
An Implementation of the Discontinuous Galerkin Method on Graphics Processing Units

by

Martin Fuhry

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2013

c© Martin Fuhry 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Computing highly-accurate approximate solutions to partial differential equations (PDEs)
requires both a robust numerical method and a powerful machine. We present a parallel
implementation of the discontinuous Galerkin (DG) method on graphics processing units
(GPUs). In addition to being flexible and highly accurate, DG methods accommodate
parallel architectures well, as their discontinuous nature produces entirely element-local
approximations.

While GPUs were originally intended to compute and display computer graphics, they
have recently become a popular general purpose computing device. These cheap and
extremely powerful devices have a massively parallel structure. With the recent addition
of double precision floating point number support, GPUs have matured as serious platforms
for parallel scientific computing.

In this thesis, we present an implementation of the DG method applied to systems
of hyperbolic conservation laws in two dimensions on a GPU using NVIDIA’s Compute
Unified Device Architecture (CUDA). Numerous computed examples from linear advection
to the Euler equations demonstrate the modularity and usefulness of our implementation.
Benchmarking our method against a single core, serial implementation of the DG method
reveals a speedup of a factor of over fifty times using a USD $500.00 NVIDIA GTX 580.

iii

Acknowledgements

First and foremost, thank you to my advisor, Lilia Krivodonova, for her expertise and
encouragement. Her patience and dedication have made this thesis a reality. I would
like to thank my committee members, Justin Wan and Hans De Sterck. Special thanks
also to Noel Chalmers for his integral assistance in this work, especially during late nights
squashing bugs in my code. I would like express my appreciation to David Fuhry for
his assistance with code design and implementation decisions. Finally, I would like to
acknowledge the support provided by my family during the prepartion of this thesis.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 The Discontinuous Galerkin Method 4

2.1 One-Dimensional Hyperbolic Conservation Laws 4

2.2 The DG Method With Legendre Polynomials 6

2.3 Riemann Solvers . 9

2.4 The CFL Condition . 10

2.5 Refinement and Convergence . 11

2.6 The One-Dimensional DG Method For Systems 13

2.7 The Two-Dimensional DG Method For Systems 15

3 Parallel Computing 21

3.1 Flynn’s Taxonomy . 22

3.2 Graphics Processing Units . 23

3.2.1 CUDA . 24

3.2.2 CUDA Example . 28

v

4 Implementation 30

4.1 Parallel Computing with DG Methods . 30

4.2 Numerical Quadrature . 32

4.3 Algorithms . 33

4.3.1 Mesh Generation . 35

4.3.2 Surface Integration Kernel . 36

4.3.3 Volume Integration Kernel . 40

4.3.4 Right-Hand Side Evaluator Kernel 43

4.3.5 Limiters . 46

4.4 Numerical Boundary Conditions . 47

4.5 Data Coalescion . 48

4.6 Precomputing . 49

5 Computed Examples 52

5.1 Linear Advection . 52

5.1.1 Rotating Hill . 53

5.2 Maxwell’s Equations . 54

5.2.1 Circular Mirror . 55

5.3 Shallow Water Equations . 58

5.4 Euler Equations . 62

5.4.1 Supersonic Vortex . 64

5.4.2 Flow Around an Airfoil . 64

5.4.3 Double Mach Reflection . 68

5.5 Benchmarks . 71

5.5.1 Serial Comparison on a CPU . 71

5.5.2 Scaling . 76

6 Conclusion 79

Bibliography 81

vi

List of Figures

2.1 The first five Legendre polynomials . 8

2.2 The discontinuities between local solutions over elements 9

2.3 h-refinement with p = 1 for the linear advection problem in one dimension 12

2.4 p-refinement with N = 3 applied to the linear advection equation 12

2.5 A two-dimensional domain Ω partitioned into a mesh of triangular elements
Ωi . 15

2.6 Mapping Ωi to the canonical triangle Ω0 with vertices (0,0), (1,0), and (0,1) 16

2.7 Orthogonal polynomials over the canonical triangle Ω0 20

3.1 Flynn’s taxonomy . 22

3.2 GPU Memory Hierarchy . 26

3.3 Data coalescion in a half warp . 27

4.1 The mapping for a simple mesh. 35

4.2 The integration points on Ω0 differ for edge ei between elements Ωl and Ωr 36

4.3 Thread structure for the surface integral kernel 38

4.4 Thread structure for the volume integral kernel 41

4.5 To limit the solution over Ωi, we evaluate the centroid values of surrounding
elements Ωa,Ωb, and Ωc . 46

4.6 Two orderings and memory access patterns for the coefficients 49

5.1 Isolines of the solution to the rotating hill problem with p = 1 53

vii

5.2 The electromagnetic field of the circular mirror test problem at various t . 56

5.3 The mesh and time averaged intensity of a single pulse wave for the circular
mirror test problem . 57

5.4 The shallow water equations at various t 62

5.5 The mesh and approximated solution of the supersonic vortex test problem
at a numerical steady state . 63

5.6 The NACA0012 airfoil and a corresponding mesh 65

5.7 Steady states of the airfoil test problem with p = 1 with different Mach
numbers and angles of attack . 66

5.8 Steady states of the airfoil test problem with p = 1 with different Mach
numbers and angles of attack . 67

5.9 Computational domain Ω for the double mach reflection test problem. The
striped triangle represents the reflecting wedge. The shaded region on the
left is the shock region Us while the region on the right is the pre-shock
condition Uq. 68

5.10 Density for the double Mach reflection problem using p = 1 70

5.11 GPU Speedups . 73

5.12 GPU Speedups . 74

5.13 GPU Speedups . 75

5.14 GPU execution times . 78

viii

List of Tables

2.1 L2 error and rate of convergence r for h- and p-refinement in the linear
advection test problem . 13

5.1 GPU Specifications . 52

5.2 L2 error and convergence rate r for levels of h- and p-refinement for the
rotating hill test problem . 54

5.3 L2 error in density and convergence rate r for levels of h- and p-refinement
for the supersonic vortex test problem . 64

5.4 Performance of the double Mach reflection test problem 69

5.5 Mesh sizes for the supersonic vortex test problem used for benchmarking . 71

5.6 TPE for the supersonic vortex test problem 76

ix

Chapter 1

Introduction

Numerical simulations can produce profoundly accurate predictions of what happens in the
real world. In his essay ”The Unreasonable Effectiveness of Mathematics”, [16] Richard
Hamming recalls computing his first real numerical approximations.

My first real experience in the use of mathematics to predict things in the real
world was in connection with the design of atomic bombs in the Second World
War. How was it that numbers we so patiently computed on the primitive
relay computes agreed so well with what happened on the first test shot at
Almagordo? There were, and could be, no small-scale experiments to check the
computations directly. Later experience with guided missiles showed me that
this was not an isolated phenomenon – constantly what we predict from the
manipulation of mathematical symbols is realized in the real world.

Mathematical models were born as we captured the fundamental laws of nature and
confined them to paper. Many of these models describe physical systems responding to
changes in themselves over space and/or time. These mathematical systems, called partial
differential equations (PDEs), are used to model a considerable amount of physical phe-
nomena from the heat distribution of a room to air flow around an airplane wing. They are
modeled by functions, which typically depend on a coordinate variable x, or in multiple
dimensions x, and/or a time component t.

This thesis is exclusively concerned with solving a specific subset of PDEs called hy-
perbolic systems of conservation laws [13]. These types of PDEs model wave-like physical

1

behavior of a system whenever the flow of its variables is conserved. The prototypical
one-dimensional hyperbolic conservation law is the linear advection equation

∂tu(x, t) + a∂xu(x, t) = 0, (1.1)

where the exact solution consists of the initial profile of the wave u(x, 0) traveling with
velocity a along a coordinate direction x over some time t.

We aim to numerically approximate solutions to systems of hyperbolic conservation
laws. Computing high-order accurate numerical approximations is incredibly expensive,
often taking days or even weeks of computing time on a single machine or else requiring
parallelization and supercomputers. Furthermore, complex hyperbolic conservation laws
produce difficult to model physical phenomena such as discontinuities and turbulent fluid
flow. Numerical inaccuracies in modeling these physical phenomena may lead to instabili-
ties in the numerical method, rendering the approximation useless.

Creating efficient, highly accurate, and robust numerical methods for approximating
PDEs is therefore very difficult work. Choosing the correct numerical method to use is
problem dependent. Nonlinear hyperbolic conservation laws, in particular, are notoriously
difficult to approximate.

Discontinuous Galerkin (DG) methods combine features of finite element methods and
finite volume methods [30, 21, 9, 8, 6, 20]. With strong mathematical foundations, DG
methods have a plethora of attractive properties. They are robust and high-order accu-
rate, able to model the difficult to capture physical phenomena common to hyperbolic
conservation laws. They use arbitrarily high-order approximations without increasing the
stencil size. This feature is entirely due to the discontinuous element-local nature of the
method, a key for parallelization techniques. They are able to run on unstructured meshes
which can be adaptively refined during computation to assist in capturing moving physical
phenomenon such as shock waves. Furthermore, each element can use a different order
approximation, allowing the solution over problematic areas to be cheaply computed by
low-order approximations while approximations over non-troublesome areas can be more
accurately captured using very high-order approximations.

DG methods are especially open to parallel implementations for the following reasons.
First, due to their discontinuous nature, they are element local, requiring only information
from their immediate neighboring elements to advance the solution to the next time level,
even for arbitrarily high-order approximations. Each element, therefore, may be thought
of as an independent approximation. Furthermore, they can be paired with an explicit
time stepping method, able to step forward in time using only previous information. As

2

parallelization is one of DG’s most enticing features, a vast amount of parallelization tech-
niques and implementations have preceded this one; see [5, 4, 3]. DG methods presented in
most parallel implementations take a nodal approach [19] while this implementation uses
a modal approach [32].

Our DG method is implemented on graphics processing units (GPUs). This factor
distinguishes our work from other parallel implementations, as scientific computing on
GPUs has become popular only very recently. Indeed, the first dedicated GPUs emerged
as recently as the 1980s. General purpose GPU computing was not well adopted until
2006, when the advent of dedicated, easy to use programming models for GPUs such
as NVIDIA’s Compute Unified Device Architecture (CUDA) emerged. With support for
double-precision computing added to CUDA in 2008, GPUs have since become a serious
tool for scientific computing. With cheap, consumer NVIDIA GPUs reaching teraflop
double-precision performance, GPU computing is now, more than ever, a formidable force.

Even though scientific computing on GPUs is still in its infancy, several GPU imple-
mentations of DG methods have been tried with great success. Klöcker, et al., [23] achieved
nearly four teraflops in single precision using an NVIDIA Tesla S1070 workstation for a
3D Maxwell problem. Further, they show in [22] a factor of forty to sixty times speed
improvement over serial implementations of a 3D problem on an NVIDIA GTX 280. Hes-
thaven, et al., [18] achieved a twenty-five times speedup in performance versus a serial
CPU implementation in 2009. On an NVIDIA Tesla S1070 workstation, Goedel, et al.,
[15] achieved a speedup of over seventy times a serial implementation.

This work presents a parallel implementation of DG methods to approximate two-
dimensional systems of hyperbolic conservation laws on GPUs. In Chapter 2, we derive
and present the DG method in one and two dimensions. In Chapter 3, we discuss parallel
computing, presenting an introduction to CUDA. In Chapter 4, we show how DG methods
may be parallelized, introducing our parallel implementation. Chapter 5 presents a series
of computed examples and finishes with benchmarks of our implementation over a CPU
implementation. We conclude in Chapter 6, listing this implementation’s limitations and
describing possible and planned future work.

3

Chapter 2

The Discontinuous Galerkin Method

2.1 One-Dimensional Hyperbolic Conservation Laws

Consider the one-dimensional hyperbolic conservation law

∂tu+ ∂xf(u) = 0, (2.1)

for a sufficiently smooth flux function f(u) over a domain Ω ⊆ R with the initial condition

u(x, 0) = u0(x),

and appropriate boundary conditions.

As solutions to (2.1) may be discontinuous, the spatial derivative may be ill-defined. To
allow for discontinuous solutions, we restate the conservation law in the weak formulation.
To this end, we multiply each side of (2.1) by a smooth test function with compact support,
v ∈ C∞0 (Ω), and integrate over the entire domain to obtain∫

Ω

∂tuv dx+

∫
Ω

∂xf(u)v dx = 0. (2.2)

Integrating the second term of equation (2.2) by parts and using the fact that v has compact
support gives the weak formulation∫

Ω

∂tuv dx−
∫

Ω

f(u)v′ dx = 0. (2.3)

4

We say that u in (2.3) is a weak solution to the conservation law (2.1) if equation (2.3) is
satisfied for all v ∈ C∞0 (Ω).

To build our computational model, we partition our domain into a finite mesh of N
elements

Ω =
N⋃
i=1

Ωi, (2.4)

where each Ωi = [xi, xi+1] is a distinct, non-overlapping element of the mesh for i =
1, . . . , N . The mesh is the collection of elements Ωi and may be represented by the collection
of endpoints xi. We call hi = xi+1 − xi the length of element Ωi.

We enforce the weak formulation (2.3) over each element Ωi independently. That is,
we multiply equation (2.1) by a smooth test function v and integrate over Ωi by parts to
obtain ∫

Ωi

∂tuv dx−
∫

Ωi

f(u)v′ dx+ f(u)v|xi+1

xi
= 0. (2.5)

We approximate u over Ωi in equation (2.5) with a function Ui in a finite-dimensional
subspace of C∞0 (Ωi). We call this subspace the finite element space and denote it by V (Ωi).
Suppose this finite element space has dimension p+ 1 with a basis

Φ = {φj}pj=0 . (2.6)

Then, we may represent Ui ∈ V (Ωi) as a linear combination of basis functions

Ui =

p∑
j=0

ci,jφj, (2.7)

for coefficients ci,j(t). The global approximation U is then represented by a direct sum of
the local approximations Ui from equation (2.7)

U =
N⊕
i=1

Ui. (2.8)

Note that each V (Ωi) may have a different dimension, allowing the flexibility of approx-
imating the solution over specific elements with higher- or lower-order accuracy than other

5

local approximations We assume for simplicity that each element uses a function space of
the same dimension for the approximating solution Ui, as is common in DG implementa-
tions.

To uniquely determine the coefficients ci,j for Ui from (2.7), we must enforce the weak
formulation of the conservation law on Ωi for p + 1 linearly independent test functions v.
The standard Galerkin formulation tells us to choose our test functions v from the same
finite element space as our approximation Ui. That is, we want equation (2.5) to hold for
every v ∈ V (Ωi). Since Φ is a basis for V (Ωi), we can choose v = φk, k = 0, . . . , p and solve
for Ui in ∫

Ωi

∂tUiφk dx−
∫

Ωi

f(Ui)φ
′
k dx+ f(Ui)φk|xi+1

xi
= 0. (2.9)

Writing Ui as in (2.7), we have∫
Ωi

∂t

p∑
j=0

ci,jφjφk dx−
∫

Ωi

f

(
p∑
j=0

ci,jφj

)
φ′k dx+ f

(
p∑
j=0

ci,jφj

)
φk |xi+1

xi
= 0. (2.10)

Rather than considering a separate basis for each element, we consider only a single
basis over a canonical element by mapping Ωi to a canonical Ω0 = [−1, 1]. Equation (2.10)
is then computed over the canonical element, where each φi is mapped to a basis Φ of the
canonical function space V (Ω0). As the canonical function space V (Ω0) is the same for
each element, the finite element space for each Ωi may use the same basis functions. We
represent Ui mapped over Ω0 as a linear combination of these new basis functions

Ui =

p∑
j=0

ci,jφj. (2.11)

where φj ∈ Φ is now a basis function of the canonical function space V (Ω0). Computation
is then done over the canonical element using the coefficients ci,j and basis elements φj in
(2.11).

2.2 The DG Method With Legendre Polynomials

A commonly chosen finite element space is V (Ω0) = Pp(Ω0), the space of polynomials over
Ω0 with degree at most p. A simple choice of a basis for this space is

Φ = {1, x, x2, x3, ..., xp}. (2.12)

6

Then, to recover the coefficients ci,j for the approximation Ui from the initial conditions,
we can solve the system of equations∫

Ωi

u0φk dx =

p∑
j=0

ci,j

∫
Ωi

φjφk dx, (2.13)

for each φk ∈ Φ. However, this particular problem is known to be very poorly-conditioned.
Fortunately, using an orthogonal basis transforms this problem into a well-conditioned one.

Orthogonal bases are often used in computation because they tend to produce well-
conditioned, simplified problems. We define the inner product between v, w ∈ V (Ω0) as

(v, w) =

∫
Ω0

vw dξ. (2.14)

Using the Gram-Schmidt orthogonalization algorithm [35], any finite-dimensional basis can
be made orthogonal. Applying the Gram-Schmidt orthogonalization algorithm, e.g., to the
monomial basis {1, x, x2, . . . , xp} of Pp(Ω0) for the canonical element Ω0 = [−1, 1] produces
the Legendre polynomials. The first five Legendre polynomials ,

P0 = 1 (2.15)

P1 = x (2.16)

P2 =
1

2
(3x2 − 1) (2.17)

P3 =
1

2
(5x3 − 3x) (2.18)

P4 =
1

8
(35x4 − 30x2 + 3), (2.19)

are shown in Figure 2.1.

We now show how using this orthogonal basis simplifies the DG implementation. We
approximate u over Ωi with the Legendre basis functions Pj with

Ui =

p∑
j=0

ci,jPj. (2.20)

We map each Ωi to the canonical element with the bijection

x =
xi+1 + xi

2
+
hi
2
ξ, (2.21)

7

Figure 2.1: The first five Legendre polynomials

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

P0

P1

P2

P3

P4

where ξ ∈ Ω0. Then using each polynomial in our basis v = Pk, where k = 0, · · · , p, we
obtain p+ 1 equations

hi
2

p∑
j=0

d

dt
ci,j(Pj, Pk)− (f(Ui), P

′
k) + f(Ui)Pk |1−1 = 0. (2.22)

The Legendre polynomials are normalized such that Pk(1) = 1. With this normalization,

(Pk, Pk) =
2

2k + 1
. (2.23)

We now obtain from (2.22) the ODE

hi
2k + 1

d

dt
ci,k = (f(Ui), P

′
k)− f(Ui)Pk |1−1 , (2.24)

for k = 0, . . . , p.

In vector form, we may then rewrite (2.24) as a system of ordinary differential equations

d

dt
c = L(c), (2.25)

where c is a global vector of solution coefficients and L is a vector function whose compo-
nents are given by the right-hand side of equation (2.24).

8

2.3 Riemann Solvers

Figure 2.2: The discontinuities between local solutions over elements

xi xi+1

Ui−1

Ui

Ui+1

The global approximation U is not well-defined at the boundaries of each element. As
Figure 2.2 demonstrates, at each point xi, both a left element Ωi−1 and a right element Ωi

evaluate the value of the approximation U . Since we do not enforce continuity over the
boundaries of the elements as in standard finite element methods, we are not guaranteed
that Ui−1(xi) = Ui(xi), and thus U(xi) is twice-defined. To resolve these ambiguities, we
use a Riemann solver.

The Riemann solver uses information from both the left and right elements to approx-
imate the flux f(U) at the boundary. At the left endpoint of element Ωi, the flux f(Ui) is
approximated by the numerical flux function fn(Ui−1, Ui). Similarly, at the right endpoint
of element Ωi, the flux f(Ui) is approximated by the numerical flux function fn(Ui, Ui+1).

In the weak form of our one-dimensional scheme (2.3), the evaluation at the endpoints
xi, xi+1 of element Ωi is given by

f(Ui)φk |xi+1

xi
= fn(Ui, Ui+1)

∣∣
xi+1

φk(xi+1)− fn(Ui−1, Ui)
∣∣
xi
φk(xi). (2.26)

We resolve the Riemann states in equation (2.26) using a numerical flux function.

9

Perhaps the simplest Riemann solver averages the values at the endpoints of two ele-
ments, as in

fn(Ui−1, Ui) =
f(Ui−1(xi)) + f(Ui(xi))

2
. (2.27)

This is known as the central flux solver. While the central flux solver is certainly easy to
implement, it creates instabilities for nonlinear problems, and is not often used.

A more realistic numerical flux exploits the wave-like behavior of the solution. This
flux, called the upwinding flux, uses information from “upwind” of a wave’s direction,
propagating information in the direction of the wave’s motion. Assuming a positive wave
velocity, the discontinuities at each element’s interfaces are resolved by simply picking the
left element’s value, i.e., by setting

fn(Ui−1, Ui) = f(Ui−1(xi)). (2.28)

For scalar conservation laws, resolving the ambiguities at the discontinuities is fairly
straightforward through upwinding. For more complicated models, such as nonlinear prob-
lems and especially systems, the physical idea of wave direction becomes more obfus-
cated. In these cases, approximate Riemann solvers, such as Roe linearizations [33] or
Lax-Friedrichs fluxes described in Section 2.7 are used.

2.4 The CFL Condition

The system of ODEs in equation (2.25) is solved using a numerical ODE solver. This
involves stepping the solution forward in time by an appropriately small timestep ∆t.
Explicit ODE solvers step forward in time by using information from previous times.

Certain classes of numerical ODE solvers use multiple stages in computing the function
approximation at the next time step. The classical fourth-order Runge-Kutta method
solves the initial value problem

y′(t) = f(y, t), y(t) = y0, (2.29)

10

using the value of y at the previous time step yn = y(tn) to compute multiple stages

k1 = ∆tf (tn, yn) , (2.30)

k2 = ∆tf

(
tn +

1

2
∆t, yn +

1

2
k1

)
, (2.31)

k3 = ∆tf

(
tn +

1

2
∆t, yn +

1

2
k2

)
, (2.32)

k4 = ∆tf (tn + ∆t, yn + k3) , (2.33)

and combining them to obtain the function approximation at the next time

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4). (2.34)

To remain stable, the numerical ODE solver must choose a sufficiently small value of
∆t. For stability in the DG method, a Runge-Kutta time integration scheme of order p+1
requires

∆tn ≤
hmin

λmax(2p+ 1)
, (2.35)

where λmax is the maximum characteristic velocity at tn of the system being modeled and
hmin is the minimum element size. For more on numerical ODE solvers, see [27].

2.5 Refinement and Convergence

The DG method computes more accurate approximations of the exact solution through
a process called refinement. We may approach refinement from two directions. Creating
smaller elements in the computational domain will create more local approximations to the
solution. This is called h-refinement, as the element lengths hi becomes smaller. Increasing
the dimension of the finite element space V (Ω), called p-refinement, creates higher order
local approximations, as more basis functions are used to approximate the solution.

We will now demonstrate how h- and p-refinement of the DG method applied to a
particular one-dimensional conservation law produces more accurate approximations of
the exact solution. To demonstrate the effects of h-refinement, we hold p = 1 fixed and
solve the linear advection equation

∂tu+ ∂xu = 0, (2.36)

11

Figure 2.3: h-refinement with p = 1 for the linear advection problem in one dimension

0.0 0.5 1.0
1

0

1

(a) N = 5

0.0 0.5 1.0
1

0

1

(b) N = 10

Figure 2.4: p-refinement with N = 3 applied to the linear advection equation

0.0 0.5 1.0
1

0

1

(a) p = 1

0.0 0.5 1.0
1

0

1

(b) p = 2

with sine wave initial conditions and periodic boundary conditions. After one period, we
plot the computed solution in dash-dotted red over the analytical solution in dashed blue

u(x, t) = sin(2π(x− t)), (2.37)

in Figure 2.3 with two levels of h-refinement. Clearly, adding more elements to Ω has
produced a better looking approximation.

To demonstrate the effects of p-refinement on the computed solution, we hold N = 3 ele-
ments fixed and compute the linear advection problem for one period. Figure 2.4 shows the
computed solution in dash-dotted red plotted over the analytical solution in dashed blue.

12

Table 2.1: L2 error and rate of convergence r for h- and p-refinement in the linear advection
test problem

p = 1 p = 2 p = 3 p = 4
N Error r Error r Error r Error r
10 3.069E−2 - 1.211E−3 - 4.650E−5 - 1.060E−6 -
20 6.605E−3 2.238 1.513E−4 3.001 2.920E−6 3.993 3.337E−8 4.990
40 1.535E−3 2.084 1.891E−5 3.000 1.826E−7 4.000 1.054E−9 4.984
80 3.776E−4 2.023 2.364E−6 3.000 1.141E−8 4.000 3.325E−11 4.987

For p = 2, the approximation is nearly too similar to the analytical solution to distinguish.
Even with a very coarse mesh, p-refinement produces good looking approximations.

To demonstrate the effectiveness of combining h-refinement and p-refinement, we com-
pute the L2 error

||u− U || =
N∑
i=1

√∫
Ω

(u− Ui)2dx, (2.38)

between the computed solution and the analytical solution after one period. The errors for
different levels of h- and p-refinement are reported in Table 2.1 along with the convergence
rate. While p-refinement seems to offer much greater improvement in accuracy over h-
refinement, it is also more expensive computationally. On the other hand h-refinement
demands more memory than p-refinement. Combining h-refinement with p-refinement
yields a powerful tool to increase global accuracy.

The convergence and stability of the DG method has been analyzed extensively for one
dimension in [6]. The theoretical order of convergence for one-dimensional DG methods
is O(hp+1), where h is the largest element size in the mesh, which nearly matches our
convergence rate shown in Table 2.1.

2.6 The One-Dimensional DG Method For Systems

We now consider the one-dimensional conservation law for a system of equations

∂tu + ∂xf(u) = 0, (2.39)

13

where u = (u1, . . . , un) is now a vector of n variables, over a computational domain Ω ∈ R,
with a sufficiently smooth flux function f , initial conditions

u(x, 0) = u0(x), (2.40)

and appropriate boundary conditions.

Few aspects of the derivation of the DG method change for systems of conservation
laws. Hence, we proceed similarly to the scalar case (2.1). We choose a test function space
V (Ωi) and let v ∈ V (Ωi). Multiplying both sides of equation (2.39) by v and integrating
over Ωi, integrating the second term by parts, yields the weak formulation∫

Ωi

∂tuv dx−
∫

Ωi

f(u)v′ dx+ f(u)v
∣∣xi+1

xi
= 0, (2.41)

for each element Ωi.

We map each Ωi to the element Ω0 = [−1, 1] and approximate u over the element Ωi

with a vector Ui = (U1
i , . . . , U

n
i) where each Um

i ∈ V (Ω0). Letting Φ = {φj}pj=0 be an
orthogonal basis for V (Ω0), we write each Ui as

Ui =

p∑
j=0

ci,jφj, (2.42)

where each ci,j is now a vector of coefficients ci,j = (c1
i,j, . . . , c

n
i,j) so that each Um

i satisfies

Um
i =

p∑
j=0

chi,jφj. (2.43)

Using Ui as our approximation of u over Ωi in equation (2.41) and exploiting the orthog-
onality of basis Φ yields

hi
2

(φk, φk)
d

dt
ci,j = (f(U), φ′k)− f(U)φk

∣∣1
−1
. (2.44)

We resolve discontinuities at the element interfaces using a numerical flux function fn.
The flux function f along the boundaries of each element xi is approximated by a numer-
ical flux function fn(Ui,Ui+1). We approximate the flux function with an approximate
Riemann solver, such as a local Lax-Friedrichs Riemann solver, described in Section 2.7.

14

Equation (2.44) can be written as a system of ODEs

d

dt
c = L(c), (2.45)

where c is a flattened vector of the coefficients for each Um
i . The flattened vector for c

may be created by flattening the matrix

C =

c0
1,0 c0

1,1 . . . c0
1,p

c0
2,0 c0

2,1 . . . c0
2,p

...
...

. . .
...

c0
N,0 c0

N,1 . . . c0
N,p

...
...

. . .
...

cn1,0 cn1,1 . . . cn1,p
cn2,0 cn2,1 . . . cn2,p

...
...

. . .
...

cnN,0 cnN,1 . . . cnN,p

, (2.46)

row by row where each cmi,j is the leading coefficient for the j-th basis function of the m-th
variable in the system over element Ωi.

2.7 The Two-Dimensional DG Method For Systems

Figure 2.5: A two-dimensional domain Ω partitioned into a mesh of triangular elements Ωi

We now consider the two-dimensional system of equations

∂tu +∇ · F(u) = 0, (2.47)

15

Figure 2.6: Mapping Ωi to the canonical triangle Ω0 with vertices (0,0), (1,0), and (0,1)

Ωi

Ω0

r

s

x

y

for a vector u = (u1, u2, . . . , un) of n variables, over a computational domain Ω ⊆ R2, with
a sufficiently smooth flux function F = [F1, F2] where F1 and F2 are the fluxes in the x
and y directions, respectively. We assume initial conditions

u(x, y, 0) = u0(x, y), (2.48)

and appropriate boundary conditions. We partition the two-dimensional domain Ω into a
mesh of triangles Ωi as in Figure 2.5.

We proceed as before and multiply (2.47) by a function v ∈ V (Ωi), and integrate by
parts to get the weak formulation

d

dt

∫
Ωi

vu dx +

∫
Ωi

∇v · F(u) dx−
∫
∂Ωi

vF(u) · ni ds = 0, (2.49)

where ni is the outward facing unit vector along element i’s edges.

The weak formulations for the one-dimensional system (2.41) and the two-dimensional
system (2.49) are identical. The differences in implementation are due to the higher space
dimension. Since Ωi is a triangle, the two-dimensional integral becomes a volume integral
instead of a one-dimensional line integral. Also, the boundary ∂Ωi no longer consists of
two endpoints; it is now the three edges of the triangle Ωi. The integral over the boundary,
then, becomes a surface, i.e., line integral in two dimensions.

Again, we map each element Ωi in the domain to a canonical element Ω0. As element Ωi

is a triangle, we choose the canonical element Ω0 to also be a triangle. The mapping, shown

16

in Figure 2.6, maps each coordinate x = (x, y) ∈ Ωi to a new coordinate r = (r, s) ∈ Ω0.
The canonical triangle used in this implementation has vertices at (0, 0), (1, 0), and (0, 1).
The mapping to the canonical triangle in this case is bijective and is given byxy

1

 =

x1 x2 x3

y1 y2 y3

1 1 1

1− r − s
r
s

 , (2.50)

where (xi, yi) are the vertices of the given element. The Jacobian matrix for this mapping
(2.50) is constant for straight-sided triangles, and is given by

Ji =

[
xr yr
xs ys

]
. (2.51)

Using this mapping to Ω0, the volume integral in the weak formulation (2.49) over element
Ωi becomes ∫

Ωi

∇v · F(u) dx =

∫
Ω0

(J−1
i ∇v) · F(u)| det Ji| dr. (2.52)

We also map the edges of each element to the canonical interval I0 = [−1, 1]. This
mapping is given by (

x
y

)
=

(
x1 x2

y1 y2

)(
1
2
(1− ξ)

1
2
(1 + ξ)

)
, (2.53)

where (xi, yi) are the endpoints of the given edge and ξ ∈ I0. This mapping produces an
additional factor in the surface integral due the chain rule, as

ds =
1

2

√
(x1 − x2)2 + (y1 − y2)2 dξ. (2.54)

This additional term is simply half the length of each edge. For each element Ωi, define
the constant

li,q =
1

2

√
(x1 − x2)2 + (y1 − y2)2, (2.55)

for each edge q of Ωi. Here, (xj, yj) denote the vertices of the specific edge. Using the
mapping (2.53) to I0, the surface integral in the weak formulation (2.49) for element Ωi

becomes ∫
∂Ωi

vF(u) · ni ds =
3∑
q=1

∫
I0

vF(u) · ni,qli,q dξ, (2.56)

17

where ni,q denotes the outward facing normal vector along edge q.

A basis for V (Ω0) consisting of polynomials of degree p or less contains

Np =
1

2
(p+ 1)(p+ 2), (2.57)

basis functions. Let Φ = {φj}Np

j=1 be an orthogonal basis of Np basis functions for V (Ω0).
Let our approximation Ui over element Ωi be a linear combination of basis functions φj

Ui =

Np∑
j=1

ci,jφj, (2.58)

where ci,j is again a vector of coefficients as in the one-dimensional system (2.42). Using
this orthogonal basis and choosing each test function φj ∈ Φ produces a system of ODEs

d

dt
ci,j =

1

| det Ji|

(∫
Ω0

F(Ui) · (J−1
i ∇φj) | det Ji|dr−

3∑
q=1

∫
I0

φjF(Ui) · ni,qli,q dξ
)
. (2.59)

Equation (2.59) can then be written as a system of ODEs

d

dt
c = L(c), (2.60)

for a flattened vector of coefficients c. This flattened vector may be created by flattening
the matrix

C =

c0
1,1 c0

1,2 . . . c0
1,Np

c0
2,1 c0

2,2 . . . c0
2,Np

...
...

. . .
...

c0
N,1 c0

N,2 . . . c0
N,Np

...
...

. . .
...

cn1,1 cn1,2 . . . cn1,Np

cn2,1 cn2,2 . . . cn2,Np

...
...

. . .
...

cnN,1 cnN,2 . . . cnN,Np

, (2.61)

row by row.

18

The order p orthogonal basis functions over the canonical element used in this imple-
mentation can be found in [24]. They are given by a product of Jacobi polynomials Pα,β

j

and Legendre polynomials Pj

ψkj = P 0,2j+1
k−j (1− 2r)(1− r)jPj

(
1− 2s

1− r

)
, (2.62)

where k = 0, . . . , p denotes the degree of the polynomial and j = 0, . . . , k. The first six
polynomials ψkj for k = 0, 1 over this canonical triangle are shown in Figure 2.7.

As we do not impose continuity on the edges of each element, the value of the approx-
imation is twice-defined along every edge. At the vertices of an element, the value of the
approximation may even be defined more than twice. As in the one-dimensional case, the
flux function F must then be approximated with a numerical flux function Fn to resolve
the discontinuity along the edges of neighboring elements. When elements Ωl and Ωr share
an edge, the numerical flux function will evaluate Fn(Ul,Ur) at integrations points on that
edge. This numerical flux function represents the only communication between elements,
making the DG method in two dimensions element local.

The local Lax-Friedrichs Riemann solver mimics the central flux (2.27), but contains
an additional diffusive term to stabilize the numerical method. This Riemann solver, while
not extremely accurate, is easy to implement and cheap to compute. We approximate the
flux along an edge with the numerical flux function

Fn(Ul,Ur) =
1

2
[(F(Ul) + F(Ur)) · n + |λ|(Ul −Ur)] , (2.63)

where λ represents the largest in magnitude eigenvalue of the Jacobian of F and n is the
outward facing normal vector.

The convergence of the DG method for two-dimensional systems of equations is dis-
cussed in [6]. In practice, the convergence rate is the same as in one dimension, O(hp+1),
where here h is the radius of the largest inscribed circle of all elements in the mesh.

19

Figure 2.7: Orthogonal polynomials over the canonical triangle Ω0

(a) ψ0
0 (b) ψ1

0 (c) ψ1
1

(d) ψ2
0 (e) ψ2

1 (f) ψ2
2

20

Chapter 3

Parallel Computing

The traditional paradigm in computing has been serial instructions carried out sequen-
tially on a single central processing unit. Single processing units became more powerful
due to frequency scaling, that is, by making the single processing unit compute instruc-
tions faster. Unfortunately, heat generation, among other physical constraints, prohibits
unbound frequency scaling. This, among other factors, greatly restricted high performance
serial computing.

Parallel computing avoids the need for a strong single central processing unit idea
by distributing computation among many processing units. This increases theoretical
computation power without introducing the same physical constraints as frequency scaling
in a single central processing unit. Indeed, theoretical computation power is doubled by
simply doubling the number of processors.

Unfortunately, parallel computing introduces new constraints of its own. Computation
can no longer be thought of as sets of serial instructions to compute. Large scale problems
must be divided into smaller ones to take full advantage of parallel computing. The smaller
problems must then be distributed evenly to the many individual processing units.

Problem division and distribution introduce new problems of their own. Communicat-
ing information between independent processors requires passing data from some global
memory source to processor-local memory sources. Concurrent global memory data access
introduces race conditions, as two processors cannot write information to the same location
at the same time. Separated processors must be synchronized to keep data in the correct
state.

21

3.1 Flynn’s Taxonomy

Figure 3.1: Flynn’s taxonomy

(a) Single instruction, single data (b) Single instruction, multiple data

(c) Multiple instruction, single data (d) Multiple instruction, multiple data

Flynn’s taxonomy classifies computing architectures by dividing them into four classes
based on the combination of distinct instruction sets and data sources. Each instruction
set is computed by a thread, an individual member of a sequence of instructions. A
computer architecture is said to be either single-threaded, operating entirely in serial, or
multi-threaded, with some degree of parallelism as multiple threads execute concurrently. A
computer architecture has either a single set of instructions, or multiple sets of instructions
which operate on either a single data source or many data sources. Thus, Flynn’s taxonomy

22

identifies four unique combinations of computer architectures: single instruction, single
data (SISD), single instruction, multiple data (SIMD), multiple instruction, single data
(MISD), and multiple instruction, multiple data (MIMD).

Figure 3.1 outlines the four computer architectures introduced by Flynn’s taxonomy
[36]. Figure 3.1a demonstrates the SISD architecture, used in traditional serial computing
whenever a single processing unit manipulates a single data source in serial. Figure 3.1b
demonstrates the SIMD architecture, a popular parallel computing model used whenever
multiple processing units manipulate a data source using identical instructions. Figure
3.1c demonstrates the MISD architecture, a less popular parallel computing model used
when different instruction sets are distributed among the processors to operate on the
same block of global data. Figure 3.1d demonstrates the MIMD architecture, a parallel
programming model often used in distributed systems whenever data is entirely or nearly
entirely localised to the individual processing units.

3.2 Graphics Processing Units

Dedicated graphics processing units were created with a single purpose in mind: quickly
manipulate and display images. Early GPU hardware accelerated 2D performance, en-
abling operating systems to use graphical user interfaces over the standard terminal. GPU
hardware then accelerated 3D performance, allowing 3D images to be rendered in real-
time in high resolutions. The consumer demand for more realistic graphics rendered more
quickly in even higher resolutions drove the industry to create even more powerful GPUs.

As graphics rendering is a highly parallelizable activity, GPUs have a highly parallel
structure. They are a dedicated piece of hardware, able to compute independently from
the CPU. They compute their own machine code on their own processing units with their
own dedicated video memory, making them almost a completely independent machine.

Traditionally, programming for GPUs strictly involved commanding the GPU to render
graphics, as graphics rendering was their original purpose. Programming languages such as
OpenGL were created strictly for programming on GPUs. Moreover, they restricted GPU
computation to mainly visualization and image manipulation. In order to perform other
computations on GPUs, programmers needed to rewrite their general purpose instructions
as graphics related instructions. As such, these early languages were not suitable for general
purpose computing on GPUs.

With the advent of general purpose GPU computing languages such as the Com-
pute Unified Device Architecture (CUDA) and OpenCL, computer programmers no longer

23

needed to use arcane languages such as OpenGL for general purpose computing. These
new general purpose languages made non graphics-related problems more approachable
and even practical. GPUs, having a highly parallel structure, were then used to solve
so-called embarrassingly parallelizable problems, such as matrix vector multiplications and
brute-force searches in cryptography. As GPUs began to support double-precision floating
point computations, implementations of more complex parallelizable problems in scientific
computing such as computational fluid dynamics materialized. The latest GPU supercom-
puters, such as the NVIDIA Tesla K20, offer over a teraflop of computing power for only
USD $3,500. This low cost and high performance have made GPUs a formidable tool for
scientific computing.

Most graphics processing units use the SIMD parallel computing architecture described
by Flynn’s taxonomy. A global data set in dedicated video memory is manipulated by many
GPU processing units running the same instruction set. Programming may be done from
a thread perspective, as each thread reads the same instruction set, using it to manipulate
different data. Threads have a unique numeric identifier, such as a thread index, allowing
each thread to read from a different data location, or execute a different set of instructions
based on its index.

3.2.1 CUDA

As mentioned above, this project uses CUDA, a proprietary GPU programming language
and architecture developed by NVIDIA for use on NVIDIA GPUs. CUDA adopts the
SIMD parallel computing architecture with programming done from a thread perspec-
tive. Threads manipulate data from dedicated video memory, performing computations
on CUDA cores, multicore processors located on the GPU. For a more in-depth overview,
including a tutorial, of the CUDA programming language, see [31].

Extensive programmer support is provided through CUDA-accelerated software li-
braries, such as cuBLAS, a basic linear algebra subroutine library, and Thrust, a flexible
library of various parallelizable algorithms such as sorts and reductions. Further CUDA
support is included in recent versions of scientific computing software such as MATLAB,
which allows users to speed up many computations by offloading them to the GPU using
their Parallel Computing Toolbox [28]. NVIDIA also provides compilers for programmers
wanting to develop their own code using CUDA. These compilers can use code written in
either C/C++ or Fortran.

The basic unit of computation in CUDA is the thread. Each thread has a unique
identifier to it: a thread index. Threads are grouped into multiples of 32, called warps.

24

Every thread in the same warp runs the same set of instructions and is executed on the
same GPU processing unit, called a Streaming Multiprocessor (SM). Each thread running
on an SM shares a small amount of fast, cached register memory. An SM unit is assigned
a collection of warps, called a block. These blocks are then further divided among grids.
As execution of every warp in a block is completed on an SM, a new block from the grid
is then assigned to that SM.

Each warp must execute the same instruction set. Boolean expressions pose problems,
as two threads in the same warp may evaluate a boolean condition to different values.
When this happens, the warp splits into branches, where each branch of threads executes a
different path of code split by the boolean. This branching, called warp divergence, harms
performance as both instructions must be run for this warp. On the other hand, when
every thread in the same warp evaluates the boolean condition to the same value, they
avoid warp divergence by taking the same path.

CUDA machine code is written in kernels - parallel code to be executed on the GPU.
Typically, all threads on the GPU run the same kernel at the same time. Kernels run
exclusively on the GPU and may therefore only use data located on the GPU’s video
memory. Any data created on the CPU must therefore be transfered to the GPU in order
for threads to access it. Data is transfered between the GPU and CPU through the PCIe
bus, which introduces latency. Furthermore, PCIe data transfer is limited in bandwidth;
PCIe 3.0 has a maximum of 32GB/s throughput. Every data transfer between the GPU
and CPU increases computation time, and should be avoided whenever possible.

CUDA has several hierarchies of memory, detailed in Figure 3.2, taken from [37]. GPU
memory must be allocated separately from host (CPU) memory. The largest available
storage on the GPU is the global memory. Global memory on the GPU is both readable
and writable, is very large, but is uncached and very slow. Every memory access of GPU
global memory impacts performance greatly due to latency and memory lookup time.
Texture memory is a type of constant global memory which can sometimes be used to
decrease these latencies.

While global memory is large, slow, and uncached, constant memory is small, quick,
and cached. Each SM has access to a limited amount of fast, cached register memory.
Register memory provides the fastest access for threads, but is only local to their specific
thread. Whenever a thread requests more register memory than the SM can provide, local
memory is used. Local memory, while allowing each thread to use gratuitous amounts of
memory, has a very long memory access time, nearing that of global memory. Threads in
the same block also have access to shared memory. This shared memory is also fast, but
is limited in size and difficult to properly take advantage of.

25

Figure 3.2: GPU Memory Hierarchy

Load balancing is done entirely by CUDA’s warp scheduler. In order to take full
advantage of the processing power available, enough warps must be created to fully saturate
the device. Full device utilization will not occur until each SM is simultaneously processing
a different warp. The warp scheduler will attempt to fully utilize each SM by assigning
ready warps to idle SMs. When memory access requests introduce latency, e.g., global
memory access requests, the warp scheduler will attempt to hide the latency by swapping
out the idle warps and replacing them with ready warps.

The number of active threads able to run on a single SM depends on two factors. First,
the architecture of the SM determines the maximum allowable number of threads. For
example, the NVIDIA Fermi GPU architecture may have up to 48 active warps on each
SM. Second, the total amount of memory requested by every thread must not exceed the
available memory on the SM.

Thread occupancy measures the proportion of currently active warps to the maximum
allowable number of active warps. When the combined memory requirement of every
thread in a block exceeds the amount of available register memory, the SM will not run
every thread in the block at once. It will run only as many threads as it has memory for
them to share. As a result, either less threads must run at once in order to share the SM

26

memory, or the SM must use local memory storage rather than register memory. When
less threads run at once, thread occupancy, and thus, performance decreases. On the
other hand, local memory introduces a significant amount of latency compared to register
memory. The programmer must therefore maximize thread occupancy while resorting to
local memory usage only as a last resort.

The arithmetic intensity, which we define as the ratio of computation time to memory
access time, greatly influences the overall effectiveness of any implementation in CUDA.
Problems with low arithmetic intensity spend most of their run time waiting during laten-
cies in memory transactions. Problems with high arithmetic intensity, on the other hand,
allow CUDA’s warp scheduler to hide memory latency behind computation by scheduling
ready warps ahead of those waiting on memory transactions.

Figure 3.3: Data coalescion in a half warp

(a) Coalesced data access pattern

t0

t1

...

t15

Address 0

Address 1

...

Address 15

(b) Uncoalesced data access pattern

t0

t1

...

t15

Address 0

...

Address 16

...

Address 240

Whenever every thread in a half-warp accesses the same region of global memory at
the same time, this memory transaction may be coalesced. Figure 3.3 shows an example of
coalesced data access versus uncoalesced data access. In the coalesced data access example,
thread ti accesses memory location i, thread ti+1 accesses memory location i+1, and so on
for this warp. In this case, these data access operations are coalesced into a single access
operation rather than 16 separate ones. In the uncoalesced data access example, thread ti
accesses memory location 16× i. The data at address 16× i is not located nearby the data
at address 16×(i−1), and is thus not local from a thread perspective. In this case, the SM
must perform sixteen separate data access operations. As GPU computing is dominantly

27

memory bound, data coalescion is of utmost importance for improving computation time.
Later versions of CUDA allow permutations, among other things, of these transactions, so
long as data locality is preserved; i.e., so long as all threads in a half-warp access the same
nearby data locations.

3.2.2 CUDA Example

To further understand parallel programming with CUDA, we present a simple example.
We will write a GPU kernel to add two arrays together.

1 // declare GPU memory

2 __global__ int *gpu_result;

3 __global__ int *gpu_A;

4 __global__ int *gpu_B;

We first declare three GPU variables, residing in GPU global memory. They may be
accessed and modified by any thread.

1 // addition kernel

2 __global__ void add(int *A, int *B, int *result, int size) {

3 // get unique thread identifier

4 int idx = blockIdx.x * blockDim.x + threadIdx.x;

5

6 // only run if the thread index doesn’t exceed the array size

7 if (idx < size) {

8 result[idx] = A[idx] + B[idx];

9 }

10 }

Next we declare the GPU kernel add. This kernel adds the data from A to B and stores
the sum in result. The thread running this kernel first finds its unique thread index idx. If
the index is less than the size of the array, then this thread should add A[idx] to B[idx] and
store the result in result[idx]. Note that each read of A[idx] and B[idx] will be coalesced,
as will the write to result[idx] as the data is aligned along with the thread index.

1 int main(void) {

2 // the size of A and B

3 int size = 1000;

4 // number of threads to run per block

5 int threads_per_block = 128;

6 // number of blocks to run to reach size

7 int blocks = size / threads_per_block + 1;

28

Next we create the CPU code which will allocate and initialize the GPU memory and
then call the GPU kernel function. In this case, we want to add 1,000 integers, so we
set size to 1,000 and create at least 1,000 threads to run our kernel. As CUDA requires
the number of threads grouped to a block to be a power of two, we create 128 threads
to run in each block. As a result, we are not able to create exactly 1,000 threads, so we
create 1,024 threads spread across 8 blocks, with each block containing 128 threads. The
last twenty-four threads with index 1,000 through 1,024 will do no computation, as their
indices are larger than size.

1 // allocate memory on the GPU

2 cudaMalloc((void **) &gpu_result, size * sizeof(int));

3 cudaMalloc((void **) &gpu_A, size * sizeof(int));

4 cudaMalloc((void **) &gpu_B, size * sizeof(int));

5

6 // allocate memory on the CPU

7 int *result = (int *) malloc(size * sizeof(int));

8 int *A = (int *) malloc(size * sizeof(int));

9 int *B = (int *) malloc(size * sizeof(int));

10

11 // fill A and B with ones

12 memset(A, 1, size * sizeof(int));

13 memset(B, 1, size * sizeof(int));

14

15 // copy A and B over to the GPU

16 cudaMemcpy(gpu_A, A, size * sizeof(int), cudaMemcpyHostToDevice);

17 cudaMemcpy(gpu_B, B, size * sizeof(int), cudaMemcpyHostToDevice);

We allocate the three GPU global variables on the GPU to be large enough to hold our
arrays of integers. Then, we create three CPU variables of the same size for transferring
data back and forth. We fill A and B with ones and transfer them over to GPU global
memory gpu_A and gpu_B.

1 // run the GPU kernel on the GPU

2 add<<<threads, blocks>>>(gpu_A, gpu_B, gpu_result, size);

3

4 // copy back the result

5 cudaMemcpy(result, gpu_result, size * sizeof(int), cudaMemcpyDeviceToHost);

6

7 return 0;

8 }

Finally, we run the kernel add with 128 threads and 8 blocks. The GPU global variable
gpu_result is then copied back to the CPU, containing the sums of gpu_A and gpu_B.

29

Chapter 4

Implementation

We now detail our implementation of the DG method on a GPU using CUDA. Our im-
plementation solves two-dimensional scalar and systems of hyperbolic conservation laws,
as we described in Section 2.7. This implementation consists of three main components.
The first component transforms our computational domain into a mesh and creates the
mappings for elements and edges of that mesh. In addition, it allocates an appropriate
amount of storage in GPU memory, and transfers the mesh mappings from CPU memory
to GPU memory. The second component sets the specific parameters for the problem
being modeled; namely, it describes the initial conditions, boundary conditions, and, most
importantly, the flux function F. The third component contains the kernels tasked with
computing equations (4.1) and (4.2) described in Section 2.7. Additionally, the third com-
ponent combines the surface integral contributions with the volume integral contributions
and steps forward in time using a numerical ODE solver.

4.1 Parallel Computing with DG Methods

Because the DG method uses independent local approximations of the solution Ui over
each element in the mesh Ωi, it is especially open to parallelization. Recall the weak
formulation of the PDE in two dimensions as described in equation (2.59). Each equation
for advancing the coefficient ci,j in time can be expressed as a combination of a surface
integral contribution ∫

∂Ωi

φjF(Ui) · ni ds, (4.1)

30

and a volume integral contribution ∫
Ωi

F(Ui) · ∇φj dx. (4.2)

We map each element Ωi to the canonical triangle Ω0 with vertices (0,0), (1,0), and (0,1).
Each edge eq, q = 1, 2, 3 in ∂Ωi is mapped to a side of the canonical triangle, and that side
is then mapped to the canonical interval I0 = [−1, 1]. As a result, (4.2) and (4.1) remain
the same for each element. Thus, the same instruction set may be used to compute each
element’s volume and surface integral contributions. This suggests that the DG method
may be implemented in parallel using a SIMD programming architecture.

The volume integral (4.2) may be computed independently from the surface integral
(4.1), as it requires only the local coefficients ci,j, j = 1, . . . , Np for element Ωi and the
inverse Jacobian matrix J−1

i . The surface integral (4.1) requires information from the local
element Ωi and the three neighboring elements in order to solve the Riemann problem
along each edge by using the numerical flux function Fn.

Two parallelization techniques are commonly implemented here. In one technique, each
thread first computes the volume integral contributions for one element, then computes the
surface integral contributions from each edge for that same element. The two contributions
are summed and added to a right-hand side variable for each coefficient ci,j and test function
φj, j = 1, . . . , Np. We refer to this technique as the single kernel implementation.

A second parallelization technique separates the volume integral computation from the
surface integral computation. Surface integral (4.1) is a sum of three separate edges’ line
integrals. We thus consider this surface integral as the sum∫

∂Ωi

φjF(Ui) · ni ds =

∫
s1

φjF(Ui) · ni,1li,1 dξ

+

∫
s2

φjF(Ui) · ni,2li,2 dξ (4.3)

+

∫
s3

φjF(Ui) · ni,3li,3 dξ

where sq is a side of the canonical triangle, ni,q is the corresponding outward facing normal
vector at edge eq, and li,q is half of the corresponding edge eq’s length as discussed in
Section 2.7. By considering each line integral in equation (4.3) as a separate, independent
problem, we allow a greater degree of parallelism. A thread ti may compute the volume
integral contribution over element Ωi for each j = 1, . . . , Np coefficient ci,j and store each

31

result. A separate thread tk computes the surface integral contribution over one edge ek of
an element as in (4.3). The volume integral contributions and surface integral contributions
are later combined by yet another thread to form the full right-hand side from equation
(2.59). We refer to this technique as the multiple kernel implementation.

An advantage of the single kernel implementation over the multiple kernel implementa-
tion is memory requirements. In the single kernel implementation, no additional memory
is required to store volume integral contributions independently from surface integral con-
tributions. As each thread computes one element’s volume integral and one edge of that
element’s surface integral, it simply adds the result to a right-hand side variable.

Two main disadvantages of the single kernel implementation are the redundant compu-
tations of surface integrals and the loss of parallelization when compared to the multiple
kernel implementation. An edge ei sharing elements Ωl and Ωr will have the surface integral
over this edge computed twice, as both threads tl and tr will compute the surface integral
over ei. Furthermore, as mentioned before, the surface integral calculations for each edge
may be handled independently from the volume integral calculations. Therefore, a loss of
parallelization results by grouping the surface integral calculations into the same kernel as
the volume integral calculations.

In testing, we achieved nearly two times the performance using the multiple kernel
implementation over the single kernel implementation. We suspect that this is mainly due
to the loss of parallelization rather than the redundant computations of surface integrals, as
computation time is rarely a bottleneck in GPU computing. We therefore use the multiple
kernel technique in our implementation.

4.2 Numerical Quadrature

We use two-dimensional Gaussian quadrature rules [12] of appropriate order accuracy q2

to approximate the volume integral∫
Ω0

F(Ui) · (J−1
i ∇φj)| det Ji| dr ≈

q2∑
k=1

F(Ui(rk)) · (J−1
i ∇φj(rk))| det Ji|wk (4.4)

where rk and wk are the integration points and weights of the quadrature rule, respectively.
Recall that Ui and φj are polynomials of degree at most p in our implementation; that is,
∇φjUi is a polynomial of degree at most 2p − 1. When the flux function F is linear, the
integrating function is a polynomial of degree at most 2p− 1, and so Gaussian quadrature

32

rules of degree q2 = 2p−1 should be used. Nonlinear flux functions require an extra degree
of accuracy, setting q2 = 2p. As we also implement nonlinear flux functions, we set q2 = 2p
in this implementation.

We also use one-dimensional Gaussian quadrature rules of appropriate degree accuracy
q1 to approximate each component of the surface integral∫

sq

φjF(Ui) · ni ds ≈
q1∑
k=1

φj(rk)F(Ui(rk)) · ni,lwk (4.5)

for one-dimensional integration points translated to the correct side sq of the canonical
triangle rk and weights wk. Here, Ui and φj are both polynomials of degree at most p, and
so Gaussian quadrature rules of degree q1 = 2p should be used for linear flux functions,
and q1 = 2p + 1 for nonlinear flux functions. Once again, as we implement nonlinear flux
functions, we set q1 = 2p+ 1 in this implementation.

We precompute the evaluations of φj(xk) and ∇φj(xk) at each of the two-dimensional
integration points in Ω0. We also precompute the evaluations of φj(xk) at the one-
dimensional integration points mapped to ∂Ω0. These precomputed basis functions evalua-
tions reduce computation cost immensely in (4.4) and (4.5). Indeed, whenever we evaluate
Ui at an integration point rk, we compute

Ui(rk) =

p∑
j=0

ci,jφj(rk). (4.6)

By precomputing the value of our basis functions at our integration points φj(rk), we may
compute Ui at any integration point with only n×Np multiplications and additions.

4.3 Algorithms

Algorithm 1 provides a high-level description of our implementation. Meshes are gener-
ated using GMSH [14], an open source finite element mesh generator. A Python script
reads the mesh created by GMSH and generates a list of data structures representing the
mappings between edges and elements. These data structures are then transfered to GPU
memory. All precomputed data, such as the basis functions φj at their integration points,
the inverse Jacobian matrices J−1

i for each mesh element, and the normal vectors ni for
each element’s edges, are stored in GPU memory. In practice, we compute and store the
matrix J−1

i | det Ji|.

33

Algorithm 1 The DG Method on a GPU

1. Read the mesh to CPU memory from a mesh file.

2. Transfer the data structures read from the mesh from CPU memory to GPU memory.

3. Precompute any reusable computations and store in GPU memory.

4. Compute the initial projection of U at t = 0 using initial conditions u0.

5. For each stage / step of a numerical ODE solver:

(a) Calculate the CFL number.

(b) Compute the surface integral for each edge.

(c) Compute the volume integral for each element.

(d) Combine the surface and volume integrals for each element in a numerical ODE
solver.

6. Write the solution to file.

Using the initial conditions u0, we obtain the coefficients for the initial approximation
U(x, 0) by an L2 projection on the finite element space. A numerical ODE solver approx-
imates equation (2.59) using a stable timestep. To this end, we first compute the surface
integral using one-dimensional numerical quadrature. Then, we compute the volume inte-
gral using two-dimensional numerical quadrature. These evaluations are stored separately
and later recombined by a right-hand side evaluator. After a suitable number of timesteps,
the solution is computed and written to file.

Our mesh consists of Ne edges ek and N elements Ωi. Each element is mapped to the
canonical triangle Ω0 with vertices at (0,0), (0,1) and (1,0) as described in Section 2.7. Our
finite-element space V (Ω0) consists of polynomials of degree at most p over Ω0. The cor-
responding orthogonal basis elements used for V (Ω0) are the orthogonal polynomials over
Ω0 described in Section 2.7, shown in Figure 2.7. For degree p polynomial approximation,
Np basis functions are required, defined in (2.57) Thus, for each element, we store n×Np

coefficients to represent the approximated solution over that element.

This implementation makes use of double precision floating point numbers whenever
possible. Computing in double-precision is many times slower than computing in single
precision on certain older versions of CUDA. In NVIDIA Fermi GPU architectures used

34

Figure 4.1: The mapping for a simple mesh.

Ω1

Ω2

e1

e2

e3

e4 e5

Ω1

Ω2

e1

e2

e3

e4

e5

Boundary

in this implementation, double precision computing is one quarter of the speed of single
precision computing. See [31] for more information.

4.3.1 Mesh Generation

While one-dimensional meshes consist of only a collection of endpoints, two-dimensional
meshes require significantly more data to represent the connectivity between elements.
Each element is defined by its three vertices, which consequently define that element’s
three edges. In addition to storing these vertices, all elements must store three pointers to
locate those edges. As every non-boundary edge connects two elements, these edges must
be able to locate and differentiate between these elements. Edges along a boundary must
be handled separately from non-boundary edges, and must be marked according to the
type of boundary conditions assigned to them.

Figure 4.1 shows an example of a simple mesh and the associated mappings required
for that mesh. Elements Ω1 and Ω2 map to their respective edges; edges e1, . . . , e5 map
back to their respective elements. Elements Ω1 and Ω2 share edge e5. As such, edge e5

must differentiate between elements Ω1 and Ω2. It will arbitrarily assign elements Ω1 and
Ω2 as either left or right, e.g., Ω1 is left and Ω2 is right. In this case, the normal vector
will point from element Ω1 to elemnt Ω2, as the normal vector always points from left to
right by our convention. As edges e1, e2, e3, and e4 lie on the boundary of the domain, they
store an identifier describing the type of boundary conditions assigned to them instead of
a pointer to a right element.

35

Figure 4.2: The integration points on Ω0 differ for edge ei between elements Ωl and Ωr

b

b

b

b

Ω0Ω0 Ωl

Ωr

sl srei

b

b

The two variables left_elem and right_elem store the mapping from each edge to its
left and right elements. In the case of Figure 4.1, edge e5 may have left_elem[4] = 0 and
right_elem[4] = 1 to indicate that element Ω1 is left and element Ω2 is right.

The elements store pointers to their edges in elem_s1, elem_s2, and elem_s3. As each
element maps its three edges to the canonical triangle independently of how other elements
map their edges, the shared edge e5 may be mapped to different sides of the canonical trian-
gle by elements Ω1 and Ω2. Each edge must then store a parameter indicating which side of
the canonical triangle its left and right elements map it to. We call these left_side_number

and right_side_number and store them in global memory.

Figure 4.2 demonstrates this behavior for any general Ωl and Ωr sharing an edge ei. In
this case, the one-dimensional integration points along that edge will differ for elements Ωr

and Ωl.

Mesh generation is computed using both GMSH and a Python script. GMSH converts
a geometry (.geo) file into a mesh (.msh) file containing an unstructured triangular mesh
[14]. The resulting .msh file is read by the Python script and converted into a collection
of edge to element and element to edge mappings. Mesh generation and connectivity is
performed in serial and need only be performed once for each mesh created by GMSH.

4.3.2 Surface Integration Kernel

We first consider the evaluation of the surface integral (4.5). Suppose elements Ωl and Ωr

share the edge ei. A thread ti will be assigned to this edge ei to compute the surface integral
on that edge using one-dimensional numerical quadrature rules, described in Section 4.2.

This computation is demonstrated from a thread perspective in Figure 4.3. Each thread
reads the coefficients for its left and right elements cl,j and cr,j for j = 1, . . . , Np. The thread

36

computes Ul and Ur at the integration points rk. If an edge ei lies on a domain boundary,
a ghost state Ug is created and assigned to Ur, as described in Section 4.4. Boundary
edges are marked with a negative index for a pointer to their right element to differentiate
them from non-boundary elements. Determining if an edge is a boundary edge or not is
as simple as looking at whether or not the pointer in right_elem is negative or positive.

Next, using Ul and Ur evaluated at their integration points, thread ti computes the
numerical flux Fn(Ul,Ur). The final component to the numerical quadrature rule in (4.5)
is the evaluated basis function. We multiply the computed values by the normal vector ni,q
and li,q, choosing the appropriate q for this edge and taking note that the normal vector
always points from Ωl to Ωr. Finally, we multiply the result by both a basis function φj
evaluated at the one-dimensional integration point rk and a weight wk.

We enforce a strictly positive Jacobian determinant in order to ensure that each element
Ωi is mapped to Ω0 with the same orientation. Then the order of the integration points on
that edge are reversed between elements Ωl and Ωr, shown in Figure 4.2

When the one-dimensional integration points differ, so too will the basis functions
evaluated at those points. As such, the surface integral contributions for edge ei may not be
the same for each element. Therefore, we must store separate surface integral contributions
for the left and right elements. Fortunately, the most expensive computation, F(Ul,Ur)
may be reused in this computation. We store the surface integral contribution for Ωl in
rhs_surface_left and the surface integral contribution for Ωr in rhs_surface_right.

Each thread must read 2×Np×n coefficients to compute the approximation over Ωl and
Ωr. This local storage requirement proves restrictive, as each SM on the GPU has access
to only a limited supply of register memory. In performance tests, we found that using
local memory and thereby increasing thread occupancy provided a performance boost of
nearly thirteen times over the method of exclusively using register memory to hold these
coefficients.

When an element Ωi recombines its three separate edges’ surface integral contributions
as per (4.3), the element must know whether an edge considers it a left or a right element.
If an edge considers Ωi a left element, then the correct location for this edge’s surface
integral contribution is located in rhs_surface_left. Otherwise, the edge’s surface integral
contribution is located in rhs_surface_right.

Below we display the eval_surface kernel in full.

1 __global__ void eval_surface(

2 double *C, // coefficients

3 double *rhs_surface_left, // storage for left element, initialized to 0

4 double *rhs_surface_right, // storage for right element, initialized to 0

37

Figure 4.3: Thread structure for the surface integral kernel

t1

t2

...

tNe

e1

e2

...

eNe

Ul

Ur

Ul

Ur

...

Ul

Ur

Fn(Ul,Ur)

Fn(Ul,Ur)

...

Fn(Ul,Ur)

∫
sl
φjFn(Ul,Ur)n dξ

∫
sr
φjFn(Ul,Ur)n dξ

∫
sl
φjFn(Ul,Ur)n dξ

∫
sr
φjFn(Ul,Ur)n dξ

...

∫
sl
φjFn(Ul,Ur)n dξ

∫
sr
φjFn(Ul,Ur)n dξ

RHS_surface_left[0]

RHS_surface_right[0]

RHS_surface_left[1]

RHS_surface_right[1]

...

RHS_surface_left[N_e-1]

RHS_surface_right[N_e-1]

5 double *side_length, // side lengths

6 double *V, // element verticies

7 int *left_elem_pointer, // pointer to left element

8 int *right_elem_pointer, // pointer to right element

9 int *left_side_mapping, // side s_l of Omega_0 that Omega_l maps e_i to

10 int *right_side_mapping, // side s_r of Omega_0 that Omega_r maps e_i to

11 double *Nx, double *Ny, // normal vector for this edge

12 double t) { // time

13

14 int idx = blockIdx.x * blockDim.x + threadIdx.x;

15

16 if (idx < num_sides) {

17 int i, j, n; // indecies for looping

18 int stride; // used for data access

19 int left_side; // side s_l Omega_l maps this edge to

20 int right_side; // side s_r Omega_r maps this edge to

21 int left_elem; // index to Omega_l

22 int right_elem; // index to Omega_r

23

24 double left_basis, // psi_j at left integration point

25 double right_basis; // psi_j at right integration point

26 double U_left[N_MAX]; // stores evaluation of U_l

27 double U_right[N_MAX]; // stores evaluation of U_r

38

28 double F_n[4]; // stores flux evaluation F_n

29 double result_left; // evaluation of Omega_l’s result

30 double result_right; // evaluation of Omega_r’s result

31 double nx, ny; // the normal vector

32

33 // locally stored coefficients

34 double C_left[N_MAX * P_MAX];

35 double C_right[N_MAX * P_MAX];

36

37 // read coefficients to local memory

38 for (i = 0; i < n_p; i++) {

39 for (n = 0; n < N; n++) {

40

41 // compute data access pattern for read

42 stride = num_elem * n_p * n + i * num_elem;

43

44 // read to local memory

45 C_left[n*n_p + i] = C[stride + left_idx];

46 }

47 }

48

49 // read right coefficients if this is not a boundary

50 if (right_idx >= 0) {

51 for (n = 0; n < N; n++) {

52 // compute data access pattern for read

53 stride = num_elem * n_p * n + i * num_elem;

54

55 // read to local memory

56 C_right[n*n_p + i] = C[stride + right_idx];

57 }

58 }

59

60 // read index of Omega_l and Omega_r

61 left_elem = left_elem_pointer[idx];

62 right_elem = right_elem_pointer[idx];

63

64 // read which s_l and s_r this edge is mapped to

65 left_side = left_side_mapping[idx];

66 right_side = right_side_mapping[idx];

67

68 // read the normals for this edge

69 nx = Nx[idx];

70 ny = Ny[idx];

71

72 // loop through each integration point

39

73 for (j = 0; j < n_quad1d; j++) {

74

75 // calculate U_left and U_right at integration point j

76 eval_left_right(C_left, C_right, U_left, U_right,

77 nx, ny, V, j, left_side, right_side,

78 left_idx, right_idx, t);

79

80 // compute F_n(U_left, U_right)

81 riemann_solver(F_n, U_left, U_right, V, t, nx, ny, j, left_side);

82

83 // multiply by phi_i at this integration point

84 for (i = 0; i < n_p; i++) {

85

86 // evaluate psi_j at the left integration point

87 left_basis = basis_side[left_side * n_p * n_quad1d + i * n_quad1d + j];

88

89 // evaluate psi_j at the right integration point

90 right_basis = basis_side[right_side * n_p * n_quad1d + i * n_quad1d + n_quad1d -

1 - j]);

91

92 // loop through each variable U^n in the system

93 for (n = 0; n < N; n++) {

94

95 // compute data access pattern for coallesced write

96 stride = num_sides * n_p * n + i * num_sides;

97

98 // compute the result at this integration point

99 result_left = -len/2*w_oned[j]*F_n[n]*left_basis;

100 result_right = len/2*w_oned[j]*F_n[n]*right_basis;

101

102 // write the result

103 rhs_surface_left [stride + idx] += result_left;

104 rhs_surface_right[stride + idx] += result_right;

105 }

106 }

107 }

108 }

109 }

4.3.3 Volume Integration Kernel

We now consider the evaluation of the volume integral (4.4). Each thread ti in the volume
integral kernel computes the volume integral contribution for an element Ωi using numerical

40

Figure 4.4: Thread structure for the volume integral kernel

t1

t2

...

tN

Ω1

Ω2

...

ΩN

U1

U2

...

UN

F(U1)

F(U2)

...

F(UN)

∫
Ω1

F(U1) · ∇φjds

∫
Ω2

F(U2) · ∇φjds

...∫
ΩN

F(UN) · ∇φjds

RHS_volume[0]

RHS_volume[1]

...

RHS_volume[N-1]

quadrature rules of an appropriate degree, as described in Section 4.2. Unlike the surface
integral computations, the volume integral computation is element local. As a result, each
thread ti only reads the coefficients ci,j, j = 1, . . . , Np along with the inverse Jacobian
matrix J−1

i for element Ωi.

Figure 4.4 shows the volume integral computations in this kernel from a thread perspec-
tive. Thread ti evaluates Ui and the flux F(Ui) at each two-dimensional integration point.
The inverse Jacobian matrix J−1

i is multiplied by the basis function gradient ∇φj for each
j = 1, . . . , Np evaluated at this integration point along with the appropriate quadrature
weight wk. The result is added to a right-hand side storage variable rhs_volume.

The surface integral and volume integral contributions may be computed independently
from each other, meaning that this kernel and the surface integral kernel may run concur-
rently, a feature available in later versions of CUDA. This technique improves performance
for particularly small meshes by increasing device saturation.

As each thread must read Np×n coefficients, this storage requirement again proves re-
strictive for the GPU SMs. Letting threads use local memory increases thread occupancy,
and greatly increases performance over requesting only register memory in our implemen-
tation.

Below we describe the eval_volume kernel in full.

1 __global__ void eval_volume(

2 double *C, // coefficients

3 double *rhs_volume, // storage for result, intialized to 0

4 double *J, // inverse jacobian matrix

5 double *V, // verticies

6 double t) { // time

7

8 int idx = blockIdx.x * blockDim.x + threadIdx.x;

9

41

10 if (idx < num_elem) {

11 int i, j, k, n; // indecies for looping

12 int stride; // used for coallesced data access

13

14 double U[N_MAX]; // evaluations of U

15 double flux_x[N_MAX]; // flux x vector

16 double flux_y[N_MAX]; // flux y vector

17 double j[4]; // inverse jacobian matrix

18 double result_x; // invsere jacobian times grad(phi_j)_x

19 double result_y; // invsere jacobian times grad(phi_j)_y

20

21 // locally stored coefficients

22 double local_C[N_MAX * P_MAX];

23

24 // read coefficients to local memory

25 for (i = 0; i < n_p; i++) {

26 for (n = 0; n < N; n++) {

27

28 // compute data access pattern for coallesced read

29 stride = num_elem * n_p * n + i * num_elem;

30

31 local_C[n*n_p + i] = C[stride + idx];

32 }

33 }

34

35 // read jacobian j = [y_s, -y_r, -x_s, x_r]

36 for (i = 0; i < 4; i++) {

37 j[i] = J[i*idx];

38 }

39

40 // loop through each integration point

41 for (j = 0; j < n_quad; j++) {

42

43 // initialize U to zero

44 for (n = 0; n < N; n++) {

45 U[n] = 0.;

46 }

47

48 // calculate U at the integration point

49 for (k = 0; k < n_p; k++) {

50 for (n = 0; n < N; n++) {

51

52 // evaluate U at the integration point

53 U[n] += local_C[n*n_p + i] * basis[n_quad * k + j];

54 }

42

55 }

56

57 // evaluate the flux

58 eval_flux(U, flux_x, flux_y, V, t, j, -1);

59

60 // multiply by grad(phi_i) at this integration point

61 for (i = 0; i < n_p; i++) {

62 for (n = 0; n < N; n++) {

63

64 // compute data access pattern for coallesced read

65 stride = num_elem * n_p * n + i * num_elem;

66

67 // compute the inverse jacobian times the basis gradient

68 result_x = basis_grad_r[n_quad*i+j] * j[0]

69 + basis_grad_s[n_quad*i+j] * j[1];

70 result_y = basis_grad_r[n_quad*i+j] * j[2]

71 + basis_grad_s[n_quad*i+j] * j[3];

72

73 // compute the flux dotted by the result

74 rhs_volume[stride + idx] += flux_x[n]*result_x + flux_y[n]*result_y;

75 }

76 }

77 }

78 }

79 }

4.3.4 Right-Hand Side Evaluator Kernel

The right-hand side evaluator kernel combines data from the three temporary storage
variables rhs_surface_left, rhs_surface_right, and rhs_volume for each element to compute
the right-hand side of equation (2.59). Each thread ti combines the contributions from the
surface and volume integrals for coefficients ci,j, j = 1, . . . , Np. For each edge, the thread
must determine if that edge considers element Ωi a left or right element. The thread first
reads the value of det Ji. It adds the volume integral contribution results from rhs_volume

for each j. Next, the thread must locate element Ωi’s three edges. If it considers this
element a left element, it will add every j component of rhs_surface_left to ci,j. If, on
the other hand, it considers this element a right element, it will add every j component of
rhs_surface_right to ci,j.

Serial implementations may simply add the computed surface integral and volume in-
tegral contributions to a single right-hand side variable as they are computed. This data

43

access pattern would be impossible in a multiple kernel parallel implementation due to race
conditions, that is, multiple threads attempting to write to the same location in memory
simultaneously. During the surface integral computation, all three edges may attempt to
add to the same data location at once and would corrupt memory.

Below we describe the eval_rhs kernel in full. While some warp divergence is inevitable
in this kernel, by nesting the for loops inside of the boolean statements, we evaluate
only three booleans per thread. Compared to performing the boolean evaluations inside
of looping over each j, this optimization yields a tremendous increase in performance,
especially for large j in higher-order polynomial approximation. This optimization greatly
increased performance.

1 __global__ void eval_rhs(

2 double *c, // coefficients initialized to 0

3 double *rhs_volume, // the volume integral contributions

4 double *rhs_surface_left, // left surface integral contributions

5 double *rhs_surface_right, // right surface integral contributions

6 int *elem_s1, // mapping to element’s edge 1

7 int *elem_s2, // mapping to element’s edge 2

8 int *elem_s3, // mapping to element’s edge 3

9 int *left_elem, // used to determine left or right

10 double *detJ, // jacobian determinant

11 double dt) { // timestep size

12

13 int idx = blockDim.x * blockIdx.x + threadIdx.x;

14

15 if (idx < num_elem) {

16 int i, j, n; // indecies for looping

17 int S[3]; // store edge indecies

18 int stride; // used for coalesced data access

19 int stride_edge; // used for coalesced data access

20

21 // read jacobian determinant

22 j = detJ[idx];

23

24 // get the edge indecies

25 S[0] = elem_s1[idx];

26 S[1] = elem_s2[idx];

27 S[2] = elem_s3[idx];

28

29 // add volume integral

30 for (i = 0; i < n_p; i++) {

31 for (n = 0; n < N; n++) {

32

33 // compute data access pattern for coallesced read

44

34 stride = num_elem * n_p * n + i * num_elem;

35

36 // add the volume integral contributions

37 c[stride + idx] += dt / j * rhs_volume[stride + idx];

38 }

39 }

40

41 // for each edge, add either left or right surface integral

42 for (j = 0; j < 3; j++) {

43

44 // if this is a left element, use rhs_surface_left

45 if (idx == left_elem[S[j]]) {

46

47 // add the surface integral

48 for (i = 0; i < n_p; i++) {

49 for (n = 0; n < N; n++) {

50

51 // compute data access pattern for coallesced read

52 stride = num_elem * n_p * n + i * num_elem;

53

54 // edge access pattern

55 stride_edge = num_sides * n_p * n + i * num_sides;

56

57 // add the surface integral contribution

58 c[stride + idx] += dt/j*rhs_surface_left[stride_edge + S[j]];

59 }

60 }

61

62 // if this is a right element, use rhs_surface_right

63 } else {

64

65 // add the surface integral

66 for (i = 0; i < n_p; i++) {

67 for (n = 0; n < N; n++) {

68

69 // compute data access pattern for coallesced read

70 stride = num_elem * n_p * n + i * num_elem;

71

72 // edge access pattern

73 stride_side = num_sides * n_p * n + i * num_sides;

74

75 // add the surface integral contribution

76 c[stride + idx] += dt/j*rhs_surface_right[stride_side + S[j]];

77 }

78 }

45

79 }

80 }

81 }

82 }

4.3.5 Limiters

Figure 4.5: To limit the solution over Ωi, we evaluate the centroid values of surrounding
elements Ωa,Ωb, and Ωc

b

b

b

ΩcΩa

Ωi

Ωb

Discontinuities such as shocks are difficult to approximate numerically. Spurious oscil-
lations, referred to as Gibbs phenomenon [17], occur near the discontinuity. These oscilla-
tions can produce nonphysical values in the model and result in numerical instability. We
employ slope limiters to remove these oscillations.

We implement the popular Barth-Jespersen limiter [26, 29] for linear p = 1 approxima-
tions. We aim to limit the maximum slope in the gradient of

Ui(r) = Ūi + αi(∇Ui) · (r− rc), (4.7)

by selecting a limiting coefficient αi. In (4.7), Ūi is the average value of Ui over Ωi and rc
is the centroid coordinate.

Suppose that element Ωi is surrounded by elements Ωa,Ωb, and Ωc, as in Figure 4.5. We
choose αi so that Ui introduces no new local extrema relative to these three surrounding
elements. As such, this limiter uses a small stencil of only the three immediate surrounding
elements.

46

We first evaluate Ui, Ua, Ub and Uc at their centroids. Define the maximum centroid
value

Umax
i = max {Ui(rc), Ua(rc), Ub(rc), Uc(rc)} (4.8)

and minimum centroid value

Umin
i = min {Ui(rc), Ua(rc), Ub(rc), Uc(rc)} . (4.9)

We want to ensure that the maximum value of Ui does not exceed Umax
i and the minimum

value of Ui does not fall below Umin
i . Thus, at each two-dimensional integration point rk,

we determine

αi,k =

min

{
1,

Umax
i −Ūi

Ui(rk)−Ūi

}
, Ui(rk)− Ūi > 0

min
{

1,
Umin
i −Ūi

Ui(rk)−Ūi

}
, Ui(rk)− Ūi < 0

1, Ui(rk)− Ūi = 0

. (4.10)

Choose

αi = min
k
{αi,k} , (4.11)

to limit the slope coefficients ci,1 and ci,2 for p = 1. For systems of equations, we choose a
separate αi for each variable m in the system.

Our implementation of this limiter operates element-wise. Each thread ti limits the
slopes for a single element Ωi. Thread ti first computes Umax

i and Umin
i as in (4.8) and

(4.9). Then, at each two-dimensional integration point rk, thread ti computes Ui(rk) in
order to compute αi,k. The smallest of the αi,k values becomes the limiting constant αi.
Finally, the coefficients modifying the slope is multiplied with this αi. This is repeated for
each variable in the system.

Each evaluation of αi requires a significant number of boolean comparisons. As such,
unavoidable warp divergence certainly inhibits performance.

4.4 Numerical Boundary Conditions

Each edge on the boundary of the computational domain must be handled differently from
non-boundary edges. As boundary edges have only a left element, Ωl, they are assigned a

47

negative index for their right_elem mapping. This negative index identifies the boundary
type. To compute the surface integral along these boundaries, the Riemann solver must
somehow compute Ur. As no Ωr is available to compute Ur, a ghost state Ug is created
to satisfy the boundary conditions and treated as Ur.

The method used to compute the ghost state Ug depends on the boundary condition.
Along inflow boundaries, the ghost state is simply assigned the values of the inflow con-
ditions. Along outflow boundaries, the ghost state must be assigned an appropriate value
which will not reflect waves back into the domain. Along reflecting boundaries, the ghost
state must reflect velocities while leaving other conserved variables unchanged. As these
boundary conditions are extremely problem dependent, they are handled individually for
each problem.

We index our edges so that all boundary edges appear sorted and first in our edge
list. This avoids warp divergence, as the edges with boundaries of the same type will be
grouped in the same warp. Each thread in these warps will all assigned a similar ghost
state, depending on the boundary condition.

4.5 Data Coalescion

As high performance computing turns compute-bound problems into memory-bound prob-
lems, efficient memory management becomes essential. Below we describe the data ordering
and memory access patterns in our implementation of the DG method.

Data coalescion in this implementation is done wherever possible to reduce the number
of read and write operations per thread. Unstructured meshes do not allow for predictable
memory access patterns, making memory access patterns to allow data coalescion very
difficult to implement. We store the coefficients ci,j in a manner so that element-wise
reads and writes are coalesced. That is, thread ti may access coefficients ci,j, j = 1, . . . , Np

as a coalesced read. Unfortunately, this ordering does not allow coalesced reads in the
surface integral kernel, as thread ti needs to access coefficients cl,j and cr,j, j = 1, . . . , Np.

To demonstrate this data ordering, we consider only a scalar problem (n = 1), as
the coefficient data access pattern remains the same for higher n. Figure 4.6 illustrates
two orderings of coefficients. The ordering demonstrated in 4.6a results in an uncoalesced
memory access pattern. Here, threads ti−1, ti, and ti+1 simultaneously accesses memory
locations far from one another. On the other hand, the ordering demonstrated in 4.6b
results in a coalesced memory access pattern. In this case, threads ti−1, ti, and ti+1 access
coefficients ci−1,j, ci,j, and ci+1,j which reside next to each other in memory. This data

48

Figure 4.6: Two orderings and memory access patterns for the coefficients

ti−1 ti ti+1

ci−1,j ci,j ci+1,j

Global Memory

· · · · · · · · ·· · ·

(a) An uncoalesced memory access pattern

ti−1 ti ti+1

ci−1,j ci,j ci+1,j

Global Memory

· · ·

(b) A coalesced memory access pattern

ordering may be done by flattening the coefficient matrix C in equation (2.61) column by
column instead of row by row, as usually done in CPU implementations.

The two-dimensional array of coefficients C from equation (2.61) is flattened and stored
in the device variable C in global memory. Accessing coefficient cmi,j is done by

1 C[num_elem*n_p*m + j*num_elem + i]

where num_elem = N and n_p = Np.

4.6 Precomputing

Precomputing trades computing time for memory storage requirements and additional
memory lookup time. On GPUs, this trade off is not always optimal, as computing time
typically pales in comparison to memory lookup time. Furthermore, the scarcity of GPU
video memory restricts storing superfluous amounts of precomputed data. With that said,
we are able to take advantage of precomputing data in our implementation by using GPU
constant memory.

49

By far, the most important precomputed values are the basis functions evaluated at
both one- and two-dimensional integration points and the gradients of the basis func-
tions evaluated at two-dimensional integration points. For the one-dimensional integration
points, we require Np× (2p+ 1) precomputed basis function evaluations along each side of
the canonical triangle. Then, for each side si of the canonical triangle and corresponding
integration points r1, . . . , rq, q1 = 2p+ 1, we must store the two-dimensional array

basis_si =

φ1(r1) φ1(r2) · · · φ1(rq1)
φ2(r1) φ2(r2) · · · φ2(rq1)

...
...

. . .
...

φNp(r1) φNp(r2) · · · φNp(rq1)

 , (4.12)

as a flattened one-dimensional array

1 basis_side = [basis_s1, basis_s2, basis_s3]

where si corresponds to side si of the canonical triangle. We then store basis_side in GPU
constant memory. Each edge can look up its own preevaluated basis function by using its
side mapping index as an offset. Doing this avoids using boolean evaluations to determine
which side of the canonical triangle to use, which thereby avoids warp divergence. The
gradients of the basis functions ∇φj are precomputed at the two-dimensional integration
points and stored in GPU constant memory in the arrays basis_grad_r and basis_grad_s in
a similar fashion. GPU constant memory is easily able to accommodate these evaluations
as even for large p, the number of basis function evaluations remains relatively small, and
is independent of the mesh size.

To compute the m-th variable of Ul at the j-th one-dimensional integration point, we
evaluate

1 U_l += C[num_elem*N_p*m + i*num_elem + l] * basis_side[left_side*N_p*n_quad1d + i*

n_quad1d + j]

for each basis function index i. To compute Ur, then, we must reverse the indexing of
basis_side. That is, to compute Ur at the j-th one-dimensional integration point, we
reverse the indexing of basis_side, evaluating

1 U_r += C[num_elem*N_p*m + i*num_elem + r] * basis_side[right_side*N_p*n_quad1d + i*

n_quad1d + n_quad_1d - 1 - j]

for each basis function index i.

Whenever data grows with the size of the mesh, that data must be stored in global
memory. We precompute the inverse Jacobian matrix J−1

i and the determinant | det Ji|

50

for each element, as both remain constant. Each edge stores a normal unit vector ni,q,
q = 1, 2, 3 for the q-th edge of element i pointing from edge q’s left to right element. In
addition, the lengths li,q of each edge are precomputed and stored. All precomputed data
is sorted to allow coalesced reads.

The total memory required for computation depends on four factors. First, the size of
the mesh determines the number of elements and edges. Second, the degree of the poly-
nomial approximation determines the number of coefficients required to approximate the
solution. Third, the size of the system of equations requires an extra vector of coefficients
for each variable in the system. Finally, the ODE solver typically needs extra storage
variables for intermediate steps or stages, which must be stored in global memory. Unfor-
tunately, this current version of our implementation does not yet copy these extra storage
variables from GPU memory back to CPU between timesteps when necessary, restricting
the maximum mesh size we are able to handle.

51

Chapter 5

Computed Examples

Table 5.1: GPU Specifications

NVIDIA GTX 580 NVIDIA GTX 460
Memory 3 GB GDDR5 1 GB GDDR5
CUDA Cores 512 336

We now present computed examples from this implementation of the DG method. Each
example demonstrates the computation of a conservation law in two dimensions. Our
simulations ran on two different graphics cards on separate workstations, detailed in Table
5.1. All tests were run on Ubuntu Linux using CUDA 4.0. Code for this implementation
is located at https://github.com/martyfuhry/DGCUDA.

Mesh generation and postprocessing was done using GMSH and a Python script. All
solutions displayed in GMSH were plotted using linear interpolation with no smoothing
applied. The discontinuous nature of the numerical solution allows sharp jumps at isolines
whenever solution values differ greatly between elements.

5.1 Linear Advection

We will first show a simple advection problem to verify the accuracy and convergence of
our implementation. Linear advection is by far the simplest hyperbolic conservation law.
It is a scalar law given by

∂tu+ a(x, y)∂xu+ b(x, y)∂yu = 0, (5.1)

52

https://github.com/martyfuhry/DGCUDA

Figure 5.1: Isolines of the solution to the rotating hill problem with p = 1

(a) Mesh A (b) Mesh D

where functions a(x, y) and b(x, y) determine the velocity of the flow of the initial profile
u0.

5.1.1 Rotating Hill

We consider the classical rotating hill advection [10] problem

∂tu− (2πy)∂xu+ (2πx)∂yu = 0, (5.2)

over a domain Ω = [−1, 1]∪ [−1, 1] with a single Gaussian pulse centered at (x0, y0) as our
initial condition. The analytical solution

u(x, y, t) = α exp(−((x cos(2πt) + y sin(2πt)− x0)2+ (5.3)

(−x sin(2πt) + y cos(2πt)− y0)2)/(2r2)), (5.4)

with constants α and r, rotates around the origin. We enforce this exact solution along
the boundaries of our domain.

We simulate the rotating hill problem on four meshes, A, B, C, and D. The first mesh
A contains 1,264 elements and each subsequent mesh was created through refinement by

53

Table 5.2: L2 error and convergence rate r for levels of h- and p-refinement for the rotating
hill test problem

p = 1 p = 2 p = 3 p = 4
Mesh Error r Error r Error r Error r
A 5.570E−2 - 3.704E−3 - 3.214E−4 - 2.236E−5 -
B 9.516E−3 2.549 3.284E−4 3.496 1.268E−5 4.664 6.452E−7 5.115
C 1.782E−3 2.417 3.648E−5 3.170 9.197E−7 3.785 2.214E−8 4.865
D 3.940E−4 2.177 4.438E−6 3.039 4.867E−8 4.240 6.325E−10 5.129

splitting each element into four smaller ones, quadrupling the mesh size with each successive
refinement. We compute the simulation with r = 0.15 and (x0, y0) = (0.2, 0) and report the
results after one full rotation at t = 1.0. We use a Runge-Kutta fourth order time integrator
and an appropriate stable CFL number (see Section 2.4). Using p = 1, · · · , 4, we perform
a convergence analysis using the L2 norms for of h- and p-refinement in Table 5.2. The
rate of convergence r nearly matches the theoretical p + 1 convergence rate expected for
our scheme.

5.2 Maxwell’s Equations

Maxwell’s equations describe the interactions of electric and magnetic fields and are used
to model problems in electrodynamics, optics, and circuits. These equations combine
Faraday’s law, Gauss’s law, Ampére’s circuital law, and Gauss’s law for magnetism into
a linear system describing wave movement through an electromagnetic field. We assume
a transverse magnetic mode; that is, we assume that the electromagnetic field points
orthogonally to the domain and that the magnetic field and wave propagation occur on
the plane. Assuming zero initial current density, Maxwell’s equations can be written in
conservative form as the linear system of equations

∂t

Hx

Hy

Ez

 = ∂x

 0
1
µ
Ez

1
ε
Hy

+ ∂y

− 1
µ
Ez

0
−1
ε
Hx

 = 0, (5.5)

where H = (Hx, Hy) is the magnetic field, Ez is the electric field, and the variables µ and ε
represent the permittivity and the magnetic permeability of the medium. Assuming a zero
initial current density forces our initial conditions to be initialized to zero. The current
density may then be added in through use of a source term, which we will prescribe as
inflow boundary conditions.

54

5.2.1 Circular Mirror

This simulation demonstrates the reflection of light off of a circular mirror [11]. Our
computational domain shown in Figure 5.3a consists of a fully reflecting curved boundary
on the right, reflecting top and bottom boundaries, and an emitter on the left boundary.
The x domain for this problem ranges from 0 to 1.5, with the curved boundary beginning
at x = 0.5. The y domain ranges from 0 to 2. We use a 68,258 element mesh with 102,695
edges.

The initial conditions are set to u0 = 0 throughout the domain. We prescribe an
emitter along the left boundary, producing a single planar pulse waveHx

Hy

Ez

 =

 0
0

sin(20πt)

 , (5.6)

for one half-period of the sine wave and 0 afterwards. Figure 5.2 shows the pulse wave
traveling along the mirror at four different times. The wave moves through the medium,
reflecting off the mirror, and creating a caustic with a focal point near (1, 1). The exact
location of the focal point is difficult to determine, as small contributions from non-paraxial
waves, that is, waves reflecting far from the center of the mirror slightly perturb the location
of the exact focal point.

Also of interest is the intensity

I = |Ez|2, (5.7)

averaged over time. Figure 5.3b shows the time averaged intensity of a single planar pulse
with p = 2. We run the single pulse simulation for forty periods of the source wave (5.6)
and average the intensity over time. This figure shows the focal point of the caustic in our
simulation occurring at approximately (x, y) = (1.06, 1.00). Indeed, our simulated focal
point is not located at (1, 1), as the simplified model would suggest. This suggests that our
simulation is able to capture the many small contributions of non-paraxial waves which
slightly modify the location of the focal point.

55

Figure 5.2: The electromagnetic field of the circular mirror test problem at various t

(a) t = 1.05 (b) t = 1.65

(c) t = 2.00 (d) t = 2.20

56

Figure 5.3: The mesh and time averaged intensity of a single pulse wave for the circular
mirror test problem

(a) The mesh (b) Time averaged intensity with p = 2

57

5.3 Shallow Water Equations

The shallow water equations describe the flow of a fluid when the size of the surface of the
fluid is much larger than its height. They are given by

∂t

 h
uh
vh

+ ∂x

 uh
u2h+ 1

2
gh2

uvh

+ ∂y

 vh
uvh

v2h+ 1
2
gh2

 = 0, (5.8)

where h is the height of the fluid, and u and v are the velocity components. The constant
g in (5.8) is the acceleration from gravity. We store the coefficients for the approximation
to the conserved variables u = (h, uh, vh) and recompute the primitive variables u and v
as needed.

To demonstrate the flexibility and ease of use of this implementation, we will provide
a brief tutorial detailing how to implement the shallow water equations. The relevant files
are found in the shallowwater/ directory in the source code.

Suppose we wish to solve the shallow water equations with a Gaussian pulse as the
initial conditions

h(x, y, 0) = h0 + α exp(−((x− x0)2 + (y − y0)2)/(2r2)). (5.9)

In (5.9), the Gaussian is centered at (x0, y0) with amplitude α and radius r and shifted up-
wards by some positive initial height h0. We set the initial velocities u(x, y, 0) = v(x, y, 0) =
0. We use a square computational domain Ω = [−1, 1] ∪ [−1, 1] and reflecting boundary
conditions.

Below, we describe the most important function in our implementation: the eval_flux

function. Both kernels eval_surface and eval_volume call this device function at every
integration point.

1 __device__ void eval_flux(

2 double *U, // the evaulation of U

3 double *flux_x, // flux x vector to return

4 double *flux_y, // flux y vector to return

5 double *V, // verticies

6 double t, // time

7 int j, // integration point

8 int left_side) { // left side mapping

9

10 // define the conserved variables

11 double h, uh, vh;

58

12

13 // read system variables

14 h = U[0];

15 uh = U[1];

16 vh = U[2];

17

18 // compute flux_x vector

19 flux_x[0] = uh;

20 flux_x[1] = uh*uh/h + 0.5*G*h*h;

21 flux_x[2] = uh*vh/h;

22

23 // compute flux_y vector

24 flux_y[0] = vh;

25 flux_y[1] = uh*vh/h;

26 flux_y[2] = vh*vh/h + 0.5*G*h*h;

27 }

This function takes, as arguments, the value of U at a given point and computes the flux
vectors flux_x and flux_y. As the flux vectors do not depend on space or time in this case,
we do not use the other arguments.

Below, we show our implementation of the local Lax-Friedrichs Riemann solver, de-
scribed in Section 2.7.

1 __device__ void riemann_solver(

2 double *F_n, // numerical flux function to return

3 double *U_left, // U evaluated over Omega_l

4 double *U_right, // U evaluated over Omega_r

5 double *V, // verticies

6 double t, // time

7 double nx, double ny, // the normal vectors

8 int j, // integration point

9 int left_side) { // left side mapping

10

11 // for indexing

12 int n;

13

14 // define the flux vectors

15 double flux_x_l[3], flux_x_r[3];

16 double flux_y_l[3], flux_y_r[3];

17

18 // calculate flux for U_left and U_right

19 eval_flux(U_left, flux_x_l, flux_y_l);

20 eval_flux(U_right, flux_x_r, flux_y_r);

21

22 // compute the largest in magnitude eigenvalue

59

23 double lambda = eval_lambda(U_left, U_right, nx, ny);

24

25 // calculate the riemann problem at this integration point

26 for (n = 0; n < N; n++) {

27 // use the local lax-friedrichs riemann solver

28 F_n[n] = 0.5 * ((flux_x_l[n] + flux_x_r[n]) * nx

29 + (flux_y_l[n] + flux_y_r[n]) * ny

30 + lambda * (U_left[n] - U_right[n]));

31 }

32 }

The device function eval_lambda computes the absolute value of the largest in magnitude
eigenvalue of the Jacobian of F. In the shallow water equations, the eigenvalues are [1]

λ1 = unx + vny (5.10)

λ2 = unx + vny − c (5.11)

λ3 = unx + vny + c, (5.12)

where c =
√
gh is the speed of sound and n = (nx, ny) denotes the normal vector along the

edge where the eigenvalues are calculated. Our implementation of this function is omitted.

We then include the initial conditions.

1 __device__ void U0(

2 double *U, // to store the initial condition

3 double x, // x coordinate

4 double y) { // y coordinate

5

6 // define the center and radius of our pulse

7 double x0, y0, r;

8 x0 = 0.5;

9 y0 = 0.5;

10 r = 0.1

11

12 // create gaussian pulse

13 U[0] = 10 + 5*exp(((x-x0)*(x-x0) + (y-y0)*(y-y0))/(2*r*r));

14 U[1] = 0;

15 U[2] = 0;

16 }

Our boundary conditions should reflect the velocities and keep the height h the same.

1 __device__ void U_reflection(

2 double *U_left, // the left evaluation

3 double *U_right, // the right evaluation to return

60

4 double x, double y, // coordinates

5 double nx, double ny) { // normal vectors on this edge

6

7 // for the dot product

8 double dot;

9

10 // set h to be the same

11 U_right[0] = U_left[0];

12

13 // and reflect the velocities

14 dot = U_left[1] * nx + U_left[2] * ny;

15 U_right[1] = U_left[1] - 2*dot*nx;

16 U_right[2] = U_left[2] - 2*dot*ny;

17 }

We compile and run this example using p = 2 polynomial approximation to time
t = 0.01 from the following command.

1 $./dgshallowtest -T 0.01 -p 2 test/mesh/testmesh.pmsh

The CPU will read the mesh file testmesh.pmsh and send the data structures and any
precomputed variables to the GPU. The initial projection will be made using the U0 device
function. The time integrator will then compute the next time step using a stable CFL
condition until time t = 0.01. The resulting solution approximations are turned into a .msh
file to be read by GMSH. Figure 5.4 shows a linear interpolation of the approximation
at various times t for a fairly coarse mesh of 2,984 elements with reflecting boundary
conditions.

61

Figure 5.4: The shallow water equations at various t

(a) t = 0 (b) t = 0.01

(c) t = 0.02 (d) t = 0.03

5.4 Euler Equations

The Euler equations describe the flow of an inviscid, isotropic, compressible fluid. These
nonlinear equations are derived from the physical conservations of mass, momentum and
energy. In two dimensions, they are given by

∂t

ρ
ρu
ρv
E

+ ∂x

ρu

ρu2 + p
ρuv

u(E + p)

+ ∂y

ρv
ρuv

ρv2 + p
v(E + p)

 = 0, (5.13)

where ρ is the density, u and v are the velocity components, and E is the energy. The
variable p in equation (5.13) is the pressure given by an equation of state, which we choose
to be

p = (γ − 1)

(
E − ρ||v||2

2

)
, (5.14)

62

Figure 5.5: The mesh and approximated solution of the supersonic vortex test problem at
a numerical steady state

(a) Mesh D (b) Density isolines over mesh D with p =
4. Isolines along the outer surface represent
higher densities than isolines along the inner
surface.

for an adiabatic constant γ and velocity vector v = (u, v). For air, we take γ = 1.4.

We store the coefficients for the approximation to the conserved variables for u =
(ρ, ρu, ρv, E) and recompute the primitive variables u, v, and p as needed. Computations
in this section are performed until a numerical steady state is reached when the maximum
absolute change in coefficient values

max
{
|cn+1
i,j − cni,j|

}
≤ TOL (5.15)

is less than an appropriate tolerance TOL.

63

Table 5.3: L2 error in density and convergence rate r for levels of h- and p-refinement for
the supersonic vortex test problem

p = 1 p = 2 p = 3 p = 4
Mesh Error r Error r Error r Error r
A 4.934E−3 - 3.708E−4 - 8.695E−6 - 4.719E−7 -
B 1.226E−3 2.009 6.003E−5 2.627 5.598E−7 3.957 1.887E−8 4.644
C 3.267E−4 1.908 8.077E−6 2.894 3.237E−8 4.645 6.925E−10 4.766
D 8.695E−5 1.910 1.043E−6 2.953 1.904E−9 4.086 2.189E−11 4.983

5.4.1 Supersonic Vortex

The supersonic vortex test problem models supersonic fluid flow through a curved quarter
cylinder tube, like that shown in Figure 5.5a. This problem has a known smooth analytical
solution, which we prescribe as the initial conditions. We use curved reflecting boundary
conditions, detailed in [25], along the curved edges and inflow and outflow boundary con-
ditions at the inlet and outlet. We run the simulation until numerical convergence occurs
with tolerance TOL = 10−14.

To verify the convergence of this implementation for nonlinear problems, we perform
a similar convergence analysis as in Section 5.1.1. Our test meshes range from A to D
with mesh A containing 180 elements. Meshes B through D were created by successive
refinement of the previous mesh by splitting each triangle into four triangles, quadrupling
the total number of elements with each refinement.

The L2 error between the numerical steady state and analytical steady state are com-
pared for each combination of h− and p-refinement in Table 5.3. These convergence rates
match theoretical convergence rates, verifying the accuracy of our implementation for non-
linear problems. Figure 5.5b shows the density isolines of the approximation at numerical
convergence of our most accurate test. Our results look both quantitatively and qualita-
tively similar to those found elsewhere; e.g., [25].

5.4.2 Flow Around an Airfoil

We now present an example of air flow around an airfoil. This test simulates the air flow
around a two-dimensional cross section of an airplane wing or a helicopter blade. One goal
of airfoil design is to produce lift by modifying either the shape of the airfoil or the angle of
the flow, known as the angle of attack. We therefore run several simulations with varying
angles of attack and flow speeds.

64

Figure 5.6: The NACA0012 airfoil and a corresponding mesh

(a) NACA0012 airfoil (b) Zoomed view of the mesh

We consider free flow around the NACA0012 airfoil design [34] shown in Figure 5.6a at
various angles of attack α and Mach numbers M . We set the free flow speed of sound and
pressure to be equal to one. This amounts to setting initial conditions to

ρ
ρu
ρv
E

 =

γ

ρM cosα
ρM sinα

1
2
ρM2 + 1

γ−1

 , (5.16)

and identical free flow boundary conditions along the outer boundaries of our computation
domain Ω. Our mesh, shown zoomed up in Figure 5.6b, contains 5,846 elements.

Figures 5.7 and 5.8 show the density and density isolines at a numerical steady state,
computed with a tolerance of TOL = 10−11, of four simulations using different values of
Mach numbers M and angles of attack α. For all simulations, we use p = 1 with the
Barth-Jespersen limiter, described in Section 4.3.5. Of interest is the classical example,
shown in Figure 5.7a, with Mach number M = 0.78 and angle of attack α = 5◦. A shock
wave forms along the top of this airfoil, which we are able to better capture by using a
limiter. We also show supersonic flow around the airfoil in Figure 5.8c by using free flow
with a Mach number M = 4, and a α = 0◦ angle of attack, creating a strong shock wave
at the head of the airfoil.

65

Figure 5.7: Steady states of the airfoil test problem with p = 1 with different Mach numbers
and angles of attack

(a) Density with M = 0.78, α = 5◦ (b) Density isolines with M = 0.78, α = 5◦

(c) Density with M = 0.78, α = 15◦ (d) Density isolines withM = 0.78, α = 15◦

66

Figure 5.8: Steady states of the airfoil test problem with p = 1 with different Mach numbers
and angles of attack

(a) Density with M = 0.98, α = 5◦ (b) Density isolines with M = 0.98, α = 5◦

(c) Density with M = 4, α = 0◦ (d) Density isolines with M = 4, α = 0◦

67

Figure 5.9: Computational domain Ω for the double mach reflection test problem. The
striped triangle represents the reflecting wedge. The shaded region on the left is the shock
region Us while the region on the right is the pre-shock condition Uq.

Us

Uq

5.4.3 Double Mach Reflection

The double Mach reflection test problem models a planar shock wave over a reflecting
angled wedge. This is equivalent to modeling an angled shock wave moving over a straight
reflecting wall. The reflections of the initial shock wave create additional shock waves and
contact discontinuities during this simulation.

We begin by sending a down- and right-moving shock wave across our domain, shown
in Figure 5.9. The computational domain Ω is defined by x = [0, 4], y = [0, 1]. The lower
boundary in our domain models a reflecting wedge beginning at x0 = 1

6
.

We begin with an incident Mach 10 shock wave with propagation angle θ = 60◦ from the
x-axis; i.e., we assume the wedge has a half-angle of 30◦. We assume that the unperturbed
flow’s density and pressure are equal to 1.4 and 1 respectively. The after shock values are
calculated to satisfy the Rankine-Hugonoit condition [2]. They are given by

Us =

ρ
ρu
ρv
E

 =

ρs

8.25 cos(θ)ρs
−8.25 sin(θ)ρs
1
2
ρs8.252 + Ps

γ−1

 , (5.17)

68

Table 5.4: Performance of the double Mach reflection test problem

Mesh Elements Memory GTX 460 Runtime (min) GTX 580 Runtime (min)
A 68,622 70.91 MB 2.94 2.07
B 236,964 225.73 MB 36.62 17.72
C 964,338 995.55 MB - 139.46

where ρs is given by

ρs =
γ(γ + 1)M2

(γ − 1)M2 + 2
, (5.18)

and the pressure is given by Ps = 116.5. The region to the right of the shock wave has the
following initial conditions

Uq =

ρ
ρu
ρv
E

 =

γ
0
0
1

γ+1

 . (5.19)

The left boundary condition sets an inflow with Us as the parameter values. The
boundary condition along the top of the domain keeps up with the speed of the incident
shock wave to simulate the effects of an infinitely long wave. Along the top boundary, at
integration points to the left of the shock wave, the exact values from Us are prescribed,
while points to right of the shock wave use the values from Uq. The x-location of the shock
wave along the top boundary (y = 1) is given by

xs = x0 +
1 + 20t√

3
. (5.20)

The lower boundary condition prescribes the values of the shock Us at x ≤ x0 and uses
reflecting boundary conditions beyond to simulate a perfectly reflecting wedge.

Our test set runs over three meshes of varying h−refinement, reported in Table 5.4.
We compute the solution until t = 0.2 when the shock has moved nearly across the entire
domain. Our solution is computed using p = 1 linear polynomials with the slopes limited
using the Barth-Jespersen limiter. Mesh refinement is done by setting a smaller maximum
edge length and creating a new mesh with GMSH.

The density and density isolines at t = 0.2 for the most refined mesh, C, are plotted in
Figure 5.10. Our jet stream travels and expands as in similar simulations by [7]. The exact

69

Figure 5.10: Density for the double Mach reflection problem using p = 1

(a) Density for mesh C

(b) Density isolines for mesh C

boundary condition at the top edge of our domain introduces small numerical artifacts
which can be seen at the front and top of the shock.

Table 5.4 also reports total runtime for both GPUs used and memory costs for these
simulations. As mesh C requires more memory than the 1GB of available video memory
on the GTX 460, we run the test for this mesh on only the GTX 580. The simulation
time, even for the very large meshes, is not prohibitive. Meshes of C’s size are typically
too large to be run in serial implementations, usually requiring supercomputing time. In
contrast, the GTX 580 completed this simulation in less than two and a half hours.

70

Table 5.5: Mesh sizes for the supersonic vortex test problem used for benchmarking

Mesh A B C D E F
Elements 180 720 2,880 11,520 46,080 184,320
Edges 293 1126 4,412 17,464 69,488 277,216

5.5 Benchmarks

After demonstrating the accuracy and robustness of our implementation, we now measure
the performance. Three factors completely determine the performance of this implemen-
tation: the number of elements in the mesh N , the degree p polynomial approximation,
and the number of variables n in the system. We therefore attempt to isolate each factor
to measure overall performance. In all tests, we used the fourth order Runge-Kutta time
integrator with a stable timestep.

5.5.1 Serial Comparison on a CPU

We compare the performance of this implementation with a CPU implementation comput-
ing in serial. To create the serial implementation, we rewrote the GPU implementation in
C, making the following necessary adjustments. We replace every parallel computation run
by a thread with a for loop. We also replace all GPU memory allocation with CPU memory
allocations. In addition, we change the memory access pattern in the CPU implementa-
tion so that the coefficients are located nearby each other from an element perspective as
opposed to a thread perspective. Finally, we remove all unnecessary memory copies as
we no longer transfer data between the GPU and CPU. The surface integral contributions
are still computed separately from the volume integral contributions and later recombined,
maintaining the same basic structure as the GPU implementation.

We will compare the computation run time between the CPU and GPU implementa-
tions. Our first test problem will compare the run time of a computation of the Euler
equations over different h− and p− refinement. Both the GPU and CPU will compute
the same number of timestep iterations for the supersonic vortex test problem described
in Section 5.4.1 for each combination of h− and p−refinement. The first test mesh, A
is created with 180 elements. Each successive mesh is obtained from refinement of the
previous mesh. Mesh sizes used for this benchmark are reported in Table 5.5.

The CPU implementation runs on a single core on an Ubuntu 12.04 machine with
an Intel Q6600 CPU running at 2.4GHz with 4GB of RAM. The GPU implementation

71

runs on each of the two NVIDIA GPUs described in Table 5.1. The number of threads
per block may be different for each test; only the best results are reported. A sufficient
number of timesteps was computed for each of the tests to allow the simulation to run for a
nontrivial amount of time on each device. Measured computation time does not include any
precomputations, mesh loading time, or the computation of the initial projection from the
initial conditions. Each test uses a fourth order, four stage Runge-Kutta time integrator.
Measured speedup is simply computed using

Speedup =
Serial Execution Time

Parallel Execution Time
. (5.21)

Measured speedup factors over each of the test meshes are reported in Figures 5.11
through 5.13. We see that for smaller meshes, the speedup is much less impressive than
it is for larger meshes. Additionally, lower polynomial degrees p seem to offer a greater
speedup advantage than higher p. We suspect this is due to a lack of increased parallelism
for higher p, as the same number of threads must complete more work as p becomes larger.
An alternative parallel implementation may find ways to increase thread granularity by
increasing the total number of threads as p increases.

The GTX 460 performed quite well, considering its relative cost to the GTX 580.
Unfortunately, the p = 5 test on mesh F requires more memory to run than the GTX
460 has available. The speedup factors tend to decrease for higher p, although this is not
strictly uniform; e.g., p = 3 over mesh C outperforms p = 2 on the same mesh. The overall
result, however, is clear. As mesh sizes increase, device saturation increases, revealing
impressive speedup factors. As p increases, thread work increases without any respective
change in parallelism, decreasing our overall speedup. This implementation performs, at
best, 52.5 times faster on the GTX 580 and 31.8 times faster on the GTX 480 than on a
single core CPU implementation.

72

Figure 5.11: GPU Speedups

p = 1 p = 2 p = 3 p = 4 p = 50

1

2

3

4
Sp

ee
du

p

1.6

2.3

1.5

1.8

1.5

2.1

3.1

2.0

2.4

1.9

NVIDIA GTX 580
NVIDIA GTX 460

(a) Speedup over mesh A (180 elements)

p = 1 p = 2 p = 3 p = 4 p = 50

3

6

9

12

15

Sp
ee

du
p

6.2 6.5 6.1 6.3

5.2

8.4 8.7 8.5 8.4

6.5

NVIDIA GTX 580
NVIDIA GTX 460

(b) Speedup over mesh B (720 elements)

73

Figure 5.12: GPU Speedups

p = 1 p = 2 p = 3 p = 4 p = 50

5

10

15

20

25

30

35
Sp

ee
du

p 17.5

14.5
17.0

13.2
12.1

29.7

25.5

30.2

23.6
21.3

NVIDIA GTX 580
NVIDIA GTX 460

(a) Speedup over mesh C (2,880 elements)

p = 1 p = 2 p = 3 p = 4 p = 50

5

10

15

20

25

30

35

40

45

Sp
ee

du
p

31.8

20.4 19.5
16.5 15.5

38.2
35.4

32.7

26.8
25.2

NVIDIA GTX 580
NVIDIA GTX 460

(b) Speedup over mesh D (11,520 elements)

74

Figure 5.13: GPU Speedups

p = 1 p = 2 p = 3 p = 4 p = 50

10

20

30

40

50

60
Sp

ee
du

p

26.7
23.0 22.9

19.2 18.9

51.1

43.5 42.8

35.9 35.4

NVIDIA GTX 580
NVIDIA GTX 460

(a) Speedup over mesh E (46,080 elements)

p = 1 p = 2 p = 3 p = 4 p = 50

10

20

30

40

50

60

70

Sp
ee

du
p

27.5 25.5
22.3

26.6

52.5
48.4

42.1

50.0

35.2

NVIDIA GTX 580
NVIDIA GTX 460

(b) Speedup over mesh F (184,320 elements)

75

Table 5.6: TPE for the supersonic vortex test problem

(a) GTX 460 (s)

Mesh A B C D E F
p = 1 6.63E−06 1.84E−06 7.22E−07 5.30E−07 4.80E−07 4.62E−07
p = 4 4.61E−05 1.42E−05 5.85E−06 4.82E−06 4.38E−06 4.26E−06

(b) GTX 580 (s)

Mesh A B C D E F
p = 1 5.09E−06 1.34E−06 4.21E−07 2.98E−07 2.54E−07 2.41E−07
p = 4 3.44E−05 1.05E−05 3.25E−07 2.77E−06 2.35E−06 2.26E−06

5.5.2 Scaling

Our final benchmark demonstrates the scalability of our implementation by measuring
performance at device saturation. Device saturation requires a sufficiently large number
of threads to be running simultaneously. As the total number of simultaneously running
threads depends on the size of the mesh, we reach device saturation by computing over
larger meshes.

We first fix p = 1 and compute the supersonic vortex test problem described in Section
5.4.1 over 10,000 timesteps on meshes A through F from Section 5.5.1. Next, we fix p = 4
and repeat the test using 1,000 timesteps over meshes A through F , described in Table
5.5. The computation run times for these two tests are displayed in Figure 5.14.

From this, we can measure the computation run time per element (TPE) for p = 1 and
p = 4. The TPE is defined as

TPE =
Time to Run T Timesteps

T × Number of Elements
. (5.22)

The TPE number computed for meshes A through F is reported in Table 5.6. Until the
device is fully saturated, the TPE number remains large. This is simply due to the nonop-
timal device utilization before device saturation. As the device becomes fully saturated,
the TPE number shrinks and then remains nearly the same.

The TPE number remains around 4 · 10−7 for p = 1 and 4 · 10−6 for p = 4 on the GTX
460, and close to half of these values on the GTX 580. The GTX 580, indeed, computes
the same test problems at around twice the speed of the GTX 460. Our implementation
scales well with h−refinement, as more threads are created to compute each element.
Unfortunately, p−refinement does not introduce more parallelism, as thread count only

76

increases with h−refinement. Indeed, the TPE for p = 4 is roughly an order of magnitude
greater than the TPE for p = 1. This is a limitation in our implementation, as higher-order
methods, even on small meshes, are computed slowly.

We finally calculate the scalability for h−refinement by increasing mesh size and com-
puting 10,000 timesteps of the supersonic vortex test problem for p = 1 and 1,000 timesteps
of the same test problem for p = 4. We compute over meshes A through F and report
the total computation time in Figure 5.14. The computation time increases exponentially
for each level of h−refinement and increases an order of magnitude between p = 1 and
p = 4. Again, until we compute over mesh C with 2,880 elements, we do not reach device
saturation, and thus, execution time does not increase exponentially until enough threads
are created to saturate the device.

77

Figure 5.14: GPU execution times

Mesh A Mesh B Mesh C Mesh D Mesh E Mesh F
100

101

102

103
E
x
e
cu

ti
o
n
 T

im
e
 (

s)

NVIDIA GTX 460
NVIDIA GTX 580

(a) GPU execution time for p = 1 and 10,000 timesteps

Mesh A Mesh B Mesh C Mesh D Mesh E Mesh F
100

101

102

103

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

NVIDIA GTX 460
NVIDIA GTX 580

(b) GPU execution time for p = 4 and 1,000 timesteps

78

Chapter 6

Conclusion

Our implementation is both effective and versatile, able to quickly compute numerical so-
lutions to many hyperbolic conservation laws, including problems from linear advection,
the Euler equations, Maxwell’s equations, and the shallow water equations. In addition,
our implementation performs over fifty times faster on the GTX 580 than a CPU imple-
mentation and over thirty times faster on the GTX 460 on some meshes. Not just for toy
problems, our implementation easily computes the double Mach reflection test problem
with nearly one million elements on the GTX 580 in a very reasonable amount of time.

Our implementation does, however, have the following major limitations. First, we
do not include support for partitioned meshes, meaning that only problems with meshes
small enough to fit on the limited video memory may be computed. This limitation proves
enormously restrictive, as large meshes with high-order polynomial approximation used for
more interesting problems require prohibitive amounts of memory. Second, thread count,
and thereby parallelism, does not increase with p. High-order polynomial approximation
requires more work and computation time than low-order approximation while offering no
advantages in parallelism. This explains the loss in speedup over CPU implementations as
we increase p. We note, however, that our implementation still offers a significant running
time speedup, nonetheless. Third, the surface integral contributions are stored twice for
each edge, using valuable memory. Fourth, we do not support mesh adaptation.

We plan to address these issues in future work. By supporting partitioned meshes, prob-
lems with arbitrarily large meshes and very high-order polynomial approximation may be
divided up. The solution over each partition of the mesh may be computed individually
on a single GPU. Furthermore, the solutions over each partition of a mesh may be com-
puted simultaneously, meaning our implementation would scale with multiple GPUs. This

79

scalability would allow our implementation to compute problems of incredible size.

80

Bibliography

[1] K. Anastasiou and C. T. Chan. Solution of the 2D shallow water equation using the
finite volume method on unstructured triangular meshes. International Journal for
Numerical Methods in Fluids, 24:1225–1245, 1997.

[2] J. D. Jr. Anderson. Fundamentals of Aerodynamics. McGraw-Hill Science/Engineer-
ing/Math, 2001.

[3] A. Baggag, H. Atkins, and D. Keyes. Parallel implementation of the discontinuous
Galerkin method. NASA Technical Report.

[4] K. S. Bey, J. T. Oden, and A. Patra. A parallel hp-adaptive discontinuous Galerkin
method for hyperbolic conservation laws. Applied Numerical Methods, 20:321–336,
1996.

[5] R. Biswas, K. D. Devine, and J. Flaherty. Parallel, adaptive finite element methods
for conservation laws. Applied Numerical Mathematics, 14(1-3):225–283, 1994.

[6] B. Cockburn, S. Hou, and C. W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional case.
Mathematics of Computation, 54(190):545–581, 1990.

[7] B. Cockburn, George E. Karniadakis, and C. W. Shu. The development of discontin-
uous Galerkin methods. 1999.

[8] B. Cockburn, S. Y. Lin, and C. W. Shu. TVB Runge-Kutta local projection discon-
tinuous Galerkin finite element method for conservation laws III: One dimensional
systems. Journal of Computational Physics, 84(1):90–113, 1989.

[9] B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws II: General framework. Mathe-
matics of Computation, 52(186):411–435, 1989.

81

[10] B. Cockburn and C. W. Shu. Runge-Kutta discontinuous Galerkin methods for
convection-dominated problems. Journal of Scientific Computing, 16(3), 2001.

[11] D. Connor. The discontinuous Galerkin method applied to problems in electromag-
netism. Master’s thesis, University of Waterloo, Waterloo, 2012.

[12] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the
triangle. International Journal for Numerical Methods in Engineering, 21(6):1129–
1148, 1985.

[13] L. C. Evans. Partial differential equations. American Mathematical Society, Provi-
dence, second edition, 2010.

[14] C. Geuzaine and J. F. Remade. Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. http://geuz.org/gmsh/.

[15] N. Goedel, T. Warburton, and M. Clemens. GPU accelerated discontinuous Galerkin
fem for electromagnetic radio frequency problems. Antennas and Propagation Society
International Symposium, pages 1–4, 2009.

[16] R. W. Hamming. The unreasonable effectiveness of mathematics. The American
Mathematical Monthly, 87(2), 1980.

[17] M. Hazewinkel. Gibbs phenomenon. Encyclopedia of Mathematics, 2001.

[18] J. S Hesthaven, J. Bridge, N. Goedel, A. Klöckner, and T. Warburton. Nodal discon-
tinuous Galerkin methods on graphics processing units (GPUs).

[19] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Springer,
New York, 2008.

[20] G. Jiang and C. W. Shu. On cell entropy inequality for discontinuous Galerkin meth-
ods. Mathematics of Computation, 62(206):531–538, 1994.

[21] C. Johnson and J. Pitkrata. An analysis of the discontinuous Galerkin method for a
scalar hyperbolic equation. Mathematics of Computation, 46:1–26, 1986.

[22] A. Klöckner, T. Warburton, and J. S. Hesthaven. Nodal discontinuous Galerkin meth-
ods on graphics processors. Journal of Computational Physics, 228(21):7863–7882,
2009.

82

http://geuz.org/gmsh/

[23] A. Klöckner, T. Warburton, and J. S. Hesthaven. High-order discontinuous Galerkin
methods by GPU metaprogramming. GPU Solutions to Multi-scale Problems in Sci-
ence and Engineering, 2012.

[24] T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. In
theory and applications of special functions. Academic Press, 1975.

[25] L. Krivodonova and M. Berger. High-order accurate implementation of solid wall
boundary conditions in curved geometries. Journal of Computational Physics,
211:492–512, 2006.

[26] D. Kuzmin. A guide to numerical methods for transport equations. 2010.

[27] R. J. Leveque. Finite Difference Methods for Ordinary and Partial Differential Equa-
tions. SIAM, Philadelphia, 2007.

[28] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,
2010.

[29] K. Michalak and C. Olliver-Gooch. Limiters for unstructured higher-order accurate
solutions of the Euler equations. Forty-Sixth Aerospace Sciences Meeting, 2008.

[30] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations
: An Introduction. Cambridge University Press, 2005.

[31] NVIDIA. CUDA C Best Practices Guide, 2011.

[32] D. Pietro, D. Antonio, and A. Ern. Mathematical Aspects of Discontinuous Galerkin
Methods. Springer, 2012.

[33] P.L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes.
Journal of Computational Physics, (43):357–372, 1981.

[34] R. E. Shidahl and P. C. Klimes. Aerodynamic characteristics of seven symmetrical
airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of
vertical axis wind turbines, 1981.

[35] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[36] Wikipedia. Flynn’s taxonomy. http://en.wikipedia.org/wiki/Flynn%27s_

taxonomy, 2013. [Online; accessed 23-March-2013].

[37] R. Yang and Christopher Zach. GP-GPU: General purpose programming on the
graphics processing unit. http://cvg.ethz.ch/teaching/2011spring/gpgpu/.

83

http://en.wikipedia.org/wiki/Flynn%27s_taxonomy
http://en.wikipedia.org/wiki/Flynn%27s_taxonomy
http://cvg.ethz.ch/teaching/2011spring/gpgpu/

	List of Tables
	List of Figures
	Introduction
	The Discontinuous Galerkin Method
	One-Dimensional Hyperbolic Conservation Laws
	The DG Method With Legendre Polynomials
	Riemann Solvers
	The CFL Condition
	Refinement and Convergence
	The One-Dimensional DG Method For Systems
	The Two-Dimensional DG Method For Systems

	Parallel Computing
	Flynn's Taxonomy
	Graphics Processing Units
	CUDA
	CUDA Example

	Implementation
	Parallel Computing with DG Methods
	Numerical Quadrature
	Algorithms
	Mesh Generation
	Surface Integration Kernel
	Volume Integration Kernel
	Right-Hand Side Evaluator Kernel
	Limiters

	Numerical Boundary Conditions
	Data Coalescion
	Precomputing

	Computed Examples
	Linear Advection
	Rotating Hill

	Maxwell's Equations
	Circular Mirror

	Shallow Water Equations
	Euler Equations
	Supersonic Vortex
	Flow Around an Airfoil
	Double Mach Reflection

	Benchmarks
	Serial Comparison on a CPU
	Scaling

	Conclusion
	Bibliography

