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Abstract

Spectral geometry is a mathematical discipline that studies the relationship between
the geometry of Riemannian manifolds and the spectra of natural differential operators
defined on them. The spectra of Laplacians are the ones most studied in this context. A
sub-field of this discipline, called inverse spectral geometry, studies how much geometric
information one can recover from such spectra.

The motivation behind our study of inverse spectral geometry is a physical one. It has
recently been proposed that inverse spectral geometry could be the missing mathematical
link between quantum field theory and general relativity needed to unify those theories
into a single theory of quantum gravity [47]. Unfortunately, this proposed link is not well
understood. Most of the efforts in inverse spectral geometry were historically concentrated
on the generation of counterexamples to the most general formulation of inverse spectral
geometry and the few positive results that exist are quite limited. In order to remedy to
that, it has been proposed to linearize the problem, and study an infinitesimal version of
inverse spectral geometry [47].

In this thesis, I begin by reviewing the theory of pseudodifferential operators and using
it to prove the spectral theorem for elliptic operators. I then define the commonly used
Laplacians and survey positive and negative results in inverse spectral geometry. After-
wards, I briefly discuss a coordinate free reformulation of Riemannian geometry via the
notion of spectral triple. Finally, I introduce a formulation of inverse spectral geometry
adapted for numerical implementations and apply it to the inverse spectral geometry of a
particular class of star-shaped domains in R2.
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Chapter 1

Introduction

One of the most important unresolved problem of modern theoretical physics is the uni-
fication of general relativity and quantum field theory into a single, consistent, theory of
quantum gravity. This problem has remained open for the past half-century despite the
efforts of some of the best theoretical physicists. Part of the difficulty of the formulation of
quantum gravity resides in the vast difference between the mathematical disciplines of dif-
ferential geometry and functional analysis, the languages of general relativity and quantum
theory, respectively.

It has been recently proposed by Kempf [47, 48] that bridging this vast mathematical
gap is key to the long sought unification. His proposal is to use results from a mathematical
discipline known as inverse spectral geometry (ISG). As famously put by Mark Kac [45],
inverse spectral geometry is the quest to answer the question “Can one hear the shape
of a drum?”1 The drum in question is the studied manifold, and the sound of the drum
are the spectra of some differential operators defined on it. Chief amongst them is the
spectrum of the Laplace-Beltrami operator, a generalization of the familiar Laplacian.
Other Laplacians, such as the Hodge Laplacian on p-forms are also used in the literature,
but to a lesser extent. Spectral geometry thus naturally contains the differential geometric
language of general relativity and the spectral, functional analytic, language of quantum
theory.

Kac’s original motivation for asking his question was the then known fact that the
asymptotic properties of the spectrum of the Laplacian of a domain in RN with smooth
boundary can be used to determine the volumes of both the domain and the boundary.

1The author desperately tried to break with nearly 50 years of tradition by not citing Kac’s famous
paper on the first page. Manifestly, his best efforts were met with failure.
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Those results are discussed in Chapter 3. For now, we set them aside and explore a
different, quantum field theoretic, motivation due to Kempf [47, 48] for why it is plausible
that the shape of a manifold could be determined from the spectra of Laplace operators.

Consider the surface of an arbitrarily shaped potato. In mathematical terms, one
would usually describe this potatoid as a differentiable two dimensional manifold M with
a Riemannian metric g. Now, let’s imagine that one wants to record the shape of the
potato by selecting M generic points on its surface and measuring their pairwise distances.
The distance between the points i and j is recorded as the entry Gij of an M ×M matrix
G. One expects that if M is large enough and the points are chosen in a sufficiently even
manner, the matrix Gij would allow one to reconstruct the shape of the potatoid up to
small details not captured by G. This can be put differently using an observation due to
Helmholtz. Pick M points of RN and record their coordinates {x(i)

µ }i=1...M
µ=1...N . By Pythagoras’

theorem, the squares of the distances between the points are expressed as M(M − 1)/2
equations depending upon the MN coordinates.

G2
ij =

N∑
µ=1

(x(i)
µ − x(j)

µ )2 (1.1)

We want to pick sufficiently many points M to eliminate the MN coordinates in order to
recast the shape strictly in terms of the mutual distances. We thus want the number of
equations to be greater than the number of unknowns MN . Explicitly, M(M−1)/2 ≥MN
or, equivalently, M > 2N + 1. This leaves M(M − 1)/2−MN equations that necessarily
hold, by Pythagoras’ law. If, however, the points were not picked in a flat manifold, the
remaining equations will be violated. The way in which those equations fail to hold is a
manifestation of the curvature of the manifold.

In order to recast the above discussion in terms of the spectrum of a Laplace operator,
it is necessary to substitute the mutual distances used above with correlations of quantum
fields. Consider a scalar quantum field φ̂. Its equal-time 2-point correlation function is
given by

G(x, x′) = 〈0|φ̂(x)φ̂(x′)|0〉 (1.2)

It is well known that it decays as the distance between x and x′ increases [6]. One can thus
use G(x, x′) as a measure of distance, at least to an extent. Suppose that the considered
spacetime is a compact Riemannian manifold (M, g) without boundary, either in the sense
of compact constant time slices or a Wick rotated Euclidean signature spacetime. The
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compactness requirement ensures that Laplace operators on that manifold have discrete
spectrum. In quantum field theoretic language, this is an infrared cutoff. Let {xi}Mi=1 be a
set of uniformly chosen points in M. By evaluating G(x, x′) at the chosen sample points
one obtains Gij = G(xi, xj), an analogue to the mutual distance matrix used above. It
is thus expected that this matrix can be used to reconstruct the shape of (M, g) up to a
certain cutoff scale.

Of course, one could choose a different set of M sample points {x̃i}Mi=1 and obtain a
different matrix of correlations G̃ij = G(x̃i, x̃j). By the heuristic argument above, both
Gij and G̃ij must describe the same manifold (M, g), up to some finite precision. The
matrices Gij and G̃ij are thus bound to be somehow related. More specifically, part of the
information they contain has to be common geometric information about the manifold,
while the remainder would be a function of the choice of sampling points. This is entirely
analogous to the usual situation in differential geometry where the metric tensor encodes
both the shape of the manifold and the peculiarities of the chosen coordinate system. In the
case of the matrices Gij and G̃ij, it is possible to disentangle the two kinds of information
encoded in the matrix of correlations by considering it in a functional analytic picture. Let
φ̂ be massless. Recall that G(x, x′) is then related to the inverse of the Laplacian,

∆G(x, x′) = δ(x− x′) (1.3)

Alternatively, if |x) denotes a position eigenvector, this is expressed as

G(x, x′) = (x|∆−1|x′) (1.4)

Let {ψi}Mi=1 be the M eigenvectors of ∆ corresponding to the M lowest eigenvalues and let
P be the projector onto the subspace spanned by those vectors. In quantum field theoretic
language, this corresponds to a spatially covariant ultraviolet cutoff. Necessarily, G(x, x′)
must be modified as

G(x, x′) = (x|P∆−1P |x′) (1.5)

The corresponding matrix of correlations is thus

Gij = G(xi, xj) = (xi|P∆−1P |x′j) (1.6)

It is purposefully arranged that the number of sampling points coincides with the number
of eigenvectors of the Laplacian left after the cutoff is imposed. Indeed, the components of
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Gij can then be seen as the matrix elements of the operator P∆−1P in the basis {P |xi)}Mi=1.
Consequently, using a different set of sampling points corresponds to expressing P∆−1P
in a different basis {P |x̃i)}Mi=1. The geometric information contained in Gij is thus the
information that is left invariant under change of basis. From basic linear algebra, it
is known that the spectrum of P∆−1P is precisely that information. Since ∆−1 is the
(pseudo)inverse of ∆, the spectrum of P∆−1P corresponds to the first M eigenvalues of
∆. As M can be taken arbitrarily high, Kempf then concludes that the spectrum of the
Laplacian ∆ can plausibly encode the shape of (M, g). Of course, this argument is only
heuristic. It nonetheless provides a justification to why at least some geometric features of
(M, g) can be recovered from the spectrum of ∆.

Sadly, this program is not achievable in the current state of knowledge. First, there
are known counterexamples to the most general possible formulation of inverse spectral
geometry. Second, even in the cases when some identification of shape from spectra is
known to be possible, restrictive symmetry conditions need to be imposed upon the set
of considered shapes to make the problem tractable. In terms completely detached from
the nature of spectral geometry, one could say that the nonlinearity of the map between
shapes and spectra is to blame for all of its difficulties.

To remedy to this problem, Kempf [47] proposed to use a linearized, infinitesimal version
of inverse spectral geometry, iterating small changes in shape to get desired small changes
in spectrum. In that way, he conjectured, one could get from some starting shape to a
target shape with a desired spectrum. This method has been numerically implemented
and successfully applied to a class of two-dimensional manifolds discretized as graphs [1].
Our work goes in the same direction, as we numerically apply infinitesimal inverse spectral
geometry to a class of domains in R2.

The structure of the present thesis is as follows. In Chapter 2, we prove the spectral
theorem for elliptic operators on smooth vector bundles of a compact Riemannian mani-
fold without boundary. This is a strictly technical step on the road to spectral geometry.
Indeed, to study how spectra of operators reflect shape, it is necessary to first ascertain
that such spectra exist. There are multiple paths to this result and we choose that of the
theory of pseudodifferential operators. We then review the heat kernel and its asymptotic
expansion, an important tool used to extract geometric information from the spectra of
elliptic operators. In Chapter 3, we recall the definitions of various Laplacians and review
the geometric information one can extract from their spectra via the asymptotic expansion
of the heat kernel. Chapter 4 is dedicated to a review of inverse spectral geometry. There
we survey important counterexamples and positive results in both inverse spectral geom-
etry and some analogous problems, such as the determination of a Schrödinger potential
from the spectrum of the quantum mechanical Hamiltonian. Chapter 5 stands apart from
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the others, as it reviews the seemingly unrelated subject of spectral triples, an algebraic de-
scription of Riemannian manifolds. It is our belief that spectral triples could be a valuable
mathematical tool in subsequent work on infinitesimal inverse spectral geometry. Finally
in Chapter 6 we propose a tentative definition of infinitesimal inverse spectral geometry
adapted for numerical computations. We then apply our definition to the inverse spectral
geometry of a particular class of star-shaped domains in R2 using the spectrum of the
Laplace-Beltrami operator with Dirichlet boundary conditions. Chapter 7 concludes our
thesis by a discussion of future directions of research in inverse spectral geometry.
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Chapter 2

Elliptic Operators and Heat
Equations

In order to study spectral geometry, one must first study spectral theory. Indeed, in order
to discuss the spectra of operators, one must first make sure that they exist. The goal
of this chapter is to obtain spectral theorems valid for all Laplacians, regardless of the
vector bundle upon sections of which they act. This can be achieved by studying elliptic
partial differential operators on arbitrary smooth vector bundles, as all Laplacians are such
operators and ellipticity turns out to be the key to their properties. Our exploration of
the theory of elliptic operators will take us to the realm of pseudodifferential operators,
a powerful generalization of both differential and integral operators. This is not the only
possible path to the spectral theorem for Laplacians, as will be briefly discussed later.

The presentation closely follows [25] and [54]. Many additional comments are drawn
from an alternative presentation found in [59], which never invokes the notion of pseudodif-
ferential operator. We consider the proofs that are provided in this chapter to be of interest
because they either illustrate the power of the theory of pseudodifferential operators or are
particularly illuminating. Since the goal is to give the reader an overall impression of the
theory of pseudodifferential operators, lemmas judged too technical are omitted.

Notation

At this point it is necessary to introduce the multi-index notation. A multi-index α is
an N -tuple (α1, ..., αN) such that αi ∈ N. We consider that 0 ∈ N. The norm of the
multi-index α is taken to be |α| = α1 + α2 + ... + αN . The factorial of the multi-index is
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α! = α1! · · ·αN !. For multi-indices α, β, γ such that α = β+γ, one defines
(
α
β

)
= α!/(β!γ!).

The multi-index α and its norm are used to compactly denote powers of vectors in RN and
certain compositions of partial differential operators. Let x = (x1, ..., xN) denote vectors
in RN and ∂xi = ∂/∂xi. We define the following shorthand expressions:

xα = xα1
1 · · · x

αN
N

dαx = (∂x1 )α1 · · · (∂xN)αN (2.1)

Dα
x = (−i)|α|dαx

The second notation introduced for the composition of partial derivatives will simplify ex-
pressions involving Fourier transforms. For f, g ∈ C∞(RN), the Leibnitz rule and Taylor’s
theorem take the following form:

Dα
x (fg) =

∑
β+γ=α

(
α

β

)
(Dβ

xf)(Dγ
xg) (2.2)

f(x) =
∑
|α|≤n

1

α!
dαxf(x0)(x− x0)α +O(|x− x0|n+1) (2.3)

2.1 Sobolev Spaces

In this section, we define the function spaces needed to study the theory of pseudo-
differential operators. We start by recalling the definitions and properties of Schwartz
function spaces and Fourier transforms. Fourier transforms will be central to the definition
of pseudo-differential operators, as the Fourier transform of partial derivatives of a func-
tion takes a particularly simple form. We then define Sobolev Spaces, a particular class of
function spaces adapted for the study of differentiability of solutions of partial differential
equations. The presentation follows [25, 54].

2.1.1 Fourier Transform

The definition of the Fourier transform requires the introduction of a few spaces of smooth
functions. The space of smooth C-valued functions of RN is denoted C∞(RN). Compactly
supported smooth functions are denoted C∞0 (RN). When specified, the same notation is
used for real valued smooth functions.
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Definition 2.1.1 (Schwartz Class). The Schwartz class S is the vector space of all smooth
complex valued functions f : RN → C such that for any multi-indices α, β, there are
constants Cα,β such that

|xαDβ
xf | ≤ Cα,β (2.4)

Notice that C∞0 ⊂ S. A consequence of the above definition is that functions in S have
derivatives that decrease at ∞ faster than the inverse of any polynomial. This can be
expressed by the following estimate:

|Dβ
xf | ≤ Cn,β(1 + |x|)n , ∀(n, β) (2.5)

Following the clever suggestion in [25], we define an integral measure on RN that simplifies
the formulas related to Fourier transforms:

dFx = (2π)−N/2dxN (2.6)

In the above formula, dxN denotes the usual measure on RN. The symbol dFx is not
a standard notation and is to be read “Fourier transform adapted measure over the x
coordinates”. For f, g ∈ S the L2 inner product is defined as follows:

(f, g)L2 =

∫
f(x)g∗(x)dFx (2.7)

This inner product is clearly equivalent to the standard one. The space of square-integrable
functions L2(RN) can be defined as the completion of S with respect to this inner product.
This space can also be defined as the completion of C∞0 (RN) as this last space is dense in
S with respect to the L2 inner product.

Definition 2.1.2 (Convolution). For x, y ∈ RN and f, g ∈ S, the convolution product is
defined as:

(f ∗ g)(x) =

∫
f(x− y)g(y)dFy =

∫
f(y)g(x− y)dFy (2.8)

It can be shown that (f ∗ g) ∈ S. This definition can be extended to f, g ∈ L2(RN) by
density of S in L2(RN).

Definition 2.1.3 (Fourier Transform). The Fourier transform of f ∈ S is defined as

f̂(ξ) = F(f)(ξ) =

∫
e−ix·ξf(x)dFx (2.9)

where x, ξ ∈ RN . This can be extended to f ∈ L2(RN) by density of S in L2(RN).
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The Fourier transform enjoys a number of well-known useful properties:

Lemma 2.1.1. The Fourier transform is a homeomorphism of S such that, for any mulit-
index α and f ∈ S:

(a) Fourier Inversion Formula:

f(x) =

∫
exp(ix · ξ)f̂(ξ)dFξ =

∫ ∫
ei(x−y)·ξf(y)dFydFξ (2.10)

(b) Interchange of differentiation and multiplication:

Dα
ξ f̂(ξ) =

∫
(−1)|α|xαe−ix·ξf(x)dFx (2.11)

ξαf̂(ξ) =

∫
e−ix·ξDα

xf(x)dFx (2.12)

Dα
xf(x) =

∫
eix·ξξαf̂(ξ)dFξ (2.13)

xαf(x) =

∫
(−1)|α|eix·ξDα

ξ f̂(ξ)dFξ (2.14)

(c) Interchange of multiplication and convolution:

f̂ ĝ = F(f ∗ g) (2.15)

f̂ ∗ ĝ = F(fg) (2.16)

(d) Plancherel formula:
(f, g)L2 = (f̂ , ĝ)L2 (2.17)

Proof. See [25].

2.1.2 Sobolev Spaces on RN

Sobolev spaces are normed function spaces whose norm depends not only upon the values
that a function takes, but also upon the values of its derivatives. This enforces a partic-
ular kind of convergence that requires a certain degree of smoothness on the part of the
functions. Consequently, those spaces are instrumental in establishing regularity results
for solutions of elliptic partial differential equations, that is, proving that those solutions
are smooth.
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Definition 2.1.4 (Sobolev Space). The Sobolev Space Hs(RN) is defined as the completion
of the Schwartz class S (or C∞0 ) with respect to the following norm:

‖f‖2
s =

∫
(1 + |ξ|2)s|f̂(ξ)|2dFξ , f ∈ S ; s ∈ R (2.18)

The parameter s is said to be the order of the Sobolev space.

Remark 2.1.1. The inclusion and density of S (or C∞0 ) in Hs(RN) for all s allows for
the comparison of Sobolev spaces of different order.

Remark 2.1.2. The above definition is not the most general possible definition of Sobolev
spaces. Notice that H0(RN) can be identified with L2(RN). One can similarly define Sobolev
spaces that reduce to any Lp space in the case s = 0. For integer s, such a construction
can be found in, for instance, [59]. Sobolev spaces based on L2 are particularly useful as
they are Hilbert spaces.

The meaning of the norm in (2.18) can be clarified by exhibiting equivalent norms. Specif-
ically, one can relate the parameter s to the number of derivatives of f one desires to
consider. Recall that two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if there are positive con-
stants c1 and c2 such that c1‖v‖1 ≤ ‖v‖2 ≤ c2‖v‖1 for all vectors v in the normed space in
question. It is straightforward to show that there exist constants c1 and c2 such that the
following inequality holds:

c1(1 + |ξ|2)s ≤ (1 + |ξ|)2s ≤ c2(1 + |ξ|2)s (2.19)

This can be used to establish that for f ∈ Hs(RN) the following norm is equivalent to the
one defined in (2.18).

‖f‖s,eq =

∫
(1 + |ξ|)2s|f̂(ξ)|2dFξ , f ∈ S ; s ∈ R (2.20)

The benefits of using this norm need not be clear at this point. If s = k ∈ N, a procedure
similar to the one employed to prove the above equivalence can be employed to obtain a
more enlightening equivalent norm. First, notice that there are positive c1, c2 such that
the following inequality holds:

c1(1 + |ξ|2)k ≤
∑
|α|≤k

|ξα| ≤ c2(1 + |ξ|2)k (2.21)

10



Note that the key ingredient to obtain such inequalities is the study of the terms having
the highest order in |ξ|. The highest order part of polynomial expressions will become a
recurrent theme later on. The previous inequality can be used to obtain the following one:

c1‖f‖2
k ≤

∫ ∑
|α|≤k

|ξαf̂ |dFξ ≤ c2‖f‖2
k (2.22)

Lemma 2.1.1 allows one to interchange differentiation and integration to obtain the follow-
ing equivalent norm:

‖f‖2
k,eq =

∑
α≤k

∫
‖Dα

xf‖2dFx (2.23)

Remark 2.1.3. Equation (2.23) makes perfect sense on S, but requires one to take deriva-
tives of a priori non-differentiable functions when applied to Hs. Yet, we claim that the
norm defined in (2.23) is equivalent to the one used to define Hs. This can be resolved
by carrying out the construction of Sobolev spaces in reverse order. In fact, the norm in
Equation (2.23) is the conventional starting point for the definition of Sobolev spaces. A
notion of differentiation on L2(RN) is provided by the weak derivative. This construction
is carried out with great clarity in [59].

Equation (2.23) shows that the order s of the Sobolev space Hs(RN) can sometimes be
interpreted as the number of derivatives taken into account when determining the norm
of a function. Of course, since s ∈ R, this interpretation must be augmented by the
inclusion of derivatives of fractional and negative orders. Fractional order derivatives are
of no immediate interest to our endeavours. Negative order ones can be understood as dual
spaces to the positive order ones and will actually play a crucial role in the definition of
inverses of differential operators. Recall that the continuous dual of a Hilbert space is the
space of bounded linear functionals on that space. By the Riesz representation theorem,
there is a canonical isometry between a Hilbert space and its continuous dual [10]. It is
thus permissible to identify a Hilbert space with its continuous dual. In the setting of Hs

spaces, the following alternative characterization of the continuous dual holds:

Lemma 2.1.2 (Dual Sobolev Spaces). H−s can be identified with the continuous dual of
Hs.

Proof. See [25].
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Just as Ck spaces, Sobolev spaces of different orders are included in each other. Consider
s, t ∈ R such that s > t. This ensures that (1+|ξ|2)t ≤ (1+|ξ|2)s and thus that ‖f‖t ≤ ‖f‖s
for f ∈ S. Since S ⊂ Hp(RN) for all p ∈ R, one can use the identity map of S to map
S ⊂ Hs(RN) into S ⊂ Ht(RN). This can be extended to a norm non-increasing injection
Hs(RN)→ Ht(RN). That is, every element of Hs(RN) has a unique counterpart in Ht(RN).
This can be thought of as an inclusion relation. Also, note that since this map is linear
and bounded, it is continuous. Similarly, one may extend the map Dα

x : S → S to a map
between Sobolev spaces of different order.

Lemma 2.1.3 (Extension of Dα
x ). Dα

x : S → S extends to a continuous map from Hs(RN)
to Hs−|α|(RN).

Proof. Since Hs(RN) is linear, it remains to show boundedness to establish continuity.
There exists a positive constant c such that |ξα|2(1 + |ξ|2)s−|α| ≤ c(1 + |ξ|2)s. Thus one has

‖Dα
xf‖2

s−|α| =

∫
|ξαf̂ |2(1 + |ξ|2)s−|α|dFξ ≤ c‖f‖2

s (2.24)

This shows boundedness and concludes the proof.

Remark 2.1.4. The simplicity of the above proof is to be taken as a testament of the power
of using the Fourier transform to define the norm on Hs(RN). One can find a much longer
proof that uses the derivative norm(equation (2.23)) in [59].

Our study of pseudo-differential operators requires two more classical results from the
theory of Sobolev spaces. Consider the completion of S with respect to the following norm:

‖f‖∞,k := supx∈RN

∑
|α|≤k

|Dα
xf | (2.25)

The function space thus obtained is a subset of Ck(RN) [25].

Theorem 2.1.1 (Sobolev). Let k ∈ N and let s > k + 1
2
N . If f ∈ Hs(RN), then f ∈

Ck(RN) and ‖f‖∞,k ≤ C‖f‖s for some positive constant C.

Proof. See [25].

Theorem 2.1.2 (Rellich Compactness). Let K be a compact subset of RN and let {fn}
be a sequence in C∞0 (K). If {fn} is bounded by a positive constant C (‖fn‖ ≤ C), there
exists a subsequence {fni

}, which converges in Ht for any t < s.

12



Proof. See [25].

Remark 2.1.5. From the Rellich Compactness Theorem it follows that the natural injection
from Hs(K) to Ht(K) is compact when K ⊂ RN is compact.

2.1.3 Sobolev Spaces on Manifolds

LetM be an N -dimensional compact Riemannian manifold without boundary with metric
tensor g. The associated volume form shall be denoted dVg. C

∞(M) shall denote the space
of smooth functions onM. Let {Ui, hi} be an atlas ofM where {Ui} is a finite open cover
of M and {hi : Ui → RN} are the associated coordinate charts. Let {φi} be a partition
of unity subordinate to the cover {Ui}. For f, g ∈ C∞(M), the L2 inner product on M is
defined to be

(f, g)L2(M) =

∫
M
f(x)g∗(x)dVg (2.26)

L2(M) is defined to be the completion of C∞(M) in the norm induced by the above
inner product. Anticipating the definition of Sobolev spaces on manifolds, this norm shall
be denoted ‖ · ‖2

0. The L2 inner product defines a formal adjoint P ∗ to any operator
P : C∞(M)→ C∞(M) via the identity (Pf, g) = (f, P ∗g).

Sobolev spaces Hs(M) are defined using partitions of unity and the properties of
Sobolev spaces on domains in RN .

Definition 2.1.5 (Sobolev Spaces on Manifolds). Let U = (Ui, hi, φi)
ν
i=1 be an atlas of

a compact Riemannian manifold without boundary (M, g). For f ∈ C∞(M), define the
following norm:

‖f‖2
U ,s :=

∑
i

‖hi∗(φif)‖s (2.27)

The Sobolev space Hs(M) is defined to be the completion of C∞(M) in this norm.

The norm in the above definition seems to depend upon the atlas U . The following two
lemmata shows that this is not the case.

Lemma 2.1.4 (Atlas Independence). Changing the atlas in the norm in definition 2.1.5
gives rise to an equivalent norm.

Proof. See [25].
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The Sobolev spaces on M enjoy the same properties as those on subsets of RN . This is
summarized by the following lemma.

Lemma 2.1.5. Let s, t ∈ R such that s > t. The following hold:

(a) The identity map on C∞(M) extends to a norm non-increasing map from Hs(M) to
Ht(M).

(b) H−s(M) is the continuous dual of Hs(M).

Proof. See [25].

2.1.4 Sobolev Spaces on Vector Bundles

The Sobolev spaces defined in the preceding section are not sufficient for our purposes as
they only describe C(or R)-valued smooth functions, while we plan to describe operators
acting on sections of vector bundles, such as the Hodge Laplacian. Fortunately, the ex-
tension of the notion of Fourier Transform and of Sobolev spaces is straightforward. The
results of the preceding section will now be shown to hold for smooth vector bundles. Begin
by recalling the definition of a smooth vector bundle [59]:

Definition 2.1.6 (Vector Bundle). A vector bundle is a quadruple (E, π,M, V ) such that:

(a) E,M are smooth manifolds

(b) V is a vector space over the field K = R,C

(c) π : E →M is a surjective submersion. For U ⊂M, set E|U = π−1(U).

(d) There exists a trivializing cover {Ui} of M, i.e. a cover such that for every Ui there
is a diffeomorphism

ΨUi
: E|U → U × V

x 7→ (π(v),ΦUi
p (v))

(2.28)

where ΦUi
p is a diffeomorphism Ep → V for any p ∈ Ui. Moreover, for two trivializing

neighborhoods Ui, Uj with nonempty intersection, the map ΦUiUj
(p) = ΦUi

p (Φ
Uj
p )−1 :

V → V is a linear automorphism and the map p 7→ ΦUiUj
(p) ∈ Aut(F ) is smooth.

14



The space of smooth sections (or vector fields) of a bundle E will be denoted C∞(E). The
key message to retain is that complex vector bundles locally look like Cp. This is exploited
in [54] to enable the Fourier transform to act on vector bundles. We follow that discussion
to define the good presentation of a vector bundle on a compact Riemannian manifold.

Let (M, g) be a compact Riemannian manifold equipped with a vector bundle E of
rank p. Suppose that M has a finite cover {Ui}qi=1 by closed coordinate unit balls. The
coordinates on those balls will be denoted by y. That is, the charts are such that yi : Ui →
B̄N = {y ∈ RN : |y| ≤ 1}. Now assume that this covering has too much overlap and that
one could use a cover by open balls of radius 1/

√
2 instead. That is, let Bi = {p ∈ Ui :

|yi(p)|2 ≤ 1/2} and assume that M = ∪qiBi. Notice that Ui and Bi share coordinates on
their intersection. On each Ui a smooth trivialization of E (that is actually defined on an
open set containing Ui) is then picked. This trivialization is consequently also valid on the
corresponding Bi. Now, change coordinates on the Ui, Bi pairs in the following way:

xi =
1√

1− |yi|2
yi (2.29)

This expands the coordinate systems of the Ui to cover all of RN , while the coordinate
systems of the Bi are now open balls of radius 1. A smooth section of E represented in
the trivialization chosen above is now a bounded smooth function RN → Cp. Choosing a
partition of unity {χi}qi=1 subordinate to the cover {Bi}qi=1, any smooth section u of E can
be written as u =

∑q
i=1 χiu. Each term χiu is smooth and compactly supported within its

Bi. Such a choice of two covers with matching coordinates and of a partition of unity is
called a good presentation of E. When multiple vector bundles are studied simultaneously,
they are taken to be in the same good presentation.

The usefulness of good presentations is that the study of sections of E is reduced to
that of compactly supported Cp-valued functions of RN . The Fourier transform of such
a function is simply taken to be the component-wise Fourier transform. Similarly, the
Schwartz space of Cp-valued functions is taken to be the space of component-wise Schwartz
functions. All the results of the preceding sections now generalize to this setting, provided
that matrix-valued functions are multiplied in the appropriate order.

2.2 Pseudo-Differential Operators

Having established the the properties of Sobolev spaces, we are in position to define the
action of a particular class of linear operators upon those spaces. The operators in question
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are known as pseudo-differential operators, or ΨDOs, and they generalize the notion of
differential operator to fractional and negative orders. Fractional orders of differentiation
are of no interest to our endevours, so the results of this section will often be restricted to
integer orders. Negative orders are however of great interest, as they allow to construct
pseudoinverses or parametrices of certain pseudo-differential operators. The theory of
pseudo-differential operators thus puts differential operators and their inverses on equal
footing. Our discussion closely follows [54], with some elements taken from [25]. A reader
interested in results unrestricted to integer orders is invited to consult [25].

2.2.1 Differential Operators and Symbols

Let (M, g) be a Riemannian manifold and let E,F denote smooth vector bundles overM
of ranks p and q, respectively. Assume that every point x ∈M has a neighborhood U with
coordinates (x1, ..., xN) over which E and F have local trivializations E|U → U × Cp and
F |U → U × Cq.

Definition 2.2.1 (Differential Operators). Let P : C∞(E)→ C∞(F ) be a linear operator.
P is a differential operator of order m if, on all trivializing neighborhoods U as above, P
can be written in the form

P =
∑
|α|≤m

AαDα
x (2.30)

where Aα is a q × p matrix of smooth C-valued functions and Aα 6= 0 for some α with
|α| = m.

Remark 2.2.1 (Algebraic PDOs). One can also provide an algebraic definition of differ-
ential operators on vector bundles. Notice that C∞(E) and C∞(F ) have more structure
than just that of a vector space over C. Indeed, they also are modules over C∞(M). Let
Op(E,F ) denote the space of C-linear operators C∞(E)→ C∞(F ) and let Hom(E,F ) be
the space of C∞(M)-homomorphisms between E and F . Hom(E,F ) is clearly a subspace
of Op(E,F ). Define the space of zeroth order partial differential operators to be:

PDO0(E,F ) = Hom(E,F ) (2.31)

Notice that operators in PDO0(E,F ) commute with multiplication by C∞(M). One in-
ductively defines the space of partial differential operators of order m and lower as

PDO(m)(E,F ) = {T ∈ Op(E,F ) : [T, f ] ∈ PDOm−1(E,F ) ∀f ∈ C∞(M)} (2.32)
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The interested reader may find a detailed account of this approach to elliptic equations on
manifolds in [59]. We revisit this approach in Remark 2.2.2.

A local change of the trivializations E|U and F |U is expressed by smooth maps gE : U →
GLp(C) and gF : U → GLq(C), where GL is the general linear group. Under such a
trivialization, P has the form

P = gF

∑
|α|≤m

AαDα
x

 g−1
E =

∑
|α|≤m

AαDα
x (2.33)

where the Aα are p× q matrices of smooth functions, as before. Consider the Aα such that
|α| = m. Those matrices can only come from those terms that have not used up any orders
of differentiation on g−1

E , otherwise they would not correspond to |α| = m. Consequently,

Aα = gFA
αg−1

E for |α| = m (2.34)

Now, consider a change of coordinates x̃ = x̃(x) on U . Using the chain rule for partial
derivatives, the following expression for P is obtained:

P =
∑
|α|≤m

Aα(x(x̃))(−i)|α|
[(

N∑
k=1

∂x̃k
∂x1

∂x̃k

)α1

...

(
N∑
k=1

∂x̃k
∂xm

∂x̃k

)αm
]

=
∑
|α|≤m

ÃαDα
x̃

(2.35)

Once again, consider the highest order matrices Ãα, α = m. In order for them to preserve
the highest available order of differentiation, the Jacobian factors in equation (2.35) must
all remain undifferentiated. Consequently,

Ãα =
∑
|β|=m

Aβ
[
∂βx x̃

]α
for |α| = m (2.36)

The factor
[
∂βx x̃

]α
is the symmetrization of the mth tensor power of the Jacobian of the

coordinate transformation. Symmetrization is manifest as multiplication by scalar func-
tions commutes. Let � denote the symmetric tensor product. Together, equations (2.34)
and (2.36) show that the coefficients {Aα}|α|=m are a well defined section of the bundle
(�mTM⊗Hom(E,F )).
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Definition 2.2.2 (Principal Symbol). Let P be a differential operator of order m and
let σ(P ) ∈ C∞((�mTM⊗ Hom(E,F )) be the section defined above. σ(P ) is called the
principal symbol of P .

Since T ∗M is canonically isomorphic to TM, the principal symbol may be recast as a sec-
tion of (�mT ∗M⊗Hom(E,F )). In turn, this can be recast as a homogeneous polynomial
in the tangent space coordinate ξ using the following polarization trick [59].

Lemma 2.2.1 (Polarization Trick). Let V be a vector space over C and let V ∗ be is dual.
Let φ be a symmetric k multilinear map

φ : V × ...× V k times → C (2.37)

The map φ is uniquely determined by the following polynomial in v ∈ V :

Pφ(v) = φ(v, ...v) (2.38)

Proof. Let {ti}ki=1 be auxiliary real variables. The lemma follows from the following polar-
ization formula:

φ(v1, ..., vk) =
1

k!

∂k

∂t1 ...∂tk
Pφ(t1v1 + ...+ tkvk) (2.39)

Lemma 2.2.1 allows one to write a polynomial σξ(P ) equivalent to the principal symbol.
At a point x ∈M, given ξ ∈ T ∗xM, the polynomial symbol gives a map σξ(P ) : Ex → Fx.
In a trivializing neighbourhood, as above, this polynomial takes the form

σξ(P ) =
∑
|α|=m

Aα(x)ξα (2.40)

In the following, whenever we refer to a principal symbol, it will be in its polynomial form.

Principal symbols have a very nice behaviour under linear combination and composition
of differential operators, as expressed by the next lemma.

Lemma 2.2.2. Let P : C∞(E) → C∞(F ), P ′ : C∞(E) → C∞(F ) and Q : C∞(F ) →
C∞(G) be differential operators on smooth vector bundles E,F,G. Assume that P and P ′

are of the same order m. Then, for all ξ ∈ T ∗M and for all t, t′ ∈ C, the following holds

σξ(tP + t′P ′) = tσξ(P ) + t′σξ(P
′) (2.41)

σξ(Q ◦ P ) = σξ(Q) ◦ σξ(P ) (2.42)
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Sketch of Proof. The lemma follows from considerations similar to those that were used to
establish that the principal symbol is a section of (�mT ∗M⊗Hom(E,F )).

Remark 2.2.2 (Algebraic Symbol). The above construction of the principal symbol may
seem artificial, especially when it is taken from being a section of (�mTM⊗Hom(E,F ))
to a section of (�mT ∗M⊗Hom(E,F )). Once again, the equivalent algebraic construction
proves to be enlightening. The notation used here is the same as in Remark 2.2.1. For
P ∈ PDO(m)(E,F ) and f ∈ C∞(M), let ad(f)P = [P, f ]. Set x ∈ M. For any m
functions {fi}mi=1 ⊂ C∞(M), consider{

1

m!
ad(f1)...ad(fm)P

}∣∣∣∣
x

: Ex → Fx (2.43)

This expression is symmetric in the fi as ad(f) ◦ ad(g) = ad(g) ◦ ad(f). Moreover, it can
be shown [59] that it depends only upon {ξi := dfi(x)}mi=1 ⊂ T ∗xM, rather than upon the
values of the fi at x. Consequently, this expression induces a linear map σ(P )(ξ1, ..., ξm) :
Ex → Fx. By the polarization trick of Lemma 2.2.1, the study of this linear map is reduced
to the study of the following polynomial

σξ(P ) := σ(P )(ξ, ..., ξ) (2.44)

This polynomial is again called the principal symbol of P . It differs from the definition
established before by a factor of (−i)m. This is due to the fact that Definition 2.2.1 uses
Dα
x rather than dαx . This choice simplifies the application of Fourier transform techniques

in the definition of pseudo-differential operators.

2.2.2 Pseudo-Differential Operators

The goal of this section is to define pseudo-differential operators (ΨDOs) and to establish
their main properties. Key to this endeavour is the notion of full symbol of a differen-
tial operator, which expresses the way a pseudo-differential operator acts on the Fourier
transform of a function. Following [25] and [54], we first motivate the definition of the
full symbol for differential operators and then use the Fourier transform to generalize the
notion. This is similar in spirit to the way in which fractional derivatives made their way
into the definition of a Sobolev space in Definition 2.1.4. The study of operators can then
be reduced to the study of their symbols.
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Let P : C∞(E) → C∞(F ) be a differential operator of order m acting on sections
smooth vector bundles E and F on RN . Let u ∈ C∞(E) be Schwartz and let û be its
Fourier transform. In a good presentation, let P be expressed as in Definition 2.2.1 .

Definition 2.2.3 (Total Symbol). In a good presentation of the vector bundles E,F over
RN , the total symbol of a differential operator P =

∑
|α|≤mA

αDα
x is defined to be

p(x, ξ) =
∑
|α|≤m

Aαξα (2.45)

It is obtained by formally replacing all occurrences of Dα
x with ξα.

Observe that by Lemma 2.1.1, the action of P on u can be expressed as

Pu(x) =

∫
eix·ξp(x, ξ)û(ξ)dFξ (2.46)

Thus, the symbol p(x, ξ) expresses the action of P on the Fourier transform of smooth
sections of E. By restricting the sum in Definition to |α| = m, one recovers the definition
of the principal symbol of P .

Conceptually, equation (2.46) is all that is necessary to define pseudo-differential oper-
ators. It suffices to reverse the order in which objects are defined by putting symbols first
and operators second.

Definition 2.2.4 (Pseudo-differential Operators). For m ∈ R, let Sm be the set of all
symbols p(x, ξ) such that:

(a) p(x, ξ) is a smooth matrix valued function on RN × RN .

(b) For all pairs of multi-indices (α, β), there exist constants Cα,β such that∣∣∣Dα
xD

β
ξ p(x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)m−|β| (2.47)

Let p ∈ Sm. In a good presentation of E,F , the associated operator P : C∞(E)→ C∞(F )
is defined to be:

Pf(x) :=

∫
eix·ξp(x, ξ)f̂(ξ)dFξ (2.48)
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Such operators are said to be pseudo-differential operators of order m. The space of
these operators is denoted Ψm. For two given vector bundles E and F , S = ∪mSm and
Ψ = ∪mΨm are the spaces of all symbols and all pseudo-differential operators, respectively.
Conventionally, pseudo-differential operators are written as majuscules (P,Q, ...), while
their symbols are denoted by the corresponding minuscules (p, q, ...).

Remark 2.2.3. The definition of the principal symbol for a pseudo-differential operator is
more subtle than that of the principal symbol of a differential operator. It will have to wait.

Remark 2.2.4. Note that m is not required to be a natural number. This allows operators
that can be seen as fractional or negative partial derivatives to be defined.

In the same fashion as the derivative operators of Lemma 2.1.3, the action of pseudo-
differential operators extends to Sobolev spaces.

Lemma 2.2.3 (Extension to Hs). Let p ∈ Sm and P ∈ Ψm be the associated operator. For
any s ∈ R, there exists a constant C such that ‖Pf‖s−m ≤ C‖f‖s for all f ∈ S. P then
extends to a continuous linear map from Hs to Hs−m.

Proof. See [25] or [54].

Observe that by lemma 2.2.3, ΨDOs of negative order map functions into Sobolev spaces of
higher order. Thus, they add orders of differentiability to functions. Consequently, pseudo-
differential operators of negative orders are known as smoothing operators. Consider the
intersection of the spaces of symbols and of pseudo-differential operators of all orders.

S−∞ =
⋂
m

Sm , Ψ−∞ =
⋂
m

Ψm (2.49)

Operators in Ψ−∞ are infinitely smoothing, that is they send elements of Sobolev spaces to
smooth functions. This can be seen in the following way. Fix any s ∈ R and let P ∈ Ψ−∞.
By definition of Ψ−∞, P is in particular in Ψm for some m ∈ R. By lemma 2.2.3, P can
be extended to a continuous linear map between Hs and Hs−m. Since s and m are both
arbitrary real numbers, P can really be extended to a continuous linear map between Hs

and Ht for any s, t ∈ R. Choose k ∈ N and let t > k + 1
2
N . By theorem 2.1.1, this implies

that Pf ∈ Ck for any f ∈ Hs. Since k is arbitrary, this is valid for all k ∈ N and one
has that P (Hs) ⊆ C∞(E). P is indeed infinitely smoothing. The following property of
infinitely smoothing operators will be useful when discussing elliptic operators.
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Lemma 2.2.4 (Compactness of Ψ∞). Let P : C∞(E)→ C∞(E) be an infinitely smoothing
operator. Then, its extension onto Sobolev spaces P : Hs(E)→ Ht(E) is compact for any
s, t.

Proof. By Lemma 2.2.3, P can be extended to a bounded linear map P : Hs(E)→ Ht(E)
for any s, t. Since P is infinitely smoothing, its image is in all Sobolev spaces, irrespective
of the domain. Thus, one can temporarily consider that P : Hs(E) → Ht+1(E) and then
use extension of the identity map of C∞(E) to project Ht+1(E) onto Ht(E). By Theorem
2.1.2, this is a compact injection. Thus, P is also compact.

In order to fully replace the study of operators with the study of symbols, it is necessary
to express composition of operators and the operation of taking the adjoint of an operator
in terms of symbols. Moreover, it is necessary to obtain the law of transformation of
full symbols under coordinate change. Except for the principal symbol of a differential
operator, this is no simple task. Fortunately, it turns out that precise determination of
such expressions is not necessary. Instead, expressions will only be obtained up to the
following equivalence relation.

Definition 2.2.5 (Equivalence of Symbols). Let p, q ∈ S. If p − q ∈ S−∞, it is said that
p ∼ q.

Because of this equivalence relation, operators in Ψ−∞ are sometimes known as negligible
[32]. This equivalence relation allows one to expand the symbol of a pseudo-differential
operator in a formal series.

Definition 2.2.6 (Formal Development). Let {pj} be a sequence of symbols such that
pj ∈ Smj and mj ↓ −∞ as j ↑ ∞. For a symbol p ∈ S we write p ∼

∑
j pj if for every m

there exists an integer k(m) such that k ≥ k(m) implies

p−
∑
j≤k

pj ∈ Sm (2.50)

Remark 2.2.5. It is important to note that the sum
∑

j≤k pj is not necessarily convergent.
p ∼

∑
j pj only means that the difference between p and a partial sum with sufficiently many

term of the sequence {pj} is arbitrarily smoothing.

Lemma 2.2.5 (Completeness). Let
∑∞

j=1 pj be a formal sum of symbols such that pj ∈ Smj

and mj ↓ −∞ as j ↑ ∞. There exists a pseudo-differential operator P such that this sum
is its formal development. P is unique up to equivalence and its symbol p is in Sm1.
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Sketch of Proof. This lemma can be proven by explicitly constructing the symbol of an
operator from the terms in the sum. Let φ : R+ → [0, 1] be a smooth function such that
φ(t) = 0 for t ≤ 1 and φ(t) = 1 for t ≥ 2. Let {ri}∞i=1 be a set of radii such that rj → ∞
as j →∞. Consider the following series:

p(x, ξ) =
∞∑
j=1

φ(|ξ|/rj)pj(x, ξ) (2.51)

The selection function φ(|ξ|/rj) ensures the pointwise convergence of the series, as for every
point (x, ξ) only a finite number of symbols pj(x, ξ) contribute to the sum. The remainder
of the proof can be found in either [54] or [25].

The last lemma ensures that one can replace the task of obtaining a pseudo-differential
operator with some desired properties with the simpler task of obtaining the formal de-
velopment of the symbol of that operator, as long as one only seeks the operator up to
equivalence. Moreover, the proof of the lemma provides an explicit way to construct the
symbol of an operator in that equivalence class from the formal development. However,
none of the above provides a way to obtain the formal development in the first place. This
problem is solved by a clever, but technical theorem that states that a particular class of
integral operators with smooth kernel are pseudo-differential operators whose symbols have
formal expansions given in terms of derivatives of the kernels of those operators. Calcula-
tions of formal expansions then reduce to showing that an operator can be represented in
the form of an integral operator with a kernel that satisfies the hypotheses of the theorem.
For this reason, [54] calls it the Workhorse Theorem.

The Workhorse Theorem can be used to prove a score of fundamental results. First
come results about the localization of pseudo-differential operators.

Definition 2.2.7 (ε-locality). Let A ⊂ RN be open and let ε > 0. Define Aε = {x ∈ RN :
d(x,A) ≤ ε}. An operator P : S → S is said to be ε-local if for all u ∈ C∞0 ,

supp(Pu) ⊂ (supp(u))ε (2.52)

Lemma 2.2.6 (ε-locality of ΨDOs). Let P ∈ Ψm be such that its symbol p(x, ξ) has
compact x support. Given any ε > 0, there exists an ε-local operator Pε ∈ Ψm such that
P ∼ Pε

Proof. Uses the Workhorse Theorem. See [54].
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Lemma 2.2.7 (Localization of ΨDOs). Let χ = (χ1, χ2) be a pair of real-valued smooth
functions on RN with intersecting compact support. Let P ∈ Ψm. Define P χu = χ1P (χ2u).
P χ is also in Ψm. P χ is sometimes referred to as a localization of P [25].

Proof. Uses the Workhorse Theorem. See [54].

The Workhorse Theorem also yields results on the composition and adjoints of pseudo-
differential operators. In order to properly discuss composition, it is necessary to restrict
the spatial domains of operators. The set of all symbols of order m that have compact x
support in a compact set K ⊂ RN is denoted Sm(K). The corresponding space of operators
is denoted Ψm(K). The notation for spaces of all orders and infinitely smoothing operators
generalizes in a natural way:

S(K) =
⋃
m

Sm(K) , Ψ(K) =
⋃
m

Ψm(K)

S−∞(K) =
⋂
m

Sm(K) , Ψ−∞(K) =
⋂
m

Ψm(K)
(2.53)

Lemma 2.2.8 (Symbol of a Composition). Let P ∈ Ψl(K) and Q ∈ Ψm(K) have symbols
p and q, respectively. The symbol s of S = P ◦ Q ∈ Ψl+m(K) has the following formal
development:

s ∼
∑
α

i|α|

α!
(Dα

ξ p)(D
α
xq) (2.54)

Proof. Uses the Workhorse Theorem. See [54].

Lemma 2.2.9 (Symbol of the Adjoint). Let P ∈ Ψm(K) have symbol p. Define P ∗ to be
the formal L2 adjoint of P . That is, for all u, v ∈ S with compact support in K,

(Pu, v)L2(F ) = (u, P ∗v)L2(E) (2.55)

The symbol p∗ of P ∗ has the following formal development:

p∗ ∼
∑
α

i|α|

α!
Dα
ξD

α
xp
† (2.56)

where p† denotes the conjugate transpose of p.
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Proof. Uses the Workhorse Theorem. See [54].

The Workhorse Theorem is also used to establish the properties of pseudo-differential
operators and their symbols under coordinate change.

Lemma 2.2.10 (Coordinate Change). Let φ : U → V be a diffeomorphism between two
open subsets of RN . Let φ∗ and φ∗ be the function (section) pull-back and push-forward,
respectively. For each compact K ⊂ U , φ induces the following operator push-forward map:

φ∗ : Ψm(K)→ Ψm(φ(K))

P 7→ φ∗ ◦ P ◦ φ∗
(2.57)

Proof. Uses the Workhorse Theorem. See [54].

The above lemma shows that coordinate changes in operators do not take a particu-
larly complicated form. Symbols, however, change in most confusing ways. In a sense,
this is not different from how symbols of differential operators transform under diffeomor-
phism. Recall that only the principal symbol had a tractable transformation law, which
was not hard to establish from chain rule considerations. An analogous result exists for
pseudo-differential operators. It however is much less straightforward to obtain, as one no
longer has clear-cut orders of differentiation and the Leibniz rule needs not to apply. More-
over, symbol calculus has pushed all calculations into the realm of asymptotic expansions.
Once again, the Workhorse Theorem comes to the rescue by helping to obtain a notion of
principal symbol of a pseudo-differential operator.

Definition 2.2.8 (Principal Symbol). Let P ∈ Ψm have symbol p ∈ Sm. The principal
symbol of P is the equivalence class σξ(P ) = [p] ∈ Sm/Sm−1.

Lemma 2.2.11. The principal symbol σξ(P ) changes as a function of the cotangent bundle
of RN under diffeomorphisms. Let (x̃, ζ) denote the new cotangent space coordinates and
let (∂x/∂x̃)t be a transposed Jacobian matrix. Explicitly,

sym(φ∗(P )) = p

(
x(x̃),

(
∂x

∂x̃

)t
ζ

)
mod(Sm−1) (2.58)

If the diffeomorphism is linear, the above transformation law is exact.

Proof. Uses the Workhorse Theorem. See [54].
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Remark 2.2.6. The above situation is entirely analogous to the one for differential oper-
ators. Intuitively, it corresponds to extracting a differential operator of order 1 out of a
pseudo-differential operator of order m. The remainder is of course of order m − 1. Due
to the fact that m can be any real number, one is effectively allowed to conjure differential
operators where there seemed to be none.

Having established the properties of pseudo-differential operators under diffeomorphism
on compact sets of RN , we are now in position to discuss the generalization of the notion
of pseudo-differential operator to compact Riemannian manifolds without boundary. Let
(M, g) be such a manifold and let E and F be smooth complex vector bundles on M
equipped with Hermitian inner products 〈·, ·〉E and 〈·, ·〉F .

In the manifold case, unlike on RN , it is necessary to introduce infinitely smoothing
operators before defining pseudo-differential ones, as the ∼ equivalence relation is used to
transfer operators from charts in M to coordinate patches on RN . Those operators are
defined in a way completely analogous to the one on RN . P : C∞(E) → C∞(F ) is said
to be infinitely smoothing if, for any real s and m, it extends to a bounded linear map
P : Hs(E)→ Hs+m(F ). The space of such operators is denoted Ψ−∞(E,F ).

Definition 2.2.9 (ΨDOs on Manifolds). Let P : C∞(E)→ C∞(F ) be a linear map. P is
called a pseudo-differential operator of order m if, modulo infinitely smoothing operators,
it can expressed as a finite sum

P =
∑
i

Pi mod(Ψ−∞(E,F )) (2.59)

where for each Pi there exists a bundle trivializing chart Ui equipped with a system of local
coordinates xi : Ui → RN in which it can be expressed as a pseudo-differential operator of
order m with compact support in xi(U). The space of such operators is denoted Ψm(E,F ).
The space of operators of all orders is denoted Ψ(E,F ) = ∪mΨm(E,F ). For P,Q ∈
Ψ(E,F ) it is said that P ∼ Q if P −Q ∈ Ψ−∞(E,F ).

Remark 2.2.7. The sum in the previous definition allows one to build an operator on a
manifold out of operators defined on coordinate patches of (possibly disjoint) charts. This
is quite different from the way one normally defines differential operators on manifolds.
In order to bridge this gap, consider a differential operator P defined through the usual
means. In order to make it conform to the above definition, choose a finite partition of
unity {ui}ri=1. The finite sum form of P then becomes

P =
r∑
i=1

uiP (2.60)
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In essence, the construction in Definition 2.2.9 reverses those steps.

Results obtained for operators on smooth bundles of RN generalize to the manifold
setting via the construction of Definition 2.2.9.

Theorem 2.2.1. Let E,F and G be smooth vector bundles over a compact Riemannian
manifold (M, g). Let P ∈ Ψm(E,F ) and Q ∈ Ψl(F,G). The following hold:

(a) P extends to a bounded linear map P : Hs(E)→ Hs−m(F ) for all s ∈ R

(b) Q ◦ P ∈ Ψl+m(E,G)

(c) P ∗ ∈ Ψm(F,E)

(d) A diffeomorphism φ : M → M induces a push-forward of operators via (φ∗P ) =
φ∗ ◦ P ◦ φ∗

We are not going to generalize the notion of symbols for pseudodifferential operators
on compact Riemannian manifolds. The main reason for this omission is that we are only
really interested in differential operators, for which we already have a notion of principal
symbol. In order to globally define a notion of symbol of a pseudodifferential operator,
one can introduce an interesting generalization of a Fourier transform, valid for functions
of manifolds. See [54] for further details.

2.3 Elliptic Operators

This section is where the work done above starts to pay off, as we finally introduce elliptic
operators and obtain a spectral theorem for them. The proofs of this section are more
detailed as they showcase the usefulness of prior definitions and results. Once again we
closely follow [54]. We start by defining elliptic differential operators on compact Rieman-
nian manifolds, and then generalize the definition to pseudo-differential ones.

Definition 2.3.1 (Elliptic PDO). Let P : E → F be a differential operator of order m
over a Riemannian manifold (M, g). P is said to be elliptic if for each non-zero tangent
vector ξ ∈ T ∗M, its principal symbol σξ(P ) : Ex → Fx is invertible.

For pseudo-differential operators, the corresponding definition needs to be built from
the properties of the principal symbol on coordinate patches in RN that correspond to
compact charts. Consequently, ellipticity in pseudo-differential operators is first defined
for operators on RN .
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Definition 2.3.2 (Elliptic ΨDO; RN). Let P ∈ Ψm have symbol p. P is said to be elliptic
if there exists a constant C > 0 such that for all |ξ| ≥ C, the inverse matrix of p(x, ξ)
exists and obeys the following inequality:∣∣p(x, ξ)−1

∣∣ ≤ C(1 + |ξ|)−m (2.61)

Remark 2.3.1. Differential operators elliptic in the sense of Definition 2.3.1 are also
elliptic in the sense of Definition 2.3.2. Recall that the full symbol of a differential operator
is a polynomial expression in ξ whose highest order terms constitute the principal symbol.
Thus, for large enough |ξ|, the behaviour of the symbol is dominated by the principal symbol,
which is invertible for all |ξ| > 0. Thus, the full symbol is invertible for large enough
|ξ|. The inequality is established by methods similar to those used to prove equivalence of
different norms on Sobolev spaces.

Remark 2.3.2. There exist elliptic operators of all orders. Let m ∈ R and set p =
(1 + |ξ|2)m1. Manifestly, p is the symbol of an elliptic operator P ∈ Ψm [25].

The power of elliptic operators resides in their invertibility up to infinitely smoothing
operators.

Theorem 2.3.1 (Parametrix; RN). Let P ∈ Ψm be elliptic. There exists Q ∈ Ψ−m such
that

PQ = 1− S ′

QP = 1− S
(2.62)

where S, S ′ are infinitely smoothing. Q is unique up to equivalence and is said to be a
parametrix for P .

Proof. Our proof follows [54]. The overall strategy is to build an asymptotic development
for the operator Q, proceeding inductively order by order in the formal sum. Denote this
construction in the following way

q ∼
∞∑
k

qk (2.63)

where q0 is taken to be of order −m, q1 of order −m − 1 etc. Then, Lemma 2.2.5 can be
used to construct Q. Recall that the order of Q will be that of the highest order symbol
in the formal expansion, −m in this case.
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Let p be the symbol of P and let C denote the constant of equation (2.61). As in the
proof of Lemma 2.2.5, we need to introduce a selection function. Let χ : R+ → [0, 1] be a
smooth function such that χ(t) = 0 for t ≤ C and χ(t) = 1 for t ≥ 2C. Define

q0 =

{
0, if |ξ| ≤ C

χ(|ξ|)p(x, ξ)−1, otherwise
(2.64)

First, it is necessary to prove that q0 is indeed of order −m. By Definition 2.2.4, there
must exist constants Cα,β such that:∣∣∣Dα

xD
β
ξ q0

∣∣∣ ≤ Cα,β(1 + |ξ|)−m−|β| ∀α, β (2.65)

This bound is trivially established for |ξ| ≤ C. We thus concentrate our attention on
ξ > C. For α = β = 0, the existence of Cα=0,β=0 is established by the bound on the inverse
symbol of Definition 2.3.2. For other α, β we proceed inductively. First, set α = 0. That is,
ignore the x derivatives. Using pp−1 = 1 = p−1p and the Leibniz rule it is straightforward
to show that

∂ξip
−1 = −p−1(∂ξp)p

−1 (2.66)

By the bound on p−1 of Definition 2.3.2 and the bounds on derivatives of p of Definition
2.2.4, there exists a constant K0,1 such that the following bound holds:∣∣∂ξip−1

∣∣ =
∣∣p−1(∂ξip)p

−1
∣∣ ≤ C2K0,1(1 + |ξ|)−2m(1 + |ξ|)m−1

= C0,1(1 + |ξ|)−m−1 (2.67)

Bounds on higher order ξ derivatives are obtained in a similar fashion. By the Leibniz rule,
successive derivatives of Equation 2.66 take the form of sums of products of different order
derivatives of p and p−1. For β successive derivatives, the total order of differentiation
of any given term of the sum is |β|. For each term in the sum, a bound proportional to
(1 + |ξ|)w is obtained. The whole sum is then bounded by the term corresponding to the
highest w, multiplied by some constant. For all |β| this is achieved when all derivatives
are on p. That is, the term with the highest w is of the form p−1(dβξ p)p

−1. As above, one
has the following bound: ∣∣∣p−1(dβξ p)p

−1
∣∣∣ ≤ C0,|β|(1 + |ξ|)−m−|β| (2.68)
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where C0,|β| is chosen large enough to bound all of dβξ p
−1. Up to a change in the constant

C0,β, this bound remains true for q0, as all derivatives of χ(|ξ|) are clearly bounded.

The bounds established for α = 0 already have the desired form. It remains thus to
show that allowing α to be nonzero does not disrupt them. It is so for bounds on the
derivatives of p, by Definition 2.2.4. Notice that Equation (2.66) holds if ξ derivatives
are replaced with x derivatives. By the same argument as above, the following bound is
obtained:

∣∣∂xip−1
∣∣ ≤ C0,1(1 + |ξ|)−m (2.69)

Since x derivatives do not modify the bounds on dβξ p nor on ∂xip
−1, one then inductively

shows that bounds on |Dα
xD

β
ξ q0| are the same as those on |Dβ

ξ q0|. Thus, q0 is indeed a
symbol of order −m.

Let Q0 be the operator associated to the symbol q0. By the rule for symbol composition
(Lemma 2.2.8), we have

sym(Q0P − 1) =
∑
α

i|α|

α!
(Dα

ξ q0)(Dα
xp)− 1

= (χ(|ξ|)− 1) +R0

(2.70)

Since there exists a constant Cχ,w such that |χ(|ξ|)−1| ≤ Cχ,w(1+ |ξ|)w for all w, (χ(|ξ|)−
1) is infinitely smoothing. The remainder R0 is thus the symbol of (Q0P − 1), up to
equivalence. The order of R0 is that of the |α| = 1 terms, which is readily shown to be −1.

This process now needs to be repeated for all orders. Let Q1 be such that

sym((Q0 +Q1)P − 1) = (χ(|ξ|)− 1) + sym(Q1P ) +R0 ∈ S−2 (2.71)

In other words, Q1 must be such that the symbol of Q1P cancels the highest order part
in R0, up to equivalence. Let q1 be the symbol of Q1. Then, by the law of composition of
symbols,

sym(Q1P ) +R0 =
∑
|α|

i|α|

α!
(Dα

ξ q1)(Dα
xp) +

∑
|α|≥1

i|α|

α!
(Dα

ξ q0)(Dα
xp)

= q1p+
∑
|α|≥1

i|α|

α!
(Dα

ξ q1)(Dα
xp) +

∑
|α|≥1

i|α|

α!
(Dα

ξ q0)(Dα
xp)

(2.72)
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One must now cleverly pick a q1 that would cancel the highest order terms in the above
expression, up to equivalence. Notice that if the order of q1 is low enough, the first
summation will not contain leading order terms. Thus, it is only necessary to cancel
the leading order terms in the second sum. This can be done by setting:

q1 = −

∑
|α|=1

i|α|

α!
(Dα

ξ q0)(Dα
xp)

 q0 ∈ S−m−1 (2.73)

This indeed yields, up to equivalence,

sym(Q1P ) +R0 =
∑
|α|≥1

i|α|

α!
(Dα

ξ q1)(Dα
xp) +

∑
|α|≥2

i|α|

α!
(Dα

ξ q0)(Dα
xp) ∈ S−2 (2.74)

Iterating this discussion leads to the following formula for qk

qk = −
k−1∑
j=0

 ∑
|α|+j=k

(Dα
ξ qj)(D

α
xp)

 q0 ∈ S−m−k (2.75)

This completes the construction of the formal development of q. Lemma 2.2.5 ensures
that it leads to an operator Q ∈ Ψ−m, unique modulo infinitely smoothing operators. To
show that QP − 1 is indeed infinitely smoothing, it is permissible to select a particular
representative ofQ, as the composition of any pseudo-differential operator with an infinitely
smoothing operator is also infinitely smoothing. For instance, one can use Lemma 2.2.5
to explicitly construct the symbol of Q. By the preceding discussion and the rule of
composition of symbols, it then becomes clear that sym(PQ − 1) ∈ S∞ and thus that
PQ− 1 ∈ Ψ∞.

Similarly, one can build Q′ such that PQ′ − 1 is infinitely smoothing. It is permissible
(and usually desirable) to identify Q and Q′, since.

Q ∼ Q(PQ′) = (QP )Q′ ∼ Q′ (2.76)

The above result now needs to be generalized to compact Riemannian manifolds without
boundary. Notice that we never defined the notion of ellipticity of a pseudo-differential
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operator on a compact manifold, nor did we define the total symbol of a pseudo-differential
operator on a manifold. Consequently, we limit our discussion to differential operators, for
whom those definitions have been stated. This loss of generality is of little consequence
to our endeavours, as we are mostly interested in Laplacians. Nonetheless, the results still
hold for pseudo-differential operators. A reader interested in the full picture is encouraged
to consult [25].

Theorem 2.3.2. Let E,F be smooth vector bundles over a compact, boundaryless Rie-
mannian manifold (M, g). Let P : C∞(E) → C∞(F ) be a differential operator of order
m. Then there exists an operator Q ∈ Ψ−m(F,E) such that

PQ = 1− S ′

QP = 1− S
(2.77)

where S and S ′ are infinitely smoothing operators.

Sketch of Proof. The proof relies on the choice of a good presentation of the bundles E and
F with coordinate charts {Uj}j and of a suitable partition of unity {ψi}i. The operator
defined by the action of P restricted to the chart corresponding to Uj is denoted Pj. Let
Qj be its parametrix and set Sj = 1 − QjPj. The global parametrix Q and the global
remainder S are thus

Q =
∑
j

ψjQj

S =
∑
j

ψjSj
(2.78)

See [54] for further details.

The parametrix allows one to show some key properties of elliptic differential operators.

Theorem 2.3.3 (Smoothness). Let P : C∞(E) → C∞(F ) be an elliptic differential op-
erator over a compact Riemannian manifold (M, g). For any open U ⊂ M, and any
u ∈ Hs(E),

Pu|U ∈ C
∞ =⇒ u|U ∈ C

∞ (2.79)

In particular, if E = F and Pu = λu for some λ ∈ C, then u is smooth.
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Proof. Let Q be a parametrix of P such that 1 = QP + S, with infinitely smoothing
S. Clearly, u = 1u = QPu + Su is smooth on U as Pu and Su are both smooth and
pseudo-differential operators map smooth functions into smooth functions [54].

Since P is a differential operator, it is of positive order. λ1 is thus of lower order
and P − λ1 retains its ellipticity. By hypothesis, (P − λ1)u = 0, which establishes the
smoothness of u.

Remark 2.3.3. The above theorem establishes the crucial fact that the eigenfunctions of
elliptic differential operators are smooth. This is also true for elliptic pseudo-differential
operators of positive order.

Another powerful result that can be proven via the existence of the parametrix is the
Fundamental Elliptic Estimate.

Theorem 2.3.4 (Fundamental Elliptic Estimate). Let P : C∞(E)→ C∞(F ) be an elliptic
differential operator of order m over a compact Riemannian manifold (M, g). For each s
there exists a constant Cs such that

‖us‖ ≤ Cs(‖u‖s−m + ‖Pu‖s−m) ∀ u ∈ Hs(E) (2.80)

Proof. Let Q be a parametrix of P such that 1 = QP + S, with infinitely smoothing S.
One can thus estimate:

‖u‖s = ‖QPu+ Su‖s ≤ ‖QPu‖s + ‖Su‖s ≤ C(‖Pu‖s−m + ‖u‖s−m) (2.81)

The last inequality is obtained from the fact that Q is of order −m and S can also be
considered of order −m. Lemma 2.2.3 provides the required inequality.

Remark 2.3.4. Jointly, Lemma 2.2.3 and the Fundamental Elliptic Estimate show that
the norms ‖ · ‖s and ‖P · ‖s−m + ‖ · ‖s−m are equivalent.

Recall that by Lemma 2.2.4, infinitely smoothing operators are compact. Operators
on Hilbert spaces invertible modulo compact operators are said to be Fredholm. An al-
ternative characterization of Fredholm operators is that the kernel and cokernel (quotient
of the target Hilbert space by the closure of the range) of a Fredholm operator are finite-
dimensional and its range is closed. The existence of the parametrix ensures that any el-
liptic P : C∞(E)→ C∞(F ) of order m extends to a Fredholm map P : Hs(E)→ Hs−m(F )
[54]. For formally self-adjoint operators, this has the following consequence:
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Theorem 2.3.5. Let P : C∞(E) → C∞(E) be an elliptic differential operator over a
compact Riemannian manifold without boundary that is formally self-adjoint with respect
to the L2 inner product. Then, the following L2-orthogonal decomposition holds:

C∞(E) = kerP ⊕ imP (2.82)

Proof. See [54].

Theorem 2.3.6 (Spectral Resolution). Let P : C∞(E)→ C∞(E) be an elliptic differential
operator of order m over a compact Riemannian manifold without boundary that is formally
self-adjoint with respect to the L2 inner product. Then P has a discrete spectral resolution
{ψn, λn}∞n=1 with ψn ∈ C∞(E) and λn real. The eigenspaces of P have finite dimension.
The spectrum of P has no finite accumulation points.

Proof. The proof follows [25]. By the above discussion, P : Hm(E)→ L2(E) is Fredholm.
Let P̃ be a restriction of P such that:

P̃ := P : (kerP )⊥ ∩Hm(E) −→ (kerP )⊥ ∩ L2(E) (2.83)

P̃ is an isomorphism, since the above restriction excises both the kernel and cokernel of
P . Thus, one can construct an inverse Q̃ of P̃ . Q̃ can then be extended to act upon all
of L2(E) by setting its action to be zero on the finite-dimensional space (kerP ). Q̃ is
manifestly a choice of parametrix and thus is a pseudo-differential operator of order −m.
Consequently, the map Q̃ : L2(E)→ Hm(E) is bounded. This map may then be composed
with the natural projection of Hm(E) onto L2(E), which is compact as m > 0. The overall
map Q : L2(E)→ L2(E) is thus compact, as the composition of a bounded linear map and
a compact map is compact [57].

It is straightforward to show from the decomposition C∞(E) = kerP ⊕ imP that the
formal self-adjointness of P ensures that of Q. Q can then be extended to be self-adjoint
on L2(E). The spectral theorem for compact self-adjoint operators then applies, providing
Q with a discrete spectral resolution {ψn, µn}∞n=1, with µn real, of finite multiplicity and
having no non-zero accumulation points [57]. The spectral resolution for P is obtained by
inverting the nonzero eigenvalues:

λn =

{
µ−1
n , if µn 6= 0

0, if µn = 0
(2.84)

Compare the above expression with the definition of the Moore-Penrose pseudoinverse given
in Appendix A. Since S and P share their kernel, Sψn = 0 implies Pψn = 0. Similarly,

34



when µn 6= 0, Sψn = µnψn implies Pψn = PSµ−1
n ψ = λnψn. Thus, {ψn, λn} is indeed a

spectral resolution for P with eigenspaces of finite dimension and eigenvalues with no finite
accumulation point. Smoothness of the ψn is established by Theorem 2.3.3.

Remark 2.3.5. The above theorem also holds for compact Riemannian manifolds with
sufficiently regular boundary, provided that adequate boundary conditions are imposed. The
theory of boundary conditions for pseudo-differential operators is a subtle subject that is
beyond the scope of this work. For manifolds with smooth boundaries, the interested reader
is referred to [32, 66, 67]. For our purposes, it is sufficient to say that Dirichlet or Neumann
boundary conditions are indeed appropriate. Much more exotic boundary conditions are
discussed in [26].

The last important piece of information it remains to obtain about the spectrum of P is
the growth properties of its eigenvalues. Since P is a differential operator, it is unbounded,
so its eigenvalues tend to infinity in some sense. The following theorem gives a bound on
the growth of the eigenvalues:

Theorem 2.3.7. Let P and {ψn, λn}∞n=1 be as in Theorem 2.3.6. Let Eλ denote the
eigenspace corresponding to an eigenvalue λ. Define the following dimension counting
function:

d(Λ) = dim

⊕
|λ|≤Λ

Eλ

 (2.85)

Then, there exists a constant C such that

d(Λ) ≤ CΛN(N+2m+2)/2m (2.86)

Proof. See [54]. It is an application of the fundamental elliptic estimate.

P is said to be non-negative if (Pu, u)L2 ≥ 0 for all smooth u. Consequently, the eigenvalues
of P are non-negative. The estimates on the growth of the eigenvalues then take a much
simpler form:

Theorem 2.3.8. Let P and {ψk, λk}∞k=1 be as in Theorem 2.3.6. Suppose that P is non-
negative. Then, its spectrum {λk}∞k=1 can be ordered as follows:

0 ≤ λ1 ≤ λ2 ≤ ...→∞ (2.87)
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In this eigenvalue numbering scheme, there exists a constant C such that, for all k

λk ≥ Ck2m/N(N+2m+2) (2.88)

Proof. For a non-degenerate spectrum, d(λk) = k and the result follows from Theorem
2.3.7. For a degenerate spectrum, the same reasoning holds for the highest k in an
eigenspace. The remainder of the eigenspace has lower bounds, so the result still holds.

Remark 2.3.6. The last bound is used in the next section to establish the convergence of
the heat kernel, an important tool in spectral geometry.

2.4 Heat Equation and Heat Kernel

The Heat Equation is one of the classical equations of mathematical physics. On RN it
takes the form

∂

∂t
u+ ∆u = 0 (2.89)

where ∆ is the positive definite Laplacian on RN and t is a time coordinate taken to vary
over (0,∞). Physically, this equation describes the conduction of heat in a slab of mate-
rial. Thus, the problem is normally defined over a bounded domain of RN and boundary
conditions motivated by the physical situation are imposed. Moreover, an initial condition
limt→0+ u = f , representing an initial distribution of temperature, is supplied. The equa-
tion is then usually solved by separation of variables. First, one postulates exponential
behaviour in the time variable, eliminating time dependence. Then, one solves the spatial
part as an eigenvalue problem for the Laplacian. The solution for the initial value problem
is a linear combination of the eigenfunctions of the Laplacian with coefficients that vary
exponentially in time. This classical approach is exposed in most introductory textbooks
on partial differential equations, say [30].

The above discussion generalizes to the case of non-negative elliptic differential opera-
tors on manifolds.

Definition 2.4.1 (Heat Equation). Let P : C∞(E)→ C∞(E) be a non-negative formally
self-adjoint elliptic differential operator on a compact Riemannian manifold. If the mani-
fold has boundaries, appropriate boundary conditions are assumed to hold so that Theorem

36



2.3.6 applies. The following system of equations is called the heat equation for P :

(∂t + P )u(x, t) = 0

lim
t→0+

u(x, t) = f(x)
(2.90)

Definition 2.4.2 (Heat Operator). Let P be as in Definition 2.4.1. The heat operator of
P is defined to be e−tP . In terms of a spectral resolution {ψk, λk}∞k=1 of P , this operator
takes the form

e−tPf(x) =

∫
M
Kt(x, y)f(y)dVy (2.91)

where the heat kernel Kt(x, y) is given by

Kt(x, y) =
∞∑
k=1

e−λktψk(x)⊗ ψ∗k(y) (2.92)

Lemma 2.4.1. For any closed interval I ∈ (0,∞) and any r ≥ 0, the series in equation
(2.92) converges uniformly in the Cr topology on I ×M×M. Thus Kt(x, y) is smooth.

Sketch of Proof. Sobolev’s theorem 2.1.1 and elliptic estimates are used to bound the Cr

norm of the partial sums. This bound depends upon {λk}k. Theorem 2.3.8 ensures that
the spectrum grows quickly enough so that the exponential factors enforce convergence.
See [54] for details.

Theorem 2.4.1. For a fixed t, the heat operator is infinitely smoothing. Also, u(x, t) =
e−tPf(x) satisfies the heat equation and is smooth for any f ∈ L2(E).

Proof. The heat operator is infinitely smoothing as it is an integral operator with smooth
kernel. The smoothness of u(x, t) is then guaranteed. Taking a time derivative of Kt(x, y),
one gets

∂tKt(x, y) =
∞∑
k=1

−λke−λktψk(x)⊗ ψ∗k(y)

= −PxKt(x, y)

(2.93)

Once multiplied by f and integrated, this yields ∂tu = −Pu.
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Remark 2.4.1. The heat operator e−tP was explicitly constructed to solve the heat equation.
This was made possible by the spectral resolution of P , whose existence and smoothness
took a great deal of work to prove. Interestingly, one can proceed in the opposite direction,
starting with the definition of the heat equation for P , constructing a heat operator and
then proving that P has a spectral resolution of smooth sections. For the Laplace-Beltrami
operator, this approach is discussed in [13].

A particularly interesting object is the L2-trace of the heat kernel. In later chapters
it will be used as the main tool to extract geometric information from the spectrum of
various Laplacians.

Definition 2.4.3. Let P be as in Definition 2.4.1. The trace of the heat kernel for P is
defined to be

Tr(e−tP ) =

∫
M
tracex[Kt(x, x)]dVx

=
∞∑
k=1

e−λkt
(2.94)

The heat kernel is analytic for all t > 0 [54].

Notice that the heat kernel of P is uniquely determined by the spectrum of P . It is
thus a spectral invariant. Its asymptotic expansion as t ↓ 0, which we are about to define,
contains a great deal of geometric information. In our discussion of the asymptotics of the
heat kernel, we follow [25].

Definition 2.4.4 (Asymptotic Expansion). Let t > 0 and let fi(x), h(x, t) ∈ End(E).
h(x, t) is said to have an asymptotic expansion

h(x, t) ∼
∑
i

fi(x)t(i−N)/m (2.95)

if for every k, there exist M = M(k) and constants Ck such that∥∥∥∥∥h(x, t)−
∑
i≤M

fi(x)t(i−N)/m

∥∥∥∥∥
∞,k

≤ Ckt
k (2.96)

If it exists, the asymptotic expansion is unique. Note that the series needs not to converge.

Remark 2.4.2. The above definition is specialized for the task at hand. For general asymp-
totic expansions, one would absorb the common factor of t−N/m into the definition of the
fi.
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Theorem 2.4.2 (Heat Kernel Coefficients). The Heat Kernel of a formally self-adjoint
elliptic differential operator of order d has the following asymptotic expansion:

Tr(e−tP ) ∼
∑
n

an(P )t(n−N)/d (2.97)

The coefficients an depend solely on the operator P .

Sketch of Proof. The full discussion leading to the proof of the theorem is quite lengthy.
We refer the interested reader to [25]. The main complication is that one must obtain a
generalized version of the symbol calculus valid for operators depending upon a complex
parameter λ (see [25] or [69]). The goal is to study the resolvent (P − λ)−1 of P . The
resolvent is constructed from successive approximations, similarly to how the parametrix
was obtained in the proof of Theorem 2.3.1. The successive approximations of the resolvent
are then used to obtain asymptotic expansions of the heat kernel evaluated on the diagonal
x = y, at which point the asymptotic coefficients still have x dependence. Taking the L2

trace of the kernel on the diagonal removes all dependence upon x and yields the asymptotic
expansion for Tr(e−tP ).

Remark 2.4.3. Another path to this asymptotic expansion is taken in [13] for the Laplace-
Beltrami operator. There, as mentioned earlier, the spectral resolution of ∆ is shown to
exist from the existence of the heat operator. In order to show the existence of the heat
operator for Riemannian manifolds, [13] first constructs the heat operator on RN and
then obtains the one on (M, g) by successive approximations. As a by-product of this
construction, the asymptotic expansion of the trace of the heat kernel is obtained.

We shall not touch upon techniques involved in the computation of the heat trace
coefficients an beyond the few following facts. On a compact manifold without boundary,
all odd an vanish. On a manifold with boundary, the an will be generically composed of
contributions from both the operator P and the boundary conditions. For odd n, only
the boundary terms contribute. The an are computable from the symbol of P and the
boundary conditions, when appropriate [25, 31].

Asymptotic expansion coefficients can be explicitly computed for a particular class of
operators called Laplace-type operators.

Definition 2.4.5 (Laplace Type Operators). A differential operator P acting on sections
of some smooth vector bundle E of a compact Riemannian manifold (M, g) is said to be
of Laplace type if its leading symbol is given by

σξ(P ) = ‖ξ‖2 = gij1Eξiξj (2.98)
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where gij denotes the inverse metric expressed in a local coordinate basis and the Einstein
summation convention is used.

Note that since the principal symbol of a Laplace type operator is given by the metric, the
asymptotic expansion of its heat trace is expected to contain at least some geometric infor-
mation about the Riemannian manifold (M, g). The remainder of this thesis is dedicated
to the extraction of geometric information from operators of Laplace type.
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Chapter 3

Laplace Operators

Inverse spectral geometry is built around the relationship between spectra of various Lapla-
cians and the geometry of Riemannian manifolds, with the odd Dirac operator sometimes
thrown into the mix. We shall limit our discussion to Laplace operators. Most of that
information comes from the coefficients in the asymptotic expansion of the heat trace. In
this fashion, different Laplacians yield different geometric information about the manifold.
First, we define the most commonly used Laplacians and showcase basic symbol compu-
tation techniques by computing their leading symbols. As promised by the terminology
introduced at the very end of the previous chapter, Laplacians will all turn out to be
of Laplace type. Then, we review the geometric information one can extract from their
spectra via known methods.

3.1 Laplacians

In this section, we review the definitions of various Laplacians on Riemannian manifolds. In
truth, only the Laplace-Beltrami operator and Hodge Laplacian are of immediate interest
to our endeavours, as they are the ones most often used in spectral geometry. The definition
of the covariant Laplacian is included for the sake of completeness. We will use the symbol
∆, possibly with subscripts, exclusively to denote the various Laplacians of this chapter.

For the remainder of this chapter, let (M, g) be an oriented N -dimensional Riemannian
manifold. We take |g| to be the absolute value of the determinant of the metric. The volume
form associated to the metric g is denoted dVg. The Levi-Civita connection compatible with
g will be denoted by ∇. The Lie derivative with respect to a vector field X ∈ C∞(TM)
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will be written LX . For details on all matters differential geometric, we refer the reader
to [72] and [59], in increasing order of complexity. The discussion below is mainly inspired
by [59].

3.1.1 Laplace-Beltrami Operator

The Laplace-Beltrami operator is a straightforward generalization of the usual Laplacian,
familiar to the reader from vector calculus [30]. Recall that the Laplacian from vector
calculus is defined as the divergence of the gradient of a function:

∆f = div(gradf) = ∂2
1 + ...+ ∂2

N (3.1)

This operator comes out to be non-positive definite, rather than non-negative, which is a
slight technical inconvenience as we prefer working with non-negative spectra. Thus, when
constructing the Laplace-Beltrami operator, one really generalizes the negative of the usual
Laplacian. This is sometimes referred to as the geometer’s Laplacian.

The construction of the Laplace-Beltrami operator requires only a generalization of the
notions of gradient and divergence to manifolds. Recall that the gradient of f ∈ C∞(M)
is a tangent vector field gradf ∈ C∞(TM) that encodes the directional derivative of f in
the direction of any X ∈ C∞(TM) through contraction with the metric. This is expressed
as follows:

g(gradf,X) = Xf (3.2)

In turn, the divergence of a vector field X ∈ C∞(TM) is defined to be the unique function
divX ∈ C∞(M) such that

(divX)dVg = LXdVg (3.3)

The Laplace-Beltrami operator is then defined to be the negative of the divergence of the
gradient, mapping C∞(M) into itself. In local coordinates {xi}Ni=1, the action of ∆ upon
a function f ∈ C∞(M) takes the form

∆f = − 1√
|g|
∂i

(√
|g|gij∂jf

)
(3.4)
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For the Euclidean metric on RN , it indeed reduces to the negative of the classical sum of
second derivatives Laplacian. Moreover, note that it is indeed an operator of Laplace type,
as the leading order terms are

∆ = −gij∂i∂j + ... (3.5)

The leading symbol can be read off directly σξ(∆) = gijξiξj = |ξ|2.

3.1.2 Hodge Laplacian

The Hodge Laplacian is a generalization of the Laplace-Beltrami operator that acts upon
differential p-forms. The space of smooth p-forms (i.e. smooth sections of Λp(T ∗M)) will
be denoted Ωp(M). The exterior algebra of smooth forms of all orders is denoted

Ω•(M) =
⊕
p≥0

Ωp(M) (3.6)

Let d denote the exterior derivative d : Ωp(M)→ Ωp+1(M) and let ∗ : Ωp → ΩN−p denote
the Hodge star operator. It is well known that the dual of d with respect to the L2 inner
product, called the codifferential, can be defined as

δ : Ωp(M)→ Ωp−1(M)

δ = (−1)Np+N+1 ∗ d∗
(3.7)

The Hodge Laplacian is defined in terms of the d and δ, as

∆ := dδ + δd (3.8)

Note that on 0-forms, i.e. on C∞(M), the Hodge Laplacian is equivalent to the Laplace-
Beltrami operator. Indeed, for f ∈ C∞(M) one has

∆f = δdf + dδf = δdf = −div(gradf) (3.9)

where the second equality follows from the fact that δ annihilates 0-forms. The last step
can be justified as follows. Consider gradf . By its defining property it is the tangent
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vector field dual to df through the metric. It can be shown (see, for instance, [59]) that
div(X) = ∗d ∗ X̃ = −δX̃, where X̃ is the 1-form dual to X through the metric.

In order to compute the leading symbol of the Hodge Laplacian, it is convenient to
first compute the symbols of d and δ. This is an ideal setting to showcase the algebraic
definition of the leading symbol introduced in Remark 2.2.2. In this endeavour, we follow
[59]. Both operators considered are of first order, so it is sufficient to use a single ad(f)
map. Let ω ∈ Ω•(M).

(ad(f)d)ω = d(fω)− fdω = (df) ∧ ω + fdω − fdω = df ∧ ω (3.10)

Recalling that ad(f) only depends on df , one can replace df by ξ in the above. From that
and Remark 2.2.2, one deduces that σξ(d) = e(ξ), where e(ξ) is the left exterior product
by ξ.

For the codifferential, one easily obtains

σξ(δ) = (−1)Np+N+1 ∗ σξ(d)∗ = (−1)Np+N+1 ∗ e(ξ)∗ (3.11)

as the Hodge ∗ commutes with multiplication by smooth functions and thus with ad(f).
This result can be significantly simplified. Let ξ∗ ∈ Tx(M) denote the metric dual
of ξ and let i(ξ∗) be the interior derivative along ξ∗. It can be shown that ∗e(ξ)∗ =
−(−1)Np+N+1i(ξ∗) [59]. Consequently, the principal symbol of δ is given by

σξ(δ) = −i(ξ∗) (3.12)

Consider the Hodge-DeRham operator d + δ : Ω•(M) → Ω•(M). Its principal symbol is
given by

σξ(d+ δ) = σξ(d) + σξ(δ) = e(ξ)− i(ξ∗) (3.13)

As d2 = 0 and δ2 = 0, ∆ = (d + δ)2. The rule of composition of principal symbols of
Lemma 2.2.2 yields

σξ(∆) = σξ((d+ δ)2) = σξ((d+ δ))2 = (e(ξ)− i(ξ))2

= −(e(ξ)i(ξ∗) + i(ξ∗)e(ξ)) = −ξ(ξ∗) = −‖ξ‖2 (3.14)

where the penultimate equality follows from the anti-Leibniz rule for interior derivatives.
Recall that by Remark 2.2.2 the algebraic definition of the principal symbol differs by a
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factor of (−i)m from the Fourier transform one. In this case, m = 2. The resulting factor
of −1 ensures that the Hodge Laplacian is indeed of Laplace type.

3.1.3 Covariant Laplacian and Weitzenböck Remainder

Compared to the Laplace-Beltrami operator and the Hodge Laplacian, the covariant Lapla-
cian is a rather crude creature. It is nonetheless important, as it allows to define Laplacians
on any smooth vector bundle. In particular, the covariant Laplacian can be used to define
a Laplace operator on tensors of any order. Let E be a smooth vector bundle over the
Riemannian manifold (M, g). Recall the definition of a linear connection on E.

Definition 3.1.1 (Linear Connection). A linear connection (or covariant derivative) on
E is a linear map

∇ : C∞(E)→ C∞(T ∗M⊗ E) (3.15)

such that, ∀f ∈ C∞(M) and ∀u ∈ C∞(E), one has

∇(fu) = df ⊗ u+ f∇u (3.16)

Suppose E to be equipped with a Hermitian inner product 〈·, ·〉. Together with g, this
inner product induces a metric on T ∗M⊗ E. One can then find a formal adjoint ∇∗ of
the linear connection. We refer the reader to [59] for the details of this construction. One
then can define the covariant Laplacian.

Definition 3.1.2 (Covariant Laplacian). Let E,∇ and ∇∗ be as above. The covariant
Laplacian on E is defined to be

∆∇ = ∇∗∇ (3.17)

Notice the similarity of the above definition with that of the Laplace-Beltrami operator
∆ = δd. The covariant Laplacian is an operator of Laplace type. A proof of this fact can
be found in [59]. Interestingly, any Laplace type operator can be expressed in terms of a
covariant Laplacian.

Theorem 3.1.1 (Weitzenböck Remainder). Let L : C∞(E) → C∞(E) be an operator of
Laplace type. Then, there exists a unique metric connection ∇ on E and an endomorphism
R(L) of E such that

L = ∇∗∇+R(L) (3.18)

where R(L) is said to be the Weitzenböck remainder.

This can be used to simplify the study of arbitrary Laplace type operators, as is done in
[8].
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3.2 Geometry Reflected by Spectra

The spectra of Hodge Laplacians on compact Riemannian manifolds are known to contain
a significant amount of geometric information. While generally insufficient to allow for
a complete determination of a manifold, the information that one can extract from the
spectrum (or spectra) using known techniques is still sufficient to establish some common
features of isospectral manifolds. This section reviews some such results. A more complete
review can be found in [5]. In subsequent chapters, those properties are used to prove
certain positive results in inverse spectral geometry.

The earliest results on the encoding of geometric information in the spectra of operators
come from the the study of the Laplace-Beltrami operator. Let (M, g) be a compact
Riemannian manifold with boundary ∂M. The expansions of the heat trace of the Laplace-
Beltrami operator obeying Dirichlet or Neumann boundary conditions have similar forms,
differing only by signs. In pairs of the form ± or ∓ the top sign will be the one used for
Dirichlet boundary conditions and the bottom one the one used for Neumann conditions.
Let g∂M denote the induced metric on the boundary. The first two expansion coefficients
are

a0 =
1

(4π)N/2

∫
M
dVg =

1

(4π)N/2
V ol(M)

a1 = ∓ 1

(4π)(N−1)/2

1

4

∫
∂M

dVg∂M = ∓ 1

(4π)(N−1)/2

1

4
V ol(∂M)

(3.19)

After that, the coefficients become increasingly more and more complex integrals of com-
binatorial expressions involving various powers and contractions of the curvature tensor
over M and ∂M. If Laplacians on other bundles are used, the expressions also gain in
complexity. For proofs of the expressions of higher order coefficients, we refer the reader
to [8, 26].

The key message of Equation (3.19) is that the asymptotics of the heat trace encode
the volume of the manifold and the length of the boundary. If ∂M = ∅, the expressions
for a0 and a1 still hold and one can thus still read the volume of the manifold from the
heat trace asymptotics. This fact can be put in a particularly classical form.

Theorem 3.2.1 (Weyl Estimate). Let {λn}∞n=1 be the spectrum of the Laplace-Beltrami
operator on a compact N-dimensional Riemannian manifold (M, g)(with or without bound-
ary). The eigenvalues obey the following estimate:

λk ∼
(

(2π)N

β(N)V ol(M)

)2/N

k2/N (3.20)
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where β(N) is the volume of the unit ball in RN .

The Weyl Estimate implies that all manifolds of a given dimension and volume have the
same scaling properties of the eigenvalues. The intuition behind this is that eigenfunctions
corresponding to high eigenvalues have very short wavelengths and thus are not sensitive
the curvature or to the shape of the boundary. This result can be proven in two distinct
ways. The original 1911 proof by Hermann Weyl was only valid for domains in R2. A
generalization of it to bounded domains with smooth boundary M ∈ RN can be found in
[4]. We will sketch this proof first.

Sketch of Proof: Weyl Estimate 1. The idea behind this proof is to formalize the intuition
that eigenfunctions corresponding to high eigenvalues are not sensitive to the overall shape.
This is done by splitting the manifold into subdomains on which the analysis is less involved.
Consider a Dirichlet problem for the Laplace-Beltrami operator onM, a bounded domain
in RN with smooth boundary. Consider a cubic grid of side a in RN . For a given a, one
identifies the cubes entirely contained in M and the cubes containing at least one point
of M. The union of the first set of cubes is denoted CI and the that of the second set CE
where the subscripts stand for “interior” and “exterior”, respectively. One clearly has CI ⊂
M ⊂ CE. Then, an eigenvalue problem is considered on each separate cube of the lattice.
The problems on the interior cubes are taken to satisfy Dirichlet boundary conditions
while those on the exterior ones are taken to satisfy Neumann boundary conditions. Then,
one collects the spectra of all cubes of CI , counting multiplicity to form a nondecreasing
sequence {µIn}∞n=1. The same is done for the spectra of the cubes of CE to obtain a
nondecreasing sequence {µEn }∞n=1. The spectrum {λn}∞n=1 of M can then be bounded as
follows:

µEn ≤ λn ≤ µIn (3.21)

This bound holds due to inequalities relating the spectra of Dirichlet and Neumann Lapla-
cians on nested domains. Then, using the well known expressions for the eigenvalues of a
cube of side a and taking some appropriate limits the desired result is obtained.

An alternative proof of the Weyl Estimate uses the asymptotics of the heat kernel and a
theorem about the relationship between the asymptotic behaviour of a measure on (0,∞)
and its Laplace transform.

Theorem 3.2.2 (Hardy, Littlewood, Karamata). Let Q(λ) be a nondecreasing function
such that the following Laplace transform converges for all t ∈ (0,∞)
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ω(t) =

∫ ∞
0

e−λtdQ(λ) (3.22)

where the integral is taken in the Lebesgue-Stieltjes sense. Let C, ρ be positive constants.
The following two properties are equivalent:

ω(t) ∼ Ct−ρ as t ↓ 0 (3.23)

Q(λ) ∼ C

Γ(ρ+ 1)
λρ as λ ↑ ∞ (3.24)

Proof. See [22]. It is worth the look.

Remark 3.2.1. Implications that relate the measure to the transform ( (3.24) =⇒ (3.23))
are known as Abelian theorems, after Niels Henrik Abel . Implications that go the opposite
way ( (3.23) =⇒ (3.24)) are known as Tauberian, after Alfred Tauber. In this context,
Abelian is not the opposite of non-commutative, even though named after the same Abel
[42].

Proof: Weyl Estimate 2. This proof follows the strategy found in [18]. Notice that the
expression of the heat trace for the Laplace-Beltrami operator can be seen as a Laplace
transform with respect to the measure defined by Q(λ), the function counting the number
of eigenvalues lower or equal to λ

Tr(e−t∆) =
∞∑
k=1

e−λkt =

∫ ∞
0

e−λtdQ(λ) (3.25)

From the expansion of the heat trace of Theorem 2.4.2 and Equation (3.19). The heat
trace obeys the following estimate:

Tr(e−t∆) ∼ 1

(4π)N/2
V ol(M)t−N/2 (3.26)

The Tauberian part of theorem 3.2.2 then implies the following estimate

Q(λ) ∼ 1

Γ(N/2 + 1)

1

(4π)N/2
V ol(M)λ−N/2 =

β(N)

(2π)N
V ol(M)λ−N/2 (3.27)
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Since Q(λk) = k, this can be recast as

λk ∼
(

(2π)N

β(N)V ol(M)

)2/N

k2/N (3.28)

This is the desired result.

The expansion of the heat trace of the Hodge Laplacian is known to reflect some
additional geometric information about the manifold. Let {λpn}∞n=1 denote the spectrum of
the Hodge Laplacian acting on p-forms of a compact Riemannian manifold (M, g).

Theorem 3.2.3. Let (M, g) and (N , h) be compact Riemannian manifolds without bound-
ary of dimension N ≥ 2 with Hodge Laplacian spectra {λpn}∞n=1 and {µpn}∞n=1, respectively.
If {λpn}∞n=1 = {µpn}∞n=1 for p = 0, 1, 2, the following hold:

(a) (M, g) is of constant curvature c if and only if (N , h) is.

(b) (M, g) is of constant sectional curvature c if and only if (N , h) is.

(c) (M, g) is Einstein if and only if (N , h) is.

Sketch of Proof. The proof uses the explicit forms of the first few expansion coefficients
of the heat trace for p-forms, which must be equal for isospectral manifolds. In fact, the
isospectrality statement in the theorem can be relaxed to one of the equality of the first
few coefficients. See [60] or [25] for details.
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Chapter 4

Inverse Spectral Geometry

The goal of inverse spectral geometry is to extract as much information as possible from
the spectrum of some differential operators defined on compact manifolds with or without
boundary. It is known that the answer to Mark Kac’s original question “Can One Hear
the Shape of a Drum? ” [45] is in general negative [27]. Nonetheless, there is a number
of results in inverse spectral geometry one may consider positive. Some such results allow
one to identify a shape from its spectrum in a suitably restricted class of shapes, others
state that isospectral manifolds have some common geometric features. For instance, the
original motivation for Kac’s paper was the possibility to deduce the area and the boundary
perimeter of a (sufficiently regular) planar domain from the spectrum of the Laplacian on
scalar functions of this domain.

We begin by reviewing some negative and positive results in inverse spectral geometry.
A third section surveys the topological properties of sets of isospectral manifolds. We close
the chapter on a review of problems analogous to inverse spectral geometry, such as the
determination of a Schrödinger potential from the spectrum of the quantum mechanical
Hamiltonian.

4.1 Negative Results

Negative results in inverse spectral geometry are constructions of families of isospectral,
non-isometric manifolds. In the simplest case, isospectral pairs are constructed. More
involved cases include continuous families. This review is highly incomplete. The results
presented here are those that we subjectively judged to be of historical importance and
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often referred to in a way intimidating to a newcomer to the field. We thus claim to
speak from experience. If one’s only reliable method for solving partial differential equa-
tions is separation of variables, proving the isospectrality of sixteen-dimensional tori may
seem quite tedious, considering how long it may take to solve PDEs in the relatively low
dimensionality of space-time. Most daunting of all is the fact that Sunada’s technique is
often referred to as number-theoretic (by Sunada himself indeed [70], among others), which
seems to imply that the newcomer needs to master an additional field of mathematics, on
top of differential geometry and functional analysis, before even attempting to learn spec-
tral geometry. Hopefully, the following shall dispel all such misgivings. A quite readable,
more comprehensive list of negative results can be found in [29].

4.1.1 16-Dimensional Tori

In 1964, Milnor [55] constructed a pair of 16−dimensional flat tori isospectral for Hodge
Laplacians on p−forms. In [45], Kac cites this fact as reason to doubt the possibility of
general success of the inverse spectral geometry program. Milnor’s argument is an explicit
construction that relies on a result about lattices in dimension sixteen, so no tedious
separation of variables is needed. In fact, Milnor’s original paper is only one page long.

A flat torus of dimension N is defined as a Riemannian quotient manifold RN/L, where
L is a lattice (discrete additive subgroup of RN) of rank N . The dual lattice L∗ of L
consists of all y ∈ RN such that x ·y ∈ Z, for x ∈ L. All eigenfunctions of the Laplacian on
scalar functions of RN/L are given by ψy(x) = exp(2πx · y) for y ∈ L∗. The corresponding
eigenvalues have the form λy = (2π)2y · y. Consequently, the spectrum of such a torus is
uniquely determined by the function NL(r) counting the number of elements of L∗ in a ball
of radius r centered at the origin of RN . Milnor then invokes the fact that there exist two
distinct self-dual lattices L1 and L2 in R16 such that NL1(r) = NL2(r). This ensures the
isospectrality of R16/L1 and R16/L2. The fact that the lattices are distinct (not equivalent
by rotation) means that the tori obtained are non-isometric. Moreover, the isospectrality
can be shown to persist for the Hodge Laplacian on p−forms.

4.1.2 Sunada Construction

In 1985, Sunada [70] introduced a powerful technique that allows one to construct pairs
of isospectral manifolds. It relies upon factoring Riemannian manifolds with respect to
subgroups of the isometry group. The treatment we present follows [29]. First, it is
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necessary to introduce the notion of Riemannian covering. We refer the reader to [5] for
further details.

Definition 4.1.1 (Covering Space). Let M,N be differentiable manifolds. A map p :
M → N is said to be a covering map if N is covered by open sets Ui such that for each
Ui, the set p−1(Ui) is a countable set of open subsets of M individually diffeomorphic to
Ui. M is said to be a covering space of the base space N .

Definition 4.1.2 (Deck Transformation). A map T : M → M is said to be a deck
transformation of a covering map p :M→N if it commutes with p. Deck transformations
form a discrete subgroup of the full diffeomorphism group of M.

Remark 4.1.1. The terminology in the above definitions can be visualized as follows.
Imagine for simplicity that N is covered by a single open set U . The pre-image p−1(U) can
be viewed as a stack of copies of U on top of it. If U is visualized as a rectangle, the stack
of copies looks like a deck of cards, justifying the term deck transformation. Some authors
prefer to view U as a plate and p−1(U) as a stack of pancakes.

Definition 4.1.3 (Local Isometry). A smooth map b : M → N between Riemannian
manifolds (M, g) and (N , h) is said to be a local isometry if for every x ∈M, there is an
open neighbourhood U such that b(U) is open in N and b|U : U → b(U) is an isometry
[44].

Definition 4.1.4 (Riemannian Covering). Let (N , h) be a Riemannian manifold and let
p :M→N be a covering map. M then inherits a pull-back metric g = p∗h. The pull-back
is defined with respect to the diffeomorphism relating the Ui and the discrete sets in the
pre-image. The covering map p is then a local isometry. Deck transformations of p are
local isometries on (M, g).

Definition 4.1.5 (Riemannian Quotient). Let (M, g) be a Riemannian manifold and let
p : M → N be a covering map. N then inherits a quotient metric h = g/p by requiring
that p is everywhere a local isometry. Deck transformations of p are local isometries on
(M, g).

Remark 4.1.2. Given a discrete group G acting on the left on (M, g) by isometries, one
can define the Riemannian Quotient of (M, g) by this group. Let N be the manifold of
orbits ofM under the action of G and let p :M→N be the projection onto the equivalence
class. The projection p is then a covering map and N inherits a quotient metric h = g/p.
This construction is denoted (N , h) = (G \M, g).
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The Sunada construction relies on the observation that one can obtain the eigenfunctions
of the Laplacian on the base space (N , h) from the eigenfunctions of the covering space
(M, g). With that in mind, one factors (M, g) with respect to carefully chosen subgroups
of its symmetry group to obtain isospectral non isometric manifolds. The appropriate
criterion for that choice is given by the notion of almost conjugate subgroups. First, recall
the more familiar notion of conjugate subgroups [72].

Definition 4.1.6 (Conjugate Subgroups). Two subgroups Γ1 and Γ2 of a group G are
conjugate if there exists g ∈ G such that

Γ2 = gΓ1g
−1 (4.1)

Definition 4.1.7 (Almost Conjugate Subgroups). Let Γ1 and Γ2 be subgroups of a finite
group G. Γ1 is said to be almost conjugate to Γ2 if each conjugacy class of G intersects Γ1

and Γ2 in the same number of elements.

As the terminology suggests, conjugate subgroups are also almost conjugate. The useful-
ness of the notion of almost conjugacy comes from the fact that it is equivalent to that of
representation equivalence for finite groups. This property is used to prove the following
theorem, which is a generalization of the one originally shown by Sunada [70].

Theorem 4.1.1 (Sunada, Generalized). Let (M, g) be a compact Riemannian manifold,
with or without boundary, on which a finite group G acts on the left by isometries. Let
Γ1 and Γ2 be almost conjugate subgroups of G. If Γ1 and Γ2 act freely, the Riemannian
quotients (Γ1 \M, g) and (Γ2 \M, g) are isospectral for all natural Laplace type operators.

Sketch of Proof. Let P be a natural Laplace type operator on some smooth vector bundle
of (M, g). P then commutes with isometries. In particular, P commutes with the action of
G. Consequently, the action of G can be seen as mapping eigenspaces of P into themselves
(but not necessarily eigenfunctions into themselves). The eigenfunctions left invariant by
the action of Γ1 (respectively Γ2) can be shown to be the eigenfunctions of (Γ1 \ M, g)
(respectively, (Γ2 \M, g)). IfM has boundaries, the boundary conditions imposed on the
Riemannian quotients must be consistent with the ones imposed onM. Thus, the spectra
of (Γ1 \M, g) and (Γ2 \M, g) contain the same eigenvalues, not counting multiplicities. In
order to show isospectrality, it remains to ascertain that the eigenspaces corresponding to
identical eigenvalues have the same dimension. This conclusion can be reached from rep-
resentation theoretical techniques applied to representations of (Γ1 \M, g) and (Γ2 \M, g)
on finite dimensional vector spaces (eigenspaces of P ). The almost conjugacy hypothesis is
crucial for this last step, as it is equivalent to representation equivalence of the subgroups
[29].
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Remark 4.1.3. (Γ1 \ M, g) and (Γ2 \ M, g) are isometric if and only if Γ1 and Γ2 are
conjugate subgroups of the full isometry group of (M, g). In practice, it is only possible to
get a subgroup G of the full isometry group such that the conditions of theorem 4.1.1 apply.
Thus, in order to make sure that some specific (Γ1 \M, g) and (Γ2 \M, g) constructed by
the Sunada method are indeed a counterexample to inverse spectral geometry, one must use
some external method to check that they are not accidentally isometric.

For examples of explicit constructions of counterexamples to inverse spectral geometry by
the Sunada theorem and extensions of this technique, see [29] and the references therein.
For a survey of various proofs and applications of Sunada’s construction, see [11]. Note
that isospectral pairs constructed by the Sunada method are locally isometric, even if they
are not so globally.

4.1.3 Other Negative Results

Locally Non-Isometric Isospectral Manifolds

As mentioned above, the Sunada construction results in pairs of locally isometric isospectral
manifolds. It is thus of immediate interest to attempt to construct pairs of locally non-
isometric isospectral manifolds. The first examples of such manifolds were obtained by
Szabo [71]. Szabo’s proof relies on an explicit computations of the eigenvalues of Laplace-
Beltrami operator on manifolds of the form Bδ × T 3, where Bδ is a ball in RN and T 3 is a
3-torus, equipped with carefully chosen locally non-isometric metrics. Isospectrality holds
for both Dirichlet and Neumann boundary conditions. In addition, the boundaries of those
manifolds are isospectral but locally non-isometric.

Continuous Isospectral Deformations

The isospectral non-isometric manifolds produced by the Sunada technique generically
come in discrete pairs. An interesting question to ask is whether one can construct contin-
uous families of isospectral manifolds. This can be achieved by a number of constructions.
For a review, see [29].

The first construction we explore is quite similar to Sunada’s. The idea is to use Lie
groups as both the manifold on which the Laplacian eigenvalue problem is defined and the
symmetry group. Any compact Lie group G is naturally equipped with a metric g invariant
under left action by G. One then selects a continuous family of discrete subgroups of G that
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are representation equivalent and satisfy a series of other technical assumptions. Similarly
to Sunada’s construction, for any two such subgroups, the Riemannian quotient of (G, g)
by those subgroups yields isospectral non-isometric manifolds. The continuity of the family
of subgroups ensures the continuity of the family of isospectral non-isometric manifolds.
The proof of this result can be found in [28]. Note that it predates Sunada’s.

Riemannian Submersions

Recall that a submersion is a smooth map π : M→ N between manifolds such that the
associated push-forward π∗ is a surjective map of tangent spaces. A submersion is said to
be Riemannian if this push-forward is an isometry between the tangent space of (N , h) and
the orthogonal complement of the kernel of π [5]. Under suitable additional hypotheses,
one can relate the Laplace-Beltrami operator on (M, g) to the one on (N , h) as follows

π∗∆N (f) = ∆Mπ
∗(f) ,∀f ∈ C∞(N ) (4.2)

Clearly, one then has that the spectrum of ∆N is equal to the spectrum of ∆M acting on
π∗C∞(N ). Then, one uses this fact together with some additional special circumstances to
obtain a pair of isospectral non-isometric manifolds. This can be extended to be valid for
the Hodge Laplacian acting on exterior forms of any order [24]. Riemannian submersions
can be used to obtain both continuous families of isospectral manifolds and pairs of locally
non-isometric isospectral manifolds. Szabo’s construction can be recast in those terms.
See [29] and the references therein.

4.2 Positive Results

This section’s aim is to review some positive results in inverse spectral geometry. Such
results can be broadly divided in three classes. The strongest type of result ensures that
some given geometry can be unambiguously identified amongst a set of similar objects by
the spectra of some number of (pseudo-)differential operators defined on it. This is known
as spectral uniqueness. The ultimate aim of inverse spectral geometry is to establish spectral
uniqueness for all possible shapes. As it stands, uniqueness results are restricted to highly
symmetric cases and are few. The conditions for spectral uniqueness can be weakened by
only requiring that the spectrum (or spectra) of the geometry is unique amongst a set of
shapes that are nearby in a suitable sense. This is known as local uniqueness. An even
weaker property a geometry may have is known as spectral rigidity, which means that this
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particular shape admits no nontrivial continuous isospectral deformation. It is clear that
spectrally unique shapes are also locally unique and that locally unique shapes are also
spectrally rigid. This terminology is the one adopted in a 2011 review of positive results
in inverse spectral theory by Datchev and Hezari [17]. The discussion below follows that
survey and the references therein.

4.2.1 Spectral Uniqueness

The following result establishes the spectral uniqueness of ball-shaped domains amongst
compact subsets of RN with compact boundary.

Theorem 4.2.1 (Uniqueness of Balls). Let U ⊂ RN be an open set with smooth bound-
ary such that the spectrum of the Laplace-Beltrami operator with Dirichlet or Neumann
boundary conditions on it coincides with the one for the unit ball in B1 ⊂ RN . Then U is
isometric to B1.

Proof. The proof relies on the first two coefficients in the heat trace expansion, which, for
a compact manifold U with smooth boundary ∂U , provide one with the volume of both U
and ∂U (Equation (3.19)). Since, the heat trace is a spectral invariant, U and ∂U have the
same volumes as B1 and ∂B1, respectively. The isoperimetric inequality states that the
ratio V ol(∂M)/V ol(M) is minimized by balls. Thus, U is isometric to the unit ball.

Remark 4.2.1. The isoperimetric inequality can be proven using the methods of geometric
measure theory. See, for instance, [21].

Recall that the N−dimensional sphere SN is defined as the set of points of unit Euclidean
norm in RN+1. The standard metric is inherited from RN+1 and is sometimes referred
to as the round metric. It is tempting to believe that a similar uniqueness result holds
for standard N−dimensional spheres when considered amongst all compact Riemannian
manifolds without boundary. This is however not exactly so.

Theorem 4.2.2 (Uniqueness of Spheres, N ≤ 6). Let (M, g) be a compact Riemannian
N−dimensional manifold without boundary. Let the spectrum of the Laplace-Beltrami oper-
ator on (M, g) coincide with the spectrum of the Laplace-Beltrami operator on the standard
sphere SN equipped with the round metric. If N ≤ 6, this implies that (M, g) is isometric
to the standard N−sphere.

Proof. The proof uses the first four coefficients of the heat kernel expansion. See [73].
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In higher dimensions, the above result is not known to hold. However, if one is allowed to
use the spectra of the Hodge Laplacians on forms, then it generalizes to any dimension.

Theorem 4.2.3 (Uniqueness of Spheres). Let (M, g) be a compact Riemannian manifold
without boundary of dimension N . Let the spectrum of the Hodge Laplacians on 0, 1 and
2-forms on (M, g) coincide with those on the standard sphere SN equipped with the round
metric. Then (M, g) is isometric to the standard sphere.

Proof. Note that if N = 1, 2-forms can not be defined. The theorem still holds by virtue
of Theorem 4.2.2. Otherwise, it holds due to Theorem 3.2.3, which guarantees that (M, g)
is a of constant sectional curvature, which makes it a space form of the same curvature as
the standard sphere, which is also a space form. Space forms are unique up to isometry
[5]. This completes the proof.

A step away from spheres lie surfaces of revolution in RN+1 equipped with the induced
metric. If the surface has boundaries, boundary conditions are required to also satisfy
rotational symmetry. By separation of variables, the spectrum {λmk} of the Laplace-
Beltrami operator on such a surface is determined by the spectrum {m} of the generator
of rotations ∂/∂φ and the spectrum of a Sturm-Liouville operator on a line segment. Under
some non-degeneracy conditions, knowledge of the joint spectrum (

√
λmk,m) is equivalent

to the knowledge of the surface of revolution. This is proven in [35] using semiclassical
approximations of the Schrödinger equation. For axially symmetric metrics on S2 satisfying
some additional non-degeneracy conditions, the spectrum of the Laplace-Beltrami operator
has been shown to be sufficient in [76]. The non-degeneracy conditions ensure that the
spectrum of the generator of rotations can be obtained from the Laplacian spectrum.

Another very interesting spectral uniqueness result [77] is known for a particular class
of symmetric domains in R2. We can only sketch the proof of this result, as it requires
techniques from the theory of dynamical billiards, which are beyond the scope of our pre-
sentation. Key to the proof is the notion of wave trace Tr(cos(t

√
∆)), an object analogous

to the heat trace, but for the wave equation. See [61] for a precise definiton. Like the heat
trace, the wave trace is determined from the spectrum. Unlike heat, waves do not dissipate,
but oscillate forever, which renders an expansion about t = 0 meaningless. Instead, one
uses expansions about lengths of periodic orbits of an idealized billiard ball bouncing in
the domain. Note that there is no difference between length and duration of an orbit, as
the speed of the abstract waves is set to one. This expansion yields coefficients analogous
to those of of the heat equation. The result in question relies upon particular hypotheses
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about the shape of the boundary of a domain in R2 and the set of lengths of periodic bil-
liard orbits, counting multiplicity. This set of lengths is known as the length spectrum. A
periodic orbit length that appears only once in the spectrum is said to be non-degenerate.

Let (x, y) be the standard cartesian coordinates in R2. Let a > 0 and let f(x) be
an analytic function such that f(a) = f(−a) = 0 and f(x) 6= 0 for x ∈ (−a, a). Let
Ω ⊂ R2 be a domain bounded by f(x), that is, the set of points such that −a ≤ x ≤ a
and −|f(x)| ≤ y ≤ |f(x)|. Suppose Ω has a non-degenerate vertical bouncing ball orbit of
length T such that orbits of length 2Tr for r ∈ N are also non-degenerate. Finally suppose
that the orbit in question does not have critical points of ±f(x) for endpoints.

Theorem 4.2.4. Let Ω and Ω′ be as above. Suppose Ω and Ω′ are isospectral with respect
to the Laplace-Beltrami operator with either Dirichlet or Neumann boundary conditions.
Then Ω is isometric to Ω′

Proof. See [77]. The analyticity of f(x) allows to describe it in terms of its Taylor coeffi-
cients. The coefficients are obtained via perturbative methods from the heat trace.

A result similar to the above can be obtained for domains in RN bounded by analytic
functions with reflexion symmetry about all axes and satisfying a hypothesis about bounc-
ing ball orbits similar to the above [40]. To our knowledge, this is the most powerful
high-dimensional spectral uniqueness result.

4.2.2 Local Uniqueness and Spectral Rigidity

Local spectral uniqueness and rigidity results are significantly weaker than global unique-
ness results, even when the most interesting uniqueness results are only valid for classes of
highly symmetric manifolds. The review of this section is quite incomplete, as some man-
ifolds exhibiting local uniqueness or rigidity behaviour are very special cases. For further
results, see [17].

It is known that ellipses are spectrally rigid amongst smooth domains in R2 that share
the symmetries of the ellipse. The proof can be found in [39] and relies on wave trace
techniques.

In the previous section, it was said that it is not known if standard spheres of dimension
greater than six have a unique Laplace-Beltrami spectrum. It is however known that they
are locally spectrally unique. This is shown in [74] by analyzing the behaviour of the first
four heat trace expansion coefficients for a metric of nearly constant curvature 1. As it
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turns out it is not possible for a manifold to be simultaneously isospectral to the standard
N -sphere and have a curvature close to 1 in a suitable sense without being isometric to
the sphere. A similar result holds for flat compact manifolds without boundary [50]. The
proof relies on the coefficient a2 of the heat trace expansion. This coefficient is zero for flat
manifolds and, being a spectral invariant, for all manifolds isospectral to flat manifolds.
Similarly to the sphere case above, it is impossible for a manifold to be simultaneously
close and isospectral to a flat manifold without being isometric to it.

Compact negatively curved manifolds form another rather wide class of manifolds with
rigidity and local uniqueness properties. A manifold is said to have a simple length spec-
trum if the ratio of the lengths of any two distinct closed geodesics is irrational. This
condition is generic. In [16] it is shown that compact negatively curved manifolds with
simple length spectrum are spectrally rigid. The proof involves techniques from the the-
ory of dynamical systems, the fact that the spectrum of the Laplace-Beltrami operator
determines the length spectrum on such manifolds and a property of integrals of smooth
functions over closed geodesics. See [33] for an earlier proof for the two dimensional case.
With additional hypotheses on the length spectrum, this result can be extended to one of
local uniqueness [68].

4.3 Compactness of Isospectral Sets

Having established the existence of non-isospectral isometric manifolds and thus of coun-
terexamples to inverse spectral geometry, it is of immediate interest to determine how
large are the sets of manifolds with a given spectrum. In other words, it is of interest to
determine whether, given an appropriate topology, isospectral sets are compact in some
space of admissible geometries.

Such a compactness result is known for the Laplace-Beltrami operator on compact
domains U ⊂ R2 with smooth boundary ∂U . The original proof is due to Melrose and can
be found in [53]. The topology used there is the C∞ topology on the boundary curvature
function κ(s), where s is the arclength of the boundary. This topology is well defined for the
set of domains of a fixed boundary length L. Melrose shows that isospectral sets, elements
of which necessarily have equal boundary lengths L, are compact subsets of the set of all
domains with that particular boundary length. The proof uses perturbative expansions of
the heat kernel coefficients of odd order. A review of alternative proofs of this result can
be found in [36].

For the Laplace-Beltrami operator on compact Riemannian manifolds without bound-
ary, a more powerful result has been proven by Zhou [78]. For a given compact manifold
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without boundary, sets of isospectral metrics with uniformly bounded sectional curvatures
are compact in the C∞ topology. The proof uses the coefficients of the heat kernel expan-
sion to bound the Sobolev norms of the isospectral metrics. For a review of other similar
results, see [17].

4.4 Analogous Problems

Inverse spectral geometry can be viewed as part of a larger class of inverse problems with
different physical interpretations, all of which involve the recovery of what is traditionally
viewed as the conditions of a problem from the spectra of some suitable operators. In this
section, we present some such problems which can be used as somewhat simpler analogues
of inverse spectral geometry.

4.4.1 Hearing Boundary Conditions

The results in inverse spectral geometry presented in earlier sections of this chapter pertain
to a particular brand of spectral geometry. The data one wished to recover from spectra
were of differential geometric nature, as the ultimate goal was to recover the metric and
the shape of the boundary. Instead, one can ask if, on a given Riemannian manifold (M, g)
with boundary ∂M, it is possible to recover the boundary conditions from the spectrum
of some operator (typically a Laplacian) obeying those conditions. In essence, the goal
is to use the spectrum to determine a particular function of ∂M that defines boundary
conditions.

A negative result for discontinuously variable boundary conditions has been obtained in
[43]. There, the boundary ∂Ω of a bounded domain Ω ⊂ R2 is decomposed as ∂Ω1 ∪ ∂Ω2

where each ∂Ωi is a union of open segments of the boundary ∂Ω and ∂Ω1 ∩ ∂Ω2 = ∅.
Note that ∂Ω1 and ∂Ω2 can be arbitrarily close to each other. Moreover, it is supposed
that there is no nontrivial isometry of R2 that interchanges ∂Ω1 with ∂Ω2. One then
imposes Dirichlet boundary conditions on one ∂Ωi and Neumann boundary conditions on
the other. Generically, the conditions would thus change discontinuously from Dirichlet
to Neumann along the boundary. This is known as Zaremba boundary conditions, after
Stanislas Zaremba who introduced them in [75]. It is possible to show that the spectrum
of the Laplace-Beltrami operator cannot always distinguish which condition is imposed
on which part of the boundary. Using Sunada’s technique, one can construct non-trivial
partitions of the boundary of certain planar domains, including a half-disk, such that
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the spectrum of the Laplace-Beltrami operator is invariant under the interchange of the
boundary conditions imposed on the ∂Ωi.

On the positive side, one can hear a particular kind of boundary condition on the ellipse.
Let Ω be an ellipse with a boundary ∂Ω given by x2/a + y2/b = 1 for a > b > 0. Let K
be a smooth function of ∂Ω such that K is even in x and y. In other words, K satisfies
the reflection symmetries of the ellipse. Denoting directional derivatives with respect to
the normal to the boundary by ∂/∂n, and letting u ∈ C∞(Ω), the following boundary
condition is defined:

∂u

∂n
= Ku (4.3)

In [34] it is shown that the spectrum of the Laplace-Beltrami operator with the above
boundary condition uniquely determines K. The proof uses techniques from the theory of
dynamical billiards.

4.4.2 Spectral Graphs

A very natural extension of inverse spectral geometry is the study of the shape of graphs
through the spectrum of the graph Laplacian and the heat equation on graphs. This
straightforward adaptation of spectral geometry to a discrete setting is called spectral
graph theory. An introduction to the subject can be found in [14]. We follow that text to
sketch the definition of graph Laplacian.

Let G be a graph with N vertices. Let di denote the degree of the node i. We say i ∼ j
if the vertices i and j are adjacent. The (non-normalized) graph Laplacian is defined to be
an N by N matrix L with the following matrix elements:

Lij =


di if i = j

−1 if i ∼ j

0 otherwise

(4.4)

It can be convenient to normalize the above expression to make all nonzero diagonal ele-
ments equal to 1. This is not necessary for our discussion. The graph Laplacian acts by
matrix multiplication on functions f : G → R,C, which can be viewed as N -dimensional
vectors. Similarly to the geometric Laplacian, the sign convention is such that the eigenval-
ues of the graph Laplacian are real and non-negative. The physical meaning of the graph
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Laplacian is best understood by studying the heat equation on it. Let t ∈ (0,∞) be a time
parameter. The heat equation on a graph is defined to be

∂u

∂t
= −Lu (4.5)

Select a node i and consider the time derivative of the temperature at this node. As
u(i) increases, ∂u(i)

∂t
decreases, indicating that heat wants to flow from hot to cold nodes.

Similarly, as the temperature u(j) of a node j adjacent to i increases, ∂u(i)
∂t

increases. Notice
that the factor di counterbalances the number of nodes adjacent to i so that if u(i) = u(j)

for all j ∼ i, ∂u(i)
∂t

= 0. This can be viewed as the heat flow along a structure made of metal
rods built in the shape of the graph G, as long as one only cares about the temperatures at
the nodes and abstracts out the heat transfer along the rods. Notice that in the above all
adjacent nodes are equally important. This can be seen as all rods being of equal length. A
more general setting is that of weighted graphs. Let w(i, j) be a weight function satisfying

w(i, j) ≥ 0

w(i, j) = w(j, i)

w(i, j) 6= 0 ⇐⇒ i ∼ j

(4.6)

The definition of the degree of the node i is modified to be di =
∑

j w(i, j). The (non-
normalized) graph Laplacian for the weighted graph is

Lij =


di − w(i, i) if i = j

−w(i, j) if i ∼ j

0 otherwise

(4.7)

Clearly, the unweighted graph Laplacian is a special case of the weighted one.

Spectral graph theory is analogous to spectral geometry as it tries to relate the con-
nectivity properties of the graph and the weights of its edges to the spectrum of the graph
Laplacian. The spectrum of the graph Laplacian is that of its matrix. Notice that it
always admits a constant eigenfunction with eigenvalue zero. The multiplicity of the zero
eigenvalue gives the number of components of the graph. Other than that, no information
can be gathered from it. On the other hand, the smallest nonzero eigenvalue is known to
contain a great deal of information about the connectivity properties of the graph. Note
that for graphs of finite size, one can not study the asymptotic properties of the spectrum,
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as there are no asymptotics to speak of. This is why attention is directed towards the
lowest nontrivial eigenvalues. See [56] for a survey of basic results.

It is known that one can construct isospectral graphs with different geometric properties
via an adaptation of the Sunada method [11]. Inverse spectral geometry of graphs thus
has difficulties analogous to those of inverse spectral geometry of manifolds.

It is tempting to attempt to use graph Laplacians to approximate the Laplace-Beltrami
operator on some manifold. Indeed, intuitively, one expects that by discretizing the mani-
fold as a graph and taking the discretization to be finer and finer, one obtains a better and
better approximation of the Laplace-Beltrami operator on that manifold. It is however not
quite so. In order to ensure convergence to the Laplace-Beltrami operator, one has to use
a correct normalization of the Laplacian. See [37] for details.

4.4.3 Schrödinger Potentials and Scattering

Perhaps the most physically relevant analogue to inverse spectral geometry is the de-
termination of a quantum mechanical potential V from the spectrum of the associated
Schrödinger operator S. In RN and in a geometrized system of units, this takes the form

S = ∆ + V (4.8)

where ∆ is the non-negative Laplace-Beltrami operator. Some potentials, such as the one
for the quantum harmonic oscillator, naturally result in a discrete spectrum. Others may
require the problem to be defined on a bounded domain Ω ⊂ RN , supplied with appropriate
boundary conditions. A related class of problems, known as potential scattering problems,
study how Schrödinger waves coming from infinity interact with a compactly supported
potential V and then return to infinity. The operators involved have continuous spectrum
on [0,∞) and possibly a finite number of negative eigenvalues. Thus, strictly speaking, the
spectrum of S contains very little geometric information. Instead, one uses the resonances
associated with S. Let (S − z2)−1 be the resolvent of S. Modulo some technicalities with
domains of operators and meromorphic continuations, resonances are defined to be the
poles of the resolvent. They form a countable set. One can then attempt to recover V
from the set of resonances of S just as if it was a spectrum. Scattering problems may
also be defined in the absence of potentials but in the presence of obstacles. Obstacles are
taken to be bounded subsets O ⊂ RN with smooth boundary. The resonance problem is
then defined on Ω = RN\O with some appropriate boundary conditions, usually Dirichlet
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or Neumann. The goal is then to determine the shape of O from the resonances. A review
of positive results in potential identification and scattering can be found in [17].

A particularly curious negative result in the determination of a Schrödinger potential
from its spectrum has been obtained in [52]. There, it is shown that there exists an infinite
dimensional family of smooth potentials isospectral to the quantum harmonic oscillator on
the real line. The proof relies on an explicit exploration of the geometry of this family via
an isospectral flow. The resulting potentials look like x2 for sufficiently large x and have
nontrivial structure near x = 0.

An equally curious positive result exists for the determination of potentials on the in-
terval [0, 1] with Dirichlet boundary conditions. In [62] it is shown that one can reconstruct
the potential from three spectra, the spectrum of the full problem on [0, 1], the spectrum
of the problem restricted to [0, 1/2] and the spectrum of the problem restricted to [1/2, 1].
In all cases, Dirichlet boundary conditions are imposed on the ends of the intervals. This
reconstruction is not possible in full generality, as it requires for the three spectra to be
pairwise disjoint. The result has later been extended to be valid with subintervals [0, a]
and [a, 1], for 0 < a < 1, as long as the three spectra are pairwise disjoint [23]. In all cases,
proofs involve techniques from the theory of Sturm-Liouville operators.
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Chapter 5

Spectral Triples

The theory of spectral triples originates in the field of non-commutative geometry, where
it provides an alternative, coordinate free, description of manifolds. This subject is only
tangentially related to inverse spectral geometry as formulated in the earlier chapters.
Indeed, the description of geometry used in this chapter is based on more than just a
spectrum. We choose to discuss it nonetheless as we believe it could be a valuable tool for
inverse spectral geometry. Moreover, the theory of spectral triples is sometimes referred to
as spectral geometry, causing confusion in the uninitiated.

A spectral triple is composed of three elements: a von Neumann algebra, a separable
infinite-dimensional Hilbert space H and an operator on that space. If the algebra is taken
to be the algebra of smooth functions C∞(M) on a compact manifoldM without boundary
and the operator is taken to be a Dirac operator D on that manifold, the Riemannian
manifold (M, g) can be reconstructed from the knowledge of the spectral triple

(C∞(M),H, D) (5.1)

Since all infinite-dimensional separable Hilbert spaces are isomorphic, D can simply be
taken to be the spectrum of the Dirac operator. Since the (geometric) Dirac operator is
elliptic [25, 54, 59], one can then just choose to describe H in its eigenbasis without loss
of generality. This is the reason why this technique is sometimes referred to as spectral
geometry. The key difference between this approach and the one used in all the other
chapters is the a priori knowledge of the algebra of functions, which will turn out to be a
most powerful hypothesis. This chapter is a very limited introduction to this subject. We
refer the reader to [15] for a full discussion.
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5.1 Motivation for Spectral Triples

Consider a particle obeying the laws of non-relativistic quantum mechanics moving in one
dimension. By the Heisenberg uncertainty principle, one may not simultaneously resolve its
position and momentum. The uncertainties ∆x in position and ∆p in momentum satisfy:

∆x∆p ≥ 1

2
~ (5.2)

It is well known that this is due to the fact that the position and momentum operators in
quantum mechanics do not commute. This contrasts with the case of classical mechanics,
where those operators commute and one can resolve the phase space to arbitrary precision.
The phase space of classical mechanics is well described in terms of differentiable manifolds.
Quantum mechanical phase space, on the other hand, looks like the classical one with the
uncertainty relation put on top of it. One is thus inclined to ask if it is possible to
mathematically describe a space that naturally has such an unsharpness to its points, with
differential geometry as a limiting or special case. Non-commutative geometry offers such a
description, at least to an extent. For our purposes however, only the special commutative
case is interesting. One can say that we are doing commutative non-commutative geometry.

The main idea behind the construction we are about to outline is to recast the problem
of measuring distances between points in a Riemannian manifold in a quantum mechanics-
like manner. That is, the goal is to recast the usual geometric way to measure distances
in terms of operators.

Consider the real line equipped with the standard metric. In the standard coordinate
system, the distance between two points p and q is given by d(p, q) = |p − q|. In general,
however, the distance is set to be the infimum of the length of all paths beginning at p and
ending at q. The construction of spectral triples is based upon the observation that instead
of using an infimum to define distance, one may use a cleverly constructed supremum.

d(p, q) = sup
f∈C1(R)

{|f(p)− f(q)| : |∂xf | ≤ 1 , ∀x ∈ R} (5.3)

The above works as f(x) = x ∈ C1(R) saturates the inequality and gives precisely the
usual notion of distance. It indeed is the supremum, as any function g ∈ C1(R) such that
|g(p) − g(q)| > |p − q| can not have its derivative bounded by one without violating the
mean value theorem, which would of course result in a contradiction. In higher dimensions,
an analogous result is obtained by bounding the gradient. This, and all similar results, will
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be referred to as Connes’ distance formula, after Alain Connes, the main architect of non-
commutative geometry. Notice that this approach is closer in spirit to the one encountered
in quantum mechanics, as points and paths are replaced by the evaluation of functions at
points, which can be viewed as the action of an operator.

5.2 Formulation of Spectral Triples

Let (M, g) be a compact Riemannian manifold. In this section, we shall establish the equiv-
alence between the standard description of (M, g) and its spectral triple (C∞(M),H, D).
The previous section touched upon distance measurement based on the bounding of a first
order differential operator. The Dirac operator of this section will play an analogous role.
The Hilbert space H will be that of spinors, so the manifold (M, g) must be able to admit
a spin structure. There are topological limitations to this and we refer the reader to [44]
jointly with [41] for the technical details. A more pressing concern is that we no longer
know the differentiable manifold M. In the above motivational discussion, we knew pre-
cisely what the points were and thus could evaluate functions at them. This does not seem
to be the case when first examining a spectral triple. Our first goal is thus to show that
knowledge of C∞(M) is perfectly equivalent to that of M.

Given M, a differentiable manifold, one can construct the space of smooth functions
on it by the usual methods of differential geometry. The opposite way is not as simple.
Consider a unital (equipped with a multiplicative identity 1) R-algebra F . Let SpecR(F)
denote the set of all unital (mapping 1 to 1) algebra homomorphisms of F into R. This
set is called the spectrum of the algebra. In some cases, one can assign a geometric
meaning to SpecR(F). The following theorem does that for algebras of smooth functions
on differentiable manifolds.

Theorem 5.2.1. Let M be a differentiable manifold and let C∞(M) be its algebra of
real-valued smooth functions. Then,

M = SpecR(C∞(M)) (5.4)

Sketch of Proof. Let x ∈M. Notice that the evaluation of smooth functions at x is a unital
algebra homomorphism from C∞(M) to R. By abuse of notation, x and the evaluation at
x will be denoted by the same symbol: x(f) := f(x) for f ∈ C∞(R). First, we are to show
that this is the only possible kind of homomorphism or that there is a bijection between
M and SpecR(C∞(M)). Then, we are to establish that SpecR(C∞(M)) can be equipped
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with a natural atlas compatible with the one on M. We will limit our proof to the first
statement, only sketching the second. See [58] for full details.

Let θ :M→ SpecR(C∞(M)) map points x of M into the evaluation at x homomor-
phism. This map is clearly injective, since for any x 6= y ∈ M, there exists a function
f ∈ C∞(M) such that f(x) 6= f(y).

To show surjectivity, consider some unital homomorphism p : C∞(M) → R and let
f ∈ C∞(M) be a function with compact level sets. See [58] for a proof of the existence of
such functions. Let L = f−1(λ) be such a level set. Suppose that there is no x ∈ L such
that p corresponds to the evaluation at x homomorphism. Then the following family of
functions exists {fx ∈ C∞(M) : x ∈ L, fx(x) 6= p(fx)}. L has the following open cover:

L =
⋃
x

Ux , Ux = {q ∈M; fx(q) 6= p(fx)} (5.5)

Since L is compact, there exists a finite subcover Ux1 ...Uxm . The following smooth function
is nonzero everywhere on M:

g = (f − λ)2 +
m∑
k=1

(fxk − p(f(xk))
2 (5.6)

Since g is nowhere zero, 1/g exists and is smooth. Notice that g was constructed so that
p(g) = 0. We obtain the following contradiction:

1 = p

(
g · 1

g

)
= p(g)p

(
1

g

)
= 0 (5.7)

Thus, p has to be an evaluation at a point homomorphism. There thus exists a natural
bijection betweenM and SpecR(C∞(M)). The topology on SpecR(C∞(M)) is chosen to
be the weakest topology such that x(f) = f(x) defines continuous functions. That topology
is Haussdorff. Proving that one can recover the appropriate differentiable structure is quite
lengthy, so we refer the reader to [58]. Intuitively, beforehand knowledge of C∞(M) tells
one which continuous real functions are smooth and which ones are not.

Remark 5.2.1. The above proof can be used to generalize the notion of differential cal-
culus on manifolds to various other geometric objects through the algebraic definition of
derivatives and the identification between the points of the object and the spectrum of its
algebra of functions. This places differential calculus entirely within the realm of commu-
tative algebra. A physical motivation for this approach is that if M represents the space of
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configurations of a physical system, C∞(M) is the mathematical model for a laboratory,
each function being an instrument. To read the measurement of an instrument, one applies
an element of SpecR(C∞(M)) onto it. Defining calculus over the instruments rather than
the configuration space corresponds to only studying what one can measure. This approach
is explored in detail in [58]. The ultimate goal of the program outlined there is to obtain a
better mathematical description of quantum field theory.

Now that we are able to extract the differentiable manifold from the spectral triple, we
can obtain the metric in a way analogous to the one used in the previous section. First,
notice that bounding the derivative of a function f of the real line is equivalent to bounding
its commutator with the derivative operator:

[∂x, f ]g = ∂x(fg)− f∂xg = g(∂xf) (5.8)

A completely analogous construction can be carried out for the Dirac operator D. It can
be shown that the operator on H defined by the commutator of the Dirac operator with
the multiplication by f ∈ C∞(M) is bounded by the exterior derivative, and thus the
gradient of f [15]:

‖[D, f ]‖ ≤ |df | (5.9)

For p, q ∈M, Connes’ distance formula becomes:

d(p, q) = sup
f∈C∞(M)

{‖f(p)− f(q)‖ : ‖[D, f ]‖ ≤ 1} (5.10)

The above formula indeed recovers the geodesic distance between the points p and q [15].
It can be shown that those mutual distances correspond to a Riemannian manifold unique
up to diffeomorphism. Thus, the spectral triple (C∞(M),H, D) uniquely encodes the
Riemannian manifold (M, g). Moreover, it does so in a completely coordinate free way.

Remark 5.2.2. Non-commutative geometry is obtained by replacing C∞(M) by some
suitable non-commutative algebra. The physical motivation for this program is to obtain
the geometric structure of quantum field theory [15]. This approach is incompatible with
the one outlined in Remark 5.2.1.

Remark 5.2.3. Connes’ distance formula and spectral triples have been used to reformulate
the Einstein-Hilbert action of General Relativity in terms of the spectrum of the Dirac
operator [51].
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A few comments on the above are now in order. First, note that Laplacians can not be
used in Connes’ distance formula instead of the Dirac operator as they are not bounded by
|df | due to the fact that they are second order differential operators. Second, it is important
to realize that a spectral triple contains much more information than the notation lets on.
Indeed, Connes’ distance formula requires one to know how C∞(M) acts on H. Knowledge
of this action is thus provided by the spectral triple. Since C∞(M) contains arbitrarily
localized functions and the spectral triple supplies us with the action of D on H, we
essentially also know the eigenfunctions of D. Consequently, one can not consider spectral
triples as a solution to the inverse spectral geometry program. Nonetheless, the spectral
triple may turn out to be a convenient way of thinking about Riemannian manifolds in an
algebraic, coordinate free, way for the purposes of infinitesimal inverse spectral geometry.
For instance, one could attempt to adapt the methods outlined in Remark 5.2.3.

Another possible application of Connes’ distance formula could be a rigorous formula-
tion of the ideas outlined in the introduction of this thesis. Recall that, following [47], we
motivated inverse spectral geometry by heuristically replacing the measure of mutual dis-
tances by the sampling of quantum mechanical correlations. We conjecture that Connes’
distance formula can be used to rigorously examine this procedure.
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Chapter 6

Numerical Experiments in
Infinitesimal ISG

If one wishes to apply inverse spectral geometry to any given problem, the results discussed
in Chapter 4 leave a lot to be desired. The most general formulation of inverse spectral
geometry is plagued by counterexamples, while the cases when reconstruction of shape
from spectrum is possible require stringent symmetry properties and do not seem to be
generalizable to different settings. It would thus be highly desirable to obtain a general
method that does not require symmetry, would provide a way to find specific solutions and
would, at least in spirit, generalize from one setting to the other.

The obvious obstacle to this program is that the map between shapes and spectra is
highly nonlinear and thus difficult to handle. For the past few hundreds of years, the
main technique to deal with hard nonlinear problems was to linearize them and try to
solve them locally. For maps between shape and spectra, this corresponds to perturbation
theory. Given that, it becomes tempting to try to construct inverse spectral geometry as
an iteration of perturbative changes in shape, directed by small changes in spectrum in
order to, overall, go from some initial shape to a shape with a desired spectrum.

Such an approach has recently been applied with success to a particular class of spectral
graphs [1]. Due to the complexity of the problem, a numerical approach was used. We shall
build upon that success by formulating a general framework for an infinitesimal version of
inverse spectral geometry, which includes the method used in [1] as a special case. As we
will need to differentiate the map between shape and spectrum with respect to changes in
shape, we first state some theorems that ensure that such operations are allowed. Then,
we formulate a general framework of infinitesimal inverse spectral geometry adapted for
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numerical computations. This framework can be straightforwardly modified to suit any
inverse spectral problem. We then discuss possible numerical implementations of this
framework. Finally, we apply one such implementation to the inverse spectral geometry of
a class of star-shaped domains in R2 and discuss the success and failure rates obtained.

6.1 Continuity of Eigenvalues

An infinitesimal approach to inverse spectral geometry requires that small changes in the
shape of a manifold result in small changes in the spectrum. More accurately, the changes
in question should be differentiable. In this section, we state some theorems that ensure
that such a thing is possible. Moreover, we state results that guarantee that manifolds
with degenerate eigenvalues are, in some sense, rare.

We first sketch a continuity of eigenvalues result for compact Riemannian manifolds
without boundary. The full version of it can be found in [3]. Let (M, g) be an N -
dimensional compact Riemannian manifold without boundary and let ∆g be the Laplace-
Beltrami operator associated with the metric g. In order to discuss the dependence of
eigenvalues on the metric, one introduces a Fréchet space structure on S(M), the space
of smooth symmetric covariant 2-tensors, and a complete metric ρ on the space G(M) of
smooth Riemannian metrics onM. It is then possible to show that the eigenvalues of the
Laplace-Beltrami operator are continuous with respect to the metric in the following sense:

Theorem 6.1.1 (Eigenvalue Continuity). Let g, h ∈ G(M). Suppose δ > 0 and ρ(g, h) ≤
δ. Then, for any k ∈ N\{0},

e−(N+1)δ ≤ λk(g)

λk(h)
≤ e(n+1)δ (6.1)

Proof. See [3].

Remark 6.1.1. The above result has been generalized to one of uniform continuity [7].
This implies that if one imposes a cutoff Λ on the spectrum of the Laplacian such that only
the first n eigenvalues such that λi < Λ are considered, n will not change under sufficiently
small perturbations of the metric. That is, unless there is an eigenvalue such that λi = Λ,
no eigenvalue will cross the cutoff Λ for sufficiently small changes in the metric.

For a parametrized change of the metric, the eigenvalues are differentiable in the following
sense:
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Theorem 6.1.2 (Eigenvalue Differentiability). For g ∈ G(M) and h ∈ S(M), let g(t) =
g + th ∈ M, |t| ≤ ε. Let λ be an eigenvalue of ∆g with multiplicity l. Then, there exist
parametrized eigenvalue-eigenfunction pairs {(Λi(t), ψi(t)}li=1 such that

(a) For fixed i, Λi(t) and ψi(t) depend real-analytically on |t| ≤ ε

(b) For fixed i and t, ∆g(t)ψi(t) = Λi(t)ψi(t)

(c) For fixed i, Λi(0) = λ

(d) For fixed t, {ψi(t)}li=1 is orthonormal with respect to the L2 inner product induced by
g(t).

Proof. See [3].

The following result guarantees that manifolds with degenerate eigenvalues are rare. Recall
that a residual set is the complement of a meagre set, which itself is a countable union of
nowhere dense sets.

Theorem 6.1.3 (Uhlenbeck). Let M be a compact manifold of dimension N ≥ 2. Let

S = {g ∈ G(M) : ∆g has no degenerate eigenvalues} (6.2)

Then S is a residual set in (G(M), ρ).

Proof. See [3].

For bounded domains in RN , the corresponding theorems take a more complicated
form, since the shape is no longer described by a function of the interior of the domain,
but rather by the shape of the boundary. A general notion of continuity and derivatives is
thus more complicated to obtain as one instead needs to obtain a notion of continuity of
the boundary shapes. A similar problem arises in continuum mechanics where one studies
the deformation of a chunk of elastic material whose shape is described by its boundaries.
Mathematically, it is convenient to study the deformation of domains by identifying each
point of the original domain Ω with a point of the deformed domain Ω′. This identification
is required to be a diffeomorphism h. In order to assume no knowledge about Ω′, one
extends h : Ω→ RN , such that h is a diffeomorphism from Ω to h(Ω). One can construct
a one parameter family h(t, x) of such diffeomorphisms, parametrized by t, requiring that
h(0, x) : Ω → h(0,Ω) acts like the identity of RN . The domain at a time t is defined
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to be Ω(t) = h(t,Ω) and one clearly has Ω(0) = Ω. One can then differentiate various
quantities related to the domains Ω(t) with respect to t assuming that h(t, x) is sufficiently
differentiable when viewed as a map h : R × RN → RN . For further details on this
construction, we refer the reader to the excellent book by D. Henry [38].

By the method outlined above, it can be shown that simple eigenvalues of the Laplace-
Beltrami operator for domains with Robin boundary conditions are differentiable at t = 0.
This also holds for degenerate eigenvalues. Moreover, using the above techniques, it is
possible to show that domains in RN almost never have degenerate eigenvalues, except the
zero eigenvalue for the Neumann problem, whose multiplicity is equal to the number of
connected components of the domain. A similar caveat holds for Robin boundary condi-
tions. This is shown by establishing that almost no diffeomorphism h maps a domain into
a domain with degenerate eigenvalues. Once again, we refer the reader to [38].

6.2 General Formulation

In this section, we propose a class of problems that we consider to be numerical realizations
of infinitesimal inverse spectral geometry. We do not claim that this class of problems
describes the totality of infinitesimal inverse spectral geometry, but merely that it is wide
enough to be of interest. For this reason, the following discussion should not be seen as
a strict mathematical definition, but rather as a list of guiding principles. Later sections
provide examples of the application of those guidelines.

Since numerical methods can only handle finitely many numbers, it is impossible to
numerically study the spectral geometry of shapes that possess infinitely many degrees of
freedom. Similarly, one cannot consider the full spectrum of elliptic operators defined on
such geometries as it is an infinitely long sequence. Consequently, our study is limited
to the attempt to identify shapes given by a finite number of degrees of freedom from a
finite number of eigenvalues of some elliptic operator defined on them. Let ndof and nev
denote the number of such degrees of freedom and the number of considered eigenvalues,
respectively. In order to avoid unnecessary complications with constraints, we consider
that the shape degrees of freedom take values in Rndof . Strictly speaking, the studied part
of the spectrum takes values in a potentially quite complicated subset of the nonnegative
part of Rnev . For the sake of simplicity, we shall ignore such technicalities and simply
say that the spectrum takes values in Rnev . Both Rndof and Rnev are equipped with the
standard Euclidean metric, denoted d(·, ·). This choice is one of convenience, rather than
of deep significance. It is quite possible that there are more natural notions of distance
available.
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The relationship between the set of degrees of freedom Rndof and the geometries it
parametrizes is given by the construction map C. Let G denote the set of shapes obtained
from Rndof via C, where the letter G stands for geometries. That is, C : Rndof → G is
bijective by definition. In the present, the elements of G are supposed to be compact
Riemannian manifolds. In more general settings, they could be taken to be of any other
kind of object upon which an inverse spectral problem can be defined, such as potentials
in the Schrödinger equation or spectral graphs. We insist that the elements of G must
be sufficiently similar to one another for the procedure outlined here to make sense. For
instance, if a particular element of G is a compact N−dimensional Riemannian manifold
without boundary, all elements of G must also be N−dimensional Riemannian manifolds
without boundary. We shall always identify points in Rndof with their image in G. That
is, we allow ourselves to say that P ∈ Rndof is a shape, when rigorously we should say that
C(P ) ∈ G is the shape corresponding to P .

Remark 6.2.1. Distinct elements of G can be isometric. Let [G] be the set of equivalence
classes of isometric elements of G and let π : G → [G] be the natural projection. The map
π ◦C needs not to be injective. We do not require that a given shape is encoded in a unique
way by the degrees of freedom Rndof . In other words, Rndof is not a coordinate system for
[G]. This at first seems to be a major problem in our proposal. It is not so. Recall that our
motivation to study inverse spectral geometry is to obtain a method to specify shapes in a
unique way. We are thus seeking a (possibly local) coordinate system for [G]. Consequently,
if a parametrization of [G] is already available, inverse spectral geometry becomes useless.
For example, describing disks in R2 by their spectra rather than by their radii is impractical
in most situations. In that sense, our inability to always uniquely describe [G] in terms of
Rndof reflects the current limitations of differential geometry.

One then selects a certain number of operators acting on some function spaces defined
on elements of G. For instance, one could pick the Laplacians acting on 0 and 1−forms of a
Riemannian manifold. If boundary conditions are needed, they are of course selected. The
operators chosen at this point are those whose spectra will be studied afterwards. We then
define the spectral map Sp : G → Rnev which maps a given shape in G to nev eigenvalues
in its spectrum. The explicit computation of this map is when numerical methods come
into play. Since the spectrum will generically contain more eigenvalues than nev, one must
choose which eigenvalues to include. For instance, one could simply include the nev smallest
eigenvalues, counting multiplicity. Other choices are of course possible. It is also advisable
to exclude eigenvalues that are a priori the same for all elements of G, as they encode
no information about the elements of G. The zero eigenvalue of the Laplace-Beltrami
operator on a compact Riemannian manifold without boundary is a good example of such
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a case. If the spectra of multiple operators are studied, Rnev has to contain all of them.
For example, if one considers the first 10 eigenvalues of the Laplacian on 0−forms and the
first 5 eigenvalues of the Laplacian on 1−forms, it follows that nev = 15. In other words,
nev denotes the total number of considered spectral degrees of freedom. The nth entry in
a spectrum is denoted λn.

For reasons that will be stated later, it is not always convenient to directly work
with the spectrum of the operators. Instead, we introduce a spectral adjustment function
Adj : Rnev → Rnev . When its domain is restricted to spectra, rather than just sequences
in Rnev , this function is required to be invertible and smooth. We make extensive use
of an adjustment function that sends nonzero eigenvalues to their multiplicative inverses,
interchanging the spectrum of the Laplacian with that of the corresponding Green’s oper-
ator. The nth entry in an adjusted spectrum will also be denoted λn. This slight abuse of
notation is harmless, as context will dictate the meaning of λn. Similarly, we shall refer to
the adjusted spectrum simply as the spectrum.

Finally, we define the overall spectral map σ as the composition of the above. This is
represented by the following diagram:

Rndof G Rnev Rnev
C Sp Adj

σ = Adj ◦ Sp ◦ C

This construction allows us to reduce the study of infinitesimal inverse spectral geome-
try to the study of σ : Rndof → Rnev . We suppose this map to always be sufficiently
differentiable for our purposes. The results on the continuity and differentiability of the
eigenvalues reviewed in Section 6.1 guarantee that this hypothesis is reasonable. Given the
above setting and terminology, the following definition sets the bounds of the setting for
infinitesimal ISG that we consider. Once again, it is restricted when compared to the most
general formulation possible and is to be taken as a guiding principle.

Definition 6.2.1 (Infinitesimal ISG). Let A,B ∈ Rndof . A shall denote the starting shape,
while B shall denote the target shape. Suppose that σ(A) 6= σ(B). The goal of infinitesimal
inverse spectral geometry is to trace a continuous, parametrized path P (t) ∈ Rndof for
t ∈ [a, b], such that, for any pair (A,B) :

(a) P (a) = A
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(b) σ(P (b)) = σ(B)

(c) σ(P (t)) 6= σ(B) for t ∈ (a, b)

(d) d
dt
P (t) is determined solely by σ(B) and local data about σ

(e) d(σ(P (t′)), σ(B)) ≤ d(σ(P (t)), σ(B)) for t′ > t

A systematic way of constructing such paths is called a spectrally full method of infinitesimal
ISG. A systematic way of constructing paths that satisfy all of the above conditions except
for (b) is called a spectrally partial method of infinitesimal ISG. Moreover, if for all A,B ∈
Rndof , P (b) and B map into isometric shapes via the construction map C, it is said that
the method is completely successful. If P (b) and B map into isometric shapes only for
some A,B ∈ Rndof , the method is partially successful. Clearly, a spectrally partial method
cannot be completely successful. As spectrally partial partially successful methods are the
most common, we will refer to them as methods of infinitesimal ISG.

Remark 6.2.2. Condition (d) of the above definition is what makes the approach infinites-
imal. At a given point P (t), infinitesimal ISG is only allowed to know where it is in the
space of spectra, where it wants to go in the space of spectra and how the spectrum changes
in a small neighbourhood of P (t). Condition (e) ensures that P (t) always tries to get closer
to the target spectrum. This is particularly important for numerical implementations, as
will become clear later. Continuity of the paths is a condition that will necessarily be vio-
lated for numerical implementations, as the problem needs to be discretized. In a broader
perspective, this condition might need to be relaxed overall, allowing for non-continuous
paths not on numerical, but on fundamental grounds. Finally, recall that d(·, ·) was chosen
to be the Euclidean distance out of convenience. It need not be so in general.

Essentially, inverse spectral geometry is reduced to an optimization problem that we try
to solve by a method that tries to obtain global solutions by piecing together local ones.
Its main difference with usual optimization problems is that the optimized function is not
held fixed. Indeed, one is free to choose how many eigenvalues are being analyzed. Thus,
if given a starting shape A and a target spectrum σ(B) one fails to find a path from A to
B, one can try again with more eigenvalues.

6.3 Explicit Implementation

The abstract principles of the previous section may be implemented in many ways. In
this section we propose two natural ways of doing so and compare them. We then suggest
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certain possible improvements of those techniques. Recall that we suppose the spectral
map σ : Rndof → Rnev is sufficiently differentiable for all the manipulations we do to be
well defined.

Let d2(·, ·) denote the square of the standard distance on any Euclidean space. Using
d2(·, ·) rather than d(·, ·) simplifies some expressions. Minimizing d2(·, ·) is equivalent to
minimizing d(·, ·), so condition (e) of Definition 6.2.1 can be expressed with either. Let
J (P ) be the Jacobian matrix of σ(P ) at a point P ∈ Rndof . Let J T and J + denote its
transpose and its Moore-Penrose pseudoinverse, respectively. A brief introduction to the
pseudoinverse can be found in Appendix A.

Definition 6.3.1 (Spectral Direction). In the notation of Definition 6.2.1, at a point P (t),
the desired spectral direction is

vσ = σ(B)− σ(P (t)) (6.3)

The notation for vσ does not include B and P (t), as they will always be clear from the
context.

We propose the following two implementations of infinitesimal inverse spectral geometry.

Definition 6.3.2 (Gradient Method). The parametrized path P (t) ⊂ RN from A to B
satisfies the following differential equation

d

dt
P (t) = −grad

(
d2(σ(P (t)), σ(B))

)
(6.4)

Definition 6.3.3 (Pseudoinverse Method). The parametrized path P (t) ⊂ RN from A to
B satisfies the following differential equation

d

dt
P (t) = J +(P (t))vσ (6.5)

In order to simplify the comparison of the two methods, the gradient method can be
reformulated as follows.

Proposition 6.3.1 (Gradient Method). The gradient method can be equivalently formu-
lated as

d

dt
P (t) = 2J T (P (t))vσ (6.6)
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Proof. This result depends on the fact that we chose the distance on Rnev to be Euclidean,
as it implies that

d2(σ(P (t)), σ(B)) = ‖vσ‖2
2 (6.7)

Consequently, the gradient approach reduces to

d

dt
P (t) = −grad

(
‖vσ‖2

2

)
(6.8)

Let ∂
∂xj

denote the partial derivative with respect to the jth shape degree of freedom
in Rndof . Similarly, let σi(P ) denote the ith eigenvalue of σ(P ). We also write viσ =
σi(B)− σi(P ). The jth component of the gradient is then expressed as

∂

∂xj
‖vσ‖2

2 =
∂

∂xj
‖σ(B)− σ(P )‖2

2 =
∂

∂xj

nev∑
i=1

(viσ)2

= −2
nev∑
i=1

(σi(B)− σi(P ))
∂

∂xj
σi(P )

= −2
nev∑
i=1

viσJij

(6.9)

Consequently, the gradient method can be recast as

d

dt
P (t) = 2J T (P (t))vσ (6.10)

This completes the proof.

Remark 6.3.1. Notice that since we are free to redefine the parameter t, the overall fac-
tor of 2 in Proposition 6.3.1 can be eliminated. In fact, any such positive factor can be
eliminated or introduced as we see fit. This fact will be used later to speed up numerical
computations.

From the above remark, it can be seen that the difference between the two proposed
methods is the difference between the transpose and the pseudoinverse of J , up to positive
scalar factors. It will sometimes be convenient to consider both methods simultaneously.
To do that, let J • denote both J T and J +. It is straightforward to show that both
methods satisfy conditions (a), (d) and (e) of Definition 6.2.1. While condition (b) will
not be satisfied for all A and B, it is to be expected that some pairs of initial and target
shapes, in particular extremely close ones, can be connected by a path built by the proposed
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methods. Both methods are thus expected to be at least spectrally partial and partially
successful. Numerical experiments show that this is indeed the case.

Since both the gradient and pseudoinverse methods are not sure to succeed, it is of
interest to explore the situations in which they stop moving. We consider that a method
has stopped moving if one has d

dt
P (t) = 0 for vσ 6= 0. Clearly, this can only happen when

P (t) is not isospectral to B. In other words, a method gets stuck at P0 ∈ Rndof if vs is in
the kernel of J •(P0). As explained in Appendix A, ker(J T ) = ker(J +). Thus, both the
pseudoinverse and the gradient methods get stuck at exactly the same elements of Rndof .
This does not mean that the two methods have the same failure rate. Indeed, the fact that
the two methods stop moving at the same points does not mean that they encounter those
points with the same frequency. Put differently, it only implies that switching from one
method to the other at a problematic point will not improve the situation. This is similar
to a sighted and a blind man trying to find their way out of a maze. Neither the sighted
nor the blind can walk through walls, yet the sighted hits walls less often.

The pseudoinverse method has an interesting advantage over the gradient one, as it
can be used to define secondary objectives for the optimization process. As explained in
Appendix A, the pseudoinverse can be used to define a projection operator onto ker(J )
via

Pker(J ) = 1− J +J (6.11)

Since vectors that lie in ker(J ) represent directions in Rndof that do not change the spec-
trum, one is free to move along such vectors, at least infinitesimally, without disturbing
the spectrum. Thus, if one has a preferred direction sp to move in the space of shapes, it
is possible to force the pseudoinverse approach to move in it as follows;

d

dt
P (t) = J +(P (t))vσ + Pker(J )sp (6.12)

This idea is exploited in the field of inverse kinematics, which studies the positioning of
multi-jointed robotic arms. A review of this field can be found in [12]. More specifically,
inverse kinematics studies how to move the end-effector of the arm, the part that accom-
plishes given tasks, from an initial to a desired position. One of the possible approaches
to solve this problem is entirely analogous to the pseudoinverse approach that we propose.
Since the engineers that design robotic arms are fully aware of the possible configurations
of the arm, they know which positions are pathological and are to be avoided. They can
thus steer the system away from such configurations using secondary objectives sp for the
pseudoinverse method.
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In our case, there is no obvious choice of a preferred direction as we are ignorant of the exact
properties of the spectral map σ. We instead rely on the linear algebraic structure of the
pseudoinverse method to attempt to define a secondary objective that would promote the
avoidance of problematic points. Consider a point P ∈ Rndof at which vσ ∈ ker(J +(P )).
It is expected that this pathological behaviour would not be exactly valid for points in
a neighbourhood of P . Instead, it is likely that the pathological behaviour arises in a
continuous fashion. However, the dimension of the kernel is a discrete number and thus
cannot change continuously. It is thus necessary to choose a way to measure the rank
of J in a continuous way. This is made possible by the notion of effective rank. Let
nmin = min(nev, ndof ) and let {si}nmin

i=1 denote the multi-set of singular values of J . Since
singular values are by construction positive, one can introduce a normalized version of
this multi-set {ŝi}nmin

i=1 so that
∑nmin

i=1 ŝi = 1. This makes {ŝi}nmin
i=1 look like a probability

distribution. One can define an entropy H(J ) over this multi-set:

H(J ) := −
nmin∑
i=1

ŝi log(ŝi) (6.13)

In the above expression, it is taken that 0 log(0) = 1. The effective rank of J is then
defined to be

Re(J ) = exp(H(J )) (6.14)

For mathematical motivations of this definition, see [19, 65]. Physical motivations can be
found in [20]. Consider the case of maximal entropy: all of the {ŝi}nmin

i=1 are equal and
nonzero. In that case, the rank of J is equal to nmin, as expected. Similarly, when p of the
ŝi are nonzero and equal and the remaining ones are zero, the effective rank is p. In the
extreme case p = 1, only one ŝi is nonzero and must be equal to one. In [65], it is shown
that

1 ≤ Re(J ) ≤ rank(J ) ≤ nmin (6.15)

Moreover, the first two inequalities may only hold with equality in the special cases de-
scribed above. For our purposes, the maximization of the effective rank may serve as a
secondary objective via

sp = grad(Re(J )) (6.16)
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The purpose of this secondary objective is to try to avoid points in Rndof at which J has
a rank lower than usual as much as possible. Since singular values of J are expected to
vary continuously with P ∈ Rndof , a drop in rank should be predictable before it happens
from a drop in effective rank. As we expect pathological points where vσ ∈ ker(J ) to
be associated with a lower than usual rank, maximizing the effective rank as a secondary
objective could be a strategy for avoiding them. It is not clear at this point if using this
secondary objective produces better results in numerical implementations. It does however
produce different results while using significantly more computational resources. Further
investigation is required.

6.4 Numerical Implementation

The gradient and pseudoinverse methods can be implemented numerically. Assume that
the spectral map σ(P ) can be computed pointwise. In general, this entails the usage of some
numerical approximation of the problem. For example, if the objects in G are manifolds,
finite element methods may be used. For now, the precise nature of such methods is of
no importance and it is sufficient to assume that they are available. The Jacobian matrix
J is obtained by a finite difference approximation of the gradient. It is expected that a
numerical approximation of σ would have some numerical error due to the approximations
used. Even if this error is small in magnitude, it may vary much faster than the eigenvalues,
significantly affecting the Jacobian. For this reason, it is advantageous to compute the
gradient multiple times using various values of the step size and take the average result.

It is of course necessary to discretize the steps taken in the space of degrees of freedom
Rndof . The gradient and pseudoinverse methods will not be implemented in the form given
by Definition 6.3.3 and Proposition 6.3.1. Instead, it is useful to be able to control the
size of the step taken, so that the actual magnitude of the gradient does not influence the
speed of the algorithm. This point will become clear soon. Let N(v) denote a normalized
version of the vector v and set N(0) = 0. Let S denote a positive step size. It will change
as the numerical implementation runs. The time parameter t is discretized to number the
steps taken by the algorithm. Both methods will be expressed as

P (t+ 1) = P (t) + SN (J •(P (t))vσ) (6.17)

The above discretization can in principle be implemented numerically. However, as it is
stated now, the method has multiple easy to perceive problems. Choose some A,B ∈ Rndof

and, for now, assume that the method studied can trace a continuous path between A and
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B, in the sense of Definition 6.2.1. It is clear that, for a given S, it is unlikely that the
iteration of Equation (6.17) would bring P (t) exactly from A to B. Indeed, it is not even
guaranteed that the discretization brings one within a given ball of a given small radius
centred at B. In a more general setting, it is not guaranteed that there is a t1 such that the
spectra σ(P (t1)) and σ(B) match. Of course, if S is taken small enough, one can expect this
not to be a problem. However, small step size will increase the time necessary to compute
the path P (t). One thus must simultaneously introduce two things: a tolerance threshold
at which it is considered that two spectra are equal and a mechanism that controls the
step size S so that steps sufficiently small to get σ(P (t)) within tolerance of σ(B) can be
taken. The tolerance threshold shall be denoted εσ. It is considered that the algorithm
has converged if, for some t1, one has

d(σ(P (t1)), σ(B)) ≤ εσ (6.18)

One can then stop the iteration, effectively setting b = t1. The steps size S, and the whole
process, is controlled by the following algorithm.

Definition 6.4.1 (Race Car Algorithm). Set some initial step size S = S0 and two positive
factors u > 1 and d < 1, where u stands for “up” and d for “down”. Set Smin to be
the minimal allowed step size. Those values depend upon the problem considered and are
determined by trial and error. S will vary during the calculation, but u and d will not.
Let P (t) be the current shape and let P (t + 1) be the next shape to be determined. The
discretized path between A and, hopefully, B is constructed by going through the following
steps.

1. If d(σ(P (t)), σ(B)) ≤ εσ or S < Smin, stop the iterations.

2. Compute J (P (t)).

3. Compute P (t+ 1) using Equation (6.17).

4. If d(σ(P (t + 1)), σ(B)) ≤ d(σ(P (t)), σ(B)), P (t + 1) is accepted. Increase the step
size by setting S → Su. Go back to step 1, replacing all instances of t with t+ 1.

5. Otherwise, one has d(σ(P (t+1)), σ(B)) > d(σ(P (t)), σ(B)) and the algorithm moved
further away from the goal. Set P (t+1) = P (t), rejecting the step. Decrease the step
size by setting S → Sd. Go back to step 1, replacing all instances of t with t+ 1.
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The name Race Car algorithm was coined by Achim Kempf [46]. It refers to the fact
that the algorithm is always either accelerating or decelerating exponentially fast, as if
driven by a crazy race car pilot who always either has his foot on the accelerator or on the
brakes. The algorithm satisfies both the need for a speedup when the current and target
spectra are far away from one another and the need for a more careful manoeuvring when
the algorithm has almost converged to an isospectral geometry. In all of the following,
we choose u = 1.1 and d = 0.7. Notice that the acceptance criterion for a step is the
discretized version of property (e) of Definition 6.2.1.

The Race Car algorithm can stop for two reasons. The first is the the achievement of the
desired result: a shape isospectral to B. The second is the step size being reduced below
acceptable levels. This indicates that the algorithm is stuck. A stuck algorithm needs not
to have failed completely. Consider the following extreme case. Due to numerical error (in
which we include approximation error), if one sets the tolerance threshold εσ too low, no
P (t) will ever trigger the condition d(σ(P (t)), σ(B)) ≤ εσ. Thus, the algorithm will always
get stuck, even if P (t) arrives very close to B.

Of course, the algorithm may also get stuck quite far from B. In order to properly
discuss the success and failure rates of the algorithm, one must define a notion of distance
on the set of isometry equivalence classes [G]. In other words, a notion of distance on
the set of shapes G such that isometric shapes are a distance zero apart is needed. The
second formulation is easier to implement, as the construction map C gives one access to
the shapes, but not to the equivalence classes of isometric shapes. Identifying shapes with
their coordinates on Rndof , let dG : Rndof × Rndof → R denote such a map. Using this
distance, define a tolerance threshold εG. Once the Race Car algorithm has stopped one
has to verify if the final shape P (b) is sufficiently close to B. We consider that P (b) is
isometric to B if

dG(P (b), B) ≤ εG (6.19)

In that case, the calculation is a success, as a path from A to B, or an isometric P (b)
was traced. Otherwise, it is a failure, either because P (b) is not isospectral to B and
the algorithm is stuck or P (b) is isospectral but not isometric to B. The two different
ways to fail have to be considered independently when analyzing success and failure rates.
The second type of failure indicates the presence of isospectral non-isometric shapes in
G. This type of failure is in principle understood. All other sources of failure are of first
type and their precise nature is yet unexplained. Their presence points to either serious
numerical errors or fundamental obstructions to infinitesimal inverse spectral geometry.
This type of failure should thus be carefully explored, both for the sake of eliminating
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potential numerical difficulties and, more importantly, to understand the phenomenology
of fundamental obstructions to infinitesimal inverse spectral geometry. Such an exploration
would take a great deal of computational time and is outside the scope of this thesis. Still,
it is an important thing to consider in further work, as knowing the phenomenology of
failures could indicate how to overcome them.

The tolerance thresholds εσ and εG must be mutually consistent. If we consider that
P (b) and B are effectively isometric when dG(P (b), B) ≤ εG, they must also be effectively
isospectral d(σ(P (b)), σ(B)) ≤ εσ. In practice, it is much easier to impose a criterion on
differences between shapes than on differences between spectra. There are two distinct
reasons for this. First, shapes are easier to visualize than spectra and it is thus easier to
decide which shapes are considered equivalent. Second, the number of degrees of freedom
of shapes is fixed, while the number of eigenvalues may be altered as needed, potentially
requiring a redefinition of εσ. To an extent, this suggests to try to do without εσ, relying
solely on the minimal step size Smin to stop the Race Car algorithm. The advantage of
this approach is that it allows P (b) to get as close to B as the algorithm allows it. On the
other hand, it also implies an increase in computation times, as the algorithm is required
to compute extra iterations until the step size decreases below Smin. In our numerical
experiments, we use an intermediary approach, where εG is fixed to a reasonable value
while εσ is chosen to be too low, so that many effectively isometric shapes are treated
to be non-isospectral. Then, when a sufficient amount of data on the studied problem is
collected, εσ is increased to the minimum value that ensures that all effectively isometric
shapes are also effectively isospectral.

6.5 Which Method to Use?

Up to this point, we discussed the gradient and pseudoinverse methods as equally valid.
This ends here, as the goal of this section is to convince the reader of the superiority of
the pseudoinverse approach. This is not immediately obvious as, given the Jacobian, it is
of course faster to compute its transpose than its pseudoinverse. Thus, one could expect
the gradient method to converge faster. This is not so. The power of the pseudoinverse
method lies in the fact that it tries to take the most direct path in Rnev from σ(A) to σ(B).
Computationally, at the very least in the regimes we explored, this is of tremendous benefit.
While every single step takes longer to compute, the overall number of steps necessary to
get from A to a shape P (b) isospectral to B is much lower.

The above situation can be illustrated by a simple example. Let Rndof = R2 = Rnev .
Consider the following toy model of a spectral map:
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(a) Gradient Method (b) Pseudoinverse Method

Figure 6.1: Superiority of the pseudoinverse method. Paths taken by the gradient and
pseudoinverse methods for the toy model defined by Equation (6.20) with A = (−0.05, 1)
and B = (−1, 0.25). The colour gradients represent d(σ(x, y), σ(B)). The gradient ap-
proach needs 48957 steps and approximately 6 minutes of computation to get σ(P ) within
εσ = 10−4 of σ(B). On the same computer, the pseudoinverse method accomplishes this
in 26 steps and 0.24 seconds.

σ(x, y) = (10x3, y3) (6.20)

Clearly, σ is invertible on all of Rndof . Set A = (−0.05, 1) and B = (−1, 0.25). One can try
to use the gradient and pseudoinverse methods to trace paths from A to B using the Race
Car algorithm. Figure 6.1 illustrates the difference in performance between the gradient
and pseudoinverse methods.

The reason for the dramatic difference in performance is the fact that the gradient
method follows the steepest descent and is thrown into a valley with steep walls centred
about x = −1. At the bottom of the valley, the negative gradient of d(σ(P ), σ(B)) points
towards B. However, the discretized gradient method never quite hits x = −1. Thus,
P (t) is likely to lie on the steep wall of the valley. At such points, the gradient is mostly
directed towards the centre of the valley, with only a small component in the direction
of B. Correspondingly, P (t + 1) will be on the opposite wall of the same valley, where a
similar situation arises. So, instead of going in the direction of B, the gradient approach
concentrates its efforts on jumping from one wall to another, a rather unproductive activity,
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both in optimization and in real life. Put in the same situation, the pseudoinverse chooses
the appropriate direction, regardless of the high slope of the valley walls. As promised, the
pseudoinverse method reaches B in a significantly lesser number of steps. The meandering
behaviour of the gradient method is a well known problem in optimization literature and
solutions to it, such as adding friction terms, have been proposed [63]. Instead of imple-
menting such methods, we shall simply limit our investigation of numerical infinitesimal
inverse spectral geometry to the pseudoinverse method.

6.6 Star-Shaped Domains in R2

In this section, we apply infinitesimal inverse spectral geometry in the sense of Definition
6.2.1 to a particular class of star-shaped domains in R2 defined by exponentials of Fourier
Series. The spectrum of interest is that of the Laplace-Beltrami operator with Dirichlet
boundary conditions. First, we establish the class of shapes that we study and exhibit
certain of their properties.

6.6.1 Partial Exponential Fourier Domains

Let (r, φ) be the standard polar coordinates in the standard R2 plane equipped with the
standard metric. We are going to study domains star-shaped about the origin, whose
boundary is expressed as a radius function R(φ). In order to make this function dependent
upon a finite number of degrees of freedom, we shall choose R(φ) as an exponential of a
truncated Fourier series:

R(φ) = 0.1 + 0.9 exp

(
C0 +

M∑
n=1

[Ci cos(nφ) + Si sin(nφ)]

)
(6.21)

The choice of the positive constants 0.1 and 0.9 is of course arbitrary. We chose those
parameters so that a disk of radius 1 is obtained by setting all the coefficients Ci and Si to
zero. The exponential function ensures that R(φ) is positive. The additive constant 0.1 is
necessary for numerical implementations, as otherwise the discretization of the domain fails
due to non-adjacent parts of the boundary being too close to each other. The coefficients
{Ci}Mi=0 and {Si}Mi=1 are taken to be the degrees of freedom of the shape. In the sense of
Definition 6.2.1, they are the space Rndof , and R(φ) is the construction map associated to
some P ∈ Rndof . We will indicate this dependence by a subscript: RP (φ). Consequently, G
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is the set of all domains generated by Equation (6.21). In the particular cases we explore,
some coefficients of order lower than M will be fixed to be non-dynamical. Except for the
coefficient C0, the degrees of freedom will always come in sine-cosine pairs of the same
frequency. This allows for rotations of the studied shapes, as is best explained by the
following well known trigonometric identity.

Lemma 6.6.1 (Well-Known Trigonometric Identity). For any a, b ∈ R, there exists δ ∈
[0, 2π) such that

a cos(x) + b sin(x) =
√
a2 + b2 sin(x+ δ) (6.22)

Remark 6.6.1. Trigonometric identities are not normally stated with such pomp. How-
ever, we give special treatment to the above result as it is used quite a few times in the
following discussion. We shall not need explicit expressions for δ.

By virtue of Lemma 6.6.1 including sines and cosines in pairs of same frequency in the
sum ensures that Equation (6.21) allows for the definition of all rotations of a given shape
about the origin. One can explicitly obtain the rotated version of a domain by changing
the coefficients via the following rule:

Lemma 6.6.2 (Rotation of Shape). A rotation RP (φ − δ) of RP (φ) can be obtained via
Equation (6.21) by modifying the coefficients as follows:

C0 → C0

Cn → Cn cos(nδ)− Sn sin(nδ)

Sn → Cn sin(nδ) + Sn cos(nδ)

(6.23)

Proof. The proof is trivial.

Similarly, one can obtain the rule for the reflexion of the shape with respect to the x axis.

Lemma 6.6.3 (Reflexion of Shape). A reflexion of RP (φ) with respect to the x axis can
be obtained via Equation (6.21) by modifying the coefficients as follows:

C0 → C0

Cn → Cn

Sn → −Sn
(6.24)

Proof. The proof is trivial.
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The above two lemmata will be used to define a notion of distance dG(·, ·) between the
shapes. We want for shapes equivalent by rotation and reflexion followed by rotation to
be a distance zero apart, as they are isometric. We do not consider translation isometries.
This is a minor problem whose solution we defer for now. Moreover, we want the distances
given by dG(·, ·) to be easy to interpret, as this will facilitate the choice of the tolerance
threshold εG. Let P ∈ Rndof and let [P ] ⊂ Rndof be the set of shapes equivalent to P
through rotations and reflexions followed by rotations, in the sense of lemmata 6.6.2 and
6.6.3. The distance between two shapes P,Q ∈ Rndof is defined as follows:

dG(P,Q) = inf
[P ]

(
sup
φ
|RP (φ)−RQ(φ)|

)
(6.25)

In other words, dG(·, ·) is the supremum norm distance between RP (φ) and RQ(φ), min-
imized over all shapes considered isometric to P . In numerical computations, one must
discretize φ to determine the optimal angle δ by which one must rotate RP (φ + δ), or
its reflexion. In our computations, 2π is divided in 1440 segments of equal length. The
shapes we study usually have a diameter somewhere between 1 and 3. Thus, we consider
that εG = 0.01 is a reasonable choice for the shape equivalence threshold. Numerical ex-
periments show that εσ = 10−9 is a good a priori threshold for isospectrality when the
spectrum of the Green’s operator is used.

As mentioned earlier, the isometry group under which we require dG(·, ·) to be invariant
is not the full isometry group of R2, as translations are missing from it. In most cases,
this is a minor problem, as we only allow for a finite number of Fourier components in the
description of the shape. Generically, to describe a translated version of the same shape,
one would need more Fourier coefficients than those that we provide. As an extreme
example, consider that only C0 is allowed to be nonzero. Clearly, it is then impossible
to describe anything but disks centred at the origin. Correspondingly, the description of
a disk of radius r centred at α ≤ r will require more Fourier components than just the
constant one. This state of affairs breaks down in one important case. Consider a disk
of radius 1 centred at (α, 0) for 0 < α � 1. From Figure 6.2 and the law of sines, it is
straightforward to show that in terms of φ, the boundary of the disk is given by

R(φ) =
sin(φ+ arcsin(α sinφ))

sinφ
≈ 1 + α cosφ (6.26)

where the approximation is given by the first two terms of a Taylor series around α = 0.
Compare this to the following approximation of a valid boundary shape R̃(φ) for C1 near
zero

89



x

y

1

R(φ)

α

φ

Figure 6.2: Translation of the unit disk centered at (0, 0) by α along the x axis.

R̃(φ) = 0.1 + 0.9 exp(C1 cosφ) ≈ 1 + 0.9C1 cosφ (6.27)

Clearly, it is possible to choose C1 so that R̃(φ) is a good approximation of a translated
disk of radius 1. Effectively, this introduces translational isometries for which our method
does not account. By Lemma 6.6.1, this discussion is valid for a disk of radius 1 centred
at any point in x ∈ R2 such that |x| ≤ α. Consequently, the Fourier components of index
1 in Equation (6.21) will be considered pathological and their coefficients C1 and S1 will
be fixed to be zero, to avoid the introduction of unaccounted for isometries.

6.6.2 Numerical Results

In order to conduct numerical experiments on the infinitesimal inverse spectral geometry of
the partial exponential Fourier domains defined above, we must be able to compute the first
nev eigenvalues of the spectrum of the Laplace-Beltrami operator with Dirichlet boundary
conditions. We do so by using finite element methods. A minimal introduction to finite
elements can be found in Appendix B. As finite element methods may be quite subtle to
implement from scratch, we use the freely available finite element solver FreeFem++. In
the grand scheme of things, the results that we present here are preliminary and are to
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be taken as a proof of concept more than as reliable data. We present success rates for
a numerical implementation of the pseudoinverse method applied to a particular class of
domains. We study how success rates change as functions of the number of eigenvalues
considered by the algorithm and the initial distance dG(A,B).

For the remainder of the discussion, we use the pseudoinverse method without secondary
objectives and a spectral adjustment function that sends the nonzero eigenvalues of ∆ to
their multiplicative inverses and leaves zero eigenvalues unmodified. Thus, rather than
studying the first nev eigenvalues of the Laplace-Beltrami operator, we study the first
nev eigenvalues of its Green’s operator. The pseudoinverse method is chosen as it is not
prone to the meandering behaviour of the gradient method. No secondary objective was
used as preliminary results on their usefulness were inconclusive. The spectral adjustment
function was chosen because our preliminary results seemed to indicate that using the
inverse eigenvalues is significantly more successful. More precisely, it seems that using the
spectrum of the Green’s operator reduces the chance of the Race Car algorithm to get
stuck. Plausibly, this improvement is due to the fact that using multiplicative inverses of
the eigenvalues of the Laplacian rather than the eigenvalues themselves modifies the relative
importance of each eigenvalue. For the Laplacian, the low order eigenvalues have small
magnitude and high order eigenvalues have large magnitude. This relationship is inverted
for the spectrum of the corresponding Green’s operator. Consequently, the algorithm
favours changes of shape that bring low order eigenvalues closer to the target ones. Since
low order eigenvalues correspond to long wavelength eigenfunctions, they are expected to
only be sensitive to large changes in shape. Thus, prioritizing low order eigenvalues by
using the spectrum of the Green’s operator rather than that of the Laplacian encourages
the algorithm to first fix the rough shape of the manifold and then worry about the smaller
details. A more extensive investigation of this phenomenon would be of interest. In
particular, it is possible that more refined spectral adjustment functions would yield better
results.

The general setup for our numerical experiments is as follows. We fix the number of
shape degrees of freedom ndof and choose to which Fourier coefficient in Equation (6.21)
each axis of Rndof corresponds. Those will be called the dynamical Fourier coefficients.
The other Fourier coefficients are called non-dynamical and are the same for all the shapes
considered. We choose to fix the coefficients of orders 0, 1 and 2 to zero and let coefficients
of orders 3 through 5 vary. In total, six shape degrees of freedom are chosen. Due to the
trigonometric identity of Lemma 6.6.1, one of the coefficients is redundant, as it simply
describes the orientation of the shape. It will thus be eliminated when the algorithm checks
for isometry. Effectively, only five degrees of freedom remain.

Each time the algorithm runs, an initial shape A and a target shape B are randomly
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generated. Let r(−1, 1) denote a function that generates uniformly distributed random
numbers in (−1, 1). The dynamical Fourier coefficients of A and B are generated according
to the following rule

Ci(B) = MBr(−1, 1)

Si(B) = MBr(−1, 1)

Ci(A) = MAr(−1, 1) + Ci(B)

Si(A) = MAr(−1, 1) + Si(B)

(6.28)

where MB and MA are positive numbers that dictate the size of the coefficients. The
magnitude of MB dictates how wide is the class of considered shapes. MA, on the other
hand, controls how close are the starting points to the target point.

Once the shapes are generated, the spectrum σ(B) is computed and the Race Car
algorithm implementation of the pseudoinverse method is used to attempt to trace a path
from A to B.

The first result we wish to state is a qualitative one. The pseudoinverse approach
to inverse spectral geometry sometimes succeeds in finding the target shape, or a shape
isometric to it. Success depends on the number of eigenvalues considered. An example of
this is illustrated on Figures 6.3 and 6.4. Both figures present the shapes obtained by the
pseudoinverse approach for the same pair of initial and target points A and B. In Figure
6.3, nev = 6 is used and the algorithm fails to find the target shape. In Figure 6.3, on the
other hand, nev = 10 is used and the algorithm succeeds.

The above observation leads to the following question. Given a fixed number of degrees
of freedom, how many eigenvalues are needed to reliably find the target shape? From a
simple matching of degrees of freedom argument, it is clear that one must have nev ≥
ndof to even begin to hope that a bijection exists. Anything else is up to numerical
experimentation. We have carried out such a numerical experiment for a class of shapes
whose dynamical Fourier coefficients are those of orders 3 through 5, for a total of 6 − 1
degrees of freedom, as explained above. The experiment consisted of the study of 3076
randomly generated pairs of initial and final shapes A and B. The coefficients of B were set
using MB = 0.25. Different values of MA were used to obtain different starting distances.
For each pair (A,B), the Race Car algorithm was ran 40 times, with different numbers of
eigenvalues considered: nev = 1...40. The final shapes P (b) obtained by the algorithm were
compared to the target shapes B an if dG(P (b), B) ≤ 0.01, the run was declared a success.
Otherwise, it was deemed a failure. Figure 6.5 presents the success rates as a function of
nev and of the starting shape distance dG(A,B).

92



Initial shape A

20 steps

30 steps 35 steps

42 steps

91 steps (final shape)

Target Shape B

Rotation

Figure 6.3: Failure of the Race Car Algorithm for ndof = 6, nev = 6. The final shape
distance is dG(P (93), B) = 0.176 > 0.01. The final spectral distance is d(σ(P (93)), σ(B)) =
4.8 · 10−6 > 10−9.
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Initial shape A

20 steps

30 steps 35 steps

40 steps

63 steps (final shape)

Target Shape B

Rotation

Figure 6.4: Success of the Race Car Algorithm for ndof = 6, nev = 10. The initial and
target shapes are the same as in Figure 6.3. The final shape distance is dG(P (93), B) =
0.0008 < 0.01. The final spectral distance is d(σ(P (93)), σ(B)) = 5.61 · 10−10 < 10−9.
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(b) Success Rate

Figure 6.5: Distribution of the sampled initial distances dG(A,B) and success rate as a
function of nev, from left to right. The colours of the lines of the second plot correspond to
the colours of the bars in the first. The black curve is the overall success rate. Notice that
the success rate increases with nev and decreases with starting distance. Also note that at
nev = 5, the qualitative behaviour of the plot changes. The success rate shows knowledge
of the number of degrees of freedom.

By observing Figure 6.5, one immediately notices a few things. First, the success rate
increases with nev, which is to be expected as more information is provided to the algorithm.
Second, the success rate decreases with dG(A,B), which is also intuitively plausible, since
the longer the path the algorithm has to take from A to B, the higher the chances to
encounter a problematic point.

It is of immediate interest to explore how the success rate decays with increasing
dG(A,B). Notice that dG(A,B) = 0 implies automatic success. We can thus add such
a point to our analysis of the dependence of the success rate on the distance. Figure 6.6
illustrates this dependence for fixed values of nev. Although the exact shape of the curve
is coarse, Figure 6.6 suggests that for nev fixed the dependence of the success rate upon
dG(A,B) is a decaying exponential of the form exp(−ρ(nev)dG(A,B)), where the decay rate
ρ(nev) depends upon the number of eigenvalues considered by the algorithm. To determine
the dependence of ρ(nev) upon nev, we use an exponential fit of the success rate as a func-
tion of dG(A,B) for each value of nev. The obtained ρev are plotted on Figure 6.6. For
nev ≥ 5, ρ(nev) follows a power law behaviour.
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(a) Decay of the success rate with dG(A,B)
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(b) Power law behaviour of ρ(nev)

Figure 6.6: Approximately exponential decay of the success rate with dG(A,B) and power
law behaviour of the decay coefficient ρ(nev). On the left, each curve represents a given
value of nev. Notice that the behaviour is consistent from one curve to the next. On the
right, the blue curve represents the obtained values of ρ(nev) and the red curve is a power
law fit of ρ(nev) for nev ≥ 5. Exact values of ρ(nev) for nev < 4 could not be computed and
thus are not included.

ρ(nev) ≈ α(nev)
−p , nev ≥ 5 (6.29)

The constants α and p of the power law behaviour of ρ(nev) are determined via a power
law fit illustrated on Figure 6.6. The values are:

p = 1.55± 0.01

α = 3.0± 0.2
(6.30)

Assume that the failure of the algorithm is due to some sort of pathological points
or regions in the space of shapes. Exponential decay of the success rate with dG(A,B)
suggests that the density of such obstacles is constant. In some fashion, ρ(nev) represents
this density. Further assume that the pathological regions are essentially the same for all
nev, such that, as one increases nev, some of the obstacles that the algorithm could not
navigate with lower values of nev become surmountable. That is, the pathological regions
for nev + 1 are the same as for nev, minus a certain proportion that the algorithm now is
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able to cross. The power law behaviour can then be exploited to determine how helpful it
is to use more eigenvalues. Assume nev � 1.

ρ(nev + 1) = ρ

(
nev

(
nev + 1

nev

))
=

(
nev + 1

nev

)−p
ρ(nev)

≈
(

1− p

nev

)
ρ(nev)

(6.31)

where the approximation follows from the Taylor series of the power law factor about 1.

Assuming the above discussion is correct, we speculate that
(

1− p
nev

)
is the proportion of

obstacles that remain insurmountable for the algorithm as nev → nev+1. Correspondingly,
p/nev is the proportion of obstacles that cease to be problematic. The decaying behaviour
of p/nev seems to indicate that higher eigenvalues contain less and less useful information
for the reconstruction of the shape. It would be of great interest to explain this dependence.
Plausibly, this would come with the understanding of the exact nature of the pathological
regions in shape space. Further investigation is required.

A first step on the way to the understanding of the failure modes of the algorithm can
be made by studying the number of isospectral non-isometric shapes found. Indeed, it
is expected that there exist numerous shapes that share the first nev eigenvalues of their
spectrum. There is thus nothing mysterious with this type of failure. Recall that we set
εG = 0.01 and εσ = 10−9. In order to restore coherence between the isospectrality and
isometry thresholds, it is necessary to set εσ = 5 · 10−8. The dependence of the failure rate
on nev and dG(A,B) is illustrated on Figure 6.7.

Figure 6.7 shows that about half of the observed failures can be attributed to nev-
isospectral non-isometric shapes. It also seems to indicate that this proportion decays
slowly as nev increases. This is to be expected, as increasing the number of considered
eigenvalues also has to increase the number of similar characteristics two shapes must
have in order to be isospectral. Moreover, the proportion of isospectral failures decreases
dramatically as dG(A,B) increases. This can be explained by the fact that if A is far
away from B, it is likely that it is sufficiently different from B not to have any shapes
nev-isospectral to B in its immediate neighbourhood. Thus, for some stretch of its path
towards σ(B) it can only encounter problematic points that are not isospectral to B. As
mentioned earlier, the nature of such points will be the subject of future research. By
the above discussion, studying cases where dG(A,B) is large should be a reliable way of
generating plenty of such points.
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(b) Isospectral Failure Rate

Figure 6.7: Distribution of the sampled initial distances dG(A,B) and isospectral failure
rate as a function of nev, from left to right. The colours of the lines of the second plot
correspond to the colours of the bars in the first. The black curve is the overall isospectral
failure rate. Notice that the isospectral failure rate slowly decreases with nev and dramat-
ically decreases with starting distance. Once again, the qualitative behaviour of the curve
changes at nev = 5. Notice that about half of all observed failures are of the isospectral
non-isometric type. For now, the precise functional dependence of the isospectral failure
rate on nev and dG(A,B) cannot be determined, as the collected failure statistics are poor.
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Chapter 7

Outlook

The numerical results presented in Chapter 6 are quite encouraging. Indeed, despite the
volume of literature devoted to counterexamples in inverse spectral geometry, the simple
implementation of the pseudoinverse method that we proposed can produce success rates
on the order of 80 to 95% in the explored regime. It was also determined that, about
half of the failure cases seem to be due to nev-isospectral non-isometric manifolds and that
this ratio decayed with the number of considered eigenvalues. It is thus plausible that
those problematic cases could be eliminated by studying more eigenvalues. However, the
remaining failure cases are presently not understood.

A description of the failure cases of the pseudoinverse method would be of great impor-
tance, as it would suggest how to modify the algorithm in order to increase the success rate.
As suggested in Chapter 6, non-isospectral failure cases can be generated by choosing the
initial and target shapes to be very different, so that the algorithm first has to cross a long
stretch of Rndof where it is unlikely to encounter shapes isospectral to the target one. Then,
the only possible types of failure are of the non-isospectral kind. Once those problematic
points or regions are found, one should first verify that they are not caused by numerical
error. For instance, one could re-compute the Jacobian using a finer discretization of the
manifold (i.e. a better approximation of the spectrum) and see if the situation improves. If
so, no further explanation is needed. Otherwise, the problem is of fundamental nature and
should be carefully explored. For example, as suggested to us by Kempf [46], one could
look at the angle between vσ, the direction in which the algorithm is supposed to go in
spectral space, and the actual direction it goes in. Knowing this would allow one to deter-
mine if the obstacles are hit head on or tangentially. Moreover, it would be interesting to
determine if there is a way to anticipate the encounter of problematic points. For instance,
the effective rank could be a predictor of problematic points. Another possibility would be
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(a) Dirichlet boundary conditions (b) Boundaryless

Figure 7.1: A taste of things to come. Two surfaces of dimension two embedded in R3,
one with boundaries and one without. The colour scale represents the ninth eigenfunction,
in both cases. Dirichlet boundary conditions are imposed in the case with boundaries. In
that case, the shape is described by a two-dimensional Fourier sine series on the square
(0, 1)× (0, 1). The boundaryless manifold is diffeomorphic to S2 and its shape is described
by a radius function given by the exponential of a series of spherical harmonics. An
implementation of numerical infinitesimal inverse spectral geometry for such shapes is
within reach.

to draw a map of the obstacles. This could be used to verify how their position depends
upon the target shape B. Most interesting are of course those pathological points which
do not depend upon the target, as they are fundamental obstacles to infinitesimal inverse
spectral geometry.

It is also within immediate reach to apply the methods of infinitesimal inverse spectral
geometry to different settings. In order to push the investigation closer to its physical
motivations, it is necessary to study how it behaves on manifolds with curvature. The
simplest possible examples of this would be two dimensional surfaces embedded in R3

equipped with the induced metric. Examples of such surfaces are illustrated on Figure 7.1.
In such cases, the shape of the manifold is described as a height or radius function given
by a combination of a finite number of known functions. This is entirely analogous to the
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way the shape of a boundary was described in Chapter 6.

Possibly, one could also attempt to apply the numerical methods that we proposed to
dynamical systems theoretic characterizations of shapes, such as billiard orbits or random
walks on manifolds. This could shed a different light on infinitesimal inverse spectral
geometry.

It could also be of interest to study some of the inverse spectral problems analogous to
inverse spectral geometry using the proposed methods. For instance, spectra of Schrödinger
operators in one dimension should be easier to compute than those of Laplacians on mani-
folds. Thus, that setting could be used to quickly test the performance of implementations
of infinitesimal ISG.

A possible practical application of infinitesimal inverse spectral geometry could be the
detection of the number of degrees of freedom of a system. Figures 6.5 and 6.7 show that the
rates of success and isospectral failure of the pseudoinverse approach have a qualitatively
different behaviour for nev < 5 and for nev ≥ 5. Recall that while formally the shapes
studied had 6 degrees of freedom, in effect one of them was simply a choice of orientation.
Thus, those results indicate that infinitesimal inverse spectral geometry is sensitive to the
actual number of degrees of freedom in a system. Abstractly, this could be of interest
to determine how much redundancy there is in a poorly understood construction map
C : Rndof → G. Practically, it could be used to determine when a physical system has
gained unwanted degrees of freedom. This could have engineering applications, as there
unwanted degrees of freedom usually indicate wear and tear. Applications to quantum
gravity will have to wait until the simpler cases are well understood.
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Appendix A

Moore-Penrose Pseudoinverse

This appendix is a very brief introduction to the pseudoinverse of a linear map between
finite-dimensional vector spaces, sometimes referred to as the Moore-Penrose pseudoinverse
or Moore-Penrose generalized inverse. We refer the reader to [64] for a concise and clear
exposition of this subject. We present an abridged version of the discussion therein.

Let U, V be inner product spaces over C or R of finite dimensions p and q, respectively.
Let L : U → V be a linear transformation of rank r. For a number of reasons, L might
not be invertible. Nonetheless, there are many practical cases in which one would like to
invert L, at least as much as possible. Let L† denote the adjoint of L. It is possible to
decompose U = A⊕B and V = C⊕D as direct sums of carefully chosen vector subspaces.
Consider the following theorem.

Theorem A.1. Let L,L† be as above. The images and kernels of L,L† and of their
compositions have the following relationships

(a) ker(L†) = im(L)⊥ and im(L†) = ker(L)⊥

(b) ker(L†L) = ker(L) and ker(LL†) = ker(L†)

(c) im(L†L) = im(L†) and im(LL†) = im(L)

Proof. See [64].

B is chosen to be the kernel of L and D is chosen to be the kernel of L†. One can introduce
an orthonormal basis {ui}ri=1 of A and a basis {vi}ri=1 of C such that L and L† have the
following symmetric action
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Lui = sivi

L†vi = siui
(A.1)

This is guaranteed by the well known notion of singular value decomposition, which is
the appropriate generalization of the eigenvalue decomposition for linear maps between
different vector spaces. The si of the above equation are called the singular values of L
and are defined below. Recall that one can define a non-negative self-adjoint operator
L†L : U → U . Its eigenvalues can be ordered as follows

λ1 ≥ ... ≥ λr > 0 = λr+1 = ... = λp (A.2)

The corresponding orthonormal eigenbasis is given by

B = (u1, ..., ur, ur+1, ..., un) (A.3)

Note that (ur+1, ..., up) is a basis for ker(L†L) = ker(L). Necessarily, (u1, ..., ur) is a basis
for ker(L)⊥ = im(L†). The singular values of L are defined to be the positive square roots
of the nonzero eigenvalues of L†L

si =
√
λi , i = 1...r (A.4)

We now choose a particular orthonormal basis of im(L):

vi =
1

si
Lui , i = 1...r (A.5)

The proof of the orthonormality of this basis is straightforward and is left to the reader.
This basis can be augmented by vectors (vr+1, ..., vq) to form an orthonormal basis for all
of V . In the particular bases chosen, the action of L and L† takes the promised symmetric
form:

Lui =

{
sivi i ≤ r

0 i > r
; L†vi =

{
siui i ≤ r

0 i > r
(A.6)

The above basis is used to define the Moore-Penrose pseudoinverse L+ of L.
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L+vi :=

{
1
si
ui i ≤ r

0 i > r
(A.7)

When the pseudoinverse is restricted to act between the subspaces A and C, it indeed
reproduces the inverse

(L+L)
∣∣
A

= 1A

(LL+)
∣∣
C

= 1C
(A.8)

When restricted to act on the kernels of L and L†, the pseudoinverse acts trivially, as
required

(L+L)
∣∣
B

= 0

(LL+)
∣∣
D

= 0
(A.9)

If L is invertible, L+ = L−1. Note that, by construction, ker(L+) = ker(L†) and im(L+) =
im(L†).

It is possible to define the pseudoinverse by algebraic means, without ever picking
particular bases for U and V .

Theorem A.2. Let L be as above. Its pseudoinverse L+ is the unique operator character-
ized by

(a) LL+L = L

(b) L+LL+ = L+

(c) LL+ is self-adjoint

(d) L+L is self-adjoint

This definition is equivalent to the constructive one given prior.

Proof. See [64].
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The pseudoinverse is used to solve least squares problems. Let Lx = v represent a
system of linear equations, with x being the unknown. This system has a solution if and
only if v ∈ im(L). Assume that the system of equations has no solution. Let v̂ ∈ im(L)
denote a vector such that ‖v− v̂‖2 is minimal. This vector can be shown to be unique. One
can replace the initial problem with Lx = v̂. Any x satisfying that system of equations
is said to be a solution to the linear least squares problem. In terms of v, x is such that
‖Lx− v‖2 is minimal.

In general, there are infinitely many possible values of x. Consider x and x′, both
solutions to the least squares problem. Since Lx = v̂ = Lx′, x−x′ ∈ ker(L). Consequently,
given a least squares solution x, all other least squares solutions are given by x + ker(L).
If the dimension of ker(L) is nonzero, least squares solutions can have arbitrarily large
norms. Thus, it is particularly interesting to determine the solution of least norm, which
is easily shown to be unique. Essentially, this amounts to set the components of x in the
kernel to zero. This can be achieved by setting x = L+v. See [64] for a proof. Thus,
any application of the pseudoinverse can be seen as a solution to a particular least squares
problem.
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Appendix B

An Absolutely Minimal Introduction
to Finite Element Methods

Finite element methods provide powerful ways to numerically solve partial differential
equations. This is a field rich in both mathematical insight and practical applications.
The goal of this appendix is to provide the reader an absolute minimum of understanding
of those methods. Expect no mathematical rigour in the below discussion. The interested
reader may consult [9] for a more thorough introduction. An intriguing discussion on the
usage of topological and homological techniques in finite element methods can be found in
[2].

We will introduce finite elements with the help of an example shown to us by Helmut
Kröger [49]. Consider the following first order boundary value problem:

− d

dx
y(x) + y(x)− 1 = 0

y(0) = y(π) = 0
(B.1)

The analytic solution for this problem is given by

y(x) =
ex − eπ−x

eπ + 1
− 1 (B.2)

For the sake of notational simplicity, set L = − d
dx

+ 1. Suppose that we are to find this
solution by a numerical approach. We first extend the problem from the space of differ-
entiable functions to L2(0, π). Let {ψi}∞i=1 be a basis of this Hilbert space, not necessarily
orthonormal. It is thus possible to express y(x) as
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y(x) =
∞∑
i=1

yiψi(x) (B.3)

Suppose that the first n basis functions are zero for x = 0, π, which ensures that all of
their linear combinations satisfy the boundary conditions. Moreover, suppose that the
first n basis functions offer an acceptable approximation of y(x). Let ỹ(x) be such an
approximation of y(x).

ỹ(x) =
n∑
i=1

yiψi(x) (B.4)

It is expected that ỹ(x) will not exactly satisfy the boundary value problem. Let r(x) be
a residual term such that

Lỹ(x)− 1 = r(x) (B.5)

It is natural to require for r(x) to be orthogonal to the first n basis functions.

(ψi(x), r(x))L2 = 0 , i = 1...n
n∑
i=1

yi(ψj(x), ψi(x))L2 + (ψj, 1)L2 = 0
(B.6)

The above can be recast in matrix form by settingMji = (ψj(x), ψi(x))L2 and fj = (ψj, 1)L2 .
Solving the approximate problem reduces to solving the following system of linear equations
in matrix form.

n∑
i=1

Mjiyi = fi (B.7)

The problem has thus been moved entirely within the realm of linear algebra. The usage of
a truncated basis that satisfies boundary conditions is known as Galerkin’s method. The
above is clearly generalizable to other linear operators.

The passage from Galerkin’s method to finite elements is a choice of basis. Consider
for instance a basis of tent functions as in figure B.1. More generally, one would choose a
basis of (almost everywhere) sufficiently differentiable functions with overlapping compact
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(a) Tent basis for n = 5 (b) Tent basis for n = 10

Figure B.1: A simple finite element basis of piecewise linear functions. On the left, five
basis functions are used, while on the right, ten are.

supports. Typically, one chooses piecewise polynomial functions. The finiteness of the
size of the support of the basis functions is what makes the elements finite. Figure B.2
compares the exact solution to the problem posed by Equation (B.1) to finite element
solutions obtained with the tent function bases of Figure B.1. Notice that the approximate
solutions are in very good agreement with the exact one.
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(a) n = 5 (b) n = 10

Figure B.2: Comparison between exact and finite element solutions to the problem defined
in Equation (B.1). The red curve is the exact solution given by equation (B.2). The blue
curves are finite element approximations of it, using the tent function bases introduced in
Figure B.1. The agreement between the exact and approximate solutions is excellent.
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