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Abstract

We consider a system of two identical Morris-Lecar neurons coupled via electrical
coupling. We focus our study on the effects that the coupling strength, γ, and the
coupling time delay, τ , cause on the dynamics of the system.

For small γ we use the phase model reduction technique to analyze the system
behavior. We determine the stable states of the system with respect to γ and τ
using the appropriate phase models, and we estimate the regions of validity of the
phase models in the γ, τ plane using both analytical and numerical analysis.

Next we examine asymptotic of the arbitrary conductance-based neuronal model
for γ → +∞ and γ → −∞. The theory of nearly linear systems developed in [30]
is extended in the special case of matrices with non-positive eigenvalues. The
asymptotic analysis for γ > 0 shows that with appropriate choice of γ the voltages
of the neurons can be made arbitrarily close in finite time and will remain that
close for all subsequent time, while the asymptotic analysis for γ < 0 suggests the
method of estimation of the boundary between “weak” and “strong” coupling.

iii



Acknowledgements

I would like to acknowledge and express my gratitude to my supervisor Sue Ann
Campbell. Her helpful suggestions, motivation for research, guidance through the
study process and help with involvement in student research group meetings made
this thesis possible. I would like to thank the faculty and staff of the Department
of Applied Mathematics of University of Waterloo for a friendly and supportive
research atmosphere, and for the knowledge and experience that I have obtained
here. I would like to thank the faculty and staff of Lomonosov Moscow State
University for the basis of mathematical education that I have obtained there.
Finally, I would like to thank my family and friends for their moral support during
the development of the present thesis.

iv



Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Physical background 4

2.1 Structure of a typical neuron. Signal generation and transmission in
neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Structure of a single neuron . . . . . . . . . . . . . . . . . . 5

2.1.2 Signal generation and procession in neuron. . . . . . . . . . 6

2.2 Neuron as a mathematical model. . . . . . . . . . . . . . . . . . . . 12

2.2.1 General overview of underlying principles and derivation of
single-compartment conductance-based models. . . . . . . . 12

2.3 Morris-Lecar model - underlying assumptions, derivation and non-
dimensionalization, typical behavior . . . . . . . . . . . . . . . . . . 15

2.3.1 Underlying assumptions. . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Experimental observations. . . . . . . . . . . . . . . . . . . . 16

2.3.3 Analysis of the mathematical model. . . . . . . . . . . . . . 17

2.3.4 Reduction to two dimensions. . . . . . . . . . . . . . . . . . 18

2.3.5 Non-dimensionalization. . . . . . . . . . . . . . . . . . . . . 20

2.3.6 Analysis of the behavior of the reduced model. . . . . . . . . 21

2.4 Transmission of the information between neurons. . . . . . . . . . . 26

2.4.1 Overview of connection types. . . . . . . . . . . . . . . . . . 26

2.4.2 Modeling of the electrical synapses in
single-compartment conductance-based models. . . . . . . . 27

2.5 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3 Phase Model 32

3.1 Introduction to the theory of weakly connected networks. . . . . . . 32

3.2 Theoretical foundations . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Invariant manifold reduction . . . . . . . . . . . . . . . . . . 36

3.2.2 Explicit formulas for the phase equations. . . . . . . . . . . 37

3.3 Phase equations of the Morris-Lecar system. . . . . . . . . . . . . . 43

3.3.1 Equation for the phase difference in the non-delayed case. . . 46

3.3.2 Equation for the phase difference in the delayed case. . . . . 48

3.4 Region of validity of the phase model . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Bifurcation analysis 55

4.1 The equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Theoretical foundation . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Analysis of the graph . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Analysis of the type II parameter set . . . . . . . . . . . . . 59

4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Bifurcation analysis in the non-delayed case . . . . . . . . . . . . . 61

4.2.1 Software and algorithms. . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Bifurcation analysis in the delayed case . . . . . . . . . . . . . . . . 69

4.3.1 Software and algorithms . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Global bifurcation analysis of the delayed Morris-Lecar system 70

4.3.3 Numerical analysis of the results of the phase model . . . . . 74

4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Asymptotic analysis for large values of γ 83

5.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Problem in perturbations. . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Solution in perturbations . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Explicit form of z0(T ) and z1(T ). . . . . . . . . . . . . . . . . . . . 87

5.5 Synchronization in the case of γ > 0 . . . . . . . . . . . . . . . . . . 87

vi



5.5.1 Properties of z1(T ). . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Estimate of the norm of R(T, ε) . . . . . . . . . . . . . . . . 89

5.5.3 The estimate of Rx(T, ε) . . . . . . . . . . . . . . . . . . . . 91

5.5.4 Approximation of x(t) . . . . . . . . . . . . . . . . . . . . . 92

5.5.5 Simplification in the case of conductance-based models . . . 93

5.5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Unbounded growth in the case of negative γ . . . . . . . . . . . . . 98

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion 104

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 107

vii



List of Tables

2.1 Values of parameters used in the Morris-Lecar equations . . . . . . 21

4.1 Comparison of theoretical and experimental values of τ for the type
I parameter set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Comparison of theoretical and experimental values of τ for the type
II parameter set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



List of Figures

2.1 Typical neuron morphology . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Injected pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Responses of the neuron to the pulses injected . . . . . . . . . . . . 8

2.4 Input applied to a neuron . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Response of the type I . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Response of the type II . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Period vs I plot for the type I oscillation . . . . . . . . . . . . . . . 11

2.8 Period vs I plot for the type II oscillation . . . . . . . . . . . . . . 11

2.9 Neuron as an electrical ciruit . . . . . . . . . . . . . . . . . . . . . . 13

2.10 Nullclines of the Moris-Lecar system for gca = 1 and i = 0 . . . . . . 22

2.11 Nullclines of the Moris-Lecar system for gca = 0.5 and i = 0.09 . . . 22

2.12 Bifurcation diagram for gca = 1 . . . . . . . . . . . . . . . . . . . . 23

2.13 Nullclines of the Moris-Lecar system for gca = 0.5 and i = 0 . . . . . 24

2.14 Bifurcation diagram for gca = 0.5 . . . . . . . . . . . . . . . . . . . 25

2.15 Schematic representation of the chemical (left) and electrical (right)
synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.16 Scheme of two coupled neurons. . . . . . . . . . . . . . . . . . . . . 29

3.1 Parametrization of the limit cycle σ by the points of an interval
[0, 2π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 H(ϕ) as the sum of first 3, first 5, and first 480 terms of its Fourier
series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Hodd(ϕ) vs ϕ for the type I parameter set . . . . . . . . . . . . . . . 46

3.4 Hodd(ϕ) vs ϕ for the type II parameter set . . . . . . . . . . . . . . 48

3.5 H ′
delay(ϕ̄) vs η for the type I parameter set . . . . . . . . . . . . . . 49

3.6 H ′
delay(ϕ̄) vs η for the type II parameter set . . . . . . . . . . . . . . 50

ix



3.7 Hdelay(ϕ) vs ϕ for η in the transition interval for Type I (blue) and
Type II (red) system . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Scheme of the phase model validity . . . . . . . . . . . . . . . . . . 52

4.1 Graphs of y1(x) and y2(x) with respect to x for important values of
γ. The number of intersection points is the number of equilibrium
points of (4.1) for the type I parameter set . . . . . . . . . . . . . . 58

4.2 Graphs of y1(x) and y2(x) with respect to x for important values of
γ. The number points of intersection is the number of equilibrium
points of (2.16) for type II parameter set. The red line corresponds to
y1(x), the blue line - to y2(x) = 2γ1x, the green line - to y2(x) = 2γ2x
and the cyan line - to y2(x) = 2γ3x. . . . . . . . . . . . . . . . . . . 60

4.3 Bifurcation diagram of system (4.5) with respect to γ for the type
I parameter set. The y axis provides the L2 norm of each solution,
while the x axis corresponds to the value of γ. . . . . . . . . . . . . 64

4.4 Bifurcation diagram of system (4.5) with respect to γ for the type I
parameter set. The y axis provides the maximum of v1(t) along each
solution profile, while the x axis corresponds to the value of γ. . . . 65

4.5 Suppressed periodic solution for γ = −0.22. The x axis denotes time
t, while the y axes shows voltages v1(t) and v2(t) . . . . . . . . . . . 67

4.6 Bifurcation diagram of system (4.5) in Norm-γ axes with greater
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Bifurcation diagram of the system (4.5) for the type II parameter set 69

4.8 Stability diagram of the symmetric branch of equilibrium points for
type II parameter set and τ = 0.01 . . . . . . . . . . . . . . . . . . 72

4.9 Stability diagram of the symmetric branch of equilibrium points for
type II parameter set and τ = 2.7 . . . . . . . . . . . . . . . . . . . 73

4.10 Stability diagram of the non-symmetric branch of equilibrium points
for type II parameter set and τ = 2.7 . . . . . . . . . . . . . . . . . 74

4.11 Hopf points in the γ-τ plane for the type II parameter set . . . . . 75

4.12 Bifurcation picture with respect to γ for type I (top) and type II
(bottom) parameter sets . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Branches of in-phase periodic solutions with respect to τ for γ =
0.001 (top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type
I parameter set. Red circles correspond to the stable solutions, and
green ”+” signs correspond to the unstable solutions. . . . . . . . . 77

4.14 Branches of anti-phase periodic solutions with respect to τ for γ =
0.001 (top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type
I parameter set. Red circles correspond to the stable solutions, and
green ”+” signs correspond to the unstable solutions. . . . . . . . . 78

x



4.15 Branches of in-phase periodic solutions with respect to τ for γ =
0.001 (top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type II
parameter set. Red circles correspond to the stable solutions, and
green ”+” signs correspond to the unstable solutions. . . . . . . . . 79

4.16 Branches of anti-phase periodic solutions with respect to τ for γ =
0.001 (top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type II
parameter set. Red circles correspond to the stable solutions, and
green ”+” signs correspond to the unstable solutions. . . . . . . . . 80

5.1 Graphs of voltages v1 and v2 for decoupled(upper graph) and coupled
with coupling strength γ = 10(lower graph) type I Morris-Lecar
neurons with inputs of i1 = 0.09 and i2 = 0.06 . . . . . . . . . . . . 102

5.2 Graphs of voltages v1 and v2 for decoupled(upper graph) and coupled
with coupling strength γ = 10(lower graph) type I Morris-Lecar
neurons with inputs of i1 = 0.09 and i2 = 0.08 . . . . . . . . . . . . 103

xi



Chapter 1

Introduction

The present thesis is devoted to the analysis of gap-junctional coupling between
neurons. Neurons can exchange signals between each other via two qualitatively
different mechanisms - electrical coupling realized by gap-junction connections and
chemical coupling provided by neurotransmitters. Early studies of neurons assumed
that most of the information in higher mammals is transmitted by chemical cou-
pling. However, newer studies suggest that gap-junctional connections in higher
mammals occur more frequently than was initially assumed [1].

To begin we briefly review the literature on gap-junctional coupling. Recent
studies have verified the existence of gap junctional connections in neocortex, audi-
tory cortex and hippocampus of higher mammals including humans [1, 2, 3, 12, 13,
14, 15]. In many cases electrical and chemical coupling occur together [1, 3, 12, 28].
Electrical coupling frequently occurs between neurons of similar type [2, 12, 27] and
sometimes between the neurons of different types [15]. In the case when electri-
cal coupling occurs between the same type of neurons, it is believed to contribute
to synchronization of the neuronal behavior [2, 13, 27]. Chemical and electrical
coupling often occur together, and in these cases they can lead to complicated be-
havior, for example, bistable synchronous and anti-synchronous behavior patterns
were observed in GABAergic neurons [28].

Finally, we note that electrical coupling can occur between neurons separated
by distances from 50µm [14] up to ≈ 1000µm [12]. The latter relatively large dis-
tance may cause an effect of time delay in the signal transmission. The strength
of the electrical coupling can vary as well. Scientists distinguish weak and strong
coupling. Weak coupling is usually understood as infinitesimal coupling, or cou-
pling that is small enough in order to be considered as a small parameter in the
perturbational analysis. Strong hence denotes any coupling that cannot be consid-
ered as weak. Some aspects of the relationship between strong and weak coupling
in gap-junctional coupled neurons were studied in [38].

An increased interest in electrical coupling in the biological literature motivated
us to study the effects of the coupling strength and time delay on an electrically
coupled neuronal network. In order to address this question, we choose to study
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a simple network of two identical electrically coupled neurons. Each neuron is
modeled by the Morris-Lecar neuronal model, which is a simple neuronal model
having biophysical meaning. Another advantage of Morris-Lecar model is the fact
that it can demonstrate two different classes of neuronal excitability.

We will analyze electrical coupling in the dynamical systems framework. The
analysis is done with respect to all values of the coupling strength. Despite the fact
that negative and large positive values of coupling strength are physically impossi-
ble, inclusion of those values in our study helps to better understand the dynamics
in the physical parameter range, and hence contributes to the development of a
general theory.

Analysis of neural systems with time delay is important and yet not fully devel-
oped mathematical problem. Variation of the time delay can cause various effects
on the system, including oscillator death or attractor switching (see [6]). [6] pro-
vides an overview of the possible effects of delays on the neural systems. Type I and
type II excitable systems with time delays were studied in [4] using the Terman-
Wang and Fizhugh-Nagumo models. However, in this and some other papers on
neural networks with time delays neurons are considered to be non-oscillating in the
uncoupled state, while we will consider inherently oscillating neurons. This setup
leads to analysis of phase models with time delay in the case of weak coupling.
Studies in this area were recently done by Smith in [34]. However, in his paper
Smith considers Fithzugh-Nagumo model, which is of type II only. The present
thesis hence complements the analysis done in [34] and [4].

In the present thesis we also go beyond weak coupling and perform asymptotic
analysis on an arbitrary conductance-based model for large positive and negative
values of the coupling strength. It turns out that this analysis contributes to the
theory of nearly linear systems developed in [30], provides a way to estimate a
boundary between weak and strong coupling for an arbitrary gap junctionally cou-
pled model, and contributes to the understanding of the effects of gap junctional
coupling on synchronization.

The present thesis has the following structure. In chapter 2 we provide the
physical background to the problem. We describe the way in which the neuron
generates and transmits signals, types of neuronal excitability, possible ways of
modeling neurons, derivation and properties of the Morris-Lecar model, mecha-
nisms and ways of mathematical modeling of electrical and chemical coupling. The
mathematical definition of the problem to be studied concludes the chapter.

Chapter 3 is devoted to analysis of the coupled Morris-Lecar system in the
case of weak coupling. We approach the problem using an invariant manifold
reduction technique, and hence reduce the complete coupled Morris-Lecar system
to the corresponding phase model. Next we determine the stable periodic solutions
by analysis of the phase model with respect to the values of the coupling strength
and time delay.

In Chapter 4 the coupled Morris-Lecar system is analyzed numerically. We
determine the structure of equilibrium points, analyze the bifurcation diagram of
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the non-delayed Morris-Lecar model using XPPAUT software, and then analyze the
bifurcation diagrams of the delayed Morris-Lecar model using DDE-BIFTOOL.
Numerical analysis verifies the correctness of the analysis done in chapter 3 and
provides an estimate of the region of validity of the phase model.

In Chapter 5 we analyze the special case of large values of the coupling strength
using asymptotic analysis, and Chapter 6 summarizes results of the present thesis
and suggest directions of possible future work.
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Chapter 2

Physical background

In this chapter we will provide a short physical background to the area of our re-
search.We start with the definition and general description of a typical neuron and
its properties following [37] and [26]. Next we examine the principles of mathe-
matical modeling of neuronal signal generation and transmission. We consider the
underlying principles and assumptions of single-compartment conductance-based
models. This part mainly follows [7] and [33].

The general information discussed above provides a basis which allows us to
proceed to a detailed description of the model we are going to work with: the
Morris-Lecar model. We begin our examination of the model with a study of
the experiments and methods that led to the derivation of the model; mainly the
original paper of Morris and Lecar [29] and a recent summary article written by
Lecar [25] will be considered. Next we non-dimensionalize the model and discuss the
mathematical properties of the non-dimensionalized version following the analysis
of Rinzel and Ermentrout [32].

At the end of the present chapter we discuss types of connections between neu-
rons. A short overview of possible connection types is followed by a more detailed
examination of the electrical type of connection and its mathematical modeling.
The content of the chapter provides a motivation for the problem that is going to
be studied throughout this thesis. Thus, the full problem formulation completes
the present chapter.

2.1 Structure of a typical neuron. Signal gener-

ation and transmission in neurons.

I would like to start this section with an elegant definition of the neuron given by
Llinas in [26]:

“Neurons are the cells that underlie the function of the nervous system includ-
ing the brain, spinal cord, peripheral sensory systems and enteric (gut) nervous
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system. The anatomical variation of these neurons is large, but the general mor-
phology allows these cells to be classed as ‘neurons’ (coined in 1891 by Wilhelm
von Waldeyer)”.

Following the definition above, consider the typical neuron morphology.

2.1.1 Structure of a single neuron

Figure (2.1) provides the schematic structure of a neuron. The important functional
parts are labeled on the figure. A short description of each part and its functionality
is provided below. More detailed descriptions of selected parts of the neuron and
their role are given in the following subsections.

Figure 2.1: Typical neuron morphology

The soma is the central cell body of the neuron. It contains the neuron’s ge-
netic material. The soma is responsible for maintaining the neuron’s vital activity,
processing incoming currents and generation of a response signal. The soma is
surrounded by the cell membrane, which bounds the soma and defines the intracel-
lular area. The cell membrane contains the ionic channels, which are responsible
for transmission of ions and play an important role in the generation of electrical
signals by the neuron. The dendrites are branch-like protrusions which come out of
the cell body. A typical cell has a large number of the dendrites which are highly
branched. Dendrites are responsible for delivering information from the other neu-
rons and receptors to the cell. The axon is a long fiber-like extension of the soma. It
is responsible for the transmission of a signal to another neuron. The space outside
of the neuron is filled by the intercellular fluid.
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It worth mentioning that not all neurons necessarily fit into the scheme pre-
sented here (see [26] for more detailed overview and for the possible exceptions).
Nevertheless, the structure of the vast majority of neurons can be represented by
the scheme provided, and we will consider only such neurons in this thesis.

2.1.2 Signal generation and procession in neuron.

On the intracellular level signals are transmitted mostly in electrical form. The neu-
ron receives an input current from the other neurons and receptors via its dendrites,
processes this input electrical current and generates some output. An output is then
transmitted via the neuron’s axon in the form of a self-regenerating electrical wave,
also known as an action potential or spike. Before describing the process of the
signal transmission and generation, let us discuss the electro-chemical mechanism
of the neuron first.

Consider a neuron in its steady state, i.e. with an absence of any input. Both
the interior and exterior of the neuron contain some number of charged ions.1 The
concentrations of ions of each type outside and inside of the neuron are different.
This difference in concentrations causes a voltage drop or potential difference across
the cell membrane, which is typically -50 to -80 mV depending on the type of
neuron being examined. This steady state voltage drop is also known as the resting
potential or the equilibrium potential of a neuron.

The energy for maintaining nonzero equilibrium potential is produced by a
mechanism which is called a biological ionic pump. The biological ionic pump
transfers the ions from one side of membrane to another using the power produced
by burning sugar and molecular oxygen.

However, there is a mechanism which acts against the biological ionic pump.
The cell membrane could let in some particular types of ions through ionic channels.
Each ionic channel (or gate) is responsible for its particular type of ion and could
vary between an open and closed state depending on the membrane voltage and
other biological properties.

When an ionic channel is open, the ions governed by this channel are able
to cross the membrane in the direction of their concentration and electro-chemical
gradients. As the ions flow through an open channel, it changes both the membrane
potential and the distribution of concentrations on the sides of the membrane. As
the membrane voltage reaches a certain value, electro-chemical and concentration
gradients become balanced, and ionic flow stops. This membrane voltage is called
equilibrium or reversal potential for the type of ions under consideration. The
term reversal is used because when the membrane potential passes through the

1The types of ions involved in the electrical process are different and could vary depending on
the type of neuron being considered. However, potassium (K+), sodium (Na+), chloride (Cl−)
and calcium (Ca++) ions typically make the most noticeable contribution in neuronal electro-
chemical processes.
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equilibrium potential of a certain ion type the direction of flow of that type of
ion reverses. As long as we consider a particular type of neuron with the preset
structure of ionic channels and pumps, the equilibrium potentials of each type
of ions involved in the process are determined by that structure. It is possible to
compute the equilibrium potential of each type of ion by evaluating its concentration
gradient using the principles of statistical mechanics and finding the corresponding
membrane potential. Equilibrium potentials for each type of ion involved in the
process are different. As was mentioned above, in the absence of any external input
the biological ionic pump and the ionic channels balance each other, keeping the
neuron at its resting potential.

At this point I would like to make a comment about some common terminology.
If the equilibrium potential of some type of ion is greater than the resting potential
of the neuron, then the flow of ions of that type would try to increase the membrane
potential in case of the corresponding ionic channel being opened. The current
caused by this type of the ion is called excitatory or depolarizing current. The
current depolarizes the cell membrane by making its potential more positive and
excites the cell membrane by releasing the energy stored by the biological ionic
pump.2 Otherwise the current is called hyperpolarizing or recovery current. We
follow [23] with this terminology, and we will use it consistently throughout the
thesis.

Now we are ready to consider a neuron that is receiving some signal. The elec-
trical current coming to the neuron by its dendrites or via experimental electrode
is also called applied or injected current. Depending on its nature, injected cur-
rent could either decrease or increase membrane potential. Consistent with the
terminology above, the current that is decreasing membrane potential is called hy-
perpolarizing or inhibitory current, while the current that is increasing membrane
potential is called depolarizing or excitatory.

Let us first consider the case where the injected current is given by a single pulse.
When a pulse is not big enough, the cell membrane responds with an exponentially
decaying RC-type voltage perturbation and then returns to its rest state. However,
if the injected current is big enough to make the membrane voltage exceed its
threshold value (typically around -55 mV ), the neuron generates a single pulse
which is then propagated without weakening along all the branches of the axon.
Generation and maintenance of this pulse is provided via the mechanism described
above, by realizing the energy stored by the biological ionic pump through the
voltage-dependent ionic currents. Figures (2.2) and (2.3) provide an illustration
of the behavior described above. Figure (2.2) shows four square wave signals that
were applied to a neuron which was initially at its resting potential(-50 mV for
the neuron under consideration). Current stimuli of 20 and 40 µA were not strong
enough to increase the voltage beyond its threshold value and the neuron responded
with an RC-type signal. However, currents of 60 and 80 µA were strong enough

2Recall that ionic pump attempts to keep membrane potential at a negative value. In other
words it is constantly hyperpolarizing membrane until it reaches its equilibrium potential.
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Figure 2.2: Injected pulses
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Figure 2.3: Responses of the neuron to the pulses injected
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to increase the voltage beyond its threshold value. The neuron responded with an
action potential which consisted of the rapid overshoot over zero potential following
by a rapid hyperpolarization. Figures (2.2) and (2.3) were created by numerical
simulation of the Morris-Lecar neuron model with the XPPAUT software. The
set of physical parameters was taken to be equal to the set used in the original
simulations in [29].

Let us now consider the case where the signal is not a singular pulse but a
sustained constant input. If the input signal I is above the threshold value, the
neuron could demonstrate various and very rich behavior, depending on its type
and the nature of the incoming signal. One of the possible responses is an oscilla-
tory response. I would like to discuss oscillatory phenomena more fully, since it is
important for the research done in the present thesis. Oscillations are the periodic
in time series of spikes or sine-like waves. Depending on the neuron being consid-
ered, the scientists distinguish between two different types of oscillations, which are
called type I and type II oscillations, respectively. This classification was first ob-
served and introduced by Hodgkin in his work [18]. Let us illustrate the difference
between those two types by consideration of an example.

Figures (2.5) and (2.6) provide the response of neurons exhibiting type I and
type II oscillations to the same applied stimulus, which is provided on figure (2.4).
As the applied current passes its threshold value, the type I neuron starts oscil-
lations with the small frequency. As the input increases, the oscillation frequency
increases as well. However, the oscillator frequency could be made arbitrarily small
by an appropriate choice of the strength of the applied current.

The oscillator of type II demonstrates qualitatively different behavior. Oscilla-
tions are set at some fixed frequency, which cannot be made any smaller. If the
value of the applied current gets close to its threshold value, it may affect the time
required for oscillations to start. However, the steady state frequency of oscillations
does not get below some nonzero value.

The difference between type I and type II oscillations could be observed more
clearly by considering the relationship between the period of oscillations and the
value of the applied current I. Figures (2.7) and (2.8) provide period vs I graphs
for type I and type II oscillations respectively. These plots were created by nu-
merical continuation with respect to I of the periodic solution of the Morris-Lecar
equations. As we will see in the subsequent section, the Morris-Lecar equations
are a mathematical model of a neuron, which can describe both type I and type II
neurons depending on its parameter values. In the case of type I oscillation, the
period of oscillations approaches infinity as I approaches its threshold value Itr,
whereas in the case of type II oscillation the period remains finite at I = Itr. Note
the different scales in the y axis of each graph.

Oscillations of both types are observed experimentally in neural networks. More
theoretical information on signal processing and generation can be found in [7] or
[23] , while papers [19] and [29] provide interesting experimental observations of
neuronal behavior. Despite the fact that the figures provided to illustrate the
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present section were created by numerical simulation of the mathematical model of
the neuron, actual neurons demonstrate qualitatively the same behavior. However,
experimental data cannot be included in the present thesis due to the copyright
reasons. It can be found in [19], [11] or [18].

2.2 Neuron as a mathematical model.

There are several different approaches to mathematical modeling of signal genera-
tion and transmission in neurons. Among the most widely recognized are integrate-
and-fire, spiking, soliton and conductance-based models. More detailed information
on integrate-and fire and spiking models can be found in [7], while [16] provides
an insight to the key concepts of soliton models. In this thesis we will consider
only single-compartment conductance-based models. These are the simplest neu-
ral models where the parameters can be interpreted biophysically and measured
experimentally.

2.2.1 General overview of underlying principles and deriva-
tion of single-compartment conductance-based mod-
els.

The basic foundations of conductance-based models were developed by Allan Lloyd
Hodgkin and Andrew Huxley. Their original paper [19] was published in 1952 and
introduced the first conductance-based model named in the honor of its inventors.
The authors received the 1963 Nobel Prize in Physiology or Medicine for that work.
[19] provides general ideas and methods to further work in the area. These ideas
were generalized and further developed over the next 50 years. The formalization of
the Hodgkin and Huxley point of view is nowadays known as the conductance-based
approach to modeling neurons.

The electro-chemical mechanism of processing input current and signal genera-
tion in a neuron is replaced by a simplified electrical circuit in this method. The
neuron membrane is modeled by a capacitor, while ionic gates and biological ionic
pump are each represented by a conductance-battery pair. The electrical scheme
of a neuron governed by n different ionic gates is shown in figure (2.9).

The conductance (inverse of resistance) gi describes the state of i-th ionic gate.
The closed ionic gate is modeled by gi = 0, while the non-closed state of the ionic
gate is described by some nonzero gi, with a maximal value ḡi corresponding to
the ionic gate being completely open. It is always assumed that all ionic gates
act independently from each other. The state of each gate could depend only on
membrane potential and some other biological parameters, but not on the states of
other ionic gates. Thus, gi = gi(V, [σ1, .., σn]).

Battery Vi determines the strength and direction of i-th ionic flow. Thus, Vi is
equal to the reversal potential of ions of i-th type, and the direction of the battery
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Figure 2.9: Neuron as an electrical ciruit

corresponds to the direction of ionic flow for the membrane voltage above and below
the reversal potential respectively.

The biological ionic pump is modeled by the battery and resistor pair as well,
and is typically included in a leakage current with equilibrium voltage VL and
conductance gL. This leakage current represents ionic channels not included in the
model as separate conductances, and the biological ionic pump itself.

According to Kirchhoff’s law, the voltage of the circuit provided on the figure
above is described by the following equation:

C
dV

dt
= I − gL(V − VL)−

N∑
i=1

gi(V )(V − Vi). (2.1)

The term I in the equation above represents the input signal, which is the applied
current introduced in subsection 2.1.2. In order to complete the model above, it is
necessary to specify each gi as a function of V and possibly some other biological
parameters of the system. For simplicity we will only consider gi depending only
on V . More specific models where conductances depend also on the concentration
of various ions can be found in [7],[23]. Typically gi are defined in the following
form (from [33]):

gi(V ) = ḡia
xby, or gi(V ) = ḡia (2.2)

where ḡi is a constant corresponding to the maximal conductance of the ionic chan-
nel being considered, x and y are some fixed integers, while variables a and b
describe the dynamics of the ionic channel being opened and closed. a and b are
called “activation” and “inactivation” gating variables respectively. They are di-
mensionless and their values lie between 0 and 1.

The ionic channel is assumed to be voltage dependent. In other words, for each
membrane voltage V there is fixed state (or conductance) of the ionic channel asso-
ciated with this particular voltage V . However, as the membrane voltage changes
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to some new voltage V ′, the ionic channel does not go to a state associated with V ′

instantaneously, but takes some time either for its “activation” or “inactivation”.
Variables a and b (or only variable a) describe this dynamics. It is assumed that
the kinetics of variables a and b are first order, they are governed by the following
equations:

da/dt = [a∞(V )− a]/τa(V )
db/dt = [b∞(V )− b]/τb(V )

, or
da/dt = λa(V )[a∞(V )− a]
db/dt = λb(V )[b∞(V )− b]

. (2.3)

The functions a∞(V ) and b∞(V ) describe the state of the ionic channel associated
with each voltage V , while variables τa(V ) and τb(V ) determine the time required
for the ionic channel to activate or deactivate. Sometimes it is more convenient to
use the inverse of τi(V ): λi(V ) = 1/τi(V ). Variable λi(V ) is then referred to as the
rate constant for activation or inactivation of the i-th ionic channel.

The choice of equation describing the ionic channel and the powers x and y, as
well as the choice of functions a∞, b∞, τa and τb could be explained thermodynam-
ically and in terms of statistical mechanics(for example, see [23] pages 146-152).
However, the final word is always given by experiments. The parameters and the
type of function are chosen in order to fit experimental observations of the neuron
being modeled. Typically functions a∞(V ) and b∞(V ) have a sigmoid form, while
functions τa,b(V ) are bell-shaped.

Since experiments are extremely important in deriving and improving conductance-
based models, we refer to some of them later. Thus, in the conclusion of this
overview I would like to provide a brief description of two common experiments on
neurons.

• Voltage-clamp experiment. The neuron membrane is held under the constant
voltage drop V during this type of experiment. The effect of a constant voltage
drop independently of the current through the cell membrane is achieved by adding
a feedback loop. Thus, an experimentalist could observe and measure the currents
flowing through the cell membrane under the various fixed membrane potentials.

• Current-clamp experiment. In this type of experiment an applied current is
provided to the neuron by an injected electrode in the form of a sustained constant
input. An experimentalist could measure the voltage of the cell membrane during
this type of experiment, and thus determine the response of the cell membrane to
each particular value of an input current.

There is the possibility of blocking certain types of ionic currents by adding spe-
cial chemicals to the extracellular fluid during both types of experiments described
above. Thus, altogether experiments provide a powerful tool for determining an
appropriate explicit model for each particular neuron.

Remark: Conductance-based models are divided into two types - single-compartment
and multi-compartment models. The term single-compartment means that the po-
tential difference between the interior and the exterior of the cell is assumed to
be the same everywhere on the cell membrane. The membrane voltage drop can
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therefore be described by a single variable V , and the whole cell can be modeled
by an equation of type (2.1).

However, if we would like to take into consideration the difference between
ionic concentrations in different parts of the cell, we may want to use a multi-
compartment type model in order to achieve better plausibility. The general idea
of a multi-compartment model is same as idea described above. Each part of the
cell is modeled like a single-compartment model, then terms describing interaction
between different parts of a cell are introduced. We are not going to consider
multi-compartment models in this thesis, but more information on that topic can
be found in [7].

2.3 Morris-Lecar model - underlying assumptions,

derivation and non-dimensionalization, typi-

cal behavior

The Morris-Lecar model was first introduced in 1981 by Lecar and Morris [29].
The model was intended to describe a barnacle giant muscle fiber. We will start
describing the model by briefly reviewing the way it was originally derived.

2.3.1 Underlying assumptions.

Studies of the barnacle giant muscle fiber done in 1969-1979 showed that it could
be represented by a conductance system consisting of two voltage dependent ionic
channels - Ca++ and K+ channels respectively. These channels are considered to
be independent of each other. The authors followed this assumption and tried to
describe a neuron by the following set of equations:

CV̇ = −ḡL(V − VL)− ḡCaM(V − VCa)− ḡKW (V − VK) + I,

Ṁ = λ̄MλM(V ) [M∞(V )−M ] ,

Ẇ = λ̄WλW (V ) [W∞(V )−W ] .

(2.4)

As we have shown before, system (2.4) is in the general form of a model representing
an arbitrary neuron governed by two independent voltage dependent conductances.

Here I is the applied current(µA/cm2), C represents membrane capacitance
(µF/cm2), V is membrane potential (mV ), while ḡL,ḡCa and ḡK give the maximum
instantaneous conductance values for the leak, Ca++ andK+ pathways of the circuit
respectively (mS/cm2). As it was mentioned above, the conductances gCa and gK

govern the voltage dependent ionic pathways, and gL represents the pathways for
the natural leakage of the current.

VL,VCa and VK are the equilibrium potentials, corresponding to the leak, Ca++

and K+ conductances respectively (mV ).
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The variables M and W represent the fraction of open Ca++ and K+ channels
respectively (dimensionless). M∞(V ) and W∞(V ) are the fractions of open Ca++

and K+ channels at the steady state, while λW (V ) and λM(V ) are rate constants
for opening Ca++ and K+ channels (s−1). For the barnacle giant fiber the func-
tions M∞(V ), λM(V ), W∞(V ) and λW (V ) were modeled by the following explicit
expressions:

M∞(V ) = 0.5{1 + tanh[(V − V1)/V2]},
λM(V ) = cosh[(V − V1)/2V2],
W∞(V ) = 0.5{1 + tanh[(V − V3)/V4]},
λW (V ) = cosh[(V − V3)/2V4].

(2.5)

Here V1 and V3 are defined to be the potentials at which M∞(V ) and W∞(V )
respectively are equal to 0.5, V2 and V4 correspond to the reciprocal slope of voltage
dependance of M∞(V ) and W∞(V ), and λ̄M , λ̄W are maximum rate constants for
Ca++ and K+ channel opening.

System (2.4) served as the basis for the research which led to the development
of the Morris Lecar model. Furthermore, the authors of the model combined exper-
iments with numerical simulations of (2.4) in order to determine the contribution
of each ionic current, characterize the barnacle giant fiber behavior and find a way
to simplify the system without losing information. Let us consider the experiments
first.

2.3.2 Experimental observations.

Experiments were done in three stages - with Ca++ current being blocked, K+

current being blocked, and with both currents being active. The researchers inves-
tigated the voltage behavior of the cell membrane under current clamp. A neuron
was separated from the organism and placed in a special liquid containing some
concentrations of Ca++ and K+ ions. These concentrations were varied during ex-
periments with different species of barnacle giant fiber. Blocking of ionic currents
was done by adding special components to the liquid. Observations showed the
following results:

K+ conductance. With the Ca++ conductance blocked, the membrane responded
to injected current with an RC-type perturbation. As the injected current was
increased, a slight difference from RC circuit behavior was observed, which was
attributed to nonlinear effects in K+ conductance. When the injected current was
stopped, the membrane voltage returned almost exponentially to its resting voltage.

Ca++ conductance. With the K+ conductance blocked, the membrane demon-
strated more complex behavior. A small injected current still resulted in an RC
type response. However, as the injected current passed some threshold value, bista-
bility in the membrane voltage was observed. The membrane voltage rapidly in-
creased to +20mV and stayed in its new state with slow depolarization. Even after
the injected current was removed, the voltage did not go straight to its resting state.
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It simply underwent a small drop caused by the removal of the injected current,
and stayed in its new stable state for up to hundreds of milliseconds (or several
seconds) and then finally returned to its resting value.

K+ and Ca++ conductances together. The behavior of a system containing both
K+ and Ca++ ions was essentially different from the behavior of a one-conductance
system. When the injected current passed some threshold value, the voltage started
to oscillate. Oscillations were observed over a wide range of injected current values
and could be damped or continuous depending on the values of experimental pa-
rameters (such as ḡL and ḡCa). The oscillations usually stopped after the injected
current was blocked, however, this was not always the case. One more important
observation was that the fiber was extremely sensitive to the concentration of Ca++

in the liquid surrounding the neuron.

At this point I would like to discuss some important aspects of these experi-
ments:

The experiments have shown that the barnacle giant fiber exhibits oscillations over
a wide range of values of injected current and other biophysical parameters. The
oscillations had different amplitudes and shapes for different realizations of the
experiment. The authors attributed this effect to the variability of ḡL from prepa-
ration to preparation, and to the fact that ḡL seemed to be changing in time after
the neuron was separated from the organism. However, the experiments showed
that oscillatory behavior is typical for the fiber over a wide parameter range and
that it seemed to be created by the combined action of K+ and Ca++ currents. In
order to verify or deny this assumption, it was necessary to check if the observed
data could be explained by system (2.4). Thus, let us proceed to the numerical
simulation and analysis of (2.4).

2.3.3 Analysis of the mathematical model.

Let us consider (2.4) in the case when one of the conductances is blocked. The
case of the Ca++ current being blocked is described by ḡCa = 0, while the case of
the K+ current being blocked could be described by ḡK = 0. In both cases (2.4)
reduces to the form:{

CV̇ = −ḡL(V − VL)− ḡiµ(V − Vi) + I
µ̇ = λ̄µλµ(V )[µ∞(V )− µ]

,

where µ = W, i = K or µ = M, i = Ca.
(2.6)

Let us consider the structure of the equilibrium points of (2.6). They can be found
by setting the left hand sizes of (2.6) to zero. We obtain that{

0 = −ḡL(V − VL)− ḡiµ(V − Vi) + I
0 = λ̄µλµ(V )[µ∞(V )− µ]

,⇒

{
V = I+ḡLVL+ḡiµ∞(V )Vi

ḡL+ḡiµ∞(V )

µ = µ∞(V )
.

It follows that the number of equilibrium points is determined by the equation

V = (I + ḡLVL + ḡiµ∞(V )Vi)/(ḡL + ḡiµ∞(V )). (2.7)
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The main difference between the cases i = Ca and i = K is that the Ca current
is excitatory, while the K+ current is recovery. In other words, VCa > VL, while
VK < VL for all realizations of the experiment. The parameters µi,∞(V ) do not
differ sufficiently for i = Ca and i = K. It turns out that for Vi < VL equation
(2.7) has a unique root, while for Vi > VL it can have up to three roots (see [29]
for details). This explains the phenomena observed in experiments with one of
the currents being blocked. For the Ca++ current being blocked the mathematical
model has a unique equilibrium point to which it returns after the RC response,
while the model without the K+ current exhibits bistable behavior depending on
the value of the injected current.

Let us consider the model equations for the K and Ca++ conductances acting
together. Numerical simulations of the full third-order system (2.4) have shown
voltage oscillations for some range of parameters and injected current. However,
the third-order system is hard to work with, since it does not admit the geometrical
analysis which can be done in R2. Experimental observations of relaxation times
for the variables W and M have shown that M responds to a voltage change much
faster than W . Thus, it seemed physically reasonable to consider a reduced system
only with the variables V and W , assuming that M = M∞(V ). However, this
reduction needs mathematical justification. It turns out that third order system
(2.4) can be transformed to the second-order system with the little change of its
dynamical properties. Let us provide a proof of this fact.

2.3.4 Reduction to two dimensions.

Tikhonov’s theorem provides the conditions under which the dynamics of an n-
dimensional system can be described by an m-dimensional subsystem. Tikhonov’s
theorem was originally published in [35] (in Russian), the English translation is
available in [31]. In this subsection we will provide the preliminary setup and the
statement of Tikhonov’s theorem following [31], and then we will apply the theorem
to system (2.4).

Consider the following n-dimensional dynamical system:{ dpi

dt
= fi(t, p, q), i = 1..m

εj(p, q)
dqj

dt
= Fj(t, p, qj), j = 1..n−m

(2.8)

We require the functions εj(p, q) to satisfy the following conditions: εj ≤ εj(δ) for
some parameter δ, and lim

δ→0
εj(δ) = 0.

Let q̄j = ψj(t, p) be the root of the equation Fj(t, p, qj) = 0.

• The root is called stable if there exists r0 > 0, such that the function

F (t, p, qj) =
m∑

j=1

[qj − ψj(t, p)]Fj(t, p, qj)
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is negative for all t, p, q such that qj 6= ψj(t, p) and r =

√
m∑

j=1

[qj − ψj(t, p)]
2 < r0.

• The region of influence of the stable root q̄ = (q̄1, .., q̄n−m)|q̄j = ψj(t, p) is given
by the set of points (t0, p0, q0) in Rn+1 which satisfy the following property:

signF (t0, p0, q) = signF (t0, p0, q0)

for all q between q0 and q̄ (i.e. q0
j ≤ qj < ψj(t0, p0), if q0

j < ψj(t0, p0) or ψj(t0, p0) <
qj ≤ q0

j , if q0
j > ψj(t0, p0) j = 1..(n−m)).

Tikhonov’s theorem

If the initial point (t, p0
i , q

0
i ) is contained in the region of influence of the sta-

ble root qj = ψ(t, pi) of the system (2.8), then as δ → 0 the integral curve
(t, pi(t, δ), vj(t, δ)) corresponding to the initial point (t, p0

i , q
0
i ) approaches the limit

(t, p̂i(t), ψj(t, p̂i)) uniformly in the region t ≥ t1 > t0, where p̂(t) = (p̂1, .., p̂m)T is
the solution of the degenerate system

dp̂i

dt
= fi(t, p̂i, ψj(t, p̂i)), i = 1..m.

p̂i(0) = p0
i

Thus, Tikhonov’s theorem provides explicit conditions under which an n dimen-
sional system can be reduced to an m dimensional subsystem. It turns out that
Tikhonov’s theorem is applicable to system (2.4), which can be rewritten in the
following form:

CV̇ = −ḡL(V − VL)− ḡCaM(V − VCa)− ḡKW (V − VK) + I

Ẇ = λ̄WλW (V ) [W∞(V )−W ][
1/(λ̄MλM(V ))

]
Ṁ = [M∞(V )−M ]

. (2.9)

Let us define ε(v) = 1/(λ̄MλM(V )), and δ = 1/λ̄M . Then the one-parameter family
ε(δ) satisfies the condition limδ→0 εj(δ) = 0.

The root of of the third equation of (2.9) is given by M̄ = M∞(V ) and

F (t, V,M) = − [M∞(V )−M ]2 < 0, M 6= M∞(V )

The form of function F (t, V,M) implies that the root M̄ is stable and that the
region of influence of that root is equal the whole R4 (Since signF (t0, V0,W0, M̄) =
signF (t0, V0,W0,M0) ≡ −1 ∀(t0, V0, N0,M0) ∈ R4).

Tikhonov’s theorem implies that as λ̄M → +∞, solutions of the reduced 2−D
system uniformly approach those of the full third-order system (2.4) for any initial
conditions (V0,M0,W0) ∈ R3, where the reduced system has following form:{

CV̇ = I − ḡL(V − VL)− ḡCaM∞(V )(V − VCa)− ḡKW (V − VK)

Ẇ = λW (V ) [W∞(V )−W ]
(2.10)

Thus, for large values of λ̄M system (2.10) gives a good approximation of the full
third order system (2.4). This reduction is crucial since second order systems can
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be analyzed by an examination of the properties of the vector fields on the plane.
More specifically, two dimensional vector fields and two-dimensional phase planes
are essentially different from higher order vector fields and phase spaces, since in the
plane any simple closed curve subdivides it into two disjoint open regions: “inside”
and “outside” of the curve. This statement follows from the Jordan Curve Theorem
and is not true for the higher dimensional spaces. It provides a basis for a powerful
mathematical apparatus which is used for examining the dynamical systems on the
plane only (from [8], see pages 327-330 for more detailed explanation and further
references in the area). Reduced system (2.10) is referred as the Morris-Lecar
model.

Note that Tikhonov’s theorem is applicable to the variable W as well as for
the variable M . However, λ̄W is typically much less then λ̄M in the experimental
observations of Morris and Lecar. Thus, the reduction of the variable M is justified,
but we may expect that variation of parameter λ̄W could highly affect the dynamics
of our system, since for large values of λ̄W the system shrinks to the first order
equation in V . For the rest of the thesis we are going to study the behavior of the
Morris-Lecar system (2.10).

2.3.5 Non-dimensionalization.

The non-dimensionalized form of Morris-Lecar equations is more convenient to work
with, since it is independent of the choice of physical units. We will follow [32] with
the non-dimensionalization procedure. Consider the Morris-Lecar model:{

CV̇ = I − ḡL(V − VL)− ḡCaM∞(V )(V − VCa)− ḡKW (V − VK)

Ẇ = λW (V ) [W∞(V )−W ]
(2.11)

The first equation contains ḡi and Vi as dimensional parameters in each of the
ionic currents. Let us divide the equation by the factor VCaḡref . VCa is chosen
in order to normalize the equilibrium ionic voltages, so that we will have vCa = 1
in dimensionless form. We could do so since equilibrium voltages usually do not
change a lot in different realizations of the model. In particular, VCa is never
equal to zero. However, for the conductances it is more convenient to normalize
everything towards some reference value. This is done since, depending on the
process being modeled, conductances can vary a lot. For example, sometimes it
is convenient to choose one of conductances to be equal zero in order to block it,
as we have seen in subsection 2.3.3. Thus, conductances are normalized towards
the reference value ḡref which is chosen to be ḡref = 4mS/cm2.(The value of ḡref is
equal to the value of ḡCa in one of the original experiments of Morris and Lecar [29]).
New dimensionless variables are v = V/VCA and w = W , while the dimensionless
parameters are gi = ḡi/ḡref , vi = Vi/VCa, i = I/(VCaḡref ). After division we obtain
the following:

(C/ḡref )v̇ = i− gL(v − vL)− gCaM∞(v)(v − 1) + gKw(v − vK).
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C/ḡref is the only dimensional constant left in the first equation of system (2.11).
Noting that it has the dimension of time, we let t̃ = C/ḡref be our scale in time.
Then t = t̂/t̃ is dimensionless time. Let the derivative with respect to t be denoted
by ′, while the derivative with respect to t̂ be denoted by .̇ Substitution of the
dimensionless time into the second equation of (2.11) gives us the following:

(1/t̃)w′ = λ̄WλW (V ) [W∞(V )−W ] .

The only dimensional parameter left in the right side of the equation is λ̄W . Re-
call that λW (V ) = cosh[(V − V3)/2V4]. Thus, let φ = λ̄W t̃ be new dimension-
less rate constant of opening K+ channels. This substitution concludes the non-
dimensionalization. In new variables complete system has following form:{

v′ = i− gL(v − vL)− gCam∞(v)(v − 1)− gKw(v − vK)
w′ = φλ(v) [w∞(v)− w]

, where

m∞(v) = 0.5{1 + tanh[(v − v1)/v2]}
w∞(v) = 0.5{1 + tanh[(v − v3)/v4]}
λ(v) = cosh[(v − v3)/2v4]

(2.12)

Comment: We write λ(v) instead of λw(v), since λ is the only rate constant left,
and so the index w is unnecessary.

2.3.6 Analysis of the behavior of the reduced model.

Table 2.1: Values of parameters used in the Morris-Lecar equations
Values of parameters which are the same for both type I and type II oscillators
Parameter Name Value
vCa Calcium equilibrium potential 1
vK Potassium equilibrium potential -0.7
vL Leak equilibrium potential -0.5
gK Potassium ionic conductance 2
gL Leak ionic conductance 0.5
φ Potassium rate constant 1

3

v1 Calcium activation potential -0.01
v2 Calcium reciprocal slope 0.15
v3 Potassium activation potential 0.1
v4 Potassium reciprocal slope 0.145

Values of parameters that differ for type I and type II oscillators
Parameter Name Type I value Type II value
gCa Calcium ionic conductance 1 0.5
i Applied current 0.09 0.15

In subsections 2.3.1-2.3.4 we have shown that the third order Moris-Lecar system
can be reduced to a two-dimensional system which exhibits qualitatively the same
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Figure 2.10: Nullclines of the Moris-Lecar system for gca = 1 and i = 0
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Figure 2.11: Nullclines of the Moris-Lecar system for gca = 0.5 and i = 0.09
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Figure 2.12: Bifurcation diagram for gca = 1

behavior. The non-dimensionalized form of the second-order system is given by
(2.12). In this subsection we will examine the phase plane properties of (2.12) and
study the different ways in which the system can enter an oscillatory state.

Let us begin with a short overview of the publications in this area. The proper-
ties of the reduced Morris-Lecar system were studied in [32] and [36]. [32] studies
the behavior of (2.12) with respect to variation of the input i for several fixed sets of
the other parameters, while [36] tracks the global bifurcation picture of the system
with respect to variation of parameters i,v3,gCa,φ and v4.

It is necessary to make a comment regarding the values of the physical parame-
ters in (2.12) before proceeding further with the analysis. In the present subsection
we will study the dynamics of (2.12) with respect to variation of the parameter i
for two fixed sets of the other physical parameters of the system. One parameter
set corresponds to the original physical parameter values used by Morris and Lecar
in their their experiments in [29]. It is consistent with one of the sets of parameters
used in [32]. For this parameter set the system (2.12) is a type I oscillator.

According to [36], variation of the single parameter gCa changes system (2.12)
into a type II oscillator. Thus, the second parameter set that we are going to use
corresponds to the type II oscillation and differs from the first set of parameters
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Figure 2.13: Nullclines of the Moris-Lecar system for gca = 0.5 and i = 0

only by the value of the parameter gCa. The numerical values of both parameter
sets are given in table (2.1), and differ only by the value of gCa: gCa = 1 in case of
the type I oscillation, and gCa = 0.5 in the case of type II oscillations (the values
of applied current i for type I and type II parameter set in table (2.1) will be
determined at the end of this subsection, since we will study the dynamics of (2.12)
with respect to variation of i).

Now we are ready to analyze the behavior of (2.12) with respect to the variation
of i. Consider the type I parameter set first. Let us examine the equilibrium
points and their properties. The equilibrium points of (2.12) are determined by the
intersections of its nullclines. 3 In our case nullclines have the following form:{

i− gL(v − vL)− gCam∞(v)(v − 1)− gKw∞(v − vK) = 0
w = w∞(v)

(2.13)

The w nullcline is given by w = w∞(v) which is a hyperbolic tangent, while the v
nullcline is N -shaped. Figure (2.10) shows nullclines for i = 0, i.e. in the absence
of any input. In this case the system has 3 equilibrium points. However, as the

3Recall that the i − th nullcline of an autonomous dynamical system x′ = f(x), x ∈ Rn is
defined as a mathematical locus x′i = 0, and is determined by an equation fi(x) = 0.
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Figure 2.14: Bifurcation diagram for gca = 0.5

input, i, is increased through its critical value ilim, two equilibrium points on the
lower side of w nullcline disappear, since the v nullcline does not intersect the w
nullcline at that side anymore, and only one equilibrium point is left (See figure
(2.11)).

Let us consider the stability of the equilibria next. The leftmost equilibrium
point on figure (2.10) is stable, while the two other equilibrium points are unstable.
Thus, the system does not exhibit oscillations for i < ilim. However, for i > ilim
the system becomes oscillatory. This case corresponds to the oscillations of type I,
since a limit cycle is created by coalescence of the equilibrium points. The critical
value i = ilim thus corresponds to the oscillation of an infinite period. By setting
the input current i arbitrarily close from above to the value ilim, the frequency of
oscillations can be made arbitrarily low. The oscillations continue for some range
of i, until they are lost in a Hopf-bifurcation, in which the third equilibrium point
becomes stable. Figure (2.12) provides a bifurcation diagram of system (2.12) with
respect to i and illustrates the description above. A graph of the period vs i is
given in figure (2.7) in subsection 2.1.2.

However, changing the single parameter gca dramatically changes the behavior
of the system. Consider the nullclines of the system for parameter set corresponding
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to the oscillation of type II, i.e. gCa = 0.5 instead of gCa = 1. The shape of the
v nullcline is changed and there exists only one equilibrium point for all physical
values of the parameter i. Figure (2.13) provides a plot of the nullclines for i = 0. As
i increases, the v nullcline shifts up, but the number of equilibrium points remains
unchanged. However, as i is increased, the stability of the equilibrium point is lost
in a Hopf bifurcation, and the oscillatory solution is created. Since the periodic
solution is created by a Hopf bifurcation, it has a finite period at i = iHopf , and
thus the oscillations are of type II.

The bifurcation diagram corresponding to the latter parameter set is provided in
figure (2.14), while a graph of the period vs i is provided in figure (2.8) in subsection
2.1.2.

2.4 Transmission of the information between neu-

rons.

2.4.1 Overview of connection types.

The mechanism which is responsible for the transmission of a signal from one neuron
to another is called a synapse. The components of the neuron which generates a
signal are called presynaptic, while the components of the neuron which receives
a signal are called postsynaptic. There are two qualitatively different types of the
synapses, which are called electrical and chemical synapses respectively.

Figure 2.15: Schematic representation of the chemical (left) and electrical (right)
synapses

Consider the structure of a typical chemical synapse first. Figure (2.15) provides
a schematic representation of a chemical synapse. The synaptic end or terminal be-
longs to the axon of the presynaptic neuron. It contains special secretory organelles
which are also called synaptic vesicles. The postsynaptic neuron is represented on
the figure by the end of its dendrite. It contains the special proteins which are
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called receptors. The axonal synaptic terminal is separated from the dendrite re-
ceptor with the narrow gap, which is typically 20 nanometers wide and is called a
synaptic gap.

When an action potential reaches the synaptic ending, it excites synaptic vesicles
and makes them release the special substances called neurotransmitters into synap-
tic gap. The neurotransmitters travel through the synaptic gap until they reach
the dendrite receptors. As neurotransmitters reach the postsynaptic site, they bind
with the receptors which make the dendrite membrane allow certain types of ions
to pass through it.4 Activation of the dendrite receptors changes its potential and
thus gives rise to a postsynaptic output signal.

The structure of the electrical synapse is more straightforward (see right pic-
ture of figure (2.15)). The presynaptic and postsynaptic neurons are physically
connected via special proteins which are called gap junctions. The gap junction
is a channel which allows ions to pass through. Figure (2.15) schematically repre-
sents gap junctional connection between the axon of the presynaptic neuron and
the dendrite of the postsynaptic one. However, gap junctions can be located in any
part of the presynaptic and postsynaptic neurons - possible connection types are
axon-dendrite, axon-soma, soma-soma, soma-dendrite or dendrite-dendrite.

The state of a gap junction generally can depend on some biophysical properties
such as the concentrations of different ions on its presynaptic and postsynaptic
sides, and is described by a synaptic conductance gsyn. The current travels both
ways through a gap junction, and hence changes the voltages on the presynaptic
and postsynaptic sides. Note that on the contrary with the chemical synapses, the
electrical synapses affect both presynaptic and postsynaptic sides. An effect of the
gap junction on the somas of presynaptic and postsynaptic neurons depends on the
location of the synapse and will be discussed in subsection 2.4.2.

Both types of synapses are common in the neural systems of humans and differ-
ent animals. Electrical synapses typically occur between neurons of the same type
(see [3], [13], [15] and [28]). Recent studies have suggested that electrical synapses
are important for the synchronization of signals from different neurons [27].

2.4.2 Modeling of the electrical synapses in
single-compartment conductance-based models.

Let us denote the synaptic current received by a post-synaptic neuron by the term
Isyn. Any kind of synapse between neurons could then be modeled by including the
term Isyn in the equation describing the voltage of the post-synaptic cell membrane.
In order to complete the model, one needs to define Isyn as an explicit function of
the parameters of pre- and -postsynaptic cells and possibly some other biophysical
quantities.

4One may define the receptors as ionic channels which are sensitive to the certain types of
chemicals called neurotransmitters.
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With chemical and electrical synapses Isyn is modeled differently. Since we are
not going to consider chemical synapses in the present thesis, we will consider only
the case of electrical synapses here. However, the information on modeling both
electrical and chemical synapses can be found in [23].

Consider two neurons connected by the electrical synapse. Let us discuss the
case of soma-soma connection first. The simplest model consists of replacing the
synapse by the resistor connecting the electrical circuits representing pre- and post-
synaptic neurons. According to Ohm’s law, in this case synaptic current could be
expressed as

Isyn = ḡsyn(Vpre − Vpost)

The term ḡsyn represents conductance of the gap junction. In general gsyn could
depend on some biophysical parameters, such as concentrations of some types of
ions. The term Vpre − Vpost expresses the voltage difference between pre- and post-
synaptic cells.

According to Kirchhoff’s law the sum of the currents through any junction of
the circuit is equal to zero. Thus, the pre-synaptic cell is affected by the same
current as a postsynaptic one, but with a different sign:

Ipost = −Ipre = ḡsyn(Vpost − Vpre).

It follows that electrical coupling is symmetric and there is no difference between
pre- and post- synaptic cell. Thus two identical neurons coupled via a gap junction
could be described by the following system:{

C dV1

dt
= f(V1) + ḡsyn(V2 − V1)

C dV2

dt
= f(V2) + ḡsyn(V1 − V2).

(2.14)

System (2.14) can be used in modeling axon-dendrite, axon-soma, soma-dendrite
or dendrite-dendrite connections in the case when the time delay in transmission
signal and losses of the signal in transmission from soma to soma are insignificant.
In order to take into account these factors, model (2.14) has to be modified.

Consider the axon-soma connection. Due to the finite time for signal trans-
mission along the axon, a voltage from the pre-synaptic neuron arrives to the gap
junction with some time delay τ . Due to the specific structure of the axon, the
signal does not propagate backwards along the axon without weakening, and hence
it is possible to neglect a signal that goes backwards in the case when an axon is
long enough. Thus, the system that describes an axon-soma coupled neurons has
the following form:{

C dVPre(t)
dt

= f(VPre(t))

C dVPost(t)
dt

= f(VPost(t)) + ḡsyn(VPre(t− τ)− VPost(t)).
(2.15)

By analogy, it is possible to extend the model to the case of axon-dendrite and
dendrite-dendrite connections. However, in the present thesis we will study only
soma-soma and axon-soma connections.
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Comments:

• Under non-dimensionalization procedure ḡsyn is scaled by the term ḡref (see sub-
section 2.3.5). We are going to refer dimensionless synaptic conductance as coupling
strength γ: γ = ḡsyn/ḡref .

• Modeling of the electrical synapse by a single resistance does not include some
possible effects the electrical synapses, such as the effect of the synaptic current
being shunted by the extracellular cytoplasm. However, most of the gap junctions
could be modeled by the single parameter γ.(See [23] pages 112-119 for a more
detailed analysis).

2.5 Problem Formulation.

We consider two identical neurons coupled together with gap junctions by the
scheme shown on figure (2.16). The type of connection between neurons is axon-
soma, with gap junctions located at the end of the axon of each neuron. The
applied current provided to each neuron is assumed to be equal for both neurons
and to be at some constant value i for all time. Systems of this type are popular in

Figure 2.16: Scheme of two coupled neurons.

neuroscience, since such a setting of the model allows one to study and understand
the effects of synchronization or synchronous firing in the neural networks, which
are often observed in living organisms. The input i represents the influence from
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the other elements of the network. We will focus our study in the effects of the
coupling strength γ and the time delay in transmission signal τ on the behavior of
the system. As was mentioned in chapter 1, both γ and τ could vary depending on
the type of connection between neurons and type of the gap junction involved in
the particular connection. In the present thesis we will try to answer the following
questions:

• Under which conditions on γ and τ does the system admits stable synchronous
solutions, and what is the type of these solutions(inphase or antiphase)?

• When are these synchronous solutions globally attractive?

We will model each neuron by the Morris-Lecar system (2.12). Such a choice
is determined by several factors. First, the Morris-Lecar system is a simple two-
dimensional model, which has a biophysical meaning and admits oscillations over
a wide parameter range. This fact allows us to abstract from modeling the neuron
itself, and concentrate our attention on the effects on the oscillations of the time
delay and the coupling strength. Secondly, the Morris-Lecar system admits oscilla-
tions of both type I and type II. Transition between type I and type II is determined
by a single parameter gCa (See subsection 2.3.6). We are going to study both type
I and type II systems. This approach will allow us to understand which effects are
common for both types of oscillations and are caused by variation of γ and τ , and
which happen due to the difference in the oscillation type.

According to model (2.15) for the axon-soma connection, the complete system
of equations describing our problem to be studied has the following form:

v′1 = −gCam∞(v1)(v1 − 1)− gKw1(v1 − vK)− gL(v1 + vL)
+i+ γ(v2(t− τ)− v1)

w′1 = φλ(v1)[w∞(v1)− w1]
v′2 = −gCam∞(v2)(v2 − 1)− gKw2(v2 − vK)− gL(v2 + vL)

+i+ γ(v1(t− τ)− v2)
w′2 = φλ(v2)[w∞(v2)− w2],

(2.16)

Here index 1 or 2 represents the number of the neuron being modeled. Variables
v1, w1, v2 and w2 are assumed to be computed at time t, unless otherwise is specified,
in order to simplify notation.

The values of the parameters used in the model are given in table (2.1) in
subsection 2.3.6. We consider two different cases: both neurons being of type
I, and both neurons being of type II. In the case of both neurons being type I,
the parameter values are consistent with the original physical parameters used by
Morris and Lecar in [29] and by Rinzel and Ermentrout in [32]. The parameter set
for type II differs from the type I set only by values of gCa and i.

Note that the input i is set close to a critical value ilim at which oscillations are
born both in cases of type I and of type II system. This have been done in order to
magnify the difference between oscillations types, which is important in our study.

Note that for τ = 0 asymmetry caused by delays in the signal propagation
disappears, and system (2.16) takes form of the system for soma-soma coupled
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neurons described by equations (2.14). However, due to neglecting of propagation
of the signal backwards along the axons, coupling functions for system shown in
figure (2.16) are γ(vi − vj) instead of coupling functions 2γ(vi − vj) for soma-soma
coupled neurons with two gap junctions of strength γ. In chapter 5 we will study
two arbitrary neurons coupled by soma-soma connection.

In order to answer the questions stated in this subsection, we have to perform
bifurcation analysis of (2.16) with respect to γ and τ . In the following chapter we
are going to consider the case of γ being small which will allow us to reduce our
system.
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Chapter 3

Phase Model

In the present chapter we consider the case of weakly coupled neurons. The coupling
strength γ will be considered as a small parameter. This assumption allows us to
simplify the problem by considering a simpler set of phase equations corresponding
to the model instead of the full set of equations (2.16).

The chapter has the following structure. First we provide the necessary general
definitions and terms from the theory of the weakly coupled networks following
[20]. Next we state the conditions under which the phase equations are valid and
explicitly compute them in terms of the complete system (2.16). The theory is
then applied to examine the behavior of both the non-delayed and delayed Morris-
Lecar system. We determine the stable periodic solutions of the complete system
by analysis of an equilibrium of the phase equations. The chapter is then concluded
by deriving a theoretical estimate of the region of validity of the phase model.

3.1 Introduction to the theory of weakly con-

nected networks.

Consider the following system:

Ẋi = Fi(Xi) + εGi(X1, .., Xn), i = 1...n (3.1)

where each Xi ∈ Rm, and ε is some small parameter (functions Fi and Gi are
considered to be of the same order of magnitude).

Any system which has the form (3.1) is referred to as a weakly connected network.
Such systems are special since it is possible to benefit from the fact that ε is small
and reduce the number of dimensions of the system under certain conditions on ε, Fi

and Gi. The theory of weakly connected networks is a powerful and well developed
tool of mathematical analysis. The book of Hoppensteadt and Izhhikevich [20]
provides good insight into the theory and gives further references.
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Application of the theory to system (3.1) crucially depends on the properties of
the decoupled system, i.e. system (3.1) with ε = 0. In case of ε = 0 system (3.1)
breaks into n independent subsystems:

Ẋ1 = F1(X1)
. . .

Ẋn = Fn(Xn)

(3.2)

In present thesis we are interested in the case when each subsystem

Ẋi = Fi(Xi), i = 1 . . . n (3.3)

has an exponentially orbitally stable limit cycle attractor σi. Recall that a limit cycle
is an isolated periodic solution of the dynamical system, or, equivalently, an isolated
closed trajectory in the phase space of the dynamical system. Exponential orbital
stability means that solutions starting close enough to the limit cycle approach it
infinitely closely and exponentially fast as t → +∞. In explicit notation, there
exists some open region D such that σi ⊂ D and numbers α0 > 0 and β0 ≥ 1, such
that infy∈σi

|Xi(t)−y| ≤ β0 infy∈σi
|Xi(0)−y|e−α0t for any solution X(t) with initial

condition Xi(0) ∈ D (from [21]). The region D is also called a basin of attraction
of the limit cycle σi.

Let us study the limit cycle σi in more detail. The smallest positive number Ti

such that σi(t + Ti) = σi(t) ∀t ∈ R is called the minimal period of the limit cycle
σi, while the number Ωi = 2π/Ti is called the natural frequency of the limit cycle
σi.

Comment: The theory of weakly coupled networks is developed in the general
case of σi having different periods, i.e. it is possible that Ti 6= Tj for some i
and j. However, for the sake of simplicity everywhere further in this thesis we
will consider only the case when all subsystems Xi are identical, i.e. the case of
F1 = · · · = Fn ≡ F . In that case σ1 = · · · = σn ≡ σ, T1 = · · · = Tn ≡ T and
Ω1 = · · · = Ωn ≡ Ω, while equation (3.3) takes form:

Ẋi = F (Xi), i = 1 . . . n. (3.4)

This setup is sufficient for the goals of the present thesis, since we are studying
two identical Morris-Lecar systems coupled together. The general case of differing
σi with a different periods Ti is discussed in [20].

Let us continue to discuss properties of the limit cycle σ. Since the limit cycle is
a closed curve in the phase space of the corresponding dynamical system, it could
be parameterized by a single parameter. Note that any solution of the equation
(3.4) with initial condition Xi(0) ∈ σ defines a parametrization of σ by points of
the interval (0, T ] through a mapping X(t) = σ(t). However, the parametrization
of σ provided above depends on a choice of the point Xi(0) and on the period
of the limit cycle T . Hence, it is convenient to get rid of these dependencies and
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Figure 3.1: Parametrization of the limit cycle σ by the points of an interval [0, 2π)

define some special parametrization of σ with fixed starting pointXi(0) and without
dependency on the period T .

Consider the system Ẏ = F (Y ). Let us choose any arbitrary point Y0 ∈ σ. Let
Y (t) be the solution of Ẏ = F (Y ) with initial condition Y (0) = Y0. Since the limit
cycle σ(t) is a T−periodic solution of the system Ẏ = F (Y ), for each t ∈ [0, T )
there exists a unique point z ∈ σ, such that z = Y (t). Let us define the mapping
θ̃ : [0, 2π) → Rm as follows - each point θ̃ ∈ [0, 2π) corresponds to the point with
coordinate Y (θ̃/Ω) = Y ( T

2π
θ̃) in Rm. As θ̃ changes between 0 and 2π, the point

with coordinates Y (θ̃/Ω) ⊂ Rm makes one full trip along the limit cycle σ (see
figure (3.1) for an illustration).

Comment: Note that the choice of the point Y0 ∈ σ in the parametrization above is
arbitrary and serves only for consistency. In the case of differing limit cycles σi the
question of parametrizing them all in a consistent way is more complicated. This
is studied in some detail in the book [20]. One of the common approaches is to
choose a point with the maximal norm, or with the maximal value with respect to
some variable in each σi, as a starting point Y i

0 for the parametrization.

The parametrization of the limit cycle σ by θ̃ defines the coordinate along the
limit cycle σ. Thus, it is enough to define a scalar function θ(t) ∈ S1 instead of a
vector function Z(t) ∈ Rm in order to describe the dynamics of any system Z ⊂ Rm
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along the limit cycle σ. The symbol S1 in the notation above denotes the unit circle
( R mod 2 π ).

Consider the decoupled system (3.2). Assume that at time t = 0 each of the
subsystems Xi stays on its limit cycle σ, i.e. Xi(0) ∈ σ, i = 1 . . . n. Then the
dynamics of (3.2) can be described by the system of n scalar equations:

θ1(t) = θ0
1 + Ωt mod 2π

. . .
θn(t) = θ0

n + Ωt mod 2π
,

where variables θi(t) are defined by mapping θ̃ applied to each of the solutionsXi(t),
and terms θ0

i correspond to the phase of the starting point Xi(0). Note that each
of the phase variables is restricted to the interval [0, 2π) by the operator mod 2π
due to the periodicity of the limit cycle σ and the definition of parametrization θ̃.
In the case when Xi(0) = Y0 we have θ0

i = 0, and the corresponding phase variable
θi(t) = Ωt mod 2π is called the natural phase of the subsystem Xi.

Let us consider the full system (3.1) next. One may expect that for small ε the
coupling between subsystems Xi does not change the amplitudes and shapes of the
limit cycles σ for each subsystem Xi, but affects only relationship between phase
variables θi. These assumptions are justified by the fact that limit cycle σ is an
exponentially orbitally stable limit cycle attractor of each of the uncoupled systems
(3.4). Since for ε 6= 0 the subsystems Xi start to affect each other, we may write
the phase variables in the form

θ1(t) = Ωt+ φ1(t)
. . .
θn(t) = Ωt+ φn(t)

(3.5)

where each function φi(t) represents phase deviation of the subsystem Xi from its
natural phase due to the influence from the other parts of network. Sometimes it
is more convenient to define phase variables θi(t) not as functions of time θi(t) =
Ωt + φi(t), but through a system of differential equations.We shall show that the
system may be written in the form

θ̇1 = Ω + εg1(θ1, . . . , θn)
. . .

θ̇n = Ω + εgn(θ1, . . . , θn)

, (3.6)

where the phase coupling functions gi depend only on the phase variables due to
the fact that system (3.1) is autonomous. The latter system (3.6) expresses θi(t)
in the form consistent with the notation of system (3.1).

The transition from system (3.1) to system (3.6) allows us to reduce the dimen-
sion of system (3.1), since each subsystem Xi is being restricted to the unit circle
S1 instead of Rm. In order to complete the theory developed, we need to address
the following 2 issues:

35



• We need to find out under which conditions on ε, F and Gi is it possible to map
the solutions of system (3.1) to those of system (3.6).

• It is necessary to derive expressions for the phase coupling functions gi(·) or phase
deviations φi(t) in terms of the coefficients of the original system (3.1).

In the following section (3.2) we are going to provide theoretical foundations
for the transition from (3.1) to the (3.6), and derive explicit formulas for the phase
deviations φi(t) and phase coupling functions gi(θ1, . . . , θn).

3.2 Theoretical foundations

Consider the weakly coupled network of n identical subsystems with time delays in
the coupling functions:

Ẋi(t) = F (Xi(t)) + εGi(X1(t− τ1), . . . , Xn(t− τn)), i = 1...n, (3.7)

such that each subsystem Ẋi = F (Xi), Xi ∈ Rm, i = 1..n has an exponentially
orbitally stable limit cycle σ with the nonzero natural frequency Ω = 2π

T
. We will

assume that functions F (·) and Gi(·), i = 1 . . . n are infinitely differentiable with
respect to each of their variables.

Note that Gi(·) depend on Xj(t − τj) for i 6= j, but on Xi(t), for i = j. This
special type of dependance reflects the fact that each of the subsystems Xi needs
time τi in order to affect the other subsystems, but it affects itself without any time
delay. Such assumption on Gi(·) is satisfied in the case of the Morris Lecar system
(2.16), as well as in many other applied problems. We will consider only that type
of Gi(·) everywhere further in the present thesis in order to simplify the notation
of the following theorems and proofs.

3.2.1 Invariant manifold reduction

As was mentioned in the previous section, under some conditions it is possible to
map the solutions of system (3.7) to those of system (3.6). The mapping is based
on the technique called invariant manifold reduction. In the present subsection we
will shortly introduce the main definitions and concepts of the theory and provide
references for the area. The description below closely follows [20].

First, let us introduce the notion of a normally hyperbolic invariant manifold.

Consider some dynamical system

Ẏ = F (Y ), Y ∈ Rk. (3.8)

The set M ⊂ Rk is called an invariant set for the system (3.8), if Y (0) ∈M implies
that Y (t) ∈M for all t ∈ R. If, in addition, the set M is a manifold, it is called an
invariant manifold of the system (3.8).
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We will denote the tangent space of each point Y ∈M by TYM , while the normal
space of each point Y ∈ M will be denoted by NYM . Let Π : TYM → NYM be
the orthogonal projection to the normal subspace NYM , and let DΦt(Y ) denote
the linear part of flow of the system (3.8) through the point Y ∈M .

Let
v(t) = DΦt(Y )v(0), v(0) ∈ TYM
w(t) = ΠDΦt(Y )w(0), w(0) ∈ NYM.

The invariant manifold M is called normally hyperbolic if

lim
t→∞

|w(t)|
|v(t)|

= 0,

for all Y ∈M and all nonzero vectors w ∈ NYM and v ∈ TYM .

If the smooth compact invariant manifold is normally hyperbolic, it is persistent
under small perturbations. In particular, this means that perturbed dynamical
system (3.8) given by

Ẏ = F (Y ) + εG(Y, ε), Y ∈ Rk

has an attractive normally hyperbolic compact invariant manifold Mε which is an
ε perturbation of M if ε is sufficiently small. (Follows from theorem 4.1 in [20]).

It can be shown that M = σ×· · ·×σ is a normally hyperbolic invariant manifold
of system (3.7). The proof of this fact is available in [20].

Hence, for the non-delayed case, i.e., τi ≡ 0 for all i ∈ 1...n, persistence of
M under ε perturbations is guaranteed by the normal hyperbolicity. When delay
terms τi all are O(1) with respect to ε, the persistence of the invariant manifold
under ε perturbations was proved by Hirsch, Pugh and Shub in [17]. However, in
the general case of τi of O(1/ε) and higher, persistence has not been proved. In the
present thesis we will consider delay only of O(1) and less.

Knowledge of the normally hyperbolic invariant manifold of a system allows
one to consider the dynamics only along the manifold, since the normal plane
components are unimportant due to the normal hyperbolicity. In the case of an ε
perturbed system one may find an ε perturbation of the invariant manifold, Mε,
and hence determine the behavior of the perturbed system.

3.2.2 Explicit formulas for the phase equations.

When the invariant manifold persists under ε perturbations, the phase deviations
can be found explicitly. The following theorem 3.2.1 provides the equations for φi

defined in terms of properties of the complete system (3.7). Theorem 3.2.1 and its
proof are an adaptation of the main theorem and its proof stated in [22].

37



Theorem 3.2.1 Assume that there exists ε0 > 0, such that the normally hyperbolic
invariant manifold M = σ × · · · × σ ⊂ Rmn of system (3.7) persists for all ε such
that 0 < |ε| < ε0. Let ρ = Ωt denote a scaled time variable, α = |ε|ρ = |ε|Ωt denote
the corresponding slow scaled time variable, and let functions φi(α), i = 1 . . . n
denote the phase deviations of θi from its natural phase θ̂i = Ωt mod 2π. Then

dφi

dα
= Hi(φ1(α−ζ1)−η1−φi(α), . . . , φn(α−ζn)−ηn−φi(α))+O(ε), i = 1 . . . n,

(3.9)

where ζi = |ε|Ωτi and ηi = Ωτi. The functions Hi(·) have the following form:

Hi(φ1(α− ζ1)− η1 − φi(α), . . . , φn(α− ζn)− ηn − φi(α)) =

= 1
2π

2π∫
0

QT (s)Gi(σ[φ1(α− ζ1)− η1 − φi(α)], . . . , σ[s],

. . . , σ[s+ φn(α− ζn)− ηn − φi(α)])ds,

(3.10)

where σ[s] stands on the i−th position, and Q(t) ∈ Rm is the unique nontrivial 2π
periodic solution to the linear system

dQ

dρ
= − 1

Ω
DF (σ[ρ])TQ,

satisfying the normalization condition

1

2π

∫ 2π

0

QT
i (s)F (σ[s])ds = 1.

Proof Let us introduce several preliminary steps before proceeding directly to
the proof. First, it is convenient to re-scale the time t in order to make the period
of the limit cycle σ equal to 2π. Let ρ = Ωt. Then d

dt
= dρ

dt
d
dρ

= Ω d
dρ

, and system

(3.7) takes the form:

ΩẊi(ρ) = F (Xi(ρ)) + εGi(X1(ρ−Ωτ1), .., Xn(ρ−Ωτn)), i = 1...n. (3.11)

Note that the delay terms τi become scaled by Ω due to the re-scaling of the
distances on the limit cycle σ. For simplicity, let us denote Ωτi by ηi .

Without loss of generality we may consider only ε > 0, since the sign of ε is
determined by the signs of the functions Gi(·), and there are no conditions set on
the functions Gi(·). Thus, the case of ε < 0 is equivalent to the case of ε > 0 with
Gi(·) replaced by −Gi(·). As we will see further, it is convenient to introduce the
slow phase variable α = ερ and slow delay terms ζi = εηi, where i = 1 . . . n.

Now we are ready to proceed to the proof. Due to the fact that a normally
hyperbolic invariant manifold M = σ × · · · × σ of system (3.11) persists under ε
perturbations, the solution of the i-th equation of (3.11) in an ε neighborhood of
M can be written as

Xi(ρ) = σ(ρ+ φi(α)) + εPi(ρ, φ1(α), . . . , φn(α), ε), (3.12)
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where the term εPi denotes the deviation from the manifold M in the normal plane,
while the term φi(α) denotes the deviation of the phase from its natural uncoupled
phase θ̂i. TermsXi, σ(·) and Pi are considered to be of the same order of magnitude.

We assume that the phase deviations depend on the slow variable α. This
assumption is justified by the fact that the coupling is of order ε in original system
(3.7).

Differentiation of Xi with respect to ρ gives:

dXi

dρ
= σ′(ρ+φi(α))

(
1 + ε

dφi

dα

)
+ ε

∂Pi(ρ, φ1(α), . . . , φn(α), ε)

∂ρ
+O(ε2). (3.13)

The term O(ε2) is due to the ε
∑ ∂Pi(ρ,φ1,...,φn,ε)

∂φj

dφj(α)

dρ
. On the other hand, since Xi

is a solution of (3.11), we may write that:

dXi

dρ
=

1

Ω
[F (Xi(ρ)) + εGi(X1(ρ− η1), . . . , Xn(ρ− ηn))].

Substitution of expression (3.12) in the equation above gives

dXi

dρ
=

1

Ω
{F (σ[ρ+ φi(α)] + εPi(ρ, φ1(α), . . . , φn(α), ε))

+εGi[σ(ρ− η1 + φ1(α− ζ1)) + εP1(ρ, φ1(α− ζ1), . . . , φn(α− ζn), ε),

. . . , σ(ρ− ηn + φn(α− ζn)) + εPn(ρ, φ1(α− ζ1), . . . , φn(α− ζn), ε)]}.

Using the fact that F and Gi are infinitely differentiable, we may expand them as
power series in ε. Expansion to the first order with remainder in the form of O(ε)
gives

dXi

dρ
=

1

Ω
{F (σ[ρ+ φi(α)]) + εDF (σ[ρ+ φi(α)])Pi(ρ, φ1(α), . . . , φn(α), ε)

+εGi(σ(ρ+ φ1(α− ζ1)− η1), . . . , σ(ρ+ φn(α− ζn)− ηn)) +O(ε2)]},
(3.14)

where DF (σ(ρ+φi(α))) is the Jacobian of F (·) evaluated at the point σ(ρ+φi(α)).

Equating the right hand sides of (3.13) and (3.14), and using the fact that
σ′(ρ + φi(α)) = 1

Ω
F (σ[ρ + φi(α)]) (since σ is a periodic solution of dXi

dt
= F (Xi),
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and hence it is a periodic solution of dXi

dρ
= 1

Ω
F (Xi)), we obtain the following:

F (σ[ρ+ φi(α)])
dφi(α)

dα
+ Ω

∂Pi(ρ, φ1(α), . . . , φn(α), ε)

∂ρ

= DF (σ[ρ+ φi(α)])Pi(ρ, φ1(α), . . . , φn(α), ε)

+Gi(σ(ρ+ φ1(α− ζ1)− η1), . . . , σ(ρ+ φn(α− ζn)− ηn)) +O(ε).

Assuming that Pi(ρ, φ1(α), . . . , φn(α), ε) are smooth functions of ε, we may re-
place Pi(ρ, φ1(α), . . . , φn(α), ε) by Pi(ρ, φ1(α), . . . , φn(α), 0) + O(ε). Since all Pi

depend on the same argument, we will simplify notation and write Pi instead of
Pi(ρ, φ1(α), . . . , φn(α), 0) everywhere further in the proof :

F (σ[ρ+ φi(α)])dφi(α)
dα

+ Ω∂Pi

∂ρ
= DF (σ[ρ+ φi(α)])Pi+

+Gi(σ(ρ+ φ1(α− ζ1)− η1), . . . , σ(ρ+ φn(α− ζn)− ηn)) +O(ε).

(3.15)

At this point, we will take α and ρ as independent variables. Since α is a slow
variable with respect to ρ, we will treat it as a constant on the scale of ρ. The
partial derivative of Pi in (3.15) then could be replaced by a full derivative of Pi

with respect to ρ, and (3.15) can be rewritten in a following form:

dPi

dρ
= A(ρ, φi)Pi + bi(ρ, φ1, . . . , φn) +O(ε), (3.16)

where

A(ρ, φi) =
1

Ω
DF (σ[ρ+ φi(α)]),

bi(ρ, φ1, . . . , φn) =
1

Ω

[
Gi(σ(ρ+ φ1(α− ζ1)− η1), . . . , σ(ρ+ φn(α− ζn)− ηn))−

−F (σ[ρ+ φi(α)])
dφi(α)

dα

]
.

The functions φi(α) and φi(α−ζi) in the expression above are treated as parameters,
since they do not depend directly on ρ. Thus, we have a linear non-homogeneous
system for Pi, where both A and bi are 2π periodic in ρ.

Let us consider the adjoint linear homogeneous system:

dQi

dρ
= −A(ρ, φi)

TQi, (3.17)
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with the normalization condition:

1

2π

∫ 2π

0

QT
i (ρ, φ)F (σ[ρ+ φi(α)])dρ = 1. (3.18)

Since the limit cycle σ is exponentially orbitally stable, the homogeneous system
given by (3.16) with bi ≡ 0, i = 1 . . . n and the adjoint system (3.17) both have 1 as
a simple Floquet multiplier, and all the other multipliers lie inside the unit circle.
Thus, system (3.17),(3.18) has a unique nontrivial periodic solution Q̂i(ρ, φi).

Now, by the Fredholm alternative, the linear non-homogeneous system (3.16)
has a unique periodic solution P̂i if and only if the following orthogonality condition
holds:

< Q̂i, bi > +O(ε) =
1

2π

2π∫
0

Q̂T
i (ρ, φi)bi(ρ, φ1, . . . , φn)dρ+O(ε) = 0. (3.19)

Next, assume that we have found Q̂(ρ, 0). Since A(ρ, φi) = 1
Ω
DF (σ[ρ + φi(α)]) =

A(ρ+φi(α)), it follows that Q̂(ρ, φi) = Q̂(ρ+φi, 0). Let us substitute the expression
for bi(ρ, φ1, . . . , φn) from (3.16) into the equation (3.19). The multiplier 1

Ω
in front

of bi cancels out, and we obtain the following:

1
2π

2π∫
0

Q̂T
i (ρ+ φi, 0)Gi(σ(ρ+ φ1(α− ζ1)− η1), . . . , σ(ρ+ φn(α− ζn)− ηn))dρ+O(ε)

= 1
2π

2π∫
0

Q̂T
i (ρ+ φi, 0)F (σ[ρ+ φi(α)])dφi(α)

dα
dρ.

Since dφi(α)
dα

is treated as a parameter and is independent of ρ, it could be taken out
of the second integral as a constant, and the remaining integral is equal to 1 due
to normalization condition (3.18). Thus, we obtain the following equation for the
phase deviations φ(α):

dφi(α)

dα
=

1

2π

2π∫
0

Q̂T
i (ρ+ φi, 0)Gi(σ(ρ+ φ1(α− ζ1)− η1),

. . . , σ(ρ+ φn(α− ζn)− ηn))dρ+O(ε).

Finally, let us change the integration variable to s = ρ+ φi:

dφi(α)
dα

= 1
2π

2π∫
0

Q̂T
i (s, 0)Gi(σ(s+ φ1(α− ζ1)− η1 − φi),

. . . , σ(s+ φn(α− ζn)− ηn − φi))ds+O(ε)

= Hi(φ1(α− ζ1)− η1 − φi(α), . . . , φn(α− ζn)− ηn − φi(α)) +O(ε).
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(3.20)

Equation (3.20) gives precisely the statement of the theorem and hence completes
the proof. Q. E. D.

Theorem 3.2.1 provides explicit formulas for the phase deviations. However, the
equations for φi still have a delay in them. It turns out that under some assump-
tions, the form of the functions H(·) can be simplified. The following corollary of
Theorem 3.2.1 is a restatement of the corresponding corollary from [22].

Corollary 3.2.1 (Short transmission delay) There exists η0 > 0, such that for
ηi < η0, i ∈ 1...n the delay terms in system (3.9) can be neglected, and (3.9) takes
form

dφi

dα
= Hi(φ1 − η1 − φi, . . . , φn − ηn − φi) +O(ε), (3.21)

where all phase deviations are computed at the point α, and the function Hi is
defined by integral (3.10).

Proof Using the same argument as in the proof of Theorem 3.2.1, we may
assume that ε > 0 without loss of generality. Recall that ζi = εηi. Hence φi(α−ζi) =
φi(α − εηi) = φi(α) + O(ε) provided that term ηi is of O(1) with respect to ε.
Substitution of the expansion for φi(α− ζi) in the formula for Hi and expansion of
Hi in the Taylor series with respect to ε again gives us the following:

Hi(φ1(α− ζ1)− η1 − φi(α), . . . , φn(α− ζn)− ηn − φi(α))
= Hi(φ1(α)− η1 − φi(α) +O(ε), . . . , φn(α)− ηn − φi(α) +O(ε))
= Hi(φ1(α)− η1 − φi(α), . . . , φn(α)− ηn − φi(α)) +O(ε).

(3.22)

It follows that in the case when ηi are of O(1) for all i ∈ 1 . . . n the delay term
in equation (3.9) affects only O(ε) remainder and hence could be neglected. More
precisely, this means that there exists η0 > 0, such that for ηi < η0, i ∈ 1...n
equality (3.21) is valid.

Q.E.D.

Restatement in the form of the phase equations:

It is possible to rewrite the equations for the phase deviations as a system of
equations for the phase variables θi. Note that θj(ρ − ηj) − θi(ρ) = (ρ − ηj) +
φj(α − ζj) − ρ − φi(α) = φj(α − ζj) − ηj − φi(α). We see that difference between
phase variables depends only on the slow variable α and is precisely equal to the
argument of the function Hi(·). Consider the phase variable θi(t). By its definition,
θi(t) = ρ+ φi(α), which implies

dθi

dρ
= 1 +

φi(α)

dρ
= 1 + ε

φi(α)

dα
. (3.23)
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Applying the result of Theorem 3.2.1 to equation (3.23), we obtain the following
system for the phase variables

dθi

dρ
= 1 + εHi(θ1(ρ− η1)− θi(ρ), . . . , θn(ρ− ηn)− θi(ρ)) +O(ε2). (3.24)

When the delay terms ηi satisfy the conditions of Corollary 3.2.1, equation (3.24)
takes form

dθi

dρ
= 1 + εHi(θ1 − η1 − θi, . . . , θn − ηn − θi) +O(ε2), (3.25)

where all phase variables θi are computed at the point ρ.

3.3 Phase equations of the Morris-Lecar system.

Now we are ready to apply the theory developed to the our system of interest (2.16).
Recall that in the general case it has form:

v′1 = −gCam∞(v1)(v1 − 1)− gKw1(v1 − vK)− gL(v1 + vL)
+i+ γ(v2(t− τ)− v1)

w′1 = φλ(v1)[w∞(v1)− w1]
v′2 = −gCam∞(v2)(v2 − 1)− gKw2(v2 − vK)− gL(v2 + vL)

+i+ γ(v1(t− τ)− v2)
w′2 = φλ(v2)[w∞(v2)− w2].

(3.26)

Subsystems X1 and X2 are given by the subsystems (v1, w1) and (v2, w2), while
coupling strength γ plays the role of parameter ε. According to the problem setting
provided in section 2.5 we choose the parameters so that each of the decoupled
subsystems Ẋi = F (Xi) has an exponentially asymptotically stable limit cycle σ
with the period T . According to section 3.2, there exists γ0 > 0, such that for
all 0 < |γ| < γ0 there exists an neighborhood W of σ × σ ⊂ R2 and a continuous
function h : W → T2, which maps solutions of system (3.26) to those of the system:

{
dθ1

dρ
= 1 + γg1(θ1, θ2) +O(γ2)

dθ2

dρ
= 1 + γg2(θ1, θ2) +O(γ2)

, (3.27)

where ρ = Ωt and Ω = 2π/T . The explicit form of the functions g1 and g2 is
determined by Theorem 3.2.1

g1(θ1, θ2) = H1(θ2(ρ− η)− θ1(ρ)) = 1
2π

2π∫
0

QT (s)G1(σ[s], σ[s+ θ2(ρ− η)− θ1(ρ)])ds,

g2(θ1, θ2) = H2(θ1(ρ− η)− θ2(ρ)) = 1
2π

2π∫
0

QT (s)G2(σ[s+ θ1(ρ− η)− θ2(ρ)], σ[s])ds.
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(3.28)

Note that in case of system (3.26) G1(X1, X2) = v2(t− τ)−v1(t) and G2(X1, X2) =
v1(t − τ) − v2(t), and thus we have that G1(X1, X2) = G2(X2, X1). Thus, if we
define a function H as

H(·) =
1

2π

2π∫
0

QT
i (s)G1(σ[s], σ[s+ ·])ds, (3.29)

we will have that

H1(θ2(ρ− η)− θ1(ρ)) =
1

2π

2π∫
0

QT (s)G1(σ[s], σ[s+ θ2(ρ− η)− θ1(ρ)])dt

= H(θ2(ρ− η)− θ1(ρ)),

while

H2(θ1(ρ− η)− θ2(ρ)) =
1

2π

2π∫
0

QT (s)G2(σ[s+ θ1(ρ− η)− θ2(ρ)], σ[s])ds

=
1

2π

2π∫
0

QT (s)G1(σ[s], σ[s+ θ1(ρ− η)− θ2(ρ)])ds = H(θ1(ρ− η)− θ2(ρ)).

We have just shown that in the case when the subsystems X1 and X2 are identical
and symmetrically coupled, functions H1 and H2 can be expressed in terms of a
single function H, and dynamics of system (3.26) is thus given by a phase system:

{
dθ1

dρ
= 1 + γH(θ2(ρ− η)− θ1(ρ)) +O(γ2)

dθ2

dρ
= 1 + γH(θ1(ρ− η)− θ2(ρ)) +O(γ2)

. (3.30)

The complete system for the phase variables (3.30) is hard to analyze since it is
a system of delayed differential equations. Thus, at this point it is necessary to
simplify the system by applying Corollary 3.2.1. It follows that there exists an
η0 > 0, such that for all η < η0 the delay can be replaced by the phase shift
without increasing the error more than by a term of O(γ2). System (3.31) then
becomes a system of ordinary differential equations which has the form:

{
dθ1

dρ
= 1 + γH(θ2 − θ1 − η) +O(γ2)

dθ2

dρ
= 1 + γH(θ1 − θ2 − η) +O(γ2)

. (3.31)
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Figure 3.2: H(ϕ) as the sum of first 3, first 5, and first 480 terms of its Fourier
series expansion

Finally, let us introduce new variable ϕ = θ2−θ1. The variable ϕ is called a phase
difference, and describes the amount of synchronization between subsystemsX1 and
X2. ϕ = 0 corresponds to the case when X1 and X2 are completely synchronized.
In terms of ϕ (3.31) reduces to the single equation:

ϕ̇ = γ(H(−ϕ− η)−H(ϕ− η)) +O(γ2). (3.32)

For γ small enough the impact of the term O(γ2) on the dynamics of equation
(3.32) is negligible. Hence, at this point we will drop the term O(γ2), assuming
that γ0 stated in theorem 3.2.1 is sufficiently small. It is convenient to break the
following analysis into the 2 branches - the case of η = 0 and the case of nonzero
η satisfying condition η < η0. Let us consider the simpler case of η = 0 first, and
then generalize it for η < η0.
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3.3.1 Equation for the phase difference in the non-delayed
case.

Consider η = 0. In this case equation (3.32) takes the form

ϕ̇ = γ(H(−ϕ)−H(ϕ)). (3.33)

Recall that our general goal is to determine the stable periodic solutions of
system (3.26) with respect to the values of parameter γ. Thus, we are interested in
finding all equilibrium solutions of equation (3.33), and computing their stability.

Further analysis has to be done numerically or graphically, since there is no
convenient way to compute function H(·) analytically. However, H(·) could be
easily computed numerically. In the present thesis we used the XPPAUT software
for the computation of H(·). The technical side of the calculations is provided
in [10] on pages 223-226. Omitting unnecessary details, it worth mentioning that
XPPAUT can compute H(ϕ) in terms of its Fourier series expansion (recall that
by its definition the function H(·) is 2π-periodic).
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Figure 3.3: Hodd(ϕ) vs ϕ for the type I parameter set
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Let H(ϕ) =
+∞∑
k=1

(an cos(kϕ) + bn sin(kϕ)). Direct substitution in equation (3.33)

shows that all the cosine terms cancel out, and only sine terms are left:

ϕ̇ = −2γ
+∞∑
k=1

bn sin(kϕ) = −2γHodd(ϕ). (3.34)

This immediately implies that ϕ = 0 and ϕ = π are the equilibrium solutions of the
equation for any function H. Stability of the solutions ϕ = 0 and ϕ = π as well as
existence or nonexistence of the other equilibrium solutions has to be determined
numerically by plotting the graph of H(ϕ).

In order to proceed to direct analysis of the equilibrium, it is helpful to determine
the number of terms so that the truncated series approximates the infinite series
+∞∑
k=1

bn sin(kϕ) well. For our system it turns out that the Fourier coefficients of H

decay very fast, and N = 5 provides a good agreement with the infinite series.
Figure (3.2) shows the graphs of

H(ϕ) =
N∑

k=1

an cos(kϕ) + bn sin(kϕ)

for N = 3, N = 5 and N = 481. Graph for N = 3 differs a little from the other
graphs, while graphs for N = 5 and N = 481 are almost undistinguishable. Thus,
we will use the truncated series with N = 5 as an approximation of the infinite
series.

Let us study the stability of equilibria next. Figure (3.3) gives the graph

Hodd(ϕ) =
5∑

k=1

bn sin(kϕ) with respect to ϕ over one period for the Type I oscil-

lation. It follows that ϕ = 0 and ϕ = π are the only possible equilibrium solutions
in this case.

The stability of the equilibria is determined by the linearization of Hodd(ϕ) at
each equilibrium point ϕ = ϕ̄, which is given by the equation

ϕ̇ = −2γH ′
odd(ϕ̄)ϕ.

It follows that the equilibrium point ϕ̄ is stable when γH ′
odd(ϕ̄) > 0, and unstable

when γH ′
odd(ϕ̄) < 0.

According to figure (3.3) H ′
odd(0) > 0, while H ′

odd(π) < 0. It follows, that for
γ > 0 solution ϕ = 0 is stable, and ϕ = π is unstable, while for γ < 0 ϕ = 0 is
unstable, and ϕ = π is stable.

Let us study the type II oscillations next. Figure (3.4) provides the graph of
Hodd(ϕ) vs ϕ in the case of type II parameter set. It follows, that H ′

odd(0) > 0,
while H ′

odd(π) < 0. Thus, we may conclude that in the case of non-delayed coupling
functions type I and type II Morris Lecar systems exhibit qualitatively the same
behavior for small values of γ and η = 0.
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Figure 3.4: Hodd(ϕ) vs ϕ for the type II parameter set

3.3.2 Equation for the phase difference in the delayed case.

Let us consider the case of nonzero η next. Substitution of the Fourier series
expansion of H(·) into equation (3.32) leads to the equation

ϕ̇ =
+∞∑
k=1

ak cos(k[ϕ+ η])− bk sin(k[ϕ+ η])−
+∞∑
k=1

ak cos(k[ϕ− η]) + bk sin(k[ϕ− η])

=
+∞∑
k=1

ak(cos(k[ϕ+ η])− cos(k[ϕ− η])) + bk(− sin(k[ϕ+ η])− sin(k[ϕ− η])).

(3.35)

Note that cos(x+y)−cos(x−y) = −2 sin x sin y and − sin(x+y)− sin(x−y) =
−2 sin x cos y. Substitution of these trigonometric identities to (3.35) leads to the
following equation

ϕ̇ = −2γ
+∞∑
k=1

ck sin kϕ
.
= −2γHdelay(ϕ), where

ck = ak sin(kη) + bk cos(kη).
(3.36)
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Figure 3.5: H ′
delay(ϕ̄) vs η for the type I parameter set

As in the case of η = 0, the form of equation (3.36) implies that values of ϕ = 0
and ϕ = π are always the equilibrium solutions of (3.36). However, the stability of
the given solutions is determined by the value of η as well as the values of ak and
bk. By analogy with the case of η = 0, stability of the equilibrium point ϕ = ϕ̄ is
determined by the linearization of (3.36) at ϕ = ϕ̄, which is given by

ϕ̇ = −2γH ′
delay(ϕ̄)ϕ, (3.37)

where H ′
delay(ϕ̄) =

+∞∑
k=1

kck cos kϕ̄. The solution ϕ = ϕ̄ is stable when γH ′
delay(ϕ̄) >

0, and unstable when γH ′
delay(ϕ̄) < 0.

Thus, it is possible to determine which of the equilibrium solutions is stable
for each value of η by plotting the graphs of the approximations of H ′

delay(0) ≈
N∑

k=1

k[ak sin(kη) + bk cos(kη)] and H ′
delay(π) ≈

N∑
k=1

(−1)kk[ak sin(kη) + bk cos(kη)].

For the parameter set of type I the graphs are given by figure (3.5). The blue line
represents H ′

delay(0), while the red line represents H ′
delay(π).
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Figure 3.6: H ′
delay(ϕ̄) vs η for the type II parameter set

It follows that for γ > 0 the in-phase solution is stable for η between 0 and
some critical value η1, since H ′

delay(0) is positive in that range of η. The point
η = η1 is the point where the H ′

delay(π) becomes positive, and hence the anti-phase
solution becomes stable. There is a small range of η in which the system exhibits
multi-stability, until the in-phase solution becomes unstable at some value η = η2.
Then the anti-phase solution becomes the only stable solution, and remains in that
state until the next period of multi-stability which is reached at η = η3. At η = η4

the anti-phase solution becomes unstable, and there is the only one stable in-phase
solution up to η = 2π. Since H ′

delay(·) is 2π periodic function of η, the picture
described above repeats as η is increased beyond 2π.

For γ < 0 the stability picture is slightly different. The anti-phase solution is
stable for η ∈ (0, η1), then in the region (η1, η2) neither in-phase, nor anti-phase
solution is stable. For η ∈ (η2, η3) the only stable solution is the in-phase solution.
Then in the region (η3, η4) there is no known stable solution. Finally, the anti-phase
solution becomes stable again at η = η4 and remains stable up to η = 2π, after
which the periods of stability and instability follow periodically.

Consider the stability diagram for the model of type II. The graphs of H ′
delay(0)

and H ′
delay(π) are provided in figure (3.6). For the type II parameter set, the

neurons exhibit multi-stability for γ < 0, while for positive values of γ there are
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Figure 3.7: Hdelay(ϕ) vs ϕ for η in the transition interval for Type I (blue) and
Type II (red) system

regions where neither anti-phase nor inphase solution is stable. In other aspects
the behavior of type II model is qualitatively similar to that of the model of type
I, the difference occurs only in small regions where the stability switch happens.

Let us study the behavior of type I and type II models in the region where
stability switching occurs. Figure (3.7) provides graphs of Hdelay(ϕ) with respect
to ϕ for η ∈ (η1, η2) for both models. It follows that in both cases there exists a
third equilibrium point ϕ̄, which is neither in-phase nor anti-phase. However, the
sign of H ′

delay(ϕ) is different for type I and type II system. For γ > 0 in the case
of the system of type I the third equilibrium point is unstable but both in-phase
and anti-phase solutions are stable, while for the system of type II the opposite
statement holds.

To conclude the analysis it is worth mentioning that the values of the actual
delay τ at which the stability switches are determined from the expression τi = ηi/Ω.
It follows that the smaller the value of Ω, the larger the intervals between stability
switches in τ . This determines an important difference between type I and type II
models of neuron, since in neurons of type I the value of Ω could be made arbitrarily
small by appropriate choice of the input signal i (see section 2.3.6).
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3.4 Region of validity of the phase model

Theorem 3.2.1 and Corollary 3.2.1 imply that analysis of the phase model for the
Morris-Lecar equation is valid only for |γ| < γ0 and 0 ≥ η < η0 for some γ0 and η0

in R.

The value of γ0 defines the region in which the coupling can be considered as
small, and hence is determined by the properties of the original Morris-Lecar system
(3.26). The value of γ0 can be estimated numerically (see chapter 4).

Figure 3.8: Scheme of the phase model validity

The situation with η0 is more interesting. Recall that η = Ωτ , while the actual
value of delay is given by the parameter τ . Corollary (3.2.1) states that η has to
be of O(1) on the γ scale in order to validate replacement of the delay term by the
phase shift. Thus, the smaller values of γ we will consider, the larger values of τ
would allow replacement of the delay term by the phase shift. Small values of Ω
should increase region of validity of the phase model with shift with respect to τ as
well. This may play an important role in the difference between Type I and Type
II models, since for the model of Type II frequency has a minimal value Ω0, while
in the case of Type I model the frequency Ω → 0 as input approaches a critical
value where the oscillations are set.

The analysis done in the present chapter suggests the scheme of validity of
the phase model shown on figure (3.8). Although the region of validity has to be
determined in O(·) notation and hence may not have precise border, straight lines
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are drawn to schematically visualize the form of the region. For γ > γ0 the phase
model is not valid, since the coupling cannot be considered small anymore, and the
normally hyperbolic manifold is not guaranteed to persist. In the region of validity
of the phase model, small values of the delay allow a phase model with a shift instead
of delay, while for large values of the delay the delayed differential equations (3.24)
have to be considered. According to the form of η, the line where predictions of
phase model with a phase shift (3.25) break should have form γΩτ = const. Note
that the smaller Ω is, the larger the region of validity of the phase model, which
can be seen by comparison of the green and blue lines (Ωgreen = 5Ωblue) in figure
(3.8).

3.5 Conclusion

When the physical parameters of system (3.26) are fixed either to the type I or
the type II parameter set (see table (2.1)) the non-delayed system (3.26) has only
one stable periodic solution in the region of the validity of the phase model, i.e.
for |γ| < γ0. For γ > 0 the stable solution is given by the synchronous periodic
solution, while for γ < 0 the antiphase solution is the only stable periodic solution
of system (3.26).

In the case of the delayed system (3.26) the type I and type II neurons switch
between in-phase and anti-phase solution being stable as η is increased to η0 (see
section 3.3.2). The switches in stability occur for nearly the same values of η for
both types of neurons.

It follows that the value of the time delay η is an important factor affecting
the stability of the solutions of (3.26). For most values of η in-phase or anti-phase
solution is the only stable solution, while switches between stability occur over the
small intervals of η. Over the interval of η where stability change occurs either there
is multi-stability or there exists a third stable periodic solution (see section 3.3.2).
The systems of type I and type II demonstrate qualitatively the same behavior
except for how the changes of stability occur.

The dynamics of the delayed Morris Lecar system doesn’t depend on the abso-
lute value of the time delay τ , but is determined by the relative size of delay τ with
respect to the natural frequency of oscillations Ω, since η = Ωτ . The estimate of
the region of validity of phase model done in section 3.4 and Theorem 3.2.1 produce
this conclusion.

It follows that the smaller the value of Ω, the bigger the intervals before the
stability switches in τ , and the larger the region of validity of the phase model (3.32)
with respect to τ . This factor is especially important for the neurons of type I and
might seriously affect the behavior of the network, since the period of oscillation of
the neuron of type I vary in a wide range with respect to the value of applied input
i. The neurons of type II are not as sensitive to the relationship between τ and Ω.
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The difference in behavior over the intervals where stability is changed can be
caused by the difference in parameters of type I and type II neuron. We will study
this question in more detail in the next chapter.
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Chapter 4

Bifurcation analysis

In the present thesis we study the dynamics of system (2.16) with respect to the
variation of parameters τ and γ. So far, we have determined the nature of the stable
periodic solutions of the system (2.16) for small values of γ and τ by studying the
corresponding phase equations (see chapter 3). However, it is not yet clear how
small the parameters γ and τ should be in order to apply the phase model, and
what happens when γ and τ are beyond the region of validity of the phase model.

In the present chapter we will try to answer this question by numerical analysis
of system (2.16). In order to obtain a starting point for our analysis, we will first
analyze the equilibrium points of system (2.16). In particular, we will answer the
following question: how do the equilibrium points of the system change with respect
to the variation of the parameter γ? We will address this question by analyzing the
algebraic equations corresponding to system (2.16) using Matlab. The structure of
the equilibrium points with respect to γ will allow us to determine an upper bound
for the region of validity of the phase model, γ0 (defined in section 3.4), and will
provide a foundation for the bifurcation analysis of system (2.16) with respect to
variation of γ and τ .

The second part of the present chapter is devoted to numerical analysis of
system (2.16) in the special case of τ = 0. In that case, (2.16) is a system of
ordinary differential equations. We will do the bifurcation analysis of the system
with respect to parameter γ using the software programs XPPAUT and AUTO.

Finally, the last part of the chapter covers the numerical analysis of system (2.16)
for the arbitrary values of γ and τ . Using the information gathered in the previous
parts of the chapter as a starting point, we will do a two-parameter bifurcation
analysis of system (2.16) with respect to variation of γ and τ by using a special
software package for delay differential equations called DDE-BIFTOOL.
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4.1 The equilibrium points

One of the important characteristics of any dynamical system is the number and
the stability of its equilibrium points. Since we are studying the behavior of system
(2.16) with respect to variation of the parameters γ and τ , it is important to
determine the number of equilibrium points of (2.16) for each value of the parameter
γ and to understand how each equilibrium point evolves as γ is varied. The answer
to this question will allow us to find all the equilibrium points numerically and to
perform the further bifurcation analysis of system (2.16). Moreover, the structure
of the equilibrium points is independent of the value of the parameter τ . Hence,
the results of the present section will be applicable for any value of τ .

4.1.1 Theoretical foundation

Consider system (2.16). For the type I parameter set it has the following explicit
form:

v′1 = −m∞(v1)(v1 − 1)− 2w1(v1 + 0.7)− 0.5(v1 + 0.5) + 0.09 + γ(v2(t− τ)− v1)
w′1 = 1

3
λ(v1)[w∞(v1)− w1]

v′2 = −m∞(v2)(v2 − 1)− 2w2(v2 + 0.7)− 0.5(v2 + 0.5) + 0.09 + γ(v1(t− τ)− v2)
w′2 = 1

3
λ(v2)[w∞(v2)− w2],

(4.1)

where v∞(·), w∞(·) and λ(·) are the functions defined in subsection 2.3.5.

By definition, the equilibrium points of system (4.1) are the solutions where
v1,v2,w1 and w2 are constant in time. These are the solutions of the following
system of equations:

−m∞(v1)(v1 − 1)− 2w1(v1 + 0.7)− 0.5(v1 + 0.5) + 0.09 + γ(v2 − v1) = 0
1
3
λ(v1)[w∞(v1)− w1] = 0
−m∞(v2)(v2 − 1)− 2w2(v2 + 0.7)− 0.5(v2 + 0.5) + 0.09 + γ(v1 − v2) = 0
1
3
λ(v2)[w∞(v2)− w2] = 0.

(4.2)

Hence, the equilibrium points are the same for all values of τ in R.

System (4.2) is nonlinear, its explicit solution is impossible. Nevertheless it
could be reduced to a two-dimensional system. The second and the fourth equations
of (4.2) allow us to express the variables w1 and w2 in terms of v1 and v2: w1 =
w∞(v1) and w2 = w∞(v2). After elimination of the variables wi we obtain two
equations that completely determine all possible equilibrium solutions of (4.1) :{

f(v1) + γ(v2 − v1) = 0
f(v2) + γ(v1 − v2) = 0

,

where f(v) = −m∞(v)(v − 1)− 2w∞(v)(v + 0.7)− 0.5(v + 0.5) + 0.09.

(4.3)
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To determine how many different solutions (4.3) has for each value of γ ∈ R it is
convenient to introduce new variable: x = v2− v1, i.e., v2 = x+ v1. After replacing
v2 by x (4.3) has the following form:{

f(v1) + γx = 0,
f(v1 + x)− γx = 0.

(4.4)

This form is more useful since it has just one variable x multiplying the parameter
γ, instead of a combination of two variables v1 and v2. By taking the sum and
difference of equations in the latter system we may rewrite it in the form:{

f(v1) + f(v1 + x) = 0, (∗)
f(v1 + x)− f(v1)− 2γx = 0. (∗∗)

Let us consider only equation (∗) first. This equation is independent of the
parameter γ. It gives us the relationship between variables x and v1 that has to be
satisfied for all values of γ ∈ R. Numerical simulations suggested that equation (∗)
defines v1 implicitly as a function of x for all x ∈ R.

Next we consider equation (∗∗). Since we have found v1(x) from the equation
(∗), it depends only on the variable x. We may rewrite (∗∗) as

f(v1(x) + x)− f(v1(x)) = 2γx.

The left part of this equation is a function of the variable x only and is in-
dependent of γ. The right part is just a straight line passing through the origin
with slope 2γ. The number of solutions of the system (4.4), and thus the number
of different equilibrium points of the system (4.1), could be computed by plotting
curves

y1 = f(v1(x) + x)− f(v1), and y2 = 2γx

together and computing the number of intersections for each value of γ.

4.1.2 Analysis of the graph

It is possible to construct the graph of y1(x) numerically using Matlab. The graph
of y1(x) is given by the red curve on the figure (4.1), while the blue, green and
cyan lines correspond to graphs of y2(x) = 2γx for several special values of the
parameter γ which will be discussed later.

Note that both y1(x) and y2(x) are odd functions of the variable x. Oddness
of y2(x) = 2γx is obvious, while the function y1(x) is odd due to the symmetry
of the coupled Morris-Lecar equations. To see this, note that changing the sign of
the variable x is equivalent to interchanging v1 and v2 since x = v2 − v1. However,
interchanging of v1 and v2 leaves the equations (4.3) unchanged since the first and
the second neurons are identical.
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Figure 4.1: Graphs of y1(x) and y2(x) with respect to x for important values of γ.
The number of intersection points is the number of equilibrium points of (4.1) for
the type I parameter set

Recall that we are considering two identical symmetrically coupled Morris Lecar
neurons. The symmetry implies that if (ᾱ1, β̄1, ᾱ2, β̄2) is an equilibrium point of the
system (2.16), then the point (ᾱ2, β̄2, ᾱ1, β̄1) is an equilibrium point as well, which
is consistent with the oddness of y1(x) and y2(x).

Let us continue our analysis of figure (4.1). The blue line corresponds to γ =
γ1 = −0.023 for which the graph of y2(x) is tangent to the graph of y1(x) at the
rightmost maximum, the green line corresponds to γ = γ2 = −0.4375 for which
the slope of y1(x) as x → ±∞ is equal to 2γ2 , and the cyan line corresponds to
γ = γ3 = −1.644 for which the graph of y1(x) is tangent to the graph of y1(x) at
the point x = 0.

It follows from the graph that y1(x) and y2(x) intersect at x = 0 for all γ ∈ R.
Thus, the system (4.1) has the symmetric equilibrium point (v̄, w̄, v̄, w̄) for all values
of γ ∈ R. This fact is easy to explain. Note that for v1 ≡ v2 = v and w1 ≡ w2 = w
the coupling terms in the system (4.1) are equal to zero, and (4.1) is equivalent to
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two identical, decoupled Morris Lecar neurons:
v′ = −m∞(v)(v − 1)− 2w(v + 0.7)− 0.5(v + 0.5) + 0.09
w′ = 1

3
λ(v)[w∞(v)− w],

v′ = −m∞(v)(v − 1)− 2w(v + 0.7)− 0.5(v + 0.5) + 0.09
w′ = 1

3
λ(v)[w∞(v)− w].

As was shown in section 2.3.6, the system{
v′ = −m∞(v)(v − 1)− 2w(v + 0.7)− 0.5(v + 0.5) + 0.09
w′ = 1

3
λ(v)[w∞(v)− w]

has a unique equilibrium point (v̄, w̄). Thus, the system (4.1) has a symmetric
equilibrium point (v̄, w̄, v̄, w̄) for all γ ∈ R, which completely agrees with figure
(4.1).

Let us analyze the non-symmetric equilibrium points next. Recall that γ de-
termines the slope of line y2(x) = 2γx. According to figure (4.1), there is no
intersection between y1(x) and y2(x) for γ ∈ (γ1,+∞). Thus, the system (4.1)
has no non-symmetric equilibrium points for γ ∈ (γ1,+∞). There are exactly 2
non-symmetric equilibrium points for γ = γ1 by the definition of γ1, since at γ = γ1

y1(x) and y2(x) intersect twice. By similar reasoning, there are 4 non-symmetric
equilibrium points for γ ∈ (γ2, γ1). At γ = γ2 two of the intersections between
y1(x) and y2(x) are lost, and hence there are only 2 non-symmetric equilibrium
points for γ ∈ (γ3, γ2). Finally, there are no non-symmetric equilibrium points for
γ ∈ (−∞, γ3].

Note that the number of non-symmetric equilibrium points is always even due
to the oddness of the functions y1(x) and y2(x), which is due to the symmetry of
the coupled Morris Lecar equations.

4.1.3 Analysis of the type II parameter set

In the preceding subsections 4.1.1-4.1.2 we have studied the structure of the equilib-
rium points for the type I parameter set. Exactly the same procedure is applicable
to the type II parameter set. As for the type I parameter set, equation (∗) defines
v1 as a function of x for all x in R. The number and the behavior of equilibrium
points is determined following the same graphical procedure. Figure (4.2) provides
a graph of y1(x) = v1(x) together with graphs of y2(x) = 2γx for three critical
values of γ for the type II parameter set. The figure (4.2) is harder to visualize
than the corresponding figure for the type I parameter set, but it is still possible
to determine the critical values of γ by magnifying the figure.

The values of γ1, γ2 and γ3 are:

γ1 = −0.1873
γ2 = −0.4286
γ3 = −0.2415,
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Figure 4.2: Graphs of y1(x) and y2(x) with respect to x for important values of
γ. The number points of intersection is the number of equilibrium points of (2.16)
for type II parameter set. The red line corresponds to y1(x), the blue line - to
y2(x) = 2γ1x, the green line - to y2(x) = 2γ2x and the cyan line - to y2(x) = 2γ3x.

where γi are defined as in the the subsection (4.1.2) - γ1 corresponds to the point
where y2(x) = 2γx is tangent to the graph of y1(x) at the rightmost maximum,
γ2 is the value of γ at which y2 and y1 become parallel, while for γ = γ3 graph of
y2(x) is tangent to y1(x) at the point x = 0. Note that the value γ2 is relatively
unchanged in comparison with type I parameter set, while the values of γ1 and γ3

become bigger. Note that the order of these values has changed with γ2 < γ3 for
this parameter set.

It follows that for the type II parameter set, we have the following structure of
equilibrium points: there is no non-symmetric equilibrium points for γ ∈ (γ1,+∞),
there are exactly two non-symmetric equilibrium points for γ = γ1, there are 4 non-
symmetric equilibrium points for γ ∈ (γ3, γ1) and there are only 2 non-symmetric
equilibrium points for γ ∈ [γ3, γ2). Finally, there are no non-symmetric equilibrium
points for γ ∈ (−∞, γ2).
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4.1.4 Conclusion

Knowledge of the number and behavior of the equilibrium points allows us to find
them numerically, and to build the bifurcation diagram of system (2.16), which is
discussed in section 4.2. The existence of the symmetric equilibrium for all γ ∈ R
and the symmetry of the Morris Lecar equations with respect to interchanging of
(v1, w1) and (v2, w2) is not surprising and can be easily derived without analysis of
the equilibrium point structure. However, the fact that graphical analysis allows
us to predict these facts verifies its correctness.

The significant part of the present section is the analysis of the non-symmetric
equilibrium points, and is quite important for further analysis of the Morris-Lecar
system. The following aspects of the non-symmetric equilibrium point behavior are
particularly interesting:

• It follows that the symmetric equilibrium point (v̄, w̄, v̄, w̄) is the only equilibrium
point of (2.16) for all γ ∈ (γ1,+∞), and is independent of γ. In particular, there are
no non-symmetric equilibrium points in the physical range of γ > 0 for all τ > 0.
That fact simplifies further numerical analysis of (4.1), since it shows that for all
γ > 0 there is no unstable equilibrium point, which can be missed by bifurcation
analysis and then become stable in some range of delay τ .

• The pair of non-symmetric equilibrium points that is lost at γ = γ2 has a norm
that diverges to infinity, since x = (v1−v2) →∞ as γ → γ2 from the left (see figure
(4.1)). As we will see in section 4.2, this behavior leads to the global instability
of system (4.1) and hence puts an upper bound on the value of γ0, which cannot
be bigger than γ2 = −0.4375 in the case of type I oscillator and γ2 = −0.4286 in
the case of oscillator of type II. That fact that γ2 can be taken as an upper bound
of γ0 will be precisely explained in section 4.2, which is devoted to the bifurcation
analysis of (2.16) with respect to γ in the case of τ = 0.

• Both type I and type II parameter sets lead to nearly the same values of γ2,
while the values of γ1 and γ3 are slightly different. This observation suggests that
γ2 characterizes a global property of system (2.16), and hence γ2 is robust with
respect to the variation of parameters of system (2.16). We will study this question
in the next chapter.

4.2 Bifurcation analysis in the non-delayed case

In the present section we will analyze the behavior of the non-delayed Morris Lecar
system with respect to the variation of the parameter γ. In the case of τ = 0, the

61



Morris Lecar system (2.16) takes the following form:


v′1 = −gCam∞(v1)(v1 − 1)− gKw1(v1 − vK)− gL(v1 + vL) + i+ γ(v2 − v1)
w′1 = φλ(v1)[w∞(v1)− w1]
v′2 = −gCam∞(v2)(v2 − 1)− gKw2(v2 − vK)− gL(v2 + vL) + i+ γ(v1 − v2)
w′2 = φλ(v2)[w∞(v2)− w2].

(4.5)

It follows that system (4.5) consists of two identical subsystems which are cou-
pled together. It can be rewritten as

{
X ′

1 = F (X1) + γG(X1, X2)
X ′

2 = F (X2) + γG(X2, X1)
, where (4.6)

X1 =

(
v1

w1

)
, X2 =

(
v2

w2

)
, G(Xk, Xj) = vj − vk,

F (Xj) =

(
−gCam∞(vj)(vj − 1)− gKwj(vj − vK)− gL(vj + vL) + i

φλ(vj)[w∞(vj)− wj]

)
.

Due to its specific structure, system (4.6) exhibits certain symmetries. Consider
any solution of (4.6), X̂(t) = (v1(t), w1(t), v2(t), w2(t)), with the property:

v1(t) ≡ v2(t) = v̂(t) and w1(t) ≡ w2(t) = ŵ(t) for all t ∈ R.

We will call such solutions X̂(t) symmetric or in-phase. Since v1(t) ≡ v2(t) for
all t ∈ R, we have that G(X̂1, X̂2) and G(X̂2, X̂1) are identically equal to zero,
and the subsystems X1 and X2 become decoupled. Thus, any symmetric solution
(v̂(t), ŵ(t), v̂(t), ŵ(t)) is independent of γ and will exist for all γ ∈ R. The stability
of such a symmetric solution may, however, depend on γ.

It follows that the pair (v̂(t), ŵ(t)) has to satisfy the equations for a single
Morris-Lecar neuron, X ′ = F (X). As we have determined in section 2.3.6, the
single Morris-Lecar system X ′ = F (X) has one stable periodic solution and one
unstable equilibrium point for both the type II and type I parameter sets. It follows
that coupled Morris-Lecar system (4.6) will have a symmetric equilibrium point and
a symmetric in-phase periodic solution for all values of γ in R, for both the type I
and type II parameter sets.

Let us consider the non-symmetric solutions of system (4.6) next. System (4.5) is
invariant with respect to interchanging of subsystems X1 and X2. More specifically,
if (v1(t), w1(t), v2(t), w2(t) is a solution of system (4.6), then (v2(t), w2(t), v1(t), w1(t))
will be a solution of system (4.6) as well. We have already encountered this prop-
erty in section 4.2, where all the non-symmetric equilibrium points appeared in
pairs. We see that this property can be extended to periodic orbits as well.
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Let us summarize what we have determined so far. System (4.5) has a branch
of in-phase periodic solutions and a branch of symmetric equilibrium points for all
γ ∈ R. The profiles of these symmetric solutions are independent of the value of
γ. All the non-symmetric equilibrium points and periodic solutions have to enter
the system in pairs due to the fact that the neurons are identical. The structure of
the non-symmetric equilibrium points of the system is determined and described in
subsection 4.1.4.

4.2.1 Software and algorithms.

We used the program called XPPAUT in order to numerically integrate the ODE’s
and study some properties of ODE’s for the fixed values of parameters. We used
the Auto software package which is included in XPPAUT in order to analyze the
bifurcation diagram of system (4.5) with respect to the variation of the parameter
γ. XPPAUT was used in order to find the equilibrium points and some stable
limit cycles of system (4.5) for a few fixed values of γ, and to plot the solution
profiles. The information obtained by XPPAUT was used as a starting point to
create general bifurcation diagrams using Auto.

Without getting too much into the details of the numerical procedures employed
in the Auto program, it is however necessary to make a short comment about the
numerical algorithms used.

Assume that we are interested in tracking the limit cycle of the system

Ẋ = F (X,α) (4.7)

with respect to the variation of parameter α. Suppose that we know the T periodic
limit cycle solution σ0(t) corresponding to α = α0. The general idea of the algorithm
implemented in the Auto software is the following:

1. The bifurcation parameter α is given a new value α1 = α0 + ε, where ε is the
step size which can be varied by user.

2. Assuming that (4.7) has periodic solution for α = α1 as well, the program
tries to find that periodic solution σ1(t) by solving the following boundary
value problem:  Ẋ = F (X,α1)

X(0) = σ0(0)
X(T ) = σ0(0),

which is easy to solve numerically. The values of X(0) and X(t + T ) are
initially set equal to σ0(0) assuming that the limit cycle does not change a lot
with small variation of α, and the corrections corresponding to the variation
of T and σ0(0) are computed later.
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Thus, the algorithm described above allows us to track any type of limit cycle
including ones of saddle type, since it does not try to converge to the limit cycle by
integration forward or backward in time, but rather solves a boundary value prob-
lem. A more detailed overview of the algorithms used in the bifurcation analysis
is available in [24], while the description of the Auto and XPPAUT programs is
available in [10].

4.2.2 Analysis
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Figure 4.3: Bifurcation diagram of system (4.5) with respect to γ for the type I
parameter set. The y axis provides the L2 norm of each solution, while the x axis
corresponds to the value of γ.

Let us consider the general bifurcation diagram of system (4.5) first. Figures
(4.3) and (4.4) provide a bifurcation diagram for equation (4.5) with respect to vari-
ation of γ for the type I parameter set. The thick lines represent stable equilibrium
points and the solid circles represent stable limit cycles, while the thin lines and the
empty circles represent unstable equilibrium points and limit cycles respectively.

The horizontal line of limit cycles represents the in-phase periodic solutions of
the system discussed above, while the horizontal line of equilibrium points repre-
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Figure 4.4: Bifurcation diagram of system (4.5) with respect to γ for the type
I parameter set. The y axis provides the maximum of v1(t) along each solution
profile, while the x axis corresponds to the value of γ.

sents the symmetric equilibrium point (v̄, w̄, v̄, w̄) discussed in the previous section.
We see that the profiles of solutions both along the branch of in-phase limit cy-
cles and along the branch of symmetric equilibrium points are independent of γ,
since in the case of complete synchrony subsystems X1 and X2 are decoupled. The
symmetric equilibrium point is unstable for all γ ∈ R, while the in-phase periodic
solution is stable for all γ > 0, and unstable for all γ < 0.

Let us consider the non-symmetric equilibrium points and limit cycles next.
Note that since figure (4.3) gives the L2 norm of solution (v1(t), w1(t), v2(t), w2(t)),
the points corresponding to the solutions (u, v, x, y) and (x, y, u, v) are indistinguish-
able on figure (4.3), since the L2 norms of the solutions (u, v, x, y) and (x, y, u, v)
are equal. Hence, each non-symmetric branch of solutions on figure (4.3) in fact
corresponds to the two branches - (u, v, x, y) and (x, y, u, v).

Figure (4.4) allows us to distinguish non-symmetric equilibrium points and limit
cycles, since it plots only the maximum along the variable v1(t). For the equilibrium
points it is simply v̄1, while for the limit cycle maxt∈[0,T ] v1(t) is plotted.

The branch of symmetric equilibrium points gives birth to the branch of the
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anti-phase limit cycles through a Hopf bifurcation, which occurs at γ = 0.3645,
and to the two branches of non-symmetric equilibrium points through a bifurca-
tion at γ = −1.644. Each branch of non-symmetric equilibrium points separates
into two branches in a limit point bifurcation at γ = −0.2321. Finally, the two
non-symmetric branches become stable through a Hopf bifurcation and give birth
to two more branches of limit cycles, which are neither in-phase nor anti-phase.
In these limit cycles one neuron suppresses another, i.e. prevents it from firing.
See figure (4.5) for an example of the solution from one of the branches mentioned
above.

The anti-phase periodic solution is unstable for γ > 0 and stable for small
negative values of γ. However, the stability of the anti-phase solution is lost as
the magnitude of the negative γ is increased. Let us consider the region where the
anti-phase solution becomes unstable in more detail. The magnified bifurcation
diagram is provided in figure (4.6). In the very narrow region of γ first the anti-
phase solution is lost in the limit point bifurcation at γant = −0.213. Next, the
pair of non-symmetric equilibrium points becomes stable via the Hopf bifurcation
at γH = −0.2179, which also creates the pair of unstable “suppressed” limit cycles.
The “suppressed” limit cycles become stable in the limit point bifurcation at γlps =
−0.2182, and the system exhibits multi-stability for the short range of γ, until
the stable “suppressed” limit cycles are lost in the limit point bifurcation at γlp =
−0.2655. For more negative values of γ only the pair of equilibrium points is stable.

These results agree with the analysis done in the previous section. As we know
from the analysis of the equilibrium point structure, the norm of the stable pair of
non-symmetric equilibrium points diverges to infinity, and these equilibrium points
become non-existent at γ = −0.4375. Numerical simulations suggested that all
solutions of (4.5) diverge to infinity for γ < −0.4375. Summing up the results of
section 4.2 with the analysis of figure (4.3), we may conclude that solutions “blow
up” via the stable equilibrium point, the norm of which grows unboundedly with a
vertical asymptote at a point γinf = −0.4375. For γ < γinf there are no more stable
solutions and all solutions diverge. We will theoretically validate this behavior in
the following chapter.

It follows that for small negative γ the normally hyperbolic stable limit cycle
“overcomes” the effect of the destabilizing part −γvi and there exists a stable anti-
phase solution. Hence we may estimate the value of γ0 from theorem 3.2.1. The
best estimate is given by γant - the point at which the stability of the anti-phase
solution is lost, while the point γ2 = −0.4375, corresponding to the asymptote for
the pair of stable equilibrium points, provides an upper bound on γ0. Although the
upper bound on γ0 is worse than the estimate of γ0 by γant, it is easier to compute
and analyze. Hence, it may be used in order to study the robustness of the system
with respect to the variation of its physical parameters.

Note: The case of the type II parameter set is provided in figure (4.7). In spite of
the fact that the type of Hopf bifurcation of anti-phase limit cycles and solution
norms are different, the system demonstrates qualitatively the same behavior as
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Figure 4.5: Suppressed periodic solution for γ = −0.22. The x axis denotes time t,
while the y axes shows voltages v1(t) and v2(t)

for the type I parameter set. This observation suggests that electrical coupling
causes the same effects on the neurons independently of their type. For the sake
of simplicity we have estimated the region of validity of the phase model for the
type I neuron. However, the whole procedure is equally applicable to the type II
neuron, and gives the same qualitative result.

4.2.3 Conclusion

1. The numerical study of the system (4.5) fully agrees with the predictions of
non-delayed phase model (3.33) - for |γ| small enough the branch of in-phase
limit cycles is stable for γ > 0, while for γ < 0 the branch of anti-phase limit
cycles is stable.

2. In the physically reasonable parameter range (i.e. γ > 0) the branch of
in-phase solutions is the only stable branch. This result agrees with the
supposition often found in biological literature, that electrical coupling tends
to synchronize neuronal behavior, and motivates us to prove this in the case
of strong coupling (see the chapter 5).
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Figure 4.6: Bifurcation diagram of system (4.5) in Norm-γ axes with greater reso-
lution.

3. In the case of negative γ, stability of the anti-phase solution branch is lost
at γ = −0.213. Predictions of the phase model are no longer valid and for
γ < −0.213 anti-phase solutions do not exist. Although consideration of the
negative γ values has no physical meaning, it allows us to estimate the region
of validity of the phase model, i.e. to estimate γ0.

4. The point γ2 from section 4.2 gives an upper bound on γ0. For γ < γ2 all
solutions of (4.5) diverge to infinity, except for unstable equilibrium points
and unstable limit cycle solutions. (This will be proven in chapter 5).

Finally, we may postulate that electrical coupling should always cause the un-
bounded growth of solutions for large enough negative values of γ. That fact
could be used in an estimate of the region of validity of the phase model for any
conductance-based model of electrically coupled neurons. The fact that the in-
phase limit cycle is stable both for small γ > 0 by predictions of the phase model
and for all γ > 0 by the numerical studies verifies the assumption that, in the
physical case of positive γ, electrical coupling tends to synchronize oscillations.

We will analytically prove that subsystems X1 and X2 synchronize as γ → +∞,
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Figure 4.7: Bifurcation diagram of the system (4.5) for the type II parameter set

and that solutions diverge to infinity as γ → −∞ for an arbitrary single-compartment
conductance-based model in chapter 5. To conclude, it is worth mentioning that
both type I and type II oscillators qualitatively demonstrate the same behavior,
which suggests that electrical coupling acts similarly on the neurons of both type I
and type II.

4.3 Bifurcation analysis in the delayed case

In this section we will consider the bifurcation analysis of the Morris-Lecar system
(2.16) with respect to arbitrary values of γ and τ . The analysis will be done numer-
ically by the software and algorithms which will be described further in subsection
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4.3.1. System (2.16) is repeated below for the reader’s convenience:



v′1 = −gCam∞(v1)(v1 − 1)− gKw1(v1 − vK)− gL(v1 + vL)
+i+ γ(v2(t− τ)− v1)

w′1 = φλ(v1)[w∞(v1)− w1]
v′2 = −gCam∞(v2)(v2 − 1)− gKw2(v2 − vK)− gL(v2 + vL)

+i+ γ(v1(t− τ)− v2)
w′2 = φλ(v2)[w∞(v2)− w2].

(4.8)

The goal of the present section is twofold. First, we will analyze the general
behavior of system (4.8) with respect to variation of γ and τ both for type I and
type II parameter sets in subsection 4.3.2. Next, we will numerically validate the
results for small values of |γ| obtained in chapter 3. We will estimate the values of
γ0(τ) and η0 for the type I and the type II parameter sets and we will analyze the
agreement between experimental and theoretical results. This part of the analysis
is done in subsection 4.3.3.

4.3.1 Software and algorithms

For the numerical bifurcation analysis of the delay differential equations we will use
the program called DDE-BIFTOOL. DDE-BIFTOOL is a set of Matlab routines
for bifurcation analysis of systems of delay differential equations. DDE-BIFTOOL
allows one to continue periodic solutions or equilibrium points of the delay differ-
ential equation with respect to selected parameters, and to determine the stability
of a given equilibrium point or periodic solution. DDE-BIFTOOL is capable of
finding the bifurcation points of a system of delay differential equations and can
switch between different solution branches at the bifurcation points. A detailed
description of the routines and numerical algorithms used in DDE-BIFTOOL is
available in [9].

4.3.2 Global bifurcation analysis of the delayed Morris-
Lecar system

Let us briefly summarize our knowledge of the delayed Morris-Lecar system. Sys-
tem (4.8) is invariant with respect to interchanging of the subsystems X1 and
X2, as for the non-delayed system (4.5). Hence, all the non-symmetric equilib-
rium points and periodic solutions will appear in pairs (x(t), y(t), u(t), v(t)) and
(u(t), v(t), x(t), y(t)). The in-phase periodic solution, however, is not independent
of γ for τ 6= 0, since the delayed coupling functions G(Xk, Xj) = vj(t− τ)− vk(t)
are non-zero for vj(t) ≡ vk(t), and existence of the in-phase solution depends on
the values of τ and γ.
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As has been shown in section 4.2, the structure of the equilibrium points is inde-
pendent of τ . Hence, we start the analysis of the delayed system (4.8) by studying
how the variation of τ changes the stability along each branch of equilibrium points.

In order to determine the effect of non-zero delay on the system, it is convenient
to first consider the bifurcation diagrams of system (4.8) with respect to γ for
several fixed values of τ . We may construct a bifurcation diagram with respect to
γ for any fixed value of τ by taking the previously computed for τ = 0 branches of
equilibrium points and computing the stability along each branch. Computation
of stability allows us to determine the points of Hopf bifurcations and hence find
the periodic solutions of the system and study their behavior with respect to the
variation of γ.

At this point it is necessary to provide a little background from the theory of
delay differential equations. Stability of the zero equilibrium of the linear delay
differential equation

Ẋ = AX(t) +BX(t− τ), A,B ∈ Rn×n

is determined by the roots of its characteristic equation, which has the form

det(A− λI +Be−λτ ) = 0. (4.9)

Due to the summand Be−λτ , equation (4.9) has infinitely many roots in the com-
plex plane C. However, there always exists a root with the maximal real part (see
[5] for the proof), and the stability can hence be determined by computing a finite
number of roots. As in the case of ordinary differential equations, the zero equilib-
rium solution is asymptotically stable if all roots of its characteristic equation have
negative real parts.

The stability of an equilibrium point of a nonlinear delay differential equation
may be found by linearising the system in the neighborhood of the equilibrium
point and computing the roots of the characteristic equation of the resulting linear
system.

Now we are ready to proceed with further analysis of system (4.8). It is con-
venient to analyze the stability along the branch of equilibrium points by plotting
the real parts of the roots of the characteristic equation versus the parameter along
the branch.

Consider the branch of the symmetric equilibrium points first. Figures (4.8)
and (4.9) show the stability along the branch of symmetric equilibrium points of
the type II parameter set for τ = 0.01 and τ = 2.7 respectively. The value of
τ = 2.7 was chosen arbitrarily in order to illustrate the effects of the delay on the
branch of equilibrium points. For τ = 0.01, the stability information is relatively
unchanged with respect to the system with no delay. There are two points where
the roots of characteristic equations cross zero, which are located at γ = −0.2415
and γ ≈ 0.117. γ = −0.2415 corresponds to the pitchfork bifurcation creating the
branch of non-symmetric equilibrium points, while γ ≈ 0.117 corresponds to the
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Figure 4.8: Stability diagram of the symmetric branch of equilibrium points for
type II parameter set and τ = 0.01

Hopf bifurcation creating the anti-phase solution. The dynamics is qualitatively
the same as in the case of zero delay, as the roots of the characteristic equation
introduced by the delay have very large negative real parts and don’t affect the
dynamics.

The situation changes as τ is increased to 2.7, as we can see in figure (4.9).
The roots of the characteristic equation introduced by the delay have real parts of
order 1, and hence start affecting the dynamics. Note that the root of the char-
acteristic equation corresponding to the pitchfork bifurcation creating the branch
of non-symmetric equilibrium points remains at its place, while the curve that cor-
responds to the anti-phase Hopf bifurcation has moved up. The anti-phase Hopf
no longer exists, while its place was taken by another root at γ ≈ 0.164. Nu-
merical simulations have shown that γ ≈ 0.164 corresponds to the in-phase Hopf
bifurcation.

Let us generalize our observations. Although dependance of the roots of char-
acteristic equations on τ is nonlinear, as a general rule, the real parts of the infinite
set of roots created by the presence of τ increase and start to cross the zero axis as
τ is being increased. Each zero crossing corresponds to a bifurcation point. Note
that all the bifurcation points created as τ is being increased are Hopf due to the
fact that the structure of equilibrium points is independent of τ , and the roots of
the characteristic equations hence can cross zero only as a pair of imaginary roots,
not as a zero root. New Hopf points appear at γ → ±∞ and travel towards γ = 0,
where they vanish as τ gets large enough. The larger the value of the delay, the
more Hopf bifurcations are created and the more complicated the dynamics of the
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Figure 4.9: Stability diagram of the symmetric branch of equilibrium points for
type II parameter set and τ = 2.7

system becomes. Numerical simulations suggested that Hopf bifurcations created
out of the branch of symmetrical equilibrium points lead to in-phase or anti-phase
solutions, which exchange with each other.

It is possible to find the Hopf points and to track their behavior in the γ-τ
plane. The corresponding graph is provided in figure (4.11). We see that the Hopf
points come from infinity and approach some vertical asymptote close to γ = 0, as
was expected from the analysis of the stability of the equilibrium points.

The stability along the branch of non-symmetric equilibrium points for type II
parameter set and τ = 2.7 is provided in figure (4.10). We see two zero crossings
that correspond to the limit points of equilibrium points, and two zero crossings
that correspond to the Hopf bifurcations creating the suppressed limit cycles. The
stability of the branch of non-symmetric equilibrium points at τ = 2.7 is still
unaffected by the roots of characteristic equations corresponding to the delay, but
we can see that these roots are already close to the zero axes. As τ gets bigger,
these roots will give rise to a new limit cycles through a Hopf bifurcations, leading
to the complicated dynamics in the region where the predictions of the phase model
fail.

Figure (4.12) provides the bifurcation diagrams with respect to γ for τ = 0.01.
We see that for small values of τ , the behavior of the system is qualitatively the
same as in the case of τ = 0 (see figure (4.4)), as was expected by the analysis
of the stability of the branches of equilibrium points. It is possible to create the
bifurcation diagrams with respect to γ for large non-zero values of τ , but this
analysis is computationally expensive. Thus, we will proceed to the analysis of the
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Figure 4.10: Stability diagram of the non-symmetric branch of equilibrium points
for type II parameter set and τ = 2.7

results of the phase model which was studied in chapter 3.

4.3.3 Numerical analysis of the results of the phase model

The analysis of the phase model done in chapter 3 determines the stable periodic
solutions for τ and γ small enough for both type I and type II parameter sets. The
region of validity of phase model (3.36) with respect to τ and γ, however, is yet
undetermined.

In the present subsection we will compare the results of the phase model with
numerical data. The numerical data was obtained by picking up the in-phase and
anti-phase periodic solutions from the bifurcation diagrams provided in figure (4.12)
for three different values of γ: γ = 0.001, γ = 0.01 and γ = 0.1 for both type I
and type II parameter sets. Next we continued these solutions with respect to τ
and hence we obtained twelve branches of in-phase and anti-phase solutions with
respect to τ . Finally, we determined the regions of stability and instability of the
in-phase and anti-phase solutions with respect to τ by computing the stability along
each branch.

The graphs of the resulting branches with respect to τ are available in figures
(4.13)-(4.16). The red solid circles denote the stable solutions while the green +
signs correspond to the unstable ones. The x axes of each diagram corresponds to
the value of τ , while the y axis shows the maxt∈[0,T ] v1(t) for each periodic solution.
We see that for γ = 0.001 and γ = 0.01 the profiles of the solutions are relatively
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Figure 4.11: Hopf points in the γ-τ plane for the type II parameter set

unaffected by τ , while for γ = 0.1 the profiles of the solutions depend on the value
of delay. The type I and type II systems behave nearly the same for each γ. Note
that stability switching for the type II parameter sets occurs more often due to the
fact that the period of oscillation of the type system II is much smaller than that
of the type I system.

Information about the stability switching points allows us to compare the results
of the experiment with the theoretical expectations based on the phase model.
The theoretical and experimental data is provided in tables (4.1) and (4.2). Note
that the values of ηi from chapter 3 are converted to τ by multiplying them by
1/Ω = T/2π for each parameter set.

Let us discuss the agreement between the theoretical and numerical data. First
of all, it is necessary to make a comment about the accuracy of the numerical
data. The step-length in the continuation of the limit cycles with respect to τ
was 0.05 for all the limit cycles with the type I parameter set and 0.1 for all
the limit cycles with the type II parameter set. The stability switching values of
τ were computed by taking the midpoint of the interval joining the values of τ
corresponding to the neighboring stable and unstable limit cycles. The margin of
error in the determination of the experimental values of τ hence is equal to 0.025
for type I and 0.05 for type II parameter sets. This error does not include possible
errors in the computation of stability close to the stability switching points.

Recall that a limit cycle is stable when max(‖µ‖) > 1, where µ denotes a
set of Floquet multipliers. In our numerical simulations we used the condition
max(‖µ‖) > 1.001 in order to avoid numerical error in computation of the Floquet
exponent which is identically equal to 1. However, this error is negligible since

75



Figure 4.12: Bifurcation picture with respect to γ for type I (top) and type II
(bottom) parameter sets
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Figure 4.13: Branches of in-phase periodic solutions with respect to τ for γ = 0.001
(top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type I parameter set. Red
circles correspond to the stable solutions, and green ”+” signs correspond to the
unstable solutions.
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Figure 4.14: Branches of anti-phase periodic solutions with respect to τ for γ =
0.001 (top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type I parameter set.
Red circles correspond to the stable solutions, and green ”+” signs correspond to
the unstable solutions.
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Figure 4.15: Branches of in-phase periodic solutions with respect to τ for γ = 0.001
(top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type II parameter set. Red
circles correspond to the stable solutions, and green ”+” signs correspond to the
unstable solutions.
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Figure 4.16: Branches of anti-phase periodic solutions with respect to τ for γ =
0.001 (top), γ = 0.01 (middle) and γ = 0.1 (bottom) for the type II parameter set.
Red circles correspond to the stable solutions, and green ”+” signs correspond to
the unstable solutions.
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Floquet exponents grow exponentially fast as the limit cycles becomes unstable.

Let us discuss the tables next. For γ = 0.001, the experimental values for the
type II parameter sets agree with the theoretical results within the margin of error,
while the results for the type I parameter set show a little discrepancy with the
margin of error for τ greater than one period, or for η > 2π. For γ = 0.01, both
type I and type II oscillators deviate from the theoretical expectations as τ gets
large enough. The type II parameter set shows better agreement with the model
than the type I parameter set, however, for both of them the error increases as τ
is increased. Finally, for γ = 0.1 both type I and type II oscillators highly deviate
from the expected behavior. For large values of τ behavior is completely different
from the expectations. However, both type I and type II parameter sets agree with
the expectations for the small values of τ .

Thus, experimental observations verify the conjecture that η0 lies on the curve
τγ = Const, but contradict the prediction that η0 lies on the curve τγΩ = Const.
The latter contradiction might be caused by the differences in behavior of system
(4.8) for type I and type II parameter sets, that overcome the theoretical estimate
on the η0 which was derived in section 3.4.

4.3.4 Conclusion

As τ is increased, more and more limit cycles are created out of the Hopf bifurcations
and the dynamics of the system gets more and more complicated. However we may
predict the dynamics for γ small enough by using the phase model with a phase
shift instead of delay, which was developed in chapter 3. As it was expected, the
region of validity of the phase model is bounded by the curves γτ = Const and
γ = γ0(τ), where the curve γ0(τ) corresponds to the region of validity of the phase
model in γ. Note that γ0(0) is the region of validity of the phase model with no
delay found in the section 4.2. No matter how large the value of τ , we can still
correctly predict the behavior of the system in the neighborhood of γ = 0 small
enough.

The assumption that the region of validity lies on the curve Ωτγ = Const has
been contradicted by the simulation. Differences between type I and type II models
overcome the expected behavior.

81



Table 4.1: Comparison of theoretical and experimental values of τ for the type I
parameter set

Description of a point Theoretical γ = 0.001 γ = 0.01 γ = 0.1
value error value error value error

Anti-phase becomes stable 4.1566 4.0939 -0.0627 3.8433 -0.3133 2.0207 -2.1359
In-phase loses stability 4.4911 4.6431 0.1520 4.8948 0.4037 4.3688 -0.1223
In-phase becomes stable 16.1010 15.9432 -0.1578 14.7558 -1.3452 5.2380 -10.8630
Anti-phase loses stability 16.4116 16.5939 0.1824 17.0651 0.6536 17.1110 0.6995
Anti-phase becomes stable 28.0215 27.7439 -0.2776 25.6654 -2.3561 - -

In-phase loses stability 28.3559 28.5432 0.1873 29.2058 0.8499 5.4799 -22.8760
In-phase becomes stable 39.9658 39.5932 -0.3726 - - 8.1087 -31.8572
Anti-phase loses stability 40.2764 40.5439 0.2675 - - - -

Table 4.2: Comparison of theoretical and experimental values of τ for the type II
parameter set

Description of a point Theoretical γ = 0.001 γ = 0.01 γ = 0.1
value error value error value error

In-phase loses stability 2.7377 2.8450 0.1073 2.9426 0.2049 2.6011 -0.1366
Anti-phase becomes stable 2.8068 2.6450 -0.1619 2.6456 -0.1612 1.4613 -1.3455
Anti-phase loses stability 9.6373 9.7450 0.1077 9.8456 0.2084 9.4669 -0.1703
In-phase becomes stable 9.7064 9.5450 -0.1614 9.3926 -0.3138 7.4038 -2.3026
In-phase loses stability 16.5506 16.6450 0.0944 16.8427 0.2921 16.4042 -0.1464

Anti-phase becomes stable 16.6198 16.4450 -0.1748 16.1457 -0.4741 13.1981 -3.4216
Anti-phase loses stability 23.4502 23.5450 0.0948 23.8457 0.3955 23.4965 0.0463
In-phase becomes stable 23.5193 23.3450 -0.1743 22.8927 -0.6266 19.0247 -4.4946
In-phase loses stability 30.3636 30.4450 0.0814 30.7927 0.4291 30.4513 0.0877

Anti-phase becomes stable 30.4327 30.2450 -0.1877 29.6458 -0.7869 24.7260 -5.7067
Anti-phase loses stability 37.2631 37.4450 0.1818 37.7458 0.4827 37.7238 0.4607
In-phase becomes stable 37.3323 37.1450 -0.1873 - - 30.4513 -6.7100
In-phase loses stability 44.1765 44.3450 0.1685 - - - -

Anti-phase becomes stable 44.2457 44.0450 -0.2007 43.1459 -1.0998 36.0583 -8.1873
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Chapter 5

Asymptotic analysis for large
values of γ

Numerical analysis of the electrically coupled Morris-Lecar neurons done in chapter
4 suggested that electrically coupled Morris-Lecar neurons synchronize their volt-
ages for large positive values of γ , and that solutions of the coupled Morris-Lecar
system diverge for large enough negative values of γ. In the present chapter we will
generalize and prove these properties.

We consider a network of two arbitrary electrically coupled neurons. Each
neuron is represented by a single compartment conductance-based model with an
arbitrary number of ionic conductances and corresponding gating variables. We set
only general assumptions on the smoothness of the functions used in the model for
each neuron.

We study the asymptotic behavior of the neuron voltages in the extreme cases
of γ → +∞ and γ → −∞. Our analysis closely follows the general perturbation
framework for initial value problems of nearly linear systems, which was developed
in [30]. We will prove that for γ > 0 large enough, the voltages of the neurons
synchronize, while for large γ < 0 the voltage of each neuron grows unboundedly
with time.

The method developed for analysis of the case γ → +∞ contributes to the
general theory of nearly linear systems. In particular, the analysis of nearly linear
systems done in [30] by Murdock has been extended to the special case of nearly
linear systems with non-positive eigenvalues.

5.1 Problem setting

The concept of a single compartment conductance-based model was introduced in
section 2.2. Recall that a single compartment conductance based model of a neuron
is a system of ordinary differential equations. One equation describes the change
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of the neurons voltage with respect to time, while the other equations describe
dynamics of activation and inactivation variables corresponding to the voltage-
dependent ionic channels of the neuron.

Now, consider two neurons described by different conductance based models.
The first neuron is represented by a system of m+1 ordinary differential equations,
while the second neuron is represented by a system of k + 1 ordinary differential
equations. v1 and v2 are the voltages of each neuron, while a1 ... am are activation
and inactivation variables corresponding to ionic channels of the first neuron, and b1
... bk are activation and inactivation variables corresponding to the second neuron.
Then the system of two electrically coupled neurons has the following form, which
is the general form of a network of two electrically coupled single-compartment
conductance based neuronal models:


v̇1 = f1(v1, a1, . . . , am) + γ(v2 − v1)
v̇2 = f2(v2, b1, . . . , bk) + γ(v1 − v2)
ȧi = gi(v1, ai), i = 1 . . .m

ḃj = hj(v2, bj) j = 1 . . . k

. (5.1)

Note that the dimension of the coupled system is m + k + 2. For simplicity of
notation we will denote m+ k + 2 by n everywhere further in the present chapter.
The functions f1(·),f2(·), gi(·) for i = 1 . . .m and hj(·) for j = 1 . . . k are assumed
to be continuous everywhere in their domain Σ ⊂ Rn (it can be Σ = Rn) and to
be Lipschitz in any compact convex set D ⊂ Σ throughout this chapter. These
conditions are set in order to verify that solutions of (5.1) exist and are unique for
any initial condition in Σ, and should hold for any well-defined conductance based
model. We will set some additional conditions for these functions in section 5.5.

We will study asymptotic behavior of the solutions of (5.1) for γ → +∞ and
γ → −∞. It will be shown that v1(t) and v2(t) synchronize for γ > 0 large
enough, and that |v1(t) − v2(t)| grows unboundedly with time for γ < 0 large
enough. Precise mathematical definitions of “synchronization” and “unbounded
growth” will be given when we develop an appropriate mathematical description of
the model.

5.2 Problem in perturbations.

We will rewrite system (5.1) in the general framework known as a “nearly linear
system”. The theory of nearly linear systems is well-developed (see [30]), and they
can be analyzed by the methods of perturbation theory.

Let us re-scale time by introducing a new “fast time” variable T = |γ|t. Then
d
dt

= d
dT

dT
dt

= |γ| d
dT

. Since (5.1) is autonomous system, this change would affect
only the derivatives of all variables with respect to time (ṡ corresponds to ds

dt
, while
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s′ corresponds to ds
dT

). Substitution of the scaled time in system (5.1) yields the
following system:


|γ|v′1 = f1(v1, a1, . . . , am) + γ(v2 − v1)
|γ|v′2 = f2(v2, b1, . . . , bk) + γ(v1 − v2)
|γ|a′i = gi(v1, ai), i = 1 . . .m
|γ|b′j = hj(v2, bj) j = 1 . . . k

(5.2)

Let us introduce a small parameter ε = 1/|γ|. After dividing each equation of
system (5.2) by |γ| we obtain the following:


v′1 = sgn(γ)(v2 − v1)+ εf1(v1, a1, . . . , am)
v′2 = sgn(γ)(v1 − v2)+ εf2(v2, b1, . . . , bk)
a′i = εgi(v1, ai), i = 1 . . .m
b′j = εhj(v2, bj), j = 1 . . . k

(5.3)

It is convenient to perform a change of variables in order to group together
linear terms independent of ε. Let

x =
1

2
(v1 − v2) and y =

1

2
(v1 + v2),

then v1 = x+ y, v2 = y − x, and system (5.3) takes form


x′ = −2sgn(γ)x+ ε1

2
(f1(x+ y, a1, . . . , am)− f2(y − x, b1, . . . , bk))

y′ = ε1
2
(f1(x+ y, a1, . . . , am) + f2(y − x, b1, . . . , bk))

a′i = εgi(x+ y, ai), i = 1 . . .m
b′j = εhj(y − x, bj), j = 1 . . . k

(5.4)

For simplicity of notation we will denote the function 1/2(f1(v1, a1, . . . , am) −
f2(v2, b1, . . . , bk)) by p(x, y, ai, bj), and the function 1/2(f1(v1, a1, . . . , am) +
f2(v2, b1, . . . , bk)) by q(x, y, ai, bj).

Let us consider an initial value problem for system (5.4) next. In vector form
it can be rewritten as

{
z′ = Az + εF (z)
z(0) = C

, where (5.5)
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z =



x
y
a1

. . .
am

b1
. . .
bk


, A =


−2sgn(γ) 0 . . . 0

0 0 . . . 0
...
0 0 . . . 0

 , F =



p(x, y, a1, . . . , bk)
q(x, y, a1, . . . , bk)
g1(x+ y, a1)

. . .
gm(x+ y, am)
h1(y − x, b1)

. . .
hk(y − x, bk)


,

C =

 C1
...
Cn

 .

5.3 Solution in perturbations

Any system of the form (5.5) where ε is a small parameter can be referred to as an
initial value problem for a nearly linear system. Since (5.5) satisfies the conditions
of the theorem of existence and uniqueness, the solution of the IVP (5.5) exists for
any T ≥ 0. Let us write the exact solution of (5.5) in the form

z(T ) = z0(T ) + εz1(T ) +R(T, ε),

where z0(T ) and z1(T ) are solutions of the following O(1) and O(ε) initial value
problems:

{
z′0 = Az0

z0(0) = C
, and (5.6)

{
z′1 = Az1 + F (z0)
z1(0) = 0

. (5.7)

The term R(T, ε) represents the difference between the exact solution and the
approximation z0(T ) + εz1(T ). Thus, R(T, ε) has to satisfy the following initial
value problem:

{
R′ = AR + ε[F (z0 + εz1 +R)− F (z0)]
R(0, ε) = 0

, (5.8)
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since R′ = z′ − z′0 − εz′1 = Az + εF (z)−Az0 − εAz1 − εF (z0) = A(z0 + εz1 +R)−
A(z0 + εz1) + ε[F (z0 + εz1 +R)− F (z0)].

This construction of the approximate solution is convenient since functions z0(T )
and z1(T ) can be found explicitly in terms of A and F (·), while the term R(T, ε)
can be estimated from above. Let us consider the properties of z0(T ) and z1(T )
next.

5.4 Explicit form of z0(T ) and z1(T ).

Consider z0(T ) first. The initial value problem (5.6) is linear and homogeneous,
and hence z0(T ) = eATC. It follows that

z0(T ) =


C1e

−2sgn(γ)T

C2
...
Cn

 .

We see that at first order all variables except x(T ) remain constant, while vari-
able x0(T ) = C1e

−sgn(γ)T changes exponentially fast. For γ > 0 x0(T ) exponentially
approaches zero, while for negative values of γ x0(T ) grows exponentially fast for
C1 6= 0.

Let us consider z1(T ) next. System (5.7) is linear but non-homogeneous. The so-

lution can be found by variation of constants and has form z1(T ) =
∫ T

0
eA(T−s)F (eAsC)ds.

In explicit form

z1(T ) =


e−2sgn(γ)T

∫ T

0
p(C1e

−2sgn(γ)s, C2, . . . , Cn)e2sgn(γ)sds∫ T

0
q(C1e

−2sgn(γ)s, C2, . . . , Cn)ds
...∫ T

0
bk(C2 − C1e

−2sgn(γ)s, Cn)ds

 .

5.5 Synchronization in the case of γ > 0

In the present section we will consider the solution of system (5.5) for γ > 0. We
will estimate terms z1(T ) and R(T, ε), and hence prove that x(T ) = x0(T ) + O(ε)
uniformly on the time intervals [0, 1/ε]. Throughout this section we will assume
that F (·) is globally Lipschitz in its domain Σ, i.e. that there exist L ∈ R, such
that

‖F (u)− F (v)‖ ≤ L‖u− v‖, for all x, y ∈ Σ,

where ‖ · ‖ denotes a Euclidean norm in Rn.
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5.5.1 Properties of z1(T ).

Due to the specific form of the integrals for z1(T ) it is possible to estimate each of
them in the case γ > 0. Consider term x1(T ) first. For γ > 0

x1(T ) = e−2T

∫ T

0

p(C1e
−2s, C2, . . . , Cn)e2sds.

Let us change the variable of integration by introducing u = e−2s.Then

ds = −du
2u
, and the limits of integration change by the rule

{
T → e−2T

0 → 1
.

It follows that

x1(T ) = e−2T

∫ 1

e−2T

p(C1u,C2, . . . , Cn)

2u2
du.

Note that new variable u changes only between 1 and 0 as T changes between
0 and +∞. Since [0, 1] is a compact interval, and p(·) is a continuous function,
|p(C1u,C2, . . . , Cn)| is bounded by a constant for u ∈ [0, 1].

Let Dx = max
u∈[0,1]

|p(C1u,C2, . . . , Cn)|.

Then |x1(T )| = e−2T

∣∣∣∣∫ 1

e−2T

p(C1u,C2, . . . , Cn)

2u2
du

∣∣∣∣
≤ e−2T

∫ 1

e−2T

|p(C1u,C2, . . . , Cn)|
2u2

du ≤ e−2T

∫ 1

e−2T

Dx

2u2
du

= e−2T

[
−Dx

2u

]1

e−2T

=
Dx

2

(
1− e−2T

)
≤ Dx

2
.

It follows that x1(T ) is bounded by a constant for all T ≥ 0. The constant Dx is
independent of T and ε and depends only on the initial conditions C.

The same idea is applicable to the terms y1(T ), . . . , bk,1(T ). For example, con-
sider y1(T ).

y1(T ) =

∫ T

0

q(C1e
−2s, C2, . . . , Cn)ds =

∫ 1

e−2T

q(C1u,C2, . . . , Cn)

2u
du.

Let Dy = max
u∈[0,1]

|q(C1u,C2, . . . , Cn)|.
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Then |y1(T )| =

∣∣∣∣∫ 1

e−2T

q(C1u,C2, . . . , Cn)

2u
du

∣∣∣∣ ≤ ∫ 1

e−2T

|q(C1u,C2, . . . , Cn)|
2u

du

≤
∫ 1

e−2T

Dy

2u
du =

[
−Dy

2
lnu

]1

e−2T

= DyT.

Exactly the same technique leads to similar estimates for the functions a1,1, . . . , bk,1.
We see that the undamped O(ε) terms grow at linear speed. This is explained by
the fact that these terms are constant at O(1), and hence their O(ε) approxima-
tions have secular terms. The perturbation problem is badly defined for functions
y1, ..., bk,1. However, our goal is to prove the synchronization of voltages, which is
described by the x(T ) component of solution. We will need components y1, ..., bk,1

only to estimate the error term.

To conclude, we note that the norm of the whole vector-function z1(T ) grows
at linear speed for all T as well, since

||z1(T )|| =
√
x1(T )2 + y1(T )2 + · · ·+ bk,1(T )2

≤

√(
Dx

2

)2

+D2
yT

2 + · · ·+D2
b,kT

2 ≤ DT + D̄

for some constants D, D̄ ∈ R depending only on the initial conditions C.

5.5.2 Estimate of the norm of R(T, ε)

The estimation procedure for R(T, ε) in the case of a general nearly linear system
is developed in [30] on pages 140-153. Here we utilize the procedure introduced by
[30] for the special case when the matrix A has non-positive eigenvalues.

Consider the initial value problem (5.8). We may rewrite the equation for
R(T, ε) as an integral equation using an integrating factor technique. Recall

R′ = AR + ε[F (z0 + εz1 +R)− F (z0)].

Multiplication by matrix e−AT from the right leads to the equation

(e−ATR)′ = εe−AT [F (z0 + εz1 +R)− F (z0)].

Finally, integrating the latter equation from 0 to T with the initial condition
R(0, ε) = 0, we obtain the following integral equation for R(T, ε)

R(T, ε) = ε

∫ T

0

eA(T−s)[F (z0 + εz1 +R)− F (z0)]ds (5.9)
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Consider the matrix eA(T−s). In explicit notation it can be written as
e−2(T−s) 0 . . . 0

0 1 . . . 0
...
0 0 . . . 1

 .

It follows that eA(T−s) is bounded in the region Ω : T ≥ 0, s ∈ [0, T ], and ||eA(T−s)|| ≤
1 for all (T, s) ∈ Ω. Using this property of eA(T−s) and the fact that F (·) is globally
Lipschitz, we may estimate ‖R(T, ε)‖ as follows

‖R(T, ε)‖ = ε

∣∣∣∣∫ T

0

eA(T−s)[F (z0 + εz1 +R)− F (z0)]ds

∣∣∣∣
≤ ε

∫ T

0

‖F (z0 + εz1 +R)− F (z0)‖ ds. (5.10)

At this point it is necessary to use the property that F (·) is globally Lipschitz.
Applying the Lipschitz inequality, we obtain

‖R(T, ε)‖ ≤ ε

∫ T

0

L ‖εz1 +R‖ ds ≤ εL

∫ T

0

[ε ‖z1(s)‖+ ‖R(s, ε)‖]ds.

Finally, we may use the estimate ‖z1(T )‖ ≤ DT + D̄ from the previous subsection,
which holds for all T and is independent of ε. Substitution of the estimate for
‖z1(T )‖ leads to the following integral inequality for ‖R‖:

‖R(T, ε)‖ ≤ εL

∫ T

0

(εDs+ εD̄ + ‖R‖)ds. (5.11)

An inequality of the form (5.11) is called Gronwall’s inequality and can be resolved
by using the following argument. Let

S(T, ε) = εL

∫ T

0

(εDs+ εD̄ + ‖R(s, ε)‖)ds. (5.12)

Inequality (5.11) implies that ‖R(T, ε)‖ ≤ S(T, ε). Differentiation of (5.12) and ap-
plication of the Fundamental Theorem of Calculus leads to the following differential
equation

dS

dT
= ε2L(DT + D̄) + εL‖R(T, ε)‖.

Since ‖R(T, ε)‖ ≤ S(T, ε), we may replace R by S and obtain the differential
inequality:

dS

dT
≤ ε2L(DT + D̄) + εLS(T, ε),
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which can be resolved using an integrating factor. Multiplication by e−εLT and
subsequent integration from 0 to T with initial condition S(0) = 0 preserve the
inequality and lead to the following result:

Se−εLT ≤ ε2L

∫ T

0

(Dρ+ D̄)e−εLρdρε2L

[
−D

εL
ρe−εLρ − D + D̄

(εL)2
e−εLρ

]T

0

= ε2L

[
−D

εL
Te−εLT − D + D̄

(εL)2
e−εLT +

D + D̄

(εL)2

]

=
D + D̄

L

(
1− e−εLT

)
− εDTe−εLT .

Finally, multiplying the inequality by eεLT and using the fact that ‖R(T, ε)‖ ≤
S(T, ε), we obtain the following estimate for the norm of R(ε, T ):

‖R(T, ε)‖ ≤ S(T, ε) ≤ D + D̄

L

(
eεLT − 1

)
− εDT.

It follows that the error is of order 1 on the expanding intervals [0, 1/ε]. Precisely,
there exists K > 0 independent of ε, such that

‖R(T, ε)‖ ≤ K, ∀T ∈ [0, 1/ε]. (5.13)

The time intervals [0, 1/ε] are called expanding, since they increase as ε is decreas-
ing. Note that time intervals of length (0, k/ε) on the fast time scale T correspond
to the regular time intervals of length (0, k) on the normal time scale.

The estimate of the error norm established by (5.13) is of O(1) and hence is not
very useful in obtaining a good approximation of complete solution. However, we
may expect that such an estimate on the error norm is caused by the secular terms
in the non-damped components of the solution, and that the damped component
of the solution x(T ) is approximated with better accuracy even on expanding time
intervals of length 1/ε. It turns out that this prediction is true, and it is possible
to obtain a better estimate on the error of the approximation to x(T ). Note that
the error in the approximation of x(T ) is given by the first component of vector
R(T, ε), which we will denote by Rx(T, ε).

5.5.3 The estimate of Rx(T, ε)

As has been shown in equation (5.9) in the previous subsection, Rx(T, ε) has to
satisfy the following integral equation

Rx(T, ε) = εe−2T

∫ T

0

e2s [p(z0 + εz1 +R)− p(z0)] ds.
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Using the results of previous subsections, we obtain the following estimate of
Rx(T, ε):

|Rx(T, ε)| = εe−2T

∣∣∣∣∫ T

0

e2s [p(z0 + εz1 +R)− p(z0)] ds

∣∣∣∣
≤ εe−2T

∫ T

0

e2s|p(z0 + εz1 +R)− p(z0)|ds

≤ εe−2T

∫ T

0

e2s‖F (z0 + εz1 +R)− F (z0)‖ds

≤ εe−2T

∫ T

0

e2sL(ε‖z1(T )‖+ ‖R‖)ds.

Now it is necessary to use the previously computed estimates of ‖R(T )‖ and
‖z1(T )‖. As we have shown, ‖z1(T )‖ ≤ DT + D̄ for all T ≥ 0, and hence
‖z1(T )‖ ≤ D/ε + D̄ on the time interval [0, 1/ε].On the other hand, ‖R(T )‖ ≤ K
for T ∈ [0, 1/ε]. It follows that

|Rx(T, ε)| ≤ εLe−2T

∫ T

0

e2sεD/ε+ D̄ +Ke2sds

= εLe−2T

∫ T

0

(D + D̄ε+K)e2sds

= εe−2T LD + LK + εLD̄

2

(
e2T − 1

)
= ε

LD + LK + εLD̄

2

(
1− e−2T

)
≤ εM,

where M = (LD + LK + LD̄)/2 and depends only on the initial conditions C and
the Lipschitz constant. We have just shown that Rx(T, ε) is of O(ε) uniformly on
the expanding time intervals [0, 1/ε].

5.5.4 Approximation of x(t)

Let us fix some t0 ≥ 0. Consider an initial value problem for system (5.1) on the
interval [0, t0). Applying the changes of variables introduced in section 5.2, we see
that the initial value problem for system (5.1) considered on the interval [0, t0) is
equivalent to an initial value problem for the system (5.5) defined on the interval
[0, t0/ε) on the fast time scale T . As was shown in sections 5.3 and 5.4, the x
component of exact solution of (5.5) can be written in the form

x(T ) = C1e
−2T + εx1(T ) +Rx(T, ε). (5.14)
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Recall that in subsection 5.5.1 we have shown that |x1(T )| is bounded by a constant
Dx/2 for all T ≥ 0, while in subsection 5.5.3 we have shown that |Rx(T, ε)| ≤
εM uniformly on expanding time intervals [0, 1/ε]. It follows that (5.14) can be
rewritten as

x(T ) = C1e
−2T + φ(T ), (5.15)

where |φ(T )| ≤ Uε for all T ∈ [0, t0/ε] and for some constant U ∈ R depending
only on the initial conditions C and the Lipschitz constant L, since the estimates
for x1(T ) and Rx(T, ε) hold uniformly on the expanding time intervals [0, t0/ε].

Due to the uniform boundedness of φ(T ) on the interval [0, t0/ε] on the fast
time scale approximation (5.15) is valid on the interval [0, t0] on the regular time
scale. It follows that

x(t) = C1e
−2t/ε + φ̂(t), t ∈ [0, t0] (5.16)

where |φ̂(t)| < εU . Interpreting the statement (5.16) in terms of original system
(5.1), we may say that for γ > 0 the difference |v1(t) − v2(t)| is approximated by
2C1e

−2γt with an error of O(1/γ) on any finite time interval [0, t0], where C1 denotes
1/2[v1(0)− v2(0)].

5.5.5 Simplification in the case of conductance-based mod-
els

In order to derive approximation (5.16) we used the assumption that F (·) is globally
Lipschitz. However, we haven’t used any knowledge about the behavior of the exact
solutions of system (5.1). It turns out that it is possible to prove that solutions
of (5.1) are bounded for all γ ≥ 0 in the case when system (5.1) represents a
conductance-based model of a neuron. This statement allows us to weaken the
assumption about F (·) being globally Lipschitz and to improve the approximation
(5.16).

Consider the conductance based-model of an arbitrary neuron having N ionic
channels, each governed by the activation variable αk and the inactivation variable
βk. According to the section 2.2, any conductance-based model has a following
general form:


dv/dt = i− gL(v − vL)−

N∑
k=1

gkα
x(k)
k β

y(k)
k (v − vk)

dαk/dt = λα,k(v)[αk,∞(v)− αk]
dβk/dt = λβ,k(v)[βk,∞(v)− βk]

, k = 1 . . . N (5.17)

Consider the gating variables αk and βk, k = 1 . . . N first. Note that functions
αk,∞(v) and βk,∞(v) represent the percent of ionic channels open at steady state
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for fixed voltage v, and hence only take values between 0 and 1, while functions
λα,k(v) and λβ,k(v) denote rate constants in time and are strictly positive.

It follows that for any k in 1, . . . , N

dαk

dt

∣∣∣∣
αk=0

= λα,k(v)[αk,∞(v)] ≥ 0 ∀v ∈ R, while

dαk

dt

∣∣∣∣
αk=1

= λα,k(v)[αk,∞(v)− 1] ≤ 0 ∀v ∈ R

Exactly same argument is applicable for βk. It follows, that if variables αk and
βk are inside the interval [0, 1] for t = 0, they will remain in that interval for all
subsequent time t > 0.

Consider the equation for dv/dt next. Recall that x(k) and y(k), k = 1 . . . N
are nonnegative integers, gL and gk, k = 1 . . . N are positive constants representing
conductances of each ionic channel, while vL and vk, k = 1 . . . N are equilibrium
potentials for each ionic channel and are not necessarily positive.

Let M > 0 be some constant. Rearranging terms in the first equation of (5.17),
and using the fact that 0 ≤ αk(t), βk(t) ≤ 1 for all t ≥ 0, we obtain that at v = M

dv

dt

∣∣∣∣
v=M

= i+ gLvL +
N∑

k=1

gkα
x(k)
k β

y(k)
k vk −

[
gL +

N∑
k=1

gkα
x(k)
k β

y(k)
k

]
M

≤ i+ gLvL +
N∑

k=1

gk|vk| − gLM

On the other hand, at v = −M we have that

dv

dt

∣∣∣∣
v=−M

= i+ gLvL +
N∑

k=1

gkα
x(k)
k β

y(k)
k vk +

[
gL +

N∑
k=1

gkα
x(k)
k β

y(k)
k

]
M

≥ i+ gLvL −
N∑

k=1

gk|vk|+ gLM

Let M0 = max

([
i+ gLvL +

N∑
k=1

gk|vk|
]
/gL,

[
N∑

k=1

gk|vk| − i− gLvL

]
/gL

)
. Then for

any M > M0 we will have that dv/dt|v=M < 0 and dv/dt|v=−M > 0, which implies
that variable v will be restricted to the interval [−M,M ] for all t ≥ 0.

94



It follows that all solutions of (5.17) with initial conditions inside the box
[−M,M ] × [0, 1] × · · · × [0, 1] ⊂ RN+1 will remain inside this box for all t > 0,
as long as we choose M > M0.

Consider the system of two coupled neurons, i.e. system (5.1). For γ = 0 it has
form


v̇1 = f1(v1, a1, . . . , am)
v̇2 = f2(v2, b1, . . . , bk)
ȧi = gi(v1, ai), i = 1 . . .m

ḃj = hj(v2, bj) j = 1 . . . k

(5.18)

Note that system (5.18) in fact splits into two independent subsystems - one for
variables (v1, a1, ..., am) and another for variables (v2, b1, ..., bk), and hence consists
of two conductance-based models independent of each other. Let us choose M
larger than M0 for each of the subsystems (v1, a1, ..., am) and (v2, b1, ..., bk). Then
all solutions of (5.18) with initial conditions in the set B = [−M,M ]× [−M,M ]×
[0, 1]× · · · × [0, 1] ⊂ Rn will remain in B for all t ≥ 0.

Finally, it is left to analyze the effect of coupling. It turns out that, for positive
γ, coupling cannot force solutions to leave B. Consider the coupled system (5.1).
Recall that it has form

v̇1 = f1(v1, a1, . . . , am) + γ(v2 − v1)
v̇2 = f2(v2, b1, . . . , bk) + γ(v1 − v2)
ȧi = gi(v1, ai), i = 1 . . .m

ḃj = hj(v2, bj) j = 1 . . . k

.

dv1

dt

∣∣∣∣
v=M

= f1(M,a1, . . . , am) + γ(v2 −M) < 0,

since f1(M,a1, . . . , am) < 0 by the choice of M , while γ(v2 −M) ≤ 0 for all γ > 0
and v2 ∈ [−M,M ]. On the other hand,

dv1

dt

∣∣∣∣
v=−M

= f1(−M,a1, . . . , am) + γ(v2 +M) > 0,

since f1(−M,a1, . . . , am) > 0 by the choice of M , while γ(v2 +M) ≥ 0 for all γ > 0
and v2 ∈ [−M,M ]. Exactly same procedure is applicable to the variable v2, while
boundaries on variables a1, . . . , bk are unaffected by the coupling.

It follows, that for any γ ≥ 0 all solutions of (5.1) with initial conditions in
the box B remain in B for all t > 0, as long as (5.1) represents a system of two
electrically coupled conductance based models.

Let B′ denote the image of B under the linear transformation x = 1/2(v1 − v2),
y = 1/2(v1 + v2). Boundedness of solutions of (5.1) implies that all solutions of
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(5.5) with initial conditions in B′ remain inside B′ for all T ≥ 0 as well. Since the
biophysically interesting dynamics occurs inside B′, starting from this point we will
consider only initial conditions C ∈ B′.

Knowing that the exact solution of system (5.5), z(T ), is bounded for all T ≥ 0
for positive γ, it is possible to weaken the condition of global Lipschitz continu-
ity. Recall that the Lipschitz inequality was used in order to verify the following
transition:

∫ T

0

‖F (z0 + εz1 +R)− F (z0)‖ ds ≤
∫ T

0

L ‖εz1 +R‖ ds.

Since z0(T ) = (C1e
−2T , C1, ..., Cn)T (see section 5.4), z0(T ) remains inside B′ for all

T ≥ 0 as long as C ∈ B′. On the other hand, z0 + εz1 + R is an exact solution of
the initial value problem (5.5), and is contained inside B′ for all t ≥ 0 if C ∈ B′.
Since both z0(T ) and z(T ) are contained in B′ provided C ∈ B′, it is only necessary
to assume the existence of Lipschitz constant for F (·) in B′, which follows from the
conditions set on F (·) in section 5.1.

Another advantage of restricting the problem to a closed compact set B′ consists
in a fact that the constant U in approximation (5.16) can be chosen the same for
all C ∈ B′. Recall that U depends on the Lipschitz constant L and constants Dx,
D and D̄, which are defined in terms of the following maximums (see subsection
5.5.1):

max
u∈[0,1]

|p(C1u,C2, . . . , Cn)|

max
u∈[0,1]

|q(C1u,C2, . . . , Cn)|

. . .
max
u∈[0,1]

|hk(C1u,C2, . . . , Cn)|

However, since B′ is a bounded compact convex set, we may redefine Dx, D and D̄
in terms of

max
C∈B′

( max
u∈[0,1]

|p(C1u,C2, . . . , Cn)|)

max
C∈B′

( max
u∈[0,1]

|q(C1u,C2, . . . , Cn)|)

. . .
max
C∈B′

( max
u∈[0,1]

|hk(C1u,C2, . . . , Cn)|)

,

which makes Dx, D and D̄ independent of choice of initial conditions C inside B′,
and hence makes constant U in the estimate (5.16) to be same for all C ∈ B′.

Independence of initial conditions and boundedness of solutions inside the com-
pact convex set B′ allows us to use the fact that the system (5.5) is autonomous,
and leads to the following final conclusion.

Note: The following conclusion can be applied to any system of the form (5.1)
provided that all solutions of that system with initial conditions in some closed
bounded set are contained inside that set for all t ≥ 0 and all γ ≥ 0.
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5.5.6 Conclusion

Consider an initial value problem for system (5.1) defined on the time interval
[0, 1] and with initial conditions inside the box B. Then the approximation (5.16)
provided in subsection 5.5.4 is valid, and we have that

x(t) = C1e
−2t/ε + φ(t), t ∈ [0, 1],

where |φ(t)| < Uε for all t ∈ [0, 1], and U is independent of both ε and the choice
of initial conditions C ∈ B′.

Let us fix an arbitrary δ > 0, and for that δ choose ε0 such that both of the
conditions below hold:

Uε0 <
δ

3
and e−2/ε0 <

1

2
. (5.19)

According to the approximation of x(t) provided above, we have that

|x(1)| ≤ |C1|e−2/ε0 +
δ

3
.

At this point we may use the fact that system (5.1) is autonomous. Taking vector-
solution x(1) ∈ B as the initial condition and applying the approximation (5.16) on
the time interval [0, 1] one more time, we obtain that

|x(2)| ≤ |x(1)|e−2/ε0 +
δ

3
≤ |C1|e−4/ε0 +

δ

3
(1 + e−2/ε0).

Repeating this procedure as many times as we want, we obtain that

|x(`)| ≤ |C1|e−2`/ε0 +
δ

3
(1 + e−2/ε0 + e−4/ε0 + · · ·+ e−2(`−1)/ε0).

Due to the condition e−2/ε0 < 1/2, from (5.19) we have

∑̀
n=0

e−2n/ε0 ≤
∑̀
n=0

1

2n
≤ 2.

Finally, it follows that for any t ∈ R

|x(t)| ≤ |C1|e−2t/ε0 +
2δ

3
.

It is obvious that first summand approaches zero as t → +∞ for any C ∈ B′,
and hence, starting at some time t1 ≥ 0, |x(t)| becomes less than δ and remains
less than δ for all subsequent t. Reformulating the final conclusion in terms of the
original system (5.1), we obtain the following statement.

For any δ > 0 there exists γ0 > 0, such that for all γ > γ0 and for any
solution of (5.1) with initial conditions inside the region of interest B, the difference
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|v1(t)− v2(t)| becomes less than δ at some time t1 ≥ 0 and remains less than δ for
all subsequent time t > t1.

Reformulating the statement above in terms of fixed γ, we may say that for any
fixed γ0 > 0 large enough there exists small δ0 > 0, such that |v1(t)−v2(t)| becomes
less than δ0 at some time and remains less than δ0 for all later time for any initial
conditions in the region of interest B. The larger the value of γ0, the smaller the
corresponding δ0.

5.6 Unbounded growth in the case of negative γ

Consider the case of γ < 0 next. Subsection 5.5.1 implies in that for γ < 0 the
order one solution is given by x0(T ) = C1e

2T . Since x0(T ) is growing unboundedly
as T → +∞, there is no convenient way to estimate integrals for z1(T ), and we
have to restrict ourself to analysis of the finite time intervals on the fast time scale
instead of expanding time intervals [0, 1/ε].

Let us fix some T0 > 0. The initial value problem (5.7) satisfies the conditions of
the theorem of existence and uniqueness of solutions, and hence z1(T ) is bounded
by a constant on the finite time interval [0, T0]. Precisely, there exists K− ∈ R such
that |z1(T )| < K− for all T ∈ [0, T0].

The norm of ‖R(T, ε)‖ can be estimated by the same procedure as in subsection
5.5.2. Note that we don’t need F (·) to be globally Lipschitz, since both z(T ) and
z0(T ) are contained in some compact convex set for T ∈ [0, T0]. Performing the
same steps as in subsection (5.5.2), we can write the analog of inequality (5.10) on
the time interval [0, T0]:

‖R(T, ε)‖ ≤ ε

∫ T

0

L(ε‖z1(s)‖+ ‖R(s, ε)‖)ds.

Using the fact that z1(T ) is bounded by K−, we obtain that

‖R(T, ε)‖ ≤
∫ T

0

ε2LK− + εL‖R‖ds,

which can be resolved using Gronwall’s argument as in subsection 5.5.2. Finally,
we obtain that

‖R(T, ε)‖ ≤ εK−(eεLT − 1).

Function eεLT is bounded on [0, T0] as well, and hence ‖R(T, ε)‖ ≤ εU1 for T ∈
[0, T0], where U1 ∈ R is some constant. It follows that R(T, ε) is of O(ε) on the
finite time interval [0, T0]. Therefore,

‖z1(T ) +R(T, ε)‖ < U2ε, for some U2 ∈ R and T ∈ [0, T0]. (5.20)

Comment: Using a different argument, it can be shown that ‖R(T, ε)‖ actually
is of order ε2 on finite intervals (see [30] pages 150-153). However, we don’t need
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O(ε2) accuracy in the error estimate since it is impossible to estimate z1(T ) better
than O(ε). Thus, we choose to use the same method as before in order to simplify
notation.

The inequality (5.20) implies that for γ < 0

x(T ) = C1e
2T +O(ε), on any finite time interval [0, T0]. (5.21)

Using (5.21), it is impossible to track the behavior of solutions within finite
time intervals on the regular time scale t = T/ε, since the finite time interval [0, T0]
corresponds to the expanding time interval [0, T0/ε] on the regular time scale. The
smaller we make ε, the longer becomes the interval [0, T0/ε], since T0/ε → +∞ as
ε → 0. However, it is possible to show that |x(T )| grows unboundedly on the fast
time scale for ε small enough, or, equivalently, that |x(t)| becomes unbounded as
t→ +∞.

Choose an arbitrary constant M > 0. For any C1 6= 0 there exist T0 > 0, such
that |C1|e2T0 > 2M . Consider the solution of the initial value problem (5.5) on the
time interval [0, T0]. Due to the estimates (5.20) and (5.21), there exists ε0 > 0,
such that for all ε < ε0

|εx1(T0) +Rx(T0, ε)| ≤ ‖z1(T0) +R(T0, ε)‖ < U2ε < M.

Finally, consider the x component of the exact solution of (5.5) which is equal to
x(T ) = C1e

2T + εx1(T ) +Rx(T, ε). We may rewrite the latter equality as C1e
2T =

x(T )− εx1(T )−Rx(T, ε). It follows from the triangle inequality, that

|C1e
2T0| ≤ |x(T0)|+ |εx1(T0) +Rx(T0, ε)| ≤ |x(T0)|+M.

On the other hand, |C1e
2T0 | > 2M . Then

2M < |C1e
2T0| < |x(T0)|+M,

which implies that
|x(T0)| > M, for all ε < ε0.

Thus, |x(T )| can be made arbitrarily large by appropriate choice of ε.

Since |x(T )| = 1/2|v1(T )−v2(T )|, unbounded growth of x(T ) implies unbounded
growth of at least one of |v1(T )| and |v2(T )|. However y = 1/2(v1(T ) + v2(T ))
remains constant to O(ε) on the fast time scale. It follows, that v1(T ) diverges to
+∞ while v2(T ) diverges to the −∞ with nearly the same speed, or vice versa.

5.7 Discussion

In the present chapter we have analyzed a system of two arbitrary electrically
coupled conductance-based models. Consider the case γ > 0 first. We have shown
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that choosing γ > 0 large enough we may make the difference |v1(t)−v2(t)| smaller
than any arbitrary number δ > 0. However, does it mean that |v1(t) − v2(t)| → 0
as t→ +∞?

In general the answer is no. Note that the analysis done in the present chapter
is valid only assuming γ(v2 − v1) is large. However, when the difference (v1 − v2)
starts taking values of O(1/γ), the term γ(v2 − v1) becomes of order one, and
the perturbation analysis fails. Moreover, no matter how large is γ, as long as the
difference (v2−v1) is of O(1/γ2), coupling can be considered as weak coupling! Note
that neurons synchronize exponentially fast on the fast time scale until difference
between voltages v1 and v2 becomes small, while the sum of voltages v1 and v2

remain constant on the fast time scale.

In particular, this observation implies that |v1(t)− v2(t)| → 0 as t→ +∞ only
if corresponding weakly coupled conductance based model has stable synchronous
solution, no matter how large value of γ is under consideration. However, is this
necessary condition sufficient for |v1(t)− v2(t)| → 0 as t→ +∞ or not?

This question has no determined answer yet. Theoretically, it is possible that
regions of validity of the phase model and approximation (5.16) overlap in the
following sense:

There may exist γ0 > 0, such that compared with the γ0 the value δ0 is so small
that γ(v1−v2) lies in the region of validity of the phase model after |v1−v2| becomes
less than δ0. Here it is necessary to develop a definition of the region of validity of
phase model in terms of the relation between the magnitude of the term γ(v1− v2)
and the magnitude of the term F (v1, v2, a1, . . . , bk). However, this assumption is
questionable and needs to be verified.

We have established a relationship between phase models and the approximation
for large γ, and that motivates us to study this question in more detail. Note that
the region of validity of the phase model can always be estimated using the negative
values of γ. Analysis of large negative values of γ done in the present chapter showed
that both v1(t) and v2(t) grow exponentially fast on the fast time scale T = γt with
an error of order O(1/γ), which implies that predictions of the phase model have
to fail for some γlim < 0, and hence the relationship between the magnitudes of
γlim(v1 − v2) and F (v1, v2, a1, . . . , bk) can be taken as an estimate of the region of
validity of phase model.

To summarize the analysis, we can make the following general conclusions.

1. Consider the case when the neurons are identical (i.e. m = k, f1 ≡ f2, gi ≡ hi,
i = 1 . . .m), and the system describing each single neuron has some globally
stable attractor Λ ∈ Rm. By appropriate choice of γ > 0 the difference
between v1(t) and v2(t) can be made smaller than an arbitrary tolerance level
δ within a finite time t1 and will remain less than δ for all t > t1.However,
the question if Λ × Λ ⊂ R2m is a global attractor of the coupled system has
to be studied in more detail. A necessary condition is that Λ× Λ ⊂ R2m has
to be a stable attractor of the weakly coupled system.
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In the case of two identical Morris-Lecar neurons this observation has been
verified by the phase plane analysis done in chapter 3 and by the numerical
simulations done in chapter 4, since the in-phase limit cycle turned to be the
only stable equilibrium state for all γ > 0.

2. The case of different neurons, or even the same neurons receiving different
input signals is even more interesting. Assume that the first neuron has a
global attractor Θ ⊂ Rm+1 with v1(t) = φ(t) while the second neuron has
the global attractor Υ ⊂ Rk+1 with v2(t) = ξ(t), where φ(t) 6= ξ(t). Analysis
done in the present chapter suggests that for γ > 0 large enough voltages of
both neurons have to be δ close, which implies that neither Θ nor Υ will be
the global attractor for each of the neurons in the coupled system, and the
coupled system hence will approach some new attractor Γ ⊂ Rn. However,
the difference |v1 − v2| will not converge to zero. Γ cannot satisfy condition
v1 ≡ v2 since weakly coupled neurons have to stay each on its own attractor
Θ and Υ.

For example, consider the case of first neuron being the Morris-Lecar neuron
with an input corresponding to a stable equilibrium point and the second
neuron being the Morris-Lecar neuron with an input corresponding to a stable
limit cycle. The corresponding numerical simulations are provided in figures
(5.1)-(5.2). Despite the fact that the voltages approach each other very close,
magnification shows that, in fact, |v1 − v2| does not approach zero.

To conclude, it is worth mentioning that the analysis done in section 5.5 con-
tributes to the general theory of nearly linear systems. In [30] Murdock has shown
that the error term is O(ε2) for all t ≥ 0 in the case when all eigenvalues of the
matrix A are negative, is of O(ε) uniformly on expanding time intervals (0, 1/ε)
when both eAt, z0(t), z1(t) and z(t) are bounded for all t ≥ 0, and is of order ε2 on
the finite time intervals (0, t) for an arbitrary matrix A.

We have extended the analysis of the case when eigenvalues of A are non-
positive. In section 5.5 we have shown that the error along coordinates correspond-
ing to the negative eigenvalues is of order ε uniformly on expanding time intervals
(0, 1/ε). An assumption of z1(t) being bounded for all t was not used. We have
studied only the case of A being diagonalizable. However, the estimation proce-
dure can be generalized for the case of the arbitrary matrix A with non-positive
eigenvalues.
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Figure 5.1: Graphs of voltages v1 and v2 for decoupled(upper graph) and coupled
with coupling strength γ = 10(lower graph) type I Morris-Lecar neurons with inputs
of i1 = 0.09 and i2 = 0.06
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Figure 5.2: Graphs of voltages v1 and v2 for decoupled(upper graph) and coupled
with coupling strength γ = 10(lower graph) type I Morris-Lecar neurons with inputs
of i1 = 0.09 and i2 = 0.08
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Chapter 6

Conclusion

In chapter 2 we introduced the Morris-Lecar model which is a second order conductance-
based model that represents the behavior of the barnacle giant muscle fiber. This
system exhibits oscillations over a wide parameter range; moreover, both type I and
type II oscillators can be modeled using the Morris-Lecar system. The transition
between type I and type II behavior can be obtained by variation of the single
parameter gCa.

In order to study the effects of the strength of electrical coupling γ and the coupling
time delay τ , we chose to analyze a network of two identical electrically coupled
Morris-Lecar neurons of type I, and a network of two identical electrically coupled
Morris-Lecar neurons of type II. The applied current i in each network was set close
to the onset of oscillations in order to magnify the difference between type I and
type II behavior.

In the case of weak coupling we developed a phase model which allowed us to
determine the stable periodic solutions of the system. In the non-delayed case for
both type I and type II parameter sets the synchronous in-phase solution was stable
for physically relevant positive values of γ, while for γ < 0 the anti-phase solution
was stable.

For small enough values of τ , we showed that the phase model (3.36) with a
phase shift due to the delay is applicable. Analysis of (3.36) for both type I and
type II parameter sets and for γ > 0 suggested that for small values of τ oscillators
synchronize their behavior, while as τ is increased stability switches between in-
phase and anti-phase solutions occur. These results are qualitatively the same as
the results of the analysis of a coupled Fitzhugh-Nagumo system done by Smith in
[34].

We showed that the values of the scaled delay, η = Ωτ , where stability switches
occur for type I and type II parameter sets were very similar. Hence, type I oscil-
lators require larger changes in τ to switch stability, since the inherent frequency
of oscillations Ω is smaller for oscillators of this type. It follows that the absolute
value of τ is unimportant for stability switching, only the relationship between Ω
and τ matters.
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The numerical analysis done in chapter 4 verified the predictions of the phase
model and analyzed the behavior of the system beyond the region of weak coupling.
The construction of bifurcation diagrams in both delayed and non-delayed cases
was based on the structure of the equilibrium points with respect to γ and τ ,
obtained in section 4.2. Analysis of the stability along the branches of equilibrium
points allowed us to find the Hopf bifurcation points and hence construct periodic
orbits. Bifurcation analysis and numerical simulations showed that the neurons
synchronized for large γ > 0, while for large γ < 0 solutions diverged. This
observation motivated the asymptotic analysis done in chapter 5.

Analysis of electrically coupled conductance based models for large γ > 0 showed
that for each γ0 > 0 there exists δ0 > 0, such that voltages of the neurons become δ0
close in finite time and remain δ0 close for all subsequent time. As γ0 is increased,
δ0 becomes smaller. However, for any γ > 0 the difference |v1(t) − v2(t)| → 0 as
t→ +∞ only if the corresponding weakly coupled system has a stable synchronous
state, since as |v1(t)− v2(t)| gets small enough coupling can be considered as weak.

In order to study the case of γ → +∞ we have extended the theory of nearly
linear systems developed by Murdock in [30]. We have shown that for nearly linear
systems with non-positive eigenvalues the first order approximation to the solution
along directions corresponding to the negative eigenvalues is O(ε) uniformly on
expanding time intervals (0, 1/ε).

Part of the work done in the present thesis was devoted to estimation of the re-
gions of validity of the phase models. The boundary between “weak” and “strong”
coupling with respect to γ was estimated by finding the value, γlim, where predic-
tions of the non-delayed phase model failed. Numerical simulations showed that
γlim ≈ −0.213 for type I parameter set, and γlim ≈ −0.3065 for type II parameter
set. The asymptotic analysis showed that for large enough γ < 0 the voltages of
the neurons, v1(t) and v2(t), both diverge as t → ∞ for any initial condition with
v1(0) 6= v2(0). Thus, negative values of γ can be used to estimate the boundary
between strong and weak coupling for any conductance-based model, since due to
the divergence of v1(t) and v2(t) for γ < 0 the predictions of the phase model have
to become invalid for some γlim < 0.

In the region where coupling can be considered as weak, the region of validity
with respect to γ and τ of the phase model (3.36) with a phase shift was estimated
in subsection 3.4. Due to the fact that the transition from the delayed phase model
to the simplified phase model with a phase shift due to the delay was done assuming
that the term γτΩ is small, we made a conjecture that the region of validity of the
phase model (3.36) should depend not on the individual values of γ and τ , but on
the product γτΩ.

Comparison of the theoretical and numerical values of the time delay τ correspond-
ing to the stability switching showed that the error was nearly constant along the
curves γτ = Const for both parameter sets, which agreed with the estimate done
in subsection 3.4. The smaller the value of γτ , the more accurate the predictions
of the phase model. The prediction that the error would remain constant along the
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lines γτΩ = Const cannot be checked by comparison of the results for type I and
type II models, since type I and type II parameter sets lead to the different phase
models which may have different regions of validity.

6.1 Future work

Our asymptotic analysis has revealed a possible link between the behavior of the
weakly coupled system and the synchronization of the system with strong coupling.
The following question is particularly interesting:

• If a weakly coupled network has a stable synchronous state does this imply that,
for large enough coupling v1(t) → v2(t) as t→ +∞?

Moreover, since numerical analysis has shown that the in-phase periodic solution
is stable for all γ > 0, it is reasonable to assume that in the case when only
electrical coupling is present synchronization for weak coupling (i.e. small γ > 0)
implies synchronization for all γ > 0. However, this argument is hard to verify
analytically.

Another possible direction of future work consists in development of the esti-
mates of the regions of validity of phase models. Finally, the influence of delay
beyond the region of validity of the phase model with a phase shift can be studied.
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