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Abstract

The traditional view of cancer asserts that a malignant tumour is composed of a

population of cells, all of which share the ability to divide without limit. Within the

last decade, however, this notion has lost ground to the emerging cancer stem cell

hypothesis, which counters that only a (typically small) sub-population of so-called

‘cancer stem cells’ has the capacity to proliferate indefinitely, and hence to drive

and maintain tumour growth. Cancer stem cells have been putatively identified in

leukemias and, more recently, in a variety of solid tumours including those of the

breast and brain. The cancer stem cell hypothesis helps to explain certain clinically-

observed phenomena, including the apparent inability of conventional anti-cancer

therapies to eradicate the disease despite (transient) reduction of overall tumour

bulk – presumably these treatments fail to kill the underlying cancer stem cells.

Herein, we develop stochastic and deterministic temporal models of tumour growth

based on the cancer stem cell hypothesis, and apply these models to discussions of

the treatment of glioblastoma multiforme, a common type of brain cancer believed

to be maintained by cancer stem cells, and to the phenomenon of the epithelial-

mesenchymal transition, a process thought to be important in generating cancer

cells capable of metastasis.
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Chapter 1

Introduction

The subject of cancer needs little introduction, given the extent to which it intrudes

on human lives. As an elementary definition, a cancer is any one of a class of diseases

characterized by uncontrolled cell growth and invasion into surrounding tissues.

Over the course of the last decade, however, the classical notion of a cancer as being

composed of malignant cells that are homogeneous with respect to their potential

to divide without limit has been increasingly challenged. Instead, some scientists

are viewing certain cancers as consisting of hierarchies of sub-populations of cells

with varying abilities to proliferate. At the base of these hierarchies are cancer

stem cells (CSCs), so called because of the properties they share with normal stem

cells. This view is known as the cancer stem cell hypothesis, with cancer stem cells

first being identified in various leukemias and more recently in a variety of solid

tumours including those of the brain, breast, colon, and prostate; mathematical

modelling of cancer growth based on the cancer stem cell hypothesis is the subject

of this thesis.

One particularly devastating malignancy belonging to the group classified as
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CSC disorders is glioblastoma multiforme (GBM), a disease that is at once the most

common and the most aggressive primary brain tumour. GBM patients typically

succumb to the disease within a year of diagnosis, even with aggressive treatment

consisting of surgical resection followed by radiotherapy, chemotherapy or both –

this poor prognosis has not been significantly improved upon through the course of

decades of research.

It has been suggested that the failure of standard treatment protocols to eradi-

cate GBM may be due to the presence of a sub-population of GBM cells that exercise

resistance to conventional cytotoxic treatments, and it has further been postulated

that cells from this same sub-population are uniquely responsible for initiating and

maintaining tumour growth. These cells have been termed CSCs, with the desig-

nation deriving from the fact that their defining properties – namely, the abilities

to self-renew (that is, to divide such that at least one daughter cell retains the CSC

properties of its mother CSC) and to produce mature cells of various lineages –

are also the defining properties of normal adult stem cells. Recently, human GBM

cells isolated on the basis of expression of a particular membrane-associated protein

were shown to have these cardinal stem cell properties, and hence were putatively

identified as GBM stem cells. While the cancer stem cell hypothesis is entrenched

in the theory of certain blood cancers, its extension to the field of solid-tumour bi-

ology is nascent, with putative identification and isolation of CSCs from breast and

brain cancers occurring in 2003. Challenging the full-scale acceptance of the CSC

hypothesis in solid-tumour biology are several objections raised by critics, includ-

ing questioning of the relevance of the “gold-standard” assay in identifying CSCs –

the implantation of human cancer cells into immunodeficient mice, a model system

which may not necessarily test for the same growth properties that characterize a

tumourigenic cell in a human host. Continued research by experimentalists aims
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to address the validity of the CSC model in various human malignancies, and it

is speculated by some that certain tumours will be found to adhere to the CSC

hypothesis while others do not. Regardless, the additional scrutiny of cancers due

to their being viewed in the light of the CSC hypothesis is likely to contribute to

an enhanced understanding of the individual diseases.

The CSC hypothesis has some important implications for the study and treat-

ment of cancers. Philosophically, it implies that a cancer is a form of aberrant

organ growth, with malignant cells being caricatures of their normal counterparts,

in which a hierarchy of cells is maintained – imparting the tumour with an order

and contrasting the common view of cancer as the epitome of disarray. More practi-

cally, it suggests that current cytotoxic treatment strageties such as chemotherapy

and radiotherapy that aim to indiscriminately kill dividing cells may be futile be-

cause they may spare CSCs. Another ramification of the CSC hypothesis is that

the dissemination of a CSC from the primary tumour and its re-establishment in

a secondary location is necessary for metastatic growth to occur. An interesting,

albeit alarming, recent proposal is that the same mechanism which gives certain

cancer cells the ability to disseminate (the “epithelial-mesenchymal transition”, or

EMT) may also endow these cells with the CSC phenotype.

This thesis, devoted to the mathematical modelling of the growth of cancer cells

based on the CSC hypothesis, is organized into six chapters. Chapter Two is dedi-

cated to previous work, and is divided into two sections. The first section presents

a brief historical overview of the scientific developments leading from the initiation

of the field of (normal) stem cell biology to the formulation of the CSC hypothesis

for solid tumours; this section concludes with a review of some of the criticisms and

unanswered questions associated with the cancer stem cell hypothesis. The second

section of Chapter Two reflects on previous mathematical modelling – while math-
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ematical modelling has made valuable contributions to many aspects of the study

of cancers, we restrict the discussion herein to previous models in cancer biology

and in normal stem cell biology that are pertinent to our consideration of the CSC

hypothesis.

In Chapter Three, we simultaneously develop a discrete, stochastic model and

a continuous, ordinary differential equation model of the growth of populations of

cancer cells categorized into sub-populations of cells defined based on their positions

within a CSC hierarchy. The stochastic model treats cell division as a random event,

and is of particular relevance when the number of cells under consideration is small,

while the continuous model represents a tractable simplification of the stochastic

approach that is appropriate when large numbers of cells are being considered, as

they often are in discussions of cancer. Here, we begin with a simple case in which

a system is composed of two sub-populations of cells (CSCs and non-stem cancer

cells), and extend this to the general case in which arbitrarily many sub-populations

of cells are included.

Chapter Four is the first of two chapters in which the models of Chapter Three

are borrowed for clinical or experimental applications. In Chapter Four, we discuss

the treatment (and treatment failures) of GBM. In particular, the recent obser-

vations that GBM CSCs may be preferentially resistant to radiotherapy and that

particular proteins (bone morphogenetic proteins) may induce GBM CSCs to shed

their CSC phenotype via differentiation are considered. In Chapter Five, we ex-

amine the aforementioned link between the EMT and the stem cell phenotype,

particularly in the context of cells closely related to breast cancer cells, with the

purpose of attempting to distinguish between two proposed mechanisms by which

experimentally-induced EMT may enrich the sub-population of mammary stem

cells. To facilitate this, we also consider the mammosphere assay, an experimental
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technique used in the culturing of both normal mammary stem cells and breast

CSCs. Finally, in Chapter Six, we discuss conclusions and opportunities for future

work.
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Chapter 2

Background

2.1 A brief histoy of cancer stem cell biology

Here, we present a brief chronological history of the developments leading from the

initiation of the field of stem cell biology in the mid-20th century to the formulation

of the cancer stem cell hypothesis in solid tumours, beginning with (and focusing

special attention on) the pioneering work of Till and McCulloch on hematopoietic

stem cells. While this history is by no means complete, we attempt to highlight

important discoveries and technological advancements of relevance to the chapters

to come. It is useful at this point to make clear the following definition: a (cancer)

stem cell is a cell that has the abilities to self-renew (by which we mean divide such

that at least one daughter cell has the same stem cell properties as its mother cell)

and to produce differentiated (mature) cells of a variety of lineages.
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2.1.1 Till and McCulloch and the advent of stem cell biol-

ogy

The field of stem cell biology began in earnest following the end of the Second

World War, as scientists sought to understand the toxic effects of radiation that

caused human death, both over short and long time periods, necessitating studies

on mice. It was found that the symptoms of mice exposed to whole-body X-

irradiation mimicked the human symptoms of radiation poisoning – the minimal

lethal dose resulted in death due to failure of the hematopoietic (that is, blood-

forming) system [Jacobson et al., 1949]. Interestingly, mice receiving the same

irradiation dose recovered if either the spleen or a single large bone (both of which

are sites of blood production) was shielded [Jacobson et al., 1949], suggesting that

these sites harbour the capacity to replenish depleted populations of hematopoeitic

cells.

The hematopoietic system is particularly vulnerable to irradiation because of

the high frequency of division that its cells undergo, as the effects of irradiation

establish themselves as toxic during the process of cell division. The utility of radi-

ation in killing cells of another (albeit aberrant) system characterized by rapidly-

proliferating cells – cancer – did not go unrecognized; hence, it became necessary to

quantify the sensitivities of normal cell types to radiation in order to find a balance

between the elimination of malignant cells and the sparing of well-behaved ones.

To this end, biophysicist James Till and biologist/physician Ernest McCulloch con-

ducted seminal research in which they measured the capacity of irradiated murine

bone marrow cells to reconstitute the hematopoietic systems of irradiated mice [Till

and McCulloch, 1961]. In this manner they intended to investigate the radiation

sensitivity of proliferating cells – serendipitously, they also suggested the existence
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of a hematopoietic stem cell.

Their experiments relied on a spleen colony-forming assay: it was known that

injection of a sufficient number of bone marrow cells into sufficiently-irradiated mice

led to the formation of nodules in the spleens of the recipient animals. Till and

McCulloch (1961) counted the number of spleen nodules formed as a function of

the number of irradiated bone marrow cells received by the transplanted mice (for

various irradiation doses), and found that the relationship between these quanti-

ties was approximately linear, with the line-of-best-fit obtained via least-squares

approximately passing through the origin – suggesting, although not proving, that

a single bone marrow cell could give rise to a spleen nodule.

Proof that the spleen colonies were clonal in origin (that is, that a single spleen

colony was generated in its entirety by a single hematopoietic cell) did follow soon

after, again from the laboratory of Till and McCulloch (1963). Murine bone mar-

row cells were injected into recipient mice that had received a small pre-injection

dose of x-irradiation; shortly following the injection, the recipient mice were again

irradiated, so that in total, they received sufficient irradiation to suppress their

hematopoietic systems, thus rendering the animals’ hematopoietic systems sus-

ceptible to reconsitution by the transplanted cells. The injected bone marrow cells

received only a part of this total irradiation, bestowing on the surviving cells unique

karyotypic signatures (chromosomal abnormalities) as a consequence of randomly-

induced mutations. Eleven days later, the mice were euthanized and their spleen

nodules dissociated. Examination under the microscope revealed that, in spleen

colonies exhibiting distinguishable configurations of chromosomes, the “overwhelm-

ing majority” of cells in a given colony exhibited the characteristic chromosomal

abnormality [Becker et al., 1963]. This provided direct support for the conclusion

that an entire spleen colony, typically consisting of over one million cells after a pe-
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riod of ten days, could originate entirely from one cell. This “colony-forming cell”

reflected the definition of a stem cell in other ways besides its obvious potential for

sustained proliferation – it exhibited self-renewal (since other colony-forming cells

were found to be present in spleen colonies) and the capacity to produce differ-

entiated cells of various lineages (myelocytes and erythrocytes of various levels of

maturity were observed [Till and McCulloch, 1961]). These cells were also found

to be quite rare, with a frequency of about one colony-forming cell per 104 bone

marrow cells [Till and McCulloch, 1961].

2.1.2 Subsequent characterisation of hematopoietic stem

cells

The seminal work of Till and McCulloch in the early 1960s demonstrated the exis-

tence of hematopoietic stem cells (HSCs) and afforded them a functional definition,

but it did not provide a method of isolating these cells so that they could be stud-

ied directly [Weissman, 2002]. Over the next three decades, a succession of studies

by various researchers gradually refined the scientific community’s knowledge of

the HSC phenotype [Weissman, 2002], leading to the purification of mouse HSCs

(on the basis of expression of a variety of cell-surface-associated proteins) by Irving

Weissman’s group in 1988 [Spangrude et al., 1988]. Building on this work on murine

stem cells, subsequent research has steadily been conducted in order to elucidate

the identity and function of human hematopoietic stem cells. Figure 2.1 illustrates

the current state-of-knowledge of the hierarchy of the hematopoietic system, with

HSCs at the base.
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Figure 2.1: An illustration of the hierarchy of cells originating from the hematopoi-

etic stem cell, used with permission from [Passegué et al., 2003]; copyright 2003

National Academy of Sciences, U.S.A.

2.1.3 Recognition of heterogeneity within tumours

Concurrent with the burgeoning of the field of stem cell biology, various inde-

pendent researchers began to note the apparent heterogeneity of cancer cells with

respect to their potential to initiate new tumours. In 1961, prompted by the ob-

servation that disseminated tumour cells are commonly found in the blood and

lymph fluid of cancer patients yet actual metastatic growths are relatively rare,

Southam and Brunschwig (1961) reported results of an experiment in which they

auto-transplanted cancer cells into various locations under the skin of terminal can-

cer patients [Southam and Brunschwig, 1961]. (The experiments of Southam and

Brunschwig (1961) are interesting today not only for the results they yielded but

also for their methodology, which would be unjustifiable by contemporary ethical

standards.) The authors found that at least 106 (unsorted) cells were required to
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initiate a secondary tumour, suggesting that not all cells of the original tumour

were capable of initiating tumour growth. On the heels of this work, Bruce and

van der Gaag [Bruce and van der Gaag H., 1963] demonstrated in 1963 that only a

fraction (1-4%) of murine lymphoma cells were capable of forming spleen colonies

[similar to those described by Till and McCulloch (1961)] in recipient mice.

While these reports by Southam and Brunschwig (1961) and Bruce and van der

Gaag (1963) only suggested the probable existence of cancer stem cells, McCulloch

and his colleagues were writing freely of “tumor stem cells” by the 1970s, with Mc-

Culloch et al. describing in 1971 their observation that only about 1% of murine

myeloma cells formed colonies in vitro [Park et al., 1971]. By the late 1970s, Ham-

burger and Salmon had developed their own in vitro colony-forming assay; using

this experimental system, they extended the demonstration of proliferative hetero-

geneity of cancer cells from lymphomas and leukaemias to solid tumours, showing

that for various solid tumours, only 1 in 1000 to 1 in 5000 tumour cells was capable

of forming colonies [Hamburger and Salmon, 1977].

2.1.4 Technology

A handful of important technological advances were instrumental in facilitating the

refinement of the phenotypic definition of normal and cancer stem cells, both in mice

and men. One of these was the development, by Köhler and Milstein in 1975, of

a process by which monoclonal antibodies specific to any cell surface protein could

be produced (monoclonal antibodies are proteins engineered to be produced by a

colony of immune-system cells) [Kohler and Milstein, 1975]. This gave experimen-

talists the ability to ‘tag’ sub-populations of cells with certain cell-surface protein

expression profiles. These tagged cells could then be sorted through fluorescence-
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activated cell sorting (FACS), a process then newly-introduced by Herzenberg and

colleagues [Bonner et al., 1972] allowing for the sorting and separation of single,

viable cells.

As direct studies of human hematopoietic repopulation by putative human

hematopoietic stem cells after irradiation were (and still are) impractical for a

number of (mostly ethical) reasons, studies of human stem cells necessitated the

engineering of strains of mice able to tolerate the introduction of foreign cells.

This was accomplished with the development of severe combined immunodeficient

(SCID) and non-obese diabetic severe combined immunodeficient (NOD/SCID)

mice as model systems in the late 1980s and early 1990s, respectively (see, e.g.,

[Kamel-Reid and Dick, 1988]).

2.1.5 Cancer stem cells in leukemias and in solid tumours

While the works listed above (and others like them) indicated that different cancer

cells from the same tumours varied in their abilities to maintain continued prolif-

eration, they did not specify which cells were cancer stem cells. The first definitive

demonstration of a cancer stem cell came in the mid-1990s, with the identifica-

tion of the human acute myeloid leukemia (AML) stem cell by John Dick and

colleagues, who experimented with NOD/SCID mice [Lapidot et al., 1994]. These

cells, termed more specifically SCID leukemia-initiating cells (SL-ICs), were isolated

from human leukemias on the basis of their expressing the cell-surface protein CD34

while not expressing the cell-surface protein CD38 (a phenotype usually denoted

CD34+/CD38−). It was found that injection of as few as 5000 CD34+/CD38− hu-

man AML cells could initiate leukemia in NOD/SCID mice, whereas injection of up

to 100 times as many CD34−/CD38+ cells failed to do so. Thus, it was determined
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that the SL-ICs lie in the CD34+/CD38− fraction, which represented anywhere

from 0.02-1% of the total fraction of leukemia cells in various (human) patients.

Crucial to the characterization of the SL-IC as a “cancer stem cell”, these cells were

shown to have marked capacity to differentiate (producing a myriad of cell types

in vivo that were representative of the constitution of the original leukemia), and

demonstrated the ability to self-renew (forming secondary leukemias after extrac-

tion from the first murine host and introduction into new mice). Over the next

several years, the cancer stem cell hypothesis became firmly intrenched in the ac-

cepted understanding of acute myeloid leukemia as the phenotype and functional

role of the SL-IC was refined. The full blossoming of the cancer stem cell field,

however, would require the discovery of cancer stem cells in malignancies beyond

those of the blood.

In 2003, the first report of cancer stem cells in a solid tumour came from the lab-

oratory of Michael Clarke [Al-Hajj et al., 2003], whose team prospectively identified

tumourigenic breast cancer cells, again on the basis of a particular phenotype (these

cells express the cell-surface protein CD44, while lacking or having low expression

of CD24 and no expression of any lineage marker proteins indicating cellular matu-

rity – hence, they are denoted CD44+/CD24−/lowLineage−). As in the case of the

the SL-IC, Clarke’s group employed a NOD/SCID mouse model, into which they

xenografted human breast cancer cells. Within a year, a human brain tumour stem

cell was also identified, this time by the group of Peter Dirks [Singh et al., 2004].

Subsequently, cancer stem cells have been putatively identified in many types of

solid tumours, including prostate [Collins et al., 2005], colon [O’Brien et al., 2007],

pancreatic [Li et al., 2007], head-and-neck [Prince et al., 2007] and lung [Eramo

et al., 2008] cancers.

13



2.1.6 The origins of cancer stem cells

The connotations of the term “cancer stem cell” have led to some confusion regard-

ing the role of CSCs in oncogenesis (the development of cancer). We point out that

CSCs are distinct from the “cell of origin” of a cancer, with the latter term referring

specifically to the cell that is the subject of the first mutation on the genetic road

to malignancy [Visvader and Lindeman, 2008].

The question, “from which type of cell does a CSC arise?” is another continuing

source of debate. Those same functional parallels between normal stem cells and

CSCs that lend CSCs their name make it attractive to suppose that CSCs arise by

transformation of normal stem cells. Normal stem cells, by virtue of the property

of self-renewal, have the longevity that may be necessary to acquire a series of

mutations that leads to oncogenic transformation, whereas more mature (and hence

relatively short-lived) cells may not. Furthermore, it is logical to suppose that fewer

changes (i.e. fewer mutations) would need to occur in a normal stem cell for that cell

to gain the functionality of a CSC, than for a more mature cell that is not already in

command of the powers of self-renewal and multilineage differentiation to produce

the same CSC [Dirks, 2008]. While these arguments exist, they still remain largely

philosophical and, indeed, evidence exists (particularly in leukemias) suggesting

that many CSCs arise from the transformation of more mature progenitor cells

rather than from stem cells [Krivtsov et al., 2006, Lobo et al., 2007].

2.1.7 Criticism

While the CSC hypothesis seems to be generally accepted for certain leukemias

[Kern and Shibata, 2007], its relevance to solid tumour growth remains contro-

versial. Critics are hesitant to adopt the CSC hypothesis on the basis of several
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arguments. The most superficial of these pertains to nomenclature: the “cancer

stem cell” moniker is objectionable to some on the grounds that it can be confused

with the “cell of origin” [Kennedy et al., 2007], as discussed above; others point

out that, as the full extent of the mechanistic analogy between normal and cancer

stem cells remains to be elucidated, terms such as “tumour-initiating cell” may be

more appropriate [Hill and Perris, 2007].

Concerns not grounded in semantics exist, as well. Virtually all demonstra-

tions of CSCs in solid tumours have adhered to the experimental framework of

sorting human tumour cells based on phenotypic markers, and then implanting

sub-populations of cells into NOD/SCID mice. Critics fear (and validly so) that

such xenograft assays test not a sub-population of cells’ true tumourigenic poten-

tial, but rather the ability of cells to adapt to the (foreign) murine environment

[Shipitsin and Polyak, 2008]. The NOD/SCID xenograft model, then, may under-

estimate the fraction of tumour cells that truly have the ability to initiate tumour

growth. Such criticism is suggestive of supposition of an alternative model for tu-

mour growth, namely the “stochastic model”, which asserts that the majority of

tumour cells have the ability to self-renew and initiate tumours, but due to various

external factors each cell has only a small probability of demonstrating this in any

given assay [Adams and Strasser, 2008, Reya et al., 2001].

The stochastic model can be considered as a feature of the clonal evolution

model [Visvader and Lindeman, 2008], under which tumour heterogeneity arises

as a consequence of different clones (harbouring different genetic mutations) be-

ing at different stages of malignant transformation [Adams and Strasser, 2008].

Mounting evidence suggests that some cancers may strictly adhere to the clonal

evolution/stochastic model while others strictly follow the cancer stem cell model,

with other cancers representing various hybrids of the two viewpoints [Adams and
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Strasser, 2008]. For example, in such a hybrid model, the genetic instability that

is fundamental to the clonal evolution model may have the effect of forcing clonal

evolution on CSCs themselves [Visvader and Lindeman, 2008].

Another uncertainty with the experimental results supporting the CSC hypoth-

esis is an apparent inconsistency in the reported numbers of CSCs required to form

tumours in mice, as pointed out by Richard Hill [Hill and Perris, 2007]. For ex-

ample, in their putative identification of a colon cancer stem cell on the basis of

expression of the marker protein CD133, O’Brien et al. found that injection of

as few as 200 CD133+ CSCs into NOD/SCID mice resulted in tumour initiation,

whereas about 60 000 cells from the unsorted population (comprising a mixture

of both CD133+ and CD133− cells) were required to do the same [O’Brien et al.,

2007]. With roughly 12% of cells in the unsorted population expressing CD133 this

means that in the latter case, about 7000 putative CSCs were required for tumour

initiation – a value which contrasts that of 200 CSCs from the sorted population.

While this apparent disparity may have a biological explanation that does not vi-

olate the CSC hypothesis – it has been postulated that the presence of CD133−

cells downregulates the tumourigenicity of CD133+ CSCs, or alternatively that a

small number of cells (e.g. 200) can escape immune detection when injected into

mice whereas larger numbers elicit an immune response [Hill and Perris, 2007] – it

is still a concern.

It has generally been presumed that CSCs constitute a rare sub-population of

tumour cells, and one of the implications of the CSC hypothesis is that it is this rare

subpopulation that needs to be understood and targeted therapeutically. Recently,

however, experiments by the research group of Sean Morrison have cast doubt on

the presupposed rarity of cells with tumour-initiating ability in melanoma [Quin-

tana et al., 2008]. Melanoma is a disease reported to be driven by CSCs, based on
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the observation that only roughly one per million human melanoma cells was found

able to initiate tumour growth in NOD/SCID mice [Schatton et al., 2008]. Quin-

tana et al. (2008) xenotransplanted human melanoma cells into a modified strain of

NOD/SCID mice that also lacked natural-killer cell activity (an important class of

cells of the immune system), and furthermore co-injected the melanoma cells with

Matrigel (a protein mixture resembling typical extracellular environments). In this

modified xenotransplantation system, melanoma cells exhibited a marked increase

in the ability to initiate tumour growth – as many as one in four melanoma cells

formed tumours, even when implanted as single cells. Tumour-initiating cells also

varied widely with respect to phenotypic characteristics such as cell-surface protein

expression. These results demonstrate that the identification and observed rarity

of melanoma stem cells by Schatton et al. (2008) are artifacts of the NOD/SCID

xenotransplantation assay, and that a new assay yields an interpretation more con-

sistent with the stochastic model of tumour growth. Thus, this seems to argue

against the existence of CSCs in at least a particular class of melanomas, or other-

wise at least diminish the significance of CSCs in this particular disease – although

it has been pointed out that rarity is not necessarily a defining property of CSCs

[Baker, 2008], if all or most cancer cells have tumourigenic ability then the tradi-

tional strategy of focusing on therapies that simply eradicate the bulk of tumour

cells is not threatened by the CSC hypothesis.

Quintana et al. (2008) have highlighted the importance of xenotransplantation

techniques in dicating the growth properties of xenotransplanted cells. It will be

interesting to see if the use of novel assays leads to the observation of similar

tumour-initiating ubiquity in other cancers previously hypothesized to be driven by

(rare) CSCs. Various investigators, including Quintana et al. (2008), suggest it is

likely that some cancers follow a CSC model, while others do not. Taken together,
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these criticisms and unresolved questions illustrate some of the complexities of

contemporary cancer research and highlight the need for continued investigation.

2.2 Mathematical Modelling of (Cancer) Stem

Cells

Mathematical modelling has made significant contributions to the collective un-

derstanding of cancer biology since the pioneering work of Nordling [Nordling,

1953] and Armitage and Doll [Armitage and Doll, 1954] in deciphering cancer age-

incidence data to conclude that multiple mutations are required for full-blown ma-

lignancy to occur. The spectrum of cancer-related topics addressed mathematically

by various groups over the course of the last five decades is too broad for consid-

eration in this thesis. Instead, we focus on mathematical modelling of relevance

to the cancer stem cell hypothesis; even with this restriction we inevitably and

regrettably neglect the efforts of some. The following is a brief description of some

of the mathematical modelling related to the contents of the coming chapters.

2.2.1 Deterministic Modelling of CSCs in Leukemias and

the Brain

As the architecture of the (normal) hematopoietic system became increasingly elu-

cidated through the decades following the seminal work of Till and McCulloch

(1961), interdisciplinary researchers began employing mathematical models to in-

terpret, and extrapolate, their results. Throughout the late 1970s and early 1980s,

H.-Erich Wichmann and Markus Loeffler, in particular, developed a compartmental
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model of hematopoietic stem cell regulation which they then subjected to various

biologically-relevant insults in order to predict results [Wichmann and Loeffler,

1985]. Their model was a deterministic, compartment-based model featuring six

comparments of hematopoietic cells (pluripotent stem cells, early and late erythro-

poeitic progenitor cells, erythropoietic precursor cells, granulopoietic progenitor

cells, and granulopoietic precursor cells); these compartments were interrelated

through various feedback mechanisms, with the population of cells in each com-

partment being governed by an ordinary differential equation (spatial variations

were not considered).

While the work of Wichmann and Loeffler (1985) is noteworthy in hematolagy

for its depth and scope, its significance in the context of this thesis lies in its uptake

two decades later by Ganguly and Puri, who adapted it to a discussion of cancer

stem cells [Ganguly and Puri, 2006]. Ganguly and Puri considered four compart-

ments of normal cells – stem cells (SC), early progenitor cells (EP), late progenitor

cells (LP) and mature cells (M) – with the division properties of each of the first

three compartments governed in part by feedback from other compartments. Three

additional compartments of abnormal cells (SCA, EPA, and abnormal precursors

AP) were introduced, with cells being transferred from the SC compartment to

the SCA compartment and from the EP compartment to the EPA compartment,

each with some mutation rate – these abnormal cells were assumed to be regulated

according to the same mechanisms as normal cells, and their associated parame-

ters were taken to have the same values as their normal counterparts. Among the

authors’ conclusions were that mutations in the SC compartment lead to faster

growth of abnormal progeny than do mutations in the EP compartment, and that

under the assumed regulatory system, an insult that depletes the number of normal

mature cells (e.g. radiotherapy) ultimately leads to an increase in the production
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of abnormal progeny. In a later paper, Ganguly and Puri included the effects of

chemotherapy [Ganguly and Puri, 2007], concluding that while targeting of only

the AP sub-population leads to an immediate arrest of AP cell growth, targeting of

only the SCA sub-population ultimately results in lower cell numbers although the

time period before these effects are observable is greater than in the former case.

We point out that Ganguly and Puri [Ganguly and Puri, 2006, 2007] have assumed

the same hierarchy and regulatory networks as in the hematopoietic system in their

consideration of non-specific cancer growth based on the CSC hypothesis, while the

precise hierarchies and mechanisms of regulation of most solid tumours implicated

in the CSC hypothesis (e.g. those of the brain) remain to be elucidated.

ODE modelling has been used recently to investigate the role of leukemic stem

cells (LSCs) in the treatment of chronic myeloid leukemia (CML) by Michor et

al. [Michor et al., 2005a], who divided each of the three populations of normal

hematopoietic, leukemic, and drug-resistant leukemic cells into four compartments

(stem, progenitor, differentiated and terminally-differentiated cells) governed by

ODEs. Comparison of the model results to clinically-derived measurements of CML

cell numbers during the course of treatment with the anti-CML drug imatinib

led Michor et al. [Michor et al., 2005a] to conclude that imatinib, while effective

in depleting leukemic progenitor cells and differentiated leukemic cells, does not

deplete the sub-population of LSCs.

An alternative interpretation of the imatinib-treated CML data was offered by

Komarova and Wodarz, who considered only sub-populations of actively-dividing

LSCs and quiescent LSCs (a “quiescent” cell is one that has temporarily exited

the cell cycle and hence is insensitive to anti-cancer therapies such as imatinib

that target actively-dividing cells) [Komarova and Wodarz, 2007]. Applying ODE

modelling to these compartments, Komarova and Wodarz (2007) suggested that
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imatinib does deplete the LSC sub-population and that extended use of the drug

may eventually lead to eradication of the malignancy as quiescent LSCs are drawn

back into the actively-cycling sub-population.

CML progresses through three clinically-defined phases: the chronic phase, the

accelerated phase, and blast-crisis [Michor, 2008]. It is thought that the accumu-

lation of additional mutations facilitates the progression from one phase to the

next, and the question of which cellular compartment is the target of the blast-

crisis-initiating mutation was addressed by Michor [Michor, 2007]. Again using

ODE modelling to describe the growth of two sub-populations of CML cells – LSCs

and leukemic progenitor cells – Michor concluded through comparison of her model-

predicted rates of blast-crisis initiation with clinically-measured rates that the blast-

crisis precursor cell likely lies in the leukemic progenitor cell sub-population, rather

than the LSC sub-population.

2.2.2 Modelling the Role of Stem Cells in Colorectal Can-

cer

Deterministic compartmental models have also been used in the context of colorectal

cancer (CRC). Although a colon cancer stem cell was not identified until 2007

[O’Brien et al., 2007, Ricci-Vitiani et al., 2007], colorectal cancer has long been

thought of as a stem cell disorder, due to the long-standing knowledge that the

lining of the colon is arranged into many “crypts”, each of which is maintained by

normal stem cells. This makes the case of colon cancer somewhat unique among

solid tumours, in that it was considered a disease involving cancerous stem cells

before the entrenchment of the CSC hypothesis in the solid tumour literature. A

significant body of mathematical work has been devoted to understanding colonic
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crypt stem cell dynamics in homeostasis; such work is reviewed in [van Leeuwen

et al., 2006] and [Johnston et al., 2007b], for example. We here turn our attention

to models relevant specifically to colorectal cancer.

Johnston et al. developed a compartmental model of colonic cell populations

in homeostasis and cancer that kept track of three interrelated sub-populations –

stem cells, transit (i.e. progenitor) cells, and fully differentiated (i.e. mature) cells

[Johnston et al., 2007a]. Their model was age-structured, in the sense that in addi-

tion to counting the numbers of cells in each compartment, the authors kept track

of the age distributions of the sub-populations. To complement their analysis of the

age-structured model, Johnston et al. (2007) simultaneously developed a continu-

ous ODE model, describing the same three cellular sub-populations. By imposing

various forms of theoretical regulation on the divisions of stem and progenitor cells,

the authors sought conditions (i.e. parameter changes) that led to breakdown of

regulation and hence unbounded growth (interpreted as cancer). The work of John-

ston et al. (2007) built on earlier efforts by Tomlinson and Bodmer [Tomlinson and

Bodmer, 1995], who had considered a related compartmental model to predict that

the uncontrolled growth observed in colon cancer could be attributed to the failure

of stem cells to differentiate or undergo apoptosis (programmed cell death).

It is of note that the CSC hypothesis, while not being explicitly discussed, has

been taken as implicit in much of this colorectal cancer modelling, in the sense

that CRC is viewed as resulting from, and being maintained by, a dysregulated

population of stem cells. The first modelling of colorectal cancer done explicitly in

the context of the CSC hypothesis, evidently, was by Boman et al. [Boman et al.,

2007]. Boman and colleagues presented a four-compartment ODE model in order to

determine what changes could account for the dramatic expansion of the numbers

of stem cells from the healthy colonic crypt to the pathological case of colorectal
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cancer. They considered stem cells, intermediate proliferating cells (analogous to

progenitor cells), non-proliferating cells (analogous to fully mature cells or cells that

are in a state of irreversible quiescence), and eradicated (dead) cells. Performing a

computational analysis on the ODEs they formulated, Boman et al. concluded that

an increase in the rate of symmetric self-renewal of stem cells is key in facilitating

the aforementioned expansion of stem cells.

2.2.3 Stochastic Modelling of the Origins of Cancer

In recent years, a large body of work has come forth from Harvard University’s

Program for Evolutionary Dynamics, headed by Martin Nowak, and affiliates. Much

of this group’s research has employed stochastic modelling of stem cell dynamics

to investigate the role of mutations in various cell compartments in the initiation

and progression of cancer. (While the class of research directed at understanding

the origins of cancer from a normal stem cell hierarchy may not be cancer stem cell

modelling per se, we devote some attention to it here because of the frequency with

which it arises in a search for “cancer stem cell” modelling literature, and because

of its possible relevance to future modelling of CSC dynamics that includes such

features as clonal evolution.)

A Moran process is a stochastic process in which individual objects (e.g. stem

cells) are randomly chosen to reproduce and are randomly chosen to be removed

from the system such that the total number of individuals at any given time re-

mains constant [Michor et al., 2006]. While, clearly, the restriction that the num-

ber of cells remains constant makes this model inappropriate for consideration of

a growing tumour, the population of normal stem cells under homeostasis can be

considered as a Moran process . Indeed, Michor et al. have made this assumption
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in addressing the origins of CML, a disease to which the BCR-ABL fusion muta-

tion (the “Philadelphia chromosome”) is infamously linked [Michor et al., 2006].

Assuming that hematopoietic stem cells divide according to a Moran process, but

that at each division there is a probability that a cell carrying the Philadelphia

chromosome will arise and that the acquisition of the Philadelphia chromosome in-

creases the reproductive “fitness” of a stem cell, Michor et al. [Michor et al., 2006]

proposed that a single mutation (that is, the Philadelphia chromosome mutation)

is sufficient to match the age-incidence data of CML diagnoses. This prediction

is significant because many cancers, including CML, are often thought to require

several mutations before being characterized as malignant [Michor, 2008]. We note

that Michor and colleagues have used similar models to investigate the dynamics of

genetic events involved in colorectal cancer initiation, as summarized in the review

articles [Michor et al., 2004] and [Michor et al., 2005b].

2.2.4 Modelling the Growth of (Cancer) Stem Cells as a

Birth-and-Death Process

Till and McCulloch quickly followed their proof of the clonal nature of spleen

colonies [Becker et al., 1963] with a mathematical study inquiring into the nature

of regulation of the newly-discovered HSC [Till et al., 1964]. The observation that

the number of spleen colony-forming cells per colony varied markedly from colony

to colony suggested that control of stem cell division may be somewhat slack, lead-

ing Till et al. to propose that hematopoietic stem cells may be mathematically

modelled by a “birth-and-death” process, a continuous-time stochastic process in

which the quantity of interest (in this case, the number of HSCs) may during a

single stochastic event vary only from the (integer) state n to n + 1 (a “birth”)
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or from n to n − 1 (a “death” – birth-and-death processes will be considered in

greater detail in the following chapter). In this context, a “birth” is a symmetric

self-renewing HSC division in which one HSC divides to give two daughter HSCs,

while a “death” is the differentiation of a HSC (asymmetric divisions in which an

HSC divides to yield one daughter HSC and one differentiated daughter cell were

not taken into account); the birth (death) of an individual HSC was assumed by

Till et al. to occur with constant probability p2 (p0). Comparison of simulation

of this birth-and-death process with experimental measurements of the numbers

of colony-forming cells per colony suggested that the birth-and-death process does

indeed serve as an appropriate model of HSC proliferation, giving credence to the

idea of stem cell divisions involving randomness.

Sachs et al. used the birth-and-death process as a model in cancer biology to

study the effects of dose timing during tumour radiotherapy [Sachs et al., 1996].

Here, CSC terminology was not explicitly used, but rather the number of “clono-

gens” – cells capable of regenerating the tumour – was modelled during the late

stages of radiotherapy, at which time it is assumed that the number of clonogens

is small and hence stochastic fluctuations may be important. Assuming that, in-

dependent of irradiation, clonogens have constant birth and death rates b and d

respectively, and that irradiation with (not necessarily constant) dose rate Ḋ(t) is

added to the death rate during the course of radiotherapy, Sachs et al. (1996) solved

for the tumour control probability (TCP, defined as the probability of a tumour

having zero clonogens as time t → ∞). It was determined that the TCP is higher

when the irradiation dosage is front-loaded (i.e. made higher at the beginning of

the treatment schedule).

In research motivated by (but not directly related to) cancer, the group of Philip

Jones used a variation of the birth-and-death process to put the hierarchy of cells
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comprising the skin of a mouse’s tail under scrutiny [Clayton et al., 2007]. The

conventional model of the maintenance of murine epidermal homeostasis insists

that a sub-population of stem cells self-renews asymmetrically while producing a

sub-population of progenitor cells, which in turn divide a small number of times

before differentiating to give mature cells that eventually migrate out of the basal

layer of the epidermis [Clayton et al., 2007]. Clayton et al. (2007) proposed instead

a model in which only one sub-population of epidermal cells is actively dividing

in the basal layer: a sub-population of self-renewing epidermal “progenitor” cells

(these cells have the characteristics of stem cells and thus may be called epidermal

stem cells – we caution that the term “progenitor cell” is often used ambiguously

in the literature, adding confusion to an already-confusing subject). These epi-

dermal progenitor cells give rise to a sub-population of non-proliferating mature

cells. Consideration of a stochastic process in which progenitor cells can self-renew

symmetrically to produce two daughter progenitor cells with constant probability

r, divide symmetrically to yield two mature cells with probability r, or self-renew

asymmetrically to produce a progenitor cell and a mature cell with probability

(1 − 2r) led Clayton et al. (2007) to conclude that this model featuring a single

class of progenitor cell provided a better fit to their data than did the existing stem

cell-to-progenitor cell-to-mature cell model. Clayton et al. (2007) enforced home-

ostasis by requiring that the probability of symmetric progenitor cell self-renewal

equalled the probability of symmetric progenitor cell differentiation. In the follow-

ing, we develop a similar model without this restriction, allowing for analysis of

tumour growth based on the cancer stem cell hypothesis.
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Chapter 3

Modelling Cancer Stem Cells

Herein, we present a general model describing the growth of cancer cells based

on the cancer stem cell hypothesis. In the following chapters, this model will be

adapted to a handful of applications. Our initial interest in the CSC hypothesis was

piqued by the recognition of the role of CSCs in brain tumours, and by subsequent

discussions with experimentalists and clinicians working in this field. However, the

model framework is intended to be relevant to CSC dynamics in any solid tumour.

Portions of this chapter are related to work presented in [Turner et al., In press].

3.1 A simple model

Our goal is to develop a mathematical model describing the number of cells in

a solid tumour, the growth and maintenance of which are governed according to

the cancer stem cell hypothesis. In the simplest case, we may consider two sub-

populations of cancer cells: a sub-population of cancer stem cells (CSCs), denoted

by S, and a sub-population of non-stem cancer cells, which we denote by P for
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reasons which will later become apparent. At the simplest level, we have a CSC

hierarchy of the form

S −→ P,

wherein CSCs give rise to non-stem cancer cells. We now consider the details of

this hierarchy.

3.1.1 Division properties of cancer stem cells

The unique ability of CSCs to both drive and maintain tumour growth appears to be

a function of these cells’ capacity for two distinct types of self-renewal [Morrison and

Kimble, 2006]. CSCs can undergo symmetric self-renewal, a cell division in which

both daughters possess the stem cell characteristics of the mother CSC, resulting in

expansion of the CSC population, or asymmetric self-renewal, in which one CSC and

one non-stem cancer cell are produced [Morrison and Kimble, 2006]. In addition to

self-renewal, CSCs may permit symmetric division yielding two non-stem daughter

cells; we shall refer to this event as “symmetric commitment” [Morrison and Kimble,

2006]. Even the simplest model of cancer cell population dynamics based on the

CSC hypothesis should include these three types of division, which are illustrated

in Figure 3.1. (We note that normal stem cells also employ these three types of

division in the maintenance of homeostasis [Morrison and Kimble, 2006].)

We assume that CSCs divide with some division rate ρS, measured in units of

day−1. That is, a CSC undergoes any one of the three aforementioned types of

division with rate ρS. We further assume that the “decision” to undergo symmetric

self-renewal is made with probability r1, while asymmetric self-renewal and sym-

metric commitment are undergone with probabilities r2 and r3, respectively. We
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(a) (b) (c)

Figure 3.1: The three types of CSC division (CSCs shown in blue; non-stem cancer

cells in gold): (a) symmetric self-renewal (b) asymmetric self-renewal (c) symmetric

commitment.

normalize these three probabilities:

r1 + r2 + r3 = 1.

The overall CSC division rate ρS = ρS(r1+r2+r3) can, if one prefers, be abandoned

as a concept in favour of considering the rates ρSr1, ρSr2, and ρSr3 for symmetric

self-renewal, asymmetric self-renewal, and symmetric commitment, respectively.

3.1.2 Properties of Non-Stem Cells

Non-stem cancer cells, P, are produced by CSCs via asymmetric self-renewal and

symmetric commitment. (The notation P reflects the fact that the cells downstream

of stem cells in a stem cell hierarchy are generally referred to as “progenitor cells”

– we will consider progenitor cells more explicitly later.) At the present time (i.e.

in the two-compartment model that is currently under development), we do not

consider the divisions of these non-stem cancer cells, as under the CSC hypothesis

only CSCs are capable of initiating and maintaining tumour growth. In general,

the progeny P of CSCs are thought to divide only a limited number of times before

terminally differentiating – this effect will be considered later. For now, P cells may

29



die with rate Γ (units of day−1). Note that we are considering CSCs to be immortal

in the sense that they do not die but rather are lost only to differentiation.

To summarize thus far, we are (for the time being) interested in a two-compartment

cancer stem cell hierarchy in which the following division pathways are active:

S
ρSr1−→ S + S

S
ρSr2−→ S + P

S
ρSr3−→ P + P

P
Γ−→ ∅. (3.1)

3.1.3 On the stochasticity of cell division

Here, we develop a discrete stochastic model of cancer stem cell dynamics in order

to shed light on some of the mechanisms driving tumour growth as well as the

implications of these mechanisms on treatment strategies. Such an approach allows

us to incorporate the inherent stochasticity of biological phenomena and, equally

importantly, allows for meaningful examination of small numbers of cells, where

a deterministic method fails. A similar technique was employed, for example, by

Clayton et al. in modelling cell populations in normal murine epidermal homeosta-

sis [Clayton et al., 2007]. From this stochastic model, we will derive (deterministic)

equations for the average numbers of cells in particular compartments; these deter-

ministic equations will be useful later, when the behaviour of large numbers of cells

is studied.

Before progressing, we should comment on our assumptions regarding the ran-

domness of cell divisions. First, we have assumed that the choice of type of stem cell

division (symmetric self-renewal, symmetric commitment, or asymmetric division)
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is a random, rather than a deterministic, process. This is tantamount to assuming

that cell fate is assigned randomly. In many cases, such as in the development of

the nervous system of Drosophila melanogaster (the common fruit fly), cell fate

appears to be assigned in a pre-programmed, deterministic manner [Losick and

Desplan, 2008]. In other systems, however, cell fate appears to have a stochastic

component [Losick and Desplan, 2008]. Decades ago, Till and McCulloch [Till et al.,

1964] found evidence that hematopoietic stem cells undergo either self-renewal or

differentiation randomly, and conjectured that perhaps control mechanisms act by

biasing the associated probabilites; more recently it has been proposed that stochas-

tic fluctuations may be crucial in dictating the fate of hematopoietic progenitor cells

[Laslo et al., 2006]. Recent work tracking cell divisions in the colonic crypts of mice

suggests that colon stem cells may exhibit stochasticity in undergoing symmetric

versus asymmetric divisions [Yatabe et al., 2001]. While it is still possible that

the decision to differentiate or self-renew is essentially a deterministic process that

depends on a multitude of extra- and intracellular variables, neither the nature nor

the existence of such regulation has yet been established (although, for example, it

has recently been reported that the elasticity of the surrounding microenvironment

may be important in dictating the fate of the progeny of mesenchymal stem cells

[Engler et al., 2006]). Accordingly, we adopt a stochastic approach to stem cell

division, which is reflective of the current state-of-knowledge. We speculate that

such an assumption may be particularly valid in cancers or in vitro, the former of

which is characterized by its apparent lack of regulation and the latter also being

an environment in which homeostatic conditions are presumably not maintained.

It is further assumed that the process of cell division is a Markov process, as is

discussed in the following section.
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3.2 Markov Processes

This section is concerned with formulating the process of interest, namely the pro-

cess of growth of a population of cancer cells under the CSC hypothesis, in such a

way that it is amenable to some sort of mathematical treatment. To this end, we

frame the process as a Markov process, and use this as the basis for our analysis.

We begin with some preliminary concepts.

3.2.1 Random Variables

A random variable X is a quantity which (i) assumes a value x from a set of possible

values called the “state space” (or alternatively, the “sample space”, “range”, “set

of states”, or “phase space” [Van Kampen, 2007]), and which (ii) has an associated

probability distribution function

F (x) = P (X ≤ x),

which is interpreted in the usual way as reading, “the probability that the random

variable X takes a value less than or equal to x.” The state space may be continuous

or discrete; when it is continuous, we typically speak of the probability density

function f(x) associated with the probability distribution function,

f(x) =
dF

dx
.

When the state space is discrete, as it will be in our investigations, it is convenient

to instead consider the probability mass function

pn = P (X = xn).

Furthermore, a random variable X may be multidimensional. When this is the

case, X is often treated as a vector ~X = (X1, . . . , XN) where N is the number
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of components of the multidimensional random variable. In the case of a multidi-

mensional random variable, the concepts of probability distribution/density/mass

functions still apply and are adjusted accordingly.

3.2.2 Stochastic Processes

Intuitively speaking, a stochastic process is the time-evolution of a family of time-

dependent random variables X(t) defined for t ∈ T (the parameter t is usually

time, although it may be something else). By “time-dependent random variable”

we mean random variable X(t) such that for a fixed choice of t, X(t) is a random

variable in the sense described above.

3.2.3 The Markov Property

A Markov process is a stochastic process for which

f(xk, tk|xk−1, . . . , x1; tk−1, . . . , t1) = f(xk, tk|xk−1, tk−1), (3.2)

where t1 ≤ t2 ≤ . . . ≤ tk, and f(A|B) denotes the conditional probability of the

event A occurring given that the event B occurred, as in the usual case. In the case

of a discrete state space, we replace the xi’s of Equation 3.2 with ni’s; the probabil-

ity density function f may also be replaced with the probability mass function p.

Equation 3.2 constitutes the Markov property: it says that the conditional prob-

ability density of the stochastic process at time tk depends only on the state of

the process at time tk−1 and not at earlier times. In other words, the conditional

probability of the system moving to state xk at the next time tk given its partic-

ular trajectory from state x1 at time t1 to its present state xk−1 at time tk−1 is

determined entirely by knowledge of its current state xk−1 and not by its previous
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history. It is in this sense that a Markov process is said to have the property of

memorylessness.

3.2.4 The Chapman-Kolmogorov Equation

In the following, we adopt the notation associated with discrete state space stochas-

tic processes, with the understanding that the results can be applied to continuous

state space processes simply by replacing probability mass functions with proba-

bility density functions, ni’s with xi’s, and sums with integrals. It is true for any

stochastic process X(t) that

p(n1, n2, n3; t1, t2, t3) = p(n3, t3|n2, n1; t1, t2)p(n2, t2|n1, t1)p(n1, t1), (3.3)

where the left-hand side of Equation 3.3 is the joint probability of X(t) taking the

values n1 at time t1, n2 at t2, and n3 at t3 and the right-hand side of Equation 3.3

is the product of the probability of X(t) taking the value n1 at t1, the conditional

probability of X(t) taking the value n2 at time t2 given that it took the value n1

at time t1, and so on. If we impose the time-ordering t1 ≤ t2 ≤ t3 and assume the

Markov property, then Equation 3.3 reduces to

p(n1, n2, n3; t1, t2, t3) = p(n3, t3|n2, t2)p(n2, t2|n1, t1)p(n1, t1). (3.4)

Likewise, it is easy to see that

p(n1, . . . , nk; t1, . . . , tk) = p(nk, tk|nk−1, tk−1) . . . p(n2, t2|n1, t1)p(n1, t1),

if the time-ordering suggested above is maintained, and thus the entire process

is specified if we have knowledge of the probability p(n1, t1) and the transition

probability p(n2, t2|n1, t1). Thus, we seek a relationship between these probabilities.
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Summing Equation 3.4 over all possible values of n2, we have

p(n1, n3; t1, t3) = p(n1, t1)
∞∑

n2=−∞

p(n3, t3|n2, t2)p(n2, t2|n1, t1). (3.5)

Dividing Equation 3.5 by p(n1, t1) and using the fact that

p(n1, n3; t1, t3)

p(n1, t1)
= p(n3, t3|n1, t1),

we find that

p(n3, t3|n1, t1) =
∞∑

n2=−∞

p(n3, t3|n2, t2)p(n2, t2|n1, t1), (3.6)

which is the Chapman-Kolmogorov Equation.

3.2.5 The Master Equation

The Chapman-Kolmogorov Equation 3.6 is a condition on the transition probabil-

ities of a Markov process, and, as a functional relation, it is difficult to handle.

Instead of working directly with the Chapman-Kolmogorov Equation, we seek an

equivalent ordinary differential equation that is obtained by taking the time dif-

ference τ ′ = t3 − t2 to be infinitesimal. Hence, we must find the behaviour of the

transition probability p(n3, t3|n2, t2) as τ ′ → 0.

To this end, we define q(n, t; τ) as the probability that, given the process is in

state n at time t, the process makes a transition away from state n at some time

between t and t + τ , and assume that for infinitesimally small time intervals τ ,

q(n, t; τ) takes the form a(n, t)τ . As τ → 0, a(n, t)τ is then the probability that

any transition occurs at some time in [t, t+ τ), and the probability of two or more

transitions in the interval (t, t+ τ) is o(τ) by which we mean as τ → 0, o(τ)/τ → 0.

Following Gillespie [Gillespie], we also define w(n∗|n, t) as the probability that the

stochastic process, upon leaving state n at time t, transitions to state n∗.
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Thus, the probability of the process, being in state n1 at time t1, making one

transition at some time t∗ ∈ [t1, t1 + τ) and of this transition being to the state

n2 is the product a(n1, t1)τw(n2, n1|t∗). On the other hand, the probability that

no transition occurs from state n1 in the interval [t1, t1 + τ) is 1− a(n1, t1)τ ; if no

transition occurs then the probability of the process being in state n2 at time t1 + τ

is simply δn2,n1 , where

δi,j =

1 if i = j

0 if i 6= j

is the Kronecker delta function. Thus, the transition probability p(n2, t2|n1, t1) is

p(n2, t2|n1, t1) = [1− a(n1, t1)τ ]δn2,n1 + a(n1, t1)τw(n2|n1, t
∗) + o(τ), (3.7)

with τ = t2 − t1. If we further assume that w(n∗|n, t) is a smooth function of t,

then we can replace the time t∗ with the infinitesimally close t1 in Equation 3.7:

p(n2, t2|n1, t1) = [1− a(n1, t1)τ ]δn2,n1 + a(n1, t1)τw(n2|n1, t1) + o(τ). (3.8)

To match the more common notation of, for example, van Kampen [Van Kampen,

2007], we define W (n∗|n, t) ≡ a(n, t)w(n∗|n, t) as the (joint) transition probability

per unit time that the process, being in state n at time t, makes the transition to

state n∗. We notice that

∞∑
n∗=−∞

W (n∗|n, t) = a(n, t)
∞∑

n∗=−∞

w(n∗|n, t),

and that
∞∑

n∗=−∞

w(n∗|n, t) = 1,

so that

w(n∗|n, t) =
W (n∗|n, t)
∞∑

n∗=−∞

W (n∗|n, t)
.
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Using these relations in Equation 3.8, we have

p(n2, t2|n1, t1) =

[
1−

∞∑
n2=−∞

W (n2|n1, t1)τ

]
δn2,n1 +W (n2|n1, t)τ + o(τ). (3.9)

We define a Markov process to be temporally homogeneous if a(n, t) = a(n) and

w(n∗|n, t) = w(n∗|n), in which case it is clear that W (n∗|n, t) = W (n∗|n). Thus,

for a temporally homogeneous Markov process, the transition probability on the

left-hand side of Equation 3.9 evidently does not depend on the times t1 and t2

but only on the time difference τ = t2 − t1. Adopting the notation of van Kampen

[Van Kampen, 2007], we write Tτ (n2|n1) ≡ p(n2, t2|n1, t1) for such a Markov process.

For brevity and for consistency with van Kampen, we also write

a0(n1) =
∞∑

n2=−∞

W (n2|n1);

now, we may rewrite Equation 3.9 as

Tτ (n2|n1) = (1− a0(n1)τ)δn2,n1 +W (n2|n1)τ + o(τ). (3.10)

Having established the behaviour of the transition probability Tτ for a tempo-

rally homogeneous Markov process as the time difference τ becomes infinitesimally

small, we return to the Chapman Kolmogorov Equation 3.6, taking τ = t2 − t1,

τ ′ = t3 − t2, and replacing Tτ ′ with the expression in Equation 3.10 as is done by
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van Kampen [Van Kampen, 2007]:

Tτ+τ ′(n3|n1) =
∞∑

n2=−∞

Tτ ′(n3|n2)Tτ (n2|n1)

=
∞∑

n2=−∞

[(1− a0(n2)τ ′)δn3,n2 +W (n3|n2)τ ′ + o(τ ′)]Tτ (n2|n1)

=
∞∑

n2=−∞

(1− a0(n2)τ ′)δn3,n2Tτ (n2|n1) + τ ′
∞∑

n2=−∞

W (n3|n2)Tτ (n2|n1)

+ o(τ ′)
∞∑

n2=−∞

Tτ (n2|n1)

= (1− a0(n3)τ ′)Tτ (n3|n1) + τ ′
∞∑

n2=−∞

W (n3|n2)Tτ (n2|n1)

+ o(τ ′)
∞∑

n2=−∞

Tτ (n2|n1). (3.11)

Using in Equation 3.11 the definition of a0 from above after rearranging and dividing

by τ ′, we have

Tτ+τ ′(n3|n1)− Tτ (n3|n1)

τ ′
= −

∞∑
n2=−∞

W (n2|n3)Tτ (n3|n1) +
∞∑

n2=−∞

W (n3|n2)Tτ (n2|n1)

+
o(τ)

τ ′

∞∑
n2=−∞

Tτ (n2|n1)

=
∞∑

n2=−∞

{W (n3|n2)Tτ (n2|n1)−W (n2|n3)Tτ (n3|n1)}

+
o(τ ′)

τ ′

∞∑
n2=−∞

Tτ (n2|n1).

Now taking the limit as τ ′ → 0 we have

d

dτ
Tτ (n3|n1) =

∞∑
n2=−∞

{W (n3|n2)Tτ (n2|n1)−W (n2|n3)Tτ (n3|n1)}. (3.12)

Usually this is written as

d

dt
pn(t) =

∑
m

{wnmpm(t)− wmnpn(t)}, (3.13)
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where the index m runs over all possible states of the system, and with the un-

derstanding that pn(t) is indeed the conditional probability of the system being in

state n at time t given that is was in state n1 at time t1.

3.3 Formulating the Model

The stochastic process currently being considered is the two-dimensional stochas-

tic process (NS(t), NP (t)), where the time-dependent random variables NS(t) and

NP (t) represent the number of CSCs and the number of non-stem cancer cells, re-

spectively, observed at time t. The sample space of this process is the set of all

two-dimensional vectors whose components are non-negative integers. We assume

that this process is a Markov process, an assumption that has been used successfully

in the past by, for example, Till et al. [Till et al., 1964] and Clayton et al. [Clayton

et al., 2007]. In this context, we interpret the rates depicted in Equation 3.1 as

probabilites per unit time of an individual cell undergoing a particular division.

For example, ρSr1 is the probability per unit time of an individual CSC undergoing

symmetric self-renewal. Thus, the (temporally homogeneous) transition probability

per unit time of the process going from state (nS, nP ) to state (nS+1, nP ) is ρSr1nS.

From Equation 3.13, we can write the master equation governing the time-

evolution of the (conditional) probability

pnS ,nP (t) = P (NS(t) = nS, NP (t) = nP |NS(0) = n0
S, NP (0) = n0

P )

as

d

dt
pnS ,nP (t) = ρSr1(nS − 1)pnS−1,nP (t) + ρSr2nSpnS ,nP−1(t)

+ ρSr3(nS + 1)pnS+1,nP−2(t)− ρS(r1 + r2 + r3)nSpnS ,nP (t)

+ Γ(nP + 1)pnS ,nP+1(t)− ΓnPpnS ,nP (t). (3.14)

39



Equation 3.14 is valid for nS ≥ 1, nP ≥ 2, as the process does not permit negative

numbers of cells or births of stem cells from state (nS, nP ) = (0, nP ). In the cases

nS = 0 or nP = 0, 1, Equation 3.14 is modified accordingly – for example, we have

d

dt
p0,nP (t) = ρSr3p1,nP−2(t) + Γ(nP + 1)p0,nP+1(t)

− ΓnPp0,nP (t),

for nP ≥ 2, and
d

dt
p0,1(t) = 2Γp0,2(t)− Γp0,1(t).

Equation 3.14 is subject to the initial condition

pnS ,nP (0) = δnS ,n0
S
δnP ,n0

P
.

While a master equation such as Equation 3.14 is more convenient to work with

than the associated Chapman-Kolmogorov Equation, solving it can be a daunting, if

not impossible, task. Fortunately, some information can be extracted from Equation

3.14 without actually solving it. In the following, we derive equations for the average

numbers of the stochastic variables considered in Equation 3.14.

3.3.1 Averages

Recall that the expected value, or average, of a function f(X) of a (discrete) random

variable X is

〈f(X)〉 =
∑
i

f(xi)p(xi),

where p(xi) is the probability that x takes the value xi, and the index i extends

over all values of x in the sample space. We exploit this, and the form of Equation

3.14, to find an ordinary differential equation describing the time evolution of the
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average numbers of cells 〈NS〉 and 〈NP 〉. In the following, for brevity, we begin

suppressing the indices of pnS ,nP (t) that do not differ from nS, nP [for example,

we write p(t) = pnS ,nP (t) and pnS−1(t) = pnS−1,nP (t)]. To proceed, we multiply

Equation 3.14 by nS and sum both sides over all {n}, where {n} represents the set

of all possible states (nS, nP ):∑
{n}

nS
dp(t)

dt
=

∑
{n}

nSρSr1(nS − 1)pnS−1(t) +
∑
{n}

nSρSr2nSpnP−1(t)

+
∑
{n}

nSρSr3(nS + 1)pnS+1,nP−2(t)−
∑
{n}

nSρS(r1 + r2 + r3)nSp(t)

+
∑
{n}

nSΓ(nP + 1)pnP+1(t)−
∑
{n}

nSΓnPp(t). (3.15)

Next, we re-label the indices in each of the sums on the right-hand-side of Equation

3.15 so that each of the probabilities is in the form p(t) = pnS ,nP (t):∑
{n}

nS
dp(t)

dt
=

∑
{n}

(nS + 1)ρSr1nSp(t) +
∑
{n}

nSρSr2nSp(t)

+
∑
{n}

(nS − 1)ρSr3nSp(t)−
∑
{n}

nSρS(r1 + r2 + r3)nSp(t)

+
∑
{n}

nSΓnPp(t)−
∑
{n}

nSΓnPp(t). (3.16)

Expanding the summands of Equation 3.16 leads to∑
{n}

nS
dp(t)

dt
= ρSr1

∑
{n}

n2
Sp(t) + ρSr1

∑
{n}

nSp(t)

+ ρSr2

∑
{n}

n2
Sp(t) + ρSr3

∑
{n}

n2
Sp(t)− ρSr3

∑
{n}

nSp(t)

− ρSr1

∑
{n}

n2
Sp(t)− ρSr2

∑
{n}

n2
Sp(t)− ρSr3

∑
{n}

n2
Sp(t)

+ Γ
∑
{n}

nSnPp(t)− Γ
∑
{n}

nSnPp(t), (3.17)
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and noting that

〈NS〉 =
∑
{n}

nSp(t),

and

d〈NS〉
dt

=
d

dt

∑
{n}

nSp(t)

 =
∑
{n}

(
nS
dp(t)

dt

)
,

Equation 3.17 can be further simplified to

d〈NS〉
dt

= ρS(r1 − r3)〈NS〉. (3.18)

Following the same procedure as above, except multiplying Equation 3.14 by nP

instead of nS in the first step, the following ODE governing the average number of

non-stem cancer cells 〈NP 〉 is obtained:

d〈NP 〉
dt

= ρS(r2 + 2r3)〈NS〉 − Γ〈NP 〉. (3.19)

We now establish the convention of writing S(t) = 〈NS〉 and P (t) = 〈NP 〉. The

purpose of this is dual: to explicitly illustrate the time dependence of the averages,

and to free ourselves of a cumbersome notation. Furthermore, we define the net

CSC symmetric division probability r = r1 − r3. Using this notation, the pair of

ODEs describing the average numbers of cancer stem and non-stem cells can be

written as

dS(t)

dt
= ρSrS(t)

dP (t)

dt
= ρS(1− r)S(t)− ΓP (t), (3.20)

subject to the initial condition S(0) = S0 = n0
S, P (0) = P0 = n0

P .

Integrating the first line of Equation 3.20 yields

S(t) = S0e
ρSrt, (3.21)
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after we have applied the initial condition from Equation 3.20. Substituting S(t)

from Equation 3.21 into the second line of Equation 3.20, we have

dP (t)

dt
+ ΓP (t) = ρS(1− r)S0e

ρSrt. (3.22)

The above is a linear, inhomogeneous ODE for P (t); to solve it, we can use the

method of integrating factors [Boyce and DiPrima, 1992]. Our integrating factor is

µ(t) = e
∫

Γdt = eΓt;

multiplying Equation 3.22 by this integrating factor, we have

d(P (t)eΓt)

dt
= ρS(1− r)S0e

ρSrt+Γt. (3.23)

Integrating Equation 3.23, we have

eΓtP (t) =
ρS(1− r)S0

ρSr + Γ
e(ρSr+Γ)t + C, for ρSr + Γ 6= 0,

where C is an integrative constant to be determined by the initial condition on

Equation 3.20. Applying this condition, and solving for C, we have

P (t) =

(
ρS(1− r)S0

ρSr + Γ

)(
eρSrt − e−Γt

)
+ P0e

−Γt. (3.24)

Provided S0 > 0, the quantities S(t) and P (t) given in Equations 3.21 and 3.24

clearly exhibit exponential growth when ρSr > 0 (that is, when r1 > r3). When

r1 = r3, the number of CSCs remains at its intial value S0.If r1 < r3 then the CSC

sub-population (and hence the P -cell sub-population) dies out. The case r1 > r3

(that is, r > 0) is thus most relevant to a growing tumour. While S(t) and P (t)

grow without bound, the fraction of CSCs S(t)
S(t)+P (t)

instead reaches a steady-state

value, as is illustrated in Figure 3.2 and analyzed in the following subsection.
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(a) (b)

Figure 3.2: (a) Number of CSCs (S) and non-stem cancer cells (P) versus time and

(b) fraction of CSCs versus time, for ρS = 3.5, r = 0.1, Γ = 0 and initial condition

S0 = 1, P0 = 0.

3.3.2 Fraction of CSCs

A quantity of significant interest is the fraction of CSCs in the total population of

cancer cells. This could be derived via the brute-force manipulation of Equations

3.21 and 3.24; however, we find it preferable to bypass that calculation in favour of

a slightly different approach. To this end, we define

X(t) =
S(t)

S(t) + P (t)
,

and note that

X ′(t) =
S ′(t)[S(t) + P (t)]− S(t)[S ′(t) + P ′(t)]

[S(t) + P (t)]2
.

Substituting expressions for S ′(t) and P ′(t) from Equation 3.20 into the above, we

obtain

X ′(t) =
(ρSr − ρS)S2(t)

[S(t) + P (t)]2
+

(ρSr + Γ)S(t)

[S(t) + P (t)]

P (t)

[S(t) + P (t)]
. (3.25)

44



Using the identity P (t)
S(t)+P (t)

= 1 − S(t)
S(t)+P (t)

in Equation 3.25, and then employing

our definition of X(t), we find that

X ′(t) = (ρSr − ρS)X2(t) + (ρSr + Γ)X(t)[1−X(t)]. (3.26)

Rearranging Equation 3.26,

X ′(t) = (ρSr + Γ)X(t)

[
1− (ρS + Γ)X(t)

ρSr + Γ

]
. (3.27)

Equation 3.27 is recognized as having the form of a logistic growth equation, for

which the “carrying capacity” of the fraction of CSCs [Murray, 2002] is

K =
ρSr + Γ

ρS + Γ
.

The time-dependent solution of Equation 3.27 is [Murray, 2002]

X(t) =
X0Ke

(ρSr+Γ)t

K +X0(e(ρSr+Γ)t − 1)
, (3.28)

where X0 = S0/(S0 + P0). Equation 3.27 (with the initial condition X(0) = X0)

has a non-trivial steady-state solution X = K, valid for (ρSr+ Γ) > 0 and X0 > 0.

In particular,

X(t)→ ρSr + Γ

ρS + Γ
as t→∞.

Figure 3.3 illustrates the tendency of the CSC fraction toward the steady-state for

different initial fractions of CSCs.

So, the model predicts that the fraction of CSCs reaches a steady-state, or

plateau phase, that is determined by its growth characteristics. Evidently (and

intuitively), the difference r = r1 − r3 of the rates of symmetric self-renewal and

symmetric commitment divisions by CSCs plays an important role in dictating the

fraction of CSCs in the plateau phase. When Γ is small compared to ρSr, then the

steady-state fraction of CSCs is ρSr+Γ
ρS+Γ

≈ r.
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Figure 3.3: Fraction of CSCs versus time for X0 = 0.17 (red), X0 = 0.07 (blue),

and X0 = 0.01 (green), using the same parameter values as in Figure 3.2.

3.3.3 Survival Rate

Equation 3.21 states that the average number of CSCs grows exponentially for any

S0 > 0 when r = r1− r3 > 0. However, an interesting feature of the stochastic pro-

cess under consideration is that the sub-population of CSCs may become extinct,

even when the initial condition and parameter r predict exponential growth of the

mean. This is significant, because under the CSC hypothesis, extinction of the

CSC sub-population implies eventual extinction of the entire tumour (provided the

death rate of non-stem cells is Γ > 0). To find the probability of the sub-population

becoming extinct at some time t, we consider the single-component stochastic pro-

cess NS(t). This stochastic process is a continuous-time Markov process for which

the sample space consists of the non-negative integers and for which only transi-

tions between adjacent states are permitted; such a process is called a “one-step”

or “birth-and-death” process.

In particular, an individual CSC may symmetrically self-renew with probability
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per unit time ρSr1 (corresponding to an increase of the population by one) or

may symmetrically commit with probability per unit time ρSr3 (corresponding to

a decrease of the population by one). (In this light, it is not hard to see why

the “birth-and-death” moniker is appropriate.) Note that the event of asymmetric

self-renewal does not change the number of CSCs. Concentrating on CSCs only,

the birth-and-death process NS(t) contains the following types of divisions with

associated rates:

S
ρSr1−→ S + S

S
ρSr3−→ ∅. (3.29)

The corresponding master equation is

dpnS(t)

dt
= ρSr1(nS − 1)pnS−1(t) + ρSr3(nS + 1)pnS+1(t)

− ρS(r1 + r3)nSpnS(t), (3.30)

for nS ≥ 1, with
dp0(t)

dt
= ρSr3p1(t),

where pnS(t) is the conditional probability of the random variable NS(t) taking the

value nS at time t given NS(0) = n0
S at time t = 0 (that is, pnS(0) = δnS ,n0

S
).

Following the method used by Bailey [Bailey, 1964], we introduce the probability

generating function P (x, t), defined by

P (x, t) =
∞∑
n=0

xnpn(t). (3.31)

We are interested in the probability p0(t) that a population of n0
S CSCs at time

t0 = 0 has gone extinct at some later time t; to this end, we notice that

P (0, t) = p0(t) +
∞∑
n=1

0npn(t) = p0(t), (3.32)
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and proceed to cast the master equation 3.30 into an equation for the probability

generating function. Multiplying Equation 3.30 by xnS and summing over all nS,

we find

∞∑
nS=0

xnS
dpnS(t)

dt
=

∞∑
nS=1

xnSρSr1(nS − 1)pnS−1(t) +
∞∑

nS=0

xnSρSr3(nS + 1)pnS+1(t)

−
∞∑

nS=0

xnSρS(r1 + r3)nSpnS(t). (3.33)

Re-labeling indices in Equation 3.33,

∞∑
nS=0

xnS
dpnS(t)

dt
=

∞∑
nS=0

xnS+1ρSr1nSpnS(t) +
∞∑

nS=1

xnS−1ρSr3nSpnS(t)

−
∞∑

nS=0

xnSρS(r1 + r3)nSpnS(t)

= ρSr1x
2

∞∑
nS=1

nSx
nS−1pnS(t) + ρSr3

∞∑
nS=1

nSx
nS−1pnS(t)

− ρS(r1 + r3)x
∞∑

nS=1

nSx
nS−1pnS(t). (3.34)

The observations that
∞∑

nS=0

xnS
dpnS(t)

dt
=
∂P (x, t)

∂t

and
∞∑

nS=1

nSx
nS−1pnS(t) =

∂P (x, t)

∂x

allow us to write Equation 3.34 in the form

∂P (x, t)

∂t
= (ρSr1x

2 − ρS(r1 + r3)x+ ρSr3)
∂P (x, t)

∂x
, (3.35)

with

P (x, 0) = xn
0
S .
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This PDE can be solved by the method of characteristics [Garabedian, 1964]: in-

troducting the parameter s, the characteristic equations are

dt

ds
= 1

dx

ds
= −(ρSr1x

2 − ρS(r1 + r3)x+ ρSr3)

dP

ds
= 0. (3.36)

The first line of Equation 3.36 gives t = s, where we have taken t(0) = 0. The second

line of Equation 3.36 is a Riccati equation [Boyce and DiPrima, 1992]. Factoring,

and using s = t from above, we have that the characteristic curves are given by

dt =
dx

ρS(1− x)(r1x− r3)
, (3.37)

which makes two things apparent: (i) in the special case r1 = r3, Equation 3.37

becomes

−dt =
dx

ρSr1(x− 1)2
, (3.38)

and (ii) a particular solution of the Riccati Equation 3.37 is x = 1. Dealing with

Equation 3.38 first, we make the change-of-variables ν = x − 1 so that Equation

3.38 becomes

−dt =
dν

ρSr1ν2
,

which upon integration gives

ν =
1

ρSr1t+ k
,

where k is some integrative constant. This gives

x = 1 +
1

ρSr1t+ k
. (3.39)

Taking x(0) = x0 and t(0) = 0, we find that

k =
1

x0 − 1
,
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and hence

x0 = 1 +
1

1
x−1
− ρSr1t

. (3.40)

The third line of Equation 3.36 says that the probability generating function P (x, t)

is constant along the characteristic curves. Thus, P (x, t) = P (x0, 0). The initial

condition P (x, 0) = xn
0
S gives, in conjunction with Equation 3.40,

P (x, t) =

(
1− 1

1
1−x + ρSr1t

)n0
S

. (3.41)

The probability of extinction P (0, t) is thus

P (0, t) = p0(t) =

(
1− 1

1 + ρSr1t

)n0
S

,

for r1 = r3, which can be written more simply as

p0(t) =

(
ρSr1t

ρSr1t+ 1

)n0
S

, r1 = r3. (3.42)

We now return to Equation 3.37 for the more general situation r1 6= r3. A Riccati

equation such as this can be reduced to a linear ODE by making the substitution

x = x1 +
1

ν
,

where x1 is a particular solution of the Riccati equation. We have observed by

inspection that x = 1 is a particular solution of Equation 3.37 and thus take

x = 1 +
1

ν
.

This substitution transforms Equation 3.37 into

dt =
dν

ρS(r1 − r3)ν + ρSr1

, (3.43)

which (using the method of integrating factors) gives

ν =
−r1
r1−r3 e

−ρS(r1−r3)t + k

e−ρS(r1−r3)t
,

50



whereupon imposing ν(0) = ν0 and t(0) = 0 the integrative constant is found to be

k = ν0 +
r1

r1 − r3

.

Thus, we have

ν =
−r1
r1−r3 e

−ρS(r1−r3)t + ν0 + r1
r1−r3

e−ρS(r1−r3)t
. (3.44)

Recalling that

x = 1 +
1

ν
,

we find

x = 1 +
e−ρS(r1−r3)t

1
x0−1

+ r1
r1−r3 −

r1
r1−r3 e

−ρS(r1−r3)t
, (3.45)

where we have used

x0 = 1 +
1

v0

.

Thus,

x0 = 1− 1
e−ρS(r1−r3)t

1−x − r1
r1−r3 (e−ρS(r1−r3)t − 1)

, (3.46)

whereupon P (x, t) = P (x0, 0) = x
n0
S

0 gives

P (x, t) =

(
1− 1

e−ρS(r1−r3)t

1−x − r1
r1−r3 (e−ρS(r1−r3)t − 1)

)n0
S

. (3.47)

Not forgetting our original motivation, we set x = 0 to find P (0, t) = p0(t):

p0(t) =

(
r3

(
eρS(r1−r3)t − 1

)
r1eρS(r1−r3)t − r3

)n0
S

, r1 6= r3, (3.48)

where some simplifying steps have been omitted. Collecting Equations 3.42 and

3.48 together, we have the probability of extinction of CSCs as

p0(t) =


(
r3(eρS(r1−r3)t−1)
r1e

ρS(r1−r3)t−r3

)n0
S

, if r1 6= r3(
ρSr1
ρSr1+1

)n0
S

, if r1 = r3.

(3.49)
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We may be interested in the long-term behaviour of the extinction probabilities

given in Equation 3.49. Taking the limit as t→∞, we find that

p0(t)→


(
r3
r1

)n0
S

, if r1 > r3

1, if r1 ≤ r3.

(3.50)

Thus, the model makes the somewhat encouraging prediction that the occur-

rence of a single CSC will not necessarily result in a tumour, even if the probability

of self-renewal is greater than that of differentiation. As a numerical example,

consider the case in which oncogenic transformation or metastasis results in the

presence of a single CSC with intrinsic division probabilities r1 = 0.4, r2 = 0.3,

and r3 = 0.3. This cell has only a 25% chance of forming a lasting colony (i.e. a

tumour), an interpretation that is in contrast to the exponential growth predicted

by the average equations. Figure 3.4 plots the CSC sub-population survival rate

rsurv = 1−p0(t) against time, based on Equation 3.50, along with estimates of rsurv

obtained via the stochastic simulatinon algorithm described by Gillespie, which is

described in the following section.

3.4 Gillespie’s Algorithm

The difficulties associated with analytically solving the master equation can be

circumvented by computational simulation of the stochastic process. To this end,

we introduce Gillespie’s algorithm, a stochastic simulation algorithm originally de-

veloped with the intention of simulating the time evolution of systems of reacting

chemical species [Gillespie, 1977]. Rather than deal with the master equation,

Gillespie’s algorithm uses random number generation to numerically simulate re-

alizations of the corresponding Markov process. To begin, we are interested in
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Figure 3.4: Survival rate (1 - p0(t)) versus time, for various values of r1, r2, and

r3, with r = r1 − r3 fixed for the purpose of comparison. The initial number of

CSCs is one. Dashed lines are obtained from Equation 3.49. As T grows large, the

curves tend to 1 − r3
r1

, as expected based on Equation 3.50. Data points are from

100 000 realizations of Gillespie’s algorithm, encoded by Adam R. Stinchcombe and

subsequently modified appropriately by the author. Image from [Turner et al., In

press].
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the probability p(τ, n∗|n, t)dτ , which Gillespie defines as the joint probability that,

given the process is in state n at time t, the next transition will occur between times

t+ τ and t+ τ +dτ and will be to the state n∗ [Gillespie]; Gillespie alternately calls

p(τ, n∗|n, t) the “next-jump density function” or the “reaction probability density

function”.

Here we use the notation introduced in subsection 3.2.5, so that q(n, t; τ) is

the probability that, given the process is in state n at time t, the process makes a

transition away from state n at some time between t and t + τ (for infinitesimal

τ we have q(n, t; τ) = a(n, t)τ , as before), and w(n∗|n, t) is the probability that

the process makes the transition to state n∗ upon leaving state n at time t. The

“next-jump density function” p(τ, n∗|n, t) is evidently the probability that (i) no

transition occurs between times t and t+ τ and that (ii) a transition occurs in the

infinitesimal time interval (t+ τ, t+ τ + dτ) and that (iii) this transition is to state

n∗. This can be expressed as

p(τ, n∗|n, t)dτ = [1− q(n, t; τ)][a(n, t+ τ)dτ ][w(n∗|n, t∗)], (3.51)

where the first factor of the right-hand-side of Equation 3.51 is the probability of

event (i), the second factor is the probability of event (ii), and the third factor is the

probability of event (iii) (occurring at time t∗ ∈ (t+ τ, t+ τ + dτ)). It is convenient

to consider q∗(n, t; τ) = 1− q(n, t; τ), as Gillespie does [Gillespie]. Then,

q∗(n, t; τ + dτ) = q∗(n, t; τ)[q∗(n, t+ τ ; dτ)]

= q∗(n, t; τ)[1− q(n, t+ τ ; dτ)]

= q∗(n, t; τ)[1− a(n, t+ τ)dτ ]. (3.52)

Rearranging Equation 3.52, we find

q∗(n, t; τ + dτ)− q∗(n, t; τ) = −q∗(n, t; τ)a(n, t+ τ)dτ. (3.53)
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Writing dq∗(n, t; τ) = q∗(n, t; τ + dτ)− q∗(n, t; τ), we have

dq∗(n, t; τ)

dτ
= −q∗(n, t; τ)a(n, t+ τ). (3.54)

Thus, integrating, we have

q∗(n, t; τ) = e−
∫ τ
0 a(n,t+τ ′)dτ ′ ,

giving

q(n, t; τ) = 1− e−
∫ τ
0 a(n,t+τ ′)dτ ′ . (3.55)

Now we make the assumption that the Markov process is temporally homogeneous,

so that a(n, t) = a(n) and w(n∗|n, t) = w(n∗|n). Under this assumption, Equation

3.55 reduces to

q(n, t; τ) = 1− e−a(n)τ ,

which, upon substitution into Equation 3.51 yields

p(τ, n∗|n, t) = e−a(n)τa(n)w(n∗|n), (3.56)

where we have cancelled the factors dτ that appeared on both sides of the equation.

It is convenient to consider

p1(τ |n, t) = a(n)e−a(n)τ

as the joint probability that, given the process is in state n at time t, the next tran-

sition occurs in (t+ τ, t+ τ +dτ). Thus, p1(τ |n, t) is interpreted as the distribution

of the “waiting times” between transitions of the Markov process. Hence, we have

p(τ, n∗|n, t) = p1(τ |n, t)w(n∗|n).

Gillespie’s Algorithm, then, beginning with a Markov process in state n at time

t, proceeds by first choosing (via a random number generator) a waiting time τ

distributed according to

p1(τ |n, t) = a(n)e−a(n)τ .
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The next transition of the Markov process occurs at time t+ τ ; the state to which

the process moves at time t+τ from state n is then determined, again by a random

number generator. In practice, namely in the context of the stochastic processes of

the present chapter, this proceeds as follows [Gillespie, 1977].

1. Set t = t0 and n = n0 (the state n of the Markov process is, in general, a

vector quantity).

2. Choose the waiting time τ until the next transition. To do so, calculate a(n)

according to

a(n) =
M∑
i=1

cini,

where the index i runs over the M distinct division pathways of the process,

ci is the probability per unit time that an individual cell will undergo division

i, and ni is the number of cells that may undergo division i. Now, take

τ = [1/a(n)] ln(1/σ1),

where σ1 is a random number drawn from the unit uniform distribution [Gille-

spie, 1977].

3. Choose the state n∗ to which the process will transition at time t+ τ . To do

so, consider ak = cknk for k = 1, . . . ,M . Division k brings the process from

state n to some state nk, with w(nk|n) = ak/a(n) for k = 1, . . . ,M . Choose

a number σ2 from the unit uniform distribution and take k to be the integer

for which [Gillespie, 1977]

k−1∑
i=1

ai < σ2a(n) ≤
k∑
i=1

ak.

4. Update the system according to t = t+ τ , n = nk.

5. Return to step 2.
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3.5 Comparison of Stochastic and Deterministic

Models

Herein we have concurrently developed stochastic and deterministic models of the

growth of cancer cell populations based on the CSC hypothesis, with the intention

that the stochastic model be used when small numbers of cells are under consid-

eration, and the deterministic model when phenomena involving large numbers of

cells are being investigated. The example following the derivation of the chance of

extinction of CSCs above emphasizes the importance of fluctuations on the scale of

small numbers of cells, and illustrates a particular difference between the stochastic

model and the deterministic model based on averages. One may be interested in

further understanding how these two models compare.

In a previous section, we used the master equation 3.14 to find an ODE for

the average number S(t) = 〈nS〉 of CSCs at time t. In the same manner, i.e.

by mutliplying Equation 3.14 by n2
S and summing over all nS, we can obtain the

following equation for the second moment S2(t) = 〈n2
S〉:

dS2(t)

dt
= 2ρS(r1 − r3)S2(t) + ρS(r1 + r3)S(t). (3.57)

Taking S(t) from Equation 3.21 and substituting into Equation 3.57 gives

dS2(t)

dt
= 2ρS(r1 − r3)S2(t) + ρS(r1 + r3)n0

Se
ρS(r1−r3)t, (3.58)

which is solved by the method of integrating factors to yield

S2(t) = n0
S

(
r1 + r3

r1 − r3

)
eρS(r1−r3)t

(
eρS(r1−r3)t − 1

)
+ (n0

S)2e2ρS(r1−r3)t, (3.59)

where we require that r1 6= r3. If r1 = r3, then Equation 3.58 simplifies to

dS2(t)

dt
= 2ρSr1n

0
S, (3.60)
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which is solved via integration to give

S2(t) = 2ρSr1n
0
St+ (n0

S)2. (3.61)

Using Equations 3.59 and 3.61 in the formula for the standard deviation,

σS(t) =
√
〈n2

S〉 − 〈nS〉2 =
√
S2(t)− S2(t),

we thus have

σS(t) =


√
n0
S

(
r1+r3
r1−r3

)
e

1
2
ρS(r1−r3)t

√
eρS(r1−r3)t − 1, if r1 6= r3,√

2ρSr1n0
St, if r1 = r3.

(3.62)

Evidently, the standard deviation of the stochastic realizations about the mean

number of CSCs grows exponentially for r1 > r3 (which is the case for a growing

tumour). The relative standard deviation σS(t)/S(t), however, obeys

σS(t)

S(t)
=

√
〈n2

S〉 − 〈nS〉2
〈nS〉

=


1√
n0
S

√
r1+r3
r1−r3 e

− 1
2
ρS(r1−r3)t

√
eρS(r1−r3)t − 1, if r1 6= r3,

1√
n0
S

√
2ρSr1t, if r1 = r3.

(3.63)

From Equation 3.63, the relative standard deviation corresponding to r1 = r3 is

proportional to t1/2, as expected for a birth-death process in which the rates of

birth and death are equal [Bailey, 1964]. For very small times, i.e. as t → 0, the

relative standard deviation given in Equation 3.63 vanishes. For the more general

case r1 6= r3, taking the limit as t→∞, we see that

σS(t)

S(t)
=

√
〈n2

S〉 − 〈nS〉2
〈nS〉

→ 1√
n0
S

√
r1 + r3

r1 − r3

, if r1 6= r3. (3.64)

In Figure 3.5, realizations of the stochastic model obtained via Gillespie’s al-

gorithm are plotted for various values of the initial number n0
S of CSCs. We see
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that, when n0
S = 1, some of the sample realizations show behaviour that differs

markedly from the behaviour of the mean. Thus, we suggest that when a single

CSC (or a small number of CSCs) is present in a patient at some time (perhaps at

the very onset of a primary cancer, at the beginning stages of a metastatic growth,

or following treatment that narrowly failed to eradicate the CSC sub-population),

little can be said about the growth dynamics that will ensue. The CSC (or CSCs)

may differentiate such that the CSC sub-population dies out. Alternatively, the

CSC population may quickly enter the phase of exponential growth due to early

symmetric self-renewing divisions, or else may exhibit some significant lag period

before entering the exponential growth phase at a later time. This consideration

may help in understanding the widespread variation in times to cancer detection

or relapse.

3.6 A General Model

To this point, we have considered a model of cancer cell growth based on the

CSC hypothesis with only two subpopulations of cancer cells: CSCs and non-stem

cancer cells, the latter of which we have denoted P -type cells to reflect the fact

that the cells “downstream” of stem cells in a stem cell hierarchy are usually called

progenitor cells. Here, we elaborate on the role of progenitor cells and generalize

the model developed above to include additional subpopulations of cells.

3.6.1 The role of progenitor cells

Progenitor cells, the non-stem cell progeny of stem cells, differ from stem cells in

that they have limited proliferative potential and limited ability to differentiate.
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(a) (b)

(c) (d)

Figure 3.5: 10 sample realizations of the stochastic model, with (a) n0
S = 1, (b)

n0
S = 10, (c) n0

S = 100 and (d) n0
S = 1000. Average values of the number of CSCs,

as calculated from Equation 3.21 are shown in bold.
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Typically, an early (relatively immature) progenitor will divide into later (more

mature) progenitors, undergoing only several rounds of self-renewing cell division

before terminally differentiating. While the precise mechanisms of this process are

likely more complicated (and are largely unknown at this time), the important ef-

fect is ultimately an amplification of the number of mature cells (denoted M) (these

progenitor cells are hence sometimes termed “transit amplifying” cells [Clarke and

Fuller, 2006]). In general, we assume that a CSC hierarchy contains N generations

of progenitor cells, with N fixed. We will assume that first-generation progenitor

cells, denoted P1, divide with rate ρP1 to produce two second-generation progenitor

cells (P2). Likewise, ith-generation progenitor cells (Pi) divide with rate ρPi to pro-

duce two Pi+1 cells. Finally, N th-generation progenitor cells (PN) divide with rate

ρPN to produce two mature cells. Generally it will be assumed that the progenitor

cell division rates ρPi are the same for each of the generations i = 1, . . . , N . When

this is the case, we will write ρPi = ρP . Note that we have assumed each progenitor

cell division to be symmetric – in particular, of the form Pi → Pi+1 + Pi+1 (for

i = 1, . . . , N − 1). Other types of progenitor cell division may be envisaged; for

example, divisions of the form Pi → Pi+1 +M for any generation i = 1, . . . , N−1 of

progenitor cells. While the biological prevalence of such divisions is not yet known,

we comment that such division pathways could be incorporated into the model as

experimentalists further elucidate the nature of the progenitor cell sub-populations

in various physiological and pathological systems.

The mature (fully differentiated) cells of the tumour are considered as carica-

tures of their normal counterparts, and, unlike stem and progenitor cells, lack any

potential for division. They do, however, have the ability to die with rate Γ. We

assume that the stem and progenitor cell populations do not have associated death

rates. Figure 3.6 illustrates a simplified version of the CSC hierarchy for brain
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Figure 3.6: Illustration of cellular hierarchy for BTSCs

tumours. As specifics including the number of generations of progenitor cells are

not yet well-understood, details are omitted here.

To summarize thus far, we permit the following types of cell division, with

associated rates shown above the corresponding arrows:

S
ρSr1−→ S + S

S
ρSr2−→ S + P1

S
ρSr3−→ P1 + P1

P1

ρP1−→ P2 + P2

... (3.65)

Pi
ρPi−→ Pi+1 + Pi+1

...

PN
ρPN−→ M +M

M
Γ−→ ∅.

We define pnS ,nP1
,...,nPN ,nM

(t) as the (conditional) probability of the system hav-

ing nS stem cells, nPi ith-generation progenitor cells, and nM mature cells at time
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t, given that n0
S stem cells, n0

Pi
ith-generation progenitor cells, and n0

M mature cells

were present at time t0. pnS ,nP1
,...,nPN ,nM

(t) is governed by the following master

equation:

dp(t)

dt
= ρSr1(nS − 1)pnS−1(t) + ρSr2nSpnP−1(t)

+ ρSr3(nS + 1)pnS+1,nP−2(t)− ρS(r1 + r2 + r3)nSp(t)

+
N−1∑
i=1

{
ρPi(nPi + 1)pnPi+1,nPi+1

−2(t)− ρPinPip(t)
}

+ ρPN (nPN + 1)pnPN+1,nM−2(t)− ρPNnPNp(t)

+ Γ(nM + 1)pnM+1(t)− ΓnMp(t), (3.66)

where for brevity, we have suppressed writing in full the indices of pnS ,...,nM (t) that

do not differ from nS, nP1 , . . . , nN , nM . (For example, forN = 4, pnS ,nP1
,nP2

,nP3
+1,nP4

−2,nM (t)

is written as pnP3
+1,n4−2(t).) As in Equation 3.14, Equation 3.66 is valid for nS ≥ 1,

nPi ≥ 2, i = 1, . . . , N , nM ≥ 2, and is adjusted accordingly otherwise. The initial

condition for Equation 3.66 is

pnS ,nP1
,...,nPN ,nM

(t0) = δnS ,n0
S
δnP1

,n0
P1
. . . δnPN ,n

0
PN
δnM ,n0

M
.

As we have done for the two-compartment model, we can use Equation 3.66 to

find equations for the average numbers of S, Pi, and M cells. Doing so, we find

d

dt
S(t) = ρSrS(t)

d

dt
P1(t) = ρS(1− r)S(t)− ρP1P1(t)

d

dt
Pi(t) = 2ρPi−1

Pi−1(t)− ρPiPi(t), for i = 2, . . . , N

d

dt
M(t) = 2ρPNPN(t)− ΓM(t), (3.67)

with S(0) = S0 = n0
S, Pi(0) = P i

0 = n0
Pi

for i = 1, . . . , N , and M(0) = M0 = n0
M ,

and r = r1 − r3 as before.
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Figures 3.7 and 3.8 show the behaviour of solutions to Equation 3.67 for two

different sets of parameter values, corresponding to N = 5 and N = 7 generations

of progenitor cells. Generally it is assumed that progenitor cells undergo several

rounds of division before terminally differentiating; the particular values N = 5

and N = 7 were chosen for their relevance to the modelling of mammary stem cell

dynamics to be presented in Chapter Five. In both cases, the system has S0 = 1,

P i
0 = 0 for i = 1, . . . , N , and M0 = 0, and in both cases we see a cascading increasing

in the numbers of S, P1, . . . , PN and M cells, respectively. In Figure 3.7 (b), it is

interesting to note that the sub-populations of 1st- and 2nd-generation progenitor

cells remain smaller than the sub-population of CSCs; likewise, Figure 3.8 (b) shows

that the sub-populations of 1st-, 2nd-, 3rd- and 4th-generation progenitor cells remain

smaller than the CSC sub-population. It is generally assumed in the literature that

the number of progenitor cells is significantly greater than the number of CSCs;

indeed, we see in both Figures 3.7 and 3.8 that the total number of progenitor

cells becomes much greater than the number of CSCs. However, the prediction

that early-generation progenitor cells are fewer in number than CSCs (depending

on parameter values) may not have been obvious.

The fractions of CSCs, total progenitors (that is, the sum of the fractions of each

of the N generations of progenitor cells) and mature cells are shown in Figures

3.7 (c) and 3.8 (c). We see that, as in the case of the two-compartment model

discussed above, the fractions of cells plateau while the absolute numbers of cells

grow exponentially. In the plateau phase, for the parameter values selected, CSCs

constitute the smallest fraction of the total cells (when all of the N generations

of progenitor cells are grouped together into the progenitor cell fraction), while

mature cells constitute the largest fraction.

Recall that it has been assumed that mature cells are terminally-differentiated,

64



(a) (b)

(c)

Figure 3.7: Number of cells (a), (b) and fraction of cells (c) versus time for a CSC

system with 5 generations of progenitor cells. Parameter values are as follows:

ρS = 0.75 day−1, ρP = 0.9 day−1, r = 0.25, Γ = 0 day−1 (solid curves), Γ = 0.3

day−1 (dashed curves).
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(a) (b)

(c)

Figure 3.8: Number of cells (a), (b) and fraction of cells (c) versus time for a CSC

system with 7 generations of progenitor cells. Parameter values are as follows:

ρS = 0.45 day−1, ρP = 0.9 day−1, r = 0.5, Γ = 0 day−1 (solid curves), Γ = 0.3

day−1 (dashed curves).
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non-dividing cells. In the context of clinical cancer biology, the fraction of cells

in the cell cycle (that is, actively dividing or preparing to divide) is known as the

growth fraction [McKinnel et al., 2006]. Estimates of growth fractions of human

tumours range from 0.06 to 0.9 [Hall, 1994].

Particular cells may not be part of the growth fraction because they are terminally-

differentiated, non-proliferating cancer cells – i.e. cells of our type M . Alternatively,

cancer cells may not be part of the growth fraction because they are quiescent, by

which we mean that they have (temporarily) exited the cell cycle but may once

again begin dividing when triggered to do so by some cue. In normal stem cell

biology, quiescence of stem cells is thought to be a widespread phenomenon [Wicha

et al., 2006]. In CSC biology, it is often hypothesized that CSCs may also at times

be quiescent [Wicha et al., 2006]. This is currently not a feature of our model,

although the introduction of quiescence may be classified in the category of fu-

ture work. While we have not included quiescence, it is evident in Figures 3.7(c)

and 3.8(c) that even if a fraction of the fraction of CSCs were considered to be

quiescent, then the majority of non-proliferating cells would still be M -type cells.

Denoting the fraction of M cells fM and the growth fraction fG, we have that

fG ≈ 1− fM . From Figures 3.7(c) and 3.8(c), the growth fraction fG evidently in-

creases (decreases) as the mature cell death rate Γ increases (decreases) and other

parameter values are held fixed. We point this out to illustrate that a wide range of

clinically-relevant growth fractions can be obtained in our model simply by varying

Γ. Of course, we expect that by varying other parameters such as ρS, r and ρP ,

the growth fraction can also be altered.

We may either numerically solve Equations 3.67, or else solve Equations 3.67

analytically. We refrain from doing the latter here because, despite the linear

homogeneous nature of Equations 3.67, the solution of these N + 2 coupled ODEs
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will become cumbersome to the point that its meaning is obscured. Instead, we

propose a simplified, or “condensed”, model that may be more amenable to such

treatment and may yield some useful results.

3.6.2 A simplified approach

As mentioned above, the net effect of the N generations of progenitor cells is to

amplify the number of mature cells, so that a single P1 cell eventually gives rise to

2N M cells, according to the progression

P1

ρP1→ 2P2

ρP2→ . . .
ρPN−1→ 2N−1PN

ρPN→ 2M.

This effect can be captured more succinctly, by simply assuming that a P1 cell

divides to produce 2N M cells with some division rate ρ∗P . (This simplification

embodies what we will refer to as the “condensed” model of cancer stem cell growth,

while the model in Equation 3.66 will be referred to as the “full” model.) To find

ρ∗P , we note that each of the growth rates ρPi is related to the reciprocal of the

cell cycle time τi of Pi cells by ρPi = ln 2/τi. Thus, the effective growth rate of

progenitor cells in the condensed model is

ρ∗P =
ln 2
N∑
i=1

τi

=
ln 2

N∑
i=1

ln 2

ρPi

=
1

N∑
i=1

1

ρPi

, (3.68)

which reduces to ρ∗P = ρP/N in the case that ρPi = ρP for i = 1, . . . , N . We

will generally assume that this is the case (i.e. that the division rates are the same

for each generation of progenitor cell); we simply point out that the situation may

be generalized to include cases in which the division rates of different progenitor

cells are not the same. Subsituting the notation P for the lone distinct class of
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progenitor cells P1, the types of cell division permitted in the condensed model are

then

S
ρSr1−→ S + S

S
ρSr2−→ S + P

S
ρSr3−→ P + P (3.69)

P
ρ∗P−→ 2NM

M
Γ−→ ∅.

The condensed model of CSC growth has the advantage of simplicity over the

full model; in particular, it allows for adjustment of the number of generations of

progenitor cells N without altering the structure of the model. Such a model has

been used, for example, in modelling the treatment dynamics of chronic myeloid

leukemia [Michor et al., 2005a]. We will consider a comparison of the full and con-

densed models later, but first we proceed to write the master and average equations.

For the condensed model depicted in Equation 3.70, we define pnS ,nP ,nM (t) as

the (conditional) probability of the system containing nS stem cells, nP progenitor

cells, and nM mature cells at time t, given that n0
S stem cells, n0

P progenitor cells,

and n0
M mature cells were present at time t0. This conditional probability obeys

the master equation

d

dt
p(t) = ρSr1(nS − 1)pnS−1(t) + ρSr2nSpnP−1(t)

+ ρSr3(nS + 1)pnS+1,nP−2(t)− ρS(r1 + r2 + r3)nSp(t)

+ ρ∗P (nP + 1)pnP+1,nM−2N (t)− ρ∗PnPp(t)

+ Γ(nM + 1)pnM+1(t)− ΓnMp(t). (3.70)
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As in Equation 3.66, we have suppressed writing in full the indices of pnS ,nP ,nM (t)

that do not differ from nS, nP , nM . Equation 3.66 is valid for nS ≥ 1, nP ≥ 2,

nM ≥ 2N , and is adjusted accordingly otherwise. The initial condition for Equation

3.70 is

pnS ,nP ,nM (t0) = δnS ,n0
S
δnP ,n0

P
δnM , n

0
M .

Using Equation 3.70 to find equations for the average numbers of S, P , and M

cells, we find

d

dt
S(t) = ρSrS(t)

d

dt
P (t) = ρS(1− r)S(t)− ρ∗PP (t)

d

dt
M(t) = 2Nρ∗PP (t)− ΓM(t), (3.71)

subject to S(0) = S0 = n0
S, P (0) = P0 = n0

P , and M(0) = M0 = n0
M , with

r = r1 − r3, as before.

Since we have not bestowed upon our CSCs any additional abilities (in the form

of division pathways), we see that the expression for S(t) in Equation 3.71 is the

same as in Equation 3.18. Solving the second equation using the solution from the

first (given in Equation 3.21) and likewise using the solution of the second equation

in solving the third equation, we have

P (t) =

(
ρS(1− r)S0

ρSr + ρ∗P

)(
eρSrt − e−ρ∗P t

)
+ P0e

−ρ∗P t, (3.72)

M(t) = 2Nρ∗P

(
ρS(1− r)S0

ρSr + ρ∗P

)(
eρSrt

ρSr + Γ
− e−ρ

∗
P t

Γ− ρ∗P

)
+

(
2Nρ∗PP0

Γ− ρ∗P

)
e−ρ

∗
P t (3.73)

+

[
M0 − 2Nρ∗P

(
ρS(1− r)S0

ρSr + ρ∗P

)(
1

ρSr + Γ
− 1

Γ− ρ∗P

)
− 2Nρ∗PP0

Γ− ρ∗P

]
e−Γt.
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3.6.3 Fraction of CSCs

With the intention of finding the fraction of CSCs in this three-compartment model,

we define

X(t) =
S(t) + P (t)

S(t)
= 1 +

P (t)

S(t)

and

Y (t) =
S(t) + P (t) +M(t)

S(t)
= X(t) +

M(t)

S(t)
.

(The reciprocal of Y (t) is thus the desired fraction of cancer stem cells.) Using

Equation 3.71, it is found that

d

dt
X(t) =

S(t) d
dt
P (t)− P (t) d

dt
S(t)

S2(t)

=
S(t)(ρS(1− r)S(t)− ρ∗PP (t))

S2(t)
− P (t)ρSrS(t)

S2(t)

= ρS(1− r)− (ρ∗P + ρSr)
P (t)

S(t)

= ρS(1− r) + (ρ∗P + ρSr)− (ρ∗P + ρSr)− (ρ∗P + ρSr)
P (t)

S(t)

= (ρS + ρ∗P )− (ρ∗P + ρSr)X(t). (3.74)
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Similarly,

d

dt
Y (t) =

d

dt
X(t) +

S(t) d
dt
M(t)−M(t) d

dt
S(t)

S2(t)

=
d

dt
X(t) +

S(t)(2Nρ∗PP (t)− ΓM(t))

S2(t)
− M(t)ρSrS(t)

S2(t)

=
d

dt
X(t) + 2Nρ∗P

P (t)

S(t)
− (ρSr + Γ)

M(t)

S(t)

=
d

dt
X(t) + 2Nρ∗P

P (t)

S(t)
− (ρSr + Γ)

M(t)

S(t)
+ 2Nρ∗P − 2Nρ∗P

+(ρSr + Γ)

(
1− 1 +

P (t)

S(t)
− P (t)

S(t)

)
= −2Nρ∗P +

d

dt
X(t) + (2Nρ∗P + ρSr + Γ)

(
1 +

P (t)

S(t)

)
−(ρSr + Γ)

(
1 +

P (t)

S(t)
+
M(t)

S(t)

)
+ (ρSr + Γ)

(
1 +

P (t)

S(t)

)
= −2Nρ∗P +

d

dt
X(t) + (2Nρ∗P + ρSr + Γ)X(t)

−(ρSr + Γ)Y (t)

= −2Nρ∗P + (ρS + ρ∗P )− (ρ∗P + ρSr)X(t)

+ (2Nρ∗P + ρSr + Γ)X(t)− (ρSr + Γ)Y (t). (3.75)

To find the steady-state values X and Y of X(t) and Y (t) respectively (and hence

of the fraction of cancer stem cells 1/Y (t), we simply set X ′(t) = Y ′(t) = 0. From

Equation 3.74, we find that

X =
ρS + ρ∗P

(ρ∗P + ρSr)
. (3.76)

Substituting X ′(t) = Y ′(t) = 0 into Equation 3.75 along with X(t) = X as given

in Equation 3.76, we solve for Y to yield

Y =
2Nρ∗PρS(1− r) + (ρSr + Γ)(ρS + ρ∗P )

(ρSr + Γ)(ρSr + ρ∗P )
. (3.77)

Upon taking the reciprocal of Equation 3.77, we see that

S(t)

S(t) + P (t) +M(t)
→ (ρSr + Γ)(ρSr + ρ∗P )

2Nρ∗PρS(1− r) + (ρSr + Γ)(ρS + ρ∗P )
, as t→∞. (3.78)
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3.6.4 Comparison of the Full and Condensed Models

A comparison of the full and condensed models is presented in Figures 3.9 and 3.10,

corresponding to stem cell hierarchies featuring N = 5 and N = 7 generations of

progenitor cells, respectively. Figures 3.9 (b) and 3.10 (b) show that the desired

plateauing of a system in which only progenitor cells exists occurs for both the

full and condensed models. In Figures 3.9 (a), (c) and 3.10 (a), (c) we see that

while the behaviour of the condensed model mimics that of the full model, the

full model lags slightly behind the condensed model, with the relative difference

appearing greatest in the early stages of growth. Figures 3.9 (d) and 3.10 (d)

serve to illustrate that the fraction of CSCs exhibits very similar behaviour for

both models after a transient period of disagreement, suggesting that Equation

3.78 serves as a good approximation to the long-term fraction of CSCs in the full

model as well as being exact for the condensed model. A comparison of Figures

3.9 and 3.10 suggests that the quantitative disagreement between the two models

is exaggerated as the number of generations N of progenitor cells is increased.
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(a) (b)

(c) (d)

Figure 3.9: Comparison of the full (f) and condensed (c) models, with one stem cell

at time t = 0 (a), (c), (d) and one P1 (P) cell at time t = 0 (b). Parameter values

are as follows: N = 5, ρS = 0.75 day−1, ρP = 0.9 day−1, r = 0.25, Γ = 0.
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(a) (b)

(c) (d)

Figure 3.10: Comparison of the full (f) and condensed (c) models, with one stem

cell at time t = 0 (a), (c), (d) and one P1 (P) cell at time t = 0 (b). Parameter

values are as follows: N = 7, ρS = 0.4 day−1, ρP = 1.05 day−1, r = 0.5, Γ = 0

day−1.
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Chapter 4

Application: Treatment of Brain

Cancer

While the prognoses for many types of cancers have improved in recent years as dili-

gent research has led to better diagnostic and treatment techniques, brain tumours

remain consistently devastating in both adults and children. Cancers of the brain

and spinal cord are the second most common cause of cancer mortality in children

(National Cancer Institute of Canada data: http://www.ncic.cancer.ca). In adults,

the median patient survival time following diagnosis with the most prevalent type of

brain cancer, glioblastoma multiforme (GBM), is a dismal 6 to 12 months, a prog-

nosis not significantly improved upon over the last few decades [DeAngelis, 2005].

The failure of standard treatment strategies consisting of surgical resection followed

by radiation and/or chemotherapy to substantially improve patient outcomes re-

flects the fact that the mechanisms driving human brain tumour growth, as well as

the interactions of cancer cells with their microenvironment and with therapeutics,

are not yet well understood. In order to explain clinical and experimental results,
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including the shortcomings of conventional treatments, much recent research has fo-

cused on the study of brain tumour development and growth in terms of the cancer

stem cell hypothesis. Here, we use an adaptation of the simple two-compartment

model developed in Chapter Three to examine recent developments in the theory

of the treatment of brain tumours; much of this chapter is reproduced from [Turner

et al., In press].

4.1 Biological Orientation

4.1.1 Neural Stem Cells in Homeostasis

The role of stem cells in the maintenance of the adult human central nervous sys-

tem is only beginning to be understood [Uchida et al., 2000], although significantly

more is known about embryonic brain development. The concept that neurogene-

sis (the production of neurons) continues throughout adulthood has only recently

overturned the long-held doctrine of “no new neurons” after birth, with the demon-

stration that new neurons are indeed produced in certain areas of the brain until

death [Eriksson et al., 1998]. Widespread recognition of adult mammalian neuro-

genesis is predated by initial work aimed to isolate mammalian neural stem cells –

in particular, Reynolds and Weiss showed that cells expressing the protein Nestin

could be extracted from the brains of adult mice and induced to proliferate and

differentiate into neurons and astrocytes [Reynolds and Weiss, 1992].

The search for stem cells of the adult human central nervous system narrowed

significantly in 2000, when Uchida et al. reported the isolation of adult human

neural stem cells on the basis of the cell surface protein CD133 [Uchida et al.,

2000]. CD133, also known as AC133 or human Prominin-1, is an 865-amino acid
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long glycosylated protein embedded in the plasma membrane, consisting of five

transmembrane domains including two prominent extracellular loops [Shmelkov

et al., 2005, Neuzil et al., 2007]. Although its biological function has yet to be

established [Shmelkov et al., 2005, Neuzil et al., 2007], it was first identified as a

marker of hematopoietic stem cells and since its use by Uchida et al. (2000), it has

been implicated as a marker for various putative cancer stem cells.

Despite the relative nascency of the field of neural stem cell biology, the cancer

stem cell hypothesis has recently been extended to brain cancers [Ignatova et al.,

2002, Hemmati et al., 2003, Singh et al., 2003, 2004, Galli et al., 2004]. In 2003,

brain tumour cells expressing CD133 were identified as brain tumour stem cells

(BTSCs) based on their exclusive ability to commence and support tumour growth

[Singh et al., 2004]. These CD133+ cells, isolated from human brain tumours, were

able to generate tumours with the phenotypic signature of the original human ma-

lignancy when transplanted in small numbers (as low as 100) into the brains of

non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Impor-

tantly, CD133− cells were unable to initiate tumourigenesis in mice, even when

transplanted in numbers on the order of tens of thousands.

4.1.2 Brain Tumour Treatment and BTSCs

An implication of the cancer stem cell hypothesis is that treatments aiming to in-

discriminately destroy tumour cells in bulk may fail to consistently provide a cure

because they spare a sub-population of cancer stem cells. Consistent with this

proposition is the observation that human CD133+ glioma cells exhibit radioresis-

tance due to preferential activation of the DNA damage checkpoint response – in

particular, the fraction of CD133+ glioma cells has recently been found to be en-
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riched following treatment with ionizing radiation, both in vitro and in the brains

of immunocompromised mice [Bao et al., 2006].

Another treatment possibility may soon emerge, as Piccirillo et al. have re-

cently demonstrated that certain bone morphogenetic proteins (BMPs) are capable

of inducing CD133+ human GBM cells to differentiate and adopt a CD133− cell

phenotype, both in culture and, more importantly, in the brains of mice [Piccir-

illo et al., 2006]. Thus, pharmacological application of BMPs to brain tumours

may direct BTSCs to differentiate into cells that are more vulnerable to traditional

anti-cancer treatments (i.e. radiotherapy and chemotherapy). It is becoming in-

creasingly clear that, under the brain cancer stem cell hypothesis, any potentially

curative therapy must target BTSCs. The depletion of the cancer stem cell pool

via induced differentiation represents one promising strategy.

4.2 Modelling Brain Tumour Treatment

Here, we focus on the application of radiotherapy as considered in [Bao et al., 2006]

and theoretical BMP treatment suggested by [Piccirillo et al., 2006]. Previously (in

Chapter 3), we considered conditions of exponential growth, which are appropriate

in vitro or during the early stages of tumour development. To account for the in

vivo effects of competition for space and nutrient limitations, we incorporate logistic

growth by replacing the formerly-constant overall BTSC division rate ρS by

ρ̃S(S, P ) = ρS

(
1− S

Slim

− P

Plim

)
, (4.1)

where Slim and Plim are the limiting populations of stem and progenitor cells, re-

spectively.
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The use of a logistic growth model now allows for discussion of various in vivo

treatment strategies. In the following, we consider only the dynamics of BTSCs and

progenitor cells, as these are the proliferating cells that are the targets of therapy.

We first consider the application of radiotherapy by using the exponential decay

model described by Kohandel et al. [Kohandel et al., 2007]. The model is incor-

porated by adding treatment terms to Equations 3.20 for the numbers of stem and

progenitor cells respectively, so that they read

dS(t)

dt
= ρ̃SrS(t)− αSS(t)

∑
i

dif

(
t− ti
τS

)
dP (t)

dt
= ρ̃S(1− r)S(t)− αPP

∑
i

dif

(
t− ti
τP

)
. (4.2)

Here, αS and αP represent the radiosensitivities of the CSCs and progenitor cells

(respectively), in units of Gy−1. The ith acute dosage (in Gy per day) is denoted di,

which is applied at time ti. The radiation clearance time (order of doubling time)

of CSCs is τS (day), and τP (day) is that of the CD133− progenitor cells. Finally,

we define the function f(x) by

f(x) =

e
−x, when x ≥ 0

0 otherwise.

It has recently been observed in the laboratory that CD133+ GBM cells ex-

hibit greater radioresistance than do cells lacking CD133. In particular, following

treatment of cultures of cells isolated from primary human glioblastomas or from

human glioblastoma xenografts grown in murine hosts with 2-5 Gy ionizing radia-

tion, the fraction of CD133+ cells was found to have increased four- to five-fold [Bao

et al., 2006]. Similar results were obtained in vivo, with murine subjects bearing
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xenograft tumours. These results indicate that the radiosensitivity of BTSCs may

be significantly smaller than that of GBM progenitor cells, and thus in our model

[Equation 4.2] we should choose αS < αP . Based on data of Bao et al. (2006), αS

was estimated to be 0.2 Gy−1, a value consistent with a previous estimate of stem

cell radiosensitivity given by Sachs and Brenner [Sachs and Brenner, 2005]. We

estimate αP to be threefold greater (0.6 Gy−1). Although not considered herein,

Bao et al. (2006) suggest that administration of an inhibitor of the Chk1 and Chk2

checkpoint kinases (specifically, debromohymenialdisine) involved in cell cycle reg-

ulation concurrent with ionizing radiation renders CD133+ cells more vulnerable,

thus acting to increase the value of αS.

While recognizing the radioresistance of BTSCs is an important if somewhat

grim realization, encouraging news comes from recent experiments by Piccirillo

and colleagues supporting the notion that BMPs may induce CD133+ GBM cells to

differentiate into cells with decreased tumourigenic potential [Piccirillo et al., 2006].

BMPs are a subgroup of the transforming growth factor β (TGFβ) family of cell-

regulating proteins [Chen et al., 2004]. While BMPs play various roles throughout

the body, in neural development they typically induce differentiation into astroglial

cells [Piccirillo et al., 2006]. In vitro, treatment of glioblastoma-derived cells with

BMPs resulted in significantly reduced (in the range of 50%) CD133+ populations.

In vivo, immunodeficient mice that received gradual administration of BMP4 via

beads implanted into their brains either concurrent with or following xenograft of

glioma cells lived longer than control mice. The precise mechanisms through which

BMPs reduce the tumourigenicity of CD133+ GBM cells remain unclear [Piccirillo

et al., 2006]; mathematically, in our model we interpret the effects of BMP4 as

decreasing the net symmetric division rate r while leaving r2 fixed. Based on the

work of Piccirillo et al. (2006) we estimate that, starting from a pre-treatment
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value of r = 0.1, the effect of treatment with BMP4 is to reduce r to r = −0.1.

Note that we have previously defined r = r1 − r3, so that the change of r to a

negative value represents a simultaneous increase in the proportion of symmetric

differentiation divisions and decrease in the proportion of symmetric self-renewing

divisions.

In the laboratory, the minimum number of CD133+ GBM cells required for

tumour formation upon injection into immunocompromised mice has been reported

as approximately 100, while xenograft of up to 106 CD133− cells lacked the capacity

to be tumourigenic [Singh et al., 2004, Bao et al., 2006]. For our simulations, we

take S0 = 5000 and P0 = 105. This is roughly equivalent to implanting a tumour of

2-3mm in diameter, which is initially about five percent stem cells by composition.

The doubling time of the CD133+ subpopulation is estimated to be about two days

[Kohandel et al., 2007], resulting in ρSr ≈ 0.35day−1. We take Slim and Plim to be

107 and 108, respectively.

Solving Equations 4.2 numerically, we can consider the effects of various treat-

ment strategies on GBM cell populations, as shown in Figure 4.1. A feature of our

results is the observed enrichment of the CD133+ population following treatment

with ionizing radiation, consistent with the experimental results of Bao et al. (2006)

In our model, the greater radiosensitivity of CD133− cells dictates that the fraction

of CD133+ cells increases. Furthermore, the logistic growth condition leads to an

increase in the growth rate as CD133− cells are destroyed; this allows CD133+ cells

to repopulate. Consequently, we observe a slight increase in the number of CD133+

cells relative to the control case once radiotherapy has ended and the number of

cells has plateaued [Figure 4.1 (a)].

Our numerical results indicate that a BMP-type therapy is effective in decreasing

CD133+ cell numbers at the expense of a slight increase in the number of CD133−
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(a) (b)

(c) (d)

Figure 4.1: Number of CD133+ cells (a), number of CD133− cells (b), fraction of CD133+ cells

(c) and total number of cells (d) following various combinations of treatments. The legend is as

follows: black, solid (no radiation or BMPs); blue, solid (3Gy ionizing radiation (IR) administered

at day 10); blue, dashed (10Gy IR administered in 2Gy doses on days 10, 12, 14, 16, 18); blue,

dotted (18Gy IR administered in 2Gy doses on each of days 10-18); green, solid (10 days BMP4

administered from days 0-10); green, dashed (BMP4 administered from days 8-20); red, solid

(BMP4 administered from days 0-10 followed by 10Gy radiation administered in 2Gy doses on

days 10, 12, 14, 16, 18); red, dashed (BMP4 administered from days 8-20 with 10Gy radiation

administered in 2Gy doses on days 10, 12, 14, 16, 18). Image from [Turner et al., In press].
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cells and hence in the total number of cells. This net increase is a consequence of our

assumption that each CD133+ cell produces two CD133− cells when it differentiates.

If, rather, a CD133+ cell transitions directly into a CD133− cell (that is, an event

of the form S → P ), then such an increase in overall tumour bulk is not to be

expected. In either case, our results suggest that radiotherapy may be more effective

when combined with BMP (or another type of differentiation-inducing) therapy,

as is evidenced by the length of time for which cell number is suppressed below

saturation in the case of radio- and BMP combination therapy relative to other

strategies. It should be stressed, however, that at the present time clinical therapy

with BMPs is not feasible due to the many questions that remain regarding the

actions and consequences of these proteins – the theoretical results merely provide

additional motivation to investigate such differentiation-inducing factors. A further

prediction of the model is that, following the discontinuation of a treatment regime

composed of any combination of radiotherapy and BMP-type therapy, the GBM cell

population will recover to its original constitution (unless the CD133+ population

has been rendered extinct). That is, the period of change in the percentage of

CD133+ GBM cells that begins with the onset of treatment is only transient, and

the tumour will eventually recover its original phenotype, as shown in Figure 4.1

(c).
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Chapter 5

Sphere-Forming Assays, (Cancer)

Stem Cells, and the

Epithelial-Mesenchymal

Transition

In recent years the epithelial-mesenchymal transition (EMT), a cellular differen-

tiation process wherein epithelial cells lose expression of genes that facilitate the

ordered inter-cellular junctions that are characteristic of epithelial surfaces and in-

stead become mobile, has been implicated in endowing certain cancer cells with

the ability to metastasize – that is, to disseminate from the primary tumour, enter

circulation via blood vessels, and establish themselves in new locations throughout

the body, potentially leading to secondary tumours. It is also an implication of

the CSC hypothesis that, in order for successful metastatic growth to occur, the

metastasized cell must be a CSC. A link between EMT and CSCs has been pro-

85



posed – particularly, it has been postulated that the EMT may foster metastasis

by producing cells that are not only motile but are indeed CSCs, with recent ex-

perimental support for this notion in breast cancer and breast-cancer-related cell

lines [Mani et al., 2008, Morel et al., 2008]. Here, we apply the models of Chap-

ter Three to investigate the nature of the mechanism by which EMT induces the

experimentally-observed enrichment of cells expressing stem-like characteristics in

populations of mammary epithelial cells [Mani et al., 2008, Morel et al., 2008]. To

aid in this investigation (particularly in determining appropriate values of model

parameters), we first consider modelling the mammosphere assay, a technique used

in the investigation and enrichment of mammary stem cells.

5.1 Sphere-Forming Assays

In the study of stem cells and CSCs, it is crucial to design laboratory protocols that

serve to functionally identify, and enrich, populations of these cells. To this end,

investigators have developed sphere-forming assays, wherein cells are dissociated

and placed into culture conditions such that they may develop into free-floating,

sphere-shaped clusters of cells [Singec et al., 2006]. Such assays were originally

developed for the study of neural stem cells [Reynolds and Weiss, 1992] – in this

context, the spheres of cells are known as “neurospheres”. More recently, an anal-

ogous “mammosphere” assay has been established for the study of mammary stem

cells [Dontu et al., 2003]. Because sphere-forming assays are relevant techniques in

cancer biology and normal stem cell biology, we will frequently use the abbreviation

(C)SC to indicate that the cells that are the subject of discussion may be either

stem cells or cancer stem cells.

Mammosphere and neurosphere assays have been used to estimate the numbers
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Figure 5.1: An image of a mammosphere; yellow staining represents the presence of

markers indicating cells with mulitpotentiality, suggestive of mammary stem cells.

Adapted from [Mani et al., 2008].

of (C)SCs in cell populations [Reynolds and Rietze, 2005]; often in such cases it is

assumed that the fraction of cells plated that actually form spheres is representative

of the frequency of (C)SCs in that population [Reynolds and Rietze, 2005] (here,

by “plating” a cell, we mean introducing that cell to the sphere-forming assay). In-

terpretation of data from sphere-forming assays in this manner requires the making

of some assumptions:

• each (C)SC plated forms a sphere

• each sphere is clonal in origin (i.e. is derived from a single (C)SC)

• non-stem cells (or non-CSCs) do not form spheres.

Evidence challenging the second assumption has been presented by Singec et al.

[Singec et al., 2006], who demonstrated, using video microscopy, that neurospheres
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have a tendency to migrate toward each other and fuse, contradicting the assump-

tion of clonality. The complicating effects of sphere migration and fusion are likely

dependent on the density at which cells are plated – that is, when many cells are

plated per unit volume, fusion is likely to be more significant than when only a

few cells are plated per unit volume. (In a non-spatial model of cell growth such

as ours, the phenomena of cell migration and fusion cannot be directly addressed.

We simply mention that cell migration and fusion may contribute to polyclonality

of spheres, and suggest that in the future, a spatial model may incorporate these

effects.)

Additionally, it is maintained by some that non-stem cells (namely, progenitor

cells) do sometimes show the ability to form spheres [Reynolds and Rietze, 2005].

A handful of examples supporting this claim exist in the literature [Seaberg and

van der Kooy, 2002, Tropepe et al., 2000, Zhang et al., 1998]. However, here we

do not consider progenitor cells as having the ability to self-renew and so it is a

feature of our model that progenitor cells will not form spheres in sphere-forming

assays.

Regarding the first assumption (i.e. that each (C)SC plated forms a sphere), we

point out that it is a feature of a stochastic model of (C)SC division that each (C)SC

does not necessarily form a sphere, as will become evident shortly (the first division

of a (C)SC plated in a sphere-forming assay may be a symmetric commitment-type

division, for example). Thus, a stochastic model of (C)SC division predicts that the

number of spheres formed in a sphere-forming assay will be an under-representation

of the actual number of (C)SCs in the original population.
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5.1.1 The Mammosphere Assay

Our particular interest in sphere-forming assays is a result of the use of the mammo-

sphere assay in recent experiments by the group of Robert Weinberg suggesting the

role of the EMT in generating cells with properties of stem cells [Mani et al., 2008],

as will be discussed later in this chapter. Now, we focus our attention on the mam-

mosphere assay, as performed by Mani et al. [Mani et al., 2008]. We do so for two

reasons: to improve our understanding of the nature of the mammosphere-forming

assay, and to aid in the search for parameter values to be used in the following

section, which investigates possible mechanisms by which mammary epithelial cells

may gain the properties of mammary stem cells.

Mani et al. [Mani et al., 2008] defined a mammosphere to be an adherent

cluster of cells with diameter d at least 75µm after 7-10 days in culture, (presum-

ably) arising from a single cell. We note that a mammosphere should be at least

approximately spherical, and that its volume is thus given by

V ≈ 4

3
πr3 =

π

6
d3.

Thus, a mammosphere of diameter 75µm has volume V ≈ 2.2×105µm3. We assume

that an individual mammary epithelial/mesenchymal cell is roughly spherical with

diameter 11µm, lending it a volume of roughly 700µm3. Kepler’s Conjecture asserts

that the packing of spheres (in three-dimensional space) results in at least just

over 25% ‘wasted’ volume [Casti, 2001]; we suppose 30% ‘wasted space’ within

a mammosphere (presumably occupied by extracellular matrix secreted by cells)

so that 0.7 × 2.2 × 105µm3 = 1.54 × 105µm3 is available for occupation by cells.

Dividing this available space by the estimated volume of a single cell gives 1.54 ×

105µm3/700µm3 = 220 as the estimated number of cells representing the threshold

of classification of a culture of cells as a mammosphere. Thus, we assume that a
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mammosphere has at least 220 cells after 7-10 days of growth.

To simulate this mammosphere assay, we perform numerous runs of Gillespie’s

algorithm using the division pathways illustrated in either Equation 3.66 or Equa-

tion 3.70 of Chapter Three. Each run begins with a single stem cell and lasts for a

period of t = 8.5 days. A mammosphere is considered to have formed if the total

number of cells is at least 220, corresponding to the above estimate.

5.1.2 Parameter Values

We would like to assign numerical values to the seven parameters in Equation 3.70:

ρS, r1, r2, r3, ρP , N , and Γ. The problem of determining growth and death rates for

cancer modelling is not new; however, in the present context of CSC biology, this

problem is aggravated by the presence of sub-population-specific growth rates ρS

and ρP and division-type probabilities r1, r2 and r3. In treating a cancer as a col-

lection of sub-populations of cells having distinct growth characteristics, we cannot

readily make use of experimentally-acquired measurements of cell populations as

wholes. Some recent experimental work shows promise toward directly elucidating

the growth characteristics of individual cell types. The group of Tannishtha Reya

imaged hematopoietic stem cells in real time by time-lapse microscopy, measuring

frequencies of symmetric self-renewal, asymmetric self-renewal and symmetric com-

mitment of these cells [Wu et al., 2007]. (Interestingly and importantly, they also

showed that these division frequencies can be altered by certain cancer-associated

proteins [Wu et al., 2007].) Prior to this, the group of Eric Jervis at the Univer-

sity of Waterloo began using high-resolution videomicroscopy to track cell division

and morphological properties of hematopoietic stem cells [Dykstra et al., 2006].

Advances such as these may soon lead to the direct measurement of (C)SC and
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progenitor cell properties, but in the meantime we propose an indirect method of

estimating these quantities, based on the numerical simulation of sphere-forming

assays over ranges of candidate parameter values and the comparison of results to

a set of experimentally-derived selection criteria. We now proceed in this direction.

For simplicity, and because we lack quantitative information to the contrary, it

is assumed here that the probability per unit time Γ of an individual mature cell

dying is zero. This assumption, coupled with the normalization r1 + r2 + r3 = 1

imposed on the probabilities of each of the three types of stem cell division, leaves us

with five free parameters. To narrow the range of possible values of the remaining

parameters, we look to extract additional conditions from the data of Mani et al.

[Mani et al., 2008].

Mani et al. [Mani et al., 2008] selected cells for the mammosphere assay from a

population of nontumourigenic immortalized mammary epithelial cells (HMLECs).

HMLECs are cells that have been engineered to overcome the typically-observed

eventual senescence that occurs when normal human mammary epithelial cells are

cultured [Elenbaas et al., 2001]. Figure 5.2, from the Supplementary Data of [Mani

et al., 2008], indicates that over a twelve-day period, the fraction of cells expressing

high levels of the cell surface protein CD44 and low or undetectable levels of the cell

surface protein CD24 (CD44high/CD24low cells – this phenotype serves as a marker

of mammary epithelial stem cells and of breast cancer stem cells [Mani et al., 2008])

fluctuated around a value of about 2%. We interpret this value as the steady-state

fraction of CD44high/CD24low cells in the population. Furthermore, we assume that

the CD44high/CD24low phenotype is a perfect marker of mammary epithelial stem

cells, in the sense that the terms “stem cell” and “CD44high/CD24low cell” can be

used interchangeably. Thus, we require that the steady-state fraction of stem cells

FS be approximately 0.02 – this serves as one additional criterion that our set of
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parameter values should satisfy.

We note that, while the CD44high/CD24low phenotype is used in laboratory

settings as a marker of mammary epithelial stem cells and breast cancer stem cells,

its relevance as such has been questioned [Fillmore and Kuperwasser, 2007], and

the assumption that it is a perfect marker does not reflect the possibility that

some non-stem cells (e.g. early-generation progenitor cells) may also share this cell

surface protein expression profile. Recent reports suggest that expression of the

enzyme aldehyde dehydrogenase (ALDH) [Ginestier et al., 2007] or of epithelial-

specific antigen (ESA) in addition to the CD44high/CD24low phenotype [Fillmore

and Kuperwasser, 2008] may serve as a better marker. However, as data relating the

numbers of cells defined by these phenotypes to the EMT are currently unavailable,

we reserve the refinement of this modelling assumption for future work.

It was reported that roughly 4/1000 = 0.4% of HMLECs plated in the mam-

mosphere assay formed mammospheres [Mani et al., 2008] when these cells were

selected from an unsorted population (that is, from a mixture of CD44high/CD24low

cells and cells without this phenotype). We interpret the formation of a mam-

mosphere in this way as two independent events occurring in succession: first, a

stem cell is chosen from the unsorted population of HMLECs. Next, that stem cell

proliferates in such a way that it forms a mammosphere. If we assume that cells

are taken randomly from a well-mixed population of HMLECs with a steady-state

composition in which (100× FS)% of cells are stem cells, then the first event (the

selection of a stem cell) occurs with a probability of FS. The second event (the

formation of a mammosphere by a selected stem cell) occurs with some relative

frequency fm; the independence of these two events means that

MFE = FSfm,
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Figure 5.2: Supplemental Figures S2C (left) and S2D (right), from [Mani

et al., 2008]. The left-hand-side gives the percentage of HMLECs expressing

the CD44high/CD24low breast/breast cancer stem cell phenotype as measured at

times following exposure of cells to tamoxifen, while the right-hand-side quantifies

mammosphere-forming ability of the same cells. “Vector” HMLECs are control

cells expressing neither Snail nor Twist.
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where we have defined the mammosphere-forming efficiency (MFE) of a population

of cells as the relative frequency of a cell from the population forming a mammo-

sphere. For consistency with Mani et al. [Mani et al., 2008] (Figure 5.2) we require

that the MFE be roughly 0.004 (or in the range of 0.003-0.005).

The average mammosphere size was also measured by Mani et al. [Mani et al.,

2008] to be about 300 cells. In summary, we have three numerical criteria that we

would like our set of parameter values to satisfy:

• the steady-state fraction of stem cells FS is about 0.02 (0.02± 0.002)

• the MFE = FSfm is about 0.004 (0.004± 0.001)

• the average size of a mammosphere (AMS) is about 300 cells (300± 30).

In the list above, we have used the qualifier “about” to reflect the fact that a degree

of uncertainty in these values exists. This uncertainty, exacerbated by the number

of free parameters being greater than the number of quantitative selection criteria,

in turn lends a degree of arbitrariness to our selection of parameter values.

5.1.3 Simulation of the Mammosphere Assay

To proceed, we perform mammosphere simulations using Gillespie’s algorithm,

looping over a range of values of each of the free parameters ρS, ρP , N , r1 and

r3. In particular, we take candidate values of ρS ∈ {0.25, 0.3, . . . , 1.55, 1.6} (with

units of day−1), and candidate values of ρP from the same set. We restrict N to N ∈

{3, 4, 5, 6, 7, 8}. For each of r1, r2 and r3, we consider values in {0.05, 0.1, . . . , 0.85, 0.9}

subject to r1 + r2 + r3 = 1.
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In Chapter Three, we introduced two forms of a general model of growth for

cell populations with N generations of progenitor cells: a “full model”, with di-

vision pathways given in Equation 3.66, and a “condensed model”, with division

pathways given in Equation 3.70. The condensed model has the advantage of sim-

plicity, as it has only three distinct sub-populations of cells S, P and M , regardless

of the number of generations N of progenitor cells that it models – this simplicity

translates to a significant advantage versus the full model in terms of computa-

tional time required to perform stochastic simulations of the model via Gillespie’s

algorithm. The full model, on the other hand, has the advantage of physicality –

distinct subpopulations of progenitor cells divide, and instantaneous jumps from a

single first-generation progenitor cell to 2N mature cells are not permitted in the

full model while they are in the condensed model. This distinction may be relevant

when considering simulation of the mammosphere assay, in which relatively small

numbers of cells divide over a relatively short period of time.

Weighing these considerations, we use the condensed model in our initial round

of stochastic simulations – this initial round serves to narrow the set of consistent

parameter values, using the criteria listed above as parameter selection criteria.

With a much smaller set of parameter values from which to choose (i.e. over which

to loop in simulations of the mammosphere assay), the inefficiency associated with

simulating the larger full model becomes less of a drawback.

Simulating the mammosphere-forming assay 1000 times per set of parameter

values, we find that several distinct sets of parameter values meet the selection

criteria, as recorded in Tables 5.1 - 5.4. In the cases of N = 4 and N = 5, only the

parameter ρP shows significany variability in the sense that numerous values of ρP

satisfy the selection criteria when the other parameters are fixed. For N = 6 and

N = 7, more sets of consistent parameter values are obtained, with the trend that
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ρS (day−1) ρP (day−1) r r2 AMS fm MFE FS
0.8 1.6 0.2 0.7 308 0.149 0.0031 0.0204
0.85 1.45 0.2 0.7 326 0.150 0.0033 0.0213
0.85 1.5 0.2 0.7 322 0.155 0.0033 0.0211
0.85 1.55 0.2 0.7 325 0.181 0.0039 0.0209
0.85 1.65 0.2 0.7 323 0.184 0.0039 0.0207

Table 5.1: Consistent sets of parameter values for N=4, using the full model.

ρS (day−1) ρP (day−1) r r2 AMS fm MFE FS
0.7 1.05 0.25 0.65 314 0.189 0.0035 0.0186
0.75 0.85 0.25 0.65 300 0.149 0.0031 0.0219
0.75 0.9 0.25 0.65 318 0.208 0.0042 0.0211
0.75 0.95 0.25 0.65 325 0.188 0.0037 0.0205

Table 5.2: Consistent sets of parameter values for N=5, using the full model.

as ρS increases, the difference r = r1 − r3 decreases. In all cases ρS < ρP , which

is consistent with the often-stated supposition that stem cells divide more slowly

than do progenitor cells. We caution that the values of the parameters obtained,

besides being inherently dependent on the structure of our model, also depend on

the assumed cell size and the neglecting of cell death.

In Figures 5.3 - 5.6, we plot the distribution of stem cells across all “colonies”

for three representative sets of parameter values, where each colony corresponds to

a realization of the mammosphere assay, for 10 000 realizations. Mammospheres

are colonies of size greater than or equal to 220, where by “colony size” we mean the

sum of all sub-populations of cells at time 8.5 days for that particular realization

of the mammosphere assay. Each point in Figures 5.3 - 5.6 (a) corresponds to

a realization of the assay with the colony size given by the position along the

horizontal axis and the number of stem cells in that particular colony given by

the position along the vertical axis. Likewise, in Figures 5.3 - 5.6 (b), each point

corresponds to a realization of the mammosphere assay with colony size given as
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ρS (day−1) ρP (day−1) r r2 AMS fm MFE FS
0.45 1.05 0.4 0.5 306 0.146 0.0032 0.0220
0.45 1.1 0.4 0.4 317 0.149 0.0032 0.0213
0.5 1.0 0.35 0.45 323 0.169 0.0031 0.0181
0.55 0.85 0.35 0.55 328 0.137 0.0030 0.0219
0.55 0.85 0.35 0.35 316 0.162 0.0036 0.0219
0.55 0.9 0.35 0.55 319 0.166 0.0035 0.0209
0.55 0.9 0.35 0.45 314 0.162 0.0034 0.0209
0.55 0.9 0.35 0.35 307 0.151 0.0032 0.0209
0.55 0.95 0.35 0.55 320 0.206 0.0041 0.0201
0.55 0.95 0.35 0.45 328 0.222 0.0045 0.0201
0.55 1.0 0.35 0.55 320 0.214 0.0041 0.0193
0.55 1.0 0.35 0.45 328 0.210 0.0041 0.0193
0.6 0.95 0.35 0.45 330 0.232 0.0050 0.0215
0.65 0.75 0.3 0.6 321 0.153 0.0030 0.0198
0.7 0.75 0.3 0.6 326 0.207 0.0044 0.0212

Table 5.3: Consistent sets of parameter values for N=6, using the full model.

before and the fraction of stem cells, progenitor cells (of any generation) and mature

cells in that particular colony shown in red, blue and black, respectively.

Figures 5.3 - 5.6 (a) show that, as a general trend, the number of stem cells

per colony increases as the colony size increases, although this trend is weakest in

the case of N = 7. We also observe, however, that the number of stem cells can

vary widely even among colonies of the same size (as expected, in accordance with

Equation 3.62 for the initial condition n0
S = 1). Comparing to Figures 5.3 - 5.6

(b), we see that the variability in the fraction of stem cells among colonies of the

same size is much smaller than the variability in absolute numbers of stem cells

seen in Figures 5.3 - 5.6 (a). For colonies at or above the mammosphere threshold

of 220, the fraction of stem cells appears to be relatively constant – that is, it is

independent of colony size.

It is often assumed that sphere-forming assays serve to enrich for stem cells.

Observing Figures 5.3 - 5.6, we see that the fraction of stem cells among mam-

mospheres indeed most often lies above the steady-state stem cell fraction of a
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ρS (day−1) ρP (day−1) r r2 AMS fm MFE FS
0.25 1.4 0.6 0.2 288 0.147 0.0031 0.0209
0.25 1.55 0.6 0.2 292 0.155 0.0031 0.0198
0.25 1.6 0.6 0.3 302 0.166 0.0032 0.0195
0.25 1.6 0.6 0.2 301 0.177 0.0035 0.0195
0.3 1.2 0.55 0.25 298 0.153 0.0031 0.0199
0.3 1.25 0.55 0.35 305 0.155 0.0030 0.0194
0.3 1.25 0.55 0.25 299 0.185 0.0031 0.0194
0.3 1.25 0.55 0.15 298 0.155 0.0030 0.0194
0.3 1.3 0.55 0.25 304 0.175 0.0033 0.0189
0.3 1.3 0.55 0.15 292 0.178 0.0034 0.0189
0.3 1.35 0.55 0.35 306 0.180 0.0033 0.0185
0.3 1.35 0.55 0.25 310 0.203 0.0038 0.0185
0.3 1.35 0.55 0.15 304 0.210 0.0039 0.0185
0.3 1.4 0.55 0.25 309 0.200 0.0036 0.0181
0.3 1.4 0.55 0.15 305 0.232 0.0042 0.0181
0.3 1.55 0.6 0.2 328 0.223 0.0049 0.0219
0.3 1.6 0.6 0.2 327 0.227 0.0049 0.0215
0.35 1.1 0.5 0.4 315 0.183 0.0033 0.0182
0.35 1.1 0.5 0.1 305 0.167 0.0030 0.0182
0.35 1.25 0.55 0.35 321 0.222 0.0048 0.0216
0.35 1.25 0.55 0.15 320 0.231 0.0050 0.0216
0.35 1.3 0.55 0.25 322 0.238 0.0050 0.0210
0.4 1.05 0.5 0.3 324 0.213 0.0045 0.0211
0.4 1.05 0.5 0.2 317 0.230 0.0048 0.0211
0.4 1.05 0.5 0.1 327 0.217 0.0046 0.0211
0.4 1.1 0.5 0.2 316 0.221 0.0045 0.0203
0.45 0.85 0.45 0.45 311 0.148 0.0032 0.0214
0.45 0.85 0.45 0.35 322 0.154 0.0033 0.0214
0.45 0.85 0.45 0.15 317 0.160 0.0034 0.0214
0.45 0.9 0.45 0.45 323 0.191 0.0039 0.0202
0.45 0.9 0.45 0.35 320 0.190 0.0038 0.0202
0.45 0.9 0.45 0.25 323 0.179 0.0036 0.0202
0.45 0.9 0.45 0.15 315 0.184 0.0037 0.0202
0.45 0.9 0.45 0.05 329 0.162 0.0033 0.0202
0.45 0.95 0.45 0.45 328 0.193 0.0037 0.0192
0.45 0.95 0.45 0.35 327 0.224 0.0043 0.0192
0.45 1.0 0.45 0.15 327 0.235 0.0043 0.0183
0.5 0.8 0.4 0.5 308 0.167 0.0031 0.0185
0.6 0.7 0.35 0.45 320 0.168 0.0031 0.0184
0.6 0.7 0.35 0.35 311 0.177 0.0033 0.0184
0.6 0.7 0.35 0.15 316 0.166 0.0031 0.0184
0.65 0.7 0.35 0.35 315 0.230 0.0047 0.0203

Table 5.4: Consistent sets of parameter values for N=7, using the full model.
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(a) (b)

Figure 5.3: Number of stem cells per colony (a) and fractions of stem (red), pro-

genitor (blue), and mature (black) cells per colony (b), for 10 000 realizations of

the mammosphere assay via Gillespie’s algorithm, with N = 4, ρS = 0.85 day−1,

ρP = 1.5 day−1, r1 = 0.25, r2 = 0.7, r3 = 0.05. Mammosphere threshold (220) is

shown as a vertical line; non-vertical lines represent steady-state numbers of stem

cells corresponding to total colony size (a) and steady-state fraction of stem cells

(b).
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(a) (b)

Figure 5.4: Number of stem cells per colony (a) and fractions of stem (red), pro-

genitor (blue), and mature (black) cells per colony (b), for 10 000 realizations of

the mammosphere assay via Gillespie’s algorithm, with N = 5, ρS = 0.75 day−1,

ρP = 0.9 day−1, r1 = 0.3, r2 = 0.65, r3 = 0.05. Mammosphere threshold (220) is

shown as a vertical line; non-vertical lines represent steady-state numbers of stem

cells corresponding to total colony size (a) and steady-state fraction of stem cells

(b).
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(a) (b)

Figure 5.5: Number of stem cells per colony (a) and fractions of stem (red), pro-

genitor (blue), and mature (black) cells per colony (b), for 10 000 realizations of

the mammosphere assay via Gillespie’s algorithm, with N = 6, ρS = 0.55 day−1,

ρP = 0.9 day−1, r1 = 0.45, r2 = 0.45, r3 = 0.1. Mammosphere threshold (220) is

shown as a vertical line; non-vertical lines represent steady-state numbers of stem

cells corresponding to total colony size (a) and steady-state fraction of stem cells

(b).
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(a) (b)

Figure 5.6: Number of stem cells per colony (a) and fractions of stem (red), pro-

genitor (blue), and mature (black) cells per colony (b), for 10 000 realizations of

the mammosphere assay via Gillespie’s algorithm, with N = 7, ρS = 0.4 day−1,

ρP = 1.05 day−1, r1 = 0.65, r2 = 0.2, r3 = 0.15. Mammosphere threshold (220) is

shown as a vertical line; non-vertical lines represent steady-state numbers of stem

cells corresponding to total colony size (a) and steady-state fraction of stem cells

(b).
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culture (indicated in Figures 5.3 - 5.6 (b) by a solid horizontal line); however,

some mammospheres (particularly those with total cell numbers only just above

the mammosphere definition threshold) contain relatively fewer stem cells than the

steady-state population and thus represent a dilution in terms of stem cell content.

A feature of the progression from Figure 5.3 (b) to Figure 5.6 (b) is that, as

N increases, the fractions of progenitor and mature cells begin to approach each

other. We suggest that, in experimental practice, it would be helpful to dissociate

mammospheres following the mammosphere assay and sort according to markers

of fully-differentiated (i.e. mature) cells, stem cells, and “others” (i.e. progenitor

cells). Comparison of distributions obtained via stochastic simulation may then

help to elucidate numerical values of the growth parameters of these cells – for ex-

ample, in distinguishing between the cases of the parameter values used in Figures

5.3 - 5.6. Indeed, very recent analysis of mammospheres produced by normal hu-

man mammary cells (that is, non-immortalized human mammary epithelial cells)

indicated that about 70% of cells within mammospheres stained positive for CK18,

a membrane-associated protein indicative of (differentiated) luminal epithelial cells,

while 7% stained positive for CK14, a marker of (differentiated) myoepithelial cells,

and 30% stained positive for CK19, a marker of early progenitor and myoepithe-

lial cells [Dey et al., 2009]. While these statistics are likely confounded by overlap

among marker proteins, a composition of about 70-80% mature/late-generation

progenitor cells with the remaining 20-30% being stem cells or earlier-generation

progenitor cells seems roughly consistent with Figures 5.3 - 5.6 (b).

More detailed experimental results may also suggest that some sort of regulatory

feedback is at work. For example, one could imagine that a stem cell might be more

likely to undergo symmetric self-renewal if few other stem cells are present, and

less likely to undergo symmetric self-renewal if many stem cells are present. Such
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feedback is implied by the fact that organs achieve homeostasis, although it is not

clear that effects present in vivo are necessarily present in vitro. We suggest that

in the future such cell number-dependent regulation of stem cell division could be

included in the model, if required. For now, however, we take the parameter values

used in generating Figures 5.3 - 5.6 and proceed to the next section.

5.2 CSCs and the Epithelial-Mesenchymal Tran-

sition

Epithelial-mesenchymal transition (EMT) is a cellular differentiation process in

which epithelial cells lose representative phenotypic characteristics such as expres-

sion of E-cadherin (a transmembrane protein important in cell adhesion) and in-

stead adopt features of mesenchymal cells, including increased cellular mobility.

This process plays essential roles in normal development – for example, it enables

formation of the secondary palate and heart valves in embryonal development [Yang

and Weinberg, 2008]. However, in recent years the study of EMT has transcended

developmental biology as cancer biologists have noted the similarities between de-

velopmental EMT and the acquisition of invasive properties by metastatic cancer

cells [Yang and Weinberg, 2008]. The research groups of Weinberg [Mani et al.,

2008] and Puisieux [Morel et al., 2008] have implicated EMT in cancer stem cell

biology, suggesting that EMT generates cells with properties of stem cells.

In brief, the work of Mani et al. [Mani et al., 2008] involved inducing EMT

in HMLECs through several different means, and observing the phenotypes and

functionalities in comparison to control cells. One method of inducing EMT in

HMLECs was the forced, constitutive expression of either the protein Snail, which
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directly inhibits transcription of the E-cadherin gene, or the protein Twist, which

indirectly facilitates similar E-cadherin inhibition [Yang and Weinberg, 2008]; an-

other method of EMT induction was exposure to TGFβ1, a protein implicated in

signalling the initiation of EMT [Yang and Weinberg, 2008]. A third method was

the coupling of either Snail or Twist to a modified estrogen receptor. By expo-

sure to the estrogen receptor ligand tamoxifen, Snail or Twist expression could be

triggered – this expression was reversible, in that Snail or Twist expression could

be stopped via withdrawal of tamoxifen. We examine data derived from this third

method of EMT induction in our analysis, as only these data are presented in a

way that illustrates their time-dependence (Figure 5.2).

The effects of EMT induction on HMLECs were judged according to observed

changes in phenotype and function. Phenotypic changes included loss or gain of

expression of various genes associated with mesenchymal cells or epithelial cells, but

the characteristic of most note was increased expression of the CD44high/CD24low

cell-surface protein expression profile, the phenotype attributed to breast (and

breast cancer) stem cells. The ability of HMLECs exposed to EMT-inducing stimuli

to form mammospheres was also quantified, as this function is generally considered

to be demonstrative of stem cells. CD44high/CD24low expression and mammosphere-

forming ability of HMLECs induced to undergo EMT for varying lengths of time

as measured by Mani et al. [Mani et al., 2008] are recorded in Figure 5.2.

It is noted from Figure 5.2 that both the fraction of HMLECs expressing the

stem cell phenotype and the number of mammospheres formed per 500 cells in-

crease with increasing exposure to tamoxifen (and hence increasing EMT induc-

tion). Radisky and LaBarge [Radisky and LaBarge, 2008] propose two possible

explanations of how EMT induction leads to these observed increases in stem cell

appearance and function. The first, which we call “Scenario One”, is that exist-
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ing non-stem HMLECs (that is, CD44low/CD24high cells – we herein assume, as in

the previous section, that the CD44high/CD24low phenotype is a perfect marker of

mammary stem cells) were converted directly to stem cells (CD44high/CD24low cells)

via EMT. The second proposed possibility (“Scenario Two”) is that the EMT in-

hibited differentiation/enhanced proliferation of existing stem cells, while possibly

inhibiting proliferation of non-stem cells. These scenarios are illustrated in Figure

5.7.

(a) (b) (c)

Figure 5.7: Mechanisms of production of stem and non-stem cells: (a) control

(normal) case, (b) Scenario One (production of stem cells from non-stem cells, and

(c) Scenario Two (increased stem cell self-renewal/decreased differentiation of stem

cells).

5.2.1 Scenario One

Under Scenario One, we define the rate constants α and β (units of day−1) to

be the rates at which non-stem cells are transferred from the progenitor cell and

mature cell compartments, respectively, to the stem cell compartment, and modify
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Equations 3.67 accordingly:

d

dt
S(t) = ρSrS(t) + α

N∑
i=1

Pi(t) + βM(t)

d

dt
P1(t) = ρS(1− r)S(t)− ρP1P1(t)− αP1(t)

d

dt
Pi(t) = 2ρPi−1

Pi−1(t)− ρPiPi(t)− αPi(t), for i = 2, . . . , N

d

dt
M(t) = 2ρPNPN(t)− ΓM(t)− βM(t), (5.1)

where we remind the reader that r = r1−r3. We solve Equations 5.1 numerically for

each of the sets of parameter values used in Figures 5.3 - 5.6, using initial conditions

that correspond to 104 cells distributed such that the fraction of stem cells at time

t = 0 is given by the data of Mani et al. [Mani et al., 2008] in Figure 5.2 and

the fractions of mature cells and progenitor cells are approximately in steady-state.

Results are shown in Figures 5.8 - 5.11, wherein the values of α and β that best fit

the experimental data presented in Figure 5.2 have been determined by inspection.

Several cases are considered in Figures 5.8 - 5.11, including those in which only

one of the de-differentiation rates α and β is non-zero. Of these cases, the only

one that can be said to capture the trend of the experimental data of Mani et al.

[Mani et al., 2008] is that in which β = 0 and α is non-zero. This is interpreted

biologically as the case in which only progenitor cells, and not non-proliferating

mature cells, are susceptible to de-differentiation via the EMT. We point out that

this case may be unrealistic, as we expect the mature cells, the bulk of which are

the canonical epithelial cells, to respond to the EMT.

In the other cases, the theoretically-predicted rises in the fractions of CD44high/CD24low

Snail-ER and Twist-ER cells occur much more abruptly than the corresponding

experimentall-observed rises. Experimentally, a delay of nearly six days passes be-

fore any appreciable increase in the CD44high/CD24low fraction is observed. We
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(a) (b)

Figure 5.8: Fraction of stem cells (a) and total number of cells (b) versus time for control cells

(black), cells induced to express Snail-ER during the twelve-day time period (blue), and cells

induced to express Twist-ER during the twelve-day time period (green), with experimental data

points shown as circles of the corresponding colour. Parameter values not shown in the legend

are as follows: N = 4, ρS = 0.85 days−1, ρP = 1.5 days−1, r = r1 − r3 = 0.2, Γ = 0.

(a) (b)

Figure 5.9: Fraction of stem cells (a) and total number of cells (b) versus time for control cells

(black), cells induced to express Snail-ER during the twelve-day time period (blue), and cells

induced to express Twist-ER during the twelve-day time period (green), with experimental data

points shown as circles of the corresponding colour. Parameter values not shown in the legend

are as follows: N = 5, ρS = 0.75 days−1, ρP = 0.9 days−1, r = r1 − r3 = 0.25, Γ = 0.
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(a) (b)

Figure 5.10: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and cells

induced to express Twist-ER during the twelve-day time period (green), with experimental data

points shown as circles of the corresponding colour. Parameter values not shown in the legend

are as follows: N = 6, ρS = 0.55 days−1, ρP = 0.9 days−1, r = r1 − r3 = 0.35, Γ = 0.

(a) (b)

Figure 5.11: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and cells

induced to express Twist-ER during the twelve-day time period (green), with experimental data

points shown as circles of the corresponding colour. Parameter values not shown in the legend

are as follows: N = 7, ρS = 0.4 days−1, ρP = 1.05 days−1, r = r1 − r3 = 0.5, Γ = 0.
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propose instead that some initial delay period occurs following the addition of the

EMT-inducing tamoxifen to the culture during which cells do not fully transition

to the proliferating stem cell state. While the precise nature of such a delay is un-

known at the present time, one possibility is that cells respond quickly (i.e. without

delay) to the EMT-inducing stimulus and adopt a mesenchymal phenotype, but ex-

perience an extended delay before they gain the ability to self-renew and enter the

functional stem cell compartment. Fitting this model to the experimental data,

we take α = β = 0 until t = 5.9 days, after which these rate constants assume

their appropriate values, given in the legend of Figure 5.12. Note that the “all-

or-nothing” form of the de-differentiation rates α and β assumed here is just one

possible form that might capture the proposed delay – in the future, one might also

consider time-dependent forms α(t) and β(t) that increase smoothly with time.

(a) (b)

Figure 5.12: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and cells

induced to express Twist-ER during the twelve-day time period (green), with experimental data

points shown as circles of the corresponding colour. The de-differentiation rates α and β are set

to zero until time t = 5.9 days in each case. Parameter values not shown in the legend are as

follows: N = 5, ρS = 0.75 days−1, ρP = 0.9 days−1, r = r1 − r3 = 0.25, Γ = 0.
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An interesting feature of the fractions of stem cells for Snail-ER and Twist-ER

cells observed in Figure 5.12 (a) for the cases when β > 0 is that the fractions

of stem cells increase quickly (after 5.9 days) – and increase above their respective

plateau values before steadying. The experimentally-measured Snail-ER and Twist-

ER data of Mani et al. [Mani et al., 2008] (Figure 5.2) both show similar behaviour –

although we caution that the fractions of CD44high/CD24low cells reported in Figure

5.2 are not given along with error estimates, and error in fluorescence-activated cell

sorting of cells may be significant.

We see in Figure 5.12 (a) that the case α = β > 0 offers a very good fit

to the data when the aforementioned time delay is assumed. This corresponds

biologically to the case in which progenitor and mature cells are equally susceptible

to de-differentiation to the stem cell state via EMT.

5.2.2 Scenario Two

In Scenario Two, we do not assume the presence of any additional pathways: we

use Equations 5.1 with α = β = 0. Instead, we assume that the effect of EMT is to

alter the values of the parameters r, ρS, and ρP associated with the division of stem

and progenitor cells. Again choosing r, ρS and ρP by inspection via comparison

with the data of Mani et al. [Mani et al., 2008], we plot the fraction of stem cells

as functions of time under Scenario Two in Figures 5.13 to 5.16 for Snail-ER and

Twist-ER cells.

In Figures 5.13 - 5.16, we have considered cases where (i) only the net proportion

of self-renewing stem cell divisions r is affected by the EMT, (ii) both the stem cell

division rate ρS and the net proportion of self-renewing stem cell divisions r are

upregulated, and (iii) r is increased in concurrence with a decrease in the rate of
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(a) (b)

Figure 5.13: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and cells

induced to express Twist-ER during the twelve-day time period (green), with experimental data

points shown as circles of the corresponding colour. Parameter values are as follows: N = 4,

ρS = 0.85 days−1, ρP = 1.5 days−1, r = r1 − r3 = 0.2, Γ = 0. Only values differing from control

values are shown in the legend.
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(a) (b)

Figure 5.14: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and

cells induced to express Twist-ER during the twelve-day time period (green), with experimental

data points shown as circles of the corresponding colour. Control parameter values are as follows:

N = 5, ρS = 0.75 days−1, ρP = 0.9 days−1, r = r1 − r3 = 0.25, Γ = 0. Only values differing from

control values are shown in the legend.
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(a) (b)

Figure 5.15: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and

cells induced to express Twist-ER during the twelve-day time period (green), with experimental

data points shown as circles of the corresponding colour. Control parameter values are as follows:

N = 6, ρS = 0.55 days−1, ρP = 0.9 days−1, r = r1 − r3 = 0.35, Γ = 0. Only values differing from

control values are shown in the legend.
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(a) (b)

Figure 5.16: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and

cells induced to express Twist-ER during the twelve-day time period (green), with experimental

data points shown as circles of the corresponding colour. Control parameter values are as follows:

N = 7, ρS = 0.4 days−1, ρP = 1.05 days−1, r = r1 − r3 = 0.5, Γ = 0. Only values differing from

control values are shown in the legend.
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progenitor cell division. We see that only case (ii) provides a satisfactory fit to the

data. When only r is assumed to be altered by the EMT, the fraction of stem cells

tends to a significantly higher value than one might deduce from the experimental

data; this is particularly evident in Figure 5.16, corresponding to N = 7. Similarly,

case (iii) leads to a much higher long-term stem cell fraction than indicated by the

data.

For the purpose of comparison with Figure 5.12, we have considered in Figure

5.17 Scenario Two with the 5.9-day time delay used above. Clearly, the assumption

of a (significant) time delay before the onset of the effects of EMT in conjunction

with Scenario Two provides a poor fit. We thus conclude that, if Scenario Two is

the mechanism by which the EMT enhances the fraction of mammary epithelial

stem cells, it does so by concurrently upregulating the stem cell division rate ρS

and the net proportion of self-renewing stem cell divisions r without a significant

time delay.

5.2.3 Discussion and Comparison of Scenarios

We have presented two distinct scenarios by which induction of the EMT may act to

increase the proportion of stem cells in a population of mammary epithelial stem

cells. Scenario One predicts that both progenitor cells and mature cells may be

converted to stem cells, and has the attractive feature of capturing the peak in the

fraction of stem cells observed at day 9 of EMT induction by Mani et al. [Mani

et al., 2008]. Scenario Two, on the other hand, predicts that the EMT acts by

increasing the division rate ρS of already-existing stem cells while also altering the

net proportion of symmetric stem cell self-renewals r – we suggest that the value

of r is important in determining the value toward which the fraction of stem cells
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(a) (b)

Figure 5.17: Fraction of stem cells (a) and total number of cells (b) versus time for control

cells (black), cells induced to express Snail-ER during the twelve-day time period (blue), and

cells induced to express Twist-ER during the twelve-day time period (green), with experimental

data points shown as circles of the corresponding colour. Control parameter values are as follows:

N = 5, ρS = 0.75 days−1, ρP = 0.9 days−1, r = r1 − r3 = 0.25, Γ = 0. Only values differing

from control values are shown in the legend; in each case, control values are maintained until time

t = 5.9 days, at which point the values indicated in the legend are assumed.
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will tend, while the growth rate ρS is instrumental in determining how quickly this

plateau phase is reached.

We point out that Mani et al. [Mani et al., 2008] have performed experiments

in an attempt to rule out Scenario Two, in which cells were sorted by fluorescence-

activated cell sorting for the CD44low/CD24high phenotype and subjected to EMT-

inducing stimuli [Mani et al., 2008]. It was observed that, following a period of EMT

induction, the sorted CD44low/CD24high sub-population did gain expression of the

CD44high/CD24low phenotype and the ability to form mammospheres – although

small numbers of cells from the control CD44low/CD24high sub-population (that is,

cells not induced to undergo EMT) also showed the stem cell phenotype and the

ability to form mammospheres after some time in culture. Thus, it is still possible

that a small number of CD44high/CD24low cells, despite fluorescence-activated cell

sorting, were included in the sorted CD44low/CD24high sub-population and that

these cells were enriched via Scenario Two when induced to undergo EMT.

In attempting to distinguish between Scenarios One and Two (and answer the

question, “by what mechanism does the EMT enhance the proportion of stem

cells in a population of human mammary epithelial cells?”), we can suggest some

considerations. With regard to Scenario Two, we point out that in order to achieve

a qualitatively good fit to the data we have assumed that the stem cell proliferation

rate is upregulated significantly through the EMT, and it is not intuitively clear

that such a profound increase in proliferation is a biological possibility.

Figure 5.18 compares the dynamics of the fractions of stem cells and the total

number of cells predicted by Scenario One (α = β with time delay) and Scenario

Two (ρS, r upregulated) for N = 5. We suggest that increased temporal resolution

in measuring fractions of stem cells may help to distinguish between the two Scenar-

ios. Further, we observe in Figure 5.18 (b) that the total number of cells increases
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more quickly under Scenario Two than under Scenario One. Mani et al. [Mani

et al., 2008] do not report absolute numbers of cells; we suggest, however, that

measurement of cell numbers during EMT induction may serve as one additional

criterion by which the validities of Scenarios One and Two may be judged.

(a) (b)

Figure 5.18: Comparison of EMT Scenarios One and Two: fraction of stem cells (a) and total

number of cells (b) versus time for control cells (black), cells induced to express Snail-ER during

the twelve-day time period (blue), and cells induced to express Twist-ER during the twelve-

day time period (green), with experimental data points shown as circles of the corresponding

colour. Control parameter values are as follows: N = 5, ρS = 0.75 days−1, ρP = 0.9 days−1,

r = r1 − r3 = 0.25, Γ = 0. Only values differing from control values are shown in the legend;

in each case, control values are maintained until time t = 5.9 days, at which point the values

indicated in the legend are assumed.

In Figure 5.2, it is seen that even as the fraction of CD44high/CD24low cells

reaches a plateau between days 9 and 12, the frequency of mammosphere inititation

continues to increase for the Snail-ER and Twist-ER cells. The plateauing of the

fraction of stem cells from day 9 to day 12 suggests that cells taken from the EMT-

inducing culture and plated in the mammosphere assay at any time from day 9

to day 12 should have roughly the same ability to form mammospheres, if it is
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further assumed that the values the growth parameters take upon introduction

of the cells into the mammosphere culture do not depend on the length of time

previously exposed to EMT-inducing stimuli. It would be interesting to see how

the fractions of CD44high/CD24low cells and mammosphere formation frequencies

of Snail-ER and Twist-ER cells behave as exposure to EMT-inducing stimuli is

extended beyond 12 days. It may be the case that the length of exposure to EMT

affects the behaviour (i.e. growth parameter values) of stem cells following removal

from EMT-inducing culture.

A third scenario not considered herein is that the EMT induces (C)SCs or non-

stem cells to transform into cells of a secondary sub-population of (C)SCs – in par-

ticular, one that is responsible for the metastatic behaviour of the tumour. Distinct

sub-populations of CSCs have indeed been identified in pancreatic tumours, with

one sub-population driving primary tumour growth and another driving metastasis

[Hermann et al., 2007]. This possible link between CSCs, metastasis and the EMT

deserves further attention.
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Chapter 6

Conclusion and Future Work

Herein, we have presented stochastic and deterministic models describing the growth

of populations of cancer cells based on the cancer stem cell hypothesis. The deter-

ministic models have been applied to the theoretical treatment of brain tumours and

to investigate the generation of mammary stem cells via the epithelial-mesenchymal

transition, while a stochastic model has been applied to simulate the mammosphere-

forming assay. We suggest that other applications will become prudent as exper-

imentalists identify additional questions regarding the dynamics of cancer stem

cells.

Mathematical modelling of the cancer stem cell hypothesis is likely to prove use-

ful in two somewhat distinct ways. First, in attempting to establish a mathematical

framework that encapsulates such a complex biological process that is only begin-

ning to be understood, important insights and questions may surface that will help

to direct future research. Following these initial stages, mathematical modelling

will become increasingly useful in predicting strategies for battling the tumour and

its resilient cancer stem cells. It seems clear that a deeper understanding, combined
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with quantitative modelling of cancer stem cells, is central, not only for the design

of effective experimental studies, but also for the development of effective therapies

that will target cancer stem cells.

In modelling brain cancer and mammary stem cells we have assumed that the

CD133+ and CD44high/CD24low phenotypes, respectively, are perfect markers of

brain cancer and mammary stem cells in the sense that we have assumed that all

cells of these phenotypes are (C)SCs and that no cells of other phenotypes are

(C)SCs. It is true that this may not necessarily be the case. Indeed, biologists

already seem to doubt the specificity of these markers, although they do so largely

on the grounds that not all cells expressing these markers behave as stem cells in

functional assays (i.e. form spheres in sphere-forming assays or form tumours in

tumour-forming assays). However, we point out that the assumption of stochasticity

entails that not all (C)SCs will perform as such in tests for (C)SC function, and

thus we expect that not even all cells expressing a truly perfect (C)SC marker will

appear to be (C)SCs based on functional assays. We suggest that, as understanding

of the extra- and intra-cellular mechanisms regulating (C)SC self-renewal develops,

it may be reasonable to attempt to bias the stochastic behaviour of (C)SCs toward,

for example, symmetric self-renewal so that the difficulties associated with assigning

a phenotypic marker to a cell that is defined based on functionality yet displays

stochasticity with respect to this functionality can be overcome. Further refinement

of the (C)SC phenotype will likely come from imaging and tracking of the divisions

of single (putative) stem cells, as discussed earlier; such individual cell analysis will

also help in assigning numerical values to the parameters associated with growth

and division. Analysis of microarray data may also help to unravel the differences

in gene expression that lend cancer stem, progenitor, and fully differentiated cells

their respective phenotypes.
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Throughout, we have alluded to possible future work. This includes adapting the

model to accomodate the feature of clonal evolution – in particular, we suggest that

with some “mutation probability” a dividing cell (either (C)SC or progenitor cell)

may mutate such that it possesses a new phenotype defined by growth parameters

that differ from those of the original population. It may also be useful to include

inter-cellular regulation of stem cell division – for example, the probability of a stem

cell to undergo a particular type of division may depend explicitly on the numbers

of stem, progenitor or mature cells in the system. Examination of the regulation

of CSCs via non-stem cells may help in understanding the “numbers problem”

described by Richard Hill and mentioned in Section 2.1.7, wherein the number of

putative CSCs required to initiate tumourigenesis in immunocompromised mice is

greater when the putative CSCs are co-injected with non-stem cancer cells than

when the putative CSCs are injected alone.

Another possible adaptation is the inclusion of cell quiescence, wherein with

some probability stem cells enter a state of temporarily-arrested growth – this may

be particularly important in the context of treatment (and treatment resistance),

and the aforementioned probability of quiescence may in general depend on envi-

ronmental cues.

Ultimately, it may be worthwhile to develop a spatial model, although such a

model would likely be of such complexity that it would be strictly computational.

Using a spatial model, one would be able to investigate the role of CSCs in tumour

angiogenesis (the formation of new blood vessels), as well as the effects of the tu-

mour microenvironment (in particular, the distribution of oxygen concentration) on

dictating response to treatment. One of the undeniable benefits of viewing cancer

through the lens of the cancer stem cell hypothesis is the emphasis on recogniz-

ing the heterogeneity of individual cells (whether this heterogenity be inherent, as
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suggested by the CSC hypothesis, or due to external factors, as suggested by the

“stochastic” model of tumourigenesis), which will surely contribute to our collective

understanding of the mechanisms that drive cancer and lend it its resilience.
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