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This dissertation is concerned with two areas of investigation: the first is
understanding the mathematical structures behind the emergence of macroscopic
laws and the effects of small scales fluctuations, the second involves the rigorous
mathematical study of such laws and related questions of well-posedness. To address
these areas of investigation the dissertation involves two parts:

Part I concerns the theory of coarse-graining of many particle systems. We
first investigate the mathematical structure behind the Mori-Zwanzig (projection
operator) formalism by introducing two perturbative approaches to coarse-graining
of systems that have an explicit scale separation. One concerns systems with lit-
tle dissipation, while the other concerns systems with strong dissipation. In both
settings we obtain an asymptotic series of ‘corrections’ to the limiting description
which are small with respect to the scaling parameter, these corrections represent
the effects of small scales. We determine that only certain approximations give rise
to dissipative effects in the resulting evolution. Next we apply this framework to the

problem of coarse-graining the locally conserved quantities of a classical Hamilto-



nian system. By lumping conserved quantities into a collection of mesoscopic cells,
we obtain, through a series of approximations, a stochastic particle system that re-
sembles a discretization of the non-linear equations of fluctuating hydrodynamics.
We study this system in the case that the transport coefficients are constant and
prove well-posedness of the stochastic dynamics.

Part IT concerns the mathematical description of models where the underlying
characteristics are stochastic. Such equations can model, for instance, the dynamics
of a passive scalar in a random (turbulent) velocity field or the statistical behav-
ior of a collection of particles subject to random environmental forces. First, we
study general well-posedness properties of stochastic transport equation with rough
diffusion coefficients. Our main result is strong existence and uniqueness under cer-
tain regularity conditions on the coefficients, and uses the theory of renormalized
solutions of transport equations adapted to the stochastic setting. Next, in a work
undertaken with collaborator Scott-Smith we study the Boltzmann equation with
a stochastic forcing. The noise describing the forcing is white in time and colored
in space and describes the effects of random environmental forces on a rarefied gas
undergoing instantaneous, binary collisions. Under a cut-off assumption on the col-
lision kernel and a coloring hypothesis for the noise coefficients, we prove the global
existence of renormalized (DiPerna/Lions) martingale solutions to the Boltzmann
equation for large initial data with finite mass, energy, and entropy. Our analysis
includes a detailed study of weak martingale solutions to a class of linear stochastic
kinetic equations. Tightness of the appropriate quantities is proved by an extension

of the Skorohod theorem to non-metric spaces.
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Introduction to the Dissertation

The physical world is multi-scale. Natural laws tend to exhibit drastically
different structures at various time and space scales. Quite remarkably, it is often
possible to describe the behavior at each of these scales independently of the other
scales and with significantly fewer degrees of freedom than are present at the smaller
scales. Such effective equations can emerge in unusual ways and are often not im-
mediately accessible from the underlying microscopic laws. The equations of fluid
mechanics, like the Euler equations or the Navier-Stokes equations are examples of
effective equations governing hydrodynamic fields associated to a system of many
classical particles. Other examples of effective equation include equations in kinetic
theory, like the Boltzmann equation or Vlasov equation, which govern the evolution
of a kinetic density of particles over a one-particle phase space.

In this dissertation, we will mostly follow two main lines of inquiry. The first
involves the process of representing a system with many degrees of freedom by one
with fewer degrees of freedom, known as coarse-graining. Here we are interested
in questions like: Can one always derive a given effective description directly from
the microscopic system? How does one pass from one set of effective equations to

another? Is there a general procedure for determining a set of effective equations at



any scale of interest? How does one take into account the influence of smaller scale
fluctuations in an effective model? The second line of inquiry involves the study of
the qualitative and quantitative behavior of the equations arising from such effective
descriptions. Here, several natural questions come to mind: Are the equations of
a given effective description well-posed? What is the long time behavior of the
solutions? How well do a set of effective equations hold outside of their given scale?
How does one incorporate the effects of ‘small’ scales outside an effective equations
prescribes scale?

The dissertation is broken up into two parts with distinct conceptual contribu-
tions, the first is largely formal and attempts to address questions along first line of
inquiry by exploring the mathematical structure in a setting where very few rigorous
results are available, the other is entirely rigorous and addresses questions along the
second line of inquiry, studying well-posedness of certain stochastic perturbations of
macroscopic equations using well-developed mathematical tools from the theory of
stochastic partial differential equations.

More specifically, Part I concerns the theory of coarse-graining. In the first
half, we study the problem abstractly through the Mori-Zwanzig (projection oper-
ator) framework, viewing the procedure of coarse-graining as the application of a

certain projection operator P on the solution f of a linear evolution equation
d
—f=Lf,
3/ =L/

where £ is a certain linear operator generating the microscopic evolution. This

framework, though formal, has broad applications to a wide variety of problems



in classical and quantum statistical mechanics. Our contribution is to develop two
perturbative approaches for obtaining dissipative corrections to the, (leading order)

Galerkin truncated system

d
P =PLPY.

The first approach is useful for when the system has no dissipation and relies on a
specific decomposition of the fluctuations into a fast and a slow part. The second
approach is more relevant when the starting system has some dissipation and is
scaled so that the dissipation dominates the evolution of the small scale fluctuations.
In this setting, we obtain a sequence of approximations to the Galerkin truncated
system and show that only every 4th term in the sequence leads to an approximation
that is dissipative.

The second half of Part I involves the more concrete problem of coarse-graining
a one dimensional classical particle system with nearest neighbor interactions and

Hamiltonian
H = Z %U? + V(Iz — C(]Z‘_l),

where (x;,v;) are the position and velocity of the ithe particle and V() is a singular
repulsive interaction potential. The coarse-graining procedure involves dividing the
particles into mesoscopic cells and averaging the inter-particle spacing r; = x; —
Zi_1, momentum v;, and energy e; = %vf + V(r;) of the particles inside each cell.
Using the perturbative Mori-Zwanzig approach developed in the first half, we show
that the leading order evolution of the coarse-grained cells is given by so-called

‘discrete Euler dynamics’. Iterating this procedure we find that particle systems



with gamma-law potential V(r) = Cr'~7 are invariant under the coarse-graining
procedure; we refer to this, for reasons that will become clear later, as the ‘ideal
gas fixed point’. The main novelty of this work, however, is the derivation of a
dissipative stochastic correction to the discrete Euler dynamics which take into
account small scale fluctuations. This dissipative fluid-particle model can be viewed
as a discretization of the equations of non-linear fluctuating hydrodynamics; they
conserve volume, momentum and energy, with dissipative terms modeling the effects
of viscosity, thermal conductivity and thermal fluctuations in the fluid. We give
conditions under which this system is well-posed, meaning the energy or volume
of a coarse-grained particle cannot (with probability one) collapse to zero in finite
time. We reduce the derivation of the dissipative fluid-particle model to two key
approximations; the first is a relaxation approximation and is strongly related to
ergodicity of the underlying system; the second is a Markovian approximation which
removes certain memory effects under the assumption of sufficient decay of various
auto-correlation functions.

Part II, concerns the study of kinetic equations with stochastic external forc-
ing and the theory of renormalized solutions to transport equations. We study
two related problems. The first deals with existence and uniqueness of stochastic

continuity equations of the form
Of + div(uf) — divdiv(af) + > div(owf) Wi =0,
k

where u is the drift {o},} are the noise coefficients a = >, o4 ® 0, and {W},} are a

collection of independent Brownian motions. Here the main contribution is to prove



the existence of renormalized (hence unique) solutions in LP, p > 2 for such equa-
tions with general initial data and rough (Sobolev regular) noise coefficients {oy}.
This approach is rather general is consistent with analogous results for existence
and uniqueness of SDE’s with rough noise coefficients [122] as well as Kolmogorov
equations [84] (see also [25]).

The second problem, a joint work with collaborator Scott Smith, concerns the

Boltzmann equation with Stratonovich stochastic forcing

Of +v-Vaof +> ox-Vofo Wy =B(f, f),
k

where div, 0, = 0. Such an equation is a kinetic theory analogue to the stochastically
forced equations of fluid mechanics, which have received significant attention in
recent years. Our main result is to prove global existence of renormalized martingale
solutions for a general class of initial data and noise coefficients and, and obtain
certain local and global averaged balance laws and global entropy dissipation. To
out knowledge this is the first rigorous result regarding the stochastic perturbations
of the non-linear Boltzmann equation. The result is obtained using compactness

and martingale tools from the theory of stochastic partial differential equations.



Part I

Coarse-Graining

If T have had any success in mathematical physics,
it is, I think, because I have been able to dodge
mathematical difficulties.

Josiah Willard Gibbs



Introduction to Part I

The large-scale behavior of many-body systems is of central interest in many
disciplines. Such systems typically have simple rules governing their constituents at
small scales (microscopic laws), but exhibit complicated patterns and rules on larger
scales (macroscopic laws). These systems often contain several distinct scales which
exhibit drastically different behaviors, so-called multi-scale phenomena. Naturally,
there is broad interest among disciplines in obtaining models that govern the effective
evolution of a system at a given scale. There are a vast number of models available
to describes the effective behavior of many body systems at a variety of scales. The
Euler equations of fluid mechanics are a classic example of such a model, along
with the myriad of other macroscopic model in continuum mechanics and kinetic
theory. Sometimes when the separation between scales is not strong enough, small
scale structures can couple to the behavior of the large scales and have a non-
negligible effect. Most notably, when studying a fluid at the mesoscale (between
micro and macro), small scale fluctuations about equilibrium become important
and their non-trivial correlations are responsible for the emergence of transport
phenomena like viscosity and thermal conductivity, which play an important role

even at the macroscopic scale. In general, this weak coupling between scales is not



fully understood and there appears to be no agreed upon way to include its effect
in a macroscopic model. The work in this part of the dissertation is an attempt to
understand the influence of fluctuations on the behavior of a fluid at meso-scopic

scales.

/7?\

]
Mesoscopic
7 / Model
—> (Fluctuations)
A AN
Microscopic Macroscopic
Discrete Model Continuum Model

Figure 2.1: Multiscale models and the role of fluctuations

Part T one of this dissertation addresses the mathematical structure behind
the theory of coarse-graining, namely the procedure of representing a system with
many degrees of freedom by one with significantly fewer degrees of freedom. One of
the more standard frameworks for coarse-graining is the Mori-Zwanzig formalism,
named after its pioneers R. Zwanzig [123, 124] and H. Mori [95]. It has proven to
be a tremendously powerful tool for obtaining the form for coarse-grained models
at a variety of scales, although it suffers from a lack of a rigorous foundation. At its
core, the Mori-Zwanzig formalism requires two main ingredients: a linear evolution
equation

S F(t) = L1 (1)

dt
and a projection operator P. The projection operator P acts on f (where f takes
values, perhaps, in some Banach space) and represents the action of coarse-graining,

8



selecting certain ‘relevant’ variables of interest, and averaging out the ‘irrelevant’
degrees of freedom. A typical example of projection is the average with respect to
some equilibrium measure conditioned on the value of a relevant variable. Another
example is the s particle marginal of an N particle distribution with the distributions
of the other particles replaced by an equilibrium measure. In general, the so-called
‘projected dynamics’ f(t) = P f(t) will have non-Markovian memory effects on it’s
evolution, meaning that the future evolution of f(¢ 4+ dt) may depend on the the
entire history {f(s)}s<: as opposed to just the value at time ¢. However, when
there is some time-scale separation, namely if the projected evolve on a time scale
much slower than the persistence of the memory, then memory effects are assumed
to be delta correlated in time and may be neglected; This is the so-called ‘Markov
approximation’. The mathematical justifications for such an approximation are in
general not clear, and the precise definition of time-scale separation can be hard
to define. Nevertheless, we will be interested in the mathematical structure behind
various Markov approximations.

Specifically, in Chapter 3, we explore Markov approximations in the Mori-
Zwanzig theory in more detail. Here we propose two perturbative approaches for

obtaining dissipative corrections to the Galerkin truncated system
d e D
T f(t) =PLPf(t)+ “dissipative corrections”.

Both approaches are formal and are meant to serve as a tool to guide in the con-
struction of coarse-grained models.

The first approach is more applicable to systems with little or no dissipation



and will be the main approach used in Chapter 4. For simplicity we suppose there

exists an explicit time scale separation through the decomposition
1
L=—-Ly+ Ly, (2.1)
€

with PLy = LyP = 0. The parameter € controls the scale separation between
the relevant and irrelevant variables. In the limit as ¢ — 0 one can make the
Markov assumption more precise and obtain an asymptotic series of corrections to

the Galerkin truncation

d

/(1) =PLPf(t) + > EOmP(t),

n>0
where {®"} are operators encoding higher order time correlations. A similar ap-
proach has been taken in [71, 92] in a different setting. The value of this approach
over the more pedestrian approach usually considered in the Mori-Zwanzig theory
is that the operators {®"} can be computed explicitly in terms of the dynamics
of known objects. Moreover, we show that the first in this asymptotic series is
dissipative.

The second approach explores the process of coarse-graining systems that al-
ready have some dissipation and assumes that the dissipation dominates at the
small scales. Specifically, we assume that the operator L= (I —P)L(I —P), has
the explicit decomposition,

L=A+ %5 :
where A and S denote the symmetric and skew symmetric parts of L respectively.

Similar to the decomposition (2.1) one can make the Markov assumption more

10



precise and obtain an asymptotic series of corrections to the Galerkin truncation

d

/() =PLPf(t) + > P ()

n>0
where {U"} are another a collection of operators encoding information about higher
order correlations. What’s interesting in this setting is that not only is the first term
in the series dissipative, but every 4m + 1 term is also. This is analogous to the
Chapman-Enskog expansion in kinetic theory where certain terms in the truncation
can be shown to lead to fluid equations that don’t dissipate.

In Chapter 4 we consider a concrete example of coarse-graining; Specifically
the coarse-graining of the conserved quantities of a one dimensional classical Hamil-
tonian particle system with nearest neighbor interactions periodically arranged on
the Torus. The positions x = (x1,...,zy) and v = (vy,...,vy) and are governed

by the Hamiltonian

1
H(x,v) = Z 57)@2 + V(i — wi1),

i

where V (r) is an interparticle potential which is repulsive and singular at 0. The
coarse-graining procedure involves dividing the NV particles into M mesoscopic cells
of size K, where 1 < K < N, and averaging the inter-particle spacing r; = x; —x;_1,
momentum v;, and energy e; = %vf + V (r;) of the particles inside each cell, we refer
to these averages as the coarse variables. Our goal will be to obtain a closed set
of equations for the coarse variables when N and K are large. In Section 4.5.2, we

show that if the microscopic particles are in equilibrium, then the coarse-grained

11



quantities are equilibrium solutions to the so-called ‘discrete Euler dynamics’

éi =Di — Pi-1

pi = —P(lis1, i1 — 307) + P(li e — 3p2y)

& = —piP(liv1, i1 — 5p71) + pia Pl e — 5p7),
where (¢;, p;, €;) are to be interpreted as the length, momentum and energy of the ith
coarse particle and P is the thermodynamic pressure function. The discrete Euler
equations are a Hamiltonian discretization of the 1-D Euler equations in Lagrangian
coordinates and conserve length, momentum, energy and entropy. Alternatively we
may view this through the Mori-Zwanzig framework described above, working at
the level of distribution functions on N particle phase space. The discrete Euler
equations can then be seen as the leading order Galerkin truncation associated to a
certain projection on N particle distributions.

Treating this coarse-graining procedure as map, which produces a coarse-
grained entropy function S(¢, e) to govern the discrete Euler dynamics from a given
potential V', we may repeatedly apply the coarse-graining operation to produce a
mapping between entropy functions. Following the approach of renormalization

group theory, we show that the ideal gas equation of state
S(l,e) = (cp —cy)log(l) + cy log(e), ¢y > 1,

is a fixed point of this map. In this, case the discrete Euler dynamics reduce to those

of a classical particle system with gamma-law potential V(r) = Cr'=7, v = cp/cy,

thereby justifying the use of power law potentials for mesoscopic descriptions.
When the system is not in equilibrium, we seek to obtain dissipative correc-

12



tions to the discrete Euler dynamics. Here, we look at time scales of order K, and
study the fluctuations about the discrete Euler dynamics. After the application of
two key approximations related to convergence to equilibrium and decay of certain
auto-correlation functions for large N and K we derive stochastic and dissipative
corrections to the discrete Euler equation which model the effects of viscosity, ther-
mal conductivity and transport in the volume variables, with coefficients given by
analogues of the Green-Kubo formula. This is the main contribution of this chapter.
The resulting dissipative fluid-particle model can be viewed as a discrete version of
the non-linear equations of fluctuating hydrodynamics. The stochastic fluctuations
are in ‘fluctuation-dissipation’ balance with the dissipation terms and they both con-
serve volume, momentum and energy. A more detailed presentation of this model
can be found in the overview to Chapter 4, equation (4.6).

In Section 4.9 we present a simplification of the dissipative fluid-particle model,
assuming that the transport coefficients are constant and studying it in more detail.
We give a proof of well-posedness for the finite N stochastic system using the total
entropy as a Lyapunov function. This implies that the volume and energy of a cell
cannot collapse to zero in finite time. Indeed, the well-posedness is significant due to
the difficult nature of proving well-posedness (even existence) for the corresponding

non-linear fluctuating hydrodynamic equations that they discretize.
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Background and Historical Remarks

Frameworks for understanding the connections between microscopic and macro-
scopic phenomena began development in the mid-to-late 19th century when the foun-
dations of statistical mechanics were layed down by Gibbs, Boltzmann, Maxwell, and
others. Here, fundamental concepts of equilibrium ensembles, microscopic founda-
tions of thermodynamics and entropy, and kinetic theory were developed to make
connections between microscopic and macroscopic systems, and to understand the
nature of the irreversibility arising through randomness in the initial conditions.
Later, in the mid 20th century, more modern theoretical foundations for statistical
mechanics emerged, particularly for non-equilibrium statistical mechanics, we de-
veloped by Green, Kirkwood, Kubo, Mori, Onsager, Zwanzig and many others. The
development of local equilibrium, the Green-Kubo formula, fluctuation-dissipation
theorems, the theory of stochastic processes, and the Mori-Zwanzig formalism in-
troduced a new set of machinery for understanding the emergence of irreversibility,
as well the origins of transport phenomena like thermal conductivity and viscosity.

Of course, with the advent of modern scientific computing, there emerged yet
another way to model macroscopic systems by directly simulating the dynamics of
the microscopic system. This is the approach, for instance, taken in molecular dy-
namics (MD) simulations. However, while this might work in some simple situations,
MD tends to be exceedingly expensive for systems of true macroscopic scales, and
typically requires time-steps roughly proportion to one over the number of particles,

making computations for any reasonable macroscopic length of time impractical. Of
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course, if one desires to model even larger systems like the climate, or the behavior
of stars or galaxies, direct simulation is out of the question (and will likely never be
an option).

Needless to say, it seems rather foolish to disregard convenient machinery
of statistical mechanics in favor of a computational approach. In fact, it seems
that much computational effort is wasted on ‘irrelevant’ chaotic dynamics at the
small scales whose exact evolution seems to have very little effect on the large
scale dynamics. It appears that what’s needed is a synthesis of the methods of
statistical mechanics and computational approaches. Namely a systematic theory
of coarse-graining for the microscopic system. That is, method for producing a
lower dimensional coarse-grained model that captures the large scale behavior at
the expense of exact knowledge about the microscopic behavior. In fact, coarse-
grained molecular models play a fundamental role in modern material simulations
and allow the methods of molecular dynamics to by applied to larger systems and on
longer time scales than typical microscopic models would. Examples of such models
for studying hydrodynamic behavior are dissipative particle dynamics [72, 78], and
smooth particle hydrodynamics [63].

The idea of coarse-graining, however, is as old as the foundations of statisti-
cal mechanics, originating from the ideas of Boltzmann in the equilibrium setting.
Indeed, Boltzmann’s original argument for the form of the microscopic entropy di-
viding phase space up into cells and counting particles in each cell, is essentially a
coarse-graining argument. Perhaps, one of the first modern approaches to coarse-

graining for non-equilibrium systems was an adaptation of Boltzmann’s original
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argument introduced by P. Ehrenfest and T. Ehrenfest in the 1911 [40]. Here the
dynamics of an classical N-body system is coarse-grained through the Liouville equa-
tion by periodically ‘projecting the density’ onto a maximal entropy state subject
to certain constraints on its average over a family of cells. In between projections,
the dynamics evolves again according to the Liouville equation (see [68] for a more
in-depth discussion of the so-called ‘Ehrenfest chain’).

Since then, coarse-graining has become a central idea in statistical mechanics
and other fields. Examples include block averaging in lattice dynamics [77], Wil-
son’s renormalization group method [121], hydrodynamic and kinetic limits [111],
optimal prediction methods [26], averaging in Hamiltonian systems [6], homogeniza-
tion theory [15], heterogeneous multi-scale methods [120], and filtering methods in

turbulence [85].

Outline of Part |

To summarize, Part I of the dissertation will be organized as follows:

In Chapter 3, we give an outline of the Mori-Zwanzig formalism. We outline
a perturbative approach and give an example of its application to an ODE system.
We present a scheme for obtaining higher order dissipative approximations to the
coarse variables when the dissipation is large and show dissipativity of corrections
of order 4m + 1.

Chapter 4 deals with coarse-graining of a one-dimensional classical particle sys-

tem. Here we present the one-dimension model, introduce the canonical and micro-
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canonical ensembles and discuss the thermodynamic structures associated with each
ensemble. A general scheme for conservative coarse-graining is introduced, assigning
different weights to each particle. In the particular case of coarse-graining by lump-
ing we show the discrete Euler equations are satisfied in the equilibrium setting. In
the non-equilibrium setting we make several approximations to derive the discrete
Euler equations and a next order dissipative correction. We study a simplified ver-
sion of the dissipative model in more detail and a well-posedness result is obtained

using a Lyapunov function argument.
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Mori-Zwanzig Formalism

Overview

In this chapter we discuss the Mori-Zwanzig formalism. In Section 3.2 we
introduce the basic elements of the formal theory. We outline a perturbative ap-
proach in Section 3.3 based on a special decomposition of the generator into fast
and slow modes. We then consider the problem of coarse-graining dissipative op-
erators. Several approximations are discussed that preserve the dissipativity of the

coarse-grained system.

The Formalism

The Mori-Zwanzig formalism, also referred to as the projection operator for-
malism, is one of staples of modern statistical mechanics and can be found in many
modern physics textbooks [69, 102, 113]. It is named after H. Mori [95] and R.
Zwanzig [123, 124] who were its early champions. The early approach by Mori was
essentially a linear (or close to equilibrium) version of the later work by Zwanzig.

The basic building blocks of the Mori-Zwanzig theory are 1) a linear evolution
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equation,

d
S 1) = ££(2), (3.1)

and 2) a projection P operator and its complement projection P =1—7P. The
original application of Mori-Zwanzig was for a Hamiltonian systems, where L is the
Liouville operator and P is a conditional average, although the formalism can be
applied to the case when L is the generator of a Markov process, a Cy semi-group
on a Banach space, or a quantum Liouville equation in density matrix framework.
There appear to be essentially two approaches to the Mori-Zwanzig formalism,
which are, roughly speaking dual to each other. One approach is to work directly
with observables and make use of the so-called Dyson operator identity for the
semi-group et~
et = ePL 4 /t e=)EpLesPLys, (3.2)
0
which is just the usual perturbation formula in semi-group theory. However, it
should be noted the if £ and PL are unbounded operators, then the validity of
(3.2) is far from obvious. Validity aside, one can use (3.2) to obtain the so-called

generalized Langevin equation

¢

Em(t) = v(x(t)) + / divy(z(s),t — s)ds + £(¢). (3.3)
0

where x(t) = (X (t))y, is the averaged evolution of some observable of the Hamilto-

nian evolution X (¢), and the average is taken over the initial data with respect to

an arbitrary initial distribution fy in phase space. The function ¢ is interpreted as

a noise term, and has correlation length

E [g’(z) ® £(s) ]Azx} = y(z,t— 5).
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The matrix vy(z, t) is sometimes referred to as the ‘memory kernel’, as it is responsible
for the introduction of memory terms into the equation.

Another approach is to work directly with the distribution function on the
phase space through the Liouville equation. This approach is more general, as is
can be generalized to a broader class of evolution equations of the form (3.1) beyond
the Liouville equation. Indeed this is the main approach that we will adopt for the
rest of this chapter.

In this setting, the goal is to obtain a closed equation for the projected dynam-

ics f(t) = Pf(t). Projecting both sides of (3.1) we obtain the non-closed equation

%f(t) = Lf(t)+ PLPF(t), (3.4)

where £ = PLP and f= P f. If one assumes that the initial data f; satisfies

P fo = 0, then formally we have following equation for f

flt) = /0 t eIEP L f(5)ds, (3.5)

where £ = PLP. It should be noted that equation (3.5) is the analogue of the
identity (3.2). It can be justified, for instance, if L generates a Cy semi-group and
PL is of Desch-Schappacher class with respect to £ (see [41]).

Substituting this into equation (3.4), we obtain the ‘Nakajima-Zwanzig’ equa-
tion,

4 Ft)=Lf(t) + / t\If(t —s)f(s)ds, W(t)=PLPEPLP, (3.6)

which is the analogue of the generalized Langevin equation (3.3), with the operator

U(t) playing the role of the ‘non-Markovian’ memory effects in the evolution of f.
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Equation (3.6) was first derived independently by Nakajima [99] and Zwanzig [123]
in the context of quantum and classical systems respectively. Indeed, in the case
of the Liouville equation, (3.3) can be obtained from (3.6) by integrating against a
suitable choice of test function. In fact, equation (3.6) is equivalent to the formal

operator identity
t t s - -
PP =P+ / PLPe ds + / / PLPEPLPE drds.
0 o Jo

The utility of equation (3.6) is somewhat limited due to the memory effects
introduced by W(t) as well as the intractability of the operator L. In general, and in
specific examples, it is not clear that L is a suitable generator for a semi-group, and
such dynamics can be very tricky to compute. This makes the memory operator
U (t) rather difficult to study. Several works, [28, 82], attempt to understand the
behavior £ and the operator U(t) in a more rigorous fashion, but success is limited
to very strong assumptions on the generator £ and P.

To circumvent these difficulties two approximations are typically made:

The first is an assumption of a time scale separation between W(t) and f(t),
that is, that W(¢) decays suitably fast so that the following Markov approzimation

holds true,

U(t) ~ Upd(t), Up:= /T\Il(s)ds, (3.7)

Note that the integral is truncated at a finite time 7', rather than taken over all of
R, . This is typically done to avoid potential divergence of the integral, as well as

to aid in computation. This approximation serves to remove the memory effect in
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equation (3.6) and render the dynamics ‘Markovian’
d - A
Ef =PLPf+Vrf.
The Markovian assumption seems reasonable in many cases and is mainly an as-
sumption on time-scale separation. Indeed, if one makes the right choice of relevant
variables, then one typically observes correlations in the orthogonal dynamics de-
caying on a time-scale much faster than the evolution of the relevant dynamics. It
should be noted here that this approximation breaks the equivalence of projected
dynamics to the original evolution equation and potentially introduces some dissipa-
tion into the dynamics where there may have been none previously. Consequentially,
one only expects such an approximation to valid in some appropriate limit where
the scale separation becomes more pronounced.
The second assumption (which we will avoid), is that dynamics generated by

L are equivalent to £, at least in the form that it arises in ¥(¢), namely
PLPEPLP ~ PLPEPLP.

This assumption is much harder to justify and is usually done as a technique to make
W computable. However, such an approximation, while convenient, can suffer from
various deficiencies, among them the so-called plateau-problem, where U1 has only
a small range of value for which it is accurate before decaying to zero for large T’
(see [T1]).

The Mori-Zwanzig formalism has had tremendous success in non-equilibrium
statistical mechanics and has been applied successfully to countless problems. In-
deed it is one of the standard methods used to derive the ‘generalized Fokker-Planck’

22



and ‘generalized Langevin’ equations from deterministic process. It has given great
insight into the emergence of non-Markovian behavior through time-correlations and
the emergence of dissipative and irreversible behavior through decay of correlations.

However, in part due to its extremely general nature, the Mori-Zwanzig for-
malism suffers from several undesirable features. The first is the reliance on the
operator L to generate the orthogonal dynamics. Indeed, except for a few special
cases, L cannot easily be shown to generate a good dynamics, and from a computa-
tional standpoint simulating such dynamics is an intractable problem. In addition,
this intractability of £ makes any attempt to justify the Markov approximation (3.7)
all the more difficult since any rigorous justification of the Markovian approximation

will likely involve an ergodicity property of the operator L.

A Perturbative Approach

In order to avoid the complications present with the definition of EN, we present
here a more practical perturbative approach that allows for more explicit compu-
tations and construction of approximations. An similar approach can be found in
[105], and is close (up to a time rescaling) to the work of Davies [29-31] on the
so-called ‘weak coupling limit’.

In this section, we will suppose that we have an explicit scale separation ex-

pressed through the decomposition
1
L=-Lo+ Ly,
€

with € playing the role of the scaling parameter. Systems exhibiting such a decom-
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position are often called ‘fast-slow’ systems with L, generating the ‘fast motion’ and
L, generating the ‘slow motion’. Fast-slow systems are abundant in the theory for
averaging for Hamiltonian systems (see [17, 57, 58]). The projections P and P can
be viewed as projections onto slow and fast manifolds respectively.

In what follows, we will assume that £, generates a strongly continuous semi-
group e'*0 and satisfies

PLy=LyP =0,

meaning that the ‘fast motion’ generated by Ly is constrained to the null space of

P,

Petfo =P, and Pe'fo = elop.

The ‘slow motion’ generated by L£; need not be constrained to the null space of
ﬁ, and may have a nontrivial projection under P. However, contrary to the non-
perturbative approach, we will not need to assume that PLP generates a semi-
group.

Here we have chosen to make the scaling € explicit so as to have an explicit scale
separation, however, in practice, it may also be embedded in P and the operator £
(this is the case, for instance in the problem considered in Section 4.5).

The equation for f = Pf now reads
d . ~a -
Efzﬁf%—?ﬁlf, (3.8)
while the orthogonal dynamics are given by
d- 1, s ~
3 = Lo FPLY
t €
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Assuming Pf (0) = 0, (formally) we may write

flt) = /0 t e =L L fods. (3.9)

This Volterra-like operation on f(s) can be justified if, for instance, 75£1 is of Desch-
Schappacher class with respect to Ly (see [41]). The main difference between this
and equation (3.5) is that we have now written the orthogonal dynamics in terms
of the more manageable evolution e*“° instead of etf. Of course, in doing this, we
have paid the price that we are unable to close the dynamics. Indeed, substituting

this into equation (3.8) we find

t o~
%f(t) =Lf(t)+ / PLiec ILPr, fds.

0
Keeping true to the Mori-Zwanzig philosophy, we write f, = fs—i— fs on the right-hand
side above and again apply (3.9). Iterating this procedure, we obtain the following

formal series

d A~

dt = ‘I'Z/ _1 t tl) (tl_tZ)a teey E_l(tn—l_tn))ftndtl C dtn,
(3.10)

where A, (t) = {(t1,...,t,) : 0 < t, <...<t; <t} and the operator ®"(t1,...,t,)

is defined by
(I)n(tl, ce ,tn> = P£1€t1£0216t2£021 Ce Zletnﬁoﬁﬁlp.

In a sense equation (3.10) is a generalization of (3.6), since Lo = £ implies
that £; = 0 and then above series collapses to one term n = 1 with ®!(¢) = W(t).

However, it is far from clear whether the series (3.10) is well defined and converges.
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The operators {®"(t1,...,t,)}, encode a more complicated memory structure and
are related nth order correlation functions, and assuming that £, and P were chosen
prudently, should contribute less and less for large n and epsilon. In general, one
should interpret the series (3.10) as an asymptotic series in e.

Indeed, assuming ®"(tq,...,t,) has enough decay, as ¢ — 0 we may regard
P (e My, e My, ..., e ,) as an approximation of the identity and make the fol-

lowing Markov approximation
€O (e My, e My, L e ) ~ BTt ty, . t),

where
- T Te
@3:/ / O (tr, ... t)db, .. A,
0 0

for some time 7. — oo as € — 0. This approximation then produces a Markovian

equation

&~

f=Lf+) earf. (3.11)
n=1
Again, this series in (3.11) should be interpreted as an asymptotic series in € and

any approximation should truncate the series. Primarily we will be interested in the

first order truncation to (3.11) governed by the operator

T
Z =L + 6P£1 / GtEO,P,Cldt
0

Dissipative Approximations

It is natural to wonder whether one might have better success justifying the
Mori-Zwanzig formalism starting from a system that has some dissipation. Indeed
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this is the approach taken for rigorous deriving the equations of fluid mechanics,
either from a Hamiltonian system that has some noise added (for instance [101]),
or from the Boltzmann equation. Such approaches usually succeed where the pure
Hamiltonian one fails, since the dissipation usually provides some form of ergodicity
and a mechanism for equilibration.

Moreover, if one desires to further coarse-grain a system which has already
been coarse-grained, then it natural to start with a system that has some dissipation.
In this context, the Mori-Zwanzig formalism applied to dissipative, particularly
diffusion processes, has been addressed by several authors ([44, 46, 103]).

In this section, we will suppose that the generator £ acts on a Hilbert space

H, so that it comes equipped with an inner product (-, -), and that £ is dissipative
(f,Lfy<0, forall feD(L).

We will mostly have in mind the case that £ is the generator of a Markov process
on a state space X, and H is the space L*(u) where p is an invariant measure for

L. Denote by L£* the formal adjoint of £ under (-, -) and write
1 * 1 *

as its symmetric and antisymetric parts. We will also assume, for simplicity, that £
L and £ all generate well defined (strongly continuous) semi-groups on H.
When the operator £ has sufficient mixing properties and S # 0 one can take

the limit as 7' — oo in the integral (3.7) and obtain

U= / U(s)ds = PLP(—L) 'PLP,
0
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where £1

is interpreted as a pseudo-inverse of Z, to be interpreted through the

resolvent limit

(=£)~' == lim (A —£)7",

A—0t

provided it exists.
In general, such a limit will produce a new operator
L=L+PLP(—L) 'PLP, (3.12)
which, rather remarkably, will still be dissipative operator. This can be seen from

the following identity reminiscent of the Shur complement

Lemma 3.4.1. Suppose L' is invertible and let L7 be the a pseudo-inverse of L.

Then (PL™YP) has a pseudo inverse and is given by
L= (PLtP)h. (3.13)
Proof. This can be checked by direct computation,
L(PL™YP) = PLPL™YP — PLPLYPLPL™IP
= PLLYP — PLPL™'P — PLPL 'PLL P + PLPL"PLPL™'P
— P —PLPL P +PLPL'P

=P
The same identity can easily be verified for left-multiplication (PL~'P)L. It readily

follows that L is a pseudo-inverse for (PL~P). O

A useful consequence of the above identity is that £ is a non-positive (dissipa-

tive) operator on H. Indeed, Lemma 3.4.1 immediately gives the following identity,
L=T ('L,
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where * denote the adjoint. This, in turn, implies that
(f,.Lf)=(Lf,(L)ILf) <0, forall feH,

since the inverse of a non-positive operator £* is also non-positive. There is another

identity, similar to (3.13), which also proves useful for showing the dissipativity of

L.
Lemma 3.4.2. The following identity holds
L="P~LPLP)LI—P(L)'PLYP. (3.14)

Proof. Again we check by direct computation,
(I —PLPL'P)L(I — P(L*)"PLP)
— PLP — PLPL YPLP — PLP(LY) YPL*P — PLPL 'PLP(LY) 'PL*P

PLP — PLPLYPLP — PLP(LY)'PLP + PLP(L*) 'PLP

I
o

]

The identity (3.14), of course, means that £ has the form CLC*, where C =
P — PLPL P which means that L is dissipative whenever L is.

It is not clear, however, that this dissipation property will be preserved upon
making any approximations to L as is usually done in the Mori-Zwanzig literature.
Indeed, making the approximation L ~ L in the operator (3.12) above does not

appear to preserve dissipativity, nor does the perturbative approach taken in Section

3.3.
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In pursuit of dissipative approximations, we will again take a perturbative

approach, and assume a decomposition of L of the form

L=A+ e LS,

where S is a scaling parameter. This decomposition amounts to the assumption
that the dissipative part dominates the orthogonal dynamics, or in other words the
dissipation dominates the small scales. For instance in kinetic theory, € might be
the knudsen number and P the projection onto the hydrodynamics fields.

Under such a scaling, one may may expand (A+ ¢ 1S)~! in a Neumann series

to obtain

L=L+ i FHPLP(=8) HA(-S) ) PLP, (3.15)

k=0

which is formally equivalent to (3.12). As in Section 3.3, we will interpret the series
in (3.15) as an asymptotic series and truncate to obtain approximations. Such

truncations are defined by

—_

L = L4+ 5 pLp(—8) Y (A(-S) ") PLp.
0

S

B
Il

The lowest order approximation £ = L is clearly dissipative since £ is. However,
not every truncation of (3.15) will lead to a generator Z(n) which is dissipative.

Interestingly, we will find that if m € N, then

—(4Am+1

(f, 2"y <o

This is analogous to the Chapman Enskog expansion of the Boltzmann equation,

where certain truncations of the expansion lead to ill-posed equations that do not
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dissipate. This can be proven rigorously in the case the operator £ is bounded and
all pseudo-inverses are well-defined.

It is not clear whether the perturbative approach given in 3.3 can be combined
with this method to produce dissipative approximations that do not rely on the
operators A and S.

Our goal is now to find approximations to £ in the case that there is strong
dissipative present in the system. We decompose £ into an anti-symmetric part A
and symmetric part S, £ =S + A and denote A and S the same decomposition for
L. We are interested in the case when S is large relative to A. The key feature of
the approximations that we would like to preserve here is the dissipativity. With

this in mind, we formally expand L1 = (g + j)_l in a Neumann series,

Zfl _ Z(_l)kgfl(zgfl)ki

k>0

Substituting this into the expression for £ and truncating at the n — 1th term, we

define a sequence of approximations {Z(n) :n € N}, defined by

3
—

L™ =L -3 (~1)*PLPS (AS ) PLP, (3.16)

>0

=

where the sum is empty in the case that n = 0. The primary objective here is to
study which of the truncations Z(n) are dissipative operators. Our main result is

the following;:

Theorem 3.4.3. The truncated approzimation Z(n), defined by (3.16), is dissipative
when n =0 and when n = 4m + 1 for each m € N.
The cases n = 0 and n = 1 are fairly straight forward, and follow easily

from the earlier discussion and identities. The result for larger values of n is far
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from obvious and requires a few algebraic ‘tricks’ to obtain. Indeed, as we will see
from one of the following Lemmas, when n = 4m + 2, the summation term which
subtracted from the right-hand side of (3.16) is actually dissipative, and therefore
more work must be done to obtain dissipativity of the whole approximation Z(n).
In order to prove this we will need a few Lemmas. The first is a very important
identity, which will allow us the reduce the proof to showing the positivity of a certain

sum. The identity can be see as a truncation of a formal expansion of identity (3.14).

Lemma 3.4.4. Forn > 1, the following identity holds

" = pHP - (—1)"—1P£75[n§_:§‘1(ﬁ§‘1)’“] (AS™)"PLP (3.17)

k>0

where H is a dissipative operator given by

1= (1= SRS ASP) (1 3P AT R,

Proof. We begin by considering the dissipative operator H, which is simply a trun-

cation of a formal expansion of identity (3.14). Multiplying out the expression, we

obtain
n—1 n—1
H=L-> (-1)'LPSHAS)PL-D LPSHAS PL
= k=0 (3.18)
+ Y (~)'LPSTHAST)LS H(AS Y PL
k,j>0

Writing L=38+ .Z, the last term with the double summation on the right-hand

side in (3.18) can be written as

n—1 n—1
> (—D)EPE A )HPL + 3 (1) LPSHAS L
k,j=0 k>0
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Clearly the above sums are telescoping in k and can be simplified to

n—1 n—1
D LPSHASYPL + (-1)"1 D LPS HAS Y (AS ) PL
720 720

Substituting this expression back into (3.18) we obtain

H=1L- Z DFLPS(AS)'PL

k>0
n—1 e e e _

+ (=) LPSTHAST Y (ASTHPLY.
3>0

Using this to compute the product PHP, and recognizing the appearance of Z(n)

from the first two terms, gives the main identity (3.14). O

The next Lemma regards dissipativity of truncations of the Neumann series
expansion for (£*)7".
Lemma 3.4.5. The finite sums
Y OSTHAS™E, and =) STHAST (3.19)
k>0 k>1

are dissipative if n = 4m orn = 4m + 1 for some m € N.

Proof. We begin by proving a simpler result, that is, for some symmetric, non-

negative operator B, the finite sum
>_(-V'B

k>0

is a symmetric non-negative operator whenever n is even. Indeed this result easily

follows from the following formula,

n

> (FMBE = (I =BT+ (-1 B (I - B

k>0
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which can be obtained by a simple computation. Indeed this fact now easily proves

that

n

S (1B

k>1

is dissipative if n is even.

In order to prove that the series in (3.19) are dissipative, it suffices to prove it
only for the symmetric part, which involves only the even terms in the sum. This
also means that we may, without loss of generality assume that n is even, since
proving dissipativity for any even n even will also imply dissipativity n + 1 through
the addition of an inconsequential anti-symmetric term.

The symmetric parts of the sums in (3.19) are given by,

n n/2
(Z g—l(jg—l)k> _ Zg—l(zg—l)%’

k>0 k>0

n n/2
<_ Z g—1<g§—1>k> _ _ Z g—l(jg—l)%
k>1 oym k>0

Since —& is symmetric and non-negative we may define the operator
- 192
B=—|(=8§)7PA=8)]

which is also symmetric and non-negative. We may then rewrite the sums above in

terms of B,
n/2 n/2
ngl(zgfl)% _ _(_§)71/2 Z(_l)kBk <_§)71/2’
k>0 k>0
n/2 n/2
i ngl(jgfl)% _ (_§>71/2 Z(_l)klgk <_§)71/2’
E>1 E>1

Clearly, by the results at the beginning of the proof, both quantities are dissipative
only when n/2 is even. O
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We can now use these Lemmas to prove the main Theorem.

Proof of Theorem 3.4.3. We will being by using identity (3.17). Clearly PHP is dis-
sipative, so it suffices to show that the remaining series is also dissipative. Therefore

to prove the theorem we simply need to prove dissipativity of

Assuming n is even, we may rewrite the expression above as
(871A>n/2 (Z Sl(Asl)k> (ASfl)n/2.
k>0
By Lemma 3.4.5, if n = 4m + 2, then the above operator is positive, and therefore
has the wrong sign.
Assuming n is odd, we may rewrite the expression instead as

— (ST A2 (Zs (AS! )(ftg—l)(n—l)/?. (3.20)

k>1
We note that by Lemma 3.4.5
Zg—l(jg—l)k

k>1

is positive when n = 4m + 1. Therefore, since (n — 1)/2 = 2m the quantity (3.20)

can be written as

— (ST A2 (Zs (AS™! )(AS H=h2,

k>1

which is clearly dissipative. ]
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Coarse-Graining of ODE’s

Of course, the Mori-Zwanzig theory was originally studied for Hamiltonian
systems. In this section we will narrow the discussion to the more concrete setting
of ordinary differential equations (ODE’s). In this setting, the nature of the Mori-
Zwanzig formalism becomes more transparent and several approximations can be
made more explicit.

We begin by considering the following ODE system
X, = b(X,), (3.21)

where b : R” — R™ is a smooth vector field. Suppose we have a smooth map
a: R"™ — R™ with m < n, which designates some interesting quality of the dynamics

of (3.21), and suppose that it is non-degenerate, meaning that the matrix

Gij(z) = Z Oa;(r)Oka;(z)

is invertible for all x € R". We will refer to the map a as the coarse-graining map,
and we will be interested in the behavior of the coarse dynamics Y; = a(X;). Easily,

Y, satisfies the equation

Y, = da(X,)b(X,),

where (Ja);; = 0;a; denotes the Jacobian matrix. It is not surprising that this is not
a closed equation in terms of Y}, since Y; is lower dimensional than X;, and should
not be determined in terms of Y; unless X; evolves transversely to the level sets of

a. Our goal will be to obtain approximate closures for the evolution of Y;.
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We will find it useful to work in a probabilistic setting. Namely if X is initially
distributed according to a probability density fo(x), then the density f(¢,z) at later

times ¢ > 0 is governed by the ‘Liouville’ equation

Ohf =Lf, [l=o = fo,

where £ =b-V, and L* = div(b-) denotes the formal adjoint of £. Suppose that
(3.21) admits an invariant measure u(dz) = g(z)dz (not necessarily probability)
satisfying £*g = 0. Following the conventions of statistical physics, we will denote

(). the average with respect to p,

(u), = /nudu.

The coarse-graining map a naturally induces a coarse measure i = axp and a
fluctuation probability measure u(dx | y) obtain by conditioning i on the event that
a(z) =y. We will denote by (), and (-[y), the expectations with respect to i and
w(- | y) respectively. Note that u(-|y) is a probability measure concentrated on the
manifold ¥, = {z : a(x) = y}, while 4 might not be (if x isn’t). These measures

give rise to the decomposition

p(dz) = p(de|y) f(dy),

which is to be interpreted by its action on test functions ¢(y) and ¥ (x)

m

| ela)i) uas) = [ (Ew<x>u<dx|y>> i) (32)

Define the operator R and its formal adjoint R* (with respect to p) by the

action on a continuous bounded functions ¢(y), ¥ (z)

Re(x) = pla(z)), RY(y) = @ly),-
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The operators are adjoints in the sense that equation (3.22) can be rewritten as

(Rp) ), = (0 (R™Y)), -
Note that R*R = I, so that
P=RR*, P=1-P

define projections.
We will find it useful to describe things in terms of the relative density h(t, z) =

f(t,x)/g(x), which solves

Oh = Lh, h’t:O =hy = f0/9> (3-23)

whose solution is given by the action of the semi-group e**

h(t,z) = e ho(x) = ho(pu(2)).
where ¢; : R" — R" is the flow of homeomorphisms associated to (3.21), defined by
Dhdr(z) = b(du(x)),  dolz) = 2.

We are interested in the distribution f (t,y)dy = fz(t, y)ii(dy) of Y; defined by

pushforward f(¢,y)dy = ay(f(t,x)dx). From this we may deduce that h is given by

~

h(y) = R*h(y) = (h]y), -

Note that this framework lends itself to working in ‘weak form’ of (3.23),
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where () is a suitably smooth test function. The process of coarse-graining then
corresponds to choosing a test function of the form ¥ (z) = Ry(x) = ¢(a(z)). Such

a choice of test function yields

~

O hyu = ((LRp) by, = (R¥[(b- Va)h] - V),

We now have all the components for the Mori-Zwanzig formalism, namely
a projection P = RR* and an evolution equation (3.23). Lets now apply the
perturbative framework of Section 3.3 and assume that the vector field b can be
written as

b= 6_1b0 + bl,

where by satisfies by - Va = 0, and epsilon is an explicit scaling parameter identifying
the speed of the fast and slow time scales. This in turn induces the decomposition
of L

£:€_1£0—|—£1, Eozbo'v, £1:b1'v.

We will also assume that g is an invariant measure for both £y and £, separately.
Note that the fact that Loa = 0 implies that u(-|y) is an invariant measure for L
for each y.

The approximate Markovian equation (3.11) truncated at n = 1 is equivalent
to the equation

Oiht = R*LyRA + eR*OIRAL. (3.24)
The operator RL;R* can be easily shown to satisfy

RLR =b-V, bly)=(b1-Val|y),
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and similarly the operator RO R* satisfies

(¢ ROR ), = (MVY) - V),

i

with

M(y) = /0 : <z§ ® etfob ‘ y>udt, b(z) = b(z) - Va(x) — b(a(x)). (3.25)

The formula (3.25) for the matrix M(y) is an analogue of the famous Green
Kubo formula, and is usually called the friction matrix. Note that M it is not
necessary a symmetric matrix, because of the potential lack of time-symmetry of

the operator Ly and parity of the flux. However for any £ € R™, we have

(M(y)§)-€ =0,

since it is a time integral of an auto-correlation function, and therefore the Wiener-
Kinchin theorem implies that it is positive for large enough T..
If h' satisfies (3.24), then the measure ! = h'ji satisfies a Kolmogorov

(Fokker-Planck) equation
o" + div (b0') = ediv(AMVA')

If 7 has a density g with respect to Lebesgue measure, then the above Kolmogorov

equation corresponds to an Ito diffusion process
Y, = b(Y,) + /2eD(Y)W,, b=b+eMVlogg+ ediv M,

where D denotes the symmetric part of M and v/ D denotes the square root matrix.
In general, there is no clear strategy on how to pick the vector field by as does
above, and, in general, it is not clear that such a decomposition even exists for any
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a. However, the basic perturbative strategy above will be applied in Chapter 4 to
the coarse-graining of a one-dimensional particle system, in this case there is a very
clear choice for by.

Taking higher order truncations of the Markovian equation (3.11) will lead to
higher-order derivatives in the equation for h and contain coefficients contain higher
order time-correlations functions. It is not clear what the utility of such a higher
order approximation might be as there does not appear to be any stochastic process
associated with such an equation. Nevertheless, such an approximation may be
useful for computing higher order corrections to the evolution of the distribution f.

In addition, the perturbative framework does not play well with stochastic
differential equations, where the generator £ is a second order operator. Indeed,
directly applying the first order truncation of (3.11) to this example produces a
fourth order differential equation, which again does not appear to correspond to

any stochastic process.
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Coarse-Graining of a One-dimensional Particle System

Overview

In this chapter we turn to a more concrete example of coarse-graining of classi-
cal particle systems. Coarse-graining classical N-particle Hamiltonian systems is of
fundamental interest in statistical mechanics and many related fields. Continuum
equations in fluid mechanics and kinetic theory can be viewed as coarse-grained
models of such a system. However, it is often desirable, from the perspective of
computations, to obtain certain coarse-grained descriptions that allow the coarse-
grained model to be ‘tuned’ to the regime of interest, and will need to incorporate
both macroscopic and micro-scopic fluctuations. In general, this is a difficult task,
especially if one has any hope of obtaining rigorous results. Indeed, even in the case
of simple fluids, it is not even clear how to properly incorporate the fluctuations and
dissipation into a macroscopic model.

In order to simplify the picture, we will consider a Hamiltonian system of
N particles in one dimension with positions x = (z1,...,2y) € TV and v =

(v1,...,vx) € RV satisfying periodic boundary conditions and interacting through
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nearest neighbors. The particles are governed by the Hamiltonian

N

H(x,u) = Z (%Uf + V(z; — 131‘-1)) ;

i=1
and the potential V' is singular enough at the origin so that particles cannot cross.
Here, it is useful to introduce the deformation coordinates r; = x; — x;_1 and view
the particle system (r,v) as a lattice system on Zy = Z\NZ. Indeed, in these
coordinates (r,v), the particle system now takes the form of a one-dimensional
anharmonic chain, which has been widely studied in the literature. The equations

of motion are

Ty = Vj — Vi1
ﬂz‘ = V/(’ri—i—l) — V/(’f‘i) (41)

éi = (UZ‘V/(’I“Z‘_,_l) - vi_lV’(ri)).

Typically, if interested in the large scale hydrodynamic behavior of the system,

one studies the empirical measure 1y on T, defined by

N
1
n(t) = & > wi(Nt)dyw,
=1

where w;(Nt) = (r;(Nt),v;(Nt), 302(Nt) + V(r;(Nt))) is the Hamiltonian evolution
of the locally conserved quantities sped up by a factor of N. In this scaling, as
N — oo, one typically expects ny(t) to converges weakly to the fluid densities
(¢(x), p(x), e(x)) satisfying the one dimensional Euler equations in Lagrangian form,

Ol = Opp

Op = —0.P(l,e — %pQ)

oe = —0, (pP(T, e — %pQ)) ,
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where (¢, p, e) are the volume, momentum and energy densities, and P(/,e) is the
thermodynamic pressure function obtained from a concave entropy function S(, e)

satisfying the first law of thermodynamics

0uS(Le) = (L e)P(le) >0, 0.5((,e)=pe). (4.2)

It should be mentioned that the hydrodynamic limit cannot be rigorously
proven directly from the underlying Hamiltonian system without assumptions of
ergodicity of the deterministic Hamiltonian system, a fact that is notoriously difficult
to prove. Typically, to get around this, one introduces certain momentum and energy
conserving stochastic perturbations to the system to obtain the required mixing. In
this setting such a limit can be proven rigorously using relative entropy methods
(see [14] for a proof).

Often, one is interested in higher order corrections to the system above, taking
into account diffusive (or super diffusive) transport effects that might appear on
times scales of order N®, o > 1. Since we are in dimension 1, and the particle system
has no pinning potential, the corrections are expected to be super-diffusive (see [11,
75]) and therefore the typical Naiver-Stokes corrections are not expected to hold.
This, of course does not stop one from studying the one-dimensional Navier-Stokes
equations, which can be instead thought of as a model for a higher dimensional fluid
with a large degree of symmetry (slab symmetry).

Of course, one can not simply look at times scales of order N, since the ‘Euler’

part of the dynamics will blow up in such a scaling. Often, this can be studied by
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looking at the fluctuation measure &y (t)

(1) = = D (i (N7) = (w (N0} 3y

where () denotes an ensemble average. In general, one expects that {y converges
to a stochastic process which is governed by the linearized Euler system as well as by
a dissipative and stochastic part satisfying a fluctuation dissipation relation. Such
linearized stochastic evolution is often referred to as fluctuating hydrodynamics (see
[111]).

It is important to note that it is very difficult to capture both the nonlinear
Euler dynamics and any monlinear dissipative corrections as an exact scaling limit
due to lack of scale invariance of the target equations. Therefore, in order to capture
both the Euler and Navier-Stokes behavior, one must forego any attempt to obtain
exact scaling limits and instead find approximations which, in some sense, asymp-
totically describe the hydrodynamic behavior of the system in a certain regime.

Since we are in one dimension, and the particle system has an interpretation
as a lattice system, we may approach the problem of coarse graining by lumping
conserved quantities into certain cells of mesoscopic size, that is, cells which contain
a large number of particles, but a small number relative to N. Specifically, partition
Ty into M cells A = {A;}ier, of equal size K = N/M and define a local averaging

map

F(r,v); = % S (4.3)

JEA;

If r(t) and r(t) satisfy the original Hamiltonian dynamics, then, analogous to the
hydrodynamic limit, we expect that w(r(Kt),v(Kt)) will converge (in a statistical
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sense) as ' — oo with N/K — oo to an infinite particle system U(¢) € (R; x R x

R)Z, U; = (4, ps, e;) satisfying the discrete Euler equations,

éi =Di — Pi-1

pi = —P(lis1, €01 — 5p7) + P(li, e — 5pi,y)

& = —piP(liy1,ei1 — 5p71) + pici P(Ui e — 5p7)
where P(/,e) is the same thermodynamic pressure function obtained for the con-
tinuous Euler system from the entropy function S(¢,e). It is easy to check that
the discrete Euler system is a Poisson manifold and that for each ¢, the entropy
S(;,e; — %p?) is a constant of the motion. Furthermore, one can produce a family

of invariant probability measures {y, : o € Ry x R x R} on (R, x R x R,)Z

_ 1 1,2 1,2
dpe = g Z(a) eXp{ —a-Ui+ Sl e; — 5%)}5(&‘, € — §pi)d£idpideiv (4.4)

analogous to the grand-canonical measures of classical statistical mechanics.

The benefit of this approach is that the limit system is still a particle system,
but with a fluid character, and that the limiting dynamics has an explicit (Gibbs)
invariant probability measure. Indeed, this allows us to re-apply the same lump-
ing procedure to this discrete Euler system, scaling the cell size in the same way
as time. We, again, expect such a procedure to produce the same discrete Euler
system as above, just with a different thermodynamic structure. In the language of
the renormalization group, this means that the discrete Euler equations lie on an
invariant set with respect to the coarse-graining procedure. Seeking fixed points of

the thermodynamic functions, one can show that the ideal gas entropy (up to an
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additive constant)
S(l,e) = (cp —cy)log(l) + cy log(e), ¢y > 1,

remains invariant under coarse-graining. Where ¢y and cp are the specific heats at
constant volume and pressure. In this case, the Discrete Euler equations simplify

to the so-called gamma-law
éi = DPi — Pi-1

i = (1= e/ ((ei;)v - wj)”) |

where Sy is the initial entropy, R = ¢, — cy is the gas constant and v = c¢p/c, > 1

is the heat capacity ratio. What’s interesting is that this system is again a one-

dimensional particle chain with Hamiltonian

1
Higenl = Z §p§ + eS0/B ()1

7

Of course, just as with the hydrodynamic limit, rigorously proving such re-
sults is well out of reach due to lack of ergodicity of the underlying Hamiltonian
system. Again, one approach to remedy this is to add certain energy and momentum

conserving stochastic perturbations to the dynamics.

Corrections to Discrete Euler

We would like to consider corrections to the discrete Euler dynamics that take
into account longer-time dissipative phenomena. As discussed, such effects are not
easy to obtain in conjunction with discrete Euler dynamics in any sort of limiting
regime. Indeed if one scales so that the dissipative effects are of order one, the
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discrete Euler part of the dynamics will blow up. If instead one subtracts off the
Euler dynamics, and studies the fluctuations on the right time scale, the limiting
stochastic equation will be linear.

Our goal is to try to capture both the leading order Euler dynamics as well
as the ‘second order’ dissipative stochastic dynamics through the coarse-graining
procedure outlined above. To do this, we will follow the strategy of the Mori-Zwanzig

perturbative approach described in Section 3.3 applied the Liouville equation
O fN + AnfN =0,

where Ay is the Liouville operator associated to (4.1), and the solution f/ is the
density of particles in phase space at time ¢t > 0. Let K be the size of the cell and
M = N/K be the number of cells, with w be corresponding local averaging map
defined in (4.3). We choose a Gibbs measure p”¥ as a reference invariant measure
for Ay and denote i = wypu™ the push forward and pn(-|ya) the measure
conditioned on {w = y}, whose expectation we denote by (- |yas )n-

Following the perturbative Mori-Zwanzig approach, we decompose Ay into
Ay = /iM + ZM,

where fiM is the operator corresponding Hamiltonian motion inside each cell suit-
ably periodized so that the cells do not interact, and Ay, corresponds to boundary
interactions between the cells. The operator /iM plays the role of the operator Ly

since

Ayw =0,
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and pun(-|yy) is an invariant measure for ./ZiM for each yj»;. The density of the
coarse-particles is given by push forward ftM = wy fN. If N is initially distributed
according p”V, then the system is in equilibrium, namely Ay f~ = 0. In this case,
one case show that for any K, N, f M solves

A, M =0
where le\M is the generator of a finite M discrete Euler dynamics.

When fV is not in equilibrium, after rescaling in time ¢ — Kt, we make
two approximations under the assumption large K, N. The first is a relazation
approrimation,

(lym) NN (-lyan)n,

where (| yu) sy, corresponds measure obtained by conditioning the distribution i
on {w = yy}. This approximation is essentially a statement of local equilibrium
implying that the measure f7 equilibrates within the cells faster than the cells do.
Indeed, one expects this to be valid in a regime where N and K are large, but N
is much larger than K. In comparison to the perturbative Mori-Zwanzig approach
shown earlier, the relaxzation approximation is simply a more precise justification of
truncation of the series (3.11). The second approximation is a Markovian assump-
tion, which is expected to be valid in the large K (long time) limit.

After these approximations, we obtain a Fokker-Planck equation for ftM ,

o ~ A FM
atftM — Aj\/[ftM =K1 Z din‘—u (g% divi_lvi <§t—M)> . (45)
K

1€L N

div,_1; = div,, —divy, ,, Vi_1; == V,, — V. ,, and g¥dyy = wydrdv is the
tensor product of the density of states inside each cell. The matrix d; = d(y;_1, ¥;)
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is the diffusion matrix and is defined by

d(yi-1, 1) =
T(yi-1)0(yi-1) 0 0
0 T (yi)n(y:) pir T (y:)1(ys)
0 Pt T(ya)(yi) T (Wi-1)T (ya) R (i1, 9:) + T (ya)7(yi)pi-y

with T'(y) = B(y)~! and P(y) are micro-canonical temperature and pressure func-

tions associated to the so-called volume entropy

Sy (L, e) := log ( / e gK@,o,u)du) ,

V(o)

where g (¢, p,e) is the micro-canonical density of states and T'(y), P(y) are related
to Sy (y) through the first law (4.2). The functions 6(y), 7(y) given by time integrals
of auto-correlation functions with respect to the micro-canonical measure (- | y)x on

(R, x R)¥, analogous to the Green-Kubo formula,

A(y) = ﬁ /OK <%J§; (etAKUj —pi) (Uj —pi> ‘y>K dt
i) =75 | ’ <%§j (V) + Pyi) ) (V/(r3) + Plwi) \y>K dt.

and (y;_1,%;) is given in terms of # and 7,

F(yim1,yi) = 0(yim1)7(ys) + 0(yi—1) B(yi) P(y:)*.

If K is large enough we can ensure that

\.%l

=
BN
IV
(@)
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The SDE system associated with (4.5) can be written as
b= (pi — pi1) + K (T Wisrow0) — T (i yic)) + K1 (ME, — M)
e = ~(Plyssr) = P(u) + K~ (T, ) — T @) + K~ (M, — M)
éi = —(PiP(Yi1) — pim1P(yi))

+ Kt (T Wi, vi) — T Wi, yi1)) + K_l( : f+1,i — N f,i—l)

(4.6)
where (T 1, J/i_1, J¢_1) are the dissipative fluxes given by
jfi_l =T;10;1(BiPi — Bi—1Piz1) + Bi0eli—1 + ;1007 — Pi0.,Ri—1;
Tty = (i + Ti0m:) (pi — pi-1) (4.7)

T = 0ian Ty + Tiii + K1 (Ti — Tioy) — TiTi-1 (0, Rijim1 — Oe,, Riji1),
and (M4 MP MS, |) are mean-zero martingales, given by stochastic integration

ii—1
against a collection of independent Wiener processes {W/}, {W?F}, {W¢}
M=\ /2T; 10, W}
ML = 2T W} (4.8)
' fic1 = Uifle + \/mwze
In equations (4.7) and (4.8) we have used subscripts to denote dependence certain
coarse particle, for instance P, = P(y;).

The system (4.6) is a discrete model for the Landau-Lifshitz-Navier-Stokes
equations in Lagrangian form and is derived in Chapter 4. The quantity 7 plays
the role of the bulk viscosity, while & plays the role of the thermal conductivity.
There are, however, some additional terms in the equation that don’t usually ap-
pear in the Navier stokes equations. Indeed, the quantity # does not directly have
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an analogue in Navier stokes equations, as typically the density equation doesn’t
dissipate. However, in this setting, dissipation terms are due to correlations of the
fluxes between cells and resemble the auto-correlations present in a tracer particle
rather than average correlations between all the particles. It is interesting to notice
as well that here, the thermal conductivity has an exact expression in terms of the 7,
6 and some thermodynamic quantities. This is a consequence of the fact that fluxes
between cells are solely determined by the fluxes on the boundaries. In addition,
we observe the emergence of terms that depend on derivatives of the quantities 8,7
and K.

It should be noted that this system conserves total length, momentum and

energy, and the measure

1
M _ 1,2 1,2
dp, = ie|Z| Z(@) exp{ —a-U; + S, e; — §pi)}ﬁ<€i; € — 5]%') dl;dpde;, (4.9)

is an invariant measure for both the Euler and the dissipative part of the dynamics
separately.

The equations (4.6) are very similar a popular model called ‘Dissipative Par-
ticle Dynamics’ (DPD). The DPD model was initially developed by Hoogerbrugge
and Koelman [72, 78] as model to simulate complex fluids, it has since been gener-
alized [42, 43, 91, 108] to produce consistent equilibrium behavior and to conserve
energy. Generally speaking, DPD consists of a collection of ‘fluid parcels’ that have,
volume, momentum, and internal energy, interacting with various friction terms
that corresponds to viscosity and thermal conductivity, and perturbed by stochastic

‘fluctuations’ which are in fluctuation-dissipation balance with the friction. There
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have also been several other attempts to derive dissipative particle dynamics from
Hamiltonian mechanics in the literature [45, 54, 55].

At the moment, without more knowledge of the behavior of the functions 6, 77, &
it is not clear that the SDE has a global in time solution, indeed the coefficients
are not locally Lipschitz. However, since the length, energy, and momentum are all
conserved, the only possible blow-up that could occur is if one of the cells attains
zero volume or zero energy in finite time.

In order to simplify matters, in Section 4.9 we introduce a simplified version of
the model (4.6) by assuming constant transport coefficients 6, 77 and . The model
takes the form

;= (pi — pi-1) + Tie10(B: P, — Bic1 Picy) + Mf+1 - Mf
pi = (P — Pipt) + [1(pi1 — pi) — 7(pi — pic1)] + ME,, — MY
éi = (pic1 P — piPi1) + 1 [wi(pis1 — pi) — pici (i — pic1))]
+E[(Ti = 1) = (T = Ti)] + (T3 = Ticr)
+ piM?—l—l - pifle + Merl — M.
Such a model has a clearer structure and the local entropy dissipation becomes more
apparent. In this setting, one can show that global strong solutions exist, we prove
this in Theorem 4.9.1.
This chapter is organized as follows:
In Section 4.2 we introduce the particle system and discuss in detail the in-

variant measure and thermodynamic structure. In Section 4.5 we introduce a con-

servative coarse-graining scheme by lumping the lattice points into cells and discuss
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the coarse-graining in equilibrium giving rise to Discrete Euler dynamics. In Sec-
tion 4.6 we discuss more detail about the discrete Euler dynamics and discuss its
invariant measure and thermodynamics structures. In Section 4.8 we address the
problem of non-equilibrium coarse-graining by lumping. Under a relaxation assump-
tion and a Markovian approximation, we obtain a stochastic particle system for
the coarse-grained cells which resembles a discretization of the non-linear Landau-
Lifshitz-Navier-Stokes equations of fluctuating hydrodynamics in Lagrangian form.
In Section 4.9 we introduce a simplified version of this stochastic particle system
and study its behavior. In particular, we show that the system is well-posed under

certain conditions on the entropy function.

A Classical Particle System in 1-D

In this section, we discuss properties of the one-dimensional particle model we
wish to coarse-grain. We give a precise formulation of the system and give a detailed
discussion of its invariant measure and limiting thermodynamic structure.

Suppose that we have a collection of N particles with unit mass, periodically
arranged on the torus T}, of size L. The positions are given by x = {x; }icz, € T%N
and the velocities are v = {v;}iez, € RZY where Zy = Z\NZ denotes the N-
periodic one dimensional lattice. We will assume that the positions x arranged on
T, in an ordered configuration in the space @Y, where @Y C TV denotes the set
of all ordered configurations on Ty. More precisely, given an identification of T,

with the interval [0, L] then we say x € Q¥ if there exists a cyclic permutation of
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{1,..., N}, call it o, such that
0< To(1) < To(2) < ... < To(N) < L.

We assume that the particles interact only with their neighbors through a
pair potential function V(r) and governing the evolution of the N particles is a
Hamiltonian Hy, taking the form
Hy(x,v) = lvf + V(e —xiq) | .
, 2
1€ELN
The particles then evolve according to Hamilton’s equations
Z).L’i = U;
vy = =V'(xi —xi1) + V(201 — 13),
and are initially arranged on T in an ordered configuration in QY. We will make

the following assumptions on the potential

Hypothesis 4.2.1. The potential V : R, — R is a non-negative, smooth, non-

increasing, convex function on the interior of Ry, and satisfies

lim V (r) = 400,

r—0

while, V'(r) is a smooth concave function on the interior of Ry and satisfies

lim V'(r) = 0.

7—00

The singularity of the potential V' implies that the particles cannot cross. This
ensures that any initial configuration in Q% remains in @Y under the evolution of
the dynamics.
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As the phase space QY of ordered configurations is rather painful to work

with, we will find it convenient to change coordinates to deformation variables
ri:xi—xi_1€R+, iGZN,

describing the relative distance between neighboring particles. The deformation
variables r = {r;};cz, take values in the simplex Ag ~! defined by the total length

constraint

Ly(r) = Z r; = L.

1€ELN

Of course, such a change of variables is not one-to-one, since the coordinates r =
{ri}icz, are invariant under translations of T and are constrained to the simplex
Ag ~1. However, given the position of one particle, say z; € T, one can reconstruct

the positions x uniquely from from r, by the formula

)
Zlfi:l'l“— E Tj.
=1

Indeed, it is not difficult to see that the mapping
@g = (l’l,SL’Q,...,LL’N) — (271,7’1,...,7’]\/) € TL X Agil

is a volume preserving diffeomorphism.
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Figure 4.1: The periodic arragement of particles on a circle

Under these new coordinates we define the phase space QY = RfN x RZN and

obtain the following evolution equation

Ty = Ui — Vi1

(4.10)
v; = V' (rig1) = V'(ri),

with the new Hamiltonian

1
Hy(r,v) = Z E(ri,v), E(r,v) = §v2 + V().
1E€ELN

The above system has three conserved quantities, the Hamiltonian, or total energy

Hy, the total momentum Py, and the total length Ly, where
Py(v) = Z ;.
IELN
Remark 4.2.2. It is important to the equations (4.10) are no longer canonically

Hamiltonian, due to the degeneracy associated with the conserved quantity Ly. In

fact, the dynamics in (4.10) define a Poisson structure with Poisson bracket

{9} =D [00f (00,9 — 0o, _19) = 0,9 (Du f — Do, )],

€N
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acting on smooth functions. In this setting Hamiltonian governing the evolution is

still Hy, while Ly is a Casimir invariant, that is

{LN,f} =0,

for all suitably smooth functions f.

Associated with the dynamics is the Liouwville operator

An = Z —0;-1(Op; — O, y) — V'(Ti)(avi — 0y, ,) =1 ,Hn},

1€ELN

which governs the evolution of observables and distributions of particles over Q.
The fact that Ly, Py and Hy are conserved is expressed by the fact that they belong

to the null space of An,,
ANLN = ANPN = ANHN =0.

In particular, if one is only interested in statistical properties of the particle
(r,v), then the probability density f~(¢,r,v), describing the density of particles

with positions and velocities (r,v) in QV at time ¢ is given by the Liouville equation

ofN + AN =0. (4.11)

Grand-Canonical Ensemble

Associated with the conserved quantities Hy, Py, Ly, is the grand canonical
ensemble, that is, a measure ,u]T\f sa(drdv) on the phase space OV with parameters

(1,\, 8) € Ry x R x R,. It is defined by

1

—TLN(r)—)\PN(v)—BHN(r,V)d d
ZN(r D) i

Mi\f/\ﬂ(drdv) =
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where

ZN(T, )‘76) _ / e—TLN(r)—)\PN(v)—BHN(x,v)drdV’
QN

is the grand canonical partition function, which serves as a normalization constant

for ué\fﬁ,/\. Because the Hamiltonian Hy is just a sum of single particle energies F;,

it is easy to see that p) s \(drdv) is just a product measure
Mi\,[,\,ﬁ(drdﬂ = H prpp(dridu;),
i€y

where p, ) g(drdv) is the single particle Gibbs measure

1

prp(drdv) = —Z<T X B)ef’”’\“[i@“Q*V(’""))drdv

and Z(1, A, 3) is the single particle partition function

Z(r, )\ B) = / e~ NBEV D) rdy,

R+ xR
The measure p, ) p(drdv) can also be written as a product of a Gaussian
measure in velocity and another measure in r, namely

o= 3Bi—A71A)?

\/2mp1

pir 5 (drdv) = [

1
e—TT—ﬁV(T) dr
{Z (,8)

where
Z(1,B) :/ e AV dr,
Ry

It is important to note that under the assumption that since V' (r) is non-increasing,
in order for Z(7, 5) to be finite, we need 7 > 0.

It is easy to see that ,u]T\f A 1s a stationary measure for the dynamics. In fact,
it is a consequence of the more general skew-symmetry property Ay with respect
to puly 5.
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Lemma 4.2.3. The operator Ay is skew-symmetric with respect to uﬁf/\ﬁ. That 1s,

for each F,G € C{(QY), we have

OnN
Proof. With some abuse of notation, we write ,ui\f »5(r; V) as the density of the
measure (), ;(drdv). Note that since u2, 4 is a function of the conserved quantities
and Ay is a first order differential operator, we have AN,ui\{ rg = 0. The proof
then follows from the fact that Ay is skew-symmetric with respect to the Lebesgue

measure, since Hamiltonian vector fields are divergence free. O]

The quantities 37'\ and 8 play the usual role of mean velocity and inverse
temperature for the measure ;5 y, as can be see by computing the Gaussian inte-

grals,

/ U iz p(drdv) = BN,
o (4.12)

1 _ 1,
[ =50 psataran) = 557
R+ xR
where the second identity for 3(v — #7*\)? is a manifestation of the equipartition
theorem of statistical mechanics. The quantity S~!7 also has a physical interpreta-
tion. In fact, a special feature of plays the role of the pressure (or tension) of the
segments between particles, as it follows from a simple integration by parts and an

appeal to the behavior of V' (r) at 0 and oo that

/ V) pyapl(dr) = B
R4 xR
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Grand-Canonical Thermodynamic Structure

The thermodynamic free energy F' associated with the grand-canonical mea-

sure is defined by taking the logarithm of the one-particle partition function
F(r,\,B) =log Z(1,8) + 187'A* — L1og 8 + § log 2.
The corresponding thermodynamic entropy S is given by Legendre-Fenchel transform
S, p,e)= TnAlfﬁ [T+ Ap+ Be+ F(r,\, 5)]

where the infimum is taken over all (7,\, ) € Ry x R x Ry. Note that we have
altered the definition of the entropy from that of section A.2 to match the physical
notion of entropy, and to think of the parameters (¢, p,e) as the physical values of
average length, momentum and energy, respectively. Indeed, if S (¢, p, e) represents

the entropy as defined in Section A.2, then S and S are related by

S, p,e) =—=S(—¢,—p,—e).

It follows, by Lemma A.2.1 and Lemma A.2.2 that F' is a smooth strictly convex
function on (Ry xR xR, ) and S is a smooth strictly concave function on its domain.

Moreover, dual pairs of Legendre variables a = (7, A, §) and y = (¢, p, e) satisfy
a=VS(y), y=-VF(a).

The entropy can computed more explicitly using the structure of F'. Indeed,

taking the infimum over A first, we find

1
S(l,p,e) = inﬁf [0+ B (e — 1p*) — Llog B +log Z(1, B)] + 5 log 2. (4.13)
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In particular, this implies that S(¢, p,e) only depends on the average momentum p
and average energy e through the internal energy u = e — %p2. This is a consequence
of the Galilean invariance of the system (4.10). Particularly this property can be

written as

S(&pa 6) = S(&Ove - %pQ)

We will find it convenient to define for each (¢,e) the inverse temperature

function

Bl,u) = 0.5(,0,u) >0

and the pressure function
Pl u) = 0,S(¢,0,u)/0.S(¢,0,u).

The fact that 5(¢,u) is strictly positive follows from Gaussian nature of the measure
prx g in velocity and the formulas (4.12). Then it is seen that the function Sy(¢, u) =

S(¢,0,u) satisfies the first law of thermodynamics
S, = AP + Bdu.

It is important to remark, that because of the exclusion effects of V', the

domain of S
DS = {(€7p7 6) < R-‘r X R x R-i— : ‘S<€Jpae)‘ < OO}

will be a non-trivial subset R, x R x R,. Indeed, small values of ¢ will restrict
how small e can be. In fact, the convexity assumption on V allows form a precise

definition of Dg.
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Lemma 4.2.4. The under Hypothesis 4.2.1 on V', the domain Dg 1is given by
Ds={(l,pe) eRy xR xRy : e>1p>+V(0)}. (4.14)

Proof. 1t suffices to show that the domain of S(¢,0,¢) are the values of (¢,e) € R%

such that e > V/(¢). Since F'is smooth an convex, this is equivalent to showing that
{=—0.F(r,0,8), e=—0sF(r,0,p), (4.15)

is uniquely invertible for £ > 0 and e > V' (/).

First, we remark that for fixed 5 > 0, the following limits hold

1
lim — / re AV = 0, 113(1) 70 5)/ re AV = .

Therefore, by the monotonicity of 0, log(Z(r, 3)), for each £ > 0 and § > 0, there

exits a unique 7, such that

1
(= _87' IOg(Z(Tg’/B, ﬁ)) = Z(’T B) /]R Te_TT_BV(T)dT.
’ +

Next, we claim that for 7,3, we have

1 1 02
lim —/ (—112 +Vir ) e_”’ﬁr_ﬁ( tV(r >drdv =V (¥).
o0 Z(7,3,0,8) Jr, xr \2 (r) ©)

Indeed the fact that

lim —— / 2e%2""dy = 0.
B—roo 4/ 27Tﬁ 1
follows from simple Gaussian integration, while the fact that

1
lim —— V(r)e s BV dr = V (1),
50 Z (75,0, 3) /R+ ) ©
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follows in a straight forward manner from the fact that the measure Z (7, 3) ~te=7sm=8V()
concentrates at its mean value r = ¢, as § — oo. Moreover, it is easy to see that

715 — €Y% as B — 0 and conclude that

1 1 1,2
lim —/ (_02 +V(r ) e A3V ) drdy = oo,
-0 Z(70,,0, 3) Ry xR \ 2 (r)

Also, since V' is convex, we have by Jensen’s inequality

1 / (1 2 ) —T rfﬁ(lszrV(r))
_ —v*+V(r)|e %8 2 drdv > V (¥).
Z(7,0,8) R4 xR 2 ) ©

It follows, again from the monotonicity of 5+ 0gF' (74,6, 5) that for each £ > 0 and

e > V/({) there exists a unique [, that satisfies

e = —65F<7'g”3€76, O, Bﬁ,e)-

In addition, the above limits show that the interior of {({,e) € Ry xR, : e > V({)}

are the only values for which (4.15) have a solution. O

Micro-Canonical Ensemble

While the grand-canonical ensemble is rather convenient to work with, being
a product measure, it does disregard the fact that the particle evolution associated
to (4.10) is actually constrained to certain lower dimensional submanifolds of Q.
Indeed, the evolution takes place on the manifold defined by energy, momentum,
and length conservation.

To be more precise, suppose that we fix values (¢,p,e) € Dg C R, x R x Ry

and define the manifold

e ={(x,v) € QY 1 Ly(r) = N¢, Py(v) = Np, Hy(r,v) = Ne}.

Lpe
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It is important to note that this manifold is only non-empty for certain values of ¢

and e. Indeed, under the constraints
1 & 1 &
Nl g e

=1

the energy has the sharp lower bound

1
vf +V(r) > §p2 + V(0).

N | —

1N
=

K

Therefore in order for X,

to be non-empty, we will need e > 1p* + V(¢) for any
given ¢ > 0. As it turns out, this condition is precisely the one that defines the

domain of the thermodynamic entropy Dg defined in (4.14). Specifically, we have
{(t.pe) eERLxRxR : 5  #0} = Dyg.

We refer to any minimizing state (r,v) of the Hamiltonian Hy under length
and momentum constraints a ground state. It is clear such a minimum is achieve
when all of the particles have constant deformation ¢ and momentum p. In fact, if
the potential V' is non-negative for all » > 0 then this state is the unique ground
state. If, however, the potential has finite range, then depending on ¢ there many
minimizers corresponding to non-interacting configurations.

If the dynamics of (4.10) start on ¥ they will stay on ¥V _ due to the fact

{,p,e’ ¢,p,e

that Ly, Py, Hy are conserved. Moreover, if the choice of V' is generic enough, and

there are no other conserved quantities, then one expects that the dynamics become

N

tpe after a long time and can be described by a uniform

uniformly mixed on X

N

tpe (often referred to as Boltzmann’s ergodic hypothesis).

distribution on X
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Naturally this motivates the study of the micro canonical ensemble with pa-

rameters (¢, p,e) € Dg to be the measure
(5P (drdv) = py(drdv | €, p,e)

obtained by conditioning the grand-canonical measure ui\f ,\76(drdv) with respect to
the map

AN(

W (Ly(r),Pn(v),Hy(r,v)). (4.16)

) 1
r,v) = —

N
Moreover, since the density of ,uf{ »5(drdv) depends explicitly on the quantities

Ly, Py, Hy, then puy(drdv |4, p,e) does not depend on (7, A, #) (c.f. Lemma A.3.4)

and can be understood through the decomposition
drdv = py(drdv | 4, p, e) Fn (dldpde), (4.17)
where 4y is the pushforward
An (dldpde) = @ﬁdrdv.

Then for each (/,p,e) € Dg, the measure u“P¢ concentrated on Eé,vp,e and since

Yppe = 1N = (¢, p,e)} is a bounded subset of OV, this measure is well-defined.
Using this decomposition, it is easy to see that py(drdv |l p,e) is also an

invariant measure for (4.10) and that, just as we had for the grand-canonical measure

,ui\’[ Ag> We have the following anti-symmetry property

Lemma 4.2.5. The operator Ay is skew-symmetric with respect to uf\’,p’e, that is,

for each F,G € C}(QY) we have

/  PANG Ay =~ AnF G dpkpe
P

£,p,e L,p,e
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Proof. Let ¢ € C}(Ry x R x R,), then the decomposition (4.17) implies that

/ (w(&p, €) /
Ry xRxR4 ny

£,p,e

F ANG d,ﬁﬁ) A (dedpde)

:/ (@) F AyG drdv.
QN

Using the fact that Ap,p(@w") = 0 and that Ay, is skew-symmetric with respect

to Lebesgue measure, we obtain

/ (@) F AyG drdv = —/ (™) AyF G drdv.
QN

QN

This completes the proof. n
To continue we will need a further hypothesis on V (r)

Hypothesis 4.2.6. Let w(r,v) = (r,v, 20> + V (1)), then the function

6(6) = / oliE—a)u(z) g,
R+ xR

belongs to L”(R3) for some v > 1 and satisfies the non lattice condition

6O <1, for [¢]>0.

Remark 4.2.7. Hypothesis 4.2.6 is equivalent to requiring that the push forward
measure w#e*a'w(z)dz, for a € Dg, satisfies the first condition of Hypothesis A.3.1,
in fact, the second condition of Hypothesis A.3.1 is also satisfied, since —w(z) has
compact super-level sets. Of course, this hypothesis ensures that the v convolution
of the push-forward of dz under w(z) has a density with respect to Lebesgue measure
on Ry x R x R} even though wxdz is only supported on a sub-manifold of Ry X

R xR,.
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It is an interesting question as to which class of singular potentials V'(r) satisfy
Hypothesis 4.2.6.

Hypothesis 4.2.6, ensures that when N is large enough N > Ny, Yn(d¢dpde)
has a density

An(dédpde) = gn (¢, p, e) dldpde.

The density gn (¢, p, e) is the so-called density of states, and is formally written as,

gy, p,e) = / S(N"'Ly(r) = €)6(N'Pxn(v) — p)d (N 'Hy(r,v) — €)drdv.
RYV xRN
In this setting, the micro-canonical measure uy(drdv |4, p,e) can also be written as

v (drdv | €, p,e)

1 1 i -1 v) — 1 e v) — e)drdy
= (VL) = F(N TP (v) — )N H(e,v) — )drd,

We can give a more explicit representation of the function gy (¢, p,e) on Dg.

Lemma 4.2.8. Let ({,p,e) € Dg, then we have the representation

on(tp,e) = N [ Gl ),
%

L,p,e

where dH?*N73 is the 2N — 3 dimensional Hausdorff measure and

| XN | XN 2 | XN ’ N
(r’v):ﬁ;<vi_ﬁgvi> N;(V Ti —Ng )

Proof. We will use the co-area formula applied to the function @™ (r, v), which states

2

that for any function ¢ on Ry x R x R,
/ (@™ (r,v))drdv
R xRN

— / o(l,p,e) </ |det (9™ [0w™] ") }71/2 d’HQN?’(r,V)) d¢dpde.
R+XRXR+ EN

l,p,e
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By direct computation

87«]@112\] = N717 Oy, Wy = 0, arjﬁ}N - NﬁlV’(”)v

T3P €

and
Oy, 0y =0, Oy, =N~ 9w =N vy,
Therefore
1 0 V/(Ti>
N
ooNoaN]T =N | 0 1 v;
j=1

Vi(ry) v of+(V'(ry))*

Taking the determinant yields

det (0@ [9@N] ")

-3 N 2 / 2 1 Y : 1 Y / i
=N N;%+(V(7‘a>) —<N;Uj) _<N;V(TJ)>
= N°Gn(r,v).

Therefore, using the definition of gy, we obtain

/ ¢ gy dldpde = / © N3/2 ( / [GN(r,v)]_l/deQN_?’) dedpde.
Dg Dg =N

£,p,e

]

As a consequence of Galilean invariance, if we write y = (¢, p, e), we will see
that gy is just a function of ¢ and the internal energy u = e — %pQ. In fact we will

say that a function f(¢,p,e) has the Galilean shifty property if it satisfies

f(éapu 6) = f(gv()?e - %p2>

Indeed we show that gy has the Galilean shift property.
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Lemma 4.2.9. Let y = ({,p,e) € Dg and N > v, then gn({,p,e) has the Galilean
shift property, that is

gN(gapa 6) = gN(& 07 € — %pQ)

Proof. Formally this can be seen using delta function notation, and writing
gy, p,e) = /5 (N"'Ly(r) =€) § (N"'Pyn(v) —p) § (N 'Hn(r,v) — €) drdv.
Changing coordinates from v — v + p and using the fact that when P(v) =0,

N
HN(raV +p> = HN(raV) + Ep27

we find
gn(l,p,e) = /(5 (N"'Ly(r) =€) 6 (N"'Pn(v)) 6 (N 'Hy(r,v) — (e — 5p7)) drdv.

However, this can be shown more rigorously using the representation for gy

N

0pc satisfies following property with respect

given in Lemma 4.2.8 and noting that >
to a shift in velocity

Sipe — (0,p1) =27 (4.18)

,%p%
where 1 = (1,...,1) € RY. The proof is complete upon changing variables from
v — v+p, using the shift property (4.18) and the translation invariance of Hausdorff

measure. O

The Galilean shift property also arise with respect to micro-canonical averages.
For any bounded continuous function G on RY xR, denote the average with respect
to puy(dedv |2, p,e) by

~

Gn(l,p,e) :/ G(r,v) un(drdv | £, p,e).
RY xRN

70



Then we have the following Galilean shift property, analogous to Lemma 4.2.9.

Lemma 4.2.10. Let G be a bounded continuous function on RY x RN, that doesn’t

depend on velocity v (i.e. it is Galilean invariant) and let ({,p,e) € Dx. Then

~

Gn(l, p,e) satisfies the Galilean shift property,
é]\[(g,p, 6) = aN(& Oa €— %pQ)
Proof. The proof is the same as that of Lemma 4.2.9. O]

As it turns out, the grand-canonical ensemble ui\f »p(drdv) is a good approxi-
mation of uy(drdv | £, p,e) as N — oo, where (7, A, ) are related to (¢, p, e) through

the entropy function S(¢, p, ), specifically for (¢,p,e) € Dg
T=0S,p,e), A=09,50(,p,e), [=05p,e). (4.19)

Indeed if one follows the formalism of Section A.2, then the result of Theorem
A.3.7 (and Hypothesis 4.2.6) can be restated in to give the following equivalence of

ensembles between the grand-canonical and micro-canonical ensembles.

Theorem 4.2.11. For each (¢,p,e) € Dg let (1,\, B) be given by (4.19). Then for

each bounded continuous G on RE x R¥, for some K, the following limit holds

K
]\}i_rgoGN(f,p, e) :/ G(rl,...rK,vl,...'UK)H,uT,,\,g(dridvi).

K K
Ry xR i=1

Micro-canonical Thermodynamic Structure

We would now like to define a micro-canonical thermodynamic structure for
finite, but large, N. Namely we would like to identify a pressure Py(¢,p,e) an

71



entropy Sy(4,p, e), and an inverse temperature Sy (¢, p, e) which satisfy the Galilean

shift property, are related by the first law of thermodynamics
dSn(¢,0,e) = Bn(¢,0,e)de + By Pn (4,0, e)dl.

Moreover we would like each function Py, Sy and Sy to converge as N — oo to the
corresponding thermodynamic functions P, S and .

As recognized by Gibbs in [62], at the level of the micro-canonical ensemble,
there are several notions of entropy, or so-called 'thermodynamic analogies’, that
give rise to the first law, each one with its own drawbacks. In our approach, we
will find it desirable to have the pressure Py in that arises the first law to be the

micro-canonical averaged force

Py(C,p,e) = —/

N
Eé,p,e

N
1
(N Z V’(ri)) pn(dedv | £, p, e). (4.20)
i=1
Indeed as a consequence of the equivalence of ensembles (Theorem 4.2.11), we have
lim Py (¢,0,u) = P({,u)
N—o00

so that Py and P agree for large N. In order to ensure that the first law is satisfied,

then define the micro-canonical entropy Sy to be the so-called volume entropy,

1 ¢ / /
SN(€>p7 6) = Nlog (ﬂ gN(€>pae )de> ) (421)

P2V (£)

and then define the corresponding inverse temperature Sy by

1
Bn(l,p,e) = 0.Sn (L, p,e) = NgN(E,p, e)e Non(bpe) ~ () (4.22)

Remark 4.2.12. Of course, taking a hint from Boltzmann, one might expect that
the entropy Sy to be given by the logarithm of the density of states log gn. Indeed
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from Lemma A.3.5, we know that

1
lim — log gn(y) = S(y),

N—oo

on Dg, where S(y) is the thermodynamic entropy, defined by (4.13). Therefore, it

seems natural that the quantity

Swly) = 3 log on (v)

would make a good candidate for the entropy. This version of the entropy we will
refer to as the surface entropy. However, as we will see, the forthcoming Lemma

4.2.13 implies that S(¢,p, e) satisfies the relation
_ 1 _
aZSN(€7p7 6) - NaePN(Evl% 6) + PN(£7p7 e)aeSN(£7p7 6)7

and therefore Sy does not satisfy the first law with respect to Py as defined in (4.20),
and it therefore undesirable for our considerations. This discrepancy between the
notion of ‘volume entropy’ (i.e. entropy of all states less than a certain energy) and
‘surface entropy’ (i.e. the entropy of all states with a certain prescribed energy) was
introduced by Gibbs in [62] while studying the micro-canonical ensemble. One of
the major downfalls of surface entropy as it’s defined is that the pressure it gives
rise to is a complicated quantity and not clearly related to the averaged pressure
Py defined above. Moreover, in certain circumstances, the inverse temperature that
arises from the surface entropy can give rise to negative temperatures (see [38]),

which is again undesirable.

We have the following relation between the coarse-grained pressure function
Py and the density of states gy .
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Lemma 4.2.13. The following identity holds
Oegn = Oc(Pn gn)

Proof. Let y = (¢,p,e) € Dg and let p(y) be a C' function on Dg which vanishes

at oo, then it suffices to show for all such ¢,

[ oot ot ay = /D Dep(y) P(y) gn(y) dy.

To this end, let @™ be as in (4.16) then for each 1 <i < N, we have the identity
NO,, [p (@ (r,v))] = Oup (@ (r,v)) + V' (r;)0ep (@™ (x,v)) .
Integrating both sides over 2, we obtain

/QN A (WM (r,v)) drdv = — / V'(r;)0ep (@™ (r,v)) drdv. (4.23)

QN
Using the permutation symmetry of @ (r,v), and the definition of py(drdv|y),

the right-hand side of (4.23) becomes

— / V'(1:)0. (@N(r, v)) drdv
foRN

= —/D Oep(y) (/ZN <%ZV’(M)> uw(drdV\y)> gn(y)dy

_ /D D () Pr(y) g (4)dy.

Similarly using the definition of gn(y), the left-hand side of (4.23) becomes

/RN x Op (@N(r, v)) drdv = / o (y) gy (y) dy.

Dg

]

We will need the following limits as the energy e approaches the ground state.
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Lemma 4.2.14. Suppose, in addition to Hypothesis 4.2.1, the potential V is strictly

convex. Then following limit holds

lim P — —V'(0).
e—:‘I/I%Z) N(€707€> V(é)

Proof. First, note that since by assumption, —V" is convex, by Jensen’s inequality,

we have the lower bound

— V() < Py(€,0,e).

Furthermore, under the constraint Zfil r; = N/, by Taylor’s theorem and the fact

the V”(r) is decreasing

N N
> (V) = V() > Z V" (max{r;, €})(r; — €)> > V"(NO) Y (r;
- =1
Since V(r) is strictly convex, we define V/(N¢) = C' > 0. It follows that if 0 <

e — V(£) <4, then on the manifold %7}, ., we have

N
D (ri—0)? < NC's.
i=1
Indeed, this implies that for each € > 0, we may choose ¢ small enough so that on

¥00.e> We have |r; — ] < e. This implies, by the fact that —V"(r) is decreasing, that

on Eé\fo,e and for small enough € > 0,
—V'(r;) < =V'(£ —e).
Therefore, when e — V' (ell) is small enough, we have the bound
—V'(0) < Py(£,0,e) < =V'({ —¢).

Sending ¢ — 0 gives the proof. m

5



Lemma 4.2.15. The following limit holds

Jim gn(£,0,€) = 0.

First, we observe that, with these definitions, the first law is satisfied.

Theorem 4.2.16. Let Py, Sy and By be defined through equations (4.20),(4.21)

and (4.22) respectively. Then they satisfy the first law, i.e.
Sy = Bn, 0eSn = By Py

Moreover, Py, Sy and By satisfy the Galilean shift property, and the following limits

hold for (¢,p,e) € Dg
lim Sy(¢,p,e) =S, p,e), lim Py({,p,e)= Pl p,e).
N—oco N—oo

Proof. First we prove the Galilean shift property. This follows for Py from Lemma
4.2.10. For Sy it follows from the fact that gy has the property and a change of

variables,

e e e—1p?
/ g(l,p,e)de :/ 9(£,0,¢ — 1p*)de’ :/ ’ g(£,0,¢")de’
1

p2+V(£) 1p21v(e) V(0)
Finally Galilean shift property for Sy follows from the fact that Sy has it.
To verify the first law, note that 0,5y = [y is satisfied by definition, therefore
we simply need to check that 0,5y = ByPy. Moreover, using the Galilean shift

property it suffices to check for p = 0. Using Lemma 4.2.13 and the fact that
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lime_,v ) Pn(£,0,e) = =V'({) gives

1 e
OuSn(£,0,e) = —e VI (E0e) / Oegn (£,0,€Yde’ = V'(¢) lim gn(¢,0,¢€)
N V() e—=V ()

1

= e VSN (£0e) (/ Oe(Pn(£,0,€)gn(€,0,€¢))de’ — V'(£) lim gn(¢,0, e))
N 0 e—V ()

1
= o NVON(£0e) (PN(K,O,e)gN(E,O,e) — lim Py(4,0,e)gn(4,0,€)
N eV (0)

—V'(0) el}l‘r/r&) gn (4,0, e))

= BN(E, O, G)PN<£, O, 6)
Next, we show the limits of Sy and Py as N — oo. Note the limit for Py
already follows from the equivalence of ensembles (Theorem A.3.7). While for Sy,

we will need the following locally uniform asymptotic

R eNS(é,p,e) 1
gn(l,p,e) = W\/N?’det(—V?S(&p, e)) (1+O(N"1?)).

Then a straight forward application of Laplace’s method yields

lim %log (/ gn (L, p, e’)de’> = sup S, p,e) =5 p,e).
n—00 1

3P°+V () /(3P +V (0)0)
where in the last equality, we used the fact that e — S(¢,p,e) is an increasing

function. O

Stochastic Regularizations

If V is sufficiently nonlinear, one expects that for long times and large enough
N the dynamics (4.10) becomes suitably mixed on the micro-canonical manifold

EN

0pe- While this is a natural conjecture, establishing this is an incredibly difficult

mathematical problem. Indeed, to obtain such mixing, one must ensure that the

7



obvious conserved quantities of length, momentum and energy are the only conserved
quantities, so that the dynamics are not constrained to any proper submanifolds of

EN

rpe- As is well known (see [21, 96]) the potential V(r) = 7= (which satisfies

Hypothesis 4.2.1) leads to an integrable dynamical system in one dimension, and
therefore has more conserved quantities than just length, momentum, and energy.
Another example is the hard rod fluid, where, due to the fact that collisions swap
velocities of the colliding particles, one can verify, for instance, that the number
of particles with a particular velocity is a conserved quantity. Of course, if one
removes the restriction that the potential has a singularity at zero then there are
many examples of potentials that lead to integrable systems, the harmonic potential
V(r) =r? and the Toda potential V(r) = e™" ([112]), are just a few.

Indeed, this problem appears to be well out of the reach current mathematical
techniques. However, a common to technique to circumvent such mathematical dif-
ficulties is to introduce a stochastic perturbation to the dynamics which conserves
the quantities of interest, namely the length, momentum, and energy, while intro-
ducing the necessary mixing to obtain ergodicity. Typically, these perturbations are
chosen to mimic certain random collisions between neighboring particles and are in-
troduced to simulate, in some qualitative sense, the ergodicity and mixing that one
expects from the deterministic Hamiltonian dynamics. This approach, for instance,
was taken in by Olla, Varadhan, Yau [101] in their pioneering paper on the hydro-
dynamic limit of a classical Hamiltonian system of particles in three dimensions,
where is was used to obtain a local ergodic theorem (see also [59, 90]), which is a

necessary step in the proof of the hydrodynamic limit.
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In the following subsections we will discuss several stochastic perturbations to
the deterministic dynamics (4.10) which conserve energy and momentum and act
locally on the momentum variables only. Such perturbation are regularly considered

in the literature on stochastic lattice systems, particularly that of Harmonic chains.

Poisson type noise

One of simplest strategies for an energy/ momentum conserving noises is one
that preserves pairwise momentum v; +v; 1 and energy %U? + %vf ", for each i € Zy.

Unfortunately, in one dimension, for a given pair of velocities (v;,v;11) the
only other pair that share the same momentum and kinetic energy is exchanged pair
(vir1,v;). As a consequence, it is not possible to construct a diffusion type noise on
the manifold of pairwise momentum and energy conserving interactions, as the man-
ifold consists of two disconnected points. Instead, we can construct a Poisson type
noise that randomly swaps the momentum of adjacent particles. That is, particles ¢
and ¢+ 1 exchange their velocities v; and v;1; at independent random exponentially
distributed times with rate 1. This type of process can be equivalently described
by a family of independent standard Poisson process {N;;11(t)}iez, with rate 1,
whereby the evolution equations (4.10) become the following family of stochastic

differential equations

Ti = U; — Vi1
(4.24)

i = V'(rig1) = V(1) + (v — v )Nipr — (v — v ) Nic1,

where v, (t) = v;(t—) denotes the velocity of the ith just before time ¢ (its left limit
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at time ¢) and Ni,iﬂ can be represented as a train of random impulses

Z 1—0—1 § 5 z H—l

where {TZJ i11)521 is a Poisson distributed collection of random times when particle
1 and 7 + 1 exchange velocities.
The generator Sy of the stochastic part of the above dynamics can be written

as

SN:Zf];

1€ELN

where T; are so-called exchange operators {T;}icz, acting on functions ¢ : Q¥ — R

and defined by

7;¢(I‘,V) = 7;1,i¢(1'>v) = ¢(1‘, Viil’i) - ¢(raV),

where vi~1? denotes the velocities v with the velocity of the ¢ — 1th and ith particle
swapped.

It is easy to obtain the following symmetry properties of the operator Sy.

Lemma 4.3.1. Let F,G € Cy(QY), and let v(drdv) be a measure on QN which is
exchangeable in velocity, meaning that the measure is invariant under exchanges in

the index of the velocities of neighboring particles. Then we have

/ FSNGdI/ :/ SNFGdI/
QN

QN
Note that drdv, vV s and vy P€ are all measure that are exchangeable in ve-

locity, and therefore Sy is symmetric with respect to each of these measures. Since
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Sy vanishes on constants (it is the generator of a Markov process), this clearly im-
plies that any measure which is exchangeable with respect to velocity is an invariant
measure for Sy.

The generator of the full process (4.24) is now given by

Ly =Ax + Sw,

and instead of the Liouville equation, the distribution of particles f¥ is given by

the forward Kolmogorov equation

O + AnfN = SnfN =0.

Diffusion Type Noise

If one allows for interactions between more than two consecutive particles, one
can consider noises which are of diffusion type. This has been done, for instance,
in [10], while studying the divergence of thermal conductivity in a momentum con-
serving anharmonic chain.

For any three indices (i—1,4,i+1), the set of velocities (v;_1, v;, v;11) satisfying
Vi1 4+ v + vip1 = 1 and v2, + 07 + v2, = ¢ is a one dimensional manifold. It is
not hard to see that this set is a just the intersection of a 2-dimensional sphere and
a plane, and therefore is just a circle S,, ., embedded in R?. We aim to construct a

Brownian motion on this circle. To do this, note that the following vector field

Vi = (Vi = vi11) 00, + (Viy1 — vi—1)0y, + (Vic1 — ;) Oy,

is tangent the manifold of three particle energy and momentum conserving interac-
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tions since

Vi(viet + v +vig1) = Vi(viy + 07 + Ui2+1) = 0.

Therefore the operator Y? is proportional to the Laplace Beltrami operator on S, .,
If one now takes into account all such consecutive three particle interactions, we can
construct a generator Gy for a momentum and energy conserving diffusion by
Gy =Y Vi
i€Zn
Because of the conservation properties of Gy (i.e. GyHy = GyPy = 0), it is
easy to see that Gy is symmetric with respect to drdv, v, ; and v,

If one adds this diffusive stochastic dynamics to the deterministic Hamiltonian

dynamics (4.10), we obtain a diffusion process with generator

Ax + Gn.

The evolution equations for the stochastically perturbed system now become the

follows system of It6 stochastic differential equations,

T =V — Vi1
b =V (rig1) = V'(ri) = (0im1 — viza) o Wiy
+ (vis1 — vim1) o Wi — (viga — vig1) 0 Wiga,
where {W, }iez,, are a family of independent one dimensional Wiener processes, and
o indicates the Stratonovich product.

Note that this type of noise has the effect of adding more than just nearest

neighbor interactions to the system.
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General Conservative Coarse-Graining on Zy

In this section, we will discuss several procedures for coarse-graining the par-
ticle system of Section 4.2.

Let QY = (R x R)%¥ | then for any collection of particles zy = {z;} € QY
zi = (r4,v;), we denote the corresponding collection of locally conserved quantities
by

wy = {w(z) biezy €TV, w(z) = (ri,pi, 207 + V(ry)) |
where 'V =R, x R x ]R_ZFN . Let, w? denote the dth local conserved quantity of the
1th particle, with 6 = 0 corresponding to length, 6 = 1 corresponding to velocity,

and 0 = 2 corresponding to energy. To be clear, we have defined

0 _ .. 1_ . 2 _ 1,2 )
wy =T, wy =v;, W = 3U; + V(ry).

Recall the Liouville operator associated to (4.10)

Ay = — Z (Ui—1<ar,- - ar,-_1) + V,(Ti)(avi - avz’—l)) :

IELN

Each collection of locally conserved quantities {w{ };cz, has a corresponding collec-

tion of local currents {J};cz, which satisfy
Ayw;] = Jf+1 - Ji,
and are given explicitly by
W =vii, I =V'(ry), I =v1V'(ry).

It is useful to remark that J? is itself another locally conserved quantity, while J}
and J? are typically not conserved.
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The procedure of conservative coarse-graining consists of taking a configura-
tion zy € OV and associating to it a lower dimensional quantity whose elements
represent local averages of the locally conserved quantities wy. To describe such
a coarse-graining procedure, we introduce the empirical measure 7(zy) which is
defined by its action on any smooth test function ¢ : T — R by

1 .
n(zn) [l = N Z w(z;) (i/N).
i€ZN

The empirical measure 7 defines a mapping from QY to M(T;T), where M(T;T)
is the space of finite I' valued measures on T. From the empirical measure, one
can always recover a configuration zy that produces it, and this configuration will
be unique up to permutations of the indices. Given any set A C T, the empirical
measure 77(A) computes the sample average of the locally conserved quantities w;
with i/N € A.

The empirical measure gives information about the hydrodynamic behavior of
a system. Indeed, if one lets zx (t) be a solution of (4.10) then one expects n(zy (Nt))
to be close to a solution of the Euler equations in Lagrangian form. This can be
proved rigorously when stochastic collisions are added and is proved in [14] for the
case of anharmonic chains.

We can use the empirical measure to construct a coarse-graining map in the
following way. Begin by choosing a sampling function ¢ : T — R, which is typically
a function centered around zero and symmetric, with support on a proper subset of

T. From this sampling function, we may construct a partition of unity {¢*}, on
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the Torus by

ple —i/M)
ij‘il plz —j/M)

The functions {¢?}}2, induce a collection {n(zx)[¢’]} L, of weighted averages which

o'(z) =

are also locally conserved in the sense that

N

> ()] = > i)

=1

These averages induce a map
O 3 zy — {n(zn)[@]}L, e T,

which serves to coarse-grain the configuration zy by associating groups of nearby
particles with their average of length, momentum, and energy. Note that in this
general framework, when a particle is summed with weight less than one, it is

automatically shared with another average.

Coarse-graining by lumping in Zy

Our first case of a conservative coarse-graining map is what is often referred
to in the theory of discrete Markov processes as “lumping” (see [76]). In this setting
we will choose the sampling function ¢ as an indicator function on an interval
I = [-1/M,1/M) where M is a natural number that evenly divides N, so that

N/M = K for some natural number K. Then the partition of unity is just

¢ = 114j/um,

and the support of each ¢’ does no overlap the support of any other ¢*. Such a
“hard” sampling induces a partition of the periodic lattice Zy into cells {A;}iez,,,
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UieZM A; = Zy, defined by
N={j€Zy: j/N—i/Mel},

where a subset of of Zy is called a cell if it is proper and connected. 1t is easy to see
that each cell A; contains exactly K elements.

For each A;, and a given configuration zy, we denote by z,, the collection of
particles with indices in A;. The empirical measure then introduces the following

averages

U/}i = ( ) MTI(ZN qu Z w Zz

jeA

with the collection of all such averages denoted by
W(zn) = {@(24,) }iez, € ™.

The function zy — W(zy) defines a coarse-graining map from QZ¥ to ', We will

denote each component of w by

w; = (giaﬁiyéi) = (@?,@1,@@2)

Clearly l@», Di, €; are to be interpreted as the average length, momentum, and energy

of the particles in the ¢th cell, and are given explicitly
ézzig T; ﬁzzig V; i E —U +VTZ) .
K - 7 K - 7 K
JEA; JEA,; jEA;

Note that for any zy € XY | we have

l,p,e’

ZGZ]W ZEZN

so that {W; };cz, are also locally conserved variables for the mesoscopic system.
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Decomposition into periodized operators

For any cell A, we will find it useful to define the boundary elements I™ and [~

to be the unique elements of A such that
Im¢A+1, IT¢A-1

Intuitively [~ is thought of as the least element of A, while [™ is thought of as the
largest element of A. Let [;” and I, be the boundary elements of the cell A;.

We then define the periodization A of a cell A to be the set with the elements
in A with [~ and [T + 1 identified, so that Nis a periodic lattice with period |A|.
Naturally, we will use the set A to define a periodized Liouville operator on A, given
by

./iA = - Z (Uifl(am - 87“1'71) + V/(ri)(avi o 8”1'71)) : (425)
ieA

Note that fiA not just the restriction of Ay the cell A as it ignores all interaction
between neighboring cells and particles on either side of the boundary of A interact.
In fact, if 15 is a function on OV that depends only particles with indices in A, then

we have following useful relation between Ay and fiA
Antoa = +Anps + Apa (4.26)
where A, is the boundary interaction operator
A = (v — V1) 0+ (V' (rir 1) = V' (r-)) 0y, - (4.27)
Indeed, the relation (4.26) induces a decomposition

Ay = fiM +.71M, /iM = Z '/Zi/\w ZM = Z ZAr (4.28)

iI€Z0 (ASYAV

87



By the fact that we have

) ~5 ) ~5

and therefore each @? satisfies

AN®) = Ay@] =J0. — 0. (4.29)

i+1
Of course, this also implies that w is locally conserved, and has local currents {J?_}

that live on the boundary elements of each cell.

Ay,

Ay,

Figure 4.2: Diagram of the coarse-graining by lumping in the case that N = 12
and K = 3. The partition, the periodized operators, and the boundary interaction

operators are shown on the cells on which they act.

Coarse-graining in equilibrium

The primary goal of coarse-graining is to obtain effective equations for evo-

lution of the coarse-grained quantity w. Our first step will be to coarse-grain our
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particle system when it is in equilibrium, namely when the system (4.10) is started
with random initial data starting from a grand-canonical ensemble 1% (dzy ), where
a=(1,\8) € Ry xRxR,. Indeed if f is distributed according to p (dzy), then
since the grand-canonical measure is invariant with respect to Ay, the solution to
the Liouville equation (4.11) is just f¥ = p(dzy).

Therefore, we would like to study the distribution ﬂ% o(dyar) of the coarse
conserved variables W(zy) under the grand-canonical ensemble p (dzy), where
yvar = (Y1, ..., ya) denotes an element of coarse-grained phase space ', Of course
fi¢ o (dynr) is just given by push forward

fnt o (dyar) = Wypl (dya) = T e ™" (dyy),

’LEZ]M

where
ny(dy) = @/l}#dZK

Appealing to Hypothesis 4.2.6, when K is large enough K > v, i (dy) has a density

Yk (dy) = gk (y) dy,

where gx(y) just the density of states associated to cell A;. The mapping w also

defines a conditional measure

it (dzy [ya) = ] mxc(dz,

SYAY:

.)7

which is given by conditioning pY with respect to the event {y,; = W}. In each

cell, g (dzya, |yi) is just the micro-canonical measure concentrated on the set Ef =

{z € QY : W(z) = yi}.
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Just as we did in Section 4.2.4, we may define the micro-canonical entropy Sk,

pressure Pk and inverse temperature S by

1 / /
Sic(l,p,e) = - los ( L ot )) ,
2P+

PK(E,p,e) Z:/ <__ZV Tz)/JJK dZK|£p7 )7
nK

L,p,e

and
BK(&]% 6) - aeSK(€7pv 6) - gK(éapa e)e—KSK(Z,p,e)‘

By Theorem 4.2.16, we have that Sk, Pk, and Bi satisfy the first law
dSK(E, O, 6) = BKPK<£, 0, G)Cw + BK(E, 0, e)de.

It follows that if (¢;,p;,e;) = w; are the coarse variables in the cell A;, then
Sk (i, pisei), Prx(li,pise;) and B (¢, pi,e;) denote the entropy, pressure, and in-
verse temperature of that cell. Furthermore, we may write ,&AK{ ., In terms of these

thermodynamic quantities by

. 1 kau .
:uJI‘(/I,a(dYM) = H = € K yﬁ_KSK(yl)ﬁ yz dyza H ,uKa dyz
€2 M ZK(OZ) YAV,

where Z k() is the normalizing constant for the measure e~ 5 ¥+K5xW) 3 (y)dy.
We will denote the averages with respect to u™(dzy) and izl ,(dyar) by ()X,
and (-)}, respectively. In addition, we will denote the averages with respect to
the conditional measures uy(dzy |y) and u (dzy |yar) by (- |y )y and (-|yu)n
respectively.
In the equilibrium setting, the dynamics for w(zy) is statistically equivalent
(in the sense of equality of time marginals), to an ezact closed dynamics on the
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coarse space ['M . Specifically, define the coarse-grained Liouville operator by,

A\Mﬁb(YM) =K (An(pow) |YM>N'

Then /13!, is invariant with respect to Ay, since for any F € CHTM) we have the
simple identity,
N

<A\MF>IA§[7Q == K<AN(F O V?/')> =0.

o

Indeed we also have the following anti-symmetry property for .,Zl\M,

Lemma 4.5.1. Let F,G € C}TM), then Ay satisfies the following anti-symmetry
property
(AuF G, = —(FAuG), .
Proof. The definition of the conditional measure p2! (dzy | yar) gives the identity
(AnF Gy, = K(Ax(FowW)Gow)]
The proof then follows from Lemma 4.2.3. O

We can compute A\M explicitly. Given a coarse-grained state y; € I'M, we

denote the components of the ith cell by y; = (v?,y},y?) € I'. Using property (4.29)
- 2
Ax(o0®) = Anloo®) =K1 3 33 (040~ 0) ow.

0=0 i€Zps

Therefore,

where




)

Using the fact that u?! (dzy | yas) is a product of micro-canonical measures i (dz,,

on each cell, and is therefore symmetric with respect to permutations of the indices

YM> _yz 1>

>N = —Pg(y),

inside each cell, we find

(yu) < ; v
THym) < ZA:
Pyn) = <(% > ’Uj> (% > V’(W))

JEA; 1 JEA;

M> = _yilflpK(yi»
N

If one reverts back to a more transparent notation, and denotes y; = (¢;, p;, €;),

then ./Zl\M takes the following form

JZM = Z ( Di— 1(a 8& 1)+PK<£17P7,761)X1)7

€L\

where X; = (0p, — O, _,) + ui—1(0¢; — Oe;). The operator Ay can be seen to generate
the following discrete Fuler dynamics,
éi = DPi — Pi-1
pi = Pr(li,e; — %P?) — Pr(lig1, €1 — %P?H) (4.30)
€ = ui 1 Pic(liy e; — 5p7) — wiPrc(Liga, ei1 — 30701),
which can be viewed as a discretization of the Euler equations in Lagrangian form

(this system will be discussed in more detail in Section 4.6).

Remark 4.5.2. Contrary to the behavior of Ay and despite Lemma 4.5.1, it is im-
portant to note that .,Zl\M is not skew symmetric with respect to Lebesgue measure.
In fact, the vector field associated with Ay (and written on the right-hand side
of (4.30)) is not divergence free since the pressure depends on the energy e; and
therefore X; Py (¢;,p;, e;) # 0.
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Discrete Euler Dynamics

In this section we devote some discussion to the properties of the discrete
Euler system (4.30). In general the discrete Euler system consists of a collection of
‘parcels’ {({;, p;, €;) }ier) on the phase space IV = (R, x R x R, )% governed by a

general concave thermodynamic entropy function S(¢,u),

%Ei = Pi — Pi-1,

%pi = P(l;,e; — %pf) — P(liy1, 001 — %pfﬂ) (4.31)
%61 = —pi1 P(l;,e; — %]%2) + piP (i1, Uig1 — %P?H)
where P(¢,u) is thermodynamic pressure function, defined by t he first law
0,S =0, 0/S=pP (4.32)

where $(¢,u) = T(¢,u)™" > 0 is the inverse thermodynamic temperature function.

We will find it useful change variables to internal energy variables

. 1.2

whereby the equations become
%éi = Di — Pi-1,
%p’b = P<€z7 UZ) - P(€i+1, ui+1) (433)

Lu; = —P(l;,w;) (pi — pia).
The discrete Euler equations in form (4.31) will be referred as the conservative

form and the discrete Euler equations in form (4.33) will be referred to as internal
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form. Similarly to classical Euler equations, system (4.33) is a Poisson system with

Hamiltonian

Hy =Y (%p? +ui) :

1ELN

and Poisson bracket { -, - }y given by

{f7g}N = Z [(a&f - P%auzf)(ang -0, iflg) - (8&'9 - ]Dlauzg)(apzf - 8Pi—1f)i| 5

IELN

where P; denotes P(¢;,u;). Note that the Hamiltonian Hy and bracket {-, -}y is
a direct discretization of the Hamiltonian and Poisson brackets associated to the

compressible Euler system. The Liouville operator associated to this system is

(4.34)
= ((pi — pi-1)0e, + PiX;)

where we have introduced, for later convenience, the family of differential operators
{Xi}z, defined by

X = 8pi - api—l - (pi - pi—l)a“i'

A consequence of the periodicity implies that the total length of the chain

Ly =Y 4,

1€ELN

is constant under the evolution. Also, it is easy to see that the operator X; vanishes

on the quantities
5=D7 + 5Py +ui,  and  p; 4 pi,

thereby implying the conservation of energy Hy and total momentum



by the dynamics.

Being a discrete model of compressible fluid dynamics we have an additional
thermodynamic structure. As in the Euler equations, the thermodynamic relations
(4.32) imply that

%S(&, ul) = 8@5, iéi + &MSZ %Uz =0,

dt

and therefore the total entropy

SN = Z S(&,Uz)

1E€ELN
is conserved by the dynamics. In fact, both the total length Ly, and the entropy
Sy are Casimir invariants of Poisson bracket { -, - } x, meaning that for any smooth

function g on 'V (not just the Hamiltonian), we have

{Snv.g}n ={Ln.g}n = 0.

The conserved quantities (Ly, Py, Hy) have corresponding locally conserved

fields U; = (¢;, p;, e;) € T and fluxes

j\i = (j@ /J\p /J\e> = (p’i717 _Pi7 _piflp’i%

1) 7)) T

so that the conservative form (4.31) can be written as a discrete conservation law

corresponding to conservation of length, momentum, and energy of the fluid chain.

95



Invariant measures and generalized canonical ensemble

Given the conserved quantities (Ly, Px, Hy,Sy), it is natural to seek invariant

measures with density proportional to
exXp {_C(HN -+ APN) — TLN —+ SN} .

What’s important about the Poisson nature of this model is that this measure is not
an invariant measure for the dynamics even though it is a function of the conserved
quantities. The main difficultly with finding an invariant measure is due to the
non-canonical Hamiltonian structure, and the fact that the Hamiltonian vector field

Xn associated to the Poisson bracket { -, - } x and the Hamiltonian Hy, defined by

XH'vf:{H7f}Na

is not divergence free on I'V since the evolution equation for the energy evolves
according to a function of the energy itself (this was mentioned as well in Remark
4.5.2)

Regardless of this difficultly, the thermodynamic structure allows us to find

an invariant measure explicitly. We have the following result

Lemma 4.6.1. Let 5; denote 5(¢;,u;) = 0.5(l;,u;), then Ly satisfies,

cy I] B =0, (4.35)
IELN

and therefore the product measure HiEZN B(;, u;) Al dp;du; is an invariant measure

for Ly on TV,
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Proof. We being by using the Maxwell relation 0y = 0.(8P) to conclude,

Lylog Bi = (pi — pic1)B; (0uBi — Pi0.Bi) = (pi — pi_1)0ePi.

Therefore since

H/Bi = eXp{Zlogﬁi}a

%

we have

o IT 6= Y (tog ) TT 8= (X i —pivar) [T 6
IELN IELN JELN IELN JELN
Using the fact that the L2(I'V) adjoint of the Liouville operator Ly is,
Ly=—Lu+ > (pi—pi1)0P,
1ELN

we conclude (4.35). O

Naturally this leads us define to a version of the canonical ensemble, a proba-

bility measure v on T'V defined by

1

dV(iV = N exXp { — OélLN — O./QPN — QgHN + SN} H 6(&, UZ) d&dpzdul
Z(Oz) 1ELN
1
= H A exp { — arly — aop; — 043%,’0? — a3u; + S(fi, Uz‘)}ﬁ(éi, Uz) dl;dp;dus,
IELN (Oé)
(4.36)
where the normalization factor is
Z(a) = \/27‘(’0&516% Z(ay, a3)
and
Z(ay, a3) = // exp{ — arl — azu+ S(,u) } B¢, u) dldu. (4.37)
R+ XR+
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We will call any measure of the form /Y, for some particular choice of parameters
a € I' a generalized canonical measure. We will often drop the dependence on the

parameters and denote the measure by vV. As the definition in (4.36) implies, a

N

canonical measure v can be written as a product of N one-particle measures v,

where

2
mag

6_ 2ag

dv = e-o1t-oapr=as(gr S gy 1) dddpdu.

Z(ay, a3)\/2mmag *

To ensure that the normalization constant Z (a1, as) is finite, we will require

the following assumptions on the entropy function,

Hypothesis 4.6.2. The entropy function S : (0,00) x (0,00) — R, is C?, concave

and has the following properties

1. Positive temperature

Bl,u) = 0,5, u) >0 on (0,00)x (0,00)

2. For each u € (0,00),

lim S(¢,u) = —o0,

{—0

3. For each ¢ € (0, 00),

lim S(¢,u) = —oo0,

u—0

4. Sub-linear growth

lim S e)

=0.
(¢,e)—00 {+e
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5. For each ¢ € (0,00),

m[S(¢,u) + log B(4,u)] = —o0.

li
u—0
The finiteness of Z(ay, az) now follows from hypothesis 4.6.2. In fact we have

Proposition 4.6.3. Let S(¢,e) be a entropy function satisfying hypothesis 4.6.2, if
the parameters ay, az € (0,00), then

Z(o,03) < 00.

Proof. Since fexp{S} = 9, exp{S} we may use integration by parts and the growth

conditions in hypothesis 4.6.2 to obtain

Z(oy,a3) = ag // exp{ — arl — azu+ S(¢,u) }dldu.
R+XR+

The function inside the exponential can be bounded by

— ol —azu+ S(u, 0) < —(1 + e)<min{a1,a3} B %?)

Again the growth condition in hypothesis 4.6.2 implies that there is an R > 0 such
that on the set {¢ +u > R},

S, u .
ﬁ < 3 min{oy, as}.

Since —ayl —azu+ S(e, £) is bounded above on {u+¢ < R}, we only need to ensure

that the integral on {¢ +wu > R} is finite. This follows since

// exp { — arl — azu+ S({,u) }dldu
{E+’U4>R}QR+ XR+

< // exp { — 3 min{ay, as}(¢ + u) }dldu < co.
R+XR+
O
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Remark 4.6.4. It’s important to realize that under the conditions on S defined in

4.6.2, the measure

€SN H ﬁzd&dul

IELN

on (Ry x R} )% is not a bounded measure. Therefore one must be careful to ensure

that oy, as > 0 when defining the measure vy, a = (a1, as, az).

Remark 4.6.5. The condition that limg )0 S(¢,u) = —oo appears to be necessary
for Z(aq,a3) to remain finite. In fact, as we will see, it will also be necessary
to work out the correct expressions for average temperature and pressure, and is
crucial for ensuring that the parcels don’t collapse to zero in finite time. This type
of singularity is present, for instance, in the equation for the entropy of an ideal gas,

which takes the form
SIdeal(& u) = (Cp — Cv) lOg(g) + cy log(u), cy > 1,

where ¢y and cp are the specific heats at constant volume and pressure. In, fact the
same type of logarithmic singularity is present in the expression for the entropy of

a Van der Walls gas.

It is now a simple consequence of the fact that Hy, Py, Ly, Sy, are conserved
by the dynamics, and the fact that [[, 8; is invariant, that any canonical measure
vY is an invariant probability measure for the dynamics, i.e. for every bounded and

continuous ¢ : I'V — R,

/ LupdvY = 0.
TN

As a consequence we have the following anti-symmetry property,

100



Proposition 4.6.6. Let vV be a canonical measure on I'N. Then then the operator

Ly, defined in (4.54) is skew symmetric with respect to v .

Not only does the discrete Euler system have a local thermodynamic structure
determined by S(¢,u) also has a global thermodynamic structure determined by the
generalized canonical ensemble (4.36). Similarly to Section 4.2.2, we may define the
global free energy

F(a) =log Z(«)

for a € I" and its corresponding concave global entropy function

~

S(U) = inf (U-a—i—F(a)),

aecl’
where U = (¢,p,€) € T. Of course Lemma A.2.2 implies that S is smooth and

strictly concave. Moreover, just as with the entropy defined by the grand canonical

ensemble we have the Galilean shift property

S(0,p,e) = S(0,0,e — 1).

N =

With an abuse of notation sometimes denote
S(0,a) =5(7,0,a).

We would like to determine the physical meaning of the parameters « in the
canonical ensemble. To simplify matters we will define the parameters (7,\,() € T’
by

Ti=aq, A=awm/az, (:=a;s.
Obviously, we will assume that a;,a3 > 0 so that X is well defined and so that

the measure v is a well defined probability measure. The physical meaning of the

101



parameters (¢, A, 7) can be identified at the level of the one-particle measure v. Let

(-), denote the expectation with respect to the one-particle measure v,

(o :=/Ffdu,

and similarly let (-),~ denote the expectation with respect to generalized canonical

measure V.

N'is just a product of N one-particle measures v, we see that averages

Since v
of the quantities (Hx, Py, Ly) can be expressed in terms of one-particle averages,

being sums of functions over the one-particle phase space,
(Hy)ov = N(3p* +u)y, (Pn)ov =N(p)s, (Ly)w =N(L),

In fact since the v is a Gaussian integral in p, we may explicitly compute powers of

b,

< %p2 >1/ = %)\2 + %Cil-

Therefore A corresponds to the average velocity per particle. To compute the aver-
ages of %pQ + u, and /¢, recall the definition of Z(7,() in (4.37), then the averages

are given by

(u)y = =9clog Z(7, ()

<£>V = —8T10gZ(T, C)

It follows that the average energy is
(1p* +u), = N+ 3¢ = O log Z(7, Q).

Taking into account the thermal contribution %C —1 appearing above, we define the
average internal energy u as the average energy (FE), minus the contribution from
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the kinetic energy %)\2 associated to the mean velocity A,
€= %C‘l — Oclog Z(T,().
Similarly we define the average cell length ¢ as
(= —0,log Z(1,().

Given a prescribed mean length and internal energy (¢, @), it is straight forward the

the strict convexity of S that one may solve the system of equations
u=3C"—0logZ(r,¢)

(= _87 IOg Z<Ta C)7

for (¢, 7), to obtain

)

871 (Zv )
).

In calling S the global entropy, we have implied that S satisfies the first law of

|

S

(4.38)

I~}

7= 8;5(,
thermodynamics. This would suggest that ( corresponds to the inverse temperature,
while 7 corresponds to the pressure multiplied by the inverse temperature. In fact
this can be seen explicitly using properties of the one-particle measure g. Recall

that the first law states that g = 9,S. Using this and integration by parts, we find

Z(1,¢) = /}R2 exp { — Cu— 7}9, exp {S({,u) }dldu

+

= C/ eXP{ —Cu—T€+S(€,u)}d£du
=2

= CZ(1,O(T ).
Dividing both sides by Z(7,¢) and multiplying by (! we obtain
(T, =¢1, (4.39)
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so that (7! corresponds to the average temperature of the cells. Similarly, using the

fact that SP = 0,5, we find that

(P), = ! /R exp{ — Cu— 7} exp {S(¢,u) }dldu

Z(7,¢) Jrz
_ ﬁ/& exp { — Cu— 7€ + S(¢,u) }dldu
=7(T),,

Using the relation (4.39) obtained for the average temperature, find that
(P)y = TC_I-

So that 7 corresponds to the average pressure divided by the average temperature.

This verifies the role played by S as the global entropy with the relation (4.38)

implying,

(4.40)

We will define global pressure P (¢,) and global temperature C/F\(Z, u), by

where the dependence on (£,%), comes from the fact that the parameters (¢, 7) in
the measure v = v, are given by relation (4.38). It follows from (4.40) that P

and T satisfy the first law of thermodynamics

0.8 = B, ;8 = BP.
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Ideal Gas Fixed Point

As we saw in Section 4.5.2, the process of coarse-graining in equilibrium gives

a procedure for obtaining the discrete Euler dynamics (4.30) from the microscopic

Hamiltonian system (4.10). When the cell size K is large, we know from Theorem

4.2.16 that the volume entropy Sk governing the discrete Euler equations approaches

the thermodynamic entropy S and we obtain the (infinite) discrete Euler system

%fz‘ = Di — Di-1,
%pz - P(Ew €; — %p?) - P(gi—i-h €i+1 — %p12+1> (441)

Sei = —pi1P(li,e; — 5p7) + piP(Cigr, uin — 5p7,1)

corresponding to the thermodynamic entropy S. Following the renormalization

group approach in statistical mechanics, we can view this as a mapping between

models.

Naturally, we are interested in applying this coarse-graining procedure

again to the infinite discrete Fuler system through the map

where

{(li, iy ei) Yien = {0, i, &) Yien

N 1
(@»pi, 61) = ? Z(&',Pi,&'),

JEA;

and {A;}icz is a partition of Z with cells of size K. We will denote such a map

by h(y) = ¥, where y = {(€;, i, €;) }iez and y = {(l;, i, &) }iez. We consider the

invariant probability measure

1 . et . s
dv =] e nbimepmasgrimasut S gy, ) dldpdus,

Z(a)

1€EZ
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associated to (4.41) and denote (- |¥),~ x the conditional probability measure ob-
tained by conditioning v>° on the event {fl(y) = y} and denote the mapping in each

cells A; by h;(y). If one denotes

L= Z _pi(a&' - a5171) + Pl<apz - apiq) +piflpi(8€i - aei—l)

€L

the generator of the (4.41), then we aim to study the coarse-grained generator

Lro¥) = (LG oh)|[§)e i

where ¢ is a local function on I'* = (R, x Rx R, )Z. Using the equivalence of ensem-
bles Theorem A.3.7, and the properties of averages with respect to the generalized

canonical ensemble obtained in Section 4.6 we obtain the following limit
o= fim Lxo.

where

Z = Z _ﬁi(a& - 821-_1) + ﬁl(@@ - apf-1) +ﬁi71ﬁz’(8éi - ae{_l>

€L

and ﬁ, is the pressure associated with the global entropy function S. In particular,
this shows that the discrete Euler system retains its form under consecutive coarse-
graining procedures. In particular, if one considers the case where the entropy

function is an Ideal gas
S(l,e) = (cp —cy)logl+ cyloge + Cy,

then the volume ¢; and the internal energy u; follow a Gamma distribution under

the measure v5°. Since such distributions are stable, it is a straightforward to see
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that entropy (which is just the large deviations rate function associated to the single

particle measure) must invariant up to an additive constant, namely

A

S(0,é) = (cp — cv)logl + ¢y logé + Cs.

Therefore the discrete Euler system with Ideal gas equation of state constitute a
fixed point of the renormalization group procedure.
In the case of an ideal gas, it is not hard to see that the discrete Euler equations

(4.41) to the so-called gamma-law equations

éi =DPi — Di—1

i = (1= m)e/® ((éiim } wj)”) |

where Sy is the initial entropy, R = ¢, — ¢y is the gas constant and v = c¢p/c, > 1

is the heat capacity ratio. What’s interesting is that this system is again a one-

dimensional particle chain with Hamiltonian

1
Higeal = Z 51912 + eso/R(gi)lﬂ-

)

Non-Equilibrium Coarse-graining and Corrections

We now want to coarse-grain our particle system in a fully non-equilibrium
setting. If the particles are initially distributed on the phase space Q%N according
to a distribution f3¥(zy). Then the distribution f"(zy) at time ¢ > 0 is governed

by the Liouville equation
Of™ + AnfY =0, fVimo = fo- (4.42)
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Let ®Y(zy) be flow the generated by the ODE (4.10). Then the solution to (4.42)

can be represented by
ftN(ZN) = fév(q)]—vt(zN)) = e_ANtféV'

We will assume that the initial distribution is of the form f3¥ = ftM ow, for
some féw which is a cyclically symmetric distribution on I'", meaning that fé” is in-
variant with respect to cyclic permutations in the indices. Of course, the fact that w
is permutation symmetric inside the cells {A,;};cz, implies that fI¥ is also cyclically
symmetric on QY. It is a simple consequence of the dynamics that cyclic permu-
tations are preserved by the flow ®N(zy) and therefore that f is also cyclically

symmetric.

Remark 4.8.1. The reason for symmetry with respect to cyclic permutations, as op-
posed any permutation, is a direct consequence of the nearest neighbor interactions
of the particle system. Indeed, it is clear that nearest neighbor interactions would
not be preserved under the flow if one swaps any two arbitrary indices. However,
it is important to remark that the quantities Ly, Py and Hy are symmetric with
respect to any permutation. Therefore both the grand-canonical measure p2 (dzy)
and the micro-canonical measure puy(dzy|yys) are symmetric with respect to any
permutation. The intuition here being that once the particles are in equilibrium,

they no longer feel the nearest neighbor interactions.

If zy is distributed according to f, let ftM be the distribution of w(z), defined

by pushforward of f as a measure

P yan)dys = Wa(fV (¢ zx)dzy).
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In addition, let f(dzy |ya) be the conditional measure obtained by conditioning
f(zx)dzy on the event {y); = W}. It is important to note that fN(zx|ya) is
no-longer invariant with respect any type of permutation (this will in fact a have a
profound effect on the behavior of the fluctuations).

Clearly, by the results of Section 4.5.2, if fy is distributed according to Y,

then is is easy to see that ftM exactly solves the coarse-grained Liouville equation
atftM - A}k\/[ftM =0,

where .,Zl\}‘w denotes the formal adjoint of ﬁM with respect to Lebesgue measure. Our
goal will be to determine to what extent this is true when fJ¥ is not in equilibrium.

In this case fM instead solves,
O AtM - “Zl\j\/[fAtM = ét[ftNL (4.43)

where Et [fN] is a quantity describing the deviation from the equilibrium behavior,
and depends on the microscopic distribution f~. Our goal will be to understand
the behavior of deviation R,[f}].

In what follows, we will denote the average with respect to f~(dzy |yar) by
(¥ )y~ and the averages with respect to f;¥(dzy)dzy and FM(yp)dyas by (- )N

and (-)

-

Our first step is to make precise the equation (4.43) f™ in weak form,

Lemma 4.8.2. Let ¢ € CH(T'M), then we have the following evolution equation for
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where
J2(zy) =1 (zy) — B (W(zy)), and D) =0, — 0,

Yio1®

Remark 4.8.3. Of course Lemma 4.8.2 implies that the deviation R, [fN] described

in equation (4.43) can be written as

R = K75 3 08 (0 7).

6=0 i€Zp

We would like to study the evolution of the term

(2 1y) s Dio)

fi
To do this, recall the decomposition

Ay = Ay + A,

where ./ZiM and A, are the periodized Liouville and boundary interaction operators
defined in equations (4.25) and (4.27) respectively. It is easy to see that .AiM induces
a well-defined unitary group (e™¥);cg on Cy(Q2V). Indeed, since each fiAi only acts

on indices in A;, we can represent (e"V),cg by
etAMF(ZN) =F (Q{{(Zlh)v (PtK(ZA2)7 SR 7CI)1{((ZAM)) )

where ®X is the flow associated to the dynamics (4.10) with N = K. An immediate

consequence of this representation is the following invariance property

Mpow =pow, foreach ¢ e Cy(I'M).

Moreover, since p2! (dzy | yar) is just a product of micro-canonical measures g (dza, | v;)
on each cell, Lemma 4.2.5 implies that /iM and is skew-symmetric with respect to
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¥ (dzy | yar) and therefore
<G 6tAMF|YM> = <€_tAMGF|YM> )
N N

for all F,G € Cyp(QY). Of course, this implies that if ¢ satisfies (¢ | ya)n = 0, then
s0 does ¢t 1 for all t € R.
Using Duhammel’s formula and the decomposition (4.28), we may write the

Liouville equation (4.42) as
~ t o _
fr=1"ow — / e AN Ay [N ds. (4.44)
0

This can easily be made rigorous by working in the weak form and choosing time de-
pendent test functions. Setting, ¥(zy) = jf(zN)D?gb(vAv(zN)), and integrating both

sides of (4.44) against ¢, we obtain the following formula for <<jf | yar) x D? ¢>fM'

Lemma 4.8.4. For each ¢ € CZ(TM) we have

i o
A et=9)ANTO 5
(Do) , = / <<ANe HEN DZ¢>fSMdS
— K~ ZZ/ << (t— s)ANjg)Jli yM> D]Df¢> ds
v=0 jE€Zn ! fé\’ f‘é\l

Combining Lemmas have obtained an exact evolution equation for fN of the

form
O — Ay M — K- 12205( / B[t — ). fN]fMds>
ey t (4.45)
- K :;WGZZM DfD}(/O /c;tf[(t—s),fgv]fyds> = 0.
where

Blt, fN)(yu) == <ZN€tANj?




and

’ngcs[ta fsN](yM) = <(€tANj?)J;;

YM> .
N

This, non-local in time, equation is version of the Zwanzig/Nakajima master

equation [99, 124] and is equivalent to the original Liouville equation for f7.

Approximations to the Coarse-Grained Evolution Equation

In this section, we discuss various approximations to equation (4.45), the pro-
duce certain exact coarse-grained approximations to the evolution of ftM .
To begin, we assume a hyperbolic scaling for the dynamics, that is, we consider

the dynamics on times of order K¢. Under such a rescaling, equation (4.45) becomes

oM~ Ay - KY Y D ( / BIK(t - 5), f;V]fSMds)

0=0 i€ZNn

2
-3 S oy [ Rt . <o
0

677:0 7’7] €Zm

(4.46)

Relaxation approximation

Our first approximation will assume some level of scale separation on the
dynamics, specifically, for large enough N we will assume that we can replace the
conditional measures with respect to f{¥ conditional measures with respect to an
equilibrium one,

(lym) ey = (lym)n (4.47)

This approximation, which we refer to as the relaxation approximation is essentially

a kind of ergodic hypothesis on f when N is large. Of course, for the deterministic
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evolution generated by .,LiN, this is a difficult open problem. However, if one intro-
duces a stochastic perturbation to the dynamics of the form discussed in Section 4.3,
then the corresponding dynamics is ergodic (see [14] for a proof of this in context of
anharmonic chains) and an approximation of the type (4.47) is more likely within
reach.

At the level of equation (4.46) the relaxation approximation amounts to mak-

ing the following approximations

Bilt, S (yar) & Bilt 1y ar) = Bt yar) = (Ane ™ T

YM>
N

and

K0T FN (var) = K31t i (var) = K750 (ty ) = <(6“4Njf )T

YM>
N

Note that we have replaced J_ with j] in the definition of E?’j, since AN J? g
j b2

(-|ym)n mean 0 and therefore we may freely subtract j] = <J7_ |yar),y from J
j j

in the definition of I/C\Zf

Remark 4.8.5. It is important to remark that this approximation does not depend
on the value of a in the grand-canonical measure uY, since the above quantities

only depend on p through its conditional measure py (| yar).

While the matrix l%]f (t) has explicit time dependence, it no longer depends on
the microscopic solution f{¥ and can computed by solving a problem about current-
current correlations of periodized evolution inside each cell under the micro-canonical
measure. Such an approximation allows for computation of l/g\? and I/C\Zf in terms of
small number coefficients. Firstly, gf can be computed in terms of l%];s
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Lemma 4.8.6. Let gx(y) be the density of states, and denote

M) = HgK(yz-),

then the following formula holds

2 M
Bt = K305 0] ()
=0 j=1

Proof. Let ¢ be a test function on '™, then by definition of the condition measure

un (- |ya), we can make the following computation,

/M gpgf(t) gMdyy = /N pow Ay (etANjf> dzy
r Q

QN
2 M
= K_IZZ/QN JZ_, D]pow ( tANJ‘5> dzy
=-K303 [ Dokl
This completes the proof. O

Lemma 4.8.6 implies that one only needs to compute /Ef] since Z/S\f can be

computed explicitly in terms of l%f] In fact, using Lemma 4.8.6, we easily obtain
2 t
EY N D;‘(/ BY(K(t — s))fSMds>
§=0 i€Zy 0
2 t
+> Y DfD](/ K72 (K(t - s))fyds>
0

d,7y=04,j€Zn

- Z > / (9%’3235%(75—8))19}( M)) ds.

6,v=014,5€Zps

It is not hard to see that the term on the right-hand side of the above identity
vanishes when fM is equal to the density of fi%t o Therefore, as expected, the
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relaxation approximation is consistent with the equilibrium results of Section 4.5.2.

After making the relaxation approximation, equation (4.46) becomes

o fM — A3, Z Z/ (M/c%( (t—s))D] (fM>>ds (4.48)

7’7 =0 Zv.] GZ]\/I gK

As mentioned, the values ICZ’]-‘S can be computed explicitly in terms of much
smaller number of terms. Indeed, using the skew symmetry of /iM with respect to

(- |y )n, we have the following time-reversal relation
S8 i,
K5 (t) = K5l (—t). (4.49)

Furthermore, since current jf lies on lower boundary values of the cell A;, it can
at most depend on values in A;_; and A;. Furthermore, since e~ only evolves
each particle within the cell it starts in and preserves the mean zero property of the

fluxes, we necessarily have,

i

=0 if k>2

Moreover, by the symmetry relation (4.49), for each ¢ € Z,, it suffices to compute
only ICZ and K7 14> for each « and 0, since IC”’ >, can be computed from K7} e
However, because of other symmetries of current-current correlation, the number of
independent coefficients of K} 2 and IC;’JF‘S1 , can be reduced further.

Specifically, for each y € I" and ¢ > 0 define the following correlation functions

0(t,y) = T

@ <% i (e4vs =) (13 = ) 'y>K

J=1

) = s <% i (v = p) (V) + Picws)) ] y>

J=1
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”w) = 7 <% i (45 (V' (r3) + Prct)) (V') + Picy)) \y> ,

where (- | y) ¢ denote the micro-canonical measure on Q. The correlation functions
0 and eta are auto correlation functions of for the volume and momentum fluxes
inside a cell. We would also like to define the auto correlation function for the energy
flux. However, since 12 is evaluated on the boundary of a cell, it contains values in
two different cells, therefore the auto-correlation function is naturally defined over
two adjacent cells Hence we define the function

1 ®?

oy, _ << t(»’iAl—"_JZA )j?)jQ
) = Ty )

y17y2>
K

It is easy to see from the definition of I%;’j’& that
’62}0(757 yu) = Tr(Yi-1)0(t, yi-1),
Kt yar) = T () (8 ).
Ki (tyar) = Tie(yn(t, v2),

’Cif(t, yum) = Tr (Y1) Tre (yi) K (E vi1, Yi)-
As it turns out, because of the sharp division between cells, k(¢,y1,y2) can be

determined directly in terms of 6(¢,y;) and n(t, yo).

Lemma 4.8.7. The following formula holds
Rt y1,92) = 0(t, y0)n(t, y2) + 0t 31) Bx (y2) Pre (y2)°
Using time-reversal symmetry of the Hamiltonian evolution e**™ we find

Lemma 4.8.8. The following time symmetry relations hold

9(t7 y) = (9<_t7 y)? g(t7 y) - _C(_ta y)7 77(@ y) = 77(—?57 y) (450)

116



Proof. Consider the velocity inversion transformation
T(x,v) = (x,—V),

It is east to verify that the Hamiltonian flow ®;(x,Vv) associated to fiM has the

following time-symmetry property
T(P(T(x,v))) = D_4(x, V),
and that (¢ o T'|yar) = (¢|yn). This readily implies

(v ly) = (oo |y)
(V@) 1y) = (V)i v

(Vi) y) == AoV y)

Using these identities along with the fact that
((@IDT] 1y) = (057 y) = (3 1y),e (3] 1),
gives the time-symmetry relations (4.50). O]

As it turns out, the entire correlation matrix lCz’j5 can be computed in terms

of 6, ¢ and 7.

~ ~

Lemma 4.8.9. The matrices (IC; ;)5 and (Kit1,)5 take the form

Tx,i—10i-1(t) 0 0
Kii(t) = 0 Trimi(t) Pi—1 Tk imi(t) )
0 Pic1Treini(t) TriTri1kii1(t) + Trip?_1mi(t)
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and

0 Tii—1Gi(t) Tri1G(t)pia

Kiri(t) = |0 0 0 :

0 —Tki-1G(t)Px it 0

where 0;, G, m; and Pr; denote 0(y;), C(vi), n(y:) and Pk (y;) respectively.

Note that, by the symmetry relations (4.49) and (4.50), we find

0 0 0
Kiin(t) = Kirra(=t)" = ~Tri1G(t) 0 Tri1G(t)Pripr |
_TK,i—ICi(t>pi—1 0 0

The coefficient 7;(t) is the momentum-current-current correlation function
within a cell. Such correlations are related to the emergence of bulk viscosity of
the macroscopic dynamics.

The coefficient 6;(t) is precisely the velocity auto-correlation function of a
tagged particle in equilibrium evolving in the cell A;_;. The emergence of the co-
efficients 6;(t) and (;(t) is related to the fact that our coarse-graining map has a
sharp division between cells, and hence the current between cells is dictated by
the value of the current on the boundary of the cells. Moreover since the condi-
tional measure (- |yas) s~ has no permutation symmetry properties within cells, the
boundary current cannot be replaced with a suitable summation of values in a cell.
As a consequence, in the derivation of equation (4.45), one is restricted to looking
at current-current correlations between currents on the cell boundaries. The result

of this is the appearance of 6;(t) and (;(t), which, in some sense, encode non-trivial
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correlations in the currents that connect the cells.

The coeflicient x; ;1 (t) is the energy-current-current correlation functions across
two cells and is related to the emergence of thermal conductivity between cells. It
is rather remarkable in this case that it can be explicitly described in terms of 6;_1,

n; and thermodynamic quantities Sx; and P ;.

Markov Approximation and Decay of Correlations

While the relaxation approximation is useful for studying the behavior of fluc-
tuations around equilibrium, the utility of equation (4.48) is limited due to the
non-local in time nature of the equation. Such an evolution equation gives rise to
non-Markovian features of the dynamics with IEKZJ."S(IS) playing the role of a mem-
ory kernel. In particular, this implies that it is precisely the persistence of two-time
current-current correlations within cells that gives rise to memory effects. Indeed,
if the size of the cell K (and consequently our choice of time-scale) is not too large,
then non-Markovian effects in the coarse-grained dynamics is not entirely surprising,
since the periodized dynamics inside the cells have not had enough time to forget
their initial data. However, when K is large, one expects there to be a certain decay

of correlations for large times, namely, when ¢t > 0 we expect

K2 (Kt) = <(eK“‘M§§ )J7

yar) =0, (4.51)

as K — oo. Of course, for the deterministic evolution generated by ./ZiM, prov-
ing such decay is a very difficult mathematical problem and is likely out of the

reach of current mathematical tools. Moreover, if there are other, apriori unknown,
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conserved quantities in the dynamics associated to .,LiM, then, for instance the corre-
lations might settle into a constant, non-zero, state (this is seen for instance in [98]).
However, if one replaces the motion inside the cells with a stochastic component
of the type introduced in Section 4.3, then one can likely obtain explicit (mixing)
estimates on the decay of correlations (4.51), and ensure that (r;, v;, e;) are the only
locally conserved quantities.

Decay of correlations directly implies a loss of memory in the dynamics gov-
erned by (4.48). Indeed, if the decay is fast enough, we may localize the non-local
nature of (4.48), such a localization in time is often referred to as a Markov ap-
prozimation since the resulting evolution equation will be that of a Markov process,
particularly a diffusion process. Specifically, treating K I/C\Z’f(K t) as an approrima-

tion of the identity we write

t K
/O KK (t—s)fMds = K ( /0 /cgf(s)ds> M (4.52)

which is expected to hold when K is large. Note that we have truncated the time-
integral above at t = K. The reason for this is that, in one dimension, the correlation
matrix I%Zf(t) typically decays to 0, but has “long-time tails” which are not inte-
grable on R,. This effect was first noticed numerically by Alder and Wainwright [1,
2] for the velocity auto-correlation function 6;(t), where it was observed that 6;(t)

decayed like t=*/2. Indeed, this would imply that there is a divergence of the form
K
/ 0:(s)ds ~ K'/? (4.53)
0

as K — oo. Note that, while fOK 0;(s)ds diverges the quantity K—! fOK 0;(s)ds still
vanishes for large K implying that the contribution to equation (4.48) is still small.
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It is instructive to note that at time ¢ = 0 we have

0:(0,y:) = <% > (Uj—Pi)Q'YM> ;

JeEAi—1

and by the equivalence of ensembles Theorem A.3.7, as K — oo, we have
0:(0, li, pi, ei) — T(li, €5 — %2%2)7

where T'(¢,e) = B({,e)~! is the thermodynamic temperature associated with the
grand-canonical ensemble. Therefore 6;(t)) starts at a non-zero value and is expected
to decay in time. However, for transient times, the decay will generally not be
monotonic as might be suggested. Indeed, 0;(t) may become negative and undergo
oscillations on its approach to 0, further increasing the potential rate of divergence
suggested in (4.53).

Also at time t = 0, we have

Gi(0) = <% >, <Uj _pi) (V/(Tj) + PK(%’)) ’}’M> =0,

JEA;

due to the fact that the measure (-|yy) is symmetric with respect to permutation
in the velocity and deformation indices separately, and therefore we may replace
v; — p; above with % Zje A, Vj — Pi, which is equal to 0 on the micro-canonical
surface. Therefore, contrary to 6; we expect the grow from time zero, and oscillate
with decreasing amplitude as ¢t — oo. In light of this, we will assume that these

oscillations average out over time and therefore

K
/ Gi(s)ds ~ 0,
0

as K — oo. As a result, we will typically neglect the contribution due to (;(s) in
the Markov approximation.
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Consequently, we define the time integrated correlation functions

0(y:) 1:/0 0t,y:)dt,  n(ys) 5:/0 n(t,y:)dt,

and, upon neglecting the time integral of (;(¢) for large enough K, we conclude

K
/0 ICZ}&(@ ya)dt = A7 (yi-1, i85, (4.54)

where A7 (y; 1, 4;) = (d(yi_1,:))-.6 is the diffusion matrix defined by

d(yi-1, 1) =
Tk (yi-1)0(yi1) 0 0
0 T ()1 (y:) Pi-1Tr (yi)7(y:)
0 P T (Wi)n(yi) - T (yie1) Tre (i) E (i1, yi) + Tre () (i) 07
where

R(Yi1,Yi) = 0(yi—1)7(yi) + 0(yi—1) B (y:) Pre (y:)*-

The functions #(y), 7(y) are given by time integrals of auto-correlation func-
tions analogous to the Green-Kubo formula. It therefore follows from a standard

application of the Wiener-Kinchin theorem that, for large enough K, we have

\.Ql

=i
e
(V3
(e}

Applying the approximation (4.52) and (4.54) to equation (4.48), we obtain

. . 2 FM

54=04EZn; 9K

Equation (4.55) is the forward Kolmogorov equation for a diffusion process with
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generator

Lyd=Ayd+ K Z Z LM ( Md”D%)
9K

5'\/ OZGZA[ (456)
o+ KUY Y g Do KUY Y piofe
0=0 i€Zs 'y§ 0i€Zp
where
2
T =Y d’D]loggy! + D] (d]°),
v=0
is the dissipative flux.
The SDE system associated with the generator (4.56) is
Ui = Jinr — Ji+ KN (Jigri — Jiimr) + K2 (Migrs — Mioa) (4.57)

~

where J; = (pi—1, —P;,, —pi—1P;) are the discrete Euler currents, and M;_; =
(M4, oM o M§ ;) is a vector of mean-zero martingales defined by stochastic
integration against a collection of independent Wiener processes {W/}, {W?F}, {W¢}
M” L= \/2T5 10, W
Mf,ifl = \/mWf (4.58)
' f,z'—1 = Uz‘—1Mf + v/ 2Rivi_17}ﬂ_1Wf.
With a bit of work, the dissipative fluxes J; = (J5_1, J55_1, Jf;_1) can be shown
to be given by
jfi_l = T;10;1(Bi P — Bic1Pie1) + Bi0ibi—1 + 0,104 — PiOe,Fi—1,i
Thioy = (i + Ti0emi) (pi — pi-1)
T =i Thy + Tl + Rig (T — Tich) = TiTi1(0e;Riio1 — Oe,y Riiie1),
In equations (4.7) and (4.8) we used subscripts to denote dependence on a certain
coarse particle, for instance P; = P(y;), and Ri—1; = R(Yi—1, Y;)-
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A Simplified Fluid-Particle Model

We now aim to introduce a simplified version of the model (4.57) in the case

that the transport coefficients éi,ﬁi, ki—1; are constant and the dissipation in the
volume term is gone. Such a model taken the form
éi = (pi — pi-1)
Pi = (P — Piy1) + [N(piv1 — pi) — 1(pi — pi1)] + Mf+1 - Mf
& = (pia1 P — piPi1) + 0 [pi(piv1 — i) — pic1(pi — Pi-1))
+ R [(Tisr = 1) — (Ti = =)} + 0(Ti — Tia)
+ piM?—i—l - pi—le + Mf+1 - Mf
where (M?_, .. M

i 1. M7 ;) are defined in 4.58. As in our discussion of the discrete Euler

system in Section 4.6 we will find it useful to introduce the internal energy variables
u; = e; — %p?, which transform the equations to
éi = (pi — pi-1)
Bi = (P = Pixt) + [(pss1 = pi) = 1(pi = pica)] + Miy = MY
(4.59)
U = —(pi — pie1) Py + (i — pic1)’ + & [(Tipa — T;) — (T; — Ti-1)] — 20T,
+ (pi — pio))ME + Mf+1 — M.

The generator of equation (4.59) is given by
L= ‘CH + '657

where

‘CH = Z _pi71<a£i - 8Z¢,1> + PZXZ

1€ELN
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and

Ls =" —n(p; — pict) X — &(T; — Tio)) Vi + nTX2 + T, V2.

i€TN

where {X; : i € Ty} and {); : i € Ty} are two families of differential operators
representing vector fields tangent to certain manifolds defining pairwise momentum

and energy exchange. They are given by
X = api - apifl - (pi - pi—l)auw Vi = auz - a“ifl'

The constants 1, > 0 play the role of bulk-viscosity and thermal-conductivity
in the model. The functions L = 7., i, P = >7 0 pi, H =30 07 4w,
corresponding to total length, momentum, and energy, are in the null space of L,
and therefore conserved by the dynamics.

Contrary to the Euler discretization, the entropy Sy is not conserved by the
stochastic dynamics, as is to be expected it is a discrete model of the Navier-Stokes-
Fourier system. Instead the entropy satisfies a discrete version of the Gibbs-Duhem

relation. Indeed when computing the evolution of the entropy S; = S(¢;, u;), It0’s

formula implies,
+ 055 (0, wi) [(pi = pica) 0Ty + KT Ty + £TT ] dt.
Using the thermodynamic relations 0,5 = gP, and 0,5 = 3, and the evolution

equations, we obtain,

dS; =T, (925; + B7) (n(ps — pi1)? + [KTis + wT;4]) dt

— (K + R)dt — 2ndt + B [(pi — pi1)AMP + dME,, — de} .
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As we can see, the total entropy S = ZieTN S, is not strictly dissipated as, as one
might expect being a discrete version of Navier-Stokes. This barrier to dissipation is
due to the noise (the same behavior is observed, for instance, in stochastic gradient
dynamics). In general this can lead to problems of well posedness for the fluid-
particle model, i.e. finite time blow up in the form of parcel volumes or energies
collapsing to 0. However, certain assumptions on the concavity on S(¢,e) allow one
to obtain enough dissipation of S to show existence and uniqueness of a process
which stays in the interior of I'V. The main result of this section is the following

theorem

Theorem 4.9.1. Suppose that the entropy function S(¢,wu) approaches —oo when
either u or £ approach 0, grows sub-linearly when either u or £ approach oo and

satisfies the lower bound
GRS (6, u) 2= (1 —7)T(£,u)"? (4.60)

for some v € (0,1). Let (Q,F,P,(F)is0, W), where W = {(WF W¢)}iczy is a
family of independent one-dimensional Brownian motions relative to the filtration
(Fi)t>0- Then for any N and zy in the interior of I'N, the SDE associated to L has
a unique (F;) measurable solution z(t) = {(€;, pi, w;)(t) }iczy which remains in the

interior of 'V for all t > 0 and has continuous sample paths.

Remark 4.9.2. Note that the case when S is the entropy of a one-dimensional
monatomic ideal gas assumption (4.60) is not satisfied. In fact, in this case we
have,

8351' + 512 = —@,2
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It appears that this condition is a size condition on the specific heat (at constant
volume) associated to the entropy S. There are the negative contributions due to &;
and 7;, which can hurt the entropy dissipation as well. Indeed it will be necessary

to have control on the size of x; and 7;

Well-posedness

In this section, we prove Theorem 4.9.1. Note that this requires showing that
the process z(t) = {(¢;, pi, u;)(t) }iez, remains in the interior ') := Int TV for all
time. This implies that if for each i € Zy, (¢;,u;) start positive, then (¢;,u;)(t)
remain strictly positive for all later times with probability one. As a consequence,
since ¢; denotes the difference between particles ¢; and ¢;_1, if the particles start
ordered on Zy, they will remained ordered on Zy with probability one, that is the
particles cannot pass through each other. We will find it useful to simplify notation

and write the SDE (4.59) in the following standard It6 form
dz =b(z)dt + o(2)dw, 2(0) = 2, (4.61)

where z(t) denotes the process {({;, ps, u;)(t) }icz,, represented as a vector in TV,
with z; = (6;, pi, u;), and w(t) is an (R?)" valued Brownian motion. Let £, denote
the generator £ with coefficients evaluated at = € I'V. The drift b(z), b : TV —

(RN can be defined by

and the matrix o(z), o : IV — (R*)Y @ (R?)V satisfies 02 = a, where

a(z) =L, (2®2)—2® (L, 2) — (L, 2) @ 2.
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We are now ready to prove the Theorem

Proof of Theorem 4.9.1. . Note that the functions b and a are not globally Lipschitz
on I'V. Indeed they have singularities in as ¢; — 0 and grow quadratically as p; — oo.
However they are locally Lipschitz in the sense that for any compact set K contained
in Int 'V then b and a are Lipschitz on K.

To prove existence up to a possible explosion time 7 = inf{t : z(¢) ¢ Int 'V},

we will define a function F: 'V — R, by

F(Z) = HN(Z) + LN(Z) — SN(Z) +C,

where C' is an undetermined constant. As a consequence of hypothesis 4.6.2, F
is a C? convex function on 'V and approaches oo as z — OI'V and as |z| — oo.
Therefore F' has a minimum value on I'V and the constant C' may be chosen so that
F >0onI'". For each R > 0, define the following family of compact sets, strictly
contained in I'V,

Kr={zeI'N : F(2) <R},

and let g be a smooth cutoff function equal to 1 on K and equal to zero outside
of Kry1. Let br(z) = pr(2)b(2) and or(z) = ¢r(2)o(z) be the corresponding cutoff
coefficients. Indeed by and oy are globally Lipschitz on I'V. Therefore by a standard
Banach fixed point argument on L2(£2; C([0, c0), I'")), there exists a unique pathwise

solution to the following SDE
dzg = bR(Z)dt + O'R(Z)CH/V, Z(O) = 20,R € Kpg.

Since b(z) = br(z) and o(z) = or(z) on Kpg, the process (zg(t));2, is a solution

128



(2(1))52, to (4.61) up to the stopping time
Tr = inf{t : 2(t) ¢ Kgr}.

In fact, this solution {zg(t)}]_, is the unique solution to (4.61) with initial data zo r
on the interval [0, 7g). Since the sets { Kg}p>o increase as R — oo and ps Kr =
Int TV, the stopping times {Tgr}r>o are increasing. Therefore, by uniqueness, if

Ry > Ry, then zg, (t) = zg,(t) on [0, 7g,). Now, let

T = SUp 7R,
R>0

and for any z, € IntI'"V, choose Ry > 0 such that 2y € Kp if R > R,. We then

construct the unique solution z(t) on [0, 7) to (4.61) with initial data zo, by

2() = 2o () L0,r0y) (8) + > 20t (D) Lirg o rmgsge) (1):
j=0

To show well-posedness, we simply need to show non-explosion,
P{r =00} =1

To do this, we will use a Lyapunov function method with the function F'(z).

Indeed, since Hy and Ly are conserved, we find,
LF(z)=—-LSy(2)
_ Z (2;-; +2n — Ty(928; + B7) [n(pi — pie1)® + KTp41 + M}_l}).
iEZN

Under the assumption that

PS(l,e) > —B(L,e),
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we can show that

for a constant C'y depending on N and the transport coefficients 7, x. Define

V(t,2) = e“~N'F(z), then by 1t6’s formula the process (My (t))32, defined by
t
My () = V(t 2(8) — V(0, %) — / (0,V (5, 2(s)) + LV (s, (s)))ds
0
is a martingale. Using the fact that
oV (t,z)+ LV(t,z) <0,

and V (t,z) > 0 we may conclude that for each R > 0 the stopped process z(t A Tg)

satisfies for each ¢,
V(0,z0) > E[V(t, z(t A TR)]
=P{rr > t}E[V(t, 2(1))] + P{T < t}E[V (¢, 2(Tr))]
> P{rz < t}R.
Therefore we conclude that for all R > 0 and ¢ > 0,

P{r <t} <P{rr <t} =V(0,20)R".

Sending R — oo concludes the non-explosion condition. Therefore the solution z(t)

constructed above is the unique solution to the SDE (4.61). [
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Part 11

Stochastic Transport

Elegance should be left to shoemakers and tailors.

Ludung Boltzmann

131



Introduction to Part II

Stochastic Transport Equations

The study of stochastic differential equations (SDEs)

with rough drift b and diffusion ¢ have received a lot of attention in recent years.
In many applications in fluid mechanics (and kinetic theory) one is interested in
solving (5.1) when b and o are not Lipschitz (rough). The problem of existence of
probabilistically strong, pathwise unique solutions to (5.1) when b and o are rough
have been studied in a number of works, some of the earlier work is by Krylov and
Veretennikov [117, 118], Krylov and Réckner [79] and more recently by Champagnat
and Jabin [25] and Rezakhanlou [107].

One approach to this problem is to study existence and uniqueness of strong

solutions to the associated stochastic transport equation

O f +div(bf) — divdiv(af) + div(ef) - W =0,
(5.2)

f|t:0 = f07
where a = %JOT. When « is a multiple of the identity, and b is rough, this problem
was studied by Flandoli, Gubinelli and Priola [50, 51], as well as by [22, 100].
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The hope is to generalize the DiPerna/Lions theory for the deterministic transport
equation [34] to one for the stochastic transport equation (5.2). When o is rough and
degenerate, a version of the DiPerna/Lions theory for the associated Kolmogorov
equation has been developed by Figalli [49] and by Lions/Le Bris [84]. However,
there appear to be few results in the literature concerning solutions to the stochastic
transport (5.2).

In Chapter 6 the theory of renormalized solutions for (5.2) when o is rough
is developed. We employed the usual commutator estimates used in [34], along
with a new double commutator that arises due to the stochastic term. Interestingly,
using this method it only seems possible to obtain uniqueness for solutions in L? for
p > 2, when ¢ € W'2P/P=2 and diva € W'P/P=2 The existence and uniqueness of
(probabilistically) strong solutions in L? for p € [1,2) when o is rough appears to

be rather non-trivial. This is consistent with the work of Lions/ LeBris [84].

Stochastically Forced Boltzmann Equation

Many models of turbulence involve forcing the equations of fluid mechanics by
noise. From a physical perspective, this can be viewed as some kind of environmental
shaking inciting the onset of turbulence. A natural question to ask is whether this
noise can be deduced from a more general form of noise at the kinetic level. Of
course, conditions for the well-posedness of such stochastic kinetic equations are of
interest, as well as whether such noise may provide insights into the behavior of a

turbulent fluid at the kinetic level.
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In a collaboration with another student Scott Smith we initiated a study of

the Boltzmann equation with stochastic forcing,

Ouf +v - Vauf +divy(foX) = B(f, f),
(5.3)

flt:O = fO'

The forcing X is a Gaussian noise, white in time, and colored in (z,v) € R* x R,

of the general form

X(t,z,v) = Z (2, v)Bi(t)

keN

where {0} : k € N} are a family of deterministic R" valued vector fields over R™ xR™,
and {0y : k € N} are independent one-dimensional Brownian motions. The product
between f and X is interpreted in the Stratanovich sense.

Such an equation describes the evolution of the one-particle phase space den-
sity f(t,z,v) of a rarefied gas subject to elastic binary collisions and environmental
noise. The elastic binary collisions are modeled by Boltzmann collision operator
f — B(f, f), a quadratic operator that acts pointwise (¢,z) and non-locally in v.
The environmental noise acts on the gas externally in the sense that each particle
is driven by the same realization of the noise X'. This is in contrast to intrinsic
notse where each particle in the gas is driven by an independent realization of the
noise. The environmental noise is modeled by stochastic transport on the left side
of equation (5.3). Indeed, in the absence of collisions one may think of the parti-

cle in that gas as following certain stochastic characteristics (X, V;) that solve the
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Stratanovich SDE
dXt:‘/tdt, XOZIGRn

AV, => on(X,, Vi)odB, Vo=veR"
keN

We are interested in the existence of solutions to (5.3). With regards to exis-
tence of solutions to the Navier-Stokes equations driven by white noise, one of the
first rigorous studies was undertaken by Bensoussan and Temam [13] and has since
received much attention in the mathematical literature (a relatively recent survey
of the many results is given in [39]).

In [106], we study the existence of global in time solutions to (5.3) for a general
class of ‘large’ initial data in L'(R™ x R"™) with certain entropy and moment bounds.
In the deterministic setting, such a result was proven by DiPerna/Lions [36] for
the Boltzmann equation in the renormalized sense, and improved in subsequent
works [35, 36, 88, 89]. Our main result is a proof of the existence of, global in
time, probabilistically weak (in the sense of a solution to the martingale problems)
solutions to (5.3) in the renormalized sense (the same notion of solution used in

[36]). The main theorem is stated informally as follows:

Theorem 5.2.1. Let fy have finite mass, energy and entropy,
1L+ [ + [ + [log f1) fllry, < o0

and suppose that the coefficients {0y : k € N}, div,op = 0, satisfy certain regu-
larity and summability conditions. Then for a certain class of collision operators
B(f, f), there exists a probabilistically weak (martingale) solution {f; : t > 0} to
(5.3) satisfied in the renormalized sense.
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The process {f; : t > 0} takes values in the cone of non-negative L'(R™ x R™)
functions and has bounded p-th moments of mass, energy, entropy, and entropy

dissipation,
Bl|(1+ |2 + [0 + [log f) fllfe (1 ) < 000 EID(NIIE < o0,
for each p € [1,00), where the entropy dissipation is defined by

D(f) == [ (0w B )

Moreover, {f; : t > 0} has a continuous modification with paths in C([0, T]; L' (R" x

R")).

The proof of Theorem 5.2.1 largely inspired by techniques layed out in [36], and
more specifically on the later work by Lions [89] on the Vlasov-Maxwell-Boltzmann
equation. In the deterministic case, one of the key elements of the proof is the strong
compactness obtained velocity averages of solutions to the transport equation [64,
66, 67]. In our paper we prove a stochastic velocity averaging result in L' which
shows, under certain conditions, that a family of solutions {f, : n € N} to a
stochastic kinetic transport equation has the property that the laws of the velocity
averages are tight on Ltlw. This result should be compared with other stochastic

velocity averaging results in the literature [48, 87].

Outline of Part 11

Part II of the dissertation will be organized as follows:
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In Chapter 6, we discuss stochastic transport in LP equations with rough diffu-
sion coefficients. We introduce a theory of renormalized solutions to such equations
and deduce regularity conditions on the noise coefficients which imply pathwise
uniqueness.

Chapter 7 is a joint work by the author and his collaborator, Scott Smith, con-
cerning the Boltzmann equation with stochastic transport, modeling the influence
of a random environmental forcing. We study the properties of stochastic trans-
port equations and prove a renormalization and stochastic velocity averaging result.
We prove existence of renormalized martingale solutions for a general class of noise
coefficients and bounded collision kernel, using a generalization of the Skorohod
theorem for non-metric spaces. We also obtain local conservation of mass, average
global balance of momentum, and average global dissipation of energy and entropy

for these solutions.
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Renormalized Solutions to Stochastic Transport

We are primarily interested in the transport equation associated to the Ito

stochastic differential equation

dX; = u(t, Xp)dt + > o*(t, X,)dWy
k

Xo = c Rn,
where u is the drift u : [0, T]xR™ — R"™, {o*} are noise coefficients o* : [0, T]x R™ —
R™ and {W}} are independent one-dimensional Wiener processes.

Specifically we are interested in the associated stochastic transport equation

Of + div(uf) — divdiv(af) + ) div(e® f)i* =0
k (6.1)

f‘t:o = fo

where a = £ 3, 0% ® o" is the diffusion matrix.

Existence

We begin by studying the existence problem for the stochastic transport equa-
tion (6.1). Fix a cannonical stochastic basis (Q, %, (%), P, {W*}) and let ®, be

the stochastic flow associated with the SDE
AD,(z) = ult, Dyy(2))dt + Y o (t, Dyy(2))dWf, (z) =2 (6.2)
k
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We assume u and {o¥} are smooth enough with sub-linear growth so that @, is a
diffeomorphism and adapted to Z,; = c({W}F — Wk} : 0 < s <t < ), and its
spatial inverse W, (z) = ®_/(z) is also (F,)-adapted (pontwise in z). We will also
denote ®, = ¢y, and ¥V, = ¥y,. Suppose that we start from some smooth fy, and
that ¢ = 0. Then we know that the unique solutions to the transport equation is
given by
f(t,z) = fo(Pi(z)) det OW,(z)

where (0W;);; = 0;(V;);. We have the following proposition regarding a formula for

det 0, ().

Proposition 6.1.1. The quantity det OW,(x) can be written as,

det 0V, (z) = exp { - /Ot [div u(Vsy(z)) — 5 Ztr ((agk)Q)(lII&t(aj))] ds

¢
- / > div ak(\IJS7t(x))de}.
0 &
Proof. To study det 0¥, (z) further, we remark that it suffices to study det 0®;(x),

since we have 0®;(V(x))0V(x) = I and therefore
det OW,(x) = [det 0P, (W, (z))] .

The taking the derivative of both sides of the SDE with respect to the initial data,

it is well known that the matrix 9®, satisfies
dO®, = du(t, )00, dt + > D™ (t, D)0 AW},
k

To study the determinant of 0®,, we use the fact that for any invertible matrix A,

the Gateaux derivative of F'(A) := log (det A) in the direction U is

DF(A)[U] =tr (UA™)
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while the second order Gateaux derivative in the directions U,V is
D*F(A)[U,V] = —tr (UAT'VATY).

Applying It6’s formula to quantity F(0®;) = log (det 0P;(x)), and using the above

formulas, we find
F(0®,) = DF(0%,)[0u(t, ®,)0%,|dt + > DF(0®,) [0 (t, ®,)0®,|dW}
k
+13" D*F(0%,) [aa’f(t, 0,)0%,, Dot (t, cpt)a@t] dt
k

= tr (Ou) (¢, ©y(x))dt + Zk: tr (90") (t, @)W} — Zk: %tr ((00*)?) (¢, ®,)dt

= divu(t, ®,) dt+2d1va (t, D)W} — Ztr ((90™)?) (t, ®,)dt
Using the fact that F(0®,) = 0 concluded the proof. O
We now try to get LP estimates on the solution f(¢,x). We have the following

Proposition 6.1.2. Assume that fo,u an {c*} are smooth and compactly supported
and let f(t,x) be the unique classical solution to the transport equation. For each

€ [1,00), we have the following inequality
T
E/ |f(t,2)[Pdedt < Cpvuoll foll7s (6.3)
o Jre
where for each q € (0,00) the constant Cy_1 ., is defined by

) 1
Couo = exp{quleLg(L;o) + D galltr ((06")) e +Z 5@l div o¥ ||z e }
k

Proof. To esimtate this, we note that

|f(t, z)[Pde = - [fo(x) | det (D¢ (x)) P~ dx

]Rn
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From the formula for det 0V, (z) it readily follows that for any ¢ > 0 and x € R”

¢
| det O, (®,(2))]? < Cyuw € (—qz / div a"“((I)S(x))de> ,
k 0
where C,,» is the contant defined in the statement of the proposition and £(X%)

denotes the Dooleans exponential of a martingale X;, specifically in our case

& (—qZ/t divak(QS(x))dWS]“)
k 0
_ exp{ _ /Ot;qdiv ot (@, () dWE — %(f Zk:/ot | div ak\2(q>s(x))ds}.

Using the fact that £(X;) is again a martingale and therefore EE(X;) = EE(X))

concludes the proof. O

Our definition of solution is as follows

Definition 6.1.3. Let p € [1,00], ¢ = p/(p — 1) (¢ = 1 if p = 00). Suppose for
each compact K C R", v € L'([0,T], LY K)), o = {o¥} € L*([0,T], L**(K)) and
(Q, Z,P,(Z%),{W"}) and stochastic basis. A weak LP solution to the stochastic
continuity equation is an (%;) progessively measurable process f : Qx[0,T] — L7 .
which almost surely solves the stochastic transport equation in weak, time-integrated
form. That is, for every ¢ € C°(R") and P ® dt almost every (¢,w) we have

t
0

t
o) = o) + [ (uLo)ds+ Y [ (fuch - vo)aWe,
 Jo
where £ =u -V +a: V? is the generator of the diffusion (6.2).

Our main existence theorem is the following

Theorem 6.1.4. Let p € [2,00], ¢ = p/(p—1) (¢ = 1 if p = o) and as-

sume that fo € LP and uw € L;(L!

x,loc

) and o = {o*} € L2(L*

m,loc)'

If, in ad-
dition, dive € LZ(L) and tr((00)?) € L}(LZ®), then for any stochastic basis
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(Q,.Z P, (F), {W*}), there exists a weak LP solution to the stochastic continuity

equation and f € LP(Q2 x [0,T] x R™).

Proof. The proof is straight forward. We first approximate u, o, fo by smooth func-

tions (4)n, (0)n, (fo)n which satisfy the uniform bound
SUP Cp1, uyn (7)< OO
such that
(w), — win Lj(LY), (o), — o in A(N; L}(L9)), (fo)n — fo € LP. (6.4)

Let f,, be the unique classical solution to the stochastic transport equation associated
to (U)n, (0)n, (fo)n (see [81]). We remark that the smoothness (in x) of f, implies
that f,, is progessively measurable as a process with values in L”. Using the estimate
in proposition 6.1.2 we may conclude that {f,} is uniformly bounded in L*(Q x
[0, T]; L?). Therefore { f,} has a weakly converging subsequence in L?(2x [0, T; L?),
which we still denote {f,}. Moreover since the space of progressively measurable
processes in L?(Qx [0, T|; L?) is closed, it follows that the limit f is also progressively
measurable.

We now wish to pass the limit in the weak form. Let Y € L*(Q) and ¢ €

C>(]0,T] x R™), then for each n > 0 we have

E /0 ' / Y (Oip+ (L)nd) fudadt+) "B /O ' / nY((o—k)n.w) fudzdW) =0, (6.5)

where (L), = (), -V + (a), : V? and (a), = 3> ,(0F)22. Clearly the weak

= 3 "

convergence of {f,} in L*(2 x [0,T]; L?) and strong convergence of Y (9;¢ + (£),¢)
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in L?(Q x [0, T]; L9) is enough to pass the limit in the first integral in equation (6.5),
which follow from the convergence properties (6.4). What remains is to pass the

limit in the stochastic integral. Clearly we have

/ (") - V¢ fudz — | " Vo fdr  weakly in L*(Q x [0,T]),

R’ﬂ
and since the stochastic integral is a weakly continuous linear mapping from L?( x
[0, T]) to L*(Q), we may pass the limit term by term in the summation for the

stochastic integral. If the summation is infinite then we use the fact that

B[ [ V(e VolrtiVE] < p(Cosiaion, HY D] ) ol

and that o € ¢*(N; L?(L9)) to pass the limit in the sum.
Finally, to obtain the almost sure, time integrated form, we remark that P

almost surely,

(010 + L) fdxdt + Vo) fdzdWF = 0. (6.6)
/L S| L

Now fix a ¢t € [0,7] and choose a sequence of test functions ¢" (s, z) = p(z)"(s),
where 9)"(s) is a smooth approximation of the indicator 1 4(s) so that 0,4 (s) is a
symmetric approximation of a delta function centered at ¢. Using the integrability of

f in time, Lebesgue’s differentiation theorem implies that for almost every ¢ € [0, 77,

[ [ 0.6, 125 = .

Passing the limit in (6.6), for test function ¢ = ¢", gives the time-integrated weak

form, P almost surely. O]
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Remark 6.1.5. The statement of the extistence theorem can be somewhat improved.
In fact, we will see that f € L~ (Q; L{°(LP)), and f has a modification in Cy([L2],).
While it might be possible to get this directly from the estimates on the flow and
the Dooleans exponential, it will be more straight forward to work directly with the

solution f,, to the approximating scheme presented above.

Renormalization

We now study the renormalization property for the stochastic continuity equa-
tion. For simplicity, we will study the following stochastic continuity equation with

zero drift and one noise coefficient o,
O f — divdiv(af) + div(e )W =0, (6.7)

where @ = 30 ® 0. The extension to the more general case of non-zero (Sobolev
regular) drift and countably many noise coefficients being straight forward, following
the classical arguments of Diperna-Lions [34].

Let us asssume for the moment that o is smooth and that f is a smooth
classical solution to (6.7), that is, f is at least C? in z, is pointwise adapted to (%)
and satisfies (6.7) in the time time integrated sense, pointwise in R”. Let I': R — R
be a smooth function, then we will show that I'(f) satisfies a stochastic continuity

equation of the form
AL (f) — divdiv(al'(f)) + div(e"T(f))W = div (o(divo)G(f)) — G(f)div oW

+ %G(f) tr ((00)2) + %H(f)(diva)Q,
(6.8)
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where G(f) = fI'(f) = T'(f) and H(f) = fG'(f) — G(f). Such a procedure of
solving the equation is called renormalization with the equation (6.8) being refered
to as the renormalized equation. It’s important to note that the above renormalized
equation is in divergence form so that in distribution, this equation makes sense
without any regularity requirements on f and no more regularity on u and ¢ than is
required for the existence theorem (in fact it needs far less). Such a renormalization

readily allows for bounds of the form

1 [ )
E/Rnl“(f(t))dx < /Rnl“(fo)dx—iréE/o /G(f(s))tr((aa) )dds
+ %E /O [ () v oo,
In fact, one can do better. If I'(z) > 0, and divo € LZ(L™) and tr ((00)?) € L} (L*>)

the Burkholder-Davis-Gundy inequality implies that for r € [1, 00),

B (sw [ T(7@0)dr)
< G (vl + 11t (00)7) 1z ) B (s [ 1GUA(0) + (0Dl )

This bound, (by choosing bounded approximation of the function T'(z) = |z[P),

implies, after an application of Gronwall’s inequality, that for each r € [1, 00),

E[[ fl[zpzz) < Cllfollz,

where C' depends continuously on r and T" and on o through the norms || div || 12(1)
and || tr ((00)?) ||11(zs)- This bound is clearly and improvement over the one ob-
tained in (6.3), and certainly not so obvious at the level of the stochastic flow and

Dooleans exponential.
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Derivation of the renormalized form

Here we detail, for convenience, the calculation for the renormalized form given
in equation (6.8). Let f be a smooth solution (6.7), which we write in the following

form
O f —2div(a)-Vf—a:V3f+0-VfW = (divdiva)f — dive fW

Let I' : R — R be a smooth renormalizer, then, using Itos formula, I'( f) satisfies
O (f) —2diva-VI(f) —a: VT(f) + o - VI(f)W

= fI'(f)(divdiva) — I'(f) divo fW + LT7(f) (div(e f)* — (o - V f)?).
Writing the left-hand side above back in divergence form and utilitize some cancel-

lation in the term that multiplies I''(f) we have
L (f) — divdiv(al(f)) + div(eD(f))W = G(f)(divdiva) — G(f) diveW
+ 3G (f)(dive)*f+ G'(f)(dive)o - Vf.
The terms on the right-hand side simplify nicely. Using the fact that
divdiva = $tr ((00)%) + 1(dive)’ + o - Vdive
and

G'(f)(divo)o - Vf =div (o(dive)G(f)) — (dive)*G(f) — o - VdivoG(f),

we can write the renormalized equation as
QL (f) — divdiv(al(f)) + div(e*D(f))W = div (o(dive)G(f)) — G(f)div oW
+3G(f) tr ((90)?) + $H(f)(divo)?,
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Renormalization for rough o

We now want study the renormalization property when f is not smooth. We
will follow the strategy from the deterministic theory of DiPerna Lions. This involves
regularizing a solution, renormalizing the regularized equation, and then show that
the errors commited during this procedure can be written in terms of certain commu-
tators between the differential action of a vector field and the smoothing operation.
These commutators will vanish if one assumes the right Sobolev integrability on the
vector field.

In what follows, we will find it useful to introduce the differential operators
L0 :=a:V?, Vop :=0-Vo
Lo :=divdiv(ag), Vi¢:=div(oe),
along with the quantities,
Ay =11 ((80)%), Dy = (divo)®.
With this notation, the stochastic continuity (6.7) equation takes the form
Of — Lif +VifW =0.
and the renormalized form (6.8) becomes,
OL(f)—LiT(/)+ViD(f)W = Vi(dive G(f))—dive G(f)W+LG(f) Ao+ H(f) D,
We aim to prove the following theorem

Theorem 6.2.1. Let f € L°(L?

x,loc

), p > 2, be a weak LP solution to (6.7), and

suppose that o € L2(WE2/P™DY " Then for any T € CZ(R™), such that sup, 2" (z)

z,loc
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and sup, 2’T"(z) < oo, I'(f) solves the renormalized equation in time-integrated,

weak form, namely for P ® dt almost every (t,w) we have
PO 9) = (M) + [ O Lredds+ [T, VohaW (s

- / (G () divo, Voghds + 3 / (G(F(5)) Ao, £)ds (6.9)

1

+5 [ (HGE)DAeas =[G divegaw (s

Commutators

As in the deterministic theory, commutators of vector field operations with
smoothing play an important role in the renomalization theory. Indeed indentifying
the correct commutators is crucial for simplifying certain remainders in an efficient
manner.

We start by considering n : R® — R a smooth, symmetric function with
support in the ball of radius 1 and with unit integral. For each ¢ > 0 we denote by

ne the rescaled function (mollifier) by

We define for any function ¢ : R” — R, the mollified function ¢, = (¢)c = ne x ¢ by

it’s convolution with 7.. Define the following commutators

Vo ne(N)(w) = Vo fe(x) = (Vo f)e(w) = | Vne(w —y) - (o(x) —a(y))f(y) dy.

R’I’L

and

[[£o, 0]} (f) (@) = Lofe(x) = Vo (Vi f)e(@) + (L5 f)(2)

1

"2 )en Vie(z —y) : (o(x) — o(y)**f(y) dy.
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Note that these commutators differ from the typical commutators studied in
DiPerna/Lions, since they do not contain any terms involving the divergence of a
vector field. However, instead of these commutators vanishing, they will converge

precisely to the divergence terms that they excluding. We have the following lemma

Lemma 6.2.2 (Commutator Lemma). Let f € LP, and o € W2 | for p,q €

Z‘,IOC $7IOC7

[1,00]. Then as e — 0

Vond(f) = dive in L., for f=1+1
and
1
[1Cond](f) = 5(As+ Do) in L, for 2=241
Moreover for any compact K C R™ we have the following bounds
Vo nd (D) < 190l oy, Jor 2=1+2

1[1£0.n]] (£)]

L7 (K) < HVUH%‘Z(K)HfHLP(K), for % — % + 110.

Proof. We study [V,,n.] first. Define for each z,w € R™ the quantity
t
R,(z):=0(x) —o(x —w) —Vo(x) w = / (Vo(z 4+ (A —1w) — Vo(x)) - wdA,
0
so that we can write

(Vond (f)(@) = | Vn(z—y)-(Vo(z)-(x—y)) f(y)dy+ [ Vn(y)Ry(z)f(x—y)dy

Rn R"

Since o € W4 we have that if |w| < €, then for any compact K C R”

x,loc

| R ()| £2 sy < €sup |6,V paxy,

ly|<e
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where ,h(z) = h(x+y) — h(x) denotes the difference of for some function h and it’s
translation by y. Using the above bound, and the fact that €||V7.[|;1 is uniformly

bounded in €, we find for

/ ) Vne(y)Ry(z) f(x — y)dy

< ( Vi (y) ||Ry||Lg<K>dy) T
L (K) Rn

< ellVnelley sup 16,V ol| g o) | Fll 2y

ly|<e
—0 as e€—0.

for any compact set K C R". Indeed this implies that for each x € R", and r

satisfying + = é + 119,

Vo, ne (f)(x) = Vo(x) : (Ge* f) +o(1)rr

xz,loc
where G¢(z) = © ® Vn(x). This estimate directly implies the bound on [V, n.](f)
stated in the lemma. Furthermore, using the fact that each component of G¢(z) =

e 9G(e1z) is a symmetric approximation of a delta function, we can use the stan-

dard properties of mollifiers to find

Gex f— (/ x®Vn(:E)dx> foin L7, .

Integration by parts, and the properties of n give to identity

/ r® Vn(r)de = 1.

Therefore as € — 0, the following convergence holds in L .

[V0>776] (f) — (VU : I)f = (diV U)f-

Next we study the double commutator [[Ls,7.]](f). A similar arguement to
the single commutator case implies that since ¢ € W ¢ = we have that for each

x,loc?
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[Losnd]()(z) = 5 i V(e —y) + (Vo(a) - (z —y)**f(y)dy +o(1)zy
1
=5 Z 0;01(x)0j0(x) (GZ{G * f)+ 0(1)L;1007
ijkt
where G (z) = x;2;000mc(x). Again, this immediately implies the bound on

[[£o,nc]] (f). Furthermore, since each G¥ (z) is a symmetric approximation of a

delta function we have

ij{g *f — </ l‘z%akaﬂ?dl‘) f in Lz,loc‘

Using the identity,
/ xil‘jakagn(m)dl‘ = 5@'516( + 5ik5j£,

and the fact that Vo € LY, , then the following convergence holdsin L” , ase — 0

x,loc? x,loc

[[£o,n] (f) = % Z(%ﬁu + 0ik0j0) 001,000 f = %(Acr + D, ).

ikt

Proof of renormalization result

Proof. As usual we begin we mollify the transport equation. For ¢ > 0 we have,
t t

10 = 200+ [ (Er s = [T (5)

0 0

Then, using Itos formula applied to I'(f.), we have

D(L(8) = T(£.(0)) + / I (Fu(5)) (L2 (5))edls — / I (f(5)) (V5 F)ed W (5)

1

3 | TN
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We can then write the equation above as a stochastic continuity equation for I'( f)

plus some remainders. Specifically, we have

T(L(1) = T(£(0)) + / LT (f.(s))ds — / VAT (f(5)dW (5)

[ moenave s [

where the remainders R!(f) and R?(f) are given by

(6.10)

R:(f) = VoU(fe) = T'(f)(V5f)e

RA() = D))~ LT + 5T (Vo)
In order to complete the proof we need to show that as e — 0, the remainders R!(f)
and R?(f) converge to the correct terms on the right-hand side of (6.8). To show

this, we will make use of the following lemma which writes R!(f) and R?(f) in terms

of the commutators [V, n](f) and [[Lo, 7] (f)-

Lemma 6.2.3. We have the following identities

RIS) =TIV, n(f) — divoT (1)
RA(S) = TUILo, 0 (1) + 5TV 1) + 5 (C )V () = T ldiv oT (1)
— D[ div o[V, 1)) + TIPS = 5T(f)As = ST(f)D

Before proving Lemma 6.2.3, let us see how to complete the proof assuming
these identities. We need to pass the limit as ¢ — 0 in the weak, time integrated

form of (6.10) which for each ¢ € C°(R™) becomes

t

(DU0), ) = X))+ [ U Lap)ds+ [T, Tar)dW ()
+ [ARG). aw ) + [ ). elds

’ ’ (6.11)
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The standard properties of mollifiers imply that for P®dt almost every (2,¢) €

Qx[0,T], f(t) = f(t) in L?

x,loc

and f, — f pointwise P ® dt ® dz almost every
where on Q x [0, 7] x R™. It is a simple matter to show that this, the boundedness

of I'(2) and the integrability conditions on o imply that as € — 0,

(L(fe(0)), ) = (T(fo), #),
(C(f),0) = (T(f), ), in LY(Qx[0,T])
(C(fe). Lop) = (L(f), Low), in L(Qx [0,T])
while for the term in the stochastic intergral
(C(f). Vo) = (L(f), Vo) in L*(Qx [0,T]).
Consequently we may pass the limit as € — 0 in the first four terms of equation
(6.11).
What remain are the terms involving R!(f) and R?*(f). The commutator

Lemma 6.2.2, the fact that o € Lf(W1’2p/(p_2)), and the strong convergence proper-

z,loc

ties of f. — f are more than enough to conclude
(Vo nl(F)0) = UT(f) divu, @), P dt almost everywhere.

Moreover, the bound provided in the commutator Lemma 6.2.2, and the fact that

['(z) and I''(2) are bounded functions give the estimate

T
E/O (T (fe() Vo, 1l (£ (), ) *ds S NVOlIT2 r2nsio-0 1 ILge o)

where K is a compact set containing the support of ¢. Therefore the dominated

convergence theorem and the fact that I'(f.) — ['(f) in implies that

(Re(f), ) = (G(f)diva,p) in L*(Q x [0,T]),
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whereby we may pass the limit in the stochastic integral for the fourth term on the
right-hand side of (6.10). The last term R?(f), though complicated, is straightfor-
ward and can be treated in a similar manner as R!(f). Indeed similar arguments to

those above show that

(T'(f)[Vo,nd(f) = div el (f0), Vo) = (G(f) dive, Vop) in LY (Qx [0,T]),

and
(T'(fo) div o Ve, nl(f),¢) = (fT'(f)Do, ) in LY(Q x [0,TY).

Moreover using the commutator Lemma 6.2.2 applied to the double commutator

[[£o.n]] (f) we also obtain

(P[] (D= AT (Aot Do), 0) = (BG()(Ae+Dy), 0) in LHOx,T))

The only term left to study in R2(f) is sT"(f)([Ve,n](f))? In fact, it is pre-
cisely this term that dictate the L2(W,>" /(e _2)) condition on o (as opposed to
LAWYy which is sufficient to obtain all the limits above). Precisely, using
the commutator Lemma, and requiring that P almost surely [V, n](f(t)) converges
in L?(L?

2loc)s gives the condition on o, and along with the bounded of T'"'(z) implies

that

G (Ve nd () 0) = GL(N)f*(dive)? ¢) in LY(Qx [0,T)).

The above limits can be collected to conclude that

(R(f),) = ~(G(f) dive, Vo) 5 (G () Ags @) 45 (H()Dor g} in LHOX[0,T))
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All of these convergence properties, allow us to pass the limit in each term of (6.11)

in L'(Q x [0,T]) and therefore that equation (6.13) holds P ® d¢ almost everywhere.

We now proceed to the proof of Lemma 6.2.3:

Proof of Lemma 6.2.5. We begin by remarking that this computation involves quan-
tities, like divdiva and V, div o which are not well-defined functions given the reg-
ularity assumptions on o. However as they are well-defined distributions and are
only every multiplied by sooth functions the computations below make sense in the
sense of distribution.

The proof of the identity for R!(f) is obvious given the definition of the com-

mutator [V, n](f). We focus on R?(f) and begin by expanding the term for L*T'(f),

LT(f) = (divdiva)D(f) + T'(f)2diva- Ve +T"(f) (Ve fo)? + T'(f) LS.
So that R? becomes

Rg(f) = —(diV div a)F(fE) - F/(fe)2diva : v.fE - Fl(ff)('cfs - ('C*f)e)

T3~ (Vo fo)

We can write several expressions in terms of commutators
Lfe=(Lf)e = =L n]I(f) +2Lfe = Vo (V5 f)e
= _[[£7 nG]](f) _|_ 2£f€ - VO'VO'fG + VU[vﬂﬁ nf](f)

= —[[L.0](f) = Voo - Ve + Vo Vo, 0 (f)
and

(VZf)g - (vcrfe>2 = (Vofe - [Voane](f>)2 - (Vcrf6>2
= =2V, fe[Vo,ne(f) + ([VU7776](f>>2
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Therefore we have

S (V22— (Vofo?) ~ UL~ (£°1))

= F/(ff)[[‘C? ne]](f) + %([vm Ue](f))z - F”(fe)vafE[Vm ne](f) - F/(fE)VU[VUa ne](f)
+ F/(fe>vaa ' vfs

= T'(fIlIL, nell(f) + %F//(fe>([vm 1 ())? + Vo (T'(N Vo0l (f) + T'(f) Vo0 - V f

The remainder becomes

RZ(f) = T'(fllL,n]I(f) + %P,,<f6)([va, () + Vo (T'(f)Ve, 1] () + T (f)Vao - V [

— divdival'(f.) = I'(f)2diva- V.

Next we write
T'(f)Voo - V. — T'(f)2diva-Vf. = — divoV,T(f.)
= —V,(divol'(f)) + V,dival'(f.),
and use the fact that (divdiva) = %AU + %DU + V, div o to simplify the remainder

to

RE(f) = T'(flIL,nI(f) + %F”(fe)([vo, (1)) + Vo (T'(f) Ve, 1l (f) = Vo(div ol (o))

1 1

- §F(f6)AU - §F(f6)DU'

The lemma now follows by writing V, = VZ —divo in two of the terms above. [

This completes the proof of Theorem 6.2.1 [

Renormalization with drift and a family of noise coefficients

Theorem 6.2.1 can be easily generalized to equations with a drift v and a

family of noise coefficients o = {o*},

O f +div(uf) — divdiv(af) + zk:div(akf)Wk =0, a= %zk:ak ®oF  (6.12)
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as long as u satisfies the usual regularity requirements of the deterministic DiPerna-
Lions theory and o = {o*} satisfy the appropriate summability conditions. In this

case the renormalized form looks like
OL(f) = L5 ,L(f) + ViD(f)W = Vi (dive G(f))
—divuG(f) — dive G(f)W + 3G(f)A, + LH(f)D,.

where £,, = u-V + a : V2 The corresponding renormalization result is given

below:

Theorem 6.2.4. Let f € L(LP

xz,loc

), p > 2, be a weak LP solution to (6.12).
Suppose that w € L{(W, ) and o € LAWY gatisfing the summability

z,loc x,loc

condition

Z |!0k!|%g(wl,zp/<p—z>(;<)) <0
k
for every compact K C R™. Then for any T' € C}(R"), such that sup, 2I"(z) and
sup, 2°T"(z) < oo, T'(f) solves the renormalized equation in time-integrated, weak

form, namely for P ® dt almost every (t,w) and every ¢ € C°(R™) the following

equality holds

T W), 0) = T 0) + / LUCIEREIEDS / ), VoephdIWH(s)
/0<G<f( ) divu, @ ds—Z/ )) div o, ¥k p)ds

+Z§/<G(f(s) ok ¢ds+z / Dok, p)ds
—Z/ ) div o*, o) dIWH(s).

(6.13)
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Proof. The proof is an easy extension of the Theorem 6.2.1. Regulaizing and renor-
malizing just as in the proof of Theorem 6.2.1, we see that the drift v introduces

another commutator [V, n.](f) which satisfies

(L'(f)[Vund(f) = T(fo) divu, @) — (G(f) divu, ) in LH(Q x [0,77)

as long as u € L'([0,T}; leféc) Furthermore the summability condition on o =
{o*} allows one to pass the limit in each term of the sum just as in Theorem 6.2.1 and
then, using the fact that each term in the sum which isn’t a stochastic integral has
a uniform (in €) bound in L'(Q x [0, T]) by some contant times HVUH%%(LQP/(I,_Q)(K)),
the dominated convergence for series allows one to pass the limit in the summation.

The same arguement work for the stochastic integrals where instead the bound is

in L2(Q x [0,T]). 0
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The Stochastic Boltzmann Equation (w/ Scott Smith)

Introduction

The Boltzmann equation

Of +v-Vuf +divy(Xf) =B(f, f),
(7.1)

f|t:0 = f07

on [0, 7] x R?*® is a nonlinear integro-differential equation describing the evolution
of a rarefied gas, dominated by binary collisions, and in the presence of a external
force field X. The function f(¢,x,v) € R describes the density of particles at time
t € [0,T), position x € R?, with velocity v € RY, starting at ¢ = 0 from an initial
density fo(x,v). The nonlinear functional f — B(f, f), known as the collision
operator, acts on the velocity variable only, and accounts for the effect of collisions
between pairs of particles; it will be described in more detail below.

Several studies have been conducted regarding the well-posedness of the Cauchy
problem for the Boltzmann equation (7.1) with a fixed (deterministic) external force,
for instance [7, 12, 37, 115]. In general, the external force field X may depend on
(t,z,v) € RxRIxR?. Such external forces may arise when considering the influence
of gravity such as in the treatment of the Rayleigh-Benard problem in the kinetic
regime [5, 47]. In fact, many external forces are not fixed, and are instead coupled
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with the density f in a self consistent way. This is the case, for example, with the
Vlasov-Poisson-Boltzmann and Vlasov-Maxwell-Boltzmann equations (see [23, 86]
and references therein for more details on these systems).

This article focuses instead on the Cauchy problem for the Boltzmann equation

with random external forcing. In particular, we are interested in the following SPDE

Of +v-Vof +divi(foro f) = B(f. f),
(SB)

f ’t:O = f 0
where {0 }ren are one-dimensional Brownian motions and {oy }ren are a family of
vector fields oy : R? — R? with div, 0 = 0. An implicit summation is taken over
k € N, and the expression div,(foy o 6k) denotes a transport type multiplicative
noise, white in time and colored in (z,v), where the product o is interpreted in the
Stratonovich sense.

Physically, we view the quantity

(t,x,v) — Z o, ) Bi(t)

keN

as an environmental noise acting on the gas. In the absence of collisions, all particles
evolve according to the stochastic differential equation

dX, =Vidt, dV, =Y ow(X,,V;) o dBy(t) (7.2)

keN

and are only distinguished from one another according to their initial location in
the phase space. Let @, (z,v) be the stochastic flow associated with the SDE (7.2),
that is, t — @4 (x,v) = (X, V4) solves (7.2) and satisfies @, (z,v) = (x,v). The
Stratonovich form of the noise and the fact that div, o, = 0 ensures that the flow
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®, ; is volume preserving (with probability one). The density of the collision-less gas
is then given by fy(z,v) = fo(®g(z,v)) and evolves according to the free stochastic
kinetic transport equation

Ouf +v-Vof +div,(foy o B) =0,

fli=o = fo.

The presence of collisions interrupts the stochastic transport process. In the
low volume density regime, binary collisions are dominant and can be described by
the Boltzmann collision operator B(f, f). The stochastic Boltzmann equation (SB)
accounts for both stochastic transport and binary collisions. In fact, formally (SB)

can be written in mild form,

t
fo= foodg! + / B(f., f.) o & ds.
0

The stochastic Boltzmann equation (SB) can be interpreted as the so-called
Boltzmann-Grad limiting description of interacting particles subject to the same
environmental noise. In the deterministic setting, the Boltzmann-Grad problem
has been studied extensively in the literature (see [60] for a recent review). In the
stochastic setting, the Boltzmann-Grad problem has (to our knowledge) not yet
been studied. However, a mean field limit to the Vlasov equation with stochastic
kinetic transport has been shown recently by Coghi and Flandoli [27].

To our knowledge, this is the first study to obtain mathematically rigorous
results on the Boltzmann equation with a random external force. However, a num-
ber of results on the fluctuating Boltzmann equation are available in the Math
and Physics literature [16, 56, 94, 109111, 114]. In particular, the articles of
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Bixon/Zwanzig [16] and Fox/Uhlenbeck [56] outline a formal derivation of Landau
and Lifshitz’s equations of fluctuating hydrodynamics [83], from the fluctuating lin-
ear Boltzmann equation. The connection with macroscopic fluid equations arises
from studying the correlation structure of the fluctuations at the level of the kinetic
description. A more rigorous treatment of the fluctuation theory for the Boltzmann
equation and its connection to the Boltzmann-Grad limit is given by Spohn [109-
111].

Although our perspective differs from that of [56] and [16], we do expect to
obtain various stochastic hydrodynamic equations (with colored noise) in different
asymptotic regimes, using a Chapman-Enskog expansion and the moments method
of Bardos/Golse/Levermore [9]. In fact, one of the original motivations for this
article was to understand which of the common forms of noise in the stochastic
fluids literature can be obtained by considering fluctuations of the stochastic kinetic
description relative to an equilibrium state. This will be addressed in detail in future
works.

The goal of this article is to investigate global solutions to (SB) starting from
general ‘large’ initial data f; € L'(R??). If the noise coefficients o are identi-
cally zero, then this problem has already been addressed in the seminal work of
DiPerna/Lions [36], where existence of renormalized solutions is proved. Our work
is heavily inspired by [36], relying on a number of their insights together with various
classical properties of the Boltzmann equation. Rather than give a detailed review,
in the next subsection we will explain how these observations from the deterministic

theory lead to the notion of renormalized martingale solution to (SB) in the present
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context. Finally, we should mention that our initial motivation for the choice of
noise was heavily inspired by a number of interesting works on stochastic transport
equations (see for instance [33, 48, 52, 53]). Finally, we should mention the work
[20] on the 2-d stochastic Euler equations with a very similar noise to the one in

this paper.

Statement of the main result

Let us begin by discussing the basics of the Boltzmann equation and introduce
the analytical framework for the problem. We refer the reader to the books [23, 24]
and the excellent set of notes [65] for a comprehensive introduction to the Boltzmann
equation, as well as the review [119].

The collision operator B(f, f) describes the rate of change in particle density
due to collisions. It contains all the information about collision rates between par-
ticles with different velocities. More precisely, it is defined through its action in v

BUDE = [[ (R0 =), (73)

where f,, f’, and f. are shorthand for f(v.), f(v'), and f(v.), while (v/,v.) denote

pre-collisional velocities

vV=v—(v—u,)-00
v =v,+ (v—0,)-00.

Note that (v', "), parametrized by § € S?!, are solutions to the equations describ-
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ing pairwise conservation of momentum and energy,
vV v = v+,
o+ ol = fof? + .
The collision kernel b(v — v, 0) > 0 is determined by details of the inter-molecular
forces between particles and describes the rate at which particles with relative ve-
locity v — v, collide with deflection angle 6 - (v — v,)/|v — v.|. In this article, for
technical reasons and simplicity of exposition, we restrict our attention to bounded,
integrable kernels, though we intend to investigate (in a future work) the possibility
of treating more singular kernels as in Alexandre/Villani [3] and other works. Our

assumption on the collision kernel is the following:

Hypothesis 7.1.1. The collision kernel b(z,0) depends solely on |z| and |z- 0| only,
and satisfies,
be LYR* x S9N L= (R* x §971).
Since the nonlinear term B(f, f) is quadratic in f, further properties of the
operator must be exploited in order to obtain a priori bounds. A classical observation

is that the symmetry assumptions on the collision kernel b imposed in Hypothesis

7.1.1 and the definition of (v/,v.) imply that for each smooth ¢ : RY — R,

§(w)B(f, f)dv
(7.4)

R
- i ///']R2d><gd—1(f,f)),< B ff*)(é.* + § - gi - 51) b(U — Uy, ‘9) dfdv.dwv.

Any quantity £(v) such that &, + & = &, + &', is called a collision invariant. For any

collision invariant £(v), (7.4) implies that

[ €wB(F. ) =0,
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As a result of the definition of (v',v"), the quantities {1, {v;}{,,|v|*} are collision
invariants. Therefore, multiplying both sides of (SB) by a collision invariant and

integrating in v, the collision operator vanishes

at< Rdg@)f@) + div, (/R v§(v)fdv> - (/R VE) .akfdv) 0B (7.5)

In the case that £(v) = 1+ |v|? in (7.5), one can close on estimate on £(v) f, provided

we have the following coloring hypothesis on o:

Hypothesis 7.1.2. For each k € N, the noise coefficient o, : R* — R? satisfies

div, o = 0. In addition, the sequence 0 = {0y }ren 0beys:

1/2
lolleuesy = (3 lonlds, ) < oo (1)
keN
o Voollnwre,) = Z |ow. - Vyor re, < oo. (H2)
keN

More generally, in Section 7.2 we show that Hypothesis 7.1.2 implies that a

solution f to (SB) satisfies the following formal a priori bound
Bl(L+ 2 + ) e s ) < G (7.6)

for all p € [1,00) and some positive constant C,, (depending on p). In addition, a
further L log L estimate on f is available due to the entropy structure of (SB). To
obtain this, let I' : R — R be a sufficiently smooth function, which we will refer
to as a renormalization. Since we use Stratonovich noise and div, o, = 0, if f is a

solution of (SB), then formally I'(f) should satisfy:

ST (f) +v - V,I(f) + divy(T(f)ox o B) = T'(HB(S, f),
(RSB)

L'(f)le=o = T'(fo).
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In particular, taking I'(f) = flog f in (RSB) and integrating in v yields

@(/Rdflogfdv> + div, (/Rdvflogfdv> — _D(f), (7.7)

where
1
D(f) = —/// d(f)(t,xz,v,v.,0)b(v — vy, 0) dOdv.dv,
4 R2dx§d-1
I'1s
a0 =1~ £ (15) 20
I
Equation (7.7) describes the local dissipation of the entropy density fRd flog fdv.
The quantity D(f) is referred to as the entropy dissipation, and inherits non-
negativity from d(f). Since flog f is unsigned, we cannot immediately use (7.7)

to obtain an Llog L bound. However, combining this with (7.6), in Section 7.2 we

show that for all p € [1, 00)
Elflog /1~ . BIDUDIE, <G, (7.9)

Although the a priori bounds (7.6) and (7.9) provide a useful starting point, they are
unfortunately insufficient to give a meaning to B(f, f) in the sense of distributions.

For bounded kernels, one can obtain an L. estimate on B(f, f),

IB(f, Hliey < ClSNL-

However, since B(f, f) acts pointwise in x, the operator f +— B(f, f) sends Lglw to
LY(L!) (a measurable function in x). A key observation of DiPerna and Lions [36]
is that the renormalized collision operator f — (1 + f)"'B(f, f) is better behaved.

More precisely, the following inequality holds:

11+ )7 B, Iy

t,x,v

SIPHIe, + 1z, - (7.10)

t,x,v
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Thus, if f satisfies the a priori bounds (7.6) and (7.9), the quantity (1+ f)'B(f, f)
is well defined in L=~ (Q; Ly, ). Hence, it becomes feasible to search for solutions

satisfying (RSB) in the sense of distributions for a suitable class of renormalizations.

Towards this end, we make the following definition:

Definition 7.1.3. Define the set of renormalizations R to consist of C'(R,) func-

tions I' : R, — R such that the mapping « — (1 + z) |I'(x)| belongs to L>(R).

It is important to keep in mind that this class of renormalizations excludes the
possibility of choosing I'(f) = f or I'(f) = flog f and therefore extra care must be
taken to obtain the a priori estimates (7.6) and (7.9) above.

We note that for analytical purposes, relating to martingale techniques, it is
often more convenient to work with (RSB) in It6 form. Thus, we introduce the

matrix

1
a(x,v) = 5 ZO’k(fE,U) ® O'k(CC,U)7
keN

and define the operator
Ly = div,(aV,p).
Using the divergence free assumption for each oy, the random transport term in

(RSB) can be converted to It6 form via the relation

div, (T(f)ow 0 Br) = —LT(f) + divy (T(f)owBs).
We are now ready to define our notion of solution for (RSB).

Definition 7.1.4. A density f is defined to be a renormalized martingale solution
to (SB) provided there exists a stochastic basis (Q, F, P, (F;)_y, {8 }ren) such that
the following hold:
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1. For all (t,w) € [0,T] x Q, the quantity f(f,w) is a non-negative element of

1
L,

2. The mapping f : [0,7] x Q@ — L, defines an (F;)/_, adapted process with

continuous sample paths.

3. For all renormalizations I' € R, test functions ¢ € C °(R??), and times t €

[0, T; the following equality holds P almost surely:

/ /R ()t pdady = / /R T(fo)pdady

- /0 / /R [L(f)v - Vo + T'())B(f. [)g)dzduds

+%At/42dr(f)za¢dxdvds +Z/Ot //Rwl“(f)ak-Vywdxdvdﬁk(s).

keN
(7.11)
4. For all p € [1,00) there exists a positive constant C, such that:
Bl|(1+ [2* + [0 + [log f) flfe (), BIDNIL; < G (7.12)

Remark 7.1.5. In light of the estimate (7.10), the estimates in condition 4 of Defini-

tion 7.1.4 ensure that the weak form (7.11) is well defined and the stochastic integral

is a continuous-time martingale.

At present, we require a further technical hypothesis on ¢ and o - V,o. This

is related to the regularity needed on o to renormalize a linear, stochastic kinetic

transport equation, a crucial procedure in our analysis. This is discussed in more

detail in Section 7.1.2 below.
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Hypothesis 7.1.6. There exists an € > 0 such that:

1/2
_ 2
lollaguazzrg = (D lowlZen) < oo (H3)
keN
||J : VUUHﬂ Nyl ddey = HOk . VUOkHW;,;Jre < Q. (H4)
( »WVaxv ) x,v
keN

The main result of this article is the following global existence theorem:

Theorem 7.1.7. Let {0} }ren be a collection of noise coefficients satisfying Hypothe-
ses 7.1.2 and 7.1.6 and assume that the collision kernel b satisfies Hypothesis 7.1.1.

For any initial data fy : R* — R, satisfying
(1+ |2 + 0" + [log fol) fo € Ly,

there exists a renormalized martingale solution to (SB), starting from fo with noise

coefficients {0} ren-

Moreover f satisfies

e almost sure local conservation of mass
at/ fdv + divx/ vfdr =0, (7.13)
R4 R

e average global balance of momentum

E//R vf(t)dvdz = %;E/Ot //R ok-Vvakf(s)dvdxds+//RQd v fodvdz,
(

7.14)

e average global energy inequality

E//}Rmé\v[?f(t)dvdx < gE/Ot /42d(v~(ak~vvak)+ o4 2) £ () dvdads

1
+// ~|v|? fodvdz,
R2d 2
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e almost sure global entropy inequality
t
/ f(t)log f(t)dvdx +/ D(f)(s)dzds < / folog fodvdz. (7.16)
R2d 0 Rd

The almost sure local conservation of mass holds P almost surely in distribution,
the average global momentum and energy balances hold for every t € [0,T], and the

global entropy inequality holds P almost surely for every t € [0,T].

Overview of the article

Our analysis begins with formal a priori estimates which point to the natural
functional framework for (SB). Namely, in Section 7.2 we show that under the

coloring Hypotheses (H1) and (H2), solutions to (SB) formally satisfy

E|(1 + a® + [v]* + [og f) 117 (rs ) < G,

E[D()I}, <C,

With these formal a priori bounds at hand, the remainder of the paper splits roughly
into two parts. In Sections 7.3 and 7.4, we analyze linear stochastic kinetic equations,
while Sections 5 — 8 are devoted to the proof of Theorem 7.1.7.

In Sections 7.3 and 7.4 we move to a detailed discussion of stochastic kinetic

equations of the form

atf +v- vzf + divv(fo-k o 61@) =g,
(7.17)

f |t:0 = f 0-
Here fj € Liw is a deterministic initial density, while g is a certain random variable

with values in L}

{20 We will focus on so-called weak martingale solutions to (7.17).
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Roughly speaking (see Definition 7.3.1 of Section 7.3.1 for the precise meaning),
these are L, , valued stochastic processes satisfying (7.17) weakly in both the PDE
and the probabilistic sense. In this context, probabilistically weak means that the
filtered probability space (2, F, (F;)I_,) and the Brownian motions {f }xen are not
fixed in advance, but found as solutions to the problem, along with the process f
solving (7.17) in the sense of distribution.

For convenience we introduce the following language to refer to solutions of
(7.17), we say that: f is a solution to the stochastic kinetic equation driven by g
and starting from fo, relative to the noise coefficients o and the stochastic basis
(Q,F, P, (F)E, {Br}ren). In the case that the coefficients o, the filtration (F;)L,
and the Brownian motions {/ }ren are implicitly known or irrelevant, we may omit
them from the statement, saying instead: f s a solution to the stochastic kinetic
equation driven by g and starting from fy.

A key workhorse for our analysis is a stability result (Proposition 7.3.5) for
weak martingale solutions to stochastic kinetic equations. In the deterministic set-
ting, this simply corresponds to the observation that the space of solutions to linear,
kinetic equations is closed with respect to convergence in distribution. More pre-

cisely, if

Ofn+v-Viofy =g, in Drlzx,vv

flt:():f(?v

and {(fn, gn, [§ Jnen converges to (f, g, f°) in [D;, ]*, then it easily follows from the
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linear structure of the equation that

Of+v-Vyf=¢g in D,

tx,v
f ’t:O = f 0-
In the stochastic framework, an additional subtlety arises. Namely, one should
distinguish between stability of stochastically strong solutions, where a stochastic
basis has been fixed, and stability of stochastically weak solutions, where each so-
lution comes equipped with its own stochastic basis. For a fixed stochastic basis
(Q, F, P, (F) L, {Br }ren) and noise coefficients {0y }ren, one can use the linearity of
f — divy(forofy) together with a method of Pardoux [104] to make a direct passage
to the limit on both sides of the equation. However, for stochastically weak solu-
tions, the Brownian motions are not fixed, and the mapping (f, 8x) — div,(foxo Bk)
is nonlinear, prohibiting the passage of weak limits. In this situation, a martingale
method is used to overcome this difficulty and produce another weak martingale
solution with a new stochastic basis. This result is detailed in Proposition 7.3.5.
Section 7.3.3 is devoted to renormalizing weak martingale solutions to stochas-
tic kinetic equations. The technique of renormalization of deterministic transport
equations originates from the now classical results of Di’Perna and Lions [34], where
they were able to show uniqueness to certain linear transport equations when the
drift has lower regularity that the classical theory of characteristics would allow.

Formally, the strategy is as follows: if f satisfies (7.17) and I' : R — R is a smooth
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renormalization, then I'(f) satisfies

OL(f) +v - VoL(f) + divy(T(f)ox 0 Bi) = T'(f)g,
(7.18)

L'(f)li=0 = T'(fo)-
If one can justify such a computation, then upon integrating both sides of the
equation (7.18) for certain non-negative choices of I'(z) that vanish only at z = 0,
for instance I'(z) = z/(1+2), then one can get explicit bounds on I'(f) in terms of the
initial data, which, by linearity, implies uniqueness. However, since we are working
with analytically weak solutions to (7.17), this formal calculation may fail if the
individual oy, are too rough. In particular (to our knowledge), only requiring the L
coloring hypotheses (H1), (H2) are insufficient. The ability to renormalize stochastic
kinetic transport equations will turn out to be a crucial property in the final stages
of main existence proof. However, as in the case of the deterministic Boltzmann
equation, it does not imply uniqueness of the equation, due to the nonlinear nature
of the equation.

Our strategy in Section 7.3.3 uses the method of DiPerna and Lions reduces the
renormalizability of stochastic kinetic equations to the vanishing of certain commu-
tators between smoothing operators and the differential action of the rough vector
fields. Specifically, given a smooth renormalization I'(z) with bounded first and sec-
ond derivatives, we begin by smoothing a solution f to (7.17) in the (x,v) variables
with mollifier n.. The regularity improvement allows us to renormalize the equation

by I' at the expense of a remainder R.(f) comprised of commutators and double
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commutators of oy - V,, and convolution by 7,

[7757 Ok - Vv](f)ﬂ “7767 Ok - VU], Ok - Vv} (f)

As is well known from the classical theory of renormalization by [34] that the single

commutator

e, 0k - Vo (f) —> 0 in Ly,

e—0
as long as 0 € W4 and f € L? with 1/r = 1/p+ 1/q. As it turns out, the double

commutator also vanishes

[[nea Og - vv]a O * V?)] (f) — 0 in L;}c,v

e—0

2p_ _p_
Yp—1 ‘p—1

1 1
provided that o, € W,/ and oy - Vo, € W, . However one of the primary
differences between the deterministic and stochastic theory is an interesting conse-
quence of 1t6’s formula. Specifically the remainder R.(f) involves the square of the

single commutator [n., oy - V,](f). Due to the limited integrability and regularity of

2p

f, this imposes that p > 2 and o}, € Wzl:ﬁ’ ~* for this contribution to vanish in L' (see
Proposition 7.3.8 for more details on this). Based on this method of proof, we are
presently unable to treat the case p € [1,2). The main result of this section (Propo-
sition 7.3.8) shows show that a weak martingale solution f € LP(Q2 x [0, T] x R??),
p > 2to (7.17) is renormalizable provided we have the following regularity conditions

on o,
o € A(N; Wzlif’fz) and o -V, € /(N; Wiv”j) (7.19)
We believe these results are consistent with the work of Lions/Le-Bris [19] on deter-

ministic parabolic equations with rough diffusion coefficients. There should also be
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a connection with the more recent work of Bailleul/Gubinelli [8]. In the case that
f €L (Qx[0,T] x R*?), the conditions (7.19) become precisely the assumptions
(H3) and (H4) on the noise coefficients.

Section 7.4 concerns the subtle regularizing effects for stochastic kinetic equa-
tions. These are captured by studying the velocity averages of the solution, and
have a long history in the deterministic literature [18, 66, 67, 73] as well as several
more recent results in the SPDE literature [32, 61, 87]. Since equation (7.17) is of
transport type, without more information on ¢, one does not expect to obtain any
further regularity on the solution f than is present in the initial data f,. However,
in view of the deterministic theory it is natural to expect a small gain in the regu-
larity of velocity averages (f, ¢) = [p. fedv, where ¢ € C>®(R%) is a test function in
velocity only. Using a Fourier method of Bouchut/Desvillette [18], we prove that if
f is a weak martingale solution to (7.17) and f, g € L*(Q x [0, T] x R?*?), then (f, ®)

enjoys the following regularity estimate,

Bl )2, a0, < Coo (1ol +EISIZ +Elgl2; ).

Combining this with a standard control on oscillations in time, one expects to obtain
a form of strong compactness on the velocity averages. To formulate this directly
in terms of f rather than its velocity averages, we introduce a topological vector

space Ly (M

+) consisting of the space of L}, functions taking values in the space

of Radon measures M?* on R¢ endowed with it’s weak-x topology. The topology is

designed so that sequential convergence in L}, (M) corresponds exactly to strong

(2

LY, convergence of each sequence of velocity averages. We prove a characterization
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of compact sets in Lf ,(M}) in the appendix. Using the regularity gain in L?, we

exhibit a sufficient criterion for a sequence { f,, }nen of weak martingale solutions to a
stochastic kinetic equation driven by {g, }nen to induce tight laws on [L7 ,(M})]ioc-
However, for applications to Boltzmann, one is mostly interested in the case where
{gn}nen is only known to be uniformly bounded in L'(€2 x [0, T] x R??), due to the
very limited control provided by the a priori bounds on the renormalized collision
operator f — I"(f)B(f, f). The criteria for tightness in L; ,(M) is the main result
of Section 7.4. As in the deterministic setting (see [66, 67]), there is no easily
quantifiable regularity gain for f, g € L'(Q x [0, T] x R??), making the analysis more
involved. At present, we can only treat well-prepared sequences of approximations
for which the solution f,, and the source g, are somewhat better behaved for fixed
n € N. This is captured by Hypothesis 7.4.1.

At this point in the article, we have completed our analysis of the linear
problem and proceed to apply our results from Section 3 — 4 in the context of (SB).

This begins in Section 5 with a construction of a sequence of approximations { f, }nen

satisfying a stochastic transport equation driven by a truncated collision operator

(L+n=1(f 1)

This truncation was introduced in [36] to make B,(f, f) Lipschitz in L}, while

t,x,v
preserving it’s conservation properties. After smoothing the noise coefficients and
activating only finitely many Brownian motions, we obtain existence by way of the

stochastic flow representation of Kunita [80], in combination with a fixed point

argument. The main subtleties in comparison to the deterministic theory are due
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to the fact that the flow map is not explicit. To obtain the a priori bounds
SupBJ[(1+ [ + [of? + [log fu) fullo sy < Cpe spEIDA(FIL, <G,

we require asymptotic growth estimates for the stochastic flow and a stopping time
argument. A similar difficulty arises in the work of Hofmanova [93]. An additional
difference with the deterministic theory is that we do not prove that our approxi-
mations are of Schwartz class in position and velocity. Instead, we use our renor-
malization lemma to establish the moment and entropy identities used in Section
7.2.

Let us now discuss the main features of the existence proof for Theorem 7.1.7
and some of the main difficulties. The main goal in sections 6 — 8 is to extract an ap-
propriate limit point f on a well prepared stochastic basis (2, F, P, (F:)Z,, { Br tren)
and verify that f is indeed a renormalized martingale solution to (SB). This requires
a somewhat involved combination of the renormalization and stochastic velocity av-
eraging lemmas together with the general line of arguments introduced by DiPerna
and Lions [36] and a later work of Lions [86]. The argument requires a careful inter-
pretation in the stochastic framework. We study the laws of the sequence { fn}neN
and use the velocity averaging and renormalization lemmas to show they are tight on
L} (M) NCy([L}]w). A generalization of the Skorohod theorem due to Jakubowski
[74] and Vaart/Wellner [116] gives a candidate limit f, which we endeavor to show
is a renormalized martingale solution to (SB). The Skorohod theorem allows one
to gain compactness of the nonlinear drift terms at the expense of the noise terms.

Indeed, additional oscillations are introduced in the noise terms after switching
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probability spaces as div, (o} fnﬁk) is replaced by div, (o} fnﬁﬁ), at which point we
are setup to apply our weak stability result. However, this is done in a somewhat
indirect way.

The procedure of identifying f with a solution of (RSB) requires two concep-
tually different steps. First, in Section 6 we fix a bounded renormalization I',,, which
converges to the identity as m — oo. With m fixed, we check the criterion necessary
to apply our weak stability result to the sequence {I',,(f)}nen. This sequence is
also shown to induce tight laws on L} ,(M})NCy([Ly]w). The stability result implies
its limit point I, is a solution to a stochastic kinetic equation with a driver B,,.
To show this requires analysis of the laws induced by the sequence of renormalized
collision operators {I" (f.)Bn(fn, fr) fnen-

At this stage, we do not yet have any sort of closed evolution equation for

[,.(f). Indeed, it is unclear the relation between I, and B,,. Hence, our next step

is to pass m — oo and hope to obtain a closed evolution equation in the limit. As

a result of the initial renormalization procedure I',,(f) converges strongly to f in
Ly (L;ﬂ)), P almost surely. Unfortunately, as m — oo one does not have any good
control on {B,, }men in any space of distributions (only in the topology of measurable

functions, which does not play well with the weak form). On the other hand, we do

have control of {(1+T,,(f)) B tmen. Hence, the strategy is to renormalize again,
this time with log(1 + z), and apply again our stability result in the limit m — oo.
Section 7.7 is dedicated to analysis of the renormalized collision operator B,,.

As in the deterministic setting, we are able to obtain a pointwise (in 2) continuity
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result

Bu(fufn) | B S)
1+ (fa, 1)  1+(f,1)

Ly o(M;),

as a consequence of the velocity averaging lemmas. Following the strategy in [86]

and [65], we are able to conclude that

B BUD 5 izt ),

14+ Tn(f) 1+ f

allowing us to apply again the stability result.

We are then able to deduce that log(1+ f) is a solution to a stochastic kinetic
equation driven by (1 + f)"'B(f, f). Roughly speaking, the final step is verify the
renormalized form of (SB) with an arbitrary renormalization. Since log(1 + f) €
L>*~(Q x [0,T] x R?¥), the conditions on the noise coefficients (H3) and (H4) are
exactly such that the renormalization Lemma 7.3.8 applies. This completes the

proof.

Preliminaries

Notation

To simplify the appearance of the function spaces used in this paper, we will use
anumber of abbreviations. The notation L{(LE ,) denotes the space L2([0, T]; L?(R*?)),

and L?

L2 18 short for L2([0,T] x R*?), with similar notation for Sobolev spaces. A

Banach space B endowed with its weak topology is denoted [B],,, and the space of
weakly continuous functions from [0,7] to B will be written as Cy([B],). Finally,

[L} 2 o]10c denotes the space of locally integrable functions endowed with the natural
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topology of locally convex seminorms.

For a given probability space (€2, F,P) and a Banach space B, we will denote
by LP(§2; B) the measurable maps (random variables) from F to the Borel sigma
algebra on B with p'* integrable norm. The space L>~(Q; B) consists of random

variables belonging to LP(£2; B) for all p € [1, 00).

Basic properties of the collision operator

In this section, we recall some basic properties of the collision operator f —
B(f, f) (defined in (7.3)) which will be used throughout the article. A more in-depth
discussion can be found in [36]. To begin, we note that the collision operator may

be split into gain and loss terms

B(fvf):B+(fvf)_B_<f7f)a
with
BY(f.f) ://Rd s f (v — v, 0)dodv,, B (f, f) = fb= f),

and b defined by
b(z) :/ b(z,0)do.
§d-1
The following inequality due to Arkeryd [4] relates the positive and negative parts

of the collision operator through the entropy dissipation. Namely, for K > 1 and

f € Ll it holds

B (1. £)0) < KB (£.1)(0) + P (0) (720
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where D°(f) is defined by

1
D(f) =5 //Rdxsm d(f)b(v — vy, 0)dodv,.

Note that the quantity D°(f) is not the entropy dissipation D(f) as defined in (7.8),

but is instead related to D(f) by an integration in v,

D(f)= | D(f)dv.

R4

Formal a priori estimates

In this section, we will derive formal a priori estimates on the stochastic Boltz-
mann equation (SB) with {0y }ren satisfying (H1) and (H2) and initial data f; sat-
isfying

(1 + [of? + o] + [1og fo oll5, . < oo
Specifically we will see that under these assumptions, there exists a positive constant

C = Cpom.ty, depending on p, {og bren, T, and fo such that
EN(1+ fof? + ol + | 1og Dy, < C
In addition the entropy dissipation D(f) satisfies
E[D(NI;, <C. (7.21)

These a priori estimates are completely natural in the context of the deter-
ministic Boltzmann equation and correspond to the physical assumptions of finite
mass, momentum, energy, entropy, and entropy production (see for instance [24] or
[65]).
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Throughout the argument C' will denote a positive, finite constant that de-
pends on p, {0} }ren, T and fo. It may change from line to line, and even within a

line.

Moment Bound

We begin by showing that
E[[(L+ |2* + ) f e ry ) < C (7.22)

for p > 2. To this end, we multiply the Boltzmann equation by (1 + |z|> + |[v|*) in

It6 form and integrate over [0,¢] x R% x R? to obtain

1] et e [ i
///RMZI%\ fs dzduds

keN

+ /Ot //de (Z(ak - Vo) +x> v fs drdods
keN
+ kEZN/Ot </]R?dU o [ dxdv)dﬁk(s).

Applying Cauchy-Schwartz to the time integral the following estimate readily fol-

(7.23)

lows,

| /ot //R (%W Voor) + 2) v, dedods|

t
< Cllo - Vool przse, / I+ 2 + o) £l ds
’ 0

and similarly

t p t
[ P sededuas| < ¢ [ slaf + o)L, s (729)
0 JR pen 0 ’
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For the stochastic integral term in (7.23), the BDG (Burkholder-Davis-Gundy) in-

equality yields

sup /O ' ( /R _wvoif, dvdx)dﬁk(s)

rel0,t] keN

E

’ < E(/Otz </R?d s fs dvdx>2ds)p/z.

keN

Therefore, after another application of Cauchy-Schwartz to the time integral, we

conclude

p

E

sup Z /Or (/RM v o fs dvd:c)dﬁk(s)

rel0,t] LEN
7.26
t (7.26)
< Cllolfguaz, | BN+ ol + o)Ly 0o

We may now combine estimates (7.24), (7.25) and (7.26) with (7.23) to obtain

P t P
E( sup !I(1+\xl2+|v!2)frHL;,u) <cic | E( sup u<1+rx\2+rv12>frm,v) ds.
0

r€[0,t] relo, s

Whereby Gronwall’s Lemma gives (7.22).

Entropy Bound

Next, we show that
E| flog f Hp;’O(L}C}v) <C.

This estimate, as in the deterministic case, is comprised of two parts, control of the
entropy flog f from above by the entropy dissipation (7.7) and control of flog f
from below using estimates (7.22) and a Maxwellian. Specifically, integrating the
entropy dissipation law (7.7) in [0, ] x R¢ gives the P almost sure identity, for each

t €10,7],

t
filog fidvdx = / folog fodvdx — / D(fs)dzds, (7.27)
R2d 0 R4

R2d
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and since D(f) > 0, this yields the classical entropy inequality,

filog fidvdx < folog fodvdz.

R2d R2d
Using this and standard estimates from kinetic theory (see [24]), we obtain P almost
surely

/ fillog fi|dvdx < / filog fidaxdv + 2/ (|2> + [v]?) frdvda
R2d R2d R2d

L ol08E [ L) gy ds
e R2d

< |l folog follzs, + CII(L + |=* + [0*) fell e , + C.
Applying the previous estimate on (1 + |z|? 4 |[v]?)f to the above inequality gives

the desired estimate of flog f.

Dissipation Bound

Finally with regard to the entropy dissipation estimate (7.21), observe that

equation (7.27) also implies the P almost sure bound

1D, < I1flog Iz + I folos ol

t,x,v

from which the estimate (7.21) clearly follows.

Stochastic Kinetic Transport Equations

In this section, we assume that a probability space (£, F,P) is given, to-
gether with a deterministic initial condition fo € Lj, and a random variable
g € L'(; L;,,,). Moreover, we have a collection of noise coefficients {0y }ren satis-

fying the coloring Hypothesis 7.1.2. We analyze properties of solutions to stochastic
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kinetic equations of the type

atf +v- V:z:f + din(fO'k °© ﬁk> =9
(7.28)

f ’t:OZ f07

where solutions are understood in the weak martingale sense, given precisely in

Definition 7.3.1 below.

Weak martingale solutions

Definition 7.3.1 (Weak Martingale Solution). A process f : [0,T] x @ — L, is
a weak martingale solution of the stochastic kinetic transport equation driven by g

with initial data fy, provided the following is true:

1. For all € O%(R??), the process (f,) : Q x [0,T] — R admits P a.s.

continuous sample paths. Moreover, f belongs to L*(Q; L*(L, ).

2. There exists a collection of Brownian motions {3 }ren and a filtration (F;)L,
where the filtration (F;)/_, is generated by the [L; ], valued processes (fi){Z,

(fot gsds)L_, and each Brownian motion (B (t))L,.

3. For all test functions ¢ € C°(R??), the process (M;(¢))L, defined by

t
M) = [[ gotsdo- [ fuptsdo- [ [[ 0.0t Lag)rgpdududs
R2d R2d 0 R2d
(7.29)

is an (F;)]_, martingale. Moreover, its quadratic variation and cross variation
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with respect to each fj are given by:

e =Y [ ([

2d
keN R

(M(p), Br), = /o /RH fsor - Vypdrduds.

2
fson - vapdacdv) ds.

Remark 7.3.2. Note that if f is a martingale solution to a stochastic kinetic equation
driven by g and starting from fj relative to the stochastic basis (Q, F, P, (F) o, { Bk }ren),

then for all ¢ € [0, T] the following identity holds P almost surely

¢
/ frodzdy = / fopdxdv + / // [fs(v-Vi+ L)+ gsp|drduds
RZd de 0 ]R2d
¢
+ Z/ / fsor - VypdadodBi(s).
0 R2d

keN

(7.30)

This is guaranteed by Lemma B.1.13 of the appendix.

The following existence result may be proved with a small modification to the
arguments given in [53] (which use a strategy developed already in the Ph.D thesis

of E. Pardoux [104]).

Theorem 7.3.3 (Existence). Let {Bx}ren be a given collection of (F)L, Brownian
motions. Assume that g € L>(Q;L;,, N Ly, ,), and (fot gsds), is an (F)L,
adapted process. Then there exists a weak martingale solution f (relative to the

given stochastic basis) to the stochastic kinetic equation driven by g with initial data

fo. Moreover, we have the following estimate for every p € [1,00),

BIfI, S Iolly, +Elglt,

The next result is a time regularity estimate.

186



Lemma 7.3.4. Let q € (2,00] and assume f € L™ (Q; L{(L,,)) is a weak martin-
gale solution to the stochastic kinetic transport equation driven by g € L~ (Q; L{(L, ,))
with with initial data fo € L},. Then for any test function o € CZ(R*) and

pE ((i_q27 o0), we have the following estimate

BN, )y < Coo (B gqry s+ Ellgls ),

Proof. Consider two times t,s € Ry, t # s. Writing (7.11) in It6 form, we can

conclude that the difference (f; — fs, @) satisfies

ft—fs,90>:/://Rd(v-Vgo+£g<,0)fd:1:dvdr+/://ngogdasdvds

Y / / . fori - Vg dadv ) diy(r)

keN

We would like to estimate E|(f; — fs, ¢)|P. To this end, since v - Vo + L,¢ € LY,

we have the estimate

’/ //d VSD-I—CUQO)fd:EdUdT‘ <C¢>a|t_3|p )HfHLq L
]RQ

and similarly

< Clt = s glI%,

‘ / ©g dxdvds

By the BDG inequality we may estimate the martingale term by

2 p/2
EY / / for - wdxdv) dBu(r " E< / fop- Vgodxdv) dr)
s R2d s LEN RQd

keN
501~
§C<p,0|t_3|2 EHfHLq(Ll

(Lo

Combining these estimates gives

BI{fi—fo @) < Coolt—sP" S (It=s[% (BIf g g +Ellglnry )N W ).
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We now estimate the regularity of (f,¢) via the Sobolev-Slobodeckij semi-norm
[-]Wt%p. For

p+1=p(5— ;) we find

r TEKf _fs,§0>|p
E[(f, @]ﬁfrp = /0 /0 t dsdt < C, <E”f‘|p;>°(L;-,v) + HQHP?(L}D,J)'

|t — s|vPptl

]

Stability of weak martingale solutions

In this section, we establish our main stability result for sequences of weak
martingale solutions to stochastic kinetic equations. The result below will be used

repeatedly throughout the article.

Proposition 7.3.5. Let f : Q x [0,T] — L}, be a stochastic process and { S} ren
be a collection of Brownian motions. Assume there exists a sequence of processes

{fn}nen with the following properties.

1. For each n € N there exist g, f°, and o, such that f, is a weak martin-

gale solution to a stochastic kinetic equation driven by g, with initial data

0
ns

(Q7 ‘F’ P7 (]:tn>tT:O’ {ﬁg}kGN)

relative to the noise coefficients 0™ = {0} bren and the stochastic basis

2. The sequences { fn}nen and {gn}nen are bounded in L*(Q; L°(L} ) and L*(Q; Ly, )

t,x,v

respectively. Moreover, for each o € C°(R??),

(faso) = (f,0) in L*(Q;C), (7.31)

188



and for each t € [0,T],

t

</0t onls)ds. o) = </0 gls)ds. o) in LH(Q). (7.32)

3. As n — 00, the following convergences hold:

{8t ken = {Brteen in L (Q;[C]>).
o= f° in L,
o" = o in C(N;LY,).
0" Vo' =0V in (N;LY).
Under these hypotheses, we may deduce that [ is a weak martingale solution driven
by g and starting from fqy, relative to the noise coefficients o and the Brownian

motions { P} ken-

Moreover, if (Q,F, P, (FM),, {82 ren) is independent of n € N, then f can

be built with respect to the same stochastic basis.

Proof. Define a collection of topological spaces (Ey){_y by E, = C([0,];[LL ]2) x
C[0,t]>*. Let r, : Er — E; be the corresponding restriction operators. Next de-
fine the L}, valued processes (Gy){_, and (G}'){_, to be the running time integrals
(starting from 0) of g and g,,, respectively. Use these to define the E7 valued random
variables X = (f, G, {8 }ren) and X, = (fon, G, {8} }ren)-

We will verify that f is a weak martingale solution relative to the filtration
(Fi)L, given by F; = o(r;X). With this filtration, Part 1 of Definition 7.3.1 cer-
tainly holds. Part 2 is true by assumption. Hence, if suffices to verify Part 3. Let
¢ € C>*(R??) and define the continuous process (M;(¢))L, by (7.29). Let s < t be
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two times and suppose that v € Cy(Fg; R). It suffices to show

E(7(rX) (Mi(¢) = Mi()) ) =0, (7.33)

E(’Y('f’sx)(Mt(W)Q - Ms(¢)2)> = Z E(”y(rsX) /: </de fop - prdxdv) 2((77?%4)

keN
E(”Y(TSX)<Mt(SD)5k(t) - Ms(@)ﬂk(s))) = E<fy(7’sX) /st //R?d o) - vaofda:dvdr>.
(7.35)
Begin by defining the filtration (F/)L_, by the relation F* = o(r;X,). Let the
(FME, continuous martingale (M]*(¢))L, defined by (7.29), with f,, f°, and o”
replacing f, f°, and o. By the first assumption of the Proposition and Definition
7.3.1, we find that
B (7(rX) (M () = MZ()) ) =0
Passing to a subsequence if necessary, the second and third assumptions of the
Proposition imply that for each ¢ € [0, 7], the random variables {M;*(¢)}nen con-
verge to M;(p) in L?(Q2). Indeed, this hinges on the following facts. First, the
sequences {(fn(t), ) fnew and {(Gn(t), ) fnew converge to (f (1), ) and (G(t), ¢) in
L?(9). Second, the sequence {Lyn¢}nen converges to L, in L3, A similar argu-
ment shows that for each ¢ € [0,7], the random variables {7v(r;X,)}nen converge
to y(r:X) in L>~(Q2). To treat the sequence {G"},cn, we use the fact that if a se-
quence of continuous functions converges pointwise to a continuous limit, then the

convergence is also uniform. With these remarks, we may pass n — oo and deduce

190



(7.33). Next we observe that:

E(y(rsxn)(Mf(cpf - Mg(¢)2)> _ ZE(W(ran) / t ( / [t V,Ugodxdv>2d7’>.

keN

(7.36)

Using the facts mentioned above, we deduce that for each k£ € N

lim E(fy(ran) /t (/ fnoy - vaodxdv>2d7”)
n—00 s R2d
= E(fy(rsX) /t (/RM for - vaodxdv>2dr>.

Moreover, we have the inequality

¢ 2
B(1n ) [ ([ fuoiVupado) ar) < Inllcyem Tolloz, Bl Al o7 s,

Since {0" }nen is strongly compact in €*(N; LgS,), it follows that
lim sup o2 =0.
dm s S It
Since {fy }nen is uniformly bounded in L*(Q; L7 (L} ,)), by splitting the series into

finitely many terms plus a uniformly controlled remainder, we find that:

Tim ZE / / / faol -V gpdxdv) dr)
_ZE / //R fop- chpdxdv) dr )

keN

We may now pass n — oo on both sides of (7.36) to obtain (7.34). An entirely

similar argument yields (7.35). This completes the proof. ]
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Renormalization

Formally, given a regular solution f to (7.28) and a smooth ' : R — R, Ito’s

formula implies that I'(f) satisfies

OL(f) + v VoI (f) + divy(T(f)oro B) = T'(f)g,
(7.37)

L(f)le=o =T(fo)-
However, if we only impose Hypothesis 7.1.2 on the noise coefficients, it is not
clear whether (7.37) can be justified when f is only a weak martingale solution to
(7.28). In this section, we show that if f has increased local integrability in x,v
and o has sufficient Sobolev regularity, then (7.37) holds relative to a large class
of renormalizations I". Towards this end, we introduce the notion of renormalized

martingale solution to (7.28).

Definition 7.3.6 (Renormalized Martingale Solution). Suppose that (f;), is a
weak martingale solution to the stochastic kinetic equation driven by ¢g with initial
data fy and with with respect to the stochastic basis (2, F, P, (F;),, {8 }ren)-
We say that (f;)Z, is a renormalized weak martingale solution provided that for
all renormalizations I' € C?(R) with sup,.x(|]I"(2)] + [I”'(2)|) < oo and I'(0) = 0,
the process (I'(f):)L, is weak martingale solution to the stochastic kinetic equation
driven by I"(f)g with initial data I'(fy), and with respect to the same stochastic

basis (2, F, P, (F) 1y, { B }ren)-

Remark 7.3.7. 1t is important to note the assumptions on I' ensure that a renormal-

ized martingale solution is consistent with the notion of weak martingale solution
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given in Definition 7.3.1. Specifically, the assumptions sup, |I'(2)] < oo and
I'(0) = 0 given in definition 7.3.6 imply that I'(z) < C|z|. This means that when
fe L L(L,)), sois I(f). Likewise we see that I'(fy) € L, , when f; is and

T,V

I'(f)g € L*(Q; L}, ,) when g is.

t,x,v
Proposition 7.3.8. Let f be a weak martingale solution to the stochastic kinetic
equation driven by g with initial data fy. Assume that f € LP(Q x [0,T] x R??) for
172717
some p € [2,00). If the noise coefficients satisfy o € (*(N;W,2™*) and o - V,0 €

17L . . . .
C(N; Wob™), then f is also a renormalized weak martingale solution.

Proof. Let I satisfy the assumptions of definition 7.3.6 , then our goal is to estab-
lish that I'(f) is a weak martingale solution driven by I"(f)g starting from I'(fy).
Towards this end, let 1 be a standard symmetric mollifier with support contained in
the unit ball on RE x RY with [g,q n(2, v)dadv = 1. Set n.(z,v) = e *n(e 'z, e 'v)
and denote by fi. =n. * f; = (fi)e the mollified process.

Let ¢ € C°(R??). The main step in this proof will be to establish that for all

t € 10,71, the following identity holds P almost surely:

//R2d I'(fi.e)pdadv = //de T (fo.)pdady

+ /0 / /R P Vot Lo)o + @I (fuc)gs.Jdwdvds  (7.38)

+ ;/0 //R?d F(fs,e)(fk; . VUQdedvdﬁk(S) +Rf(t)7

for a process (R¢(t))L, such that for each ¢ € [0, 7],
R?(t) — 0 in probability as e — 0. (7.39)

Assuming we can verify (7.38) and (7.39), let us complete the proof. Using standard
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properties of mollifiers, for almost every (w,t, z,v) € Q x [0,T] x R*@ one has

L(fe) = T(f)
['(fo.e) = T'(fo),

and furthermore, using the boundedness of I'(z) and I'(z), for each compact set

K C R?? one has
L(f)—=T(f) in L*(Qx][0,T] x K),
'(f)ge = T'(f)g in L' (Qx[0,T] x K).
Using the convergence properties above along with the Ito isometry and the con-

vergence of R¥ to 0, we may pass the € — 0 limit in each term of (7.38), where the

convergence holds in L'(Q x [0,T]). We conclude that T'(f) solves

/ /R T(fpdrdn = / /R (g

! /ot //R C(f)(w - Vit Lo)e + oI () gl dwduds
i i /0 | / /R _ T(fo)or - Vopdadudfi(s),

thereby completing the proof.
It now remains to verify identity (7.38) along with the vanishing of the remain-
der (7.39). We begin by considering the equation (7.30). We fix z = (z,v) € R*
and choose p(w) = n.(z—w). This is equivalent to mollifying both sides of equation,
giving
fre(2) = foo(2) + /Ot[(—v Vaf)e(2) + (Lo f)e(2) + gs.e(2)]ds

- / (Uk : vas)e(z)dﬁk(s)

keN Y0
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For each z € R??, we may renormalize by I' by applying Ito’s formula,

P(fre(2)) = T(foe(2)) +/0 ' (foe2)I(=v - Vafi)e(2) + (Lo f)e(2) + gs.e(2)]ds

+ % Z/O F”(fS,e(Z))(Uk ' vvfs)z(z)ds

keN

o Z/O F/(fS,E(Z))<O-k : V’L)fs)e(z)dﬁk(S).

keN

Naturally we can force the form of (7.38) into view by the use of the commutators,
e, v - Val(f) = (v Vaf)e —v- Vafe
e LoI(f) = (Lo f)e = Lo fe
(e 01 - Vo] (f) = (0k - Vo f)e — ok Vo fe.

Specifically, using the fact that L,T'(f) = T'(f)Lof + %(Uk Vo f)PT"(f), we find

F(ft,ﬁ) = F(fO,E) +/ [(_U -V + ﬁa)r(fS,e) + F,(fs,E)gs,E]ds
’ (7.40)

- Z/ 0k Vol (f5,e)dBi(s) + Rue
0

keN

where R, is a given by

Rt,e = A F/(fs,e)( - [nea v - Va:](fs) + [7767 L:U](fs))ds

+ 35 [ Ul 9n)E ~ (o0 Vg s

keN

-2 /0 T (fs,)[nes o3 - Vo] (f5)dBr ().

Integrating both sides of (7.40) against ¢, we obtain (7.38).

It remains to show that for each ¢t € [0, T7,
R?(t) == // @R dxdv — 0 in probability as € — 0.
R2d

This will be proved with the aid of standard commutator lemmas taken from [34].
Specifically, we use that f € LP(Q x [0,T] x R*) N LP(2 x [0, T]; L} ,,) and for each
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2p

k € N, we have 0}, € Wml,’vp_Q. It follows that for almost every (w,t) € Q x [0,T] we

have

[7767 v vm](ft) —0 i [Li,v]lom (741)
Me, 0% - Vo|(ft) = 0 in [Li,v]lom (7.42)

as well as the bound,
Ime; i - Vol (Fo)llz, < llowll o czey 1ellze,- (7.43)

In order to use the commutator results (7.41) and (7.42) to our advantage, we will
need to manipulate R;.. First we write the commutator [n., £,](f) in terms of

[Ne, ok - V] as follows:

e £)(0) = 53 (100 Fulow - Tuf))e = 01 Vulo- V)

= 23" (0w Vd(ox - Vud) + 01 Vil ox - V1(1) ).

keN

The second observation is the following equalities

%F//(fs)[(o-k : va)? - (07‘3 ’ vag)Q]

= e ok VD (06 - Vuf)e + 0k V1)

2
= ST ([ D) + T Flnsn - V(o Vo,
= ST e T =T (o Tl V1)

+ ok Vo (I'(f) e, 1 - V| ()

Adding the two identities above and introducing the double commutator [[7}67 O -

Vol, 0 - Vv} defined by

[[7767 Ok - Vv]u Ok - Vv} (f) = [7767 Ok - Vv](ak : va) — Ok - Vv[% Ok - vv](f)v
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we conclude that

D L) + 3 5T (0w - V)2 — (o0 T f))

keN

=3 (o0 Ve (P VI + 5T (e 06 921(5))’

keN

- %F’(fe) [Ine: 04 Vil.ow- V. (1)),

The process R, is therefore given by

Ry = _/0 F/(fs,e)[nea v+ Vo] (fs)ds + Z/{; Ok Vi (F,(fe)[nea o - Vo] (fs)) ds

keN

+32 [ T (eon Dud(5) s

keN

+ % Z/ F/(fS,e) Hm, Ok - vv]7 Ok - V’U} (fs)ds

keN YO

2 / U (foe) e ok - Vo) (fo)dB(s)-

keN Y0

Integrating R;. against ¢ to obtain R?(t), it is now possible to use the conver-
gences (7.41), (7.42), the uniform bound (7.43), and our assumptions on the noise
coefficients to show that each term in R?(¢) involving the single commutators,
[Ne, v -V ](f) and [ne, oy - V,](f), converges to 0 in probability for each ¢ € [0, T].

It remains to estimate the double commutator term

=53 [ [[eralbeo Vo V) )dsduds.

keN

We will prove that for each t € [0,7T], I; — 0 in probability.
In what follows, to simplify notation, we will denote both z = (z,v) and
w = (y,u) the phase space (position-velocity) coordinates in R?¢ wherever possible,

and define the translation operator

0w f(2) = f(z +w) = f(2).
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We will need to evaluate the double-commutator explicitly. This will be done piece

by piece. For the first piece, since div, o = 0, integrating by parts gives

e, o1 Vol (0n - Vo f)(2) = [ Vine(z —w) : ox(w) & [on(w) — ox(2)] fe(w) dw

R2d

= [ Vune(z —w) - (o(w) - Vyor(w)) fi(w) dw,

R2d

and similarly, for the second piece, we have

or - Volie, or - Vo (f)(2) = [ Vin(z —w) « [ox(w) — 0k(2)] ® 0k (2) fr(w) dw

R2d

- vvne(z - w) : (Jk(z) ' vvgk(z)) ft(w) dw.

R2d

Note that the operation f — [[775, 01V, Jk-VU} (f) vanishes on constant functions.
Hence, in both identities above we may freely replace f(w) by f(w)—f(z). Therefore,
using the symmetry of V27, and changing variables w — w + z, we conclude that

the double commutator can be written in the following form

(e, 01 Vol o - Vo] (f)(2) = | Vine(w) 1 (0u0k(2) ® 600k (2))dufi(2) dw

R2d

+ /R2d ane(w) . 6w(0'k; . vvgk)(z)(swft(z) dw.

Next we use the fact that for any ¢ € W7, the following inequality holds

T,

pointwise in w € R??

10wglzy, < [w[|Vglrs - (7.44)

T, v

Using Holder’s inequality, the estimate (7.44), and the fact that |V2n.(w)||w|? and

v

|Vone(w)| |w]| are uniformly bounded in L}, we may estimate I, for each ¢ € [0, T

and w € €,

2
T < Colol?, ey 0l e Iz, 509 160 e

2 h) |w|<e by

sWx,v
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Since f € LP([0,T] x R??) with probability one,

sup |[0w fl[r  — 0, P almost surely.

|w|<e
The proof of the Proposition is now complete since this implies I, . — 0 in probability
for each ¢ € [0, 7.

]

This section is now completed by checking that renormalized, weak martingale
solutions to (7.28) with additional integrability have strongly continuous sample
paths. The following lemma will be crucial for ultimately deducing strong continuity

properties of the solution to the stochastic Boltzmann equation.

Lemma 7.3.9 (Strong Continuity). Let f be a renormalized weak martingale solu-
tion to the stochastic kinetic equation driven by g with initial data fo. If f belongs to
Le(LE ) with probability one for some p € (1,00), then f € Cy(L1,,) with probability

one for any q € (1,p).

Proof. We begin by remarking that f € Cy([L% ].,) with probability one. Indeed, let
© € C(R??). Tt follows directly from inspection of the weak form and elementary
properties of stochastic integrals that the process t — (fi, ¢) has continuous sample
paths. Moreover, since f belongs to Ly°(L? ) with probability one, it follows that
f € Ci([L%,]) with probability one.

The next step is to upgrade to continuity with values in L%, with the strong
topology. Towards this end, let ¢ : R — R be defined by ¢)(x) = |x|?. We may choose

a sequence of smooth, truncations of 1, denoted {1y }ren that satisfy the conditions
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on the renormalizations in Definition 7.3.6 such that 1, converge pointwise in R to
¥ as k — oo. Moreover, these truncations can be chosen so that when |z| < k,
Ur(x) = Y¥(x), and when || > k, 0 < ¢(x) < ¢(x). Applying Proposition 7.3.8,
and using the fact that, with probability one, ¢ (f) is in L{°(L} ) and ¢5,(f)g is in

Ll

t,x, v

we find that, for all £ € [0, 7], we have the P- a.s. identity,

[ow(f)llea, = llk(fo)llze, —I—/O /RM U (fs)gsdrduds.

In particular, this implies that ¢ — ||k (fe)]| 11, has continuous sample paths with
probability one. Since weak martingale solutions are in Cy([L} ,].,) with probability
one, then by interpolation, f is in Cy([LZ,],) with probability one, and therefore
for each ¢ € [0, 77, [[¢(fi)llz1, is defined P- a.s.

Next, we claim that, P almost surely,

[0e (O, = 1o()ey,  in L7([0,T]),

whereby we may conclude that ¢ — || fi[[,s, has continuous sample paths with

probability one. Indeed, we find

20 10D las, = WaPllas. | < W) = aDllian < WDl
1-p/q
qoo P t _k
< WA ( 2p 1A 2 131)

1
<
- kp—a

p
/1] P 0 as k — oo.
Since L, is a uniformly convex space for ¢ > 1, the fact that f is in Cy([LZ]w)

with probability one, combined with the fact ¢ — | fi|[,s, has P-a.s. continuous

sample paths implies that f € C;(LZ,) with probability one. O
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Stochastic Velocity Averaging

In Section 7.5, we will construct a sequence { f, }nen of approximations to the
Boltzmann equation (SB) with stochastic transport. These will satisfy the formal
a priori bounds (7.6), uniformly in n € N enabling us to extract a weak limit f,
which will be a candidate renormalized solution to (SB). However, we need a form
of strong compactness to handle the stability of the non-linear collision operator.
In this section we investigate some subtle regularizing effects for stochastic kinetic
equations, inspired by the classical work of Golse/ Lions/ Perthame/ Sentis [67].
These will be applied in Section 6 to obtain a form of strong compactness of { f,, }nen-
In fact, we allow for a nontrivial probability of oscillations in the velocity variable,
so the strong compactness is only in space and time.

It turns out that the criteria for renormalization obtained in Section 3 plays
an important role in the proof of our stochastic velocity averaging results. As a
consequence, we are only able to establish our compactness criterion for sequences
of well-prepared approximations.

Indeed for each n € N, suppose that f, is a weak martingale solution to the
stochastic kinetic equation driven by g, and starting from f°, relative to the noise
coefficients 0™ = {0}, }ren and the stochastic basis (€2, Fr,, (F{)ecpo,r, 1685 Fren, Pr).

Then we make the following assumptions on f,,, fJ, gn, and oy,
Hypothesis 7.4.1.

1. Both f, and g, belong to L=~ (Q; L}, , N LS

t,x,v t,:c,v) :
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2. fYisin L, N LY, and {fI}nen is uniformly integrable L},

T’

3. o™ satisfies Hypothesis 7.1.6, and {o" }nen satisfies Hypothesis 7.1.2 uniformly.
Our main stochastic velocity averaging result can now be stated as follows:

Lemma 7.4.2. Let {f,}nen be a sequence of weak martingale solutions to a stochas-
tic kinetic equation satisfying Hypothesis 7.4.1 and suppose that {g, }nen s uniformly

bounded in L'(Q x [0,T] x R*?) and induces a tight family of laws on [Li , ,]woc-

1. Then for each ¢ € C®(RY), {{fn,©)}nen induces a tight family of laws on

[L%,ac]loo
2. If in addition, for each n > 0 the velocity averages {(fn, ) tnen satisfy

}%im sup P (\|<fm<ﬂ>]l|x\>R||Ltlz > 7]) =0,
—00 p ’

then for each ¢ € C*(R?), {(fn, ) }nen induces a tight family of laws on L ,.

L? Velocity Averaging

As is typical with velocity averaging lemmas in L' (see [67]), we will find it
useful first to prove an L? result. Roughly speaking, the L' case is then reduced to
showing that the part of the solution sequence violating the hypotheses of the L?

lemma has a high probability of being small in L!.

Lemma 7.4.3. Let {f,}nen be a sequence of martingale solutions to the stochas-
tic kinetic equation satisfying Hypothesis 7.4.1. If {fO}nen is bounded in wa and
{Gn}nen, {fnlnen are bounded in LP(Q x [0, T] x R*) for each p > 1, then for each
¢ € C(RY), the velocity averages {(fn, ) tnen induce tight laws on (L7 Jioc-
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In the L? setting, Fourier methods yielding explicit regularity estimates on the
velocity averages can be obtained. More explicitly, given a ¢ € C°(R%), we define

the velocity averaged process by

(f,o)(t,z) = g [t z,v)p(v) dv.

Using an extension of the method outlined in [18], the following spatial regularity

estimate on (f, ¢) can be established.

Lemma 7.4.4. Let f be a weak martingale solution to the stochastic kinetic equation
driven by g, with initial data fy relative to noise coefficients o satisfying Hypothesis

7.1.2. If f,g € L*(2 x [0,T] x R*) and fy € L2

07

then for any ¢ € C=(R%),

E[|{f, ¢>||i%(H;/6) < Coollfollzz, +EIfIZ,  +Elgl; )

The proof is technical and left to Appendix B.2. We are now equipped to

prove Lemma 7.4.3:

Proof of Lemma 7.4.3. Let ¢ € C.(R?) be arbitrary. We proceed by explicitly con-

structing sets (K)go which are compact in [L7 ]ioc such that

Jim sup P{(f,, ¢) ¢ K;} =0.

Let {¢;}52, be a dense subset of L2 and {N;}en be a positive, real-valued sequence
to be selected later. Define the sets
E,= {p < Lt2,$ : ||p||L?(H;/6) < 6}7

Fo={p€Li, : l{p ) lwpr < (EN})?},
j=1
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where p > 4 and v = . Let K, = E, N F, and observe this is a compact set in

1_1
4 p
[L?,x]loo

Applying the Chebyshev inequality followed by Lemma 7.4.4,

1 C
where C, depends on the uniform bounds for {f,}2%, {g.}2,, {f}nen, and

{o"},en. Similarly, for each j € N we may appeal to Lemma 7.3.4 to find a constant

C,, (depending on the same uniform bounds) such that

7j=1 j=1 J
Choosing N; = 2/C, , we conclude that
I, ; 1
supP{(f,.0) ¢ Ki} <5 277 = 4.

Taking ¢ — oo gives the result. O

Proof of Main lemma

In this section, we give the proof of the main result of the section, Lemma

7.4.2.

Proof of Lemma 7.4.2. Let {(Qn, Fun, (F7")ecio,r), {5k b eens Pr) }nen be the sequence
of stochastic bases corresponding to {f,}nen. Fix € > 0 and for each n € N, we
begin by decomposing f, as

fo= I3 4 £

such that f=L solves

atfngL +v-Vofs+op- vanSL OBQ = gnljg|<L; fnSL|t:0 = f,g]l\fg\gL-
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and f>1 solves

Ofl v Vool op Voot o B = guligsrs f7 im0 = fOLjpos

on the filtered probability space (2., Fy, (F7")icfo,r), Pn). Since g,1)g, < belongs

to the space L™~ (L), , N L

t,x,v t,x,v

) by Hypothesis 7.4.1, we can build the above
decomposition in the following way. First apply the existence result, Theorem 7.3.3
to obtain f=I as a solution to the equation above. Then, by linearity, the process
7Ll := f, — f=L must solve it’s corresponding equation above. Moreover, since f,
and f=L are both in L=~ (Q x [0, T] x R??), so is f>F. In view of our assumptions
on the noise coefficients made in Hypothesis 7.4.1 we may apply Proposition 7.3.8
to deduce that f>L is in fact a renormalized solution.

The strategy of the proof will be to show that the process (f=%, ¢) is tight in
n using the L? velocity averaging Lemma 7.4.3 and that the remaining processes,
f2F can be made uniformly small in n by taking L sufficiently large and therefore
appealing to Lemma B.1.4.

First we apply our L? velocity averaging lemma to {f=f},cn. Note that
{31 s01<L }nen is bounded in L2, (by interpolation) and {gn1|g, <L }nen is bounded
in L7 (Q x [0,T] x R*?). Therefore, by the estimate given in Theorem 7.3.3,
{f=L},en is also bounded in L~ (2 x [0,7] x R??). Hence we have enough to
apply Lemma 7.4.3 and conclude that (f=", ¢) induced tight laws on [L? Jioc.

Our next step is prove tightness of {(fy, ¢) fnen on [Lt{w]bC by estimating the

sequence {(f>L, o) }nen. Indeed, since

ICEE Moy, < IF5 My, Nl

t,x,v

oo
L,
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1

we only need to estimate {f7"} in L}, .

Therefore, by Lemma B.1.4, it suffices to

show that for any n > 0,
lim sup P <|]fn>L||L1 > 77) =0.
L—oco @
Since fF is renormalized, the following inequality holds P almost surely:

£ Iy

t,x,v

< fhygmscllze, + lgndigu sl (7.45)

t,x,v

Since Hypothesis 7.4.1 gives uniform integrability of {f°},cy, we may choose an

Ly > 0 such that for L > Ly,

T, v

sup || fol o>zl < n/2.
neN

Therefore by the inequality (7.45),

P (117"

t,x,v

> 1) <P (llgalig,oellz,, > n/2). (7.46)

t,x,v

Since {gn }nen induces a tight family of laws on [Ly, ,

Jw.loc, it follows from the tight-
ness criterion on [Liz’,u]w,loc given in Lemma B.1.6 the right-hand side of inequality

(7.46) vanishes as L — oo, thereby proving tightness of the laws of {(f,, ©) }nen on

[L%,LE]IOC‘

Next we show that if in addition, for every n > 0 and ¢ € C>°(R%) we have

}%im sup P (H<fn790>1|1’\>R||LtII > 7]) =0,
—00  p ’

then {(fn, ©) }nen has tight laws on L{ . To this end fix € > 0 and ¢ € C°(RY) and

use what we have just proved to produce a compact set K C [L,;l,xhoc such that

P((fn, ) ¢ K) <€
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Next for each k € N, k£ > 1 choose R}, such that

sup P (I!<fn,so>ﬂ\m|>RkHL;w > 1/k> < ek

and define the closed set Ay,

A ={f € Ll M asrilluy, < 1/k} .

It it straight forward to conclude that
K = ﬂ KN A,
k=1
is tight (in the sense of functions in [L{,]ioc) and therefore K is compact in Li,. It

follows that

P((fn,<,0> ¢ff) <SP ((far0) € K)+ > P ((farp) ¢ Ar) < 2

Approximating Scheme

There are two main goals in this section. First, for each n € N fixed we will

construct a renormalized weak martingale solution to the SPDE

Ofo + v+ Vo fu+ dive(fao o Bi) = Bu(fu, f)
(7.47)

In |t:O: J 2 )
where the initial datum f° and the noise coefficients o™ are sufficiently regular,
and B, is an approximation to B involving a truncation and a regularized collision
kernel b,,. The second goal is to rigorously establish the uniform bounds on { f,, },en
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obtained formally in Section 2. Towards this end, our regularizations are chosen to

satisfy the following hypotheses.
Hypothesis 7.5.1 (Initial Data).
1. For each n € N, f9 is smooth, non-negative and bounded from above.

2. There exists a constant C, such that for all (x,v) € R*, fO has the lower
bound

Fox,v) > Cpe ol =1,
3. Forallj €N, (1+ |z2+[v2)if° € L

T,

4. The sequence {(1 4 |z|* + [v]* + [log f)]) f)) }nen is uniformly bounded in Ly,

and { f}nen converges to fo strongly in Ly .
Hypothesis 7.5.2 (Noise Coefficients).
1. For each k,n € N, the noise coefficient of € C*(R?*%4RY) and div, o} = 0.
2. For k > n, the noise coefficient o} vanishes identically.

3. The sequences {o" }nen and {o"-V 0™ }nen converge pointwise to o and o-V 0,
are uniformly bounded in the spaces (*(N; LY,) and ('(N; LY,). Furthermore

we have
dm D loklliz, =0, lim > llok - Voi iz, =0
k=M M
Hypothesis 7.5.3 (Collision Kernel).

1. For each n € N, b, is smooth and compactly supported in R? x S
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2. The sequence {by, }nen is bounded in L>®(R? x S41) and converges strongly to

b in L'(R? x S4-1).

Following DiPerna/Lions [36], the truncated collision operator B, is defined

for f € LY(RY) by

1 ! p!
B.(f. f) = Tt o, fdo //RdXSdl(f fi— [ f)bn(v — vy, 0)dv,d6.

The following lemma provides the necessary boundedness and continuity properties
of the operator B,,. The method of proof is classical, see [36] or [24] for most of the

ideas.
Lemma 7.5.4. For each n € N, there exists a constant C,, such that

1. For all f,g € L. it holds:

v

HBn(f> f) - Bn(.gag)HL%w S Cn”f - gHLglw-

2. For all f such that (1 + |z|? + [v|?)*f € L., and k € N, it holds

T,V

1L+l + ) Ba(f, Nllzr, < Call(X 4|2+ [0) fl2s -

3. For all f € L, it holds:

T,V

1Bn(fs Fllege, < Cull fllrge,-

The strategy for solving the SPDE (7.47) involves a sequence of successive
approximations based on mild formulation of (7.47) in terms of stochastic flows.

Namely, we fix a probability space (£, F,P) and a collection of independent, one
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dimensional Brownian motions {fy}ren. The filtration generated by the Brownian
motions is denoted (F;)]_,. For each n € N, the smoothing regularizations present
in Hypothesis 7.5.2, in particular the L*° bounds on ¢" and ¢" - V,0" allow us to
apply the results of Kunita [80] to obtain a collection of stochastic flows of volume
preserving homeomorphisms {®7; },en, 0 <5 <t < T, @7 (7,v) = (7, v), associated

to the Stratonovich SDE
dX7 =Vt AVt = o(XP, V") 0 dp;.
j=1

The corresponding inverse (in (z,v)) stochastic flows will be denoted {¥7,},cn.
These objects have been studied at length by Kunita [80], so we will mostly defer to
this reference for proofs of their properties. The main fact needed for our purposes
concerns the following P almost sure growth estimates for the flow, which can be

found as exercises (Exercises 4.5.9 and 4.5.10) in Kunita [80], Chapter 4, Section 5.

Lemma 7.5.5. Let € € (0,1). For each n € N, the following limits holds P almost

surely:
. “up [25u(z.0)
(z,v)—00 {s,t€[0,T7,s<t} (1 + |fL’| + |U|)1+6 7
1 €
lim sup (1 +|o] + |v]) =0.

(z,v)—00 {s,t€[0,T7,s<t} (1 + |(I>?sl,t(w7 U)D
Our next step is to apply Lemmas 7.5.4 and 7.5.5 to establish the following

existence result.

Proposition 7.5.6. Fiz a stochastic basis (Q, F, (Fi)icp,1), {8k tren, P). For each

n € N there exists an analytically weak, stochastically strong solution to the truncated
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Boltzmann equation

atfn +v- szn + UZ : vanOBk = Bn(fn,fn)

fali=o = f3-

such that f, has the following properties:
1. fo:Qx[0,T] = Ly, is a F; progressively measurable process.
2. fa belongs to L*(Q; Cy(L} ) N L= (Q x [0,T] x R*?).
3. There exists a constant C,, such that for each t € [0,T], P almost surely

falt) = e Loy, (7.48)

4. ForalljeN, (1+ |I|2 + |U’2)jfn is i Lo (€2 Lfo(Li,v))'

5. The sequence {(1+|z|* +|v|*) fu}nen is uniformly bounded in LP(Q; L°(LL ,))

for each p € [1,00).

Proof. Begin by constructing a sequence of successive approximations { f,  txen. For

each k € N, define {f,x}ren over [0,7] by the relation

fnk(t) = fr? © ‘Ijg,t + /0 B, (fn,kfl(s)v fn,k—l(s)) © ‘I’Z,t ds, fno=0. (7.49)

Applying classical results of Kunita [80], it follows that f,, s is a stochastically strong,

classical solution to

atfn,k +v- vxfn,k + U;'l : van,k OB]’ = Bn(fn,ka fn,k)a
(7.50)

Fukli=o = fr.
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Let X7 be the Banach space of (F;)L, progressively measurable processes
f[0,T] x Q@ — L, endowed with the L*(Q;Cy(L,,)) norm. Let C, be the
constant corresponding to the continuity estimates for B, from Lemma 7.5.4. In
addition, observe that the Hypothesis div, o} = 0 implies that for every s, ¢ € [0, 77,
s < t, the flow map @, is almost surely volume preserving (see Kunita [80] Theorem
4.3.2 for more details). Taking L} , norms on both sides of (7.49), maximizing over
0,71, and using the Lipschitz continuity of B, in L, , obtained in Lemma 7.5.4, we

find

gt = fugellxr < (CaT)FIf 0 Wollxy = (CuT)* I fil2,

for each k € N. Choosing T small enough, the sequence { f,, x }ren is Cauchy in Xrp.
Applying this argument a finite number of times, we may remove the constraint
on T. Therefore, for each n € N, there exists an f,, € Xp such that {f,x}ren
converges to f, in L*(Q;Cy(L,,)). In view of Lemma 7.5.4, B, is continuous on
L*(Q; Cy(L},)). Therefore we have more then enough to pass the limit weakly in
each term of equation (7.50)

Our next step is to verify the lower bound (7.48). Let C, be a deterministic
constant to be selected. In view of (7.49) and the fact that W7, o &f, = & for

s < t, the following inequalities hold P almost surely:

_ t ot
e frpar (t) 0 BF, = fi + / e By (fuk(s), fri(s)) o f s + Cn/ e fri(s) o f (ds
0 0

t o t_
2 5 [ OB (Fuslo). usl9) 0 Udds 4 T [ O h(s) 0 B
0 0
t_
> 5+ Co = nlilis] [ € hu(s) 0 @5
0
In the last line, we used the explicit definition of the operator B, together with

212



Young’s inequality and the fact that the flow map is volume preserving. Choose
Cp > nlby| e and apply the inequality above inductively to obtain the non-negativity
of fur(t)o g4, which consequently yields the more precise bound eCnt Jngs1(t) o
®g, > fi. Passing k — oo and using the L*(€; Cy(LL,)) convergence of {fyx}ren
towards f,, we find that e f,(t) o f, > fi for all t € [0, T] with probability one.
Composing with Wg, on both sides gives the desired lower bound (7.48).

Our next step is prove that f, is in L>=(Q x [0, 7] x R??). We will do this
be first checking that the sequence {f, x}ren is uniformly (in & only) bounded in
L>(Q x [0,T] x R*). By Hypothesis 7.5.1, f2 is bounded. Taking LZ°, norms on

both sides of (7.49), then maximizing over ¢ € [0, 7] yields P almost surely

[ frkrillzge , < I fllese, + CaTll fok

t,x,v

oo
Lt,z,v7

where C), is the constant from Lemma 7.5.4. Iterating, and summing the geometric

series, we find that if T < C;!,

| frglleee < (1— CnT)_IHfS”L;?U-

t,x,v

Of course we may repeat this argument a finite number of times to remove the
restriction on 7. Taking L*°(£2) norms on both sides of the above inequality yields
the uniform bound. By weak-* L> sequential compactness of L>(2 x [0, 7] x R??),
f, belongs to L>®(Q x [0,T] x R?).

Our next goal is to establish the following uniform estimate: for all p € (1, 00)

sup Ef(1+ 2l + o) fuk e 1y < o

where C), depends only on fy and o. If the process (1 + |z|> + |v|?) f,.x Was known
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a priori to belong to L>~(Q;Cy(L,,)), we could argue exactly as in the formal
estimates Section 7.2.3.1. Since this is a priori unknown, we proceed by a stopping
time argument based on the characteristics. Define for each R > 0, the stopping
time

| @5 (2, 0)]

T =inf <t €[0,7] | sup : > R}.
R { s€[0,t],(z,v)ER2™ (1 + |$‘ + ‘U|>2

To see that this stopping time is well defined it suffices to show that the process

t ’(I)Z,t(xa U)’
> sup 5
sef0),(zv)eren (1 + 2] + |v])

(7.51)
is adapted to (F;)i>0 and has continuous sample paths. Indeed, Lemma 4.5.6 of [80]
implies that ®7,(x, v) is jointly continuous in (s, t, r,v) and therefore the suprema in
(7.51) can be taken over a countable dense subset of [0,¢] x R??, implying adapted-
ness. Furthermore, the decay estimate presented in Lemma 7.5.5 allows the supre-
mum in (z,v) to be taken over a compact set in R*. Continuity of the process
in (7.51) follows from the fact that for any jointly continuous function f(z,y),
f: X xY — R, where X and Y are two compact metric spaces, the function
g(x) = sup,cy g(x,y) is continuous.

For each t € [0,7] we now define the stopped process fr (t) = fur(t A Tj).
We will verify that for each k,n € N and R > 0, the process (1 + |z|* + [v[*)/ [ F,
belongs to the space L>~(; L°(L,)) for all j > 1. The claim will be established
by induction on k£ € N. Suppose the claim is true for step k — 1. To check k, note
that

L+ + Y SOy, < I+ 2 + 2P £ 0 Wyylny,

T
+ / ||15€[07t/\7'17{>](1 -+ |I‘|2 + |U|2)]Bn(fn,k—1<5)7 fn’k_l(S)) O \I]?:t/\T;%HL}C UdS
0 )
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Using the volume preserving property of the stochastic flow, the right-hand side

above is equal to

(14195 prp (2, 0) P) Fll s,
T .
n / | Lacioinmg (1 + 192 o (2, 0) 2V Bo (foseo1 (), faior(9)) ||, ds
0 x,v

Using the definition of the stopping time to bound the flow and the L' bound on

B, in Lemma 7.5.4, we obtain

1L+ |2 + [P £ Oy, S BN+ |2 + o) £l

0 N

+ R% /OT [Laciornray(1+ [22 + ()2 Bu(Far1(5), Farr(5) ||L3wds
S A+ TR+ [ + [0) foboille -
Taking the supremum in time, and the LP({2) norm on both sides, we may use the
inductive hypothesis to complete the inductive step. The base case is established in
the same way. Therefore (1+|z|*+[v[?)7 £, belongs to the space L>~(Q; L°(L},))
for all 7 > 1.

Now, if one follows the argument in the a priori moment bounds section 7.2.3.1,
specifically multiplying the truncated Boltzmann equation for f,fk by (1 + |z|? +
|v|?) and integrating in (x,v) so as to kill the collision operator, one may close the
estimates on (1+|z|*+[v]?) £, uniformly in & using the BDG inequality, Gronwall’s
lemma and the uniform hypothesis 7.5.1 and 7.5.2 on the initial data and noise

coefficients to find for all B > 0

EH(l + |:B|2 + |U|2)fn,k1t€[O,T/\T§]||IZI?O(L710’U) < C’p,T

It is important to note that the constant C, above does not depend on R, n or k.
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The independence of C), v from R can be readily seen from the fact that the constant
obtained in Section 7.2.3.1 depends only in an increasing way on the final time 7.
Now we wish to send R — oo on both sides of this inequality. To achieve this,

note that Lemma 7.5.5 implies that P almost surely,

sup D%, (z,v)| o
5,t€[0,T],s<t (1 +[z] +[v])? L,
Hence,
. n s @5 (, )] B
lim P(r; <7T)= lim P sup 5 >R|=0.
R—o0 R—o0 s,te[0,T],s<t (1 + |z + Jv]) L,

Therefore, it follows that 73 AT converges in probability to 7', and by the monotone

convergence theorem we deduce that for any p € [1, 00),
BJ/(1+ |2 + [oP) fusllm sy ) < Cor

Next we claim that the sequence {(1+|z|*+[v|?)7 f,x }ren is uniformly bounded
(in k) in L= (€; L°(L} ). We can estimate (14 |z[* 4 [v[*)/ £, in a similar way
to (1 + |z[> 4 [v]?) £, by multiplying the truncated Boltzmann equation for f,
by (1 + |z|* + |v[?)? and using estimate 2 in Lemma 7.5.4 to bound the collision
operator. Using the BDG inequality and Gronwall inequality one can obtain after

some tedious, though straight forward, calculations and using the uniform hypothesis

7.5.2 on the noise coefficients,
B+ af? + o) fusLictnmnrglos ) < Comll(L+ 1l + oY £212,

+ TCZ%TJL»]'EH(]‘ + |Z’|2 + ’U|2>jfn,k’—lﬂt€[0,T/\Tg} Hi?o(l‘alcv)’
where the constants C), 1, ; and C, 1 ; are independent of £ and R and depend on

the final time in an increasing way. Since we have made explicit that there is a
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multiplicative factor in the second term 7" above (coming from the time integral of
the collision operator), we find that, independently of k£ and the initial data we may
choose 1" small enough so that T'C), 1, ; < 1. This means that we may iterate the

bound above and sum the geometric series to conclude that for such 7', to conclude
EJ[(1+ 2l + o) fux Licozarglle s ) < Cons

Again, sending R — oo and using monotone convergence we conclude the uniform
in k£ estimate

El|(1+ |2 + [v*) faill 11 ) < Cping-

The restriction on 7' can be removed in the usual way by repeating the above
argument a finite number of times.

What remains is to pass the limit in k£ on these estimates to obtain the es-
timates on f, stated in the Lemma. It suffices to show that for each j > 0, and

p € [1,00),
B R Y Sl s < S BICE P 1o ey (752)

We do this by cutting off the moment function. Let Bj; be the ball of radius M > 0
in R*. Since fyr — fo in L*(Q; L°(L},))), upon choosing a further subsequence

if necessary, we have that P almost surely,
O I S P S [ A 1L P
Applying Fatou’s Lemma, gives

BI[(1+ |2* + ") falpy e rr ) < i‘égE”“ + el + [0) faslge iy )
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The inequality (7.52) is then proved by passing the limit in M on the left-hand side

by monotone convergence. [

The final step in this section is to realize the a priori estimates obtained from
the formal entropy dissipation inequality (7.7). Towards this end, define the ap-

proximate entropy dissipation f — D, (f) by the relation

D,(f) = 3(1 +a (1) ///Rd . d(f) ba(v — vy, 0) dOdov,dv,

where d(f) is defined by (7.8). Similarly, define DO(f) by

DO(f) = iu bl 1) //R Ao = v.,0)d0du.

Lemma 7.5.7. Let {f,}nen be the sequence constructed in Proposition 7.5.6. For

each p € (1,00), there exists a constant C, depending on o and fy such that

p B oo fll sy ) < O SBID(RIE, <Gy
ne ’ ne o

Proof. Begin by fixing n € N. Note that it suffices to verify identity (7.27) from the
formal a priori bounds section. For each € > 0, we define the renormalization f(z) =
xlog(x+e¢). Using Proposition 7.3.8 and the fact that f,, belongs to L>(Q x [0, T x
R??) and L?(2; Cy(LL)), it can be checked with a truncation argument that B(f,)
is a weak solution to the stochastic kinetic equation driven by BL(f.)Bn(fn, fn),
starting from SB.(f3). In particular, using the L' bounds on f™ and the fact that

B(fn: fn) € L, We can obtain the P almost sure identity

— 0 ! /
/R2d Be(fn<t))d$d’l) = /RM 5e(fn)d.’ll'd?] + /O /de Be(fn)Bn(fn, fn)dxdydg

(7.53)
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Observe that almost everywhere in  x [0, 7] x R??, as ¢ — 0 we have the convergence
Be(fu(t)) = fulog fu(t) and B(fu)Bu(fu, fu) = [1 4 10g fulBu(fus fa). Since f, is
in L>(Q x [0, 7] x R*) and in L*(Q; Cy(L,,,)), it follows that P almost surely, for

each t € [0,7]

/de Be(fu(t))dzdv — /R?d fn(t)log fn(t)dxdo.

The initial data are also handled similarly in view of Hypothesis 7.5.1. To pass the
limit in the remaining integral on the RHS of (7.53), note that |S.(z)| < (2+]log(z)|)
for € small. Hence, by the dominated convergence theorem, it suffices to show

that log f,,B,(fn, fn) belongs to L},  with probability one. By Proposition 7.5.6

t,x,v

combined with Hypothesis 7.5.1 we have

‘ 2
t

Cne_énte_‘qjg’ <fu< ||f7‘L||L°°(QX[O,T]X]R2‘i)' (754)

The second estimate on @, given in Lemma 7.5.5, implies that P almost surely we

have the bound,

sup |\I/6l7t<£l}7 U)‘
(taweo,r)xr2d (14 [z + |v])?

Combining this with the bounds in (7.54) it follows that P almost surely

|log fu(t, %, v))]
Sup 2 2)\2
(t,z,v)€[0,T] xR24 (1 + |£L’| + ’U| )

Using this, the P almost sure Ly, , estimate on log fuBn(fn, fn) now follows from
property 3 of Lemma 7.5.4 and the fact that (1 + |z|* + [v]*)*f, € L°(L;,,) with

probability one. O]
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Compactness and Preliminary Renormalization

Let { fn}neN be the sequence of renormalized weak martingale solutions to
(7.47) constructed in Proposition 7.5.6. Denote the supporting stochastic basis by
(Q, F. P, (F)y, {Br}ren). In view of Proposition 7.5.6 and Lemma 7.5.7, we have

the uniform bounds

sup E[|(1 + |2 + [v]* + [ log ful) fullf 1 ) < 00
neN (7.55)

sup B[ Dy (fu)llf, < oo

neN i
In this section, we will deduce several key tightness results and apply our main
stochastic velocity averaging Lemma 7.4.2. We will study the induced laws of the
approximations { fn}neN, the renormalized approximations {I'( fn)}neN, and renor-
malized collision operators {I"(f,)Bn(fn, fa)}nen. The precise results are stated in
Lemmas 7.6.4-7.6.8. Combining our tightness result with a recent extension of the
Skorohod Theorem B.1.2 to non-metric spaces, we will obtain our main compactness
result Proposition 7.6.1.

Towards this end, we introduce for each m € N a truncation type renormal-

ization I, defined by

T(2) (7.56)

T ltm iz

The space Ly ,(M3)

In order the apply the velocity averaging results we will find it convenient to

turn the tightness results on velocity averages of f of proved in Section 7.4 into
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tightness results for f on a particular space Lt (M) characterizing ‘convergence in
the sense of velocity averages’. To be more precise, we introduce a topological vector
space Li (M) as follows. Let M, denote the space of finite Radon measures on
R¢, which can be identified with the dual of the continuous functions Cp(R?) that
vanish at oo, and let M} be M, equipped with it’s weak star topology. Consider the
collection of equivalence classes (up to Lebesgue [0, 7] x R null sets) of measurable
maps f : [0,7] x RE — M?, where the Borel sigma algebra is taken on M?. For

each equivalence class f, and ¢ € Co(R?) we let (f, ¢) denote the pair between M,

and Cp(R?) and for each ¢ € Cy(R?), define a corresponding semi-norm v, via

volf) = I, &Mer..

We then say that f is in L} (M) provided that for all ¢ € Co(R?), v4(f) < oo.

Convergence in the space L}, (M;

*) can be thought of as strong in the variables

(t,x) and weak in the velocity variable v. The space L}, (M) can be identified
with £(Co(R?), LY,) the space of bounded linear operators from Cy(R?) to Lj,
under the topology of pointwise convergence (see Lemma B.1.9).

We will also define the space [L} (M3 )]ioc of locally integrable functions which

is the space of equivalence classes of measurable functions f : [0,7] x RY — M,

generated by the semi-norms,

vourc(f) = 10, 8 Lcllzz

for each ¢ € Cy(R?) and each compact set K C R? Again such a space has an

identification with £(Co(R?), [L} ,J10c)-
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Our main tool for obtaining compactness in the space L} (M

*) are Lemmas

B.1.10 and B.1.11, which give necessary and sufficient conditions for compactness

and tightness of measure on Lt ,(M3).

Statement of the main proposition

The main result of this section is the following compactness result.

Proposition 7.6.1. There exists a new probability space (2, F,P) and a sequence

of maps {fn}neN from Q to Q with the following properties:
1. For eachn € N, the map T,, is measurable from (Q, F) to (Q, F) and (Tn)#P =
P.
2. The new sequence { fn}nen defined by f, = anTn satisfies the uniform bounds

(7.55) with E replacing E. Moreover, for all w € §QQ, there exists a constant

C(w) such that
sup [|(1 + |2 [* + [v]* + [log fu(w) ) fa(@) L1,y < Cw).
ne
sup || Dn(fn)(W)llr, < Clw).
neN ’
3. The new sequence {5} }ren defined by 5y = B,’;ofn consists of one-dimensional

Brownian motions on (Q, F,P).

4. There exist random variables f and {By}ren with values in Cy([Ly,,]w) and

[C4]>° respectively, such that the following convergences hold pointwise on ):
fo= fin Ly (M) 0 C([Ly )w)-

{8 ken = {Bitken in  [Cy™.
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5. For each m € N, there exist auziliary random variables Ty, (f) and v, (f) in

Cy([L} )w) along with B;, and B}, in Ly ., and DO(f) in M4, such that the

t,x,v

following convergences hold pointwise on €):

Lon(fn) = Din(f) in Ly o(M3) 0 Cil[Ly )
Lon(fu)fo = () in Ly o (M) N Cil([Lg yJu)-

L (fa)By (fas fu) = By in (L

Dy(fa) = Df) in M;

tx,v*

Remark 7.6.2. For all n € N, f, is a weak martingale solution to the stochastic
kinetic equation driven by B,(f,, f»), starting from fy, with noise coefficients o”.
The supporting stochastic basis is given by (Q, F, P, (F")L,, {87 }ken), where the

Brownian motions are given by g} = B,’; o fn and F;' = TJ Lo F,.

Tightness of renormalized quantities

In this section, we study the compactness properties of the sequences {I'( fn)}neN
and

{I( fn)Bj{ ( o, fn)}neN, where I' is a renormalization of a particular type.

Definition 7.6.3. Let R’ denote the class of renormalizations I' € C?*(R, ), such

that I'(0) = 0 and

sup (|0(2)] + (14 2)[I(2)] + [I"(2)]) < oo.

zeR
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Lemma 7.6.4. For eachT € R', the sequences {I"(f,) B (fu, fu) tnen and {T'(f) B (fu, ) Ynen

are uniformly bounded in L~ (Q; Ll ).

t,x,v

Proof. Let us begin with an estimate for {I'(f,)B; (fn, fn) nen. Since I' € R/, the
mapping
x = (1 + x)|T"(x)| is bounded on R, Therefore, the following inequalities hold on
Q x [0, 7] x R

o (F 7y < Balfa fo)

where the convolution is only in the variable v. Recall, by Hypothesis 7.5.3, the
sequence {by }nen is uniformly bounded in L'(R%). Integrating over Q x [0, 7] x R

and applying Young’s inequality for convolutions yields for each p € [1, 00)

sup B[ (f2) B, (fas f) |17 SSHEEanHil : (7.57)
y T,V ne t,x,v

neN
Now we can estimate {I"(f,,)B; (fi, fn) }nen by applying the bound (7.20) pointwise
in 2 x [0, 7] x R*® (to the truncated collision operator B, ( fns fn) instead of B (£, 1),

then integrating in all variables to find

sup B (7)8; (o J) 5y, < sup BT (f)By (o FI2y |+ sup BIDL(FI
ST,V ne t,x,v ne t,x

neN

SsupE(full 4+ supE[Du(F)I5,
neN t,x,v neN t,x )
(7.58

where we used (7.57) in the last line. In view of inequalities (7.57) and (7.58), the

Proposition now follows from the uniform bounds (7.55). O

Lemma 7.6.5. For each T' € R/, the sequence {I"(f,)B;; (fn, fn)Inen induces tight

laws on [L{, )w.
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Proof. Effectively, we have to show that the renormalized collision sequence is

bounded, uniformly integrable, and tight in L} with uniformly high probabil-

t,x, v’
ity. Towards this end, let W(¢) = ¢|logt|. By well-known arguments (see Section
3 in [36]), there exists a constant C' depending only on I' and |||z such that the

following two inequalities hold. Regarding uniform integrability,

/OT//RM‘I’(F’<fn>35<fmfn>)dxdvds<0anHLtl ) / // ¥(fu)dodods].

(7.59)

Moreover, regarding tightness (in L;, ), for all R >0

T
/ // d1{\x|+\v\>R}F/(fn)B;(fnafn)dxdvds
0 R2
~ —_— T ~
<CllFully,, [ LppyBa@ido+ B [ [ (ol + o fododuds].
T JRd 2 0 R2d
(7.60)

Define the function A : R, — R, by

AMR) :max{sup/ Ljyjs 2ba(v)dv, R‘Q},

n

and note that, by Hypothesis 7.5.3, A(R) — 0 as R — oco. Combining (7.59) and

(7.60) with the uniform bounds on f,,

ilégE(H@/)( Fa)B, (fus f2) ) IIL%’M) < oo. (7.61)
supE(sup )™ Lty ) B s Fo) ]> < o0. (7.62)
neN R>0 z,v

To construct our compact sets, note that for all M > 0, the set

+ (s

t,x,v t,x,v

{ferinllfly 500 [NCR) o Fllg, ) < M}
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1

t.e0- Indeed, every sequence in this set is bounded, uniformly

is weakly compact in L
integrable, and tight in L , . By Chebyshev, the uniform bounds (7.61), (7.62) and

our previous Lemma 7.6.5, it follows that {I"(f,)B; (fu, fu) }nen induces tight laws

on [Li’m]w. m

Lemma 7.6.6. For each T, the sequence {I'(f)BI (f, fn) nen induces tight laws

on [Lg,av]w'

Proof. The main ingredient in the proof is a version of inequality (7.20), which we
state again in the precise form required. Specifically, for each 7 > 1 the following

inequality holds pointwise a.e in € x [0, 7] x R4,

' (f)BY (frs ) < 5T (f) By (fus f) + loingS(fn), (7.63)

where we recall that

O/ F\ _ 1 r
Dn(fn) - 1+n_1 fRd fndv /Rd dn(fn)dv*

Let € > 0. By Lemma 7.6.5, we may select a weakly compact set K in L}, such

t,x,v

that

Supf)(rl<fn)87:(fn>fn) ¢ Ke_) <

neN

DO | ™

Moreover, in view of the uniform bound on the entropy dissipation (7.55), we can

select a closed ball, By, of size M, > 0 in L} . such that

t,x,v

sup (D7) ¢ Bu) < 5.
neN

For each 57 € N, we define a set

Kj.={f € L;,, | There exists g € K_ and h € By, such that f < jg+(logj)'h}.

t,x,v
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The inequality in the definition of Kj, is understood to hold a.e. on [0,7] x R*.

Next define the set K, via

K= () Kje

JeEN

Note that if I'(f,)B;, (fn, fn) € K7 and D2(f,,) € By, then inequality (7.63) implies

that T'(f,) B, (fn, fa) € K.. It follows, by the contrapositive, that

Supf)(rl<fn)'8:(fn>fn) ¢ Ke) < SUPf)(F/<fn)B;(fn>fn) ¢ Ke_)"{'supp(Dg(fmfn) §§ BM)-

neN neN neN

Since each term above is of order €, the proof of the Lemma will be complete if

1

tew- Dy classical compactness

we verify that K. is a weakly compact subset of L

criteria, it suffices to verify the following:

T
lim sup / // 1{|$‘+|@|>R}]f|dxdvdt =0. (7.64)
R=oo ek Jo R2d

T
lim sup sup / // 1g|fldzdvdt = 0, (7.65)
0 R2d

6=0 feK. |B|<S
where in (7.65) the supremum is taken over all measurable £ C [0,7] x R* with
Lebesgue measure |E| < §. To verify (7.64) and (7.65), note that for all j > 1, by

construction of K,

T T
. M€
SW/P[/1W+Wmmmmmgjam/ﬁ[/1MMWMMM@“+1.
JefeJo TR gex: Jo J SR 0g J

and

T T

M,
sup sup/ // lg|fldzdvdt < j sup Sup/ // 1g|g|dzdodt + -
feKc |E|<é Jo R2d gek- |EI<s Jo R2d log j

1
t,x,v

First taking R — oo and using the L, , , weak compactness of K and then sending

J — oo yields (7.64) and (7.65). O
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Lemma 7.6.7. For each I' € R, the laws of {T(f,)}nen are tight on Ci([Ly p)w) N

Li o (M5).

Proof. We will check that {T'(f,)}nen induces tight laws on the space L} (M)
by first verifying the requirements of the L! velocity averaging Lemma 7.4.2 and
deducing that for each ¢ € C®(R?), {(I'(f,), ¢)}nen induces tight laws on L,
and then applying Lemma B.1.11 to conclude that {T'( fn)}neN induces tight law on
L1 (M),

Observe that for each n € N, I'( fn) is a weak martingale solution to the
stochastic kinetic equation driven by I"( fn)Bn( o, fn), starting from I'( fg), with
noise coefficients ¢”. By Proposition 7.5.6 on the approximating scheme, and the
fact that T'(z) < |z|, we can easily conclude that T'(f,) and I'(f,)Bn(fn, fn) belong

to L~ (Q; L N L&

tow N L3,,) and T(f) is in Ly, N Ly2,. Also, by assumption, {6"}en
satisfy Hypothesis 7.1.2 uniformly.

Next, since |T'(z)]| < |z|, and {f°},.en is uniformly integrable, then {T'(f%)},en
is uniformly integrable. Similarly, the uniform estimates (7.55) imply that for p €

[1,00)

s1€1pN>E~]H(1 + |z* + |U|2)F(fn)Hng(L;v) < 0. (7.66)

Also, Lemma 7.6.4 implies that {I(f,)Bn(fr, fn) }nen is uniformly bounded in L~ (€; Livs)

while Lemmas 7.6.5 and 7.6.6 imply that {I"(f,)Bn(fn, fn) }nen also induce tight laws

on [Lg o

|w- Finally, we see by Chebyshev that

N N 1 - N
BT (). ) Vol > ) S Bl ol + Dy

and therefore the right-hand side vanishes uniformly in n as R — oo. Hence, we
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meet all the requirements of Lemma 7.4.2 to conclude that {(I'(f,), ¢) }nen induces
tight laws on Ly .

To check that {['(f,)}nen induces tight laws on the space Ci([Ly y)w), by
Lemma B.1.8 it suffices to show that for each ¢ € C>°(R24), the sequence {(I'(f,), ©) bnen

induces tight laws on C|0, 7] and
sup E[|C(fa) g (21,,) < 00,
Rhm sup EHF(J;"):H"$|2+‘U|2>RHL?0(L;1¢v) = O,
—00 n
Jim_sup E(L(fo)Lirysrlle@s,) = 0.
The first two follow from (7.66), while the last follows from the fact that |I'(2)| <

C'|z| for some constant C, implies that

T L rgysr < 1 nllfsoc

and therefore

Jim sup BIL(a) Uer ol < Jim s sup Ellfulog fulleey,,) = 0

To see this, use the weak form to obtain the decomposition (I'(f,),¢) = 1™ + I™?

. 1 2 )
where the continuous processes (I;"")_, and (I;"*)L, are defined via:

=[] rumedsaos [ [[ vl Ve Longlasdias
+g;/0t //Rwr(fn)O/?-Vutpdxdvdﬁk(s).

2 :/Ot //Rd T () B (fs fo)pdaduds.

Arguing as in Lemma 7.3.4, using the uniform bounds, and a Sobolev embedding,
there exists an an a > 0 and p > 1 such that {I™'},cy is a bounded sequence in
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LP(Q; C2). Next observe that by Lemmas 7.6.5 and 7.6.6, the sequence {9,1™2},en
induces tight laws on L'[0,T] endowed with the weak topology.
Let € > 0 and let K be the closed ball of radius ! in Cf*. In addition, choose

a uniformly integrable subset of L'[0,T], denoted K2, such that

sup P(9,I%" ¢ K?) < e.

neN

Define K? to be the anti-derivatives of Kf, that is:
K2 ={feC[0,T]| f(0) =0 and there exists g € K? such that 8,f = g}.

Finally, let K. be the algebraic sum (in C[0,7]) of K} and K?. In view of our

decomposition, it follows that

sup P((P(fa), ) ¢ Ko) <supP(I™' ¢ K!) +sup P(I"* ¢ K?).

neN neN neN
Each of the probabilities above are of order €. Since, by construction, K! and K?
are compact of C[0,T] (by Arzela-Ascoli), it follows that K. is itself compact in

C'[0,T]. This completes the proof. O

Lemma 7.6.8. The sequence { f, }nen induces tight laws on the space Ci([Ly )w) N

Lj (M)

Proof. Let us begin by verifying that { fn}neN induces a tight sequence of laws on
L} .(M;). From the uniform bounds, we know that { fntnen is uniformly bounded
in L'(Q x [0,7] x R?%). By the appendix Lemma B.1.11, it suffices to check that
for each ¢ € C=(R%), the sequence {(f,, ) }nen induces a tight sequence of laws
on Ltlw. For this purpose, we will use the compactness criterion given in appendix
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Lemma B.1.4, together with Lemma 7.6.7. Indeed, recall the definition of I',,(z) in

equation (7.56), then for each m € N, we have the decomposition

<fn7 @) = (Ll fn), ) + (fo — Fm(fn)7§0>'

By Lemma 7.6.7, the sequence {(I',(fn), ©) hnen induces a tight sequence of laws on

L;w. Hence, by Lemma B.1.4, it only remains to verify that

lim sup B|[(fu = Lu(fu). @), =0.

m—0o0 neN

Towards this end, note the elementary inequality: for all R > 1 and z > 0,
R R
T(z) — 2| < —24 215 < —2z + |log R|'2|log z|.
m = m

Hence, for all m € N and R > 1, we have the inequality

_ . R _
sup B[ (fu = Tu(fu). 0}y, < - llellzer supEllfullsy

neN m t,x,v

+ og BRIl e: sup B fulog fulluy,
ne

Taking first m — oo and then R — oo gives the claim.

The next step is to check that the sequence { fn}neN induces a tight sequence
of laws on Cy([L}, ,]w). In view of the uniform bounds (7.55) and tightness criterion
on Cy([L}, ,]w) given in Lemma B.1.8, it suffices to verify that for all ¢ € C2°(R*?),
the sequence {{ fo, ©) }nen induces tight laws on the space C[0,T]. Again, for each

m € N we have the decomposition

<fn7 @) = (Lm(fn), p) + <fn - Fm(fn)>§0>’

Moreover, the sequence {(Tp(fn), @) hnen induces tight laws on C[0,7] by Lemma

7.6.7. Arguing in a similar way as above, we find that

i sup B[ (7, = T, )] = 0

m—00 neN

231



Therefore by Lemma B.1.4 {(f,, ©) }nen is tight on C[0, T7. O

Proof of Proposition 7.6.1

For each n € N, introduce random variables X,,,Y,, and Z, by setting

Xy = (14 Jaf? + o + [ log fuD fos DUL))
an = (fna {Bk}keN)
Zn = { (£ (Fo): Do B (s ). D0 (F)B (s )}

meN

The random variables X,,,Y,, and Z, induce laws defined on the spaces E, F, and

G respectively, where

E = [L} (Co(R*H)]. x Mo

F = L2 (M2) N CLL ) x (G

G = [ILL (M) N C(LE )P x (L, 2]

To be clear, we use [L}(Co(R??))]" to denote the dual of L} (Cy(R??)) endowed with
the weak star topology.

Our first observation is that the sequence {Xn}neN induces tight laws on F. For
this, we use the fact that Ly°(L; ,) embeds isometrically into the space Ly*(M.,,),

which in turn embeds isometrically into [Li(Cy(IR?*?))]" by classical duality results

1

on Lebesgue-Bochner spaces. Also, L;, ,

embeds isometrically into M,;, ,. Since

bounded sets in L°(L} ) x L}

t.00 are compact in E, the uniform bounds (7.55) and

Banach Alaoglu yield the tightness claim.
Next we observe that {?n}neN induces tight laws on F. This follows from
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Lemma 7.6.8 and classical facts about Brownian motions. Finally, by Lemmas
7.6.5, 7.6.6, and 7.6.7 it follows that the sequence {Zn}neN induces tight laws on G.
Combining these observations, we find that the sequence {(f(n, Y,, Zn)}neN induces
tight laws on £ x F' x G.

Apply the Jakubowski/Skorohod Theorem B.1.2 (working on a subsequence if
necessary) to obtain a new probability space (€2, F,P), random variables (X,Y, Z)
on E x F x G, and a sequence of maps {T},} satisfying Part 1 of Proposition 7.6.1.
First observe that the uniform bounds and the explicit representation guarantees

that X, (w) € L*(L,,) % L{,, for almost all w € @ and n € N. Thus, Part 1 now

t,x,v
yields that {f,}nen satisfies the uniform bounds (7.55) with E in place of E. This
gives the first claim in Part 2 of Proposition 7.6.1. Theorem B.1.2 also guarantees

that the sequence {X,, },en defined by X, = X,, o T,, converges pointwise on € to X

in the space E. In particular, there exists a random constant C'(w) such that
sup | (1 + |2 + [vf? + [1og fu(w)]) fu(@)llizycomayy < Clw).
ne

sup DR (f) (@) | Mo < Clw).

Using again the isometric embedding of L{°(L} ) into [L{ (Co(R*?))) and L;, , into

t,x,v

Mz, together with the fact that X, (w) € L*(L,,) % Ly

t,xz,v)

this completes the
proof of Part 2. To obtain the remaining parts of Proposition 7.6.1, let D be the

second component of X, and denote

Y = (fa {5k}keN) .

7 = {(T(f), 'ym(f),BrZ’B;L)}mEN'

Part 3 follows easily from Part 1 and the martingale representation theorem. Part 4
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follows from the pointwise convergence of {Y,, },en towards Y in the space F'. Part
5 follows from the pointwise convergence of {Z, },en towards Z and { X, },en to X.

This completes the proof of Proposition 7.6.1.

Preliminary identification

As our first application of Proposition 7.6.1, we send n — oo, but the limit
passage is in a preliminary sense. Namely, we do not yet obtain the renormalized

form for f, but we obtain a stochastic kinetic equation for a strong approximation

[ (f). In fact, using Proposition 7.6.1, we will prove:

Corollary 7.6.9. For all m € N, the process I'y,,(f) is a renormalized weak mar-

tingale solution to the stochastic kinetic equation driven by B, — B, , starting from

m’

L (fo), with noise coefficients o = {oy}ren. Moreover, P almost surely, T, (f)

00
t,x,v

belongs to L and has strongly continuous sample paths in C’t(Lglw).

Proof. Fix an m € N. First, using the uniform bounds and the convergence results
obtained in Proposition 7.6.1, we verify the hypotheses of the stability result for
martingale solutions of stochastic kinetic equations, Proposition 7.3.5. Namely, we

will analyze the sequence {I';,,(f,) }nen. Once we verify Parts 1 — 3 of Proposition

7.3.5, we may conclude that the process I',,,(f) is a weak martingale solution to the

stochastic kinetic equation driven by B! — B,

—, starting from I',,(fy), with noise

coefficients 0 = {0} ren. The next step will be to show that the solution is actually
a renormalized weak martingale solution, applying the renormalization Proposition

7.3.8. Finally we will show strong continuity by applying Lemma 7.3.9 on our
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renormalized weak martingale solution.

To verify Part 1 of Proposition 7.3.5, let us first check that the process
[ (fn) is a weak martingale solution to the stochastic kinetic equation driven by
L7 (fu)Bulfns fr), starting from T, (f2), relative to the noise coefficients o™ and the
Brownian motions {f}' }xen obtained in 7.6.1. Indeed, { fn}neN is a renormalized
weak martingale solution to the stochastic kinetic equation driven by B, ( fn, fn),
starting from f2, relative to the noise coefficients o™ and the Brownian motions
{B,ﬁ}keN. The claim can now be checked by using the explicit expression for { f,, }nen
and {0} }ren in terms of the maps {Tn}neN together with the fact that I, € R’.

To verify Part 2 of Proposition 7.3.5, from the uniform bounds in Proposition
7.6.1 and the fact that I',,(z) < z, it follows that the sequence {I';,(fn)}nen is
uniformly bounded in L*(Q; Lg°(L}, ,)). Also, Lemma 7.6.4 and Part 1 of Proposition

7.6.1 lmply that {F;m(fn)lg;(fna fn)}neN and {F;n(fn)Bz(fn7fn)}n6N are uniformly

bounded in L*(; L;x’v). Combining this with the pointwise convergences from Part

5 of Proposition 7.6.1, we easily verify (7.31) and (7.32).

Finally Part 3 of Proposition 7.3.5 follows from the convergences from Part 4 of

Proposition 7.6.1 together with Hypotheses 7.5.2 and 7.5.1 regarding the sequences

{Un}neN and {frg}neN-

Next we argue that I',,,( f) is actually a renormalized weak martingale solution.

Indeed, by the conditions on the noise coefficients o in Hypotheses (H3) and (H4)

this will follow from Proposition 7.3.8 as soon as I',,,(f) € L™ (2 x [0, T] x R*). To

argue this, we note that since I';,(z) < m and T',,(2) < z, this gives the following
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and L!

.  reo
uniform bounds in L otz

w,t,x,v
Sup [|Fon (fi) [ Loo (25 0,1 xR2e) < M < 00
n

sup || (fo) | xo.ryxrzey < Tsup Bl follpee s ) < 00
Therefore, by interpolation, {I',,(f5)}nen € LP(Q x [0,T] x R??) uniformly in n for
each p € [1,00] and m > 1. Using the weak sequential compactness of LP(€2x [0, T] x

R2?) for p € (1,00), weak-* sequential compactness of L>(Q x [0, 7] x R??), and

the fact that by Proposition 7.6.1, P almost surely, 'y, (f,) = T (f) in Cy([L}, ,]w),

we can conclude that the limit T, (f) must belong to LP(Q x [0, T] x R??) for every

p € [1,00].

Finally we show that process t — L', (f;) has continuous sample paths in L,

with the strong topology. Observe that any sequence converging strongly in L?},v and

weakly in L} , also converges strongly in L; ,. Therefore, since I'y,(f) € Cy([L} ,]w)

with probability one, it suffices to show that T',(f) € Cy(L3,) with probability

one. However, since I',,,(f) is a renormalized weak martingale solution, by Lemma

7.3.9 it is sufficient to show that I'y,(f) belongs to Ly°(L3 ) P almost surely. Since

Proposition 7.6.1 implies that I',(f) also belongs to L°(L} ) P almost surely and

[',.(f) belongs to L>(Q x [0,T] x R??), we can conclude, again by interpolation,

that I'y,(f) belongs to Ly°(LZ ) P almost surely. O

In fact, this preliminary identification of I',,,(f) allows us to upgrade the con-
tinuity properties on f from weakly continuous to strongly continuous. This is the

content of the following corollary.
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Corollary 7.6.10. The sample paths of f belong P almost surely to Cy(Lj, ). More-

over as m — oo, the sequence {L'p(f)}men converges P a.s. to f in Cy(Ly, ).

Proof. Recall, by Corollary 7.6.9, I'y,(f) belongs to Cy(L, ), hence it suffices to

show that {T',(f)}men converges P a.s. to f in Ly°(L} ). This is accomplished by
applying Proposition 7.6.1 to conclude that for each ¢t € [0, T, fu(t) — T (fu(t)) —
fi = Tou(f): weakly in L | P almost-surely, then using weak lower semi-continuity

T,

of the L}, norm to obtain the P almost-sure inequality

sup || fy = Do (f)yllzs,, <liminf sup |[fo(t) = T () (@)l 21,

te[0,7] =00 (0,7

1
< ﬁ sgp an||Lt°°(L;,v) + Slrle an]lfnz«/ﬁ“L?"(Li,v)v

where in the last inequality we used the fact that

1

In view of Part 2 in Proposition 7.6.1, for P almost all w € €2, the sequence
{fn(w)}nen is uniformly integrable in Lg°(L} ). Taking m — oo on both sides

of the inequality above completes the proof. O

Analysis of the Renormalized Collision Operator

In this section, we prepare for the passage of m — oo. By applying the
renormalization lemma for martingale solutions of stochastic kinetic equations, we

obtain the following immediate corollary.

Corollary 7.7.1. For all m € N, the process log(1 + I';,(f)) is a weak martingale
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solution to the stochastic kinetic transport equation driven by (1+T,,(f)) " B;-—B;,],

m

starting from log(1 + I, (fo)).

Our primary focus is to analyze the limiting behavior of the sequence {B },,en.
The main source of difficulty here is that this sequence is not bounded in L'(Q x
[0, 7] x R24). This is natural in the sense that we expect B to be close to B*(f, f) as
we relax the truncation parameter m € N. In fact, we know that the main strategy
in dealing with BT (f, f) is to renormalize with T"(f)B*(f, f) before we can hope
for an estimate it in L'(Q x [0,T] x R??). The main result of this section is the

following;:

Proposition 7.7.2. For any ¢ € L, , as m — 00, the following convergences hold:

U e (o7 0) o 20

st (7 ) o

The most challenging part of the analysis is analyzing the positive part of the
collision operator. To analyze the m — oo limit, we must analyze the consequences
of the pointwise (in w) convergence of f,(w) towards f(w) in the space L;,(M3).

In fact, this has not been used so far in the proof.

Lemma 7.7.3. As n — oo, the following convergence holds P almost surely:

Bt(fu. f)  BYES) . o
T Cirgn " heM)

Proof. The proof follows essentially the same manipulations as in [36] and [65],

carried out pointwise in w € 2. We sketch the proof only to convince the reader that
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the compactness properties obtained in Proposition 7.6.1 are sufficient to deduce the
claim in the same way as for the deterministic theory, without pulling any further
subsequences (potentially depending on w). Let ¢ € C.(R%). We will fix an w €
and mostly omit dependence on this variable throughout the proof. A change of
variables from (v,v,) — (v/,v]) and an application of Fubini yields the identities
T+ (1) T ()
(0 ¢> (et )
1+ (f, 1)’ L+, /
n

where L, is the linear operator on L*(R?) defined by

// n(v — v,) ' du,do,
RédxSd—1

and L is defined analogously, but with b replacing b,,. Since {f,(w)}n,en converges

(7.67)

to f(w) in L{,(M;

. while b,, converges to b

) and is tight as a sequence in Lj
pointwise on R? x S9! and is bounded in L>°(R?% x S471) by Hypothesis 7.5.3, one
can deduce that, P almost surely, both {L, f,}neny — Lf and {(f, 1) }nen — (f, 1)

in measure on [0, 7] x R??. Therefore, P almost surely

{1 fﬁ 1) }n 1 +£<§,1> i measure on (0.1 FE .

Using the uniform bounds on {b, },en in L®(R? x S471), the sequence in (7.68) is
also uniformly bounded in Ly, ,, pointwise in w. Applying the second part of the

product lemma B.1.12 gives

Ly fn Lf . ) .
{fnm}nEN — fm m Lt,x(Mu)-

An approximation argument (since 1 does not belong to Cp(R%)) and the pointwise

(in w) uniform bounds on {f,}nen from Proposition 7.6.1 yields the P almost sure
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convergence

L fn Lf . 1
o Indn N 2y L.
<f T+ (for 1) > <f1+<f,1> > o
In view of the identities (7.67), this completes the proof. m

The purpose of the next lemma is to reduce our analysis of B} to regions

where there are no concentrations in { f,, },en-

Lemma 7.7.4. As R — oo, the following limit holds P almost surely:

By (fn, fn)
L+ (fu, 1)

v

lpsr—0 in Li (M}),
uniformly in n € N.

Proof. Let ¢ € Cy(R%) be a non-negative function. Fix an w € € and mostly omit
dependence throughout the proof. The bound (7.20) yields the following inequality

on 2 x [0,T] x R?%: for all K > 1,

B (fu, fa) < (log K) "Dy (f) + KB, (fu, fa) -

Hence, for almost every (w,t,x) € Q x [0,T] x R we find that

(Bt )

L+ (fu 1) 70

Bi ny Jn
< (o K)ol () + K (Sttely o),

Next we observe that pointwise in 2,

fnafn) >
]1 s < b oo o0 n]l

t'cv

1
Lt,ac

240



By Proposition 7.6.1, {fu(w)}nen is uniformly integrable in Lj,, and {by }nen is

uniformly bounded in L{°, passing R — oo yields

<B: (fn,fn)]lf . S0>

lim sup sup L+ (fo 1)

R—oo neN

< (log K)ol ree sup 1D (fu) 22,
ne

1
Lt,ac

(7.69)

pointwise in Q. By Proposition 7.6.1, there exists a constant C'(w) such that

Sup 1D (fr)(@)lrp, < Clw).

Sending K — 0o on both sides of (7.69) we find

(Bt )

Tt (f 1) -0

1
Lt,z

lim sup
R—oo o

Since we can always split any ¢ € Cy(R?) into positive and negative parts also in

Co(R%), the above convergence holds for any ¢ € Cy(R%), completing the proof. [

The next step is to apply Lemma 7.7.4 to obtain another Lemma written

below.

Lemma 7.7.5. As m — oo, the following limit holds P almost surely:

Bi . BY(f.)
0D T (AT

(2

in L%x(/\/l*)

Proof. Let ¢ € Cy(R?Y) be non-negative. Fix w € Q throughout and mostly omit.

The first step is to observe that for each fixed m € N, pointwise in €2,

H <B$—B+ (f,f)7<p>

n i,
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Indeed, this follows from the following two observations. In view of Lemma 7.7.4,

B! (fu. f) B* (1, /)
<1+<fn,1>’9”> - <1+<f,1>””

> strongly in Ltlvx,

pointwise in 2. By Proposition 7.6.1, {T" (f.) B} (fn, fn) (W) }nen converges to B (w)
weakly in L;, , and { fn(w) }nen converges to f(w) in L; ,(M;). Therefore using the
uniform bounds on {f,(w)} we conclude that (f,(w),1) converges to (f(w),1) in

measure on [0, 7] x R??. Therefore, the product Lemma B.1.12 yields the P almost

sure convergence

U0, (fn) By (fn, fn) B,

L (f D) T+ (£ 1)

1
t,x,v*

weakly in L

Now the desired inequality follows from the lower semi-continuity of the L; ., norm
with respect to weak convergence.

The next step is to observe that for all R > 1,

H <F2n(fn)l5’$ (1fi {;Z;)BZ (fn7fn)7<p>

< [1 . (1 + %)2}

1
Lt,z

()

By (fur fo)
0 H < T (f1) T *”>

(7.71)

1
Lt,a:

Indeed, writing 1 = 1y, .z + 1y, > and recalling that I' (z) = (14 £)72, we find

the following upper and lower bounds hold pointwise in © x [0, 7] x R??

By (fas fn) _ o
(1+Ep = Bl )

1+ L) = ()

- B:L_ (fna fn) 1fn2R-
Subtracting B, (f,, f») on both sides, pairing with ¢, dividing by 1 + (f,,, 1), and
integrating over [0, 7] x R gives the claim.
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Using (7.70), we may pass n — oo on both side of (7.71), pointwise in €.
Appealing to Lemma 7.7.3 to pass the limit in the first term on the right-hand side
of (7.71), we find that for each m € N and R > 1, the following inequality holds

pointwise in (2

H<B;—8+<f,f> >
00 7/

() IS

(f,
Passing m — oo yields for each R > 1, pointwise in )

limsu H<B$—B+(f,f) > <M1 >
m—)oop 1+<f,1> y P 1+<fna1> fa>Ry P

By (fns fn)
(B )

< + sup
Lt neN

t,x

1
Lt,z

< sup

1
Li, neN

1
Lt,:c

Finally, sending R — oo and applying Lemma 7.7.4 to remove the peaks completes

the proof. O

Proof of Proposition 7.7.2

Finally, we can apply our lemmas in order to obtain our main Proposition.

Proof of Proposition 7.7.2. Let us begin with the analysis of the negative part B,.

The first point is to observe that for all w € Q, we may identify B, (w) = Y (f) b*,
f(w). Indeed, recall that {I" (f.)B, (fn, fn)(w)}nen converges to B, (w) weakly

in L}

t.en Dy Proposition 7.6.1. On one hand, since {b, *y fr(w)}nen is uniformly

1

12 and converges in measure on [0,7] x R* to b *, f(w), then by

integrable in L

Vitali convergence

{by %y fr(w)hnen — b*, f(w) in L;x,v.
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On the other hand, {f.I"} (f,)(w)}nen converges weakly to v, (f)(w) in L}, and

t,x,v’

is uniformly (in n) bounded in L, ,, then (up to a subsequence) { f,I, (fn)(w) }nen

converges to v, (f) in [L, ]*. Therefore (up to a subsequence), since this is a

weak-* L - strongly L' product limit, we obtain

Lo (fa) By (fur f) (@) = 4 (F) b fw) 0 Ly ] (7.72)

However, since {I}, (f)B;, (fa, fn)(W)}nen converges to B;,(w) in [L{, ] the above

convergence holds for the whole sequence and the claimed identification holds.

Next, by Corollary 7.6.10, T, (f)(w) — f(w) in L}

20, and by an analogous

argument one can show 7,,(f)(w) — f(w) in L} This allows us to deduce that

tx,v*

P almost surely,

{B—’;‘} — BT in measure on [0,7] x R*.
L+Tn(f) ), L+ f

Since v, (2) = 2L, (2) = (1 + £)7'T,(2), then 7, (f) < Ty (f) pointwise for each

m € N. This yields the pointwise inequality

—POm < B, f (7.73)

A double application of Lebesgue dominated convergence (first in [0, 7] x R?¢ and

then in Q) using the bound above and the fact that f € L*(Q; L} ) allows us to com-

t,z,v

plete the first part of the proof (in fact it gives strong convergence in L?(2; L} ).

t,x,v

To treat the positive part of the renormalized collision operator, observe that

for each m,n € N, the bound (7.20) gives the pointwise bound

14+T,(f) ~ logK L+ T(f)
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Next we pair with a positive ¢ € Cy([0, T] x R??) and pass the n — oo limit on both

sides of the inequality above and use the convergence of DY(f,) to DO(f) in M;}

t,x,v

given in Proposition 7.6.1 and the inequality (7.73) to obtain

B, 1 DO( ) b *
<1+F—m(f)’¢> = 10gK<D (7.6) + K (Be. 1.6).

For the second term on the right-hand side above we used the convergence (7.72)

and the poinwise bound ~,,(f) < I',,(f). Furthermore, using the fact that (1 +

Lo (f)"'B isin L}, , and taking ¢ to be a suitable approximation of the identity

t,x,v

allows us to conclude the almost everywhere Q x [0, 7] x R?? inequality

B _
—om___ <O bx f, 7.74
i (flac HOx f (7.74)

where DY(f),. is the density of the absolutely continuous part of DO(f).

To finish the proof, we write

By Corollary 7.6.10,

1 1
- — —— in measure on [0, 7] x R?%,
1+ Fm(f) meN 1+

and by Lemma 7.7.5

By, BYAS) .
{m}mgﬁm in Ly, (M;).

The product limit Lemma B.1.12, gives P almost surely

B ,
{(1 )+ Tu(F) }m RETERTENIIEN)




and therefore we can conclude (using the fact that (f, 1) is independent of v), for

each ¢ € Cy(RY),

In view of the bound (7.74) we would like to again use a double application
of the dominated convergence theorem (first in [0,7] x R¢ and then in w) to com-

plete the proof. Indeed in order to apply dominated convergence in €2 it suffices

to show that DO(f),, € L*(%; L}, ,). To show this, choose ¢ € Cp([0,7] x R*)

t,x,v

*

non-negative. By the P almost sure convergence of D))(f,) in Proposition M;

{D2( 1), ¢)|*}nen converges to [(DO(f), ¢)|* P almost surely. It follows by Fatou’s

Lemma (in ) that

E[(D°(f).: 0)|* < BI(D(f), 9)I” < SngKDﬁ(fn),cf>>|2 < l1¢lis,, sup BIDu(fu)llZ; -

t,x,v n

Since DY(f),, > 0, we may replace ¢ by a sequence of non-negative functions
{dr}ren € Co(RY), ¢, — 1 pointwise and monotonically. Then, passing k — 0o
using monotone convergence and using the uniform bounds on D, (f,) yields the

result. O

Proof of Main Result

Proof of Theorem 7.1.7. We begin by proving estimates (7.12). Recall that Propo-
sition 7.6.1 implies that { f, }nen converges to f in Cy([L, ,].) with probability one.

We begin by showing the bound on (1 + |z|? + |v|?)f. Let Bgr denote the ball of
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radius R > 0 in R??. It follows that P almost surely,
1L+ 1l + ) aefallfe gy ) = 10+ 2l + 0P L fl e 1 -
By Fatou’s Lemma in €2, we find that
BN+ ol o) 150 e 11, < S0P BICL+ [0 4+ [0 Lol < 00,

in view of Part 2 of Proposition 7.6.1. Sending R — oo and applying Fatou’s Lemma
once more yields
2 2
BI(1+ 2 + [oP) g ) < o0
To show the bounds on f|log f| and D(f), we recall the proof of Lemma 7.5.7,
where we showed that {f,}.en satisfies the following entropy equation P- almost

surely for each t € [0, 7],

/ fn(t)log fr(t)dzdv + /t D, (fn(s))dzds = / folog fodxdv. (7.75)
R2d 0 JRd

R2d

Since z — zlog z is convex, and {f,}nen = f in Cy([L] ,]) P almost surely, then,
by lower semi-continuity and the non-negativity of D, (f,), the following inequality

holds pointwise in Q x [0, 7],

/ flog fdzdv < / folog fodxdw.
R2d R2d

From this point on, we may follow the arguments in Section 7.2.4 to conclude

EHflOg f”LOO(Ll < 0.

To show the bound on the dissipation D(f), we remark that a standard mod-

ification of the proof of Lemma 7.7.3 allows us to conclude the P almost surely

N

L+e(fn, 1) 1+ e(f, 1) in [Ll([()’T] R3 Sd_l)]w7

T, 0, V%
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for each € > 0. Similarly, by the product limit Lemma B.1.12, we may also conclude

that P almost surely,

JnSrs I f
T4 el(fid) 14 elf,1)

in  [L'([0,T] x R3],

T,V,Vx

Notice that the function (z,y) — (z — y)(logz — logy) is convex on R?. Therefore,
by lower semi-continuity we may conclude that P almost surely, for every t € [0, T

and each € > 0

t
/ /// Md@dvdv*dxds
0 R3dxS§d—1 1 + € f 1>
fn)b
< lim 1nf/ /// ———  _dfdvdv,dzds
R3d xS d—1 1+6 fn, >

< lim inf / D, (fn)dzds.

Taking € — 0, by the monotone convergence theorem, gives

t t
/ D(f)dzxds < lim inf/ Dy (frn)dxds.
0 JRd n 0 JRd

Passing n — oo on both sides of (7.75) yields, the global entropy inequality (7.16),

/ f(t)log f(t)dxdv 4+ /t D(f)(s)dxds < folog fodzdv.
R2d 0 JR4

R2d

Whereby we obtain the bound

DA s

t,z,v

<|[flog fllLee(rs,) + Il folog follzz -
Using the bound on flog f above, gives
BID(I, < oo

Next we show the conservation laws (7.13-7.16). In fact we have already shown
(7.16) in the computation above. To show (7.13-7.15), recall that f,, satisfies for each
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¢ € C(R*)

o) = (/% 0) + / (Fa(5),0 - Vo + Lonp)ds
0 (7.76)

¢ t
4 [ st Do) s) + [ (Bl ) o)
0 0
in distribution in z,v. Using the P almost sure moment estimates provided by prop-

erty 2 in Proposition 7.6.1 and the boundedness of the truncated collision operator

1L+ J2? + [P fallgpeea,y < 000 LA+ |2 + [0 Bl fas fu)llis, , < oo
It is straight forward to use these estimates to upgrade to a class of test functions
o(z,v) with sub quadratic growth

lo(x, v)|
14 |z|? + |[v]?) ’

sup
x,v (
in equation (7.76). Choosing the test function to be constant in v gives P almost

surely for each t € [0, 7]

¢
fn(t)dv+divz//vfn(s)dvds: fodv in D.. (7.77)
Rd 0 Jre R4

Likewise taking the test function to approach ¢(x,v) = v, and taking expectation,

we can obtain for each ¢t € [0, 7]

E//RM v fn(t)dvde = E/Ot //Wd(ﬁgnv)fn(s)dvdxds + /de vfrdude.  (7.78)

Finally taking a test function approaching ¢(xz,v) = 3|v|?, and taking expectation

gives for each t € [0, 7]

1
// —|v*f,,(t)dvdz = / // (Lon|v|?) fuls )dvdxd8+/ —|v|? firdvdz.
R2d 2 R2d 2 2

(7.79)
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In order the pass the limit in n above, will find it useful to prove the following

extension of the product limit Lemma B.1.12 for the sequence { f,, } en-

Lemma 7.8.1. Let {¢n }nen be a sequence of functions in (L o converging point-

wise a.e to ¢ satisfying the uniform growth assumption

. ¢n(ZE,’U)
1 — g = )
po o | ], 0 e
where Br C R?? is the ball of radius R. Then,
/ On fndvdz — ofdvdz in [L*(Q x [0,7T))]w-
R2d R2d

Proof. Proposition 7.6.1 implies that P almost surely {f,}nen — f in Ci([LL ]w)-

Since ¢, 1p,, is uniformly bounded in L3° and converges in pointwise a.e. to ¢lp,

T,V

the product limit Lemma B.1.12 implies that P almost surely for each ¢ € [0, T

Onlp, fru(t)dvde — ¢lp, f(t)dvde (7.81)

R2d R2d

Now, letting C' < oo denote the (random) constant such that

sup [|(1+ Jzf* + [o*) (| ful + [fDllzzeee,) < C

we have

qbn(f - fn)dvdx S ¢n1BR(f - fn)dvdx + 2 Cbn]lB%(f - fn)dvdl'

R2d R2d
' On(@,v)

< nl — fn)dovd C ————1p
> ¢nlp,(f — fu)dvdz 4+ C sup 1+ |z]2 + |v]? B,

R2d n

oo
La;,v

First, pass n — oo above using (7.81) and then, send R — oo above to conclude

that for all ¢ satisfying (7.80), P almost surely, and for each t € [0, 77,

On frdvdr — / ¢ fdvde.
R2d

R2d
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Moreover by the average moment estimate on {f, }nen,

{/ qﬁnfndvdx} is bounded in  L*(Q x [0,T),
R2d neN

and therefore by Vitali convergence we may conclude that

/ On fndvdx —>/ pfdvdz in  [L*(Q x [0,T))]w-
R2d R2d
O

Immediately we can use this Lemma to pass the limit in each term of (7.77).
Taking the derivative in time gives the local conservation law (7.13). Also using the
fact that L,nv = o - V03 is bounded in Lg%, and converges pointwise to L,v, we
may also pass the limit in each term of (7.78) to obtain (7.14).

Now, note that we cannot pass the limit directly in the energy equation (7.79)
since £|v[? does not satisfy (7.80). However, Lq|v|? does satisfy (7.80), and so upon
cutting of the domain on the left hand side of (7.79) can pass the limit in n and

conclude for each R > 0,

1 ! 1 1
E/ “Ljj<rlvf(t) < E/ // —(£U|U|2)f(s)dvdxds—l—/ ~|v|? fodvda.
R2d 2 0 R2d 2 R2d 2

Apply the monotone convergence theorem to the left-hand side and sending R — oo
gives the desired inequality (7.15).

Next, we prove that f verifies the conditions of Definition 7.1.4. Begin by
observing that for each n € N, fn has the property that for each (t,w) € [0,T] x €,
the quantity f,(¢,w) is a non-negative element of Ly ,. Since f, is given explicitly

as fn = fn o T,, it inherits this property. Finally, Proposition 7.6.1 implies that
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{fn(t,w)}nen converges to f(t,w) weakly in L} . Since weak convergence is order
preserving, this shows that f satisfies Part 1 of Definition 7.1.4. Also, by Corollary
7.6.10, f: Q x [0,T] — Lglw has continuous sample paths.

In view of Definition 7.3.1 and Remark 7.3.2, Parts 2 and 3 of Definition 7.1.4
will follow once we check that for each I' € R, the process I'(f) is a weak martingale
solution to the stochastic kinetic equation driven by IV(f)B(f, f), starting from
['(f°). In fact, the problem can be reduced further.

Let us show that it suffices to verify log(1l + f) is a weak martingale solu-
tion driven by (1 + f)7'B(f, f), starting from log(1 + f°). Assume for the mo-
ment this property of log(1 + f) and let I' € R be arbitrary. Since we showed
f e LX(Q; L(L,,)), it follows that log(1 + f) belongs to L*(Q x [0,T] x R*%).
Hence, by Proposition 7.3.8, log(1+ f) is a renormalized solution. We would like to
renormalize by a § such that Solog(1+z) = I'(x), or equivalently f(x) = I'(e” — 1),
but this is not quite admissible in the sense of Definition 7.3.6 since I' € R need
not imply boundedness of 5”. Instead, we proceed by a sequence of approximate
renormalizations {0y }reny where Bi(x) = I'x(e* — 1) and {['k }ren have the following
properties: for each k € N, I'y is compactly supported (and hence f; is bounded),

the pair (I'y,I'}) — (I, I') pointwise in R, and the following uniform bound holds

sup sup (1 + )| (z)| < oo.
keN zeRy

By Proposition 7.3.8, it follows that [';(f) is a weak martingale solution driven by
T (f)B(f, f). Using the properties of {T') } xew and the fact that f € L*(Q; L°(L},,))

and (1+ f)7'B(f, f) € L*(Q; L}, ,), it is straight forward to use the stability result,

t,x,v
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Proposition 7.3.5, to pass k — oo and conclude that I'(f) is a weak martingale
solution driven by I"(f)B(f, f) starting from I'(fy).

Thus, it remains to show that log(1 + f) is a weak martingale solution to the
stochastic kinetic equation driven by (14 f)~'B(f, f), starting from log(1+ f;). For

this, we use once more our stability result. Recall that for each m € N, the process

log(1+1,(f)) is a weak martingale solution to the stochastic kinetic equation driven

by (14T, (f)) B} —B.], starting from log(1+T,,(fo)). First observe that that for
all p € C>(R??), the sequence {(log(1+T,,), ¢) }men converges in L2(§2; C;) towards
(log(1 + f), ). Indeed, this follows from Corollary 7.6.10, the almost everywhere
inequality T',, < f, and the estimates (7.12). Next, for each t € [0,7] we can use

Proposition 7.7.2 with ¢ = 1g ¢ to conclude that

! Bm ! B(f7f) .
/0<1+m,g0>ds—>/o < 1+f,<p>ds in L*Q).

Using these facts together with the stability result Proposition 7.3.5, we may pass

m — oo and complete the proof. O
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Large Deviations and Local Limit Theorems

Local Limit Theorems

Preliminaries

We begin by assuming that there is a probability measure y on R? with mean

m and covariance matrix C' given by
m= [ xzp(dx), C= / (z — m)®?u(dz).
R4 R
Let ¢(&) be the characteristic function of p(dx)
ow) = [ (o)
R4
we will assume the following conditions on ¢(§):
Hypothesis A.1.1.

1. For |u| >0, |p(§)| <1 (sometimes called non-lattice condition on ).

2. There exists an N > 1 which is the smallest number such that |¢p(&)|N is an

integrable function on RY.
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Local central limit theorem

We begin by proving the local central limit theorem. For this, we assume that
we have a sequence of independent, mean zero random variables {X;} in R? each

with the same law p(dz). Define the partial sum

Sn:ZiL;X,-.

We would like to study the law p,(z) of S,, defined by duality for any smooth

bounded test function p(z) as

/Rdw( ) (dz) = / (Zx>n (day),

We note that the integrability condition in Hypothesis A.1.1 implies that p,(z) has
a density f,(x) with respect to Lebesgue for large enough n. Our first step will be

to prove the following theorem:

Theorem A.1.2. Let pu(dz) be a measure on R satisfying Hypothesis A.1.1. Then

forn > N, u,(dz) has a density f,(x) and the following limit holds uniformly in x

lim (Vi) (i) = 2 ((Qﬂg‘ﬁ o)

Proof. As is typical for the central limit theorem, the proof will study the character-
istic function ¢(&) of pu(dx). The characteristic function of f,(x) is related to ¢(&)

by

0,(6) = [ oo = ( [ eeuian) = oter

Taking the inverse Fourier transform,

(\/ﬁ)dfn(\/ﬁx) =

1 —i&-x n
el IRRCODI S
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and therefore we conclude that

J exp (—3(z,C™'2))
(Vn)* fu(v/nw) — 2n)1det O '
< o L |etervir - ehecs]ac

We will show the first part of the theorem if we can estimate the right hand-side

above. By Taylor’s theorem, since ¢(€) is at least C? differentiable, for each £ € R,

[p(&/vn)]" = {1 - %(g, Ce) + O(R—l)r R Y(xer)

as n — oo. Furthermore if ¢ is sufficiently small, say || < §, Taylor’s theorem also

implies that

1(£,0¢)

0(6)] = [1 - 3(6.CO) + 00| <

Therefore, if || < dy/n, we have the bound

lote/ V" — e 609 < ke

It follows by dominated convergence that

ASI«WE

as n — oo. To estimate the region where |¢| > §y/n we remark that since |@(£)|

6(&/ V)" — e HE9| dg — 0,

is integrable and ¢ () is absolutely continuous, then |¢(£)| — 0 as £ — oo therefore
the non-lattice condition [¢(¢)| < 1 implies that supy .5 |#(€)] = v < 1. Therefore

ifn>N,

/|£>5xf

[B(€/ V)" — e H6C9| < ynn / 6(6/ VOV de + / e HECO g

§1>6v/n

— An—N Nd *%(fvcf)d
[ leeag s [ e
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Sending n — oo and using the integrability of e~3(609) and the fact that y'/n — 0,

the above integral converges to 0. [

We can prove a more quantitative version of the theorem above, which is essen-
tially a local version of the Berry-Esseen theorem in the multidimensional setting.
However, as we are proving this at the level of the densities, and require an integra-
bility condition on the characteristic function, we are not able to obtain the typical
Berry-Esseen estimate that only depends moments of the measure p. Instead the
bound depends on various quantities related to the decay and integrability of the

characteristic function.

Theorem A.1.3 (Local Berry-Esseen Theorem). Assume that p satisfies Hypothesis
A.1.1 and assume the third moment [y, |x|>u(dx) is finite. Then there are universal

constants A > 0 and 0 > 0 independent of u so that

y _exp (—5(@, 07 ")) Ap  1(/n)By
:élﬂgd (V) falvn) (2m)ddet C = vndetC - Vvdet C

where R = /C' is the square root of C, p = Jra IR 2P u(dz), v, = supigss,, [6(6)] <
1 and By = ||| Yy, with N being the smallest number so that |¢(§)|N is integrable

(as per the Hypothesis A.1.1).

Proof. To begin, we assume that C' = Id, which can be obtained by changing co-
ordinates to y = R™'z so that the measure u has identity covariance and the third
moment is p = [pa |u?n(dz). Let € = p/y/n. We being by noting that the third

moment estimate gives

1 1
B(E) = 1= 1€ — iclél* + R(e)
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where the remainder is given by

Re)=-ig [ [ (€ apes uanan 1RO glef
and therefore
nlog 6(6/vi) = ~3 €l + O(lgPe)
Using this, we conclude

< e—%|5\2

[B(&/Vn)]" — e 21

QPO _ 1)

< O(|¢Pe)e2 el Ol

Choose a universal 0 ( 6 = 1/24 is sufficient) so that when |£] < §/e,

1 1
— SIEP + O(lgPe) < P

Therefore at frequencies less than ¢ /e,

\/|;<5/6

For the high frequencies, define v, = supj¢s4/, [¢(£)| and Sy = ||¢|| Y. Since ¢(§) is

oG/ v/ — 2

dg < O(e) /R gPe g = O(e).

uniformly continuous, |¢(&)|V is integrable and |¢(£)| < 1 for € # 0, we can conclude

that v, < 1. Therefore

/£|>5/6

[o(¢/ V)" — e 3eF

aé < (Vi) / ()| de + /|£ et

1€1>6/p
€ 1¢)2
<oy V(v S [ Jeleierdg
R

We complete the proof by writing

I

and noting that we may change coordinates back to the original coordinates O]

[B(e/V/m)]" — e 21 de < O(e) + 42 (v/n) B,
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Local large-deviations on R?

We now study the large deviations of averages of sums of independent, iden-
tically distributed random variables. To begin, we will re-introduce the framework

of Section A.2 and The logarithmic moment generating function of u, L : R — R

is defined by
L(\) =log(M())), where M(X) = / M p(da),
R4

and define its domain D = {\ € R? : L(\) < 4+oo}. We will assume that 0 is

contained the interior of Dy, which, of course, implies all moments of i are finite.
Note that L(\) > —oo for all A, since by Jensen’s inequality L(A) > A - m.

Indeed, as we are in the same setting as L enjoys some nice convexity and regularity

properties summarized in the following Lemma.

Lemma A.1.4. L(\) is strictly convex and C* on the interior of it’s domain.

Moreover we have the following formulas for the gradient and the Hessian of L(\),

VL(\) = / z e LNy (dg), (A1)

®2
V2L(\) :/ z @z et N y(de) — (/ xe’\“_LO‘)u(dx)> : (A.2)
Rd RY

The rate function I : Dy C R? — R associated to L()\) is define by the

Legendre-Fenchel transform

I(u) = sup (A-u— L(N)), (A.3)

AeDg
where D; = {z € R?: I(z) < +o0}.
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Lemma A.1.5. In addition to the consequences of Lemma A.2.2 the rate function

I has the additional properties:

1. I(u) >0 and I(m) = 0.

2. limy|—00 I (1) = 00 and its sub-level sets {u € Int D; : I(u) < o} are compact.
Proof. The fact that I(u) > 0 follows from L(0) = 0, since

I(u) > —L(0) = 0.

Moreover, since A-m — L(\) < 0, at u = m we have the reverse inequality 1(m) < 0,
and therefore
I(m)=0.
Now, fix a u € D; and let r be such that B.(0) € Dy. Then upon choosing

A = ru/|ul, we have

> — > — = . .
I(u) > rlu| — L(ru/|u|) > |u| = C,, C. )\erglg:%O)L()\) >0 (A.4)

Sending |u| — oo on both sides above gives lim,_o0 /(1) = 0o. Moreover since L
is convex, it is continuous, and the sub-level set {I(u) < a} is closed. Also, by the

inequality (A.4) is bounded since
{I(u) <a} C{rlu| <a+C.} =Bg(0), R=(a+C,)/r
Therefore {I(u) < a} is compact. O

Lemma A.1.4 shows that derivatives of L are naturally given in terms of a

probability measure p(dzx),

pa(de) = s u(da) = O (),
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defined for each A € Dy,. uy(dz) is often called a tilted measure. Lemma A.1.4 imme-
diately implies that p)(dz) has mean my = VL(\) and positive definite covariance
matrix Cy = V2L()). Therefore, for a given u € Dy, uy, (dz) = e*+ @=Ly (dx) has
mean u and covariance [V2I(m)]~!. Note that in this case, py,, (dz) can be written

as

L, (d]}) — eVI(m)-(xfm)+I(m)/Jj<dx>'

Now we are ready to state the first theorem of this section. As in our discussion
of the central limit theorem, we will let S, = X; + ... 4+ X,, denote the sum of a
family of n independent identically distributed random variables in R? with common
law p(dx). We would like to study the law pg (dz) of the sample mean S, = S, /n.
By the strong law of large numbers, we know S, — m almost surely. Therefore we

expect pg (dz) to concentrate on a Dirac measure,
pg, = Om, as n— 00,

in the tight topology of measures. However, in many applications, one would like
more information on the approach of the distribution yg to a Dirac. That is, often
one is interested in gaining more information about the probability of deviations of
S, from it’s limit m when n is large. As it turns out, for large n, if u # m, then
the probability that S, is near u decays exponentially fast with speed determined

by the rate function /(u). Roughly speaking,

P(S, is near u) ~ ¢ ™®.

Since the rate function /(u) > 0 and I(m) = 0, then when n is large the only event
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that whose probability doesn’t decay exponentially fast is when S, is near m, in
accordance with the law of large numbers.

When n > N, the integrability condition on the characteristic function, given
in Hypothesis A.1.1, implies that g (dr) has a density fu(2). The above discussion

is made more concrete by the following local deviation theorem.

Theorem A.1.6. Suppose that u belongs to the interior of Dy. Then

lim ~ log f,(u) = —I(u),

n—oo N,

locally uniformly.

Proof. To prove this, we consider the tilted measure puy,(dz) with mean u € Int D;
M}\u(dm) _ eVI(u) (x—u)+1I(u) (dl’)

Since the characteristic function ¢(¢&) associated to p is in L (R?), then the
characteristic function ¢, (£) associated with y,(dz) is also in LY. For n > N, let

fun(x) be the density of the law of the mean zero random variable

SY — u,

n

where S* = (X% + X¥ + ... X%)/n and each X" is distributed with respect to the
tilted measure py,(dz). The density can be defined by duality for every continuous

bounded function ¢(x),

/RdsO(

I
%\%\

n! le _ u) Hlu/\u dxl
1=1

nVI(u)-(xfu)JrnI(u) fn (l’)dI

[
T
‘6
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So that fn and fun are related by

~

fn(ﬂf + 'LL) _ e—nV[(u)-x—nI(u)fu,n(x).
Setting x = 0 in the above equation gives

falu) = e " Fnu(0).

Since the change of measure from p to p,, is done by an absolutely continuous
transformation, if u satisfies the non-lattice condition ( |¢(€)| < 1 for [¢] > 0), then
so does py,. Therefore the local central limit Theorem A.1.2 applies to the random

variable S;f — u, yielding

lim (v/n) ™ fun(0) = /(21) =4 det V21 (u).

n—oo

This implies that f,,(0) = O(n??), and therefore
1 A 1 —1
- log fn(u) = —I(u) + " log(fun(0)) = —I(u) + O(n~" logn).
Sending n — oo completes the proof. n

In fact the previous theorem actually implies the following improved asymp-
totic, which is actually sharp in the case that the initial distribution is normal or
gamma distributed. The following corollary is an easy consequence of the previous
theorem the fact that all moments are finite and the local Berry-Esseen inequality

proved in Theorem A.1.3.

Corollary A.1.7. For each u € R"™, we have the asymptotic,

~ e_nl(“)

fo(u) = )i ndet V21 (u) (1 + O(n_1/2)) :
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It is also likely that A.1.6 to C? convergence. Namely, the following conver-

gences hold locally uniformly

lim ~log fi(u) = —I(u).

n—oo N,

lim lVlog folu) = =VI(u),

n—oo M

lim L2 log fo(u) = =V (u).

n—oo 71}
However, a proof of this result would rely on improved central limit theorem
convergence results, as well as some uniform control on the statistical quantities
related to the measure p,, in the parameter u. This is typically rather non-trivial

and requires more assumptions on the measure pu.

General framework and abstract Gibbs ensembles

To begin, we will consider a general framework for a class of abstract Gibbs
measures. Namely, those that can be written as a product of certain single particle
Gibbs measures. The reason for considering such a general abstract approach to
Gibbs measures, as opposed to presenting the following results for the more classical
definitions of Gibbs measures, is due to the fact that we will not only be considering
Gibbs measures corresponding to certain classical particles systems, but will also be
considering more general Gibbs measures associated to certain fluid-particle systems.
Also, we will find it necessary to change variables

In general, assume that we have y(dz) a (potentially unbounded) positive,

o-finite Borel measure on a smooth d-dimensional manifold I, typically taken to be
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T4, R? or some product of the two. Furthermore, suppose we are given a measurable
mapping,

h:T'—R",

which we interpret as a generalized energy function on a one-particle phase space

I'. Associated with A we have a free energy function F : Dr C R” — R by

FO) =log 2, 2 = [ (),

and suppose that it’s domain Dp = {A € R" : |F(A)| < oo} has non-empty
interior. We will assume that for every v € R", h - v is non-constant on I', which
will be sufficient to obtain strict convexity of F. Specifically, we have the following

properties of free energy function F'(\):

Lemma A.2.1. F is strictly conver and C* on Int D and Dg is convex. Moreover

we have the following formulas for the gradient and the Hessian of F(\),
VF(\) = /h(x) AMM@-FN y(dx),
r

VIF()) = /F h(2) 2 M@ -FO) y(dg) — < /F h(z) e*h@)F%(dx))@Q.

Proof. To prove convexity, let a € [0, 1] and Ay, A2 € Int Dp, then Hélders inequality

implies

Z(ad + (1= a)ry) = / (XN (2 P@) T () < Z(M)*Z(A) .

Taking the logarithm of both sides implies convexity of F'(\) as well as the convexity

of DF
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To prove C*, it suffices to show that Z(\) is C*° on Int Dp. To see this,
fix A € Int Dr and take v € RY |v] = 1 and choose ¢ small enough so that

A+ eh € Int Dp for all |¢] < ¢y. Then the divided difference

Deve)\-h(az) — (e()\+ev)-h(:v) . e)\-h(m)>€fl

converges pointwise to v - h(z)e*"® as € — 0, and has the bound

Dwek.h(:c) < e)x-h(a:) (eeo|v~h(:v)| . 1)661 < e)x-h(a:) (eeov-h(a:) + e_eov.h($)>€al'

This means that
/Dwe v(dz) < €' [Z(A + €ov) + Z(\ — €ov)] < 0.
Applying dominated convergence gives
%Z(H e0)]eco = /R - ha)e My ),

and therefore
VZ(\) = / h(x) e @y (d). (A.5)

The same argument may be applied to obtain higher derivatives. For instance, tak-

ing divided differences h(z) e*"®) we can employ the same bound above to conclude
/ | Dy (h(x) @) y(dz) < e [[VZ (A + €0v)| + |[VZ(X = €ov)]] < 0.
r
Again using dominated convergence gives

ViZ(\) = /F h(z) @ h(z) M@y (dz). (A.6)
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The formulas (A.1) and (A.2) follow immediately by applying the chain rule to
F(\) =log Z(\)

VE(\) = VF()) = Vzé(?) vz (gﬁgz ()

and using the formulas (A.5) and (A.6).

To see strict convexity, note that the Hessian V2F can be written

VF(\) = /F (h(x)— /F h(y)e*"’(y)‘””v(dy)>®2e”’(“‘F(”v(dx)7

and therefore can only be degenerate at a particular A € Int Dp if there is a direction

v € R" such that for all z € T

v-h(z) = /F v h(y)e Ny (dy).

However as we assumed that h(z) - v is non-constant, this cannot be true. ]

Next, we define the entropy function S(u) : Dg C R — R associated to F' by

the Legendre-Fenchel transform

S(u) = sup (A-u— F(A)),
ANeDp
where Dg = {u € R" : |S(u)| < oo} is the domain of S.
Lemma A.2.2. The entropy function S has the following properties:

1. Dg is convex and has non-empty interior

2. S(u) is strictly convex and smooth on Int Dg.
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3. For each uw € Dg, there exists a unique A\, € Dg which is the minimizer of
(A.3)

S(u) =u- Ay, — F(A).
Moreover A\, satisfies,

u=VF(\,), M\=VS(u), VSu)=[VF\,)"

Proof. The fact that S(u) convex follows from the definition of (A.3), since it is the
supremum of linear functions. Next, since F' is strictly convex and C, A\ — VF(\)
is a O diffeomorphism from Dpg to Dg. It follows that for each v € Dg, there is
a unique \, € Dp satisfying u = VF()\,). Moreover for any u € Dg, the function
fu(A) = X-u— F(A) is strictly concave, and satisfies V f,(\,) = 0. Therefore f,())
has a unique maximum at A\, € Dg so that
S(u) = fulAu) = w- Ay = F(Xu).
Since A, = (VF)"!(u), the mapping u — A, is smooth. Therefore the smoothness
of S(u) =u- A\, — F(\,) follows. Moreover, taking the gradient of S(u) yields
VS(u) =y +u-Vydy — VF(A,) - VA, = A
Finally, differentiating both sides of the relation, u = VF(VS(u)) gives
V2S(u) = [VEF (M)

O

Remark A.2.3. We say that u € Dg and A € Dp are Legendre dual to each other if
they are related by
u=VF(A), A=VS(u).

268



In particular, any two Legendre dual variables u an A must satisfy

Au=F\)+ S(u).

Abstract Canonical and Micro-canonical Ensembles

Next, we introduce the definition of the abstract cannonical and micro-cannonical
ensembles associated to the function h. More specifically, these ‘ensembles’ refer to
certain measures on the space of n particle configurations I'".

We begin by defining, for each A € Dp, the single particle Gibbs measure

pa(de) = MOy (dz) = HMMOFN A (dg).

Z()
Note that Lemma A.2.1 implies that with respect to uy(dz), the function A(x) has
mean VF()\) and covariance V2F'()\).

Denote the pushforward of «(dx) under h by v(dy) = hyvy(dy), and consider,

for each A\ € Dp the tilted probability measure
va(dy) = e FVy(dy),

which is just the push forward of uy(dz) under h.

For the remainder of this section we will assume:
Hypothesis A.3.1.

1. h and v are such that, for each A € Dp, v\(dy) satisfies the non-lattice and in-
tegrability conditions on it’s characteristic function stated in Hypothesis A.1.1
of Section A.1.2.
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2. Each component of h : I' = R", h; has compact superlevel sets.

Remark A.3.2. The first assumption of Hypothesis A.3.1 is to ensure that certain
local limit theorems of Section A.1.3 apply. The second condition on A is to ensure
that certain conditional measures are well-defined. It is important to note that the
choice of compact super-level sets only comes from physical considerations, since
h will typically be taken to be the negative of an energy function. However, one
could just as easily assume that h has compact sublevel sets without changing any

consequences of the theory below.
It will be useful to relate the rate function associated to vy(dy) to the free
energy F' and entropy S.
Lemma A.3.3. Then the rate function I(u) associated to vy(dy) is given by
I(u) = S(u) + F(A\) — X -u.
Proof. Let v,(dy) denote the pushforward of v(dz) under h. It follows that uy 5(dy)
is just a tilted version of 7, (dy),

van(dy) = Ny, (dy).

The logarithmic moment generating function Ly («) associated to py ,(dy) can then
be written as

La(a) = Fla+\) — F())

and therefore Dy, = Dr — A. Taking the Legendre-Fenchel transform give the rate

function

IL(u)= sup (a-u—Fla+X)+FA)=Suw+FA) —X\-u.

Oz+)\€DF
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Physically, we will think of h as a one-particle energy function (actually the
negative of the energy) associated to a particle in phase space I'.  The measure
px(dz) is then thought of as an equilibrium measure for that particular particle. If
one instead has n particles x,, = (z1,...,x,) € ['", then we will consider the average

energy function hy,(x,) given by

The n particle canonical ensemble is then defined to be the product measure

paldxn) = 57 () = e )

where we have denoted
v (dx,) = 7®"(dxn).

We denote level sets of h, : ' — R", for each y € R", by
n __ d\n . 1 _
= {xn e (RN : hy(x,) = y}.

Then the assumption that i has compact sublevel sets implies that 27 is bounded.
For each y € R", define the micro-canonical measure p"(dx, |y), to be the prob-
ability measure on X} produced by conditioning the canonical measure p"(dx,)
with respect to h,. Such a measure is given uniquely (up to fix,(dy) null sets) by

disintegration

py(dx,) = p"(dx, | y) finna(dy), (A7)
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where fi,(dy) denotes the pushforward of the canonical measure u%(dx,) under
h,. The above decomposition is to be interpreted by integration against the test

functions ¢ € C,(R") and ¢ € C,(T'™),

[0 () w0 )
(A8)

= /T gp(y) ( - ¢(Xn)un(dxn | y)) /lA,n(dy)'

The subscript A is intentionally missing from p"(dx, |y), since as we will see

in the following lemma, it does not depend on \.

Lemma A.3.4. In addition to (A.7), the following decomposition also holds

7" (dx,) = p"(dx, | y)9n(dy), (A.9)

where A, (dy) is the pushforward of v"(dx,) under hy, and it is to be interpreted
in the sense of equation (A.8). As a consequence, the micro-canonical measure

" (dx, |y) does not depend on .

Proof. To see this, recall that % (dx,) has the form
A (Ax,) = o G E D dx),
and therefore i ,(dy) is given by

:&A,n(dy) = en(A.y_F()\)):Vn(an)'

Now, consider a test function of the type ¢(y) = ¢(y)e " ¥nFXN),

where ¢ has
compact support contained in a ball of some radius R. The condition that h has

compact superlevel sets implies that gp(ﬁn (y)) has compact support and is bounded,

272



supp @ (ha(y)) = {o : h(z) € supp @} € {x : |h(x)| < R}.

Using this test function in (A.8) and employing the forms for p%(dx,,) and /iy, (dy)

given above, we obiain
[ (i) wiox) 7 (0x,)
- [ o) ( [, v (| y)) 3(dy)
s

When [iy ,(dy) has a positive density f}\n(y) then 4, (dy) has a density g,(y).
So, formally one can take ¢(z) = d(y — z) and we may write the micro-canonical

measure p"(dx, |y) as

1 .
"(dx,, = — 0y — hn(x,)) iy (dx,
p"(dx, | y) o) (Y = hn(x5)) p3 (dxn)
1 7 n
= gn(y)5(y—hn(xn))7 (dxy).

and ¢, (y) is given by

guly) = / 5y — hon (%0))7(d%).

The function g,(y) is often refered in statistical mechanics literature as the density

of states.

Equivalence of Ensembles

Since the cannonical measure is a product measure, it is often more con-

venient to take averages with, than is the case for the micro-cannonical measure
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1"(dx, |y). Indeed, this is often the motivation for using the canonical measure
over the micro-canonical measure in applications. However, from physical consid-
erations, the micro-canonical measure is the more natural measure to use due to
the fact that for most systems of interest, the particle evolution takes place on the
level sets of iLn, and therefore is usually a natural ergodic invariant measure fore
the dynamics. Indeed, the disintegration (A.7) implies that p% is always a linear
combination of the measures p,(-|y) and therefore, for finite n, p% cannot be an
ergodic invariant measure.

However, one is often interested in studying the large n behavior of the mea-
sures ph(dx,) and p"(dx,|y). Indeed, it is in this setting that physicists often
justify the use of the canonical ensemble in place of the micro-canonical one. This
approximation of the micro-canonical ensemble by the canonical one when n is large
is often refered to as the equivalence of ensembles. It is precisely this equivalence
that we will address in this section.

To begin, we will need the following generalization of the local large deviations

theorem A.1.6.

Lemma A.3.5. Let 4,,(dy) be the push-forward of v"(dx,,) under h,(x,). Then for
large enough n, 4,(dy) has a density g,(y) and for each y € Dg, the following limit

holds

1 .
lim —log gu(y) = —S(y).

n—oo 1

Proof. First note that we have the relation

/lA,n(dy) = eno\'y_F()\))ﬁ/Mdy);
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and that fiy ,,(dy) is just the pushforward of the product measure v, (dy)®"™ under the
mapping x,, — n" ' (z; + ...+ x,). Since vy(dz) satisfies Hypothesis A.1.1 and has
bounded moments, we can apply Theorem A.1.6 to conclude that, for large enough

n, fixn(dy) has a density f,\n(y) and

lim ~log fun(y) = ~L(y) = A-y — S(y) — F(N), (A.10)

n—oo N

where we have used Lemma A.3.3 to obtain the form of the rate function I,(y).
Since fin,(dy) and 4, (dy) are related by an absolutely continuous transformation,

4n(dy) has a density g,(y) and satisfies

1 R 1 A
—log ga(y) = F(A) = A~y + —log fa(y)-
Taking the limit as n — oo and using (A.10) completes the proof. O]

Remark A.3.6. In fact, we can do better than the lemma above. If we use the sharp
asymptotic provided by Corollary A.1.7, we can obtain

R e n5(Y) B
gn(y) = (2772 n?det V2S5 (y) (1 +O(n 1/2)) _

Our goal is to establish an equivalence of ensembles theorem. In general we

will show the following theorem

Theorem A.3.7. Let G be a continuous, bounded function on T'*, and for each

y € Dg let Ay =V S(y). We have the following convergence,

i [ Glxn (e 9) = [ Gl (ax).

n—oo Jpn

locally uniformly on Dg.
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We will need the following lemmas.

Lemma A.3.8. Let G be a continuous bounded function on I', and define for each

0 € R the unbounded measure

Yo(dx) = eer(dx),

and let Fy(\) and Sg(y) be it’s free energy and entropy functions,

Fy()) = log (]fe96+*hw<dx>), So(w) = sup (A-y — Fo(V).

>\6DF9
Then we have the following,

1. The domains of Sy and Fy coincide with those of S and F' respectively.

2. Sy and Fy are differentiable in 6 and, for any pair of Legendre dual variables

(y,A) € Dg x Dp, they satisfy

6959(y) = —89F9(/\) = — / G(m)e)\'h(m)_Fe(/\)’yg(dl').

r

In particular, this implies that
Sa(u)|,y = — [ Glalpr(do)
r

Proof. The fact that the domains of Fjy and Sy are the same as those of F' and S
follows from the fact that G is bounded. Also differentiability of Fp(\) in 6 follows

from the fact that the divided differences

(e(9+e)G . eOG’)/E
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are uniformly bounded in z for small € and, since e’y(dx) is a finite measure for

A € Dp. Applying Lebesgue dominated convergence gives
DeFy(\) = / Gl)eM @ —Fo) (7).
r

To conclude the proof fix y € Dg and let A = V.Sy(y) be it’s Legendre dual.
It follows that

So(y) = VSa(y) -y — Fo(VSp(y)).

Taking the derivatives of both sides in 6 yields

8959(2/) = vasg(y) Y — VF(VS@(Z/)) . 89V59 — 89F9<VS@) = —89F9(>\).

Our main tool will be the following large deviation type theorem.

Lemma A.3.9. Let G be a continuous bounded function on T' and let G, (x,) =

%2?21 G(x;) be it’s average (or sample mean). Then for each 6 € R and y € Dg,

1
lim — log (/
n—oo N )

where Sy is defined in Lemma A.3.8.

60,7 (A, | y>) = S(y) — Solv),

n
Yy

Proof. We begin by considering the decomposition (A.9) in weak form for test func-

tions ¢ € Cp(I'™) and ¢ € C.(R"),

[ () vy (dx) = [ etw) ( b(xa)i" (A%, | y>) ndy).
n ™ EZ
Upon choosing 9(x,) = e"eé"(xn), and denoting 4y, (dy) the pushforward of the

product measure 75" (dx,,) under h,(z), we find

/T e (y)Ye.n(dy) = / e(y) (/E

e?nten) n (dx, | y)) A (dy). (A11)

mn
Y
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Applying Lemma A.3.5 to both the measures 4, (dy) and 94, (dy) we conclude that
they have densities g,,(y) and gg.,(y). Moreover equation (A.11) implies that they

are related by

Gon(y) = / e ) 1 (dx,, | y) g (y).-
>

n
Yy

Taking the log of both sides, we conclude

1
— log (/
n b

Taking the limit as n — oo and appealing to Lemma A.3.5 again yields the result.

A 1 . 1 .
enGn G 7 (dx, | y>> = 5 0B on — 108G

n
Yy

O
We are now ready to prove Theorem A.3.7.

Proof of Theorem A.3.7. By the density of linear combinations of factored functions

in Cy(T'%), it suffices to prove the Theorem A.3.7 for functions of the form
G(r1, 29, ..., 7%) = G1(21)G1(22) - . . Gr(T)

for {Gj};?zl a collection of continuous bounded functions on I'.  Without loss of

generality, we may assume that

G (xp) iy, (dxx) = 0,

Tk
and therefore at least one of the functions {Gj}fz1 is mean zero with respect to
i, (dz). By the symmetry of the measure p"(dx, |y) under permutations of the

indices of x, = (x1,...,%,), we may assume that G; is mean zero, that is

/FGl(x)/uL,\y(dx) = 0.
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Again using the permutation symmetry, we find

/n Gi1(x1)Ga(x2) ... Gr(zp) " (dx, | y)
n—k+1

— /n (n—;k‘—f—l Z Gl(flﬁj)> G2(xn—k+2) - Gk(l’n) Mn(dxn | y)

Using the boundedness of {G}¥_, we conclude that

R k
[ GaaGataa)... Gulon @, )| 5 [ 1Guall (i) + (412
I'n Tn
where
. 1 <&
Gl,n(xn> = ﬁ ; G1 (33'1)

The proof will be complete if we can show that the first term on the right-hand-side
of (A.12) vanishes as n — oo. With this in mind, by Jensen’s inequality we may

estimate

n

1 A N
< — log (/ |:en9G1,n(Xn) + e—neGl,n(Xn):| ™ (dx,, | y))
n n

. 1 )
|G1,n(xn)| Mn(dxn | y) < %bg </ en@lGl,n(Xn)\ Mn(dxn | y)>

r (A.13)

Using the elementary fact that if {a,} and {b,} are two real sequences converging

to a and b respectively, then

: 1 nan nbn\ __
nh_)rgoﬁlog (e"* 4 ") = max{a, b}

We find upon sending n — oo in (A.13) and applying Lemma A.3.9 that

tim [ (G )| " |) < 7 max (S(0) — Sal0), S(0) — S-(9)} -

n—00 Jn
Where Sy(y) is entropy corresponding to the measure e?“1@+(dx). Sending 6§ — 0

and appealing to Lemma A.3.8 we find

lim % max {S(y) — So(y), S(y) — S-0(y)} = %Se(y)|,_, = — /F Gi(z)p, (dz) = 0.

6—0

279



]

In general, the symmetry of the measure p"(dx,, | y) and Theorem A.3.7 implies

that

lim én(xn)p"(dxn ly) = / G(Xk)ﬂiy(dxk),

n—oo rn Tk

where G"(x,) is a sum of shifts of the function G given by

n—=k
A 1
G(x,) = T Z_; G(Zig1, Tiva, .. Tiph). (A.14)

Indeed, this resembles an ergodic theorem, giving convergence of the averages
G, to their canonical average frk G dp®} with respect to the micro-canonical ensemble
1" (dx, |y). In fact, one can show the following stronger result, taken from Guo-

Papanicolau-Varadhan [70].

Theorem A.3.10. Let F be a bounded continuous function on T'* for some 1 < k <
n and let én(xn) it’s average given by (A.14). For eachy € Dg let \, = VS(y) € Dp

be its Legendre dual variable. Define for each 6 > 0 and y € Dg the set

>0},

Then for each y € Dg and d > 0, there is a constant C', independent of n, y, §, so

A57y = {Xn el :

Gulx,) = [ Gl (a0

that

1
lim —log " (Asy |y) < —C&°,

n—oo N

uniformly on compact sets in y.
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Stochastic Processes and Functional Analysis

Compactness and tightness criterion

Let (Q2,F,P) be a probability space and (E,T,B;) be a topological space
endowed with its Borel sigma algebra. A mapping X : Q — (E, 1) is called an “F
valued random variable” provided it is a measurable mapping between these spaces.
Every FE valued valued random variable induces a probability measure on (E, 1, 3;)
by pushforward. A sequence of probability measures {P,}, .y on B; is said to be
“tight” provided that for each ¢ > 0 there exists a 7 compact set K. such that

P,(K.) >1—ecforallneN.

Definition B.1.1. A topological space (F, 1) is called a Jakubowski space provided

it admits a countable sequence continuous functionals which separate points.

Our main interest in such spaces is the following fundamental result given in

[74].

Theorem B.1.2. Let (E,7) be a Jakubowski space. Suppose { Xy nen is a sequence
of E wvalued random variables on a probability spaces (Q,}",P) inducing tight laws
with respect to the topology 7. Then there exists a new probability space (2, F,P)
endowed with an E valued random variable X and a sequence of measurable maps
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{Tn}neN

T, : (O, F,P) = (Q,F,P)
with the following two properties:

1. For each n € N, the measure P, is the pushforward of P by Tn

2. The new sequence { X, }nen defined via X, = )~(n o fn converges P a.s. to X

(with respect to the topology T ).

We begin by recalling the following ‘compact plus small ball” criterion for

compactness in Frechet spaces.

Lemma B.1.3. Let F' be a Fréchet space. Then U C F' is precompact in F if for

every € > 0, there exists a compact set K, C F, such that
UCK.+ B,

where B is a p-ball centered at 0 of radius €, for a given metric p.

Proof. Fix ¢ > 0 and let K. be the compact set defined as above. Since K. is
compact and F' is a metric space, it is totally bounded. Therefore there exists a

finite collection of points {z;}¥, so that K, C Uf\il Bc(x;). However, since
N N
K C | JBe(x:) + B(0) € | Bae(w),
i=1 i=1
then K is totally bounded and therefore precompact in F'. O

In the stochastic setting, we make use of the analogous version as a tightness

criterion.
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Lemma B.1.4. Let F' be a Frechet space and {X,}nen be a sequence of F-valued

random variables. Assume that for all L € R, there exists a decomposition
X, =Yl 4+ 7L

where {YE} ey induces a tight sequence of laws on F. If in addition, ZL satisfies

for every n > 0,

ngrolo S%pP (z} ¢ B,) =0.

Then X,, induces tight laws on F'.

Proof. Fix e > 0 and choose a sequence {L;};en so that
stleP (2L ¢ Byy;) <e€/27.

By the tightness of Y,I', for each j € N there is a compact set K; C F such that
S%pP (Ve K;) <e/2

By the classical compactness criterion, Lemma B.1.3, the set

K = (K; + Bu;).

J

is compact in E. It follows that
sup P(X, ¢ K) <) <supP (Y, ¢ K;) +supP (Z5 ¢ Bl/j)) < 2.
Therefore { X, },en induce tight laws on F. O

Next, we recall the classical Dunford-Pettis compactness criterion on [Ll]w,loc.
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Lemma B.1.5. Let K be a bounded subset of [L'(R?)|ioc, then K is precompact in

[LY(RY)]w10c if and only if the following limit holds

lim sup | £, ]l = 0.
L—oo feK
In the stochastic setting, the corresponding tightness condition is:

Lemma B.1.6. Let p, be a sequence of probability measures on L'(RY)., then
{tn}nen are tight on [LY(RY)]y 10 if and only if for every n > 0 the following limit

hold

Jim sup g {f < (1f 2 ppsLllzr > n} = 0. (B.1)

Proof. First suppose that the limits (B.1) hold. Let € > 0 and choose a sequence

{Lk} such that
sup i, {f NSl > 1/k} <27k,
Define the closed set

A ={f s ll < 1/E}.

Then by the classical compactness criterion in Lemma B.1.5,

K:ﬂm
k

is a compact set in [L}(R?)]y 10c. Furthermore, we have

sup p, (K) < Zsup tn(Ag) < €.
n k n

Therefore {1, } are tight on [L'(R?)]y 10
Next suppose that {j,} are tight on [L}(R?)],,. And let K be a compact subset
of [L']y such that sup,, pu,(K¢) < €. For each n > 0 it follows by the compactness
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criterion in Lemma B.1.5 that for large enough L (depending on 7)), the following

set is empty
{f c K : Hfﬂlf\>LHL1 > 77} = 0.

Therefore for large enough L we have

sup pin {f ¢ | fLip=rllr > 1} < sup p, (K°¢) < e.
0

We now introduce a useful tightness criterion for probability measures on

Cy([L}],). First we will need a basic criterion for compactness in Cy([L1],,).

Lemma B.1.7. Let K C C([0,T7]; [L*(R%)],) and denote for each p € C®(R?), the

set
Ky, ={{f.¢) : feK}CC(0,T]).

Then K is precompact in C([0,T]; [L*(RY)]y) if any only if K is a weakly pre-
compact subset of L°([0,T]; LY(R?)) and K, equicontinuous in C([0,T]) for each

p € C=(RY).
This gives rise to the following tightness criterion on Cy([L1],,).

Lemma B.1.8. Let { i, }nen be a sequence of probability measures on C([0, T], [L*(R9)].,),
and for any o € C2(RY), let {v¥}en be the sequence of measures on C([0,T]) in-
duced by the mapping f — (f,¢). Then the measures {ji,}nen are tight if and only

if {v¥}nen are tight for every ¢ € C and for every n > 0 we have

Jim suppn{f 2 ey > M} =0,

n
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gg&sgpun{frHfﬂu>LHm%Lwi>ﬁ}=:Q

and

Jim w5 WUyl > ) =0

Proof. Define for any function f € C([0,7]) and § > 0 the modulus of continuity

ws(f) = sup [f(t) = f(s)].

[t—s|<d
We prove sufficiency first. Let € > 0, and let {¢;} be a dense subset of C°(RY).
Then by the classical tightness criterion for functions in C'([0,77]), we can conclude

that for each n > 0 and ¢;, we have
(lsimsup,un{f cws((f, ;) > n} = 0.
-0 p
Therefore for each j, k > 0 we may choose values (M, Ly, Ry, 0y ;) so that
supun{f: [ fll ooty > Mk} <27k

sup,un{f gz > 1/k:} <27k

Sup,un{f ; ||f]lB}°‘%k |Loo(L1) > 1/k} <27k
sup pind [+ s, (Uf 7)) > 1/k p < 2777,

Define the closed sets,

Ap = {f Nl < Mk} By, = {f N sl < 1/k}

Ce={F Loy lipwn S Uk} Dy ={F rws, (f03) < U/}

and let

K =()AxN BN CyN Dy,
7.k
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By the compactness criterion in Lemma B.1.7 it is straight forward to verify that

K is a compact subset of C'([0,T]; [L'],,). Furthermore, we have

() < D i (AR) + 3 1 (BE) + > il CF) + 3 pn(Df ) < e,

whereby tightness follows.

To prove necessity. We remark that since f +— (f, ) is continuous from
C([0,T]; [LY)) to C([0,T)) for every ¢ € C>°(R?), then tightness of {fi, fnen au-
tomatically implies tightness of {v¢},en. Now let € > 0 and let K be the compact
subset of C'([0,T7]; [L'],,) such that sup,, pi,(K¢) < €. Fix an n > 0. The compact-
ness criterion in Lemma B.1.7 implies that there exist (M’, L', R') such that for and

M > M L>1L'" R> R the following sets are empty

{F ek lea>M} =0,
{f € K [[fYporllrpewr) > ’f]} =0,
{f € K :[|[flpgllreerry > 77} =0,
Therefore, for such M, L and R large enough, we have
Mn{f Sl zgeczry > M} < pn(K°) <ee,
nd £ 1l > 0} < pa(K9) < e
Mn{f g ez > T]} < pn(K°) <
This completes the proof. O

We have the following representation and compactness criterion for Ly, (Mj).

Lemma B.1.9. The space Lgl,(/\/li) p € [1,00] is continuously linearly isomorphic
to L(Co(R?), Lt ) the space of continuous linear operators from Co(R?) to LY, under
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the topology of pointwise convergence. Similarly [LY ,(M)]ioc is continuously linearly

isomorphic to L(Co(R?), [L} Jioc)-

Proof. For each f € Lt (M

*) we can trivially associate a bounded linear operator

Sf : Co(Rd) — LP

t,x

by Srp = (f, ¢), clearly the map f — S is one-to-one, linear,
and continuous from Lf (M) to L(Co(R?), L7,) with it’s pointwise topology.
Conversely for each bounded linear operator S € L(Co(R%),L{,) one may
define for each g € L{, ¢ = p/(p — 1), the bounded linear functional h, : Co(R%) —
R, by hy¢ = (S¢, g) which, by the Riesz-Markov theorem can be represented by a

measure f, € M,, satisfying

hep = (fg: ) = (5¢,9).

Since the mapping g +— f, is clearly a continuous linear mapping from L{, to M,
one can readily prove that for any bounded Borel £ C [0,7] x R¢, that v(E) =
f1, defines an M, valued measure that d¢tdx absolutely continuous and of o finite
variation. Since M, is a dual space, it has the weak-* Radon-Nikodym property (see
[97] Theorem 9.1) and therefore there is a measurable function fg : [0, 7] x Q — M

such that [{fs, ®)| € [L},]ioc and

t,x

(S6,15) = ((E), ) = / [E (fs: d)dudt.

Using density of simple functions in L{, we can conclude

So.0) = [ [ (fs.0pgaaat. (B.2)

for any g € L{,. Taking the sup in g € L{,, ||g[z« = 1, on both sides of (B.2) we
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find

1K D)lzp, = [Tollzp, < o0

and therefore f € L} (My). Moreover this identity implies that the mapping S +—
fs is continuous from £(Co(R?), L ) with it’s pointwise topology to L7 (M), while
identity (B.2) implies that S +— fg is linear and one-to-one.

The proof on [L} ,(M;)]iec is similar and can be proved by the above argument

on compact sets of [0,7] x R?. O

Lemma B.1.10. Let K be subset of [L} ,(M})|e, p € [1,00], and let {¢p}3, C
C*(RY) be a countable dense subset of Co(R?). Define the map Iy, = [L} (M)]ioc —

[Lf,x]loc by

Mg, (f) = (f, dx)-

Then K is a compact subset of [L{ ,(M3))oc if and only if K is bounded in L} ,(M)

and g, K is compact in [Lf Jioc for all j > 1.

Proof. Let {f.}52, C K, and assume that j > 1, {{fa, ¢;) }o2; is compact in [L}, Jioc.
By a standard argument we may produce a diagonal subsequence, still denoted
{fu}ol1, such that (f,, ¢;) converges asn — oo for each j > 1. Identify [L} ,(M,)]ioc
with £(Co(R%); [L] Jioc) as in Lemma B.1.9, and for each f € [L} (M,)]ioc let T}
denote the corresponding element of £(Co(R?); [LY . |ioc). Since {f,}o2, is bounded

in [L} ,(M3)]ioc, we have for any compact set C' C [0,T] x R?,

sup HTfnéb”Lf@(c) = H<fn,¢>||L§z(C) < 0.
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By the uniform boundedness principle,

sup ||]lchn Hc(CO(Rd);[L?,gChOC) < 0o.
n

Therefore the mappings ¢ — 1T}, ¢ = Lo (fn, ¢) are equicontinuous. Since {¢;}52,
is dense in Cy(R?), this equicontinuity implies that for each ¢ € Co(R?), {1c(fn, )},
is Cauchy in L} (C) and therefore {(f,, )}, is convergent in [L} ]ioc. This limit

n=1

defines a mapping f : Co(R?) — [L{ ,Jioc, by

F(6) = Jim (£,.6).
It is a simple consequence of the linearity of (f,, -) and the boundedness of { f,,}5°,,
that the limiting f belongs to £(Co(R?), [L} ,]ioc), and therefore belongs to [LY , (M)]ioc-
Therefore K is sequentially compact. Compactness of K now follows from the fact
that [L7,(M})]c is a sequential space.

The converse is simple. If K is compact, since Il4, are continuous, Il K are

compact in [L},]ioe- O

Lemma B.1.11. Let (Q, F,P) be a probability space, and let { f, }nen be a bounded
sequence in LP(Q x [0,T] x R*) for some p € [1,00]. Then {fn}nen induces a
tight family of laws on [LY ,(M?)|iee if and only if for all o € CZ(RY), the sequence

{{fns ©) Inen induces a tight family of laws on [LY ,]ioc-

Proof. Clearly if {f,}nen induce tight laws on [L{,(M;)]ic then for each ¢ €

C>(R%), since the mapping f — (f, ) is continuous from [LE o (M) oe tO [LY Jioc
{(fn: @) Fnen is tight on [LY Jioc.

We proceed in the other direction by explicitly constructing a set K which is
compact in [Lf ,(M)]i,c which has uniformly small probability. Fix and ¢ > 0 and
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let {@;}52, € C°(RY) be a dense subset of Co(RY). Since {(fn, ;) }nen induce tight
laws in [L}]ioc, then for each j € N there exist a compact set K; in [L} ]ioc such

that
sup P{(fn, ;) ¢ K;} < e27.

Define, as in Lemma B.1.10, IT,,, f = (f, ¢;). Since IL,, is continuous from [L] , (M})]ioc

v

to [LY ,]ioc, the pre-images Hd_)lej are closed in [Ly ,(M)]ioc. Let C = sup,, E|| fo |1

t,$ t,x,v

and define
B={fe,:Ifly,, <C}

and note that B is a bounded subset of [L} ,(M)]ic. Now, define the closed set

v

K= ﬁ (B n H;j}g) ,

J=1

and note that K C B is a bounded subset of [L},(M)]ic, and for each j € N,
Il, K is a closed subset of K, so the set I, K is compact in [L}, ]ioc. Therefore
Lemma B.1.10 implies that K is compact in [L},(M})]ie. We conclude the proof

with

P{fug K} <P{Iflp,, > O} + D P{lfu ) & K} < 2
j=1
O

The following product-limit lemma can be established in a classical way, using

Egorov’s theorem.

1

tww- Assume that

Lemma B.1.12. Let {g,}nen and {h,}nen be sequences in L

[e.e]

2.0 and converges to g in measure on [0, T] x R*?,

{gn }nen is uniformly bounded in L
Then we have the following:

291



1. If the sequence {hy,}nen converges to h in [L}

towlws then the sequence of prod-

ucts {gnhn fnen converge to gh in L, ]w.

2. If the sequence {hy, }nen converges to h in [L}

t,x,v

JwNL{ (M), then the sequence

of products {gnhn}nen converge to gh in Ly (M)

The next lemma provides a procedure for identifying a continuous, adapted

process as a series of one dimensional stochastic integrals.

Lemma B.1.13. Let (Q, F, P, {F'}L,, {Be}2,) be a stochastic basis and let (M),
be a continuous (F;)1_, martingale with the quadratic variation process (f(f |fs|32(N))'f:0.
Moreover, assume that for each k € N the cross variation of(Mt)tT:0 with By, is given

by the process (f(f fu(s)ds)L,. Under these hypotheses, the martingale may be iden-

tified as

MZ;AMMMﬁ

L? Stochastic Velocity Averaging

Proof of Lemma 7.4.4. For convenience we denote the velocity averaged process by

Pt mw) = (f, ) (t w3 w).

To begin, we assume that f is regular enough for all the following computations
to be well defined. Let F, denote the Fourier transform in x and let £ be the
corresponding Fourier variable, for simplicity denote fA = F.(f) and g = F.(9).

Taking the Fourier transform of both sides of (7.28) in It6 form gives

at.]/c\"_ v - 5.]?_{' fx(dlvv(fo-k ﬁk)) = Fx(ﬁcff) +/g\
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If |£] < 1 we have the simple estimate

T
E/ / €135 g1 d€dE <
0 R4

To show the H,/ estimate, it suffices to consider |{| > 1. We will find it useful to

2 2
=Bl Sl

solve this equation with the addition of a damping term on both sides (corresponding

to a pseudo-differential operator acting on f in ). Let A € C*(R¢), we now consider
O + v &F + Foldiva(for B) + A = FolLo f) + G+ AT
Solving this via Duhammel, we find
t
Fit.€,0) = OO (6 0) 4 X(e) [ e MO Fls 6, 0)ds
0

t t
+ / e —(A(&)+iv-€)(t—s) ( g’ ) ds + / e—(>\(§)+iv'§)(t—5)fx (»Caf> (3’ é“, ’U) ds
0 0

_ Z/O OFiwE)(t=s) I (divy(orf))(s, & v)dBk(s).

(B.3)
Let ¢ € C>°(RY), upon multiplying both sides of (B.3) by ¢ and integrating in v,

we see that the velocity average p¢ satisfies

P9 = [ NI fo(g) do

t
+/ (/d e~ AO+OE=9T (5 ¢ ) dv> ds (B.4)
o \Jr

00t
-2 / ( / e MOTOUIE (¢ divy (01 f)) (s, €, v) dv) dBi(s)
k=170 \JRI
Where Iy is defined so that

~

To(t,€,0) = 0(v) (MOT(t.€.0) + 3.6 0) + Fol Lo N)(1.6,0)) . (BS)

Note that the v integrals in equation (B.4), can be written as a Fourier transform
in v. We will denote such a Fourier transform in both x and v as F,,, and denote
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by n the Fourier variable dual to v. We find
t

po(t,€) = e MOF, ,(0(v) fo) (€, 1) +/ e NI F, (Do) (s, €, &(t — 5))ds
0

=3 [ o o), 60— ()
k=1

=0+ 1+ Is.

The first term, I;, we can bound

|]1|<t7€) S |Fx,v(¢f0)(€>§t)|

For the second term, I5, we have by Cauchy-Schwartz
t t 9
|12|2(t’§) < (/ e 2AE)(t=s) ds) (/ (6_>\(€)(t_8)|fx,v(FD)($7gag(t_ 3))0 ds)
1o t 0
<5 )

The term, I3(¢,&) is a Martingale with quadratic variation

[ (O Ems € - ) s

U

2

e MO (To)(s,&,E(t — 5))| ds.

where 'y (t, z,v) = ¢ div, (o f)(t, z,v). We conclude by the BDG inequality that

E|L (1 €) <E/ S (e X0, (Do) €, — 5))) .

0 k=1

and therefore

E[p?(t,&)|* < BlF..(6 fo) (€. &)

1 —A t—s 2
+r<§)E/ ( @) )|fx,v(ro)(57§7§(t_5))‘) ds
+E Z OCE, (1) (5,6, €(t — ))]) ds.

The following identities can be readily verified

= ¢ div,(opf) = divy(¢ oy f) = Vo - oy f,
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and

PLof =V (Dy¢ f)—2divy(DeVof)+Vap: Dy f —divy(G, ¢ f) + Vo - G, f,

where we have denoted for convenience

l)(7 = i0k®0k and GJ = iak ‘VO'k.
k=1

k=1

This implies
]:x,v(rkr) =n- ]:x,v(gb ka) - }—xm(vqb : ka)
and

Fm,v(¢£0f) = _77® n: fx,v<DG¢f> - 2”7 : fx,v(DUv¢f) +-Fx,v(vg¢ : DU .{]% 6)
— i Fou(Go @ f) + Fuu(Vo - G, f).

Using that zPe™** < C,A\"?, where C, is constant depending on p, we may

bound

| Fou(T) (5,6, 26)| S ATYENFon(@ o f) (5,6, 2 )| + [Fao (V- 01 f) (5,6, 26
and using the definition of I'y, (B.5), and (B.6) we can bound
e M| Fru(To) (s, €, 2 €)]
S AMFew(d (5,6, 26)| + | Frw(99)(5, 6, 2 + A2 |62 Frw(0D6 f) (5,6, 2 )
+ A ENFrn(DoV O f) (5,6, 26 + | Fan(Vig = Dof)(s,6,28)]

AT Fen(0Ga f)(5, 6, 26| + [ Fow (V- Gof) (5,6, 26)].

Integrating E[p?(t, £)|? over [0, T] and using the previous two bounds we get for a.e
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£ e RY,
B[ 9P SE [ Fulo hE P
0 ) ~Y 0 5 )
T t
{E / / {fo,v(aﬁf)(s,f, (t = O+ A | Foa(69)(5, €, (t — 5)€)P
0 0
AT Fon (0D ) (5.6, (E — ) ) + A EPIFon( DoV £)(5.€, ( — ) )

+ AT Fou(Vid « Dof)(s,6, (t = 8) ) + AP JEP | Fuiw(0Go f) (5, €, (t = 5) €)?

ANV - Gof)(5.6, (E = 8) )P + Y AP IEP [Frn(@onf) (5.6, (= 5) )
k=1

+ Z ‘fz,v<v¢ ) ka)(S,f, (t - 8) f)lQ} dsdt.
k=1

(B.7)
Let’s remark that, apart from the initial data, the above estimate is comprised

entirely of integrals of the form

/ / | Frw(h)(s,&, (t — 5)&)Pdsdt.

Following the technique in [18], such integrals can be estimated by changing variables
to (z,8) = (J¢[(t — s),s), using Fubini, applying the classical trace theorem on the

one dimensional integral in the z variable, and applying Plancharel. We find that
for any v > (d — 1)/2,

//|J—“M £, (t — s)€) 2dsdt<|§|1// Fonl (3,5,2%)

st [ [ 0 bR ® .o Pas

2

dzds

and for the initial data,
T
|1 Eo s enfa s 67 [ pEPIE G 0P
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Applying the above two estimates term by term to (B.7), we can readily estimate

for a.e. &,

E/0T| (L, &)|2dt < Cy o M(E) /|f0 |2+E/ / 1F(€, v, 8)[2dvds

I E / (€. v. 9)duds),
0 R4

where

[ I TS WP (S B

MO =5 2er T aer Tieno T T

and

Coo S N0 + VeI + [V2I) (1 + [v]*) |z

+lo- Vo)
- ;

Choosing A\(&) = [€[?/3, (veally take A(€) = (e+]¢|?)'/? and take ¢ — 0) we conclude
that

M(&) = 3|E|73 + 217 + €] 7% =< 6|¢| /3 if €] > 1.

Therefore

T
E/O /R 1€]Y3] 792 Lep1 déds < CU,¢(||fo||igyv +E|fI3;  + E||g||2Lim>,

whereby we have the desired inequality using the Fourier characterization of H 16,

The above proof can be extended to weak solutions f € L2 by first mol-

w,t,z,v
lifying the equation in (x,v) as in the proof of theorem 7.3.8 and including the
commutators with the term ¢ (along with another stochastic integral). The above
computation, with the addition of a stochastic integral to the right-hand-side, still

apply and the resulting estimates are computed in terms of the L2 norm of the

w,t,x,v

right-hand-side, the commutator contribution will then vanish as the mollification
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parameter goes to 0. Furthermore we may pass the limit in each term on the right-
hand side using the properties of mollifiers. The resulting H'/® estimate on the
mollified velocity average can be easily used conclude the associated H'/® estimate

on the limiting f by a monotone convergence argument on the Fourier side.
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