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This dissertation is concerned with two areas of investigation: the first is

understanding the mathematical structures behind the emergence of macroscopic

laws and the effects of small scales fluctuations, the second involves the rigorous

mathematical study of such laws and related questions of well-posedness. To address

these areas of investigation the dissertation involves two parts:

Part I concerns the theory of coarse-graining of many particle systems. We

first investigate the mathematical structure behind the Mori-Zwanzig (projection

operator) formalism by introducing two perturbative approaches to coarse-graining

of systems that have an explicit scale separation. One concerns systems with lit-

tle dissipation, while the other concerns systems with strong dissipation. In both

settings we obtain an asymptotic series of ‘corrections’ to the limiting description

which are small with respect to the scaling parameter, these corrections represent

the effects of small scales. We determine that only certain approximations give rise

to dissipative effects in the resulting evolution. Next we apply this framework to the

problem of coarse-graining the locally conserved quantities of a classical Hamilto-



nian system. By lumping conserved quantities into a collection of mesoscopic cells,

we obtain, through a series of approximations, a stochastic particle system that re-

sembles a discretization of the non-linear equations of fluctuating hydrodynamics.

We study this system in the case that the transport coefficients are constant and

prove well-posedness of the stochastic dynamics.

Part II concerns the mathematical description of models where the underlying

characteristics are stochastic. Such equations can model, for instance, the dynamics

of a passive scalar in a random (turbulent) velocity field or the statistical behav-

ior of a collection of particles subject to random environmental forces. First, we

study general well-posedness properties of stochastic transport equation with rough

diffusion coefficients. Our main result is strong existence and uniqueness under cer-

tain regularity conditions on the coefficients, and uses the theory of renormalized

solutions of transport equations adapted to the stochastic setting. Next, in a work

undertaken with collaborator Scott-Smith we study the Boltzmann equation with

a stochastic forcing. The noise describing the forcing is white in time and colored

in space and describes the effects of random environmental forces on a rarefied gas

undergoing instantaneous, binary collisions. Under a cut-off assumption on the col-

lision kernel and a coloring hypothesis for the noise coefficients, we prove the global

existence of renormalized (DiPerna/Lions) martingale solutions to the Boltzmann

equation for large initial data with finite mass, energy, and entropy. Our analysis

includes a detailed study of weak martingale solutions to a class of linear stochastic

kinetic equations. Tightness of the appropriate quantities is proved by an extension

of the Skorohod theorem to non-metric spaces.
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Introduction to the Dissertation

The physical world is multi-scale. Natural laws tend to exhibit drastically

different structures at various time and space scales. Quite remarkably, it is often

possible to describe the behavior at each of these scales independently of the other

scales and with significantly fewer degrees of freedom than are present at the smaller

scales. Such effective equations can emerge in unusual ways and are often not im-

mediately accessible from the underlying microscopic laws. The equations of fluid

mechanics, like the Euler equations or the Navier-Stokes equations are examples of

effective equations governing hydrodynamic fields associated to a system of many

classical particles. Other examples of effective equation include equations in kinetic

theory, like the Boltzmann equation or Vlasov equation, which govern the evolution

of a kinetic density of particles over a one-particle phase space.

In this dissertation, we will mostly follow two main lines of inquiry. The first

involves the process of representing a system with many degrees of freedom by one

with fewer degrees of freedom, known as coarse-graining. Here we are interested

in questions like: Can one always derive a given effective description directly from

the microscopic system? How does one pass from one set of effective equations to

another? Is there a general procedure for determining a set of effective equations at
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any scale of interest? How does one take into account the influence of smaller scale

fluctuations in an effective model? The second line of inquiry involves the study of

the qualitative and quantitative behavior of the equations arising from such effective

descriptions. Here, several natural questions come to mind: Are the equations of

a given effective description well-posed? What is the long time behavior of the

solutions? How well do a set of effective equations hold outside of their given scale?

How does one incorporate the effects of ‘small’ scales outside an effective equations

prescribes scale?

The dissertation is broken up into two parts with distinct conceptual contribu-

tions, the first is largely formal and attempts to address questions along first line of

inquiry by exploring the mathematical structure in a setting where very few rigorous

results are available, the other is entirely rigorous and addresses questions along the

second line of inquiry, studying well-posedness of certain stochastic perturbations of

macroscopic equations using well-developed mathematical tools from the theory of

stochastic partial differential equations.

More specifically, Part I concerns the theory of coarse-graining. In the first

half, we study the problem abstractly through the Mori-Zwanzig (projection oper-

ator) framework, viewing the procedure of coarse-graining as the application of a

certain projection operator P on the solution f of a linear evolution equation

d

dt
f = Lf,

where L is a certain linear operator generating the microscopic evolution. This

framework, though formal, has broad applications to a wide variety of problems
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in classical and quantum statistical mechanics. Our contribution is to develop two

perturbative approaches for obtaining dissipative corrections to the, (leading order)

Galerkin truncated system

d

dt
Pf = PLPf.

The first approach is useful for when the system has no dissipation and relies on a

specific decomposition of the fluctuations into a fast and a slow part. The second

approach is more relevant when the starting system has some dissipation and is

scaled so that the dissipation dominates the evolution of the small scale fluctuations.

In this setting, we obtain a sequence of approximations to the Galerkin truncated

system and show that only every 4th term in the sequence leads to an approximation

that is dissipative.

The second half of Part I involves the more concrete problem of coarse-graining

a one dimensional classical particle system with nearest neighbor interactions and

Hamiltonian

H =
∑
i

1
2
v2
i + V (xi − xi−1),

where (xi, vi) are the position and velocity of the ithe particle and V (r) is a singular

repulsive interaction potential. The coarse-graining procedure involves dividing the

particles into mesoscopic cells and averaging the inter-particle spacing ri = xi −

xi−1, momentum vi, and energy ei = 1
2
v2
i + V (ri) of the particles inside each cell.

Using the perturbative Mori-Zwanzig approach developed in the first half, we show

that the leading order evolution of the coarse-grained cells is given by so-called

‘discrete Euler dynamics’. Iterating this procedure we find that particle systems
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with gamma-law potential V (r) = Cr1−γ are invariant under the coarse-graining

procedure; we refer to this, for reasons that will become clear later, as the ‘ideal

gas fixed point’. The main novelty of this work, however, is the derivation of a

dissipative stochastic correction to the discrete Euler dynamics which take into

account small scale fluctuations. This dissipative fluid-particle model can be viewed

as a discretization of the equations of non-linear fluctuating hydrodynamics; they

conserve volume, momentum and energy, with dissipative terms modeling the effects

of viscosity, thermal conductivity and thermal fluctuations in the fluid. We give

conditions under which this system is well-posed, meaning the energy or volume

of a coarse-grained particle cannot (with probability one) collapse to zero in finite

time. We reduce the derivation of the dissipative fluid-particle model to two key

approximations; the first is a relaxation approximation and is strongly related to

ergodicity of the underlying system; the second is a Markovian approximation which

removes certain memory effects under the assumption of sufficient decay of various

auto-correlation functions.

Part II, concerns the study of kinetic equations with stochastic external forc-

ing and the theory of renormalized solutions to transport equations. We study

two related problems. The first deals with existence and uniqueness of stochastic

continuity equations of the form

∂tf + div(uf)− div div(af) +
∑
k

div(σkf)Ẇk = 0,

where u is the drift {σk} are the noise coefficients a = 1
2

∑
k σk⊗σk, and {Wk} are a

collection of independent Brownian motions. Here the main contribution is to prove

4



the existence of renormalized (hence unique) solutions in Lp, p > 2 for such equa-

tions with general initial data and rough (Sobolev regular) noise coefficients {σk}.

This approach is rather general is consistent with analogous results for existence

and uniqueness of SDE’s with rough noise coefficients [122] as well as Kolmogorov

equations [84] (see also [25]).

The second problem, a joint work with collaborator Scott Smith, concerns the

Boltzmann equation with Stratonovich stochastic forcing

∂tf + v · ∇xf +
∑
k

σk · ∇vf ◦ Ẇk = B(f, f),

where divv σk = 0. Such an equation is a kinetic theory analogue to the stochastically

forced equations of fluid mechanics, which have received significant attention in

recent years. Our main result is to prove global existence of renormalized martingale

solutions for a general class of initial data and noise coefficients and, and obtain

certain local and global averaged balance laws and global entropy dissipation. To

out knowledge this is the first rigorous result regarding the stochastic perturbations

of the non-linear Boltzmann equation. The result is obtained using compactness

and martingale tools from the theory of stochastic partial differential equations.
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If I have had any success in mathematical physics,

it is, I think, because I have been able to dodge

mathematical difficulties.

Josiah Willard Gibbs

Part I

Coarse-Graining
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Introduction to Part I

The large-scale behavior of many-body systems is of central interest in many

disciplines. Such systems typically have simple rules governing their constituents at

small scales (microscopic laws), but exhibit complicated patterns and rules on larger

scales (macroscopic laws). These systems often contain several distinct scales which

exhibit drastically different behaviors, so-called multi-scale phenomena. Naturally,

there is broad interest among disciplines in obtaining models that govern the effective

evolution of a system at a given scale. There are a vast number of models available

to describes the effective behavior of many body systems at a variety of scales. The

Euler equations of fluid mechanics are a classic example of such a model, along

with the myriad of other macroscopic model in continuum mechanics and kinetic

theory. Sometimes when the separation between scales is not strong enough, small

scale structures can couple to the behavior of the large scales and have a non-

negligible effect. Most notably, when studying a fluid at the mesoscale (between

micro and macro), small scale fluctuations about equilibrium become important

and their non-trivial correlations are responsible for the emergence of transport

phenomena like viscosity and thermal conductivity, which play an important role

even at the macroscopic scale. In general, this weak coupling between scales is not
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fully understood and there appears to be no agreed upon way to include its effect

in a macroscopic model. The work in this part of the dissertation is an attempt to

understand the influence of fluctuations on the behavior of a fluid at meso-scopic

scales.

Microscopic
Discrete Model

Macroscopic
Continuum Model

Mesoscopic
Model

(Fluctuations)

Figure 2.1: Multiscale models and the role of fluctuations

Part I one of this dissertation addresses the mathematical structure behind

the theory of coarse-graining, namely the procedure of representing a system with

many degrees of freedom by one with significantly fewer degrees of freedom. One of

the more standard frameworks for coarse-graining is the Mori-Zwanzig formalism,

named after its pioneers R. Zwanzig [123, 124] and H. Mori [95]. It has proven to

be a tremendously powerful tool for obtaining the form for coarse-grained models

at a variety of scales, although it suffers from a lack of a rigorous foundation. At its

core, the Mori-Zwanzig formalism requires two main ingredients: a linear evolution

equation

d

dt
f(t) = Lf(t)

and a projection operator P . The projection operator P acts on f (where f takes

values, perhaps, in some Banach space) and represents the action of coarse-graining,
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selecting certain ‘relevant’ variables of interest, and averaging out the ‘irrelevant’

degrees of freedom. A typical example of projection is the average with respect to

some equilibrium measure conditioned on the value of a relevant variable. Another

example is the s particle marginal of an N particle distribution with the distributions

of the other particles replaced by an equilibrium measure. In general, the so-called

‘projected dynamics’ f̂(t) = Pf(t) will have non-Markovian memory effects on it’s

evolution, meaning that the future evolution of f(t + dt) may depend on the the

entire history {f(s)}s<t as opposed to just the value at time t. However, when

there is some time-scale separation, namely if the projected evolve on a time scale

much slower than the persistence of the memory, then memory effects are assumed

to be delta correlated in time and may be neglected; This is the so-called ‘Markov

approximation’. The mathematical justifications for such an approximation are in

general not clear, and the precise definition of time-scale separation can be hard

to define. Nevertheless, we will be interested in the mathematical structure behind

various Markov approximations.

Specifically, in Chapter 3, we explore Markov approximations in the Mori-

Zwanzig theory in more detail. Here we propose two perturbative approaches for

obtaining dissipative corrections to the Galerkin truncated system

d

dt
f(t) = PLPf(t) + “dissipative corrections”.

Both approaches are formal and are meant to serve as a tool to guide in the con-

struction of coarse-grained models.

The first approach is more applicable to systems with little or no dissipation

9



and will be the main approach used in Chapter 4. For simplicity we suppose there

exists an explicit time scale separation through the decomposition

L =
1

ε
L0 + L1, (2.1)

with PL0 = L0P = 0. The parameter ε controls the scale separation between

the relevant and irrelevant variables. In the limit as ε → 0 one can make the

Markov assumption more precise and obtain an asymptotic series of corrections to

the Galerkin truncation

d

dt
f(t) = PLPf(t) +

∑
n≥0

εnΦ̄nPf(t),

where {Φ̄n} are operators encoding higher order time correlations. A similar ap-

proach has been taken in [71, 92] in a different setting. The value of this approach

over the more pedestrian approach usually considered in the Mori-Zwanzig theory

is that the operators {Φ̄n} can be computed explicitly in terms of the dynamics

of known objects. Moreover, we show that the first in this asymptotic series is

dissipative.

The second approach explores the process of coarse-graining systems that al-

ready have some dissipation and assumes that the dissipation dominates at the

small scales. Specifically, we assume that the operator L̃ = (I − P)L(I − P), has

the explicit decomposition,

L̃ = Ã+
1

ε
S̃,

where Ã and S̃ denote the symmetric and skew symmetric parts of L̃ respectively.

Similar to the decomposition (2.1) one can make the Markov assumption more

10



precise and obtain an asymptotic series of corrections to the Galerkin truncation

d

dt
f(t) = PLPf(t) +

∑
n≥0

εnΨ̄nPf(t)

where {Ψ̄n} are another a collection of operators encoding information about higher

order correlations. What’s interesting in this setting is that not only is the first term

in the series dissipative, but every 4m + 1 term is also. This is analogous to the

Chapman-Enskog expansion in kinetic theory where certain terms in the truncation

can be shown to lead to fluid equations that don’t dissipate.

In Chapter 4 we consider a concrete example of coarse-graining; Specifically

the coarse-graining of the conserved quantities of a one dimensional classical Hamil-

tonian particle system with nearest neighbor interactions periodically arranged on

the Torus. The positions x = (x1, . . . , xN) and v = (v1, . . . , vN) and are governed

by the Hamiltonian

H(x,v) =
∑
i

1

2
v2
i + V (xi − xi−1),

where V (r) is an interparticle potential which is repulsive and singular at 0. The

coarse-graining procedure involves dividing the N particles into M mesoscopic cells

of size K, where 1� K � N , and averaging the inter-particle spacing ri = xi−xi−1,

momentum vi, and energy ei = 1
2
v2
i +V (ri) of the particles inside each cell, we refer

to these averages as the coarse variables. Our goal will be to obtain a closed set

of equations for the coarse variables when N and K are large. In Section 4.5.2, we

show that if the microscopic particles are in equilibrium, then the coarse-grained
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quantities are equilibrium solutions to the so-called ‘discrete Euler dynamics’

˙̀
i = pi − pi−1

ṗi = −P (`i+1, ei+1 − 1
2
p2
i ) + P (`i, e− 1

2
p2
i+1)

ėi = −piP (`i+1, ei+1 − 1
2
p2
i+1) + pi−1P (`i, ei − 1

2
p2
i ),

where (`i, pi, ei) are to be interpreted as the length, momentum and energy of the ith

coarse particle and P is the thermodynamic pressure function. The discrete Euler

equations are a Hamiltonian discretization of the 1-D Euler equations in Lagrangian

coordinates and conserve length, momentum, energy and entropy. Alternatively we

may view this through the Mori-Zwanzig framework described above, working at

the level of distribution functions on N particle phase space. The discrete Euler

equations can then be seen as the leading order Galerkin truncation associated to a

certain projection on N particle distributions.

Treating this coarse-graining procedure as map, which produces a coarse-

grained entropy function S(`, e) to govern the discrete Euler dynamics from a given

potential V , we may repeatedly apply the coarse-graining operation to produce a

mapping between entropy functions. Following the approach of renormalization

group theory, we show that the ideal gas equation of state

S(`, e) = (cP − cV ) log(`) + cV log(e), cV > 1,

is a fixed point of this map. In this, case the discrete Euler dynamics reduce to those

of a classical particle system with gamma-law potential V (r) = Cr1−γ, γ = cP/cV ,

thereby justifying the use of power law potentials for mesoscopic descriptions.

When the system is not in equilibrium, we seek to obtain dissipative correc-
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tions to the discrete Euler dynamics. Here, we look at time scales of order K, and

study the fluctuations about the discrete Euler dynamics. After the application of

two key approximations related to convergence to equilibrium and decay of certain

auto-correlation functions for large N and K we derive stochastic and dissipative

corrections to the discrete Euler equation which model the effects of viscosity, ther-

mal conductivity and transport in the volume variables, with coefficients given by

analogues of the Green-Kubo formula. This is the main contribution of this chapter.

The resulting dissipative fluid-particle model can be viewed as a discrete version of

the non-linear equations of fluctuating hydrodynamics. The stochastic fluctuations

are in ‘fluctuation-dissipation’ balance with the dissipation terms and they both con-

serve volume, momentum and energy. A more detailed presentation of this model

can be found in the overview to Chapter 4, equation (4.6).

In Section 4.9 we present a simplification of the dissipative fluid-particle model,

assuming that the transport coefficients are constant and studying it in more detail.

We give a proof of well-posedness for the finite N stochastic system using the total

entropy as a Lyapunov function. This implies that the volume and energy of a cell

cannot collapse to zero in finite time. Indeed, the well-posedness is significant due to

the difficult nature of proving well-posedness (even existence) for the corresponding

non-linear fluctuating hydrodynamic equations that they discretize.
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Background and Historical Remarks

Frameworks for understanding the connections between microscopic and macro-

scopic phenomena began development in the mid-to-late 19th century when the foun-

dations of statistical mechanics were layed down by Gibbs, Boltzmann, Maxwell, and

others. Here, fundamental concepts of equilibrium ensembles, microscopic founda-

tions of thermodynamics and entropy, and kinetic theory were developed to make

connections between microscopic and macroscopic systems, and to understand the

nature of the irreversibility arising through randomness in the initial conditions.

Later, in the mid 20th century, more modern theoretical foundations for statistical

mechanics emerged, particularly for non-equilibrium statistical mechanics, we de-

veloped by Green, Kirkwood, Kubo, Mori, Onsager, Zwanzig and many others. The

development of local equilibrium, the Green-Kubo formula, fluctuation-dissipation

theorems, the theory of stochastic processes, and the Mori-Zwanzig formalism in-

troduced a new set of machinery for understanding the emergence of irreversibility,

as well the origins of transport phenomena like thermal conductivity and viscosity.

Of course, with the advent of modern scientific computing, there emerged yet

another way to model macroscopic systems by directly simulating the dynamics of

the microscopic system. This is the approach, for instance, taken in molecular dy-

namics (MD) simulations. However, while this might work in some simple situations,

MD tends to be exceedingly expensive for systems of true macroscopic scales, and

typically requires time-steps roughly proportion to one over the number of particles,

making computations for any reasonable macroscopic length of time impractical. Of
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course, if one desires to model even larger systems like the climate, or the behavior

of stars or galaxies, direct simulation is out of the question (and will likely never be

an option).

Needless to say, it seems rather foolish to disregard convenient machinery

of statistical mechanics in favor of a computational approach. In fact, it seems

that much computational effort is wasted on ‘irrelevant’ chaotic dynamics at the

small scales whose exact evolution seems to have very little effect on the large

scale dynamics. It appears that what’s needed is a synthesis of the methods of

statistical mechanics and computational approaches. Namely a systematic theory

of coarse-graining for the microscopic system. That is, method for producing a

lower dimensional coarse-grained model that captures the large scale behavior at

the expense of exact knowledge about the microscopic behavior. In fact, coarse-

grained molecular models play a fundamental role in modern material simulations

and allow the methods of molecular dynamics to by applied to larger systems and on

longer time scales than typical microscopic models would. Examples of such models

for studying hydrodynamic behavior are dissipative particle dynamics [72, 78], and

smooth particle hydrodynamics [63].

The idea of coarse-graining, however, is as old as the foundations of statisti-

cal mechanics, originating from the ideas of Boltzmann in the equilibrium setting.

Indeed, Boltzmann’s original argument for the form of the microscopic entropy di-

viding phase space up into cells and counting particles in each cell, is essentially a

coarse-graining argument. Perhaps, one of the first modern approaches to coarse-

graining for non-equilibrium systems was an adaptation of Boltzmann’s original
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argument introduced by P. Ehrenfest and T. Ehrenfest in the 1911 [40]. Here the

dynamics of an classical N-body system is coarse-grained through the Liouville equa-

tion by periodically ‘projecting the density’ onto a maximal entropy state subject

to certain constraints on its average over a family of cells. In between projections,

the dynamics evolves again according to the Liouville equation (see [68] for a more

in-depth discussion of the so-called ‘Ehrenfest chain’).

Since then, coarse-graining has become a central idea in statistical mechanics

and other fields. Examples include block averaging in lattice dynamics [77], Wil-

son’s renormalization group method [121], hydrodynamic and kinetic limits [111],

optimal prediction methods [26], averaging in Hamiltonian systems [6], homogeniza-

tion theory [15], heterogeneous multi-scale methods [120], and filtering methods in

turbulence [85].

Outline of Part I

To summarize, Part I of the dissertation will be organized as follows:

In Chapter 3, we give an outline of the Mori-Zwanzig formalism. We outline

a perturbative approach and give an example of its application to an ODE system.

We present a scheme for obtaining higher order dissipative approximations to the

coarse variables when the dissipation is large and show dissipativity of corrections

of order 4m+ 1.

Chapter 4 deals with coarse-graining of a one-dimensional classical particle sys-

tem. Here we present the one-dimension model, introduce the canonical and micro-
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canonical ensembles and discuss the thermodynamic structures associated with each

ensemble. A general scheme for conservative coarse-graining is introduced, assigning

different weights to each particle. In the particular case of coarse-graining by lump-

ing we show the discrete Euler equations are satisfied in the equilibrium setting. In

the non-equilibrium setting we make several approximations to derive the discrete

Euler equations and a next order dissipative correction. We study a simplified ver-

sion of the dissipative model in more detail and a well-posedness result is obtained

using a Lyapunov function argument.
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Mori-Zwanzig Formalism

Overview

In this chapter we discuss the Mori-Zwanzig formalism. In Section 3.2 we

introduce the basic elements of the formal theory. We outline a perturbative ap-

proach in Section 3.3 based on a special decomposition of the generator into fast

and slow modes. We then consider the problem of coarse-graining dissipative op-

erators. Several approximations are discussed that preserve the dissipativity of the

coarse-grained system.

The Formalism

The Mori-Zwanzig formalism, also referred to as the projection operator for-

malism, is one of staples of modern statistical mechanics and can be found in many

modern physics textbooks [69, 102, 113]. It is named after H. Mori [95] and R.

Zwanzig [123, 124] who were its early champions. The early approach by Mori was

essentially a linear (or close to equilibrium) version of the later work by Zwanzig.

The basic building blocks of the Mori-Zwanzig theory are 1) a linear evolution
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equation,

d

dt
f(t) = Lf(t), (3.1)

and 2) a projection P operator and its complement projection P̃ = I − P . The

original application of Mori-Zwanzig was for a Hamiltonian systems, where L is the

Liouville operator and P is a conditional average, although the formalism can be

applied to the case when L is the generator of a Markov process, a C0 semi-group

on a Banach space, or a quantum Liouville equation in density matrix framework.

There appear to be essentially two approaches to the Mori-Zwanzig formalism,

which are, roughly speaking dual to each other. One approach is to work directly

with observables and make use of the so-called Dyson operator identity for the

semi-group etL

etL = etP̃L +

∫ t

0

e(t−s)LPLesP̃Lds, (3.2)

which is just the usual perturbation formula in semi-group theory. However, it

should be noted the if L and P̃L are unbounded operators, then the validity of

(3.2) is far from obvious. Validity aside, one can use (3.2) to obtain the so-called

generalized Langevin equation

d

dt
x(t) = v(x(t)) +

∫ t

0

div γ(x(s), t− s)ds+ ξ̇(t). (3.3)

where x(t) = 〈X(t)〉f0 is the averaged evolution of some observable of the Hamilto-

nian evolution X(t), and the average is taken over the initial data with respect to

an arbitrary initial distribution f0 in phase space. The function ξ̇ is interpreted as

a noise term, and has correlation length

E
[
ξ̇(t)⊗ ξ̇(s)

∣∣A = x
]

= γ(x, t− s).
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The matrix γ(x, t) is sometimes referred to as the ‘memory kernel’, as it is responsible

for the introduction of memory terms into the equation.

Another approach is to work directly with the distribution function on the

phase space through the Liouville equation. This approach is more general, as is

can be generalized to a broader class of evolution equations of the form (3.1) beyond

the Liouville equation. Indeed this is the main approach that we will adopt for the

rest of this chapter.

In this setting, the goal is to obtain a closed equation for the projected dynam-

ics f̂(t) = Pf(t). Projecting both sides of (3.1) we obtain the non-closed equation

d

dt
f̂(t) = L̂f̂(t) + PLP̃ f̃(t), (3.4)

where L̂ = PLP and f̃ = P̃f . If one assumes that the initial data f0 satisfies

P̃f0 = 0, then formally we have following equation for f̃

f̃(t) =

∫ t

0

e(t−s)L̃P̃Lf̂(s)ds, (3.5)

where L̃ = P̃LP̃ . It should be noted that equation (3.5) is the analogue of the

identity (3.2). It can be justified, for instance, if L̃ generates a C0 semi-group and

PL is of Desch-Schappacher class with respect to L̃ (see [41]).

Substituting this into equation (3.4), we obtain the ‘Nakajima-Zwanzig’ equa-

tion,

d

dt
f̂(t) = L̂f̂(t) +

∫ t

0

Ψ(t− s)f̂(s)ds, Ψ(t) = PLP̃etL̃P̃LP , (3.6)

which is the analogue of the generalized Langevin equation (3.3), with the operator

Ψ(t) playing the role of the ‘non-Markovian’ memory effects in the evolution of f̂ .
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Equation (3.6) was first derived independently by Nakajima [99] and Zwanzig [123]

in the context of quantum and classical systems respectively. Indeed, in the case

of the Liouville equation, (3.3) can be obtained from (3.6) by integrating against a

suitable choice of test function. In fact, equation (3.6) is equivalent to the formal

operator identity

PeLtP = P +

∫ t

0

PLPesLds+

∫ t

0

∫ s

0

PLP̃e(s−r)L̃P̃LPerLdrds.

The utility of equation (3.6) is somewhat limited due to the memory effects

introduced by Ψ(t) as well as the intractability of the operator L̃. In general, and in

specific examples, it is not clear that L̃ is a suitable generator for a semi-group, and

such dynamics can be very tricky to compute. This makes the memory operator

Ψ(t) rather difficult to study. Several works, [28, 82], attempt to understand the

behavior L̃ and the operator Ψ(t) in a more rigorous fashion, but success is limited

to very strong assumptions on the generator L and P .

To circumvent these difficulties two approximations are typically made:

The first is an assumption of a time scale separation between Ψ(t) and f(t),

that is, that Ψ(t) decays suitably fast so that the following Markov approximation

holds true,

Ψ(t) ≈ Ψ̄T δ(t), Ψ̄T :=

∫ T

0

Ψ(s)ds, (3.7)

Note that the integral is truncated at a finite time T , rather than taken over all of

R+. This is typically done to avoid potential divergence of the integral, as well as

to aid in computation. This approximation serves to remove the memory effect in
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equation (3.6) and render the dynamics ‘Markovian’

d

dt
f̂ = PLP f̂ + Ψ̄T f̂.

The Markovian assumption seems reasonable in many cases and is mainly an as-

sumption on time-scale separation. Indeed, if one makes the right choice of relevant

variables, then one typically observes correlations in the orthogonal dynamics de-

caying on a time-scale much faster than the evolution of the relevant dynamics. It

should be noted here that this approximation breaks the equivalence of projected

dynamics to the original evolution equation and potentially introduces some dissipa-

tion into the dynamics where there may have been none previously. Consequentially,

one only expects such an approximation to valid in some appropriate limit where

the scale separation becomes more pronounced.

The second assumption (which we will avoid), is that dynamics generated by

L̃ are equivalent to L, at least in the form that it arises in Ψ(t), namely

PLP̃etL̃P̃LP ≈ PLP̃etLP̃LP .

This assumption is much harder to justify and is usually done as a technique to make

ΨT computable. However, such an approximation, while convenient, can suffer from

various deficiencies, among them the so-called plateau-problem, where ΨT has only

a small range of value for which it is accurate before decaying to zero for large T

(see [71]).

The Mori-Zwanzig formalism has had tremendous success in non-equilibrium

statistical mechanics and has been applied successfully to countless problems. In-

deed it is one of the standard methods used to derive the ‘generalized Fokker-Planck’
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and ‘generalized Langevin’ equations from deterministic process. It has given great

insight into the emergence of non-Markovian behavior through time-correlations and

the emergence of dissipative and irreversible behavior through decay of correlations.

However, in part due to its extremely general nature, the Mori-Zwanzig for-

malism suffers from several undesirable features. The first is the reliance on the

operator L̃ to generate the orthogonal dynamics. Indeed, except for a few special

cases, L̃ cannot easily be shown to generate a good dynamics, and from a computa-

tional standpoint simulating such dynamics is an intractable problem. In addition,

this intractability of L̃ makes any attempt to justify the Markov approximation (3.7)

all the more difficult since any rigorous justification of the Markovian approximation

will likely involve an ergodicity property of the operator L̃.

A Perturbative Approach

In order to avoid the complications present with the definition of L̃, we present

here a more practical perturbative approach that allows for more explicit compu-

tations and construction of approximations. An similar approach can be found in

[105], and is close (up to a time rescaling) to the work of Davies [29–31] on the

so-called ‘weak coupling limit’.

In this section, we will suppose that we have an explicit scale separation ex-

pressed through the decomposition

L =
1

ε
L0 + L1,

with ε playing the role of the scaling parameter. Systems exhibiting such a decom-
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position are often called ‘fast-slow’ systems with L0 generating the ‘fast motion’ and

L1 generating the ‘slow motion’. Fast-slow systems are abundant in the theory for

averaging for Hamiltonian systems (see [17, 57, 58]). The projections P and P̃ can

be viewed as projections onto slow and fast manifolds respectively.

In what follows, we will assume that L0 generates a strongly continuous semi-

group etL0 and satisfies

PL0 = L0P = 0,

meaning that the ‘fast motion’ generated by L0 is constrained to the null space of

P̃ ,

PetL0 = P , and P̃etL0 = etL0P̃ .

The ‘slow motion’ generated by L1 need not be constrained to the null space of

P̃ , and may have a nontrivial projection under P̃ . However, contrary to the non-

perturbative approach, we will not need to assume that P̃L1P̃ generates a semi-

group.

Here we have chosen to make the scaling ε explicit so as to have an explicit scale

separation, however, in practice, it may also be embedded in P and the operator L

(this is the case, for instance in the problem considered in Section 4.5).

The equation for f̂ = Pf now reads

d

dt
f̂ = L̂f̂ + PL1f̃, (3.8)

while the orthogonal dynamics are given by

d

dt
f̃ =

1

ε
L0f̃ + P̃L1f.
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Assuming P̃f(0) = 0, (formally) we may write

f̃(t) =

∫ t

0

eε
−1(t−s)L0P̃L1fsds. (3.9)

This Volterra-like operation on f(s) can be justified if, for instance, P̃L1 is of Desch-

Schappacher class with respect to L0 (see [41]). The main difference between this

and equation (3.5) is that we have now written the orthogonal dynamics in terms

of the more manageable evolution etL0 instead of etL̃. Of course, in doing this, we

have paid the price that we are unable to close the dynamics. Indeed, substituting

this into equation (3.8) we find

d

dt
f̂(t) = L̂f̂(t) +

∫ t

0

PL1e
ε−1(t−s)L0P̃L1fsds.

Keeping true to the Mori-Zwanzig philosophy, we write fs = f̂s+f̃s on the right-hand

side above and again apply (3.9). Iterating this procedure, we obtain the following

formal series

d

dt
f̂(t) = L̂f̂(t)+

∞∑
n=1

∫
∆n(t)

Φn(ε−1(t−t1), ε−1(t1−t2), . . . , ε−1(tn−1−tn))f̂tndt1 . . . dtn,

(3.10)

where ∆n(t) = {(t1, . . . , tn) : 0 < tn < . . . < t1 < t} and the operator Φn(t1, . . . , tn)

is defined by

Φn(t1, . . . , tn) = PL1e
t1L0L̃1e

t2L0L̃1 . . . L̃1e
tnL0P̃L1P .

In a sense equation (3.10) is a generalization of (3.6), since L0 = L̃ implies

that L̃1 = 0 and then above series collapses to one term n = 1 with Φ1(t) = Ψ(t).

However, it is far from clear whether the series (3.10) is well defined and converges.
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The operators {Φn(t1, . . . , tn)}n encode a more complicated memory structure and

are related nth order correlation functions, and assuming that L0 and P were chosen

prudently, should contribute less and less for large n and epsilon. In general, one

should interpret the series (3.10) as an asymptotic series in ε.

Indeed, assuming Φn(t1, . . . , tn) has enough decay, as ε → 0 we may regard

ε−nΦn(ε−1t1, ε
−1t2, . . . , ε

−1tn) as an approximation of the identity and make the fol-

lowing Markov approximation

ε−nΦn(ε−1t1, ε
−1t2, . . . , ε

−1tn) ∼ Φ̄n
ε δ(t1, t2, . . . , tn),

where

Φ̄n
ε =

∫ Tε

0

· · ·
∫ Tε

0

Φn(t1, . . . , tn)dt1, . . . dtn.

for some time Tε → ∞ as ε → 0. This approximation then produces a Markovian

equation

d

dt
f̂ = L̂f̂ +

∞∑
n=1

εnΦ̄n
ε f̂. (3.11)

Again, this series in (3.11) should be interpreted as an asymptotic series in ε and

any approximation should truncate the series. Primarily we will be interested in the

first order truncation to (3.11) governed by the operator

L = L̂+ εPL1

∫ T

0

etL0P̃L1dt

Dissipative Approximations

It is natural to wonder whether one might have better success justifying the

Mori-Zwanzig formalism starting from a system that has some dissipation. Indeed
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this is the approach taken for rigorous deriving the equations of fluid mechanics,

either from a Hamiltonian system that has some noise added (for instance [101]),

or from the Boltzmann equation. Such approaches usually succeed where the pure

Hamiltonian one fails, since the dissipation usually provides some form of ergodicity

and a mechanism for equilibration.

Moreover, if one desires to further coarse-grain a system which has already

been coarse-grained, then it natural to start with a system that has some dissipation.

In this context, the Mori-Zwanzig formalism applied to dissipative, particularly

diffusion processes, has been addressed by several authors ([44, 46, 103]).

In this section, we will suppose that the generator L acts on a Hilbert space

H, so that it comes equipped with an inner product 〈 · , · 〉, and that L is dissipative

〈f ,Lf〉 ≤ 0, for all f ∈ D(L).

We will mostly have in mind the case that L is the generator of a Markov process

on a state space X , and H is the space L2(µ) where µ is an invariant measure for

L. Denote by L∗ the formal adjoint of L under 〈· , ·〉 and write

A =
1

2
(L − L∗), S =

1

2
(L+ L∗),

as its symmetric and antisymetric parts. We will also assume, for simplicity, that L

L̂ and L̃ all generate well defined (strongly continuous) semi-groups on H.

When the operator L has sufficient mixing properties and S 6= 0 one can take

the limit as T →∞ in the integral (3.7) and obtain

Ψ̄ :=

∫ ∞
0

Ψ(s)ds = PLP̃(−L̃)−1P̃LP ,
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where L̃−1 is interpreted as a pseudo-inverse of L̃, to be interpreted through the

resolvent limit

(−L̃)−1 := lim
λ→0+

(λ− L̃)−1,

provided it exists.

In general, such a limit will produce a new operator

L = L̂+ PLP̃(−L̃)−1P̃LP , (3.12)

which, rather remarkably, will still be dissipative operator. This can be seen from

the following identity reminiscent of the Shur complement

Lemma 3.4.1. Suppose L−1 is invertible and let L̃−1 be the a pseudo-inverse of L̃.

Then (PL−1P) has a pseudo inverse and is given by

L = (PL−1P)−1. (3.13)

Proof. This can be checked by direct computation,

L(PL−1P) = PLPL−1P − PLP̃L̃−1P̃LPL−1P

= PLL−1P − PLP̃L−1P − PLP̃L̃−1P̃LL−1P + PLP̃L̃−1P̃LP̃L−1P

= P − PLP̃L−1P + PLP̃L−1P

= P

The same identity can easily be verified for left-multiplication (PL−1P)L. It readily

follows that L is a pseudo-inverse for (PL−1P).

A useful consequence of the above identity is that L is a non-positive (dissipa-

tive) operator on Ĥ. Indeed, Lemma 3.4.1 immediately gives the following identity,

L = L∗(L∗)−1L,
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where ∗ denote the adjoint. This, in turn, implies that

〈 f,Lf〉 = 〈Lf, (L∗)−1Lf 〉 ≤ 0, for all f ∈ H,

since the inverse of a non-positive operator L∗ is also non-positive. There is another

identity, similar to (3.13), which also proves useful for showing the dissipativity of

L.

Lemma 3.4.2. The following identity holds

L = P(I − LP̃L̃−1P̃)L(I − P̃(L̃∗)−1P̃L∗)P . (3.14)

Proof. Again we check by direct computation,

(I − PLP̃L̃−1P̃)L(I − P̃(L̃∗)−1P̃L∗P)

= PLP − PLP̃L̃−1P̃LP − PLP̃(L̃∗)−1P̃L∗P − PLP̃L̃−1P̃LP̃(L̃∗)−1P̃L∗P

= PLP − PLP̃L̃−1P̃LP − PLP̃(L̃∗)−1P̃L∗P + PLP̃(L̃∗)−1P̃L∗P

= L.

The identity (3.14), of course, means that L has the form CLC∗, where C =

P − PLP̃L̃−1P̃ which means that L is dissipative whenever L is.

It is not clear, however, that this dissipation property will be preserved upon

making any approximations to L̃ as is usually done in the Mori-Zwanzig literature.

Indeed, making the approximation L̃ ≈ L in the operator (3.12) above does not

appear to preserve dissipativity, nor does the perturbative approach taken in Section

3.3.
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In pursuit of dissipative approximations, we will again take a perturbative

approach, and assume a decomposition of L̃ of the form

L̃ = Ã+ ε−1S̃,

where S̃ is a scaling parameter. This decomposition amounts to the assumption

that the dissipative part dominates the orthogonal dynamics, or in other words the

dissipation dominates the small scales. For instance in kinetic theory, ε might be

the knudsen number and P the projection onto the hydrodynamics fields.

Under such a scaling, one may may expand (Ã+ ε−1S̃)−1 in a Neumann series

to obtain

L = L̂+
∞∑
k=0

εk+1PLP̃(−S̃)−1(Ã(−S̃)−1)kP̃LP , (3.15)

which is formally equivalent to (3.12). As in Section 3.3, we will interpret the series

in (3.15) as an asymptotic series and truncate to obtain approximations. Such

truncations are defined by

L(n)
= L̂+

n−1∑
k=0

εk+1PLP̃(−S̃)−1(Ã(−S̃)−1)kP̃LP .

The lowest order approximation L(0) = L̂ is clearly dissipative since L is. However,

not every truncation of (3.15) will lead to a generator L(n)
which is dissipative.

Interestingly, we will find that if m ∈ N, then

〈 f , L(4m+1)
f 〉 ≤ 0.

This is analogous to the Chapman Enskog expansion of the Boltzmann equation,

where certain truncations of the expansion lead to ill-posed equations that do not
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dissipate. This can be proven rigorously in the case the operator L is bounded and

all pseudo-inverses are well-defined.

It is not clear whether the perturbative approach given in 3.3 can be combined

with this method to produce dissipative approximations that do not rely on the

operators Ã and S̃.

Our goal is now to find approximations to L in the case that there is strong

dissipative present in the system. We decompose L into an anti-symmetric part A

and symmetric part S, L = S +A and denote Ã and S̃ the same decomposition for

L̃. We are interested in the case when S̃ is large relative to Ã. The key feature of

the approximations that we would like to preserve here is the dissipativity. With

this in mind, we formally expand L̃−1 = (S̃ + Ã)−1 in a Neumann series,

L̃−1 =
∑
k≥0

(−1)kS̃−1(ÃS̃−1)k.

Substituting this into the expression for L and truncating at the n − 1th term, we

define a sequence of approximations {L(n)
: n ∈ N}, defined by

L(n)
= L̂ −

n−1∑
k≥0

(−1)kPLP̃S̃−1(ÃS̃−1)kP̃LP , (3.16)

where the sum is empty in the case that n = 0. The primary objective here is to

study which of the truncations L(n)
are dissipative operators. Our main result is

the following:

Theorem 3.4.3. The truncated approximation L(n)
, defined by (3.16), is dissipative

when n = 0 and when n = 4m+ 1 for each m ∈ N.

The cases n = 0 and n = 1 are fairly straight forward, and follow easily

from the earlier discussion and identities. The result for larger values of n is far
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from obvious and requires a few algebraic ‘tricks’ to obtain. Indeed, as we will see

from one of the following Lemmas, when n = 4m + 2, the summation term which

subtracted from the right-hand side of (3.16) is actually dissipative, and therefore

more work must be done to obtain dissipativity of the whole approximation L(n)
.

In order to prove this we will need a few Lemmas. The first is a very important

identity, which will allow us the reduce the proof to showing the positivity of a certain

sum. The identity can be see as a truncation of a formal expansion of identity (3.14).

Lemma 3.4.4. For n ≥ 1, the following identity holds

L(n)
= PHP − (−1)n−1PLP̃

[ n−1∑
k≥0

S̃−1(ÃS̃−1)k
]
(ÃS̃−1)nP̃L∗P (3.17)

where H is a dissipative operator given by

H =
(
I −

n−1∑
k≥0

(−1)kLP̃S̃−1(ÃS̃−1)kP̃
)
L
(
I −

n−1∑
k≥0

P̃S̃−1(ÃS̃−1)kP̃L∗
)
.

Proof. We begin by considering the dissipative operator H, which is simply a trun-

cation of a formal expansion of identity (3.14). Multiplying out the expression, we

obtain

H = L −
n−1∑
k≥0

(−1)kLP̃S̃−1(ÃS̃−1)kP̃L −
n−1∑
k≥0

LP̃S̃−1(ÃS̃−1)kP̃L∗

+
n−1∑
k,j≥0

(−1)kLP̃S̃−1(ÃS̃−1)kL̃S̃−1(ÃS̃−1)jP̃L∗.
(3.18)

Writing L̃ = S̃ + Ã, the last term with the double summation on the right-hand

side in (3.18) can be written as

n−1∑
k,j≥0

(−1)kLP̃S̃−1(ÃS̃−1)k+jP̃L∗ +
n−1∑
k,j≥0

(−1)kLP̃S̃−1(ÃS̃−1)k+j+1P̃L∗
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Clearly the above sums are telescoping in k and can be simplified to

n−1∑
j≥0

LP̃S̃−1(ÃS̃−1)jP̃L∗ + (−1)n−1

n−1∑
j≥0

LP̃S̃−1(ÃS̃−1)j(ÃS̃−1)nP̃L∗.

Substituting this expression back into (3.18) we obtain

H = L −
n−1∑
k≥0

(−1)kLP̃S̃−1(ÃS̃−1)kP̃L

+ (−1)n−1

n−1∑
j≥0

LP̃S̃−1(ÃS̃−1)j(ÃS̃−1)nP̃L∗.

Using this to compute the product PHP , and recognizing the appearance of L(n)

from the first two terms, gives the main identity (3.14).

The next Lemma regards dissipativity of truncations of the Neumann series

expansion for (L̃∗)−1.

Lemma 3.4.5. The finite sums

n∑
k≥0

S̃−1(ÃS̃−1)k, and −
n∑
k≥1

S̃−1(ÃS̃−1)k (3.19)

are dissipative if n = 4m or n = 4m+ 1 for some m ∈ N.

Proof. We begin by proving a simpler result, that is, for some symmetric, non-

negative operator B, the finite sum

n∑
k≥0

(−1)kBk

is a symmetric non-negative operator whenever n is even. Indeed this result easily

follows from the following formula,

n∑
k≥0

(−1)kBk = (I − B1/2)−1(I + (−1)nBn+1)(I − B1/2)−1,
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which can be obtained by a simple computation. Indeed this fact now easily proves

that
n∑
k≥1

(−1)kBk

is dissipative if n is even.

In order to prove that the series in (3.19) are dissipative, it suffices to prove it

only for the symmetric part, which involves only the even terms in the sum. This

also means that we may, without loss of generality assume that n is even, since

proving dissipativity for any even n even will also imply dissipativity n+ 1 through

the addition of an inconsequential anti-symmetric term.

The symmetric parts of the sums in (3.19) are given by,(
n∑
k≥0

S̃−1(ÃS̃−1)k

)
sym

=

n/2∑
k≥0

S̃−1(ÃS̃−1)2k,

(
−

n∑
k≥1

S̃−1(ÃS̃−1)k

)
sym

= −
n/2∑
k≥0

S̃−1(ÃS̃−1)2k

Since −S̃ is symmetric and non-negative we may define the operator

B = −
[
(−S̃)−1/2Ã(−S̃)−1/2

]2

,

which is also symmetric and non-negative. We may then rewrite the sums above in

terms of B,

n/2∑
k≥0

S̃−1(ÃS̃−1)2k = −(−S̃)−1/2

 n/2∑
k≥0

(−1)kBk
 (−S̃)−1/2,

−
n/2∑
k≥1

S̃−1(ÃS̃−1)2k = (−S̃)−1/2

 n/2∑
k≥1

(−1)kBk
 (−S̃)−1/2,

Clearly, by the results at the beginning of the proof, both quantities are dissipative

only when n/2 is even.
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We can now use these Lemmas to prove the main Theorem.

Proof of Theorem 3.4.3. We will being by using identity (3.17). Clearly PHP is dis-

sipative, so it suffices to show that the remaining series is also dissipative. Therefore

to prove the theorem we simply need to prove dissipativity of

− (−1)n−1

n−1∑
k≥0

S̃−1(ÃS̃−1)k(ÃS̃−1)n.

Assuming n is even, we may rewrite the expression above as

(S̃−1Ã)n/2

(
n−1∑
k≥0

S̃−1(ÃS̃−1)k

)
(ÃS̃−1)n/2.

By Lemma 3.4.5, if n = 4m + 2, then the above operator is positive, and therefore

has the wrong sign.

Assuming n is odd, we may rewrite the expression instead as

− (S̃−1Ã)(n−1)/2

(
n∑
k≥1

S̃−1(ÃS̃−1)k

)
(ÃS̃−1)(n−1)/2. (3.20)

We note that by Lemma 3.4.5

n∑
k≥1

S̃−1(ÃS̃−1)k

is positive when n = 4m + 1. Therefore, since (n − 1)/2 = 2m the quantity (3.20)

can be written as

− (S̃−1Ã∗)(n−1)/2

(
n∑
k≥1

S̃−1(ÃS̃−1)k

)
(ÃS̃−1)(n−1)/2.

which is clearly dissipative.

35



Coarse-Graining of ODE’s

Of course, the Mori-Zwanzig theory was originally studied for Hamiltonian

systems. In this section we will narrow the discussion to the more concrete setting

of ordinary differential equations (ODE’s). In this setting, the nature of the Mori-

Zwanzig formalism becomes more transparent and several approximations can be

made more explicit.

We begin by considering the following ODE system

Ẋt = b(Xt), (3.21)

where b : Rn → Rn is a smooth vector field. Suppose we have a smooth map

a : Rn → Rm with m < n, which designates some interesting quality of the dynamics

of (3.21), and suppose that it is non-degenerate, meaning that the matrix

Gij(x) =
∑
k

∂kai(x)∂kaj(x)

is invertible for all x ∈ Rn. We will refer to the map a as the coarse-graining map,

and we will be interested in the behavior of the coarse dynamics Yt = a(Xt). Easily,

Yt satisfies the equation

Ẏt = ∂a(Xt)b(Xt),

where (∂a)ij = ∂jai denotes the Jacobian matrix. It is not surprising that this is not

a closed equation in terms of Yt, since Yt is lower dimensional than Xt, and should

not be determined in terms of Yt unless Xt evolves transversely to the level sets of

a. Our goal will be to obtain approximate closures for the evolution of Yt.
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We will find it useful to work in a probabilistic setting. Namely if X0 is initially

distributed according to a probability density f0(x), then the density f(t, x) at later

times t > 0 is governed by the ‘Liouville’ equation

∂tf = L∗f, f |t=0 = f0,

where L = b · ∇, and L∗ = div(b · ) denotes the formal adjoint of L. Suppose that

(3.21) admits an invariant measure µ(dx) = g(x)dx (not necessarily probability)

satisfying L∗g = 0. Following the conventions of statistical physics, we will denote

〈 · 〉µ the average with respect to µ,

〈u〉µ =

∫
Rn
u dµ.

The coarse-graining map a naturally induces a coarse measure µ̂ = a#µ and a

fluctuation probability measure µ(dx | y) obtain by conditioning µ on the event that

a(x) = y. We will denote by 〈 · 〉µ̂ and 〈 · | y〉µ the expectations with respect to µ̂ and

µ(· | y) respectively. Note that µ( · | y) is a probability measure concentrated on the

manifold Σy = {x : a(x) = y}, while µ̂ might not be (if µ isn’t). These measures

give rise to the decomposition

µ(dx) = µ(dx | y) µ̂(dy),

which is to be interpreted by its action on test functions ϕ(y) and ψ(x)∫
Rn
ϕ(a(x))ψ(x)µ(dx) =

∫
Rm

(∫
Σy

ψ(x)µ(dx | y)

)
µ̂(dy) (3.22)

Define the operator R and its formal adjoint R∗ (with respect to µ) by the

action on a continuous bounded functions ϕ(y), ψ(x)

Rϕ(x) = ϕ(a(x)), R∗ψ(y) = 〈ψ | y〉µ .
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The operators are adjoints in the sense that equation (3.22) can be rewritten as

〈(Rϕ)ψ〉µ̂ = 〈ϕ (R∗ψ)〉µ .

Note that R∗R = I, so that

P = RR∗, P̃ = I − P

define projections.

We will find it useful to describe things in terms of the relative density h(t, x) =

f(t, x)/g(x), which solves

∂th = Lh, h|t=0 = h0 = f0/g, (3.23)

whose solution is given by the action of the semi-group etL

h(t, x) = etLh0(x) = h0(φt(x)).

where φt : Rn → Rn is the flow of homeomorphisms associated to (3.21), defined by

∂tφt(x) = b(φt(x)), φ0(x) = x.

We are interested in the distribution f̂(t, y)dy = ĥ(t, y)µ̂(dy) of Yt defined by

pushforward f̂(t, y)dy = a#(f(t, x)dx). From this we may deduce that ĥ is given by

ĥ(y) = R∗h(y) = 〈h | y〉µ .

Note that this framework lends itself to working in ‘weak form’ of (3.23),

∂t 〈ψ h〉µ = 〈Lψ h〉µ .
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where ψ(x) is a suitably smooth test function. The process of coarse-graining then

corresponds to choosing a test function of the form ψ(x) = Rϕ(x) = ϕ(a(x)). Such

a choice of test function yields

∂t〈ϕ ĥ〉µ̂ = 〈(LRϕ)h〉µ = 〈R∗[(b · ∇a)h] · ∇ϕ〉µ̂

We now have all the components for the Mori-Zwanzig formalism, namely

a projection P = RR∗ and an evolution equation (3.23). Lets now apply the

perturbative framework of Section 3.3 and assume that the vector field b can be

written as

b = ε−1b0 + b1,

where b0 satisfies b0 ·∇a = 0, and epsilon is an explicit scaling parameter identifying

the speed of the fast and slow time scales. This in turn induces the decomposition

of L

L = ε−1L0 + L1, L0 = b0 · ∇, L1 = b1 · ∇.

We will also assume that µ is an invariant measure for both L0 and L1 separately.

Note that the fact that L0a = 0 implies that µ( · | y) is an invariant measure for L0

for each y.

The approximate Markovian equation (3.11) truncated at n = 1 is equivalent

to the equation

∂tĥ
1 = R∗L1Rĥ1 + εR∗Φ̄1

εRĥ1. (3.24)

The operator RL1R∗ can be easily shown to satisfy

RL1R∗ = b̂ · ∇, b̂(y) = 〈b1 · ∇a | y〉µ
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and similarly the operator RΦ̄1
εR∗ satisfies

〈
ϕRΦ̄1

εR∗ψ
〉
µ̂

= 〈(M∇ψ) · ∇ϕ〉µ̂

with

M(y) =

∫ Tε

0

〈
b̃⊗ etL0 b̃

∣∣∣ y〉
µ

dt, b̃(x) = b(x) · ∇a(x)− b̂(a(x)). (3.25)

The formula (3.25) for the matrix M(y) is an analogue of the famous Green

Kubo formula, and is usually called the friction matrix. Note that M it is not

necessary a symmetric matrix, because of the potential lack of time-symmetry of

the operator L0 and parity of the flux. However for any ξ ∈ Rm, we have

(M(y)ξ) · ξ ≥ 0,

since it is a time integral of an auto-correlation function, and therefore the Wiener-

Kinchin theorem implies that it is positive for large enough Tε.

If ĥ1 satisfies (3.24), then the measure ν̂1 = ĥ1µ̂ satisfies a Kolmogorov

(Fokker-Planck) equation

∂tν̂
1 + div

(
b̂ν̂1
)

= ε div
(
µ̂M∇ĥ1

)
.

If ν̂ has a density ĝ with respect to Lebesgue measure, then the above Kolmogorov

equation corresponds to an Itô diffusion process

Ẏt = b̄(Yt) +
√

2εD(Yt)Ẇt, b̄ = b̂+ εM∇ log ĝ + ε divM,

where D denotes the symmetric part of M and
√
D denotes the square root matrix.

In general, there is no clear strategy on how to pick the vector field b0 as does

above, and, in general, it is not clear that such a decomposition even exists for any
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a. However, the basic perturbative strategy above will be applied in Chapter 4 to

the coarse-graining of a one-dimensional particle system, in this case there is a very

clear choice for b0.

Taking higher order truncations of the Markovian equation (3.11) will lead to

higher-order derivatives in the equation for ĥ and contain coefficients contain higher

order time-correlations functions. It is not clear what the utility of such a higher

order approximation might be as there does not appear to be any stochastic process

associated with such an equation. Nevertheless, such an approximation may be

useful for computing higher order corrections to the evolution of the distribution µ̂.

In addition, the perturbative framework does not play well with stochastic

differential equations, where the generator L is a second order operator. Indeed,

directly applying the first order truncation of (3.11) to this example produces a

fourth order differential equation, which again does not appear to correspond to

any stochastic process.
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Coarse-Graining of a One-dimensional Particle System

Overview

In this chapter we turn to a more concrete example of coarse-graining of classi-

cal particle systems. Coarse-graining classical N-particle Hamiltonian systems is of

fundamental interest in statistical mechanics and many related fields. Continuum

equations in fluid mechanics and kinetic theory can be viewed as coarse-grained

models of such a system. However, it is often desirable, from the perspective of

computations, to obtain certain coarse-grained descriptions that allow the coarse-

grained model to be ‘tuned’ to the regime of interest, and will need to incorporate

both macroscopic and micro-scopic fluctuations. In general, this is a difficult task,

especially if one has any hope of obtaining rigorous results. Indeed, even in the case

of simple fluids, it is not even clear how to properly incorporate the fluctuations and

dissipation into a macroscopic model.

In order to simplify the picture, we will consider a Hamiltonian system of

N particles in one dimension with positions x = (x1, . . . , xN) ∈ TN and v =

(v1, . . . , vN) ∈ RN , satisfying periodic boundary conditions and interacting through
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nearest neighbors. The particles are governed by the Hamiltonian

H(x,u) =
N∑
i=1

(
1

2
v2
i + V (xi − xi−1)

)
,

and the potential V is singular enough at the origin so that particles cannot cross.

Here, it is useful to introduce the deformation coordinates ri = xi − xi−1 and view

the particle system (r,v) as a lattice system on ZN = Z\NZ. Indeed, in these

coordinates (r,v), the particle system now takes the form of a one-dimensional

anharmonic chain, which has been widely studied in the literature. The equations

of motion are

ṙi = vi − vi−1

u̇i = V ′(ri+1)− V ′(ri)

ėi = (viV
′(ri+1)− vi−1V

′(ri)).

(4.1)

Typically, if interested in the large scale hydrodynamic behavior of the system,

one studies the empirical measure ηN on T, defined by

ηN(t) =
1

N

N∑
i=1

wi(Nt)δi/N ,

where wi(Nt) = (ri(Nt), vi(Nt),
1
2
v2
i (Nt) + V (ri(Nt))) is the Hamiltonian evolution

of the locally conserved quantities sped up by a factor of N . In this scaling, as

N → ∞, one typically expects ηN(t) to converges weakly to the fluid densities

(`(x), p(x), e(x)) satisfying the one dimensional Euler equations in Lagrangian form,

∂t` = ∂xp

∂tp = −∂xP (`, e− 1
2
p2)

∂te = −∂x
(
pP (τ, e− 1

2
p2)
)
,
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where (`, p, e) are the volume, momentum and energy densities, and P (`, e) is the

thermodynamic pressure function obtained from a concave entropy function S(`, e)

satisfying the first law of thermodynamics

∂`S(`, e) = β(`, e)P (`, e) > 0, ∂eS(`, e) = β(`, e). (4.2)

It should be mentioned that the hydrodynamic limit cannot be rigorously

proven directly from the underlying Hamiltonian system without assumptions of

ergodicity of the deterministic Hamiltonian system, a fact that is notoriously difficult

to prove. Typically, to get around this, one introduces certain momentum and energy

conserving stochastic perturbations to the system to obtain the required mixing. In

this setting such a limit can be proven rigorously using relative entropy methods

(see [14] for a proof).

Often, one is interested in higher order corrections to the system above, taking

into account diffusive (or super diffusive) transport effects that might appear on

times scales of order Nα, α > 1. Since we are in dimension 1, and the particle system

has no pinning potential, the corrections are expected to be super-diffusive (see [11,

75]) and therefore the typical Naiver-Stokes corrections are not expected to hold.

This, of course does not stop one from studying the one-dimensional Navier-Stokes

equations, which can be instead thought of as a model for a higher dimensional fluid

with a large degree of symmetry (slab symmetry).

Of course, one can not simply look at times scales of order Nα, since the ‘Euler’

part of the dynamics will blow up in such a scaling. Often, this can be studied by
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looking at the fluctuation measure ξN(t)

ξN(t) =
1√
N

N∑
i=1

{wi(Nαt)− 〈wi(Nαt)〉} δi/N ,

where 〈 · 〉 denotes an ensemble average. In general, one expects that ξN converges

to a stochastic process which is governed by the linearized Euler system as well as by

a dissipative and stochastic part satisfying a fluctuation dissipation relation. Such

linearized stochastic evolution is often referred to as fluctuating hydrodynamics (see

[111]).

It is important to note that it is very difficult to capture both the nonlinear

Euler dynamics and any nonlinear dissipative corrections as an exact scaling limit

due to lack of scale invariance of the target equations. Therefore, in order to capture

both the Euler and Navier-Stokes behavior, one must forego any attempt to obtain

exact scaling limits and instead find approximations which, in some sense, asymp-

totically describe the hydrodynamic behavior of the system in a certain regime.

Since we are in one dimension, and the particle system has an interpretation

as a lattice system, we may approach the problem of coarse graining by lumping

conserved quantities into certain cells of mesoscopic size, that is, cells which contain

a large number of particles, but a small number relative to N . Specifically, partition

TN into M cells Λ = {Λi}i∈TN of equal size K = N/M and define a local averaging

map

ŵ(r,v)i =
1

K

∑
j∈Λi

wj. (4.3)

If r(t) and r(t) satisfy the original Hamiltonian dynamics, then, analogous to the

hydrodynamic limit, we expect that ŵ(r(Kt),v(Kt)) will converge (in a statistical
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sense) as K →∞ with N/K →∞ to an infinite particle system U(t) ∈ (R+ ×R×

R)Z, Ui = (`i, pi, ei) satisfying the discrete Euler equations,

˙̀
i = pi − pi−1

ṗi = −P (`i+1, ei+1 − 1
2
p2
i ) + P (`i, e− 1

2
p2
i+1)

ėi = −piP (`i+1, ei+1 − 1
2
p2
i+1) + pi−1P (`i, ei − 1

2
p2
i )

where P (`, e) is the same thermodynamic pressure function obtained for the con-

tinuous Euler system from the entropy function S(`, e). It is easy to check that

the discrete Euler system is a Poisson manifold and that for each i, the entropy

S(`i, ei − 1
2
p2
i ) is a constant of the motion. Furthermore, one can produce a family

of invariant probability measures {µα : α ∈ R+ × R× R+} on (R+ × R× R+)Z

dµα =
∏
i∈Z

1

Z(α)
exp

{
− α · Ui + S(`i, ei − 1

2
p2
i )
}
β(`i, ei − 1

2
p2
i ) d`idpidei, (4.4)

analogous to the grand-canonical measures of classical statistical mechanics.

The benefit of this approach is that the limit system is still a particle system,

but with a fluid character, and that the limiting dynamics has an explicit (Gibbs)

invariant probability measure. Indeed, this allows us to re-apply the same lump-

ing procedure to this discrete Euler system, scaling the cell size in the same way

as time. We, again, expect such a procedure to produce the same discrete Euler

system as above, just with a different thermodynamic structure. In the language of

the renormalization group, this means that the discrete Euler equations lie on an

invariant set with respect to the coarse-graining procedure. Seeking fixed points of

the thermodynamic functions, one can show that the ideal gas entropy (up to an
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additive constant)

S(`, e) = (cP − cV ) log(`) + cV log(e), cV > 1,

remains invariant under coarse-graining. Where cV and cP are the specific heats at

constant volume and pressure. In this case, the Discrete Euler equations simplify

to the so-called gamma-law

˙̀
i = pi − pi−1

ṗi = (1− γ)eS0/R

(
1

(`i+1)γ
− 1

(`i)γ

)
,

where S0 is the initial entropy, R = cp − cV is the gas constant and γ = cP/cv > 1

is the heat capacity ratio. What’s interesting is that this system is again a one-

dimensional particle chain with Hamiltonian

HIdeal =
∑
i

1

2
p2
i + eS0/R(`i)

1−γ

Of course, just as with the hydrodynamic limit, rigorously proving such re-

sults is well out of reach due to lack of ergodicity of the underlying Hamiltonian

system. Again, one approach to remedy this is to add certain energy and momentum

conserving stochastic perturbations to the dynamics.

Corrections to Discrete Euler

We would like to consider corrections to the discrete Euler dynamics that take

into account longer-time dissipative phenomena. As discussed, such effects are not

easy to obtain in conjunction with discrete Euler dynamics in any sort of limiting

regime. Indeed if one scales so that the dissipative effects are of order one, the
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discrete Euler part of the dynamics will blow up. If instead one subtracts off the

Euler dynamics, and studies the fluctuations on the right time scale, the limiting

stochastic equation will be linear.

Our goal is to try to capture both the leading order Euler dynamics as well

as the ‘second order’ dissipative stochastic dynamics through the coarse-graining

procedure outlined above. To do this, we will follow the strategy of the Mori-Zwanzig

perturbative approach described in Section 3.3 applied the Liouville equation

∂tf
N +ANfN = 0,

where AN is the Liouville operator associated to (4.1), and the solution fNt is the

density of particles in phase space at time t > 0. Let K be the size of the cell and

M = N/K be the number of cells, with ŵ be corresponding local averaging map

defined in (4.3). We choose a Gibbs measure µN as a reference invariant measure

for AN and denote µ̂M = ŵ#µ
N the push forward and µN( · |yM) the measure

conditioned on {ŵ = y}, whose expectation we denote by 〈 · |yM 〉N .

Following the perturbative Mori-Zwanzig approach, we decompose AN into

AN =
◦
AM +AM ,

where
◦
AM is the operator corresponding Hamiltonian motion inside each cell suit-

ably periodized so that the cells do not interact, and AM corresponds to boundary

interactions between the cells. The operator
◦
AM plays the role of the operator L0

since

◦
AMŵ = 0,
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and µN( · |yM) is an invariant measure for
◦
AM for each yM . The density of the

coarse-particles is given by push forward f̂Mt = ŵ#f
N
t . If fNt is initially distributed

according µN , then the system is in equilibrium, namely ANfN = 0. In this case,

one case show that for any K,N , f̂M solves

Â∗M f̂M = 0

where ÂM is the generator of a finite M discrete Euler dynamics.

When fNt is not in equilibrium, after rescaling in time t → Kt, we make

two approximations under the assumption large K,N . The first is a relaxation

approximation

〈 · |yM〉fNKt ≈ 〈 · |yM〉N ,

where 〈 · |yM〉fNKt corresponds measure obtained by conditioning the distribution fNKt

on {ŵ = yM}. This approximation is essentially a statement of local equilibrium

implying that the measure fNt equilibrates within the cells faster than the cells do.

Indeed, one expects this to be valid in a regime where N and K are large, but N

is much larger than K. In comparison to the perturbative Mori-Zwanzig approach

shown earlier, the relaxation approximation is simply a more precise justification of

truncation of the series (3.11). The second approximation is a Markovian assump-

tion, which is expected to be valid in the large K (long time) limit.

After these approximations, we obtain a Fokker-Planck equation for f̂Mt ,

∂tf̂
M
t − Â∗M f̂Mt = K−1

∑
i∈ZM

divi−1,i

(
gMK di∇i−1,i

(
f̂Mt
gMK

))
. (4.5)

divi−1,i := divyi − divyi−1
, ∇i−1,i := ∇yi − ∇yi−1

, and gMK dyM = ŵ#drdv is the

tensor product of the density of states inside each cell. The matrix di = d(yi−1, yi)
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is the diffusion matrix and is defined by

d(yi−1, yi) =
T (yi−1)θ̄(yi−1) 0 0

0 T (yi)η̄(yi) pi−1T (yi)η̄(yi)

0 pi−1T (yi)η̄(yi) T (yi−1)T (yi)κ̄(yi−1, yi) + T (yi)η̄(yi)p
2
i−1


with T (y) = β(y)−1 and P (y) are micro-canonical temperature and pressure func-

tions associated to the so-called volume entropy

SV (`, e) := log

(∫ e

V (`)

gK(`, 0, u)du

)
,

where gK(`, p, e) is the micro-canonical density of states and T (y), P (y) are related

to SV (y) through the first law (4.2). The functions θ̄(y), η̄(y) given by time integrals

of auto-correlation functions with respect to the micro-canonical measure 〈 · | y〉K on

(R+ × R)K , analogous to the Green-Kubo formula,

θ̄(y) =
1

T (y)

∫ K

0

〈
1

K

K∑
j=1

(
etAKvj − pi

)(
vj − pi

) ∣∣∣∣ y
〉
K

dt

η̄(y) =
1

T (y)

∫ K

0

〈
1

K

K∑
j=1

(
etAKV ′(rj) + P (yi)

)(
V ′(rj) + P (yi)

) ∣∣∣∣ y
〉
K

dt.

and κ̄(yi−1, yi) is given in terms of θ̄ and η̄,

κ̄(yi−1, yi) = θ̄(yi−1)η̄(yi) + θ̄(yi−1)β(yi)P (yi)
2.

If K is large enough we can ensure that

θ̄, η̄, κ̄ ≥ 0.
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The SDE system associated with (4.5) can be written as

˙̀
i = (pi − pi−1) +K−1

(
J `(yi+1, yi)− J `(yi, yi−1)

)
+K−1(Ṁ`

i+1 − Ṁ`
i)

ṗi = −(P (yi+1)− P (yi)) +K−1 (J p(yi+1, yi)− J p(yi, yi−1)) +K−1(Ṁp
i+1 − Ṁ

p
i )

ėi = −(piP (yi+1)− pi−1P (yi))

+K−1 (J e(yi+1, yi)− J e(yi, yi−1)) +K−1(Ṁe
i+1,i − Ṁe

i,i−1)

(4.6)

where (J `
i,i−1,J

p
i,i−1,J e

i,i−1) are the dissipative fluxes given by

J `
i,i−1 = Ti−1θ̄i−1(βiPi − βi−1Pi−1) + βi∂`θ̄i−1 + θ̄i−1∂`η̄i − Pi∂eiκ̄i−1,i

J p
i,i−1 = (η̄i + Ti∂eη̄i)(pi − pi−1)

J e
i,i−1 = pi−1J p

i,i−1 + Tiη̄i + κ̄i,i−1(Ti − Ti−1)− TiTi−1(∂eiκ̄i,i−1 − ∂ei−1
κ̄i,i−1),

(4.7)

and (M`
i ,M

p
i ,Me

i,i−1) are mean-zero martingales, given by stochastic integration

against a collection of independent Wiener processes {W `
i }, {W

p
i }, {W e

i }

Ṁ`
i =

√
2Ti−1θ̄i−1Ẇ

`
i

Ṁp
i =

√
2Tiη̄iẆ

p
i

Ṁe
i,i−1 = ui−1Ṁp

i +
√

2κ̄i,i−1TiTi−1Ẇ
e
i .

(4.8)

In equations (4.7) and (4.8) we have used subscripts to denote dependence certain

coarse particle, for instance Pi = P (yi).

The system (4.6) is a discrete model for the Landau-Lifshitz-Navier-Stokes

equations in Lagrangian form and is derived in Chapter 4. The quantity η̄ plays

the role of the bulk viscosity, while κ̄ plays the role of the thermal conductivity.

There are, however, some additional terms in the equation that don’t usually ap-

pear in the Navier stokes equations. Indeed, the quantity θ̄ does not directly have
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an analogue in Navier stokes equations, as typically the density equation doesn’t

dissipate. However, in this setting, dissipation terms are due to correlations of the

fluxes between cells and resemble the auto-correlations present in a tracer particle

rather than average correlations between all the particles. It is interesting to notice

as well that here, the thermal conductivity has an exact expression in terms of the η̄,

θ̄ and some thermodynamic quantities. This is a consequence of the fact that fluxes

between cells are solely determined by the fluxes on the boundaries. In addition,

we observe the emergence of terms that depend on derivatives of the quantities θ̄, η̄

and κ̄.

It should be noted that this system conserves total length, momentum and

energy, and the measure

dµMα =
∏
i∈ZM

1

Z(α)
exp

{
− α · Ui + S(`i, ei − 1

2
p2
i )
}
β(`i, ei − 1

2
p2
i ) d`idpidei, (4.9)

is an invariant measure for both the Euler and the dissipative part of the dynamics

separately.

The equations (4.6) are very similar a popular model called ‘Dissipative Par-

ticle Dynamics’ (DPD). The DPD model was initially developed by Hoogerbrugge

and Koelman [72, 78] as model to simulate complex fluids, it has since been gener-

alized [42, 43, 91, 108] to produce consistent equilibrium behavior and to conserve

energy. Generally speaking, DPD consists of a collection of ‘fluid parcels’ that have,

volume, momentum, and internal energy, interacting with various friction terms

that corresponds to viscosity and thermal conductivity, and perturbed by stochastic

‘fluctuations’ which are in fluctuation-dissipation balance with the friction. There
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have also been several other attempts to derive dissipative particle dynamics from

Hamiltonian mechanics in the literature [45, 54, 55].

At the moment, without more knowledge of the behavior of the functions θ̄, η̄, κ̄

it is not clear that the SDE has a global in time solution, indeed the coefficients

are not locally Lipschitz. However, since the length, energy, and momentum are all

conserved, the only possible blow-up that could occur is if one of the cells attains

zero volume or zero energy in finite time.

In order to simplify matters, in Section 4.9 we introduce a simplified version of

the model (4.6) by assuming constant transport coefficients θ̄, η̄ and κ̄. The model

takes the form

˙̀
i = (pi − pi−1) + Ti−1θ̄(βiPi − βi−1Pi−1) + Ṁ`

i+1 − Ṁ`
i

ṗi = (Pi − Pi+1) + [η̄(pi+1 − pi)− η̄(pi − pi−1)] + Ṁp
i+1 − Ṁ

p
i

ėi = (pi−1Pi − piPi+1) + η̄ [ui(pi+1 − pi)− pi−1(pi − pi−1)]

+ κ̄ [(Ti+1 − Ti)− (Ti − Ti−1)] + η̄(Ti − Ti−1)

+ piṀp
i+1 − pi−1Ṁp

i + Ṁe
i+1 − Ṁe

i .

Such a model has a clearer structure and the local entropy dissipation becomes more

apparent. In this setting, one can show that global strong solutions exist, we prove

this in Theorem 4.9.1.

This chapter is organized as follows:

In Section 4.2 we introduce the particle system and discuss in detail the in-

variant measure and thermodynamic structure. In Section 4.5 we introduce a con-

servative coarse-graining scheme by lumping the lattice points into cells and discuss
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the coarse-graining in equilibrium giving rise to Discrete Euler dynamics. In Sec-

tion 4.6 we discuss more detail about the discrete Euler dynamics and discuss its

invariant measure and thermodynamics structures. In Section 4.8 we address the

problem of non-equilibrium coarse-graining by lumping. Under a relaxation assump-

tion and a Markovian approximation, we obtain a stochastic particle system for

the coarse-grained cells which resembles a discretization of the non-linear Landau-

Lifshitz-Navier-Stokes equations of fluctuating hydrodynamics in Lagrangian form.

In Section 4.9 we introduce a simplified version of this stochastic particle system

and study its behavior. In particular, we show that the system is well-posed under

certain conditions on the entropy function.

A Classical Particle System in 1-D

In this section, we discuss properties of the one-dimensional particle model we

wish to coarse-grain. We give a precise formulation of the system and give a detailed

discussion of its invariant measure and limiting thermodynamic structure.

Suppose that we have a collection of N particles with unit mass, periodically

arranged on the torus TL of size L. The positions are given by x = {xi}i∈ZN ∈ TZN
L

and the velocities are v = {vi}i∈ZN ∈ RZN where ZN = Z\NZ denotes the N-

periodic one dimensional lattice. We will assume that the positions x arranged on

TL in an ordered configuration in the space ON
L , where ON

L ⊆ TZN
L denotes the set

of all ordered configurations on TL. More precisely, given an identification of TL

with the interval [0, L] then we say x ∈ ON
L if there exists a cyclic permutation of
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{1, . . . , N}, call it σ, such that

0 ≤ xσ(1) < xσ(2) < . . . < xσ(N) < L.

We assume that the particles interact only with their neighbors through a

pair potential function V (r) and governing the evolution of the N particles is a

Hamiltonian HN , taking the form

HN(x,v) =
∑
i∈ZN

(
1

2
v2
i + V (xi − xi−1)

)
.

The particles then evolve according to Hamilton’s equations

ẋi = vi

v̇i = −V ′(xi − xi−1) + V ′(xi+1 − xi),

and are initially arranged on TL in an ordered configuration in ON
L . We will make

the following assumptions on the potential

Hypothesis 4.2.1. The potential V : R+ → R is a non-negative, smooth, non-

increasing, convex function on the interior of R+, and satisfies

lim
r→0

V (r) = +∞,

while, V ′(r) is a smooth concave function on the interior of R+ and satisfies

lim
r→∞

V ′(r) = 0.

The singularity of the potential V implies that the particles cannot cross. This

ensures that any initial configuration in ON
L remains in ON

L under the evolution of

the dynamics.
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As the phase space ON
L of ordered configurations is rather painful to work

with, we will find it convenient to change coordinates to deformation variables

ri = xi − xi−1 ∈ R+, i ∈ ZN ,

describing the relative distance between neighboring particles. The deformation

variables r = {ri}i∈ZN take values in the simplex ∆N−1
L defined by the total length

constraint

LN(r) ≡
∑
i∈ZN

ri = L.

Of course, such a change of variables is not one-to-one, since the coordinates r =

{ri}i∈ZN are invariant under translations of T and are constrained to the simplex

∆N−1
L . However, given the position of one particle, say x1 ∈ T, one can reconstruct

the positions x uniquely from from r, by the formula

xi = x1 +
i∑

j=1

rj.

Indeed, it is not difficult to see that the mapping

ON
L 3 (x1, x2, . . . , xN) 7→ (x1, r1, . . . , rN) ∈ TL ×∆N−1

L

is a volume preserving diffeomorphism.
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xi

xi−1

ri

xi+1
ri+1

T

Figure 4.1: The periodic arragement of particles on a circle

Under these new coordinates we define the phase space ΩN = RZN
+ ×RZN and

obtain the following evolution equation

ṙi = vi − vi−1

v̇i = V ′(ri+1)− V ′(ri),
(4.10)

with the new Hamiltonian

HN(r,v) =
∑
i∈ZN

E(ri, vi), E(r, v) =
1

2
v2 + V (r).

The above system has three conserved quantities, the Hamiltonian, or total energy

HN , the total momentum PN , and the total length LN , where

PN(v) =
∑
i∈ZN

vi.

Remark 4.2.2. It is important to the equations (4.10) are no longer canonically

Hamiltonian, due to the degeneracy associated with the conserved quantity LN . In

fact, the dynamics in (4.10) define a Poisson structure with Poisson bracket

{f, g} =
∑
i∈ZN

[
∂rif (∂vig − ∂vi−1

g)− ∂rig (∂vif − ∂vi−1
f)
]
,
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acting on smooth functions. In this setting Hamiltonian governing the evolution is

still HN , while LN is a Casimir invariant, that is

{LN , f} = 0,

for all suitably smooth functions f .

Associated with the dynamics is the Liouville operator

AN =
∑
i∈ZN

−vi−1(∂ri − ∂ri−1
)− V ′(ri)(∂vi − ∂vi−1

) = { · ,HN} ,

which governs the evolution of observables and distributions of particles over ΩN .

The fact that LN ,PN and HN are conserved is expressed by the fact that they belong

to the null space of AHN ,

ANLN = ANPN = ANHN = 0.

In particular, if one is only interested in statistical properties of the particle

(r,v), then the probability density fN(t, r,v), describing the density of particles

with positions and velocities (r,v) in ΩN at time t is given by the Liouville equation

∂tf
N +ANfN = 0. (4.11)

Grand-Canonical Ensemble

Associated with the conserved quantities HN ,PN , LN , is the grand canonical

ensemble, that is, a measure µNτ,β,λ(drdv) on the phase space ΩN with parameters

(τ, λ, β) ∈ R+ × R× R+. It is defined by

µNτ,λ,β(drdv) =
1

ZN(τ, λ, β)
e−τLN (r)−λPN (v)−βHN (r,v)drdv,
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where

ZN(τ, λ, β) =

∫
ΩN

e−τLN (r)−λPN (v)−βHN (x,v)drdv,

is the grand canonical partition function, which serves as a normalization constant

for µN`,β,λ. Because the Hamiltonian HN is just a sum of single particle energies Ei,

it is easy to see that µNτ,β,λ(drdv) is just a product measure

µNτ,λ,β(drdv) =
∏
i∈ZN

µτ,λ,β(dridvi),

where µτ,λ,β(drdv) is the single particle Gibbs measure

µτ,λ,β(drdv) =
1

Z(τ, λ, β)
e−τr−λv−β( 1

2
v2+V (ri))drdv

and Z(τ, λ, β) is the single particle partition function

Z(τ, λ, β) =

∫
R+×R

e−τr−λv−β( 1
2
v2+V (ri))drdv.

The measure µτ,λ,β(drdv) can also be written as a product of a Gaussian

measure in velocity and another measure in r, namely

µτ,λ,β(drdv) =

[
e−

1
2
β(vi−β−1λ)2√
2πβ−1

dv

] [
1

Z(τ, β)
e−τr−βV (r)dr

]
where

Z(τ, β) =

∫
R+

e−τr−βV (r)dr.

It is important to note that under the assumption that since V (r) is non-increasing,

in order for Z(τ, β) to be finite, we need τ > 0.

It is easy to see that µNτ,λ,β is a stationary measure for the dynamics. In fact,

it is a consequence of the more general skew-symmetry property AN with respect

to µNτ,λ,β.
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Lemma 4.2.3. The operator AN is skew-symmetric with respect to µNτ,λ,β. That is,

for each F,G ∈ C1
b (ΩN), we have

∫
ΩN

FANG dµNτ,λ,β = −
∫

ΩN
ANGF dµNτ,λ,β.

Proof. With some abuse of notation, we write µNτ,λ,β(r,v) as the density of the

measure µNτ,λ,β(drdv). Note that since µNτ,λ,β is a function of the conserved quantities

and AN is a first order differential operator, we have ANµNτ,λ,β = 0. The proof

then follows from the fact that AN is skew-symmetric with respect to the Lebesgue

measure, since Hamiltonian vector fields are divergence free.

The quantities β−1λ and β play the usual role of mean velocity and inverse

temperature for the measure µτ,β,λ, as can be see by computing the Gaussian inte-

grals, ∫
R+×R

v µτ,λ,β(drdv) = β−1λ,∫
R+×R

1

2
(v − β−1λ)2 µτ,λ,β(drdv) =

1

2
β−1,

(4.12)

where the second identity for 1
2
(v − β−1λ)2 is a manifestation of the equipartition

theorem of statistical mechanics. The quantity β−1τ also has a physical interpreta-

tion. In fact, a special feature of plays the role of the pressure (or tension) of the

segments between particles, as it follows from a simple integration by parts and an

appeal to the behavior of V (r) at 0 and ∞ that

∫
R+×R

−V ′(r)µτ,λ,β(dr) = β−1τ.
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Grand-Canonical Thermodynamic Structure

The thermodynamic free energy F associated with the grand-canonical mea-

sure is defined by taking the logarithm of the one-particle partition function

F (τ, λ, β) = logZ(τ, β) + 1
2
β−1λ2 − 1

2
log β + 1

2
log 2π.

The corresponding thermodynamic entropy S is given by Legendre-Fenchel transform

S(`, p, e) = inf
τ,λ,β

[τ`+ λp+ βe+ F (τ, λ, β)]

where the infimum is taken over all (τ, λ, β) ∈ R+ × R × R+. Note that we have

altered the definition of the entropy from that of section A.2 to match the physical

notion of entropy, and to think of the parameters (`, p, e) as the physical values of

average length, momentum and energy, respectively. Indeed, if S̃(`, p, e) represents

the entropy as defined in Section A.2, then S and S̃ are related by

S̃(`, p, e) = −S(−`,−p,−e).

It follows, by Lemma A.2.1 and Lemma A.2.2 that F is a smooth strictly convex

function on (R+×R×R+) and S is a smooth strictly concave function on its domain.

Moreover, dual pairs of Legendre variables α = (τ, λ, β) and y = (`, p, e) satisfy

α = ∇S(y), y = −∇F (α).

The entropy can computed more explicitly using the structure of F . Indeed,

taking the infimum over λ first, we find

S(`, p, e) = inf
τ,β

[
τ`+ β

(
e− 1

2
p2
)
− 1

2
log β + logZ(τ, β)

]
+

1

2
log 2π. (4.13)
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In particular, this implies that S(`, p, e) only depends on the average momentum p

and average energy e through the internal energy u = e− 1
2
p2. This is a consequence

of the Galilean invariance of the system (4.10). Particularly this property can be

written as

S(`, p, e) = S(`, 0, e− 1
2
p2).

We will find it convenient to define for each (`, e) the inverse temperature

function

β(`, u) = ∂eS(`, 0, u) > 0

and the pressure function

P (`, u) = ∂`S(`, 0, u)/∂eS(`, 0, u).

The fact that β(`, u) is strictly positive follows from Gaussian nature of the measure

µτ,λ,β in velocity and the formulas (4.12). Then it is seen that the function S0(`, u) =

S(`, 0, u) satisfies the first law of thermodynamics

dS0 = βPd`+ βdu.

It is important to remark, that because of the exclusion effects of V , the

domain of S

DS = {(`, p, e) ∈ R+ × R× R+ : |S(`, p, e)| <∞}

will be a non-trivial subset R+ × R × R+. Indeed, small values of ` will restrict

how small e can be. In fact, the convexity assumption on V allows form a precise

definition of DS.
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Lemma 4.2.4. The under Hypothesis 4.2.1 on V , the domain DS is given by

DS =
{

(`, p, e) ∈ R+ × R× R+ : e ≥ 1
2
p2 + V (`)

}
. (4.14)

Proof. It suffices to show that the domain of S(`, 0, e) are the values of (`, e) ∈ R2
+

such that e ≥ V (`). Since F is smooth an convex, this is equivalent to showing that

` = −∂τF (τ, 0, β), e = −∂βF (τ, 0, β), (4.15)

is uniquely invertible for ` > 0 and e > V (`).

First, we remark that for fixed β > 0, the following limits hold

lim
τ→∞

1

Z(τ, β)

∫
R+

r e−τr−βV (r)dr = 0, lim
τ→0

1

Z(τ, β)

∫
R+

r e−τr−βV (r)dr =∞.

Therefore, by the monotonicity of ∂τ log(Z(τ, β)), for each ` > 0 and β > 0, there

exits a unique τ`,β such that

` = −∂τ log(Z(τ`,β, β)) =
1

Z(τ, β)

∫
R+

r e−τr−βV (r)dr.

Next, we claim that for τ`,β, we have

lim
β→∞

1

Z(τ`,β, 0, β)

∫
R+×R

(
1

2
v2 + V (r)

)
e−τ`,βr−β(

1
2
v2+V (r))drdv = V (`).

Indeed the fact that

lim
β→∞

1√
2πβ−1

∫
R

1

2
v2e−β

1
2
v2

dv = 0.

follows from simple Gaussian integration, while the fact that

lim
β→0

1

Z(τβ,`, β)

∫
R+

V (r)e−τ`,βr−βV (r)dr = V (`),
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follows in a straight forward manner from the fact that the measure Z(τ, β)−1e−τ`,βr−βV (r)

concentrates at its mean value r = `, as β → ∞. Moreover, it is easy to see that

τ`,β → `−1/2 as β → 0 and conclude that

lim
β→0

1

Z(τ`,β, 0, β)

∫
R+×R

(
1

2
v2 + V (r)

)
e−τ`,βr−β(

1
2
v2+V (r))drdv =∞,

Also, since V is convex, we have by Jensen’s inequality

1

Z(τ, 0, β)

∫
R+×R

(
1

2
v2 + V (r)

)
e−τ`,βr−β(

1
2
v2+V (r))drdv ≥ V (`).

It follows, again from the monotonicity of β 7→ ∂βF (τ`,β, β) that for each ` > 0 and

e > V (`) there exists a unique β`,e that satisfies

e = −∂βF (τ`,β`,e , 0, β`,e).

In addition, the above limits show that the interior of {(`, e) ∈ R+×R+ : e ≥ V (`)}

are the only values for which (4.15) have a solution.

Micro-Canonical Ensemble

While the grand-canonical ensemble is rather convenient to work with, being

a product measure, it does disregard the fact that the particle evolution associated

to (4.10) is actually constrained to certain lower dimensional submanifolds of ΩN .

Indeed, the evolution takes place on the manifold defined by energy, momentum,

and length conservation.

To be more precise, suppose that we fix values (`, p, e) ∈ DS ⊆ R+ × R× R+

and define the manifold

ΣN
`,p,e =

{
(r,v) ∈ ΩN : LN(r) = N`, PN(v) = Np, HN(r,v) = Ne

}
.
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It is important to note that this manifold is only non-empty for certain values of `

and e. Indeed, under the constraints

1

N

N∑
i=1

ri = `,
1

N

N∑
i=1

vi = p

the energy has the sharp lower bound

1

N

N∑
i=1

1

2
v2
i + V (ri) ≥

1

2
p2 + V (`).

Therefore in order for ΣK
`,p,e to be non-empty, we will need e ≥ 1

2
p2 + V (`) for any

given ` > 0. As it turns out, this condition is precisely the one that defines the

domain of the thermodynamic entropy DS defined in (4.14). Specifically, we have

{
(`, p, e) ∈ R+ × R× R : ΣN

`,p,e 6= ∅
}

= DS.

We refer to any minimizing state (r,v) of the Hamiltonian HN under length

and momentum constraints a ground state. It is clear such a minimum is achieve

when all of the particles have constant deformation ` and momentum p. In fact, if

the potential V is non-negative for all r > 0 then this state is the unique ground

state. If, however, the potential has finite range, then depending on ` there many

minimizers corresponding to non-interacting configurations.

If the dynamics of (4.10) start on ΣN
`,p,e, they will stay on ΣN

`,p,e due to the fact

that LN ,PN ,HN are conserved. Moreover, if the choice of V is generic enough, and

there are no other conserved quantities, then one expects that the dynamics become

uniformly mixed on ΣN
`,p,e after a long time and can be described by a uniform

distribution on ΣN
`,p,e (often referred to as Boltzmann’s ergodic hypothesis).
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Naturally this motivates the study of the micro canonical ensemble with pa-

rameters (`, p, e) ∈ DS to be the measure

µ`,p,eN (drdv) ≡ µN(drdv | `, p, e)

obtained by conditioning the grand-canonical measure µNτ,λ,β(drdv) with respect to

the map

ŵN(r,v) :=
1

N
(LN(r),PN(v),HN(r,v)) . (4.16)

Moreover, since the density of µNτ,λ,β(drdv) depends explicitly on the quantities

LN ,PN ,HN , then µN(drdv | `, p, e) does not depend on (τ, λ, β) (c.f. Lemma A.3.4)

and can be understood through the decomposition

drdv = µN(drdv | `, p, e) γ̂N(d`dpde), (4.17)

where γ̂N is the pushforward

γ̂N(d`dpde) = ŵN#drdv.

Then for each (`, p, e) ∈ DS, the measure µ`,p,e concentrated on ΣN
`,p,e and since

ΣN
`,p,e = {ŵN = (`, p, e)} is a bounded subset of ΩN , this measure is well-defined.

Using this decomposition, it is easy to see that µN(drdv | `, p, e) is also an

invariant measure for (4.10) and that, just as we had for the grand-canonical measure

µNτ,λ,β, we have the following anti-symmetry property

Lemma 4.2.5. The operator AN is skew-symmetric with respect to µ`,p,eN , that is,

for each F,G ∈ C1
b (ΩN) we have∫

ΣN`,p,e

F ANG dµ`,p,eN = −
∫

ΣN`,p,e

ANF G dµ`,p,eN
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Proof. Let ϕ ∈ C1
b (R+ × R× R+), then the decomposition (4.17) implies that∫

R+×R×R+

(
ϕ(`, p, e)

∫
ΣN`,p,e

F ANG dµ`,p,eN

)
γ̂N(d`dpde)

=

∫
ΩN

ϕ(ŵN)F ANG drdv.

Using the fact that AHNϕ(ŵN) = 0 and that AHN is skew-symmetric with respect

to Lebesgue measure, we obtain

∫
ΩN

ϕ(ŵN)F ANG drdv = −
∫

ΩN
ϕ(ŵN)ANF G drdv.

This completes the proof.

To continue we will need a further hypothesis on V (r)

Hypothesis 4.2.6. Let w(r, v) = (r, v, 1
2
v2 + V (r)), then the function

φ(ξ) =

∫
R+×R

e(iξ−α)·w(z)dz

belongs to Lν(R3) for some ν ≥ 1 and satisfies the non lattice condition

|φ(ξ)| < 1, for |ξ| > 0.

Remark 4.2.7. Hypothesis 4.2.6 is equivalent to requiring that the push forward

measure w#e−α·w(z)dz, for α ∈ DS, satisfies the first condition of Hypothesis A.3.1,

in fact, the second condition of Hypothesis A.3.1 is also satisfied, since −w(z) has

compact super-level sets. Of course, this hypothesis ensures that the νth convolution

of the push-forward of dz under w(z) has a density with respect to Lebesgue measure

on R+ × R × R+ even though w#dz is only supported on a sub-manifold of R+ ×

R× R+.
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It is an interesting question as to which class of singular potentials V (r) satisfy

Hypothesis 4.2.6.

Hypothesis 4.2.6, ensures that when N is large enough N > N0, γ̂N(d`dpde)

has a density

γ̂N(d`dpde) = gN(`, p, e) d`dpde.

The density gN(`, p, e) is the so-called density of states, and is formally written as,

gN(`, p, e) =

∫
RN+×RN

δ
(
N−1LN(r)− `

)
δ
(
N−1PN(v)− p

)
δ
(
N−1HN(r,v)− e

)
drdv.

In this setting, the micro-canonical measure µN(drdv | `, p, e) can also be written as

µN(drdv | `, p, e)

=
1

gN(`, p, e)
δ
(
N−1LN(r)− `

)
δ
(
N−1PN(v)− p

)
δ
(
N−1HN(r,v)− e

)
drdv,

We can give a more explicit representation of the function gN(`, p, e) on DS.

Lemma 4.2.8. Let (`, p, e) ∈ DS, then we have the representation

gN(`, p, e) = N3/2

∫
ΣN`,p,e

[GN(r,v)]−1/2 dH2N−3(r,v),

where dH2N−3 is the 2N − 3 dimensional Hausdorff measure and

GN(r,v) =
1

N

N∑
i=1

(
vi −

1

N

N∑
j=1

vi

)2

+
1

N

N∑
i=1

(
V ′(ri)−

1

N

N∑
i=1

V ′(ri)

)2

.

Proof. We will use the co-area formula applied to the function ŵN(r,v), which states

that for any function ϕ on R+ × R× R+,∫
RN+×RN

ϕ(ŵN(r,v))drdv

=

∫
R+×R×R+

ϕ(`, p, e)

(∫
ΣN`,p,e

∣∣det
(
∂ŵN [∂ŵN ]>

)∣∣−1/2
dH2N−3(r,v)

)
d`dpde.
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By direct computation

∂rj ŵ
N
` = N−1, ∂rj ŵ

N
p = 0, ∂rj ŵ

N
e = N−1V ′(ri),

and

∂vj ŵ
N
` = 0, ∂vj ŵ

N
p = N−1, ∂vj ŵ

N
e = N−1vj,

Therefore

∂ŵN [∂ŵN ]> = N−2

N∑
j=1


1 0 V ′(ri)

0 1 vj

V ′(rj) vj v2
j + (V ′(rj))

2.


Taking the determinant yields

det
(
∂ŵN [∂ŵN ]>

)
= N−3

 1

N

N∑
j=1

v2
j + (V ′(rj))

2 −

(
1

N

N∑
j=1

vj

)2

−

(
1

N

N∑
j=1

V ′(rj)

)2


= N−3GN(r,v).

Therefore, using the definition of gN , we obtain

∫
DS

ϕ gN d`dpde =

∫
DS

ϕN3/2

(∫
ΣN`,p,e

[GN(r,v)]−1/2dH2N−3

)
d`dpde.

As a consequence of Galilean invariance, if we write y = (`, p, e), we will see

that gN is just a function of ` and the internal energy u = e− 1
2
p2. In fact we will

say that a function f(`, p, e) has the Galilean shifty property if it satisfies

f(`, p, e) = f(`, 0, e− 1
2
p2).

Indeed we show that gN has the Galilean shift property.
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Lemma 4.2.9. Let y = (`, p, e) ∈ DS and N > ν, then gN(`, p, e) has the Galilean

shift property, that is

gN(`, p, e) = gN(`, 0, e− 1
2
p2).

Proof. Formally this can be seen using delta function notation, and writing

gN(`, p, e) =

∫
δ
(
N−1LN(r)− `

)
δ
(
N−1PN(v)− p

)
δ
(
N−1HN(r,v)− e

)
drdv.

Changing coordinates from v→ v + p and using the fact that when P(v) = 0,

HN(r,v + p) = HN(r,v) +
N

2
p2,

we find

gN(`, p, e) =

∫
δ
(
N−1LN(r)− `

)
δ
(
N−1PN(v)

)
δ
(
N−1HN(r,v)− (e− 1

2
p2)
)

drdv.

However, this can be shown more rigorously using the representation for gN

given in Lemma 4.2.8 and noting that ΣN
`,p,e satisfies following property with respect

to a shift in velocity

ΣN
`,p,e − (0, p1) = ΣN

`,0,e− 1
2
p2 , (4.18)

where 1 = (1, . . . , 1) ∈ RN . The proof is complete upon changing variables from

v→ v+p, using the shift property (4.18) and the translation invariance of Hausdorff

measure.

The Galilean shift property also arise with respect to micro-canonical averages.

For any bounded continuous function G on RN
+×RN , denote the average with respect

to µN(drdv | `, p, e) by

ĜN(`, p, e) =

∫
RN+×RN

G(r,v)µN(drdv | `, p, e).
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Then we have the following Galilean shift property, analogous to Lemma 4.2.9.

Lemma 4.2.10. Let G be a bounded continuous function on RN
+ ×RN , that doesn’t

depend on velocity v (i.e. it is Galilean invariant) and let (`, p, e) ∈ DΣ. Then

ĜN(`, p, e) satisfies the Galilean shift property,

ĜN(`, p, e) = ĜN(`, 0, e− 1
2
p2).

Proof. The proof is the same as that of Lemma 4.2.9.

As it turns out, the grand-canonical ensemble µNτ,λ,β(drdv) is a good approxi-

mation of µN(drdv | `, p, e) as N →∞, where (τ, λ, β) are related to (`, p, e) through

the entropy function S(`, p, e), specifically for (`, p, e) ∈ DS

τ = ∂`S(`, p, e), λ = ∂pS(`, p, e), β = ∂eS(`, p, e). (4.19)

Indeed if one follows the formalism of Section A.2, then the result of Theorem

A.3.7 (and Hypothesis 4.2.6) can be restated in to give the following equivalence of

ensembles between the grand-canonical and micro-canonical ensembles.

Theorem 4.2.11. For each (`, p, e) ∈ DS let (τ, λ, β) be given by (4.19). Then for

each bounded continuous G on RK
+ × RK, for some K, the following limit holds

lim
N→∞

ĜN(`, p, e) =

∫
RK+×RK

G(r1, . . . rK , v1, . . . vK)
K∏
i=1

µτ,λ,β(dridvi).

Micro-canonical Thermodynamic Structure

We would now like to define a micro-canonical thermodynamic structure for

finite, but large, N . Namely we would like to identify a pressure PN(`, p, e) an
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entropy SN(`, p, e), and an inverse temperature βN(`, p, e) which satisfy the Galilean

shift property, are related by the first law of thermodynamics

dSN(`, 0, e) = βN(`, 0, e)de+ βNPN(`, 0, e)d`.

Moreover we would like each function PN , SN and βN to converge as N →∞ to the

corresponding thermodynamic functions P, S and β.

As recognized by Gibbs in [62], at the level of the micro-canonical ensemble,

there are several notions of entropy, or so-called ’thermodynamic analogies’, that

give rise to the first law, each one with its own drawbacks. In our approach, we

will find it desirable to have the pressure PN in that arises the first law to be the

micro-canonical averaged force

PN(`, p, e) = −
∫

ΣN`,p,e

(
1

N

N∑
i=1

V ′(ri)

)
µN(drdv | `, p, e). (4.20)

Indeed as a consequence of the equivalence of ensembles (Theorem 4.2.11), we have

lim
N→∞

PN(`, 0, u) = P (`, u)

so that PN and P agree for large N . In order to ensure that the first law is satisfied,

then define the micro-canonical entropy SN to be the so-called volume entropy,

SN(`, p, e) =
1

N
log

(∫ e

1
2
p2+V (`)

gN(`, p, e′)de′

)
, (4.21)

and then define the corresponding inverse temperature βN by

βN(`, p, e) = ∂eSN(`, p, e) =
1

N
gN(`, p, e)e−NSN (`,p,e) > 0. (4.22)

Remark 4.2.12. Of course, taking a hint from Boltzmann, one might expect that

the entropy SN to be given by the logarithm of the density of states log gN . Indeed
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from Lemma A.3.5, we know that

lim
N→∞

1

N
log gN(y) = S(y),

on DS, where S(y) is the thermodynamic entropy, defined by (4.13). Therefore, it

seems natural that the quantity

S̄N(y) =
1

N
log gN(y)

would make a good candidate for the entropy. This version of the entropy we will

refer to as the surface entropy. However, as we will see, the forthcoming Lemma

4.2.13 implies that S̄(`, p, e) satisfies the relation

∂`S̄N(`, p, e) =
1

N
∂ePN(`, p, e) + PN(`, p, e)∂eS̄N(`, p, e),

and therefore S̄N does not satisfy the first law with respect to PN as defined in (4.20),

and it therefore undesirable for our considerations. This discrepancy between the

notion of ‘volume entropy’ (i.e. entropy of all states less than a certain energy) and

‘surface entropy’ (i.e. the entropy of all states with a certain prescribed energy) was

introduced by Gibbs in [62] while studying the micro-canonical ensemble. One of

the major downfalls of surface entropy as it’s defined is that the pressure it gives

rise to is a complicated quantity and not clearly related to the averaged pressure

PN defined above. Moreover, in certain circumstances, the inverse temperature that

arises from the surface entropy can give rise to negative temperatures (see [38]),

which is again undesirable.

We have the following relation between the coarse-grained pressure function

PN and the density of states gN .
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Lemma 4.2.13. The following identity holds

∂`gN = ∂e(PN gN)

Proof. Let y = (`, p, e) ∈ DS and let ϕ(y) be a C1 function on DS which vanishes

at ∞, then it suffices to show for all such ϕ,

∫
DS

∂`ϕ(y) gN(y) dy =

∫
DS

∂eϕ(y)PN(y) gN(y) dy.

To this end, let ŵN be as in (4.16) then for each 1 ≤ i ≤ N , we have the identity

N∂ri
[
ϕ
(
ŵN(r,v)

)]
= ∂`ϕ

(
ŵN(r,v)

)
+ V ′(ri)∂eϕ

(
ŵN(r,v)

)
.

Integrating both sides over ΩN , we obtain

∫
ΩN

∂`ϕ
(
ŵN(r,v)

)
drdv = −

∫
ΩN

V ′(ri)∂eϕ
(
ŵN(r,v)

)
drdv. (4.23)

Using the permutation symmetry of ŵN(r,v), and the definition of µN(drdv | y),

the right-hand side of (4.23) becomes

−
∫
RN+×RN

V ′(ri)∂eϕ
(
ŵN(r,v)

)
drdv

= −
∫
DS

∂eϕ(y)

(∫
ΣNy

(
1

N

N∑
i=1

V ′(ri)

)
µN(drdv | y)

)
gN(y)dy

=

∫
DS

∂eϕ(y)PN(y) gN(y)dy.

Similarly using the definition of gN(y), the left-hand side of (4.23) becomes

∫
RN+×RN

∂`ϕ
(
ŵN(r,v)

)
drdv =

∫
DS

∂`ϕ(y) gN(y) dy.

We will need the following limits as the energy e approaches the ground state.
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Lemma 4.2.14. Suppose, in addition to Hypothesis 4.2.1, the potential V is strictly

convex. Then following limit holds

lim
e→V (`)

PN(`, 0, e) = −V ′(`).

Proof. First, note that since by assumption, −V ′ is convex, by Jensen’s inequality,

we have the lower bound

− V ′(`) ≤ PN(`, 0, e).

Furthermore, under the constraint
∑N

i=1 ri = N`, by Taylor’s theorem and the fact

the V ′′(r) is decreasing

N∑
i=1

(V (ri)− V (`)) ≥
N∑
i=1

V ′′(max{ri, `})(ri − `)2 ≥ V ′′(N`)
N∑
i=1

(ri − `)2.

Since V (r) is strictly convex, we define V ′′(N`) = C > 0. It follows that if 0 <

e− V (`) < δ, then on the manifold ΣN
`,0,e, we have

N∑
i=1

(ri − `)2 ≤ NC−1δ.

Indeed, this implies that for each ε > 0, we may choose δ small enough so that on

ΣN
`,0,e, we have |ri− `| < ε. This implies, by the fact that −V ′(r) is decreasing, that

on ΣN
`,0,e and for small enough ε > 0,

− V ′(ri) ≤ −V ′(`− ε).

Therefore, when e− V (ell) is small enough, we have the bound

− V ′(`) ≤ PN(`, 0, e) ≤ −V ′(`− ε).

Sending ε→ 0 gives the proof.
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Lemma 4.2.15. The following limit holds

lim
e→V (`)

gN(`, 0, e) = 0.

First, we observe that, with these definitions, the first law is satisfied.

Theorem 4.2.16. Let PN , SN and βN be defined through equations (4.20),(4.21)

and (4.22) respectively. Then they satisfy the first law, i.e.

∂eSN = βN , ∂`SN = βNPN .

Moreover, PN , SN and βN satisfy the Galilean shift property, and the following limits

hold for (`, p, e) ∈ DS

lim
N→∞

SN(`, p, e) = S(`, p, e), lim
N→∞

PN(`, p, e) = P (`, p, e).

Proof. First we prove the Galilean shift property. This follows for PN from Lemma

4.2.10. For SN it follows from the fact that gN has the property and a change of

variables,

∫ e

1
2
p2+V (`)

g(`, p, e′)de′ =

∫ e

1
2
p2+V (`)

g(`, 0, e′ − 1
2
p2)de′ =

∫ e− 1
2
p2

V (`)

g(`, 0, e′)de′

Finally Galilean shift property for βN follows from the fact that SN has it.

To verify the first law, note that ∂eSN = βN is satisfied by definition, therefore

we simply need to check that ∂`SN = βNPN . Moreover, using the Galilean shift

property it suffices to check for p = 0. Using Lemma 4.2.13 and the fact that
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lime→V (`) PN(`, 0, e) = −V ′(`) gives

∂`SN(`, 0, e) =
1

N
e−NSN (`,0,e)

(∫ e

V (`)

∂`gN(`, 0, e′)de′ − V ′(`) lim
e→V (`)

gN(`, 0, e)

)
=

1

N
e−NSN (`,0,e)

(∫ e

0

∂e(PN(`, 0, e′)gN(`, 0, e′))de′ − V ′(`) lim
e→V (`)

gN(`, 0, e)

)
=

1

N
e−NSN (`,0,e)

(
PN(`, 0, e)gN(`, 0, e)− lim

e→V (`)
PN(`, 0, e)gN(`, 0, e)

− V ′(`) lim
e→V (`)

gN(`, 0, e)

)
= βN(`, 0, e)PN(`, 0, e)

Next, we show the limits of SN and PN as N → ∞. Note the limit for PN

already follows from the equivalence of ensembles (Theorem A.3.7). While for SN ,

we will need the following locally uniform asymptotic

ĝN(`, p, e) =
eNS(`,p,e)

(2π)3/2

√
N3 det (−∇2S(`, p, e))

(
1 +O(N−1/2)

)
.

Then a straight forward application of Laplace’s method yields

lim
n→∞

1

N
log

(∫ e

1
2
p2+V (`)

gN(`, p, e′)de′

)
= sup

e′∈( 1
2
p2+V (`),e)

S(`, p, e′) = S(`, p, e).

where in the last equality, we used the fact that e 7→ S(`, p, e) is an increasing

function.

Stochastic Regularizations

If V is sufficiently nonlinear, one expects that for long times and large enough

N the dynamics (4.10) becomes suitably mixed on the micro-canonical manifold

ΣN
`,p,e. While this is a natural conjecture, establishing this is an incredibly difficult

mathematical problem. Indeed, to obtain such mixing, one must ensure that the
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obvious conserved quantities of length, momentum and energy are the only conserved

quantities, so that the dynamics are not constrained to any proper submanifolds of

ΣN
`,p,e. As is well known (see [21, 96]) the potential V (r) = r−2 (which satisfies

Hypothesis 4.2.1) leads to an integrable dynamical system in one dimension, and

therefore has more conserved quantities than just length, momentum, and energy.

Another example is the hard rod fluid, where, due to the fact that collisions swap

velocities of the colliding particles, one can verify, for instance, that the number

of particles with a particular velocity is a conserved quantity. Of course, if one

removes the restriction that the potential has a singularity at zero then there are

many examples of potentials that lead to integrable systems, the harmonic potential

V (r) = r2, and the Toda potential V (r) = e−r ([112]), are just a few.

Indeed, this problem appears to be well out of the reach current mathematical

techniques. However, a common to technique to circumvent such mathematical dif-

ficulties is to introduce a stochastic perturbation to the dynamics which conserves

the quantities of interest, namely the length, momentum, and energy, while intro-

ducing the necessary mixing to obtain ergodicity. Typically, these perturbations are

chosen to mimic certain random collisions between neighboring particles and are in-

troduced to simulate, in some qualitative sense, the ergodicity and mixing that one

expects from the deterministic Hamiltonian dynamics. This approach, for instance,

was taken in by Olla, Varadhan, Yau [101] in their pioneering paper on the hydro-

dynamic limit of a classical Hamiltonian system of particles in three dimensions,

where is was used to obtain a local ergodic theorem (see also [59, 90]), which is a

necessary step in the proof of the hydrodynamic limit.
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In the following subsections we will discuss several stochastic perturbations to

the deterministic dynamics (4.10) which conserve energy and momentum and act

locally on the momentum variables only. Such perturbation are regularly considered

in the literature on stochastic lattice systems, particularly that of Harmonic chains.

Poisson type noise

One of simplest strategies for an energy/ momentum conserving noises is one

that preserves pairwise momentum vi+vi+1 and energy 1
2
v2
i + 1

2
v2
i+1 for each i ∈ ZN .

Unfortunately, in one dimension, for a given pair of velocities (vi, vi+1) the

only other pair that share the same momentum and kinetic energy is exchanged pair

(vi+1, vi). As a consequence, it is not possible to construct a diffusion type noise on

the manifold of pairwise momentum and energy conserving interactions, as the man-

ifold consists of two disconnected points. Instead, we can construct a Poisson type

noise that randomly swaps the momentum of adjacent particles. That is, particles i

and i+ 1 exchange their velocities vi and vi+1 at independent random exponentially

distributed times with rate 1. This type of process can be equivalently described

by a family of independent standard Poisson process {Ni,i+1(t)}i∈ZN with rate 1,

whereby the evolution equations (4.10) become the following family of stochastic

differential equations

ṙi = vi − vi−1

v̇i = V ′(ri+1)− V ′(ri) + (v−i+1 − v−i )Ṅi,i+1 − (v−i − v−i−1)Ṅi−1,i,

(4.24)

where v−i (t) = vi(t−) denotes the velocity of the ith just before time t (its left limit
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at time t) and Ṅi,i+1 can be represented as a train of random impulses

Ṅi,i+1(t) =
∑
j

δ(t− T ji,i+1),

where {T ji,i+1}∞j=1 is a Poisson distributed collection of random times when particle

i and i+ 1 exchange velocities.

The generator SN of the stochastic part of the above dynamics can be written

as

SN =
∑
i∈ZN

Ti,

where Ti are so-called exchange operators {Ti}i∈ZN acting on functions φ : ΩN → R

and defined by

Tiφ(r,v) ≡ Ti−1,iφ(r,v) = φ(r,vi−1,i)− φ(r,v),

where vi−1,i denotes the velocities v with the velocity of the i− 1th and ith particle

swapped.

It is easy to obtain the following symmetry properties of the operator SN .

Lemma 4.3.1. Let F,G ∈ Cb(ΩN), and let ν(drdv) be a measure on ΩN which is

exchangeable in velocity, meaning that the measure is invariant under exchanges in

the index of the velocities of neighboring particles. Then we have

∫
ΩN

FSNG dν =

∫
ΩN
SNF G dν.

Note that drdv, νNτ,λ,β and ν`,p,eN are all measure that are exchangeable in ve-

locity, and therefore SN is symmetric with respect to each of these measures. Since
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SN vanishes on constants (it is the generator of a Markov process), this clearly im-

plies that any measure which is exchangeable with respect to velocity is an invariant

measure for SN .

The generator of the full process (4.24) is now given by

LN = AN + SN ,

and instead of the Liouville equation, the distribution of particles fN is given by

the forward Kolmogorov equation

∂tf
N +ANfN − SNfN = 0.

Diffusion Type Noise

If one allows for interactions between more than two consecutive particles, one

can consider noises which are of diffusion type. This has been done, for instance,

in [10], while studying the divergence of thermal conductivity in a momentum con-

serving anharmonic chain.

For any three indices (i−1, i, i+1), the set of velocities (vi−1, vi, vi+1) satisfying

vi−1 + vi + vi+1 = c1 and v2
i−1 + v2

i + v2
i+1 = c2 is a one dimensional manifold. It is

not hard to see that this set is a just the intersection of a 2-dimensional sphere and

a plane, and therefore is just a circle Sc1,c2 embedded in R3. We aim to construct a

Brownian motion on this circle. To do this, note that the following vector field

Yi = (vi − vi+1)∂vi−1
+ (vi+1 − vi−1)∂vi + (vi−1 − vi)∂vi+1

is tangent the manifold of three particle energy and momentum conserving interac-

81



tions since

Yi(vi−1 + vi + vi+1) = Yi(v2
i−1 + v2

i + v2
i+1) = 0.

Therefore the operator Y2
i is proportional to the Laplace Beltrami operator on Sc1,c2 .

If one now takes into account all such consecutive three particle interactions, we can

construct a generator GN for a momentum and energy conserving diffusion by

GN =
∑
i∈ZN

Y2
i .

Because of the conservation properties of GN (i.e. GNHN = GNPN = 0), it is

easy to see that GN is symmetric with respect to drdv, νNτ,λ,β and ν`,p,eN .

If one adds this diffusive stochastic dynamics to the deterministic Hamiltonian

dynamics (4.10), we obtain a diffusion process with generator

AN + GN .

The evolution equations for the stochastically perturbed system now become the

follows system of Itô stochastic differential equations,

ṙi = vi − vi−1

v̇i = V ′(ri+1)− V ′(ri)− (vi−1 − vi−2) ◦ Ẇi−1

+ (vi+1 − vi−1) ◦ Ẇi − (vi+2 − vi+1) ◦ Ẇi+1,

where {Wi}i∈ZN are a family of independent one dimensional Wiener processes, and

◦ indicates the Stratonovich product.

Note that this type of noise has the effect of adding more than just nearest

neighbor interactions to the system.
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General Conservative Coarse-Graining on ZN

In this section, we will discuss several procedures for coarse-graining the par-

ticle system of Section 4.2.

Let ΩN = (R+ × R)ZN , then for any collection of particles zN = {zi} ∈ ΩN ,

zi = (ri, vi), we denote the corresponding collection of locally conserved quantities

by

wN = {w(zi)}i∈ZN ∈ ΓN , w(zi) =
(
ri, pi,

1
2
v2
i + V (ri)

)
,

where ΓN = R+ ×R×RZN
+ . Let, wδi denote the δth local conserved quantity of the

ith particle, with δ = 0 corresponding to length, δ = 1 corresponding to velocity,

and δ = 2 corresponding to energy. To be clear, we have defined

w0
i = ri, w1

i = vi, w2
i = 1

2
v2
i + V (ri).

Recall the Liouville operator associated to (4.10)

AN = −
∑
i∈ZN

(
vi−1(∂ri − ∂ri−1

) + V ′(ri)(∂vi − ∂vi−1
)
)
.

Each collection of locally conserved quantities {wδi }i∈ZN has a corresponding collec-

tion of local currents {Jδi}i∈ZN which satisfy

ANwδi = Jδi+1 − Jδi ,

and are given explicitly by

J0
i = vi−1, J1

i = V ′(ri), J2
i = vi−1V

′(ri).

It is useful to remark that J0
i is itself another locally conserved quantity, while J1

i

and J2
i are typically not conserved.
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The procedure of conservative coarse-graining consists of taking a configura-

tion zN ∈ ΩN and associating to it a lower dimensional quantity whose elements

represent local averages of the locally conserved quantities wN . To describe such

a coarse-graining procedure, we introduce the empirical measure η(zN) which is

defined by its action on any smooth test function ϕ : T→ R by

η(zN)[ϕ] =
1

N

∑
i∈ZN

w(zi)ϕ(i/N).

The empirical measure η defines a mapping from ΩN to M(T; Γ), where M(T; Γ)

is the space of finite Γ valued measures on T. From the empirical measure, one

can always recover a configuration zN that produces it, and this configuration will

be unique up to permutations of the indices. Given any set A ⊆ T, the empirical

measure η(A) computes the sample average of the locally conserved quantities wi

with i/N ∈ A.

The empirical measure gives information about the hydrodynamic behavior of

a system. Indeed, if one lets zN(t) be a solution of (4.10) then one expects η(zN(Nt))

to be close to a solution of the Euler equations in Lagrangian form. This can be

proved rigorously when stochastic collisions are added and is proved in [14] for the

case of anharmonic chains.

We can use the empirical measure to construct a coarse-graining map in the

following way. Begin by choosing a sampling function ϕ : T→ R+, which is typically

a function centered around zero and symmetric, with support on a proper subset of

T. From this sampling function, we may construct a partition of unity {ϕi}Mi=1 on
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the Torus by

ϕi(x) =
ϕ(x− i/M)∑M
j=1 ϕ(x− j/M)

.

The functions {ϕj}Mj=1 induce a collection {η(zN)[ϕj]}Mj=1 of weighted averages which

are also locally conserved in the sense that

M∑
j=1

η(zN)[ϕj] =
N∑
i=1

w(zi).

These averages induce a map

ΩN 3 zN → {η(zN)[ϕj]}Mj=1 ∈ ΓM ,

which serves to coarse-grain the configuration zN by associating groups of nearby

particles with their average of length, momentum, and energy. Note that in this

general framework, when a particle is summed with weight less than one, it is

automatically shared with another average.

Coarse-graining by lumping in ZN

Our first case of a conservative coarse-graining map is what is often referred

to in the theory of discrete Markov processes as “lumping” (see [76]). In this setting

we will choose the sampling function φ as an indicator function on an interval

I = [−1/M, 1/M) where M is a natural number that evenly divides N , so that

N/M = K for some natural number K. Then the partition of unity is just

φj = 1I+j/M ,

and the support of each φj does no overlap the support of any other φi. Such a

“hard” sampling induces a partition of the periodic lattice ZN into cells {Λi}i∈ZM ,
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⋃
i∈ZM Λi = ZN , defined by

Λi = {j ∈ ZN : j/N − i/M ∈ I},

where a subset of of ZN is called a cell if it is proper and connected. It is easy to see

that each cell Λi contains exactly K elements.

For each Λi, and a given configuration zN , we denote by zΛi the collection of

particles with indices in Λi. The empirical measure then introduces the following

averages

ŵi ≡ ŵ(zΛi) = Mη(zN)[φj] =
1

K

∑
j∈Λi

w(zi),

with the collection of all such averages denoted by

ŵ(zN) = {ŵ(zΛi)}i∈ZM ∈ ΓZM .

The function zN 7→ ŵ(zN) defines a coarse-graining map from ΩZN to ΓZM . We will

denote each component of ŵ by

ŵi = (ˆ̀
i, p̂i, êi) ≡ (ŵ0

i , ŵ
1
i , ŵ

2
i ).

Clearly ˆ̀
i, p̂i, êi are to be interpreted as the average length, momentum, and energy

of the particles in the ith cell, and are given explicitly

ˆ̀
i =

1

K

∑
j∈Λi

rj, p̂i =
1

K

∑
j∈Λi

vj, êi =
1

K

∑
j∈Λi

(
1

2
v2
j + V (ri)

)
.

Note that for any zN ∈ ΣN
`,p,e, we have

1

M

∑
i∈ZM

ŵ(zΛi) =
1

N

∑
i∈ZN

w(zi) = (`, p, e),

so that {ŵi}i∈ZN are also locally conserved variables for the mesoscopic system.
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Decomposition into periodized operators

For any cell Λ, we will find it useful to define the boundary elements l+ and l−

to be the unique elements of Λ such that

l− /∈ Λ + 1, l+ /∈ Λ− 1.

Intuitively l− is thought of as the least element of Λ, while l+ is thought of as the

largest element of Λ. Let l+i and l−i be the boundary elements of the cell Λi.

We then define the periodization
◦
Λ of a cell Λ to be the set with the elements

in Λ with l− and l+ + 1 identified, so that
◦
Λ is a periodic lattice with period |Λ|.

Naturally, we will use the set
◦
Λ to define a periodized Liouville operator on Λ, given

by

◦
AΛ = −

∑
i∈
◦
Λ

(
vi−1(∂ri − ∂ri−1

) + V ′(ri)(∂vi − ∂vi−1
)
)
. (4.25)

Note that
◦
AΛ not just the restriction of AN the cell Λ as it ignores all interaction

between neighboring cells and particles on either side of the boundary of Λ interact.

In fact, if ψΛ is a function on ΩN that depends only particles with indices in Λ, then

we have following useful relation between AN and
◦
AΛ

ANψΛ = +
◦
AΛψΛ +AΛψΛ (4.26)

where AΛ is the boundary interaction operator

AΛ = (vl+ − vl−−1)∂rl− + (V ′(rl++1)− V ′(rl−))∂vl+ . (4.27)

Indeed, the relation (4.26) induces a decomposition

AN =
◦
AM +AM ,

◦
AM =

∑
i∈ZM

◦
AΛi , AM =

∑
i∈ZM

AΛi . (4.28)
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By the fact that we have

◦
AM ŵδi =

◦
AΛiŵ

δ
i = 0,

and therefore each ŵδi satisfies

AN ŵδi = AM ŵδi = Jδ
l−i+1
− Jδ

l−i
. (4.29)

Of course, this also implies that ŵ is locally conserved, and has local currents {Jδ
l−i
}

that live on the boundary elements of each cell.

Λ1 Λ2

Λ3Λ4

◦
AΛ4

◦
AΛ1

◦
AΛ2

AΛ4

AΛ1

AΛ2

AΛ3

AN

◦
AΛ3

Figure 4.2: Diagram of the coarse-graining by lumping in the case that N = 12

and K = 3. The partition, the periodized operators, and the boundary interaction

operators are shown on the cells on which they act.

Coarse-graining in equilibrium

The primary goal of coarse-graining is to obtain effective equations for evo-

lution of the coarse-grained quantity ŵ. Our first step will be to coarse-grain our
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particle system when it is in equilibrium, namely when the system (4.10) is started

with random initial data starting from a grand-canonical ensemble µNα (dzN), where

α = (τ, λ, β) ∈ R+×R×R+. Indeed if fN0 is distributed according to µNα (dzN), then

since the grand-canonical measure is invariant with respect to AN , the solution to

the Liouville equation (4.11) is just fNt = µNα (dzN).

Therefore, we would like to study the distribution µ̂MK,α(dyM) of the coarse

conserved variables ŵ(zN) under the grand-canonical ensemble µNα (dzN), where

yM = (y1, . . . , yM) denotes an element of coarse-grained phase space ΓZM . Of course

µ̂MK,α(dyM) is just given by push forward

µ̂MK,α(dyM) = ŵ#µ
N
α (dyM) =

∏
i∈ZM

e−Kα·yi−KF (α)γ̂K(dyi),

where

γ̂K(dy) = ŵ#dzK .

Appealing to Hypothesis 4.2.6, when K is large enough K > ν, γ̂K(dy) has a density

γ̂K(dy) = gK(y) dy,

where gK(y) just the density of states associated to cell Λi. The mapping ŵ also

defines a conditional measure

µMK (dzN |yM) =
∏
i∈ZM

µK(dzΛi | yi),

which is given by conditioning µNα with respect to the event {yM = ŵ}. In each

cell, µK(dzΛi | yi) is just the micro-canonical measure concentrated on the set ΣK
yi

=

{z ∈ ΩΛi : ŵi(z) = yi}.
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Just as we did in Section 4.2.4, we may define the micro-canonical entropy SK ,

pressure PK and inverse temperature βK by

SK(`, p, e) :=
1

K
log

(∫
1
2
p2+V (`)

gK(`, p, e′)de′)

)
,

PK(`, p, e) :=

∫
ΣK`,p,e

(
− 1

K

K∑
i=1

V ′(ri)

)
µK(dzK | `, p, e),

and

βK(`, p, e) = ∂eSK(`, p, e) = gK(`, p, e)e−KSK(`,p,e).

By Theorem 4.2.16, we have that SK , PK , and βK satisfy the first law

dSK(`, 0, e) = βKPK(`, 0, e)d`+ βK(`, 0, e)de.

It follows that if (`i, pi, ei) = ŵi are the coarse variables in the cell Λi, then

SK(`i, pi, ei), PK(`i, pi, ei) and βK(`i, pi, ei) denote the entropy, pressure, and in-

verse temperature of that cell. Furthermore, we may write µ̂MK,α in terms of these

thermodynamic quantities by

µ̂MK,α(dyM) =
∏
i∈ZM

1

ẐK(α)
e−Kα·yi+KSK(yi)βK(yi)dyi,=

∏
i∈ZM

µ̂K,α(dyi)

where ẐK(α) is the normalizing constant for the measure e−Kα·y+KSK(y)βK(y)dy.

We will denote the averages with respect to µN(dzN) and µ̂MK,α(dyM) by 〈 · 〉Nα ,

and 〈 · 〉MK,α respectively. In addition, we will denote the averages with respect to

the conditional measures µN(dzN | y) and µMK (dzN |yM) by 〈 · | y 〉N and 〈 · |yM〉N

respectively.

In the equilibrium setting, the dynamics for ŵ(zN) is statistically equivalent

(in the sense of equality of time marginals), to an exact closed dynamics on the
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coarse space ΓM . Specifically, define the coarse-grained Liouville operator by,

ÂMφ(yM) := K 〈AN(φ ◦ ŵ) |yM〉N .

Then µ̂MK,α is invariant with respect to ÂM , since for any F ∈ C1
b (ΓM) we have the

simple identity, 〈
ÂMF

〉M
K,α

= K
〈
AN(F ◦ ŵ)

〉N
α

= 0.

Indeed we also have the following anti-symmetry property for ÂM ,

Lemma 4.5.1. Let F,G ∈ C1
b (ΓM), then ÂM satisfies the following anti-symmetry

property 〈
ÂMF G

〉M
K,α

= −
〈
F ÂMG

〉M
K,α

.

Proof. The definition of the conditional measure µMK (dzN |yM) gives the identity

〈
ÂMF G

〉M
K,α

= K
〈
AN(F ◦ ŵ)G ◦ ŵ

〉N
α

The proof then follows from Lemma 4.2.3.

We can compute ÂM explicitly. Given a coarse-grained state yM ∈ ΓM , we

denote the components of the ith cell by yi = (y0
i , y

1
i , y

2
i ) ∈ Γ. Using property (4.29)

AN(φ ◦ ŵ) = AN(φ ◦ ŵ) = −K−1

2∑
δ=0

∑
i∈ZM

Jδ
l−i

(
∂yδi φ− ∂yδi−1

φ
)
◦ ŵ.

Therefore,

ÂMφ = −
2∑
δ=0

∑
i∈ZM

Ĵδi

(
∂yδi − ∂yδi−1

)
φ,

where

Ĵδi (yM) =
〈
Jδ
l−i

∣∣yM〉N =

〈
1

K

∑
j∈Λi

Jδj

∣∣∣∣yM〉.
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Using the fact that µMK (dzN |yM) is a product of micro-canonical measures µK(dzΛi |yi)

on each cell, and is therefore symmetric with respect to permutations of the indices

inside each cell, we find

Ĵ0
i (yM) =

〈
1

K

∑
j∈Λi−1

vj

∣∣∣∣yM〉
N

= y1
i−1,

Ĵ1
i (yM) =

〈
1

K

∑
j∈Λi

V ′(rj)

∣∣∣∣yM〉
N

= −PK(yi),

Ĵ2
i (yM) =

〈(
1

K

∑
j∈Λi−1

vj

)(
1

K

∑
j∈Λi

V ′(rj)

) ∣∣∣∣∣yM
〉
N

= −y1
i−1PK(yi).

If one reverts back to a more transparent notation, and denotes yi = (`i, pi, ei),

then ÂM takes the following form

ÂM =
∑
i∈ZM

(
−pi−1(∂`i − ∂`i−1

) + PK(`i, pi, ei)Xi
)
,

where Xi = (∂pi − ∂pi−1
) +ui−1(∂ei − ∂ei). The operator ÂM can be seen to generate

the following discrete Euler dynamics,

˙̀
i = pi − pi−1

ṗi = PK(`i, ei − 1
2
p2
i )− PK(`i+1, ei+1 − 1

2
p2
i+1)

ėi = ui−1PK(`i, ei − 1
2
p2
i )− uiPK(`i+1, ei+1 − 1

2
p2
i+1),

(4.30)

which can be viewed as a discretization of the Euler equations in Lagrangian form

(this system will be discussed in more detail in Section 4.6).

Remark 4.5.2. Contrary to the behavior of AN and despite Lemma 4.5.1, it is im-

portant to note that ÂM is not skew symmetric with respect to Lebesgue measure.

In fact, the vector field associated with ÂM (and written on the right-hand side

of (4.30)) is not divergence free since the pressure depends on the energy ei and

therefore XiPK(`i, pi, ei) 6= 0.
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Discrete Euler Dynamics

In this section we devote some discussion to the properties of the discrete

Euler system (4.30). In general the discrete Euler system consists of a collection of

‘parcels’ {(`i, pi, ei)}i∈TN on the phase space ΓN = (R+ ×R×R+)ZN governed by a

general concave thermodynamic entropy function S(`, u),

d
dt
`i = pi − pi−1,

d
dt
pi = P (`i, ei − 1

2
p2
i )− P (`i+1, ei+1 − 1

2
p2
i+1)

d
dt
ei = −pi−1P (`i, ei − 1

2
p2
i ) + piP (`i+1, ui+1 − 1

2
p2
i+1)

(4.31)

where P (`, u) is thermodynamic pressure function, defined by t he first law

∂uS = β, ∂`S = βP (4.32)

where β(`, u) = T (`, u)−1 > 0 is the inverse thermodynamic temperature function.

We will find it useful change variables to internal energy variables

ui := ei − 1
2
p2
i

whereby the equations become

d
dt
`i = pi − pi−1,

d
dt
pi = P (`i, ui)− P (`i+1, ui+1)

d
dt
ui = −P (`i, ui)(pi − pi−1).

(4.33)

The discrete Euler equations in form (4.31) will be referred as the conservative

form and the discrete Euler equations in form (4.33) will be referred to as internal
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form. Similarly to classical Euler equations, system (4.33) is a Poisson system with

Hamiltonian

HN =
∑
i∈ZN

(
1

2
p2
i + ui

)
,

and Poisson bracket { · , · }N given by

{f, g}N =
∑
i∈ZN

[
(∂`if − Pi∂uif)(∂pig − ∂pi−1

g)− (∂`ig − Pi∂uig)(∂pif − ∂pi−1
f)
]
,

where Pi denotes P (`i, ui). Note that the Hamiltonian HN and bracket { · , · }N is

a direct discretization of the Hamiltonian and Poisson brackets associated to the

compressible Euler system. The Liouville operator associated to this system is

LH =
∑
i∈ZN

((pi − pi−1)∂`i + (Pi − Pi+1)∂pi − Pi(pi − pi−1)∂ui)

=
∑
i∈ZN

((pi − pi−1)∂`i + PiXi) ,
(4.34)

where we have introduced, for later convenience, the family of differential operators

{Xi}ZN defined by

Xi = ∂pi − ∂pi−1
− (pi − pi−1)∂ui .

A consequence of the periodicity implies that the total length of the chain

LN =
∑
i∈ZN

`i,

is constant under the evolution. Also, it is easy to see that the operator Xi vanishes

on the quantities

1
2m
p2
i + 1

2m
p2
i−1 + ui, and pi + pi−1,

thereby implying the conservation of energy HN and total momentum

PN =
∑
i∈ZN

pi
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by the dynamics.

Being a discrete model of compressible fluid dynamics we have an additional

thermodynamic structure. As in the Euler equations, the thermodynamic relations

(4.32) imply that

d
dt
S(`i, ui) = ∂`Si

d
dt
`i + ∂uiSi

d
dt
ui = 0,

and therefore the total entropy

SN =
∑
i∈ZN

S(`i, ui)

is conserved by the dynamics. In fact, both the total length LN , and the entropy

SN are Casimir invariants of Poisson bracket { · , · }N , meaning that for any smooth

function g on ΓN (not just the Hamiltonian), we have

{SN , g}N = {LN , g}N = 0.

The conserved quantities (LN ,PN ,HN) have corresponding locally conserved

fields Ui = (`i, pi, ei) ∈ Γ and fluxes

Ĵi = (Ĵ`i , Ĵ
p
i , Ĵ

e
i ) = (pi−1,−Pi,−pi−1Pi),

so that the conservative form (4.31) can be written as a discrete conservation law

U̇i = Ĵi+1 − Ĵi,

corresponding to conservation of length, momentum, and energy of the fluid chain.
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Invariant measures and generalized canonical ensemble

Given the conserved quantities (LN ,PN ,HN , SN), it is natural to seek invariant

measures with density proportional to

exp {−ζ(HN + λPN)− τLN + SN} .

What’s important about the Poisson nature of this model is that this measure is not

an invariant measure for the dynamics even though it is a function of the conserved

quantities. The main difficultly with finding an invariant measure is due to the

non-canonical Hamiltonian structure, and the fact that the Hamiltonian vector field

XH associated to the Poisson bracket { · , · }N and the Hamiltonian HN , defined by

XH · ∇f = {H, f}N ,

is not divergence free on ΓN since the evolution equation for the energy evolves

according to a function of the energy itself (this was mentioned as well in Remark

4.5.2)

Regardless of this difficultly, the thermodynamic structure allows us to find

an invariant measure explicitly. We have the following result

Lemma 4.6.1. Let βi denote β(`i, ui) = ∂eS(`i, ui), then LH satisfies,

L∗H
∏
i∈ZN

βi = 0, (4.35)

and therefore the product measure
∏

i∈ZN β(`i, ui) d`idpidui is an invariant measure

for LH on ΓN .
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Proof. We being by using the Maxwell relation ∂`β = ∂e(βP ) to conclude,

LH log βi = (pi − pi−1)β−1
i (∂`βi − Pi∂eβi) = (pi − pi−1)∂ePi.

Therefore since ∏
i

βi = exp
{∑

i

log βi

}
,

we have

LH

∏
i∈ZN

βi =
∑
i∈ZN

(LH log βi)
∏
j∈ZN

βj =
( ∑
i∈ZN

(pi − pi−1)∂ePi

) ∏
j∈ZN

βj.

Using the fact that the L2(ΓN) adjoint of the Liouville operator LH is,

L∗H = −LH +
∑
i∈ZN

(pi − pi−1)∂ePi,

we conclude (4.35).

Naturally this leads us define to a version of the canonical ensemble, a proba-

bility measure νNα on ΓN defined by

dνNα =
1

Z(α)N
exp

{
− α1LN − α2PN − α3HN + SN

} ∏
i∈ZN

β(`i, ui) d`idpidui

=
∏
i∈ZN

1

Z(α)
exp

{
− α1`i − α2pi − α3

1
2
p2
i − α3ui + S(`i, ui)

}
β(`i, ui) d`idpidui,

(4.36)

where the normalization factor is

Z(α) =

√
2πα−1

3 e
mα2

2
2α3 Z(α1, α3)

and

Z(α1, α3) =

∫∫
R+×R+

exp
{
− α1`− α3u+ S(`, u)

}
β(`, u) d`du. (4.37)
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We will call any measure of the form νNα , for some particular choice of parameters

α ∈ Γ a generalized canonical measure. We will often drop the dependence on the

parameters and denote the measure by νN . As the definition in (4.36) implies, a

canonical measure νN can be written as a product of N one-particle measures ν,

νNα = ν⊗Nα ,

where

dν =
e
−mα

2
2

2α3

Z(α1, α3)
√

2πmα−1
3

e−α1`−α2p−α3(
1
2
p2+u)+S(`,u)β(`, u) d`dpdu.

To ensure that the normalization constant Z(α1, α3) is finite, we will require

the following assumptions on the entropy function,

Hypothesis 4.6.2. The entropy function S : (0,∞)× (0,∞)→ R, is C2, concave

and has the following properties

1. Positive temperature

β(`, u) = ∂uS(`, u) > 0 on (0,∞)× (0,∞)

2. For each u ∈ (0,∞),

lim
`→0

S(`, u) = −∞,

3. For each ` ∈ (0,∞),

lim
u→0

S(`, u) = −∞,

4. Sub-linear growth

lim
(`,e)→∞

S(`, e)

`+ e
= 0.
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5. For each ` ∈ (0,∞),

lim
u→0

[S(`, u) + log β(`, u)] = −∞.

The finiteness of Z(α1, α3) now follows from hypothesis 4.6.2. In fact we have

Proposition 4.6.3. Let S(`, e) be a entropy function satisfying hypothesis 4.6.2, if

the parameters α1, α3 ∈ (0,∞), then

Z(α1, α3) <∞.

Proof. Since β exp{S} = ∂u exp{S} we may use integration by parts and the growth

conditions in hypothesis 4.6.2 to obtain

Z(α1, α3) = α3

∫∫
R+×R+

exp
{
− α1`− α3u+ S(`, u)

}
d`du.

The function inside the exponential can be bounded by

− α1`− α3u+ S(u, `) ≤ −(l + e)
(

min{α1, α3} −
S(`, u)

`+ u

)
.

Again the growth condition in hypothesis 4.6.2 implies that there is an R > 0 such

that on the set {`+ u > R},

S(`, u)

`+ u
< 1

2
min{α1, α3}.

Since −α1`−α3u+S(e, `) is bounded above on {u+ ` ≤ R}, we only need to ensure

that the integral on {`+ u > R} is finite. This follows since∫∫
{`+u>R}∩R+×R+

exp
{
− α1`− α3u+ S(`, u)

}
d`du

≤
∫∫

R+×R+

exp
{
− 1

2
min{α1, α3}(`+ u)

}
d`du <∞.
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Remark 4.6.4. It’s important to realize that under the conditions on S defined in

4.6.2, the measure

eSN
∏
i∈ZN

βid`idui

on (R+×R+)ZN is not a bounded measure. Therefore one must be careful to ensure

that α1, α2 > 0 when defining the measure νNα , α = (α1, α2, α3).

Remark 4.6.5. The condition that lim(`,u)→0 S(`, u) = −∞ appears to be necessary

for Z(α1, α3) to remain finite. In fact, as we will see, it will also be necessary

to work out the correct expressions for average temperature and pressure, and is

crucial for ensuring that the parcels don’t collapse to zero in finite time. This type

of singularity is present, for instance, in the equation for the entropy of an ideal gas,

which takes the form

SIdeal(`, u) = (cP − cV ) log(`) + cV log(u), cV > 1,

where cV and cP are the specific heats at constant volume and pressure. In, fact the

same type of logarithmic singularity is present in the expression for the entropy of

a Van der Walls gas.

It is now a simple consequence of the fact that HN ,PN , LN , SN , are conserved

by the dynamics, and the fact that
∏

i βi is invariant, that any canonical measure

νN is an invariant probability measure for the dynamics, i.e. for every bounded and

continuous ϕ : ΓN → R,

∫
ΓN
LHϕ dνN = 0.

As a consequence we have the following anti-symmetry property,
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Proposition 4.6.6. Let νN be a canonical measure on ΓN . Then then the operator

LH, defined in (4.34) is skew symmetric with respect to νN .

Not only does the discrete Euler system have a local thermodynamic structure

determined by S(`, u) also has a global thermodynamic structure determined by the

generalized canonical ensemble (4.36). Similarly to Section 4.2.2, we may define the

global free energy

F̂ (α) = logZ(α)

for α ∈ Γ and its corresponding concave global entropy function

Ŝ(U) = inf
α∈Γ

(
U · α + F (α)

)
,

where U = (¯̀, p̄, ē) ∈ Γ. Of course Lemma A.2.2 implies that Ŝ is smooth and

strictly concave. Moreover, just as with the entropy defined by the grand canonical

ensemble we have the Galilean shift property

Ŝ(¯̀, p̄, ē) = Ŝ(¯̀, 0, ē− 1
2
).

With an abuse of notation sometimes denote

Ŝ(¯̀, ū) = Ŝ(¯̀, 0, ū).

We would like to determine the physical meaning of the parameters α in the

canonical ensemble. To simplify matters we will define the parameters (τ, λ, ζ) ∈ Γ

by

τ := α1, λ := α2/α3, ζ := α3.

Obviously, we will assume that α1, α3 > 0 so that λ is well defined and so that

the measure ν is a well defined probability measure. The physical meaning of the
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parameters (ζ, λ, τ) can be identified at the level of the one-particle measure ν. Let

〈 · 〉ν denote the expectation with respect to the one-particle measure ν,

〈 f 〉ν :=

∫
Γ

f dν,

and similarly let 〈 · 〉νN denote the expectation with respect to generalized canonical

measure νN .

Since νN is just a product of N one-particle measures ν, we see that averages

of the quantities (HN ,PN , LN) can be expressed in terms of one-particle averages,

being sums of functions over the one-particle phase space,

〈HN 〉νN = N〈 1
2
p2 + u 〉ν , 〈PN 〉νN = N〈 p 〉ν , 〈 LN 〉νN = N〈 ` 〉ν

In fact since the ν is a Gaussian integral in p, we may explicitly compute powers of

p,

〈 p 〉ν = λ,

〈 1
2
p2 〉ν = 1

2
λ2 + 1

2
ζ−1.

Therefore λ corresponds to the average velocity per particle. To compute the aver-

ages of 1
2
p2 + u, and `, recall the definition of Z(τ, ζ) in (4.37), then the averages

are given by

〈u 〉ν = −∂ζ logZ(τ, ζ)

〈 ` 〉ν = −∂τ logZ(τ, ζ).

It follows that the average energy is

〈 1
2
p2 + u 〉ν = 1

2
λ2 + 1

2
ζ−1 − ∂ζ logZ(τ, ζ).

Taking into account the thermal contribution 1
2
ζ−1 appearing above, we define the

average internal energy ū as the average energy 〈E〉ν minus the contribution from
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the kinetic energy 1
2
λ2 associated to the mean velocity λ,

ē = 1
2
ζ−1 − ∂ζ logZ(τ, ζ).

Similarly we define the average cell length ¯̀ as

¯̀= −∂τ logZ(τ, ζ).

Given a prescribed mean length and internal energy (¯̀, ū), it is straight forward the

the strict convexity of Ŝ that one may solve the system of equations

ū = 1
2
ζ−1 − ∂ζ logZ(τ, ζ)

¯̀= −∂τ logZ(τ, ζ),

for (ζ, τ), to obtain

ζ = ∂ūŜ(¯̀, ū)

τ = ∂¯̀Ŝ(¯̀, ū).

(4.38)

In calling Ŝ the global entropy, we have implied that Ŝ satisfies the first law of

thermodynamics. This would suggest that ζ corresponds to the inverse temperature,

while τ corresponds to the pressure multiplied by the inverse temperature. In fact

this can be seen explicitly using properties of the one-particle measure g. Recall

that the first law states that β = ∂uS. Using this and integration by parts, we find

Z(τ, ζ) =

∫
R2

+

exp
{
− ζu− τ`

}
∂u exp

{
S(`, u)

}
d`du

= ζ

∫
R2

+

exp
{
− ζu− τ`+ S(`, u)

}
d`du

= ζZ(τ, ζ)〈T 〉ν .

Dividing both sides by Z(τ, ζ) and multiplying by ζ−1 we obtain

〈T 〉ν = ζ−1, (4.39)
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so that ζ−1 corresponds to the average temperature of the cells. Similarly, using the

fact that βP = ∂`S, we find that

〈P 〉ν =
1

Z(τ, ζ)

∫
R2

+

exp
{
− ζu− τ`

}
∂` exp

{
S(`, u)

}
d`du

=
τ

Z(τ, ζ)

∫
R2

+

exp
{
− ζu− τ`+ S(`, u)

}
d`du

= τ〈T 〉ν ,

Using the relation (4.39) obtained for the average temperature, find that

〈P 〉ν = τζ−1.

So that τ corresponds to the average pressure divided by the average temperature.

This verifies the role played by Ŝ as the global entropy with the relation (4.38)

implying,

∂ūŜ(¯̀, ū) = 〈T 〉−1
ν

∂¯̀Ŝ(¯̀, ū) = 〈T 〉−1
ν 〈P 〉ν .

(4.40)

We will define global pressure P̂ (¯̀, ū) and global temperature T̂ (¯̀, ū), by

P̂ (¯̀, ū) := 〈P 〉ν , T̂ (¯̀, ū) := 〈T 〉ν .

where the dependence on (¯̀, ū), comes from the fact that the parameters (ζ, τ) in

the measure ν = ντ,0,ζ are given by relation (4.38). It follows from (4.40) that P̂

and T̂ satisfy the first law of thermodynamics

∂ūŜ = β̂, ∂¯̀Ŝ = β̂P̂ .
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Ideal Gas Fixed Point

As we saw in Section 4.5.2, the process of coarse-graining in equilibrium gives

a procedure for obtaining the discrete Euler dynamics (4.30) from the microscopic

Hamiltonian system (4.10). When the cell size K is large, we know from Theorem

4.2.16 that the volume entropy SK governing the discrete Euler equations approaches

the thermodynamic entropy S and we obtain the (infinite) discrete Euler system

d
dt
`i = pi − pi−1,

d
dt
pi = P (`i, ei − 1

2
p2
i )− P (`i+1, ei+1 − 1

2
p2
i+1)

d
dt
ei = −pi−1P (`i, ei − 1

2
p2
i ) + piP (`i+1, ui+1 − 1

2
p2
i+1)

(4.41)

corresponding to the thermodynamic entropy S. Following the renormalization

group approach in statistical mechanics, we can view this as a mapping between

models. Naturally, we are interested in applying this coarse-graining procedure

again to the infinite discrete Euler system through the map

{(`i, pi, ei)}i∈Z 7→ {(ˆ̀
i, p̂i, êi)}i∈Z

where

(ˆ̀
i, p̂i, êi) =

1

K

∑
j∈Λi

(`i, pi, ei),

and {Λi}i∈Z is a partition of Z with cells of size K. We will denote such a map

by ĥ(y) = ŷ, where y = {(`i, pi, ei)}i∈Z and ŷ = {(ˆ̀
i, p̂i, êi)}i∈Z. We consider the

invariant probability measure

dν∞α =
∏
i∈Z

1

Z(α)
e−α1`i−α2pi−α3

1
2
p2
i−α3ui+S(`i,ui)β(`i, ui) d`idpidui,
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associated to (4.41) and denote 〈· | ŷ〉ν∞,K the conditional probability measure ob-

tained by conditioning ν∞α on the event {ĥ(y) = ŷ} and denote the mapping in each

cells Λi by hi(y). If one denotes

L =
∑
i∈Z

−pi(∂`i − ∂`i−1
) + Pi(∂pi − ∂pi−1

) + pi−1Pi(∂ei − ∂ei−1
)

the generator of the (4.41), then we aim to study the coarse-grained generator

L̂Kφ(ŷ) = 〈L(φ ◦ ĥ) | ŷ〉ν∞,K

where φ is a local function on ΓZ = (R+×R×R+)Z. Using the equivalence of ensem-

bles Theorem A.3.7, and the properties of averages with respect to the generalized

canonical ensemble obtained in Section 4.6 we obtain the following limit

L̂φ = lim
K→∞

L̂Kφ,

where

L̂ =
∑
i∈Z

−p̂i(∂ˆ̀
i
− ∂ˆ̀

i−1
) + P̂i(∂p̂i − ∂ ˆpi−1

) + p̂i−1P̂i(∂êi − ∂ ˆei−1
)

and P̂i is the pressure associated with the global entropy function Ŝ. In particular,

this shows that the discrete Euler system retains its form under consecutive coarse-

graining procedures. In particular, if one considers the case where the entropy

function is an Ideal gas

S(`, e) = (cP − cV ) log `+ cV log e+ C2,

then the volume `i and the internal energy ui follow a Gamma distribution under

the measure ν∞α . Since such distributions are stable, it is a straightforward to see
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that entropy (which is just the large deviations rate function associated to the single

particle measure) must invariant up to an additive constant, namely

Ŝ(ˆ̀, ê) = (cP − cV ) log ˆ̀+ cV log ê+ C2.

Therefore the discrete Euler system with Ideal gas equation of state constitute a

fixed point of the renormalization group procedure.

In the case of an ideal gas, it is not hard to see that the discrete Euler equations

(4.41) to the so-called gamma-law equations

˙̀
i = pi − pi−1

ṗi = (1− γ)eS0/R

(
1

(`i+1)γ
− 1

(`i)γ

)
,

where S0 is the initial entropy, R = cp − cV is the gas constant and γ = cP/cv > 1

is the heat capacity ratio. What’s interesting is that this system is again a one-

dimensional particle chain with Hamiltonian

HIdeal =
∑
i

1

2
p2
i + eS0/R(`i)

1−γ.

Non-Equilibrium Coarse-graining and Corrections

We now want to coarse-grain our particle system in a fully non-equilibrium

setting. If the particles are initially distributed on the phase space ΩZN according

to a distribution fN0 (zN). Then the distribution fNt (zN) at time t > 0 is governed

by the Liouville equation

∂tf
N +ANfN = 0, fN |t=0 = fN0 . (4.42)
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Let ΦN
t (zN) be flow the generated by the ODE (4.10). Then the solution to (4.42)

can be represented by

fNt (zN) = fN0 (ΦN
−t(zN)) ≡ e−AN tfN0 .

We will assume that the initial distribution is of the form fN0 = f̂Mt ◦ ŵ, for

some f̂M0 which is a cyclically symmetric distribution on ΓN , meaning that f̂M0 is in-

variant with respect to cyclic permutations in the indices. Of course, the fact that ŵ

is permutation symmetric inside the cells {Λi}i∈ZN implies that fN0 is also cyclically

symmetric on ΩN . It is a simple consequence of the dynamics that cyclic permu-

tations are preserved by the flow ΦN
t (zN) and therefore that fNt is also cyclically

symmetric.

Remark 4.8.1. The reason for symmetry with respect to cyclic permutations, as op-

posed any permutation, is a direct consequence of the nearest neighbor interactions

of the particle system. Indeed, it is clear that nearest neighbor interactions would

not be preserved under the flow if one swaps any two arbitrary indices. However,

it is important to remark that the quantities LN , PN and HN are symmetric with

respect to any permutation. Therefore both the grand-canonical measure µNα (dzN)

and the micro-canonical measure µN(dzN |yM) are symmetric with respect to any

permutation. The intuition here being that once the particles are in equilibrium,

they no longer feel the nearest neighbor interactions.

If zN is distributed according to fNt , let f̂Mt be the distribution of ŵ(z), defined

by pushforward of fNt as a measure

f̂M(t,yM)dyM = ŵ#(fN(t, zN)dzN).
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In addition, let fNt (dzN |yM) be the conditional measure obtained by conditioning

fNt (zN)dzN on the event {yM = ŵ}. It is important to note that fNt (zN |yM) is

no-longer invariant with respect any type of permutation (this will in fact a have a

profound effect on the behavior of the fluctuations).

Clearly, by the results of Section 4.5.2, if f0 is distributed according to µNα ,

then is is easy to see that f̂Mt exactly solves the coarse-grained Liouville equation

∂tf̂
M
t − Â∗M f̂Mt = 0,

where Â∗M denotes the formal adjoint of ÂM with respect to Lebesgue measure. Our

goal will be to determine to what extent this is true when fN0 is not in equilibrium.

In this case f̂Mt instead solves,

∂tf̂
M
t − Â∗M f̂Mt = R̃t[f

N
t ], (4.43)

where R̃t[f
N
t ] is a quantity describing the deviation from the equilibrium behavior,

and depends on the microscopic distribution fNt . Our goal will be to understand

the behavior of deviation R̃t[f
N
t ].

In what follows, we will denote the average with respect to fNt (dzN |yM) by

〈 · |yM 〉fNt and the averages with respect to fNt (dzN)dzN and f̂Mt (yM)dyM by 〈 · 〉fNt

and 〈 · 〉f̂Mt .

Our first step is to make precise the equation (4.43) f̂M in weak form,

Lemma 4.8.2. Let φ ∈ C1
b (ΓM), then we have the following evolution equation for

f̂Mt

∂t〈φ〉f̂Mt −K
−1
〈
ÂMφ

〉
f̂Mt

= −K−1

2∑
δ=0

∑
i∈ZM

〈
〈J̃δi |yM〉fNt D

δ
iφ
〉
f̂Mt

,
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where

J̃αi (zN) = Jδ
l−i

(zN)− Ĵδi (ŵ(zN)), and Dδ
i = ∂yδi − ∂yδi−1

.

Remark 4.8.3. Of course Lemma 4.8.2 implies that the deviation R̃t[f
N
t ] described

in equation (4.43) can be written as

R̃t[f
N
t ] = K−1

2∑
δ=0

∑
i∈ZM

Dδ
i

(
〈J̃δi |yM〉fNt f̂

M
t

)
.

We would like to study the evolution of the term

〈
〈J̃δi |yM〉fNt D

δ
iφ
〉
f̂Mt

.

To do this, recall the decomposition

AN =
◦
AM +AM ,

where
◦
AM and AM are the periodized Liouville and boundary interaction operators

defined in equations (4.25) and (4.27) respectively. It is easy to see that
◦
AM induces

a well-defined unitary group (et
◦
AN )t∈R on Cb(Ω

N). Indeed, since each
◦
AΛi only acts

on indices in Λi, we can represent (et
◦
AN )t∈R by

et
◦
AMF (zN) = F

(
ΦK
t (zΛ1),ΦK

t (zΛ2), . . . ,ΦK
t (zΛM )

)
,

where ΦK
t is the flow associated to the dynamics (4.10) with N = K. An immediate

consequence of this representation is the following invariance property

et
◦
AMφ ◦ ŵ = φ ◦ ŵ, for each φ ∈ Cb(ΓM).

Moreover, since µMK (dzN |yM) is just a product of micro-canonical measures µK(dzΛi | yi)

on each cell, Lemma 4.2.5 implies that
◦
AM and is skew-symmetric with respect to
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µMK (dzN |yM) and therefore

〈
Get

◦
AMF |yM

〉
N

=
〈
e−t

◦
AMGF |yM

〉
N
,

for all F,G ∈ Cb(ΩN). Of course, this implies that if ψ satisfies 〈ψ |yM〉N = 0, then

so does et
◦
AMψ for all t ∈ R.

Using Duhammel’s formula and the decomposition (4.28), we may write the

Liouville equation (4.42) as

fNt = f̂M0 ◦ ŵ −
∫ t

0

e−(t−s)
◦
ANANfNs ds. (4.44)

This can easily be made rigorous by working in the weak form and choosing time de-

pendent test functions. Setting, ψ(zN) = J̃δi (zN)Dδ
iφ(ŵ(zN)), and integrating both

sides of (4.44) against ψ, we obtain the following formula for
〈
〈J̃δi |yM〉fNt D

δ
iφ
〉
f̂Mt

.

Lemma 4.8.4. For each φ ∈ C2
b (ΓM) we have

〈
〈J̃δi |yM〉fNt D

δ
iφ
〉
f̂Mt

=

∫ t

0

〈〈
ANe(t−s)

◦
AN J̃δi

∣∣∣yM〉
fNs

Dδ
iφ

〉
f̂Ms

ds

−K−1

2∑
γ=0

∑
j∈ZM

∫ t

0

〈〈
(e(t−s)

◦
AN J̃δi )J

γ

l−j

∣∣∣yM〉
fNs

Dγ
jD

δ
iφ

〉
f̂Ms

ds

Combining Lemmas have obtained an exact evolution equation for f̂N of the

form

∂tf̂
M
t − Â∗M f̂Mt −K−1

2∑
δ=0

∑
i∈ZN

Dδ
i

(∫ t

0

Bδj [(t− s), fNs ]f̂Ms ds

)

−K−2

2∑
δ,γ=0

∑
i,j∈ZM

Dδ
iD

γ
j

(∫ t

0

Kγ,δi,j [(t− s), fNs ]f̂Ms ds

)
= 0.

(4.45)

where

Bδj [t, fNs ](yM) :=
〈
ANet

◦
AN J̃δi

∣∣∣yM〉
fNs

,
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and

Kγ,δi,j [t, fNs ](yM) :=

〈
(et

◦
AN J̃δi )J

γ

l−j

∣∣∣yM〉
fNs

.

This, non-local in time, equation is version of the Zwanzig/Nakajima master

equation [99, 124] and is equivalent to the original Liouville equation for fNt .

Approximations to the Coarse-Grained Evolution Equation

In this section, we discuss various approximations to equation (4.45), the pro-

duce certain exact coarse-grained approximations to the evolution of f̂Mt .

To begin, we assume a hyperbolic scaling for the dynamics, that is, we consider

the dynamics on times of order Kt. Under such a rescaling, equation (4.45) becomes

∂tf̂
M
t − Â∗M f̂Mt −K

2∑
δ=0

∑
i∈ZN

Dδ
i

(∫ t

0

Bδj [K(t− s), fNs ]f̂Ms ds

)

−
2∑

δ,γ=0

∑
i,j∈ZM

Dδ
iD

γ
j

(∫ t

0

Kγ,δi,j [K(t− s), fNs ]f̂Ms ds

)
= 0.

(4.46)

Relaxation approximation

Our first approximation will assume some level of scale separation on the

dynamics, specifically, for large enough N we will assume that we can replace the

conditional measures with respect to fNt conditional measures with respect to an

equilibrium one,

〈 · |yM〉fNt ≈ 〈 · |yM〉N . (4.47)

This approximation, which we refer to as the relaxation approximation is essentially

a kind of ergodic hypothesis on fNt when N is large. Of course, for the deterministic
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evolution generated by
◦
AN , this is a difficult open problem. However, if one intro-

duces a stochastic perturbation to the dynamics of the form discussed in Section 4.3,

then the corresponding dynamics is ergodic (see [14] for a proof of this in context of

anharmonic chains) and an approximation of the type (4.47) is more likely within

reach.

At the level of equation (4.46) the relaxation approximation amounts to mak-

ing the following approximations

Bδj [t, fNs ](yM) ≈ Bδj [t, µNα ](yM) ≡ B̂δj (t,yM) =
〈
ANet

◦
AN J̃δi

∣∣∣yM〉
N

and

Kγ,δi,j [t, fNs ](yM) ≈ Kγ,δi,j [t, µNα ](yM) ≡ K̂γ,δi,j (t,yM) =
〈

(et
◦
AN J̃δi )J̃

γ
j

∣∣∣yM〉
N
.

Note that we have replaced Jγ
l−j

with J̃γj in the definition of K̂γ,δi,j , since et
◦
AN J̃δi , is

〈 · |yM〉N mean 0 and therefore we may freely subtract Ĵγj =
〈

Jγ
l−j
|yM

〉
N

from Jγ
l−j

in the definition of K̂γ,δi,j .

Remark 4.8.5. It is important to remark that this approximation does not depend

on the value of α in the grand-canonical measure µNα , since the above quantities

only depend on µNα through its conditional measure µN( · |yM).

While the matrix K̂γ,δi,j (t) has explicit time dependence, it no longer depends on

the microscopic solution fNt and can computed by solving a problem about current-

current correlations of periodized evolution inside each cell under the micro-canonical

measure. Such an approximation allows for computation of B̂δi and K̂γ,δi,j in terms of

small number coefficients. Firstly, B̂δi can be computed in terms of K̂γ,δi,j .
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Lemma 4.8.6. Let gK(y) be the density of states, and denote

gMK (yM) =
M∏
i=1

gK(yi),

then the following formula holds

B̂δi gMK = −K−1

2∑
δ=0

M∑
j=1

Dγ
j

(
gMK K̂

δ,γ
i,j

)
Proof. Let ϕ be a test function on ΓM , then by definition of the condition measure

µN( · |yM), we can make the following computation,∫
ΓM

ϕ B̂δi (t) gMK dyM =

∫
ΩN

ϕ ◦ ŵAN
(
et
◦
AN J̃δi

)
dzN

= −
∫

ΩN
AN(ϕ ◦ ŵ) et

◦
AN J̃δidzN

= K−1

2∑
γ=0

M∑
j=1

∫
ΩN

Jγ
l−i
Dγ
i ϕ ◦ ŵ

(
et
◦
AN J̃δi

)
dzN

= −K−1

2∑
γ=0

M∑
j=1

∫
ΓM

Dγ
i ϕ K̂

δ,γ
i,j (t) gMK dyM

This completes the proof.

Lemma 4.8.6 implies that one only needs to compute K̂δ,γi,j since B̂δi can be

computed explicitly in terms of K̂δ,γi,j . In fact, using Lemma 4.8.6, we easily obtain

K
2∑
δ=0

∑
i∈ZN

Dδ
i

(∫ t

0

B̂δj (K(t− s))f̂Ms ds

)

+
2∑

δ,γ=0

∑
i,j∈ZM

Dδ
iD

γ
j

(∫ t

0

K̂γ,δi,j (K(t− s))f̂Ms ds

)

=
2∑

δ,γ=0

∑
i,j∈ZM

∫ t

0

Dδ
i

(
gMK K̂

γ,δ
i,j (K(t− s))Dγ

j

(
f̂Ms
gMK

))
ds.

It is not hard to see that the term on the right-hand side of the above identity

vanishes when f̂Mt is equal to the density of µ̂MK,α. Therefore, as expected, the
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relaxation approximation is consistent with the equilibrium results of Section 4.5.2.

After making the relaxation approximation, equation (4.46) becomes

∂tf̂
M
t − Â∗M f̂Mt =

2∑
δ,γ=0

∑
i,j∈ZM

∫ t

0

Dδ
i

(
gMK K̂

γ,δ
i,j (K(t− s))Dγ

j

(
f̂Ms
gMK

))
ds. (4.48)

As mentioned, the values Kγ,δi,j can be computed explicitly in terms of much

smaller number of terms. Indeed, using the skew symmetry of
◦
AM with respect to

〈 · |yM 〉N , we have the following time-reversal relation

K̂γ,δi,j (t) = K̂δ,γj,i (−t). (4.49)

Furthermore, since current J̃δi lies on lower boundary values of the cell Λi, it can

at most depend on values in Λi−1 and Λi. Furthermore, since et
◦
AN only evolves

each particle within the cell it starts in and preserves the mean zero property of the

fluxes, we necessarily have,

K̂γ,δi+k,i = 0 if k ≥ 2.

Moreover, by the symmetry relation (4.49), for each i ∈ ZM it suffices to compute

only Kγ,δi,i and Kγ,δi+1,i, for each γ and δ, since Kγ,δi,i+1 can be computed from Kγ,δi+1,i.

However, because of other symmetries of current-current correlation, the number of

independent coefficients of Kγ,δi,i and Kγ,δi+1,i can be reduced further.

Specifically, for each y ∈ Γ and t > 0 define the following correlation functions

θ(t, y) =
1

TK(y)

〈
1

K

K∑
j=1

(
etAKvj − pi

)(
vj − pi

) ∣∣∣∣ y
〉
K

ζ(t, y) =
1

TK(y)

〈
1

K

K∑
j=1

(
etAKvj − pi

)(
V ′(rj) + PK(yi)

) ∣∣∣∣ y
〉
K
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η(t, y) =
1

TK(y)

〈
1

K

K∑
j=1

(
etAK (V ′(rj) + PK(yi)

)(
V ′(rj) + PK(yi)

) ∣∣∣∣ y
〉
K

,

where 〈 · | y〉K denote the micro-canonical measure on ΩK . The correlation functions

θ and eta are auto correlation functions of for the volume and momentum fluxes

inside a cell. We would also like to define the auto correlation function for the energy

flux. However, since J̃2
i is evaluated on the boundary of a cell, it contains values in

two different cells, therefore the auto-correlation function is naturally defined over

two adjacent cells Hence we define the function

κ(t, y1, y2) =
1

TK(y1)TK(y2)

〈(
et(

◦
AΛ1

+
◦
AΛ2

)J̃2
1

)
J̃2

1

∣∣∣ y1, y2

〉⊗2

K

It is easy to see from the definition of K̂γ,δij that

K̂0,0
i,i (t,yM) = TK(yi−1)θ(t, yi−1),

K̂0,1
i+1,i(t,yM) = TK(yi)ζ(t, yi),

K̂1,1
i,i (t,yM) = TK(yi)η(t, yi),

K̂2,2
i,i (t,yM) = TK(yi−1)TK(yi)κ(t, yi−1, yi).

As it turns out, because of the sharp division between cells, κ(t, y1, y2) can be

determined directly in terms of θ(t, y1) and η(t, y2).

Lemma 4.8.7. The following formula holds

κ(t, y1, y2) = θ(t, y1)η(t, y2) + θ(t, y1)βK(y2)PK(y2)2.

Using time-reversal symmetry of the Hamiltonian evolution et
◦
AM we find

Lemma 4.8.8. The following time symmetry relations hold

θ(t, y) = θ(−t, y), ζ(t, y) = −ζ(−t, y), η(t, y) = η(−t, y). (4.50)
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Proof. Consider the velocity inversion transformation

T (x,v) = (x,−v),

It is east to verify that the Hamiltonian flow Φt(x,v) associated to
◦
AM has the

following time-symmetry property

T (Φt(T (x,v))) = Φ−t(x,v),

and that 〈φ ◦ T |yM〉 = 〈φ
∣∣yM〉. This readily implies

〈
(e−t

◦
AKvj)vj | y

〉
K

=
〈

(et
◦
AKvj)vj

∣∣ y〉
K
,

〈
(e−t

◦
AKV ′(ri))V

′(ri) | y
〉
K

=
〈

(et
◦
AKV ′(ri))V

′(ri)
∣∣ y〉

K
,〈

(e−t
◦
AKvi)V

′(ri) | y
〉
K

= −
〈

(et
◦
AKvi)V

′(ri) | y
〉
K
.

Using these identities along with the fact that

〈
(et

◦
AK J̃δi )J̃

γ
j | y
〉
K

=
〈

(et
◦
AKJδi )J

γ
j | y
〉
K
−
〈
Jδi | y

〉
K

〈
Jγj | y

〉
K

gives the time-symmetry relations (4.50).

As it turns out, the entire correlation matrix Kγ,δi,j can be computed in terms

of θ, ζ and η.

Lemma 4.8.9. The matrices (K̂i,i)γ,δ and (K̂i+1,i)γ,δ take the form

K̂i,i(t) =


TK,i−1θi−1(t) 0 0

0 TK,iηi(t) pi−1TK,iηi(t)

0 pi−1TK,iηi(t) TK,iTK,i−1κi,i−1(t) + TK,ip
2
i−1ηi(t)

 ,
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and

K̂i+1,i(t) =


0 TK,i−1ζi(t) TK,i−1ζi(t)pi−1

0 0 0

0 −TK,i−1ζi(t)PK,i+1 0

 ,

where θi, ζi, ηi and PK,i denote θ(yi), ζ(yi), η(yi) and PK(yi) respectively.

Note that, by the symmetry relations (4.49) and (4.50), we find

K̂i,i+1(t) = K̂i+1,i(−t)> =


0 0 0

−TK,i−1ζi(t) 0 TK,i−1ζi(t)PK,i+1

−TK,i−1ζi(t)pi−1 0 0

 ,

.

The coefficient ηi(t) is the momentum-current-current correlation function

within a cell. Such correlations are related to the emergence of bulk viscosity of

the macroscopic dynamics.

The coefficient θi(t) is precisely the velocity auto-correlation function of a

tagged particle in equilibrium evolving in the cell Λi−1. The emergence of the co-

efficients θi(t) and ζi(t) is related to the fact that our coarse-graining map has a

sharp division between cells, and hence the current between cells is dictated by

the value of the current on the boundary of the cells. Moreover since the condi-

tional measure 〈 · |yM〉fNt has no permutation symmetry properties within cells, the

boundary current cannot be replaced with a suitable summation of values in a cell.

As a consequence, in the derivation of equation (4.45), one is restricted to looking

at current-current correlations between currents on the cell boundaries. The result

of this is the appearance of θi(t) and ζi(t), which, in some sense, encode non-trivial
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correlations in the currents that connect the cells.

The coefficient κi,i−1(t) is the energy-current-current correlation functions across

two cells and is related to the emergence of thermal conductivity between cells. It

is rather remarkable in this case that it can be explicitly described in terms of θi−1,

ηi and thermodynamic quantities βK,i and PK,i.

Markov Approximation and Decay of Correlations

While the relaxation approximation is useful for studying the behavior of fluc-

tuations around equilibrium, the utility of equation (4.48) is limited due to the

non-local in time nature of the equation. Such an evolution equation gives rise to

non-Markovian features of the dynamics with K̂Kγ,δ
ij (t) playing the role of a mem-

ory kernel. In particular, this implies that it is precisely the persistence of two-time

current-current correlations within cells that gives rise to memory effects. Indeed,

if the size of the cell K (and consequently our choice of time-scale) is not too large,

then non-Markovian effects in the coarse-grained dynamics is not entirely surprising,

since the periodized dynamics inside the cells have not had enough time to forget

their initial data. However, when K is large, one expects there to be a certain decay

of correlations for large times, namely, when t > 0 we expect

K̂γ,δi,j (Kt) =
〈

(eKt
◦
AM J̃δi )J̃

γ
j

∣∣∣yM〉
N
→ 0, (4.51)

as K → ∞. Of course, for the deterministic evolution generated by
◦
AM , prov-

ing such decay is a very difficult mathematical problem and is likely out of the

reach of current mathematical tools. Moreover, if there are other, apriori unknown,
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conserved quantities in the dynamics associated to
◦
AM , then, for instance the corre-

lations might settle into a constant, non-zero, state (this is seen for instance in [98]).

However, if one replaces the motion inside the cells with a stochastic component

of the type introduced in Section 4.3, then one can likely obtain explicit (mixing)

estimates on the decay of correlations (4.51), and ensure that (ri, vi, ei) are the only

locally conserved quantities.

Decay of correlations directly implies a loss of memory in the dynamics gov-

erned by (4.48). Indeed, if the decay is fast enough, we may localize the non-local

nature of (4.48), such a localization in time is often referred to as a Markov ap-

proximation since the resulting evolution equation will be that of a Markov process,

particularly a diffusion process. Specifically, treating KK̂γ,δi,j (Kt) as an approxima-

tion of the identity we write∫ t

0

K̂γ,δi,j (K(t− s))f̂Ms ds ≈ K−1

(∫ K

0

K̂γ,δi,j (s)ds

)
f̂Mt , (4.52)

which is expected to hold when K is large. Note that we have truncated the time-

integral above at t = K. The reason for this is that, in one dimension, the correlation

matrix K̂γ,δi,j (t) typically decays to 0, but has “long-time tails” which are not inte-

grable on R+. This effect was first noticed numerically by Alder and Wainwright [1,

2] for the velocity auto-correlation function θi(t), where it was observed that θi(t)

decayed like t−1/2. Indeed, this would imply that there is a divergence of the form∫ K

0

θi(s)ds ∼ K1/2 (4.53)

as K → ∞. Note that, while
∫ K

0
θi(s)ds diverges the quantity K−1

∫ K
0
θi(s)ds still

vanishes for large K implying that the contribution to equation (4.48) is still small.
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It is instructive to note that at time t = 0 we have

θi(0, yi) =

〈
1

K

∑
j∈Λi−1

(vj − pi)2

∣∣∣∣yM
〉
N

,

and by the equivalence of ensembles Theorem A.3.7, as K →∞, we have

θi(0, `i, pi, ei)→ T (`i, ei − 1
2
p2
i ),

where T (`, e) = β(`, e)−1 is the thermodynamic temperature associated with the

grand-canonical ensemble. Therefore θi(t)) starts at a non-zero value and is expected

to decay in time. However, for transient times, the decay will generally not be

monotonic as might be suggested. Indeed, θi(t) may become negative and undergo

oscillations on its approach to 0, further increasing the potential rate of divergence

suggested in (4.53).

Also at time t = 0, we have

ζi(0) =

〈
1

K

∑
j∈Λi

(
vj − pi

)(
V ′(rj) + PK(yi)

) ∣∣∣∣yM
〉
N

= 0,

due to the fact that the measure 〈 · |yM〉 is symmetric with respect to permutation

in the velocity and deformation indices separately, and therefore we may replace

vj − pi above with 1
K

∑
j∈Λi

vj − pi, which is equal to 0 on the micro-canonical

surface. Therefore, contrary to θi we expect the grow from time zero, and oscillate

with decreasing amplitude as t → ∞. In light of this, we will assume that these

oscillations average out over time and therefore∫ K

0

ζi(s)ds ∼ 0,

as K → ∞. As a result, we will typically neglect the contribution due to ζi(s) in

the Markov approximation.

121



Consequently, we define the time integrated correlation functions

θ̄(yi) :=

∫ K

0

θ(t, yi)dt, η̄(yi) :=

∫ K

0

η(t, yi)dt,

and, upon neglecting the time integral of ζi(t) for large enough K, we conclude

∫ K

0

Kγ,δi,j (t,yM)dt ≈ dγ,δ(yi−1, yi)δi,j, (4.54)

where dγ,δ(yi−1, yi) = (d(yi−1, yi))γ,δ is the diffusion matrix defined by

d(yi−1, yi) =
TK(yi−1)θ̄(yi−1) 0 0

0 TK(yi)η̄(yi) pi−1TK(yi)η̄(yi)

0 pi−1TK(yi)η̄(yi) TK(yi−1)TK(yi)κ̄(yi−1, yi) + TK(yi)η̄(yi)p
2
i−1


where

κ̄(yi−1, yi) = θ̄(yi−1)η̄(yi) + θ̄(yi−1)βK(yi)PK(yi)
2.

The functions θ̄(y), η̄(y) are given by time integrals of auto-correlation func-

tions analogous to the Green-Kubo formula. It therefore follows from a standard

application of the Wiener-Kinchin theorem that, for large enough K, we have

θ̄, η̄, κ̄ ≥ 0.

Applying the approximation (4.52) and (4.54) to equation (4.48), we obtain

∂tf̂
M
t − Â∗M f̂Mt = K−1

2∑
δ,γ=0

∑
i∈ZM

Dδ
i

(
gMK dγ,δi−1,iD

γ
i

(
f̂Mt
gMK

))
. (4.55)

Equation (4.55) is the forward Kolmogorov equation for a diffusion process with
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generator

L̂Mφ = ÂMφ+K−1

2∑
δ,γ=0

∑
i∈ZM

1

gMK
Dγ
i

(
gMK dγ,δi Dδ

iφ
)

= ÂMφ+K−1

2∑
δ=0

∑
i∈ZM

J δ
i,i−1D

δ
iφ+K−1

2∑
γ,δ=0

∑
i∈ZM

dγ,δi,i−1D
γ
ID

δ
iφ,

(4.56)

where

J δ
i,i−1 =

2∑
γ=0

dγ,δi Dγ
i log gMK +Dγ

i (dγ,δi ),

is the dissipative flux.

The SDE system associated with the generator (4.56) is

ẏi = Ĵi+1 − Ĵi +K−1(Ji+1,i − Ji,i−1) +K−1/2(Ṁi+1,i − Ṁi,i−1) (4.57)

where Ĵi = (pi−1,−Pi,−pi−1Pi) are the discrete Euler currents, and Mi−1,i =

(M`
i−1,i,M

p
i−1,i,Me

i−1,i) is a vector of mean-zero martingales defined by stochastic

integration against a collection of independent Wiener processes {W `
i }, {W

p
i }, {W e

i }

Ṁ`
i,i−1 =

√
2Ti−1θ̄i−1Ẇ

`
i

Ṁp
i,i−1 =

√
2Tiη̄iẆ

p
i

Ṁe
i,i−1 = ui−1Ṁp

i +
√

2κ̄i,i−1TiTi−1Ẇ
e
i .

(4.58)

With a bit of work, the dissipative fluxes Ji = (J `
i,i−1,J

p
i,i−1,J e

i,i−1) can be shown

to be given by

J `
i,i−1 = Ti−1θ̄i−1(βiPi − βi−1Pi−1) + βi∂`θ̄i−1 + θ̄i−1∂`η̄i − Pi∂eiκ̄i−1,i

J p
i,i−1 = (η̄i + Ti∂eη̄i)(pi − pi−1)

J e
i,i−1 = pi−1J p

i,i−1 + Tiη̄i + κ̄i,i−1(Ti − Ti−1)− TiTi−1(∂eiκ̄i,i−1 − ∂ei−1
κ̄i,i−1),

In equations (4.7) and (4.8) we used subscripts to denote dependence on a certain

coarse particle, for instance Pi = P (yi), and κ̄i−1,i = κ̄(yi−1, yi).
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A Simplified Fluid-Particle Model

We now aim to introduce a simplified version of the model (4.57) in the case

that the transport coefficients θ̄i, η̄i, κ̄i−1,i are constant and the dissipation in the

volume term is gone. Such a model taken the form

˙̀
i = (pi − pi−1)

ṗi = (Pi − Pi+1) + [η̄(pi+1 − pi)− η̄(pi − pi−1)] + Ṁp
i+1 − Ṁ

p
i

ėi = (pi−1Pi − piPi+1) + η̄ [pi(pi+1 − pi)− pi−1(pi − pi−1)]

+ κ̄ [(Ti+1 − Ti)− (Ti − Ti−1)] + η̄(Ti − Ti−1)

+ piṀp
i+1 − pi−1Ṁp

i + Ṁe
i+1 − Ṁe

i .

where (Mp
i−1,i,Me

i−1,i) are defined in 4.58. As in our discussion of the discrete Euler

system in Section 4.6 we will find it useful to introduce the internal energy variables

ui = ei − 1
2
p2
i , which transform the equations to

˙̀
i = (pi − pi−1)

ṗi = (Pi − Pi+1) + [η̄(pi+1 − pi)− η̄(pi − pi−1)] + Ṁp
i+1 − Ṁ

p
i

u̇i = −(pi − pi−1)Pi + η̄(pi − pi−1)2 + κ̄ [(Ti+1 − Ti)− (Ti − Ti−1)]− 2η̄Ti

+ (pi − pi−1)Ṁp
i + Ṁe

i+1 − Ṁe
i .

(4.59)

The generator of equation (4.59) is given by

L = LH + LS,

where

LH =
∑
i∈ZN

−pi−1(∂`i − ∂`i−1
) + PiXi
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and

LS =
∑
i∈TN

−η(pi − pi−1)Xi − κ(Ti − Ti−1)Yi + ηTiX 2
i + TiTi−1Y2

i .

where {Xi : i ∈ TN} and {Yi : i ∈ TN} are two families of differential operators

representing vector fields tangent to certain manifolds defining pairwise momentum

and energy exchange. They are given by

Xi = ∂pi − ∂pi−1
− (pi − pi−1)∂ui , Yi = ∂ui − ∂ui−1

.

The constants η, κ > 0 play the role of bulk-viscosity and thermal-conductivity

in the model. The functions L =
∑

i∈TN `i, P =
∑

i∈TN pi, H =
∑

i∈TN
1
2
p2
i + ui,

corresponding to total length, momentum, and energy, are in the null space of L,

and therefore conserved by the dynamics.

Contrary to the Euler discretization, the entropy SN is not conserved by the

stochastic dynamics, as is to be expected it is a discrete model of the Navier-Stokes-

Fourier system. Instead the entropy satisfies a discrete version of the Gibbs-Duhem

relation. Indeed when computing the evolution of the entropy Si = S(`i, ui), Itô’s

formula implies,

dSi = ∂`S(`i, ui)d`i + ∂uS(`i, ui)dui

+ ∂2
uS(`i, ui)

[
(pi − pi−1)2ηTi + κTi+1Ti + κTiTi−1

]
dt.

Using the thermodynamic relations ∂`S = βP , and ∂uS = β, and the evolution

equations, we obtain,

dSi = Ti
(
∂2
uSi + β2

i

) (
η(pi − pi−1)2 + [κTi+1 + κTi−1]

)
dt

− (κ+ κ)dt− 2ηdt+ βi
[
(pi − pi−1)dMp

i + dMe
i+1 − dMe

i

]
.
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As we can see, the total entropy S =
∑

i∈TN Si is not strictly dissipated as, as one

might expect being a discrete version of Navier-Stokes. This barrier to dissipation is

due to the noise (the same behavior is observed, for instance, in stochastic gradient

dynamics). In general this can lead to problems of well posedness for the fluid-

particle model, i.e. finite time blow up in the form of parcel volumes or energies

collapsing to 0. However, certain assumptions on the concavity on S(`, e) allow one

to obtain enough dissipation of S to show existence and uniqueness of a process

which stays in the interior of ΓN . The main result of this section is the following

theorem

Theorem 4.9.1. Suppose that the entropy function S(`, u) approaches −∞ when

either u or ` approach 0, grows sub-linearly when either u or ` approach ∞ and

satisfies the lower bound

∂2
uS(`, u) ≥= (1− γ)T (`, u)−2 (4.60)

for some γ ∈ (0, 1). Let (Ω,F ,P, (Ft)t≥0,W ), where W = {(W p
i ,W

e
i )}i∈ZN is a

family of independent one-dimensional Brownian motions relative to the filtration

(Ft)t≥0. Then for any N and z0 in the interior of ΓN , the SDE associated to L has

a unique (Ft) measurable solution z(t) = {(`i, pi, ui)(t)}i∈ZN which remains in the

interior of ΓN for all t ≥ 0 and has continuous sample paths.

Remark 4.9.2. Note that the case when S is the entropy of a one-dimensional

monatomic ideal gas assumption (4.60) is not satisfied. In fact, in this case we

have,

∂2
uSi + β2

i = −β2
i .
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It appears that this condition is a size condition on the specific heat (at constant

volume) associated to the entropy S. There are the negative contributions due to κi

and ηi, which can hurt the entropy dissipation as well. Indeed it will be necessary

to have control on the size of κi and ηi

Well-posedness

In this section, we prove Theorem 4.9.1. Note that this requires showing that

the process z(t) = {(`i, pi, ui)(t)}i∈ZN remains in the interior ΓN0 := Int ΓN for all

time. This implies that if for each i ∈ ZN , (`i, ui) start positive, then (`i, ui)(t)

remain strictly positive for all later times with probability one. As a consequence,

since `i denotes the difference between particles qi and qi−1, if the particles start

ordered on ZN , they will remained ordered on ZN with probability one, that is the

particles cannot pass through each other. We will find it useful to simplify notation

and write the SDE (4.59) in the following standard Itô form

dz = b(z) dt+ σ(z) dw, z(0) = z0, (4.61)

where z(t) denotes the process {(`i, pi, ui)(t)}i∈ZN , represented as a vector in ΓN ,

with zi = (`i, pi, ui), and w(t) is an (R3)N valued Brownian motion. Let Lz denote

the generator L with coefficients evaluated at z ∈ ΓN . The drift b(z), b : ΓN →

(R3)N can be defined by

b(z) = Lz z

and the matrix σ(z), σ : ΓN → (R3)N ⊗ (R2)N satisfies σ2 = a, where

a(z) = Lz (z ⊗ z)− z ⊗ (Lz z)− (Lz z)⊗ z.
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We are now ready to prove the Theorem

Proof of Theorem 4.9.1. . Note that the functions b and a are not globally Lipschitz

on ΓN . Indeed they have singularities in as `i → 0 and grow quadratically as pi →∞.

However they are locally Lipschitz in the sense that for any compact set K contained

in Int ΓN then b and a are Lipschitz on K.

To prove existence up to a possible explosion time τ = inf{t : z(t) /∈ Int ΓN},

we will define a function F : ΓN → R+ by

F (z) = HN(z) + LN(z)− SN(z) + C,

where C is an undetermined constant. As a consequence of hypothesis 4.6.2, F

is a C2 convex function on ΓN and approaches ∞ as z → ∂ΓN and as |z| → ∞.

Therefore F has a minimum value on ΓN and the constant C may be chosen so that

F ≥ 0 on ΓN . For each R ≥ 0, define the following family of compact sets, strictly

contained in ΓN ,

KR = {z ∈ ΓN : F (z) ≤ R},

and let ϕR be a smooth cutoff function equal to 1 on KR and equal to zero outside

of KR+1. Let bR(z) = ϕR(z)b(z) and σR(z) = ϕR(z)σ(z) be the corresponding cutoff

coefficients. Indeed bR and σR are globally Lipschitz on ΓN . Therefore by a standard

Banach fixed point argument on L2(Ω;C([0,∞),ΓN)), there exists a unique pathwise

solution to the following SDE

dzR = bR(z)dt+ σR(z)dW, z(0) = z0,R ∈ KR.

Since b(z) = bR(z) and σ(z) = σR(z) on KR, the process (zR(t))∞t=0 is a solution
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(z(t))∞t=0 to (4.61) up to the stopping time

τR = inf{t : z(t) /∈ KR}.

In fact, this solution {zR(t)}Tt=0 is the unique solution to (4.61) with initial data z0,R

on the interval [0, τR). Since the sets {KR}R≥0 increase as R→∞ and
⋃
R≥0KR =

Int ΓN , the stopping times {τR}R≥0 are increasing. Therefore, by uniqueness, if

R2 ≥ R1, then zR1(t) = zR2(t) on [0, τR1). Now, let

τ = sup
R≥0

τR,

and for any z0 ∈ Int ΓN , choose R0 ≥ 0 such that z0 ∈ KR if R ≥ R0. We then

construct the unique solution z(t) on [0, τ) to (4.61) with initial data z0, by

z(t) = zR0(t)1[0,τR0
)(t) +

∞∑
j=0

zR0+j+1(t)1[τR0+j ,τR0+j+1)(t).

To show well-posedness, we simply need to show non-explosion,

P{τ =∞} = 1.

To do this, we will use a Lyapunov function method with the function F (z).

Indeed, since HN and LN are conserved, we find,

LF (z) = −L SN(z)

=
∑
i∈ZN

(
2κ+ 2η − Ti(∂2

eSi + β2
i )
[
η(pi − pi−1)2 + κTi+1 + κTi−1

])
.

Under the assumption that

∂2
eS(`, e) ≥ −β(`, e)2,
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we can show that

LF (z) ≤ CN

for a constant CN depending on N and the transport coefficients η, κ. Define

V (t, z) = eCN tF (z), then by Itô’s formula the process (MV (t))∞t=0 defined by

MV (t) = V (t, z(t))− V (0, z0)−
∫ t

0

(
∂sV (s, z(s)) + LV (s, z(s))

)
ds

is a martingale. Using the fact that

∂tV (t, z) + LV (t, z) ≤ 0,

and V (t, z) ≥ 0 we may conclude that for each R > 0 the stopped process z(t ∧ τR)

satisfies for each t,

V (0, z0) ≥ E[V (t, z(t ∧ τR)]

= P{τR ≥ t}E[V (t, z(t))] + P{τ ≤ t}E[V (t, z(τR))]

≥ P{τR ≤ t}R.

Therefore we conclude that for all R > 0 and t ≥ 0,

P{τ ≤ t} ≤ P{τR ≤ t} = V (0, z0)R−1.

Sending R→∞ concludes the non-explosion condition. Therefore the solution z(t)

constructed above is the unique solution to the SDE (4.61).
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Elegance should be left to shoemakers and tailors.

Ludwig Boltzmann

Part II

Stochastic Transport
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Introduction to Part II

Stochastic Transport Equations

The study of stochastic differential equations (SDEs)

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (5.1)

with rough drift b and diffusion σ have received a lot of attention in recent years.

In many applications in fluid mechanics (and kinetic theory) one is interested in

solving (5.1) when b and σ are not Lipschitz (rough). The problem of existence of

probabilistically strong, pathwise unique solutions to (5.1) when b and σ are rough

have been studied in a number of works, some of the earlier work is by Krylov and

Veretennikov [117, 118], Krylov and Röckner [79] and more recently by Champagnat

and Jabin [25] and Rezakhanlou [107].

One approach to this problem is to study existence and uniqueness of strong

solutions to the associated stochastic transport equation

∂tf + div(bf)− div div(af) + div(σf) · Ẇ = 0,

f |t=0 = f0,

(5.2)

where a = 1
2
σσ>. When a is a multiple of the identity, and b is rough, this problem

was studied by Flandoli, Gubinelli and Priola [50, 51], as well as by [22, 100].
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The hope is to generalize the DiPerna/Lions theory for the deterministic transport

equation [34] to one for the stochastic transport equation (5.2). When σ is rough and

degenerate, a version of the DiPerna/Lions theory for the associated Kolmogorov

equation has been developed by Figalli [49] and by Lions/Le Bris [84]. However,

there appear to be few results in the literature concerning solutions to the stochastic

transport (5.2).

In Chapter 6 the theory of renormalized solutions for (5.2) when σ is rough

is developed. We employed the usual commutator estimates used in [34], along

with a new double commutator that arises due to the stochastic term. Interestingly,

using this method it only seems possible to obtain uniqueness for solutions in Lp for

p > 2, when σ ∈ W 1,2p/p−2 and div a ∈ W 1,p/p−2. The existence and uniqueness of

(probabilistically) strong solutions in Lp for p ∈ [1, 2) when σ is rough appears to

be rather non-trivial. This is consistent with the work of Lions/ LeBris [84].

Stochastically Forced Boltzmann Equation

Many models of turbulence involve forcing the equations of fluid mechanics by

noise. From a physical perspective, this can be viewed as some kind of environmental

shaking inciting the onset of turbulence. A natural question to ask is whether this

noise can be deduced from a more general form of noise at the kinetic level. Of

course, conditions for the well-posedness of such stochastic kinetic equations are of

interest, as well as whether such noise may provide insights into the behavior of a

turbulent fluid at the kinetic level.
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In a collaboration with another student Scott Smith we initiated a study of

the Boltzmann equation with stochastic forcing,

∂tf + v · ∇xf + divv(f ◦ Ẋ ) = B(f, f),

f |t=0 = f0.

(5.3)

The forcing Ẋ is a Gaussian noise, white in time, and colored in (x, v) ∈ Rn × Rn,

of the general form

Ẋ (t, x, v) =
∑
k∈N

σk(x, v)β̇k(t)

where {σk : k ∈ N} are a family of deterministic Rn valued vector fields over Rn×Rn,

and {βk : k ∈ N} are independent one-dimensional Brownian motions. The product

between f and Ẋ is interpreted in the Stratanovich sense.

Such an equation describes the evolution of the one-particle phase space den-

sity f(t, x, v) of a rarefied gas subject to elastic binary collisions and environmental

noise. The elastic binary collisions are modeled by Boltzmann collision operator

f 7→ B(f, f), a quadratic operator that acts pointwise (t, x) and non-locally in v.

The environmental noise acts on the gas externally in the sense that each particle

is driven by the same realization of the noise Ẋ . This is in contrast to intrinsic

noise where each particle in the gas is driven by an independent realization of the

noise. The environmental noise is modeled by stochastic transport on the left side

of equation (5.3). Indeed, in the absence of collisions one may think of the parti-

cle in that gas as following certain stochastic characteristics (Xt, Vt) that solve the
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Stratanovich SDE

dXt = Vt dt, X0 = x ∈ Rn

dVt =
∑
k∈N

σk(Xt, Vt) ◦ dβt, V0 = v ∈ Rn.

We are interested in the existence of solutions to (5.3). With regards to exis-

tence of solutions to the Navier-Stokes equations driven by white noise, one of the

first rigorous studies was undertaken by Bensoussan and Temam [13] and has since

received much attention in the mathematical literature (a relatively recent survey

of the many results is given in [39]).

In [106], we study the existence of global in time solutions to (5.3) for a general

class of ‘large’ initial data in L1(Rn×Rn) with certain entropy and moment bounds.

In the deterministic setting, such a result was proven by DiPerna/Lions [36] for

the Boltzmann equation in the renormalized sense, and improved in subsequent

works [35, 36, 88, 89]. Our main result is a proof of the existence of, global in

time, probabilistically weak (in the sense of a solution to the martingale problems)

solutions to (5.3) in the renormalized sense (the same notion of solution used in

[36]). The main theorem is stated informally as follows:

Theorem 5.2.1. Let f0 have finite mass, energy and entropy,

‖(1 + |x|2 + |v|2 + | log f |)f‖L1
x,v
<∞

and suppose that the coefficients {σk : k ∈ N}, divv σk = 0, satisfy certain regu-

larity and summability conditions. Then for a certain class of collision operators

B(f, f), there exists a probabilistically weak (martingale) solution {ft : t ≥ 0} to

(5.3) satisfied in the renormalized sense.
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The process {ft : t ≥ 0} takes values in the cone of non-negative L1(Rn ×Rn)

functions and has bounded p-th moments of mass, energy, entropy, and entropy

dissipation,

E‖(1 + |x|2 + |v|2 + | log f |)f‖pL∞t (L1
x,v) ≤ ∞, E‖D(f)‖p

L1
t,x
<∞,

for each p ∈ [1,∞), where the entropy dissipation is defined by

D(f) := −
∫
Rd

(log f)B(f, f)dv.

Moreover, {ft : t ≥ 0} has a continuous modification with paths in C([0, T ];L1(Rn×

Rn)).

The proof of Theorem 5.2.1 largely inspired by techniques layed out in [36], and

more specifically on the later work by Lions [89] on the Vlasov-Maxwell-Boltzmann

equation. In the deterministic case, one of the key elements of the proof is the strong

compactness obtained velocity averages of solutions to the transport equation [64,

66, 67]. In our paper we prove a stochastic velocity averaging result in L1 which

shows, under certain conditions, that a family of solutions {fn : n ∈ N} to a

stochastic kinetic transport equation has the property that the laws of the velocity

averages are tight on L1
t,x. This result should be compared with other stochastic

velocity averaging results in the literature [48, 87].

Outline of Part II

Part II of the dissertation will be organized as follows:
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In Chapter 6, we discuss stochastic transport in Lp equations with rough diffu-

sion coefficients. We introduce a theory of renormalized solutions to such equations

and deduce regularity conditions on the noise coefficients which imply pathwise

uniqueness.

Chapter 7 is a joint work by the author and his collaborator, Scott Smith, con-

cerning the Boltzmann equation with stochastic transport, modeling the influence

of a random environmental forcing. We study the properties of stochastic trans-

port equations and prove a renormalization and stochastic velocity averaging result.

We prove existence of renormalized martingale solutions for a general class of noise

coefficients and bounded collision kernel, using a generalization of the Skorohod

theorem for non-metric spaces. We also obtain local conservation of mass, average

global balance of momentum, and average global dissipation of energy and entropy

for these solutions.
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Renormalized Solutions to Stochastic Transport

We are primarily interested in the transport equation associated to the Itô

stochastic differential equation

dXt = u(t,Xt)dt+
∑
k

σk(t,Xt)dW
k
t

X0 = x ∈ Rn,

where u is the drift u : [0, T ]×Rn → Rn, {σk} are noise coefficients σk : [0, T ]×Rn →

Rn and {W k
t } are independent one-dimensional Wiener processes.

Specifically we are interested in the associated stochastic transport equation

∂tf + div(uf)− div div(af) +
∑
k

div(σkf)Ẇ k = 0

f |t=0 = f0

(6.1)

where a = 1
2

∑
k σ

k ⊗ σk is the diffusion matrix.

Existence

We begin by studying the existence problem for the stochastic transport equa-

tion (6.1). Fix a cannonical stochastic basis (Ω,F , (Ft),P, {W k}) and let Φs,t be

the stochastic flow associated with the SDE

dΦs,t(x) = u(t,Φs,t(x))dt+
∑
k

σk(t,Φs,t(x))dW k
t , Φs,s(x) = x. (6.2)
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We assume u and {σk} are smooth enough with sub-linear growth so that Φs,t is a

diffeomorphism and adapted to Fs,t = σ({W k
t −W k

s } : 0 ≤ s ≤ t ≤ ∞), and its

spatial inverse Ψs,t(x) = Φ−1
s,t (x) is also (Fs,t)-adapted (pontwise in x). We will also

denote Φt = Φ0,t and Ψt = Ψ0,t. Suppose that we start from some smooth f0, and

that g = 0. Then we know that the unique solutions to the transport equation is

given by

f(t, x) = f0(Ψt(x)) det ∂Ψt(x)

where (∂Ψt)ij = ∂j(Ψt)i. We have the following proposition regarding a formula for

det ∂Ψt(x).

Proposition 6.1.1. The quantity det ∂Ψt(x) can be written as,

det ∂Ψt(x) = exp

{
−
∫ t

0

[
div u(Ψs,t(x))− 1

2

∑
k

tr
(
(∂σk)2

)
(Ψs,t(x))

]
ds

−
∫ t

0

∑
k

div σk(Ψs,t(x))dW k
r

}
.

Proof. To study det ∂Ψt(x) further, we remark that it suffices to study det ∂Φt(x),

since we have ∂Φt(Ψ(x))∂Ψt(x) = I and therefore

det ∂Ψt(x) = [det ∂Φt(Ψt(x))]−1.

The taking the derivative of both sides of the SDE with respect to the initial data,

it is well known that the matrix ∂Φt satisfies

d∂Φt = ∂u(t,Φt)∂Φtdt+
∑
k

∂σk(t,Φt)∂ΦtdW
k
t ,

To study the determinant of ∂Φt, we use the fact that for any invertible matrix A,

the Gateaux derivative of F (A) := log (detA) in the direction U is

DF (A)
[
U
]

= tr
(
UA−1

)
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while the second order Gateaux derivative in the directions U, V is

D2F (A)
[
U, V

]
= − tr

(
UA−1V A−1

)
.

Applying Itô’s formula to quantity F (∂Φt) = log (det ∂Φt(x)), and using the above

formulas, we find

dF (∂Φt) = DF (∂Φt)
[
∂u(t,Φt)∂Φt

]
dt+

∑
k

DF (∂Φt)
[
∂σk(t,Φt)∂Φt

]
dW k

t

+ 1
2

∑
k

D2F (∂Φt)
[
∂σk(t,Φt)∂Φt, ∂σ

k(t,Φt)∂Φt

]
dt

= tr
(
∂u
)
(t,Φt(x))dt+

∑
k

tr
(
∂σk

)
(t,Φt)dW

k
t −

∑
k

1

2
tr
(
(∂σk)2

)
(t,Φt)dt

= div u(t,Φt)dt+
∑
k

div σk(t,Φt)dW
k
t −

1

2

∑
k

tr
(
(∂σk)2

)
(t,Φt)dt

Using the fact that F (∂Φ0) = 0 concluded the proof.

We now try to get Lp estimates on the solution f(t, x). We have the following

Proposition 6.1.2. Assume that f0, u an {σk} are smooth and compactly supported

and let f(t, x) be the unique classical solution to the transport equation. For each

p ∈ [1,∞), we have the following inequality

E

∫ T

0

∫
Rn
|f(t, x)|pdxdt ≤ Cp−1,u,σ‖f0‖pLpx (6.3)

where for each q ∈ (0,∞) the constant Cp−1,u,σ is defined by

Cq,u,σ := exp

{
q‖ div u‖L1

t (L
∞
x ) +

∑
k

1

2
q‖ tr

(
(∂σk)2

)
‖L1

t (L
∞
x ) +

∑
k

1

2
q2‖ div σk‖2

L2
t (L
∞
x )

}
,

Proof. To esimtate this, we note that

∫
Rn
|f(t, x)|pdx =

∫
Rn
|f0(x)|p| det ∂Ψt(Φt(x))|p−1dx
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From the formula for det ∂Ψt(x) it readily follows that for any q > 0 and x ∈ Rn

| det ∂Ψt(Φt(x))|q ≤ Cq,u,σ E

(
−q
∑
k

∫ t

0

div σk(Φs(x))dW k
s

)
,

where Cq,u,σ is the contant defined in the statement of the proposition and E(Xt)

denotes the Dooleans exponential of a martingale Xt, specifically in our case

E

(
−q
∑
k

∫ t

0

div σk(Φs(x))dW k
s

)

= exp

{
−
∫ t

0

∑
k

q div σk(Φs(x))dW k
s −

1

2
q2
∑
k

∫ t

0

| div σk|2(Φs(x))ds

}
.

Using the fact that E(Xt) is again a martingale and therefore EE(Xt) = EE(X0)

concludes the proof.

Our definition of solution is as follows

Definition 6.1.3. Let p ∈ [1,∞], q = p/(p − 1) (q = 1 if p = ∞). Suppose for

each compact K ⊆ Rn, u ∈ L1([0, T ], Lq(K)), σ = {σk} ∈ L2([0, T ], L2q(K)) and

(Ω,F ,P, (Ft), {W k}) and stochastic basis. A weak Lp solution to the stochastic

continuity equation is an (Ft) progessively measurable process f : Ω×[0, T ]→ Lpx,loc

which almost surely solves the stochastic transport equation in weak, time-integrated

form. That is, for every ϕ ∈ C∞c (Rn) and P⊗ dt almost every (t, ω) we have

〈ft, ϕ〉 = 〈f0, ϕ〉+

∫ t

0

〈fs,Lϕ〉ds+
∑
k

∫ t

0

〈fs, σk · ∇ϕ〉dW k
s ,

where L = u · ∇+ a : ∇2 is the generator of the diffusion (6.2).

Our main existence theorem is the following

Theorem 6.1.4. Let p ∈ [2,∞], q = p/(p − 1) (q = 1 if p = ∞) and as-

sume that f0 ∈ Lp and u ∈ L1
t (L

q
x,loc) and σ = {σk} ∈ L2

t (L
2q
x,loc). If, in ad-

dition, div σ ∈ L2
t (L

∞
x ) and tr ((∂σ)2) ∈ L1

t (L
∞
x ), then for any stochastic basis
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(Ω,F ,P, (Ft), {W k}), there exists a weak Lp solution to the stochastic continuity

equation and f ∈ Lp(Ω× [0, T ]× Rn).

Proof. The proof is straight forward. We first approximate u, σ, f0 by smooth func-

tions (u)n, (σ)n, (f0)n which satisfy the uniform bound

sup
n
Cp−1,(u)n,(σ)n <∞,

such that

(u)n → u in L1
t (L

q), (σ)n → σ in `2(N;L2
t (L

q)), (f0)n → f0 ∈ Lp. (6.4)

Let fn be the unique classical solution to the stochastic transport equation associated

to (u)n, (σ)n, (f0)n (see [81]). We remark that the smoothness (in x) of fn implies

that fn is progessively measurable as a process with values in Lp. Using the estimate

in proposition 6.1.2 we may conclude that {fn} is uniformly bounded in L2(Ω ×

[0, T ];Lp). Therefore {fn} has a weakly converging subsequence in L2(Ω×[0, T ];Lp),

which we still denote {fn}. Moreover since the space of progressively measurable

processes in L2(Ω×[0, T ];Lp) is closed, it follows that the limit f is also progressively

measurable.

We now wish to pass the limit in the weak form. Let Y ∈ L2(Ω) and φ ∈

C∞c ([0, T ]× Rn), then for each n ≥ 0 we have

E

∫ T

0

∫
Rn
Y (∂tφ+(L)nφ)fndxdt+

∑
k

E

∫ T

0

∫
Rn
Y ((σk)n ·∇φ)fndxdW k

t = 0, (6.5)

where (L)n = (u)n · ∇ + (a)n : ∇2 and (a)n = 1
2

∑
k(σ

k)⊗2
n . Clearly the weak

convergence of {fn} in L2(Ω× [0, T ];Lp) and strong convergence of Y (∂tφ+ (L)nφ)
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in L2(Ω× [0, T ];Lq) is enough to pass the limit in the first integral in equation (6.5),

which follow from the convergence properties (6.4). What remains is to pass the

limit in the stochastic integral. Clearly we have

∫
Rn

(σk)n · ∇φ fndx→
∫
Rn
σk · ∇φ fdx weakly in L2(Ω× [0, T ]),

and since the stochastic integral is a weakly continuous linear mapping from L2(Ω×

[0, T ]) to L2(Ω), we may pass the limit term by term in the summation for the

stochastic integral. If the summation is infinite then we use the fact that

∣∣∣∣E∫ T

0

∫
Rn
Y ((σk)n · ∇φ)fndxdW k

t

∣∣∣∣ ≤ sup
n
{Cp−1,(u)n,(σ)n}‖Y ‖L2(Ω)‖(σk)‖2

L2
t (L

q)‖f0‖2
Lp

and that σ ∈ `2(N;L2
t (L

q)) to pass the limit in the sum.

Finally, to obtain the almost sure, time integrated form, we remark that P

almost surely,

∫ T

0

∫
Rn

(∂tφ+ Lφ)fdxdt+
∑
k

∫ T

0

∫
Rn

(σk · ∇φ)fdxdW k
t = 0. (6.6)

Now fix a t ∈ [0, T ] and choose a sequence of test functions φn(s, x) = ϕ(x)ψn(s),

where ψn(s) is a smooth approximation of the indicator 1[0,t](s) so that ∂sψ
n(s) is a

symmetric approximation of a delta function centered at t. Using the integrability of

f in time, Lebesgue’s differentiation theorem implies that for almost every t ∈ [0, T ],

∫ T

0

∫
Rn
∂sφ

n(s, x)f(s, x)dxds→ 〈ft, ϕ〉.

Passing the limit in (6.6), for test function φ = φn, gives the time-integrated weak

form, P almost surely.
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Remark 6.1.5. The statement of the extistence theorem can be somewhat improved.

In fact, we will see that f ∈ L∞−(Ω;L∞t (Lpx)), and f has a modification in Ct([L
p
x]w).

While it might be possible to get this directly from the estimates on the flow and

the Dooleans exponential, it will be more straight forward to work directly with the

solution fn to the approximating scheme presented above.

Renormalization

We now study the renormalization property for the stochastic continuity equa-

tion. For simplicity, we will study the following stochastic continuity equation with

zero drift and one noise coefficient σ,

∂tf − div div(af) + div(σf)Ẇ = 0, (6.7)

where a = 1
2
σ ⊗ σ. The extension to the more general case of non-zero (Sobolev

regular) drift and countably many noise coefficients being straight forward, following

the classical arguments of Diperna-Lions [34].

Let us asssume for the moment that σ is smooth and that f is a smooth

classical solution to (6.7), that is, f is at least C2 in x, is pointwise adapted to (Ft)

and satisfies (6.7) in the time time integrated sense, pointwise in Rn. Let Γ : R→ R

be a smooth function, then we will show that Γ(f) satisfies a stochastic continuity

equation of the form

∂tΓ(f)− div div(aΓ(f)) + div(σkΓ(f))Ẇ = div
(
σ(div σ)G(f)

)
−G(f) div σẆ

+ 1
2
G(f) tr

(
(∂σ)2

)
+ 1

2
H(f)(div σ)2,

(6.8)
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where G(f) = fΓ′(f) − Γ(f) and H(f) = fG′(f) − G(f). Such a procedure of

solving the equation is called renormalization with the equation (6.8) being refered

to as the renormalized equation. It’s important to note that the above renormalized

equation is in divergence form so that in distribution, this equation makes sense

without any regularity requirements on f and no more regularity on u and σ than is

required for the existence theorem (in fact it needs far less). Such a renormalization

readily allows for bounds of the form

E

∫
Rn

Γ(f(t))dx ≤
∫
Rn

Γ(f0)dx+
1

2
E

∫ t

0

∫
G(f(s)) tr

(
(∂σ)2

)
dxds

+
1

2
E

∫ t

0

∫
Rn
H(f(s))(div σ)2dxds.

In fact, one can do better. If Γ(z) ≥ 0, and div σ ∈ L2
t (L

∞) and tr ((∂σ)2) ∈ L1
t (L

∞)

the Burkholder-Davis-Gundy inequality implies that for r ∈ [1,∞),

E

(
sup
t

∫
Rn

Γ(f(t))dx

)r
≤ Cr,T

(
‖ div σ‖2r

L2
t (L
∞
x ) + ‖ tr

(
(∂σ)2

)
‖rL1

t (L
∞
x )

)
E

(
sup
t

∫
Rn
|G(f(t))|+ |H(f(t))|dx

)r
.

This bound, (by choosing bounded approximation of the function Γ(z) = |z|p),

implies, after an application of Grönwall’s inequality, that for each r ∈ [1,∞),

E‖f‖rL∞t (Lpx) ≤ C‖f0‖rLp ,

where C depends continuously on r and T and on σ through the norms ‖ div σ‖L2
t (L
∞
x )

and ‖ tr ((∂σ)2) ‖L1
t (L
∞
x ). This bound is clearly and improvement over the one ob-

tained in (6.3), and certainly not so obvious at the level of the stochastic flow and

Dooleans exponential.
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Derivation of the renormalized form

Here we detail, for convenience, the calculation for the renormalized form given

in equation (6.8). Let f be a smooth solution (6.7), which we write in the following

form

∂tf − 2 div(a) · ∇f − a : ∇2f + σ · ∇fẆ = (div div a)f − div σfẆ

Let Γ : R→ R be a smooth renormalizer, then, using Itôs formula, Γ(f) satisfies

∂tΓ(f)− 2 div a · ∇Γ(f)− a : ∇2Γ(f) + σ · ∇Γ(f)Ẇ

= fΓ′(f)(div div a)− Γ′(f) div σfẆ + 1
2
Γ′′(f)

(
div(σf)2 − (σ · ∇f)2

)
.

Writing the left-hand side above back in divergence form and utilitize some cancel-

lation in the term that multiplies Γ′′(f) we have

∂tΓ(f)− div div(aΓ(f)) + div(σΓ(f))Ẇ = G(f)(div div a)−G(f) div σẆ

+ 1
2
G′(f)(div σ)2f +G′(f)(div σ)σ · ∇f.

The terms on the right-hand side simplify nicely. Using the fact that

div div a = 1
2

tr
(
(∂σ)2

)
+ 1

2
(div σ)2 + σ · ∇ div σ

and

G′(f)(div σ)σ · ∇f = div
(
σ(div σ)G(f)

)
− (div σ)2G(f)− σ · ∇ div σG(f),

we can write the renormalized equation as

∂tΓ(f)− div div(aΓ(f)) + div(σkΓ(f))Ẇ = div
(
σ(div σ)G(f)

)
−G(f) div σẆ

+ 1
2
G(f) tr

(
(∂σ)2

)
+ 1

2
H(f)(div σ)2,
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Renormalization for rough σ

We now want study the renormalization property when f is not smooth. We

will follow the strategy from the deterministic theory of DiPerna Lions. This involves

regularizing a solution, renormalizing the regularized equation, and then show that

the errors commited during this procedure can be written in terms of certain commu-

tators between the differential action of a vector field and the smoothing operation.

These commutators will vanish if one assumes the right Sobolev integrability on the

vector field.

In what follows, we will find it useful to introduce the differential operators

Lσφ := a : ∇2φ, ∇σφ := σ · ∇φ

L∗σφ := div div(aφ), ∇∗σφ := div(σφ),

along with the quantities,

Aσ = tr
(
(∂σ)2

)
, Dσ = (div σ)2.

With this notation, the stochastic continuity (6.7) equation takes the form

∂tf − L∗σf +∇∗σfẆ = 0.

and the renormalized form (6.8) becomes,

∂tΓ(f)−L∗σΓ(f)+∇∗σΓ(f)Ẇ = ∇∗σ(div σ G(f))−div σ G(f)Ẇ+1
2
G(f)Aσ+1

2
H(f)Dσ.

We aim to prove the following theorem

Theorem 6.2.1. Let f ∈ L∞t (Lpx,loc), p > 2, be a weak Lp solution to (6.7), and

suppose that σ ∈ L2
t (W

1,2p/(p−2)
x,loc ). Then for any Γ ∈ C2

b (Rn), such that supz zΓ′(z)
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and supz z
2Γ′′(z) < ∞, Γ(f) solves the renormalized equation in time-integrated,

weak form, namely for P⊗ dt almost every (t, ω) we have

〈Γ(f(t)), ϕ〉 = 〈Γ(f0), ϕ〉+

∫ t

0

〈Γ(f(s)),Lσϕ〉ds+

∫ t

0

〈Γ(f(s)),∇σϕ〉dW (s)

−
∫ t

0

〈G(f(s)) div σ,∇σϕ〉ds+
1

2

∫ t

0

〈G(f(s))Aσ, ϕ〉ds

+
1

2

∫ t

0

〈H(f(s))Dσ, ϕ〉ds−
∫ t

0

〈G(f(s)) div σ, ϕ〉dW (s)

(6.9)

Commutators

As in the deterministic theory, commutators of vector field operations with

smoothing play an important role in the renomalization theory. Indeed indentifying

the correct commutators is crucial for simplifying certain remainders in an efficient

manner.

We start by considering η : Rn → R a smooth, symmetric function with

support in the ball of radius 1 and with unit integral. For each ε > 0 we denote by

ηε the rescaled function (mollifier) by

ηε(x) = ε−nη(ε−1x).

We define for any function φ : Rn → R, the mollified function φε = (φ)ε = ηε ? φ by

it’s convolution with ηε. Define the following commutators

[∇σ, ηε](f)(x) = ∇σfε(x)− (∇∗σf)ε(x) =

∫
Rn
∇ηε(x− y) · (σ(x)− σ(y))f(y) dy.

and [
[Lσ, ηε]

]
(f)(x) = Lσfε(x)−∇σ(∇∗σf)ε(x) + (L∗σf)ε(x)

=
1

2

∫
Rn
∇2ηε(x− y) : (σ(x)− σ(y))⊗2f(y) dy.
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Note that these commutators differ from the typical commutators studied in

DiPerna/Lions, since they do not contain any terms involving the divergence of a

vector field. However, instead of these commutators vanishing, they will converge

precisely to the divergence terms that they excluding. We have the following lemma

Lemma 6.2.2 (Commutator Lemma). Let f ∈ Lpx,loc and σ ∈ W 1,q
x,loc, for p, q ∈

[1,∞]. Then as ε→ 0

[∇σ, ηε](f)→ div σ in Lrx,loc, for 1
r

= 1
q

+ 1
p

and [
[Lσ, ηε]

]
(f)→ 1

2
(Aσ +Dσ) in Lrx,loc, for 1

r
= 2

q
+ 1

p
.

Moreover for any compact K ⊆ Rn we have the following bounds

‖[∇σ, ηε](f)‖Lr(K) ≤ ‖∇σ‖Lq(K)‖f‖Lp(K), for 1
r

= 1
q

+ 1
p

∥∥[[Lσ, ηε]](f)
∥∥
Lr(K)

≤ ‖∇σ‖2
Lq(K)‖f‖Lp(K), for 1

r
= 2

q
+ 1

p
.

Proof. We study [∇σ, ηε] first. Define for each x,w ∈ Rn the quantity

Rw(x) := σ(x)− σ(x− w)−∇σ(x) · w =

∫ t

0

(∇σ(x+ (λ− 1)w)−∇σ(x)) · w dλ,

so that we can write

[∇σ, ηε] (f)(x) =

∫
Rn
∇ηε(x−y)·(∇σ(x)·(x−y))f(y)dy+

∫
Rn
∇ηε(y)Ry(x)f(x−y)dy

Since σ ∈ W 1,q
x,loc we have that if |w| < ε, then for any compact K ⊆ Rn

‖Rw(x)‖Lqx(K) ≤ ε sup
|y|<ε
‖δy∇σ‖Lqx(K),
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where δyh(x) = h(x+y)−h(x) denotes the difference of for some function h and it’s

translation by y. Using the above bound, and the fact that ε‖∇ηε‖L1
x

is uniformly

bounded in ε, we find for∥∥∥∥∫
Rn
∇ηε(y)Ry(x)f(x− y)dy

∥∥∥∥
Lrx(K)

≤
(∫

Rn
∇ηε(y) ‖Ry‖Lqx(K)dy

)
‖f‖Lpx(K)

≤ ε‖∇ηε‖L1
x

sup
|y|<ε
‖δy∇σ‖Lqx(K)‖f‖Lpx(K)

→ 0 as ε→ 0.

for any compact set K ⊂ Rn. Indeed this implies that for each x ∈ Rn, and r

satisfying 1
r

= 1
q

+ 1
p
,

[∇σ, ηε] (f)(x) = ∇σ(x) : (Gε ? f) + o(1)Lrx,loc

where Gε(x) = x⊗∇ηε(x). This estimate directly implies the bound on [∇σ, ηε](f)

stated in the lemma. Furthermore, using the fact that each component of Gε(x) =

ε−dG(ε−1x) is a symmetric approximation of a delta function, we can use the stan-

dard properties of mollifiers to find

Gε ? f →
(∫

Rn
x⊗∇η(x)dx

)
f in Lpx,loc.

Integration by parts, and the properties of η give to identity∫
Rn
x⊗∇η(x)dx = I.

Therefore as ε→ 0, the following convergence holds in Lrx,loc

[∇σ, ηε] (f)→ (∇σ : I)f = (div σ)f.

Next we study the double commutator
[
[Lσ, ηε]

]
(f). A similar arguement to

the single commutator case implies that since σ ∈ W 1,q
x,loc, we have that for each
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x ∈ Rn and r such that 1
r

= 2
q

+ 1
p
,

[
[Lσ, ηε]

]
(f)(x) =

1

2

∫
Rn
∇2ηε(x− y) : (∇σ(x) · (x− y))⊗2f(y)dy + o(1)Lrx,loc

=
1

2

∑
ijk`

∂iσk(x)∂jσ`(x)
(
Gkl
ij,ε ? f) + o(1)Lrx,loc

,

where Gkl
ij,ε(x) = xixj∂k∂`ηε(x). Again, this immediately implies the bound on[

[Lσ, ηε]
]
(f). Furthermore, since each Gkl

ij,ε(x) is a symmetric approximation of a

delta function we have

Gkl
ij,ε ? f →

(∫
Rn
xixj∂k∂`ηdx

)
f in Lpx,loc.

Using the identity, ∫
Rn
xixj∂k∂`η(x)dx = δijδk` + δikδj`,

and the fact that ∇σ ∈ Lqx,loc, then the following convergence holds in Lrx,loc as ε→ 0

[
[Lσ, ηε]

]
(f)→ 1

2

∑
ijk`

(δijδk` + δikδj`)∂iσk∂jσ`f =
1

2
(Aσ +Dσ).

Proof of renormalization result

Proof. As usual we begin we mollify the transport equation. For ε > 0 we have,

fε(t) = fε(0) +

∫ t

0

(L∗σf(s))εds−
∫ t

0

(∇∗σf(s))εdW (s).

Then, using Itôs formula applied to Γ(fε), we have

Γ(fε(t)) = Γ(fε(0)) +

∫ t

0

Γ′(fε(s))(L∗σf(s))εds−
∫ t

0

Γ′(fε(s))(∇∗σf)εdW (s)

+
1

2

∫ t

0

Γ′′(fε(s))(∇∗σf)2
εds
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We can then write the equation above as a stochastic continuity equation for Γ(f)

plus some remainders. Specifically, we have

Γ(fε(t)) = Γ(fε(0)) +

∫ t

0

L∗σΓ(fε(s))ds−
∫ t

0

∇∗σΓ(fε(s))dW (s)

+

∫ t

0

R1
ε (f(s))dW (s) +

∫ t

0

R2
ε (f(s))ds.

(6.10)

where the remainders R1
ε (f) and R2

ε (f) are given by

R1
ε (f) = ∇∗σΓ(fε)− Γ′(fε)(∇∗σf)ε

R2
ε (f) = Γ′(fε)(L∗σf)ε − L∗σΓ(fε) +

1

2
Γ′′(∇∗σf)2

ε

In order to complete the proof we need to show that as ε→ 0, the remainders R1
ε (f)

and R2
ε (f) converge to the correct terms on the right-hand side of (6.8). To show

this, we will make use of the following lemma which writes R1
ε (f) and R2

ε (f) in terms

of the commutators [∇σ, ηε](f) and
[
[Lσ, ηε]

]
(f).

Lemma 6.2.3. We have the following identities

R1
ε (f) = Γ′(fε)[∇σ, ηε](f)− div σΓ(fε)

R2
ε (f) = Γ′(fε)[[Lσ, ηε]](f) +

1

2
Γ′′(fε)([∇σ, ηε](f))2 +∇∗σ

(
Γ′(fε)[∇σ, ηε](f)

)
−∇∗σ(div σΓ(fε))

− Γ′(fε) div σ[∇σ, ηε](f) + Γ(fε)DσΓ(fε)−
1

2
Γ(fε)Aσ −

1

2
Γ(fε)Dσ.

Before proving Lemma 6.2.3, let us see how to complete the proof assuming

these identities. We need to pass the limit as ε → 0 in the weak, time integrated

form of (6.10) which for each ϕ ∈ C∞c (Rn) becomes

〈Γ(fε(t)), ϕ〉 = 〈Γ(fε(0)), ϕ〉+

∫ t

0

〈Γ(fε(s)),Lσϕ〉ds+

∫ t

0

〈Γ(fε(s)),∇σϕ〉dW (s)

+

∫ t

0

〈R1
ε (f(s)), ϕ〉dW (s) +

∫ t

0

〈R2
ε (f(s)), ϕ〉ds.

(6.11)
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The standard properties of mollifiers imply that for P⊗dt almost every (Ω, t) ∈

Ω × [0, T ], fε(t) → f(t) in Lpx,loc and fε → f pointwise P ⊗ dt ⊗ dx almost every

where on Ω× [0, T ]× Rn. It is a simple matter to show that this, the boundedness

of Γ(z) and the integrability conditions on σ imply that as ε→ 0,

〈Γ(fε(0)), ϕ〉 → 〈Γ(f0), ϕ〉,

〈Γ(fε), ϕ〉 → 〈Γ(f), ϕ〉, in L1(Ω× [0, T ])

〈Γ(fε),Lσϕ〉 → 〈Γ(f),Lσϕ〉, in L1(Ω× [0, T ])

while for the term in the stochastic intergral

〈Γ(fε),∇σϕ〉 → 〈Γ(f),∇σϕ〉 in L2(Ω× [0, T ]).

Consequently we may pass the limit as ε → 0 in the first four terms of equation

(6.11).

What remain are the terms involving R1
ε (f) and R2

ε (f). The commutator

Lemma 6.2.2, the fact that σ ∈ L2
t (W

1,2p/(p−2)
x,loc ), and the strong convergence proper-

ties of fε → f are more than enough to conclude

〈Γ′(fε)[∇σ, ηε](f), ϕ〉 → 〈fΓ′(f) div u, ϕ〉, P⊗ dt almost everywhere.

Moreover, the bound provided in the commutator Lemma 6.2.2, and the fact that

Γ(z) and Γ′(z) are bounded functions give the estimate

E

∫ T

0

|〈Γ′(fε(s))[∇σ, ηε](f(s)), ϕ〉|2ds . ‖∇σ‖2
L2
t (L

2p/(p−1)(K))‖f‖
2
L∞t (Lp(K),

where K is a compact set containing the support of ϕ. Therefore the dominated

convergence theorem and the fact that Γ(fε)→ Γ(f) in implies that

〈R1
ε (f), ϕ〉 → 〈G(f) div σ, ϕ〉 in L2(Ω× [0, T ]),
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whereby we may pass the limit in the stochastic integral for the fourth term on the

right-hand side of (6.10). The last term R2
ε (f), though complicated, is straightfor-

ward and can be treated in a similar manner as R1
ε (f). Indeed similar arguments to

those above show that

〈(Γ′(fε)[∇σ, ηε](f)− div σΓ(fε)),∇σϕ〉 → 〈G(f) div σ,∇σϕ〉 in L1(Ω× [0, T ]),

and

〈Γ′(fε) div σ[∇σ, ηε](f), ϕ〉 → 〈fΓ′(f)Dσ, ϕ〉 in L1(Ω× [0, T ]).

Moreover using the commutator Lemma 6.2.2 applied to the double commutator[
[Lσ, ηε]

]
(f) we also obtain

〈
Γ′(fε)

[
[Lσ, ηε]

]
(f)−1

2
Γ(fε)(Aσ+Dσ), ϕ

〉
→ 〈1

2
G(f)(Aσ+Dσ), ϕ〉 in L1(Ω×[0, T ]).

The only term left to study in R2
ε(f) is 1

2
Γ′′(fε)([∇σ, ηε](f))2. In fact, it is pre-

cisely this term that dictate the L2
t (W

1,2p/(p−2)
x ) condition on σ (as opposed to

L2
t (W

1,2p/(p−1)
x ) which is sufficient to obtain all the limits above). Precisely, using

the commutator Lemma, and requiring that P almost surely [∇σ, ηε](f(t)) converges

in L2
t (L

2
x,loc), gives the condition on σ, and along with the bounded of Γ′′(z) implies

that

〈1
2
Γ′′(fε)([∇σ, ηε](f))2, ϕ〉 → 〈1

2
Γ′′(f)f 2(div σ)2, ϕ〉 in L1(Ω× [0, T ]).

The above limits can be collected to conclude that

〈R2
ε (f), ϕ〉 → −〈G(f) div σ,∇σϕ〉+

1

2
〈G(f)Aσ, ϕ〉+

1

2
〈H(f)Dσ, ϕ〉 in L1(Ω×[0, T ]).
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All of these convergence properties, allow us to pass the limit in each term of (6.11)

in L1(Ω× [0, T ]) and therefore that equation (6.13) holds P⊗dt almost everywhere.

We now proceed to the proof of Lemma 6.2.3:

Proof of Lemma 6.2.3. We begin by remarking that this computation involves quan-

tities, like div div a and ∇σ div σ which are not well-defined functions given the reg-

ularity assumptions on σ. However as they are well-defined distributions and are

only every multiplied by sooth functions the computations below make sense in the

sense of distribution.

The proof of the identity for R1
ε (f) is obvious given the definition of the com-

mutator [∇σ, ηε](f). We focus on R2
ε (f) and begin by expanding the term for L∗Γ(f),

L∗Γ(fε) = (div div a)Γ(fε) + Γ′(fε)2 div a · ∇fε + Γ′′(fε)(∇σfε)
2 + Γ′(fε)Lfε

So that R2
ε becomes

R2
ε (f) = −(div div a)Γ(fε)− Γ′(fε)2 div a · ∇fε − Γ′(fε)(Lfε − (L∗f)ε)

+
1

2
Γ′′(fε)((∇∗σf)2

ε − (∇σfε)
2)

We can write several expressions in terms of commutators

Lfε − (L∗f)ε = −[[L, ηε]](f) + 2Lfε −∇σ(∇∗σf)ε

= −[[L, ηε]](f) + 2Lfε −∇σ∇σfε +∇σ[∇σ, ηε](f)

= −[[L, ηε]](f)−∇σσ · ∇fε +∇σ[∇σ, ηε](f)

and

(∇∗σf)2
ε − (∇σfε)

2 = (∇σfε − [∇σ, ηε](f))2 − (∇σfε)
2

= −2∇σfε[∇σ, ηε](f) + ([∇σ, ηε](f))2
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Therefore we have

1

2
Γ′′(fε)((∇∗σf)2

ε − (∇σfε)
2)− Γ′(fε)(Lfε − (L∗f)ε)

= Γ′(fε)[[L, ηε]](f) +
1

2
([∇σ, ηε](f))2 − Γ′′(fε)∇σfε[∇σ, ηε](f)− Γ′(fε)∇σ[∇σ, ηε](f)

+ Γ′(fε)∇σσ · ∇fε

= Γ′(fε)[[L, ηε]](f) +
1

2
Γ′′(fε)([∇σ, ηε](f))2 +∇σ

(
Γ′(f)[∇σ, ηε](f)

)
+ Γ′(fε)∇σσ · ∇fε

The remainder becomes

R2
ε (f) = Γ′(fε)[[L, ηε]](f) +

1

2
Γ′′(fε)([∇σ, ηε](f))2 +∇σ

(
Γ′(fε)[∇σ, ηε](f)

)
+ Γ′(fε)∇σσ · ∇fε

− div div aΓ(fε)− Γ′(fε)2 div a · ∇fε

Next we write

Γ′(fε)∇σσ · ∇fε − Γ′(fε)2 div a · ∇fε = − div σ∇σΓ(fε)

= −∇σ(div σΓ(fε)) +∇σ div σΓ(fε),

and use the fact that (div div a) = 1
2
Aσ + 1

2
Dσ +∇σ div σ to simplify the remainder

to

R2
ε (f) = Γ′(fε)[[L, ηε]](f) +

1

2
Γ′′(fε)([∇σ, ηε](f))2 +∇σ

(
Γ′(fε)[∇σ, ηε](f)

)
−∇σ(div σΓ(fε))

− 1

2
Γ(fε)Aσ −

1

2
Γ(fε)Dσ.

The lemma now follows by writing ∇σ = ∇∗σ − div σ in two of the terms above.

This completes the proof of Theorem 6.2.1

Renormalization with drift and a family of noise coefficients

Theorem 6.2.1 can be easily generalized to equations with a drift u and a

family of noise coefficients σ = {σk},

∂tf + div(uf)− div div(af) +
∑
k

div(σkf)Ẇ k = 0, a =
1

2

∑
k

σk ⊗ σk (6.12)
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as long as u satisfies the usual regularity requirements of the deterministic DiPerna-

Lions theory and σ = {σk} satisfy the appropriate summability conditions. In this

case the renormalized form looks like

∂tΓ(f)− L∗u,σΓ(f) +∇∗σΓ(f)Ẇ = ∇∗σ(div σ G(f))

− div uG(f)− div σ G(f)Ẇ + 1
2
G(f)Aσ + 1

2
H(f)Dσ.

where Lu,σ = u · ∇ + a : ∇2. The corresponding renormalization result is given

below:

Theorem 6.2.4. Let f ∈ L∞t (Lpx,loc), p > 2, be a weak Lp solution to (6.12).

Suppose that u ∈ L1
t (W

1,q
x,loc) and σk ∈ L2

t (W
1,2p/(p−2)
x,loc ) satisfing the summability

condition ∑
k

‖σk‖2
L2
t (W

1,2p/(p−2)(K)) <∞

for every compact K ⊆ Rn. Then for any Γ ∈ C2
b (Rn), such that supz zΓ′(z) and

supz z
2Γ′′(z) < ∞, Γ(f) solves the renormalized equation in time-integrated, weak

form, namely for P ⊗ dt almost every (t, ω) and every ϕ ∈ C∞c (Rn) the following

equality holds

〈Γ(f(t)), ϕ〉 = 〈Γ(f0), ϕ〉+

∫ t

0

〈Γ(f(s)),Lu,σϕ〉ds+
∑
k

∫ t

0

〈Γ(f(s)),∇σkϕ〉dW k(s)

−
∫ t

0

〈G(f(s)) div u, ϕ〉ds−
∑
k

∫ t

0

〈G(f(s)) div σk,∇σkϕ〉ds

+
∑
k

1

2

∫ t

0

〈G(f(s))Aσk , ϕ〉ds+
∑
k

1

2

∫ t

0

〈H(f(s))Dσk , ϕ〉ds

−
∑
k

∫ t

0

〈G(f(s)) div σk, ϕ〉dW k(s).

(6.13)
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Proof. The proof is an easy extension of the Theorem 6.2.1. Regulaizing and renor-

malizing just as in the proof of Theorem 6.2.1, we see that the drift u introduces

another commutator [∇u, ηε](f) which satisfies

〈Γ′(fε)[∇u, ηε](f)− Γ(fε) div u, ϕ〉 → 〈G(f) div u, ϕ〉 in L1(Ω× [0, T ])

as long as u ∈ L1([0, T ];W 1,q
x,loc). Furthermore the summability condition on σ =

{σk} allows one to pass the limit in each term of the sum just as in Theorem 6.2.1 and

then, using the fact that each term in the sum which isn’t a stochastic integral has

a uniform (in ε) bound in L1(Ω× [0, T ]) by some contant times ‖∇σ‖2
L2
t (L

2p/(p−2)(K))
,

the dominated convergence for series allows one to pass the limit in the summation.

The same arguement work for the stochastic integrals where instead the bound is

in L2(Ω× [0, T ]).
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The Stochastic Boltzmann Equation (w/ Scott Smith)

Introduction

The Boltzmann equation

∂tf + v · ∇xf + divv(X f) = B(f, f),

f |t=0 = f0,

(7.1)

on [0, T ] × R2d is a nonlinear integro-differential equation describing the evolution

of a rarefied gas, dominated by binary collisions, and in the presence of a external

force field X . The function f(t, x, v) ∈ R describes the density of particles at time

t ∈ [0, T ], position x ∈ Rd, with velocity v ∈ Rd, starting at t = 0 from an initial

density f0(x, v). The nonlinear functional f 7→ B(f, f), known as the collision

operator, acts on the velocity variable only, and accounts for the effect of collisions

between pairs of particles; it will be described in more detail below.

Several studies have been conducted regarding the well-posedness of the Cauchy

problem for the Boltzmann equation (7.1) with a fixed (deterministic) external force,

for instance [7, 12, 37, 115]. In general, the external force field X may depend on

(t, x, v) ∈ R×Rd×Rd. Such external forces may arise when considering the influence

of gravity such as in the treatment of the Rayleigh-Benard problem in the kinetic

regime [5, 47]. In fact, many external forces are not fixed, and are instead coupled
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with the density f in a self consistent way. This is the case, for example, with the

Vlasov-Poisson-Boltzmann and Vlasov-Maxwell-Boltzmann equations (see [23, 86]

and references therein for more details on these systems).

This article focuses instead on the Cauchy problem for the Boltzmann equation

with random external forcing. In particular, we are interested in the following SPDE

∂tf + v · ∇xf + divv(fσk ◦ β̇k) = B(f, f),

f |t=0 = f0,

(SB)

where {βk}k∈N are one-dimensional Brownian motions and {σk}k∈N are a family of

vector fields σk : R2d → Rd with divv σk = 0. An implicit summation is taken over

k ∈ N, and the expression divv(fσk ◦ β̇k) denotes a transport type multiplicative

noise, white in time and colored in (x, v), where the product ◦ is interpreted in the

Stratonovich sense.

Physically, we view the quantity

(t, x, v) 7→
∑
k∈N

σk(x, v)β̇k(t)

as an environmental noise acting on the gas. In the absence of collisions, all particles

evolve according to the stochastic differential equation

dXt = Vtdt, dVt =
∑
k∈N

σk(Xt, Vt) ◦ dβk(t) (7.2)

and are only distinguished from one another according to their initial location in

the phase space. Let Φs,t(x, v) be the stochastic flow associated with the SDE (7.2),

that is, t 7→ Φs,t(x, v) = (Xt, Vt) solves (7.2) and satisfies Φs,s(x, v) = (x, v). The

Stratonovich form of the noise and the fact that divv σk = 0 ensures that the flow
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Φs,t is volume preserving (with probability one). The density of the collision-less gas

is then given by ft(x, v) = f0(Φ−1
0,t (x, v)) and evolves according to the free stochastic

kinetic transport equation

∂tf + v · ∇xf + divv(fσk ◦ β̇k) = 0,

f |t=0 = f0.

The presence of collisions interrupts the stochastic transport process. In the

low volume density regime, binary collisions are dominant and can be described by

the Boltzmann collision operator B(f, f). The stochastic Boltzmann equation (SB)

accounts for both stochastic transport and binary collisions. In fact, formally (SB)

can be written in mild form,

ft = f0 ◦ Φ−1
0,t +

∫ t

0

B(fs, fs) ◦ Φ−1
s,t ds.

The stochastic Boltzmann equation (SB) can be interpreted as the so-called

Boltzmann-Grad limiting description of interacting particles subject to the same

environmental noise. In the deterministic setting, the Boltzmann-Grad problem

has been studied extensively in the literature (see [60] for a recent review). In the

stochastic setting, the Boltzmann-Grad problem has (to our knowledge) not yet

been studied. However, a mean field limit to the Vlasov equation with stochastic

kinetic transport has been shown recently by Coghi and Flandoli [27].

To our knowledge, this is the first study to obtain mathematically rigorous

results on the Boltzmann equation with a random external force. However, a num-

ber of results on the fluctuating Boltzmann equation are available in the Math

and Physics literature [16, 56, 94, 109–111, 114]. In particular, the articles of
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Bixon/Zwanzig [16] and Fox/Uhlenbeck [56] outline a formal derivation of Landau

and Lifshitz’s equations of fluctuating hydrodynamics [83], from the fluctuating lin-

ear Boltzmann equation. The connection with macroscopic fluid equations arises

from studying the correlation structure of the fluctuations at the level of the kinetic

description. A more rigorous treatment of the fluctuation theory for the Boltzmann

equation and its connection to the Boltzmann-Grad limit is given by Spohn [109–

111].

Although our perspective differs from that of [56] and [16], we do expect to

obtain various stochastic hydrodynamic equations (with colored noise) in different

asymptotic regimes, using a Chapman-Enskog expansion and the moments method

of Bardos/Golse/Levermore [9]. In fact, one of the original motivations for this

article was to understand which of the common forms of noise in the stochastic

fluids literature can be obtained by considering fluctuations of the stochastic kinetic

description relative to an equilibrium state. This will be addressed in detail in future

works.

The goal of this article is to investigate global solutions to (SB) starting from

general ‘large’ initial data f0 ∈ L1(R2d). If the noise coefficients σ are identi-

cally zero, then this problem has already been addressed in the seminal work of

DiPerna/Lions [36], where existence of renormalized solutions is proved. Our work

is heavily inspired by [36], relying on a number of their insights together with various

classical properties of the Boltzmann equation. Rather than give a detailed review,

in the next subsection we will explain how these observations from the deterministic

theory lead to the notion of renormalized martingale solution to (SB) in the present
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context. Finally, we should mention that our initial motivation for the choice of

noise was heavily inspired by a number of interesting works on stochastic transport

equations (see for instance [33, 48, 52, 53]). Finally, we should mention the work

[20] on the 2-d stochastic Euler equations with a very similar noise to the one in

this paper.

Statement of the main result

Let us begin by discussing the basics of the Boltzmann equation and introduce

the analytical framework for the problem. We refer the reader to the books [23, 24]

and the excellent set of notes [65] for a comprehensive introduction to the Boltzmann

equation, as well as the review [119].

The collision operator B(f, f) describes the rate of change in particle density

due to collisions. It contains all the information about collision rates between par-

ticles with different velocities. More precisely, it is defined through its action in v

as

B(f, f)(v) =

∫∫
Rd×S d−1

(f ′f ′∗ − ff∗)(v, v∗, θ)b(v − v∗, θ)dθdv∗, (7.3)

where f∗, f
′, and f ′∗ are shorthand for f(v∗), f(v′), and f(v′∗), while (v′, v′∗) denote

pre-collisional velocities 
v′ = v − (v − v∗) · θ θ

v′∗ = v∗ + (v − v∗) · θ θ.

Note that (v′, v′∗), parametrized by θ ∈ S d−1, are solutions to the equations describ-
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ing pairwise conservation of momentum and energy,

v′ + v′∗ = v + v∗

|v′|2 + |v′∗|2 = |v|2 + |v∗|2.

The collision kernel b(v − v∗, θ) ≥ 0 is determined by details of the inter-molecular

forces between particles and describes the rate at which particles with relative ve-

locity v − v∗ collide with deflection angle θ · (v − v∗)/|v − v∗|. In this article, for

technical reasons and simplicity of exposition, we restrict our attention to bounded,

integrable kernels, though we intend to investigate (in a future work) the possibility

of treating more singular kernels as in Alexandre/Villani [3] and other works. Our

assumption on the collision kernel is the following:

Hypothesis 7.1.1. The collision kernel b(z, θ) depends solely on |z| and |z ·θ| only,

and satisfies,

b ∈ L1(R2d × S d−1) ∩ L∞(R2d × S d−1).

Since the nonlinear term B(f, f) is quadratic in f , further properties of the

operator must be exploited in order to obtain a priori bounds. A classical observation

is that the symmetry assumptions on the collision kernel b imposed in Hypothesis

7.1.1 and the definition of (v′, v′∗) imply that for each smooth ξ : Rd → R,∫
Rd
ξ(v)B(f, f)dv

=
1

4

∫∫∫
R2d×S d−1

(f ′f ′∗ − ff∗)(ξ∗ + ξ − ξ′∗ − ξ′) b(v − v∗, θ) dθdv∗dv.

(7.4)

Any quantity ξ(v) such that ξ∗ + ξ = ξ′∗ + ξ′, is called a collision invariant. For any

collision invariant ξ(v), (7.4) implies that∫
Rd
ξ(v)B(f, f)(v)dv = 0.
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As a result of the definition of (v′, v′∗), the quantities {1, {vi}di=1, |v|2} are collision

invariants. Therefore, multiplying both sides of (SB) by a collision invariant and

integrating in v, the collision operator vanishes

∂t

(∫
Rd
ξ(v)f dv

)
+ divx

(∫
Rd
vξ(v)f dv

)
=
(∫

Rd
∇ξ(v) · σk f dv

)
◦ β̇k. (7.5)

In the case that ξ(v) = 1+ |v|2 in (7.5), one can close on estimate on ξ(v)f , provided

we have the following coloring hypothesis on σ:

Hypothesis 7.1.2. For each k ∈ N, the noise coefficient σk : R2d → Rd satisfies

divv σk = 0. In addition, the sequence σ = {σk}k∈N obeys:

‖σ‖`2(N;L∞x,v) =
(∑
k∈N

‖σk‖2
L∞x,v

)1/2

<∞ (H1)

‖σ · ∇vσ‖`1(N;L∞x,v) =
∑
k∈N

‖σk · ∇vσk‖L∞x,v <∞. (H2)

More generally, in Section 7.2 we show that Hypothesis 7.1.2 implies that a

solution f to (SB) satisfies the following formal a priori bound

E‖(1 + |x|2 + |v|2)f‖pL∞t (L1
x,v) ≤ Cp, (7.6)

for all p ∈ [1,∞) and some positive constant Cp (depending on p). In addition, a

further L logL estimate on f is available due to the entropy structure of (SB). To

obtain this, let Γ : R → R be a sufficiently smooth function, which we will refer

to as a renormalization. Since we use Stratonovich noise and divv σk = 0, if f is a

solution of (SB), then formally Γ(f) should satisfy:

∂tΓ(f) + v · ∇xΓ(f) + divv(Γ(f)σk ◦ β̇k) = Γ′(f)B(f, f),

Γ(f)|t=0 = Γ(f0).

(RSB)
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In particular, taking Γ(f) = f log f in (RSB) and integrating in v yields

∂t

(∫
Rd
f log f dv

)
+ divx

(∫
Rd
v f log f dv

)
= −D(f), (7.7)

where

D(f) ≡ 1

4

∫∫∫
R2d×S d−1

d(f)(t, x, v, v∗, θ) b(v − v∗, θ) dθdv∗dv,

d(f) ≡ (f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
≥ 0.

(7.8)

Equation (7.7) describes the local dissipation of the entropy density
∫
Rd f log fdv.

The quantity D(f) is referred to as the entropy dissipation, and inherits non-

negativity from d(f). Since f log f is unsigned, we cannot immediately use (7.7)

to obtain an L logL bound. However, combining this with (7.6), in Section 7.2 we

show that for all p ∈ [1,∞)

E‖f log f‖pL∞t (L1
x,v), E‖D(f)‖p

L1
t,x
≤ Cp. (7.9)

Although the a priori bounds (7.6) and (7.9) provide a useful starting point, they are

unfortunately insufficient to give a meaning to B(f, f) in the sense of distributions.

For bounded kernels, one can obtain an L1
v estimate on B(f, f),

‖B(f, f)‖L1
v
≤ C‖f‖2

L1
v
.

However, since B(f, f) acts pointwise in x, the operator f 7→ B(f, f) sends L1
x,v to

L0
x(L

1
v) (a measurable function in x). A key observation of DiPerna and Lions [36]

is that the renormalized collision operator f → (1 + f)−1B(f, f) is better behaved.

More precisely, the following inequality holds:

‖(1 + f)−1B(f, f)‖L1
t,x,v

. ‖D(f)‖L1
t,x

+ ‖f‖L1
t,x,v

. (7.10)
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Thus, if f satisfies the a priori bounds (7.6) and (7.9), the quantity (1 +f)−1B(f, f)

is well defined in L∞−(Ω;L1
t,x,v). Hence, it becomes feasible to search for solutions

satisfying (RSB) in the sense of distributions for a suitable class of renormalizations.

Towards this end, we make the following definition:

Definition 7.1.3. Define the set of renormalizations R to consist of C1(R+) func-

tions Γ : R+ → R such that the mapping x 7→ (1 + x) |Γ′(x)| belongs to L∞(R+).

It is important to keep in mind that this class of renormalizations excludes the

possibility of choosing Γ(f) = f or Γ(f) = f log f and therefore extra care must be

taken to obtain the a priori estimates (7.6) and (7.9) above.

We note that for analytical purposes, relating to martingale techniques, it is

often more convenient to work with (RSB) in Itô form. Thus, we introduce the

matrix

a(x, v) =
1

2

∑
k∈N

σk(x, v)⊗ σk(x, v),

and define the operator

Lσϕ = divv(a∇vϕ).

Using the divergence free assumption for each σk, the random transport term in

(RSB) can be converted to Itô form via the relation

divv(Γ(f)σk ◦ β̇k) = −LσΓ(f) + divv(Γ(f)σkβ̇k).

We are now ready to define our notion of solution for (RSB).

Definition 7.1.4. A density f is defined to be a renormalized martingale solution

to (SB) provided there exists a stochastic basis (Ω,F ,P, (Ft)Tt=0, {βk}k∈N) such that

the following hold:
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1. For all (t, ω) ∈ [0, T ] × Ω, the quantity f(t, ω) is a non-negative element of

L1
x,v.

2. The mapping f : [0, T ] × Ω → L1
x,v defines an (Ft)Tt=0 adapted process with

continuous sample paths.

3. For all renormalizations Γ ∈ R, test functions ϕ ∈ C ∞c (R2d), and times t ∈

[0, T ]; the following equality holds P almost surely:∫∫
R2d

Γ(f)(t)ϕdxdv =

∫∫
R2d

Γ(f0)ϕdxdv

+

∫ t

0

∫∫
R2d

[Γ(f)v · ∇xϕ+ Γ′(f)B(f, f)ϕ]dxdvds

+
1

2

∫ t

0

∫∫
R2d

Γ(f)Lσϕ dxdvds +
∑
k∈N

∫ t

0

∫∫
R2d

Γ(f)σk · ∇vϕ dxdvdβk(s).

(7.11)

4. For all p ∈ [1,∞) there exists a positive constant Cp such that:

E‖(1 + |x|2 + |v|2 + | log f |)f‖pL∞t (L1
x,v), E‖D(f)‖p

L1
t,x
≤ Cp. (7.12)

Remark 7.1.5. In light of the estimate (7.10), the estimates in condition 4 of Defini-

tion 7.1.4 ensure that the weak form (7.11) is well defined and the stochastic integral

is a continuous-time martingale.

At present, we require a further technical hypothesis on σ and σ · ∇vσ. This

is related to the regularity needed on σ to renormalize a linear, stochastic kinetic

transport equation, a crucial procedure in our analysis. This is discussed in more

detail in Section 7.1.2 below.
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Hypothesis 7.1.6. There exists an ε > 0 such that:

‖σ‖`2(N;W 1,2+ε
x,v ) =

(∑
k∈N

‖σk‖2
W 1,2+ε
x,v

)1/2

<∞ (H3)

‖σ · ∇vσ‖`1(N;W 1,1+ε
x,v ) =

∑
k∈N

‖σk · ∇vσk‖W 1,1+ε
x,v

<∞. (H4)

The main result of this article is the following global existence theorem:

Theorem 7.1.7. Let {σk}k∈N be a collection of noise coefficients satisfying Hypothe-

ses 7.1.2 and 7.1.6 and assume that the collision kernel b satisfies Hypothesis 7.1.1.

For any initial data f0 : R2d → R+ satisfying

(1 + |x|2 + |v|2 + | log f0|)f0 ∈ L1
x,v,

there exists a renormalized martingale solution to (SB), starting from f0 with noise

coefficients {σk}k∈N.

Moreover f satisfies

• almost sure local conservation of mass

∂t

∫
Rd
fdv + divx

∫
Rd
vfdx = 0, (7.13)

• average global balance of momentum

E

∫∫
R2d

vf(t)dvdx =
1

2

∑
k

E

∫ t

0

∫∫
R2d

σk · ∇vσkf(s)dvdxds+

∫∫
R2d

vf0dvdx,

(7.14)

• average global energy inequality

E

∫∫
R2d

1

2
|v|2f(t)dvdx ≤

∑
k

E

∫ t

0

∫∫
R2d

(v · (σk · ∇vσk) + |σk|2)f(s)dvdxds

+

∫∫
R2d

1

2
|v|2f0dvdx,

(7.15)
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• almost sure global entropy inequality

∫∫
R2d

f(t) log f(t)dvdx+

∫ t

0

∫
Rd
D(f)(s)dxds ≤

∫∫
f0 log f0dvdx. (7.16)

The almost sure local conservation of mass holds P almost surely in distribution,

the average global momentum and energy balances hold for every t ∈ [0, T ], and the

global entropy inequality holds P almost surely for every t ∈ [0, T ].

Overview of the article

Our analysis begins with formal a priori estimates which point to the natural

functional framework for (SB). Namely, in Section 7.2 we show that under the

coloring Hypotheses (H1) and (H2), solutions to (SB) formally satisfy

E‖(1 + |x|2 + |v|2 + | log f |)f‖pL∞t (L1
x,v) ≤ Cp,

E‖D(f)‖p
L1
t,x
≤ Cp.

With these formal a priori bounds at hand, the remainder of the paper splits roughly

into two parts. In Sections 7.3 and 7.4, we analyze linear stochastic kinetic equations,

while Sections 5− 8 are devoted to the proof of Theorem 7.1.7.

In Sections 7.3 and 7.4 we move to a detailed discussion of stochastic kinetic

equations of the form

∂tf + v · ∇xf + divv(fσk ◦ β̇k) = g,

f |t=0 = f0.

(7.17)

Here f0 ∈ L1
x,v is a deterministic initial density, while g is a certain random variable

with values in L1
t,x,v. We will focus on so-called weak martingale solutions to (7.17).
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Roughly speaking (see Definition 7.3.1 of Section 7.3.1 for the precise meaning),

these are L1
x,v valued stochastic processes satisfying (7.17) weakly in both the PDE

and the probabilistic sense. In this context, probabilistically weak means that the

filtered probability space (Ω,F , (Ft)Tt=0) and the Brownian motions {βk}k∈N are not

fixed in advance, but found as solutions to the problem, along with the process f

solving (7.17) in the sense of distribution.

For convenience we introduce the following language to refer to solutions of

(7.17), we say that: f is a solution to the stochastic kinetic equation driven by g

and starting from f0, relative to the noise coefficients σ and the stochastic basis

(Ω,F ,P, (Ft)Tt=0, {βk}k∈N). In the case that the coefficients σ, the filtration (Ft)Tt=0,

and the Brownian motions {βk}k∈N are implicitly known or irrelevant, we may omit

them from the statement, saying instead: f is a solution to the stochastic kinetic

equation driven by g and starting from f0.

A key workhorse for our analysis is a stability result (Proposition 7.3.5) for

weak martingale solutions to stochastic kinetic equations. In the deterministic set-

ting, this simply corresponds to the observation that the space of solutions to linear,

kinetic equations is closed with respect to convergence in distribution. More pre-

cisely, if

∂tfn + v · ∇xfn = gn in D′t,x,v,

f |t=0 = fn0 ,

and {(fn, gn, fn0 }n∈N converges to (f, g, f 0) in [D′t,x,v]3, then it easily follows from the
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linear structure of the equation that

∂tf + v · ∇xf = g in D′t,x,v,

f |t=0 = f0.

In the stochastic framework, an additional subtlety arises. Namely, one should

distinguish between stability of stochastically strong solutions, where a stochastic

basis has been fixed, and stability of stochastically weak solutions, where each so-

lution comes equipped with its own stochastic basis. For a fixed stochastic basis

(Ω,F ,P, (Ft)Tt=0, {βk}k∈N) and noise coefficients {σk}k∈N, one can use the linearity of

f → divv(fσk◦β̇k) together with a method of Pardoux [104] to make a direct passage

to the limit on both sides of the equation. However, for stochastically weak solu-

tions, the Brownian motions are not fixed, and the mapping (f, βk) 7→ divv(fσk ◦ β̇k)

is nonlinear, prohibiting the passage of weak limits. In this situation, a martingale

method is used to overcome this difficulty and produce another weak martingale

solution with a new stochastic basis. This result is detailed in Proposition 7.3.5.

Section 7.3.3 is devoted to renormalizing weak martingale solutions to stochas-

tic kinetic equations. The technique of renormalization of deterministic transport

equations originates from the now classical results of Di’Perna and Lions [34], where

they were able to show uniqueness to certain linear transport equations when the

drift has lower regularity that the classical theory of characteristics would allow.

Formally, the strategy is as follows: if f satisfies (7.17) and Γ : R→ R is a smooth
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renormalization, then Γ(f) satisfies

∂tΓ(f) + v · ∇xΓ(f) + divv(Γ(f)σk ◦ β̇k) = Γ′(f)g,

Γ(f)|t=0 = Γ(f0).

(7.18)

If one can justify such a computation, then upon integrating both sides of the

equation (7.18) for certain non-negative choices of Γ(z) that vanish only at z = 0,

for instance Γ(z) = z/(1+z), then one can get explicit bounds on Γ(f) in terms of the

initial data, which, by linearity, implies uniqueness. However, since we are working

with analytically weak solutions to (7.17), this formal calculation may fail if the

individual σk are too rough. In particular (to our knowledge), only requiring the L∞

coloring hypotheses (H1), (H2) are insufficient. The ability to renormalize stochastic

kinetic transport equations will turn out to be a crucial property in the final stages

of main existence proof. However, as in the case of the deterministic Boltzmann

equation, it does not imply uniqueness of the equation, due to the nonlinear nature

of the equation.

Our strategy in Section 7.3.3 uses the method of DiPerna and Lions reduces the

renormalizability of stochastic kinetic equations to the vanishing of certain commu-

tators between smoothing operators and the differential action of the rough vector

fields. Specifically, given a smooth renormalization Γ(z) with bounded first and sec-

ond derivatives, we begin by smoothing a solution f to (7.17) in the (x, v) variables

with mollifier ηε. The regularity improvement allows us to renormalize the equation

by Γ at the expense of a remainder Rε(f) comprised of commutators and double
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commutators of σk · ∇v and convolution by ηε,

[ηε, σk · ∇v](f),
[
[ηε, σk · ∇v], σk · ∇v

]
(f).

As is well known from the classical theory of renormalization by [34] that the single

commutator

[ηε, σk · ∇v](f) −−→
ε→0

0 in Lrx,v

as long as σ ∈ W 1,q
x,v and f ∈ Lp with 1/r = 1/p + 1/q. As it turns out, the double

commutator also vanishes

[
[ηε, σk · ∇v], σk · ∇v

]
(f) −−→

ε→0
0 in L1

x,v

provided that σk ∈ W
1, 2p
p−1

x,v and σk · ∇vσk ∈ W
1, p
p−1

x,v . However one of the primary

differences between the deterministic and stochastic theory is an interesting conse-

quence of Itô’s formula. Specifically the remainder Rε(f) involves the square of the

single commutator [ηε, σk ·∇v](f). Due to the limited integrability and regularity of

f , this imposes that p ≥ 2 and σk ∈ W
1, 2p
p−2

x,v for this contribution to vanish in L1 (see

Proposition 7.3.8 for more details on this). Based on this method of proof, we are

presently unable to treat the case p ∈ [1, 2). The main result of this section (Propo-

sition 7.3.8) shows show that a weak martingale solution f ∈ Lp(Ω× [0, T ]× R2d),

p ≥ 2 to (7.17) is renormalizable provided we have the following regularity conditions

on σ,

σ ∈ `2(N;W
1, 2p
p−2

x,v ) and σ · ∇vσ ∈ `1(N;W
1, p
p−1

x,v ). (7.19)

We believe these results are consistent with the work of Lions/Le-Bris [19] on deter-

ministic parabolic equations with rough diffusion coefficients. There should also be
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a connection with the more recent work of Bailleul/Gubinelli [8]. In the case that

f ∈ L∞−(Ω× [0, T ]×R2d), the conditions (7.19) become precisely the assumptions

(H3) and (H4) on the noise coefficients.

Section 7.4 concerns the subtle regularizing effects for stochastic kinetic equa-

tions. These are captured by studying the velocity averages of the solution, and

have a long history in the deterministic literature [18, 66, 67, 73] as well as several

more recent results in the SPDE literature [32, 61, 87]. Since equation (7.17) is of

transport type, without more information on g, one does not expect to obtain any

further regularity on the solution f than is present in the initial data f0. However,

in view of the deterministic theory it is natural to expect a small gain in the regu-

larity of velocity averages 〈f, φ〉 =
∫
Rd fφdv, where φ ∈ C∞c (Rd

v) is a test function in

velocity only. Using a Fourier method of Bouchut/Desvillette [18], we prove that if

f is a weak martingale solution to (7.17) and f, g ∈ L2(Ω× [0, T ]×R2d), then 〈f, φ〉

enjoys the following regularity estimate,

E‖〈f, φ〉‖2

L2
t (H

1/6
x )
≤ Cφ,σ

(
‖f0‖2

L2
x,v

+ E‖f‖2
L2
t,x,v

+ E‖g‖2
L2
t,x,v

)
.

Combining this with a standard control on oscillations in time, one expects to obtain

a form of strong compactness on the velocity averages. To formulate this directly

in terms of f rather than its velocity averages, we introduce a topological vector

space Lpt,x(M∗
v) consisting of the space of Lpt,x functions taking values in the space

of Radon measures M∗
v on Rd

v endowed with it’s weak-? topology. The topology is

designed so that sequential convergence in Lpt,x(M∗
v) corresponds exactly to strong

Lpt,x convergence of each sequence of velocity averages. We prove a characterization
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of compact sets in Lpt,x(M∗
v) in the appendix. Using the regularity gain in L2, we

exhibit a sufficient criterion for a sequence {fn}n∈N of weak martingale solutions to a

stochastic kinetic equation driven by {gn}n∈N to induce tight laws on [L2
t,x(M∗

v)]loc.

However, for applications to Boltzmann, one is mostly interested in the case where

{gn}n∈N is only known to be uniformly bounded in L1(Ω× [0, T ]×R2d), due to the

very limited control provided by the a priori bounds on the renormalized collision

operator f → Γ′(f)B(f, f). The criteria for tightness in L1
t,x(M∗

v) is the main result

of Section 7.4. As in the deterministic setting (see [66, 67]), there is no easily

quantifiable regularity gain for f, g ∈ L1(Ω× [0, T ]×R2d), making the analysis more

involved. At present, we can only treat well-prepared sequences of approximations

for which the solution fn and the source gn are somewhat better behaved for fixed

n ∈ N. This is captured by Hypothesis 7.4.1.

At this point in the article, we have completed our analysis of the linear

problem and proceed to apply our results from Section 3− 4 in the context of (SB).

This begins in Section 5 with a construction of a sequence of approximations {f̃n}n∈N

satisfying a stochastic transport equation driven by a truncated collision operator

Bn(f, f) =
B̂n(f, f)

(1 + n−1〈f, 1〉)
.

This truncation was introduced in [36] to make Bn(f, f) Lipschitz in L1
t,x,v while

preserving it’s conservation properties. After smoothing the noise coefficients and

activating only finitely many Brownian motions, we obtain existence by way of the

stochastic flow representation of Kunita [80], in combination with a fixed point

argument. The main subtleties in comparison to the deterministic theory are due
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to the fact that the flow map is not explicit. To obtain the a priori bounds

sup
n

E‖(1 + |x|2 + |v|2 + | log f̃n|)f̃n‖pL∞t (L1
x,v) ≤ Cp, sup

n
E‖Dn(f̃n)‖p

L1
t,x,v
≤ Cp,

we require asymptotic growth estimates for the stochastic flow and a stopping time

argument. A similar difficulty arises in the work of Hofmanova [93]. An additional

difference with the deterministic theory is that we do not prove that our approxi-

mations are of Schwartz class in position and velocity. Instead, we use our renor-

malization lemma to establish the moment and entropy identities used in Section

7.2.

Let us now discuss the main features of the existence proof for Theorem 7.1.7

and some of the main difficulties. The main goal in sections 6−8 is to extract an ap-

propriate limit point f on a well prepared stochastic basis (Ω,F ,P, (Ft)Tt=0, {βk}k∈N)

and verify that f is indeed a renormalized martingale solution to (SB). This requires

a somewhat involved combination of the renormalization and stochastic velocity av-

eraging lemmas together with the general line of arguments introduced by DiPerna

and Lions [36] and a later work of Lions [86]. The argument requires a careful inter-

pretation in the stochastic framework. We study the laws of the sequence {f̃n}n∈N

and use the velocity averaging and renormalization lemmas to show they are tight on

L1
t,x(M∗

v)∩Ct([L1
x]w). A generalization of the Skorohod theorem due to Jakubowski

[74] and Vaart/Wellner [116] gives a candidate limit f , which we endeavor to show

is a renormalized martingale solution to (SB). The Skorohod theorem allows one

to gain compactness of the nonlinear drift terms at the expense of the noise terms.

Indeed, additional oscillations are introduced in the noise terms after switching
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probability spaces as divv(σ
n
kfnβ̇k) is replaced by divv(σ

n
k f̃n

˙̃βnk ), at which point we

are setup to apply our weak stability result. However, this is done in a somewhat

indirect way.

The procedure of identifying f with a solution of (RSB) requires two concep-

tually different steps. First, in Section 6 we fix a bounded renormalization Γm which

converges to the identity as m→∞. With m fixed, we check the criterion necessary

to apply our weak stability result to the sequence {Γm(fn)}n∈N. This sequence is

also shown to induce tight laws on L1
t,x(M∗

v)∩Ct([L1
x]w). The stability result implies

its limit point Γm is a solution to a stochastic kinetic equation with a driver Bm.

To show this requires analysis of the laws induced by the sequence of renormalized

collision operators {Γ′m(fn)Bn(fn, fn)}n∈N.

At this stage, we do not yet have any sort of closed evolution equation for

Γm(f). Indeed, it is unclear the relation between Γm and Bm. Hence, our next step

is to pass m → ∞ and hope to obtain a closed evolution equation in the limit. As

a result of the initial renormalization procedure Γm(f) converges strongly to f in

L∞t (L1
x,v), P almost surely. Unfortunately, as m → ∞ one does not have any good

control on {Bm}m∈N in any space of distributions (only in the topology of measurable

functions, which does not play well with the weak form). On the other hand, we do

have control of {(1 + Γm(f))−1Bm}m∈N. Hence, the strategy is to renormalize again,

this time with log(1 + z), and apply again our stability result in the limit m→∞.

Section 7.7 is dedicated to analysis of the renormalized collision operator Bm.

As in the deterministic setting, we are able to obtain a pointwise (in Ω) continuity
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result

Bn(fn, fn)

1 + 〈fn, 1〉
→ B(f, f)

1 + 〈f, 1〉
in L1

t,x(M∗
v),

as a consequence of the velocity averaging lemmas. Following the strategy in [86]

and [65], we are able to conclude that

Bm
1 + Γm(f)

→ B(f, f)

1 + f
in L2(Ω; [L1

t,x,v]w),

allowing us to apply again the stability result.

We are then able to deduce that log(1 + f) is a solution to a stochastic kinetic

equation driven by (1 + f)−1B(f, f). Roughly speaking, the final step is verify the

renormalized form of (SB) with an arbitrary renormalization. Since log(1 + f) ∈

L∞−(Ω × [0, T ] × R2d), the conditions on the noise coefficients (H3) and (H4) are

exactly such that the renormalization Lemma 7.3.8 applies. This completes the

proof.

Preliminaries

Notation

To simplify the appearance of the function spaces used in this paper, we will use

a number of abbreviations. The notation Lqt (L
p
x,v) denotes the space Lq([0, T ];Lp(R2d)),

and Lpt,x,v is short for Lp([0, T ] × R2d), with similar notation for Sobolev spaces. A

Banach space B endowed with its weak topology is denoted [B]w, and the space of

weakly continuous functions from [0, T ] to B will be written as Ct([B]w). Finally,

[Lpt,x,v]loc denotes the space of locally integrable functions endowed with the natural
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topology of locally convex seminorms.

For a given probability space (Ω,F ,P) and a Banach space B, we will denote

by Lp(Ω;B) the measurable maps (random variables) from F to the Borel sigma

algebra on B with pth integrable norm. The space L∞−(Ω;B) consists of random

variables belonging to Lp(Ω;B) for all p ∈ [1,∞).

Basic properties of the collision operator

In this section, we recall some basic properties of the collision operator f →

B(f, f) (defined in (7.3)) which will be used throughout the article. A more in-depth

discussion can be found in [36]. To begin, we note that the collision operator may

be split into gain and loss terms

B(f, f) = B+(f, f)− B−(f, f),

with

B+(f, f) =

∫∫
Rd×S d−1

f ′f ′∗b(v − v∗, θ)dθdv∗, B−(f, f) = f(b ∗ f),

and b defined by

b(z) =

∫
S d−1

b(z, θ)dθ.

The following inequality due to Arkeryd [4] relates the positive and negative parts

of the collision operator through the entropy dissipation. Namely, for K > 1 and

f ∈ L1
v, it holds

B+(f, f)(v) ≤ KB−(f, f)(v) +
1

logK
D0(f)(v), (7.20)
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where D0(f) is defined by

D0(f) =
1

4

∫∫
Rd×S d−1

d(f)b(v − v∗, θ)dθdv∗.

Note that the quantity D0(f) is not the entropy dissipation D(f) as defined in (7.8),

but is instead related to D(f) by an integration in v,

D(f) =

∫
Rd
D0(f)dv.

Formal a priori estimates

In this section, we will derive formal a priori estimates on the stochastic Boltz-

mann equation (SB) with {σk}k∈N satisfying (H1) and (H2) and initial data f0 sat-

isfying

‖(1 + |x|2 + |v|2 + | log f0|)f0‖pL1
x,v
<∞.

Specifically we will see that under these assumptions, there exists a positive constant

C ≡ Cp,σ,T,f0 , depending on p, {σk}k∈N, T , and f0 such that

E‖(1 + |x|2 + |v|2 + | log f |)f‖pL∞t (L1
x,v) ≤ C.

In addition the entropy dissipation D(f) satisfies

E‖D(f)‖p
L1
t,x
≤ C. (7.21)

These a priori estimates are completely natural in the context of the deter-

ministic Boltzmann equation and correspond to the physical assumptions of finite

mass, momentum, energy, entropy, and entropy production (see for instance [24] or

[65]).
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Throughout the argument C will denote a positive, finite constant that de-

pends on p, {σk}k∈N, T and f0. It may change from line to line, and even within a

line.

Moment Bound

We begin by showing that

E‖(1 + |x|2 + |v|2)f‖pL∞t (L1
x,v) ≤ C, (7.22)

for p > 2. To this end, we multiply the Boltzmann equation by (1 + |x|2 + |v|2) in

Itô form and integrate over [0, t]× Rd
x × Rd

v to obtain

1

2

∫∫
R2d

(1 + |x|2 + |v|2)ft dvdx =
1

2

∫∫
R2d

(1 + |x|2 + |v|2)f0 dvdx

+

∫ t

0

∫∫
R2d

∑
k∈N

|σk|2fs dxdvds

+

∫ t

0

∫∫
R2d

(∑
k∈N

(σk · ∇vσk) + x
)
· vfs dxdvds

+
∑
k∈N

∫ t

0

(∫
R2d

v · σk fs dxdv
)

dβk(s).

(7.23)

Applying Cauchy-Schwartz to the time integral the following estimate readily fol-

lows, ∣∣∣ ∫ t

0

∫∫
R2d

(∑
k∈N

(σk · ∇vσk) + x
)
· vfs dxdvds

∣∣∣p
≤ C‖σ · ∇vσ‖p`1(N;L∞x,v)

∫ t

0

‖(1 + |x|2 + |v|2)fs‖pL1
x,v

ds,

(7.24)

and similarly

∣∣∣ ∫ t

0

∫
R2d

∑
k∈N

|σk|2fs dxdvds
∣∣∣p ≤ C

∫ t

0

‖(1 + |x|2 + |v|2)fs‖pL1
x,v

ds. (7.25)
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For the stochastic integral term in (7.23), the BDG (Burkholder-Davis-Gundy) in-

equality yields

E

∣∣∣∣ sup
r∈[0,t]

∑
k∈N

∫ r

0

(∫
R2d

v·σk fs dvdx
)

dβk(s)

∣∣∣∣p ≤ E

(∫ t

0

∑
k∈N

(∫
R2d

σk·vfs dvdx
)2

ds

)p/2
.

Therefore, after another application of Cauchy-Schwartz to the time integral, we

conclude

E

∣∣∣∣ sup
r∈[0, t]

∑
k∈N

∫ r

0

(∫
R2d

v · σk fs dvdx
)

dβk(s)

∣∣∣∣p
≤ C‖σ‖p`2(N;L∞x,v)

∫ t

0

E‖(1 + |x|2 + |v|2)fs‖pL1
x,v

ds

(7.26)

We may now combine estimates (7.24), (7.25) and (7.26) with (7.23) to obtain

E

(
sup
r∈[0,t]

‖(1+|x|2 +|v|2)fr‖L1
x,v

)p
≤ C+C

∫ t

0

E

(
sup
r∈[0, s]

‖(1+|x|2 +|v|2)fr‖L1
x,v

)p
ds.

Whereby Grönwall’s Lemma gives (7.22).

Entropy Bound

Next, we show that

E‖f log f ‖pL∞t (L1
x,v) ≤ C.

This estimate, as in the deterministic case, is comprised of two parts, control of the

entropy f log f from above by the entropy dissipation (7.7) and control of f log f

from below using estimates (7.22) and a Maxwellian. Specifically, integrating the

entropy dissipation law (7.7) in [0, t]×Rd
x gives the P almost sure identity, for each

t ∈ [0, T ],

∫
R2d

ft log ftdvdx =

∫
R2d

f0 log f0dvdx−
∫ t

0

∫
Rd
D(fs)dxds, (7.27)
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and since D(f) ≥ 0, this yields the classical entropy inequality,∫
R2d

ft log ftdvdx ≤
∫
R2d

f0 log f0 dvdx.

Using this and standard estimates from kinetic theory (see [24]), we obtain P almost

surely ∫
R2d

ft| log ft|dvdx ≤
∫
R2d

ft log ftdxdv + 2

∫
R2d

(|x|2 + |v|2)ftdvdx

+ 2
log e

e

∫
R2d

e−
1
2

(|x|2+|v|2) dvdx

≤ ‖f0 log f0‖L1
x,v

+ C‖(1 + |x|2 + |v|2)ft‖L1
x,v

+ C.

Applying the previous estimate on (1 + |x|2 + |v|2)f to the above inequality gives

the desired estimate of f log f .

Dissipation Bound

Finally with regard to the entropy dissipation estimate (7.21), observe that

equation (7.27) also implies the P almost sure bound

‖D(f)‖L1
t,x
≤ ‖f log f‖L1

t,x,v
+ ‖f0 log f0‖L1

x,v
,

from which the estimate (7.21) clearly follows.

Stochastic Kinetic Transport Equations

In this section, we assume that a probability space (Ω,F ,P) is given, to-

gether with a deterministic initial condition f0 ∈ L1
x,v and a random variable

g ∈ L1(Ω;L1
t,x,v). Moreover, we have a collection of noise coefficients {σk}k∈N satis-

fying the coloring Hypothesis 7.1.2. We analyze properties of solutions to stochastic
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kinetic equations of the type

∂tf + v · ∇xf + divv(fσk ◦ β̇k) = g

f |t=0= f0,

(7.28)

where solutions are understood in the weak martingale sense, given precisely in

Definition 7.3.1 below.

Weak martingale solutions

Definition 7.3.1 (Weak Martingale Solution). A process f : [0, T ] × Ω → L1
x,v is

a weak martingale solution of the stochastic kinetic transport equation driven by g

with initial data f0, provided the following is true:

1. For all ϕ ∈ C∞c (R2d), the process 〈f, ϕ〉 : Ω × [0, T ] → R admits P a.s.

continuous sample paths. Moreover, f belongs to L2(Ω;L∞t (L1
x,v)).

2. There exists a collection of Brownian motions {βk}k∈N and a filtration (Ft)Tt=0

where the filtration (Ft)Tt=0 is generated by the [L1
x,v]w valued processes (ft)

T
t=0,

(
∫ t

0
gsds)

T
t=0 and each Brownian motion (βk(t))

T
t=0.

3. For all test functions ϕ ∈ C∞c (R2d), the process (Mt(ϕ))Tt=0 defined by

Mt(ϕ) =

∫∫
R2d

ftϕdxdv−
∫∫

R2d

f0ϕdxdv−
∫ t

0

∫∫
R2d

f(v·∇xϕ+Lσϕ)+gϕ dxdvds

(7.29)

is an (Ft)Tt=0 martingale. Moreover, its quadratic variation and cross variation
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with respect to each βk are given by:

〈〈M(ϕ),M(ϕ)〉〉t =
∑
k∈N

∫ t

0

(∫∫
R2d

fsσk · ∇vϕdxdv
)2

ds.

〈〈M(ϕ), βk〉〉t =

∫ t

0

∫∫
R2d

fsσk · ∇vϕdxdvds.

Remark 7.3.2. Note that if f is a martingale solution to a stochastic kinetic equation

driven by g and starting from f0 relative to the stochastic basis (Ω,F ,P, (Ft)Tt=0, {βk}k∈N),

then for all t ∈ [0, T ] the following identity holds P almost surely∫∫
R2d

ftϕdxdv =

∫∫
R2d

f0ϕdxdv +

∫ t

0

∫∫
R2d

[fs(v · ∇x + Lσ)ϕ+ gsϕ]dxdvds

+
∑
k∈N

∫ t

0

∫∫
R2d

fsσk · ∇vϕdxdvdβk(s).

(7.30)

This is guaranteed by Lemma B.1.13 of the appendix.

The following existence result may be proved with a small modification to the

arguments given in [53] (which use a strategy developed already in the Ph.D thesis

of E. Pardoux [104]).

Theorem 7.3.3 (Existence). Let {βk}k∈N be a given collection of (Ft)Tt=0 Brownian

motions. Assume that g ∈ L∞(Ω;L1
t,x,v ∩ L∞t,x,v), and (

∫ t
0
gsds)

T
t=0 is an (Ft)Tt=0

adapted process. Then there exists a weak martingale solution f (relative to the

given stochastic basis) to the stochastic kinetic equation driven by g with initial data

f0. Moreover, we have the following estimate for every p ∈ [1,∞),

E‖f‖p
Lpt,x,v

. ‖f0‖pLpx,v + E‖g‖p
Lpt,x,v

.

The next result is a time regularity estimate.
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Lemma 7.3.4. Let q ∈ (2,∞] and assume f ∈ L∞−(Ω;Lqt (L
1
x,v)) is a weak martin-

gale solution to the stochastic kinetic transport equation driven by g ∈ L∞−(Ω;Lqt (L
1
x,v))

with with initial data f0 ∈ L1
x,v. Then for any test function ϕ ∈ C∞c (R2d) and

p ∈ ( 2q
q−2

,∞), we have the following estimate

E‖〈f, ϕ〉‖p
W γ,p
t
≤ Cϕ,σ

(
E‖f‖p

Lqt (L
1
x,v)

+ E‖g‖p
Lqt (L

1
x,v)

)
,

where γ = 1
2
− 1

p
− 1

q
.

Proof. Consider two times t, s ∈ R+, t 6= s. Writing (7.11) in Itô form, we can

conclude that the difference 〈ft − fs, ϕ〉 satisfies

〈ft − fs, ϕ〉 =

∫ t

s

∫∫
R2d

(v · ∇ϕ+ Lσϕ)f dxdvdr +

∫ t

s

∫∫
R2d

ϕg dxdvds

+
∑
k∈N

∫ t

s

(∫∫
R2d

fσk · ∇vϕ dxdv
)

dβk(r).

We would like to estimate E|〈ft − fs, ϕ〉|p. To this end, since v · ∇ϕ + Lσϕ ∈ L∞x,v,

we have the estimate

∣∣∣ ∫ t

s

∫∫
R2d

(v · ∇ϕ+ Lσϕ)f dxdvdr
∣∣∣p ≤ Cϕ,σ|t− s|p(1−

1
q

)‖f‖p
Lqt (L

1
x,v)
,

and similarly ∣∣∣ ∫ t

s

ϕg dxdvds
∣∣∣p ≤ Cϕ|t− s|p(1−

1
q

)‖g‖p
Lqt (L

1
x,v)
.

By the BDG inequality we may estimate the martingale term by

E

∣∣∣∣∑
k∈N

∫ t

s

(∫∫
R2d

fσk · ∇ϕdxdv
)

dβk(r)

∣∣∣∣p ≤ E

(∫ t

s

∑
k∈N

(∫∫
R2d

fσk · ∇ϕdxdv
)2

dr

)p/2
≤ Cϕ,σ|t− s|

p
2

(1− 2
q

)E‖f‖p
Lqt (L

1
x,v)
.

Combining these estimates gives

E|〈ft−fs, ϕ〉|p ≤ Cϕ,σ|t−s|p(
1
2
− 1
q

)
(
|t−s|

p
2

(
E‖f‖p

Lqt (L
1
x,v)

+E‖g‖p
Lqt (L

1
x,v)

)
+E‖f‖p

Lqt (L
1
x,v)

)
.
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We now estimate the regularity of 〈f, ϕ〉 via the Sobolev-Slobodeckij semi-norm

[·]W γ,p
t

. For

γp+ 1 = p(1
2
− 1

q
) we find

E[〈f, ϕ〉]p
W γ,p
t

=

∫ T

0

∫ T

0

E|〈ft − fs, ϕ〉|p

|t− s|γp+1
dsdt ≤ Cϕ,σ

(
E‖f‖pL∞t (L1

x,v) + ‖g‖pL∞t (L1
x,v)

)
.

Stability of weak martingale solutions

In this section, we establish our main stability result for sequences of weak

martingale solutions to stochastic kinetic equations. The result below will be used

repeatedly throughout the article.

Proposition 7.3.5. Let f : Ω × [0, T ] → L1
x,v be a stochastic process and {βk}k∈N

be a collection of Brownian motions. Assume there exists a sequence of processes

{fn}n∈N with the following properties.

1. For each n ∈ N there exist gn, f
0
n, and σn such that fn is a weak martin-

gale solution to a stochastic kinetic equation driven by gn with initial data

f 0
n, relative to the noise coefficients σn = {σnk}k∈N and the stochastic basis

(Ω,F ,P, (Fnt )Tt=0, {βnk }k∈N).

2. The sequences {fn}n∈N and {gn}n∈N are bounded in L2(Ω;L∞t (L1
x,v)) and L2(Ω;L1

t,x,v)

respectively. Moreover, for each ϕ ∈ C∞c (R2d),

〈fn, ϕ〉 → 〈f, ϕ〉 in L2 (Ω;Ct) , (7.31)

188



and for each t ∈ [0, T ],

〈∫ t

0

gn(s)ds, ϕ
〉
→
〈∫ t

0

g(s)ds, ϕ
〉

in L2(Ω). (7.32)

3. As n→∞, the following convergences hold:

{βnk }k∈N → {βk}k∈N in L2 (Ω; [Ct]
∞) .

f 0
n → f 0 in L1

x,v.

σn → σ in `2(N;L∞x,v).

σn · ∇vσ
n → σ · ∇vσ in `1(N;L∞x,v).

Under these hypotheses, we may deduce that f is a weak martingale solution driven

by g and starting from f0, relative to the noise coefficients σ and the Brownian

motions {βk}k∈N.

Moreover, if (Ω,F ,P, (Fnt )Tt=0, {βnk }k∈N) is independent of n ∈ N, then f can

be built with respect to the same stochastic basis.

Proof. Define a collection of topological spaces (Et)
T
t=0 by Et = C

(
[0, t]; [L1

x,v]
2
w

)
×

C[0, t]∞. Let rt : ET → Et be the corresponding restriction operators. Next de-

fine the L1
x,v valued processes (Gt)

T
t=0 and (Gn

t )Tt=0 to be the running time integrals

(starting from 0) of g and gn, respectively. Use these to define the ET valued random

variables X = (f,G, {βk}k∈N) and Xn = (fn, Gn, {βnk }k∈N).

We will verify that f is a weak martingale solution relative to the filtration

(Ft)Tt=0 given by Ft = σ(rtX). With this filtration, Part 1 of Definition 7.3.1 cer-

tainly holds. Part 2 is true by assumption. Hence, if suffices to verify Part 3. Let

ϕ ∈ C∞c (R2d) and define the continuous process (Mt(ϕ))Tt=0 by (7.29). Let s < t be
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two times and suppose that γ ∈ Cb(Es;R). It suffices to show

E
(
γ(rsX)

(
Mt(ϕ)−Ms(ϕ)

))
= 0, (7.33)

E
(
γ(rsX)

(
Mt(ϕ)2 −Ms(ϕ)2

))
=
∑
k∈N

E
(
γ(rsX)

∫ t

s

(∫∫
R2d

fσk · ∇vϕdxdv
)2

dr
)
,(7.34)

E
(
γ(rsX)

(
Mt(ϕ)βk(t)−Ms(ϕ)βk(s)

))
= E

(
γ(rsX)

∫ t

s

∫∫
R2d

σk · ∇vϕfdxdvdr
)
.

(7.35)

Begin by defining the filtration (Fnt )Tt=0 by the relation Fnt = σ(rtXn). Let the

(Fnt )Tt=0 continuous martingale (Mn
t (ϕ))Tt=0 defined by (7.29), with fn, f

0
n, and σn

replacing f, f 0, and σ. By the first assumption of the Proposition and Definition

7.3.1, we find that

E
(
γ(rtXn)

(
Mn

t (ϕ)−Mn
s (ϕ)

))
= 0

Passing to a subsequence if necessary, the second and third assumptions of the

Proposition imply that for each t ∈ [0, T ], the random variables {Mn
t (ϕ)}n∈N con-

verge to Mt(ϕ) in L2(Ω). Indeed, this hinges on the following facts. First, the

sequences {〈fn(t), ϕ〉}n∈N and {〈Gn(t), ϕ〉}n∈N converge to 〈f(t), ϕ〉 and 〈G(t), ϕ〉 in

L2(Ω). Second, the sequence {Lσnϕ}n∈N converges to Lσϕ in L∞x,v. A similar argu-

ment shows that for each t ∈ [0, T ], the random variables {γ(rtXn)}n∈N converge

to γ(rtX) in L∞−(Ω). To treat the sequence {Gn}n∈N, we use the fact that if a se-

quence of continuous functions converges pointwise to a continuous limit, then the

convergence is also uniform. With these remarks, we may pass n→∞ and deduce
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(7.33). Next we observe that:

E
(
γ(rsXn)

(
Mn

t (ϕ)2 −Mn
s (ϕ)2

))
=
∑
k∈N

E
(
γ(rsXn)

∫ t

s

(∫∫
R2d

fnσ
n
k · ∇vϕdxdv

)2

dr
)
.

(7.36)

Using the facts mentioned above, we deduce that for each k ∈ N

lim
n→∞

E
(
γ(rsXn)

∫ t

s

(∫∫
R2d

fnσ
n
k · ∇vϕdxdv

)2

dr
)

= E
(
γ(rsX)

∫ t

s

(∫∫
R2d

fσk · ∇vϕdxdv
)2

dr
)
.

Moreover, we have the inequality

E
(
γ(rsXn)

∫ t

s

(∫∫
R2d

fnσ
n
k ·∇vϕdxdv

)2

dr
)
≤ ‖γ‖Cb(Es;R)‖∇vϕ‖L∞x,vE‖fn‖

2
L2
t (L

1
x,v)‖σ

n
k‖2

L∞x,v
.

Since {σn}n∈N is strongly compact in `2(N;L∞x,v), it follows that

lim
N→∞

sup
n∈N

∞∑
k=N

‖σnk‖2
L∞x,v

= 0.

Since {fn}n∈N is uniformly bounded in L2(Ω;L2
t (L

1
x,v)), by splitting the series into

finitely many terms plus a uniformly controlled remainder, we find that:

lim
n→∞

∑
k∈N

E
(
γ(rsXn)

∫ t

s

(∫∫
R2d

fnσ
n
k · ∇vϕdxdv

)2

dr
)

=
∑
k∈N

E
(
γ(rsX)

∫ t

s

(∫∫
R2d

fσk · ∇vϕdxdv
)2

dr
)
.

We may now pass n → ∞ on both sides of (7.36) to obtain (7.34). An entirely

similar argument yields (7.35). This completes the proof.
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Renormalization

Formally, given a regular solution f to (7.28) and a smooth Γ : R → R, Ito’s

formula implies that Γ(f) satisfies

∂tΓ(f) + v · ∇xΓ(f) + divv(Γ(f)σk ◦ β̇k) = Γ′(f)g,

Γ(f)|t=0 = Γ(f0).

(7.37)

However, if we only impose Hypothesis 7.1.2 on the noise coefficients, it is not

clear whether (7.37) can be justified when f is only a weak martingale solution to

(7.28). In this section, we show that if f has increased local integrability in x, v

and σ has sufficient Sobolev regularity, then (7.37) holds relative to a large class

of renormalizations Γ. Towards this end, we introduce the notion of renormalized

martingale solution to (7.28).

Definition 7.3.6 (Renormalized Martingale Solution). Suppose that (ft)
T
t=0 is a

weak martingale solution to the stochastic kinetic equation driven by g with initial

data f0 and with with respect to the stochastic basis (Ω,F ,P, (Ft)Tt=0, {βk}k∈N).

We say that (ft)
T
t=0 is a renormalized weak martingale solution provided that for

all renormalizations Γ ∈ C2(R) with supz∈R(|Γ′(z)| + |Γ′′(z)|) < ∞ and Γ(0) = 0,

the process (Γ(f)t)
T
t=0 is weak martingale solution to the stochastic kinetic equation

driven by Γ′(f)g with initial data Γ(f0), and with respect to the same stochastic

basis (Ω,F ,P, (Ft)Tt=0, {βk}k∈N).

Remark 7.3.7. It is important to note the assumptions on Γ ensure that a renormal-

ized martingale solution is consistent with the notion of weak martingale solution
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given in Definition 7.3.1. Specifically, the assumptions supz∈R |Γ′(z)| < ∞ and

Γ(0) = 0 given in definition 7.3.6 imply that Γ(z) ≤ C|z|. This means that when

f ∈ L2(Ω;L∞t (L1
x,v)), so is Γ(f). Likewise we see that Γ(f0) ∈ L1

x,v when f0 is and

Γ′(f)g ∈ L1(Ω;L1
t,x,v) when g is.

Proposition 7.3.8. Let f be a weak martingale solution to the stochastic kinetic

equation driven by g with initial data f0. Assume that f ∈ Lp(Ω× [0, T ]× R2d) for

some p ∈ [2,∞). If the noise coefficients satisfy σ ∈ `2(N;W
1, 2p
p−2

x,v ) and σ · ∇vσ ∈

`1(N;W
1, p
p−1

x,v ), then f is also a renormalized weak martingale solution.

Proof. Let Γ satisfy the assumptions of definition 7.3.6 , then our goal is to estab-

lish that Γ(f) is a weak martingale solution driven by Γ′(f)g starting from Γ(f0).

Towards this end, let η be a standard symmetric mollifier with support contained in

the unit ball on Rd
x ×Rd

v with
∫
R2d η(x, v)dxdv = 1. Set ηε(x, v) = ε−2dη(ε−1x, ε−1v)

and denote by ft,ε = ηε ∗ ft = (ft)ε the mollified process.

Let ϕ ∈ C∞c (R2d). The main step in this proof will be to establish that for all

t ∈ [0, T ], the following identity holds P almost surely:∫∫
R2d

Γ(ft,ε)ϕdxdv =

∫∫
R2d

Γ(f0,ε)ϕdxdv

+

∫ t

0

∫∫
R2d

[Γ(fs,ε)(v · ∇x + Lσ)ϕ+ ϕΓ′(fs,ε)gs,ε]dxdvds

+
∞∑
k=1

∫ t

0

∫∫
R2d

Γ(fs,ε)σk · ∇vϕdxdvdβk(s) +Rϕ
ε (t),

(7.38)

for a process (Rϕ
ε (t))Tt=0 such that for each t ∈ [0, T ],

Rϕ
ε (t)→ 0 in probability as ε→ 0. (7.39)

Assuming we can verify (7.38) and (7.39), let us complete the proof. Using standard
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properties of mollifiers, for almost every (ω, t, x, v) ∈ Ω× [0, T ]× R2d one has

Γ(fε)→ Γ(f)

Γ(f0,ε)→ Γ(f0),

and furthermore, using the boundedness of Γ(z) and Γ′(z), for each compact set

K ⊆ R2d one has

Γ(fε)→ Γ(f) in L2(Ω× [0, T ]×K),

Γ′(fε)gε → Γ′(f)g in L1(Ω× [0, T ]×K).

Using the convergence properties above along with the Itô isometry and the con-

vergence of Rϕ
ε to 0, we may pass the ε→ 0 limit in each term of (7.38), where the

convergence holds in L1(Ω× [0, T ]). We conclude that Γ(f) solves∫∫
R2d

Γ(ft)ϕdxdv =

∫∫
R2d

Γ(f0)ϕdxdv

+

∫ t

0

∫∫
R2d

[Γ(fs)(v · ∇x + Lσ)ϕ+ ϕΓ′(fs)gs]dxdvds

+
∞∑
k=1

∫ t

0

∫∫
R2d

Γ(fs)σk · ∇vϕdxdvdβk(s),

thereby completing the proof.

It now remains to verify identity (7.38) along with the vanishing of the remain-

der (7.39). We begin by considering the equation (7.30). We fix z = (x, v) ∈ R2d

and choose ϕ(w) = ηε(z−w). This is equivalent to mollifying both sides of equation,

giving

ft,ε(z) = f0,ε(z) +

∫ t

0

[(−v · ∇xfs)ε(z) + (Lσf)ε(z) + gs,ε(z)]ds

−
∑
k∈N

∫ t

0

(σk · ∇vfs)ε(z)dβk(s).
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For each z ∈ R2d, we may renormalize by Γ by applying Itô’s formula,

Γ(ft,ε(z)) = Γ(f0,ε(z)) +

∫ t

0

Γ′(fs,ε(z))[(−v · ∇xfs)ε(z) + (Lσf)ε(z) + gs,ε(z)]ds

+
1

2

∑
k∈N

∫ t

0

Γ′′(fs,ε(z))(σk · ∇vfs)
2
ε(z)ds

−
∑
k∈N

∫ t

0

Γ′(fs,ε(z))(σk · ∇vfs)ε(z)dβk(s).

Naturally we can force the form of (7.38) into view by the use of the commutators,

[ηε, v · ∇x](f) = (v · ∇xf)ε − v · ∇xfε

[ηε,Lσ](f) = (Lσf)ε − Lσfε

[ηε, σk · ∇v](f) = (σk · ∇vf)ε − σk · ∇vfε.

Specifically, using the fact that LσΓ(f) = Γ′(f)Lσf + 1
2
(σk · ∇vf)2Γ′′(f), we find

Γ(ft,ε) = Γ(f0,ε) +

∫ t

0

[(−v · ∇+ Lσ)Γ(fs,ε) + Γ′(fs,ε)gs,ε]ds

−
∑
k∈N

∫ t

0

σk · ∇vΓ(fs,ε)dβk(s) +Rt,ε

(7.40)

where Rt,ε is a given by

Rt,ε =

∫ t

0

Γ′(fs,ε)
(
− [ηε, v · ∇x](fs) + [ηε,Lσ](fs)

)
ds

+
∑
k∈N

1

2

∫ t

0

Γ′′(fs,ε)[(σk · ∇vfs)
2
ε − (σk · ∇vfs,ε)

2]ds

−
∑
k∈N

∫ t

0

Γ′(fs,ε)[ηε, σk · ∇v](fs)dβk(s).

Integrating both sides of (7.40) against ϕ, we obtain (7.38).

It remains to show that for each t ∈ [0, T ],

Rϕ
ε (t) :=

∫∫
R2d

ϕRt,εdxdv → 0 in probability as ε→ 0.

This will be proved with the aid of standard commutator lemmas taken from [34].

Specifically, we use that f ∈ Lp(Ω× [0, T ]×R2d) ∩ Lp(Ω× [0, T ];L1
x,v) and for each
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k ∈ N, we have σk ∈ W
1, 2p
p−2

x,v . It follows that for almost every (ω, t) ∈ Ω× [0, T ] we

have

[ηε, v · ∇x](ft)→ 0 in [L2
x,v]loc, (7.41)

[ηε, σk · ∇v](ft)→ 0 in [L2
x,v]loc, (7.42)

as well as the bound,

‖[ηε, σk · ∇v](ft)‖L2
x,v
≤ ‖σk‖

W
1,

2p
p−2

x,v

‖ft‖Lpx,v . (7.43)

In order to use the commutator results (7.41) and (7.42) to our advantage, we will

need to manipulate Rt,ε. First we write the commutator [ηε,Lσ](f) in terms of

[ηε, σk · ∇v] as follows:

[ηε,Lσ](f) =
1

2

∑
k∈N

(
(σk · ∇v(σk · ∇vf))ε − σk · ∇v(σk · ∇vfε)

)
=

1

2

∑
k∈N

(
[ηε, σk · ∇v](σk · ∇vf) + σk · ∇v[ηε, σk · ∇v](f)

)
.

The second observation is the following equalities

1

2
Γ′′(fε)[(σk · ∇vf)2

ε − (σk · ∇vfε)
2]

=
1

2
Γ′′(fε)[ηε, σk · ∇v](f)

(
(σk · ∇vf)ε + σk · ∇vfε

)
=

1

2
Γ′′(fε)

(
[ηε, σk · ∇v](f)

)2
+ Γ′′(fε)[ηε, σk · ∇v](f)σk · ∇vfε

=
1

2
Γ′′(fε)

(
[ηε, σk · ∇v](f)

)2 − Γ′(fε)σk · ∇[ηε, σk · ∇v](f)

+ σk · ∇v (Γ′(fε)[ηε, σk · ∇v](f)) .

Adding the two identities above and introducing the double commutator
[
[ηε, σk ·

∇v], σk · ∇v

]
defined by

[
[ηε, σk · ∇v], σk · ∇v

]
(f) = [ηε, σk · ∇v](σk · ∇vf)− σk · ∇v[ηε, σk · ∇v](f),
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we conclude that

Γ′(fε)[ηε,Lσ](f) +
∑
k∈N

1

2
Γ′′(fε)[(σk · ∇vf)2

ε − (σk · ∇vfε)
2]

=
∑
k∈N

(
σk · ∇v (Γ′(fε)[ηε, σk · ∇v](f)) +

1

2
Γ′′(fε)

(
[ηε, σk · ∇v](f)

)2

+
1

2
Γ′(fε)

[
[ηε, σk · ∇v], σk · ∇v

]
(f)
)
.

The process Rt,ε is therefore given by

Rt,ε = −
∫ t

0

Γ′(fs,ε)[ηε, v · ∇x](fs)ds+
∑
k∈N

∫ t

0

σk · ∇v (Γ′(fε)[ηε, σk · ∇v](fs)) ds

+
1

2

∑
k∈N

∫ t

0

Γ′′(fs,ε)
(
[ηε, σk · ∇v](fs)

)2
ds

+
1

2

∑
k∈N

∫ t

0

Γ′(fs,ε)
[
[ηε, σk · ∇v], σk · ∇v

]
(fs)ds

+
∑
k∈N

∫ t

0

Γ′(fs,ε)[ηε, σk · ∇v](fs)dβk(s).

Integrating Rt,ε against ϕ to obtain Rϕ
ε (t), it is now possible to use the conver-

gences (7.41), (7.42), the uniform bound (7.43), and our assumptions on the noise

coefficients to show that each term in Rϕ
ε (t) involving the single commutators,

[ηε, v · ∇x](f) and [ηε, σk · ∇v](f), converges to 0 in probability for each t ∈ [0, T ].

It remains to estimate the double commutator term

It,ε =
1

2

∑
k∈N

∫ t

0

∫∫
R2d

ϕΓ′(fs,ε)
[
[ηε, σk · ∇v], σk · ∇v

]
(fs)dxdvds.

We will prove that for each t ∈ [0, T ], It,ε → 0 in probability.

In what follows, to simplify notation, we will denote both z = (x, v) and

w = (y, u) the phase space (position-velocity) coordinates in R2d wherever possible,

and define the translation operator

δwf(z) := f(z + w)− f(z).
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We will need to evaluate the double-commutator explicitly. This will be done piece

by piece. For the first piece, since divv σk = 0, integrating by parts gives

[ηε , σk · ∇v] (σk · ∇vft)(z) =

∫
R2d

∇2
vηε(z − w) : σk(w)⊗ [σk(w)− σk(z)] ft(w) dw

−
∫
R2d

∇vηε(z − w) · (σk(w) · ∇vσk(w)) ft(w) dw,

and similarly, for the second piece, we have

σk · ∇v [ηε , σk · ∇v] (ft)(z) =

∫
R2d

∇2
vηε(z − w) : [σk(w)− σk(z)]⊗ σk(z) ft(w) dw

−
∫
R2d

∇vηε(z − w) · (σk(z) · ∇vσk(z)) ft(w) dw.

Note that the operation f →
[
[ηε, σk ·∇v], σk ·∇v

]
(f) vanishes on constant functions.

Hence, in both identities above we may freely replace f(w) by f(w)−f(z). Therefore,

using the symmetry of ∇2
vηε, and changing variables w → w + z, we conclude that

the double commutator can be written in the following form

[
[ηε, σk · ∇v], σk · ∇v

]
(ft)(z) =

∫
R2d

∇2
vηε(w) : (δwσk(z)⊗ δwσk(z))δwft(z) dw

+

∫
R2d

∇vηε(w) · δw(σk · ∇vσk)(z)δwft(z) dw.

Next we use the fact that for any g ∈ W 1,r
x,v , the following inequality holds

pointwise in w ∈ R2d

|δwg|Lrx,v ≤ |w||∇g|Lrx,v . (7.44)

Using Holder’s inequality, the estimate (7.44), and the fact that |∇2
vηε(w)| |w|2 and

|∇vηε(w)| |w| are uniformly bounded in L1
w, we may estimate It,ε for each t ∈ [0, T ]

and ω ∈ Ω,

|It,ε| ≤ Cϕ

(
‖σ‖2

`2(N;W
1,

2p
p−2

x,v )

+ ‖σ · ∇σ‖
`1(N;W

1,
p
p−1

x,v )

)
‖Γ′(fε)‖L∞t,x,v sup

|w|<ε
‖δwf‖Lpt,x,v .
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Since f ∈ Lp([0, T ]× R2d) with probability one,

sup
|w|<ε
‖δwf‖Lpt,x,v → 0, P almost surely.

The proof of the Proposition is now complete since this implies It,ε → 0 in probability

for each t ∈ [0, T ].

This section is now completed by checking that renormalized, weak martingale

solutions to (7.28) with additional integrability have strongly continuous sample

paths. The following lemma will be crucial for ultimately deducing strong continuity

properties of the solution to the stochastic Boltzmann equation.

Lemma 7.3.9 (Strong Continuity). Let f be a renormalized weak martingale solu-

tion to the stochastic kinetic equation driven by g with initial data f0. If f belongs to

L∞t (Lpx,v) with probability one for some p ∈ (1,∞), then f ∈ Ct(Lqx,v) with probability

one for any q ∈ (1, p).

Proof. We begin by remarking that f ∈ Ct([Lpx,v]w) with probability one. Indeed, let

ϕ ∈ C∞c (R2d). It follows directly from inspection of the weak form and elementary

properties of stochastic integrals that the process t→ 〈ft, ϕ〉 has continuous sample

paths. Moreover, since f belongs to L∞t (Lpx,v) with probability one, it follows that

f ∈ Ct([Lpx,v]w) with probability one.

The next step is to upgrade to continuity with values in Lqx,v with the strong

topology. Towards this end, let ψ : R→ R be defined by ψ(x) = |x|q. We may choose

a sequence of smooth, truncations of ψ, denoted {ψk}k∈N that satisfy the conditions
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on the renormalizations in Definition 7.3.6 such that ψk converge pointwise in R to

ψ as k → ∞. Moreover, these truncations can be chosen so that when |x| < k,

ψk(x) = ψ(x), and when |x| > k, 0 ≤ ψk(x) ≤ ψ(x). Applying Proposition 7.3.8,

and using the fact that, with probability one, ψk(f) is in L∞t (L1
x,v) and ψ′k(f)g is in

L1
t,x,v, we find that, for all t ∈ [0, T ], we have the P- a.s. identity,

‖ψk(ft)‖L1
x,v

= ‖ψk(f0)‖L1
x,v

+

∫ t

0

∫∫
R2d

ψ′k(fs)gsdxdvds.

In particular, this implies that t 7→ ‖ψk(ft)‖L1
x,v

has continuous sample paths with

probability one. Since weak martingale solutions are in Ct([L
1
x,v]w) with probability

one, then by interpolation, f is in Ct([L
q
x,v]w) with probability one, and therefore

for each t ∈ [0, T ], ‖ψ(ft)‖L1
x,v

is defined P- a.s.

Next, we claim that, P almost surely,

‖ψk(f)‖L1
x,v
→ ‖ψ(f)‖L1

x,v
in L∞([0, T ]),

whereby we may conclude that t → ‖ft‖Lqx,v has continuous sample paths with

probability one. Indeed, we find

sup
t∈[0,T ]

∣∣‖ψ(f)‖L1
x,v
− ‖ψk(f)‖L1

x,v

∣∣ ≤ ‖ψ(f)− ψk(f)‖L∞t (L1
x,v) ≤ ‖ψ(f)1f≥k‖L∞t (L1

x,v)

≤ ‖f‖q
L∞t (Lpx,v)

(
sup
t∈[0,T ]

|{|ft| ≥ k}|
)1−p/q

≤ 1

kp−q
‖f‖p

L∞t (Lpx,v)
→ 0 as k →∞.

Since Lqx,v is a uniformly convex space for q > 1, the fact that f is in Ct([L
q
x,v]w)

with probability one, combined with the fact t 7→ ‖ft‖Lqx,v has P-a.s. continuous

sample paths implies that f ∈ Ct(Lqx,v) with probability one.
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Stochastic Velocity Averaging

In Section 7.5, we will construct a sequence {fn}n∈N of approximations to the

Boltzmann equation (SB) with stochastic transport. These will satisfy the formal

a priori bounds (7.6), uniformly in n ∈ N enabling us to extract a weak limit f ,

which will be a candidate renormalized solution to (SB). However, we need a form

of strong compactness to handle the stability of the non-linear collision operator.

In this section we investigate some subtle regularizing effects for stochastic kinetic

equations, inspired by the classical work of Golse/ Lions/ Perthame/ Sentis [67].

These will be applied in Section 6 to obtain a form of strong compactness of {fn}n∈N.

In fact, we allow for a nontrivial probability of oscillations in the velocity variable,

so the strong compactness is only in space and time.

It turns out that the criteria for renormalization obtained in Section 3 plays

an important role in the proof of our stochastic velocity averaging results. As a

consequence, we are only able to establish our compactness criterion for sequences

of well-prepared approximations.

Indeed for each n ∈ N, suppose that fn is a weak martingale solution to the

stochastic kinetic equation driven by gn and starting from f 0
n, relative to the noise

coefficients σn = {σnk}k∈N and the stochastic basis (Ωn,Fn, (Fnt )t∈[0,T ], {βnk }k∈N,Pn).

Then we make the following assumptions on fn, fn0 , gn, and σn,

Hypothesis 7.4.1.

1. Both fn and gn belong to L∞−(Ω;L1
t,x,v ∩ L∞t,x,v).
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2. f 0
n is in L1

x,v ∩ L∞x,v, and {f 0
n}n∈N is uniformly integrable L1

x,v

3. σn satisfies Hypothesis 7.1.6, and {σn}n∈N satisfies Hypothesis 7.1.2 uniformly.

Our main stochastic velocity averaging result can now be stated as follows:

Lemma 7.4.2. Let {fn}n∈N be a sequence of weak martingale solutions to a stochas-

tic kinetic equation satisfying Hypothesis 7.4.1 and suppose that {gn}n∈N is uniformly

bounded in L1(Ω× [0, T ]× R2d) and induces a tight family of laws on [L1
t,x,v]w,loc.

1. Then for each ϕ ∈ C∞c (Rd), {〈fn, ϕ〉}n∈N induces a tight family of laws on

[L1
t,x]loc.

2. If in addition, for each η > 0 the velocity averages {〈fn, ϕ〉}n∈N satisfy

lim
R→∞

sup
n

P
(
‖〈fn, ϕ〉1|x|>R‖L1

t,x
> η
)

= 0,

then for each ϕ ∈ C∞c (Rd), {〈fn, ϕ〉}n∈N induces a tight family of laws on L1
t,x.

L2 Velocity Averaging

As is typical with velocity averaging lemmas in L1 (see [67]), we will find it

useful first to prove an L2 result. Roughly speaking, the L1 case is then reduced to

showing that the part of the solution sequence violating the hypotheses of the L2

lemma has a high probability of being small in L1.

Lemma 7.4.3. Let {fn}n∈N be a sequence of martingale solutions to the stochas-

tic kinetic equation satisfying Hypothesis 7.4.1. If {f 0
n}n∈N is bounded in L2

x,v and

{gn}n∈N, {fn}n∈N are bounded in Lp(Ω× [0, T ]×R2d) for each p ≥ 1, then for each

ϕ ∈ C∞c (Rd
v), the velocity averages {〈fn, ϕ〉}n∈N induce tight laws on [L2

t,x]loc.
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In the L2 setting, Fourier methods yielding explicit regularity estimates on the

velocity averages can be obtained. More explicitly, given a φ ∈ C∞c (Rd
v), we define

the velocity averaged process by

〈f, φ〉(t, x) =

∫
Rd
f(t, x, v)φ(v) dv.

Using an extension of the method outlined in [18], the following spatial regularity

estimate on 〈f, φ〉 can be established.

Lemma 7.4.4. Let f be a weak martingale solution to the stochastic kinetic equation

driven by g, with initial data f0 relative to noise coefficients σ satisfying Hypothesis

7.1.2. If f, g ∈ L2(Ω× [0, T ]× R2d) and f0 ∈ L2
x,v, then for any φ ∈ C∞c (Rd

v),

E‖〈f, φ〉‖2

L2
t (H

1/6
x )
≤ Cφ,σ

(
‖f0‖2

L2
x,v

+ E‖f‖2
L2
t,x,v

+ E‖g‖2
L2
t,x,v

)
.

The proof is technical and left to Appendix B.2. We are now equipped to

prove Lemma 7.4.3:

Proof of Lemma 7.4.3. Let φ ∈ Cc(Rd) be arbitrary. We proceed by explicitly con-

structing sets (K`)`>0 which are compact in [L2
t,x]loc such that

lim
`→∞

sup
n

P{〈fn, φ〉 /∈ K`} = 0.

Let {ϕj}∞j=1 be a dense subset of L2
x and {Nj}j∈N be a positive, real-valued sequence

to be selected later. Define the sets

E` =
{
ρ ∈ L2

t,x : ‖ρ‖
L2
t (H

1/6
x )
≤ `
}
,

F` =
∞⋂
j=1

{
ρ ∈ L2

t,x : ‖〈ρ, ϕj〉‖W γ,p
t
≤ (`Nj)

1
p
}
,
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where p > 4 and γ = 1
4
− 1

p
. Let K` = E` ∩ F` and observe this is a compact set in

[L2
t,x]loc.

Applying the Chebyshev inequality followed by Lemma 7.4.4,

P
{
〈fn, φ〉 /∈ E`

}
≤ 1

`
E‖〈fn, φ〉‖L2

t (H
1/6
x )
≤ Cφ

`
,

where Cφ depends on the uniform bounds for {fn}∞n=1, {gn}∞n=1, {f 0
n}n∈N, and

{σn}n∈N. Similarly, for each j ∈ N we may appeal to Lemma 7.3.4 to find a constant

Cϕj (depending on the same uniform bounds) such that

P{〈fn, φ〉 /∈ F`} ≤
∞∑
j=1

P
{∥∥〈〈fn, φ〉, ϕj〉∥∥W γ,p

t
< `Nj

}
≤

∞∑
j=1

Cϕj
`Nj

.

Choosing Nj = 2jCϕj , we conclude that

sup
n

P{〈fn, φ〉 /∈ K`} ≤
1

`

∞∑
j=1

2−j =
1

`
.

Taking `→∞ gives the result.

Proof of Main lemma

In this section, we give the proof of the main result of the section, Lemma

7.4.2.

Proof of Lemma 7.4.2. Let {(Ωn,Fn, (Fnt )t∈[0,T ], {βnk }k∈N,Pn)}n∈N be the sequence

of stochastic bases corresponding to {fn}n∈N. Fix ε > 0 and for each n ∈ N, we

begin by decomposing fn as

fn = f≤Ln + f>Ln ,

such that f≤Ln solves

∂tf
≤L
n + v · ∇xf

≤
n + σnk · ∇vf

≤L
n ◦ β̇nk = gn1|gn|≤L, f≤Ln |t=0 = f 0

n1|f0
n|≤L.
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and f>Ln solves

∂tf
>L
n + v · ∇xf

>L
n + σnk · ∇vf

>L
n ◦ β̇nk = gn1|gn|>L, f>Ln |t=0 = f 0

n1|f0
n|>L

on the filtered probability space (Ωn,Fn, (Fnt )t∈[0,T ],Pn). Since gn1|gn|≤L belongs

to the space L∞−(Ω;L1
t,x,v ∩ L∞t,x,v) by Hypothesis 7.4.1, we can build the above

decomposition in the following way. First apply the existence result, Theorem 7.3.3

to obtain f≤Ln as a solution to the equation above. Then, by linearity, the process

f>Ln := fn − f≤Ln must solve it’s corresponding equation above. Moreover, since fn

and f≤Ln are both in L∞−(Ω× [0, T ]× R2d), so is f>Ln . In view of our assumptions

on the noise coefficients made in Hypothesis 7.4.1 we may apply Proposition 7.3.8

to deduce that f>Ln is in fact a renormalized solution.

The strategy of the proof will be to show that the process 〈f≤Ln , ϕ〉 is tight in

n using the L2 velocity averaging Lemma 7.4.3 and that the remaining processes,

f≥Ln , can be made uniformly small in n by taking L sufficiently large and therefore

appealing to Lemma B.1.4.

First we apply our L2 velocity averaging lemma to {f≤Ln }n∈N. Note that

{f 0
n1|f0

n|≤L}n∈N is bounded in L2
x,v (by interpolation) and {gn1|gn|≤L}n∈N is bounded

in L∞−(Ω × [0, T ] × R2d). Therefore, by the estimate given in Theorem 7.3.3,

{f≤Ln }n∈N is also bounded in L∞−(Ω × [0, T ] × R2d). Hence we have enough to

apply Lemma 7.4.3 and conclude that 〈f≤Ln , ϕ〉 induced tight laws on [L2
t,x]loc.

Our next step is prove tightness of {〈fn, ϕ〉}n∈N on [L1
t,x]loc by estimating the

sequence {〈f>Ln , ϕ〉}n∈N. Indeed, since

‖〈f>Ln , ϕ〉‖L1
t,x
≤ ‖f>Ln ‖L1

t,x,v
‖ϕ‖L∞v ,
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we only need to estimate {f>Ln } in L1
t,x,v. Therefore, by Lemma B.1.4, it suffices to

show that for any η > 0,

lim
L→∞

sup
n

P
(
‖f>Ln ‖L1

t,x
> η
)

= 0.

Since f>Ln is renormalized, the following inequality holds P almost surely:

‖f>Ln ‖L1
t,x,v
≤ ‖f 0

n1|fn0 |>L‖L1
x,v

+ ‖gn1|gn|>L‖L1
t,x,v

(7.45)

Since Hypothesis 7.4.1 gives uniform integrability of {f 0
n}n∈N, we may choose an

L0 > 0 such that for L > L0,

sup
n∈N
‖f 0

n1|fn0 |>L‖L1
x,v
≤ η/2.

Therefore by the inequality (7.45),

P
(
‖f>Ln ‖L1

t,x,v
> η
)
≤ P

(
‖gn1|gn|>L‖L1

t,x,v
> η/2

)
. (7.46)

Since {gn}n∈N induces a tight family of laws on [L1
t,x,v]w,loc, it follows from the tight-

ness criterion on [L1
t,x,v]w,loc given in Lemma B.1.6 the right-hand side of inequality

(7.46) vanishes as L→∞, thereby proving tightness of the laws of {〈fn, ϕ〉}n∈N on

[L1
t,x]loc.

Next we show that if in addition, for every η > 0 and ϕ ∈ C∞c (Rd
v) we have

lim
R→∞

sup
n

P
(
‖〈fn, ϕ〉1|x|>R‖L1

t,x
> η
)

= 0,

then {〈fn, ϕ〉}n∈N has tight laws on L1
t,x. To this end fix ε > 0 and ϕ ∈ C∞c (Rd

v) and

use what we have just proved to produce a compact set K ⊆ [L1
t,x]loc such that

P(〈fn, ϕ〉 /∈ K) < ε.
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Next for each k ∈ N, k ≥ 1 choose Rk such that

sup
n

P
(
‖〈fn, ϕ〉1|x|>Rk‖L1

t,x
> 1/k

)
< ε2−k,

and define the closed set Ak

Ak =
{
f ∈ L1

t,x : ‖〈f, ϕ〉1|x|>Rk‖L1
t,x
≤ 1/k

}
.

It it straight forward to conclude that

K̂ =
∞⋂
k=1

K ∩ Ak

is tight (in the sense of functions in [L1
t,x]loc) and therefore K̂ is compact in L1

t,x. It

follows that

P
(
〈fn, ϕ〉 /∈ K̂

)
≤ P (〈fn, ϕ〉 /∈ K) +

∞∑
k=1

P (〈fn, ϕ〉 /∈ Ak) < 2ε

Approximating Scheme

There are two main goals in this section. First, for each n ∈ N fixed we will

construct a renormalized weak martingale solution to the SPDE
∂tfn + v · ∇xfn + divv(fnσ

n
k ◦ β̇k) = Bn(fn, fn)

fn |t=0= f 0
n,

(7.47)

where the initial datum f 0
n and the noise coefficients σn are sufficiently regular,

and Bn is an approximation to B involving a truncation and a regularized collision

kernel bn. The second goal is to rigorously establish the uniform bounds on {fn}n∈N
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obtained formally in Section 2. Towards this end, our regularizations are chosen to

satisfy the following hypotheses.

Hypothesis 7.5.1 (Initial Data).

1. For each n ∈ N, f 0
n is smooth, non-negative and bounded from above.

2. There exists a constant Cn such that for all (x, v) ∈ R2d, f 0
n has the lower

bound

f 0
n(x, v) ≥ Cne

−|x|2−|v|2 .

3. For all j ∈ N, (1 + |x|2 + |v|2)jf 0
n ∈ L1

x,v,

4. The sequence {(1 + |x|2 + |v|2 + | log f 0
n|)f 0

n)}n∈N is uniformly bounded in L1
x,v

and {f 0
n}n∈N converges to f0 strongly in L1

x,v.

Hypothesis 7.5.2 (Noise Coefficients).

1. For each k, n ∈ N, the noise coefficient σnk ∈ C∞(R2d;Rd) and divv σ
n
k = 0.

2. For k > n, the noise coefficient σnk vanishes identically.

3. The sequences {σn}n∈N and {σn·∇vσ
n}n∈N converge pointwise to σ and σ·∇vσ,

are uniformly bounded in the spaces `2(N;L∞x,v) and `1(N;L∞x,v). Furthermore

we have

lim
M→∞

∞∑
k=M

‖σnk‖L∞x,v = 0, lim
M→∞

∞∑
k=M

‖σnk · ∇vσ
n
k‖L∞x,v = 0.

Hypothesis 7.5.3 (Collision Kernel).

1. For each n ∈ N, bn is smooth and compactly supported in Rd × S d−1.
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2. The sequence {bn}n∈N is bounded in L∞(Rd × S d−1) and converges strongly to

b in L1(Rd × S d−1).

Following DiPerna/Lions [36], the truncated collision operator Bn is defined

for f ∈ L1(Rd
v) by

Bn(f, f) =
1

1 + n−1
∫
Rd fdv

∫∫
Rd×S d−1

(f ′f ′∗ − ff∗)bn(v − v∗, θ)dv∗dθ.

The following lemma provides the necessary boundedness and continuity properties

of the operator Bn. The method of proof is classical, see [36] or [24] for most of the

ideas.

Lemma 7.5.4. For each n ∈ N, there exists a constant Cn such that

1. For all f, g ∈ L1
x,v it holds:

‖Bn(f, f)− Bn(g, g)‖L1
x,v
≤ Cn‖f − g‖L1

x,v
.

2. For all f such that (1 + |x|2 + |v|2)kf ∈ L1
x,v and k ∈ N, it holds

‖(1 + |x|2 + |v|2)kBn(f, f)‖L1
x,v
≤ Cn‖(1 + |x|2 + |v|2)kf‖L1

x,v
.

3. For all f ∈ L∞x,v it holds:

‖Bn(f, f)‖L∞x,v ≤ Cn‖f‖L∞x,v .

The strategy for solving the SPDE (7.47) involves a sequence of successive

approximations based on mild formulation of (7.47) in terms of stochastic flows.

Namely, we fix a probability space (Ω,F ,P) and a collection of independent, one
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dimensional Brownian motions {βk}k∈N. The filtration generated by the Brownian

motions is denoted (Ft)Tt=0. For each n ∈ N, the smoothing regularizations present

in Hypothesis 7.5.2, in particular the L∞ bounds on σn and σn · ∇vσ
n allow us to

apply the results of Kunita [80] to obtain a collection of stochastic flows of volume

preserving homeomorphisms {Φn
s,t}n∈N, 0 ≤ s ≤ t ≤ T , Φn

s,s(x, v) = (x, v), associated

to the Stratonovich SDE

dXn
t = V n

t dt, dV n
t =

n∑
j=1

σnj (Xn
t , V

n
t ) ◦ dβj.

The corresponding inverse (in (x, v)) stochastic flows will be denoted {Ψn
s,t}n∈N.

These objects have been studied at length by Kunita [80], so we will mostly defer to

this reference for proofs of their properties. The main fact needed for our purposes

concerns the following P almost sure growth estimates for the flow, which can be

found as exercises (Exercises 4.5.9 and 4.5.10) in Kunita [80], Chapter 4, Section 5.

Lemma 7.5.5. Let ε ∈ (0, 1). For each n ∈ N, the following limits holds P almost

surely:

lim
(x,v)→∞

sup
{s,t∈[0,T ],s≤t}

|Φn
s,t(x, v)|

(1 + |x|+ |v|)1+ε
= 0,

lim
(x,v)→∞

sup
{s,t∈[0,T ],s≤t}

(1 + |x|+ |v|)ε

(1 + |Φn
s,t(x, v)|)

= 0.

Our next step is to apply Lemmas 7.5.4 and 7.5.5 to establish the following

existence result.

Proposition 7.5.6. Fix a stochastic basis (Ω,F , (Ft)t∈[0,T ], {βk}k∈N,P). For each

n ∈ N there exists an analytically weak, stochastically strong solution to the truncated
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Boltzmann equation

∂tfn + v · ∇xfn + σnk · ∇vfn ◦ β̇k = Bn(fn, fn)

fn|t=0 = f 0
n.

such that fn has the following properties:

1. fn : Ω× [0, T ]→ L1
x,v is a Ft progressively measurable process.

2. fn belongs to L2(Ω;Ct(L
1
x,v)) ∩ L∞(Ω× [0, T ]× R2d).

3. There exists a constant Cn such that for each t ∈ [0, T ], P almost surely

fn(t) ≥ e−Cntf 0
n ◦Ψn

0,t. (7.48)

4. For all j ∈ N, (1 + |x|2 + |v|2)jfn is in L∞−(Ω;L∞t (L1
x,v)).

5. The sequence {(1+ |x|2 + |v|2)fn}n∈N is uniformly bounded in Lp
(
Ω;L∞t (L1

x,v)
)

for each p ∈ [1,∞).

Proof. Begin by constructing a sequence of successive approximations {fn,k}k∈N. For

each k ∈ N, define {fn,k}k∈N over [0, T ] by the relation

fn,k(t) = f 0
n ◦Ψn

0,t +

∫ t

0

Bn
(
fn,k−1(s), fn,k−1(s)

)
◦Ψn

s,t ds, fn,0 = 0. (7.49)

Applying classical results of Kunita [80], it follows that fn,k is a stochastically strong,

classical solution to

∂tfn,k + v · ∇xfn,k + σnj · ∇vfn,k ◦ β̇j = Bn(fn,k, fn,k),

fn,k|t=0 = f 0
n.

(7.50)
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Let XT be the Banach space of (Ft)Tt=0 progressively measurable processes

f : [0, T ] × Ω → L1
x,v endowed with the L2(Ω;Ct(L

1
x,v)) norm. Let Cn be the

constant corresponding to the continuity estimates for Bn from Lemma 7.5.4. In

addition, observe that the Hypothesis divv σ
n
k = 0 implies that for every s, t ∈ [0, T ],

s < t, the flow map Φs,t is almost surely volume preserving (see Kunita [80] Theorem

4.3.2 for more details). Taking L1
x,v norms on both sides of (7.49), maximizing over

[0, T ], and using the Lipschitz continuity of Bn in L1
x,v obtained in Lemma 7.5.4, we

find

‖fn,k+1 − fn,k‖XT ≤ (CnT )k‖f 0
n ◦Ψn

0,t‖XT = (CnT )k‖f 0
n‖L1

x,v
,

for each k ∈ N. Choosing T small enough, the sequence {fn,k}k∈N is Cauchy in XT .

Applying this argument a finite number of times, we may remove the constraint

on T . Therefore, for each n ∈ N, there exists an fn ∈ XT such that {fn,k}k∈N

converges to fn in L2(Ω;Ct(L
1
x,v)). In view of Lemma 7.5.4, Bn is continuous on

L2(Ω;Ct(L
1
x,v)). Therefore we have more then enough to pass the limit weakly in

each term of equation (7.50)

Our next step is to verify the lower bound (7.48). Let Cn be a deterministic

constant to be selected. In view of (7.49) and the fact that Ψn
s,t ◦ Φn

0,t = Φn
0,s for

s < t, the following inequalities hold P almost surely:

eCntfn,k+1(t) ◦ Φn
0,t = fn0 +

∫ t

0

eCnsBn
(
fn,k(s), fn,k(s)

)
◦ Φn

0,sds+ Cn

∫ t

0

eCnsfn,k(s) ◦ Φn
0,sds

≥ fn0 −
∫ t

0

eCnsB−n
(
fn,k(s), fn,k(s)

)
◦ Φn

0,sds+ Cn

∫ t

0

eCnsfn,k(s) ◦ Φn
0,sds

≥ fn0 + [Cn − n|bn|L∞v ]

∫ t

0

eCnsfn,k(s) ◦ Φn
0,sds.

In the last line, we used the explicit definition of the operator B−n together with
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Young’s inequality and the fact that the flow map is volume preserving. Choose

Cn > n|bn|L∞v and apply the inequality above inductively to obtain the non-negativity

of fn,k(t) ◦ Φn
0,t, which consequently yields the more precise bound eCntfn,k+1(t) ◦

Φn
0,t ≥ fn0 . Passing k → ∞ and using the L2(Ω;Ct(L

1
x,v)) convergence of {fn,k}k∈N

towards fn, we find that eCntfn(t) ◦Φn
0,t ≥ fn0 for all t ∈ [0, T ] with probability one.

Composing with Ψn
0,t on both sides gives the desired lower bound (7.48).

Our next step is prove that fn is in L∞(Ω × [0, T ] × R2d). We will do this

be first checking that the sequence {fn,k}k∈N is uniformly (in k only) bounded in

L∞(Ω × [0, T ] × R2d). By Hypothesis 7.5.1, f 0
n is bounded. Taking L∞x,v norms on

both sides of (7.49), then maximizing over t ∈ [0, T ] yields P almost surely

‖fn,k+1‖L∞t,x,v ≤ ‖f
0
n‖L∞x,v + CnT‖fn,k‖L∞t,x,v ,

where Cn is the constant from Lemma 7.5.4. Iterating, and summing the geometric

series, we find that if T < C−1
n ,

‖fn,k‖L∞t,x,v ≤ (1− CnT )−1‖f 0
n‖L∞x,v .

Of course we may repeat this argument a finite number of times to remove the

restriction on T . Taking L∞(Ω) norms on both sides of the above inequality yields

the uniform bound. By weak-* L∞ sequential compactness of L∞(Ω× [0, T ]×R2d),

fn belongs to L∞(Ω× [0, T ]× R2d).

Our next goal is to establish the following uniform estimate: for all p ∈ (1,∞)

sup
k,n∈N

E‖(1 + |x|2 + |v|2)fn,k‖pL∞t (L1
x,v) ≤ Cp,

where Cp depends only on f0 and σ. If the process (1 + |x|2 + |v|2)fn,k was known
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a priori to belong to L∞−(Ω;Ct(L
1
x,v)), we could argue exactly as in the formal

estimates Section 7.2.3.1. Since this is a priori unknown, we proceed by a stopping

time argument based on the characteristics. Define for each R ≥ 0, the stopping

time

τnR = inf

{
t ∈ [0, T ] | sup

s∈[0,t],(x,v)∈R2n

|Φn
s,t(x, v)|

(1 + |x|+ |v|)2
≥ R

}
.

To see that this stopping time is well defined it suffices to show that the process

t 7→ sup
s∈[0,t],(x,v)∈R2n

|Φn
s,t(x, v)|

(1 + |x|+ |v|)2
(7.51)

is adapted to (Ft)t≥0 and has continuous sample paths. Indeed, Lemma 4.5.6 of [80]

implies that Φn
s,t(x, v) is jointly continuous in (s, t, x, v) and therefore the suprema in

(7.51) can be taken over a countable dense subset of [0, t]×R2d, implying adapted-

ness. Furthermore, the decay estimate presented in Lemma 7.5.5 allows the supre-

mum in (x, v) to be taken over a compact set in R2d. Continuity of the process

in (7.51) follows from the fact that for any jointly continuous function f(x, y),

f : X × Y → R, where X and Y are two compact metric spaces, the function

g(x) = supy∈Y g(x, y) is continuous.

For each t ∈ [0, T ] we now define the stopped process fRn,k(t) = fn,k(t ∧ τnR).

We will verify that for each k, n ∈ N and R > 0, the process (1 + |x|2 + |v|2)jfRn,k

belongs to the space L∞−(Ω;L∞t (L1
x,v)) for all j ≥ 1. The claim will be established

by induction on k ∈ N. Suppose the claim is true for step k − 1. To check k, note

that

‖(1 + |x|2 + |v|2)jfRn,k(t)‖L1
x,v
≤ ‖(1 + |x|2 + |v|2)jf 0

n ◦Ψn
0,t∧τnR

‖L1
x,v

+

∫ T

0

∥∥1s∈[0,t∧τnR](1 + |x|2 + |v|2)jBn
(
fn,k−1(s), fn,k−1(s)

)
◦Ψn

s,t∧τnR

∥∥
L1
x,v

ds
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Using the volume preserving property of the stochastic flow, the right-hand side

above is equal to

‖(1 + |Φn
0,t∧τnR

(x, v)|2)jf 0
n‖L1

x,v

+

∫ T

0

∥∥1s∈[0,t∧τnR](1 + |Φn
s,t∧τnR

(x, v)|2)jBn
(
fn,k−1(s), fn,k−1(s)

)∥∥
L1
x,v

ds

Using the definition of the stopping time to bound the flow and the L1 bound on

Bn in Lemma 7.5.4, we obtain

‖(1 + |x|2 + |v|2)jfRn,k(t)‖L1
x,v

. R2j‖(1 + |x|2 + |v|2)2jf 0
n‖L1

x,v

+R2j

∫ T

0

∥∥1s∈[0,t∧τnR](1 + |x|2 + |v|2)2jBn
(
fn,k−1(s), fn,k−1(s)

)∥∥
L1
x,v

ds

. (1 + T )R2j‖(1 + |x|2 + |v|2)2jfRn,k−1‖L∞t (L1
x,v).

Taking the supremum in time, and the Lp(Ω) norm on both sides, we may use the

inductive hypothesis to complete the inductive step. The base case is established in

the same way. Therefore (1+ |x|2 + |v|2)jfRn,k belongs to the space L∞−(Ω;L∞t (L1
x,v))

for all j ≥ 1.

Now, if one follows the argument in the a priori moment bounds section 7.2.3.1,

specifically multiplying the truncated Boltzmann equation for fRn,k by (1 + |x|2 +

|v|2) and integrating in (x, v) so as to kill the collision operator, one may close the

estimates on (1+ |x|2 + |v|2)fRn,k uniformly in k using the BDG inequality, Grönwall’s

lemma and the uniform hypothesis 7.5.1 and 7.5.2 on the initial data and noise

coefficients to find for all R > 0

E‖(1 + |x|2 + |v|2)fn,k1t∈[0,T∧τnR]‖pL∞t (L1
x,v) ≤ Cp,T

It is important to note that the constant Cp above does not depend on R, n or k.
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The independence of Cp,T from R can be readily seen from the fact that the constant

obtained in Section 7.2.3.1 depends only in an increasing way on the final time T .

Now we wish to send R→∞ on both sides of this inequality. To achieve this,

note that Lemma 7.5.5 implies that P almost surely,∥∥∥∥ sup
s,t∈[0,T ],s<t

|Φn
s,t(x, v)|

(1 + |x|+ |v|)2

∥∥∥∥
L∞x,v

<∞.

Hence,

lim
R→∞

P(τnR ≤ T ) = lim
R→∞

P

(∥∥∥∥ sup
s,t∈[0,T ],s<t

|Φn
s,t(x, v)|

(1 + |x|+ |v|)2

∥∥∥∥
L∞x,v

≥ R

)
= 0.

Therefore, it follows that τnR∧T converges in probability to T , and by the monotone

convergence theorem we deduce that for any p ∈ [1,∞),

E‖(1 + |x|2 + |v|2)fn,k‖pL∞t (L1
x,v) ≤ Cp.

Next we claim that the sequence {(1+|x|2+|v|2)jfn,k}k∈N is uniformly bounded

(in k) in L∞−(Ω;L∞t (L1
x,v)). We can estimate (1 + |x|2 + |v|2)jfRn,k in a similar way

to (1 + |x|2 + |v|2)fRn,k, by multiplying the truncated Boltzmann equation for fRn,k

by (1 + |x|2 + |v|2)j and using estimate 2 in Lemma 7.5.4 to bound the collision

operator. Using the BDG inequality and Grönwall inequality one can obtain after

some tedious, though straight forward, calculations and using the uniform hypothesis

7.5.2 on the noise coefficients,

E‖(1 + |x|2 + |v|2)jfn,k1t∈[0,T∧τnR]‖pL∞t (L1
x,v) ≤ Cp,T,j‖(1 + |x|2 + |v|2)jf 0

n‖
p
L1
x,v

+ TCp,T,n,jE‖(1 + |x|2 + |v|2)jfn,k−11t∈[0,T∧τnR]‖pL∞t (L1
x,v),

where the constants Cp,T,n,j and Cp,T,j are independent of k and R and depend on

the final time in an increasing way. Since we have made explicit that there is a
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multiplicative factor in the second term T above (coming from the time integral of

the collision operator), we find that, independently of k and the initial data we may

choose T small enough so that TCp,T,n,j < 1. This means that we may iterate the

bound above and sum the geometric series to conclude that for such T , to conclude

E‖(1 + |x|2 + |v|2)jfn,k1t∈[0,T∧τnR]‖pL∞t (L1
x,v) ≤ Cp,T,n,j.

Again, sending R → ∞ and using monotone convergence we conclude the uniform

in k estimate

E‖(1 + |x|2 + |v|2)jfn,k‖pL∞t (L1
x,v) ≤ Cp,T,n,j.

The restriction on T can be removed in the usual way by repeating the above

argument a finite number of times.

What remains is to pass the limit in k on these estimates to obtain the es-

timates on fn stated in the Lemma. It suffices to show that for each j ≥ 0, and

p ∈ [1,∞),

E‖(1 + |x|2 + |v|2)jfn‖pL∞t (L1
x,v) ≤ sup

k∈N
E‖(1 + |x|2 + |v|2)jfn,k‖pL∞t (L1

x,v). (7.52)

We do this by cutting off the moment function. Let BM be the ball of radius M > 0

in R2d. Since fn,k → fn in L2(Ω;L∞t (L1
x,v))), upon choosing a further subsequence

if necessary, we have that P almost surely,

‖(1 + |x|2 + |v|2)jfn,k1BM‖
p
L∞t (L1

x,v) → ‖(1 + |x|2 + |v|2)jfn1BM‖
p
L∞t (L1

x,v).

Applying Fatou’s Lemma, gives

E‖(1 + |x|2 + |v|2)jfn1BM‖
p
L∞t (L1

x,v) ≤ sup
k∈N

E‖(1 + |x|2 + |v|2)jfn,k‖pL∞t (L1
x,v).
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The inequality (7.52) is then proved by passing the limit in M on the left-hand side

by monotone convergence.

The final step in this section is to realize the a priori estimates obtained from

the formal entropy dissipation inequality (7.7). Towards this end, define the ap-

proximate entropy dissipation f → Dn(f) by the relation

Dn(f) ≡ 1

4

(
1 + n−1〈f, 1〉

)−1
∫∫∫

R2d×S d−1

d(f) bn(v − v∗, θ) dθdv∗dv,

where d(f) is defined by (7.8). Similarly, define D0
n(f) by

D0
n(f) ≡ 1

4
(1 + n−1〈f, 1〉)−1

∫∫
Rd×S d−1

d(f)bn(v − v∗, θ)dθdv∗.

Lemma 7.5.7. Let {fn}n∈N be the sequence constructed in Proposition 7.5.6. For

each p ∈ (1,∞), there exists a constant Cp depending on σ and f0 such that

sup
n∈N

E‖fn log fn‖pL∞t (L1
x,v) ≤ Cp, sup

n∈N
E‖Dn(fn)‖p

L1
t,x
≤ Cp.

Proof. Begin by fixing n ∈ N. Note that it suffices to verify identity (7.27) from the

formal a priori bounds section. For each ε > 0, we define the renormalization βε(x) =

x log(x+ ε). Using Proposition 7.3.8 and the fact that fn belongs to L∞(Ω× [0, T ]×

R2d) and L2(Ω;Ct(L
1
x)), it can be checked with a truncation argument that βε(fn)

is a weak solution to the stochastic kinetic equation driven by β′ε(fn)Bn(fn, fn),

starting from βε(f
n
0 ). In particular, using the L1 bounds on fn and the fact that

B(fn, fn) ∈ L1
t,x,x, we can obtain the P almost sure identity

∫∫
R2d

βε(fn(t))dxdv =

∫∫
R2d

βε(f
0
n)dxdv +

∫ t

0

∫∫
R2d

β′ε(fn)Bn(fn, fn)dxdvds.

(7.53)
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Observe that almost everywhere in Ω×[0, T ]×R2d, as ε→ 0 we have the convergence

βε(fn(t)) → fn log fn(t) and β′ε(fn)Bn(fn, fn) → [1 + log fn]Bn(fn, fn). Since fn is

in L∞(Ω× [0, T ]× R2d) and in L2(Ω;Ct(L
1
x,v)), it follows that P almost surely, for

each t ∈ [0, T ]

∫∫
R2d

βε(fn(t))dxdv →
∫∫

R2d

fn(t) log fn(t)dxdv.

The initial data are also handled similarly in view of Hypothesis 7.5.1. To pass the

limit in the remaining integral on the RHS of (7.53), note that |β′ε(x)| ≤ (2+| log(x)|)

for ε small. Hence, by the dominated convergence theorem, it suffices to show

that log fnBn(fn, fn) belongs to L1
t,x,v with probability one. By Proposition 7.5.6

combined with Hypothesis 7.5.1 we have

Cne
−Cnte−|Ψ

n
0,t|2 ≤ fn ≤ ‖fn‖L∞(Ω×[0,T ]×R2d). (7.54)

The second estimate on Φn
0,t given in Lemma 7.5.5, implies that P almost surely we

have the bound,

sup
(t,x,v)∈[0,T ]×R2d

|Ψn
0,t(x, v)|

(1 + |x|+ |v|)2
<∞

Combining this with the bounds in (7.54) it follows that P almost surely

sup
(t,x,v)∈[0,T ]×R2d

| log fn(t, x, v)|
(1 + |x|2 + |v|2)2

<∞.

Using this, the P almost sure L1
t,x,v estimate on log fnBn(fn, fn) now follows from

property 3 of Lemma 7.5.4 and the fact that (1 + |x|2 + |v|2)2fn ∈ L∞t (L1
x,v) with

probability one.
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Compactness and Preliminary Renormalization

Let {f̃n}n∈N be the sequence of renormalized weak martingale solutions to

(7.47) constructed in Proposition 7.5.6. Denote the supporting stochastic basis by

(Ω̃, F̃ , P̃, (F̃t)Tt=0, {β̃k}k∈N). In view of Proposition 7.5.6 and Lemma 7.5.7, we have

the uniform bounds

sup
n∈N

Ẽ‖(1 + |x|2 + |v|2 + | log f̃n|)f̃n‖pL∞t (L1
x,v) <∞

sup
n∈N

Ẽ‖Dn(f̃n)‖p
L1
t,x
<∞.

(7.55)

In this section, we will deduce several key tightness results and apply our main

stochastic velocity averaging Lemma 7.4.2. We will study the induced laws of the

approximations {f̃n}n∈N, the renormalized approximations {Γ(f̃n)}n∈N, and renor-

malized collision operators {Γ′(fn)Bn(f̃n, f̃n)}n∈N. The precise results are stated in

Lemmas 7.6.4-7.6.8. Combining our tightness result with a recent extension of the

Skorohod Theorem B.1.2 to non-metric spaces, we will obtain our main compactness

result Proposition 7.6.1.

Towards this end, we introduce for each m ∈ N a truncation type renormal-

ization Γm defined by

Γm(z) =
z

1 +m−1z
. (7.56)

The space L1
t,x(M∗

v)

In order the apply the velocity averaging results we will find it convenient to

turn the tightness results on velocity averages of f of proved in Section 7.4 into
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tightness results for f on a particular space Lpt,x(M∗
v) characterizing ‘convergence in

the sense of velocity averages’. To be more precise, we introduce a topological vector

space Lpt,x(M∗
v) as follows. Let Mv denote the space of finite Radon measures on

Rd
v, which can be identified with the dual of the continuous functions C0(Rd) that

vanish at∞, and letM∗
v beMv equipped with it’s weak star topology. Consider the

collection of equivalence classes (up to Lebesgue [0, T ]×Rd
x null sets) of measurable

maps f : [0, T ] × Rd
x → M∗

v, where the Borel sigma algebra is taken on M∗
v. For

each equivalence class f , and φ ∈ C0(Rd) we let 〈f, φ〉 denote the pair between Mv

and C0(Rd) and for each φ ∈ C0(Rd), define a corresponding semi-norm νφ via

νφ(f) = ‖〈f, φ〉‖Lpt,x .

We then say that f is in Lpt,x(M∗
v) provided that for all φ ∈ C0(Rd), νφ(f) < ∞.

Convergence in the space Lpt,x(M∗
v) can be thought of as strong in the variables

(t, x) and weak in the velocity variable v. The space Lpt,x(M∗
v) can be identified

with L(C0(Rd), Lpt,x) the space of bounded linear operators from C0(Rd) to L1
t,x

under the topology of pointwise convergence (see Lemma B.1.9).

We will also define the space [Lpt,x(M∗
v)]loc of locally integrable functions which

is the space of equivalence classes of measurable functions f : [0, T ] × Rd → Mv

generated by the semi-norms,

νφ,K(f) = ‖〈f, φ〉1K‖Lpt,x

for each φ ∈ C0(Rd) and each compact set K ⊆ Rd. Again such a space has an

identification with L(C0(Rd), [Lpt,x]loc).
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Our main tool for obtaining compactness in the space Lpt,x(M∗
v) are Lemmas

B.1.10 and B.1.11, which give necessary and sufficient conditions for compactness

and tightness of measure on Lpt,x(M∗
v).

Statement of the main proposition

The main result of this section is the following compactness result.

Proposition 7.6.1. There exists a new probability space (Ω,F ,P) and a sequence

of maps {T̃n}n∈N from Ω to Ω̃ with the following properties:

1. For each n ∈ N, the map T̃n is measurable from (Ω,F) to (Ω̃, F̃) and (T̃n)#P =

P̃.

2. The new sequence {fn}n∈N defined by fn = f̃n ◦ T̃n satisfies the uniform bounds

(7.55) with E replacing Ẽ. Moreover, for all ω ∈ Ω, there exists a constant

C(ω) such that

sup
n∈N
‖(1 + |x|2 + |v|2 + | log fn(ω)|)fn(ω)‖L∞t (L1

x,v) ≤ C(ω).

sup
n∈N
‖Dn(fn)(ω)‖L1

t,x
≤ C(ω).

3. The new sequence {βnk }k∈N defined by βnk = β̃nk ◦ T̃n consists of one-dimensional

Brownian motions on (Ω,F ,P).

4. There exist random variables f and {βk}k∈N with values in Ct([L
1
x,v]w) and

[Ct]
∞ respectively, such that the following convergences hold pointwise on Ω:

fn → f in L1
t,x(M∗

v) ∩ Ct([L1
x,v]w).

{βnk }k∈N → {βk}k∈N in [Ct]
∞.
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5. For each m ∈ N, there exist auxiliary random variables Γm(f) and γm(f) in

Ct([L
1
x,v]w) along with B−m and B+

m in L1
t,x,v and D0(f) in Mt,x,v such that the

following convergences hold pointwise on Ω:

Γm(fn)→ Γm(f) in L1
t,x(M∗

v) ∩ Ct([L1
x,v]w).

Γ′m(fn)fn → γm(f) in L1
t,x(M∗

v) ∩ Ct([L1
x,v]w).

Γ′m(fn)B+
n (fn, fn)→ B+

m in [L1
t,x,v]w.

Γ′m(fn)B−n (fn, fn)→ B−m in [L1
t,x,v]w

D0
n(fn)→ D0(f) in M∗

t,x,v.

Remark 7.6.2. For all n ∈ N, fn is a weak martingale solution to the stochastic

kinetic equation driven by Bn(fn, fn), starting from f0, with noise coefficients σn.

The supporting stochastic basis is given by (Ω,F ,P, (Fnt )Tt=0, {βnk }k∈N), where the

Brownian motions are given by βnk = β̃nk ◦ T̃n and Fnt = T̃−1
n ◦ F̃t.

Tightness of renormalized quantities

In this section, we study the compactness properties of the sequences {Γ(f̃n)}n∈N

and

{Γ′(f̃n)B+
n (f̃n, f̃n)}n∈N, where Γ is a renormalization of a particular type.

Definition 7.6.3. Let R′ denote the class of renormalizations Γ ∈ C2(R+), such

that Γ(0) = 0 and

sup
x∈R+

(|Γ(x)|+ (1 + x)|Γ′(x)|+ |Γ′′(x)|) <∞.

223



Lemma 7.6.4. For each Γ ∈ R′, the sequences {Γ′(f̃n)B−n (f̃n, f̃n)}n∈N and {Γ′(f̃n)B+
n (f̃n, f̃n)}n∈N

are uniformly bounded in L∞−(Ω̃;L1
t,x,v).

Proof. Let us begin with an estimate for {Γ′(f̃n)B−n (f̃n, f̃n)}n∈N. Since Γ ∈ R′, the

mapping

x → (1 + x)|Γ′(x)| is bounded on R+ Therefore, the following inequalities hold on

Ω̃× [0, T ]× R2d

Γ′(f̃n)B−n (f̃n, f̃n) .
B−n (f̃n, f̃n)

1 + fn
. f̃n ∗ bn,

where the convolution is only in the variable v. Recall, by Hypothesis 7.5.3, the

sequence {bn}n∈N is uniformly bounded in L1(Rd
v). Integrating over Ω̃× [0, T ]×R2d

and applying Young’s inequality for convolutions yields for each p ∈ [1,∞)

sup
n∈N

Ẽ‖Γ′(f̃n)B−n (f̃n, f̃n)‖p
L1
t,x,v

. sup
n∈N

Ẽ‖f̃n‖pL1
t,x,v

. (7.57)

Now we can estimate {Γ′(f̃n)B+
n (f̃n, f̃n)}n∈N by applying the bound (7.20) pointwise

in Ω̃× [0, T ]×R2d (to the truncated collision operator Bn(f̃n, f̃n) instead of B(f, f)),

then integrating in all variables to find

sup
n∈N

Ẽ‖Γ′(f̃n)B+
n (f̃n, f̃n)‖p

L1
t,x,v

. sup
n∈N

Ẽ‖Γ′(f̃n)B−n (f̃n, f̃n)‖p
L1
t,x,v

+ sup
n∈N

Ẽ‖Dn(f̃n)‖p
L1
t,x

. sup
n∈N

Ẽ‖f̃n‖pL1
t,x,v

+ sup
n∈N

Ẽ‖Dn(f̃n)‖p
L1
t,x
,

(7.58)

where we used (7.57) in the last line. In view of inequalities (7.57) and (7.58), the

Proposition now follows from the uniform bounds (7.55).

Lemma 7.6.5. For each Γ ∈ R′, the sequence {Γ′(f̃n)B−n (f̃n, f̃n)}n∈N induces tight

laws on [L1
t,x,v]w.
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Proof. Effectively, we have to show that the renormalized collision sequence is

bounded, uniformly integrable, and tight in L1
t,x,v, with uniformly high probabil-

ity. Towards this end, let Ψ(t) = t| log t|. By well-known arguments (see Section

3 in [36]), there exists a constant C depending only on Γ and ‖b‖L1
v

such that the

following two inequalities hold. Regarding uniform integrability,

∫ T

0

∫∫
R2d

Ψ
(

Γ′(f̃n)B−n (f̃n, f̃n)
)

dxdvds ≤ C
[
‖f̃n‖L1

t,x,v
+

∫ T

0

∫∫
R2d

Ψ(f̃n)dxdvds
]
.

(7.59)

Moreover, regarding tightness (in L1
t,x,v), for all R > 0∫ T

0

∫∫
R2d

1{|x|+|v|>R}Γ
′(f̃n)B−n (f̃n, f̃n)dxdvds

≤ C
[
‖f̃n‖L1

t,x,v

∫
Rd

1{|v|>R
2
}bn(v)dv +R−2

∫ T

0

∫∫
R2d

(|x|2 + |v|2)f̃ndxdvds
]
.

(7.60)

Define the function λ : R+ → R+ by

λ(R) = max

{
sup
n

∫
Rd
1|v|>R

2
b̄n(v)dv , R−2

}
,

and note that, by Hypothesis 7.5.3, λ(R) → 0 as R → ∞. Combining (7.59) and

(7.60) with the uniform bounds on f̃n,

sup
n∈N

Ẽ
(∥∥ψ (Γ′(f̃n)B−n (f̃n, f̃n)

)∥∥
L1
t,x,v

)
<∞. (7.61)

sup
n∈N

Ẽ

(
sup
R>0

[
λ(R)−1

∥∥1{|x|+|v|>R}Γ
′(f̃n)B−n (f̃n, f̃n)

∥∥
L1
t,x,v

])
<∞. (7.62)

To construct our compact sets, note that for all M > 0, the set

{
f ∈ L1

t,x,v | ‖f‖L1
t,x,v

+ ‖ψ(f)‖L1
t,x,v

+ sup
R>0

[
λ(R)−1‖1{|x|+|v|>R}f‖L1

t,x,v

]
≤M

}
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is weakly compact in L1
t,x,v. Indeed, every sequence in this set is bounded, uniformly

integrable, and tight in L1
t,x,v. By Chebyshev, the uniform bounds (7.61), (7.62) and

our previous Lemma 7.6.5, it follows that {Γ′(f̃n)B−n (f̃n, f̃n)}n∈N induces tight laws

on [L1
t,x,v]w.

Lemma 7.6.6. For each Γ, the sequence {Γ′(f̃n)B+
n (f̃n, f̃n)}n∈N induces tight laws

on [L1
t,x,v]w.

Proof. The main ingredient in the proof is a version of inequality (7.20), which we

state again in the precise form required. Specifically, for each j > 1 the following

inequality holds pointwise a.e in Ω× [0, T ]× R2d,

Γ′(f̃n)B+
n (f̃n, f̃n) ≤ jΓ′(fn)B−n (f̃n, f̃n) +

1

log j
D0
n(f̃n), (7.63)

where we recall that

D0
n(f̃n) =

1

1 + n−1
∫
Rd f̃ndv

∫
Rd
dn(f̃n)dv∗.

Let ε > 0. By Lemma 7.6.5, we may select a weakly compact set K−ε in L1
t,x,v such

that

sup
n∈N

P̃
(
Γ′(fn)B−n (f̃n, f̃n) /∈ K−ε

)
≤ ε

2
.

Moreover, in view of the uniform bound on the entropy dissipation (7.55), we can

select a closed ball, BMε of size Mε > 0 in L1
t,x,v such that

sup
n∈N

P̃
(
D0
n(f̃n) /∈ BMε

)
≤ ε

2
.

For each j ∈ N, we define a set

Kj,ε =
{
f ∈ L1

t,x,v | There exists g ∈ K−ε and h ∈ BMε such that f ≤ jg+(log j)−1h
}
.
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The inequality in the definition of Kj,ε is understood to hold a.e. on [0, T ] × R2d.

Next define the set Kε via

Kε =
⋂
j∈N

Kj,ε.

Note that if Γ′(f̃n)B−n (f̃n, f̃n) ∈ K−ε andD0
n(f̃n) ∈ BMε , then inequality (7.63) implies

that Γ′(f̃n)B+
n (f̃n, f̃n) ∈ Kε. It follows, by the contrapositive, that

sup
n∈N

P̃
(
Γ′(f̃n)B+

n (f̃n, f̃n) /∈ Kε

)
≤ sup

n∈N
P̃
(
Γ′(f̃n)B−n (f̃n, f̃n) /∈ K−ε

)
+sup
n∈N

P̃
(
D0
n(f̃n, f̃n) /∈ BM

)
.

Since each term above is of order ε, the proof of the Lemma will be complete if

we verify that Kε is a weakly compact subset of L1
t,x,v. By classical compactness

criteria, it suffices to verify the following:

lim
R→∞

sup
f∈Kε

∫ T

0

∫∫
R2d

1{|x|+|v|>R}|f |dxdvdt = 0. (7.64)

lim
δ→0

sup
f∈Kε

sup
|E|≤δ

∫ T

0

∫∫
R2d

1E|f |dxdvdt = 0, (7.65)

where in (7.65) the supremum is taken over all measurable E ⊆ [0, T ] × R2d with

Lebesgue measure |E| < δ. To verify (7.64) and (7.65), note that for all j > 1, by

construction of Kε

sup
f∈Kε

∫ T

0

∫∫
R2d

1{|x|+|v|>R}|f |dxdvdt ≤ j sup
g∈K−ε

∫ T

0

∫∫
R2d

1{|x|+|v|>R}|g|dxdvdt+
Mε

log j
,

and

sup
f∈Kε

sup
|E|<δ

∫ T

0

∫∫
R2d

1E|f |dxdvdt ≤ j sup
g∈K−ε

sup
|E|<δ

∫ T

0

∫∫
R2d

1E|g|dxdvdt+
Mε

log j
.

First taking R→∞ and using the L1
t,x,v weak compactness of K−ε and then sending

j →∞ yields (7.64) and (7.65).
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Lemma 7.6.7. For each Γ ∈ R′, the laws of {Γ(f̃n)}n∈N are tight on Ct([L
1
x,v]w) ∩

L1
t,x(M∗

v).

Proof. We will check that {Γ(f̃n)}n∈N induces tight laws on the space L1
t,x(M∗

v)

by first verifying the requirements of the L1 velocity averaging Lemma 7.4.2 and

deducing that for each ϕ ∈ C∞c (Rd), {〈Γ(f̃n), ϕ〉}n∈N induces tight laws on L1
t,x

and then applying Lemma B.1.11 to conclude that {Γ(f̃n)}n∈N induces tight law on

L1
t,x(M∗

v).

Observe that for each n ∈ N, Γ(f̃n) is a weak martingale solution to the

stochastic kinetic equation driven by Γ′(f̃n)Bn(f̃n, f̃n), starting from Γ(f̃ 0
n), with

noise coefficients σn. By Proposition 7.5.6 on the approximating scheme, and the

fact that Γ(z) . |z|, we can easily conclude that Γ(f̃n) and Γ′(f̃n)Bn(f̃n, f̃n) belong

to L∞−(Ω;L1
t,x,v ∩ L∞t,x,v) and Γ(f 0

n) is in L1
x,v ∩ L∞x,v. Also, by assumption, {σn}n∈N

satisfy Hypothesis 7.1.2 uniformly.

Next, since |Γ(z)| . |z|, and {f 0
n}n∈N is uniformly integrable, then {Γ(f 0

n)}n∈N

is uniformly integrable. Similarly, the uniform estimates (7.55) imply that for p ∈

[1,∞)

sup
n∈N

Ẽ
∥∥(1 + |x|2 + |v|2)Γ(f̃n)

∥∥p
L∞t (L1

x,v)
<∞. (7.66)

Also, Lemma 7.6.4 implies that {Γ′(f̃n)Bn(f̃n, f̃n)}n∈N is uniformly bounded in L∞−(Ω;L1
t,x,v),

while Lemmas 7.6.5 and 7.6.6 imply that {Γ′(f̃n)Bn(f̃n, f̃n)}n∈N also induce tight laws

on [Lpt,x,v]w. Finally, we see by Chebyshev that

P̃(‖〈Γ(f̃n), ϕ〉1|x|>R‖L1
t,x
> η) .

1

ηR2
Ẽ
∥∥(1 + |x|2 + |v|2)Γ(f̃n)

∥∥
L∞t (L1

x,v)
,

and therefore the right-hand side vanishes uniformly in n as R → ∞. Hence, we
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meet all the requirements of Lemma 7.4.2 to conclude that {〈Γ(f̃n), ϕ〉}n∈N induces

tight laws on L1
t,x.

To check that {Γ(f̃n)}n∈N induces tight laws on the space Ct([L
1
x,v]w), by

Lemma B.1.8 it suffices to show that for each ϕ ∈ C∞c (R2d), the sequence {〈Γ(f̃n), ϕ〉}n∈N

induces tight laws on C[0, T ] and

sup
n

Ẽ‖Γ(f̃n)‖L∞t (L1
x,v) <∞,

lim
R→∞

sup
n

Ẽ‖Γ(f̃n)1|x|2+|v|2>R‖L∞t (L1
x,v) = 0,

lim
L→∞

sup
n

Ẽ‖Γ(f̃n)1|Γ(f̃n)|>L‖L∞t (L1
x,v) = 0.

The first two follow from (7.66), while the last follows from the fact that |Γ(z)| ≤

C|z| for some constant C, implies that

|Γ(f̃n)|1|Γ(f̃n)|>L ≤ |f̃n|1|f̃n|>L/C

and therefore

lim
L→∞

sup
n

Ẽ‖Γ(f̃n)1|Γ(f̃n)|>L‖L∞t (L1
x,v) ≤ lim

L→∞

1

logL/C
sup
n

Ẽ‖f̃n log f̃n‖L∞t (L1
x,v) = 0.

To see this, use the weak form to obtain the decomposition 〈Γ(f̃n), ϕ〉 = In,1 + In,2,

where the continuous processes (In,1t )Tt=0 and (In,2t )Tt=0 are defined via:

In,1t =

∫∫
R2d

Γ(f 0
n)ϕdxdv +

∫ t

0

∫∫
R2d

Γ(f̃n)[v · ∇xϕ+ Lσnϕ]dxdvds

+
∞∑
k=1

∫ t

0

∫∫
R2d

Γ(f̃n)σnk · ∇vϕ dxdvdβk(s).

In,2t =

∫ t

0

∫∫
R2d

Γ′(f̃n)Bn(f̃n, f̃n)ϕdxdvds.

Arguing as in Lemma 7.3.4, using the uniform bounds, and a Sobolev embedding,

there exists an an α > 0 and p > 1 such that {In,1}n∈N is a bounded sequence in
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Lp(Ω̃;Cα
t ). Next observe that by Lemmas 7.6.5 and 7.6.6, the sequence {∂tIn,2}n∈N

induces tight laws on L1[0, T ] endowed with the weak topology.

Let ε > 0 and let K1
ε be the closed ball of radius ε−1 in Cα

t . In addition, choose

a uniformly integrable subset of L1[0, T ], denoted K̂2
ε , such that

sup
n∈N

P̃(∂tI
2,n /∈ K̂2

ε ) < ε.

Define K2
ε to be the anti-derivatives of K̂2

ε , that is:

K2
ε =

{
f ∈ C[0, T ] | f(0) = 0 and there exists g ∈ K̂2

ε such that ∂tf = g
}
.

Finally, let Kε be the algebraic sum (in C[0, T ]) of K1
ε and K2

ε . In view of our

decomposition, it follows that

sup
n∈N

P̃(〈Γ(f̃n), ϕ〉 /∈ Kε) ≤ sup
n∈N

P̃(In,1 /∈ K1
ε ) + sup

n∈N
P̃(In,2 /∈ K2

ε ).

Each of the probabilities above are of order ε. Since, by construction, K1
ε and K2

ε

are compact of C[0, T ] (by Arzelà-Ascoli), it follows that Kε is itself compact in

C[0, T ]. This completes the proof.

Lemma 7.6.8. The sequence {f̃n}n∈N induces tight laws on the space Ct([L
1
x,v]w) ∩

L1
t,x(M∗

v).

Proof. Let us begin by verifying that {f̃n}n∈N induces a tight sequence of laws on

L1
t,x(M∗

v). From the uniform bounds, we know that {f̃n}n∈N is uniformly bounded

in L1(Ω̃ × [0, T ] × R2d). By the appendix Lemma B.1.11, it suffices to check that

for each ϕ ∈ C∞c (Rd
v), the sequence {〈f̃n, ϕ〉}n∈N induces a tight sequence of laws

on L1
t,x. For this purpose, we will use the compactness criterion given in appendix
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Lemma B.1.4, together with Lemma 7.6.7. Indeed, recall the definition of Γm(z) in

equation (7.56), then for each m ∈ N, we have the decomposition

〈f̃n, ϕ〉 = 〈Γm(f̃n), ϕ〉+ 〈fn − Γm(f̃n), ϕ〉.

By Lemma 7.6.7, the sequence {〈Γm(f̃n), ϕ〉}n∈N induces a tight sequence of laws on

L1
t,x. Hence, by Lemma B.1.4, it only remains to verify that

lim
m→∞

sup
n∈N

Ẽ
∥∥〈f̃n − Γm(f̃n), ϕ〉

∥∥
L1
t,x

= 0.

Towards this end, note the elementary inequality: for all R > 1 and z > 0,

|Γm(z)− z| ≤ R

m
z + z1z≥R ≤

R

m
z + | logR|−1z| log z|.

Hence, for all m ∈ N and R > 1, we have the inequality

sup
n∈N

Ẽ
∥∥〈f̃n − Γm(f̃n), ϕ〉

∥∥
L1
t,x
≤ R

m
‖ϕ‖L∞v sup

n∈N
Ẽ‖f̃n‖L1

t,x,v

+ | logR|−1‖ϕ‖L∞v sup
n∈N

Ẽ‖f̃n log f̃n‖L1
t,x,v

.

Taking first m→∞ and then R→∞ gives the claim.

The next step is to check that the sequence {f̃n}n∈N induces a tight sequence

of laws on Ct([L
1
x,v]w). In view of the uniform bounds (7.55) and tightness criterion

on Ct([L
1
x,v]w) given in Lemma B.1.8, it suffices to verify that for all ϕ ∈ C∞c (R2d),

the sequence {〈f̃n, ϕ〉}n∈N induces tight laws on the space C[0, T ]. Again, for each

m ∈ N we have the decomposition

〈f̃n, ϕ〉 = 〈Γm(f̃n), ϕ〉+ 〈f̃n − Γm(f̃n), ϕ〉.

Moreover, the sequence {〈Γm(f̃n), ϕ〉}n∈N induces tight laws on C[0, T ] by Lemma

7.6.7. Arguing in a similar way as above, we find that

lim
m→∞

sup
n∈N

Ẽ
∥∥〈f̃n − Γm(f̃n), ϕ〉

∥∥
L∞t

= 0.
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Therefore by Lemma B.1.4 {〈f̃n, ϕ〉}n∈N is tight on C[0, T ].

Proof of Proposition 7.6.1

For each n ∈ N, introduce random variables X̃n, Ỹn, and Z̃n by setting

X̃n =
(
(1 + |x|2 + |v|2 + | log f̃n|)f̃n,D0

n(f̃n)
)

Ỹn =
(
f̃n, {β̃k}k∈N

)
Z̃n =

{(
Γm(f̃n), γm(f̃n),Γ′m(f̃n)B−n (f̃n, f̃n),Γ′m(f̃n)B+

n (f̃n, f̃n)
)}

m∈N

The random variables X̃n, Ỹn, and Z̃n induce laws defined on the spaces E,F, and

G respectively, where

E = [L1
t (C0(R2d))]′∗ ×M∗

t,x,v

F = L1
t,x(M∗

v) ∩ Ct([L1
x,v]w)× [Ct]

∞

G =
[
[L1

t,x(M∗
v) ∩ Ct([L1

x,v]w)]2 × [L1
t,x,v]

2
w

]∞
.

To be clear, we use [L1
t (C0(R2d))]′∗ to denote the dual of L1

t (C0(R2d)) endowed with

the weak star topology.

Our first observation is that the sequence {X̃n}n∈N induces tight laws on E. For

this, we use the fact that L∞t (L1
x,v) embeds isometrically into the space L∞t (Mx,v),

which in turn embeds isometrically into [L1
t (C0(R2d))]′ by classical duality results

on Lebesgue-Bochner spaces. Also, L1
t,x,v embeds isometrically into Mt,x,v. Since

bounded sets in L∞t (L1
x,v)× L1

t,x,v are compact in E, the uniform bounds (7.55) and

Banach Alaoglu yield the tightness claim.

Next we observe that {Ỹn}n∈N induces tight laws on F . This follows from
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Lemma 7.6.8 and classical facts about Brownian motions. Finally, by Lemmas

7.6.5, 7.6.6, and 7.6.7 it follows that the sequence {Z̃n}n∈N induces tight laws on G.

Combining these observations, we find that the sequence {(X̃n, Ỹn, Z̃n)}n∈N induces

tight laws on E × F ×G.

Apply the Jakubowski/Skorohod Theorem B.1.2 (working on a subsequence if

necessary) to obtain a new probability space (Ω,F ,P), random variables (X, Y, Z)

on E × F ×G, and a sequence of maps {T̃n} satisfying Part 1 of Proposition 7.6.1.

First observe that the uniform bounds and the explicit representation guarantees

that Xn(ω) ∈ L∞t (L1
x,v) × L1

t,x,v for almost all ω ∈ Ω and n ∈ N. Thus, Part 1 now

yields that {fn}n∈N satisfies the uniform bounds (7.55) with E in place of Ẽ. This

gives the first claim in Part 2 of Proposition 7.6.1. Theorem B.1.2 also guarantees

that the sequence {Xn}n∈N defined by Xn = X̃n ◦ T̃n converges pointwise on Ω to X

in the space E. In particular, there exists a random constant C(ω) such that

sup
n∈N
‖(1 + |x|2 + |v|2 + | log fn(ω)|)fn(ω)‖[L1

t (C0(R2d))]′ ≤ C(ω).

sup
n∈N
‖D0

n(fn)(ω)‖Mt,x,v ≤ C(ω).

Using again the isometric embedding of L∞t (L1
x,v) into [L1

t (C0(R2d))]′ and L1
t,x,v into

Mt,x,v, together with the fact that Xn(ω) ∈ L∞t (L1
x,v) × L1

t,x,v, this completes the

proof of Part 2. To obtain the remaining parts of Proposition 7.6.1, let D be the

second component of X, and denote

Y =
(
f, {βk}k∈N

)
.

Z =
{(

Γm(f), γm(f),B−m,B+
m

)}
m∈N

.

Part 3 follows easily from Part 1 and the martingale representation theorem. Part 4
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follows from the pointwise convergence of {Yn}n∈N towards Y in the space F . Part

5 follows from the pointwise convergence of {Zn}n∈N towards Z and {Xn}n∈N to X.

This completes the proof of Proposition 7.6.1.

Preliminary identification

As our first application of Proposition 7.6.1, we send n → ∞, but the limit

passage is in a preliminary sense. Namely, we do not yet obtain the renormalized

form for f , but we obtain a stochastic kinetic equation for a strong approximation

Γm(f). In fact, using Proposition 7.6.1, we will prove:

Corollary 7.6.9. For all m ∈ N, the process Γm(f) is a renormalized weak mar-

tingale solution to the stochastic kinetic equation driven by B+
m −B−m, starting from

Γm(f0), with noise coefficients σ = {σk}k∈N. Moreover, P almost surely, Γm(f)

belongs to L∞t,x,v and has strongly continuous sample paths in Ct(L
1
x,v).

Proof. Fix an m ∈ N. First, using the uniform bounds and the convergence results

obtained in Proposition 7.6.1, we verify the hypotheses of the stability result for

martingale solutions of stochastic kinetic equations, Proposition 7.3.5. Namely, we

will analyze the sequence {Γm(fn)}n∈N. Once we verify Parts 1 − 3 of Proposition

7.3.5, we may conclude that the process Γm(f) is a weak martingale solution to the

stochastic kinetic equation driven by B+
m − B−m, starting from Γm(f0), with noise

coefficients σ = {σk}k∈N. The next step will be to show that the solution is actually

a renormalized weak martingale solution, applying the renormalization Proposition

7.3.8. Finally we will show strong continuity by applying Lemma 7.3.9 on our
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renormalized weak martingale solution.

To verify Part 1 of Proposition 7.3.5, let us first check that the process

Γm(fn) is a weak martingale solution to the stochastic kinetic equation driven by

Γ′m(fn)Bn(fn, fn), starting from Γm(f 0
n), relative to the noise coefficients σn and the

Brownian motions {βnk }k∈N obtained in 7.6.1. Indeed, {f̃n}n∈N is a renormalized

weak martingale solution to the stochastic kinetic equation driven by Bn(f̃n, f̃n),

starting from f 0
n, relative to the noise coefficients σn and the Brownian motions

{β̃nk }k∈N. The claim can now be checked by using the explicit expression for {fn}n∈N

and {βnk }k∈N in terms of the maps {T̃n}n∈N together with the fact that Γm ∈ R′.

To verify Part 2 of Proposition 7.3.5, from the uniform bounds in Proposition

7.6.1 and the fact that Γm(z) ≤ z, it follows that the sequence {Γm(fn)}n∈N is

uniformly bounded in L2(Ω;L∞t (L1
x,v)). Also, Lemma 7.6.4 and Part 1 of Proposition

7.6.1 imply that {Γ′m(fn)B−n (fn, fn)}n∈N and {Γ′m(fn)B+
n (fn, fn)}n∈N are uniformly

bounded in L2(Ω;L1
t,x,v). Combining this with the pointwise convergences from Part

5 of Proposition 7.6.1, we easily verify (7.31) and (7.32).

Finally Part 3 of Proposition 7.3.5 follows from the convergences from Part 4 of

Proposition 7.6.1 together with Hypotheses 7.5.2 and 7.5.1 regarding the sequences

{σn}n∈N and {f 0
n}n∈N.

Next we argue that Γm(f) is actually a renormalized weak martingale solution.

Indeed, by the conditions on the noise coefficients σ in Hypotheses (H3) and (H4)

this will follow from Proposition 7.3.8 as soon as Γm(f) ∈ L∞−(Ω× [0, T ]×R2d). To

argue this, we note that since Γm(z) ≤ m and Γm(z) ≤ z, this gives the following
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uniform bounds in L∞ω,t,x,v and L1
ω,t,x,v,

sup
n
‖Γm(fn)‖L∞(Ω×[0,T ]×R2d) < m <∞

sup
n
‖Γm(fn)‖L1(Ω×[0,T ]×R2d) ≤ T sup

n
E‖fn‖L∞t (L1

x,v) <∞.

Therefore, by interpolation, {Γm(fn)}n∈N ∈ Lp(Ω× [0, T ]× R2d) uniformly in n for

each p ∈ [1,∞] and m ≥ 1. Using the weak sequential compactness of Lp(Ω×[0, T ]×

R2d) for p ∈ (1,∞), weak-* sequential compactness of L∞(Ω × [0, T ] × R2d), and

the fact that by Proposition 7.6.1, P almost surely, Γm(fn)→ Γm(f) in Ct([L
1
x,v]w),

we can conclude that the limit Γm(f) must belong to Lp(Ω× [0, T ]×R2d) for every

p ∈ [1,∞].

Finally we show that process t 7→ Γm(ft) has continuous sample paths in L1
x,v

with the strong topology. Observe that any sequence converging strongly in L2
x,v and

weakly in L1
x,v also converges strongly in L1

x,v. Therefore, since Γm(f) ∈ Ct([L1
x,v]w)

with probability one, it suffices to show that Γm(f) ∈ Ct(L
2
x,v) with probability

one. However, since Γm(f) is a renormalized weak martingale solution, by Lemma

7.3.9 it is sufficient to show that Γm(f) belongs to L∞t (L2
x,v) P almost surely. Since

Proposition 7.6.1 implies that Γm(f) also belongs to L∞t (L1
x,v) P almost surely and

Γm(f) belongs to L∞(Ω × [0, T ] × R2d), we can conclude, again by interpolation,

that Γm(f) belongs to L∞t (L2
x,v) P almost surely.

In fact, this preliminary identification of Γm(f) allows us to upgrade the con-

tinuity properties on f from weakly continuous to strongly continuous. This is the

content of the following corollary.
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Corollary 7.6.10. The sample paths of f belong P almost surely to Ct(L
1
x,v). More-

over as m→∞, the sequence {Γm(f)}m∈N converges P a.s. to f in Ct(L
1
x,v).

Proof. Recall, by Corollary 7.6.9, Γm(f) belongs to Ct(L
1
x,v), hence it suffices to

show that {Γm(f)}m∈N converges P a.s. to f in L∞t (L1
x,v). This is accomplished by

applying Proposition 7.6.1 to conclude that for each t ∈ [0, T ], fn(t)− Γm(fn(t))→

ft − Γm(f)t weakly in L1
x,v, P almost-surely, then using weak lower semi-continuity

of the L1
x,v norm to obtain the P almost-sure inequality

sup
t∈[0,T ]

‖ft − Γm(f)t‖L1
x,v
≤ lim inf

n→∞
sup
t∈[0,T ]

‖fn(t)− Γm(fn)(t)‖L1
x,v

≤ 1√
m

sup
n
‖fn‖L∞t (L1

x,v) + sup
n
‖fn1fn≥√m‖L∞t (L1

x,v),

where in the last inequality we used the fact that

|x− Γm(x)| ≤ 1√
m
x+ x1|x|≥√m.

In view of Part 2 in Proposition 7.6.1, for P almost all ω ∈ Ω, the sequence

{fn(ω)}n∈N is uniformly integrable in L∞t (L1
x,v). Taking m → ∞ on both sides

of the inequality above completes the proof.

Analysis of the Renormalized Collision Operator

In this section, we prepare for the passage of m → ∞. By applying the

renormalization lemma for martingale solutions of stochastic kinetic equations, we

obtain the following immediate corollary.

Corollary 7.7.1. For all m ∈ N, the process log(1 + Γm(f)) is a weak martingale
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solution to the stochastic kinetic transport equation driven by (1+Γm(f))−1[B+
m−B−m],

starting from log(1 + Γm(f0)).

Our primary focus is to analyze the limiting behavior of the sequence {B+
m}m∈N.

The main source of difficulty here is that this sequence is not bounded in L1(Ω ×

[0, T ]×R2d). This is natural in the sense that we expect B+
m to be close to B+(f, f) as

we relax the truncation parameter m ∈ N. In fact, we know that the main strategy

in dealing with B+(f, f) is to renormalize with Γ′(f)B+(f, f) before we can hope

for an estimate it in L1(Ω × [0, T ] × R2d). The main result of this section is the

following:

Proposition 7.7.2. For any φ ∈ L∞t,x,v as m→∞, the following convergences hold:

{〈
B−m

1 + Γm(f)
, φ

〉}
m∈N
→

〈
B−(f, f)

1 + f
, φ

〉
in L2(Ω),{〈

B+
m

1 + Γm(f)
, φ

〉}
m∈N
→

〈
B+(f, f)

1 + f
, φ

〉
in L2(Ω).

The most challenging part of the analysis is analyzing the positive part of the

collision operator. To analyze the m→∞ limit, we must analyze the consequences

of the pointwise (in ω) convergence of fn(ω) towards f(ω) in the space L1
t,x(M∗

v).

In fact, this has not been used so far in the proof.

Lemma 7.7.3. As n→∞, the following convergence holds P almost surely:

B+
n (fn, fn)

1 + 〈fn, 1〉
→ B+(f, f)

1 + 〈f, 1〉
in L1

t,x(M∗
v).

Proof. The proof follows essentially the same manipulations as in [36] and [65],

carried out pointwise in ω ∈ Ω. We sketch the proof only to convince the reader that
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the compactness properties obtained in Proposition 7.6.1 are sufficient to deduce the

claim in the same way as for the deterministic theory, without pulling any further

subsequences (potentially depending on ω). Let ϕ ∈ Cc(Rd
v). We will fix an ω ∈ Ω

and mostly omit dependence on this variable throughout the proof. A change of

variables from (v, v∗)→ (v′, v′∗) and an application of Fubini yields the identities〈
B+
n (fn, fn)

1 + 〈fn, 1〉
, ϕ

〉
=

〈
fn

Lnfn
1 + 〈fn, 1〉

, 1

〉
.〈

B+(f, f)

1 + 〈f, 1〉
, ϕ

〉
=

〈
f

Lf
1 + 〈f, 1〉

, 1

〉
,

(7.67)

where Ln is the linear operator on L1(Rd
v) defined by

Lnf(v) =

∫∫
Rd×S d−1

f∗bn(v − v∗)ϕ′dv∗dθ,

and L is defined analogously, but with b replacing bn. Since {fn(ω)}n∈N converges

to f(ω) in L1
t,x(M∗

v) and is tight as a sequence in L1
t,x,v, while bn converges to b

pointwise on Rd × S d−1 and is bounded in L∞(Rd × S d−1) by Hypothesis 7.5.3, one

can deduce that, P almost surely, both {Lnfn}n∈N → Lf and {〈f, 1〉}n∈N → 〈f, 1〉

in measure on [0, T ]× R2d. Therefore, P almost surely{
Lnfn

1 + 〈fn, 1〉

}
n∈N
→ Lf

1 + 〈f, 1〉
in measure on [0, T ]× R2d. (7.68)

Using the uniform bounds on {bn}n∈N in L∞(Rd × S d−1), the sequence in (7.68) is

also uniformly bounded in L∞t,x,v, pointwise in ω. Applying the second part of the

product lemma B.1.12 gives{
fn

Lnfn
1 + 〈fn, 1〉

}
n∈N
→ f

Lf
1 + 〈f, 1〉

in L1
t,x(M∗

v).

An approximation argument (since 1 does not belong to C0(Rd
v)) and the pointwise

(in ω) uniform bounds on {fn}n∈N from Proposition 7.6.1 yields the P almost sure
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convergence

〈
fn

Lnfn
1 + 〈fn, 1〉

, 1

〉
→
〈
f

Lf
1 + 〈f, 1〉

, 1

〉
in L1

t,x.

In view of the identities (7.67), this completes the proof.

The purpose of the next lemma is to reduce our analysis of B+
m to regions

where there are no concentrations in {fn}n∈N.

Lemma 7.7.4. As R→∞, the following limit holds P almost surely:

B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R → 0 in L1

t,x(M∗
v),

uniformly in n ∈ N.

Proof. Let ϕ ∈ C0(Rd
v) be a non-negative function. Fix an ω ∈ Ω and mostly omit

dependence throughout the proof. The bound (7.20) yields the following inequality

on Ω× [0, T ]× R2d: for all K > 1,

B+
n (fn, fn) ≤ (logK)−1D0

n(fn) +KB−n (fn, fn) .

Hence, for almost every (ω, t, x) ∈ Ω× [0, T ]× Rd, we find that

〈
B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉
≤ (logK)−1‖ϕ‖L∞v Dn (fn) +K

〈
B−n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉
.

Next we observe that pointwise in Ω,

∥∥∥∥〈B−n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉∥∥∥∥
L1
t,x

≤ ‖bn‖L∞v ‖ϕ‖L∞v ‖fn1fn>R‖L1
t,x,v

.
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By Proposition 7.6.1, {fn(ω)}n∈N is uniformly integrable in L1
t,x,v and {bn}n∈N is

uniformly bounded in L∞v , passing R→∞ yields

lim sup
R→∞

sup
n∈N

∥∥∥∥〈B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉∥∥∥∥
L1
t,x

≤ (logK)−1‖ϕ‖L∞v sup
n∈N
‖Dn (fn) ‖L1

t,x
,

(7.69)

pointwise in Ω. By Proposition 7.6.1, there exists a constant C(ω) such that

sup
n∈N
‖Dn(fn)(ω)‖L1

t,x
≤ C(ω).

Sending K →∞ on both sides of (7.69) we find

lim
R→∞

sup
n

∥∥∥∥〈B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉∥∥∥∥
L1
t,x

→ 0.

Since we can always split any ϕ ∈ C0(Rd
v) into positive and negative parts also in

C0(Rd
v), the above convergence holds for any ϕ ∈ C0(Rd

v), completing the proof.

The next step is to apply Lemma 7.7.4 to obtain another Lemma written

below.

Lemma 7.7.5. As m→∞, the following limit holds P almost surely:

B+
m

1 + 〈f, 1〉
→ B+(f, f)

1 + 〈f, 1〉
in L1

t,x(M∗
v).

Proof. Let ϕ ∈ C0(Rd
v) be non-negative. Fix ω ∈ Ω throughout and mostly omit.

The first step is to observe that for each fixed m ∈ N, pointwise in Ω,∥∥∥∥〈B+
m − B+ (f, f)

1 + 〈f, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

≤ lim inf
n→∞

∥∥∥∥〈Γ′m(fn)B+
n (fn, fn)− B+

n (fn, fn)

1 + 〈fn, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

.

(7.70)
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Indeed, this follows from the following two observations. In view of Lemma 7.7.4,

〈
B+
n (fn, fn)

1 + 〈fn, 1〉
, ϕ

〉
→
〈
B+ (f, f)

1 + 〈f, 1〉
, ϕ

〉
strongly in L1

t,x,

pointwise in Ω. By Proposition 7.6.1, {Γ′m(fn)B+
n (fn, fn)(ω)}n∈N converges to B+

m(ω)

weakly in L1
t,x,v and {fn(ω)}n∈N converges to f(ω) in L1

t,x(M∗
v). Therefore using the

uniform bounds on {fn(ω)} we conclude that 〈fn(ω), 1〉 converges to 〈f(ω), 1〉 in

measure on [0, T ]×R2d. Therefore, the product Lemma B.1.12 yields the P almost

sure convergence

Γ′m (fn)B+
n (fn, fn)

1 + 〈fn, 1〉
→ B+

m

1 + 〈f, 1〉
weakly in L1

t,x,v.

Now the desired inequality follows from the lower semi-continuity of the L1
t,x,v norm

with respect to weak convergence.

The next step is to observe that for all R > 1,∥∥∥∥〈Γ′m(fn)B+
n (fn, fn)− B+

n (fn, fn)

1 + 〈fn, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

≤
[
1−

(
1 +

R

m

)−2
] ∥∥∥∥〈B+

n (fn, fn)

1 + 〈fn, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

+

∥∥∥∥〈B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉∥∥∥∥
L1
t,x

.

(7.71)

Indeed, writing 1 = 1fn<R + 1fn≥R and recalling that Γ′m(x) = (1 + x
m

)−2, we find

the following upper and lower bounds hold pointwise in Ω× [0, T ]× R2d

B+
n (fn, fn)

(1 + fn
m

)2
≤ B+

n (fn, fn) .

B+
n (fn, fn)

(1 + fn
m

)2
≥ B

+
n (fn, fn)

(1 + R
m

)2
− B+

n (fn, fn) 1fn≥R.

Subtracting B+
n (fn, fn) on both sides, pairing with ϕ, dividing by 1 + 〈fn, 1〉, and

integrating over [0, T ]× Rd gives the claim.
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Using (7.70), we may pass n → ∞ on both side of (7.71), pointwise in Ω.

Appealing to Lemma 7.7.3 to pass the limit in the first term on the right-hand side

of (7.71), we find that for each m ∈ N and R > 1, the following inequality holds

pointwise in Ω

∥∥∥∥〈B+
m − B+ (f, f)

1 + 〈f, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

≤

[
1−

(
1 +

R

m

)−2
]∥∥∥∥〈B+ (f, f)

1 + 〈f, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

+ sup
n∈N

∥∥∥∥〈B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉∥∥∥∥
L1
t,x

.

Passing m→∞ yields for each R > 1, pointwise in Ω

lim sup
m→∞

∥∥∥∥〈B+
m − B+ (f, f)

1 + 〈f, 1〉
, ϕ

〉∥∥∥∥
L1
t,x

≤ sup
n∈N

∥∥∥∥〈B+
n (fn, fn)

1 + 〈fn, 1〉
1fn>R, ϕ

〉∥∥∥∥
L1
t,x

.

Finally, sending R→∞ and applying Lemma 7.7.4 to remove the peaks completes

the proof.

Proof of Proposition 7.7.2

Finally, we can apply our lemmas in order to obtain our main Proposition.

Proof of Proposition 7.7.2. Let us begin with the analysis of the negative part B−m.

The first point is to observe that for all ω ∈ Ω, we may identify B−m(ω) = γm(f) b ∗v

f(ω). Indeed, recall that {Γ′m(fn)B−n (fn, fn)(ω)}n∈N converges to B−m(ω) weakly

in L1
t,x,v by Proposition 7.6.1. On one hand, since {bn ∗v fn(ω)}n∈N is uniformly

integrable in L1
t,x,v and converges in measure on [0, T ] × R2d to b ∗v f(ω), then by

Vitali convergence

{bn ∗v fn(ω)}n∈N → b ∗v f(ω) in L1
t,x,v.

243



On the other hand, {fnΓ′m(fn)(ω)}n∈N converges weakly to γm(f)(ω) in L1
t,x,v, and

is uniformly (in n) bounded in L∞t,x,v, then (up to a subsequence) {fnΓ′m(fn)(ω)}n∈N

converges to γm(f) in [L∞t,x,v]
∗. Therefore (up to a subsequence), since this is a

weak-* L∞ - strongly L1 product limit, we obtain

Γ′m(fn)B−n (fn, fn)(ω)→ γm(f) b ∗v f(ω) in [L1
t,x,v]w. (7.72)

However, since {Γ′m(fn)B−n (fn, fn)(ω)}n∈N converges to B−m(ω) in [L1
t,x,v]w the above

convergence holds for the whole sequence and the claimed identification holds.

Next, by Corollary 7.6.10, Γm(f)(ω) → f(ω) in L1
t,x,v, and by an analogous

argument one can show γm(f)(ω) → f(ω) in L1
t,x,v. This allows us to deduce that

P almost surely,{
B−m

1 + Γm(f)

}
m∈N

→ B−(f, f)

1 + f
in measure on [0, T ]× R2d.

Since γm(z) = zΓ′m(z) = (1 + z
m

)−1Γm(z), then γm(f) ≤ Γm(f) pointwise for each

m ∈ N. This yields the pointwise inequality

B−m
1 + Γm(f)

≤ b ∗v f. (7.73)

A double application of Lebesgue dominated convergence (first in [0, T ] × R2d and

then in Ω) using the bound above and the fact that f ∈ L2(Ω;L1
t,x,v) allows us to com-

plete the first part of the proof (in fact it gives strong convergence in L2(Ω;L1
t,x,v)).

To treat the positive part of the renormalized collision operator, observe that

for each m,n ∈ N, the bound (7.20) gives the pointwise bound

Γ′m(fn)B+
n (fn, fn)

1 + Γm(f)
≤ 1

logK
D0
n(fn) +K

Γ′m(fn)B−n (fn, fn)

1 + Γm(f)
.
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Next we pair with a positive φ ∈ C0([0, T ]×R2d) and pass the n→∞ limit on both

sides of the inequality above and use the convergence of D0
n(fn) to D0(f) in M∗

t,x,v

given in Proposition 7.6.1 and the inequality (7.73) to obtain〈
B+
m

1 + Γm(f)
, φ

〉
≤ 1

logK

〈
D0(f), φ

〉
+K

〈
b̄ ∗v f, φ

〉
.

For the second term on the right-hand side above we used the convergence (7.72)

and the poinwise bound γm(f) ≤ Γm(f). Furthermore, using the fact that (1 +

Γm(f))−1B+
m is in L1

t,x,v and taking φ to be a suitable approximation of the identity

allows us to conclude the almost everywhere Ω× [0, T ]× R2d inequality

B+
m

1 + Γm(f)
. D0(f)ac + b ∗ f, (7.74)

where D0(f)ac is the density of the absolutely continuous part of D0(f).

To finish the proof, we write

B+
m

1 + Γm(f)
=

1 + 〈f, 1〉
1 + Γm(f)

B+
m

1 + 〈f, 1〉
.

By Corollary 7.6.10,{
1

1 + Γm(f)

}
m∈N

→ 1

1 + f
in measure on [0, T ]× R2d,

and by Lemma 7.7.5

{
B+
m

1 + 〈f, 1〉

}
m∈N
→ B+(f, f)

1 + 〈f, 1〉
in L1

t,x(M∗
v).

The product limit Lemma B.1.12, gives P almost surely{
B+
m

(1 + 〈f, 1〉)(1 + Γm(f))

}
m∈N

→ B+(f, f)

(1 + 〈f, 1〉)(1 + f)
in L1

t,x(M∗
v),
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and therefore we can conclude (using the fact that 〈f, 1〉 is independent of v), for

each ϕ ∈ C0(Rd
v),{〈
B+
m

1 + Γm(f)
, ϕ

〉}
m∈N

→
〈
B+(f, f)

1 + f
, ϕ

〉
in measure on [0, T ]× Rd

x.

In view of the bound (7.74) we would like to again use a double application

of the dominated convergence theorem (first in [0, T ] × Rd
x and then in ω) to com-

plete the proof. Indeed in order to apply dominated convergence in Ω it suffices

to show that D0(f)ac ∈ L2(Ω;L1
t,x,v). To show this, choose φ ∈ C0([0, T ] × R2d)

non-negative. By the P almost sure convergence of D0
n(fn) in Proposition M∗

t,x,v,

{|〈D0
n(fn), φ〉|2}n∈N converges to |〈D0(f), φ〉|2 P almost surely. It follows by Fatou’s

Lemma (in Ω) that

E|〈D0(f)as, φ〉|
2 ≤ E|〈D0(f), φ〉|2 ≤ sup

n
E|〈D0

n(fn), φ〉|2 ≤ ‖φ‖2
L∞t,x,v

sup
n

E‖Dn(fn)‖2
L1
t,x
.

Since D0(f)as ≥ 0, we may replace φ by a sequence of non-negative functions

{φk}k∈N ⊆ C0(Rd), φk → 1 pointwise and monotonically. Then, passing k → ∞

using monotone convergence and using the uniform bounds on Dn(fn) yields the

result.

Proof of Main Result

Proof of Theorem 7.1.7. We begin by proving estimates (7.12). Recall that Propo-

sition 7.6.1 implies that {fn}n∈N converges to f in Ct([L
1
x,v]w) with probability one.

We begin by showing the bound on (1 + |x|2 + |v|2)f . Let BR denote the ball of
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radius R > 0 in R2d. It follows that P almost surely,

‖(1 + |x|2 + |v|2)1BRfn‖
p
L∞t (L1

x,v) → ‖(1 + |x|2 + |v|2)1BRf‖
p
L∞t (L1

x,v).

By Fatou’s Lemma in Ω, we find that

E‖(1 + |x|2 + |v|2)1BRf‖
p
L∞t (L1

x,v) ≤ sup
n∈N

E‖(1 + |x|2 + |v|2)1BRfn‖
p
L∞t (L1

x,v) <∞,

in view of Part 2 of Proposition 7.6.1. Sending R→∞ and applying Fatou’s Lemma

once more yields

E‖(1 + |x|2 + |v|2)f‖pL∞t (L1
x,v) <∞.

To show the bounds on f | log f | and D(f), we recall the proof of Lemma 7.5.7,

where we showed that {fn}n∈N satisfies the following entropy equation P- almost

surely for each t ∈ [0, T ],∫∫
R2d

fn(t) log fn(t)dxdv +

∫ t

0

∫
Rd
Dn(fn(s))dxds =

∫∫
R2d

f0 log f0dxdv. (7.75)

Since z 7→ z log z is convex, and {fn}n∈N → f in Ct([L
1
x,v]w) P almost surely, then,

by lower semi-continuity and the non-negativity of Dn(fn), the following inequality

holds pointwise in Ω× [0, T ],∫∫
R2d

f log fdxdv ≤
∫∫

R2d

f0 log f0dxdv.

From this point on, we may follow the arguments in Section 7.2.4 to conclude

E‖f log f‖pL∞t (L1
x,v) <∞.

To show the bound on the dissipation D(f), we remark that a standard mod-

ification of the proof of Lemma 7.7.3 allows us to conclude the P almost surely

f ′nf
′
n,∗

1 + ε〈fn, 1〉
→ f ′f ′∗

1 + ε〈f, 1〉
in [L1([0, T ]× R3d

x,v,v∗ × S d−1)]w,
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for each ε > 0. Similarly, by the product limit Lemma B.1.12, we may also conclude

that P almost surely,

fnfn,∗
1 + ε〈fn, 1〉

→ ff∗
1 + ε〈f, 1〉

in [L1([0, T ]× R3d
x,v,v∗)]w.

Notice that the function (x, y) 7→ (x− y)(log x− log y) is convex on R2
+. Therefore,

by lower semi-continuity we may conclude that P almost surely, for every t ∈ [0, T ]

and each ε > 0∫ t

0

∫∫∫
R3d×S d−1

d(f)b

1 + ε〈f, 1〉
dθdvdv∗dxds

≤ lim inf
n

∫ t

0

∫∫∫
R3d×S d−1

d(fn)b

1 + ε〈fn, 1〉
dθdvdv∗dxds

≤ lim inf
n

∫ t

0

∫
Rd
Dn(fn)dxds.

Taking ε→ 0, by the monotone convergence theorem, gives

∫ t

0

∫
Rd
D(f)dxds ≤ lim inf

n

∫ t

0

∫
Rd
Dn(fn)dxds.

Passing n→∞ on both sides of (7.75) yields, the global entropy inequality (7.16),

∫∫
R2d

f(t) log f(t)dxdv +

∫ t

0

∫
Rd
D(f)(s)dxds ≤

∫
R2d

f0 log f0dxdv.

Whereby we obtain the bound

‖D(f)‖L1
t,x,v
≤ ‖f log f‖L∞t (L1

x,v) + ‖f0 log f0‖L1
x,v
.

Using the bound on f log f above, gives

E‖D(f)‖p
L1
t,x,v

<∞.

Next we show the conservation laws (7.13-7.16). In fact we have already shown

(7.16) in the computation above. To show (7.13-7.15), recall that fn satisfies for each
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ϕ ∈ C∞c (R2d)

〈fn, ϕ〉 = 〈f 0
n, ϕ〉+

∫ t

0

〈fn(s), v · ∇xϕ+ Lσnϕ〉ds

+

∫ t

0

〈fn(s), σnk · ∇vϕ〉dβnk (s) +

∫ t

0

〈Bn(fn, fn), ϕ〉ds
(7.76)

in distribution in x, v. Using the P almost sure moment estimates provided by prop-

erty 2 in Proposition 7.6.1 and the boundedness of the truncated collision operator

Bn(fn, fn)

‖(1 + |x|2 + |v|2)kfn‖L∞t (L1
x,v) <∞, ‖(1 + |x|2 + |v|2)kBn(fn, fn)‖L1

t,x,v
<∞.

It is straight forward to use these estimates to upgrade to a class of test functions

ϕ(x, v) with sub quadratic growth

sup
x,v

|ϕ(x, v)|
(1 + |x|2 + |v|2)

<∞,

in equation (7.76). Choosing the test function to be constant in v gives P almost

surely for each t ∈ [0, T ]∫
Rd
fn(t)dv + divx

∫ t

0

∫
Rd
vfn(s)dvds =

∫
Rd
f0dv in D′x. (7.77)

Likewise taking the test function to approach φ(x, v) = v, and taking expectation,

we can obtain for each t ∈ [0, T ]

E

∫∫
R2d

vfn(t)dvdx = E

∫ t

0

∫∫
R2d

(Lσnv)fn(s)dvdxds+

∫
R2d

vfn0 dvdx. (7.78)

Finally taking a test function approaching ϕ(x, v) = 1
2
|v|2, and taking expectation

gives for each t ∈ [0, T ]

E

∫∫
R2d

1

2
|v|2fn(t)dvdx = E

∫ t

0

∫∫
R2d

1

2
(Lσn|v|2)fn(s)dvdxds+

∫
R2d

1

2
|v|2fn0 dvdx.

(7.79)
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In order the pass the limit in n above, will find it useful to prove the following

extension of the product limit Lemma B.1.12 for the sequence {fn}n∈N.

Lemma 7.8.1. Let {φn}n∈N be a sequence of functions in [L∞x,v]loc converging point-

wise a.e to φ satisfying the uniform growth assumption

lim
R→∞

sup
n

∥∥∥∥ φn(x, v)

1 + |x|2 + |v|2
1BcR

∥∥∥∥
L∞x,v

= 0 (7.80)

where BR ⊂ R2d is the ball of radius R. Then,

∫∫
R2d

φnfndvdx→
∫∫

R2d

φfdvdx in [L2(Ω× [0, T ])]w.

Proof. Proposition 7.6.1 implies that P almost surely {fn}n∈N → f in Ct([L
1
x.v]w).

Since φn1BR is uniformly bounded in L∞x,v and converges in pointwise a.e. to φ1BR

the product limit Lemma B.1.12 implies that P almost surely for each t ∈ [0, T ]

∫
R2d

φn1BRfn(t)dvdx→
∫
R2d

φ1BRf(t)dvdx (7.81)

Now, letting C <∞ denote the (random) constant such that

sup
n
‖(1 + |x|2 + |v|2)(|fn|+ |f |)‖L∞t (L1

x,v) < C,

we have∫
R2d

φn(f − fn)dvdx ≤
∫
R2d

φn1BR(f − fn)dvdx+

∫
R2d

φn1BcR(f − fn)dvdx

≤
∫
R2d

φn1BR(f − fn)dvdx+ C sup
n

∥∥∥∥ φn(x, v)

1 + |x|2 + |v|2
1BcR

∥∥∥∥
L∞x,v

.

First, pass n → ∞ above using (7.81) and then, send R → ∞ above to conclude

that for all φ satisfying (7.80), P almost surely, and for each t ∈ [0, T ],

∫
R2d

φnfndvdx→
∫
R2d

φfdvdx.
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Moreover by the average moment estimate on {fn}n∈N,

{∫∫
R2d

φnfndvdx

}
n∈N

is bounded in L2(Ω× [0, T ]),

and therefore by Vitali convergence we may conclude that

∫∫
R2d

φnfndvdx→
∫∫

R2d

φfdvdx in [L2(Ω× [0, T ])]w.

Immediately we can use this Lemma to pass the limit in each term of (7.77).

Taking the derivative in time gives the local conservation law (7.13). Also using the

fact that Lσnv = σnk · ∇vσ
n
k is bounded in L∞x,v and converges pointwise to Lσv, we

may also pass the limit in each term of (7.78) to obtain (7.14).

Now, note that we cannot pass the limit directly in the energy equation (7.79)

since 1
2
|v|2 does not satisfy (7.80). However, Lσn |v|2 does satisfy (7.80), and so upon

cutting of the domain on the left hand side of (7.79) can pass the limit in n and

conclude for each R > 0,

E

∫
R2d

1

2
1|v|<R|v|2f(t) ≤ E

∫ t

0

∫∫
R2d

1

2
(Lσ|v|2)f(s)dvdxds+

∫
R2d

1

2
|v|2f0dvdx.

Apply the monotone convergence theorem to the left-hand side and sending R→∞

gives the desired inequality (7.15).

Next, we prove that f verifies the conditions of Definition 7.1.4. Begin by

observing that for each n ∈ N, f̃n has the property that for each (t, ω) ∈ [0, T ]×Ω,

the quantity f̃n(t, ω) is a non-negative element of L1
x,v. Since fn is given explicitly

as fn = f̃n ◦ T̃n, it inherits this property. Finally, Proposition 7.6.1 implies that
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{fn(t, ω)}n∈N converges to f(t, ω) weakly in L1
x,v. Since weak convergence is order

preserving, this shows that f satisfies Part 1 of Definition 7.1.4. Also, by Corollary

7.6.10, f : Ω× [0, T ]→ L1
x,v has continuous sample paths.

In view of Definition 7.3.1 and Remark 7.3.2, Parts 2 and 3 of Definition 7.1.4

will follow once we check that for each Γ ∈ R, the process Γ(f) is a weak martingale

solution to the stochastic kinetic equation driven by Γ′(f)B(f, f), starting from

Γ(f 0). In fact, the problem can be reduced further.

Let us show that it suffices to verify log(1 + f) is a weak martingale solu-

tion driven by (1 + f)−1B(f, f), starting from log(1 + f 0). Assume for the mo-

ment this property of log(1 + f) and let Γ ∈ R be arbitrary. Since we showed

f ∈ L2(Ω;L∞t (L1
x,v)), it follows that log(1 + f) belongs to L2(Ω × [0, T ] × R2d).

Hence, by Proposition 7.3.8, log(1 + f) is a renormalized solution. We would like to

renormalize by a β such that β ◦ log(1+x) = Γ(x), or equivalently β(x) = Γ(ex−1),

but this is not quite admissible in the sense of Definition 7.3.6 since Γ ∈ R need

not imply boundedness of β′′. Instead, we proceed by a sequence of approximate

renormalizations {βk}k∈N where βk(x) = Γk(e
x − 1) and {Γk}k∈N have the following

properties: for each k ∈ N, Γk is compactly supported (and hence β′′k is bounded),

the pair (Γk,Γ
′
k)→ (Γ,Γ′) pointwise in R+, and the following uniform bound holds

sup
k∈N

sup
x∈R+

(1 + x)|Γ′k(x)| <∞.

By Proposition 7.3.8, it follows that Γk(f) is a weak martingale solution driven by

Γ′k(f)B(f, f). Using the properties of {Γk}k∈N and the fact that f ∈ L2(Ω;L∞t (L1
x,v))

and (1 +f)−1B(f, f) ∈ L2(Ω;L1
t,x,v), it is straight forward to use the stability result,
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Proposition 7.3.5, to pass k → ∞ and conclude that Γ(f) is a weak martingale

solution driven by Γ′(f)B(f, f) starting from Γ(f0).

Thus, it remains to show that log(1 + f) is a weak martingale solution to the

stochastic kinetic equation driven by (1+f)−1B(f, f), starting from log(1+f0). For

this, we use once more our stability result. Recall that for each m ∈ N, the process

log(1+Γm(f)) is a weak martingale solution to the stochastic kinetic equation driven

by (1+Γm(f))−1[B+
m−B−m], starting from log(1+Γm(f0)). First observe that that for

all ϕ ∈ C∞c (R2d), the sequence {〈log(1+Γm), ϕ〉}m∈N converges in L2(Ω;Ct) towards

〈log(1 + f), ϕ〉. Indeed, this follows from Corollary 7.6.10, the almost everywhere

inequality Γm ≤ f , and the estimates (7.12). Next, for each t ∈ [0, T ] we can use

Proposition 7.7.2 with φ = 1[0,t]ϕ to conclude that

∫ t

0

〈
Bm

1 + Γm
, ϕ

〉
ds→

∫ t

0

〈
B(f, f)

1 + f
, ϕ

〉
ds in L2(Ω).

Using these facts together with the stability result Proposition 7.3.5, we may pass

m→∞ and complete the proof.
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Large Deviations and Local Limit Theorems

Local Limit Theorems

Preliminaries

We begin by assuming that there is a probability measure µ on Rd with mean

m and covariance matrix C given by

m =

∫
Rd
xµ(dx), C =

∫
Rd

(x−m)⊗2µ(dx).

Let φ(ξ) be the characteristic function of µ(dx)

φ(u) =

∫
Rd

eiξ·xµ(dx),

we will assume the following conditions on φ(ξ):

Hypothesis A.1.1.

1. For |u| > 0, |φ(ξ)| < 1 (sometimes called non-lattice condition on µ).

2. There exists an N ≥ 1 which is the smallest number such that |φ(ξ)|N is an

integrable function on Rd.
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Local central limit theorem

We begin by proving the local central limit theorem. For this, we assume that

we have a sequence of independent, mean zero random variables {Xi} in Rd each

with the same law µ(dx). Define the partial sum

Sn =
n∑
i=1

Xi.

We would like to study the law µn(x) of Sn, defined by duality for any smooth

bounded test function ϕ(x) as∫
Rd
ϕ(x)µn(dx) =

∫
(Rd)n

ϕ

(
n∑
i=1

xi

)
n∏
i=1

µ(dxi),

We note that the integrability condition in Hypothesis A.1.1 implies that µn(x) has

a density fn(x) with respect to Lebesgue for large enough n. Our first step will be

to prove the following theorem:

Theorem A.1.2. Let µ(dx) be a measure on Rd satisfying Hypothesis A.1.1. Then

for n > N , µn(dx) has a density fn(x) and the following limit holds uniformly in x

lim
n→∞

(
√
n)dfn(

√
nx) =

exp
(
−1

2
(x,C−1x)

)√
(2π)d detC

.

Proof. As is typical for the central limit theorem, the proof will study the character-

istic function φ(ξ) of µ(dx). The characteristic function of fn(x) is related to φ(ξ)

by

Φn(ξ) =

∫
Rd

eiξ·xfn(x)dx =

(∫
Rd

eiξ·xµ(dx)

)n
= [φ(ξ)]n

Taking the inverse Fourier transform,

(
√
n)dfn(

√
nx) =

1

(2π)d

∫
Rd

e−iξ·x[φ(ξ/
√
n)]ndξ,
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and therefore we conclude that∣∣∣∣∣(√n)dfn(
√
nx)−

exp
(
−1

2
(x,C−1x)

)√
(2π)d detC

∣∣∣∣∣
≤ 1

(2π)d

∫
Rd

∣∣∣[φ(ξ/
√
n)]n − e−

1
2

(ξ,Cξ)
∣∣∣ dξ.

We will show the first part of the theorem if we can estimate the right hand-side

above. By Taylor’s theorem, since φ(ξ) is at least C2 differentiable, for each ξ ∈ Rd,

[φ(ξ/
√
n)]n =

[
1− 1

2n
(ξ, Cξ) + o(n−1)

]n
→ e−

1
2

(ξ,Cξ)

as n→∞. Furthermore if ξ is sufficiently small, say |ξ| < δ, Taylor’s theorem also

implies that

|φ(ξ)| =
∣∣∣∣1− 1

2
(ξ, Cξ) +O(δ3)

∣∣∣∣ ≤ e−
1
4

(ξ,Cξ)

Therefore, if |ξ| ≤ δ
√
n, we have the bound

∣∣∣[φ(ξ/
√
n)]n − e−

1
2

(ξ,Cξ)
∣∣∣ ≤ e−

1
4

(ξ,Cξ)

It follows by dominated convergence that

∫
|ξ|<δ

√
n

∣∣∣[φ(ξ/
√
n)]n − e−

1
2

(ξ,Cξ)
∣∣∣ dξ → 0,

as n → ∞. To estimate the region where |ξ| > δ
√
n we remark that since |φ(ξ)|N

is integrable and φ(ξ) is absolutely continuous, then |φ(ξ)| → 0 as ξ →∞ therefore

the non-lattice condition |φ(ξ)| < 1 implies that sup|ξ|>δ |φ(ξ)| = γ < 1. Therefore

if n > N ,∫
|ξ|>δ

√
n

∣∣∣[φ(ξ/
√
n)]n − e−

1
2

(ξ,Cξ)
∣∣∣ ≤ γn−N

∫
Rd
|φ(ξ/

√
ξ)|Ndξ +

∫
|ξ|>δ

√
n

e−
1
2

(ξ,Cξ)dξ

= γn−N
√
n

∫
Rd
|φ(ξ)|Ndξ +

∫
|ξ|>δ

√
n

e−
1
2

(ξ,Cξ)dξ
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Sending n→∞ and using the integrability of e−
1
2

(ξ,Cξ) and the fact that γn
√
n→ 0,

the above integral converges to 0.

We can prove a more quantitative version of the theorem above, which is essen-

tially a local version of the Berry-Esseen theorem in the multidimensional setting.

However, as we are proving this at the level of the densities, and require an integra-

bility condition on the characteristic function, we are not able to obtain the typical

Berry-Esseen estimate that only depends moments of the measure µ. Instead the

bound depends on various quantities related to the decay and integrability of the

characteristic function.

Theorem A.1.3 (Local Berry-Esseen Theorem). Assume that µ satisfies Hypothesis

A.1.1 and assume the third moment
∫
Rd |x|

3µ(dx) is finite. Then there are universal

constants A > 0 and δ > 0 independent of µ so that

sup
x∈Rd

∣∣∣∣∣(√n)dfn(
√
nx)−

exp
(
−1

2
(x,C−1x)

)√
(2π)d detC

∣∣∣∣∣ ≤ Aρ√
n detC

+
γnρ (
√
n)dβN√

detC

where R =
√
C is the square root of C, ρ =

∫
Rd |R

−1x|3µ(dx), γρ = sup|ξ|>δ/ρ |φ(ξ)| <

1 and βN = ‖φ‖NLN , with N being the smallest number so that |φ(ξ)|N is integrable

(as per the Hypothesis A.1.1).

Proof. To begin, we assume that C = Id, which can be obtained by changing co-

ordinates to y = R−1x so that the measure µ has identity covariance and the third

moment is ρ =
∫
Rd |u|

3µ(dx). Let ε = ρ/
√
n. We being by noting that the third

moment estimate gives

φ(ξ) = 1− 1

2
|ξ|2 − i1

6
|ξ|3 +R(ξ)
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where the remainder is given by

R(ξ) = −i1
6

∫ 1

0

∫
Rd

(ξ · x)3eiξ·xλµ(dx)dλ, |R(ξ)| ≤ 1

6
|ξ|3ρ

and therefore

n log φ(ξ/
√
n) = −1

2
|ξ|2 +O(|ξ|3ε)

Using this, we conclude∣∣∣[φ(ξ/
√
n)]n − e−

1
2
|ξ|2
∣∣∣ ≤ e−

1
2
|ξ|2
∣∣∣e|ξ|3O(ε) − 1

∣∣∣
≤ O(|ξ|3ε)e−

1
2
|ξ|2+O(|ξ|3ε)

Choose a universal δ ( δ = 1/24 is sufficient) so that when |ξ| < δ/ε,

− 1

2
|ξ|2 +O(|ξ|3ε) ≤ 1

4
|ξ|2.

Therefore at frequencies less than δ/ε,

∫
|ξ|<δ/ε

∣∣∣[φ(ξ/
√
n)]n − e−

1
2
|ξ|2
∣∣∣ dξ ≤ O(ε)

∫
Rd
|ξ|3e−

1
4
|ξ|2dξ = O(ε).

For the high frequencies, define γρ = sup|ξ|>δ/ρ |φ(ξ)| and βN = ‖φ‖NLN . Since φ(ξ) is

uniformly continuous, |φ(ξ)|N is integrable and |φ(ξ)| < 1 for ξ 6= 0, we can conclude

that γρ < 1. Therefore∫
|ξ|>δ/ε

∣∣∣[φ(ξ/
√
n)]n − e−

1
2
|ξ|2
∣∣∣ dξ ≤ (

√
n)d
∫
|ξ|>δ/ρ

|φ(ξ)|ndξ +

∫
|ξ|>δ/ε

e−
1
2
|ξ|2dξ

≤ γn−Nρ βN(
√
n)d +

ε

δ

∫
Rd
|ξ|e−

1
2
|ξ|2dξ.

We complete the proof by writing

∫
Rd

∣∣∣[φ(ξ/
√
n)]n − e−

1
2
|ξ|2
∣∣∣ dξ ≤ O(ε) + γnρ (

√
n)dβN ,

and noting that we may change coordinates back to the original coordinates
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Local large-deviations on Rd

We now study the large deviations of averages of sums of independent, iden-

tically distributed random variables. To begin, we will re-introduce the framework

of Section A.2 and The logarithmic moment generating function of µ, L : Rd → R

is defined by

L(λ) = log(M(λ)), where M(λ) =

∫
Rd

eλ·xµ(dx),

and define its domain DL = {λ ∈ Rd : L(λ) < +∞}. We will assume that 0 is

contained the interior of DL, which, of course, implies all moments of µ are finite.

Note that L(λ) > −∞ for all λ, since by Jensen’s inequality L(λ) ≥ λ · m.

Indeed, as we are in the same setting as L enjoys some nice convexity and regularity

properties summarized in the following Lemma.

Lemma A.1.4. L(λ) is strictly convex and C∞ on the interior of it’s domain.

Moreover we have the following formulas for the gradient and the Hessian of L(λ),

∇L(λ) =

∫
Rd
x eλ·x−L(λ)µ(dx), (A.1)

∇2L(λ) =

∫
Rd
x⊗ x eλ·x−L(λ)µ(dx)−

(∫
Rd
x eλ·x−L(λ)µ(dx)

)⊗2

. (A.2)

The rate function I : DI ⊆ Rd → R associated to L(λ) is define by the

Legendre-Fenchel transform

I(u) = sup
λ∈DG

(λ · u− L(λ)) , (A.3)

where DI = {x ∈ Rd : I(x) < +∞}.
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Lemma A.1.5. In addition to the consequences of Lemma A.2.2 the rate function

I has the additional properties:

1. I(u) ≥ 0 and I(m) = 0.

2. lim|u|→∞ I(u) =∞ and its sub-level sets {u ∈ IntDI : I(u) ≤ α} are compact.

Proof. The fact that I(u) ≥ 0 follows from L(0) = 0, since

I(u) ≥ −L(0) = 0.

Moreover, since λ ·m−L(λ) ≤ 0, at u = m we have the reverse inequality I(m) ≤ 0,

and therefore

I(m) = 0.

Now, fix a u ∈ DI and let r be such that Br(0) ⊆ DL. Then upon choosing

λ = ru/|u|, we have

I(u) ≥ r|u| − L(ru/|u|) ≥ |u| − Cr, Cr = max
λ∈∂Br(0)

L(λ) > 0. (A.4)

Sending |u| → ∞ on both sides above gives lim|u|→∞ I(u) = ∞. Moreover since L

is convex, it is continuous, and the sub-level set {I(u) ≤ α} is closed. Also, by the

inequality (A.4) is bounded since

{I(u) ≤ α} ⊂ {r|u| ≤ α + Cr} = BR(0), R = (α + Cr)/r.

Therefore {I(u) ≤ α} is compact.

Lemma A.1.4 shows that derivatives of L are naturally given in terms of a

probability measure µλ(dx),

µλ(dx) :=
1

M(λ)
eλ·xµ(dx) = eλ·x−L(λ)µ(dx),
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defined for each λ ∈ DL. µλ(dx) is often called a tilted measure. Lemma A.1.4 imme-

diately implies that µλ(dx) has mean mλ = ∇L(λ) and positive definite covariance

matrix Cλ = ∇2L(λ). Therefore, for a given u ∈ DI , µλu(dx) = eλu·x−L(λu)µ(dx) has

mean u and covariance [∇2I(m)]−1. Note that in this case, µλm(dx) can be written

as

µλm(dx) = e∇I(m)·(x−m)+I(m)µ(dx).

Now we are ready to state the first theorem of this section. As in our discussion

of the central limit theorem, we will let Sn = X1 + . . . + Xn denote the sum of a

family of n independent identically distributed random variables in Rd with common

law µ(dx). We would like to study the law µŜn(dx) of the sample mean Ŝn = Sn/n.

By the strong law of large numbers, we know Ŝn → m almost surely. Therefore we

expect µŜn(dx) to concentrate on a Dirac measure,

µŜn → δm, as n→∞,

in the tight topology of measures. However, in many applications, one would like

more information on the approach of the distribution µŜn to a Dirac. That is, often

one is interested in gaining more information about the probability of deviations of

Ŝn from it’s limit m when n is large. As it turns out, for large n, if u 6= m, then

the probability that Ŝn is near u decays exponentially fast with speed determined

by the rate function I(u). Roughly speaking,

P(Ŝn is near u) ≈ e−nI(u).

Since the rate function I(u) ≥ 0 and I(m) = 0, then when n is large the only event

261



that whose probability doesn’t decay exponentially fast is when Ŝn is near m, in

accordance with the law of large numbers.

When n > N , the integrability condition on the characteristic function, given

in Hypothesis A.1.1, implies that µŜn(dx) has a density f̂n(x). The above discussion

is made more concrete by the following local deviation theorem.

Theorem A.1.6. Suppose that u belongs to the interior of DI . Then

lim
n→∞

1

n
log f̂n(u) = −I(u),

locally uniformly.

Proof. To prove this, we consider the tilted measure µλu(dx) with mean u ∈ IntDI

µλu(dx) = e∇I(u)·(x−u)+I(u)µ(dx).

Since the characteristic function φ(ξ) associated to µ is in LN(Rd), then the

characteristic function φλu(ξ) associated with µλu(dx) is also in LN . For n > N , let

f̂u,n(x) be the density of the law of the mean zero random variable

Ŝun − u,

where Ŝun = (Xu
1 + Xu

2 + . . . Xu
n)/n and each Xu

i is distributed with respect to the

tilted measure µλu(dx). The density can be defined by duality for every continuous

bounded function ϕ(x),∫
Rd
ϕ(x)f̂u,n(x)dx =

∫
(Rd)n

ϕ
(
n−1

n∑
i=1

xi − u
) n∏
i=1

µλu(dxi)

=

∫
(Rd)n

ϕ
(
n−1

n∑
i=1

xi − u
)

en∇I(u)·(n−1
∑n
i=1 xi−u)+nI(u)

n∏
i=1

µ(dxi)

=

∫
Rd
ϕ(x− u)en∇I(u)·(x−u)+nI(u)f̂n(x)dx.
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So that f̂n and f̂u,n are related by

f̂n(x+ u) = e−n∇I(u)·x−nI(u)f̂u,n(x).

Setting x = 0 in the above equation gives

f̂n(u) = e−nI(u)f̂n,u(0).

Since the change of measure from µ to µλu is done by an absolutely continuous

transformation, if µ satisfies the non-lattice condition ( |φ(ξ)| < 1 for |ξ| > 0), then

so does µλu . Therefore the local central limit Theorem A.1.2 applies to the random

variable Ŝun − u, yielding

lim
n→∞

(
√
n)−dfu,n(0) =

√
(2π)−d det∇2I(u).

This implies that fu,n(0) = O(nd/2), and therefore

1

n
log f̂n(u) = −I(u) +

1

n
log(fu,n(0)) = −I(u) +O(n−1 log n).

Sending n→∞ completes the proof.

In fact the previous theorem actually implies the following improved asymp-

totic, which is actually sharp in the case that the initial distribution is normal or

gamma distributed. The following corollary is an easy consequence of the previous

theorem the fact that all moments are finite and the local Berry-Esseen inequality

proved in Theorem A.1.3.

Corollary A.1.7. For each u ∈ Rn, we have the asymptotic,

f̂n(u) =
e−nI(u)

(2π)d/2

√
nd det∇2I(u)

(
1 +O(n−1/2)

)
.
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It is also likely that A.1.6 to C2 convergence. Namely, the following conver-

gences hold locally uniformly

lim
n→∞

1

n
log f̂n(u) = −I(u),

lim
n→∞

1

n
∇ log f̂n(u) = −∇I(u),

lim
n→∞

1

n
∇2 log f̂n(u) = −∇2I(u).

However, a proof of this result would rely on improved central limit theorem

convergence results, as well as some uniform control on the statistical quantities

related to the measure µλu in the parameter u. This is typically rather non-trivial

and requires more assumptions on the measure µ.

General framework and abstract Gibbs ensembles

To begin, we will consider a general framework for a class of abstract Gibbs

measures. Namely, those that can be written as a product of certain single particle

Gibbs measures. The reason for considering such a general abstract approach to

Gibbs measures, as opposed to presenting the following results for the more classical

definitions of Gibbs measures, is due to the fact that we will not only be considering

Gibbs measures corresponding to certain classical particles systems, but will also be

considering more general Gibbs measures associated to certain fluid-particle systems.

Also, we will find it necessary to change variables

In general, assume that we have γ(dx) a (potentially unbounded) positive,

σ-finite Borel measure on a smooth d-dimensional manifold Γ, typically taken to be
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Td, Rd or some product of the two. Furthermore, suppose we are given a measurable

mapping,

h : Γ→ Rr,

which we interpret as a generalized energy function on a one-particle phase space

Γ. Associated with h we have a free energy function F : DF ⊂ Rr → R by

F (λ) = logZ(λ), Z(λ) =

∫
Γ

eλ·h(x)γ(dx),

and suppose that it’s domain DF = {λ ∈ Rr : |F (λ)| < ∞} has non-empty

interior. We will assume that for every v ∈ Rr, h · v is non-constant on Γ, which

will be sufficient to obtain strict convexity of F . Specifically, we have the following

properties of free energy function F (λ):

Lemma A.2.1. F is strictly convex and C∞ on IntDF and DF is convex. Moreover

we have the following formulas for the gradient and the Hessian of F (λ),

∇F (λ) =

∫
Γ

h(x) eλ·h(x)−F (λ)µ(dx),

∇2F (λ) =

∫
Γ

h(x)⊗2 eλ·h(x)−F (λ)µ(dx)−
(∫

Γ

h(x) eλ·h(x)−F (λ)µ(dx)

)⊗2

.

Proof. To prove convexity, let α ∈ [0, 1] and λ1, λ2 ∈ IntDF , then Hölders inequality

implies

Z(αλ1 + (1− α)λ2) =

∫
Γ

(
eλ1·h(x)

)α (
eλ2·h(x)

)1−α
γ(dx) ≤ Z(λ1)αZ(λ2)(1−α).

Taking the logarithm of both sides implies convexity of F (λ) as well as the convexity

of DF .
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To prove C∞, it suffices to show that Z(λ) is C∞ on IntDF . To see this,

fix λ ∈ IntDF and take v ∈ Rd, |v| = 1 and choose ε0 small enough so that

λ+ εh ∈ IntDF for all |ε| ≤ ε0. Then the divided difference

Dεve
λ·h(x) = (e(λ+εv)·h(x) − eλ·h(x))ε−1

converges pointwise to v · h(x)eλ·h(x) as ε→ 0, and has the bound

Dεve
λ·h(x) ≤ eλ·h(x)(eε0|v·h(x)| − 1)ε−1

0 ≤ eλ·h(x)(eε0v·h(x) + e−ε0v·h(x))ε−1
0 .

This means that

∫
Γ

Dεve
λ·h(x)γ(dx) ≤ ε−1

0 [Z(λ+ ε0v) + Z(λ− ε0v)] <∞.

Applying dominated convergence gives

d

dε
Z(λ+ εv)|ε=0 =

∫
Rd
v · h(x)eλ·h(x)γ(dx),

and therefore

∇Z(λ) =

∫
Γ

h(x) eλ·h(x)γ(dx). (A.5)

The same argument may be applied to obtain higher derivatives. For instance, tak-

ing divided differences h(x) eλ·h(x) we can employ the same bound above to conclude

∫
Γ

|Dεv(h(x) eλ·h(x))|γ(dx) ≤ ε−1
0 [|∇Z(λ+ ε0v)|+ |∇Z(λ− ε0v)|] <∞.

Again using dominated convergence gives

∇2Z(λ) =

∫
Γ

h(x)⊗ h(x) eλ·h(x)γ(dx). (A.6)
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The formulas (A.1) and (A.2) follow immediately by applying the chain rule to

F (λ) = logZ(λ)

∇F (λ) =
∇Z(λ)

Z(λ)
, ∇2F (λ) =

∇2Z(λ)

Z(λ)
− ∇Z(λ)⊗∇Z(λ)

Z(λ)2

and using the formulas (A.5) and (A.6).

To see strict convexity, note that the Hessian ∇2F can be written

∇2F (λ) =

∫
Γ

(
h(x)−

∫
Γ

h(y)eλ·h(y)−F (λ)γ(dy)

)⊗2

eλ·h(x)−F (λ)γ(dx),

and therefore can only be degenerate at a particular λ ∈ IntDF if there is a direction

v ∈ Rr such that for all x ∈ Γ

v · h(x) =

∫
Γ

v · h(y)eλ·h(y)−F (λ)γ(dy).

However as we assumed that h(x) · v is non-constant, this cannot be true.

Next, we define the entropy function S(u) : DS ⊂ Rd → R associated to F by

the Legendre-Fenchel transform

S(u) = sup
λ∈DF

(λ · u− F (λ)),

where DS = {u ∈ Rr : |S(u)| <∞} is the domain of S.

Lemma A.2.2. The entropy function S has the following properties:

1. DS is convex and has non-empty interior

2. S(u) is strictly convex and smooth on IntDS.
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3. For each u ∈ DS, there exists a unique λu ∈ DF which is the minimizer of

(A.3)

S(u) = u · λu − F (λu).

Moreover λu satisfies,

u = ∇F (λu), λu = ∇S(u), ∇2S(u) = [∇2F (λu)]
−1.

Proof. The fact that S(u) convex follows from the definition of (A.3), since it is the

supremum of linear functions. Next, since F is strictly convex and C∞, λ 7→ ∇F (λ)

is a C∞ diffeomorphism from DF to DS. It follows that for each u ∈ DS, there is

a unique λu ∈ DF satisfying u = ∇F (λu). Moreover for any u ∈ DS, the function

fu(λ) = λ · u− F (λ) is strictly concave, and satisfies ∇fu(λu) = 0. Therefore fu(λ)

has a unique maximum at λu ∈ DF so that

S(u) = fu(λu) = u · λu − F (λu).

Since λu = (∇F )−1(u), the mapping u 7→ λu is smooth. Therefore the smoothness

of S(u) = u · λu − F (λu) follows. Moreover, taking the gradient of S(u) yields

∇S(u) = λu + u · ∇uλu −∇F (λu) · ∇uλu = λu.

Finally, differentiating both sides of the relation, u = ∇F (∇S(u)) gives

∇2S(u) = [∇2F (λu)]
−1.

Remark A.2.3. We say that u ∈ DS and λ ∈ DF are Legendre dual to each other if

they are related by

u = ∇F (λ), λ = ∇S(u).
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In particular, any two Legendre dual variables u an λ must satisfy

λ · u = F (λ) + S(u).

Abstract Canonical and Micro-canonical Ensembles

Next, we introduce the definition of the abstract cannonical and micro-cannonical

ensembles associated to the function h. More specifically, these ‘ensembles’ refer to

certain measures on the space of n particle configurations Γn.

We begin by defining, for each λ ∈ DF , the single particle Gibbs measure

µλ(dx) ≡ 1

Z(λ)
eλ·h(x)γ(dx) = eλ·h(x)−F (λ)γ(dx).

Note that Lemma A.2.1 implies that with respect to µλ(dx), the function h(x) has

mean ∇F (λ) and covariance ∇2F (λ).

Denote the pushforward of γ(dx) under h by ν(dy) = h#γ(dy), and consider,

for each λ ∈ DF the tilted probability measure

νλ(dy) = eλ·x−F (λ)ν(dy),

which is just the push forward of µλ(dx) under h.

For the remainder of this section we will assume:

Hypothesis A.3.1.

1. h and γ are such that, for each λ ∈ DF , νλ(dy) satisfies the non-lattice and in-

tegrability conditions on it’s characteristic function stated in Hypothesis A.1.1

of Section A.1.2.
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2. Each component of h : Γ→ Rr, hi has compact superlevel sets.

Remark A.3.2. The first assumption of Hypothesis A.3.1 is to ensure that certain

local limit theorems of Section A.1.3 apply. The second condition on h is to ensure

that certain conditional measures are well-defined. It is important to note that the

choice of compact super-level sets only comes from physical considerations, since

h will typically be taken to be the negative of an energy function. However, one

could just as easily assume that h has compact sublevel sets without changing any

consequences of the theory below.

It will be useful to relate the rate function associated to νλ(dy) to the free

energy F and entropy S.

Lemma A.3.3. Then the rate function Iλ(u) associated to νλ(dy) is given by

Iλ(u) = S(u) + F (λ)− λ · u.

Proof. Let γh(dy) denote the pushforward of γ(dx) under h. It follows that µλ,h(dy)

is just a tilted version of γh(dy),

νλ,h(dy) = eλ·y−F (λ)γh(dy).

The logarithmic moment generating function Lλ(α) associated to µλ,h(dy) can then

be written as

Lλ(α) = F (α + λ)− F (λ)

and therefore DLλ = DF − λ. Taking the Legendre-Fenchel transform give the rate

function

Iλ(u) = sup
α+λ∈DF

(α · u− F (α + λ)) + F (λ) = S(u) + F (λ)− λ · u.
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Physically, we will think of h as a one-particle energy function (actually the

negative of the energy) associated to a particle in phase space Γ. The measure

µλ(dx) is then thought of as an equilibrium measure for that particular particle. If

one instead has n particles xn = (x1, . . . , xn) ∈ Γn, then we will consider the average

energy function ĥn(xn) given by

ĥn(xn) =
1

n

n∑
i=1

h(xi).

The n particle canonical ensemble is then defined to be the product measure

µnλ(dxn) = µ⊗nλ (dxn) =
1

Z(λ)n
enλ·ĥn(xn)γn(dxn),

where we have denoted

γn(dxn) = γ⊗n(dxn).

We denote level sets of ĥn : Γ→ Rr, for each y ∈ Rr, by

Σn
y =

{
xn ∈ (Rd)n : ĥn(xn) = y

}
.

Then the assumption that h has compact sublevel sets implies that Σn
y is bounded.

For each y ∈ Rr, define the micro-canonical measure µn(dxn | y), to be the prob-

ability measure on Σn
y produced by conditioning the canonical measure µn(dxn)

with respect to ĥn. Such a measure is given uniquely (up to µ̂λ,n(dy) null sets) by

disintegration

µnλ(dxn) = µn(dxn | y) µ̂λ,n(dy), (A.7)
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where µ̂λ,n(dy) denotes the pushforward of the canonical measure µnλ(dxn) under

ĥn. The above decomposition is to be interpreted by integration against the test

functions ϕ ∈ Cb(Rr) and ψ ∈ Cb(Γn),∫
Γn
ϕ
(
ĥn(xn)

)
ψ(xn)µnλ(dxn)

=

∫
Rr
ϕ(y)

(∫
Σny

ψ(xn)µn(dxn | y)

)
µ̂λ,n(dy).

(A.8)

The subscript λ is intentionally missing from µn(dxn | y), since as we will see

in the following lemma, it does not depend on λ.

Lemma A.3.4. In addition to (A.7), the following decomposition also holds

γn(dxn) = µn(dxn | y)γ̂n(dy), (A.9)

where γ̂n(dy) is the pushforward of γn(dxn) under ĥn, and it is to be interpreted

in the sense of equation (A.8). As a consequence, the micro-canonical measure

µn(dxn | y) does not depend on λ.

Proof. To see this, recall that µnλ(dxn) has the form

µnλ(dxn) = en(λ·ĥn(xn)−F (λ))γn(dxn),

and therefore µ̂λ,n(dy) is given by

µ̂λ,n(dy) = en(λ·y−F (λ))γ̂n(dxn).

Now, consider a test function of the type ϕ(y) = φ(y)e−nλ·y+nF (λ), where φ has

compact support contained in a ball of some radius R. The condition that h has

compact superlevel sets implies that ϕ(ĥn(y)) has compact support and is bounded,
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since

suppϕ(ĥn(y)) = {x : h(x) ∈ suppφ} ⊆ {x : |h(x)| ≤ R}.

Using this test function in (A.8) and employing the forms for µnλ(dxn) and µ̂λ,n(dy)

given above, we obtain∫
Γn
φ
(
ĥn(xn)

)
ψ(xn) γn(dxn)

=

∫
Rr
φ(y)

(∫
Σny

ψ(xn)µn(dxn | y)

)
γ̂n(dy).

When µ̂λ,n(dy) has a positive density f̂λ,n(y) then γ̂n(dy) has a density gn(y).

So, formally one can take φ(z) = δ(y − z) and we may write the micro-canonical

measure µn(dxn | y) as

µn(dxn | y) =
1

f̂λ,n(y)
δ(y − ĥn(xn))µnλ(dxn)

=
1

gn(y)
δ(y − ĥn(xn))γn(dxn).

and gn(y) is given by

gn(y) =

∫
Γn
δ(y − ĥn(xn))γ(dxn).

The function gn(y) is often refered in statistical mechanics literature as the density

of states.

Equivalence of Ensembles

Since the cannonical measure is a product measure, it is often more con-

venient to take averages with, than is the case for the micro-cannonical measure
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µn(dxn | y). Indeed, this is often the motivation for using the canonical measure

over the micro-canonical measure in applications. However, from physical consid-

erations, the micro-canonical measure is the more natural measure to use due to

the fact that for most systems of interest, the particle evolution takes place on the

level sets of ĥn, and therefore is usually a natural ergodic invariant measure fore

the dynamics. Indeed, the disintegration (A.7) implies that µnλ is always a linear

combination of the measures µn( · | y) and therefore, for finite n, µnλ cannot be an

ergodic invariant measure.

However, one is often interested in studying the large n behavior of the mea-

sures µnλ(dxn) and µn(dxn | y). Indeed, it is in this setting that physicists often

justify the use of the canonical ensemble in place of the micro-canonical one. This

approximation of the micro-canonical ensemble by the canonical one when n is large

is often refered to as the equivalence of ensembles. It is precisely this equivalence

that we will address in this section.

To begin, we will need the following generalization of the local large deviations

theorem A.1.6.

Lemma A.3.5. Let γ̂n(dy) be the push-forward of γn(dxn) under ĥn(xn). Then for

large enough n, γ̂n(dy) has a density ĝn(y) and for each y ∈ DS, the following limit

holds

lim
n→∞

1

n
log ĝn(y) = −S(y).

Proof. First note that we have the relation

µ̂λ,n(dy) = en(λ·y−F (λ))γ̂n(dy),

274



and that µ̂λ,n(dy) is just the pushforward of the product measure νλ(dy)⊗n under the

mapping xn 7→ n−1(x1 + . . .+ xn). Since νλ(dx) satisfies Hypothesis A.1.1 and has

bounded moments, we can apply Theorem A.1.6 to conclude that, for large enough

n, µ̂λ,n(dy) has a density f̂λ,n(y) and

lim
n→∞

1

n
log f̂λ,n(y) = −Iλ(y) = λ · y − S(y)− F (λ), (A.10)

where we have used Lemma A.3.3 to obtain the form of the rate function Iλ(y).

Since µ̂λ,n(dy) and γ̂n(dy) are related by an absolutely continuous transformation,

γ̂n(dy) has a density ĝn(y) and satisfies

1

n
log ĝn(y) = F (λ)− λ · y +

1

n
log f̂λ,n(y).

Taking the limit as n→∞ and using (A.10) completes the proof.

Remark A.3.6. In fact, we can do better than the lemma above. If we use the sharp

asymptotic provided by Corollary A.1.7, we can obtain

ĝn(y) =
e−nS(y)

(2π)d/2

√
nd det∇2S(y)

(
1 +O(n−1/2)

)
.

Our goal is to establish an equivalence of ensembles theorem. In general we

will show the following theorem

Theorem A.3.7. Let G be a continuous, bounded function on Γk, and for each

y ∈ DS let λy = ∇S(y). We have the following convergence,

lim
n→∞

∫
Γn
G(xk)µ

n(dxn | y) =

∫
Γk
G(xk)µ

k
λy(dxk),

locally uniformly on DS.

275



We will need the following lemmas.

Lemma A.3.8. Let G be a continuous bounded function on Γ, and define for each

θ ∈ R the unbounded measure

γθ(dx) = eθGγ(dx),

and let Fθ(λ) and Sθ(y) be it’s free energy and entropy functions,

Fθ(λ) = log

(∫
Γ

eθG+λ·hγ(dx)

)
, Sθ(y) = sup

λ∈DFθ
(λ · y − Fθ(λ)).

Then we have the following,

1. The domains of Sθ and Fθ coincide with those of S and F respectively.

2. Sθ and Fθ are differentiable in θ and, for any pair of Legendre dual variables

(y, λ) ∈ DS ×DF , they satisfy

∂θSθ(y) = −∂θFθ(λ) = −
∫

Γ

G(x)eλ·h(x)−Fθ(λ)γθ(dx).

In particular, this implies that

∂θSθ(y)
∣∣
θ=0

= −
∫

Γ

G(x)µλ(dx).

Proof. The fact that the domains of Fθ and Sθ are the same as those of F and S

follows from the fact that G is bounded. Also differentiability of Fθ(λ) in θ follows

from the fact that the divided differences

(e(θ+ε)G − eθG)/ε
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are uniformly bounded in x for small ε and, since eλ·hγ(dx) is a finite measure for

λ ∈ DF . Applying Lebesgue dominated convergence gives

∂θFθ(λ) =

∫
Γ

G(x)eλ·h(x)−Fθ(λ)γθ(dx).

To conclude the proof fix y ∈ DS and let λ = ∇Sθ(y) be it’s Legendre dual.

It follows that

Sθ(y) = ∇Sθ(y) · y − Fθ(∇Sθ(y)).

Taking the derivatives of both sides in θ yields

∂θSθ(y) = ∂θ∇Sθ(y) · y −∇F (∇Sθ(y)) · ∂θ∇Sθ − ∂θFθ(∇Sθ) = −∂θFθ(λ).

Our main tool will be the following large deviation type theorem.

Lemma A.3.9. Let G be a continuous bounded function on Γ and let Ĝn(xn) =

1
k

∑n
i=1G(xi) be it’s average (or sample mean). Then for each θ ∈ R and y ∈ DS,

lim
n→∞

1

n
log

(∫
Σny

enθĜn(xn)µn(dxn | y)

)
= S(y)− Sθ(y),

where Sθ is defined in Lemma A.3.8.

Proof. We begin by considering the decomposition (A.9) in weak form for test func-

tions ψ ∈ Cb(Γn) and ϕ ∈ Cc(Rr),∫
Γn
ϕ
(
ĥn(xn)

)
ψ(xn)γn(dxn) =

∫
Rr
ϕ(y)

(∫
Σny

ψ(xn)µn(dxn | y)

)
γ̂n(dy).

Upon choosing ψ(xn) = enθĜn(xn), and denoting γ̂θ,n(dy) the pushforward of the

product measure γ⊗nθ (dxn) under ĥn(x), we find∫
Rr
ϕ(y)γ̂θ,n(dy) =

∫
Rr
ϕ(y)

(∫
Σny

enθĜn(xn)µn(dxn | y)

)
γ̂n(dy). (A.11)
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Applying Lemma A.3.5 to both the measures γ̂n(dy) and γ̂θ,n(dy) we conclude that

they have densities ĝn(y) and ĝθ,n(y). Moreover equation (A.11) implies that they

are related by

ĝθ,n(y) =

∫
Σny

enθĜn(xn)µn(dxn | y)ĝn(y).

Taking the log of both sides, we conclude

1

n
log

(∫
Σny

enθĜn(xn)µn(dxn | y)

)
=

1

n
log ĝθ,n −

1

n
log ĝn.

Taking the limit as n → ∞ and appealing to Lemma A.3.5 again yields the result.

We are now ready to prove Theorem A.3.7.

Proof of Theorem A.3.7. By the density of linear combinations of factored functions

in Cb(Γ
k), it suffices to prove the Theorem A.3.7 for functions of the form

G(x1, x2, . . . , xk) = G1(x1)G1(x2) . . . Gk(xk)

for {Gj}kj=1 a collection of continuous bounded functions on Γ. Without loss of

generality, we may assume that

∫
Γk
G(xk)µ

k
λy(dxk) = 0,

and therefore at least one of the functions {Gj}kj=1 is mean zero with respect to

µλy(dx). By the symmetry of the measure µn(dxn | y) under permutations of the

indices of xn = (x1, . . . , xn), we may assume that G1 is mean zero, that is

∫
Γ

G1(x)µλy(dx) = 0.
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Again using the permutation symmetry, we find∫
Γn
G1(x1)G2(x2) . . . Gk(xk)µ

n(dxn | y)

=

∫
Γn

(
1

n− k + 1

n−k+1∑
j=1

G1(xj)

)
G2(xn−k+2) . . . Gk(xn)µn(dxn | y).

Using the boundedness of {Gj}kj=1 we conclude that∣∣∣∣∫
Γn
G1(x1)G2(x2) . . . Gk(xk)µ

n(dxn | y)

∣∣∣∣ . ∫
Γn
|Ĝ1,n(xn)|µn(dxn | y) +

k

n
(A.12)

where

Ĝ1,n(xn) =
1

n

n∑
i=1

G1(xi).

The proof will be complete if we can show that the first term on the right-hand-side

of (A.12) vanishes as n → ∞. With this in mind, by Jensen’s inequality we may

estimate∫
Γn
|Ĝ1,n(xn)|µn(dxn | y) ≤ 1

nθ
log

(∫
Γn

enθ|Ĝ1,n(xn)| µn(dxn | y)

)
≤ 1

nθ
log

(∫
Γn

[
enθĜ1,n(xn) + e−nθĜ1,n(xn)

]
µn(dxn | y)

) (A.13)

Using the elementary fact that if {an} and {bn} are two real sequences converging

to a and b respectively, then

lim
n→∞

1

n
log
(
enan + enbn

)
= max{a, b}.

We find upon sending n→∞ in (A.13) and applying Lemma A.3.9 that

lim
n→∞

∫
Γn
|Ĝ1,n(xn)|µn(dxn | y) ≤ 1

θ
max {S(y)− Sθ(y), S(y)− S−θ(y)} .

Where Sθ(y) is entropy corresponding to the measure eθG1(x)γ(dx). Sending θ → 0

and appealing to Lemma A.3.8 we find

lim
θ→0

1

θ
max {S(y)− Sθ(y), S(y)− S−θ(y)} = ∂θSθ(y)

∣∣
θ=0

= −
∫

Γ

G1(x)µλy(dx) = 0.
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In general, the symmetry of the measure µn(dxn | y) and Theorem A.3.7 implies

that

lim
n→∞

∫
Γn
Ĝn(xn)µn(dxn | y) =

∫
Γk
G(xk)µ

k
λy(dxk),

where Ĝn(xn) is a sum of shifts of the function G given by

Ĝn(xn) =
1

n− k + 1

n−k∑
i=0

G(xi+1, xi+2, . . . , xi+k). (A.14)

Indeed, this resembles an ergodic theorem, giving convergence of the averages

Ĝn to their canonical average
∫

Γk
G dµnλ with respect to the micro-canonical ensemble

µn(dxn | y). In fact, one can show the following stronger result, taken from Guo-

Papanicolau-Varadhan [70].

Theorem A.3.10. Let F be a bounded continuous function on Γk for some 1 ≤ k ≤

n and let Ĝn(xn) it’s average given by (A.14). For each y ∈ DS let λy = ∇S(y) ∈ DF

be its Legendre dual variable. Define for each δ > 0 and y ∈ DS the set

Aδ,y =

{
xn ∈ Γn :

∣∣∣∣Ĝn(xn)−
∫

Γk
G(xk)µ

k
λy(dxk)

∣∣∣∣ > δ

}
.

Then for each y ∈ DS and δ > 0, there is a constant C, independent of n, y, δ, so

that

lim
n→∞

1

n
log µn(Aδ,y | y) ≤ −Cδ2,

uniformly on compact sets in y.
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Stochastic Processes and Functional Analysis

Compactness and tightness criterion

Let (Ω,F ,P) be a probability space and (E, τ,Bτ ) be a topological space

endowed with its Borel sigma algebra. A mapping X : Ω → (E, τ) is called an “E

valued random variable” provided it is a measurable mapping between these spaces.

Every E valued valued random variable induces a probability measure on (E, τ,Bτ )

by pushforward. A sequence of probability measures {Pn}n∈N on Bτ is said to be

“tight” provided that for each ε > 0 there exists a τ compact set Kε such that

Pn(Kε) ≥ 1− ε for all n ∈ N.

Definition B.1.1. A topological space (E, τ) is called a Jakubowski space provided

it admits a countable sequence continuous functionals which separate points.

Our main interest in such spaces is the following fundamental result given in

[74].

Theorem B.1.2. Let (E, τ) be a Jakubowski space. Suppose {X̃n}n∈N is a sequence

of E valued random variables on a probability spaces (Ω̃,F ,P) inducing tight laws

with respect to the topology τ . Then there exists a new probability space (Ω,F ,P)

endowed with an E valued random variable X and a sequence of measurable maps
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{T̃n}n∈N

T̃n : (Ω,F ,P)→ (Ω̃, F̃ , P̃)

with the following two properties:

1. For each n ∈ N, the measure P̃n is the pushforward of P by T̃n.

2. The new sequence {Xn}n∈N defined via Xn = X̃n ◦ T̃n converges P a.s. to X

(with respect to the topology τ).

We begin by recalling the following ‘compact plus small ball” criterion for

compactness in Frechet spaces.

Lemma B.1.3. Let F be a Fréchet space. Then U ⊂ F is precompact in F if for

every ε > 0, there exists a compact set Kε ⊂ F , such that

U ⊂ Kε +Bε,

where Bε is a ρ-ball centered at 0 of radius ε, for a given metric ρ.

Proof. Fix ε > 0 and let Kε be the compact set defined as above. Since Kε is

compact and F is a metric space, it is totally bounded. Therefore there exists a

finite collection of points {xi}Ni=1 so that Kε ⊆
⋃N
i=1 Bε(xi). However, since

K ⊆
N⋃
i=1

Bε(xi) +Bε(0) ⊆
N⋃
i=1

B2ε(xi),

then K is totally bounded and therefore precompact in F .

In the stochastic setting, we make use of the analogous version as a tightness

criterion.
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Lemma B.1.4. Let F be a Frechet space and {Xn}n∈N be a sequence of F -valued

random variables. Assume that for all L ∈ R+ there exists a decomposition

Xn = Y L
n + ZL

n ,

where {Y L
n }n∈N induces a tight sequence of laws on F . If in addition, ZL

n satisfies

for every η > 0,

lim
L→∞

sup
n

P
(
ZL
n /∈ Bη

)
= 0.

Then Xn induces tight laws on F .

Proof. Fix ε > 0 and choose a sequence {Lj}j∈N so that

sup
n

P
(
ZLj
n /∈ B1/j

)
< ε/2j.

By the tightness of Y L
n , for each j ∈ N there is a compact set Kj ⊆ F such that

sup
n

P
(
Y Lj
n ∈ Kj

)
< ε/2j

By the classical compactness criterion, Lemma B.1.3, the set

K =
⋂
j

(Kj +B1/j).

is compact in E. It follows that

sup
n

P(Xn /∈ K) ≤
∑
j

(
sup
n

P
(
Y Lj
n /∈ Kj

)
+ sup

n
P
(
ZLj
n /∈ B1/j

))
< 2ε.

Therefore {Xn}n∈N induce tight laws on F .

Next, we recall the classical Dunford-Pettis compactness criterion on [L1]w,loc.
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Lemma B.1.5. Let K be a bounded subset of [L1(Rd)]loc, then K is precompact in

[L1(Rd)]w,loc if and only if the following limit holds

lim
L→∞

sup
f∈K
‖f1|f |>L‖L1 = 0.

In the stochastic setting, the corresponding tightness condition is:

Lemma B.1.6. Let µn be a sequence of probability measures on L1(Rd)loc, then

{µn}n∈N are tight on [L1(Rd)]w,loc if and only if for every η > 0 the following limit

hold

lim
L→∞

sup
n
µn
{
f : ‖f1|f |>L‖L1 > η

}
= 0. (B.1)

Proof. First suppose that the limits (B.1) hold. Let ε > 0 and choose a sequence

{Lk} such that

sup
n
µn
{
f : ‖f1|f |>Lk‖L1 > 1/k

}
< ε2−k.

Define the closed set

Ak =
{
f : ‖f1|f |>Lk‖L1 ≤ 1/k

}
.

Then by the classical compactness criterion in Lemma B.1.5,

K =
⋂
k

Ak

is a compact set in [L1(Rd)]w,loc. Furthermore, we have

sup
n
µn(K) ≤

∑
k

sup
n
µn(Ak) < ε.

Therefore {µn} are tight on [L1(Rd)]w,loc.

Next suppose that {µn} are tight on [L1(Rd)]w. And let K be a compact subset

of [L1]w such that supn µn(Kc) < ε. For each η > 0 it follows by the compactness

284



criterion in Lemma B.1.5 that for large enough L (depending on η), the following

set is empty {
f ∈ K : ‖f1|f |>L‖L1 > η

}
= ∅.

Therefore for large enough L we have

sup
n
µn
{
f : ‖f1|f |>L‖L1 > η

}
≤ sup

n
µn(Kc) < ε.

We now introduce a useful tightness criterion for probability measures on

Ct([L
1
x]w). First we will need a basic criterion for compactness in Ct([L

1
x]w).

Lemma B.1.7. Let K ⊆ C([0, T ]; [L1(Rd)]w) and denote for each ϕ ∈ C∞c (Rd), the

set

Kϕ = {〈f, ϕ〉 : f ∈ K} ⊆ C([0, T ]).

Then K is precompact in C([0, T ] ; [L1(Rd)]w) if any only if K is a weakly pre-

compact subset of L∞([0, T ];L1(Rd)) and Kϕ equicontinuous in C([0, T ]) for each

ϕ ∈ C∞c (Rd).

This gives rise to the following tightness criterion on Ct([L
1
x]w).

Lemma B.1.8. Let {µn}n∈N be a sequence of probability measures on C([0, T ], [L1(Rd)]w),

and for any ϕ ∈ C∞c (Rd), let {νϕn}n∈N be the sequence of measures on C([0, T ]) in-

duced by the mapping f 7→ 〈f, ϕ〉. Then the measures {µn}n∈N are tight if and only

if {νϕn}n∈N are tight for every ϕ ∈ C∞c and for every η > 0 we have

lim
M→∞

sup
n
µn

{
f : ‖f‖L∞t (L1) > M

}
= 0,
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lim
L→∞

sup
n
µn

{
f : ‖f1|f |>L‖L∞t (L1) > η

}
= 0,

and

lim
R→∞

sup
n
µn

{
f : ‖f1BcR‖L∞t (L1) > η

}
= 0,

Proof. Define for any function f ∈ C([0, T ]) and δ > 0 the modulus of continuity

ωδ(f) := sup
|t−s|<δ

|f(t)− f(s)|.

We prove sufficiency first. Let ε > 0, and let {ϕj} be a dense subset of C∞c (Rd).

Then by the classical tightness criterion for functions in C([0, T ]), we can conclude

that for each η > 0 and ϕj, we have

lim
δ→0

sup
n
µn

{
f : ωδ(〈f, ϕj〉) > η

}
= 0.

Therefore for each j, k ≥ 0 we may choose values (Mk, Lk, Rk, δk,j) so that

sup
n
µn

{
f : ‖f‖L∞t (L1) > Mk

}
< ε2−k

sup
n
µn

{
f : ‖f1|f |>Lk‖L∞t (L1) > 1/k

}
< ε2−k

sup
n
µn

{
f : ‖f1BcRk‖L∞t (L1) > 1/k

}
< ε2−k

sup
n
µn

{
f : ωδk,j(〈f, ϕj〉) > 1/k

}
< ε2−k−j.

Define the closed sets,

Ak =
{
f : ‖f‖L∞t (L1) ≤Mk

}
Bk =

{
f : ‖f1|f |>Lk‖L∞t (L1) ≤ 1/k

}
Ck =

{
f : ‖f1BcRk‖L∞t (L1) ≤ 1/k

}
Dk,j =

{
f : ωδk,j(〈f, ϕj〉) ≤ 1/k

}
.

and let

K =
⋂
j,k

Ak ∩Bk ∩ Ck ∩Dk,j.
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By the compactness criterion in Lemma B.1.7 it is straight forward to verify that

K is a compact subset of C([0, T ] ; [L1]w). Furthermore, we have

µn(Kc) ≤
∑
k

µn(Ack) +
∑
k

µk(B
c
k) +

∑
k

µk(C
c
k) +

∑
k,j

µn(Dc
k,j) < 4ε,

whereby tightness follows.

To prove necessity. We remark that since f 7→ 〈f, ϕ〉 is continuous from

C([0, T ] ; [L1]w) to C([0, T ]) for every ϕ ∈ C∞c (Rd), then tightness of {µn}n∈N au-

tomatically implies tightness of {νϕn}n∈N. Now let ε > 0 and let K be the compact

subset of C([0, T ] ; [L1]w) such that supn µn(Kc) < ε. Fix an η > 0. The compact-

ness criterion in Lemma B.1.7 implies that there exist (M ′, L′, R′) such that for and

M > M ′, L > L′, R > R′ the following sets are empty{
f ∈ K : ‖f‖L∞t (L1) > M

}
= ∅,{

f ∈ K : ‖f1|f |>L‖L∞t (L1) > η
}

= ∅,{
f ∈ K : ‖f1BcR‖L∞t (L1) > η

}
= ∅,

Therefore, for such M,L and R large enough, we have

µn

{
f : ‖f‖L∞t (L1) > M

}
≤ µn(Kc) < ε,

µn

{
f : ‖f1|f |>L‖L∞t (L1) > η

}
≤ µn(Kc) < ε

µn

{
f : ‖f1BcR‖L∞t (L1) > η

}
≤ µn(Kc) < ε.

This completes the proof.

We have the following representation and compactness criterion for Lpt,x(M∗
v).

Lemma B.1.9. The space Lpt,x(M∗
v) p ∈ [1,∞] is continuously linearly isomorphic

to L(C0(Rd), Lpt,x) the space of continuous linear operators from C0(Rd) to Lpt,x under
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the topology of pointwise convergence. Similarly [Lpt,x(M∗
v)]loc is continuously linearly

isomorphic to L(C0(Rd), [Lpt,x]loc).

Proof. For each f ∈ Lpt,x(M∗
v) we can trivially associate a bounded linear operator

Sf : C0(Rd) → Lpt,x, by Sfφ = 〈f, φ〉, clearly the map f 7→ Sf is one-to-one, linear,

and continuous from Lpt,x(M∗
v) to L(C0(Rd), Lpt,x) with it’s pointwise topology.

Conversely for each bounded linear operator S ∈ L(C0(Rd), Lpt,x) one may

define for each g ∈ Lqt,x, q = p/(p− 1), the bounded linear functional hg : C0(Rd)→

R, by hgφ = 〈Sφ, g〉 which, by the Riesz-Markov theorem can be represented by a

measure fg ∈Mv, satisfying

hgφ = 〈fg, φ〉 = 〈Sφ, g〉.

Since the mapping g 7→ fg is clearly a continuous linear mapping from Lqt,x to M∗
v,

one can readily prove that for any bounded Borel E ⊂ [0, T ] × Rd, that ν(E) =

f1E defines an Mv valued measure that dtdx absolutely continuous and of σ finite

variation. SinceMv is a dual space, it has the weak-* Radon-Nikodym property (see

[97] Theorem 9.1) and therefore there is a measurable function fS : [0, T ]×Ω→M∗
v

such that |〈fS, φ〉| ∈ [L1
t,x]loc and

〈Sφ, 1E〉 = 〈ν(E), φ〉 =

∫∫
E

〈fS, φ〉dxdt.

Using density of simple functions in Lqt,x we can conclude

〈Sφ, g〉 =

∫ T

0

∫
Rd
〈fS, φ〉gdxdt, (B.2)

for any g ∈ Lqt,x. Taking the sup in g ∈ Lqt,x, ‖g‖Lq = 1, on both sides of (B.2) we
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find

‖〈f, φ〉‖Lpt,x = ‖Tφ‖Lpt,x <∞

and therefore f ∈ Lpt,x(M∗
v). Moreover this identity implies that the mapping S 7→

fS is continuous from L(C0(Rd), Lpt,x) with it’s pointwise topology to Lpt,x(M∗
v), while

identity (B.2) implies that S 7→ fS is linear and one-to-one.

The proof on [Lpt,x(M∗
v)]loc is similar and can be proved by the above argument

on compact sets of [0, T ]× Rd.

Lemma B.1.10. Let K be subset of [Lpt,x(M∗
v)]loc, p ∈ [1,∞], and let {φk}∞k=1 ⊆

C∞c (Rd
v) be a countable dense subset of C0(Rd). Define the map Πφk : [Lpt,x(M∗

v)]loc →

[Lpt,x]loc by

Πφk(f) = 〈f, φk〉.

Then K is a compact subset of [Lpt,x(M∗
v)]loc if and only if K is bounded in Lpt,x(M∗

v)

and ΠφjK is compact in [Lpt,x]loc for all j ≥ 1.

Proof. Let {fn}∞n=1 ⊆ K, and assume that j ≥ 1, {〈fn, φj〉}∞n=1 is compact in [Lpt,x]loc.

By a standard argument we may produce a diagonal subsequence, still denoted

{fn}∞n=1, such that 〈fn, φj〉 converges as n→∞ for each j ≥ 1. Identify [Lpt,x(Mv)]loc

with L(C0(Rd); [Lpt,x]loc) as in Lemma B.1.9, and for each f ∈ [Lpt,x(Mv)]loc let Tf

denote the corresponding element of L(C0(Rd); [Lpt,x]loc). Since {fn}∞n=1 is bounded

in [Lpt,x(M∗
v)]loc, we have for any compact set C ⊂ [0, T ]× Rd,

sup
n
‖Tfnφ‖Lpt,x(C) = ‖〈fn, φ〉‖Lpt,x(C) <∞.
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By the uniform boundedness principle,

sup
n
‖1CTfn‖L(C0(Rd);[Lpt,x]loc) <∞.

Therefore the mappings φ 7→ 1CTfnφ = 1C〈fn, φ〉 are equicontinuous. Since {φj}∞j=1

is dense in C0(Rd), this equicontinuity implies that for each φ ∈ C0(Rd), {1C〈fn, φ〉}∞n=1

is Cauchy in Lpt,x(C) and therefore {〈fn, φ〉}∞n=1 is convergent in [Lpt,x]loc. This limit

defines a mapping f : C0(Rd)→ [Lpt,x]loc, by

f(φ) ≡ lim
k→∞
〈fn, φ〉.

It is a simple consequence of the linearity of 〈fn, · 〉 and the boundedness of {fn}∞n=1,

that the limiting f belongs to L(C0(Rd), [Lpt,x]loc), and therefore belongs to [Lpt,x(M∗
v)]loc.

Therefore K is sequentially compact. Compactness of K now follows from the fact

that [Lpt,x(M∗
v)]loc is a sequential space.

The converse is simple. If K is compact, since Πφj are continuous, ΠφjK are

compact in [Lpt,x]loc.

Lemma B.1.11. Let (Ω,F ,P) be a probability space, and let {fn}n∈N be a bounded

sequence in Lp(Ω × [0, T ] × R2d) for some p ∈ [1,∞]. Then {fn}n∈N induces a

tight family of laws on [Lpt,x(M∗
v)]loc if and only if for all ϕ ∈ C∞c (Rd

v), the sequence

{〈fn, ϕ〉}n∈N induces a tight family of laws on [Lpt,x]loc.

Proof. Clearly if {fn}n∈N induce tight laws on [Lpt,x(M∗
v)]loc then for each ϕ ∈

C∞c (Rd
v), since the mapping f 7→ 〈f, ϕ〉 is continuous from [Lpt,x(M∗

v)]loc to [Lpt,x]loc,

{〈fn, ϕ〉}n∈N is tight on [Lpt,x]loc.

We proceed in the other direction by explicitly constructing a set K which is

compact in [Lpt,x(M∗
v)]loc which has uniformly small probability. Fix and ε > 0 and
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let {ϕj}∞j=1 ⊆ C∞c (Rd
v) be a dense subset of C0(Rd

v). Since {〈fn, ϕj〉}n∈N induce tight

laws in [Lpt,x]loc, then for each j ∈ N there exist a compact set Kj in [Lpt,x]loc such

that

sup
n

P{〈fn, ϕj〉 /∈ Kj} < ε2−j.

Define, as in Lemma B.1.10, Πϕjf = 〈f, ϕj〉. Since Πϕj is continuous from [Lpt,x(M∗
v)]loc

to [Lpt,x]loc, the pre-images Π−1
φj
Kj are closed in [Lpt,x(M∗

v)]loc. Let C = supn E‖fn‖Lpt,x,v

and define

B =
{
f ∈ Lpt,x,v : ‖f‖Lpt,x,v ≤ Cε−1

}
and note that B is a bounded subset of [Lpt,x(M∗

v)]loc. Now, define the closed set

K =
∞⋂
j=1

(
B ∩ Π−1

ϕj
Kj

)
,

and note that K ⊆ B is a bounded subset of [Lpt,x(M∗
v)]loc, and for each j ∈ N,

ΠϕjK is a closed subset of Kj, so the set ΠϕjK is compact in [Lpt,x]loc. Therefore

Lemma B.1.10 implies that K is compact in [Lpt,x(M∗
v)]loc. We conclude the proof

with

P {fn /∈ K} ≤ P
{
‖f‖Lpt,x,v > Cε−1

}
+
∞∑
j=1

P {〈fn, ϕj〉 /∈ Kj} < 2ε.

The following product-limit lemma can be established in a classical way, using

Egorov’s theorem.

Lemma B.1.12. Let {gn}n∈N and {hn}n∈N be sequences in L1
t,x,v. Assume that

{gn}n∈N is uniformly bounded in L∞t,x,v and converges to g in measure on [0, T ]×R2d.

Then we have the following:
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1. If the sequence {hn}n∈N converges to h in [L1
t,x,v]w, then the sequence of prod-

ucts {gnhn}n∈N converge to gh in [L1
t,x,v]w.

2. If the sequence {hn}n∈N converges to h in [L1
t,x,v]w∩L1

t,x(M∗
v), then the sequence

of products {gnhn}n∈N converge to gh in L1
t,x(M∗

v).

The next lemma provides a procedure for identifying a continuous, adapted

process as a series of one dimensional stochastic integrals.

Lemma B.1.13. Let (Ω,F ,P, {F t}Tt=0, {βk}∞k=1) be a stochastic basis and let (Mt)
T
t=0

be a continuous (Ft)Tt=0 martingale with the quadratic variation process (
∫ t

0
|fs|2`2(N))

T
t=0.

Moreover, assume that for each k ∈ N the cross variation of (Mt)
T
t=0 with βk is given

by the process (
∫ t

0
fk(s)ds)

T
t=0. Under these hypotheses, the martingale may be iden-

tified as

Mt =
∞∑
k=1

∫ t

0

fk(s)dβk(s).

L2 Stochastic Velocity Averaging

Proof of Lemma 7.4.4. For convenience we denote the velocity averaged process by

ρφ(t, x;ω) = 〈f, ϕ〉(t, x;ω).

To begin, we assume that f is regular enough for all the following computations

to be well defined. Let Fx denote the Fourier transform in x and let ξ be the

corresponding Fourier variable, for simplicity denote f̂ = Fx(f) and ĝ = Fx(g).

Taking the Fourier transform of both sides of (7.28) in Itô form gives

∂tf̂ + iv · ξf̂ + Fx(divv(fσk β̇k)) = Fx(Lσf) + ĝ.

292



If |ξ| ≤ 1 we have the simple estimate

E

∫ T

0

∫
Rd
|ξ|1/3|ρ̂φ|2 1|ξ|≤1 dξdt ≤ ‖φ‖2

L∞v
E‖f‖2

L2
t,x,v

.

To show the H
1/6
x estimate, it suffices to consider |ξ| ≥ 1. We will find it useful to

solve this equation with the addition of a damping term on both sides (corresponding

to a pseudo-differential operator acting on f in x). Let λ ∈ C∞(Rd
ξ), we now consider

∂tf̂ + iv · ξf̂ + Fx(divv(fσk β̇k)) + λf̂ = Fx(Lσf) + ĝ + λf̂ .

Solving this via Duhammel, we find

f̂(t, ξ, v) = e−(λ(ξ)+iv·ξ)tf̂0(ξ, v) + λ(ξ)

∫ t

0

e−(λ(ξ)+iv·ξ)(t−s)f̂(s, ξ, v) ds

+

∫ t

0

e−(λ(ξ)+iv·ξ)(t−s)ĝ(s, ξ, v) ds+

∫ t

0

e−(λ(ξ)+iv·ξ)(t−s)Fx(Lσf)(s, ξ, v) ds

−
∞∑
k=1

∫ t

0

e−(λ(ξ)+iv·ξ)(t−s)Fx(divv(σkf))(s, ξ, v)dβk(s).

(B.3)

Let φ ∈ C∞c (Rd
v), upon multiplying both sides of (B.3) by φ and integrating in v,

we see that the velocity average ρ̂ φ satisfies

ρ̂ φ(t, ξ) =

∫
Rd
e−(λ(ξ)+iv·ξ)tφ(v)f̂0(ξ, v) dv

+

∫ t

0

(∫
Rd
e−(λ(ξ)+iv·ξ)(t−s)Γ̂0(s, ξ, v) dv

)
ds

−
∞∑
k=1

∫ t

0

(∫
Rd
e−(λ(ξ)+iv·ξ)(t−s)Fx(φ divv(σkf))(s, ξ, v) dv

)
dβk(s)

(B.4)

Where Γ0 is defined so that

Γ̂0(t, ξ, v) = φ(v)
(
λ(ξ)f̂(t, ξ, v) + ĝ(t, ξ, v) + Fx(Lσf)(t, ξ, v)

)
. (B.5)

Note that the v integrals in equation (B.4), can be written as a Fourier transform

in v. We will denote such a Fourier transform in both x and v as Fx,v, and denote
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by η the Fourier variable dual to v. We find

ρ̂ φ(t, ξ) = e−λ(ξ)tFx,v(φ(v)f0)(ξ, ξt) +

∫ t

0

e−λ(ξ)(t−s)Fx,v(Γ0)(s, ξ, ξ(t− s))ds

−
∞∑
k=1

∫ t

0

e−λ(ξ)(t−s)Fx,v(φ divv(σkf))(s, ξ, ξ(t− s))dβk(s)

= I1 + I2 + I3.

The first term, I1, we can bound

|I1|(t, ξ) ≤ |Fx,v(φ f0)(ξ, ξt)|.

For the second term, I2, we have by Cauchy-Schwartz

|I2|2(t, ξ) ≤
(∫ t

0

e−2λ(ξ)(t−s) ds

)(∫ t

0

(
e−λ(ξ)(t−s)|Fx,v(Γ0)(s, ξ, ξ(t− s))|

)2

ds

)
≤ 1

2λ(ξ)

∫ t

0

∣∣∣e−λ(ξ)(t−s)Fx,v(Γ0)(s, ξ, ξ(t− s))
∣∣∣2 ds.

The term, I3(t, ξ) is a Martingale with quadratic variation∫ t

0

∞∑
k=1

(
e−λ(ξ)(t−s)|Fx,v(Γk)(s, ξ, ξ(t− s))|

)2

ds,

where Γk(t, x, v) = φ divv(σkf)(t, x, v). We conclude by the BDG inequality that

E|I3|2(t, ξ) ≤ E

∫ t

0

∞∑
k=1

(
e−λ(ξ)(t−s)|Fx,v(Γk)(s, ξ, ξ(t− s))|

)2

ds.

and therefore

E|ρ̂ φ(t, ξ)|2 ≤ E|Fx,v(φ f0)(ξ, ξt)|2

+
1

2λ(ξ)
E

∫ t

0

(
e−λ(ξ)(t−s)|Fx,v(Γ0)(s, ξ, ξ(t− s))|

)2

ds

+ E

∫ t

0

∞∑
k=1

(
e−λ(ξ)(t−s)|Fx,v(Γk)(s, ξ, ξ(t− s))|

)2

ds.

The following identities can be readily verified

Γk = φ divv(σkf) = divv(φσkf)−∇φ · σkf,
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and

φLσf = ∇2
v : (Dσ φ f)− 2 divv(Dσ∇φf) +∇2

vφ : Dσ f − divv(Gσ φ f) +∇φ ·Gσf,

where we have denoted for convenience

Dσ =
∞∑
k=1

σk ⊗ σk and Gσ =
∞∑
k=1

σk · ∇σk.

This implies

Fx,v(Γk) = iη · Fx,v(φσkf)−Fx,v(∇φ · σkf).

and

Fx,v(φLσf) = −η ⊗ η : Fx,v(Dσ φ f)− 2iη · Fx,v(Dσ∇φ f) + Fx,v(∇2
vφ : Dσ f)

− iη · Fx,v(Gσ φ f) + Fx,v(∇φ ·Gσf).

(B.6)

Using that zpe−λz ≤ Cpλ
−p, where Cp is constant depending on p, we may

bound

e−λz|Fx,v(Γk)(s, ξ, z ξ)| . λ−1|ξ| |Fx,v(φσkf)(s, ξ, z ξ)|+ |Fx,v(∇φ · σkf)(s, ξ, z ξ)|

and using the definition of Γ0, (B.5), and (B.6) we can bound

e−λz|Fx,v(Γ0)(s, ξ, z ξ)|

. λ|Fx,v(φ f)(s, ξ, zξ)|+ |Fx,v(φ g)(s, ξ, z ξ)|+ λ−2|ξ|2|Fx,v(φDσf)(s, ξ, z ξ)|

+ λ−1|ξ||Fx,v(Dσ∇φ f)(s, ξ, z ξ)|+ |Fx,v(∇2
vφ : Dσf)(s, ξ, z ξ)|

+ λ−1|ξ||Fx,v(φGσf)(s, ξ, z ξ)|+ |Fx,v(∇φ ·Gσf)(s, ξ, z ξ)|.

Integrating E|ρ̂φ(t, ξ)|2 over [0, T ] and using the previous two bounds we get for a.e
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ξ ∈ Rd,

E

∫ T

0

|ρ̂φ(t, ξ)|2dt . E

∫ T

0

|Fx,v(φ f0)(ξ, ξt)|2dt

+ E

∫ T

0

∫ t

0

{
λ|Fx,v(φ f)(s, ξ, (t− s)ξ)|2 + λ−1|Fx,v(φ g)(s, ξ, (t− s) ξ)|2

+ λ−5|ξ|4|Fx,v(φDσf)(s, ξ, (t− s) ξ)|2 + λ−3|ξ|2|Fx,v(Dσ∇φ f)(s, ξ, (t− s) ξ)|2

+ λ−1|Fx,v(∇2
vφ : Dσf)(s, ξ, (t− s) ξ)|2 + λ−3|ξ|2|Fx,v(φGσf)(s, ξ, (t− s) ξ)|2

+ λ−1|Fx,v(∇φ ·Gσf)(s, ξ, (t− s) ξ)|2 +
∞∑
k=1

λ−2|ξ|2 |Fx,v(φσkf)(s, ξ, (t− s) ξ)|2

+
∞∑
k=1

|Fx,v(∇φ · σkf)(s, ξ, (t− s) ξ)|2
}

dsdt.

(B.7)

Let’s remark that, apart from the initial data, the above estimate is comprised

entirely of integrals of the form

∫ T

0

∫ t

0

|Fx,v(h)(s, ξ, (t− s)ξ)|2dsdt.

Following the technique in [18], such integrals can be estimated by changing variables

to (z, s) = (|ξ|(t − s), s), using Fubini, applying the classical trace theorem on the

one dimensional integral in the z variable, and applying Plancharel. We find that

for any γ > (d− 1)/2,∫ T

0

∫ t

0

|Fx,v(h)(s, ξ, (t− s)ξ)|2dsdt ≤ |ξ|−1

∫ T

0

∫ ∞
−∞

∣∣∣∣Fx,v(h)

(
s, ξ, z

ξ

|ξ|

)∣∣∣∣2 dzds

. |ξ|−1

∫ T

0

∫
Rd

(1 + |v|2)γ|Fx(h)(s, ξ, v)|2dvds,

and for the initial data,

∫ T

0

|Fx,v(φ f0)(ξ, ξt)|2dt . |ξ|−1

∫
Rd

(1 + |v|2)γ|Fx(h)(ξ, v)|2dv.
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Applying the above two estimates term by term to (B.7), we can readily estimate

for a.e. ξ,

E

∫ T

0

|ρφ(t, ξ)|2dt ≤ Cσ,φM(ξ)
(∫

Rd
|f̂0(ξ, v)|2 + E

∫ T

0

∫
Rd
|f̂(ξ, v, s)|2dvds

+ E

∫ T

0

∫
Rd
|ĝ(ξ, v, s)|2dvds

)
,

where

M(ξ) =
|ξ|3

λ(ξ)5
+
|ξ|
λ(ξ)3

+
|ξ|
λ(ξ)2

+
1

|ξ|λ(ξ)
+
λ(ξ)

|ξ|
+

1

|ξ|
,

and

Cσ,φ . ‖(|φ|2 + |∇φ|2 + |∇2φ|2)(1 + |v|2)γ‖L∞v
∥∥∥ ∞∑
k=1

(|σk|2 + |σ · ∇σk|)
∥∥∥
L∞v

Choosing λ(ξ) = |ξ|2/3, (really take λ(ξ) = (ε+ |ξ|2)1/3 and take ε→ 0) we conclude

that

M(ξ) = 3|ξ|−1/3 + 2|ξ|−1 + |ξ|−5/3 =≤ 6|ξ|−1/3 if |ξ| ≥ 1.

Therefore

E

∫ T

0

∫
Rd
|ξ|1/3|ρ̂φ|21|ξ|≥1 dξds ≤ Cσ,φ

(
‖f0‖2

L2
x,v

+ E‖f‖2
L2
t,x,v

+ E‖g‖2
L2
t,x,v

)
,

whereby we have the desired inequality using the Fourier characterization of H
1/6
x .

The above proof can be extended to weak solutions f ∈ L2
ω,t,x,v, by first mol-

lifying the equation in (x, v) as in the proof of theorem 7.3.8 and including the

commutators with the term g (along with another stochastic integral). The above

computation, with the addition of a stochastic integral to the right-hand-side, still

apply and the resulting estimates are computed in terms of the L2
ω,t,x,v norm of the

right-hand-side, the commutator contribution will then vanish as the mollification
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parameter goes to 0. Furthermore we may pass the limit in each term on the right-

hand side using the properties of mollifiers. The resulting H1/6 estimate on the

mollified velocity average can be easily used conclude the associated H1/6 estimate

on the limiting f by a monotone convergence argument on the Fourier side.
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