z do
5: Randomly pick a vertex X` ∈ G` and assign S ← S ∪ {X`} according to the

following distribution

∀i ∈ Gj : Pr[X` = i] =

{
q` + (1− q`)yi/z` if i = π(`)

(1− q`)yi/z` if i 6= π(`)

and where we define q` as

q` =

{
pfull if z` = 1

ppartial if z` < 1

6: return S

6.5.2 Analysis

Note that the distribution defined at line 5 of Round2 is valid. It is clear

that Pr[X` = i] ≥ 0 and

∑
i∈G`

Pr[X` = i] = q` +
∑
i∈G`

(1− q`)yi/z`

= q` + (1− q`)(1/z`)y(G`) = 1.

Claim 6.5.1. The clusters in G returned by Algorithm GreedyFormClusters

are pairwise disjoint and y(V) =
∑g

`=1 y(G`). Moreover, we have

1. z1 = 1,

2. for any 1 ≤ ` < g, we have z` ≥ z`+1,

Proof. We maintain the invariant that U is set of the current uncovered vertices.

179

By construction, all the cluster G`’s are pairwise disjoint and cover all vertices in U

having positive opening mass. The stopping condition of the while-loop at line 3 is

y(U) = 0, which implies that y(V) =
∑g

`=1 y(G`). Since y(Fj) = 1 for any j ∈ V ,

we have that z1 = 1. The second property holds by our greedy choice of j.

We now claim that the algorithm always outputs a feasible solution.

Claim 6.5.2. Algorithm Round2 returns a solution S satisfying |S| ≤ k.

Proof. By construction, we have

g∑
`=1

z` =

g∑
`=1

y(G`) = y(Gv) =
∑
i∈V

yi ≤ k.

Since dependent rounding preserves, we get |Z| ≤ d∑n
`=1 z`e ≤ k. The claim follows

because we only exactly one center for each cluster G` where ` ∈ Z in the while loop

at lines 4–5.

Lemma 6.5.1. For any j ∈ V , we have that cost(j) ≤ 3R with probability one.

Proof. If j is the cluster center of a full cluster then we have indeed cost(j) ≤ R.

Otherwise, there must exist a full cluster G` such that G` ∩ Fj 6= ∅. (Else, Fj itself

should have been added into G by the algorithm as a full cluster.) Let i be the open

center in G`. By triangle inequality, d(i, j) ≤ 3R.

Claim 6.5.3. For any T ⊆ V , we have

Pr[S ∩ T = ∅ | pfull, ppartial] ≤
g∏
`=1

(1− (1− q`)y(T ∩G`)− q`z`[π(`) ∈ T]) .

180

Proof. In this proof, let us condition on a fixed pair of (pfull, ppartial). The event

S ∩ T = ∅ means that there are no open centers in T . Now consider cluster G`’s.

Suppose Z` is the event that ` ∈ Z (i.e., Pr[Z`] = z`.) Let E` denote the event

that S ∩ (G` ∩ T) 6= ∅. Observe that Z`’s are negatively correlated. Moreover,

Pr[E`|Z`] ≥ 0, Pr[E`|Z̄`] = 0, and all E`’s are independent conditioned on any Z.

Thus, the event E`’s are also negatively correlated. We have

Pr[S ∩ T = ∅] = Pr

[
g∧
`=1

[S ∩ (G` ∩ T) = ∅]
]

= Pr

[
g∧
`=1

Ē`
]

≤
g∏
`=1

Pr
[
Ē`
]

=

g∏
`=1

(Pr[` /∈ Z] + Pr[` ∈ Z](1− (1− q`)y(G` ∩ T)/z` − q`[π(`) ∈ T]))

=

g∏
`=1

(1− z` + z`(1− (1− q`)y(G` ∩ T)/z` − q`[π(`) ∈ T]))

=

g∏
`=1

(1− (1− q`)y(G` ∩ T)− q`z`[π(`) ∈ T]).

where the first equality is due to the fact that only vertices in T having positive

opening mass can be opened and such vertices must belong to some cluster.

Now let us consider some worst-case instance I and the vertex j ∈ V for which

E[cost(j)] is as large as possible. We can assume WLOG that (i) yj = 0 and (ii)

j ∈ U when the algorithm terminates (i.e., all vertices in Fj are claimed by other

181

clusters in GreedyFormClusters.) Indeed, if this is not the case, we can simply

add another vertex j′ collocated at j with yj′ = 0 and xij′ = xij for all i. Then j′

satisfies the desired properties.

Let Jf, Jp ⊆ [n] be the sets of clusters which intersect with Fj:

Jf := {` ∈ [g] : Fj ∩G` 6= ∅, z` = 1},

Jp := {` ∈ [g] : Fj ∩G` 6= ∅, z` < 1}.

Suppose that |Jf| = r and suppose that Jp is sorted as Jp = {`1, . . . , `t} where

`1 < `2 < · · · < `t. For each s = 1, . . . , t+ 1, we define the “suffix” sum:

us = y(Fj ∩G`s) + y(Fj ∩G`s+1) + . . .+ y(Fj ∩G`t).

Then we have 1 ≥ u1 ≥ u2 ≥ · · · ≥ ut ≥ ut+1 = 0, r ≥ 1.

Claim 6.5.4. For all s = 1, . . . , t, we have z`s ≥ us.

Proof. Recall that z`s = y(G`s) is the maximum mass we can have from the re-

maining clusters at time `s. On the other hand, at time `s, the vertex j is still

in U and y(F ′j) ≥ y(Fj ∩ G`s) + y(Fj ∩ G`s+1) + . . . + y(Fj ∩ G`t) = us. Thus,

z`s ≥ y(F ′j) ≥ us.

182

Lemma 6.5.2. We have that

E[cost(j) | pfull, ppartial] ≤ R

(
1 +

(
1− (1− pfull)(1− u1)

r

)r t∏
s=1

(1− (1− ppartial)(us − us+1))

+

(
1− pfull −

(1− pfull)(1− u1)

r

)r t∏
s=1

(1− us + (1− ppartial)us+1)

)
.

Proof. Again let us condition on a fixed pair of (pfull, ppartial). in this proof. For any

`, let m` := y(Fj ∩ G`). Note that
∑

`∈Jf∪Jp m` = y(Fj) = 1. Hence,
∑

`∈Jf m` =

1−∑`∈Jp m` = 1− u1. By Claim 6.5.3, we have

Pr[cost(j) ≥ 2R] ≤ Pr[S ∩ Fj = ∅]

≤
g∏
`=1

(1− (1− q`)m` − q`z`[π(`) ∈ T])

≤
g∏
`=1

(1− (1− q`)m`)

=
∏
`∈Jf

(1− (1− pfull)m`) ·
t∏

s=1

(1− (1− ppartial)m`s)

=
∏
`∈Jf

(1− (1− pfull)m`) ·
t∏

s=1

(1− (1− ppartial)(us − us+1))

≤
(

1−
(1− pfull)

∑
`∈Jf m`

r

)r
·

t∏
s=1

(1− (1− ppartial)(us − us+1))

=

(
1− (1− pfull)(1− u1)

r

)r
·

t∏
s=1

(1− (1− ppartial)(us − us+1)),

where we use the AM-GM inequality in the penultimate inequality.

Similarly, a necessary condition for cost(j) ≥ 3R is that S ∩ T = ∅ where

183

T := Fj ∪ {π(`) : G` ∩ Fj 6= ∅}. By Claim 6.5.3, we get

Pr[cost(j) ≥ 3R] ≤ Pr[S ∩ T = ∅]

≤
g∏
`=1

(1− (1− q`)m` − q`z`[π(`) ∈ T])

=
∏
`∈Jf

(1− (1− pfull)m` − pfullz`) ·
t∏

s=1

(1− (1− ppartial)m`s − ppartialz`s)

=
∏
`∈Jf

(1− (1− pfull)m` − pfull) ·
t∏

s=1

(1− (1− ppartial)(us − us+1)− ppartialz`s)

≤
(

1− pfull −
(1− pfull)

∑
`∈Jf m`

r

)r
·

t∏
s=1

(1− (1− ppartial)(us − us+1)

− ppartialus)

=

(
1− pfull −

(1− pfull)(1− u1)

r

)r
·

t∏
s=1

(1− us + (1− ppartial)us+1),

where we use the AM-GM inequality and the fact that z`s ≥ us in the penultimate

inequality. The claim follows as E[cost(j)] ≤ R(Pr[cost(j) ≥ R] + Pr[cost(j) ≥

2R] + Pr[cost(j) ≥ 3R]).

By Lemma 6.5.2, we have

E[cost(j)] ≤ REp[(1 + AB + CD)],

184

where the expectation Ep is taken over random choices of (pfull, ppartial), and

A :=

(
1− (1− pfull)(1− u1)

r

)r
,

B :=
t∏

s=1

(1− (1− ppartial)(us − us+1)),

C :=

(
1− pfull −

(1− pfull)(1− u1)

r

)r
,

D :=
t∏

s=1

(1− us + (1− ppartial)us+1).

Note that Ep[(1 +AB +CD)] is the expected approximation ratio of our algorithm

and we now want to find a good upper-bound for it. The main difficulty is that

(AB + CD) is a function of r, t and 1 ≥ u1 ≥ u2 . . . ≥ ut ≥ 0, and r, t can be

arbitrarily large. We approximate this by using only the first t0 elements of the

sequence u and truncating r by a small, fixed value r0. To this end, let us fix two

small constants r0, t0 > 0. We will now upper-bound A,B,C, and D.

If r < r0, we use the current formulas for A and C. If r ≥ r0, we will upper-

bound A and C as

A =

(
1− (1− pfull)(1− u1)

r

)r
≤ exp(−(1− pfull)(1− u1)),

185

and

C =

(
1− pfull −

(1− pfull)(1− u1)

r

)r
= (1− pfull)

r

(
1− 1− u1

r

)r
≤ (1− pfull)

r0 exp(u1 − 1).

Suppose we define ut+1 = ut+2 = . . . = 0. The bounds for B and D are as follows.

B =
∞∏
s=1

(1− (1− ppartial)(us − us+1))

=

t0−1∏
s=1

(1− (1− ppartial)(us − us+1)) ·
∞∏
s=t0

(1− (1− ppartial)(us − us+1))

≤
t0−1∏
s=1

(1− (1− ppartial)(us − us+1)) ·
∞∏
s=t0

exp(−(1− ppartial)(us − us+1))

=

t0−1∏
s=1

(1− (1− ppartial)(us − us+1)) · exp

(
−(1− ppartial)

∞∑
s=t0

(us − us+1)

)

=

t0−1∏
s=1

(1− (1− ppartial)(us − us+1)) · exp (−(1− ppartial)ut0) .

186

Similarly, we have

D =
∞∏
s=1

(1− us + (1− ppartial)us+1)

=

t0−1∏
s=1

(1− us + (1− ppartial)us+1) ·
∞∏
s=t0

(1− us + (1− ppartial)us+1)

=

t0−1∏
s=1

(1− us + (1− ppartial)us+1) · (1− ut0 + (1− ppartial)ut0+1)

×
∞∏

s=t0+1

(1− us + (1− ppartial)us+1)

≤
t0−1∏
s=1

(1− us + (1− ppartial)us+1) · (1− ut0 + (1− ppartial)ut0+1)

×
∞∏

s=t0+1

exp(−us + (1− ppartial)us+1)

=

t0−1∏
s=1

(1− us + (1− ppartial)us+1) · (1− ut0 + (1− ppartial)ut0+1)

× exp(−ut0+1)
∞∏

s=t0+1

exp(−ppartialus+1)

≤
t0−1∏
s=1

(1− us + (1− ppartial)us+1) · (1− ut0 + (1− ppartial)ut0+1) · exp(−ut0+1).

Now let f(ut0+1) := (1 − ut0 + (1 − ppartial)ut0+1) · exp(−ut0+1) be a function of

ut0+1 ∈ [0, ut0]. Note that f ′(ut0+1) = exp(−ut0+1)((ppartial− 1)ut0+1 + ut0 − ppartial).

If ut0 ≤ ppartial, f
′(ut0+1) ≤ 0 in the range [0, ut0] and hence, f(ut0+1) achieves the

maximum value of f(0) = 1 − ut0 . If ut0 > ppartial, observe that f ′(0) > 0 and f ′

is decreasing on [0, ut0]. Also, f ′ = 0 at ut0+1 =
ut0−ppartial
1−ppartial

∈ [0, ut0]. Thus, in this

187

case, f gets the maximum value of

f

(
ut0 − ppartial

1− ppartial

)
= (1− ppartial) exp((ut0 − ppartial)/(ppartial − 1)).

We have showed the following bound.

Lemma 6.5.3. For any fixed values of (pfull, ppartial), r0, t0 ≥ 1 and 1 ≥ u1 ≥ . . . ≥

ut0 ≥ 0, we have

AB + CD ≤ F (r, u1, . . . , ut0),

where

F (r, u1, . . . , ut0) :=


(

1− (1−pfull)(1−u1)
r

)r
α +

(
1− pfull − (1−pfull)(1−u1)

r

)r
β if r < r0

e−(1−pfull)(1−u1)α + (1− pfull)
r0eu1−1β if r = r0

,

α :=

t0−1∏
s=1

(1− (1− ppartial)(us − us+1)) · e−(1−ppartial)ut0 ,

β :=

t0−1∏
s=1

(1− us + (1− ppartial)us+1) ·


1− ut0 if ut0 ≤ ppartial

(1− ppartial)e
ut0
−ppartial

ppartial−1 if ut0 > ppartial

This implies that, given any r0, t0 ≥ 1, the (expected) approximation ratio of our

algorithm is at most

1 + max
r∈{1,2,...,r0}

1≥u1≥...≥ut0≥0

Ep [F (r, u1, . . . , ut0)] .

188

6.5.3 Computer-assisted analysis

By Lemma 6.5.3, to obtain the approximation ratio, we still need to solve the

following (non-linear) optimization program:

max
r∈{1,2,...,r0}

1≥u1≥...≥ut0≥0

Ep[F (r, u1, . . . , ut0)]. (6.1)

We now choose the following parameters: pfull := 0.43, ppartial := 0.055, r0 := 5, and

t0 := 7. Using Mathematica’s NMaximize function to solve the above optimization

program numerically, we get that F achieves a maximum value of 0.595057 at r =

1, u1 = 0.519441, u2 = 0.399257, u3 = 0.29198, u4 = 0.198005, u5 = 0.117735, u6 =

0.0515877, u7 = 0. Unfortunately, since our problem is non-linear, Mathematica

does not guarantee to return a global maximum. To get a more rigorous proof, we

write another Java program to solve (6.1).

The high-level idea is to discretize the domain of F and use interval arithmetic

to estimate an upper-bound of F on such small intervals. In particular, for a fixed

value of r ∈ {1, . . . , r0}, we divide the interval [0, 1] (i.e., the domain of u1, . . . , ut0)

into M = 10000 small segments of size ε = 1/M . Recall that F (u1, . . . , ut0) = S0+S1

where both S0 and S1 can be written as a product (of t0 + 1 factors) in which

each factor only depends on two “consecutive” variables us and us+1. Note that

S0, S1 ∈ [0, 1]. For any vector u, let S0(s) and S1(s) denote the product of the first

s factors of S0 and S1, respectively. To obtain an upper-bound on F , we can use the

189

following dynamic programming algorithm. Let G(s, i, j) be the maximum value of

S1(s) for all 1 ≥ u1 ≥ . . . ≥ us ≥ 0, where 0 ≤ i, j ≤ M − 1, us ∈ [i/M, (i+ 1)/M],

and S0(s) ∈ [j/M, (j+1)/M]. Now one can easily compute G (recursively) in O(M3)

time. By definition of G, we have

F ≤ max
0≤i,j≤M−1

{
j + 1

M
+G(t0, i, j)

}
.

With a few other minor improvements, our program outputs the value of 0.59666972

after about one hour on a personal computer with a 2.3GHz Intel CPU and 16GB

Memory. Thus, we proved the following theorem.

Theorem 6.5.1. For pfull = 0.43, ppartial = 0.055, Round2 returns a solution S

such that, for any j ∈ V , we have

1. cost(j) ≤ 3R,

2. E[cost(j)] ≤ 1.59667R.

The above result can be slightly improved by randomly picking (pfull, ppartial)

before running Round2. The authors in [85] showed that if these two parameters

are drawn as

(pfull, ppartial) =


(0.4525, 0) with probability p = 0.773436

(0.0480, 0.3950) with probability 1− p
,

then E[cost(j)] ≤ 1.592R for all j ∈ V .

190

Chapter 7: A Lottery Model for Center-type Problems With Outliers

7.1 Overview

In this chapter, we address several issues naturally arising in the standard

center-type problems. First, it is not difficult to see that a few outliers (i.e., very

distant clients) may result in a very large optimal radius in the center-type problems.

This issue was raised by Charikar et. al. [60], who proposed a robust model in which

we are given a parameter t and only need to serve t out of given n clients (i.e. n− t

outliers may be ignored in the solution). Here we consider three robust center-type

problems: the Robust k-Center (RkCenter) problem, the Robust Knapsack Center

(RKnapCenter) problem, and the Robust Matroid Center (RMatCenter) problem.

Formally, an instance I of the RkCenter problem consists of a set V of vertices,

a metric distance d on V , an integer k, and an integer t. Let n = |V | denote the

number of vertices (clients). The goal is to choose a set S ⊆ V of centers (facilities)

such that (i) |S| ≤ k, (ii) there is a set of covered vertices (clients) C ⊆ V of size at

least t, and (iii) the objective function

R := max
j∈C

min
i∈S

d(i, j)

191

is minimized.

In the RKnapCenter problem, we are given a budget B > 0 instead of k. In

addition, each vertex i ∈ V has a weight wi ∈ R+. The cardinality constraint (i)

is replaced by the knapsack constraint:
∑

i∈S wi ≤ B. Similarly, in the RMatCenter

problem, the constraint (i) is replaced by a matroid constraint: S must be an

independent set of a given matroid M. Here we assume that we have access to the

rank oracle of M.

In [60], the authors introduced a greedy algorithm for the RkCenter problem

that achieves an approximation ratio of 3. Recently, Chakrabarty et. al. [64] (inde-

pendently) give a 2-approximation algorithm for this problem. Since the k-center

problem is a special case of the RkCenter problem, this ratio is best possible unless

P=NP.

The RKnapCenter problem was first studied by Chen et. al. [59]. In [59], the

authors show that one can achieve an approximation ratio of 3 if allowed to slightly

violate the knapsack constraint by a factor of (1 + ε). It is still unknown whether

there exists a true approximation algorithm for this problem. The current inapprox-

imability bound is still 3 due to the hardness of the Knapsack Center problem.

The current best approximation guarantee for the RMatCenter problem is 7 by

Chen et. al. [59]. This problem has a hardness result of (3− ε) via a reduction from

the k-supplier problem.

From a practical viewpoint, unfairness arises inevitably in the robust model:

some clients will always be considered as outliers and hence not covered within the

guaranteed radius. To address this issue, we introduce a lottery model for these

192

problems. The idea is to randomly pick a solution from a public list such that

each client j ∈ V is guaranteed to be covered with probability at least pj, where

pj ∈ [0, 1] is the success rate requested by j. In this paper, we introduce new

approximation algorithms for these problems under this model. We also propose

improved approximation algorithms for the RkCenter problem and the RMatCenter

problem.

7.1.1 The Lottery Model

In this subsection, we formally define our lottery model for the above-mentioned

problems. First, the Fair Robust k-Center (FRkCenter) problem is formulated as

follows. Besides the parameters V, d, k and t, each vertex j ∈ V has a “target”

probability pj ∈ [0, 1]. We are interested in the minimum radius R for which there

exists a distribution D on subsets of V such that any set S drawn from D satisfies

the following constraints:

Coverage constraint: |C| ≥ t, where C is the set of all clients in V that are within

radius R from some center S,

Fairness constraint: Pr[j ∈ C] ≥ pj for all j ∈ V ,

Cardinality constraint: |S| ≤ k.

Here we aim for a polynomial-time, randomized algorithm that can sample from D.

Note that the RkCenter is a special of this variant in which all pj’s are set to be zero.

The Fair Robust Knapsack Center (FRKnapCenter) problem and Fair Robust

Matroid Center (FRMatCenter) problem are defined similarly except that we replace

193

the cardinality constraint by a knapsack constraint and a matroid constraint, respec-

tively. More formally, in the FRKnapCenter problem, we are given a budget B ∈ R+

and each vertex i has a weight wi ∈ R+. We require the total weight of centers in S

to be at most B with probability one. Similarly, in the FRMatCenter problem, we

are given a matroid M and we require the solution S to be an independent set of

M with probability one.

7.1.2 Our contributions and techniques

First of all, we give tight approximation algorithms for the RkCenter and RMat-

Center problems.

Theorem 7.1.1. There exist a 2-approximation algorithm for the RkCenter problem

1 and a 3-approximation algorithm for the RMatCenter problem.

Our main results for the lottery model are summarized in the following theo-

rems.

Theorem 7.1.2. For any ε > 0 and any instance I = (V, d, k, t, ~p) of the FRkCenter

problem, there is a randomized algorithm A which can compute a random solution

S such that

• |S| ≤ k with probability one,

• |C| ≥ (1 − ε)t, where C is the set of all clients within radius 2R from some

center in S and R is the optimal radius,

1A 2-approximation algorithm has also been found independently by Chakrabarty et. al. [64],
and in a private discussion between Marek Cygan and Samir Khuller. Our algorithm here is
different from the algorithm in [64].

194

• Pr[j ∈ C] ≥ (1− ε)pj for all j ∈ V .

Theorem 7.1.3. For any ε > 0 and any instance I = (V, d, w,B, t, ~p) of the FRK-

napCenter problem, there is a randomized algorithm A which can return random

solution S such that

• ∑i∈S wi ≤ (1 + ε)B with probability one,

• |C| ≥ t, where C is the set of vertices within distance 3R from some vertex in

S,

• Pr[j ∈ C] ≥ pj for all j ∈ V .

Finally, the FRMatCenter can be reduced to (randomly) rounding a point in a

matroid intersection polytope. We design a rounding algorithm which can output a

pseudo solution, consisting of a basis plus one extra center. By using a preprocessing

step and solving a configuration LP, we can satisfy the matroid constraint exactly

(respectively, knapsack constraint) while slightly violating the coverage and fairness

constraints in the FRMatCenter (respectively, FRKnapCenter) problem.

Theorem 7.1.4. For any γ > 0 and any instance I = (V, d,M, t, ~p) of the FR-

MatCenter (respectively, FRKnapCenter) problem, there is a randomized algorithm A

which can return a random solution S such that

• S is a basis ofM with probability one, (respectively, w(S) ≤ B with probability

one)

195

• |C| ≥ t − γ2n, where C is the set of vertices within distance 3R from some

vertex in S,

• there exists a set T ⊆ V of size at least (1− γ)n, which is deterministic, such

that Pr[j ∈ C] ≥ pj − γ for all j ∈ T .

7.1.3 Organization

The rest of this chapter is organized as follows. In the next section, we re-

view some basic properties of matroids and discuss a filtering algorithm which is

used in later algorithms. Then we develop rounding algorithms for the FRkCenter,

FRKnapCenter, and FRMatCenter in the next sections.

7.2 Preliminaries

7.2.1 Matroid polytopes

We first review a few basic facts about matroid polytopes. For any vector z

and set S, we let z(S) denote the sum
∑

i∈S zi. LetM be any matroid on the ground

set Ω and rM be its rank function. The matroid base polytope of M is defined by

PM :=
{
x ∈ RΩ : x(S) ≤ rM(S) ∀S ⊆ Ω; x(Ω) = rM(Ω); xi ≥ 0 ∀i ∈ Ω

}
.

Definition 7.2.1. Suppose Ax ≤ b is a valid inequality of PM. A face D of PM

(corresponding to this valid inequality) is the set D := {x ∈ PM : Ax = b} .

196

The following theorem gives a characterization for any face of PM (See, e.g.,

[88]).

Theorem 7.2.1. Let D be any face of PM. Then it can be characterized by

D =
{
x ∈ RΩ : x(S) = rM(S) ∀S ∈ L; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and L is a chain family of sets: L1 ⊂ L2 ⊂ . . . ⊂ Lm. Moreover,

it is sufficient to choose L as any maximal chain L1 ⊂ L2 ⊂ . . . ⊂ Lm such that

x(Li) = rM(Li) for all i = 1, 2, . . . ,m.

Proposition 7.2.1. Let x ∈ PM be any point and I be the set of all tight constraints

of PM on x. Suppose D is the face with respect to I. Then one can compute a chain

family L for D as in Theorem 7.2.1 in polynomial time.

Proof. Recall that rM is a submodular function. Then observe that the function

r′M(S) = rM(S) − x(S) for S ⊆ Ω is also submodular. It is well-known that

submodular minimization can be done in polynomial time. We solve the following

optimization problem: min {r′M(S) : S ⊆ Ω}. If there are multiple solutions, we let

S0 be any solution of minimal size. (This can be done easily, say, by trying to drop

each item from the current solution and resolving the program.) We add S0 to our

chain. Then we find some minimal superset S1 of S0 such that r′M(S1) = 0, add S1

to our chain, and repeat the process.

197

Corollary 7.2.1. Let D be any face of PM. Then it can be characterized by

D =
{
x ∈ RΩ : x(S) = bS ∀S ∈ Ø; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and Ø is a family of pairwise disjoint sets: O1, O2, . . . , Om, and

bO1 , . . . , bOm are some constants.

Proof. By Theorem 7.2.1, we have that

D =
{
x ∈ RΩ : x(S) = rM(S) ∀S ∈ L; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and L is the chain: L1 ⊂ L2 ⊂ . . . ⊂ Lm. Now let us define O1 :=

L1, O2 := L2 \ L1, O3 := L3 \ L2, . . . , Om := Lm \ Lm−1, and bO1 := rM(L1), bO2 :=

rM(L2)− rM(L1), . . . , bOm := rM(Lm)− rM(Lm−1). It is not difficult to verify that

D =
{
x ∈ RΩ : x(S) = bS ∀S ∈ Ø; xi = 0 ∀i ∈ J ; x ∈ PM

}
.

7.2.2 Filtering algorithm

All algorithms in this chapter are based on rounding an LP solution. In general,

for each vertex i ∈ V , we have a variable yi ∈ [0, 1] which represents the probability

that we want to pick i in our solution. (In the standard model, yi is the “extent”

that i is opened.) In addition, for each pair of i, j ∈ V , we have a variable xij ∈ [0, 1]

198

which represents the probability that j is connected to i.

Note that in all center-type problems, the optimal radius R is always the

distance between two vertices. Therefore, we can always “guess” the value of R in

O(n2) time. WLOG, we may assume that we know the correct value of R. For any

j ∈ V , we let Fj := {i ∈ V : d(i, j) ≤ R ∧ xij > 0} and sj :=
∑

i∈V :d(i,j)≤R xij.

We shall refer to Fj as a cluster with cluster center j. Depending on a specific

problem, we may have different constraints on xij’s and yi’s. In general, the following

constraints are valid in most of the problems here:

∑
j∈V

∑
i∈V :d(i,j)≤R

xij ≥ t, (7.1)

∑
i∈V :d(i,j)≤R

xij ≤ 1, ∀j ∈ V, (7.2)

xij ≤ yi, ∀i, j ∈ V, (7.3)

yi, xij ≥ 0, ∀i, j ∈ V. (7.4)

For the fair variants, we may also require that

∑
i∈V :d(i,j)≤R

xij ≥ pj, ∀j ∈ V. (7.5)

Constraint (7.1) says that at least t vertices should be covered. Constraint

(7.2) ensures that each vertex is only connected to at most one center. Constraint

(7.3) means vertex j can only connect to center i if it is open. Constraint (7.5) says

that the total probability of j being connected should be at least pj. By constraints

199

(7.2) and (7.3), we have y(Fj) ≤ 1.

The first step of all algorithms in this chapter is to use the following filtering

algorithm to obtain a maximal collection of disjoint clusters. The algorithm will

return the set V ′ of cluster centers of the chosen clusters. In the process, we also

keep track of the number cj of other clusters removed by Fj for each j ∈ V ′.

Algorithm 21 RFiltering (x, y)

1: V ′ ← ∅
2: for each unmarked cluster Fj in decreasing order of sj =

∑
i∈V :d(i,j)≤R xij

do
3: V ′ ← V ′ ∪ {j}
4: Set all unmarked clusters Fk (including Fj itself) s.t. Fk ∩Fj 6= ∅ as marked.
5: Let cj be the number of marked clusters in this step.
6: ~c← (cj : j ∈ V ′)
7: return (V ′,~c)

7.3 The k-center problems with outliers

In this section, we first give a simple 2-approximation algorithm for the RkCen-

ter problem. Then, we give an approximation algorithm for the FRkCenter problem,

proving Theorem 7.1.2.

7.3.1 The robust k-center problem

Suppose I = (V, d, k, t) is an instance the RkCenter problem with the opti-

mal radius R. Consider the polytope PRkCenter containing points (x, y) satisfying

200

constraints (7.1)–(7.4), and the cardinality constraint:

∑
i∈V

yi ≤ k. (7.6)

Since R is the optimal radius, it is not difficult to check that PRkCenter 6= ∅. Let us

pick any fractional solution (x, y) ∈ PRkCenter. The next step is to round (x, y) into

an integral solution using the following simple algorithm.

Algorithm 22 RkCenterRound (x, y)

1: (V ′,~c)← RFiltering (x, y) .
2: S ← the top k vertices i ∈ V ′ with highest value of ci.
3: return S

Analysis. By construction, the algorithm returns a set S of k open centers.

Note that, for each i ∈ S, ci is the number of distinct clients within radius 2R from

i. Thus, it suffices to show that
∑

i∈S ci ≥ t. By inequality (7.2), we have that

sj ≤ 1 for all j ∈ V ′. Thus,

∑
i∈V ′

cisi ≥
∑
i∈V

si ≥ t,

where the first inequality is due to the greedy choice of vertices in V ′ and the second

inequality follows by (7.1). Now recall that the clusters whose centers in V ′ are

pairwise disjoint. By constraint (7.6), we have

∑
i∈V ′

si ≤
∑
i∈V ′

y(Fi) ≤
∑
i∈V

yi ≤ k.

It follows by the choice of S that
∑

i∈S ci ≥ t. This concludes the first part of

201

Theorem 7.1.1.

7.3.2 The fair robust k-center problem

Assume I = (V, d, k, t, ~p) be an instance of the FRkCenter problem with the op-

timal radius R. Fix any ε > 0. If k ≤ 2/ε, then we can generate all possible O
(
n1/ε

)
solutions and then solve an LP to obtain the corresponding marginal probabilities.

So the problem can be solved easily in this case. We will assume that k ≥ 2/ε for

the rest of this section. Consider the polytope PFRkCenter containing points (x, y)

satisfying constraints (7.1)–(7.4), the fairness constraint (7.5), and the cardinality

constraint (7.6). We now show that PFRkCenter is actually a valid relaxation polytope.

Proposition 7.3.1. We have that PFRkCenter 6= ∅.

Proof. It suffices to point out a solution (x, y) ∈ PFRkCenter. Since R is the optimal

radius, there exists a distribution D satisfying the coverage, fairness, and cardinality

constraints. Suppose S is sampled from D and C is the set of all clients in V that are

within radius R from some center S. We now set yi := Pr[i ∈ S] for all i ∈ V . Since

|S| ≤ k with probability one, we have
∑

i∈V yi = E[|S|] ≤ k, and hence constraint

(7.6) is valid.

We construct the assignment variable x as follows. For each j ∈ V , let Sj :=

{i : d(i, j) ≤ R}, zj := 0. Then for each i ∈ Sj, set xij := min{yi, 1−zj} and update

zj := zj + xij. We repeat the process for all vertices in Sj. It is not hard to see that

inequalities (7.2) and (7.3) hold by this construction. Now let us fix any j ∈ V . By

202

fairness guarantee of D and the union bound, we have

pj ≤ Pr[j ∈ C] ≤
∑

i∈V :d(i,j)≤R

yi.

Thus, by construction of x, we have

∑
i∈V :d(i,j)≤R

xij ≥ Pr[j ∈ C] ≥ pj,

and hence inequality (7.5) is satisfied. Finally, we have

E[|C|] =
∑
j∈V

Pr[j ∈ C] ≤
∑
j∈V

∑
i∈V :d(i,j)≤R

xij.

Since |C| ≥ t with probability one, E[|C|] ≥ t, implying that inequality (7.1) holds.

Fix any small parameter ε > 0. Our algorithm is as follows.

Algorithm 23 FRkCenterRound (ε, x, y)

1: (V ′,~c)← RFiltering (x, y) .
2: for each j ∈ V ′ do
3: y′j ← (1− ε)∑i∈Fj xij
4: while y′ still contains ≥ 3 fractional values in (0, 1) do
5: Let δ ∈ RV ′ , δ 6= 0 be such that δi = 0 ∀i ∈ V ′ : y′i ∈ {0, 1}, δ(V ′) = 0, and

~c · δ = 0.
6: Choose scaling factors a, b > 0 such that

• y′ + aδ ∈ [0, 1]V
′

and y′ − bδ ∈ [0, 1]V
′

• there is at least one new entry of y′ + aδ which is equal to zero or one
• there is at least one new entry of y′ − bδ which is equal to zero or one

7: With probability b
a+b

, update y′ ← y′ + aδ; else, update y′ ← y′ − bδ.
8: return S = {i ∈ V : y′i > 0}.

Analysis. First, note that one can find such a vector δ in line 5 as the system

203

of δ(V ′) = 0 and ~c · δ = 0 consists of two constraints and at least 3 variables (and

hence is underdetermined.) By construction, at least one more fractional variable

becomes rounded after each iteration. Thus, the algorithm terminates after O(n)

rounds. Let S denote the (random) solution returned by FRkCenterRound and

C be the set of all clients within radius 3R from some center in S. Theorem 7.1.2

can be verified by the following propositions.

Proposition 7.3.2. |S| ≤ k with probability one.

Proof. By definition of y′ at line 2 of FRkCenterRound, we have

y′(V ′) =
∑
j∈V ′

y′j = (1− ε)
∑
j∈V ′

∑
i∈Fj

xij

≤ (1− ε)
∑
j∈V ′

∑
i∈Fj

yi ≤ (1− ε)k ≤ k − 2,

since k ≥ 2/ε. Note that the sum y′(V ′) is never changed in the while loop (lines

4 . . . 7) because δ(V ′) = 0. Then the final vector y′ contains at most two fractional

values at the end of the while loop. By rounding these two values to one, the size

of S is indeed at most k.

Proposition 7.3.3. |C| ≥ (1− ε)t with probability one.

Proof. At the beginning of the while loop, we have

~c · y′ =
∑
j∈V ′

cjy
′
j(Fj) = (1− ε)

∑
j∈V ′

cjsj ≥ (1− ε)
∑
j∈V

sj ≥ (1− ε)t.

Again, the quantity ~c · y′ is unchanged in the while loop because ~c · δ = 0 implies

204

that ~c · (y′ + aδ) = ~c · y′ and ~c · (y′ − bδ) = ~c · y′ in each iteration. Note that if

y′ ∈ {0, 1}V ′ , then ~c · y′ is the number of clients within radius 2R from some center

i such that y′i = 1. Basically, we round the two remaining fractional values of y′ to

one in line 8; and hence, the dot product should be still at least (1− ε)t.

Proposition 7.3.4. Pr[j ∈ C] ≥ (1− ε)pj for all j ∈ V .

Proof. Fix any j ∈ V . The algorithm RFiltering guarantees that there exists

k ∈ V ′ such that Fj ∩ Fk 6= ∅ and sk ≥ sj. Now we claim that E[y′k] = y′k. This is

because the expected value of y′k does not change after any single iteration:

E[y′k] = (y′k + aδ)
b

a+ b
+ (y′k − bδ)

a

a+ b
= y′k.

Then we have that

Pr[k ∈ S] = Pr[y′k > 0] ≥ Pr[y′k = 1] = E[y′k] = y′k = (1− ε)sk.

Therefore,

Pr[j ∈ C] ≥ Pr[k ∈ S] ≥ (1− ε)sk ≥ (1− ε)sj ≥ (1− ε)pj,

by constraint (7.5).

205

7.4 The Knapsack Center problems with outliers

We study the RKnapCenter and FRKnapCenter problems in this section. Recall

that in these problems, each vertex has a weight and we want to make sure that

the total weight of the chosen centers does not exceed a given budget B. We first

give a 3-approximation algorithm for the RKnapCenter problem that slightly violates

the knapsack constraint. Although this is not better than the known result by [59],

both our algorithm and analysis here are more natural and simpler. It serves as a

starting point for the next results. For the FRKnapCenter, we show that it is possible

to satisfy the knapsack constraint exactly with small violations in the coverage and

fairness constraints.

7.4.1 The robust knapsack center problem

Suppose I = (V, d, w,B, t) is an instance the RKnapCenter problem with the

optimal radius R. Consider the polytope PRKnapCenter containing points (x, y) satis-

fying constraints (7.1)–(7.4), and the knapsack constraint:

∑
i∈V

wiyi ≤ B. (7.7)

Again, it is not difficult to check that PRKnapCenter 6= ∅. Let us pick any frac-

tional solution (x, y) ∈ PRKnapCenter. Our pseudo-approximation algorithm to round

(x, y) is as follows.

Analysis. We first claim that P ′ 6= ∅ which implies that the extreme point Y of P ′

206

Algorithm 24 RKnapCenterRound (x, y)

1: (V ′,~c)← RFiltering (x, y) .
2: For each i ∈ V ′, let vi ← arg minj∈Fi{wj} be the vertex with smallest weight in
Fi

3: Let P ′ :=
{
z ∈ [0, 1]V

′
:
∑

i∈V ′ cizi ≥ t ∧ ∑
i∈V ′ wvizi ≤ B

}
4: Compute an extreme point Y of P ′
5: return S = {vi : i ∈ V, Yi > 0}

(in line 4) does exist. To see this, let zi := si for all i ∈ V ′. Then we have

∑
i∈V ′

cizi =
∑
i∈V ′

cisi ≥
∑
i∈V

si ≥ t.

Also,

∑
i∈V ′

wvizi =
∑
i∈V ′

wvisi

=
∑
i∈V ′

wvi
∑
j∈Fi

xji

≤
∑
i∈V ′

wvi
∑
j∈Fi

yj

≤
∑
i∈V ′

∑
j∈Fi

wjyj ≤
∑
i∈V

wiyi ≤ B.

All the inequalities follow from LP constraints and definitions of si, ci, and vi. Thus,

z ∈ P ′, implying that P ′ 6= ∅.

Proposition 7.4.1. RKnapCenterRound returns a solution S such that w(S) ≤

B + 2wmax and |C| ≥ t, where C is the set of vertices within distance 3R from some

vertex in S and wmax is the maximum weight of any vertex in V .

Proof. First, observe that any extreme point of P ′ has at most 2 fractional values.

207

(In the worst case, an extreme point z is fully determined by |V ′|−2 tight constraints

of the form zi = 0 or zi = 1,
∑

i∈V ′ cizi = t, and
∑

i∈V ′ wvizi = B.) By construction

of S, we may also pick at most 2 vertices i∗, i∗∗ that Yi∗ , Yi∗∗ are fractional. Thus,

w(S) =
∑

i∈S\{i∗,i∗∗}

wviYi + wi∗ + wi∗∗ ≤ B + 2wmax.

Recall that for each i ∈ V ′, there are ci clients at distance ≤ 2R from i (and

each client is counted only one time.) By triangle inequality, these clients are within

distance 3R from vi. Thus, S will cover at least

∑
i∈S\{i∗,i∗∗}

ciYi + ci∗ + ci∗∗ ≥
∑
i∈S

ciYi ≥ t,

clients within radius 3R.

7.4.2 The fair robust knapsack center problem

In this section, we will first consider a simple algorithm that only violates the

knapsack constraint by two times the maximum weight of any vertex. Then using

a configuration polytope to “condition” on the set of “big” vertices, we show that

it is possible to either violate the budget by (1 + ε) or to preserve the knapsack

constraint while slightly violating the coverage and fairness constraints.

208

7.4.2.1 Basic algorithm

Suppose I = (V, d, w,B, t, ~p) is an instance the FRKnapCenter problem with

the optimal radius R. Consider the polytope PFRKnapCenter containing points (x, y)

satisfying constraints (7.1)–(7.4), the fairness constraint (7.5), and the knapsack con-

straint (7.7). The proof that PFRKnapCenter 6= ∅ is very similar to that of Proposition

7.3.1 and is omitted here.

The following algorithm is a randomized version of RKnapCenterRound.

Algorithm 25 BasicFRKnapCenterRound (x, y)

1: (V ′,~c)← RFiltering (x, y) .
2: For each i ∈ V ′ let vi := arg minj∈Fi{wj} be the vertex with smallest weight in
Fi

3: Let P ′ :=
{
z ∈ [0, 1]V

′
:
∑

i∈V ′ cizi ≥ t ∧ ∑
i∈V ′ wvizi ≤ B

}
4: Let zi ← si for all i ∈ V ′. Write z as a convex combination of extreme points
z(1), . . . , z(n+1) of P ′:

z = p1z
(1) + . . .+ pn+1z

(n+1),

where
∑

` p` = 1 and p` ≥ 0 for all ` ∈ [n+ 1].
5: Randomly choose Y ← z` with probability p`.
6: return S = {vi : i ∈ V, Yi > 0}

Analysis. It is not hard to verify that P ′ 6= ∅ (see the analysis in Section 7.4.1).

This means that the decomposition at line 4 can be done.

Proposition 7.4.2. The algorithm BasicFRKnapCenterRound returns a ran-

dom solution S such that w(S) ≤ B + 2wmax, |C| ≥ t, and Pr[j ∈ C] ≥ pj for all

j ∈ V , where C is the set of vertices within distance 3R from some vertex in S and

wmax is the maximum weight of any vertex in V .

Proof. With similar arguments as in the proof of Proposition 7.4.1, we have that

w(S) ≤ B + 2wmax and |C| ≥ t. To obtain the fairness guarantee, observe that

209

vi ∈ S with probability at least zi = si. For any j ∈ V , let k ∈ V ′ be the vertex

that removed j in the filtering step. We have

Pr[j ∈ C] ≥ Pr[vk ∈ S] ≥ sk ≥ sj ≥ pj,

where the penultimate inequality is due to our greedy choice of k in RFiltering.

7.4.2.2 An algorithm slightly violating the budget constraint

Fix a small parameter ε > 0. A vertex i is said to be big iff wi > εB. Then

there can be at most 1/ε big vertices in a solution. Let U denote the collection of all

possible sets of big vertices. We have that |U| ≤ nO(1/ε). Consider the configuration

210

polytope Pconfig1 containing points (x, y, q) with the following constraints:



∑
U∈U qU = 1

∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V, U ∈ U

∑
U∈U

∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V, U ∈ U

∑
i∈V wiy

U
i ≤ qUB ∀U ∈ U

∑
j∈V
∑

i∈V :d(i,j)≤R x
U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U

yUi = 0 ∀U ∈ U , i ∈ V \ U,wi > 1/ε

xUij, y
U
i , qU ≥ 0 ∀i, j ∈ V, U ∈ U

We first claim that Pconfig1 is a valid relaxation polytope for the problem.

Proposition 7.4.3. We have that Pconfig1 6= ∅.

Proof. Fix any optimal distribution D. Suppose S is sampled from D. For any

U ∈ U , set qU to be the probability that U ⊆ S and S \ U contains no big vertex.

Then it is clear that
∑

U∈U qU = 1. Let E(U) denote this event. Let xUij be probability

of the joint event: E(U) and j is connected to i. Finally, let yUi be the probability

of the joint event: E(U) and i ∈ S.

211

Now observe that

qU = Pr[E(U)]

≥ Pr[E(U) ∧ j is connected]

=
∑

i∈V :d(i,j)≤R

Pr[j is connected to i ∧ E(U)]

=
∑

i∈V :d(i,j)≤R

xUij.

Similarly,

pj ≤ Pr[j is connected]

=
∑
U∈U

Pr[j is connected ∧ E(U)]

=
∑
U∈U

∑
i∈V :d(i,j)≤R

Pr[j is connected to i ∧ E(U)]

=
∑
U∈U

∑
i∈V :d(i,j)≤R

xUij.

Note that xUij/qU and yUi /qU are the probabilities that j is connected to i and

i ∈ S conditioned on E(U), respectively. Since the number of connected clients is

212

at least t with probability one, we have

t ≥ E[# connected clients|E(U)]

=
∑
j∈V

Pr[j is served|E(U)]

=
∑
j∈V

∑
i∈V :d(i,j)≤R

Pr[j is connected to i|E(U)]

=
∑
j∈V

∑
i∈V :d(i,j)≤R

xUij/qU .

Similarly, since w(S) ≤ B with probability one, we have

B ≥ E[w(S)|U] =
∑
i∈V

wi(y
U
i /qU).

The other constraints can be verified easily. We conclude that (x, y, q) ∈ Pconfig1 and

Pconfig1 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig1 and use the following algorithm to

round it.

Algorithm 26 FRKnapCenterRound1 (x, y, q)

1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: return S = BasicRFKnapCenterRound (x′, y′)

We are now ready to prove Theorem 7.1.3.

Proof of Theorem 7.1.3. We will show that FRKnapCenterRound1 will return a

solution S with properties in Theorem 7.1.3. Let E(U) denote the event that U ∈ U

is picked in the algorithm. Note that (x′, y′) satisfies the following constraints:

213

∑
j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,

∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈V

wiy
′
i ≤ B.

Moreover, y′i = 1 for all i ∈ U and y′i = 0 for all i ∈ V \U and wi > εB. Thus,

the two extra fractional vertices opened by BasicFRKnapCenterRound will

have weight at most εB. By Proposition 7.4.2, we have w(S) ≤ B+2εB = (1+2ε)B.

Moreover, conditioned on U , we have

Pr[j ∈ C|E(U)] ≥
∑

i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU .

Thus, by definition of Pconfig1 and our construction of S, we get

Pr[j ∈ C] =
∑
U∈U

Pr[j ∈ C|E(U)] Pr[E(U)]

≥
∑
U∈U

∑
i∈V :d(i,j)≤R

xij

≥ pj.

214

7.4.2.3 An algorithm that satisfies the knapsack constraint exactly

Let ε > 0 a small parameter to be determined. Let U denote the collection

of all possible sets of verticies with size at most d1/εe. We have that |U| ≤ nO(1/ε).

Suppose R is the optimal radius to our instance. Given a set U ∈ U , we say that

vertex j ∈ V is blue if there exists i ∈ U such that d(i, j) ≤ 3R. Otherwise, vertex

i is said to be red. For any i ∈ V , let RBall(i, U,R) denote the set of red vertices

within radius 3R from i:

RBall(i, U,R) := {j ∈ V : (d(i, j) ≤ 3R ∧ @k ∈ U : d(k, j) ≤ 3R)}.

Consider the configuration polytope Pconfig2 containing points (x, y, q) with the

215

following constraints:



∑
U∈U qU = 1

∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V, U ∈ U

∑
U∈U

∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V, U ∈ U

∑
i∈V wiy

U
i ≤ qUB ∀U ∈ U

∑
j∈V
∑

i∈V :d(i,j)≤R x
U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U

yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn

xUij, y
U
i , qU ≥ 0 ∀i, j ∈ V, U ∈ U

We first claim that Pconfig2 is a valid relaxation polytope for the problem.

Proposition 7.4.4. We have that Pconfig2 6= ∅.

Proof. Suppose S is a solution drawn from the optimal distribution D. We now

compute a subset US of S using the following procedure. Initially, set US := ∅ and

all vertices in V are marked as red. While there exists i ∈ S such that there are at

least εn red vertices within radius 3R from i (i.e., |RBall(i, US , R)| ≥ εn), pick any

such vertex i, breaking ties by choosing the one with smallest index. Then we set

US := US ∪ {i}, mark all vertices within radius 3R from i as blue, and repeat the

process.

216

Note that for all i ∈ S \ US , we have |RBall(i, US , R)| < εn by the condition

of the while-loop. Moreover, we have |US | ≤ d1/εe so US ∈ U . (Suppose |US | > 1/ε.

For each i ∈ US , there are at least εn red vertices turned into blue by i in the

procedure. This implies that there are more than (1/ε)× εn = n vertices, which is

a contradiction.)

Now for any U ∈ U , we set qU := Pr[US = U]. Let xUij be probability of the

joint event: US = U and j is connected to i. Finally, let yUi be the probability of the

joint event: US = U and i ∈ S. Then it is clear that
∑

U∈U qU = 1. Using similar

arguments as in the proof of Proposition 7.4.3, we have the following inequalities:

∑
i∈V :d(i,j)≤R

xUij ≤ qU , ∀j ∈ V, U ∈ U

∑
U∈U

∑
i∈V :d(i,j)≤R

xUij ≥ pj, ∀j ∈ V

∑
i∈V

wiy
U
i ≤ qUB, ∀U ∈ U

∑
j∈V

∑
i∈V :d(i,j)≤R

xUij ≥ qU t.

As mentioned before, if |RBall(i, US , R)| ≥ εn then i /∈ S. Therefore,

yUi = Pr[US = U ∧ i ∈ S] = 0, ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn.

The other constraints can be verified easily. We conclude that (x, y, q) ∈ Pconfig2 and

Pconfig2 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig2 and use the following algorithm to

217

round it.

Algorithm 27 FRKnapCenterRound2 (x, y, q)

1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: S ′ ← BasicRFKnapCenterRound (x′, y′)
4: Let i1, i2 be vertices in S ′ \ U having largest weights.
5: return S = S ′ \ {i1, i2}

Analysis. Let us fix any γ > 0 and set ε := γ2

2
. Also, let E(U) denote the event that

U ∈ U is picked in the algorithm. Again, observe that (x′, y′) satisfies the following

inequalities:

∑
j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,

∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈V

wiy
′
i ≤ B.

Recall that the algorithm BasicFRKnapCenterRound will return a solu-

tion S ′ consisting of a set S ′′ with w(S ′′) ≤ B plus (at most) two extra “fractional”

centers i∗ and i∗∗. Moreover, we have 0 < y′i∗ , y
′
i∗∗ < 0, which implies that i∗, i∗∗ /∈ U .

Thus, by removing the two centers having highest weights in S ′ \U , we ensure that

the total weight of S is within the given budget B with probability one.

218

Now we shall prove the coverage guarantee. By Proposition 7.4.2, S ′ covers

at least t vertices within radius 3R. If a vertex is blue, it can always be connected

to some center in U ; and hence, it is not affected by the removal of i1, i2. Because

each of i1 and i2 can cover at most εn other red vertices, we have

|C| ≥ t− 2εn = 1− γ2n.

For any j ∈ V , let Xj be the random indicator for the event that j is covered

by S ′ (i.e., there is some i ∈ S ′ such that d(i, j) ≤ 3R) but becomes unconnected due

to the removal of i1 or i2. We say that j is a bad vertex iff E[Xj] ≥ γ. Otherwise,

vertex j is said to be good. Note that
∑

j∈V Xj ≤ 2εn with probability one. Thus,

there can be at most 2εn/γ bad vertices. Let T be the set of all good vertices. Then

|T | ≥ n− 2εn/γ = (1− γ)n.

By Proposition 7.4.2, Pr[j is covered by S ′] ≥ pj. For any j ∈ T , we have

Pr[j ∈ C] = Pr[j is covered by S ′ ∧Xj = 0]

= Pr[j is covered by S ′]− Pr[j is covered by S ′ ∧Xj = 1]

≥ Pr[j is covered by S ′]− Pr[Xj = 1]

≥ pj − γ.

This concludes the first part of Theorem 7.1.4 for the FRKnapCenter problem.

219

7.5 The Matroid Center problems with outliers

In this section, we will first give a tight 3-approximation algorithm for the

RMatCenter problem, improving upon the 7-approximation algorithm by Chen et.

al. [59]. Then we study the FRMatCenter problem and give a proof for the second

part of Theorem 7.1.4.

7.5.1 The robust matroid center problem

Suppose I = (V, d,M, t) is an instance the RMatCenter problem with the

optimal radius R. Let rM denote the rank function of M. Consider the polytope

PRMatCenter containing points (x, y) satisfying constraints (7.1)–(7.4), and the matroid

rank constraints:

y(U) ≤ rM(U), ∀U ⊆ V. (7.8)

Since R is the optimal radius, it is not difficult to check that PRMatCenter 6= ∅.

Let us pick any fractional solution (x, y) ∈ PRMatCenter. The next step is to round

(x, y) into an integral solution. Our 3-approximation algorithm is as follows.

Algorithm 28 RMatCenterRound (x, y)

1: (V ′,~c)← RFiltering (x, y) .
2: Let P ′ :=

{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Fi) ≤ 1 ∀i ∈ V ′

}
3: Find a basic solution Y ∈ P ′ which maximizes the linear function f : [0, 1]V → R

defined as
f(z) :=

∑
j∈V ′

cj
∑
i∈Fj

zi for z ∈ [0, 1]V .

4: return S = {i ∈ V : Yi = 1}.

220

Analysis. Again, by construction, the clusters Fi are pairwise disjoint for i ∈

V ′. Note that P ′ is the matroid intersection polytope between M and another

partition matroid polytope saying that at most one item per set Fi for i ∈ V ′

can be chosen. Moreover, y ∈ P ′ implies that P ′ 6= ∅. Thus, P ′ has integral

extreme points and optimizing over P ′ can be done in polynomial time. Note that

the solution S is feasible as it satisfies the matroid constraint. The correctness of

RMatCenterRound follows immediately by the following two propositions.

Proposition 7.5.1. There are at least f(Y) vertices in V that are at distance at

most 3R from some open center in S.

Proof. Recall that S is the set of vertices i ∈ V such that Yi = 1. Moreover, by

definition of P ′, there can be at most one open center in Fj (i.e., |S ∩ Fj| ≤ 1) for

each j ∈ V ′ as Y (Fj) ≤ 1. For any j ∈ V ′,

• if Y (Fj) = 0, then there is no open center in Fj and its contribution in f(Y)

is zero,

• if Y (Fj) = 1, then we open some center i ∈ Fj and the contribution of j to

f(Y) is equal to cj. Recall that cj is the number of clusters Fk such that

Fj ∩ Fk 6= ∅. By triangle inequality, the distance from k to i is at most

d(k, j) + d(j, i) ≤ 2R +R = 3R.

Proposition 7.5.2. We have that f(Y) ≥ t.

221

Proof. For each j ∈ V ′ and i ∈ Fj, define y′i := xij (this is well-defined as all

clusters Fj for j ∈ V ′ are pairwise disjoint). Also, set y′i := 0 for other vertices i not

belonging to any marked cluster. Then, by greedy choice and constraint (7.1), we

have

f(y′) =
∑
j∈V ′

cjy
′(Fj) =

∑
j∈V ′

cjsj ≥
∑
j∈V

sj ≥ t.

By the choice of Y , we have f(Y) ≥ f(y′) ≥ t.

This analysis proves the second part of Theorem 7.1.1.

7.5.2 The fair robust matroid center problem

In this section, we consider the FRMatCenter problem. It is not difficult to

modify and randomize algorithm RMCenterRound so that it would return a

random solution satisfying both the fairness guarantee and matroid constraint, and

preserving the coverage constraint in expectation. This can be done by randomly

picking Y inside P ′. However, if we want to obtain some concrete guarantee on the

coverage constraint, we may have to (slightly) violate either the matroid constraint

or the fairness guarantee. We leave it as an open question whether there exists a

true approximation algorithm for this problem.

We will start with a pseudo-approximation algorithm which always returns a

basis ofM plus at most one extra center. Our algorithm is quite involved. We first

carefully round a fractional solution inside a matroid intersection polytope into a

(random) point with a special property: the unrounded variables form a single path

222

connecting some clusters and tight matroid rank constraints. Next, rounding this

point will ensure that all but one cluster have an open center. Then opening one

extra center is sufficient to cover at least t clients.

Finally, using a similar preprocessing step similar to the one in Section 7.4.2.3,

we can correct the solution by removing the extra center without affecting the

fairness and coverage guarantees by too much. This algorithm concludes Theorem

7.1.4.

7.5.2.1 A pseudo-approximation algorithm

Suppose I = (V, d,M, t, ~p) is an instance the robust matroid center problem

with the optimal radius R. Let rM denote the rank function of M and PM be

the matroid base polytope of M. Consider the polytope PFRMatCenter containing

points (x, y) satisfying constraints (7.1)–(7.4), the fairness constraint (7.5), and the

matroid constraints (7.8). Using similar arguments as in the proof of Proposition

7.3.1, we can show that PFRMatCenter is a valid relaxation.

Proposition 7.5.3. We have that PFRMatCenter 6= ∅.

Our algorithm will use the following rounding operation iteratively.

Algorithm 29 RoundSinglePoint (y, ~r)

1: δ∗ ← max{δ : z ∈ PM; zv = yv + δrv ∀v ∈ V }
2: y′ ← y + δ∗~r
3: return (y′, δ∗)

Given a point y ∈ PM and a vector ~r, the procedure RoundSinglePoint will

move y along direction ~r to a new point y+δ∗~r for some maximal δ∗ > 0 such that this

223

point still lies in PM. Note that one can find such a maximal δ∗ in polynomial time.

We will choose the initial point (x, y) as a vertex of PFRMatCenter. By Cramer’s rule,

the entries of y will be rational with both numerators and denominators bounded

by O(2n). The direction vector ~r also has this property by construction. Thus, it

is not hard to verify that the maximal value of δ∗ for which y + δ∗~r ∈ PM is also

rational and has both numerator and denominator at most O(2n) in every iteration.

So we can compute δ∗ exactly by a simple binary search.

The main algorithm is summarized in Algorithm 30, which can round any ver-

tex point (x, y) ∈ PFRMatCenter. Basically, we will round y iteratively. In each round,

we construct a (multi)-bipartite graph where vertices on the left side are the disjoint

sets O1, O2, . . . in Corollary 7.2.1. Vertices on the right side are corresponding to the

disjoint sets F1, F2, . . . returned by RFiltering. Now each edge of the bipartite

graph, connecting Oi and Fj, represents some unrounded variable yv ∈ (0, 1) where

v ∈ Oi and v ∈ Fj. See Figure 7.1.

FjFjOiOi

yv 2 (0, 1)yv 2 (0, 1)
vv

vv

LL RR

Figure 7.1: Construction of the multi-bipartite graph H = (L,R, EH) in the main
algorithm.

224

Then we carefully pick a cycle (path) on this graph and round variables on the

edges of this cycle (path). This is done by subroutines RoundCycle, RoundSin-

glePath, and RoundTwoPaths. See Figures 7.2, 7.3, and 7.4. Basically, these

procedures will first choose a direction ~r which alternatively increases and decreases

the variables on the cycle (path) so that (i) all tight matroid constraints are pre-

served and (ii) the number of (fractionally) covered clients is also preserved. Now

we randomly move y along ~r or −~r using procedure RoundSinglePoint to ensure

that all the marginal probabilities are preserved.

Finally, all the remaining, fractional variables will form one path on the bipar-

tite graph. We round these variables by the procedure RoundFinalPath which

exploits the integrality of any face of a matroid intersection polytope. Then, to

cover at least t clients, we may need to open one extra facility.

yv1yv1

yv2yv2

yv3yv3

yv4yv4

yv5yv5

yv6yv6

+�1+�1

��1��1

��1��1

��1��1

+�1+�1

+�1+�1

Figure 7.2: The left part shows a cycle. The right part shows how the variables on
the cycle are being changed by RoundCycle.

225

Algorithm 30 PseudoFRMCenterRound (x, y)

1: (V ′,~c)← RFiltering (x, y) and let F ← {Fj : j ∈ V ′}
2: Set y′i ← xij for all j ∈ V ′, i ∈ Fj
3: Set y′i ← 0 for all i ∈ V \⋃j∈V ′ Fj
4: while y′ still contains some fractional values do
5: Note that y′ ∈ PM. Compute the disjoint sets O1, . . . , Ot and constants

bO1 , . . . , bOt as in Corollary 7.2.1.
6: Let O0 ← V \⋃t

i=1Oi and F0 ← V \⋃j∈V ′ Fj
7: Construct a multi-bipartite graph H = (L,R, EH) where

• each vertex i ∈ L, where L = {0, . . . , t}, is corresponding to the set Oi

• each vertex j ∈ R, where R = {0} ∪ {k : Fk ∈ F}, is corresponding to
the set Fj

• for each vertex v ∈ V such that yv ∈ (0, 1): if v belongs to some set Oi

and Fj, add an edge e with label v connecting i ∈ L and j ∈ R.
8: Check the following cases (in order):

• Case 1: H contains a cycle. Let ~v = (v1, v2, . . . , v2`) be the sequence of
edge labels on this cycle. Update y′ ← RoundCycle(y′, ~v) and go to
line 4.

• Case 2: H contains a maximal path with one endpoint in L and the
other in R. Let ~v = (v1, v2, . . . , v2`+1) be the sequence of edge labels on
this path. Update y′ ← RoundSinglePath(y′, ~v) and go to line 4.

• Case 3: There are at least 2 distinct maximal paths (not necessarily dis-
joint) having both endpoints inR. Let ~v1, ~v2 be the sequences of edge la-
bels on these two paths. Update y′ ← RoundTwoPaths(y′, ~v1, ~v2,~c)
and go to line 4.

• The remaining case: all edges in H form a single path with both end-
points in R. Let (v1, v2, . . . , v2`) be the sequence of edge labels on this
path. Let Y ← RoundFinalPath(y′, ~v) and exit the loop.

9: return S = {i ∈ V : Yi = 1}.

Algorithm 31 RoundCycle (y′, ~v)

1: Initialize ~r = ~0, then set rvj = (−1)j for j = 1, 2, . . . , |~v|
2: (y1, δ1)←RoundSinglePoint(y′, ~r)
3: return y1

Algorithm 32 RoundSinglePath (y′, ~v)

1: Initialize ~r = ~0, then set rvj = (−1)j+1 for j = 1, 2, . . . , |~v|
2: (y1, δ1)←RoundSinglePoint(y′, ~r)
3: return y1

226

Algorithm 33 RoundTwoPaths (y′, ~v, ~v′,~c)

1: WLOG, suppose j1, j2 ∈ R are endpoints of v1, v2` of the path ~v respectively
and cj1 ≥ cj2

2: WLOG, suppose j′1, j
′
2 ∈ R are endpoints of v′1, v

′
2`′ of the path ~v′ respectively

and cj′1 ≥ cj′2
3: ∆1 ← cj1 − cj2 ; ∆2 ← cj′1 − cj′2 ; ~r ← ~0
4: V +

1 ← {v1, v3, . . . , v2`−1};V −1 ← {v2, v4, . . . , v2`}
5: V +

2 ← {v′2, v′4, . . . , v′2`′};V −2 ← {v′1, v′3, . . . , v′2`′−1}
6: for each v ∈ V +

1 : rv ← rv + 1; for each v ∈ V −1 : rv ← rv − 1
7: for each v ∈ V +

2 : rv ← rv + ∆1/∆2; for each v ∈ V −2 : rv ← rv −∆1/∆2

8: (y1, δ1)←RoundSinglePoint(y′, ~r)
9: (y2, δ2)←RoundSinglePoint(y′,−~r)

10: With probability δ1/(δ1 + δ2): return y2

11: With remaining probability δ2/(δ1 + δ2): return y1

Algorithm 34 RoundFinalPath (y,~v)

1: P1 ←
{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Oi) = bOi ∀i ∈ L \ {0} ∧ zi = 0 ∀i : yi = 0

}
2: P2 ← {z ∈ [0, 1]V : z(Fj) = y(Fj) ∀j ∈ V ′ \J ∧z(Fj) ≤ 1 ∀j ∈ J}, where J ⊆ R

is the set of vertices in R on the path ~v.
3: Pick an arbitrary extreme point ŷ of P ′ = P1 ∩ P2

4: for each j ∈ R and j is on the path ~v: if ŷ(Fj) = 0, pick an arbitrary u ∈ Fj
and set ŷu ← 1.

5: return ŷ

yv2yv2

yv1yv1

yv3yv3

yv4yv4

yv5yv5
+�1+�1

O0O0

��1��1

+�1+�1

+�1+�1

��1��1

O0O0

Figure 7.3: The left part shows a single path. The right part shows how the variables
on the path are being changed by RoundSinglePath.

227

yv1yv1

yv2yv2

yv4yv4

yv0
1

yv0
1

yv0
3

yv0
3

yv0
4

yv0
4

j1j1 j1j1
j1j1

j01j
0
1 j01j

0
1

j01j
0
1

j2j2 j2j2 j2j2

j02j
0
2

j02j
0
2j02j

0
2

+�1+�1

��1��1

+�1
�1

�2
+�1

�1

�2

+�2+�2

��2��2

+�2
�1

�2
+�2

�1

�2

��2 � �2
�1

�2
��2 � �2

�1

�2

yv3 , yv0
2

yv3 , yv0
2

��1��1

��1
�1

�2
��1

�1

�2

+�1 + �1
�1

�2
+�1 + �1

�1

�2

��1
�1

�2
��1

�1

�2

+�2+�2

+�2
�1

�2
+�2

�1

�2

��2
�1

�2
��2

�1

�2

Figure 7.4: The left part shows an example of two distinct maximal paths chosen in
Case 3. The black edge is common in both paths. The middle and right parts are
two possibilities of rounding y. With probability δ1/(δ1 + δ2), the strategy in the
right part is adopted. Otherwise, the strategy in the middle part is chosen.

228

7.5.2.2 Analysis of PseudoFRMCenterRound

Proposition 7.5.4. In all but the last iteration, the while-loop (lines 4 to 8) of

PseudoFRMCenterRound preserves the following invariant: if y′ lies in the face

D of PM (w.r.t all tight matroid rank constraints) at the beginning of the iteration,

then y′ ∈ D at the end of this iteration.

Proof. Observe that y′ ∈ PM at the beginning of the first iteration due to the

definition of y′. Fix any iteration. Let y′′ be the updated y′ at the end of the

iteration. Now, by Corollary 7.2.1, it suffices to show that

y′′ ∈ {x ∈ Rn : x(S) = bS ∀S ∈ Ø; xi = 0 ∀i ∈ J ; x ∈ PM} ,

where J ⊆ V is the set of all vertices i that y′i = 0. Note that y′′ is the output of

one of the three subroutines RoundCycle, RoundSinglePath, and RoundT-

woPaths. Since we only round floating variables strictly greater than zero, we have

that y′′i = 0 for all i ∈ J . Also, the procedure RoundSinglePoint guarantees that

y′′ ∈ PM.

• When calling the procedure RoundCycle, observe that each vertex j ∈ L on

the cycle is adjacent to exactly two edges. By construction, we always increase

the variable on one edge and decrease the variable on the other edge at the

same rate. See Figure 7.2. Therefore, y′′(Oj) = y′(Oj) = bOj for all j ∈ Ø.

• When calling the procedure RoundSinglePath, recall that our path is max-

imal and has one endpoint in L and the other inR. We claim that the left end-

229

point of this path should be corresponding to the set O0. Otherwise, suppose

it is some set Oj with j > 0. We have the tight constraint y′(Oj) = bOj ∈ Z+.

Then the degree of the vertex j must be at least 2 as there must be at least

two fractional variables in this set. This contradicts to the fact that our path

is maximal. See Figure 7.3. By the same argument as before, we have that

y′′(Oj) = y′(Oj) = bOj for all j ∈ Ø.

• In the procedure RoundTwoPaths, we round the variables on two paths

which have both endpoints in R. Thus, any vertex j should be adjacent to

either 2 or 4 edges. Again, by construction, the net change in y′(Oj) is equal

to zero. See Figure 7.4.

Finally, the claim follows by induction.

Proposition 7.5.5. PseudoFRMCenterRound terminates in polynomial time.

Proof. Note that, in each iteration, each floating variable y′v ∈ (0, 1) is corresponding

to exactly one edge in the bipartite graph. This is because, by construction, the sets

O0, . . . , Ot form a partition of V and the sets in F and F0 also form a partition of

V . Thus, as long as there are fractional values in y′, our graph will have some cycle

or path.

Now we will show that the while-loop (lines 4 to 8) terminates after O(|V |)

iterations. For any set S, let χ(S) denote the characteristic vector of S. That

is, χ(v) = 1 for v ∈ S and χ(v) = 0 otherwise. Let us fix any iteration and let

T = {χ(S) : S ⊆ V ∧ y′(S) = rM(S)} be the set of all tight constraints. In this

iteration, we will move y′ along some direction ~r as far as possible (by procedure

230

RoundSinglePoint). It means that the new point y′′ = y′ + δ∗~r will either have

at least one more rounded variable or hit a new tight constraint y′′(S0) = rM(S0)

(while y′(S0) < rM(S0)) for some S0 ⊆ V . Indeed χ(S0) is linearly independent of

all vectors in T .

Proposition 7.5.4 says that all the tight constraints are preserved in the round-

ing process. Therefore, in the next iteration, we either have at least one more

rounded variable or the rank of T is increased by at least 1. This implies the

algorithm terminates after at most |V | iterations.

Proposition 7.5.6. In all iterations, the while-loop (lines 4 to 8) of PseudoFRM-

CenterRound satisfies the invariant that y′(Fj) ≤ 1 for all Fj ∈ F .

Proof. By constraints 7.2 and 7.3, this property is true at the beginning of the first

iteration. By a very similar argument as in the proof of Proposition 7.5.4, this is also

true during all but the last iteration. (Note that if j is an endpoint of a path, then j

must be adjacent to exactly one fractional value y′v, which could be rounded to one,

while other variables {y′v′ : v′ ∈ Fj, v′ 6= v} are already rounded to zero as our path

is maximal.) Finally, it is not hard to check that procedure RoundFinalPath also

does not violate this invariant.

Proposition 7.5.7. PseudoFRMCenterRound returns a solution S which is

some independent set of M plus (at most) one extra vertex in V .

Proof. Let us focus on the procedure RoundFinalPath. Recall that the polytope

231

P ′ in RoundFinalPath is the intersection of the following two polytopes:

P1 =
{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Oi) = bOi ∀i ∈ L \ {0} ∧ zi = 0 ∀i : yi = 0

}
,

and

P2 = {z ∈ [0, 1]V : z(Fj) = y(Fj) ∀j ∈ V ′ \ J ∧ z(Fj) ≤ 1 ∀j ∈ J},

where J ⊆ R is the set of vertices in R on the path ~v.

By construction, P1 is the face of the matroid base polytope PM corresponding

to all tight constraints of y. It is well-known that P1 itself is also a matroid base

polytope. By Propositions 7.5.4 and 7.5.6, we have that y ∈ P1 and y ∈ P2. Thus,

y ∈ P which implies that P 6= ∅. Moreover, P2 is a partition matroid polytope.

(Observe that z(Fj) = y(Fj) ∈ {0, 1} ∀j ∈ V ′ \ J since all fractional variables are

on the path ~v.) Therefore, P = P1 ∩ P2 has integral extreme points and the point

ŷ chosen in line 3 is integral.

Finally, recall that ~v = (v1, v2, . . . , v2`) is a simple path with both endpoints in

R. The constraints of P1 and integrality of bOi ’s ensure that ŷv1 + ŷv2 = 1, ŷv3 + ŷv4 =

1, . . . , ŷv2`−1
+ ŷv2` = 1. In other words, every vertex i ∈ L on the path will be

“matched” with exactly one vertex in R. Thus, there can be at most one vertex

j ∈ R on the path such that ŷ(Fj) = 0 in line 4. Opening u ∈ Fj adds one extra

facility to our solution.

Recall that C is the (random) set of all clients within radius 3R from some

center in S, where R is the optimal radius. The following two propositions will

232

conclude our analysis.

Proposition 7.5.8. |C| ≥ t with probability one.

Proof. Let f denote the function defined in Algorithm RMCenterRound (i.e.,

f(z) =
∑

j∈V ′
∑

i∈Fi zi for any z ∈ [0, 1]V .) Using a similar argument as in the proof

of Proposition 7.5.1, one can easily verify that there are at least f(Y) vertices in

V that are within radius 3R from some open center in S. Next, it suffices to show

that f(Y) ≥ t.

By definition of y′ in lines 2 and 3, we have that f(y′) ≥ t (see the proof of

Proposition 7.5.2.) We now claim that f(y′) is not decreasing after each iteration

of the rounding scheme. We check the following cases:

• Case y′ is rounded by RoundCycle: observe that y′(Fj) is preserved for all

j ∈ R since j is adjacent to two edges and we increase/decrease the corre-

sponding variables by the same amount. Thus, f(y′) is unchanged.

• Case y′ is rounded by RoundSinglePath: if j ∈ R is not the endpoint of

the path then j is adjacent to two edges on the path and y′(Fj) is unchanged.

If j is the endpoint, then we increase the variable on the adjacent edge; and

hence, y′(Fj) will increase. See Figure 7.3.

• Case y′ is rounded by RoundTwoPaths: again, for any j ∈ R\{j1, j2, j
′
1, j
′
2},

we have that y′(Fj) remains unchanged in the process. We now verify the

change in f caused by the four endpoints j1, j2, j
′
1, and j′2. Suppose y1 is

233

returned, the contribution of these points in f(y1) is

cj1y1(Fj1) + cj2y1(Fj2) + cj′1y1(Fj′1) + cj′2y1(Fj′2)

= cj1(y
′(Fj1) + δ1) + cj2(y

′(Fj2)− δ1) + cj′1

(
y(Fj′1)− δ1

∆1

∆2

)
+ cj′2

(
y(Fj′2) + δ1

∆1

∆2

)
= cj1y

′(Fj1) + cj2y
′(Fj2) + cj′1y

′(Fj′1) + cj′2y
′(Fj′2) + δ1(cj1 − cj2) + δ1

∆1

∆2

(cj′2 − cj′1)

= cj1y
′(Fj1) + cj2y

′(Fj2) + cj′1y
′(Fj′1) + cj′2y

′(Fj′2).

Hence, f(y1) = f(y′). Similarly, one can verify that f(y2) = f(y′).

• Case y′ is rounded by RoundFinalPath: we have shown in the proof of

Proposition 7.5.7 that y′(Fj) = 1 for all j ∈ J where J is the set of vertices in

R on the path ~v. This fact and the other constraints of P2 ensure that y′(Fj)

is not decreasing for all j ∈ V ′.

Proposition 7.5.9. Pr[j ∈ C] ≥ pj for all j ∈ V .

Proof. Let y′ be the vector defined as in lines 2 and 3 of PseudoFRMCenter-

Round. It suffices to show that, for all j ∈ V ′, Pr[Y (Fj) = 1] ≥ y′(Fj). (Note that

y′(Fj) ≥ pj by constraint (7.5).) This is because, for any vertex k ∈ V \ V ′, the

algorithm RFiltering guarantees that there exists j ∈ V ′ such that Fk ∩ Fj 6= ∅,

and y′(Fj) =
∑

i∈V :d(i,j)≤R xij ≥
∑

i∈V :d(i,k)≤R xik = y′(Fk). Notice that the event

Y (Fj) = 1 means there is some open center Fj and the distance from k to this center

234

should be at most 3R. Thus,

Pr[k ∈ C] ≥ Pr[Y (Fj) = 1] ≥ y′(Fj) ≥ y′(Fk) ≥ pk,

by constraint (7.5).

Fix any j ∈ V ′. Recall that Y is obtained by rounding y′ and, by Proposition

7.5.6 and the proof of 7.5.7, we have Y (Fj) ∈ {0, 1} and Pr[Y (Fj) = 1] = E[Y (Fj)].

We now show that the expected value of y′(Fj) does not decrease after each iteration

of the while-loop.

• Case y′ is rounded by RoundCycle: y′(Fj) is unchanged as before.

• Case y′ is rounded by RoundSinglePath: if j is not the endpoint of ~v

then y′(Fj) is unchanged. Otherwise, y′(Fj) is increase by some δ1 > 0 with

probability one.

• Case y′ is rounded by RoundTwoPaths: again, if j /∈ {j1, j2, j
′
1, j
′
2} then

y′(Fj) is unchanged. Now suppose j = j1. With probability δ1/(δ1 + δ2),

y′(Fj1) is increase by δ2, and, with the remaining probability, it is decreased

by δ1. Thus, the expected change in y′(Fj1) is

δ1

δ1 + δ2

(δ2) +
δ2

δ1 + δ2

(−δ1) = 0.

Similarly, one can verify that the expected values of y′(Fj2), y
′(Fj′1), and y′(Fj′2)

remain the same.

235

• Case y′ is rounded by RoundFinalPath: we have showed in the proof of

Proposition 7.5.7 that if j is on the path ~v, then Y (Fj) = 1. Otherwise, the

constraints of P2 ensure that Y (Fj) = y′(Fj).

So far we have proved the following theorem.

Theorem 7.5.1. PseudoFRMCenterRound will return a random solution S

such that

• S is the union of some basis of M with (at most) one extra vertex,

• |C| ≥ t with probability one,

• Pr[j ∈ C] ≥ pj for all j ∈ V .

7.5.2.3 An algorithm satisfying the matroid constraint exactly

Using a similar technique as in Section 7.4.2.3, we will develop an approxima-

tion algorithm for the FRMatCenter problem which always returns a feasible solution.

Let ε > 0 a small parameter to be determined. Let U denote the collection of all

possible sets of verticies with size at most d1/εe such that U is an independent set

of M. Again, we have that |U| ≤ nO(1/ε). Suppose R is the optimal radius to our

instance. For any i ∈ V , recall that RBall(i, U,R) is the set of red vertices within

radius 3R from i.

236

Consider the configuration polytope Pconfig3 containing points (x, y, q) with the

following constraints:



∑
U∈U qU = 1

∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V, U ∈ U

∑
U∈U

∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V, U ∈ U

∑
i∈W yUi ≤ qUrM(W) ∀U ∈ U ,W ⊆ V

∑
j∈V
∑

i∈V :d(i,j)≤R x
U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U

yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn

xUij, y
U
i , qU ≥ 0 ∀i, j ∈ V, U ∈ U

We first claim that Pconfig3 is a valid relaxation polytope for the problem.

Proposition 7.5.10. We have that Pconfig3 6= ∅.

Proof. Suppose S is a solution drawn from the optimal distribution D. We compute

a subset US of S using a similar procedure as in the proof of Proposition 7.4.4.

Recall that |RBall(i, US , R)| < εn for all i ∈ S \US and |US | ≤ d1/εe. Since US ⊆ S,

US is also an independent set of M, implying that US ∈ U .

Now for any U ∈ U , we set qU := Pr[US = U]. Let xUij be probability of the

joint event: US = U and j is connected to i. Finally, let yUi be the probability of the

237

joint event: US = U and i ∈ S. Then it is clear that
∑

U∈U qU = 1. Using similar

arguments as in the proofs of Propositions 7.4.4 and 7.4.3, we have the following

inequalities:

∑
i∈V :d(i,j)≤R

xUij ≤ qU , ∀j ∈ V, U ∈ U (7.9)

∑
U∈U

∑
i∈V :d(i,j)≤R

xUij ≥ pj, ∀j ∈ V (7.10)

∑
j∈V

∑
i∈V :d(i,j)≤R

xUij ≥ qU t, (7.11)

yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn. (7.12)

Recall that yUi /qU is the probability that i ∈ S conditioned on U = US . Since S

is independent with probability one, we have |S ∩W | ≤ rM(W) for all W ⊆ V .

Therefore,

rM(W) ≥ E[|S ∩W | | U = US]

=
∑
i∈W

Pr[i ∈ S | U = US]

=
∑
i∈W

yUi /qU ,

for all W ⊆ V .

The other constraints can be verified easily. We conclude that (x, y, q) ∈

Pconfig3 and Pconfig3 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig3 and use the following algorithm to

238

round it.

Algorithm 35 FRMCenterRound (x, y, q)

1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: S ′ ← PseudoFRMCenterRound (x′, y′)
4: Let i∗ be the “extra” vertex in S ′.
5: return S = S ′ \ {i}

Analysis. We are now ready to prove the second part of Theorem 7.1.4. Let us fix

any γ > 0 and set ε := γ2. Also, let E(U) denote the event that U ∈ U is picked in

the algorithm. Note that (x′, y′) satisfies the following inequalities:

∑
j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,

∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈W

y′i ≤ rM(W), ∀W ⊆ V.

Moreover, y′i = 1 for all i ∈ U and y′i = 0 for all i ∈ V \U and RBall(i, U,R) ≥

εn.

Recall that the algorithm PseudoFRMCenterRound will return a solution

S ′ is the union of a basis of M with an extra center i∗. Moreover, we have 0 <

y′i∗ < 0, which implies that i∗ /∈ U . Thus, by removing i∗ from S ′, we ensure that

the resulting set is a basis of M with probability one.

239

Now we shall prove the coverage guarantee. By Theorem 7.5.1, S ′ covers at

least t vertices within radius 3R. If a vertex is blue, it can always be connected to

some center in U ; and hence, it is not affected by the removal of i1, i2. Because each

of i∗ can cover at most εn other red vertices, we have

|C| ≥ t− εn = 1− γ2n.

For any j ∈ V , let Xj be the random indicator for the event that j is covered

by S ′ (i.e., there is some i ∈ S ′ such that d(i, j) ≤ 3R) but becomes unconnected

due to the removal of i∗. We say that j is a bad vertex iff E[Xj] ≥ γ. Otherwise,

vertex j is said to be good. Again,
∑

j∈V Xj ≤ εn with probability one. Thus, there

can be at most εn/γ bad vertices. Let T be the set of all good vertices. Then

|T | ≥ n− εn/γ = (1− γ)n.

By Theorem 7.5.1, Pr[j is covered by S ′] ≥ pj. So, for any j ∈ T , we have

Pr[j ∈ C] ≥ Pr[j is covered by S ′]− Pr[Xj = 1] ≥ pj − γ.

240

Chapter 8: Future Work

In this thesis, we provide new dependent rounding techniques and approx-

imation algorithms for several FL problems. There are still wide open problems

in this area for further research. First of all, can we make the rounding schemes

in Chapter 2 work for other constraints such as multiple linear constraints, a sin-

gle matroid constraint, or a matroid intersection constraint? One major direction

is to study the relationship between maximum-entropy distributions and the near-

independence property. (We have already known that such distributions on bases of

uniform matroids or spanning trees provide negative correlation.) It is well-known

that rounding point inside a matroid intersection polytope may result in significant

positive correlation between the variables. One interesting question is whether we

can sacrifice some marginal preservation to gain (partial) negative correlation? Also,

can our techniques be applied to capacitated versions of FL problems?

Secondly, the gap between the best-known lower-bound (1 + 2/e ≈ 1.735)

and the current approximation ratios for both k-median (2.675) and KM (17.46)

problems remains quite large. Can we obtain improved approximation algorithms

for these problems? The technique in Chapter 4 could be useful for KM: it allows

us to open any extra constant number of facilities without too much loss in the

241

total connection cost. Furthermore, the ideas of neighborhood tree and randomized

rounding in Chapter 4 also lead to a simple 8-approximation algorithm for the

Matroid Median problem (the problem is already known to be 8-approximable [12]

though the analysis here is simpler.) The main difficulty is that we need to round

a vector subject to a matroid intersection constraint, which may require a novel

dependent rounding technique. (Again, the technique by Chekuri et. al. [82] does

not seem to work here as it does not always return a basis.)

We provided randomized algorithms for the classic k-center and knapsack cen-

ter problems which guarantee both a worst-case bound and a much better average

bound in Chapter 5 and Chapter 6. For the k-center problem, the current worst-case

ratio is 3. So one natural question is whether there exists a randomized algorithm

which not only matches the tight worst-case ratio of 2 but also gives a less-than-2

average ratio. Furthermore, can we generalize these results to other variants such

as fault-tolerant or capacitated version?

Lastly, there are a few open questions regarding the lottery model in Chapter

7. We leave it as an open question if there are approximation algorithms for the

FRkCenter, FRKnapCenter, and FRMatCenter problems which do not violate the

coverage and fairness constraints. Analyzing the expected distance of connected

clients in these problems is also interesting. Can we obtain some non-trivial bounds

in this case? In addition, it is natural to apply the lottery model to k-center and

knapsack center problems: here we look for a distribution D such that the maximum

expected connection cost of any client is minimized. Using known results for the

k-median problem [33], it is not difficult to obtain a 3.25-approximation for this

242

problem. We may need better techniques to beat this approximation ratio.

243

Bibliography

[1] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[2] P. Crescenzi and V. Kann. Approximation on the web: A compendium of NP
optimization problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[3] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi,
P. Crescenzi, and V. Kann. Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.

[4] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the
knapsack and sum of subset problems. J. ACM, 22(4):463–468, October 1975.

[5] David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In Proceedings of the Thirty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’06, pages 681–690, New York,
NY, USA, 2006. ACM.

[6] Ivan D. Baev and Rajmohan Rajaraman. Approximation algorithms for data
placement in arbitrary networks. In Proceedings of the Twelfth Annual Sym-
posium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA.,
pages 661–670, 2001.

[7] Ivan D. Baev, Rajmohan Rajaraman, and Chaitanya Swamy. Approximation
algorithms for data placement problems. SIAM J. Comput., 38(4):1411–1429,
2008.

[8] Zachary Friggstad and Mohammad R. Salavatipour. Minimizing movement in
mobile facility location problems. In 49th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, pages 357–366, 2008.

244

[9] Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-search based
approximation algorithms for mobile facility location problems. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1607–
1621, 2013.

[10] Inge Li Gørtz and Viswanath Nagarajan. Locating depots for capacitated
vehicle routing. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques - 14th International Workshop, APPROX
2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA,
August 17-19, 2011. Proceedings, pages 230–241, 2011.

[11] Deeparnab Chakrabarty and Chaitanya Swamy. Facility location with client la-
tencies: Linear programming based techniques for minimum latency problems.
In Integer Programming and Combinatoral Optimization - 15th International
Conference, IPCO 2011, New York, NY, USA, June 15-17, 2011. Proceedings,
pages 92–103, 2011.

[12] Chaitanya Swamy. Improved approximation algorithms for matroid and knap-
sack median problems and applications. In APPROX/RANDOM 2014, vol-
ume 28, pages 403–418, 2014.

[13] Mark S. Daskin, Lawrence V. Snyder, and Rosemary T. Berger. Logistics Sys-
tems: Design and Optimization, chapter Facility Location in Supply Chain
Design, pages 39–65. Springer US, Boston, MA, 2005.

[14] Alan S. Manne. Plant location under economies-of-scale—decentralization and
computation. Manage. Sci., 11(2):213–235, November 1964.

[15] Delbert Dueck, Brendan J. Frey, Nebojsa Jojic, Vladimir Jojic, Guri Giaever,
Andrew Emili, Gabe Musso, and Robert Hegele. Constructing treatment port-
folios using affinity propagation. Research in Computational Molecular Biology:
12th Annual International Conference, RECOMB 2008, Singapore, March 30
- April 2, 2008. Proceedings, pages 360–371, 2008.

[16] H. Li. Two-view motion segmentation from linear programming relaxation. In
Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference
on, pages 1–8, June 2007.

[17] N. Lazic, I. Givoni, B. Frey, and P. Aarabi. Floss: Facility location for subspace
segmentation. In Computer Vision, 2009 IEEE 12th International Conference
on, pages 825–832, Sept 2009.

[18] Denis Krivitski, Assaf Schuster, and Ran Wolff. A local facility location algo-
rithm for large-scale distributed systems. Journal of Grid Computing, 5(4):361–
378, 2007.

245

[19] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical place-
ment and network design problems. In 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, Cal-
ifornia, USA, pages 603–612, 2000.

[20] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, pages 291–300, 2004.

[21] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of clus-
ter diameters. In Proceedings of the Thirty-third Annual ACM Symposium on
Theory of Computing, STOC ’01, pages 1–10, New York, NY, USA, 2001. ACM.

[22] Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram
Kenthapadi, Samir Khuller, and An Zhu. Achieving anonymity via clustering.
ACM Transactions on Algorithms (TALG), 6(3):49:1–49:19, July 2010.

[23] Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical
Programming, 22(1):148–162.

[24] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms
for facility location problems (extended abstract). In Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages
265–274, New York, NY, USA, 1997. ACM.

[25] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and Lagrangian
relaxation. Journal of the ACM , 48(2):274–296, March 2001.

[26] Maxim Sviridenko. An improved approximation algorithm for the metric un-
capacitated facility location problem. Integer Programming and Combinatorial
Optimization: 9th International IPCO Conference Cambridge, MA, USA, May
27–29, 2002 Proceedings, pages 240–257, 2002.

[27] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms
for metric facility location problems. SIAM J. Comput., 36(2):411–432, 2006.

[28] Jaroslaw Byrka. An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques: 10th International
Workshop, APPROX 2007, and 11th International Workshop, RANDOM 2007,
Princeton, NJ, USA, August 20-22, 2007. Proceedings, pages 29–43, 2007.

[29] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Automata, Languages and Programming: 38th International Collo-
quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II,
pages 77–88, 2011.

246

[30] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach
for facility location problems. In STOC, pages 731–740, 2002.

[31] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility loca-
tion algorithms. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’98, pages 649–657, Philadelphia, PA, USA, 1998.
Society for Industrial and Applied Mathematics.

[32] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic
applications. In 37th Annual Symposium on Foundations of Computer Science,
FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 184–193,
1996.

[33] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-
factor approximation algorithm for the k-median problem. In STOC, pages
1–10. ACM, 1999.

[34] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Muna-
gala, and Vinayaka Pandit. Local search heuristics for k-median and facility
location problems. SIAM Journal on Computing, 33(3):544–562, 2004.

[35] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation.
In STOC, pages 901–910, 2013.

[36] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and
Khoa Trinh. An improved approximation for k -median, and positive correlation
in budgeted optimization. In Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms, (SODA), pages 737–756, 2015.

[37] Jaroslaw Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase.
Bi-factor approximation algorithms for hard capacitated k-median problems. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 722–736. SIAM, 2015.

[38] Shi Li. Approximating capacitated k-median with (1 + eps)k open facilities. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’16, pages 786–796. SIAM, 2016.

[39] H. Gökalp Demirci and Shi Li. Constant approximation for capacitated k-
median with (1 + ε)-capacity violation. CoRR, abs/1603.02324, 2016.

[40] Jaroslaw Byrka, Bartosz Rybicki, and Sumedha Uniyal. An approximation algo-
rithm for uniform capacitated k-median problem with (1 + ε) capacity violation.
In Integer Programming and Combinatorial Optimization - 18th International
Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings, pages
262–274, 2016.

247

[41] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Anal-
ysis of a local search heuristic for facility location problems. J. Algorithms,
37(1):146–188, 2000.

[42] Fabián A. Chudak and David P. Williamson. Improved approximation algo-
rithms for capacitated facility location problems. Math. Program., 102(2):207–
222, 2005.

[43] Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta,
Shubham Gupta, and Surabhi Jain. A 3-approximation algorithm for the fa-
cility location problem with uniform capacities. Math. Program., 141(1-2):527–
547, 2013.

[44] Martin Pál, Éva Tardos, and Tom Wexler. Facility location with nonuniform
hard capacities. In 42nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 329–
338, 2001.

[45] Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for
capacitated facility location. In Algorithms - ESA 2012 - 20th Annual European
Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, pages
133–144, 2012.

[46] Hyung-Chan An, Mohit Singh, and Ola Svensson. Lp-based algorithms for ca-
pacitated facility location. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 256–265, 2014.

[47] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[48] Zoya Svitkina. Lower-bounded facility location. ACM Trans. Algorithms,
6(4):69:1–69:16, 2010.

[49] Chaitanya Swamy and David B. Shmoys. Fault-tolerant facility location. ACM
Trans. Algorithms, 4(4):51:1–51:27, August 2008.

[50] Mohammadtaghi Hajiaghayi, Wei Hu, Jian Li, Shi Li, and Barna Saha. A
constant factor approximation algorithm for fault-tolerant k-median. In Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’14, pages 1–12. SIAM, 2014.

[51] Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sab-
harwal, and Barna Saha. The matroid median problem. In Proceedings of the
annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1117–
1130. SIAM, 2011.

248

[52] Amit Kumar. Constant factor approximation algorithm for the knapsack me-
dian problem. In Proceedings of the annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 824–832. SIAM, 2012.

[53] Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median
problem. Automata, Languages, and Programming (ICALP), pages 194–205,
2012.

[54] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. J. ACM, 33(3):533–550, May 1986.

[55] Samir Khuller and Yoram J. Sussmann. The capacitated K -center problem.
SIAM J. Discrete Math., 13(3):403–418, 2000.

[56] Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding
for k-centers with non-uniform hard capacities. In 53rd Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 273–282, 2012.

[57] Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek
Madan, and Ola Svensson. Centrality of trees for capacitated k-center. In
IPCO, 2014.

[58] Samir Khuller, Robert Pless, and Yoram J. Sussmann. Fault tolerant k-center
problems. Theoretical Computer Science, 242(12):237 – 245, 2000.

[59] Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knap-
sack center problems. Integer Programming and Combinatorial Optimization:
16th International Conference, IPCO 2013, Valparáıso, Chile, March 18-20,
2013. Proceedings, pages 110–122, 2013.

[60] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Al-
gorithms for facility location problems with outliers. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01,
pages 642–651, Philadelphia, PA, USA, 2001. Society for Industrial and Ap-
plied Mathematics.

[61] Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for
k-center clustering with outliers and with anonymity. In Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques, 11th
International Workshop, APPROX 2008, and 12th International Workshop,
RANDOM 2008, Boston, MA, USA, August 25-27, 2008. Proceedings, pages
165–178, 2008.

[62] Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, and
Benjamin Moseley. Fast distributed k-center clustering with outliers on mas-
sive data. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 1063–1071, 2015.

249

[63] Ke Chen. A constant factor approximation algorithm for k -median clustering
with outliers. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 826–835, 2008.

[64] Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The
non-uniform k-center problem. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55, pages 67:1–67:15,
2016.

[65] Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for cluster-
ing problems with lower bounds and outliers. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 69:1–69:15, 2016.

[66] Marek Cygan and Tomasz Kociumaka. Constant factor approximation for ca-
pacitated k-center with outliers. In 31st International Symposium on Theo-
retical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8,
2014, Lyon, France, pages 251–262, 2014.

[67] Babak Behsaz and Mohammad R. Salavatipour. On minimum sum of radii and
diameters clustering. Algorithmica, 73(1):143–165, 2015.

[68] Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R.
Varadarajan. On metric clustering to minimize the sum of radii. Algorithmica,
57(3):484–498, 2010.

[69] Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R.
Varadarajan. On clustering to minimize the sum of radii. SIAM J. Comput.,
41(1):47–60, 2012.

[70] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. In-
cremental clustering and dynamic information retrieval. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso,
Texas, USA, May 4-6, 1997, pages 626–635, 1997.

[71] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming
algorithms for clustering problems. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA,
pages 30–39, 2003.

[72] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient cluster-
ing algorithm for large databases. Inf. Syst., 26(1):35–58, 2001.

[73] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a tech-
nique for provably good algorithms and algorithmic proofs. Combinatorica,
7(4):365–374, 1987.

250

[74] Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of
constructing algorithms with proven performance guarantee. J. Comb. Optim.,
8(3):307–328, 2004.

[75] A. Srinivasan. Distributions on level-sets with applications to approximation
algorithms. In FOCS, pages 588–597, 2001.

[76] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srini-
vasan. Dependent rounding and its applications to approximation algorithms.
Journal of the ACM, 53(3):324–360, 2006.

[77] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan,
and Atri Rudra. When LP is the cure for your matching woes: Improved bounds
for stochastic matchings. Algorithmica, 63(4):733–762, 2012.

[78] Jaroslaw Byrka, Aravind Srinivasan, and Chaitanya Swamy. Fault-tolerant
facility location: A randomized dependent lp-rounding algorithm. In Integer
Programming and Combinatorial Optimization, 14th International Conference,
IPCO 2010, Lausanne, Switzerland, June 9-11, 2010. Proceedings, pages 244–
257, 2010.

[79] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind
Srinivasan. A unified approach to scheduling on unrelated parallel machines.
J. ACM, 56(5), 2009.

[80] Benjamin Doerr. Nonindependent randomized rounding and an application to
digital halftoning. SIAM J. Comput., 34(2):299–317, 2004.

[81] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing
a monotone submodular function subject to a matroid constraint. SIAM J.
Comput., 40(6):1740–1766, 2011.

[82] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted match-
ings and matroid intersection via dependent rounding. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011, pages 1080–1097,
2011.

[83] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized
rounding via exchange properties of combinatorial structures. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 575–584, 2010.

[84] Nicholas J. A. Harvey and Neil Olver. Pipage rounding, pessimistic estima-
tors and matrix concentration. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Ore-
gon, USA, January 5-7, 2014, pages 926–945, 2014.

251

[85] D. Harris, T. Pensyl, A. Srinivasan, and K. Trinh. Fairness in resource allo-
cation and slowed-down dependent rounding. Technical report, University of
Maryland, 2016.

[86] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge
coloring via an extension of the chernoff-hoeffding bounds. SIAM J. Comput.,
26(2):350–368, 1997.

[87] Fabián A. Chudak and David B. Shmoys. Improved approximation algorithms
for the uncapacitated facility location problem. SIAM J. Comput., 33(1):1–25,
2003.

[88] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2003.

[89] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

[90] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293 – 306, 1985.

[91] Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the
k-center problem. Mathematics of operations research, 10(2):180–184, 1985.

[92] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems.
PWS Publishing Co., Boston, MA, USA, 1997.

252

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Facility Location Problems
	Summary

	Background and Related Work
	FL problems with the min-sum objective function
	FL problems with the min-max objective function
	Related Clustering problems

	Dissertation outline

	Dependent Rounding
	Overview
	Background
	Organization

	Weighted Dependent Rounding
	Near Independence via Random Permutation
	Algorithm
	Analysis

	A Motivating Problem
	Partial Negative Correlation
	Algorithm
	Analysis

	Symmetric Randomized Dependent Rounding
	Algorithm
	Analysis

	The k-median Problem
	Problem definition
	Prior work and Our contributions
	An improved bi-point rounding algorithm
	Preliminaries
	Main case: s0 5/6, b [0.508, 3/4], rD [19/40, 2/3], and r1 > 1
	Algorithms for edge cases

	Dichotomy result
	Case 1
	Case 2
	Case 3

	The Knapsack Median Problem
	Problem definition
	Prior work and Our contributions
	Preliminaries
	An LP Relaxation
	Kumar's bound

	Improved approximation algorithms
	Sparse Instances
	Improving Kumar's bound and modifying the LP relaxation
	Filtering Phase
	A (23.09+)-approximation algorithm
	A (17.46+)-approximation algorithm via conditioning on the fractional cluster center

	An improved bi-factor approximation algorithm
	Pruning ``big'' facilities and computing a bi-point solution
	Corner cases: a 1/5 or a 4/5
	Main case: a [1/5, 4/5]

	The (Multi) Knapsack Center Problem
	Problem definition
	Prior work and Our contributions
	Preliminaries
	A fair knapsack-center algorithm for the case m = 1
	Algorithm
	Analysis

	Independent rounding algorithm for the case m 1

	The k-center Problem
	Problem definition
	Prior work and Our contributions
	Preliminaries
	A simple algorithm with expected ratio of 1.6
	Algorithm
	Analysis

	Improved algorithm using partial clusters
	Algorithm
	Analysis
	Computer-assisted analysis

	A Lottery Model for Center-type Problems With Outliers
	Overview
	The Lottery Model
	Our contributions and techniques
	Organization

	Preliminaries
	Matroid polytopes
	Filtering algorithm

	The k-center problems with outliers
	The robust k-center problem
	The fair robust k-center problem

	The Knapsack Center problems with outliers
	The robust knapsack center problem
	The fair robust knapsack center problem

	The Matroid Center problems with outliers
	The robust matroid center problem
	The fair robust matroid center problem

	Future Work
	Bibliography

