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Inspired by [1, 2], modern general equilibria under uncertainty are modeled

based on the recognition that all risks cannot be eliminated, perfect hedging is not

possible, and some risk exposures must be tolerated. Therefore, we need to define

the set of acceptable risks [2] as a primitive of the financial economy. This set

will be a cone, hence the word conic. Such a conic perspective challenges classi-

cal economics by introducing finance into the economic models and enables us to

rewrite major chapters of classical micro- and macro-economics textbooks [3,4]. The

classical models dictate that economic players are able to trade the whole of their

endowments at what is known as a market-clearing price and direct all proceeds

to the consumption of goods and services. According to these models, the aggre-

gate consumption does not exceed the total endowment, suggesting that finance is

not a necessary component in the economy. This work proposes a case in which

some gap occurs between the aggregate supply and demand whereby the financial

primitives cover the aforementioned gap. This also generates a bid-ask spread at

equilibrium depending on the cone of acceptable risks [2]. This work questions the



traditional law of one price and poses a direct challenge to Adam Smith’s “invisible

hand” theory. Since the housing crisis in 2008, economists and statisticians have

questioned the law of one price (see e.g., [5]). The implications of this academic

debate are sweeping and affect players at all levels of the economy. Though we

spend little time on empirical applications, the perceived empirical failures of the

standard complete markets general equilibrium model stimulated the development

of this work. For example, the standard complete markets model has the following

empirical problems: (1) there is too much correlation between individual income

and consumption growth in micro data (see e.g., [6, 7]); (2) the equity premium

is larger in the data than is implied by a representative agent asset-pricing model

with reasonable risk-aversion parameter (see e.g., [8]); and (3) the risk-free interest

rate is too low relative to the observed aggregate rate of consumption growth (see

e.g., [9]). There have been numerous attempts to explain these puzzles by altering

the preferences in the standard complete markets model (see e.g., [10]). Alterna-

tively, one might as well abandon the complete markets assumption and replace it

with some versions of either exogenously [11] or endogenously [12] incomplete mar-

kets. However, this work takes a totally different approach in the sense that the

classical complete markets models will be sub-cases of our conic framework.
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Preface

The classical thinking is that all the financial system does is to operate as an

intermediary, bringing borrowers and lenders together, but the size of the economy

is not affected by the financial system. In a classical complete markets model, as a

direct consequence of the fundamental theorems of welfare economics, the financial

system is irrelevant to the actual economy. In fact, if all one wants to prove is that a

free market system can deliver what a central planner can mathematically achieve,

then one should operate under the rules of the central planner. Endowments, pref-

erences, and the technology is the economy, and finance has to be irrelevant. Of

course, what we show in this work is that the financial market configurations have

real welfare effects and that a free market system can do better than a central plan-

ner because a conic economy is ready to take extra risk. Now, of course, you could

get into the troublesome situation of being at a very high aggregate welfare level,

like in 2007 when the financial system was so forgiving that 2008 came and knocked

the whole system out. This happened because the financial market was simply

too forgiving in 2007. A conic perspective towards the economy enables us to ask

some very serious questions; How forgiving should the financial system be? In other

words, how much risk taking should be permitted? Who or what determines the

financial market configurations? In other words, is there a way to write an endoge-

nous model of the financial market? What role can the government play in managing

the financial market and therefore the size of the economy? Simply because of the

implicit assumption of the irrelevance of the financial market to the actual economy,

these fundamental questions have been totally ignored and are still open, yet to be
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answered. In fact, these are questions of managing the capital requirements and

leverage of an economy and should be addressed by the Federal Reserve. Basically,

in a free market environment, we say that we don’t want humans, governments, or

committees to make the decisions. All decisions should be made in the market, but

the market has its own incentives. Perhaps an example from the airline industry

can help clarify these incentives. The point is that the Federal Aviation Adminis-

tration (FAA) decides the weight of a plane that can take off. United Airlines does

not make a decision about the weight of its aircraft at take off. The rules for that

should be set by the FAA, because airlines have an incentive to allow more weights.

However, there is a science behind how much weight a plane can tolerate, and the

FAA relies on that science. Similarly, for the economy in general and the Federal

Reserve in particular to manage leverage and determine how much capital backing

it needs for risky positions, we need to have a science of leverage. However, we can

not have a science of leverage, if we assume that we live in complete markets and

there is no risk. Because then we don’t need capital and so we will never figure

out leverage policy listening to classical economics since it has already assumed it

away. Fortunately, the Basel Committee are making recommendations on capital

requirements but this is all done outside of professional economics.

iii



Dedication

To my family, Mahdieh, Parvaneh, Mehdi, Cyrus, and Dorsa.

iv



Acknowledgments

I owe my gratitude to all the people who have made this dissertation possible.

First and foremost, I would like to thank my advisor, Professor Dilip Madan, for

being a constant source of inspiration throughout this work. It has been a great

pleasure to work with and learn from such an extraordinary individual. Moreover,

thanks are due to Professor Luminita Stevens, Professor Mark Loewenstein, Profes-

sor Emel Filiz-Ozbay, and Professor Eric Slud for agreeing to serve on my disser-

tation committee and for sparing their invaluable time reviewing the manuscript. I

would also like to acknowledge the fact that this dissertation would have been a dis-

tant dream without the existence of a truly interdisciplinary program; i.e., AMSC

(Applied Mathematics & Statistics, and Scientific Computation). In addition, I

would like thank the Mathematics, Economics, and Finance community at UMD

for warmly accepting me as an outsider and giving me the invaluable opportunity

to learn from them.

v



Table of Contents

List of Tables viii

List of Figures ix

1 Conic general equilibrium 1
1.1 Conic financial market . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pure exchange economy – single commodity . . . . . . . . . . . . . . 4

1.2.1 Conic Edgeworth box . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Welfare analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Equilibrium prices and quantities . . . . . . . . . . . . . . . . . . . . 18
1.4 Asset markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Pure exchange economy – multiple commodities . . . . . . . . . . . . 24
1.6 Firm behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Dynamic conic general equilibrium 35
2.1 Physical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Time 0 trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Sequential trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Recursive formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Conic real business cycle model 58
3.1 Physical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Time 0 trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Sequential trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Recursive formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



4 Primer on conic asset pricing 82
4.1 Pricing redundant assets . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 j-step pricing kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Arbitrage-free pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Equivalent martingale measure . . . . . . . . . . . . . . . . . . . . . 92
4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 96

vii



List of Tables

1.1 Radner equilibrium – exchange economy. . . . . . . . . . . . . . . . . 13
1.2 Conic equilibrium – exchange economy. . . . . . . . . . . . . . . . . . 14
1.3 Welfare analysis for different financial configurations. . . . . . . . . . 15
1.4 Radner equilibrium – multiple commidities. . . . . . . . . . . . . . . 28
1.5 Conic equilibrium – multiple commodities. . . . . . . . . . . . . . . . 28
1.6 Classical equilibrium – production economy. . . . . . . . . . . . . . . 32
1.7 Conic equilibrium – production economy. . . . . . . . . . . . . . . . . 32

viii



List of Figures

1.1 Cones of acceptable individual AM and aggregate AN risks. . . . . . 10
1.2 Cones of acceptable individual AM and aggregate AN risks for the

case of Radner equilibrium. . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Conic Edgeworth box. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Box defined by equilibrium allocations. . . . . . . . . . . . . . . . . . 15
1.5 Utility frontier retracts as the market becomes more strict towards

individual risks. This figure and the next one are obtained by plotting
actual numerical utility values for different endowment redistributions
resulted from a Monte-Carlo sampling procedure. . . . . . . . . . . . 17

1.6 Utility frontier retracts as the market becomes more strict towards
aggregate risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Arrow-Debreu securities. . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



Chapter 1: Conic general equilibrium

Building upon [1, 13] and based on the recognition that all risks cannot be

eliminated, we take a novel perspective towards modeling general equilibrium under

uncertainty. General equilibrium under uncertainty (see [3], chapter 19) lies at the

foundation of a very rich body of literature in economics and finance theory (see

e.g., [14–17]). Our modeling approach relies on defining the set of acceptable risks [2]

(see definition 1.1) as a primitive of the financial market. Such a set will be a cone

(see figures 1.1 and 1.2), and that is why we use the word conic.

1.1 Conic financial market

Let us start by assuming that an exhaustive set S of states of the world is

given to us. For simplicity, we take S to be a finite set. A typical element is denoted

by s ∈ S. We suppose that there are two dates, t = 0 and t = 1, that there is no

information whatsoever at t = 0, and that the uncertainty has resolved completely

at t = 1. The probability of observing a particular event s is denoted by π(s). The

probability distribution π is therefore given by π = {π(s) : s ∈ S}. The financial

market is characterized by two setsM andN of probability measures or “generalized

scenarios” [1, 2] identifying the “acceptable” amount of individual and aggregate
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risks, respectively. Essentially, a risk is a random variable and is acceptable to

the market if it has a positive valuation under all generalized scenarios. The more

scenarios considered, the more conservative (ambiguity1 or uncertainty averse [26])

is the financial market. We denote a typical scenario by π̂ = {π̂(s) : s ∈ S}. We

assume π ∈ M ⊂ N which indicates that the physical measure π is one of the

scenarios considered by the financial market and that the financial market is more

strict towards aggregate risk. Using the setsM and N of generalized scenarios, we

can define the notion of acceptable risks2 .

Definition 1.1 (acceptable risks). Given a state price vector q = {q(s) : s ∈ S},

the set of acceptable individual AM (or aggregate AN ) risks z = {z(s) : s ∈ S} to

the financial market is defined by

AM (or AN ) :=

{
z :
∑
s∈S

π̂(s)

π(s)
q(s)z(s) ≥ 0, ∀π̂ ∈M (or N )

}
.

In other words, an individual or aggregate risk z = {z(s) : s ∈ S} is acceptable to

the market if it has a positive valuation

∑
s∈S

π̂(s)

π(s)
q(s)z(s)

under all generalized scenarios considered by the market at the individual or aggre-

gate level, respectively. As we proceed throughout this work, it is always a good

1There seems to be a close link between this work and the existing literature on general equi-

librium under ambiguity (see e.g., [18–25]) where the consumers’ beliefs are altered to reflect

uncertainty aversion. In contrast, this work adopts standard preferences for the households and

models the financial market as an ambiguity averse entity.

2For an axiomatic treatment of the notion of acceptable risks, the reader is strongly encouraged

to refer to the paper by Artzner, Delbaen, Eber, and Heath [2] on coherent measures of risk.
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exercise to keep in mind the extreme cases of M = {π} being a singleton and

N = {π̂ :
∑

s∈S π̂(s) = 1} being the set of all probability measures. In particular, if

M = {π} is a singleton, a risk z is acceptable to the market at the individual level

if it has a positive price in the traditional sense; i.e.,

∑
s∈S

q(s)z(s) ≥ 0.

Similarly, ifN = {π̂ :
∑

s∈S π̂(s) = 1} is the set of all probability measures, then only

random outcomes that have positive values in all states of the world are acceptable

to the market at the aggregate level; i.e.,

z(s) ≥ 0, ∀s ∈ S.

This is because the test measures {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} are

all included in N . Furthermore, the notion of acceptable risks defined above (see

definition 1.1) leads naturally to the definition of ask and bid prices. Basically,

the price at which one can trade depends on the direction of the trade and there

are typically different quotes at which one may sell or buy. The best price (bid)

at which one may sell a random outcome z of cash flows is then the infimum or

minimal valuation of the cash flow being priced under all generalized scenarios.

Similarly the best price (ask) at which one may buy a random outcome of cash

flows is the supremum or maximal valuation under all scenarios.

Definition 1.2 (ask and bid prices). Given a state price vector q, the ask and bid

prices of a random payoff z are defined as

ask(z;M, q) = sup
π̂∈M

∑
s∈S

π̂(s)

π(s)
q(s)z(s),
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and

bid(z;M, q) = inf
π̂∈M

∑
s∈S

π̂(s)

π(s)
q(s)z(s),

respectively.

From the observation of equality between buying a random cash-flow z and selling

its negative −z, one can simply deduce that ask(z;M, q) = − bid(−z;M, q). By

virtue of the infimum, the bid price is a concave function on the space of random

outcomes and is suited to being maximized. The ask price on the other hand is a

convex function of the random outcomes, suited to being minimized. Moreover, it

is worth noting that if M = {π} is a singleton, then

ask(z;M, q) = bid(z;M, q) =
∑
s∈S

q(s)z(s),

and we recover the classical law of one price. Having configured our financial market

structure, in the following, we will introduce the conic equilibrium concept for a pure

exchange economy with a single commodity.

1.2 Pure exchange economy – single commodity

Let us start with an exchange economy composed of I > 0 consumers and

one commodity. Each consumer i = 1, . . . , I is characterized by a vector of initial

endowments yi = {yi(s) : s ∈ S} and a utility function U(·) over consumption plans

ci = {ci(s) : s ∈ S} given by

U(ci) =
∑
s∈S

u[ci(s)]π(s).
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Notice that we are imposing identical preference orderings across all individuals i

that can be represented in terms of expected utility with common utility function

u(·) and common probability distribution π. In the following, we will present a

formal definition of the conic equilibrium concept. Later, we will elaborate on key

features and consequences of such a modeling approach using concrete examples.

Definition 1.3 (conic equilibrium). Given a financial economy

(
S, π, U(·),

{
yi
}I
i=1

,M,N
)
,

a collection formed by

• a state price vector q = {q(s) : s ∈ S} and,

• for every consumer i = 1, . . . , I, trading plan zi∗ = {zi∗(s) : s ∈ S} at t = 0

and consumption plan ci∗ := {ci∗(s) : s ∈ S} at t = 1,

constitutes a conic equilibrium if:

• given the state price vector q and the financial market configuration M at the

individual level, for every consumer i = 1, . . . , I, the trading zi∗ and consump-

tion ci∗ plans solve the household’s problem

max
zi,ci

U(ci) =
∑
s∈S

u[ci(s)]π(s)

s.t. ci(s) ≤ yi(s) + zi(s), ∀s ∈ S,∑
s∈S

π̂(s)

π(s)
q(s)zi(s) ≤ 0, ∀π̂ ∈M, (1.1)

5



• and, given the financial market configuration N at the aggregate level, the state

price vector q is chosen such that the markets clear; i.e.,

∑
s∈S

π̂(s)

π(s)
q(s)

∑
i

zi∗(s) ≤ 0, ∀π̂ ∈ N . (1.2)

The budget constraint (1.1) can be equivalently expressed as ask(zi;M, q) ≤ 0, or

−zi ∈ AM. The latter means that −zi should be acceptable to the market at the

individual level. The market clearing condition (1.2), on the other hand, indicates

that

−
∑
i

zi∗ ∈ AN ,

meaning that the aggregate risk of the economy −
∑

i z
i
∗ should be acceptable to the

market. Note that for the extreme cases ofM = {π} andN =
{
π̂ :
∑

s∈S π̂(s) = 1
}

,

the conic equilibrium concept defined above simplifies to the traditional Radner equi-

librium (see [3], chapter 19). Specifically, household i’s budget constraint simplifies

to ∑
s∈S

q(s)zi(s) ≤ 0,

while the market clearing condition matches the classical one; i.e.,

∑
i

zi∗(s) ≤ 0, ∀s ∈ S.

This particular setup is exactly what is known as the complete markets model. The

market clearing condition in a traditional complete markets model can be equiva-

lently written as ∑
i

ci∗(s) ≤
∑
i

yi(s), ∀s ∈ S.

6



This indicates positive excess supply meaning that the aggregate endowment should

exceed the aggregate consumption of the economy in all states of the world. This

suggests that finance is not a necessary component of the economy. In fact, if

we live in an economy in which no matter what happens the supply should always

exceed demand, the economy has to close down and there should be no transactions.

Basically, one can not actually ever conceive of any economy capable of guaranteeing

positive excess supply in every state of the world. One major contribution of this

work is its ability to relax the classical positive excess supply requirement by allowing

N to be a proper subset of the set of all probability measures. In particular, the

market clearing condition (1.2) allows the aggregate economy to consume more

than its endowment in some states of the world. Moreover, it is also instructive

to consider the case where M =
{
π̂ :
∑

s∈S π̂(s) = 1
}

. At this other extreme, no

risk is tolerated by the financial market at the individual level, and households are

left to consume their endowments; i.e., ci(s) ≤ yi(s), for all s ∈ S. Thus, our

conic perspective towards general equilibrium under uncertainty provides us with a

unifying framework to model a whole spectrum between incomplete and complete,

illiquid and perfectly liquid markets, and beyond. In the following, we will elaborate

more on the conic equilibrium concept using a common tool in general equilibrium

analysis, namely, the Edgeworth box (see [3], chapter 15). This allows us to study

the interaction of two individuals trading one commodity under uncertainty.
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1.2.1 Conic Edgeworth box

Consider an economy in which there are two states of the world S = {s1, s2}

and two consumers with endowments y1 = {y1(s1), y1(s2)} and y2 = {y2(s1), y2(s2)}.

Let (π, 1−π) denote the physical probability measure, where π is the probability of

being in state s1. Thus, the financial market can be characterized by two intervals

M = [mL,mR] and N = [nL, nR] of generalized scenarios π̂. Given the state price

vector3 (q, 1− q), consumer i = 1, 2 solves

max
ci(s1),ci(s2),zi(s1),zi(s2)

U(ci) = πu[ci(s1)] + (1− π)u[ci(s2)]

s.t. ci(s) ≤ yi(s) + zi(s), ∀s ∈ S = {s1, s2},

π̂

π
qzi(s1) +

1− π̂
1− π

(1− q)zi(s2) ≤ 0, (1.3)

∀π̂ ∈M = [mL,mR] ⊆ [0, 1].

Here, mL ≤ π ≤ mR. Since the budget constraint (1.3) is a linear function of π̂, its

maximum is achieved at either mL or mR boundary of the interval M. Therefore,

this constraint can be equivalently expressed as

mL

π
qzi(s1) +

1−mL

1− π
(1− q)zi(s2) ≤ 0,

mR

π
qzi(s1) +

1−mR

1− π
(1− q)zi(s2) ≤ 0.

Moreover, the corresponding set of acceptable individual risks AM to the financial

market is therefore a cone and is depicted in figure 1.1. Note that if mL = mR = π,

3It should be noted that the state prices are determined upto a constant in equilibrium. There-

fore, we seek a state price vector of the form (q, 1− q).
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these two constraints merge into the classical one; i.e.,

qzi(s1) + (1− q)zi(s2) ≤ 0,

which corresponds to the usual budget constraint in the Radner equilibrium (see [3],

chapter 19). Figure 1.2 depicts the corresponding cone (half space) of acceptable

individual risks for the case of the Radner equilibrium. The first order conditions

of consumer i’s problem can be written as

πu′[ci∗(s1)] =
mL

π
qµiL +

mR

π
qµiR,

(1− π)u′[ci∗(s2)] =
1−mL

1− π
(1− q)µiL +

1−mR

1− π
(1− q)µiR,[

mL

π
qzi∗(s1) +

1−mL

1− π
(1− q)zi∗(s2)

]
µiL = 0,[

mR

π
qzi∗(s1) +

1−mR

1− π
(1− q)zi∗(s2)

]
µiR = 0,

ci∗(s) = yi(s) + zi∗(s), ∀s ∈ {s1, s2}.

Here, µiL and µiR are the Lagrange multipliers on the household’s budget constraints.

It is worth observing that

πu′[ci∗(s1)]

(1− π)u′[ci∗(s2)]
=

q

1− q

(
mLµ

i
L +mRµ

i
R

(1−mL)µiL + (1−mR)µiR

1− π
π

)
,

which for the Radner equilibrium, i.e., mL = mR = π, simplifies to the classical

relationship between the marginal utilities of consumption across states

πu′[ci∗(s1)]

(1− π)u′[ci∗(s2)]
=

q

1− q
.

Furthermore, the market clearing condition (1.2) can be written as

π̂

π
q[z1
∗(s1) + z2

∗(s1)] +
1− π̂
1− π

(1− q)[z1
∗(s2) + z2

∗(s2)] ≤ 0, ∀π̂ ∈ N = [nL, nR] ⊆ [0, 1],

9



z(s1)

z(s2)

mL

mR

nL

nR

AN

AM

Figure 1.1: Cones of acceptable individual AM and aggregate AN risks.

z(s1)

z(s2)

mL = π

mR = π

nL = 0

nR = 1

AN

AM

Figure 1.2: Cones of acceptable individual AM and aggregate AN risks
for the case of Radner equilibrium.
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or equivalently as

nL
π
q[z1
∗(s1) + z2

∗(s1)] +
1− nL
1− π

(1− q)[z1
∗(s2) + z2

∗(s2)] ≤ 0,

nR
π
q[z1
∗(s1) + z2

∗(s1)] +
1− nR
1− π

(1− q)[z1
∗(s2) + z2

∗(s2)] ≤ 0.

Therefore, the corresponding set of acceptable aggregate risks AN to the financial

market is a cone and can be depicted as in figure 1.1. Here, M ⊆ N , i.e., nL ≤

mL ≤ π ≤ mR ≤ nR. Note that if nL = 0 and nR = 1, the market clearing condition

simplifies to

z1
∗(s) + z2

∗(s) ≤ 0, ∀s ∈ {s1, s2},

which is exactly the market clearing condition in the Radner equilibrium. Figure

1.2 depicts the corresponding cone of acceptable aggregate risks for the Radner

equilibrium. Our equilibrium concept can be best illustrated by means of the conic

Edgeworth box depicted in figure 1.3. The budget sets of the two consumers along

with the aggregate cone offered by the financial market are depicted in distinct

colors. Moreover, black filled circles denote optimal consumption allocations for

the two consumers and the aggregate economy. The conic Edgeworth box reminds

us of the metaphor “thinking out of the box” which means to think differently,

unconventionally, or from a new perspective. In particular, in a conic economy, the

aggregate consumption is allowed to go beyond the box defined by the aggregate

endowments in some states of the world, whereby the financial primitives cover the

resulting gap. Hence, the conic economy is a bigger economy because it is willing to

absorb some aggregate risk. The economy hopes not to end up in a bad state of the
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∗(s2) + c2

∗(s2))

Figure 1.3: Conic Edgeworth box.

world but if it does, it is just like the Federal Reserve stepping in and covering the

loss. The following numerical example adds more detail concerning what has been

discussed so far.

1.2.2 Numerical example

Let π = 0.5, u(c) = log(c), and assume that y1 = (3, 1) and y2 = (1, 2) are

the endowments of the two consumers. First, consider the classical case with mL =

mR = π, nL = 0, and nR = 1. This case corresponds to the Radner equilibrium

and is presented here for comparison reasons. The market clearing conditions yield

12



Table 1.1: Radner equilibrium – exchange economy.

i ci∗(s1) ci∗(s2) zi∗(s1) zi∗(s2) µiL µiR

1 2.16667 1.625 -0.833333 0.625 0.538462 0
2 1.83333 1.375 0.833333 -0.625 0 0.636364

Aggregate 4 3 0 0

a state price q = 3/7 ≈ 0.428571, and the corresponding trading and consumption

plans are given in table 1.1. Next, let us consider the case with mL = 0.4, mR = 0.6,

nL = 0.2, and nR = 0.8. In this case, relative to the classical economy, the market is

less forgiving at the indivual level but more forgiving at the aggregate level. Solving

the market clearing conditions for the state price gives q = 0.478261. Furthermore,

we obtain the consumption and trading plans given in table 1.2. It is worth noting

that z1
∗(s1) + z2

∗(s1) < 0 and z1
∗(s2) + z2

∗(s2) > 0 which means that the financial

market is compensating for the shortcomings in the second state of the world. In

contrast to the classical model (see table 1.1), where the aggregate consumption

does not exceed the total endowment, as both table 1.2 and figure 1.3 illustrate,

some gap is permitted to occur between the aggregate consumption and endowment

in a conic environment. In the following, we will examine the welfare consequences

of adopting a conic perspective towards general equilibrium under uncertainty.

1.2.3 Welfare analysis

Using the same setup as in the numerical example of section 1.2.2, the utility

values resulting from different financial configurations are presented in table 1.3.

13



Table 1.2: Conic equilibrium – exchange economy.

i ci∗(s1) ci∗(s2) zi∗(s1) zi∗(s2) µiL µiR

1 2.31818 1.41667 -0.681818 0.416667 0.563725 0
2 1.22727 1.6875 0.227273 -0.3125 0 0.709877

Aggregate 3.54545 3.10417 -0.454545 0.104167

From the first five rows of this table, one can infer that as the financial market

becomes more strict towards aggregate risk, the overall welfare along with the utility

of the richer consumer (i.e., consumer 1) decreases while the utility of the poorer

consumer (i.e., consumer 2) increases. Moreover, the next five rows of this table

show that as the financial market becomes less tolerant of individual risks, the

overall welfare along with the utility of both consumers decreases. The highest total

welfare corresponds to the case with nL = mL = π = mR = nR = 0.5. For this

financial configuration, consumer 1 has the highest welfare possible and consumer 2

has the lowest. The last row of table 1.3 showcases a financial market configuration

with a higher total welfare than that of a Radner equilibrium, without being as

forgiving as the Radner equilibrium at the individual level. The overall message is

that the financial market configurations have real effect on individual and aggregate

welfare (happiness) of the economy and it can justify government intervention and

regulation of markets in certain economic situations. The following utility analysis

exercise will help us elaborate more on this message.

Specifically, let us fix the financial market configurations mL,mR, nL, nR and

perform the following exercise. Given this configuration, we solve our example

14



Table 1.3: Welfare analysis for different financial configurations.

mL mR nL nR U(c1
∗) U(c2

∗) U(c1
∗) + U(c2

∗)

0.40 0.60 0.4 0.6 0.665027 0.346574 1.0116
0.40 0.60 0.3 0.7 0.608198 0.356883 0.965081
0.40 0.60 0.2 0.8 0.594545 0.364021 0.958566
0.40 0.60 0.1 0.9 0.588543 0.368143 0.956686
0.40 0.60 0.0 1.0 0.58519 0.37078 0.955969

0.50 0.50 0.0 1.0 0.629349 0.462295 1.091644
0.45 0.55 0.0 1.0 0.608427 0.405924 1.01435
0.40 0.60 0.0 1.0 0.58519 0.37078 0.955969
0.35 0.65 0.0 1.0 0.563129 0.352632 0.915761
0.30 0.70 0.0 1.0 0.549814 0.346713 0.896527

0.50 0.50 0.5 0.5 0.906189 0.346574 1.25276
0.49 0.51 0.487411 0.512589 0.80258 0.353031 1.15561

c1(s1)

c1(s2)

(y(s1), y(s2))

(y(s1), y(s2)) = (4, 3)

nR

••

•

c1
∗(s1)

c1
∗(s2)

Figure 1.4: Box defined by equilibrium allocations.
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problem (see section 1.2.2) for equilibrium allocations and prices. The equilib-

rium allocations (c1
∗(s1), c1

∗(s2)) and (c2
∗(s1), c2

∗(s2)) will give us a new box given by

(y(s1), y(s2)) = (c1
∗(s1), c1

∗(s2)) + (c2
∗(s1), c2

∗(s2)) as depicted in figure 1.4. Given the

box (y(s1), y(s2)), we redistribute initial endowments (y(s1), y(s2)) = (4, 3) among

agents in such a way that the resulting equilibrium allocations gives us the same box

(y(s1), y(s2)). We then compute the utility values of such allocations and plot the

resulting utility frontier. This procedure is detailed in the following. We first solve

the market clearing condition for q. In this example, the market clearing condition

is given by

nL
π
q[y(s1)− y(s1)] +

1− nL
1− π

(1− q)[y(s2)− y(s2)] = 0.

Choose (c1(s1), c1(s2)) in the box given by (y(s1), y(s2)). Let

(c2(s1), c2(s2)) = (y(s1), y(s2))− (c1(s1), c1(s2))

and solve the following system of equations for (y1(s1), y1(s2)) and (y2(s1), y2(s2)).

mL

π
q[c1(s1)− y1(s1)] +

1−mL

1− π
(1− q)[c1(s2)− y1(s2)] = 0,

mR

π
q[c2(s1)− y2(s1)] +

1−mR

1− π
(1− q)[c2(s2)− y2(s2)] = 0,

y1(s1) + y2(s1) = y(s1),

y1(s2) + y2(s2) = y(s2).

Now, fix (nL, nR) = (0, 1) and change (mL,mR) from (0.5, 0.5) to (0.4, 0.6) in order

to obtain the utility frontiers given in figure 1.5. This figure indicates that as the

market becomes more strict towards individual risks, the utility frontier retracts.

16



Figure 1.5: Utility frontier retracts as the market becomes more strict
towards individual risks. This figure and the next one are obtained by
plotting actual numerical utility values for different endowment redistri-
butions resulted from a Monte-Carlo sampling procedure.

Figure 1.6: Utility frontier retracts as the market becomes more strict
towards aggregate risks.
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Moreover, fixing (mL,mR) = (0.5, 0.5) and changing (nL, nR) from (0, 1) to (0.5, 0.5)

yields the utility frontiers given in figure 1.6. This figure also indicates that as the

market becomes less tolerant of aggregate risks, the utility frontier retracts. Figures

1.5 and 1.6, reinforce the previous message that the financial market configurations

have real welfare effects in a conic economy.

1.3 Equilibrium prices and quantities

Let us go back to the more general structure of a conic equilibrium specified

in definition 1.3, and assume that for some π̂(zi) = {π̂(s; zi) : s ∈ S} ∈ M,

sup
π̂∈M

∑
s∈S

π̂(s)

π(s)
q(s)zi(s) =

∑
s∈S

π̂(s; zi)

π(s)
q(s)zi(s).

This is a plausible assumption and indicates that the supremum is attainable. Thus,

the household i’s budget constraint (1.1) can be equivalently expressed as

∑
s∈S

π̂(s; zi)

π(s)
q(s)zi(s) ≤ 0.

Attach a Lagrange multiplier µi to this constraint, form the Lagrangian, and use the

Envelope theorem [27], to obtain the following first order condition for the household

i’s problem; i.e.,

u′
[
ci(s)

]
π(s) = µi

π̂(s; zi)

π(s)
q(s), (1.4)

for all i and s ∈ S. This implies that

u′ [ci(s)]

u′ [cj(s)]
=
µi

µj
π̂(s; zi)

π̂(s; zj)
, (1.5)

for all pairs (i, j). Note that if M = {π} is a singleton, then

π̂(s; zi) = π̂(s; zj) = π(s),
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and consequently the ratios of marginal utilities between pairs of agents are constant

across all states, i.e.,

u′ [ci(s)]

u′ [cj(s)]
=
µi

µj
.

However, in general, this no longer holds (see equation (1.5)) in a conic economy

with an arbitrary financial market configuration M. Similarly, assuming that for

some π̂(Z) ∈ N , where Z =
∑

i z
i, we have

sup
π̂∈N

∑
s∈S

π̂(s)

π(s)
q(s)Z(s) =

∑
s∈S

π̂(s;Z)

π(s)
q(s)Z(s),

meaning that the supremum is attainable, the market clearing condition (1.2) can

be written as ∑
s∈S

π̂(s;Z)

π(s)
q(s)Z(s) = 0.

Using the first order condition (1.4) for any household i, we obtain the following

form for the market clearing condition,

∑
s∈S

1

µi
π̂(s;Z)

π̂(s; zi)
u′
[
ci(s)

]
π(s)Z(s) = 0.

To compute an equilibrium, we propose the following algorithm4 which generalizes

the Negishi algorithm (see [4], chapter 8).

1. Fix µ1 = 1, throughout the algorithm, and guess some positive initial values

for the remaining µi, i = 2, . . . , I.

4The non-linearities involved in the definition of a conic general equilibrium makes a convergence

proof of the proposed algorithm non-trivial. A convergence proof would require imposing further

restrictions on the sets M and N identifying the financial market configurations. This will be

subject of future research.
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2. Make initial guesses for π̂(zi), i = 1, . . . , I, and π̂(Z). A good initial guess is

usually given by the actual physical measure π.

3. Solve the following system of equations, using the Levenberg-Marquardt [28,

29] method for instance, for candidate consumption {ci}Ii=1 and trading {zi}Ii=1

allocations;

ci(s) = yi(s) + zi(s), ∀i = 1, . . . , I, ∀s ∈ S,

u′ [ci(s)]

u′ [c1(s)]
=
µi

µ1

π̂(s; zi)

π̂(s; z1)
, ∀i = 2, . . . , I, ∀s ∈ S,∑

s∈S

1

µ1
u′
[
c1(s)

]
π(s)z1(s) = 0,

∑
s∈S

1

µ1

π̂(s;Z)

π̂(s; z1)
u′
[
c1(s)

]
π(s)

∑
i

zi(s) = 0.

4. Use the following for household 1 to solve for the price system q.

u′
[
c1(s)

]
π(s) = µ1 π̂(s; z1)

π(s)
q(s).

5. Check that the following requirements for households i = 1, . . . , I are satisfied

sup
π̂∈M

∑
s∈S

π̂(s)

π(s)
q(s)zi(s) =

∑
s∈S

π̂(s; zi)

π(s)
q(s)zi(s).

Moreover, corresponding to the market clearing condition, check the validity

of the following requirement; i.e.,

sup
π̂∈N

∑
s∈S

π̂(s)

π(s)
q(s)Z(s) =

∑
s∈S

π̂(s;Z)

π(s)
q(s)Z(s).

Update π̂(zi), for i = 1, . . . , I, and π̂(Z) accordingly. It is worth noting that

this step boils down to maximizing linear objective functions.

6. Iterate on steps 3-5 until the requirements of step 5 are satisfied.
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7. For i = 2, . . . , I, check the budget constraint

∑
s∈S

π̂(s; zi)

π(s)
q(s)zi(s) ≤ 0.

Increase µi for those i’s that violate this constraint and decrease it for others.

8. Iterate to convergence on steps 2-7.

Applying the algorithm outlined above to the numerical settings of section 1.2.2, we

obtain µ2 = 1.2593, q(s1) = 0.2696, and q(s2) = 0.2941. The resulting equilibrium

allocations are the same as the ones given in table 1.2. Moreover,

q(s1)

q(s1) + q(s2)
= 0.4783,

which matches the value q of the state price vector (q, 1−q) from the aforementioned

section. In the following, we will demonstrate that the conic equilibrium concept

is inevitably immune to some of the most empirically criticized conclusions of a

complete markets model.

CRRA utility

In particular, suppose that the one-period utility function is of the constant

relative risk-aversion (CRRA) form

u(c) =
c1−γ

1− γ
, γ > 0.

Then, equation (1.5) yields

ci(s) = cj(s)

{
µi

µj
π̂(s; zi)

π̂(s; zj)

}− 1
γ

. (1.6)
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In the classical case, where M = {π}, this equation simplifies to

ci(s) = cj(s)

{
µi

µj

}− 1
γ

,

and states that the consumption allocations for two distinct agents are constant

fractions of one another. Therefore,

∑
i

ci(s) = cj(s)
∑
i

{
µi

µj

}− 1
γ

.

Combined with the classical market clearing condition

∑
i

ci(s) =
∑
i

yi(s),

corresponding to N =
{
π̂ :
∑

s∈S π̂(s) = 1
}

, it says that individual consumption is

perfectly correlated with the aggregate endowment or aggregate consumption of the

economy; i.e.,

cj(s) =

(∑
i

{
µi

µj

}− 1
γ

)−1∑
i

yi(s).

This implies that the consumption cj(s) is independent of the household’s individual

endowment yj(s) in state s. However, all of these nice and oversimplified conclusions

will evaporate as soon as we allow M to be more general than a singleton (see

equation (1.6)), or if we let N to be a proper subset of the set of all probability

measures.

1.4 Asset markets

The contingent commodities zi = {zi(s) : s ∈ S} considered in the previous

sections serve the purpose of transferring wealth across states of the world. They are,
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however, only theoretical constructs that rarely have exact counterparts in reality.

Nevertheless, in reality there are securities, or assets, that to some extent perform

the wealth-transferring role assigned to zi. It is therefore important to study the

functioning of these asset markets. We begin by letting rs = {rs(s′) : s′ ∈ S} denote

an Arrow-Debreu security with returns rs(s) = 1 and rs(s
′) = 0 if s′ 6= s. Moreover,

let zi(s) be the quantities demanded by consumer i for security rs. The ask and bid

prices (see definition 1.2) of an arbitrary Arrow-Debreu security with return vector

rs are given by

ask(rs;M, q) = sup
π̂∈M

π̂(s)

π(s)
q(s), and bid(rs;M, q) = inf

π̂∈M

π̂(s)

π(s)
q(s),

respectively. Note that if M = {π} is a singleton, then

ask(rs;M, q) = bid(rs;M, q) = q(s).

Furthermore, if household i takes a position zi = {zi(s) : s ∈ S} in these securities,

its budget constraint should be written as

∑
s∈S

|zi(s)| ask

(
zi(s)

|zi(s)|
rs;M, q

)
≤ 0.

Note that if for some s, zi(s) < 0, then

|zi(s)| ask

(
zi(s)

|zi(s)|
rs;M, q

)
= −zi(s) ask (−rs;M, q) = zi(s) bid(rs;M, q).

In other words, a negative position, i.e., zi(s) < 0, means that household i is selling

security rs at the bid price, while a positive position, i.e., zi(s) > 0, means that it

is buying the asset at the ask price. Moreover, we have

ask(zi;M, q) ≤
∑
s∈S

ask
(
zi(s)rs;M, q

)
=
∑
s∈S

|zi(s)| ask

(
zi(s)

|zi(s)|
rs;M, q

)
,
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r2 = (0, 1)

zi(s2)

r1 = (1, 0)
zi(s1)

mR

mL

Figure 1.7: Arrow-Debreu securities.

since

π̂(s)

π(s)
q(s)zi(s) ≤ ask

(
zi(s)rs;M, q

)
, ∀π̂ ∈M.

Therefore, the budget constraint ask(zi;M, q) ≤ 0, or equivalently

∑
s∈S

π̂(s)

π(s)
q(s)zi(s) ≤ 0, ∀π̂ ∈M,

can be reinterpreted as a liquidity constraint and it limits the quantity of these

Arrow-Debreu securities that can be demanded. In other words, the market for

these securities is not perfectly liquid. When S = {s1, s2}, this interpretation can

be illustrated using figure 1.7. It is worth mentioning that instead of Arrow-Debreu,

we could use any other securities. For instance, when S = {s1, s2}, we could employ

securities with return vectors (1, 0) and (1, 1).

1.5 Pure exchange economy – multiple commodities

It is straightforward, but necessary, to extend the single commodity framework

developed so far to multiple commodities. Let us begin by assuming that there are
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L commodities in the economy and that at t = 0 consumers have expectations

regarding the spot prices prevailing at t = 1 for each of the L commodities. It

is important to emphasize that the correct anticipation of future spot prices is a

crucial assumption and is common practice in the literature (see [3], chapter 19).

Let the endowment of consumer i = 1, . . . , I be a contingent commodity vector

yi = {yi(s) = (yi1(s), . . . , yiL(s)) : s ∈ S}.

This means that if state s occurs then consumer i has endowment vector yi(s) =

(yi1(s), . . . , yiL(s)).

Definition 1.4 (conic equilibrium – multiple commodities). Given a financial econ-

omy (
S, π, U(·),

{
yi
}I
i=1

,M,N
)
,

a collection formed by

• a state price vector q = {q(s) : s ∈ S},

• a spot price vector p(s) = (p1(s), . . . , pL(s)), for every s ∈ S, and,

• for every consumer i, trading plan zi∗ = {zi∗(s) : s ∈ S} at t = 0 and consump-

tion plan ci∗ := {ci∗(s) = (ci∗1(s), . . . , ci∗L(s)) : s ∈ S} at t = 1,

constitutes a conic equilibrium if:

• given the state price vector q, the spot price vector p(s), for every s ∈ S,

and the financial market configuration M at the individual level, for every
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consumer i = 1, . . . , I, the trading zi∗ and consumption ci∗ plans solve the

household’s problem

max
zi,ci

U(ci) =
∑
s∈S

u[ci(s)]π(s)

s.t. p(s) · ci(s) ≤ p(s) · yi(s) + p1(s)zi(s), ∀s ∈ S,∑
s∈S

π̂(s)

π(s)
q(s)zi(s) ≤ 0, ∀π̂ ∈M,

• and, given the financial market configuration N at the aggregate level, the state

price vector q and the spot price vector p(s), for every s ∈ S, are chosen such

that the markets clear; i.e.,

∑
s∈S

π̂(s)

π(s)
q(s)

∑
i

zi∗(s) ≤ 0, ∀π̂ ∈ N ,

∑
i

ci∗(s) ≤
∑
i

yi(s) +

(∑
i

zi∗(s), 0, . . . , 0

)
, ∀s ∈ S.

It is worth emphasizing again that for M = {π} and N =
{
π̂ :
∑

s∈S π̂(s) = 1
}

,

the conic equilibrium concept defined above simplifies to the Radner equilibrium

(see [3], chapter 19). Furthermore, the market clearing conditions, the way we have

defined them, indicate that only in one of the commodities (the numeraire, i.e., good

1) the economy is permitted to consume beyond its aggregate endowment. This is

a simplifying assumption and in reality we don’t have to have the markets for other

commodities to be non-conic. However, it makes the notation more convenient and

the analysis simpler to assume that only the markets for cash (good 1) are conic.
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Numerical example

Consider an economy with two commodities in which there are two states of

the world S = {s1, s2} and two consumers with endowments

y1 = {y1(s1),y1(s2)} = (y1
1(s1), y1

2(s1), y1
1(s2), y1

2(s2)) = (3, 1, 1, 1),

y2 = {y2(s1),y2(s2)} = (y2
1(s1), y2

2(s1), y2
1(s2), y2

2(s2)) = (1, 1, 2, 1).

Given the state price vector (q, 1− q), consumer i = 1, 2 solves

max
ci,zi

U(ci) = πu[ci1(s1), ci2(s1)] + (1− π)u[ci1(s2), ci2(s2)]

s.t. ci1(s) + p(s)ci2(s) ≤ yi1(s) + p(s)yi2(s) + zi(s), ∀s ∈ {s1, s2}

mL

p
qzi(s1) +

1−mL

1− p
(1− q)zi(s2) ≤ 0,

mR

p
qzi(s1) +

1−mR

1− p
(1− q)zi(s2) ≤ 0.

The market clearing conditions can be written as

nL
p
q[z1
∗(s1) + z2

∗(s1)] +
1− nL
1− p

(1− q)[z1
∗(s2) + z2

∗(s2)] ≤ 0,

nR
p
q[z1
∗(s1) + z2

∗(s1)] +
1− nR
1− p

(1− q)[z1
∗(s2) + z2

∗(s2)] ≤ 0,

c1
∗2(s) + c2

∗2(s) ≤ y1
2(s) + y2

2(s). ∀s ∈ {s1, s2}.

Assume π = 0.5, U(ci) = π log [(ci1(s1))α(ci2(s1))1−α]+(1−π) log [(ci1(s2))α(ci2(s2))1−α],

and α = 0.5. Let us first consider the case where mL = mR = π and nL = 0, nR = 1.

In this case, we obtain q = 3/7, p(s1) = 2, and p(s2) = 1.5. Table 1.4 gives

the consumption plans for both consumers. Let us now consider the case where

mL = 0.4,mR = 0.6, nL = 0.2, and nR = 0.8. In this case, we obtain q = 0.436104,
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Table 1.4: Radner equilibrium – multiple commidities.

i ci∗1(s1) ci∗2(s1) ci∗1(s2) ci∗2(s2) zi∗(s1) zi∗(s2) µiL µiR

1 2.08333 1.04167 1.5625 1.04167 -0.833333 0.625 0.28 0
2 1.91667 0.958333 1.4375 0.958333 0.833333 -0.625 0 0.304348

Aggregate 4 2 3 2 0 0

Table 1.5: Conic equilibrium – multiple commodities.

i ci∗1(s1) ci∗2(s1) ci∗1(s2) ci∗2(s2) zi∗(s1) zi∗(s2) µiL µiR

1 2.45902 1.24224 1.26783 0.842993 -0.0614754 0.0316957 0.291406 0
2 1.5 0.757764 1.7401 1.15701 0.0204918 -0.0237718 0 0.318477

Aggregate 3.95902 2 3.00792 2 -0.0409836 0.00792393

p(s1) = 1.97951, and p(s2) = 1.50396. The consumption plans are given in table

1.5. It is worth noting that z1
∗(s1) + z2

∗(s1) < 0 and z1
∗(s2) + z2

∗(s2) > 0 which means

that the financial market is compensating for the shortcomings in the second state

of the world.

1.6 Firm behavior

In previous sections, we have focused on the study of exchange economies. For

once, this has not been just for simplicity. In fact, the consideration of production

and firms is genuinely more difficult (see [30, 31]). As before, we consider a setting

with two periods, t = 0 and t = 1, and S possible states at t = 1. There are

L physical commodities traded in the spot markets of period t = 1. There is no

consumption at t = 0. We introduce into our model a firm that produces a random
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amount of the numeraire (good 1) at date t = 1. The firm produces perhaps by

means of inputs used at time t = 0, but we do not formalize this part explicitly.

Let d = {d(s) : s ∈ S} denote the state contingent levels of production of the firm.

The shares αi ≥ 0, with
∑

i α
i = 1, give the proportion of the firm that belongs to

consumer i. We take the natural point of view (see [3], chapter 19) that the firm

is an asset with return vector d = {d(s) : s ∈ S} whose shares are tradeable in

the financial market at time t = 0. Suppose that the firm can actually choose its

random production plan within a range D of possible choices of return vectors. We

assume that the return vector is chosen before the opening of financial markets at

time t = 0. Moreover, we assume that we are dealing with a small project relative

to the size of the economy. This would justify that the equilibrium spot prices p(s)

and state prices q = {q(s) : s ∈ S} are constants independent of the particular

production plan chosen by the firm. For the state prices q = {q(s) : s ∈ S}, the

market value of any production plan d = {d(s) : s ∈ S} should naturally be given

by

bid(d;M, q) = inf
π̂∈M

∑
s∈S

π̂(s)

π(s)
q(s)d(s).

Taking the bid price as the market value of a production plan is well-justified because

the firm resides on the supply side of the economy for assets. In fact, the firm should

be sold at the bid price. By virtue of the infimum, the bid price is a concave and

typically nonlinear function on the space of random outcomes and is suited to being

maximized. On the demand side of the economy for assets, reside the households.

In particular, given state prices q = {q(s) : s ∈ S} and spot prices p(s), consumer i
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solves

max
ci,zi,αi

U(ci) =
∑
s∈S

u[ci(s)]π(s)

s.t. p(s) · ci(s) ≤ p(s) · yi(s) + p1(s)zi(s), ∀s ∈ S,

ask(zi;M, q) ≤ αi bid(d;M, q). (1.7)

It follows from the form of the budget constraint (1.7) that the objective of market

value bid(d;M, q) maximization will be the unanimous desire of the firm’s initial

owners. Furthermore, the market clearing conditions are given by

∑
s∈S

π̂(s)

π(s)
q(s)

(∑
i

zi(s)− d(s)

)
≤ 0, ∀π̂ ∈ N , (1.8)

∑
i

ci(s) ≤
∑
i

yi(s) +

(∑
i

zi(s)− d(s), 0, . . . , 0

)
, ∀s ∈ S.

Basically, if N is the set of all probability measures, then we recover the classical

market clearing conditions

∑
i

zi(s)− d(s) ≤ 0, ∀s ∈ S,∑
i

ci(s) ≤
∑
i

yi(s), ∀s ∈ S.

The one-consumer, one-producer economy

Consider again an economy in which there are two states of the world S =

{s1, s2} and one commodity. The economy consists of one consumer with endowment

y = (y(s1), y(s2)) = (3, 1) and a firm. Let us assume that the firm chooses its

production plan d = (d(s1), d(s2)) from the set

D = {d : d(s1) ≥ 0, d(s2) ≥ 0, d(s1)2 + d(s2)2 ≤ 1}.
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Given the state price vector (q, 1 − q), the firm maximizes its bid value subject to

its production capacity, i.e.,

max
d

bid(d;M, q)

s.t. d ∈ D.

Thus, the firm’s problem can be written as

max
d(s1),d(s2)

inf
π̂∈[mL,mR]

π̂

π
qd(s1) +

1− π̂
1− π

(1− q)d(s2)

s.t. d(s1)2 + d(s2)2 ≤ 1.

Since the consumer is the owner of the firm and has less endowment in the second

state of the world, it is plausible to assume that

q

π
d(s1) ≤ 1− q

1− π
d(s2).

Under this assumption, the firm’s objective simplifies to

max
d(s1),d(s2)

mR

π
qd(s1) +

1−mR

1− π
(1− q)d(s2)

s.t. d(s1)2 + d(s2)2 ≤ 1.

Moreover, given the state price vector (q, 1 − q) and the firm’s market value of

bid(d∗;M, q), the household solves

max
c(s1),c(s2),z(s1),z(s2)

πu[c(s1)] + (1− π)u[c(s2)]

s.t. c(s) ≤ y(s) + z(s), ∀s ∈ {s1, s2},

mL

π
qz(s1) +

1−mL

1− π
(1− q)z(s2) ≤ bid(d∗;M, q),

mR

π
qz(s1) +

1−mR

1− π
(1− q)z(s2) ≤ bid(d∗;M, q).
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Table 1.6: Classical equilibrium – production economy.

c∗(s1) c∗(s2) z∗(s1) z∗(s2) µL µR d∗(s1) d∗(s2)

3.47569 1.87961 0.475687 0.879615 0.409868 0 0.475687 0.879615

Table 1.7: Conic equilibrium – production economy.

c∗(s1) c∗(s2) z∗(s1) z∗(s2) µL µR d∗(s1) d∗(s2)

3.56475 1.71 0.564754 0.710002 0.418992 0 0.733547 0.679639

Let π = 0.5 and u(c) = log(c). If mL = mR = π, nL = 0, and nR = 1, we get the

following classical results. The market clearing condition

π̂

π
q[z(s1)− d(s1)] +

1− π̂
1− π

(1− q)[z(s2)− d(s2)] ≤ 0, ∀π̂ ∈ N = [nL, nR],

gives q = 0.350982. Moreover, we obtain the consumption and production plans

given in table 1.6. Note that z∗ − d∗ = 0, indicating positive excess supply in both

states of the world. The utility value resulting from this financial configuration is

given by 0.938429. Furthermore, if mL = 0.4,mR = 0.6, nL = 0.2, and nR = 0.8,

we get q = 0.418451 and the consumption and production plans given in table

1.7. It should be noted that z∗ − d∗ = (−0.168793, 0.0303636) which means that

the financial market is compensating for the shortcomings in the second state of the

world. Moreover, the utility value resulting from this financial configuration is given

by 0.903795.
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1.7 Concluding remarks

In summary, we have presented a modern perspective towards modeling gen-

eral equilibrium under uncertainty. We have relied upon the definition of acceptable

risks in order to generalize the classical complete markets model. Essentially, a risk

is acceptable to the market, if it has a positive valuation under all scenarios consid-

ered by the financial system. Our modeling framework leads naturally to a two-price

(conic) economy and relaxes the traditional positive excess supply assumption. In

fact, in a conic environment, the aggregate economy is permitted to consume more

than its endowment in some states of the world. Therefore, a conic economy is a

bigger economy, relative to the classical models, because it is willing to tolerate more

risk at the aggregate level. Our conic perspective towards modeling general equi-

librium under uncertainty provides us with a unifying framework to model a whole

spectrum between incomplete and complete, illiquid and perfectly liquid markets,

and beyond. Moreover, we have managed to generalize a common tool in general

equilibrium analysis, namely, the Edgeworth box. We have also preformed some

welfare analysis exercises to draw the conclusion that the financial market config-

urations have real effect on individual and aggregate welfare of the economy. This

can justify government intervention and regulation of markets in certain economic

situations. Our conic perspective towards the economy enables us to ask some very

serious questions; How forgiving should the financial system be? Put differently,

how much risk taking should be permitted? Who or what determines the finan-

cial market configurations M and N ? In other words, is there a way to write an
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endogenous model of the financial market? What role can the government play in

managing M and N , and therefore the size of the economy? These are questions

of managing the capital requirements and leverage of an economy and should be

addressed by the Federal Reserve. These fundamental questions have been totally

ignored because of the complete markets assumptions and as a consequence of the

fundamental theorems of welfare economics. We have therefore demonstrated the

importance of developing a science of leverage. Furthermore, we have briefly men-

tioned that a conic equilibrium model is inevitably immune to some of the most

empirically criticized conclusions of a complete markets model. We have also ad-

dressed, from a conic perspective, the more difficult problem of modeling the firm’s

behavior in a general equilibrium under uncertainty. Throughout this chapter we

have tried to maintain a normative rather than positive outlook. In particular, we

have spent very little time addressing question of the form: Does an equilibrium

exist? Are the equilibria typically isolated? Is the equilibrium unique? Is it stable?

What are the effects of shocks? These are very important theoretical and method-

ological questions that are of relevance to any theory of equilibrium. Hence, these

questions must be subject of future research, should the conic perspective towards

the economy prove useful from a normative point of view.
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Chapter 2: Dynamic conic general equilibrium

This chapter introduces dynamic conic equilibria for an infinite horizon pure

exchange economy with stochastic endowments (see [4], chapter 8). These are useful

for studying consumption, risk sharing, and asset pricing (see chapter 4). We con-

sider two types of financial markets entailing different assets and timings of trades:

a time 0 trading arrangement, and a sequential-trading structure. We will explain

how to formulate a recursive structure within such an exchange economy. Recursive

representations are very important in the analysis of dynamic systems in macroeco-

nomics (see [4]) and therefore it will be of particular interest to learn how to devise

a recursive representation of our dynamic conic equilibrium concept. This will be

achieved by finding an appropriate formulation of a state vector in terms of which

to cast the conic equilibrium.

2.1 Physical setting

Let us start by assuming that in each period t ≥ 0, there is a realization of

a stochastic event st ∈ S. Let st = [s0, s1, . . . , st] denote the history of events up

and until time t. The unconditional probability of observing a particular sequence

of events st is given by a probability measure πt(s
t). For τ > t, the probability of
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observing sτ conditional on the realization of st will be denoted by πtτ (s
τ ). There

are I agents in the economy labeled i = 1, . . . , I with stochastic endowments yi =

{yit(st)}
∞
t=0 of one good. The history st is publicly observable. Household i orders

consumption streams ci = {cit(st)}
∞
t=0 by

U(ci) =
∞∑
t=0

∑
st

βtu
[
cit(s

t)
]
πt(s

t).

Notice that we are imposing identical preference orderings across all individuals i

that can be represented in terms of discounted expected utility with common dis-

count factor β, common utility function u(·), and common probability distributions

πt(s
t). Here u(c) is an increasing, twice continuously differentiable, strictly concave

function of consumption c ≥ 0 of one good. The utility function satisfies the usual

Inada condition limc→0 u
′(c) = +∞. One role for this condition is to make sure

that the consumption of each agent is strictly positive in every date-history pair.

Another related role of the Inada condition is to deliver a state-by-state borrowing

limit to impose in economies with sequential trading. Before trading, the situation

of household i at time t depends on the history st. A natural measure of household

i’s “luck” in life is {yi0(s0), yi1(s1), . . . , yit(s
t)}, which evidently in general depends

on the history st. A remarkable and empirically questionable result in the classi-

cal complete markets models is that the consumption allocation at time t depends

only on the aggregate endowment realization at time t and some time-invariant pa-

rameters that describe the time 0 initial distribution of wealth (see [4], chapter 8).

The conic market structure of this chapter will break this result and will introduce

history dependence into equilibrium allocations.
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2.2 Time 0 trading

Furthermore, let us assume that trading occurs at time 0 and after observing

s0. In fact, for the initially given value of s0 = s0, we have π0(s0) = π0
0(s0) = 1.

Similarly, we set πt(s
t) = π0

t (s
t). Let us use q0 = {q0

t (s
t)}∞t=0 to denote the state

prices as of time t = 0 and after observing s0. The superscript 0 in state price

q0
t (s

t) refers to the date at which trades occur, while the subscript t refers to the

date that deliveries are to be made. Similar to chapter 1, the financial market at

time 0 and after observing state s0 is characterized by two sets M0 and N 0 of

probability measures or “generalized scenarios”. The more scenarios considered,

the more conservative is the financial market. We denote a typical scenario by

π̂0 = {π̂0
t (s

t)}∞t=0. We assume π0 = {π0
t (s

t)}∞t=0 ∈ M0 ⊂ N 0 which indicates that

the physical measure π = π0 is one of the scenarios considered by the financial

market and that the financial market is more strict towards aggregate risk. In the

following, we will present the formal definition of the dynamic conic equilibrium

concept.

Definition 2.1 (dynamic conic equilibrium – time 0 trading). Given a financial

economy (
S, π0, U(·), {yi}Ii=1,M0,N 0

)
,

a collection formed by

• state prices q0 = {q0
t (s

t)}∞t=0 and,

• for every consumer i, trading zi∗ = {zi∗t(st)}
∞
t=0 and consumption ci∗ = {ci∗t(st)}

∞
t=0
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plans,

constitutes a dynamic conic equilibrium with time 0 trading if:

• given state prices q0 and the financial market configuration M0 at the indi-

vidual level, for every consumer i = 1, . . . , I, the trading zi∗ and consumption

ci∗ plans solve the household’s problem;

max
zi,ci

U(ci) =
∞∑
t=0

∑
st

βtu
[
cit(s

t)
]
πt(s

t)

s.t. cit(s
t) ≤ yit(s

t) + zit(s
t), ∀t, st,

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zit(s
t) ≤ 0, ∀π̂0 ∈M0, (2.1)

• and, given the financial market configuration N 0 at the aggregate level, the

state prices q0 = {q0
t (s

t)}∞t=0 are chosen such that the markets clear; i.e.,

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)Zt(s
t) ≤ 0, ∀π̂0 ∈ N 0, (2.2)

where Zt(s
t) :=

∑
i z

i
t(s

t).

It is worth emphasizing that ifM0 = {π0} is a singleton, then household i’s budget

constraint (2.1) simplifies to the classical one (see [4], chapter 8); i.e.,

∞∑
t=0

∑
st

q0
t (s

t)zit(s
t) ≤ 0.

Moreover, if N 0 = {π̂0 :
∑

st π̂
0
t (s

t) = 1, for some t}, the market clearing condition

(2.2) yields the classical one, i.e.,

Zt(s
t) ≤ 0, ∀t, st.
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In contrast to the classical economy, the market clearing condition (2.2) allows the

aggregate economy to transfer wealth through time and histories. Similar to chapter

1, we can define the notions of ask and bid prices.

Definition 2.2 (bid and ask prices). Given state prices q0 = {q0
t (s

t)}∞t=0, the ask

and bid prices of a random cash-flow z = {zt(st)}∞t=0 are defined as

ask
(
z;M0, q0

)
= sup

π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zt(s
t),

and

bid
(
z;M0, q0

)
= inf

π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zt(s
t),

respectively.

One can simply observe that ask (z;M0, q0) = − bid (−z;M0, q0). Moreover, it is

worth noting that if M0 = {π0} is a singleton, then

ask
(
z;M0, q0

)
= bid

(
z;M0, q0

)
=
∞∑
t=0

∑
st

q0
t (s

t)zt(s
t),

and we recover the classical law of one price.

Equilibrium prices and quantities

Assuming that for some π̂0(zi) = {π̂0
t (s

t; zi)}∞t=0 ∈M0,

sup
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zit(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t; zi)

π0
t (s

t)
q0
t (s

t)zit(s
t),

which indicates that the supremum is attainable, household i’s budget constraint

can be written as
∞∑
t=0

∑
st

π̂0
t (s

t; zi)

π0
t (s

t)
q0
t (s

t)zit(s
t) ≤ 0.
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Attach a Lagrange multiplier µi to this constraint and use the Envelope theorem [27],

to obtain the first order conditions

βtu′
[
cit(s

t)
]
π0
t (s

t) = µi
π̂0
t (s

t; zi)

π0
t (s

t)
q0
t (s

t), (2.3)

for all i, t, st. This implies that

u′ [cit(s
t)]

u′
[
cjt(s

t)
] =

µi

µj
π̂0
t (s

t; zi)

π̂0
t (s

t; zj)
, (2.4)

for all pairs (i, j). We can make the natural assumptions that π̂0
0(s0) = q0

0(s0) = 1,

to obtain

µi = u′
[
ci0(s0)

]
.

Note that if M0 = {π0} is a singleton, then

π̂0
t (s

t; zi) = π̂0
t (s

t; zj) = π0
t (s

t),

and the ratios of marginal utilities between pairs of agents will be constant across

all histories and dates, i.e.,

u′ [cit(s
t)]

u′
[
cjt(s

t)
] =

µi

µj
.

However, in general, this no longer holds (see equation (2.4)) in a conic economy

with an arbitrary financial market configuration M0. Similarly, assuming that for

some π̂0(Z) ∈ N 0, where Z =
∑

i z
i, we have

sup
π̂0∈N 0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)Zt(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t;Z)

π0
t (s

t)
q0
t (s

t)Zt(s
t),

meaning that the supremum is attainable, the market clearing condition (2.2) can

be written as
∞∑
t=0

∑
st

π̂0
t (s

t;Z)

π0
t (s

t)
q0
t (s

t)Zt(s
t) = 0.
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Using the first order condition (2.3) for any household i, we obtain the following

form for the market clearing condition,

∞∑
t=0

∑
st

βt

µi
π̂0
t (s

t;Z)

π̂0
t (s

t; zi)
u′
[
cit(s

t)
]
π0
t (s

t)Zt(s
t) = 0.

Generalized Negishi algorithm

To compute an equilibrium, we propose to modify1 the Negishi algorithm (see

[4], chapter 8). The following accomplishes this modification.

1. Fix µ1 = 1, throughout the algorithm, and guess some positive initial values

for the remaining µi, i = 2, . . . , I.

2. Make initial guesses for π̂0(zi), i = 1, . . . , I, and π̂0(Z). A good initial guess

is usually given by the actual physical measure π0.

3. Solve the following equations for candidate consumption {ci}Ii=1 and trading

{zi}Ii=1 allocations:

cit(s
t) = yit(s

t) + zit(s
t), ∀i = 1, . . . , I, ∀t ≥ 0, ∀st,

u′ [cit(s
t)]

u′ [c1
t (s

t)]
=
µi

µ1

π̂0
t (s

t; zi)

π̂0
t (s

t; z1)
, ∀i = 2, . . . , I, ∀t ≥ 0, ∀st,

∞∑
t=0

∑
st

βt

µ1
u′
[
c1
t (s

t)
]
π0
t (s

t)z1
t (s

t) = 0,

∞∑
t=0

∑
st

βt

µ1

π̂0
t (s

t;Z)

π̂0
t (s

t; z1)
u′
[
c1
t (s

t)
]
π0
t (s

t)Zt(s
t) = 0.

1The non-linearities involved in the definition of a conic general equilibrium makes a convergence

proof of the proposed algorithm non-trivial. A convergence proof would require imposing further

restrictions on the sets M0 and N 0 identifying the financial market configurations. This will be

subject of future research.

41



4. Use the following for household 1 to solve for the price system q0.

βtu′
[
c1
t (s

t)
]
π0
t (s

t) = µ1 π̂
0
t (s

t; z1)

π0
t (s

t)
q0
t (s

t).

5. Check that the following requirements for households i = 1, . . . , I are satisfied

sup
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zit(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t; zi)

π0
t (s

t)
q0
t (s

t)zit(s
t).

Moreover, corresponding to the market clearing condition, check the validity

of the following requirement

sup
π̂0∈N 0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)Zt(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t;Z)

π0
t (s

t)
q0
t (s

t)Zt(s
t).

Update π̂0(zi), for i = 1, . . . , I, and π̂0(Z) accordingly. It is worth noting that

this step boils down to maximizing linear objective functions.

6. Iterate on steps 3-5 until the requirements of step 5 are satisfied.

7. For i = 2, . . . , I, check the budget constraint

∞∑
t=0

∑
st

π̂0
t (s

t; zi)

π0
t (s

t)
q0
t (s

t)zit(s
t) ≤ 0.

Increase µi for those i’s that violate this constraint and decrease it for others.

8. Iterate to convergence on steps 2-7.

CRRA utility

Suppose that the one-period utility function is of the constant relative risk-

aversion (CRRA) form

u(c) =
c1−γ

1− γ
, γ > 0.
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Then, equation (2.4) yields

cit(s
t) = cjt(s

t)

{
µi

µj
π̂0
t (s

t; zi)

π̂0
t (s

t; zj)

}− 1
γ

. (2.5)

In the classical case, where M0 = {π0}, this equation simplifies to

cit(s
t) = cjt(s

t)

{
µi

µj

}− 1
γ

,

and states that time t elements of consumption allocations for two distinct agents

are constant fractions of one another. Combined with the classical market clearing

condition ∑
i

cit(s
t) ≤

∑
i

yit(s
t), ∀t, ∀st,

corresponding to N 0 = {π̂0 :
∑

st π̂
0
t (s

t) = 1, for some t}, it says that individual

consumption is perfectly correlated with the aggregate endowment or aggregate con-

sumption. This implies that conditional on the history st, time t consumption cit(s
t)

is independent of the household’s individual endowment at t, st, yit(s
t). Mace [32],

Cochrane [6], and Townsend [33] have tested and rejected versions of this condi-

tional independence hypothesis. As is evident from equation (2.5), our dynamic

conic equilibrium concept is capable of explaining2 these rejections. In fact, for ar-

bitrary financial market configurationsM0, the consumption allocations ratio (2.5)

for two distinct agents depends on time t, history st, and consumption allocations

are not necessarily constant fractions of one another.

2As a matter of fact, we have not shown that our framework “explains” the empirical results seen

in rejecting this conditional independence hypothesis, only that our conic framework is compatible

with it not holding.
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2.3 Sequential trading

Building upon the insight of Arrow [34] that one-period securities are enough to

implement complete markets, this section introduces an alternative financial market

structure, i.e., sequential trading. In order to construct such a sequential trading

arrangement, we need to identify a variable to serve as the state in a value function

for the household at date t. We begin by asking the following question. In the

dynamic conic equilibrium with time 0 trading, what is the implied continuation

wealth of household i at time t after history st, but before adding in its time t, history

st endowment yit(s
t)? This question can be answered by defining the household’s

continuation wealth or financial wealth, expressed in terms of the date t, history st

consumption good, to be denoted by ait(s
t) and to be given by

ait(s
t) = sup

π̂t∈Mt

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )ziτ (s
τ ), (2.6)

where

π̂tτ (s
τ ) :=

π̂0
τ (s

τ )

π̂0
t (s

t)
, qtτ (s

τ ) :=
q0
τ (s

τ )

q0
t (s

t)
, and π̂t :=

{
π̂tτ (s

τ )
}∞
τ=t
∈Mt.

Here,Mt denotes the set of generalized scenarios considered by the financial market

as of time t and after observing history st. The above definition (2.6) for financial

wealth can be further justified if we rewrite it in the following form;

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )ziτ (s
τ ) ≤ ait(s

t), ∀π̂t ∈Mt.

This means that household i’s future capabilities {ziτ (sτ )}
∞
τ=t in transferring wealth

across time and histories, as of time t after history st, is limited by its financial
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wealth ait(s
t). At time 0, the household’s budget constraint (2.1) in the dynamic

conic equilibrium with time 0 trading gives ai0(s0) = 0 for all i = 1, . . . , I. However,

at time t > 0, the financial wealth ait(s
t) typically differs from zero for individual i.

Furthermore, we obtain the following proposition.

Proposition 2.1. The financial wealth of consumer i satisfies the following recur-

sive inequality

ait(s
t) ≤ ãit(s

t)

where

ãit(s
t) := zit(s

t) + sup
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t),

and

π̂tt+1 =
{
π̂tt+1(st+1) : st+1 ∈ S

}
∈Mt

t+1.

Here,Mt
t+1 represents the one-period-ahead financial market at time t and in history

st.

Proof. Let us start by defining

xit
(
st; π̂t

)
:=

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )ziτ (s
τ ),

and observing that

xit
(
st; π̂t

)
= zit(s

t) +
∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)xit+1

(
st+1, s

t; π̂t+1
)
,

since πtτ (s
τ ) = πtt+1(st+1)πt+1

τ (sτ ), π̂tτ (s
τ ) = π̂tt+1(st+1)π̂t+1

τ (sτ ), and

qtτ (s
τ ) = qtt+1(st+1)qt+1

τ (sτ ).
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Moreover,

ait(s
t) = sup

π̂t∈Mt

xit
(
st; π̂t

)
,

ait+1(st+1, s
t) = sup

π̂t+1∈Mt+1

xit+1

(
st+1, s

t; π̂t+1
)
,

and consequently

xit+1

(
st+1, s

t; π̂t+1
)
≤ ait+1(st+1, s

t), ∀π̂t+1 ∈Mt+1.

We want to show that ait(s
t) ≤ ãit(s

t). For all π̂tt+1 ∈Mt
t+1, we have

zit(s
t) +

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t) ≤ ãit(s
t).

Therefore, for every π̂t+1 ∈Mt+1 and π̂tt+1 ∈Mt
t+1, we obtain

zit(s
t) +

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)xit+1

(
st+1, s

t; π̂t+1
)
≤ ãit(s

t).

Thus, for every π̂t ∈Mt,

xit
(
st; π̂t

)
≤ ãit(s

t),

which yields ait(s
t) ≤ ãit(s

t).

In proposition 2.1, we have established that ait(s
t) ≤ ãit(s

t). We can obtain the

actual equality ait(s
t) = ãit(s

t), if we assume that for some π̂t+1(zi) ∈Mt+1,

ait+1(st+1, s
t) = xit+1

(
st+1, s

t; π̂t+1(zi)
)
,

indicating that the supremum is attainable. Let us perform a proof by contradiction

and falsely assume that ait(s
t) < ãit(s

t). Therefore,

ait(s
t) < zit(s

t) +
∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t),
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for some π̂tt+1 ∈Mt
t+1. Thus,

ait(s
t) < zit(s

t) +
∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)xit+1

(
st+1, s

t; π̂t+1(zi)
)
,

and we arrive at the contradiction that

ait(s
t) < xit

(
st; π̂t

)
≤ ait(s

t),

for some π̂t ∈Mt given explicitly by π̂tτ (s
τ ) = π̂tt+1(st+1)π̂t+1

τ (sτ ; zi).

In moving from the economy with time 0 trading to one with sequential trad-

ing, we propose to match the time t, history st wealth of the household in the

sequential economy with the equilibrium tail wealth ait(s
t) from the dynamic conic

equilibrium with time 0 trading. However, before we give the definition of conic

equilibrium with sequential trading, we have to say something about debt limits, a

feature that was only implicit in the time 0 budget constraint in the economy with

time 0 trading. Hence, we define the natural debt limit bit(s
t) of consumer i at time

t and in history st to be given by

bit(s
t) = inf

π̂t∈Mt

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )yiτ (s
τ ) =: bid

(
yi;Mt, qt

)
.

It is the maximal value that household i can repay starting from that period, as-

suming that his consumption is zero always. To rule out Ponzi schemes, we impose

the state-by-state borrowing constraints

−ait+1(st+1, s
t) ≤ bit+1(st+1, s

t), ∀st+1 ∈ S.

Similar to proposition (2.1) and the short argument following it, we obtain

bit(s
t) = yit(s

t) + inf
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)bit+1(st+1, s

t),
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We are now well-equipped to define the dynamic conic equilibrium concept with

sequential trading.

Definition 2.3 (dynamic conic equilibrium – sequential trading). Given

• the initial state of the economy s0 ∈ S,

• an initial distribution of wealth {ai0(s0)}Ii=1,

• and a sequence of one-period-ahead conic financial markets

{
Mt

t+1,N t
t+1

}∞
t=0

,

a collection formed by

• pricing kernels qtt+1 =
{
qtt+1(st+1) : st+1 ∈ S

}
, for all t ≥ 0 and st,

• and, for every consumer i, borrowing limit bi = {bit(st)}
∞
t=0, trading plan ai∗ =

{ai∗t(st)}
∞
t=0, and consumption stream ci∗ = {ci∗t(st)}

∞
t=0,

constitutes a dynamic conic equilibrium with sequential trading if:

• for every consumer i = 1, . . . , I, the borrowing limit satisfies the recursion

bit(s
t) = yit(s

t) + inf
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)bit+1(st+1, s

t),

• for every consumer i = 1, . . . , I, given ai0(s0), the borrowing limit bi = {bit(st)}
∞
t=0,

the pricing kernels
{
qtt+1

}∞
t=0

, and the financial market primitives, the trading
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and consumption plans solve the problem

max
ai,ci

U(ci) =
∞∑
t=0

∑
st

βtu
[
cit(s

t)
]
πt(s

t)

s.t. cit(s
t) +

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t) ≤ yit(s
t) + ait(s

t),

∀t, ∀st, ∀π̂tt+1 ∈Mt
t+1, (2.7)

−ait+1(st+1, s
t) ≤ bit+1(st+1, s

t), ∀t, ∀st, ∀st+1 ∈ S,

• and the pricing kernels qtt+1 =
{
qtt+1(st+1) : st+1 ∈ S

}
are chosen such that the

markets clear; i.e.,

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)

∑
i

ait+1(st+1, s
t) ≤

∑
i

ait(s
t), (2.8)

∀t, ∀st, ∀π̂tt+1 ∈ N t
t+1.

Here, to be consistent with the time 0 trading setup, we set ai0(s0) = 0 for all

i = 1, . . . , I. It should be noted that the budget constraint of household i in the conic

equilibrium with sequential trading is well justified in light of proposition 2.1 and

the short argument following it. Moreover, it is worth noting that ifMt
t+1 =

{
πtt+1

}
is a singleton, then household i’s budget constraint (2.7) simplifies to the classical

one (see [4], chapter 8); i.e.,

cit(s
t) +

∑
st+1∈S

qtt+1(st+1)ait+1(st+1, s
t) ≤ yit(s

t) + ait(s
t).

Moreover, if N t
t+1 =

{
π̂tt+1 :

∑
st+1∈S π̂

t
t+1(st+1) = 1

}
, the market clearing condition

(2.8) simplifies to

qtt+1(st+1)

πtt+1(st+1)

∑
i

ait+1(st+1, s
t) ≤

∑
i

ait(s
t), ∀st+1 ∈ S.
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This, along with ai0(s0) = 0, yields the classical market clearing condition (see [4],

chapter 8); i.e., ∑
i

ait+1(st+1, s
t) ≤ 0, ∀t, ∀st, ∀st+1 ∈ S.

Equilibrium prices and quantities

Regarding consumer i = 1, . . . , I, let us assume that for some generalized

scenario π̂tt+1(ait+1) ∈Mt
t+1, we have

sup
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t)

=
∑
st+1∈S

π̂tt+1(st+1; ait+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t). (2.9)

Then, household i’s budget constraint (2.7) at time t in history st can be written as

cit(s
t) +

∑
st+1∈S

π̂tt+1(st+1; ait+1)

πtt+1(st+1)
qtt+1(st+1)ait+1(st+1, s

t) ≤ yit(s
t) + ait(s

t).

Let ηit(s
t) and νit+1(st+1, s

t) be the non-negative Lagrange multipliers on the budget

constraint and the borrowing constraint, respectively. Forming the Lagrangian and

using the Envelope theorem [27], we obtain the following first order conditions:

βtu′
[
cit(s

t)
]
π0
t (s

t)− ηit(st) = 0,

−ηit(st)
π̂tt+1(st+1; ait+1)

πtt+1(st+1)
qtt+1(st+1) + νit+1(st+1, s

t) + ηit+1(st+1, s
t) = 0,

for all st+1, t, s
t. In the optimal solution to this problem, the natural debt limit

will not be binding, and hence the Lagrange multipliers νit+1(st+1, s
t) all equal zero

for the following reason (see [4], chapter 8): if there were any history st+1 leading

to a binding natural debt limit, the household would from then on have to set
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consumption equal to zero in order to honor its debt. Because the household’s

utility function satisfies the Inada condition limc→0 u
′(c) = +∞, that would mean

that all future marginal utilities would be infinite. Thus, it would be easy to find

alternative affordable allocations that yield higher expected utility by postponing

earlier consumption to periods after such a binding constraint. After setting those

multipliers equal to zero, the first-order conditions imply the following restrictions

on the optimal choices of consumption:

π̂tt+1(st+1; ait+1)

πtt+1(st+1)
qtt+1(st+1) = β

u′
[
cit+1(st+1, s

t)
]

u′ [cit(s
t)]

πtt+1(st+1), (2.10)

for all st+1, t, s
t. Now, for comparison, take household i’s first order condition (2.3)

for the dynamic conic economy with time 0 trading from two successive periods and

divide one by the other to get

π̂tt+1(st+1; zi)

πtt+1(st+1)
qtt+1(st+1) = β

u′
[
cit+1(st+1, s

t)
]

u′ [cit(s
t)]

πtt+1(st+1).

This shows that the dynamic conic equilibrium with sequential trading is consistent3

with the financial economy with time 0 trading.

2.4 Recursive formulation

At this level of generality, the one-period-ahead financial market configurations

Mt
t+1, N t

t+1, the pricing kernels qtt+1, and the wealth distributions ait(s
t) in the

3Establishing that equilibrium allocations are exactly the same in the economy with time 0

trading and in a sequential-trading arrangement is non-trivial due to the non-linearities involved

in a Conic framework and requires further investigations.
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sequential trading conic economy all depend on the history st, so all are time-

varying functions of all past events {sτ}tτ=0. This makes it difficult to confront our

sequential trading dynamic conic economy with empirical observations. Following

much of the literature in macroeconomics and econometrics, we prefer a model in

which economic outcomes are functions of a limited number of “state variables”

that summarize the effects of past events and current information. This leads us

to make a few specializations of the exogenous processes that facilitates a recursive

formulation of the dynamic conic equilibrium with sequential trading. Let π(s′|s)

be a Markov chain with given initial distribution π0(s) and state space s ∈ S. It

means that Prob(st+1 = s′|st = s) = π(s′|s) and Prob(s0 = s) = π0(s). The chain

induces a sequence of probability measures πt(s
t) on histories st via the recursions

πt(s
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)π0(s0).

In this chapter, we have assumed that trading occurs after the initially given value

of s0 has been observed, which we capture by setting π0(s0) = 1. Because of the

Markov property, for τ > t, the conditional probability πtτ (s
τ ) depends only on the

state st at time t and does not depend on the history before t,

πtτ (s
τ ) = π(sτ |sτ−1)π(sτ−1|sτ−2) . . . π(st+1|st).

Moreover, we assume that households’ endowments in period t are time invariant

measurable functions of st, y
i
t(s

t) = yi(st) for each i. This along with the Markov

assumption for st imposes further structure on our dynamic conic equilibrium. This

motivates us to seek the following recursive formulation.

Definition 2.4 (recursive conic equilibrium). Given
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• the initial state of the economy s0 ∈ S,

• an initial distribution of wealth {ai0(s0)}Ii=1,

• and a one-period-ahead conic financial market

{(M(s),N (s)) : s ∈ S} ,

a collection formed by

• a pricing kernel q(·|s) = {q(s′|s) : s′ ∈ S} and,

• for every consumer i, borrowing limit bi(s), value function vi(ai, s), and deci-

sion rules ci(ai, s) and ãi(s′, ai, s),

constitutes a recursive conic equilibrium if:

• for every consumer i = 1, . . . , I, the state-by-state borrowing limit satisfies the

recursion

bi(s) = yi(s) + inf
π̂(·|s)∈M(s)

∑
s′∈S

π̂(s′|s)
π(s′|s)

q(s′|s)bi(s′, s),

• for every consumer i = 1, . . . , I, given ai0(s0), the debt limits bi(s), the pricing

kernel q(·|s), and the financial market configuration M(s), the value function

vi(ai, s) and decision rules ci(ai, s) and ãi(s′, ai, s) solve the Bellman equation

vi(ai, s) = max
ci,{ãi(s′): s′∈S}

u(ci) + β
∑
s′∈S

vi
(
ãi(s′), s′

)
π(s′|s),

subject to

ci +
∑
s′∈S

π̂(s′|s)
π(s′|s)

q(s′|s)ãi(s′) ≤ yi(s) + ai, ∀π̂(·|s) ∈M(s), (2.11)

−ãi(s′) ≤ bi(s′, s), ∀s′ ∈ S,

53



• For any realizations of {st}∞t=0, the corresponding consumption and asset port-

folios of consumer i implied by the decision rules are given by

cit = ci(ait, st),

ait+1(st+1) = ãi(st+1, a
i
t, st),

cit+1 = ci(ait+1(st+1), st+1) = ci(ãi(st+1, a
i
t, st), st+1),

• and given the financial market configuration N (s), the pricing kernel q(·|s) =

{q(s′|s) : s′ ∈ S} is chosen such that the markets clear. Specifically, for any

realizations of {st}∞t=0, the asset portfolios implied by the decision rules satisfy

∑
st+1∈S

π̂(st+1|st)
π(st+1|st)

q(st+1|st)
∑
i

ãi(st+1, a
i
t, st) (2.12)

≤
∑
i

ait, ∀π̂(·|st) ∈ N (st).

It is worth noting that if M(s) = {π(·|s)} is a singleton, then household i’s budget

constraint (2.11) simplifies to the classical one, i.e.,

ci +
∑
s′∈S

q(s′|s)ãi(s′) ≤ yi(s) + ai.

Moreover, if N (s) =
{
π̂(·|s) :

∑
s′∈S π̂(s′|s) = 1

}
, the market clearing condition

(2.12) simplifies to

q(st+1|st)
π(st+1|st)

∑
i

ãi(st+1, a
i
t, st) ≤

∑
i

ait, ∀st+1 ∈ S.

This, along with ai0(s0) = 0, yields the classical market clearing condition

∑
i

ãi(st+1, a
i
t, st) ≤ 0, ∀st+1 ∈ S.
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Equilibrium prices and quantities

Regarding consumer i = 1, . . . , I, let us assume that for some generalized

scenario π̂(·|s; ãi) ∈M(s), we have

sup
π̂(·|s)∈M(s)

∑
s′∈S

π̂(s′|s)
π(s′|s)

q(s′|s)ãi(s′) =
∑
s′∈S

π̂(s′|s; ãi)
π(s′|s)

q(s′|s)ãi(s′).

Then, household i’s budget constraint (2.11) can be written as

ci +
∑
s′∈S

π̂(s′|s; ãi)
π(s′|s)

q(s′|s)ãi(s′) ≤ yi(s) + ai.

Let ηi(ai, s) and νi(s′, ai, s) be the non-negative Lagrange multipliers on the budget

constraint and the borrowing constraint, respectively. Forming the Lagrangian and

using the Envelope theorem [27], we obtain the following first order conditions:

u′
[
ci(ai, s)

]
− ηi(ai, s) = 0,

βvia
(
ãi(s′, ai, s), s′

)
π(s′|s)− ηi(ai, s) π̂(s′|s; ãi)

π(s′|s)
q(s′|s) + νi(s′, ai, s) = 0,

for all s′, ai, s. Using the Envelope theorem another time, we obtain

via(a
i, s) = ηi(ai, s).

Moreover, in the optimal solution to this problem, the natural debt limit will not be

binding (see [4], chapter 8), and hence the Lagrange multipliers νi(s′, ai, s) all equal

zero. After setting those multipliers equal to zero, the first-order conditions imply

the following restrictions on the optimal choices of consumption; i.e.,

π̂(s′|s; ãi)
π(s′|s)

q(s′|s) = β
u′ [ci(ãi(s′, ai, s), s′)]

u′ [ci(ai, s)]
π(s′|s), ∀s′, ∀ai, ∀s.

55



2.5 Concluding remarks

The dynamic conic framework of this chapter could serve much of macroeco-

nomics as foundation. We briefly mentioned how this modeling framework can be

applied to risk sharing. This approach could also help explain a variety of empirical

observations that seem to be inconsistent with complete markets models. For in-

stance, in chapter 4, we will refer to the equity premium puzzle [8] and will describe

how a conic perspective could potentially explain the puzzle. Furthermore, to take

monetary theory as another example, complete markets models dispose of any need

for money or any other medium of exchange. This is because complete markets

contain an efficient multilateral trading mechanism. Any modern model of money

(see e.g., the cash-in-advance model of Lucas [35], the shopping time model [36], the

Townsend turnpike model [37], or the Kiyotaki-Wright search model [38]) introduces

frictions that impede complete markets. Along exactly the same lines, the conic per-

spective adopted in this work is capable of introducing the required impediments to

complete markets. However, these conjectures require further investigations that are

beyond the scope of this work and could be subject of future research. Moreover,

the issues of dynamic consistency, related to ensuring that trading plans accept-

able at t + 1 are also automatically acceptable at t, are in the background of our

dynamic formulation. This requires valuation functionals, i.e., ask and bid prices,

to be nonlinear expectations related to solutions of backward stochastic differential

equations (BSDE’s). Although we didn’t go into much details, recent years have

seen the development of the theory of nonlinear conditional expectations that keep
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all the properties of conditional expectations excepting the linearity. Peng [39–41],

Bion-Nadal [42–44], Jobert and Rogers [45], Cohen and Elliott [46], and El Karoui,

Peng and Quenez [47], have important contributions in this direction.
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Chapter 3: Conic real business cycle model

In this chapter, we shall focus on the stochastic growth model (see [4], chapter

12). The stochastic growth model was formulated and fully analyzed by Brock and

Mirman [48] and is a workhorse for studying macroeconomic fluctuations. Kydland

and Prescott [49] used the framework to study quantitatively the importance of per-

sistent technology shocks for business cycle fluctuations. Many other authors have

used either a stochastic or nonstochastic version of the growth model to approximate

features of the business cycle. To name a few prominent works in this direction, one

could mention the papers by Lucas [50], Prescott [51], Ingram, Kocherlakota, and

Savin [52], Hall [53], Wen [54], Otrok [55], Christiano, Eichenbaum, and Evans [56],

Christiano, Motto, and Rostagno [57], Greenwood, Hercowitz, and Krusell [58],

Jonas Fisher [59], Davig, Leeper, and Walker [60], Schmitt-Grohe and Uribe [61],

and Kim and Kim [62]. This chapter is in the spirit of the papers by Lucas and

Prescott [63] and Mehra and Prescott [8], but differs substantially in its financial

market configurations. We introduce, to the stochastic growth model, alternative

ways of representing dynamic conic equilibria. In particular, similar to chapter 2, we

consider two types of conic financial markets entailing different assets and timings

of trades: a time 0 trading arrangement, and a sequential-trading structure. We
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are interested in formulating recursive representations, however, because there are

endogenous state variables in the growth model, we shall have to extend the method

used in chapter 2.

3.1 Physical setting

Let us first spell out the basic ingredients of the stochastic growth model (see

[4], chapter 12): preferences, endowment, technology, and information. In each pe-

riod t ≥ 0, there is a realization of a stochastic event st ∈ S. Let st = [s0, s1, . . . , st]

denote the history of events up and until time t. The unconditional probability of

observing a particular sequence of events st is given by a probability measure πt(s
t).

For τ > t, the probability of observing sτ conditional on the realization of st can be

written as πtτ (s
τ ). We use st as a commodity space in which goods are differentiated

by histories. A representative household has preferences over non-negative streams

of consumption c = {ct(st)}∞t=0 and leisure ` = {`t(st)}∞t=0 that are ordered by

∞∑
t=0

∑
st

βtu
[
ct(s

t), `t(s
t)
]
πt(s

t),

where 0 < β < 1 and u is strictly increasing in its two arguments, twice continuously

differentiable, strictly concave, and satisfies the Inada conditions

lim
c→0

uc(c, `) = lim
`→0

u`(c, `) =∞.

In each period, the representative household is endowed with one unit of time that

can be devoted to leisure `t(s
t) or labor nt(s

t), i.e.,

1 = `t(s
t) + nt(s

t).
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The household is also endowed with a capital stock k0 at the beginning of period 0.

The technology is

ct(s
t) + xt(s

t) ≤ At(s
t)F

(
kt(s

t−1), nt(s
t)
)
, (3.1)

kt+1(st) = (1− δ)kt(st−1) + xt(s
t), (3.2)

where F is a twice continuously differentiable, constant-returns-to-scale production

function with capital kt(s
t−1) and labor nt(s

t) as inputs. Here, At(s
t) is a stochastic

process of technology shocks. Outputs are the consumption ct(s
t) and investment

xt(s
t) goods. In (3.2), the investment good augments a capital stock that is depre-

ciating at the rate δ. Negative values for xt(s
t) are permitted and mean that the

capital stock can be converted back into the consumption good. We assume that the

production function satisfies the standard assumptions of positive but diminishing

marginal products,

Fj(k, n) > 0, Fjj(k, n) < 0, for j = k, n;

and the usual Inada conditions,

lim
k→0

Fk(k, n) = lim
n→0

Fn(k, n) =∞,

lim
k→0

Fk(k, n) = lim
n→0

Fn(k, n) =∞.

3.2 Time 0 trading

Trades occur among a representative household and two types of representative

firms. Let us first assume that trading occurs at time 0 and after observing s0. In

fact, for the initially given value of s0 = s0, we have π0(s0) = π0
0(s0) = 1. Similarly,
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we set πt(s
t) = π0

t (s
t). Let us use q0 = {q0

t (s
t)}∞t=0 to denote the state prices as of

time t = 0 and after observing s0. The superscript 0 in the state price q0
t (s

t) refers to

the date at which trades occur, while the subscript t refers to the date that deliveries

are to be made. Similar to chapters 1 and 2, the financial market at time 0 and after

observing state s0 is characterized by two sets M0 and N 0 of probability measures

or “generalized scenarios”. The more scenarios considered, the more conservative is

the financial market. We denote a typical scenario by π̂0 = {π̂0
t (s

t)}∞t=0. We assume

π0 = {π0
t (s

t)}∞t=0 ∈ M0 ⊂ N 0 which indicates that the physical measure π = π0

is one of the scenarios considered by the financial market and that the financial

market is more strict towards aggregate risk. Before we describe the problems of

the representative household and the two types of firms in the production economy

with time 0 trading, it must be emphasized that in the economy we include spot

markets for both labor and capital services that reopen in each period. Hence, it is

important to distinguish between the spot markets and the financial market.

Household

In the spot market for labor, the household sells labor services to the type I

firm that operates the production technology (3.1). Let wt(s
t) denote the spot price

of labor at time t and in history st. Moreover, the household owns the initial capital

stock k0 and, in the spot market for capital at date 0, sells it to the type II firm

that operates the capital storage technology (3.2). Let pk0 be the unit price of the
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initial capital stock. Therefore, the household maximizes

∞∑
t=0

∑
st

βtu
[
ct(s

t), 1− nt(st)
]
πt(s

t),

subject to

ct(s
t) ≤ wt(s

t)nt(s
t) + zt(s

t), ∀t, st,
∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zt(s
t) ≤ pk0k0, ∀π̂0 ∈M0. (3.3)

Notice how the household’s budget constraints emphasize the distinction between

spot markets and the financial market. Assuming that for some π̂0(z) ∈M0,

sup
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zt(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t)zt(s
t),

in other words the supremum is attainable, the household’s budget constraint (3.3)

can be equivalently written as

∞∑
t=0

∑
st

π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t)zt(s
t) ≤ pk0k0.

Employing the Envelope theorem [27], the first order conditions with respect to

zt(s
t) and nt(s

t), respectively, are

βtuc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) = η
π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t), (3.4)

βtu`
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) = η
π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t)wt(s
t), (3.5)

where η > 0 is a multiplier on the budget constraint. It is natural to set π̂0
0(s0) =

q0
0(s0) = 1 and obtain η = uc [c0(s0), 1− n0(s0)].
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Type I firm

At each date t ≥ 0 after history st, the type I firm is a production firm that

operates the production technology (3.1) and solves a static optimization problem.

In particular, the type I firm seeks to maximize

At(s
t)F (kIt (s

t), nt(s
t))− rt(st)kIt (st)− wt(st)nt(st).

In fact, in the spot markets at time t and in history st, the type I firm rents capital

kIt (s
t) from the type II firm and labor nt(s

t) from the household at rental prices

rt(s
t) and wt(s

t), respectively. The first order conditions are

rt(s
t) = At(s

t)Fk
(
kIt (s

t), nt(s
t)
)
, (3.6)

wt(s
t) = At(s

t)Fn
(
kIt (s

t), nt(s
t)
)
. (3.7)

If these conditions are satisfied, the firm makes zero profits and its size is indetermi-

nate. The firm of type I is willing to produce any quantities of ct(s
t) and xt(s

t) that

the market demands, provided that these zero profit conditions are satisfied. Ac-

cording to these equilibrium conditions, each input in the production technology is

paid its marginal product, and hence profit maximization of the type I firm ensures

an efficient allocation of labor services and capital. Moreover, since the production

function has constant returns to scale, we can define

F (k, n) =: f(k)n,

where k := k/n. Another property of a linearly homogeneous function F (k, n) is

that its first derivatives are homogeneous of degree 0, and thus the first derivatives
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are functions only of the ratio k. In particular, we have

Fk(k, n) =
∂f(k/n)n

∂k
= f ′(k),

Fn(k, n) =
∂f(k/n)n

∂n
= f(k)− f ′(k)k.

Therefore, the first order conditions (3.6) and (3.7) simplify to

rt(s
t) = At(s

t)f ′(k
I

t (s
t)),

wt(s
t) = At(s

t)
(
f(k

I

t (s
t))− f ′(kIt (st))k

I

t (s
t)
)
.

This leads to the observation that

wt(s
t)nt(s

t) + rt(s
t)kIt (s

t) = At(s
t)F

(
kIt (s

t), nt(s
t)
)
,

since

wt(s
t)nt(s

t) + rt(s
t)kIt (s

t)

=
[
At(s

t)
(
f(k

I

t (s
t))− f ′(kIt (st))k

I

t (s
t)
)

+ At(s
t)f ′(k

I

t (s
t))k

I

t (s
t)
]
nt(s

t)

= At(s
t)f(k

I

t (s
t))nt(s

t) = At(s
t)F

(
kIt (s

t), nt(s
t)
)
.

Type II firm

The representative firm of type II operates technology (3.2) to transform out-

put into capital. The type II firm purchases capital at time 0 from the household

sector and thereafter invests in new capital, earning revenues by renting capital to

the type I firm. Thus, the type II firm maximizes

−pk0kII0 + inf
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)yt(s
t),
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subject to

xt(s
t) + yt(s

t) ≤ rt(s
t)kIIt (st−1),

kIIt+1(st) = (1− δ)kIIt (st−1) + xt(s
t).

As in chapter 1, we take the natural point of view that the firm is an asset y =

{yt(st)}∞t=0 whose shares are tradeable in the financial market at time t = 0. In fact,

the firm’s profit can be compactly expressed as

−pk0kII0 + bid
(
y;M0, q0

)
.

Note that the firm’s capital stock kII0 in period 0 is bought without any uncertainty

about the rental price in that period. However, the investment in capital kIIt+1(st)

for a future period t+ 1 is conditioned on the realized history st. Thus, the type II

firm manages the risk associated with technology constraint (3.2). In particular, the

capital storage technology (3.2) states that capital must be assembled one period

prior to becoming an input for production. In contrast, the type I firm of the pre-

vious subsection can choose how much capital kIt (s
t) to rent in period t conditioned

on history st. Note that the firm’s profit in general is a non-linear and concave

function in y suited to be maximized. Assuming that for some π̂0(y) ∈M0

inf
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)yt(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t; y)

π0
t (s

t)
q0
t (s

t)yt(s
t),
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in other words the infimum is attainable, the firm’s objective function can be equiv-

alently written as

kII0

[
−pk0 + r0(s0) + (1− δ)

]
+
∞∑
t=0

∑
st

kIIt+1(st)
[
− π̂0

t (s
t; y)

π0
t (s

t)
q0
t (s

t)

+
∑
st+1|st

π̂0
t+1(st+1; y)

π0
t+1(st+1)

q0
t+1(st+1)

(
rt+1(st+1) + (1− δ)

) ]
.

Here, we are making the natural assumptions that π̂0
0(s0) = q0

0(s0) = 1. Using the

Envelope theorem [27], the first order conditions can be written as

pk0 = r0(s0) + (1− δ), (3.8)

π̂0
t (s

t; y)

π0
t (s

t)
q0
t (s

t) =
∑
st+1|st

π̂0
t+1(st+1; y)

π0
t+1(st+1)

q0
t+1(st+1)

(
rt+1(st+1) + (1− δ)

)
. (3.9)

These conditions impose no-arbitrage restrictions across prices.

Market clearing

The market clearing conditions are given by kIIt (st−1) = kIt (s
t) and

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)
[
zt(s

t)− yt(st)
]
≤ 0, ∀π̂0 ∈ N 0.

This can be equivalently written as

sup
π̂0∈N 0

∞∑
t=0

∑
st

{
π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)

[
ct(s

t) + kIIt+1(st)− wt(st)nt(st)−
(
rt(s

t) + (1− δ)
)
kIIt (st−1)

]}
≤ 0.

Assuming that the supremum is attained at some π̂0(z, y) ∈ N 0, we obtain

∞∑
t=0

∑
st

{
π̂0
t (s

t; z, y)

π0
t (s

t)
q0
t (s

t) (3.10)

[
ct(s

t) + kIIt+1(st)− wt(st)nt(st)−
(
rt(s

t) + (1− δ)
)
kIIt (st−1)

]}
≤ 0.

66



Alternatively, we can write

∞∑
t=0

∑
st

{
π̂0
t (s

t; z, y)

π0
t (s

t)
q0
t (s

t)
[
ct(s

t) + kIIt+1(st)− wt(st)nt(st)
]

−kIIt+1(st)
∑
st+1|st

π̂0
t+1(st+1; z, y)

π0
t+1(st+1)

q0
t+1(st+1)

(
rt+1(st+1) + (1− δ)

)}
≤ kII0 [r0(s0) + (1− δ)] .

Equilibrium prices and quantities

Combining the first order conditions of the household (3.5) and the type I firm

(3.7), we obtain

βtu`
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) = η
π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t)At(s
t)Fn

(
kIt (s

t), nt(s
t)
)
.

Moreover, the first order conditions of the household (3.4), type II (3.9), and type

I (3.6) firms, combined together, give

βtuc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) = η
π̂0
t (s

t; z)

π̂0
t (s

t; y)

·
∑
st+1|st

π̂0
t+1(st+1; y)

π0
t+1(st+1)

q0
t+1(st+1)

(
rt+1(st+1) + (1− δ)

)
= η

π̂0
t (s

t; z)

π̂0
t (s

t; y)

∑
st+1|st

{
π̂0
t+1(st+1; y)

π0
t+1(st+1)

q0
t+1(st+1)

·
[
At+1(st+1)Fk

(
kIt+1(st+1), nt+1(st+1)

)
+ (1− δ)

]}
.

Now, using the household’s first order condition (3.4),

βtuc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) = η
π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t),

βt+1uc
[
ct+1(st+1), 1− nt+1(st+1)

]
π0
t+1(st+1) = η

π̂0
t+1(st+1; z)

π0
t+1(st+1)

q0
t+1(st+1),

we obtain

u`
[
ct(s

t), 1− nt(st)
]

= uc
[
ct(s

t), 1− nt(st)
]
At(s

t)Fn
(
kIt (s

t), nt(s
t)
)
, (3.11)
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and

uc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) (3.12)

= β
π̂0
t (s

t; z)

π̂0
t (s

t; y)

∑
st+1|st

{
π̂0
t+1(st+1; y)

π̂0
t+1(st+1; z)

uc
[
ct+1(st+1), 1− nt+1(st+1)

]
π0
t+1(st+1)

[
At+1(st+1)Fk

(
kIt+1(st+1), nt+1(st+1)

)
+ (1− δ)

]}
.

Furthermore, using the household’s first order condition (3.4) along with the type I

firm’s zero profit conditions (3.6, 3.7), the market clearing (3.10) can be written as

∞∑
t=0

∑
st

βt

η

{
π̂0
t (s

t; z, y)

π̂0
t (s

t; z)
uc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) (3.13)

[
ct(s

t) + kIIt+1(st)− (1− δ)kIIt (st−1)− At(st)F
(
kIIt (st−1), nt(s

t)
)]}

= 0.

Recall that η = uc [c0(s0), 1− n0(s0)]. In summary, we propose to use the follow-

ing algorithm1 which generalizes the Negishi algorithm (see [4], chapter 8) to find

equilibrium quantities and prices.

1. Make initial guesses for π̂0(z), π̂0(y), and π̂0(z, y). A good initial guess is

usually given by the actual physical measure π0.

2. Solve equations (3.11), (3.12), and (3.13) for candidate consumption c, labor

n, and capital kI = kII .

3. Use the following (see equation (3.4)) to solve for the price system q0.

βtuc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) = η
π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t).

1The non-linearities involved in the definition of a conic general equilibrium makes a convergence

proof of the proposed algorithm non-trivial. A convergence proof would require imposing further

restrictions on the sets M0 and N 0 identifying the financial market configurations. This will be

subject of future research.
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4. We can find the spot prices rt(s
t) and wt(s

t) for capital and labor, respectively,

using the type I firm’s zero profit conditions (3.6, 3.7), i.e.,

rt(s
t) = At(s

t)Fk
(
kIt (s

t), nt(s
t)
)
,

wt(s
t) = At(s

t)Fn
(
kIt (s

t), nt(s
t)
)
.

Moreover equation (3.8) gives the unit price of the initial capital stock, i.e.,

pk0 = r0(s0) + (1− δ).

5. The equilibrium demand z, and supply y for assets, along with capital invest-

ments x, can be obtained using

ct(s
t) = wt(s

t)nt(s
t) + zt(s

t),

xt(s
t) + yt(s

t) = rt(s
t)kIIt (st−1),

kIIt+1(st) = (1− δ)kIIt (st−1) + xt(s
t).

6. Check the validity of the following requirements and update π̂0(z), π̂0(y), and

π̂0(z, y) accordingly.

sup
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)zt(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t; z)

π0
t (s

t)
q0
t (s

t)zt(s
t),

inf
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)yt(s
t) =

∞∑
t=0

∑
st

π̂0
t (s

t; y)

π0
t (s

t)
q0
t (s

t)yt(s
t),

sup
π̂0∈N 0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)
(
zt(s

t)− yt(st)
)

=
∞∑
t=0

∑
st

π̂0
t (s

t; z, y)

π0
t (s

t)
q0
t (s

t)
(
zt(s

t)− yt(st)
)
.

It is worth noting that this step boils down to maximizing linear objective

functions.
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7. Iterate on steps 2-6 until the requirements of step 6 are satisfied.

3.3 Sequential trading

This section describes the production economy with an alternative financial

market structure, i.e., sequential trading. As in chapter 2, we begin by asking the

following question. In the conic production economy with time 0 trading, what is the

implied continuation wealth of the household at time t after history st, but before

adding in its time t, history st value of labor wt(s
t)nt(s

t)? Thus, the household’s

continuation wealth or financial wealth expressed in terms of the date t, history st

consumption good is denoted by at(s
t) and is given by

at(s
t) = sup

π̂t∈Mt

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )zτ (s
τ ),

where

π̂tτ (s
τ ) :=

π̂0
τ (s

τ )

π̂0
t (s

t)
, qtτ (s

τ ) :=
q0
τ (s

τ )

q0
t (s

t)
, and π̂t :=

{
π̂tτ (s

τ )
}∞
τ=t
∈Mt.

Here, Mt denotes the set of generalized scenarios considered by the financial mar-

ket as of time t and after observing history st. At time 0, the household’s bud-

get constraint (3.3) in the dynamic conic equilibrium with time 0 trading implies

a0(s0) = pk0k0. Similar to chapter 2, in moving from the economy with time 0

trading to one with sequential trading, we propose to match the time t, history st

wealth of the household in the sequential economy with the equilibrium tail wealth

at(s
t) from the dynamic conic equilibrium with time 0 trading. In the following,

we describe the problems of the representative household and the type II firm in
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the production economy with sequential trading. The representative firm of type I

behaves as before.

Household

At each date t ≥ 0 after history st, the representative household buys consump-

tion goods ct(s
t) and sells labor services nt(s

t) in the corresponding spot markets.

Moreover, in the financial market at time t and in history st, the household trades

claims to date t + 1 consumption, whose payment is contingent on the realization

of st+1. Therefore, the household maximizes

∞∑
t=0

∑
st

βtu
[
ct(s

t), 1− nt(st)
]
πt(s

t),

subject to the sequential budget constraint

ct(s
t) +

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)at+1(st+1, s

t) ≤ wt(s
t)nt(s

t) + at(s
t),

∀t, ∀st, ∀π̂tt+1 ∈Mt
t+1. (3.14)

Here, at(s
t) denotes the claims to time t consumption that the household brings into

time t in history st. To rule out Ponzi schemes, we must impose borrowing con-

straints on the household’s asset position. We could follow the approach of chapter

2 and compute state-contingent natural debt limits. In particular, the counterpart to

the earlier present value of the household’s endowment stream would be the present

value of the household’s time endowment. Alternatively, we just impose that the

household’s indebtedness in any state next period, −at+1(st+1, s
t), is bounded by

some arbitrarily large constant. Such an arbitrary debt limit works well for the fol-

lowing reason (see [4], chapter 12). As long as the household is constrained so that
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it cannot run a true Ponzi scheme with an unbounded budget constraint, equilib-

rium forces will ensure that the representative household willingly holds the market

portfolio. In the present setting, we can for example set that arbitrary debt limit

equal to zero (see [4], chapter 12). Therefore, the borrowing constraint at time t in

history st is given by

−at+1(st+1, s
t) ≤ 0, ∀st+1 ∈ S.

Let us assume that for some generalized scenario π̂tt+1(at+1) ∈Mt
t+1, we have

sup
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)at+1(st+1, s

t)

=
∑
st+1∈S

π̂tt+1(st+1; at+1)

πtt+1(st+1)
qtt+1(st+1)at+1(st+1, s

t).

Then, the household’s budget constraint at time t in history st can be written as

ct(s
t) +

∑
st+1∈S

π̂tt+1(st+1; at+1)

πtt+1(st+1)
qtt+1(st+1)at+1(st+1, s

t) ≤ wt(s
t)nt(s

t) + at(s
t).

Let ηt(s
t) and νt+1(st+1, s

t) be the non-negative Lagrange multipliers on the budget

constraint and the borrowing constraint, respectively. Forming the Lagrangian and

using the Envelope theorem [27], we obtain the following first order conditions;

βtuc
[
ct(s

t), 1− nt(st)
]
π0
t (s

t)− ηt(st) = 0,

−βtu`
[
ct(s

t), 1− nt(st)
]
π0
t (s

t) + ηt(s
t)wt(s

t) = 0,

−ηt(st)
π̂tt+1(st+1; at+1)

πtt+1(st+1)
qtt+1(st+1) + νt+1(st+1, s

t) + ηt+1(st+1, s
t) = 0,

for all st+1, t, s
t. We proceed under the conjecture (see [4], chapter 12) that the

arbitrary debt limit of zero will not be binding, and hence the Lagrange multipliers

νt+1(st+1, s
t) are all equal to zero. After setting those multipliers equal to zero,
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the first-order conditions imply the following conditions for the optimal choices of

consumption and labor;

wt(s
t) =

uc [ct(s
t), 1− nt(st)]

u` [ct(st), 1− nt(st)]
, (3.15)

π̂tt+1(st+1; at+1)

πtt+1(st+1)
qtt+1(st+1) = β

uc [ct+1(st+1, s
t), 1− nt+1(st+1, s

t)]

uc [ct(st), 1− nt(st)]
πtt+1(st+1),

for all st+1, t, s
t.

Type II firm

A type II firm transforms output into capital, stores capital, and earns its

revenues by renting capital to the type I firm. Thus, at each date t ≥ 0 after history

st, the type II firm maximizes

bt(s
t) = yt(s

t) + inf
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)bt+1(st+1, s

t),

subject to

xt(s
t) + yt(s

t) ≤ rt(s
t)kIIt (st−1),

kIIt+1(st) = (1− δ)kIIt (st−1) + xt(s
t).

We take the natural point of view that the firm is an asset

bt+1(·, st) =
{
bt+1(st+1, s

t) : st+1 ∈ S
}

whose shares are tradeable in the financial market at time t after history st. Alter-

natively, the firm’s profit can be equivalently written as

bt(s
t) =

[
rt(s

t) + (1− δ)
]
kIIt (st−1)− kIIt+1(st)

+ inf
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)bt+1(st+1, s

t).
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To be consistent with the conic equilibrium with time 0 trading we assume that

[r0(s0) + (1 − δ)]k0 = a0(s0) = pk0k0. Because of the technological assumption

that capital can be reconverted to the consumption good, we can without loss of

generality consider a two-period optimization problem where the type II firm decides

how much capital kIIt+1(st) to store at the end of period t after history st in order

to earn a stochastic rental revenue rt+1(st+1, s
t)kIIt+1(st) and liquidation value (1 −

δ)kIIt+1(st) in the following period. Therefore, at each date t ≥ 0 after history st, the

type II firm chooses kIIt+1(st) to maximize

kIIt+1(st)

{
− 1 + inf

π̂tt+1∈Mt
t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)

[
rt+1(st+1, s

t) + (1− δ)
]}

.

The zero-profit condition is

1 = inf
π̂tt+1∈Mt

t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)

[
rt+1(st+1, s

t) + (1− δ)
]
.

The size of the type II firm is indeterminate. Assuming that the infimum is attained

at some π̂tt+1(rt+1) ∈Mt
t+1, the zero-profit condition can be written as

1 =
∑
st+1∈S

π̂tt+1(st+1; rt+1)

πtt+1(st+1)
qtt+1(st+1)

[
rt+1(st+1, s

t) + (1− δ)
]
. (3.16)

Market clearing

The market clearing conditions are given by kIIt (st−1) = kIt (s
t) and

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)

{
at+1(st+1, s

t)− [rt+1(st+1, s
t) + (1− δ)]kIIt+1(st)

}
≤ at(s

t)− [rt(s
t) + (1− δ)]kIIt (st−1), ∀t, ∀st, ∀π̂tt+1 ∈ N t

t+1.

Note that a0(s0) = [r0(s0) + (1− δ)]k0 = pk0k0.
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Equilibrium prices and quantities

Combining the first order conditions of the household (3.15) and the type I

firm (3.7), we obtain

uc
[
ct(s

t), 1− nt(st)
]

= u`
[
ct(s

t), 1− nt(st)
]
At(s

t)Fn
(
kIt (s

t), nt(s
t)
)
.

Moreover, the first order conditions of the household (3.15), type II (3.16), and type

I (3.6) firms, combined together, give

1 = β
∑
st+1|st

{
π̂tt+1(st+1; rt+1)

π̂tt+1(st+1; at+1)

uc [ct+1(st+1), 1− nt+1(st+1)]

uc [ct(st), 1− nt(st)]
πtt+1(st+1)

[
At+1(st+1)Fk

(
kIt+1(st+1), nt+1(st+1)

)
+ (1− δ)

]}
.

Comparing this with equation (3.12) shows that the dynamic conic equilibrium with

sequential trading is consistent with the financial economy with time 0 trading.

3.4 Recursive formulation

Our findings so far hold for an arbitrary technology process At(s
t), defined

as a measurable function of the history of events st which in turn are governed

by some arbitrary probability measure πt(s
t). At this level of generality, all prices

{qtt+1, wt(s
t), rt(s

t)}, the financial market primitives Mt
t+1, N t

t+1, and the capital

stock kt+1(st) in the sequential-trading economy depend on the history st. That is,

these objects are time-varying functions of all past events {sτ}tτ=0. This leads us

to make a few specializations of the exogenous processes that facilitates a recursive

formulation of the production economy with sequential trading. Similar to chapter 2,
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we let π(s′|s) be a Markov chain with given initial distribution π0(s) and state space

s ∈ S. It means that Prob(st+1 = s′|st = s) = π(s′|s) and Prob(s0 = s) = π0(s).

The chain induces a sequence of probability measures πt(s
t) on histories st via the

recursions

πt(s
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)π0(s0).

In this chapter, we have assumed that trading occurs after the initially given value

of s0 has been observed, which we capture by setting π0(s0) = 1. Because of the

Markov property, for τ > t, the conditional probability πtτ (s
τ ) depends only on the

state st at time t and does not depend on the history before t,

πtτ (s
τ ) = π(sτ |sτ−1)π(sτ−1|sτ−2) . . . π(st+1|st).

Next, we assume that the aggregate technology level At(s
t) in period t is a time-

invariant measurable function of its level in the last period and the current stochastic

event st, i.e., At(s
t) = A (At−1(st−1), st). For example, here we will proceed with

the multiplicative version

At(s
t) = stAt−1(st−1) = s0s1 . . . stA−1,

given the initial value A−1. This specialization of the technology process enables

us to explore recursive formulations of the sequential-trading equilibrium. Let k

denote the beginning-of-period capital and employ the state vector ξ := [k A s] to

completely summarize the economy’s current position. We specify price functions

r(ξ), w(ξ), q(ξ′|ξ) that represent, respectively, the rental price of capital, the wage

rate for labor, and the price of a claim to one unit of consumption next period when
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next period’s state is ξ′ and this period’s state is ξ. The prices are all measured

in units of this period’s consumption good. We also take as given an arbitrary

candidate for the law of motion for k; i.e.,

k′ = κ(ξ).

This equation along with A′ = As and a given transition density π(s′|s) induces a

transition density ρ(ξ′|ξ) for the state ξ. For now κ is arbitrary. As in chapter 2, the

one-period-ahead financial market in state s ∈ S is characterized by two sets M(s)

and N (s) of generalized scenarios π̂(s′|s). Similar to the transition density ρ(ξ′|ξ),

we obtain the induced generalized scenarios ρ̂(ξ′|ξ) and the induced financial market

configurations M(ξ) and N (ξ).

Household problem

The Bellman equation of the household is

v(a, ξ) = max
c,n,a′(·)

{
u (c, 1− n) + β

∑
ξ′∈X

v(a′(ξ′), ξ′)ρ(ξ′|ξ)
}

subject to

c+ sup
ρ̂(·|ξ)∈M(ξ)

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ)a′(ξ′) ≤ w(ξ)n+ a.

Here, M(ξ) denotes the set of induced generalized scenarios at the individual level

considered by the financial market in state ξ. Moreover, it should be noted that

c = c(a, ξ), n = n(a, ξ), and a′(ξ′) = a′(ξ′, a, ξ).

Assuming that for some ρ̂(·|ξ; a′) ∈M(ξ),

sup
ρ̂(·|ξ)∈M(ξ)

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ)a′(ξ′) =
∑
ξ′∈X

ρ̂(ξ′|ξ; a′)
ρ(ξ′|ξ)

q(ξ′|ξ)a′(ξ′),
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and by evoking the Envelope theorem twice, we can represent the first-order condi-

tions for the household’s problem as

u` [c(a, ξ), 1− n(a, ξ)] = uc [c(a, ξ), 1− n(a, ξ)]w(ξ),

ρ̂(·|ξ; a′)
ρ(ξ′|ξ)

q(ξ′|ξ) = β
uc [c(a′(ξ′, a, ξ), ξ′), 1− n(a′(ξ′, a, ξ), ξ′)]

uc [c(a, ξ), 1− n(a, ξ)]
ρ(ξ′|ξ).

Type I firm

In the recursive formulation, the problem of a type I firm can be written as

max
c,x,k,n

{
c+ x− r(ξ)k − w(ξ)n

}
,

subject to

c+ x ≤ AsF (k, n).

The zero-profit conditions are

r(ξ) = AsFk(k, n),

w(ξ) = AsFn(k, n).

Type II firm

At each state ξ, the type II firm maximizes

b(ξ) = y + inf
ρ̂(·|ξ)∈M(ξ)

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ)b(ξ′, ξ)

subject to x + y ≤ r(ξ)k and k′ = (1− δ)k + x. We take the natural point of view

that the firm is an asset

b(·, ξ) = {b(ξ′, ξ) : ξ′ ∈ X}
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whose shares are tradeable in the financial market in state ξ. Alternatively, the

firm’s problem can be equivalently written as

max
k′

k′
{
− 1 + inf

ρ̂(·|ξ)∈M(ξ)

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ) [r(ξ′, ξ) + (1− δ)]
}
.

Assuming that for some ρ̂(·|ξ; r) ∈ M(ξ) the infimum is attained, we obtain the

zero-profit condition

1 =
∑
ξ′∈X

ρ̂(ξ′|ξ; r)
ρ(ξ′|ξ)

q(ξ′|ξ) [r(ξ′, ξ) + (1− δ)] .

Market clearing

The market clearing condition is given by

sup
ρ̂(·|ξ)∈N (ξ)

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ) [a′(ξ′, a, ξ)− [r(ξ′) + (1− δ)] k′] ≤ a− [r(ξ) + (1− δ)] k.

Recursive equilibrium

We can summarize the preceding discussion in the following definition.

Definition 3.1 (recursive conic equilibrium – production economy). Given

• an initial state vector ξ0 = [k0 A0 s0], where k0 is an initial capital stock, A0

is an initial aggregate technology level, and s0 ∈ S,

• an initial wealth level a0(s0), a one-period-ahead conic financial market

{(M(s),N (s)) : s ∈ S} ,

• a transition density π(s′|s), and a law of motion A′ = As for the aggregate

technology level,
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a collection formed by

• a pricing kernel q(·|ξ) = {q(ξ′|ξ) : s′ ∈ S}, where ξ = [k A s] is the state

vector,

• spot prices r(ξ) and w(ξ),

• a perceived law of motion k′ = κ(ξ) along with the associated induced transition

density ρ(ξ′|ξ) and the corresponding induced one-period-ahead conic financial

market

{(M(ξ),N (ξ)) : ξ ∈ X} ,

• and a household value function v(a, ξ) along with decision rules c(a, ξ), n(a, ξ),

and a′(ξ′, a, ξ),

constitutes a recursive conic equilibrium if

• given initial wealth a0(s0), wage w(ξ), pricing kernel q(·|ξ), and the financial

market configuration M(ξ), the value function v(a, ξ) along with the decision

rules c(a, ξ), n(a, ξ), and a′(ξ′, a, ξ) solve the Bellman equation

v(a, ξ) = max
c,n,{a′(ξ′): ξ′∈X}

u(c, 1− n) + β
∑
ξ′∈X

v (a′(ξ′), ξ′) ρ(ξ′|ξ),

subject to

c+
∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ)a′(ξ′) ≤ w(ξ)n+ a, ∀ρ̂(·|ξ) ∈M(ξ), (3.17)

−a′(ξ′) ≤ 0, ∀ξ′ ∈ X,

• for all ξ ∈ X, given r(ξ) and w(ξ), the type I firm solves

max
c,x,k,n

{
c+ x− r(ξ)k − w(ξ)n

}
,
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subject to

c+ x ≤ AsF (k, n),

• at each state ξ ∈ X, given a stochastic rental price r(·, ξ), pricing kernel q(·|ξ),

and the financial market configuration M(ξ), the type II firm solves

max
k′

k′
{
− 1 + inf

ρ̂(·|ξ)∈M(ξ)

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ) [r(ξ′, ξ) + (1− δ)]
}
,

• and the pricing kernel q(·|ξ) = {q(ξ′|ξ) : s′ ∈ S}, spot prices r(ξ) and w(ξ),

and the perceived law of motion k′ = κ(ξ) are chosen such that the markets

clear; i.e.,

∑
ξ′∈X

ρ̂(ξ′|ξ)
ρ(ξ′|ξ)

q(ξ′|ξ)
{
a′(ξ′, a, ξ)− [r(ξ′, ξ) + (1− δ)]k′

}
≤ a− [r(ξ) + (1− δ)] k,

∀ρ̂(·|ξ) ∈ N (ξ).

3.5 Concluding remarks

To motivate interest in the role of financial factors in business fluctuations it

is no longer necessary to appeal either to the Great Depression or to the experiences

of many emerging market economies. Indeed, the financial crisis of 2007–09 put

a spotlight (see e.g., [5, 64, 65]) on the need for a unified framework that can help

us organize our thinking about financial markets and aggregate economic activity.

The recursive conic equilibrium concept of this chapter provides us with such a

framework, and can help us address questions of the form: How disruptions in

financial markets can induce a crisis that affects real activity? How various financial

market interventions might work to mitigate the crisis?
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Chapter 4: Primer on conic asset pricing

An equilibrium price system for an economy with conic financial markets (see

chapter 2) can be used to price any redundant assets. An asset is redundant if it

offers a bundle of history-contingent dated claims whose payoff could be synthesized

as a measurable function of the economy’s state.

4.1 Pricing redundant assets

Let {dt(st)}∞t=0 be a stream of claims on time t, history st consumption, where

dt(s
t) is a measurable function of st. The ask and bid prices of an asset entitling

the owner to this stream is given by

ask0
0(s0) = ask

(
d;M0; q0

)
= sup

π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)dt(s
t),

and

bid0
0(s0) = bid

(
d;M0; q0

)
= inf

π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t)dt(s
t).

Riskless consol

As an example, consider the price of a riskless consol, that is, an asset offering

to pay one unit of consumption for sure each period. Then dt(s
t) = 1 for all t and
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st, and the ask and bid prices of this asset are given by

sup
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t),

and

inf
π̂0∈M0

∞∑
t=0

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t),

respectively.

Riskless strips

As another example, consider a sequence of strips of payoffs on the riskless

consol. The time t strip is just the payoff process dτ = 1 if τ = t ≥ 0, and 0

otherwise. Thus, the owner of the strip is entitled to the time t coupon only. The

ask and bid values of the time t strip at time 0 are

sup
π̂0
t∈M0

t

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t),

and

inf
π̂0
t∈M0

t

∑
st

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t),

respectively. We can think of the t-period riskless strip as a t-period zero-coupon

bond.

Arrow-Debreu security

Consider an Arrow-Debreu security entitling the owner to one unit of con-

sumption at t and in history st. The ask and bid values of the time t, history st
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Arrow-Debreu security at time 0 are

sup
π̂0
t∈M0

t

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t), and inf
π̂0
t∈M0

t

π̂0
t (s

t)

π0
t (s

t)
q0
t (s

t),

respectively.

Tail assets

Let ask0
t (s

t) be the time 0 ask price of an asset that entitles the owner to

dividend stream {dτ (sτ )}∞τ=t if history st is realized, i.e.,

ask0
t (s

t) = sup
π̂0∈M0

∞∑
τ=t

∑
sτ |st

π̂0
τ (s

τ )

π0
τ (s

τ )
q0
τ (s

τ )dτ (s
τ ).

When the units of the price are time 0, state s0 goods, the normalization is π̂0
0(s0) =

q0
0(s0) = 1. To convert the price into units of time t, history st consumption goods,

divide by q0
t (s

t) to obtain

ask0
t (s

t)

q0
t (s

t)
= sup

π̂0∈M0

∞∑
τ=t

∑
sτ |st

π̂0
τ (s

τ )

π0
τ (s

τ )
qtτ (s

τ )dτ (s
τ ).

Where

qtτ (s
τ ) :=

q0
τ (s

τ )

q0
t (s

t)

is the price of one unit of consumption delivered at time τ , history sτ in terms of

the date t, history st consumption good. Similarly, define

π̂tτ (s
τ ) :=

π̂0
τ (s

τ )

π̂0
t (s

t)

and let Mt denote the set of generalized scenarios π̂t = {π̂tτ (sτ )}
∞
τ=t considered by

the financial market at time t, history st. Thus, the ask price at time t, history st
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for the “tail asset” should be

asktt(s
t) = sup

π̂t∈Mt

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )dτ (s
τ ),

Similarly, the bid price at time t, history st for the tail asset is

bidtt(s
t) = inf

π̂t∈Mt

∞∑
τ=t

∑
sτ |st

π̂tτ (s
τ )

πtτ (s
τ )
qtτ (s

τ )dτ (s
τ ).

One-period returns

Let us start by noting that equation (2.3) yields

π̂tτ (s
τ ; zi)

πtτ (s
τ )

qtτ (s
τ ) = βτ−t

u′[ciτ (s
τ )]

u′[cit(s
t)]
πtτ (s

τ ).

Therefore, we obtain the one-period pricing kernel qtt+1 at time t in history st to be

given by

π̂tt+1(st+1; zi)

πtt+1(st+1)
qtt+1(st+1) = β

u′[cit+1(st+1)]

u′[cit(s
t)]

πtt+1(st+1).

If we want to find the ask price at time t in history st of a claim to a random payoff

wt+1 = {w(st+1) : st+1 ∈ S}, we use

asktt(s
t) = sup

π̂tt+1∈Mt
t+1

∑
st+1∈S

π̂tt+1(st+1)

πtt+1(st+1)
qtt+1(st+1)wt+1(st+1),

or equivalently

asktt(s
t) = sup

π̂tt+1∈Mt
t+1

Et
[
β
u′(ct+1)

u′(ct)

π̂tt+1

π̂tt+1(z)
wt+1

]
,

where Et is the conditional expectation operator. We removed the superscript i,

since the above equality holds for every household i. Define Rask
t,t+1 to be the one-

period gross return, corresponding to the ask price, on the asset; i.e.,

Rask
t,t+1(st+1) :=

wt+1(st+1)

asktt(s
t)

.
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Then, we obtain

1 = sup
π̂tt+1∈Mt

t+1

Et
[
β
u′(ct+1)

u′(ct)

π̂tt+1

π̂tt+1(z)
Rask
t,t+1

]
=: sup

π̂tt+1∈Mt
t+1

Et
[
π̂tt+1

π̂tt+1(z)
mt
t+1R

ask
t,t+1

]
,

where the term

mt
t+1 := β

u′(ct+1)

u′(ct)

functions as a stochastic discount factor. Similarly, we obtain

1 = inf
π̂tt+1∈Mt

t+1

Et
[
π̂tt+1

π̂tt+1(z)
mt
t+1R

bid
t,t+1

]
.

Therefore, we have the following restriction on the conditional moments of the re-

turns and mt
t+1:

Et
[
π̂tt+1

π̂tt+1(z)
mt
t+1R

ask
t,t+1

]
≤ 1 ≤ Et

[
π̂tt+1

π̂tt+1(z)
mt
t+1R

bid
t,t+1

]
, ∀π̂tt+1 ∈Mt

t+1. (4.1)

Since this is true for every π̂tt+1 ∈ Mt
t+1, we arrive at the following fundamental

inequality

Et
[
mt
t+1R

ask
t,t+1

]
≤ 1 ≤ Et

[
mt
t+1R

bid
t,t+1

]
. (4.2)

Note that if Mt
t+1 = {πtt+1} is a singleton, then Rbid

t,t+1 = Rask
t,t+1 = Rt

t+1 and we

obtain the classical conditional moments restriction

1 = Et
[
mt
t+1R

t
t+1

]
. (4.3)

The above equation (4.3) summarizes in a nutshell most of the classical asset pricing

theories (see [4], chapter 13). Empirically, for the stochastic discount factor

mt
t+1 = β

(
ct+1

ct

)−γ
,
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where γ is a coefficient of relative risk aversion, restriction (4.3) fails to work well

when applied to data on returns of stocks and risk-free bonds. Mehra and Prescott [8]

called this difficulty the equity premium puzzle. A substantial part of the problem

is that with aggregate U.S. data for ct and “reasonable” values for γ, the stochastic

discount factor mt
t+1 is simply insufficiently volatile. For insightful reviews and lists

of possible resolutions of the equity premium puzzle, see the papers by Aiyagari [66],

Kocherlakota [67], and Cochrane [68]. In a conic framework, as equation (4.1)

indicates, the additional factor

π̂tt+1

π̂tt+1(z)

can help increase the volatility and consequently explain the equity premium puz-

zle. Moreover, Hansen and Jagannathan [69] showed that a very weak theoretical

restriction on prices, namely a “law of one price”, is enough to imply that there

exists a stochastic discount factor m that satisfies equation (4.3). Therefore, the

law of one price is another major contributor to the equity premium puzzle. Given

that a conic economy is indeed a two price economy (see equation (4.2)), it can help

explain the puzzle from this perspective as well. Indeed, these observations need

more investigations that are beyond the scope of this work.

4.2 j-step pricing kernel

The j-step pricing kernel, denoted by qj(s
′|s), gives the price of one unit of

consumption j periods ahead, contingent on the state in that future period being

s′, given that the current state is s. In particular, q1(s′|s) corresponds to the one-
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period-ahead pricing kernel q(s′|s) when j = 1. With markets in all possible j-step-

ahead contingent claims, the augmented version of constraint (2.11), the household’s

budget constraint at time t is given by

cit +
∞∑
j=1

∑
st+j∈S

π̂j(st+j|st)
πj(st+j|st)

qj(st+j|st)zit,j(st+j) ≤ yi(st) + ait,

∀π̂j(·|st) ∈Mj(st), ∀j ≥ 1.

Here, Mj(st) denotes the set of generalized scenarios considered by the financial

market in state st for j-step-ahead contingent claims. Moreover, zit,j(st+j) is house-

hold i’s holdings, at the end of period t, of contingent claims that pay one unit of

the consumption good j periods ahead at date t+ j, contingent on the state at date

t + j being st+j. The household’s wealth ait+1(st+1) in the next period depends on

the chosen asset portfolio and the realization of st+1, and is given by

zit,1(st+1) +
∞∑
j=2

∑
st+j∈S

π̂j−1(st+j|st+1)

πj−1(st+j|st+1)
qj−1(st+j|st+1)zit,j(st+j) ≤ ait+1(st+1),

∀π̂j−1(·|st+1) ∈Mj−1(st+1), ∀j ≥ 2.

The realization of st+1 determines which element of the vector of one-period-ahead

claims {zit,1(st+1)} pays off at time t + 1, and also the capital gains and losses

inflicted on the holdings of longer horizon claims implied by equilibrium state prices

qj(st+j+1|st+1) and the financial market configurationMj(st+1). Using the Envelope

theorem, the first order conditions with respect to zit,j(st+j) for j ≥ 2 yield

π̂j(st+j|st; ?)
πj(st+j|st)

qj(st+j|st) =∑
st+1

β
u′[cit+1(st+1)]

u′(cit)
π(st+1|st)

πj−1(st+j|st+1; ?)

π̂j−1(st+j|st+1)
qj−1(st+j|st+1).
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This expression, evaluated at the conic equilibrium consumption allocation, charac-

terizes two adjacent pricing kernels. Here, π̂j(·|st, ?) ∈ Mj(st) and π̂j−1(·|st+1, ?) ∈

Mj−1(st+1) are such that

sup
π̂j(·|st)∈Mj(st)

∑
st+j∈S

π̂j(st+j|st)
πj(st+j|st)

qj(st+j|st)zit,j(st+j)

=
∑
st+j∈S

π̂j(st+j|st, ?)
πj(st+j|st)

qj(st+j|st)zit,j(st+j),

sup
π̂j−1(·|st+1)∈Mj−1(st+1)

∑
st+j∈S

π̂j−1(st+j|st+1)

πj−1(st+j|st+1)
qj−1(st+j|st+1)zit,j(st+j)

=
∑
st+j∈S

π̂j−1(st+j|st+1, ?)

πj−1(st+j|st+1)
qj−1(st+j|st+1)zit,j(st+j).

Furthermore, one can deduce that the kernels qj, for j ≥ 2, can be computed

recursively, i.e.,

π̂j(st+j|st, ?)
πj(st+j|st)

qj(st+j|st) = (4.4)∑
st+1

π̂(st+1|st; ait+1)

π(st+1|st)
q(st+1|st)

π̂j−1(st+j|st+1, ?)

πj−1(st+j|st+1)
qj−1(st+j|st+1),

since

π̂(st+1|st; ait+1)

π(st+1|st)
q(st+1|st) = β

u′[cit+1(st+1)]

u′(cit)
π(st+1|st),

for some π̂(·|st; ait+1) ∈M(st) as in equation (2.10). Note that if Mj(s) is a singleton

for every j ≥ 1 and s ∈ S, we obtain the classical result (see [4], chapter 8); i.e.,

qj(st+j|st) =
∑
st+1

q(st+1|st) qj−1(st+j|st+1), ∀j ≥ 2.

4.3 Arbitrage-free pricing

By manipulating budget sets with redundant assets, we will describe how

arbitrage free pricing theory deduces restrictions on asset prices. We augment the
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trading opportunities in our conic economy by letting the consumer also trade an ex-

dividend Lucas tree. The Lucas tree refers to a colorful interpretation of a dividend

stream as “fruit” falling from a “tree” in a pure exchange economy studied by

Lucas [70]. Assume that at time t, in addition to purchasing a quantity zt,j(st+j)

of j-step-ahead claims paying one unit of consumption at time t + j if the state

takes value st+j at time t + j, the consumer also purchases Nt > 0 units of a stock

or Lucas tree. Let the ex-dividend ask price of the tree at time t be ask(st). Next

period, the tree pays a dividend d(st+1) depending on the state st+1. Ownership of

the Nt > 0 units of the tree at the beginning of t + 1 entitles the consumer to a

claim on Nt[ask(st+1) + d(st+1)] units of time t + 1 consumption. As before, let at

be the wealth of the consumer, apart from his endowment, y(st). In this setting,

the consumer’s budget constraint, if Nt > 0, is

ct +
∞∑
j=1

∑
st+j∈S

π̂j(st+j|st)
πj(st+j|st)

qj(st+j|st)zt,j(st+j) + ask(st)Nt ≤ y(st) + at,

∀π̂j(·|st) ∈Mj(st), ∀j ≥ 1, (4.5)

and

zt,1(st+1) + [ask(st+1) + d(st+1)]Nt, (4.6)

+
∞∑
j=2

∑
st+j∈S

π̂j−1(st+j|st+1)

πj−1(st+j|st+1)
qj−1(st+j|st+1)zt,j(st+j) ≤ at+1(st+1),

∀π̂j−1(·|st+1) ∈Mj−1(st+1), ∀j ≥ 2.

Multiply equation (4.6) by

π̂(st+1|st)
π(st+1|st)

q(st+1|st),
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sum over st+1, and solve for

∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)zt,1(st+1),

to obtain:

∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)zt,1(st+1) =

−
∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)[ask(st+1) + d(st+1)]Nt

−
∞∑
j=2

∑
st+j∈S

{∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)
π̂j−1(st+j|st+1, ?)

πj−1(st+j|st+1)
qj−1(st+j|st+1)

}
zt,j(st+j)

+
∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)at+1(st+1).

Substituting this expression into (4.5) yields

ct +

{
ask(st)−

∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)[ask(st+1) + d(st+1)]

}
Nt

+
∞∑
j=2

∑
st+j∈S

{
π̂j(st+j|st, ?)
πj(st+j|st)

qj(st+j|st)

−
∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)
π̂j−1(st+j|st+1, ?)

πj−1(st+j|st+1)
qj−1(st+j|st+1)

}
zt,j(st+j)

+
∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)at+1(st+1) ≤ y(st) + at.

Thus, we arrive at the following arbitrage pricing formula; i.e.,

∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)[ask(st+1) + d(st+1)] ≤ ask(st), ∀π̂(·|st) ∈M(st).

Otherwise, the consumer can attain unbounded consumption and future wealth.

Using a similar argument for the bid price corresponding to case where N < 0, we

obtain

bid(st) ≤
∑
st+1

π̂(st+1|st)
π(st+1|st)

q(st+1|st)[bid(st+1) + d(st+1)], ∀π̂(·|st) ∈M(st).
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However, since π̂j(·|st, ?) and π̂j−1(·|st+1, ?) are functions of the equilibrium outcome

of the economy, the above no-arbitrage argument applied to zt,j(st+j) is not able to

tell us anything more than equation (4.4).

4.4 Equivalent martingale measure

Let us recall that the state st is assumed to evolve according to a Markov chain

with transition probabilities π(st+1|st). Moreover, let an asset pay a stream of divi-

dends d = {d(st)}∞t=0. Similar to proposition 2.1 and the short argument following

it, the cum-dividend time t ask price of this asset can be expressed recursively as

ask(st) = d(st) + sup
π̂(·|st)∈M(st)

β
∑
st+1∈S

π̂(st+1|st)
π̂(st+1|st; ait+1)

u′[cit+1(st+1)]

u′[cit(st)]
ask(st+1)π(st+1|st),

for some π̂(·|st; ait+1) ∈ M(st). To arrive at this expression, we are implicitly em-

ploying equation (2.10). Similarly, we have

bid(st) = d(st) + inf
π̂(·|st)∈M(st)

β
∑
st+1∈S

π̂(st+1|st)
π̂(st+1|st; ait+1)

u′[cit+1(st+1)]

u′[cit(st)]
bid(st+1)π(st+1|st).

Therefore, for all π̂(·|st) ∈M(st),

bid(st) ≤ d(st) + β
∑
st+1∈S

π̂(st+1|st)
π̂(st+1|st; ait+1)

u′[cit+1(st+1)]

u′[cit(st)]
bid(st+1)π(st+1|st)

≤ d(st) + β
∑
st+1∈S

π̂(st+1|st)
π̂(st+1|st; ait+1)

u′[cit+1(st+1)]

u′[cit(st)]
ask(st+1)π(st+1|st) ≤ ask(st).

This can be written as

bid(st) ≤ d(st) +R−1
t

∑
st+1∈S

π̂(st+1|st)
π̂(st+1|st; ait+1)

bid(st+1)π̃(st+1|st)

≤ d(st) +R−1
t

∑
st+1∈S

π̂(st+1|st)
π̂(st+1|st; ait+1)

ask(st+1)π̃(st+1|st) ≤ ask(st),
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where

R−1
t = R−1

t (st) := β
∑
st+1∈S

u′[cit+1(st+1)]

u′[cit(st)]
π(st+1|st),

π̃(st+1|st) := Rtβ
u′[cit+1(st+1)]

u′[cit(st)]
π(st+1|st).

Equivalently, for all π̂(·|st) ∈M(st),

Rt [bid(st)− d(st)] ≤ Ẽt
[

π̂(·|st)
π̂(·|st; ait+1)

bidt+1

]
≤ Ẽt

[
π̂(·|st)

π̂(·|st; ait+1)
askt+1

]
≤ Rt [ask(st)− d(st)] ,

where Ẽt is the mathematical expectation with respect to the distorted transition

density π̃(st+1|st). Since the above inequalities hold for any π̂(·|st) ∈ M(st), we

obtain

Rt [bid(st)− d(st)] ≤ Ẽt [bidt+1] ≤ Ẽt [askt+1] ≤ Rt [ask(st)− d(st)] .

The transformed or “twisted” transition measure π̃(st+1|st) can be used to define

the twisted measure

π̃t(s
t) = π̃(st|st−1) · · · π̃(s1|s0)π̃(s0).

The twisted measure π̃t(s
t) is called an equivalent martingale measure (see [4],

chapter 13). In fact, under the law of one price (i.e., M(st) being a singleton),

the existence of an equivalent martingale measure implies both the existence of a

positive stochastic discount factor [69, 71], and the absence of arbitrage opportuni-

ties [14]. Moreover, consider the particular case of an asset with dividend stream

dT = {d(sT ) : sT ∈ S} and dt = 0 for t 6= T . The cum-dividend bid and ask prices
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of this asset can be expressed as

bidT (sT ) = d(sT ), d(sT ) = askT (sT ),

bid ≤ R−1
T−1ẼT−1 [bidT ] ≤ R−1

T−1ẼT−1 [askT ] ≤ askT−1(sT−1),

...

bidt(st) ≤ R−1
t Ẽt

[
R−1
t+1 · · ·R−1

T−1 bidT
]
≤ R−1

t Ẽt
[
R−1
t+1 · · ·R−1

T−1 askT
]
≤ askt(st),

where Ẽt denotes the conditional expectation under the equivalent martingale mea-

sure π̃. Now fix t < T and define the “deflated” or “interest-adjusted” asset price

processes

bidt,t+j :=
bidt+j

RtRt+1 · · ·Rt+j−1

, askt,t+j :=
askt+j

RtRt+1 · · ·Rt+j−1

,

for j = 1, . . . , T − t. It follows from the above arguments that

bidt(st) =: bidt,t ≤ Ẽtbidt,t+j ≤ Ẽtaskt,t+j ≤ askt,t := askt(st)

In other words, relative to the equivalent martingale measure π̃, the interest-adjusted

bid price is a sub-martingale while the deflated ask price is a super-martingale.

Basically, using the equivalent martingale measure, the best prediction of the future

interest-adjusted bid price is somewhere above its current bid value. Similarly,

the best prediction of the future interest-adjusted ask price is somewhere below its

current ask value. Alternatively, we can write the following equation,

Rt [bidt(st)− d(st)] ≤ Ẽ [bidt+1 |st] ≤ Ẽ [askt+1 |st] ≤ Rt [askt(st)− d(st)] ,

which is another way of stating that, after adjusting for risk-free interest and divi-

dends, the bid and ask prices of the asset are sub- and supper-martingales relative
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to the equivalent martingale measure π̃, respectively. One can proceed even further

and obtain the following pricing formulas;

Rt [bidt(st)− d(st)] = inf
θt+1∈Θ

Ẽ [θt+1 bidt+1 |st] ,

Rt [askt(st)− d(st)] = sup
θt+1∈Θ

Ẽ [θt+1 askt+1 |st] ,

where Θ is some set of measure changes θt+1 (see [72]). Therefore, a conic economy

provides us with the natural means to extend the classical asset pricing theories.

For instance, using a continuous-time specification of π̃, one can obtain conic Black

and Scholes [73] option pricing formulas (see [13]).

4.5 Concluding remarks

In this section, we have briefly described how the conic modeling framework

of chapter 2 can be applied to extend the classical asset pricing theories and option

pricing formulas. In addition, we have concisely alluded to the equity premium

puzzle and have describe how a conic perspective towards the economy could poten-

tially explain the puzzle. Indeed, these observations need more investigations that

are beyond the scope of this work and could be subject of future research.

95



Bibliography

[1] Dilip B Madan. A two price theory of financial equilibrium with risk manage-
ment implications. Annals of Finance, 8(4):489–505, 2012.

[2] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coher-
ent measures of risk. Mathematical finance, 9(3):203–228, 1999.

[3] Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeco-
nomic theory, volume 1. Oxford university press New York, 1995.

[4] Lars Ljungqvist and Thomas J Sargent. Recursive macroeconomic theory. MIT
press, 2012.

[5] Mark Gertler, Nobuhiro Kiyotaki, et al. Financial intermediation and credit
policy in business cycle analysis. Handbook of monetary economics, 3(3):547–
599, 2010.

[6] John H Cochrane. A simple test of consumption insurance. Journal of political
economy, pages 957–976, 1991.

[7] Orazio Attanasio and Steven J Davis. Relative wage movements and the distri-
bution of consumption. Journal of Political Economy, pages 1227–1262, 1996.

[8] Rajnish Mehra and Edward C Prescott. The equity premium: A puzzle. Journal
of monetary Economics, 15(2):145–161, 1985.

[9] Philippe Weil. The equity premium puzzle and the risk-free rate puzzle. Journal
of Monetary Economics, 24(3):401–421, 1989.

[10] Thomas D Tallarini. Risk-sensitive real business cycles. Journal of monetary
Economics, 45(3):507–532, 2000.

[11] Mark Huggett. The risk-free rate in heterogeneous-agent incomplete-insurance
economies. Journal of economic Dynamics and Control, 17(5):953–969, 1993.

96



[12] Fernando Alvarez and Urban J Jermann. Efficiency, equilibrium, and asset
pricing with risk of default. Econometrica, 68(4):775–797, 2000.

[13] Dilip Madan and Wim Schoutens. Applied Conic Finance. Cambridge Univer-
sity Press, 2016.

[14] Darrell Duffie. Dynamic asset pricing theory. Princeton University Press, 2010.

[15] Chi-fu Huang and Robert H Litzenberger. Foundations for financial economics.
North-Holland, 1988.

[16] Roy Radner. Equilibrium under uncertainty. Handbook of mathematical eco-
nomics, 2:923–1006, 1982.

[17] Michael Magill and Wayne Shafer. Incomplete markets. Handbook of mathe-
matical economics, 4:1523–1614, 1991.

[18] Larry G Epstein and Tan Wang. Intertemporal asset pricing under knightian
uncertainty. Econometrica: Journal of the Econometric Society, pages 283–322,
1994.

[19] James Dow and Sergio Ribeiro da Costa Werlang. Uncertainty aversion, risk
aversion, and the optimal choice of portfolio. Econometrica: Journal of the
Econometric Society, pages 197–204, 1992.

[20] Larry G Epstein. Sharing ambiguity. The American Economic Review,
91(2):45–50, 2001.

[21] Evan Anderson, Lars Peter Hansen, and Thomas Sargent. Robustness, detec-
tion and the price of risk. Manuscript, Stanford, 19, 2000.

[22] Alain Chateauneuf, Rose-Anne Dana, and Jean-Marc Tallon. Optimal risk-
sharing rules and equilibria with choquet-expected-utility. Journal of Mathe-
matical Economics, 34(2):191–214, 2000.

[23] Rose-Anne Dana. On equilibria when agents have multiple priors. Annals of
Operations Research, 114(1-4):105–115, 2002.

[24] Rose-Anne Dana. Ambiguity, uncertainty aversion and equilibrium welfare.
Economic Theory, 23(3):569–587, 2004.

[25] Sujoy Mukerji and Jean-Marc Tallon. Ambiguity aversion and incompleteness
of financial markets. The Review of Economic Studies, 68(4):883–904, 2001.

[26] Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique
prior. Journal of mathematical economics, 18(2):141–153, 1989.

[27] Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets.
Econometrica, 70(2):583–601, 2002.

97



[28] Kenneth Levenberg. A method for the solution of certain non-linear problems
in least squares. Quarterly of applied mathematics, 2(2):164–168, 1944.

[29] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[30] Peter A Diamond. The role of a stock market in a general equilibrium model
with technological uncertainty. The American Economic Review, 57(4):759–
776, 1967.

[31] Robert C Merton. On the microeconomic theory of investment under uncer-
tainty. Handbook of mathematical economics, 2:601–669, 1982.

[32] Barbara J Mace. Full insurance in the presence of aggregate uncertainty. Jour-
nal of Political Economy, pages 928–956, 1991.

[33] Robert M Townsend. Risk and insurance in village india. Econometrica: Jour-
nal of the Econometric Society, pages 539–591, 1994.

[34] Kenneth J Arrow. The role of securities in the optimal allocation of risk-bearing.
The Review of Economic Studies, 31(2):91–96, 1964.

[35] Robert E Lucas. Two illustrations of the quantity theory of money. The Amer-
ican Economic Review, 70(5):1005–1014, 1980.

[36] Bennett T McCallum. The role of overlapping-generations models in mon-
etary economics. In Carnegie-Rochester Conference Series on Public Policy,
volume 18, pages 9–44. Elsevier, 1983.

[37] Robert M Townsend. Models of money with spatially separated agents. Models
of monetary economies, pages 265–303, 1980.

[38] Nobuhiro Kiyotaki and Randall Wright. A search-theoretic approach to mone-
tary economics. The American Economic Review, pages 63–77, 1993.

[39] Shi-Ge Peng. Dynamically consistent nonlinear evaluations and expectations.
arXiv preprint math/0501415, 2005.

[40] Shige Peng. G-expectation, g-brownian motion and related stochastic calculus
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