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ABSTRACT 

This study investigates the effect of using Van Hiele’s instructional model in the 

teaching of congruent triangles in grade 10 in Gauteng high schools. Three randomly 

selected high schools in Gauteng formed the research fields, while intact groups of 

grade 10 learners in these schools formed the study participants (136 learners) for 

the study. 

A mixed method approach which was adopted for the study, using pre-test/post-test 

matching control group design and classroom observation. The pre-test/post-test 

was used to collect quantitative data, while classroom observation was used to glean 

qualitative data. Some of the findings from the quantitative data analysis suggested 

that the intervention improve the achievement scores in the experimental groups 

while the qualitative data was revealed that the intervention facilitated the learning 

of the concepts of congruent. It was recommended that Van Hiele learning and 

instructional model be adopted and applied in the teaching of other areas of 

mathematics. 
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CHAPTER ONE 

1. Background of the Study 

1.1 Introduction 

 

This study IS inspired by the high failure rate of learners in mathematics in the 

matriculation examination in South Africa (DoE, 2012). The set of 2014 matriculates’ 

were the first learners that matriculated under the new “Curriculum Assessment 

Policy Statement” (CAPS) curriculum. The Department of Education (DoE) has 

reported that, compared to those who matriculated under the previous curriculum, 

the pass rate has not improved (DoE, 2015).  

The poor performance of matriculating learners in mathematics over the years has 

been a serious concern to all education stakeholders, particularly the government, 

who surely want to show the country that they have put a working educational 

policy in place. All the efforts of the government and academic society to improve 

student performance in matriculation mathematics results have yielded little 

noticeable results. In fact, according to the Trends in International Mathematics and 

Science Study (TIMSS) report (Gonzales, 2009) South African learners ranked lowest 

in the world.  

The 2010 annual national assessments (ANAs) argue that poor performance stems 

from primary school. Furthermore, the 2012 ANAs report revealed that two thirds of 

pupils in Gauteng leave primary school without the adequate conceptual knowledge 

necessary to succeed in in secondary school mathematics (Adler and Sfard, 2015). 

These learners battle to understand mathematical concepts throughout the high 

school grades. 

Matric mathematics exams include algebra, financial mathematics, trigonometry, 

calculus and geometry.  Geometry makes up about 60% of the paper 2 of the matric 

mathematics examination . Although it is not possible as at the time of this study to 

numerically assess the extent to which geometry contributes to the failure rate of 

mathematics matriculates’, both Van Hiele (1986) and French (2004) link students' 
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ability in mathematics to their level of geometrical conceptual ability. However, study 

(Atebe, 2008) has shown that both teachers and learners mystify the geometry 

aspect of the mathematics curriculum, and that South African learners are 

experiencing conceptual learning difficulty in geometry, (De Villiers, 1997; 

Brombacher, 2001; Howie, 2001; Roux, 2003).  

It is therefore possible that the continual poor performance of South African learners 

in mathematics is caused by their poor knowledge of geometry.  Van der Sandt 

(2007) describes the learning of geometry in South African high schools as 

problematic.  Geometry concepts entail deductive reasoning of proofs and 

representative diagrams. Solving geometrical problems is largely based on the 

learners’ competency to apply the definitions, axioms, postulates, theorems and 

proofs to solve problems. Van Hiele (1999) and Atebe (2008) argue that students 

are often lazy to think deeply and therefore find geometry learning difficult.   

Over a decade ago, De Villiers (1997) remarked that “unless we (South Africans) 

embark on a major revision of the primary school geometry curriculum along Van 

Hiele lines, it seems clear that no amount of effort at the high school will be 

successful”. De Villiers revisited and confirmed this in 2006 (De Villiers, 2004). There 

are other scholars (Brombacher, 2001; Howie, 2001, Roux, 2003) who share the 

same opinion. 

Despite de Villiers and other scholars’ concern over the teaching and learning of 

geometry in South African schools, the school curriculum is still not aligned to the 

Van Hiele geometry learning theory. The post-apartheid mathematics curriculum in 

South Africa will be briefly reviewed in the next section of this thesis. 

Based on the above, the effect of the Van Hiele instructional model on the teaching 

of congruent triangles will be investigated in this study. 

1.1.1 Curriculum Policies in South Africa from 1994 to the Present Time 

When the new, democratically elected government took over in South Africa in 1994, 

the Department of Education (DoE), was formed (Chisholm, 2003). In 1997, the DoE 

implemented a curriculum tagged C2005, which was based on the outcomes-based 
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education policy (DoE, 2002). In the year 2000, C2005 was reviewed and the revised 

edition of the C2005 was named National Curriculum Statement (NCS), (DoE, 2002).  

In 2008, the DoE revisited the issue of curriculum review and the revised edition of 

the review of NCS was named Curriculum Assessment Policy Statement (CAPS) 

(DoE, 2012). CAPS was to be implemented in three phases: the first phase in 2012 

with Grades 1, 2, 3 & 10; followed by Grades 4 to 6 and 11 in 2013 and lastly, 

Grades 7 - 9 and 12 in 2014 (DoE).  

1.1.2 The Mathematics aspect of the National Curriculum Statement (NCS) 

The South African CAPs for high school mathematics stresses four major learning 

components to be taught and learned in senior secondary mathematics. These 

learning components are referred to as ‘Learning Outcomes’ (South Africa, DoE, 

2003, p.7). The learning outcomes as set out in the CAPs are as follows: 

· Learning Outcome 1: Number and Number Relationships. 

· Learning Outcome 2: Functions and Algebra. 

· Learning Outcome 3: Space, Shape and Measurement. 

· Learning Outcome 4: Data Handling and Probability. 

This study will focus on learning outcome 3, which is concerned with the geometry 

in the mathematics curriculum. It comprises of analytical and Euclidean geometry. 

The geometry aspect of the matriculation examination is done in paper 2, and forms 

60% of the total mark in this paper: analytical geometry contributes 27%, while 

Euclidean geometry takes 33%. The DoE (2003) stresses the development of 

students’ skills in making and testing conjectures, investigating, justifying, proving, 

and generalizing Euclidean geometry. Given the emphasis on these skills in the 

CAPs, the objectives of high school (Euclidean) geometry teaching in South Africa 

may be summarized as follows: 

٠ Development of students’ spatial awareness and visualization abilities through 

the use of various methods, including geometrical constructions, to 

investigate geometrical properties of two- and three-dimensional figures. 
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٠ Development of students’ reasoning abilities through explicit teaching of 

processes such as experimentation, testing conjectures, congruency and 

justifying statements that would ultimately lead to the acquisition of skills in 

proof writing in Euclidean geometry. 

٠ Development of students’ problem solving abilities by using geometrical 

properties to solve a wide range of problems in many other aspects of 

mathematics, such as trigonometry, algebra, and other related fields. 

This study investigates the learning of geometrical concepts through the Van Hiele 

learning model. 

1.1.3 The Mathematics aspect of the Curriculum Assessment Policy Statement 

(CAPS) 

In the CAPS curriculum, every subject in each grade has a single, comprehensive 

and concise policy document, which specifies what has to be taught, when it has to 

be taught, and how it should be assessed (DoE, 2012.). The terminology “learning 

outcomes” and “assessment standards” in the NCS were replaced with “content and 

skills”. In the Foundation Phase (Grades R, 1, 2 & 3), “numeracy” is now called 

“mathematics”. 

Comparison between Mathematics Assessment Areas in the NCS and CAPS 

Table 1 

Serial 

Number 

NCS CAPS 

Paper 1 

 

Algebra, Sequences, Functions, Calculus, 

Linear Programming, Finance 

Algebra, Sequences, Functions, Calculus, 

Finance, Probability 

Paper 2 

 

Coordinate geometry, Transformation 

geometry, Trigonometry, Statistics 

Coordinate geometry, Euclidean 

geometry, Trigonometry, Statistics 

(including regression and correlation) 

Paper 3 Euclidean geometry, Probability and Statistics 

Note: 

This paper is done by less than 5% of the 

matric mathematics students 
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Table 1 shows the main differences between the NCS matric assessment areas and 

that of the CAPS. 

Table 2 : Comparing the subtopics between the NCS and CAPS 

NUMBER OF  SUBTOPICS 

 NCS CAPS 

FUNCTIONS 52 49 

PATTERNS & SEQUENCES 10 10 

FINANCE 10 9 

ALGEBRA 27 26 

CALCULUS 14 13 

PROBABILITY  19 

EUCLIDEAN GEOMETRY 7 32 

ANALYTICAL GEOMETRY 8 9 

TRIGONOMETRY 16 15 

STATISTICS & DATA HANDLING  
15 

 
19 

TRANSFORMATION 
 

GEOMETRY 

 
6 

 

LINEAR PROGRAMMING 8  

Total  number of 

Subtopics 

 
173 

 
201 

Table 2 compares the number of subtopics involved in both the NCS and CAPS 

(Umalusi, 2014). 

It is clear from table 1 that all mathematics learners are compelled to do Euclidean 

geometry and table 2 shows that much more Euclidean geometry was introduced 

into the CAPS curriculum. This decision might have been motivated by the continual 

poor performance of mathematics matriculates’ and the established link between 

performance in geometry and other areas of mathematics as discussed under 

subsection 1.1 above. Euclidean geometry has to do with taking intuitive axiomatic 
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assumptions for a small set and thereafter use these axioms to deduce further   

proposition or theorems. 

 In fact, geometry requires deeper reasoning than any other aspect of mathematics 

(Atebe, 2008). It is one of the most difficult aspects of mathematics to teach and 

difficult to learn for the students as well.  This is the reason why this study will 

investigate the use of another teaching approach, apart from the conventional chalk-

and-talk method of knowledge dissemination, to improve the teaching and learning 

of geometry. Due to the fact that grade 10 belongs to the first phase of CAPS 

implementation (introduced in 2012), and the pre-study information gathered by the 

researcher showed that leaner’s find the learning of the concepts of congruent 

triangles and its application difficult, it was decided to use grade 10 learners as 

study subjects. The study was underpinned by the Van Hiele learning and 

instructional approach. 

1.2 Van Hiele’s Geometry Learning and Instructional Model 

The van Hiele leaning model takes into cognisance how learners progress in 

geometric cognitive thinking and hence prescribe a way to present classroom 

instruction to meet their thinking ability at each level of the learners. The prescribed 

method of instruction is named “van Hiele’ Instructional model”. These learning and 

instructional models are different from other learning or instruction models like the 

“Constructivism” learning theory. The constructivism learning theory is about 

motivating or helping the learners to construct their own cognitive knowledge but 

van Hiele looks at how learners develop cognitive knowledge (in geometry) at their 

own pace and the instructional approach that will accommodate such level of 

thinking.   

1.2.1 Van Hiele’s Learning Model 

The theory was proposed by Pierre van Hiele and his wife as a result of their PhD 

programme. The model consists of five levels which the van Hieles postulated to 

describe how children learn to reason in geometry. The theory stresses that students 

cannot be expected to prove geometric theorems until they have built up an 
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extensive understanding of the systems of relationships between geometric ideas. 

The five levels are: 

Level 1 Visualization  

Learners can only recognize geometric figures on the basis of their appearance, and 

not their properties. 

Level 2 Descriptive/Analytical 

Learners are able to discuss the properties of basic figures and recognize them by 

these properties. 

Level 3 Abstract/Relational 

At this stage, the properties of shapes are ordered. Learners can understand and 

form an abstract definition, distinguish between necessary and sufficient conditions 

for a concept, and understand the relationship between shapes.     

Level 4 Deduction 

Learners understand the meaning of deductions. The object of thought is deductive 

reasoning, they can form a system of formal proofs, understand the roles of 

undefined terms, definitions, axioms, and theorems in Euclidean geometry, but they 

do not yet know any non-Euclidean geometry. 

Level 5 Rigor  

Students at rigor stage understand geometry at the level of mathematicians. They 

understand that definitions are arbitrary and do not actually need to refer to any 

concrete realization. 

Van Hiele (1959) remarked that the above levels cannot be learned by rote, nor 

acquired by age, but rather be developed through familiarity, by experiencing 

numerous examples and counter examples, the various properties of geometric 

figures, the relationships between the properties, and how these properties are 

ordered. The five levels proposed by the Van Hieles describe how students advance 

through this understanding. 



8 
 

The research targets the grade 10 learners in Gauteng high schools. Alex and 

mammen (2012) suggests that grade 10 learners should be conveniently placed on 

Van Hiele’s geometric learning level 3 (informal deduction).  

1.2.2 Van Hiele Instructional model 

When Van Hiele suggested a geometrical learning model, she realized that, in order 

to master the intended learning levels as prescribed in the model, an appropriate 

pedagogical approach would be required. She therefore suggested a series of 

instructional approaches that could facilitate the learning of geometry. Van de Walle 

(2004) notes that Van Hiele clarified the specific activities expected of the teacher 

while teaching geometry.  

 

Below is the instructional model as compiled by www.eric.ed.gov accessed on 2nd 

February, 2015. The instructional steps were made up of five steps which were to 

ensure that students move from one Van Hiele learning level to a higher one in their 

geometric thinking: 

 

“In the Van Hiele model an instructional plan, which is composed of five steps, 

was formed in order to provide a transition from one level to another in 

students’ geometric thinking." (Crowley, 1987; Erdoğan, Durmuş & Bekci, 

2007). 

 

(i) Interview (research): The first step is the step in which the geometric 

thinking levels of students are determined. In this step, the students’ geometric 

thinking levels are determined through communication between the teacher 

and the student. 

 

(ii) Direct Orientation: In this step, the teacher gives instructions and 

assignments related to the studies which will be done in the light of the 

answers he gets from the students. The purpose of the teacher giving 

assignments is to make students explore the structures about the topic by 

means of research. 

http://www.eric.ed.gov/
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(iii) Making clear (explanation): Teacher introduces the topic to students in this 

step and students combine their experiences with the words they used related 

to the topic. In this step, it is important for the teacher to arouse students’ 

interests. 

 

(iv) Free Performance (activities): Students work on different solutions of 

multiphase problems in this step. They discover the relationships ERDOĞAN, 

AKKAYA, ÇELEBİ AKKAYA/the effect of the Van Hiele Model based among the 

various objects of the structure in the topic they work on. The teacher should 

guide students in their thinking about different solutions. 

 

(v) Integration: This step is the step in which students summarize and gather 

what they learned. Students internalize what they learned as a new thinking 

structure.” www.eric.ed.gov. 

 

This was visually structured by John A. van de Walle (2004), with a view to 

summarize the instructional models stated above. See figure 1 below.  

 

 

 

 

 

 

 

 

 

http://www.eric.ed.gov/
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Figure 1 Visual Display of Van Hiele Instructional Model 

 

Below is the figurative expression of the instructional model 

 

     Analysis of 

deductive 

systems 

    Deductive 

systems of 

properties 

 

   Relationships 

among 

properties 

 5. 

Rigor 

  Properties  

of 

 shape 

 4. 

Deduction 

 

 Classes  

of 

 shape 

 3. 

Informal 

Deduction 

  

 

Shape 

 2 . 

Analysis 

   

 1.Visualization     

 

In this study, the Van Hiele instructional model described above will be adopted in 

the teaching of congruency. The instructional strategy was used to compile a 

checklist used to collect data during the classroom observation. 

 

1.2.3 Learners and the Van Hiele Learning Model  

Geometry requires critical and creative thinking. Generally, most students are lazy to 

think. Faleye and Mogari (2012), discovered that learners are unable do basic 

arithmetic calculations without the use of a calculator. Since geometry concepts are 

rooted in deep critical thinking, the question remains: how do learners who cannot 

calculate basic arithmetic successfully, engage in abstract concepts that need critical 

thinking?   The findings of Faleye and Mogari (2012) might actually mean that South 
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African mathematics learners are lazy to think deep perhaps as a result of their poor 

mathematics background. In addition, Halat (2008) found out that the majority of 

high school leaner’s are on the first or second levels of the Van Hiele learning model 

(see subsection 1.1.3), whereas learners in grade 12 are supposed to be on level 

five. Again, this might be as a result of the poor thinking ability of the South African 

mathematics learners. 

 

1.2.4 Adaptation of the Van Hiele Learning Model to the teaching of 

Congruent of Triangles in this study 

In this section the van Hiele instructional model is adapted to the teaching of 

congruent of triangles. The steps highlighted below are as prescribed in the van 

Hiele instructional model. 

 

(i) The prior knowledge of the study participants are determined by asking 

probing questions on the concepts of the congruent of triangles to be 

taught. This is to determine the van Hiele geometric thinking level of the 

study participants. 

(ii) The study participants will be giving classwork on the foundational 

concepts of the congruent of triangles. This is to make the study 

participants think deeply, interact with each other and to consult available 

sources (research) about the concepts of the congruent of triangles. 

(iii) The topic of the day on the aspect of the congruent of triangles to be 

taught will be explained while drawing from the responses of the study 

participants given in the classwork in step (ii) above. 

(iv) More advance exercises that will enable relationship among objects and 

structures will be given in form of classwork or homework will be given. 

(v) The study participants are allowed to engage their answers to the 

exercises given in (iv) by explaining to the whole class. This step is to 

allow the study participants to be able to summarise  and internalise the 

concepts learnt. 
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1.3 Congruent Triangle 

1.3.1 The Concept of Congruent Triangles 

When two triangles are equal in all respects, they are said to be congruent. Their 

angles are equal, their sides are equal and they can be placed exactly on top of each 

other. Their areas are also equal. 

 

1.3.2 Conditions for Congruency 

Given two triangles ∆ABC and ∆DEF.  

   

 

 

 

 

If ∆ABC is congruent to ∆DEF, we write 

 

 ∆ABC ≡ ∆DEF  

 

However, ∆ABC ≡ ∆DEF only holds: 

  

(i) If the three sides of ∆ABC are equal to the three sides of ∆DEF, this 

condition is written as SSS.  

 

   A                                            D 

 

 

 

 

 

(ii) If two sides of ∆ABC are equal to two sides of the ∆DEF and the angle 

included by those two pairs of equal sides are equal, this condition is 

written as SAS. 
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(iii)  

 

 

 

 

 

 

 

(iv) If two angles of ∆ABC are equal to two angles of the ∆DEF and any 

one side of ∆ABC is equal to the corresponding side of ∆DEF, this 

condition is written as SAA. 

 

 

 

 

 

 

 

(v) If two right angled triangles have equal hypotenuses and one other 

side of the triangle equal to one other side of the other triangle, it is 

written as RHS. 

 

(vi)  

 

 

 

                         B                                C                                  E                               F 

 

The congruent concepts will be taught and tested on Van Hiele’s geometric learning 

level 3. 

This study is underpinned  
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1.4 Aim of the Study 

The aim of this research work is to inquire the possible effect of teaching 

geometrical congruency to study participants who are in grade 10 in some of the 

Gauteng high schools, using van Hiele’s instructional model (as the intervention).  

The two dimensions of 'conceptual understanding' that will be measured are learning 

facilitation and performance. This does not mean to imply that the dimension of 

'conceptual understanding' is limited to learning facilitation and performance alone.  

1.5 Significance of the study 

This study encourages the development of sound geometry understanding. Besides 

the fact that geometrical concepts carry a weight of 30% in the matric CAPS 

curriculum, sound knowledge of geometry may go a long way in solving the 

continual poor performance of matriculates’ in mathematics. Studies have shown 

that sound knowledge in geometry facilitates conceptual understanding in other 

areas of mathematics (De Villiers, 1997). 

In addition to this, sound geometrical skills have a wide application in other fields of 

life. Geometrical concepts are applicable in a wide variety of fields, such as 

information technology (IT) networking, navigation careers, oil fields, town planning 

etc. It is therefore crucial that learners’ performance in geometry improves.  

1.6 Problem of the Study 

The problem of this study is to investigate the impact of teaching geometrical 

congruency using van Hiele’s instructional model. The researcher hopes to achieve 

this by finding answers to the following questions: 

1.  How does the Van Hiele instructional model facilitate the learning of congruent 

triangle concepts in the participating high schools in the experimental schools? 

2.  How does the Van Hiele instructional model impact on study participants’ score 

achievement in the learning of the concepts of congruent triangles in the 

experimental schools?   
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A null hypothesis, stated at 0.5 probability significant level shall be used to 

corroborate the answer/s to research question 1. 

1.6.1 Hypothesis:  

H0:  There is no statistically significant difference in the study participants’ pre-test 

mean achievement score compared to the post intervention mean 

achievement score. 

H1: There is a statistically significant difference in the study participants’ pre-test 

mean achievement score compared to the post intervention mean 

achievement score. 

1.7 Definition of key terms.  

 

1. ANAS: Annual National Assessments Standards  

2. DoE: DEPARTMENT OF EDUCATION 

3. Conceptual Understanding:  In this study, conceptual understanding shall refer 

to improved scores in the summative test.    

4. NCS: NATIONAL CURICULUM STATEMENT  

 5. GET: GENERAL EDUCATION AND TRAINING   

 6. FET: FURTHER EDUCATION AND TRAINING  

7. CAPS: CURRICULUM AND ASSESSMENT POLICY STATEMENTS 

8. VHIA: VAN HIELE INSTRUCTIONAL APPROACH  

9. ES: EFFECT SIZE 

10. RFP: RESEARCH FIELDS PROFILE  
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1.8 The Layout of the study 

Chapter one 

Chapter presents the background, significance and the problem to the study. 

Chapter Two 

Chapter two reviews some of the previous, similar studies on the application of the 

Van Hiele learning theory in the teaching and learning of geometry in South African 

high schools.  

Chapter Three 

Chapter three describes the mixed method approach adopted in the study. It also 

describes the selection of the study participants, the research instruments and the 

development thereof, data collection and data analysis techniques, and ethical issues 

involved. 

Chapter Four 

The results obtained from the data analysis are presented in this chapter. These 

include both results from qualitative results (of the classroom observation data 

analysis) and quantitative results (of the hypothesis testing).  

Chapter Five 

Chapter 5 contains the discussion of major results emanating from the data analysis 

in view of the literature reviewed in chapter 2 of this study. The implications of the 

various results are also discussed.  

 Chapter Six 

Chapter 6 presents the conclusion and recommendations emanating from the study. 
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CHAPTER TWO 

2.0 Literature Review 

2.1 Conceptual Framework 

 

The high failure rate of matriculantes’ in mathematics in South Africa repeats itself 

every year (Roux, 2003). According to Bombacher (2001) and Howie (2001) the 

results of the Third International Mathematics and Science Study-Repeat (TIMSS-R) 

conducted by the Human Sciences and Research Council (HSRC) in 1999 showed 

that out of the 38 countries that participated, South African learners obtained the 

poorest results in mathematics. It has clearly been a problem for many years. 

Perhaps the problem stems from the “Segregation and Bantu” educational policy of 

the apartheid government of the past in South Africa. The democratically elected 

government of 1994 replaced the then apartheid government which put an end to 

the “Segregation and Bantu” policy. The policy was in force for a long time, hence it 

should be expected that it might take a while for its negative impact to be 

completely eradicated. Howie (2001, p.11) mentioned that South African children in 

the TIMSS-R had "considerable difficulty dealing with geometry questions and in 

some cases were successfully distracted by questions testing misconceptions" in 

geometry.  

When learners are easily distracted in class, it implies that they have lost interest in 

whatever they are doing. It also implies that learning is not effective. For learners to 

gain conceptual understanding, they need to pay attention and be focused on what 

they are learning. This view was supported by behavioural psychologist Albert 

Bandura (1977), who conducted an analysis of behavioural learning, in which he 

found that learning involves four phases: attention, retention, reproduction, and 

motivation (Slavin, 1996).  

Conceptual retention happens when a learner can reproduce what was learnt in the 

class at any time after the teaching period. In this situation, a learner demonstrates 

deep conceptual understanding of the topic that was taught and should be able to 
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apply the concept to solve problems. Maybe this is what the researchers 

(Bombacher, 2001; Howie, 2001 and Slavin, 1996) are calling the attention of 

education stakeholders to. 

 

On the other hand Faleye and Mogari (2012) argue that the introduction of 

calculators from an early school age negatively impacts learners’ mastery of the 

fundamental concepts of arithmetic computations and ability to solve arithmetic 

problems. The duo argues that the use of calculators from an early age may cause 

learners to become lazy to think deeply when solving mathematical problems.  

 

Furthermore, good classroom and logical lesson presentation may arrest the 

attention of learners. Bandura, in his work, developed a learning model called Zone 

of proximal development (Bandura, 1977 in Slavin, 1996). This model emphasises a 

presentation of learning materials at or slightly above what learners are capable to 

do. Bandura explains that if learners are taught at a level either below or too far 

above their zone of proximal development, no learning will take place. 

 

Geometry, a branch of mathematics, requires abstract thinking. This branch of 

mathematics is dreaded by many learners. Learners that are distracted or disturbed 

for no apparent reason usually indicates that the teacher failed to use an appropriate 

teaching approach, which means that learning is ineffective. A pedagogical approach 

that it is effective in the teaching of Algebra (another branch of mathematics) may 

also not be effective in the teaching of geometry (Noraini, 2005). In geometry in 

particular, Chop-koh (2000) and Halat (2008) advise that teachers need to plan 

classroom activities in a way that can help the learners understand the nature and 

the concepts of geometry. For example, De Villiers (1997) noted the importance of 

zone of proximal development in the Van Hiele’s geometric learning model and said 

that "... Van Hiele reasoned that the failure of the traditional geometry curriculum 

resulted from teachers presenting the subject at a thought level higher than that of 

students." 
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Pierre and Dina van Hiele in their theses (1957 and 1986) and Halat (2008) 

underlined the idea that geometry concepts knowledge transfer should be systematic 

to such extent that the concepts are ordered. They argued that geometrical 

concepts should be logically presented to learners in such a way that the prior 

geometrical conceptual level of the learners is respected (Van Hiele, 1986). Hence, 

Van Hiele first identified the learning levels in geometry (see subsection 1.2.1). 

Based on this learning model, Van Hiele proposed instructional approaches that may 

help teachers to teach geometry according to the propagated conceptual level.  

 

Studies (Chop-koh, 2000; Chew, 2009; Abdul Halim A’bdullah and Effandi Zakaria, 

2011) support the notion that the Van Hiele classroom geometrical instructional 

approach impacts positively on students’ geometric conceptual understanding and 

their level of reasoning. Perhaps this is why de Villiers (1997 and Roux (2008) 

suggested that the teaching of geometry in South Africa should follow van Hiele 

instructional model. Selected studies that have been carried out on the Van Hiele 

learning and instructional model are discussed under the subheadings.  

 

Many investigations have been carried out on the applications of the van Hiele 

learning   theory and its accompanied instructional model in the classroom teaching 

of geometry. Many aspects of geometry have been covered, but the researcher 

could not get a study carried out on its application on congruent triangles. Hence, 

this study looks at the application of van Hiele learning theory on the classroom 

teaching of congruent triangles. 

2.2 Review of Relevant Literature Sources 

2.2.1 The use of the Van Hiele models to improve the Geometrical 

conceptual thinking level in the classroom. 

 

Chew Chew Meng (2009) investigate form one students’ learning of solid geometry 

in a phase-based instructional environment using Geometer’s Sketchpad (GSP) 

based on the Van Hiele theory. Chew examined students’ initial Van Hiele levels of 

geometric thinking about cubes and cuboids, and their Van Hiele levels. He found 
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that study participants using the Van Hiele levels either increased or remained the 

same.   

 

In another study, Erdogan et al., (2009) investigated the effect of the Van Hiele 

instructional model on the creative thinking level of 6th grade primary school learners 

by using the pre-test, post-test matching control group quasi-experimental design. 

The experimental group was taught geometry based on Van Hiele instructional 

model while the control group was taught geometry with the traditional method. 

Among other findings, they reported a statistically significant difference between the 

pre- and post-test creative thinking of study participants in the experimental groups. 

 

A study that was carried out by Alex and Mammen (2012) surveyed South African 

grade 10 learners’ geometrical thinking level in view of the Van Hiele theory. A 

sample of 191 grade 10 learners from five senior secondary schools in one 

educational district in Eastern Cape in South African constituted the study 

participants. The study proved that the majority of the study participants gained and 

moved to Van Hiele level 3 from level 2.  

  

Malasia, Abdullah and Zakaria (2013) also tried to improve students’ level of 

geometric thinking through Van Hiele’s phase-based learning. The quasi-

experimental study that lasted six weeks involved 94 study participants: 47 study 

participants were in the treatment group, and 47 study participants were in the 

control group. The majority findings from this study showed that there was a 

statistically significant difference between the final levels of geometrical thinking 

between the control and the treatment group. 

 

The study carried out by Abuand and Zaid (2013) sought to improve the levels of 

geometric thinking of secondary school students using a geometry learning video 

called Pembelajavan geometry, and was based on the Van Hiele theory. The video 

was shown to 150 students on different Van Hiele levels. 90 were on level 0, 60 

were on level 1, and 30 were on level 2. The findings of this study indicated that the 
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majority of the study participants had shown an improvement on their geometric 

thinking level.  

 

2.2.2 The use of Van Hiele models to improve the understanding of 

geometric concepts. 

  

From the literature review conducted, the researcher thinks that not much focus is 

placed on the application of the Van Hiele theory in improving concept formation in 

geometry, but selected studies are presented here. Kotze (2007) concern was to use 

the Van Hiele theory to improve the knowledge base of a group of teachers and 

learners on the concepts of space and shape. Problems experienced in the concept 

formation in geometry were investigated and analysed. The paper concluded that 

the concept of shapes and space were problematic to both teachers and their 

learners.  

 

In another study by Atebe (2008), Nigerian and South African students’ conceptual 

understanding of triangles and quadrilaterals were investigated among 36 

mathematics learners. The method of investigation involved identifying and naming 

shapes, sorting of shapes, stating the properties of shapes, defining shapes and 

establishing class inclusions of shapes.  

 

Among the findings, Atebe found that the majority of the study participants were on 

Van Hiele level 0. Susan Connolly (2010) developed Regents units consisting of 

quasi-laterals based on the theories and instructional techniques of the Van Hiele 

model for 43 students who were enrolled in the high school. The study participants 

received instructions for using the newly developed material. The findings showed 

that the marks obtained by the study participants were better than the marks 

obtained by previous students who were taught without the new material. 

 

 

 



22 
 

2.2.3 Application of the Van Hiele instructional model in the classroom. 

 

Sonja van Putten (2008) carried out a study which examined how geometrical 

concepts and knowledge were taught to a group of pre-service student teachers, 

using the Van Hiele theory of levels of teaching as the theoretical framework. The 

study found that many of the students’ teachers were taught geometry with route 

learning methods, using textbooks to present theorems and proof. Most of the proof 

exercises were obvious and were not challenging enough to force students to think 

while solving them. The students’ teachers had forgotten geometric concepts which 

they had learnt immediately after matric and were not able to apply the concepts 

learnt in other situations. This implies that the ability to reason deductively was soon 

forgotten. 

 

In another study, Tamer Kutluca (2013) investigated the impact of presenting 

geometric concepts to grade 11 learners by blending the use of 'Geogebra' (a 

teaching and learning software) and the Van Hiele instructional model. The quasi-

experimental pre-/post-test control group design involved 42 study participants 

during the 2011 to 2012 spring term. The Van Hiele level of geometric 

understanding test developed by Usiskin (1982) and translated into Turkish by 

Duatepe, was used to collect the data. The study found that students in the 

experimental group were able to create their own geometric shapes and try different 

things with different shapes. They had the opportunity to participate actively in the 

instructional process. This implied they understood the concepts taught. 

 

De Villliers (2003) designed instructional activities according to the instructive 

approach that were in accordance with the Van Hiele theory of learning geometry. 

The activities were designed to use a sketchpad to develop teachers’ understanding 

of other functions of proof than just the traditional function of ‘verification’. A solid 

theoretical rationale was provided for dealing with these other functions in teaching 

by analysing actual mathematical practice, where verification is not always the most 

important function. In view of the foregoing, one may say that the application of the 

Van Hiele learning instructional model are effective in systematically transferring the 
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concepts in geometry from the teacher and also developing the learners to begin to 

create their own knowledge of geometry.  

 

Vojkurkova (2012) remarks that the Van Hiele theories should be transferred to 

other areas of mathematics such as algebra, functions, analysis, calculus etc. 

However, French (2004) linked students’ ability in mathematics to their level of 

geometric conceptual ability. Furthermore, as successful as Van Hiele theories are in 

the teaching and learning of geometry, the majority of the work is done through the 

instructional approach. While geometric knowledge development and construction 

using the Van Hiele study, aims to empower learners to use the Van Hiele theories 

only as background information. Hence, this study aims to apply the Van Hiele 

theories to develop the learners’ ability in the concept of geometric congruency in 

triangles.  

 

Reeves and Muller (2005) cited recent research which contains evidence that there is 

a high level of under achievement in South Africa, particularly amongst learners at 

schools in high poverty areas. Although, as McDonnell (1995) argues, students can 

only be held accountable for their academic performance to the extent that the 

community (broadly defined) has offered them the tools to master the content 

expected of them. 

 

This study is underpinned by van Hiele learning theory explained in subsection 1.2.1. 

This theory will guide the application of the van Hiele instructional model in the 

teaching of congruent of triangles in this study. 
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CHAPTER THREE 

 

This chapter discusses the research design, sampling, data collection procedures, 

and instrumentation and ethical issues. 

3 Methodology 

3.1 Research Design 

This study followed a mixed method approach in which the researcher used both 

qualitative and quantitative approaches in collecting the data and in analyzing the 

data. The mixed method approach is considered appropriate for this study because 

the researcher wants to: 

(1) Ensure that the Van Hiele instructional model (independent variable) was 

followed in the experimental fields while the teacher in the control research 

field used the traditional lesson delivery method. 

(2) Be able to account for, as well as justify, any improvement or decline in the 

study participants’ learning performance in the topic of geometry taught at 

the end of the intervention. 

(3) Validate the results from the qualitative data analysis with the results from 

the quantitative data analysis, thereby triangulating the results. 

The diagram below illustrates how the mixed method was applied in this study: 

Figure 2 Mixed method  

   

 

The Qualitative Approach 

The descriptive research design involved uses non-participant unscheduled 

classroom observations to collect data on the natural setting of the research fields. 

The classroom visits were made to ascertain that classes in the experimental schools 

were conducted in line with the Van Hiele instructional model and to collect the 

necessary data. The behaviour of the study participants was observed and described 

QUALI DATA 
Collection and Analysis 

QUANT DATA 
Collection and Analysis 

RESULTS 
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without necessarily influencing it. The data obtained from the classroom 

observations forms the main data of this study. 

The Quantitative Approach 

The quantitative method involved the pre-test post-test matching control causal-

comparative design. This design was chosen because the researcher wanted to 

establish a relationship between the Van Hiele instructional model (independent 

variable) and the study participants’ learning trajectory (dependent variable). The 

table below illustrates the quantitative research design: 

Table 3: Illustration of the Pre-test Post-test matching Control Causal-

Comparative design 

Experimental Group           O1             X           O2 

Control Group           O1           ----           O2 

 

O1: Pre-test  

O2: Post-test  

X: Intervention 

Table 3 indicates that the pre-test (O1) was administered to both the control and 

experimental groups at the start of the investigation. The intervention programme 

(X) was organized only for the experimental group; this implies there was no 

intervention for the control group. Then, both groups took the post-test (O2) at the 

end of the enquiry.  It’s also important to note at this junction that the items of O1 

and O2 were the same, but with different item numbers. 

The pre-test/post-test design allowed the researcher to gather data on the study 

participants’ performance from a class test. A pre-test was administered in all the 

groups, including the control group, after which all the groups were taught 

'congruent triangles' for one week. At the end of the intervention week, a post-test 

was administered (the post-test items were the same with the items in the pre-test 

but the items were shuffled around so that question items did not retain the item 

number).  
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3.2 Sampling 

The population of the study is the grade 10 learners in Gauteng province high 

schools in South Africa, which contains 15 education districts. The 15 education 

districts were clustered into three according to geographical location. The clustering 

of the 15 education districts was done to ensure that the in the application of 

random sampling, schools that are close to each other were not selected to avoid 

compromising the study and to ensure the generalization of the research results. 

From each cluster, a random sampling approach was used to select a school where 

the study will be carried out.  

Moreover, in each of the participating schools, an intact group of grade 10 learners 

in mathematics formed the study participants for the research. Two schools were 

randomly chosen as experimental schools, while the third one automatically became 

the control group. There is therefore an experimental group A, an experimental 

group B and the control group. The study participants were 136 in total: 

experimental group A had 48, experimental group B had 60, and the control group 

had 28. For ethical reasons, no school's nor study participants’ names shall be 

mentioned. The 'experimental group A, experimental group B and control group' 

nomenclature shall be used throughout this study. 

3.3 Data Collection 

There are two types of data that were collected: qualitative and quantitative. 

3.3.1 Qualitative Data Collection 

The data gleaned from the classroom observation was qualitative in nature. 

Classroom observations were carried out in the experimental groups and the control 

group. In the control group, observation took place on Monday the 14th and Friday 

the 18th of July 2014. In the experimental group A, observation took place on 

Tuesday the 15th and Wednesday the 16th of July 2014. Observation of the 

experimental group B took place on Wednesday the 16th Thursday the 17th of July 

2014. All the classroom observations were video recorded and field notes were taken 

as well. Thereafter, post-tests were administered and the researcher collected and 
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marked all the scripts.  The study participants’ post-test scripts were also used as 

part of the data collected for the problem solving data analysis. 

However before the beginning of the intervention, the two mathematics teachers in 

the experimental groups were introduced to van Hiele’s learning theory and 

instructional model a week before the commencement of the intervention. The 

training of the two teachers by the researcher took place from Monday 7th to 

Wednesday 9th, 2014. In preparation for the intervention.  

3.3.2 Quantitative Data Collection 

The data gleaned from the pre- and post-test design was quantitative in nature. The 

pre-test was written in all the participating schools: the control school test was on 

Wednesday, 9 July 2014, while it was written at the experimental schools A and B on 

Thursday the 10th and Friday the 11th of July 2014 respectively. The pre-test was 

carried out in the week that proceeded the intervention week. The intervention was 

carried out for one week in both experimental group A and experimental group B. In 

both the experimental groups, congruent triangles concepts were taught using the 

Van Hiele instructional model, while the same concepts were taught in a normal 

traditional chalk-and-talk approach in the control school. The intervention started on 

Monday, 14 July 2014, and ended on Friday, 18 July 2014. The post-test was written 

by all the groups on Tuesday, 22 July 2014. 

3.4 Instrumentation 

In this study, the same classroom test was the instrument that was used to collect 

quantitative data during pre-tests and post-tests, while a video recorder and note 

pads were used during the qualitative data collection.  

3.4.1 Classroom Observation Instrument 

The instruments used to gather data during the classroom observation were the 

Research Field Profile (RFP) checklist (see Table 4), Van Hiele’s Instructional 

Approach (VHIA) checklist, a video camera and a writing pad for field notes. The 

RFP was a set of items expected to be found in the school and the VHIA are taken 

from the instructional model listed on section 1.2.2. These instruments need not be 
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validated neither do they need a reliability check. It is expected that electricity shall 

be constantly supplied throughout the period of the study, however new video 

camera batteries were made available in case of power outages.    

In both experimental group A and experimental group B, separate examination pads 

were used to take field notes in order not to mix the data and to avoid confusion.  

3.4.1.1 Checklist for Van Hiele Instructional Strategy 

The Van Hiele instructional model is described in subsection 1.2.2. These 

instructional steps were supposed to be implemented during the teaching of the 

classes in the experimental groups A and B. The checklist was used to check if the 

experimental fields complied with the steps taken when teaching according to the 

Van Hiele instructional approach. This was done by going through the recorded 

classroom observation data and marking the items in the checklist that was covered 

by the teacher. 

3.4.2 Classroom Test Instrument  

As mentioned earlier on, the Pre-test and Post-test used one and the same 

instrument (see appendices 7 and 8). At the end of the intervention, study 

participants were expected to be able to display Van Hiele’s geometric knowledge 

level 3 (abstract or relational), thus geometry knowledge acquisitions as appropriate 

for grade level 10 learners. The pre- and post-test instrument was used to gather 

data on the study participants’ level of conceptual knowledge of congruent triangles 

acquired during the intervention (Alias, 2005).   

3.4.2.1 Development of the Classroom Test Instrument 

The researcher developed the classroom test items (questions) for the pre- and 

post-tests (see appendices 7 and 8). As mentioned earlier on, the same instrument 

was used for the pre-test and post-test. The instrument was made of supply items 

(essay type questions). It was used to measure the study participants’ performance 

after the intervention, including the control group.  

The test is structured in line with the nature of the geometric understanding 

expected of grade 10 (Van Hiele’s geometric knowledge level 3).  
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A learner on van Hiele’s level 3 geometric conceptual knowledge should able to: 

1. Recognize shapes on the basis of appearance and properties 

2. Form abstract definitions  

3. Know necessary and sufficient conditions for a concept 

4. Demonstrate sufficient knowledge about relationships between shapes 

It was in view of the above, that the general structure of the test took into account 

the following (see appendix 7 and 8): 

1. To join the diagonals of a given shape 

2. To identify information implied by a figure and separate (by drawing) the figure 

into different shapes  

3. To demonstrate an understanding of necessary and sufficient conditions that 

establishes a concept  

4. To identify general strategies of relating different shapes 
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The table of specification given below was used in drawing the instrument. 

Table 4: Table of specification 

Topic: Concepts Cognitive Emphasis 

Content Visualization Analytical  Relational Total 

1. Name and 

define 

2.Describe the 

shape 

3.Problem solving 

4 

 

4 

 

4 

6                 10 

 

6                 10 

 

6                  10 

20 

 

20 

 

20 

Total 

(Cognitive 

Emphasis) 

 

12 

 

18                 30 

 

60 

 

Table 4 above was used as a guide for the preparation of the instrument. 

3.4.2.2 Validity of Classroom Test Instrument 

Three mathematics teachers who are experts in the field of mathematics and are 

currently teaching in two different secondary schools in the North West province (a 

province that is not part of the research field) were asked to scrutinize the pre- and 

post-test instrument in view of the mathematics curriculum under the CAPS 

educational policy. They conducted two levels of validation on the instrument: face 

and content validation. 

The face validation involved checking the appropriateness of the language and test 

structure dimensions of the instrument, while in the content validation, the experts 

evaluated the extent to which the instrument items adhered to Van Hiele’s geometric 

concept knowledge level 3.  
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The experts used the 4-level scale of appropriateness the researcher had prepared 

and the face and content validation of the scale is rated as follows: 

1 = not appropriate 

2= fairly appropriate 

3= appropriate 

4= highly appropriate 

The items that returned appropriateness as less than 3 in either face or content 

validation were either discarded or restructured.  

In addition, the following factors were identified as factors that can affect internal 

validity of the study:  nearness of the research fields and the making the teachers 

and the study participants aware that the content of the pre and post-test (the test 

instruments) were the same. Hence, the researcher ensure that the selected schools 

were from different clusters during the sampling and as for the test instrument, the 

researcher did not disclose to the teachers nor the study participants that the 

content of the pre and post-test (the test instruments) were the same. 

3.4.2.3 Reliability of the Classroom Test Instrument 

The reliability of the classroom test instrument was measured using the intra-scorer 

reliability method. The ability of the test instrument to give consistent cognitive 

measurement of the geometric knowledge content taught is the main focus here.  

To achieve the above reliability test, the classroom test instrument was administered 

to one of the grade 11 classes in a secondary school (there were grade 11A - C in 

the school) in North-West province (a different province from where the study was 

conducted) to avoid compromising the study. The number of learners that 

participated in this exercise was 21. The pre-test and post-test instrument was 

administered twice (X1, X2): X2 was administered three weeks after X1 was 

administered, to ensure that learners did not remember the content of the first test. 

In addition, the instrument was not released to the learners after writing the test, 
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they were also not informed that the test would be repeated. Correlation between 

the scores of X1 and X2 were measured. A reliability coefficient of 0.74 was obtained.  

3.5. Ethical Issues 

The researcher obtained ethical clearance from the University of South Africa to 

carry out this study. In addition to this, the Gauteng Department of Education 

granted their permission to carry out the study at the relevant high schools used. 

Similarly, the parents were also informed of the content of the study and they gave 

their permission for their children to participate in the study (see appendix 3 to 5). 

For ethical purposes, the name of the school, the teachers, and the learners involved 

in this study will remain anonymous.   
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CHAPTER FOUR 

 

DATA ANALYSIS AND PRESENTATION OF RESULTS 

In this chapter, the techniques for data analysis and results are presented. 

4.0 Data Analysis and Results 

Both qualitative and quantitative data were collected in this study. The data analysis 

techniques for qualitative data collected is presented first, followed by the 

quantitative data analysis technique. The results are presented school by school.  

4.1 DATA ANALYSIS STRATEGIES  

As mentioned in subsection 3.1, this study followed a mixed methods approach: a 

descriptive research design that involved classroom observation and pre-test – post-

test matching control causal-comparative design. Data from the classroom 

observation were analysed using qualitative data analysis techniques, while the data 

from the causal-comparative design were analysed through quantitative data 

analysis techniques.  

4.1.1 Qualitative Data Analysis Strategy 

4.1.1.1 Classroom Data Analysis Strategy 

The classroom observation data provides the text evidence of how the van Hiele 

instructional approach (the intervention) was followed in the teaching of congruent 

triangles in the experimental groups (appendix 6 was used for this purpose), as well 

as the evidence of the pedagogical approach used in the control group. Data was 

gathered through video recording of the on-site events and the use of field notes for 

important events. Only the qualitative data gathered from the experimental groups 

were analysed. 

The steps involved in the data analysis procedure were as follows: first, the recorded 

data on the video tapes were transcribed (the process of transcribing the data was 

repeated several times to ensure that all the important events were captured), 

secondly, data from the field notes (for example, facial expressions during the 
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lesson) were put together with the transcribed data. The transcribed and the field 

notes data were sorted, and the features that were prominent were coded. The 

coded features were blocked and emerging themes were noted and the emerging 

themes from each group were also compared to avoid duplication of themes. 

The features that emerged centred around classroom organization, the pedagogical 

approach of the teacher in the teaching of concepts of congruent triangles, the 

responses of the study participants to the pedagogical approach, the cognitive level 

of the questions the teacher asked the study participants, the cognitive level of the 

questions the study participants asked, and if the study participants were able to 

answer the teacher’s formative and summative questions correctly. Interaction 

among the study participants, interactions between the teacher and the study 

participants, as well as of the study participants’ postures during the intervention 

were also observed. Emerging themes were noted, gathered and compared. The 

data from each group was analysed and reported separately.  

4.1.1.2 Problem Solving Data Analysis Strategy 

The test instrument items were structured to test the following: 

(i) Identify and join appropriate ends of a shape that forms a diagonal 

(ii) Identify and draw shapes 

(iii) Use the properties of the identified shapes to show equality of sides or 

angles 

(iv) Use logical reasoning that may lead learners to determine the congruence 

of triangles 

For the purpose of data analysis, the researcher categorized the post-test items into 

category A, category B, and category C according to the Van Hiele geometric 

learning level. See table 5 below.  
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Table 5: Learning Concepts Categories of the Test Instrument Items 

Category Question Item Van Hiele Level 

A (i) and (ii) 1 

B (iii) 2 

C (iv) 3 

 

The question item numbers placed in column 2 of this table show the numbers given 

to sub-questions in the post-test instrument. 

To analyze the study participants’ problem solving approaches the researcher used: 

(i) The number of study participants that passed each question category  

(ii) Solution appraisal method. 

4.1.2 Quantitative Data Analysis Strategies  

The quantitative data collected were captured in Statistical Package for the Social 

Sciences (SPSS). Descriptive and inferential statistical analysis techniques were used 

to study descriptive attributes of the data and the performance of the study 

participants in the post-test.  

4.1.2.1 Descriptive Data Analysis Strategies   

Descriptive data analyses were used to compare the means, and to present the 

standard deviation and skewness of the performance measurements in both the 

control and intervention groups. Charts were used to describe the spread of the 

performance of the study participants in the pre- and post-test. 

4.1.2.2 Inferential Data Analysis Strategies  

Inferential statistical analyses were performed on the pre- and post-test scores of 

both the control and experimental groups. The inferential statistical analysis was 

performed with a t-test. Data analysis techniques were used to investigate the 

significance of the impact of the intervention on study participants’ performance in 

the post-test compared to the pre-test, (Erdogan, and Çelebi, 2009) and to describe 
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the nature of the impact. The results of the data analysis and the tested hypothesis 

are presented school by school.  

4.1.2.3 Effect Size Analysis Strategies  

According to Sherri Jackson (2014), Cohen’s effect size (ES) is the effectiveness of 

an intervention compared to some others. In this study, the effectiveness of the Van 

Hiele instructional approach is compared to that of the chalk-and-talk traditional 

teaching approach.  

In this study, The Cohen’s ES for t-test is calculated as follows: 

                                                
exp  - 

SD

control

pooled

x x
ES   

Where: 

ES = Effect size 

expx  =  the mean of the scores in the experimental group 

controlx  = the mean of the scores in the experimental group 

SDpooled  = the standard deviation using the experimental and control group data 

The SDpooled is calculated as follows:  

 = 
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Where:  

expn  = sample size for the experimental group 

controln  = sample size for the control group 

expSD = standard deviation for the experimental group 

controlSD = standard deviation for the control group 
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4.2 PRESENTATION OF RESULTS 

The teaching profile of each mathematics teacher and their respective schools 

(research field) are presented first. This is followed by the results according to the 

research questions for each group. There are two experimental groups 

(experimental group A and experimental group B) and a control group.  In the 

experimental groups, intervention (teaching congruent triangles’ concepts using the 

van Hiele instructional approach) took place. The intervention period was one week, 

because one week was scheduled in the curriculum by the Department of Basic 

Education for the teaching of congruent triangles. The pedagogical approach for the 

control group was a chalk-and-talk, traditional teaching approach. Classroom 

observations were conducted in all the groups, and two sets of data (qualitative and 

quantitative) were collected and analysed from each group.  

The classroom observation was structured to collect data on the natural settings of 

the research field and to be able to gather data on the physical activities that might 

influence the results of the study during intervention. A video recorder and field 

notes were used to collect relevant data (see section 3.3.1). None of the classroom 

observations was pre-scheduled with the teacher, but the researcher did arrange 

how he would visit each research field (see subsection 3.3.1).  

An observation checklist was used (see appendix 6), after transcribing from the 

video, to measure compliance with the intervention. Relevant events were also 

recorded using field notes. The transcribed data and the data collected from the field 

notes were coded and processed. Emerging themes in the two observations within a 

group were compared (Mapolelo, 2003; Malone, 1996).   

The results will be presented below. The results of the data analysis of the 

experimental groups shall be presented first, followed by the results of the data 

analysis of the control group. In each group, the results of the qualitative data 

analysis shall be presented first. 
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4.2.1 Summary of the Profile of the Research Fields 

The researcher believes that the knowledge of each research field context may also 

be valuable in interpreting some of the results from the data analysis. Hence, table 6 

below provides a summary of the profile of the research fields. 

Table 6: Research Fields Profile 

ITEMS CONTROL EXPERIMENT 

GROUP A 

EXPERIMENT 

GROUP B 

THE SCHOOL 

- The student population in 

the school. 

 

- The total number of 

classrooms 

 

- Total number of teachers 

 

- Total number of maths 

teachers 

 

- Average number of 

learners per class 

 

- Classroom furniture 

 

- Technology teaching aid 

 

- Nature of the library 

 

-  

 

STUDY  PARTICIPANT 

TEACHERS 

 

 

 

 

1158 

 

          

            33 

 

                     45 

            

             9 

 

            

            35 

 

 

1 Learner per desk 

 

         None 

 

       No library 

 

 

     560 

 

 

    15 

 

     26 

 

7 

 

 

37 

 

 

2 Learners per 

desk 

 

None, use 

chalkboard 

None 

 

1316 

 

 

26  (with 12 

additional mobile 

classrooms) 

46 

 

8 

 

 

50 

 

 

1 Learner per desk 

 

None, use 

chalkboard 

1 library room with 

few books. Used 

mainly for studies. 
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- Age 

 

- Qualification 

 

- Teachers 

 

 

 

- Experiences 

 

  

Late thirties  

 

    B.Ed (Maths) 

 

    7 

 

       6 years 

 

 

 

Forties 

 

B.Ed (Mat’s) 

 

8 

 

23 years  

 

 

Twenties 

 

B.Ed (Math’s) 

 

9 

 

3 years 

 

4.3 Experimental Group A 

4.3.1 Presentation of the results of the qualitative data analysis in 

experimental group A 

 

How does the Van Hiele instructional model facilitate the learning of congruent 

triangle concepts in the participating high schools in the experimental schools? 

The results from the analysis of the qualitative data suggest that the intervention 

might have facilitated the learning of the concepts of congruent triangles. Details of 

the results of the data analysis are presented below: 

(i) Results of the Classroom Observation Data Analysis 

In this group, the intervention (the use of Van Hiele’s instructional model in the 

teaching of congruent triangles, section 1.2.2 of this study) was from 14 July to 

18 July 2014. There were three grade 10 classes (Class 10A, Class 10B, and Class 

10C). Classes 10A and B did mathematics, while Class 10C did mathematical literacy. 

Therefore, the study participants in this school consisted of the intact groups of 

grade 10A and B. There were 25 registered learners in Class 10A and 22 registered 

learners in Class 10B, which amounted to a total of 47 study participants.  
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The two classes were scheduled together on the mathematics time table.  During 

the mathematics lessons, study participants sat in groups of about four. They placed 

together two or three lockers and sat around the lockers.  Mathematics was 

scheduled for 35 minutes per period and it is always a double period. The learners 

received their mathematics tuition in the classroom which served as the permanent 

class of the teacher.  

There were two different unscheduled classroom observations that were conducted 

(on 15 and 16 July 2014 respectively).  The researcher observed the first lesson on 

congruent triangles in this group. 

The results of the data analysis showed that the teacher taught the concept of 

congruent triangles according to the Van Hiele instructional model. In addition, it 

was revealed that the study participants yielded positively to the instructional 

strategy used to teach the concept of congruent triangles: they researched, tried 

and explored, and were responsive to the teacher’s questions. The results also 

indicated that the study participants were asking questions, and also answering 

questions in a way that could suggest conceptual understanding of congruent 

triangles.   

They were quiet when the teacher wanted to explain something to them, they 

always took a moment to think before responding to the teacher’s questions and 

started to discuss when discussing in groups or when there was an open question 

from the teacher. Below is the unabridged excerpt of the first classroom observation 

in this group.  

Teacher: "Today we are starting a new topic ’, who can describe a triangle? He 

paces up and down in front of the class, as he observes who will answer the 

question. A male study participant indicates that he wants to try. 

Study Participant: "It is a three-sided figure." 

Teacher: "Thank you, sit down." 

Teacher: "Somebody to name different types of triangles that we have." 
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Instantly low murmuring is heard. After about 3 minutes, two study participants 

from different parts of the class raise their hands. The teacher points to one of the 

study participants that has her hand in the air: 

Teacher: "You, yes." 

Study Participant: "Right angled triangle... hm, hmm." There is whispering from 

group members, then she continues: "Isosceles triangle …….hm, hmm." 

Teacher: "Yes, sit down. Who wants to assist her?’ The teacher continues: "Now I 

want somebody from the front row. You." He points at a lady sitting in one of the 

groups in the front row. 

Study Participant: "Scalene triangle, right angled triangle."  

Teacher: "Good." The teacher goes to the board and draws a diagram of two right 

angle triangles.  

 

 

                                                                    

 

                               Diagram A     Diagram B 

Teacher: "Look at the two diagrams on the board."  Teacher points at diagrams A 

and B on the board. "What types of triangles are these triangles?"  

Teacher: "You, answer the question."  He points at a lady in the middle row. 

Study Participant: "Right angle triangle", answers the student. 

Teacher –  "What are the similarities you can draw from these two diagrams?"  

According to the data analysis on results from the field note, it is here where the 

study participants start to look lost or confused. The teacher goes over the question 

again, but now looking at the study participants: 
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Teacher:  "What are the similarities you can draw from these two diagrams?"  He 

repeats the question. 

Study Participant: "I see that one side of the triangles are marked and there are two 

marks on each angle." 

Teacher: "Good, what is the implication of these." 

Study Participant: "Maybe they are similar or equal", answers a student from one of 

the back rows.  

The teacher goes to the white board with a blue white board marker in his hand and 

writes on the board "Congruent Triangle, this is our new topic. If you look at the two 

triangles, the double angle sign on both diagrams implies that the angles are equal 

on both triangles ". He pauses for a few seconds and then continues:  "In the same 

way, one stroke on the sides of the diagrams implies that the sides are equal to each 

other ‘ 

The teacher writes the following question on the board: 

Given that PQRS is a rectangle. 

               P                                                        Q 

 

 

 

                                                            

 

             R           S 

Use the properties of rectangles to show that |PR| = |QS| , if 

|PQ| = |RS| and are parallel to each other.                                        

The teacher goes around to see how the study participants are thinking and trying to 

solve the problem. After about 7 minutes, the teacher asks one of the students to 

show his attempts. 
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Study Participant: "Opposite sides of rectangles are equal and side PR is opposite to 

side QS, I think |PR| = |QS|." 

Teacher: "Clap for him." 

The teacher goes to the board, pointing at the triangles drawn before: "We shall use 

these triangles to explain congruency of triangles." 

Teacher: "How can you explain what it means when two triangles are congruent to 

each other?" 

There is a moment of silence, then one of the study participants answers: 

Study Participant: "Two triangles drawn beside each other." 

Teacher: "Yes, any other answer? Think, discuss with the person next to you." 

There is murmuring and two of the study participants, each from different parts of 

the class, who are sitting alone go to join other groups. 

Teacher: "Two triangles drawn beside each other and there are similarities in terms 

of the sides or angles between the two triangles", the teacher explains. He asks 

another question: "Mention conditions needed for congruency in triangles?"   

This is to get the study participants thinking.  The way the study participants sit in 

groups might have help them to discuss among themselves at this stage. Nobody 

responds. He then states all the conditions needed for congruency between two 

triangles as follows: 

Teacher: "Consider these two triangles."  He points at the two triangles he on drew 

on the board earlier, which he labelled ABC and DEF, and continues to write: 

   

(i) If the three sides of ∆ABC are equal to the three sides of ∆DEF, this 

condition is written as SSS.  

 

The teacher touches the respective sides of the two triangles, to show the sides he 

is referring to.  He then continues to write: 

 



44 
 

 

(ii) If two sides of ∆ABC are equal to two sides of the ∆DEF and the angle 

included by those two pairs of equal sides are equal, this condition is 

written as SAS. 

 

As the teacher is writing, he touches the specific places on the diagrams he is 

referring to. 

 

(iii) If two angles of ∆ABC are equal to two angles of the ∆DEF and any 

one side of ∆ABC is equal to the corresponding side of ∆DEF. This 

condition is written as SAA. 

(iv) If two right angled triangles have their hypotenuses equal and also one 

other side of the triangle equal to one other side of the other triangle. 

This condition is written as RHS. 

 

He goes to board to write the following example: 

If PHEL is a parallelogram, show that ∆PHE is congruent to ∆PLE in the diagram 

below: 

                         H                  E 

 

 

   P                              L              

Teacher: "How can we do this? Anybody?" 

 

The study participants think for a while, the classroom is quiet, they start raising 

their hands. 

 

Teacher: "Yes, you." He points to a boy at the back. "Come and help us with this." 

 

A boy comes and presents the following argument: 
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The study participants explain this problem by extending the sides of the 

parallelogram as shown above. 

Study participant:  

"Since 𝐴�̂�𝑇 = 𝑃�̂�𝐸 …alternate angles 

𝐴�̂�𝑇 = 𝑃�̂�𝐸  …opposite angles 

∴ 𝑃�̂�𝐸 = 𝑃�̂�𝐸 

Since 𝑃𝐻̅̅ ̅̅ = 𝐿𝐸̅̅̅̅    …shown on the board 

   and 𝐻𝐸̅̅ ̅̅ = 𝑃𝐿̅̅̅̅  …shown on the board 

Then we have SSA condition."  

Another study participant raises her hand.  

Teacher: "Yes, do you want to contribute to what he did or disagree with it?" 

Study Participant: "I think we can solve it by…" 

Teacher: "No go and show us your own thinking on the board." 

She goes to the board. 

Study Participant: "Since line 𝑃𝐸 is common, and line HE is equal to line PL and line 

PH is equal to line LE, then we have 𝑆𝑆𝑆 and 𝑃�̂�𝐸 = 𝑃�̂�𝐸." 

H 

P L 

E 

T 

P L 

E 
H 

G 

F E 

D 

C 

B A 
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Teacher: "Good." 

By this time he checks his watch and he announces: 

Teacher: "We only have fifteen minutes left, I will give you some exercises to do in 

your workbook." 

He writes the following exercises on the board: 

 

EXPERIMENT A.                                          A 

                    

1.     

                                         B              D                                   C 

 

ABC is a right-angled triangle with Â = 90˚. 

AD       BC 

Prove that ∆BAD |‖ ∆ACD 

 

2. ABCD is a parallelogram 

          A                            ››           1 B    

                ʌ                                              2        ʌ     

                          2                                                              

                     D         1             ››                                 C 

(a). Show that:  

(b). BÂD = BĈD 

(c). AḂD = BḊC    

Hence, Prove that ∆ABD ≡ ∆CD .        
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QUESTION 3 

(a). Prove that ∆NOP ≡ ∆YOZ 

             N 

           ^                                  O                            Y 

     P                ^ 

             Z 

The teacher goes around as the study participants are solving the exercises to guide 

them. 

After this, the teacher summarizes the concept of congruent triangles to the study 

participants. This marks the end of the lesson. 

(ii) Results of the Data Analysis on Problem Solving Approach  

(a) The number of study participants that passed each category 

Table 7: Number of Study Participants that Pass each Question 

Category 

Category Question Items that falls 

into each Category 

Number of the study 

participants that scored 

50% and above 

A (i) and (ii)       41 (86%) 

B (iii) 33 (69%) 

C (iv) 27 (56%) 

 

Table 7 shows that 41 (86%), 33 (69%) and 63 (59%) of the study participants 

scored 50% and above in the question category A, B and C respectively. 

(b) Solution Appraisal Data Analysis Results 

The solution appraisal results are presented based on the question category. 



48 
 

Question Category A 

Sample question is:  "Join the necessary points in the figure above to form diagonal 

|QR|.” 

The results of the solution appraisal data analysis show that the majority of the 

study participants did not have a problem with locating the two corners of the shape 

given to be connected to form the required diagonal in question category A (see 

table 7 above). In addition, it also shows that the majority of these study 

participants understand the term 'diagonal'.  This confirms that majority of the study 

participants are comfortable on  van Hiele level 1 

Question Category B 

Sample question is:  "Identify and draw ∆PRS and ∆QRS separately.” 

Again the results of the solution appraisal data analysis shows that the majority of 

the study participants did not have a problem with identifying the necessary 

triangles from the original figure, hence drawing the triangles was not difficult for 

them. In addition, it also shows that the majority of these study participants 

understood the term 'triangle' and could trace a triangle out of a given figure. This 

confirms that majority of the study participants are comfortable on  van Hiele level 2 

Question Category C 

Sample question is:  “If an 


 RQTPQS and


 QSTQPR , prove that 


 QTSQRP .”    

or     “Hence prove that ∆QPR ≡ ∆QST.”                                     

In this question category, the analysis shows that more study participants in this 

group struggled to approach the question items correctly compared to the question 

categories A and B, as the questions demand a higher cognitive input. Actually none 

of the study participants got the question “If an 


 RQTPQS and


 QSTQPR , prove 

that 


 QTSQRP ” perfectly correct. However, some made good attempts at solving 

it.   
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But the study participants approached the questions to prove the congruency of 

triangles with more clarity and they were able to apply congruent triangle concepts 

compared to the other question in this category. This confirms that though some of 

the study participants attained van Hiele level 3, but many may still more time with 

their studies to be on the van Hiele level 3. 

Figure 3 below is a sample script that shows how the study participants approached 

the post-test questions: 

Figure 3 Sample script that shows how participants approached the post-
test questions 
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The sample script placed in figure 3 above is the solution approach of one of the 

study participants to question 1 in the post-test. There were three sub-questions:  i, 

ii, and iii. The sub-question (i) was in the A question category (see 4.1.1.2) of the 

post-test (see appendix 7).  The script shows that the study participant who wrote 

this answer could easily identify and draw the specified triangle.  

However, the study participant managed to attempt sub-question (ii), which belongs 

to question category C, by stating the sum of angles in a triangle, which was a good 

attempt. For sub-question (iii) which is a question category C, the study participant 

was able to assume that <QRP = <QTS and was therefore able to solve the sub-

question (iii) correctly. 

 

4.3.2 Results of the analysis of the quantitative data analysis in 

experimental group A. 

How does the Van Hiele instructional model impact on study participants’ score 

achievement in the learning of the concepts of congruent triangles in the 

experimental schools?   

The results emanating from the quantitative data analysis indicated that the study 

participants in the experimental groups performed better than the study participants 
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in the control group in the post-test, although all the study participants performed 

poorly in the pre-test. The results from the data analysis are presented below: 

The descriptive, statistical results below were indicative of the improved 

achievement in the learning of the concepts of congruent triangles. See the results 

below:  

(i). Results of the descriptive data analysis  

Table 8: Descriptive Results in Experimental group A 

 

 N Mean Std. Deviation 

Std. Error Mean 

(SEM) 

Pre-test 48 15.5833 6.02065 .86901 

Post-test 48 61.2500 17.99113 2.59680 

 

In experimental group A, table 8 shows that the mean score of the pre-test is 

15.58%, while that of the post-test is 61.25% (rounded up to 2 decimal places). 

The standard deviations are 6.02% and 17.99% for the pre-test and post-test, 

respectively.  This implies that in the pre-test, the majority of the scores result fell 

within the (9% - 21%) category, while in the post-test, the majority of the scores 

result fell within the (44% - 78%) category. In addition, the high standard deviation 

of 17.99% showed that the scores were widely spread within the indicated scores 

category.  

The standard deviation error of 0.87% and 2.60% (to 2 decimal places) reflect the 

degree of accuracy as the mean for the data collected. 

The above results are further presented graphically. This presentation of the results 

allows one to see the spread of the scores both in the pre-test and post-test. 
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Figure 4 The Histogram of the Pre-test Results in Experimental group A 

                   

Figure 4 is a pictorial view of the results in table 8. In figure 4, it is evident that the 

majority of the score results fell within the (9% - 21%) category, as categorised in 

table 8. This figure is also a normal distribution, which indicates that as the curve 

approaches zero on both the right and left sides of the graph, the limits are about 

3% and 31% respectively.   

Figure 5: The Histogram of the Post-test Results in Experimental group A 

                   

Figure 5 visually illustrates the results in table 8. In figure 5, the researcher 

observed that the majority of the score results spread across the (44% - 78%) 

category as categorised in table 8. The graph is also a normal distribution, which 

indicates that as the curve approaches zero on both right and left sides of the 

graph, the limits are about 10% and 96% respectively.   
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Although the descriptive statistics show the improved achievement in the post-test 

over that of the pre-test, the results of the inferential data analysis below shows the 

statistically significant comparison of the two means.   

(ii) Results of the inferential data analysis  

Table 9    One - Sample Test 

 

Table 9 provides the results of the t-test comparison of the means of both the pre-

test and the post-test. It is revealed that there is a statistically significant difference 

between the two means, since F < 0.005. From table 8 above, it is clear that the 

means for both the pre- and post-test were about 15 and 61 respectively; this 

implies that there is a statistically significant improvement in the scores of the study 

participants in this group.   

Effect Size Result 

  

2 2

pooled

(48 1)(18) (28 1)(8.2)

48 28 2

17043.48
230.32 15.18

74

SD
  


 

  

 

and     

                       
61.25 - 26.36

2.3
15.18

ES    

  

Test Value = 50 

t df 

Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

Pre-test 

Group A 
-39.605 47 .000 -34.41667 -36.1649 -32.6685 

Post-test 

Group A 
4.332 47 .000 11.25000 6.0259 16.4741 
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For full effect size calculation, please see appendix 11  

4.4 Experimental Group B 

4.4.1 Presentation of the results of the qualitative data analysis in 

Experimental group B 

How does the Van Hiele instructional model facilitate the learning of congruent 

triangle concepts in the participating high schools in the experimental schools? 

The results gleaned from the qualitative data analysis suggested that the 

intervention might have facilitated the learning of the concepts of congruent 

triangles. The results of the data analysis are presented below.  

(i) Results of the Classroom Observation data Analysis 

The structure of the classroom observation data collection and analysis in this group 

was similar to that of the experimental group A, and in order to avoid unnecessary 

repetition the full classroom observation will not be relayed, but the results will be 

presented.  

In this group, the intervention (the use of the Van Hiele instructional model in the 

teaching of congruent triangles, section 1.2.2 of this study) was from 14 to 18 July 

2014. There were four grade 10 classes (Class 10A, Class 10B, Class 10C, 10D). 

Classes 10A and B did mathematics, while Classes 10C and D did mathematical 

literacy. Therefore in this school, the study participants are the intact group of grade 

10A and B. There were 32 registered learners in Class 10A and 28 registered 

learners in Class 10B, which added up to 60 learners in experimental group B.  

These two classes were scheduled together on the mathematics time table.  During 

the mathematics lessons, study participants sat around two or three lockers in 

groups of about four, exactly as the students in research field A did. There were six 

mathematics periods in a week: on Mondays and Wednesdays a single period, 

double periods on Tuesdays and Thursdays, and no class on Friday.  Each period 

was 35 minutes. The learners attended the mathematics class in the class which 

served as the permanent class for the teacher, as was found in research field A. 

There were two different unscheduled classroom observations that were conducted.  
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The classroom observation took place on Wednesday the 16th, and Thursday the 17th 

of July 2014. The Wednesday class was the first lesson on congruent triangles in this 

group; the researcher was about 15 minutes late to this lesson since he had to rush 

down to this research field from the experimental group A class. However, the 

teacher was still at the ice breaking stage of the lesson when the researcher got into 

the class. It was a single period lesson.  

The results of the data analysis showed that the teacher followed the Van Hiele 

instructional steps in teaching the concept of congruent triangles. The study 

participants responded positively to the intervention, even though it was different 

from how the teacher initially taught them. This reflected in the field note data as 

comments made by one of the study participants showed that they responded very 

well throughout the intervention. It was revealed that the teacher was not giving the 

study participants enough time to think when he asked questions, and the teacher 

was not digging deep enough into the study participants’ prior knowledge, which 

could have helped them to reason properly.     

The results indicated that the study participants were indeed able to answer 

questions and ask intelligent questions themselves. It also emerged from the data 

analysis that the type of questions many of the study participants were asking could 

suggest conceptual understanding of congruent triangles.  But the facial expressions 

of a few of the study participants might have indicated that some of them could not 

cope with the approach of allowing learners to reason out their answers, specifically 

when the task is of such high cognitive demand.   

Below are the exercises the teacher gave in the second classroom observation as a 

sample of exercise questions discussed in the class. 
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Question 1. ABCD is a parallelogram 

          A                            ››              2           B    

                ʌ                                                  1   ʌ     

                          1             2                     

                    D                                ››                             C               

(a). Â = Ĉ 

(b) AḂC = AḊC 

(c). Prove that ∆ABD ≡ ∆CDB   

Question 2.  PQRS is a parallelogram with PQ = RS and PS = QR. 

               P                                Q    

                                                                                         

  S                         R              

 

Prove that 

(a). ∆PQR ≡ ∆RSP. 

(b). PQ ‖ RS and PS ‖ QR. 

c). PQRS is a parallelogram. 

Question 3. 

ABCD is a kite with diagonals AC and BD intersecting at P, and AC BD.  
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Also AD = AB, CD = BC and PB = DP.          A 

               

                                                             1   2 

                                           D                 P                   B 

 

                                                            1    2 

                                                                 

               C 

Question 4. 

(a). Prove that ∆NOP ≡ ∆YOZ. 

               N 

               

     P                                o                                        Y 

 

 

                                                                                                                              

                                                                                     z 

(ii) Results of the Data Analysis on Problem Solving Approach  

(a) The number of study participants that pass each category 
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Table 10: Study Participants that Pass each Question Category 

Category Question Items that 

falls into each Category 

Number of Study Participants 

that scored above 50% 

A (i) and (ii)         53 (84%) 

B (iii) 35 (59%) 

C (iv) 31 (52%) 

 

Table 10 shows that 53 (84%), 35 (59%) and 31 (52%) of the study participants 

scored 50% and above in the question categories A, B and C respectively. 

(b) Solution Appraisal Data Analysis Results 

The researcher presented the solution appraisal results based on the question 

category. 

Question Category A 

Sample question:  “Join the necessary points in the figure above to form diagonal 

|QR|.” 

The outcome of the solution appraisal data analysis was similar to the results 

obtained in group A. The solution appraisal data analysis showed that the majority of 

the study participants did not have a problem locating the two corners of the shape 

given to be connected to form the required diagonal in question category A (see 

table 8 above).  This confirms that majority of the study participants are comfortable 

on  van Hiele level 1. 

Question Category B 

Sample question:  “Identify and draw ∆PRS and ∆QRS separately.” 

Again the results of the solution appraisal data analysis showed that the majority of 

the study participants did not have a problem with identifying the necessary 

triangles from the original figure and hence drawing the triangles was not difficult 

for them. In addition, it also showed that the majority of these study participants 
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understood the term 'triangle' and could trace a given triangle out of a given figure. 

This confirms that majority of the study participants are comfortable on  van Hiele 

level 2 

Question Category C 

Sample question:  “If an 


 RQTPQS and


 QSTQPR , prove that 


 QTSQRP ”    

or     “ Hence prove that ∆QPR ≡ ∆QST.”                                     

In this question category, the analysis showed that more study participants in this 

group struggled to approach the question items in this category correctly compared 

to the question categories A and B. Actually none of the study participants got the 

question “If an 


 RQTPQS and


 QSTQPR , prove that 


 QTSQRP ” perfectly 

correct, however, some made good attempts at solving it.  The study participants 

approached the questions on the concepts of congruent of triangles with more 

clarity and they were able to apply congruent triangles’ concepts compared to the 

other question in this category. This confirms that though some of the study 

participants attained van Hiele level 3, but many may still more time with their 

studies to be on the van Hiele level 3. 

4.4.2 Results of the analysis of the quantitative data analysis in 

experimental group B 

How does the Van Hiele instructional model impact on study participants’ score 

achievement in the learning of the concepts of congruent triangles in the 

experimental schools?   

The results emanating from the quantitative data analysis indicated that the study 

participants in the experimental groups performed better than the study participants 

in the control group in the post-test, though all the study participants performed 

poorly in the pre-test. The results from the data analysis are presented below: 

The descriptive statistics results below were indicative of the improved achievement 

in the learning of the concepts of congruent triangles. See the results below: 
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(i) Results of the descriptive data analysis  

Table 11:     Descriptive Results in Experimental group B 

 N Mean Std. Deviation Std. Error Mean 

Pre-test 60 13.6333 6.19996 .80041 

Post-test 60 41.2333 7.24479 .93530 

 

In experimental group B, table 11 shows that the mean score of the pre-test is 

13.63%, while that of the post-test is 41.23% (rounded up to 2 decimal places). The 

standard deviations are 6.02% and 7.24% for the pre-test and post-tests 

respectively.  This implies that in the pre-test, the majority of the score results fell 

within the (8% - 20%) category, while in the post-test, the majority of the scores 

fell within the (34% - 48%) category. The standard deviation error of 0.80 and 0.94 

(to 2 decimal places) reflect the degree of the accuracy of the mean of the data 

collected. 

The above results are further presented graphically, which enables one to see the 

spread of the scores both in the pre-test and post-test. 

 

Figure 6 The Histogram of the Pre-test Results in Experimental group B 

                   

Figure 6 gives a pictorial view of the results in table 11. It can be observed that the 

majority of the score results fell within the 8% and 20% category as analysed in 
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table 11. The graph is also a normal distribution, this indicates that as the curve 

approaches zero on both the right and left sides of the graph, the limits are about 

0% and 28% respectively.    

Figure 7 The Histogram of the Post-test Results in Experimental group B 

                   

Figure 7 provides a pictorial view of the results in table 11. It is observed here that 

the majority of the score results spread across the 34% and 48% category, as 

analysed in table 11. The figure is also a normal distribution; this indicates that as 

the curve approaches zero on both the right and left sides of the graph, the limits 

are about 24% and 55% respectively.   

Although the descriptive statistics show an improved achievement in the post-test 

over that of the pre-test, the results of the inferential data analysis below show the 

statistical significant comparison of the two means.   



62 
 

(ii) Results of the inferential data analysis  

Table 12:Inferential Data Analysis Results 

:: 

Test Value = 50 

t df 

Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

Pre-test  

Group B 

-45.435 59 .000 -36.36667 -37.9683 -34.7650 

Post-test  

Group B 

-9.373 59 .000 -8.76667 -10.6382 -6.8951 

 

Table 12 shows the result of the ANOVA comparison of the means of both the pre-

test and post-test. It is revealed that there is a statistically significant difference 

between the two means, since F < 0.005. 

Effect Size Result 

  

2 2

pooled

(60 1)(7.2) (28 1)(8.2)

60 28 2

4874.04
56.67 7.53

86

SD
  


 

  

 

and     

                       
41.23 - 26.36

1.97
7.53

ES    

For full effect size calculation, please see appendix 10. 
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4.5 Control Group 

4.5.1 Presentation of the results of the qualitative data analysis  

How does the Van Hiele instructional model facilitate the learning of congruent 

triangle concepts in the participating high schools in the experimental schools? 

The reader should note that there is no intervention in this group as the teacher in 

this group used the traditional instructional approach. 

However, the results that emanated from the analysis of the qualitative data 

suggested that the traditional instructional approach used in this group might not 

have facilitated the learning of the concepts of congruent triangles. The results are 

further presented below.  

(i) Results of the Classroom Observation Data Analysis 

In this group, the study took place from 9 to 18 July 2014. There were three grade 

10 classes (Class 10A, Class 10B, Class 10C). It was only grade 10A that did 

mathematics, while Classes 10B and C did mathematical literacy. In this school, the 

study participants were the intact group of grade 10A. There were 28 registered 

learners in Class 10A, and the study participants in this control therefore numbered 

28.  During the mathematics lessons, study participants were seated one learner per 

locker.  There were five mathematics periods in a week: on Mondays a single period, 

Tuesdays and Thursdays double periods, and no mathematics class on Friday. 

Each period was 35 minutes. The learners have to go for mathematics class in the 

classroom which serves as the permanent classroom for the teacher. There was only 

one unscheduled classroom observation that was conducted (Monday 14th, 2014).  

The Monday class was the first lesson on congruent triangles in this group, the 

researcher was in the class before the class started. When it was time to start the 

lesson, the teacher went to the front of the class and started the lesson.  

The reader should remember that no intervention took place in the control group. 

The teacher in the control group taught triangle congruency as he normally teaches 

using the textbooks, chalk and blackboard, leading the learners through the learning 
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of the concept of congruent triangles. The duration of the mathematics lesson in this 

group was 35 minutes.  

There were two classroom observations, the results of the data analysis show that 

the classroom pedagogy followed the traditional teaching approach. The results 

indicated that the teacher normally writes the topic of the day on the board; explains 

the underpinning concept using some examples, and gives an illustration followed by 

formative exercises. 

Below is an unabridged presentation of the classroom presentation observed: 

The teacher went to the blackboard and wrote 'Congruent Triangles' 

Teacher: "Our topic for today is as written on the board. Now, I want everybody 

to read out."  

The study participants chorused the topic as written on the board. 

He then drew the diagram below on the board. 

               B                                 C    

 

 

  A                              D                                                       

    Teacher: "What is the name of the shape on the blackboard?"  

The study participants keep quiet. 

Teacher: "Do you want to tell me, you do not know what a parallelogram looks 

like. Well that is a parallelogram ABCD." 

He pauses a little, and then paces up and down at the front of the class.  

Teacher: "The diagonal line AC divides the diagram into two triangles. Congruent 

triangles are triangles that are similar in all respect, sides, shapes and angles." He 

looks at the board, and goes to the board. 
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He uses the chalk in his hand to trace out the ∆ABC and ∆ADC that make up the 

parallelogram ABCD. 

Teacher: "Do you see these triangles?’" 

Study participants: "Yes." 

Teacher: "I will use them to explain the congruent in triangles." 

He scans through the whole class with his eyes and goes to his table to fetch the 

mathematics textbook. 

Teacher: "Open your mathematics textbook on page 202, the conditions for 

congruency in triangles are there." 

He then goes to the board to copy what is in the book onto the board. 

Teacher: "The conditions on page 202 are as follows: Two triangles are 

congruent if:"  

Conditions of Congruency Symbol (Notation) 

 

 Three sides of one triangle are equal in length to the three sides 

of the other triangle. 

 

 

  SSS 

 

 Two sides and the included angle in one triangle are equal to 

two sides and the included angles in the other triangle are equal 

to two angles and the sides of the other triangle. 

 

 

  SAS 

 Two angles and one side of one triangle are equal to the 

corresponding two angles and sides of the other triangle.                                    

 

 

  AAS 

 In two right-angled triangles, the hypotenuse and a side of one 

triangle are equal to the hypotenuse and a side of the other 

triangles.      

 

  RHS 

 

Study participants: "Are we to measure the sides to be sure it is the same?" 

Teacher: "No, it will be given to you." 
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He then uses the diagrams of the parallelogram he has drawn on the board to 

formulate an example. He makes the following additions to the diagrams: 

               B                                           C    

 

 

  A                               D                                     

Teacher: "In the diagram, there are two triangles ∆ABC and ∆ADC." 

He splits the triangles as follows:     

               B                                 C        

                                                                                                                C    

A 

                                               A                           D              

                       

Teacher: I = k     opposite sides of parallelogram ABCD 

J = L    opposite sides of parallelogram ABCD 

M = N    diagonals of parallelogram ABCD 

B = D    opposite angles of parallelogram ABCD 

He turns to the study participants in the classroom. 

Teacher: "From the explanation on the board, we can compare the two triangles: 

∆ABC and ∆ADC.  We can see that the condition SSS is fulfilled." 

Teacher: "We shall now apply the conditions for congruency of triangles explained 

above to solve the problems." 

He then writes the following exercise on the board: 
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Exercises: 

Given the figure below, prove that ∆ABC ≡ ∆SCI. 

            B                                 A    

                                              C 

                                                                               

                       I                                                          S 

Teacher: "I give you five minutes to answer this question." 

He checks his wrist watch and when it is five minutes, he stops them from solving 

the problem. He also announces that only 8 minutes of the lesson remains. He asks 

the study participants to exchange their note books. He goes to the board and writes 

the following: 

The study participants are looking at each other as if they do not understand the 

concept. 

BA = IS (opposite sides of a parallelogram) 

BC = CS  (Given) 

<ABC = <CSI   (alternate angle of a parallelogram) 

Teacher: "Hence, we have the condition SAS." 

One study participant stands up to talk. 

Study participant: "I don’t understand, what is 'given'?"  

By now the lesson is about 6 minutes over the scheduled time.  

Teacher: "We shall continue from here in the next class." 

He quickly puts the following exercise on the board: 
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Exercise:  

1. Prove that ∆IHJ ≡ ∆NHM. 

                                  I              ›           J    

 

                                                   H                   

                                  

                                                                    

                     M                                   ›                                  N                                                  

2. Given: Q = 90, M is the midpoint of PR. 

                                                              P                              

 

                                             M                            N                                                                                                                                                              

                        

                                              

                        R                      T                          Q                                                  

MN   PQ, MT   RQ. Show that: 

a). Prove that ∆MRT ≡ ∆MNP. 

(b). Class Example: page 220 

The researcher followed up on the next day’s lesson. The majority of the study 

participants did not do the homework because they did not understand how to go 

about it. The teacher repeated the explanation of the previous day on the concepts 

of triangles as he struggled to use the homework to explain.  
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(ii) Results of the Data Analysis on Problem Solving Approach  

(a) The number of study participants that pass each category 

Table 13: The Number of Study Participants that Pass each Question 

Category 

Category Question Items that 

falls into each Category 

Number of Study 

Participants that scored 

above 50% 

A (i) and (ii)         15 (54%) 

B (iii) 3 (2%) 

C (iv) 1 (1%) 

 

Table 13 shows that 15 (54%), 3 (2%) and 1 (1%) of the study participants scored 

50% and above in the question category A, B and C respectively. 

(b) Solution Appraisal Data Analysis Results 

The solution appraisal results are presented based on the question category. 

Question Category A 

Sample question is:  “Join the necessary points in the figure above to form diagonal 

|QR|” 

The results of the solution appraisal data analysis show that 54% of the study 

participants did not have a problem with locating the two corners of the shape given 

to be connected to form the required diagonal in question category A (see table 13 

above).  

Question Category B 

Sample question is:  “Identify and draw ∆PRS and ∆QRS separately.” 

Only 2% of the study participants could accomplish the task given in this question 

category.  
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Question Category C 

Sample question is:  “If an 


 RQTPQS and


 QSTQPR , prove that 


 QTSQRP .”    

or     “ Hence prove that ∆QPR ≡ ∆QST.”                                     

Only 2% of the study participants could accomplish the task given in this question 

category.  

4.5.2 Results of the analysis of the quantitative data analysis in the 

Control Group 

How does the Van Hiele instructional model impact on study participants’ score 

achievement in the learning of the concepts of congruent triangles in the 

experimental schools?   

The results emanating from the quantitative data analysis indicated that the study 

participants in the control group did not perform as well as their counterparts in the 

experimental groups in the post-test, although all the study participants performed 

poorly in the pre-test. The results from the data analysis are presented below: 

It should be noted that the Van Hiele instructional model was not used in this 

group. The pedagogical approach was the traditional form of teaching. We 

presented the result of the traditional approach below:  

(i) Results of the descriptive data analysis  

Table 14: Descriptive Results in Control Group 

 

 N Mean Std. Deviation Std. Error Mean 

Pre-test 28 9.46 3.305 .625 

Post-test 28 26.36 8.234 1.556 

 

In the control group, table 14 above shows that the mean score of the pre-test is 

9.46%, while that of the post-test is 26.36% (rounded up to 2 decimal places). The 

standard deviations are 3.31% and 8.923% for the pre-test and post-test 



71 
 

respectively.  This implies that in the pre-test, the majority of the score results fell 

within the (6% - 12%) category, while in the post-test, the majority of the scores 

fell within the (18% - 34%) category. In addition, a relatively high standard 

deviation of 8.23% shows that the scores are widely spread within the indicated 

scores category. The standard deviation error of 0.63 and 1.56 (to 2 decimal places) 

reflect the degree of accuracy as the mean for the data collected. 

The graphical presentation of the results above enables one to see the spread of 

the scores both in the pre-test and post-test. 

Figure 8 The Histogram of the Pre-test Results in the control group  

                   

Figure 8 is a graphical summary of the results in table 8. In figure 8, it is evident 

that the majority of the scores results fell within the 6% and 12% category, as 

analyzed in table 14. The graph is also a normal distribution, which indicates that as 

the curve approaches zero on both the right and left sides of the graph, the limits 

were about 3% and 17% respectively.  
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Figure 9 The Histogram of the Post-test Results in Control group  

                   

Figure 9 visually represents the results in table 14. It can be observed here that the 

majority of the score results spread across the (15% - 34%) category, as analyzed 

in table 5. In the graph as the curve approaches zero on both the right and left sides 

of the graph, the limits are about 10% and 56% respectively.   

Even though the descriptive statistics show the improved achievement in the post-

test over that of the pre-test, the results of the inferential data analysis below show 

the statistically significant comparison of the two means.  
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(ii) Results of the inferential data analysis  

Table 15: One-Sample Test 

 

Test Value = 50 

T df 

Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

Pre-

test 
-64.895 27 .000 -40.536 -41.82 -39.25 

Post 

Test 

-15.194 27 .000 -23.643 -26.84 -20.45 

 

Table 15 shows the result of the ANOVA comparison of the means of both the pre-

test and post-test, since F < 0.005. It is revealed that there is a statistically 

significant difference between the two means.   

4.5.3 Comparison between the van Hiele instructional approach and the 

traditional approach 

In this section, the results of the data analysis of the classroom observation in the 

control group are compared to that of the experimental group (since the classroom 

lesson presentation in experimental group A is similar to that of B, general results 

are presented for both groups A and B).   
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Table 16: Comparison between the classroom pedagogy in the 

experimental and control Groups 

 Control Group (Traditional 

Approach) 

Experimental Group  

(Van Hiele Teaching approach) 

1 The study participants in this group got 

to know about the concepts of triangle 

congruency only when they got into the 

class 

The teachers informed the study participants about 

the next topic and asked them to read, research 

and familiarise themselves with the topic. 

2 On the first day of the lesson on 

congruency, the teacher went straight to 

the board to write and introduce the 

topic. 

The teachers started by inquiring what the study 

participants know about congruency of triangles: 

they asked probing questions on figures and shapes 

properties, to find out if the study participants could 

link their answers to triangle congruency 

3 The teacher worked examples on the 

chalk board to illustrate the concepts of 

congruency of triangles. 

The first lesson ended.   

Based on the answers given to the probing 

questions, the teachers gave problems to be 

solved. These questions were on properties of 

shapes, but the properties are needed for 

congruency of triangles. The teacher watched the 

study participants’ reasoning as they were 

attempting to solve the problems. 

The first lesson ended. 

4 The teacher gave 5 class work exercises 

on what was done on the previous day 

and marked the study participants’ work. 

The teacher was not satisfied with the 

study participants’ work, he explained 

the concept of triangles all over again as 

he was solving the problems. 

The lesson ended.   

On this day the teacher introduced the topic, 

clarified/confirmed/disapproved some of the study 

participants’ ideas. Explained the concepts of 

congruency of triangles. 

 

5  Wrote problems on the board and allowed the 

study participants to answer them in their 

workbook, but guided them as they attempted to 

solve the problems. 

The lesson ended. 
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Table 17: Comparison of how the pedagogy used affected the learning of 

congruence of triangles concepts in experimental and control groups 

 Activities Experimental Group Control Group 

1 Classroom Activities The teacher asked questions that 

lead the study participants into 

thinking. Allowed study 

participants to research, to try 

things out and explore. 

The teacher did most of the 

talking. He directed the lesson 

according to his prepared notes. 

2 Level of study participants Study participants participated 

actively throughout the time of 

the observed lessons. 

Study participants did not 

contribute at all to the 

explanation. Where they 

contributed, most of the answers 

given to questions were wrong. 

3 Quality of questions asked. Study participants asked 

questions that demonstrated 

conceptual knowledge or such 

that showed their intention to 

seek more knowledge. 

They were mostly asking for more 

explanations. 

4 Quality of explanations given by 

study participants. 

They gave sound conceptual 

explanations and showed creative 

thinking. 

They did not participate in the 

explanation. 

5 Performance of study 

participants in the formative 

assessments. 

The majority performed well in 

the class work exercises. 

Many of them were not doing 

their homework on the basis that 

they did not understand how to 

solve the problem. 

6 Study participants’ disposition 

during the classroom teaching. 

They were enthusiastic and 

waited to participate in answering 

or contribute to the explanation.  

 

Study participants in the control 

group always wore a confused 

facial expression. 

7 Study participants’ willingness 

to answer questions. 

The majority were willing to 

answer questions. 

They were not unwilling or afraid 

to answer questions. 
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CHAPTER FIVE 

DISCUSSION, IMPLICATIONS, CONCLUSION AND RECOMMENDATIONS  

In this chapter, the study is summarised and the findings are presented. These 

findings are discussed in light of the research questions, the hypothesis and the 

literature consulted. Conclusions and recommendations are also presented.   

 

5. Summary of the Study 

 

The study was conducted in selected Gauteng high schools. The Van Hiele learning 

model formed the conceptual framework of the study. 

An intact group of the grade 10 learners from three randomly selected high schools 

in Gauteng formed the study participants for the study, a total of 136 learners. A 

mixed method approach that involved both qualitative and quantitative data 

collection and analysis was used to carry out the inquiry.   

The study participants were divided into experimental and control groups. 

Intervention was used in the teaching of the concepts of the congruent triangles in 

the experimental groups, while the teaching followed a traditional approach in the 

control group.  

Quantitative data were collected through pre-test and post-test design and 

qualitative data was collected through classroom observation. Descriptive and 

inferential data analyses were performed on the quantitative data, while the 

qualitative data was analysed through the spreadsheet. The major findings are 

presented below: 

1. The intervention facilitated the learning of congruence of triangle concepts in the 

experimental groups. 

2. Years of teaching experience of mathematics in group A has had a positive 

impact on his lesson presentation. 

3. There was improvement in the geometrical thinking ability of the study   

participants in the experimental groups. 
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4. The solution approaches of the study participants in the experimental groups 

were improved. 

5. The achievement scores of the study participants in the experimental groups 

were improved. 

6. The Van Hiele learning level of the study participants increased. 

5.1 Discussion 

5.1.1 The intervention facilitated the learning of the concepts of  the 

congruence of triangles in the experimental groups. 

In all the groups, the results of the pre-test showed that the entire group did not 

have much knowledge in the concepts of congruency of triangles (see table 8, 11, 

and 14).  The tables show the pre-test mean score as 15, 13, and 9 for experimental 

group A, B and the control group respectively. Once the teaching approaches 

changed, the study participants' learning trajectory of the congruence of triangles 

changed.  

The study participants in the experimental groups participated in the teaching and 

learning of the concepts of congruency of triangles: they researched and explored 

new knowledge on the congruence of triangles. The teacher asked probing questions 

to help the study participants search for answers from their prior knowledge, linking 

concepts from their prior geometrical knowledge to the present concepts to be 

learnt, and they presented their cases logically (see table 11, items 2 and 3).  

Perhaps this is why Halat (2008) advised that geometry teachers should plan their 

classroom activities in a way that can help the learners understand the nature and 

concepts of geometry (see subsection 1.3.2 of this work that shows how Van Hiele 

instructionals are arranged). The teachers in the experimental groups followed the 

Van Hiele instruction approach, which details the steps to take when teaching 

geometry. The steps are listed in subsection 1.2.2 of this work.  

In addition, Halat (2008) also argued that geometrical knowledge transfer should be 

systematic so that concepts are ordered. The results of the data analysis suggested 

that the intervention might have influenced active classroom participation in the 
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experimental classes. That is, the intervention might have facilitated the learning of 

congruence of triangles.  In the experimental groups A and B, the effect sizes were 

2.3 and 1.97 respectively, which implies that the probability that the intervention 

was responsible for these results is very high.  

This result is also in line with the results found by Erdoğan et al. (2009), Malasia, 

Abdul and Zakaria (2013) and Mohd Salleh et al. (2013). The study participants in 

the control group were not active and only listened to the teacher. Item 6 in table 9 

shows that study participants in the control group were confused in the class and 

item 5 also shows that they could not do their homework. These findings suggested 

that the traditional approach used in the teaching of congruence of triangles in the 

control group might have complicated learning. The researcher would have loved to 

conduct interviews to confirm why the study participants could not do their 

homework, however, this was not possible due to a lack of time and it not being part 

of the research design. It is assumed that the majority of the study participants 

involved in the control group probably lacked adequate conceptual ability to do the 

homework. 

5.1.2 Years of teaching experience has an impact on how mathematics 

teachers deliver their lesson 

One of the findings in this study is that some of the study participants in the 

experimental group B sometimes looked confused by the expression on their faces 

and the fact that they were silent. This occurred when tasks given by the teacher 

required a high level of cognitive thinking. Slavin (1996) warns that a lack of 

learning occurs when students are confused. The researcher tried to link this to 

other parts of the results that showed that the teacher in experimental group B was 

not patient in delivering his lessons and table 6 shows that this teacher had only 3 

years of teaching experience, compared to the teacher in the experimental group A, 

who had 23 years of mathematics teaching experience.  How the teachers delivered 

the intervention in their schools reflected in both the effect of size and achievement 

results. The experimental group A had 2.3 effect size with a mean achievement 

score of 61% while experimental group B had the effect size of 1.97 with a mean 

achievement score of 41%. 
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It is possible that, since both the teachers used the same intervention, the larger 

effect size in experimental group A might have occurred because of the way the 

teacher in experimental group A presented his lesson, which might have been 

informed by his age and teaching experience.  

5.1.3 There was improvement in the geometric thinking ability of the 

study participants in the experimental groups 

The findings in the experimental groups indicated that the study participants 

presented logical arguments when answering questions, and when solving problems 

in the classroom. They responded very well to the probing questions the teacher 

was putting forward. This was especially clear from how the study participants 

argued the class work given in the experiment group A.  

One of the study participants presented a solution by extending the sides of the 

parallelogram to find the solution, while another study participant used the equal 

given sides and the properties of the diagonal of the parallelogram to arrive at the 

answer. The researcher observed that there was active mental thinking going on 

among the study participants once the lesson commenced in the experimental 

groups. The findings presented in table 16 (items 2 to 4) show that the study 

participants gave responses that implied the study participants engaged conceptual 

geometric thinking while the intervention was going on. In addition, tables 7 and 10 

show that the majority of the study participants in the experimental groups were 

able to solve the problems in question in category B and C, which required more 

geometrical conceptual thinking. These findings conform to literature such as 

Erdoğan et al. (2009), who also used the Van Hiele instructional approach to 

improve learners' creative thinking. Abu and Zaid (2013) also agrees with this school 

of thought. 

On the other hand, the study participants in the control group were not able to solve 

similar problems given to them. The question was to show that ∆𝐴𝐵𝐷 and ∆𝐴𝐷𝐶 is 

congruent given the parallelogram below: 
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                                              B                          C 

                                     

                                         A                           D 

 

The teacher went as far as splitting the triangles but the study participants could not 

connect the concepts stated in the congruency conditions to solve this problem until 

the teacher gave the answer. These results are again in line with the literatures cited 

in chapter 2, which are Erdoğan et al., (2009), Meng (2009) and Alex and Mammen 

(2012). 

Contrary to the findings in the experimental groups, findings in the control group 

indicated that the study participants were not able to apply logical thinking. In 

addition, table 17 (item 6) informs that the study participants appeared confused 

during the lesson observed. This is a sign that they were not learning. In this 

situation, any other side activities (non-academic) could have distracted them. This 

is supported by Howie’s (2001) findings that South African children are easily 

distracted when confronted by questions in geometry. Slavin (1996) warns that 

conceptual retention happens when a learner pays attention in the class. That was 

probably the reason why the study participants in this group could not do their 

homework because they did not understand how to go about solving the problems. 

5.1.4 Improvement in the solution approaches of the experimental groups 

The data analysis shows that in group A, 41 (86%), 33 (69%) and 63 (59%) of the 

study participants scored 50% and above in the question category A, B and C (see 

table 7), while it was found that in group B, 53 (84%), 35 (59%) and 31 (52%) of 

the study participants scored 50% and above in the question categories A, B and C, 

(see table 10). These findings show that the majority of the study participants were 

able to apply appropriate concepts to solve geometrical problems that require 

abstract thinking. In addition, questions (ii) and (iii) of the post-test (see appendix 

8) are of high cognitive demand.  
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Though some of the study participants could not answer 1(ii) completely but made 

good attempts by being able to see that if  𝑄�̂�𝑃 = 𝑄�̂�𝑆  , they could show that 

∆𝑄𝑃𝑅 = ∆𝑄𝑆𝑇. See figure 3, which is a sample script of the approach the study 

participants applied in solving the post-test problems. 

It is evident from the sample script that the study participants were able to identify 

and draw the required triangles from the figure given, but the study participants 

struggled to prove that 𝑄�̂�𝑃 = 𝑄�̂�𝑆 . This question required deep conceptual 

thinking. The use of the sum of angles in a triangle concept is vital in solving this 

problem (see the memo, appendix 9). This was how far the study participants could 

think to solve the problem.  

However, it was also found that 15 (54%), 3 (2%) and 1 (1%) of the study 

participants in the control group scored 50% and above in the question categories A, 

B and C (see table 13).  It was noted that the majority of study participants in the 

control group could not apply the critical thinking that the questions in category B 

and C required. 

5.1.5 Improve the achievement score of the study participants in the 

learning of congruent triangles  

As noted in section 3.1, the intervention was only limited to experimental groups A 

and B, while in the control group, the teacher taught the class using a traditional 

chalk-and-talk, teacher-centred teaching approach. Descriptive data analysis 

revealed that, in the experimental group A and group B, the mean achievement 

scores were 61% and 41% (see table 8 and 11). As reported in sub-section 4.3.1 

and 4.3.2, the implication of these mean scores with the standard deviation is that 

the majority of the study participants scored between 44% to 78% in experimental 

group A, and 34% to 48% in experimental group B in the post-test. In the control 

group the mean achievement score in the post-test was 26 and the majority of the 

study participants in this group scored between 18% and 34% in the post-test (see 

table 14). It is evident that the majority of the study participants in the intervention 

groups (i.e A and B) achieved better results than the study participants in the control 

group, particularly in group A.  
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South African high school learners traditionally perform very poorly when it comes to 

learning geometry. As noted in Chapter 2 of this study, Howie (2001) informed that 

South African learners have difficulty in dealing with geometry questions in the 

TIMSS-R studies. This trend was confirmed by the learners in the control group, 

where the majority of them fell within the 18%-34% achievement category in the 

pre-test. In the experimental groups on the other hand, the majority of the study 

participants had higher achievement scores (see figures 5, 7, and 9). These results 

suggest that the intervention might have been responsible for the improvement in 

the achievement scores in the experimental groups. 

The results of the inferential statistics also confirm the statistically significant 

improvement when comparing the achievement scores in both experimental groups 

A and group B with F<0.005. It is noted that the slight increase between the pre-

test and the post-test in the control group is also significant but it was explained 

above that the majority of the study participants here scored between 15% and 

34%. This is illustrated visually in figure 9, which shows the spread of the 

performance of the study participants in the control group in the post-test. 

However, for each of these results (in group A, group B and the control group), the 

data analysis of the qualitative data complimented them all. In experimental group 

A, the teacher was very patient with study participants, for example he allowed them 

to think rather than hurry them up. This could have been due to his age and years 

of experience in teaching (23 years). It is therefore noted that being patient in 

handling learners and going about the intervention in a subtle manner might have 

contributed to the best achievement being recorded in experimental group A.  

The experimental group B teacher though, taught according to the Van Hiele 

instructional approach but he was a little hard on the study participants. This, 

together with the large number of the study participants in the class (60 study 

participants) and a relatively small classroom, might have been the reason for the 

low achievement in this group. Some of the study participants were making a noise, 

others were not listening and some were even sleeping. The researcher was of the 
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opinion that those that were paying attention were the ones with the best 

achievements (some got above 50%).  

These results are in line with the existing literature. Slavin (1996) refers to the work 

of Bandura (1977) (cited in Chapter 2), which infers that learning involves four 

phases: attention, retention, reproduction and motivation.  

Kotze (2007), Atebe (2008) and Connolly 2010, as cited in section 2, demonstrated 

the potency of the Van Hiele instructional model to improve students’ achievement in 

geometry. They might have proved De Villiers (1997) and Roux (2003) right by 

implying that South African schools should adopt the Van Hiele instructional 

approach in the classroom teaching of geometry. 

5.1.6 The Van Hiele level of the study participants in the experimental 

group increased.  

Figure 4 shows the spread of the performance of the study participants in the 

experimental group A in the pre-test, while table 6 shows the mean of these scores 

as 15%. Likewise, figure 6 shows the spread of the performance of the study 

participants in experimental group B in the pre-test, while table 11 shows the mean 

of these scores as 13.6%. It was evident in the pre-test scripts that the study 

participants were only able to attempt questions (i) and/or (ii), which were in the 

question category A and corresponds to the Van Hiele level 1 (see table 5). 

Comparatively, figure 5 shows the spread of the performance of the study 

participants in the experimental group A in the post-test, while table 8 shows the 

mean of these scores as 61%. Likewise, figure 7 shows the spread of the 

performance of the study participants in experimental group B in the pre-test, while 

table 11 shows the mean of these scores as 41%. In addition, table 7 shows that 

56% of the study participants in experimental group A got 50% and above in 

question category C, which is considered to be Van Hiele level 3. Similarly, table 10 

shows that 52% of the study participants in the experimental group B got 50% and 

above in the question category C. 
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This implies that the Van Hiele learning level of the study participants moved from 

level 1 to level 3. However, the study participants in the control group could hardly 

solve the problem in category B, which is a combination of Van Hiele learning level 1 

and 2. The results are in line with the findings of Alex and Mammen (2012) and 

Malasia, Abdul and Zakaria (2013) in which the van Hiele instructional model was 

used to move study participants in the experimental groups from one level of van 

Hiele geometric thinking to a higher level.             

5.1.7 The effect of teaching the congruency of triangles with the Van 

Hiele instructional model on the study participants’ understanding of the 

concepts of the congruence of triangles.  

The results of the data analysis show that, based on classroom observations, the 

study participants from the experimental groups A and B understood the concepts of 

congruence of triangles taught, while the study participants in the control group 

struggled to understand the concept. 

The result also show that in the experimental groups, the study participants were 

asking constructive questions, explaining the concept to the extent that they 

understood it, and were really involved in the teaching. After the 'direct orientation' 

and 'making clear' stages of the teaching, the majority of the study participants were 

able to solve problems on their own, although with some challenges. It was clear in 

the experimental group that the majority attempted their homework intelligently and 

they had good marks in their homework, which was probably the reason why they 

performed well in the post-test. This result conforms to the findings of Howie (2001) 

and Slavin (1996), which informs that a learner demonstrates deep conceptual 

understanding of the topic taught when the learner can reproduce what was learnt 

in class and is able to solve problems. 

On the other hand, the study participants in the control group were unresponsive as 

the lessons observed were teacher dominated and the study participants were like 

an empty barrel into which the teacher continued to pour his knowledge. The 

questions raised by the study participants showed that they were struggling to 

understand the concepts taught. For example, when the teacher presented the 
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conditions for the congruency of triangles, one of the study participants asked if they 

would be measuring the sides of the triangles to show that they are equal.  

The teacher simply answered that they would be given. It should be observed that 

the study participants in this group were struggling to understand but they were not 

taken through the route in which they could take a lead in the teaching and learning. 

This could be the reason why Kalu (2010) remarked that traditional mathematics 

classroom pedagogy produces learners whose performance in mathematics is poor in 

mathematics concept knowledge and that they are inadequately equipped with 

critical problem solving skills. 

5.2 Conclusion 

The results that emerged from this study suggest that if the Van Hiele instructional 

model is affected in the teaching of congruency of triangles in the grade 10 

mathematics classroom, it may facilitate the process of learning the concepts taught 

and improve the achievement scores of the learners. This may not be limited to 

teaching only congruency of triangles in geometry, which is why De Villiers (1997, 

2006) consistently remark that the South African curriculum should adopt the Van 

Hiele instructional approach in the classroom teaching of geometry. The researcher 

trusts that the education stakeholders will consider the outcomes of this study to 

improve the state of the teaching and learning of geometry in the South African 

schools. 

5.3 Recommendations 

The researcher recommends that the Van Hiele learning and instructional model be 

adopted and applied in the teaching of other areas of mathematics as well. This 

might be the solution to the continual poor performance of leaner’s in mathematics.  
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APPENDIX 3 

 

LEARNER’S INFORMED CONSENT 

Information for Research Participant 

My name is Mr Sadiki Muraga, I am a UNISA postgraduate student (student number 

36636479), I am conducting an academic research on the topic: The Effect of 

Using Van Hiele Instructional Module in the Teaching of Congruent 

Traingles in Grade-10 in Gauteng High Schools. As the research topic implies, 

the purpose of the study is to determine the extent to which Van Hiele Instructional 

Model may improve the learning of congruent triangles Grade 10 mathematics 

classes. 

 

It is in the light of this that your consent to participate in the research work has 

been sought. Please, note that any information supplied shall remain strictly 

confidential and anonymous, and shall be used for the purpose of this investigation 

only. If you are willing to participate in the research, please sign this informed 

consent form. Thank you for your interest and cooperation.                                        

 

Researcher’s Name:              

 

Signature:      Date:      
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APPENDIX 4 

 

Participant’s Declaration 

 

I ………………………………………………… (optional) hereby confirm that I have been 

well-informed by the researcher about the nature, conduct, benefits and risks of the 

study.  I have also read and understood the above information.  I am aware that the 

outcome of the study shall be anonymously processed into a research report.  I 

understand that my participation is voluntary and that I can, at any level of the 

study, without prejudice, withdraw my consent and participation in the study.  I had 

sufficient opportunity to ask questions and therefore, of my own volition, declare my 

intention to participate in the study. 

 

Research Participant’s Signature:     Date:    
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APPENDIX 5 

 

PARENTAL INFORMED CONSENT FORM 

(Applicable where the participant is younger than 18 years) 

 

I hereby confirm that I have been well informed by the researcher about the 

nature, conduct, benefits and risks of the study.  I have also read and 

understood the information about the study as contained in the Learner’s 

Informed Consent. I am aware that the outcome of the study, and my child’s 

personal details, will be anonymously processed into a research report. I 

understand that his/her participation is voluntary and that he/she may, at any 

level of the study, without prejudice, withdraw his/her consent and 

participation in the study. He/she has had sufficient opportunity to ask 

questions and I, of my own volition, declare that my child can participate in 

the study. 

 

Research Participant’s Name:     

Name of Research Participant’s Parent/Guardian:    

Signature of Research Participant’s Parent/Guardian:     

Date:       

Researcher’s name:       

Researcher’s Signature:                        Date:     
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APPENDIX 6 

 

CLASSROOM OBSERVATION CHECKLIST 

(Designed According to Van Hiele Instructional Model) 

Observer: ______________________________ 

School: _____________________________________________________________ 

Educator: ___________________________________________________________ 

Grade:  ________________       Number of Learners in the Class: _____________ 

Topic Taught: ________________________________________________________ 

Date of Observation:________________________     Time: ___________________ 

 

Scale: Yes, No, or N/A 

 

Please note: N/A means Not Applicable 

 

A.   Classroom Organisation     Yes No N/A 

1. The classroom is very spacious                                                                                  

2. Learners are comfortably seated.                                                                               

3. The board is a white marker board   

4.  Participants were seated in groups                                                                          

 

B. Lesson Presentation  

1.   Teacher begins class at the appropriate time.                                                           

2.   Materials presented are appropriate to the level of learners                                      

3.   Materials presented are related to the objectives of the learning area.   

4.  Teaching Approach       

                                                                                                           

C. Lesson Presentation Procedure  

1. Teacher already informed the study participants about the topic to be taught 

    prior to the lesson to allow learners to research about it.    

 2. Teacher post questions to determine the geometric thinking level of the study 

     participants   
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  3. Teacher gives a class work to be discussed in each group. 

  4. Teacher introduces the day’s topic and give brief explanation on the topic for 

      clarification.   

  5. Teacher give a more cognitive demanding class work to be solved by study     

      participants. 

  6. Teacher allows the study participants to demonstrate their geometric thinking      

      abilities and also goes round the class to see what each group were doing,    

      correct them, confirm their solution approaches or give more explanation. 

   7. Teacher allows the study participants to explain how each group went about      

      Solving the problem, while the teacher and other leaner’s ask questions. 

   8. Teacher gives exercises and/or homework.      
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APPENDIX 7 

Pre-test 

Total Marks: 60 

Work out the following: 

1. Given the shape below                                    T 

                      Q 

 

                                                                                    

P                                       S          R  

 

(i). Identify and draw ∆QPR and ∆QST separately.                            (4) 

(ii). If an 


 RQTPQS and


 QSTQPR , prove that 


 QTSQRP          (10) 

(iii). Hence prove that ∆QPR ≡ ∆QST.                                             (4) 

           [18] 

2. PQRS is a rectangle. 

               P                                                        Q 

 

 

 

                                                                         

                          

     S            T 

(i). Join the necessary point in the figure above to form the diagonal |QR|. (2) 

(ii). Identify and draw ∆PRS and ∆QRS separately.                         (4) 

(iii). Use the properties of rectangles                                             (10) 

          [16] 
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3. PQRS is a rectangle. 

               P                                                        Q 

 

 

 

                                                            

 

             R           S 

(i). Join the diagonal lines |PR| and |QS|.                                        (2) 

(ii). Identify and Sketch ∆PRS and ∆QRS separately.                        (4) 

(iii). Use the properties of rectangles                                             (10) 

          [16] 

4. ABCD is a parallelogram with AB = DC and AD = BC 

        A                                                                      B 

                1              2 

 

 

                                                                                              

 

                        D                                                                       C 

(i). Identify and draw ∆ABC and ∆ADC separately.                                   (2) 

(ii). Use the properties of parallelogram to show that |AB| = |DC|.            (6) 

(iii). And hence prove that ∆ABC ≡ ∆ACD                                               (8) 

                                    

                                                                                                                  [16] 
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APPENDIX 8 

Post-test                                                                  Total Marks: 60 

Work out the following: 

5. ABCD is a parallelogram with AB = DC and AD = BC 

        A                                                                      B 

                1              2 

 

 

                                                                                               

                                                                                                

                         D                                                                       C 

 

(i). Identify and draw ∆ABC and ∆ADC separately.                                   (2) 

(ii). Use the properties of parallelogram to show that |AB| = |DC|.            (6) 

(iii). And hence prove that ∆ABC ≡ ∆ACD                                               [8] 

 

6. ABCD is a kite with AD = AB and CD = CB 

                                                A 

       

D                            B 

 

 

 

     C 

(i). Join the diagonal line AC.                                                              (2) 

(ii). Draw ∆ABC and ∆ADC separately                                                  (2) 

(iii). Prove that ∆ABC ≡ ∆ADC.                                                           (6) 
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7. PQRS is a rectangle. 

               P                                                        Q 

 

 

 

                                                            

 

     S           R  

(i). Join the diagonal lines |PR| and |QS|.                                       (2) 

(ii). Identify and draw ∆PRS and ∆QRS separately.                         (4) 

(iii). Use the properties of rectangles                                             (10) 

          [16] 

8. Given the shape below                                    T 

                      Q 

 

                                                                                    

P                                      S                                    R 

 

(i). Identify and draw ∆QPR and ∆QST.                                        (4) 

(ii). If 


 RkTPQS  and QṔR = QṦT, prove that QṘP = QṪS.            (10) 

(iii). Hence prove that ∆QPR ≡ ∆QST.                                           (4)   

          [18]                                                
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APPENDIX 9 

                     Post-test Memorandum                                           Marks: 60 

Question 1. 

(i).  

                 A               2                                                        B 

A     1               

 

 

                                                                                               C 

                                                                                                

          D                                                                    C 

(ii). Yes,     |AB| = |DC|      Opposite side of a Parallelogram 

(iii).         A                                                                      B 

                1              2 

 

 

                                                                                               

                       D                                                                        C 

           |AD| = |BC|                  Opposite side of parallelogram 

|AB| = |CD|                  Opposite side of parallelogram 



 ADCABC                Opposite angels of parallelogram 

             Hence, ∆ABC ≡ ∆ADC            (S, A, S) 

Question 2. 

(i). ABCD is a kite with AD = AB and CD = CB 
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                                                          A 

       

D                            B 

 

                                                                               D                                    B 

 

    A   C      

(ii).          D                                 B 

 

(iii). Show that ∆ABC ≡ ∆ADC, Join line |BD|                                   C 

      


 CBDBDC . 

          Similarly, 


 ABDADB  

         Therefore  


 ABCADC  

         Since |AB| = |AD| 

                   |BC| = |DC| 

         Therefore   ∆ABC ≡ ∆ADC            (A, S, A) 

Question 3. (i).   P                                                        Q 

 

 

 

                                                                         

                          

     S            R 
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   (ii).     P                                                                                           Q 

 

 

                                                                         

                          

      S                      R           S                                  R 

(iii).  

             P                                                                                             Q 

 

 

                                                                         

                          

     S                      R         S                                    R 

|PS| = |QR|      Opposite side of a rectangle 

|RS| = |SR|      Common side 

|PR| = |SR|      Opposite side of a rectangle 

             Therefore         


 QRSPSR                     (S, A, S ) 

Question 4.                                                                                                   T 

1. (i).                                                    Q                                                     

                 Q 

                       

 

                                                                                        S 

P                                                                          R 

(ii). Consider ∆QPR  

180


PRQPQRQPR  

But 


 .SQRPQSPQR  
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Therefore 180)( 


PRQSQRPQSQPR   

Therefore 


 ])[(180 QPRSQRPQSQPR  

               ][180


 QPRSQRPQSPRQ                                                                 

(1) 

Consider ∆SQT 

180


STQSQTQST  

But 


 RQTSQRSQT  

Therefore 180)( 


STQRQTSQRQST  

Therefore 


 ])[(180 RQTSQRQSTSTQ  

            ][180


 RQTSQRQSTSTQ                                                                   

(2) 

Consider equation (1) 











QPRSQRPQSPRQ 180            

But      










QSTSQRPQSPRQ 180     

Similarly   


 RQTPQS           given 

Therefore   










QSTSQRRQTPRQ 180     

                                  =  


STQ  

Therefore         


 STQPRQ     

(iii).  


 QSTQPR  

         


 STQPRQ  



107 
 

         |BC| = |DC| 

       Therefore, ∆QPR ≡ ∆QST.   
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APPENDIX 10 

Effect Size (ES) calculations 

                                                
exp  - 

SD

control

pooled

x x
ES   

Where: ES = Effect size 

expx  = mean of the scores in the experimental group 

controlx  = mean of the scores in the experimental group 

SDpooled = standard deviation using the experimental and control group data 

SDpooled is calculated as follows:  

 SDpooled = 
2 2

exp exp

exp

( 1)( ) ( 1)( )

2

control control

control

n SD n SD

n n

  

 
 

Where: 
expn  = sample size for the experimental group 

controln  = sample size for the control group 

expSD = standard deviation for the experimental group 

controlSD = standard deviation for the control group 

Effect size for Experiment group A 

Where         expn  = 28                  

                 controln  = 18 

                  expSD = 28                

                controlSD = 8.2 
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2 2

pooled

(48 1)(18) (28 1)(8.2)

48 28 2

17043.48
230.32 15.18

74

SD
  


 

  

 

then     
61.25 - 26.36

2.3
15.18

ES    

Effect size for Experiment group B 

Where         
expn  = 60                  

                  controln  = 7.2 

                  
expSD = 28               

                  controlSD = 8.2 

 

2 2

pooled

(60 1)(7.2) (28 1)(8.2)

60 28 2

4874.04
56.67 7.53

86

SD
  


 

  

 

Then    

                       
41.23 - 26.36

1.97
7.53

ES    
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APPENDIX 11 

DATE TOPIC CONTENT  F ASSESSMENT DATE 

Complete

d 

% 

Com 

pleted 

TERM  1     2 TASKS FOR TERM 1   

09/1 – 

11/1 

    (3 days) 

Algebraic expressions 

 

 Understand that real numbers can be rational or 

irrational.  

 Simplify expressions using the laws of exponents for 

rational exponents.  

 Establish between which two integers a given simple 

surd lies.  

   

3.1% 

14/1 – 

18/1 

Algebraic expressions 

 

 Round real numbers to an appropriate degree of 

accuracy.  

 Multiplication of a binomial by a trinomial. 

 Factorisation: Trinomials. 

   

6.3% 

21/1 – 

25/1 

Algebraic expressions 

 

 Factorisation: Grouping in terms. 

      Sum and difference of two cubes. 

 Algebraic fractions: Denominator with monomial,    

      binomial and trinomial terms. 

      (limited to sum & difference of cubes) 

   

9.4% 

28/1 – 

01/2 

Algebraic expressions 

 

 Factorisation: Grouping in terms. 

      Sum and difference of two cubes. 

 Algebraic fractions: Denominator with monomial,    

      binomial and trinomial terms. 

      (limited to sum & difference of cubes) 

F   

12.5% 

04/2 – 

08/2 

Exponents  Revise laws of exponents where x,y > 0 and m,n ∈ Z 

 Use the laws of exponents to simplify expressions and 

solve equations, accepting that the rules also hold for 

m,n ∈ Q 

   

15.6% 

11/2 – 

15/2 

Exponents  Use the laws of exponents to simplify expressions and 

solve equations, accepting that the rules also hold for 

m,n ∈ Q 

 Exponential equations 

   

18.8% 

18/2 - 22/2 Number patterns  Investigate number patterns leading to those where 

there is a constant difference between consecutive 

     terms, and the general term is therefore linear. 

     WITHOUT USING A FORMULA 

   

21.9% 

     

INVESTIGATION 

              OR                      

        PROJECT 

              OR 

            TEST 
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25/2 - 01/3 Equations and 

Inequalities 

 Linear equations 

 Quadratic equations (by factorisation) 

   
25% 

04/3 – 

08/3 

Equations and 

Inequalities 

 Quadratic equations (by factorisation) 

 Literal equations (changing the subject of the formula) 

   
28.1% 

11/3 – 

15/3 

  

Equations and 

Inequalities 

 Simultaneous linear equations in two unknowns 

 Solve linear inequalities (show solutions graphically). 

      Interval notation must be known. 

 Word problems involving linear, quadratic or 

      simultaneous linear equations. 

F  

      TEST 

 

31.3% 

18/3 – 

20/3 

(3 days) 

Trigonometry  Definitions of the trigonometric ratios sin θ, 

      cos θ and tan θ in a right-angled triangles. 

 Extend the definitions of sin θ, cos θ and tan θ 

      to 00 ≤ θ ≤ 3600. 

   

34.4% 

 TERM  2     2 TASKS FOR TERM 2   

09/4 – 

12/4 

(4 days) 

Trigonometry  Extend the definitions of sin θ, cos θ and tan θ 

      to 00 ≤ θ ≤ 3600. 

 Derive and use values of the trigonometric 

ratios (without using a calculator for the 

     special angles θ   {0 0;300;450;600;900} 

  

   

37.5% 

15/4 - 19/4 

 

Trigonometry  Derive and use values of the trigonometric 

ratios (without using a calculator for the 

     special angles θ   {0 0;300;450;600;900} 

 Solve simple trig equations for θ   {0 0;900} 

 Define the reciprocals of trigonometric ratios 

  

  

 

40.6% 

22/4 – 

26/4 

 

Functions  Relationships and conversions between variables:  

numerical, graphical, verbal and symbolical 

 Difference between a relation and a function 

 Investigate basic graphs to discover shape, domain, 

range, intercepts with axes, turning points and axes of 

symmetry. 

 Investigate the effect of a and q on each graph 

 Straight line: y = a(x) + q 

 Parabola:    y = a(x)2 +q 

    

 

43.8% 

29/4 - 03/5 

(4 days) 

Functions  Hyperbola:   

 Exponential graph:  y = a.bx  + q ; b > 0 

    

46.9% 

06/5 – 

10/5 

Functions  Finding equations of functions 

 Interpretation of functions 

   
50% 

     ASSIGNMENT 

               

              OR 

 

            TEST 
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13/5 - 17/5 Trig Functions  Trig graphs [a sin x+ q, a cos x + q, a tan x+ q ] 

 Basic graphs and the effect of a and q on the graphs 

    53.1% 

20/5 – 

24/5 

Euclidean Geometry  Revise basic results established in earlier 

      grades. 

 Lines, angles, congruency, similarity 

 Investigate line segments joining the midpoints 

      of two sides of a triangle. 

 Properties of special quadrilaterals. 

   

56.2% 

27/5 - 31/5 Euclidean Geometry  Investigate and make conjectures about the properties 

of the sides, angles, diagonals and areas 

      of special quadrilaterals.  

   

59.4% 

03/6 – 

07/6 JUNE EXAMS 

 
 

June Exams 

 
 

10/6 – 

14/6 JUNE EXAMS 

 
F 

 
 

17/6 – 

21/6 

JUNE EXAMS    
 

 

 

 


