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Abstract

The setup in which two quantum systems, Alice and Bob, communicate using bosonic
field quanta can be viewed as a prototype for wireless quantum communication. In this
thesis we focus on the most basic case, where Alice and Bob are modeled as Unruh-DeWitt
detectors, i.e., as two-level quantum systems that interact locally through a scalar quantum
field. Our aim is to study how information propagation and entanglement generation
between the two detectors are impacted by both relativity and by the unavoidable noise
that is due to the quantum fluctuations of the field.

We start by studying information propagation between the two detectors. Concretely,
we construct and study the information-theoretic quantum channel, ξ, i.e., the completely
positive trace preserving map between the input density matrix ρ, in which Alice prepares
her detector for the emission, and the output density matrix ρ′ = ξ(ρ) of Bob’s detector
at a later time. We confirm that the classical as well as the quantum channel capacity are
strictly zero to all orders in perturbation theory for spacelike separations.

We then study entanglement generation between the two detectors. Specifically, we
discuss how two Unruh-DeWitt detectors can extract entanglement from the vacuum. We
show that the detectors can naturally and instantaneously become entangled through a
Casimir-Polder effect. We then analyze the impact of various additions to this setup, such
as the presence of a weak gravitational field, the presence of boundary conditions in the
field, the presence of a weak classical potential, etc.

Most of these results can be found in the papers [1, 2, 3].
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Conventions and Notation

For quantum field theory, we use most of the conventions of [4]. We use the Minkowski
metric ηµν = diag(−1, 1, 1, 1) and we denote px = pµx

µ = −E~px0 + ~p · ~x where E~p =√
~p2 +m2. Derivatives are denoted as ∂f(x)

∂xµ
= ∂µf and ∂f(x)

∂x0 = ḟ(x). We use x0 = t
for the coordinate time and τ for the proper time. We work in the natural units where
~ = c = G = 1. For quantum information, we use most of the conventions of [5]. Wherever
necessary to avoid ambiguity we will denote operators O or states |ψ〉 which live in the
Hilbert space H(j) by a superscript (j), for example, O(j) and |ψ(j)〉. Also, when such
operators occur tensored with identity operators, such as I(1) ⊗ I(2) ⊗ O(3), we will often
abbreviate this as, for example, O(3). Orders in perturbation theory will be denoted by a
subscript (j), so for example we could have P = P(0) + P(1) +O(ε2).
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Chapter 1

Introduction

Quantum information theory [5] only uses the axioms of quantum theory as a starting point
to extend Shannon’s classical information theory [6] to the quantum regime. Even though
quantum information theory is not restricted to any particular framework of quantum the-
ory, its practical applications are almost always using non-relativistic quantum mechanics.
In response to this, relativistic quantum information [7] is a growing field of research which
studies the consequences of Einstein’s theory of relativity on the transmission of quantum
information. So far, the focus has been mostly on the kinematic aspects of relativity. For
instance, in the past 10 years much progress has been made on understanding how the
entanglement and the entropy of the spin of particles change under a Lorentz transforma-
tion, see e.g. [8, 9, 10]. On the other hand, not as much is known about the dynamical
consequences of a fully relativistic quantum theory, i.e. quantum field theory (QFT) [4].

To study information transmission, quantum information practitioners often work with
quantum channels, namely completely positive trace preserving maps between an input
density matrix ρ and an output density matrix ρ′ = ξ(ρ) [5]. In the vast field of quan-
tum information, there exists several physically motivated quantum channels, but none are
explicitly causal. Indeed, quantum channels are usually modeled in non-relativistic frame-
works, where causality can only be implicit. Moreover, the noise in the known quantum
channels is usually assumed to come from an external environment like a thermal bath, see
e.g. [11]. Even though this may be a reasonable assumption in practice, it is, at least in
principle, possible to suppress this noise entirely. On the other hand, there are quantum
sources of noise which cannot be suppressed, even in principle. For instance, the quantum
fluctuations of the fields should be taken into account whenever one considers information
at the fundamental level of quantum fields.

In addition, there is still a lot to be learned about the dynamics of entanglement in
a QFT setting. Entanglement and information have different dynamics, so in principle
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entanglement may be able to propagate at a speed faster than the speed of light. Never-
theless, that does not mean that entanglement does not obey any laws. A lot of work has
been done in trying to understand these laws. But here again, entanglement dynamics is
usually studied in non-relativistic frameworks and the source of noise is often assumed to
be thermal, see e.g. [12]. Thus, a proper study of entanglement dynamics which takes into
account special relativity and quantum field fluctuations is much needed.

To study these issues in this thesis, we take an operational approach and study informa-
tion propagation and entanglement generation between two Unruh-DeWitt detectors, i.e.
between two two-level quantum systems that interact locally with a scalar quantum field.
The main advantage of using Unruh-DeWitt detectors is the fact that they are localized.
Indeed, recent studies in relativistic quantum information often analyze how the vacuum
and a one-particle state are seen in different non-inertial frames or in different spacetimes,
see e.g. [13, 14, 15]. Nevertheless, causality-related issues are easier to address with local-
ized objects such as Unruh-DeWitt detectors. Moreover, these detectors are subject to the
quantum fluctuations of the field, a source of noise which is not always transparent when
we only study the non-local modes of a free quantum field theory.

This thesis is organized as follows. In Sec. 1.1 we review quantum field theory, focusing
on the tools needed later in this thesis, such as scalar field correlations and Unruh-DeWitt
detectors. In Sec. 1.2 we introduce some tools of quantum information theory. We start by
discussing quantum channels, their description and their information transmitting capac-
ities, then we briefly discuss quantum entanglement. In Chapter 2 we study information
propagation between two Unruh-DeWitt detectors. We first show in Sec. 2.1 that infor-
mation propagation is bounded by the speed of light. The impossibility of superluminal
signalling has of course been discussed before, see e.g. [16, 17, 18]. What is new here is
that we prove the impossibility of superluminal signalling information-theoretically by con-
structing and studying the quantum channel created by the two Unruh-DeWitt detectors.
In Sec. 2.2, we analyze in detail this quantum channel by obtaining an operator-sum repre-
sentation, discussing its channel capacities and presenting a perturbative expansion of the
channel. In Chapter 3 we study entanglement generation between the two Unruh-DeWitt
detectors. It has been known that two detectors when coupled to a quantum field can have
non-trivial entanglement dynamics, see e.g. [19, 20, 21]. It is also known that, due to the
entanglement of the vacuum [22, 23], or the exchange of virtual photons [24], two detectors
can become entangled even at spacelike separations, and the speed with which this can
happen has been discussed. So far, all these studies used a time-dependent approach. In
Sec. 3.1 we review these results and then follow-up on this analysis by looking at the
entanglement of the vacuum in the presence of a weak gravitational field. In Sec. 3.2 we
introduce a time-independent approach to vacuum entanglement extraction. We show that
the two detectors can be entangled in the ground state of the interacting theory and we
discuss how to prepare this ground state using adiabatic evolution. We then follow-up on
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this result by analyzing the ground state entanglement when the field is subject to Dirichlet
boundary conditions and when there is a classical potential weakly interacting with the
field. In the last Chapter we propose various extensions to this work.

1.1 Quantum field theory

Let us start by introducing QFT in the Heisenberg picture. This section is only for com-
pleteness purposes and should not be taken as a complete or pedagogic review of QFT. A
proper introduction to QFT can be found in [4, 25].

1.1.1 Canonical quantization

For simplicity, in this thesis we almost always use a single real scalar quantum field φ(x).
The free relativistic action of such a field in Minkowski spacetime is:

S =

∫
d4xL(x) =

1

2

∫
d4x

(
ηµν∂µφ(x)∂νφ(x)−m2φ2(x)

)
. (1.1)

Extremizing the action with respect to the field φ(x) gives the Klein-Gordon equation:(
∂µ∂µ −m2

)
φ(x) = 0. (1.2)

The Klein-Gordon equation tells us how the field φ(x) evolves in spacetime. To quantize
the field, we need to use a Hamiltonian formulation. The canonical momentum is π(x) =
∂L(x)

∂φ̇(x)
= φ̇(x), such that the Hamiltonian reads:

HF =

∫
d3x

(
π(x)φ̇(x)− L(x)

)
=

1

2

∫
d3x

[
π2(x) + (∇φ(x))2 +m2φ2(x)

]
. (1.3)

We now impose the canonical equal time commutation relations:

[φ(t, ~x), π(t, ~y)] = iδ(~x− ~y) (1.4)

[φ(t, ~x), φ(t, ~y)] = [π(t, ~x), π(t, ~y)] = 0. (1.5)

Next, we need to solve the Klein-Gordon equation while taking into account the canoni-
cal commutation relations. To do this, we Fourier transform the field with creation and
annihilation operators

φ(t, ~x) =

∫
d3p

(2π)3

1√
2E~p

(
ei~p·~xv~p(t)a~p + e−i~p·~xv∗~p(t)a

†
~p

)
(1.6)
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where a~p and a†~p are respectively the annihilation and creation operators satisfying [a~p, a
†
~p′ ] =

(2π3)δ(~p−~p′), [a~p, a~p′ ] = [a†~p, a
†
~p′ ] = 0 and a~p|0〉 = 0 where |0〉 is the vacuum state. Inserting

Eq. (1.6) in the Klein-Gordon equation tells us that the mode function v~p must satisfy the
equation of motion

v̈~p(t) + (~p2 +m2)v~p(t) = 0 (1.7)

and if we substitute Eq. (1.6) in the commutations relations we find that:

v̇~pv
∗
~p − v~pv̇∗~p = −2E~pi. (1.8)

Eq. (1.7) has the solution v~p = α~pe
−iE~pt+β~pe

iE~pt where {α~p, β~p} are constants that we need
to fix. Substituting this solution in Eq. (1.8) gives us the requirement |α~p|2 − |β~p|2 = 1
which is not enough to fix the constants {α~p, β~p}. We thus also require that the vacuum
state |0〉 is the ground state of the Hamiltonian. We insert Eq. (1.6) in the Hamiltonian
and we find that if α~pβ~p = 0 then the vacuum is the ground state of the Hamiltonian [25].
Thus, we require that β~p = 0 and α~p = 1, which means that the field and the Hamiltonian
of a free quantum scalar field is:

φ(x) =

∫
d3p

(2π)3

1√
2E~p

(
a~pe

ipx + a†~pe
−ipx

)
(1.9)

HF =

∫
d3p

(2π)3
E~p

(
a†~pa~p +

1

2
[a~p, a

†
~p]

)
. (1.10)

From this follows the particle interpretation of QFT. The vacuum state |0〉 is a state with
no particles, and with the creation operators we can build the rest of the Fock basis which
are the states that contain particles [26]:

|n1
~p1
n2
~p2
...nj~pj〉 :=

(
a†~p1

)n1 (
a†~p2

)n2

...
(
a†~pj

)nj
√
n1!n2!...nj!

|0〉. (1.11)

Note that this particle interpretation of QFT is problematic in a spacetime in which we
lose the time translation symmetry [26]. We should therefore emphasize the obvious fact
that QFT is a theory of fields, not of particles. The fields are the fundamental objects:
particles are only secondary, derived, objects. This line of thought leads to the popular
point of view that particles are whatever particle detectors detect.

1.1.2 Field correlations

In this subsection we compute explicitly some field correlation functions, namely the corre-
lator, the propagator and the commutator. They each mean different things and are used
in different contexts.
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Correlator

The correlator D(x, y), also called the Wightman function, is simply the two point cor-
relation function of the field in the vacuum, namely D(x, y) := 〈0|φ(x)φ(y)|0〉. We can
calculate it explicitly using the field mode decomposition of Eq. (1.9):

D(x, y) =

∫
d3p

(2π)3

eip(x−y)

2E~p
. (1.12)

First consider a massless field m = 0. We integrate the angular part and we obtain:

D(x, y) =
1

4π2|~x− ~y|

∫ ∞
0

sin (p|~x− ~y|) e−ip(x0−y0)dp. (1.13)

To regularize the integral, we use the prescription x0−y0 → x0−y0− iε and take the limit
ε→ 0 such that:

D(x, y) = lim
ε→0+

−1

4π2 [(x0 − y0 − iε)2 − |~x− ~y|2]
. (1.14)

Note that the correlator is really a distribution, such that the limit ε → 0 should only be
taken after it was integrated against a continuous function [27]. Nevertheless, the correlator
tells us that a massless field is still correlated for spacelike events and these correlations
decay with a polynomial decrease. We can do a similar calculation for a massive field and
we obtain

D(x, y) = lim
ε→0+

1

4π2

m√
|~x− ~y|2 − (x0 − y0 − iε)2

K1

(
m
√
|~x− ~y|2 − (x0 − y0 − iε)2

)
(1.15)

where K1 is a Bessel function. This expression tells us that for a massive field the spacelike

correlations decays exponentially like ∼ e−m
√
|~x−~y|2−(x0−y0)2

.

Propagator

Let us now look at the propagator G(x, y), also called the Feynman propagator, which is the
time ordered correlator G(x, y) := 〈0|Tφ(x)φ(y)|0〉 where T is the time ordering operator
[4]. From our previous analysis of the correlator, we can easily get the propagator. Let us
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start with a massless field,

G(x, y) = lim
ε→0+

{
−θ(x0 − y0)

4π2 [(x0 − y0 − iε)2 − |~x− ~y|2]
+

−θ(y0 − x0)

4π2 [(y0 − x0 − iε)2 − |~x− ~y|2]

}

= lim
ε→0+

{
−θ(x0 − y0)

4π2 [(x0 − y0)2 − |~x− ~y|2 − 2iε(x0 − y0)]

+
−θ(y0 − x0)

4π2 [(x0 − y0)2 − |~x− ~y|2 − 2iε(y0 − x0)]

}
= lim

ε′→0+

−1

4π2 [(x0 − y0)2 − |~x− ~y|2 − iε′]
(1.16)

where θ(x) is the Heaviside function. This iε′ prescription is called the Feynman boundary
condition [4]. Similarly for a massive field, we can just replace [~x− ~y]2 − [x0 − y0 − iε]2 by
[~x− ~y]2 − [x0 − y0]2 − iε′. Furthermore, note that the propagator is a Green’s function of
the Klein-Gordon operator,(

∂µ∂µ −m2
)
x
G(x, y) =

(
∂µ∂µ −m2

)
x

(
θ(x0 − y0)〈0|φ(x)φ(y)|0〉

+θ(y0 − x0)〈0|φ(y)φ(x)|0〉
)

= −δ(x0 − y0)〈0|π(x)φ(y)|0〉+ δ(y0 − x0)〈0|φ(y)π(x)|0〉
= iδ(x− y) (1.17)

where we used ∂x0θ(x0−y0) = δ(x0−y0) and ∂2
x0θ(x0−y0) = −δ(x0−y0). This differential

equation does not uniquely determine G(x, y), once it is solved we need to apply boundary
conditions which is equivalent to fixing a iε prescription.

Commutator

As we have just seen, the correlations of a quantum field do not vanish outside the light
cone. But correlations do not mean causality. To look at causality, we need to look at
the commutator [φ(x), φ(y)]. Indeed, we can show that the commutator vanishes outside
the light cone. This means that a measurement performed at one point cannot affect the
outcomes’ probabilities of a measurement made at another point whose separation from
the first one is spacelike [4]. Using the mode decomposition of the field of Eq. (1.9), we
have:

[φ(x), φ(y)] =

∫
d3p

(2π)3

1

2E~p
(eip(x−y) − e−ip(x−y)). (1.18)
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First, note that both terms are separately Lorentz invariant since pµ(x− y)µ and d3p/2E~p
are unchanged under a boost of p and (x−y). For spacelike events, there exists a coordinate
system in which x0 = y0. We thus chose this coordinate system to evaluate the commutator
for spacelike x and y

[φ(x), φ(y)]
∣∣∣
(x−y)2>0

=

∫
d3p

(2π)3

1

2E~p
(ei~p(~x−~y) − e−i~p(~x−~y))

= 0 (1.19)

where we used the change of variable ~p → −~p in the second term. This simple derivation
of microcausality shows that local free quantum field theory in Minkowski spacetime is
causal. Using more advanced techniques one can show that this also holds in curved
spacetime [28]. Nevertheless, the field on its own is not easy to observe. A more realistic
observable is a localized quantum system interacting with the quantum field. With those
quantum systems, our previous causality derivation does not tell us how and if causality
is respected.

1.1.3 Unruh-DeWitt detectors

In this subsection we introduce the Unruh-DeWitt particle detector model and some of its
applications. An extensive review of Unruh-DeWitt detectors can be found in [26, 27].

The model

An Unruh-DeWitt particle detector is a localized quantum system that interacts with a
quantum scalar field. In practice, the detector is supposed to be the analog of an atom
interacting with a quantum electromagnetic field. The detector is a two-level quantum
system, an excited state |e(d)〉 and a ground state |g(d)〉 with energy difference ∆E. With
respect to the proper time τ of the detector, its self-Hamiltonian is therefore:

Hd = (∆E + Eg)|e(d)〉〈e(d)|+ Eg|g(d)〉〈g(d)|. (1.20)

This quantum system interacts linearly with a scalar field

Hint = αη(τ)
(
|e(d)〉〈g(d)|+ |g(d)〉〈e(d)|

) ∫
d3xf(~x− ~xd(τ))φ(~x) (1.21)

where α is a small coupling constant, η(τ) is a switching function which allows us to switch
on and off the interaction and m(d) := |e(d)〉〈g(d)| + |g(d)〉〈e(d)| is the monopole matrix of
the detector.

∫
d3xf(~x − ~xd(τ))φ(~x) is the smeared out field near the central location of
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the detector ~xd(τ) with which the detector interacts, which means that f(~x − ~xd(τ)) is a
smearing function that effectively gives a small size to the detector.

To get some familiarity with the detector, we calculate the probability that it gets
excited, namely the probability for the transition |g(d)〉 → |e(d)〉. To do so, we use the
interaction picture where operators evolve with their self-Hamiltonian, that is Hd and HF ,
while states evolve with the interaction Hamiltonian Hint. In this picture, the interaction
Hamiltonian is evolving because m(d)(τ) = eiτHdm(d)e−iτHd and φ(t, ~x) = eitHFφ(~x)e−itHF .
The evolution operator acting on states is then U = Te−i

∫
Hint(τ)dτ . We assume that the

field is initially in the vacuum |0〉 such that the state of the overall system is initially
|0, g(d)〉. The excitation probability is therefore:

Pe =
∑
k

∣∣∣〈k, e(d)|Te−i
∫
Hint(τ)dτ |0, g(d)〉

∣∣∣2
=

∑
k

〈0, g(d)|T †ei
∫
Hint(τ

′)dτ ′|k, e(d)〉〈k, e(d)|Te−i
∫
Hint(τ)dτ |0, g(d)〉

= 〈0, g(d)|T †ei
∫
Hint(τ

′)dτ ′ |e(d)〉〈e(d)|Te−i
∫
Hint(τ)dτ |0, g(d)〉. (1.22)

We assume that α � 1 so we can use time-dependant perturbation theory, such that
Te−i

∫
Hint(τ)dτ ≈ 1− i

∫
Hint(τ)dτ . Thus, after simplifications we are left at O(α2) with:

Pe = α2

∫
dτd3x

∫
dτ ′d3x′f(~x− ~xd(τ))f(~x′ − ~xd(τ ′))η(τ)η(τ ′)

×e−i∆E(τ−τ ′)〈0|φ(~x, t(τ))φ(~x′, t(τ ′))|0〉. (1.23)

We thus see that the excitation probability of the particle detector is related to the correla-
tor D(x(τ), x′(τ ′)). As was pointed out in Sec. 1.1.2, the correlator needs to be integrated
against a continuous function. There are two ways this can be achieved. We can ei-
ther choose the switching function η(τ) to be continuous [27], meaning that there is some
fuzziness as to when the detector is turned on and off, or alternatively we can choose a
continuous smearing function f(~x−~xd(τ)), which means that there is some fuzziness as to
where the detector is localized. Depending on the context one of the two methods is often
more convenient than the other.

Detection rates

We now calculate explicitly some excitation probabilities for a point-like detector f(~x −
~xd(τ)) = δ(~x− ~xd(τ)). Let us also assume that the switching function is Gaussian η(τ) =
e−τ

2/(2σ2) and that the field is massless. This allows us to calculate Pe exactly in the case
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of an inertial observer in Minkowski spacetime where τ = t such that xd(τ) = (τ, 0, 0, 0):

Pe = α2

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′e−τ
2/(2σ2)−τ ′2/(2σ2)−i∆E(τ−τ ′)D(xd(τ), xd(τ

′))

= α2

∫
d3p

(2π)3

1

2Ep

∣∣∣ ∫ ∞
−∞

dte−it(∆E+Ep)−t2/(2σ2)
∣∣∣2

=
α2

4π2

∫ ∞
0

dpp(2σ2π)e−σ
2(∆E+p)2/2

=
α2

4π

(
e−∆E2σ2 −∆E

√
πσerfc(∆Eσ)

)
(1.24)

where erfc(x) = 1 − erf(x). In the limit ∆Eσ → ∞ we have Pe ≈ α2e−∆E2σ2

8π∆E2σ2 → 0. Thus,
as expected, an inertial detector in the vacuum does not get excited much: the detector
can only get excited by a quantum field fluctuation, that is by a virtual particle, which
vanishes as the time interval (σ) goes to infinity. Yet another way to look at Pe is with the
ground states. Indeed, we started from the ground state of the free theory |0, g(d)〉, then
as the Gaussian switching function increased we approximately went to the ground state
of the interacting theory, and as the Gaussian decreased we approximately went back to
the ground state of the free theory. Hence, the excitation probability Pe decreases when
the evolution is more adiabatic, which is the case when ∆Eσ increases.

Let us now do a similar calculation but for a uniformly accelerated detector. This
detector has a worldline xd(τ) = (sinh(aτ)/a, cosh(aτ)/a, 0, 0) where a is the acceleration
of the detector. To avoid the quantum fluctuations that even an inertial detector sees, we
take the limit σ →∞ right from the start (see [29] for the calculation with a finite ∆Eσ),
and consider the excitation probability per proper time, Γ:

Γ = lim
σ→∞

α2

σ

∫ σ/2

−σ/2
dτ

∫ σ/2

−σ/2
dτ ′e−i∆E(τ−τ ′)D(xd(τ), xd(τ

′))

= α2 lim
ε→0+

∫ ∞
−∞

d∆τe−i∆E(∆τ)

(
−a2

16π2 sinh2 (∆τa/2− iε)

)
= α2 lim

ε→0+

∞∑
k=−∞

∫ ∞
−∞

d∆τe−i∆E(∆τ)

(
−1

4π2 (∆τ − iε+ 2iπk/a)2

)

= α2

∞∑
k=1

(−2πi)
−1

4π2

d

d∆τ

(
e−i∆E∆τ

) ∣∣∣
∆τ=−2πik/a

= α2 ∆E

2π

1

e2π∆E/a − 1
. (1.25)

This detection rate happens to be the same detection rate as an inertial detector in a
thermal bath of temperature T = a/(2πkB). This effect is known as the Unruh effect [30].

9



We thus see that the accelerating detector excites the field, causing the field to have a
back-reaction on the detector and exciting it.

1.2 Quantum information theory

In this section we briefly review some aspects of quantum information theory. Our goal
is to introduce some basic ideas and tools that will be useful in the rest of this thesis. A
more complete review can be found in [5].

1.2.1 Quantum channels

We start by introducing quantum channels. A quantum channel ξ takes an input density
matrix ρ and gives another density matrix ρ′ = ξ(ρ) at the output. The channel map ξ cap-
tures the noise that ρ is subject to when being transmitted. We first show how to describe
channels mathematically, and then discuss their information transmitting capacities.

Operator-sum representation

Let us first list the properties that ξ must satisfy.

I) Because of the postulates of quantum theory, ξ needs to be a linear map: ξ(p1ρ1+p2ρ2) =
p1ξ(ρ1) + p2ξ(ρ2).

II) Because valid density matrices are positive, the output density matrix must be a
positive density matrix, so ξ needs to be a positive map. Since I(R) ⊗ ξ(Q)

(
ρ(R,Q)

)
must also to be a a positive density matrix, ξ needs to be a completely positive map.

III) Because valid density matrices have a trace equal to 1, we need ξ to be trace preserv-
ing.

To put it simply, ξ needs to be a completely positive and trace preserving (CPTP) linear
map. It can be proved [5] that ξ satisfies these three properties if and only if

ξ(ρ) =
∑
i

EiρE
†
i (1.26)

where the set of operators {Ei} are called Kraus operators. These operators map the
input Hilbert space to the output Hilbert space and satisfy

∑
iE
†
iEi = I. To simplify

the notation, we assume in the rest of this subsection that the input Hilbert space is

10



the same as the output Hilbert space, which we denote as H(Q). The operators E
(Q)
i

are not unique, one can easily show that a set {E(Q)
i } and a set {F (Q)

i } give the same

channel if E
(Q)
i =

∑
j uijF

(Q)
j where uij is a unitary matrix. The minimum number of

Kraus operators required to describe a channel ξ is equal to the rank of the square matrix
(I(R)⊗ξ(Q))|β(R,Q)〉〈β(R,Q)|, where |β(R,Q)〉 is a maximally entangled state [31]. Thus it can
never exceed d2 where d is the dimension of H(Q).

Presented this way, the operator-sum representation may seem abstract and slightly
disconnected with quantum physics. But noisy quantum channels often arise because the
quantum system of interest, that is the quantum system Q, interacts with an environment.
Taken both together they form a closed system, but if we only consider Q we have an open
quantum system. For instance, assume that the total system starts in a product state
ρ(Q)⊗ |e(env)

o 〉〈e(env)
o |, then after a unitary evolution U (Q,env) we trace out the environment,

which we denote by Tr(env), such that the output of the channel is

ξ(ρ) = Tr(env)

[
U (Q,env)

(
ρ(Q) ⊗ |e(env)

o 〉〈e(env)
o |

)
U †(Q,env)

]
=

∑
k

〈e(env)
k |

[
U (Q,env)

(
ρ(Q) ⊗ |e(env)

o 〉〈e(env)
o |

)
U †(Q,env)

]
|e(env)
k 〉

=
∑
k

E
(Q)
k ρ(Q)E

†(Q)
k (1.27)

where E
(Q)
k = 〈e(env)

k |U (Q,env)|e(env)
o 〉. As expected, this shows that the operator-sum rep-

resentation is valid for the case where the quantum system Q interacts unitarily with an
environment which we trace out. This physically motivated description of a channel turns
out to be very general [5]: the operator-sum representation can always be modeled by

an environment of dimension at most d2 which starts in a pure state |e(env)
o 〉. Indeed, let

|e(env)
k 〉 be an orthonormal basis of a modeled environment, in one to one correspondence

with the index k of the Kraus operators {E(Q)
k }. We construct an operator U (Q,env) such

that U (Q,env)|ψ(Q), e
(env)
o 〉 =

∑
k E

(Q)
k |ψ(Q), e

(env)
k 〉. U (Q,env) can be a unitary operator since

〈ψ(Q), e(env)
o |U †(Q,env)U (Q,env)|φ(Q), e(env)

o 〉 =
∑
k

〈ψ(Q)|E†(Q)
k E

(Q)
k |φ

(Q)〉 = 〈ψ(Q)||φ(Q)〉(1.28)

for any |ψ(Q)〉, |φ(Q)〉. Finally, we can easily show that this modeled environment reproduces

the action of the Kraus operators {E(Q)
k } :

Tr(env)

[
U (Q,env)

(
ρ(Q) ⊗ |e(env)

o 〉〈e(env)
o |

)
U †(Q,env)

]
=
∑
i,j,k

Tr(env)

[
E

(Q)
j

(
pi|ψ(Q)

i 〉〈ψ
(Q)
i | ⊗ |e

(env)
j 〉〈e(env)

k |
)
E
†(Q)
k

]
=
∑
k

E
(Q)
k ρ(Q)E

†(Q)
k . (1.29)
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Thus, any CPTP map can be represented as a unitary evolution by building an environment
with which the quantum system Q interacts unitarily. The two approaches, the operator-
sum representation and the modeled environment, are therefore completely equivalent.
Finally, using the environment approach, we define the complementary quantum channel
ξC as the channel that traces out Q instead of the environment, namely

ξC(ρ) = Tr(Q)

[
U (Q,env)

(
ρ(Q) ⊗ |e(env)

o 〉〈e(env)
o |

)
U †(Q,env)

]
. (1.30)

Channel capacities

Suppose that Alice prepares a state ρ which she transmits to Bob at the other end of the
channel ρ′ = ξ(ρ). How much information can Alice convey to Bob using the noisy channel
ξ ? The theory of channel capacities gives us tools to answer this question. We now make
a quick overview of these tools. A more complete review can be found in [5, 32, 33, 34].

Let us first focus on the classical capacity of a quantum channel. In that case, Al-
ice transmits information by sending in the channel non-entangled quantum states. Bob
gains information by making measurements on the output states and looking only at the
measurement outcomes. Therefore, Bob has only access to classical information. How-
ever, unless the output states are orthogonal, no measurement made by Bob allows him
to distinguish perfectly the different input states. Consequently, even if we only consider
the classical capacity for now, this capacity is still limited by quantum theory. We now
consider the mutual information since, roughly speaking, the mutual information is the
amount of information about the input that can be recovered from a measurement per-
formed on the output. Let us first introduce the mutual information in a fully classical
setting. In that case, Alice sends a classical random variable X out of a finite alphabet I
with probability p(x) and then Bob receives the classical variable Y out of a finite alphabet
O with probability p(y|x). The mutual information is then[32]

I(X : Y ) = H(X)−H(X|Y ) (1.31)

where H(X) = −
∑

i p(xi) ln (p(xi)) is Shannon entropy [6] and H(X|Y ) is the expected
entropy of X once one knows the value of Y :

H(X|Y ) = H(X, Y )−H(Y ) = −
∑
i,j

p(yj)p(xi|yj) ln (p(xi|yj)) . (1.32)

The ln functions are usually evaluated in base 2 so the unit of entropy is bit. Shannon
entropy H(X) is a measure of the uncertainty associated with the random variable X.
Therefore, H(X) − H(X|Y ) can be interpreted as the uncertainty on X to which we
subtract the amount of uncertainty remaining about X after Y is known. In other words,
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the mutual information is the amount of information about X that is gained by knowing
Y . A very important theorem from classical information theory is the following [6]: if a
communication channel has mutual information I(X : Y ) between the input signal X and
the received output Y , then with multiple parallel uses of the channel and by means of
sufficiently redundant coding, that channel can be used to send up to, but no more than
I(X : Y ) bits per use of the channel with arbitrary low probability of error. To go back to
our quantum problem, we now simply assume that Alice assigns to each classical message
Xi a quantum state ρi. According to a theorem proved by Holevo, for any observable that
Bob chooses to measure, the mutual information I(X : Y ) between the input X of Alice
and the measurement outcome Y of Bob is bounded by [5]

I(X : Y ) ≤ S

(
ξ

(∑
i

piρi

))
−
∑
i

piS (ξ (ρi)) (1.33)

where S(ρ) = −Tr (ρ ln(ρ)) is simply the quantum version of the classical Shannon entropy,
it is called the von Newmann entropy. Similarly to the classical case, one can show that
this upper bound is achievable by employing long strings of non-entangled input state
ρN := ρ

(1)
a ⊗ ρ

(2)
b ⊗ ... ⊗ ρ

(N)
c which are sent to parallel copies of the channel ξ⊗N :=

ξ(1)⊗ξ(2)⊗...⊗ξ(N), pruning the set of strings ρN so that they are sufficiently distinguishable
and choosing a suitable decoding observable that acts on the output ξ⊗N(ρN) [35]. Thus,
for N large enough, we can use the channel to transmit N · C(ξ) bits of information with
arbitrarily low probability of error, where:

C(ξ) = max
{pj ,ρj}

[
S

(
ξ

(∑
j

pjρj

))
−
∑
j

pjS (ξ (ρj))

]
. (1.34)

This classical channel capacity is known as the product state capacity because we assumed
that the input states were non-entangled.

Let us now discuss the quantum channel capacity. To put it simply, the quantum
channel capacity measures the capability of a channel to relay quantum coherence. It is the
number of quantum bits (qubits) per channel use that can be reliably transmitted through
ξ. In the quantum case, Alice is allowed to prepare entangled input states. Moreover,
Bob does not perform measurements on the output states. He therefore gains the whole
quantum state of the output. The amount of quantum information that can reliably be
sent through the channel can be shown to be [36, 33]

Q(ξ) = lim
n→∞

maxρ

[
Ic (ξ⊗n, ρ)

]
n

Ic(ξ, ρ) = S (ξ (ρ))− S
(
ξC (ρ)

)
(1.35)
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where Ic can be seen as the quantum version of the classical mutual information called the
coherent information. From the definition of Ic(ξ, ρ), we see that the coherent information
measures the loss of information about ρ into the environment. This definition comes from
the fact that whenever we have noise in a quantum system, it is possible to reverse the
effect of that noise using quantum error correction if and only if the environment has not
gained any information about the system’s quantum state [37]. Note that because of the
limit in Q(ξ) it is extremely hard to compute and also very hard to extract its general
properties. In fact, we are still unable to fully characterize the class of channels which give
a zero quantum capacity. On the other hand, this may be an ill-defined question since there
exists pairs of zero quantum capacity channels which when used together have a non-zero
quantum capacity [34].

We may now introduce two important classes of quantum channels. A channel ξ is
called degradable if there exists a channel Γ such that Γ (ξ(ρ)) = ξC(ρ) for any ρ [38]. In
other words, a degradable channel is a channel for which the environment can be imitated
using the output of the channel. A channel ξ is antidegradable if its complementary
channel is degradable, or equivalently if there exists a channel Γ such that Γ

(
ξC(ρ)

)
=

ξ(ρ) for any ρ [38]. Note that almost every quantum channel for which the quantum
capacity is fully known is either degradable or antidegradable. This is simply because for
a degradable channel we have Ic (ξ⊗n) = nIc (ξ), such that the quantum channel capacity
can be simplified to Q(ξ) = maxρ Ic (ξ, ρ) [39]. In addition, using a simple no-cloning
argument, antidegradable channels have a trivial zero quantum capacity [40].

1.2.2 Quantum entanglement

In this subsection we review some useful concepts about quantum entanglement. Our
review is not exhaustive and a complete review can be found in [41]. We first introduce
the definition of entanglement and ways to quantify it. We then discuss entanglement
swapping and its implications.

Entanglement measures

The Hilbert space H(A) ⊗H(B) contains a class of states which manifest unique quantum
mechanical properties called entangled states. Indeed, it was shown by Bell that with these
entangled states the correlations between measurements made on system A and B can be
stronger than the correlations we would obtain with any local classical model.

Let us first formally define an entangled state in the space of pure states. A state |ψ(A,B)〉
is called an entangled state if it cannot be written as a separable state |ψ(A,B)〉 = |φ(A)〉 ⊗
|θ(B)〉. In the space of pure states, the entangled states are the only ones which exhibit
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correlations between local observables < O(A)O(B) >6=< O(A) >< O(B) >. The existence
of these correlations means that the state |ψ(A,B)〉 contains more information than just the
two parts of the state ρ(A) = Tr(B)

(
|ψ(A,B)〉〈ψ(A,B)|

)
and ρ(B) = Tr(A)

(
|ψ(A,B)〉〈ψ(A,B)|

)
.

Therefore, the entanglement entropy is a good measure of entanglement:

SA = −Tr(A)

(
ρ(A) ln(ρ(A))

)
. (1.36)

For pure states SA = SB is non-vanishing if and only if the state is entangled. Note also
that a maximally entangled state is such that ρ(A) = I(A)/d and SA = ln(d) entanglement
bits (ebits).

Let us now turn to mixed states. A state ρ(A,B) is called entangled if it cannot be
written as

ρ(A,B) =
∑
i

pi|φ(A)
i 〉〈φ

(A)
i | ⊗ |θ

(B)
i 〉〈θ

(B)
i | (1.37)

where pi > 0 and
∑

i pi = 1. Note that in the space of mixed states, non-entangled states
also exhibit correlations between local observables < O(A)O(B) >=

∑
i pi < O(A) >i<

O(B) >i 6=< O(A) >< O(B) >. This means that mixed states also have classical correlations,
on top of the quantum correlations. Since entanglement entropy is simply a measure of
correlations, classical or quantum, it is not a good measure of entanglement for mixed
states. There exist good measures of entanglement for density matrices of dimension 2×2,
2× 3 and also for continuous Gaussian states [41]. For qubits (2× 2), there are two very
popular measures, namely the negativity and the concurrence. We will always use the
negativity, defined as [42, 43]

N(ρ(A,B)) := ‖ρ(A,B)TA‖1 − 1 =
∑
i

(|λi| − λi) (1.38)

where ρ(A,B)TA is the partial transpose of ρ(A,B) with respect to system A, ‖O‖1 is the

trace norm Tr
√
O†O and λi are the eigenvalues of ρ(A,B)TA . This definition ensures that

the negativity vanishes on states of the form (1.37) and coincides with the entanglement
entropy for maximally entangled states. Moreover, one can show that the negativity bounds
the distillable entanglement contained in ρ(A,B) [43].

Entanglement swapping

Let us now discuss entanglement swapping, a technique used to transfer entanglement
which inspired some of the work done in this thesis. We discuss two possible setups of
entanglement swapping, the first one transfers entanglement using measurements and the
second one transfers entanglement using unitary interactions.
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Figure 1.1: Entanglement swapping, setup with measurements.

The first setup is illustrated on Fig. (1.1). In the most basic scenario, A1 is initially
entangled with B1, and A2 is initially entangled with B2. The entire system starts in the
pure state:

|ψ(A1,B1,A2,B2)
ini 〉 =

1

2

(
|0(A1), 0(B1)〉+ |1(A1), 1(B1)〉

)
⊗
(
|0(A2), 0(B2)〉+ |1(A2), 1(B2)〉

)
. (1.39)

Then, a joint projective measurement is made on the quantum system B1 and B2 in the
Bell basis {|0(B1), 0(B2)〉 ± |1(B1), 1(B2)〉/

√
2, |0(B1), 1(B2)〉 ± |1(B1), 0(B2)〉/

√
2}. As a result

of the Bell measurement, the quantum systems A1 and A2 are projected to the following
states, all with probability 1/4:

|ψ(A1,A2)
1 〉 = |0(A1), 0(A2)〉+ |1(A1), 1(A2)〉/

√
2

|ψ(A1,A2)
2 〉 = |0(A1), 0(A2)〉 − |1(A1), 1(A2)〉/

√
2

|ψ(A1,A2)
3 〉 = |0(A1), 1(A2)〉+ |1(A1), 0(A2)〉/

√
2

|ψ(A1,A2)
4 〉 = |0(A1), 1(A2)〉 − |1(A1), 0(A2)〉/

√
2. (1.40)

This means that if the outcome of the measurement is unknown, the state of the quan-
tum systems A1 and A2 after the measurement is ρ

(A1,A2)
fin =

∑
i |ψ

(A1,A2)
i 〉〈ψ(A1,A2)

i |/4 =

I(A1,A2)/4. If we stop here, the state ρ
(A1,A2)
fin is not an entangled state. Nevertheless, if the

outcome of the measurement is known by system B2 and A1, then they can perform a local
rotation on their state in such a way that |ψ(A1,A2)

fin 〉 = |ψ(A1,A2)
1 〉 [41]. What is so great

about that is that A1 and A2 end up in a maximally entangled state even if they never
interacted with each other. This does not mean that entanglement was created outside
the light cone. Indeed, provided that the initial entanglement was created in a causal way,
transferring that entanglement to system A1 and A2 can be achieved with at most the
speed of light. To see this, assume for simplicity that A1 and B1 are initially next to each
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Figure 1.2: Entanglement swapping, setup with unitary interactions.

other and that they are separated by a distance L from A2 and B2 which are also next
to each other. Then, the systems B1 and B2 need to travel to a common destination so
that they can be measured in the Bell basis. This takes at least a time of L/2. After the
measurement, the outcome needs to be communicated to the quantum system A1 (and
B2). This also takes a time of L/2. Therefore, using this setup of entanglement swapping,
A1 and A2 can get entangled with at most the speed v = L

L/2+L/2
= 1, namely the speed

of light.

The second setup of entanglement swapping is illustrated on Fig. (1.2). In this setup, no
measurements are performed, just unitary interactions. B1 and B2 are initially entangled
in the state |φ(B1,B2)〉, while A1 and A2 start respectively in the states |θ(A1)〉 and |ψ(A2)〉.
Then, A1 unitarily interacts with B1, and A2 unitarily interacts with B2. The final state
of A1 and A2 is:

ρ(A1,A2) =

Tr(B1,B2)

(
U

(A1,B1)
1 U

(A2,B2)
2 |φ(B1,B2), θ(A1), ψ(A2)〉〈φ(B1,B2), θ(A1), ψ(A2)|U (A1,B1)†

1 U
(A2,B2)†
2

)
.

(1.41)

Since we trace over system B1 and B2, we generally end up in a mixed state. This makes
things more complicated because as we previously discussed, it is harder to distinguish
entangled mixed states from non-entangled mixed states. Therefore, it is not really possible
to analyze this setup in a general way like we did for the first setup because at this point
it would be necessary to specify the details of the interactions. This is why this setup
is usually studied for very specific examples, see e.g. [44]. In chapter 3 we will look at
perhaps the most interesting example of such a setup.

We can still look ahead and discuss whether this setup may allow creation of entan-
glement outside the light cone. As opposed to the previous setup, we do not need to
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communicate the outcome of any measurements, we therefore save some time here. On the
other hand, A1 and A2 end up in a mixed state, so entanglement may take more time to
kick in. Note that because no measurements are made on the systems B1 and B2, we per-
haps have more freedom in the choice of systems we consider. For instance, if the quantum
systems B1 and B2 are in fact just one big system B, say a big metal bar, then perhaps
it can naturally start in a state which is entangled at both ends B1 and B2. If that is so,
then we save some time here as well because we do not need to assume a preparation time
to get B1 and B2 entangled. If such a system exists, then this system may facilitate the
creation of entanglement outside the light cone, but of course a proper analysis of those
systems is required before making such claims.

18



Chapter 2

Information propagation between two
Unruh-DeWitt detectors

In this chapter we study the information dynamics of two Unruh-DeWitt detectors. To do
so, we analyze the quantum channel created by the two detectors. We first show that, in
this channel, information propagation is bounded by the speed of light. In fact, it turns out
that causality in the channel is a direct consequence of microcausality in a free quantum
field theory. Then, we analyze the channel using the tools of Sec. 1.2.1, we present a
perturbative expansion of the channel with Feynman-like diagrams and we numerically
evaluate the classical channel capacity as a function of time.

2.1 The causality problem

We start by looking at a causality problem that often arises when quantum fields are inter-
acting with non-relativistic quantum systems. We then show that a quantum information
inspired approach can naturally solve the problem.

2.1.1 Review of the problem

Let us first present the interacting quantum theory that we study. We consider two point-
like Unruh-DeWitt detectors (see Sec. 1.1.3). Let us denote the overall Hilbert space
by H = H(1) ⊗ H(2) ⊗ H(3), where the first two Hilbert spaces belong respectively to the
detector of Alice, detector 1, and Bob’s detector, detector 2, and where the third Hilbert
space is that of the field. We assume that both detectors have the same proper time
τ1 = τ2 = τ . We hypothesize that the main results of this section would remain true if
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τ1 6= τ2 but a proper analysis of this problem should be of interest. This allows us to write
the interaction Hamiltonian with respect to the proper time τ as:

Hint =
2∑
j=1

αjηj(τ)m(j)φ(~xj(τ)) (2.1)

For simplicity, in this chapter we always assume that the two detectors are at rest and
separated by a constant distance L = |~L| (where ~L := ~x2−~x1). In addition, we also assume
that the detectors are in Minkowski spacetime, so their proper time and the coordinate
time coincide τ = t.

The so-called Fermi problem, which was first considered by Fermi [45], arises in any
system that is analogous to two atoms communicating via the electromagnetic field, and
it has been studied extensively, see e.g. [17, 46, 47, 18]. Consider, in the vacuum, the
probability, PFermi, that a photon is emitted by atom 1 followed by the absorption of a
photon by atom 2. In our model, it is the probability if starting with the state |e(1), g(2), 0〉
to end in the state |g(1), e(2), 0〉. Using the perturbative expansion of the evolution operator

in the interaction picture U(tf , ti) = Te−i
∫ tf
ti

dtHint(t), one obtains the transition probability

PFermi =
∣∣〈e(1), g(2), 0|U(tf , ti)|g(1), e(2), 0〉

∣∣2
=

∣∣∣α1α2

∫ tf

ti

dt1

∫ tf

ti

dt2η(t1)η(t2)ei∆E(t2−t1)G(x1(t1), x2(t2))
∣∣∣2 +O(α6). (2.2)

By choosing the separation between the two detectors L and a time interval tf−ti in which
both detectors are on, we can choose the spacetime windows for emission and absorption
to be timelike or spacelike (or mixed) relative to another. The Fermi problem is the
fact that this probability, from Eq. (2.2), is non-vanishing even in the case of spacelike
separation. Technically, this is due to the non-vanishing tail of the Feynman propagator
outside the light cone. Hegerfeld and Feynman showed that in fact no Feynman propagator
can identically vanish outside the light cone, [48, 49].

Just like for other so-called superluminal effects, the Fermi problem caused a lot of
confusion in the literature. Some authors came to the conclusion that causality is not
respected [46] while most authors concluded that causality is not broken [47, 18, 17]. Nev-
ertheless, the solution to the problem remained somewhat unclear because all these authors
used different models with different physical assumptions and different mathematical ap-
proximations, all that just to lowest order in perturbation theory. This reinforces the need
to clarify the reason for the non-vanishing of the Fermi probability in the spacelike sep-
arated case to all orders in perturbation theory. As was recently pointed out in [24], the
key to resolving the puzzle is to take into account that measurements on the detectors
are local measurements. Namely, Bob performs a measurement only of his detector 2; he
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Figure 2.1: A quantum channel modeled by 2 detectors interacting with a scalar field.

does not measure Alice’s detector, nor does he measure the field. This means that Fermi’s
probability is the probability for just one of several processes that Bob cannot distinguish.
What should actually vanish for spacelike separations is the sum of the probabilities for
all processes that depend on the state of Alice.

2.1.2 The quantum channel

Here, our first aim is to make the argument of [24] explicit within the information-theoretic
framework of quantum channels. To this end, we notice that Bob’s ignorance of Alice’ and
the field’s state at the late time tf means that at tf both the state of Alice’s detector
and the state of the field are to be traced over. These traces perform the sum over the
probabilities for processes that Bob cannot distinguish. We therefore naturally arrive at
the description of a quantum channel ξ : ρ(1) → ξ(ρ(1)) = ρ(2)′, see Fig. (2.1). Here, the
input is the initial density matrix ρ(1) of Alice at ti and the output of the channel is Bob’s
density matrix ρ(2)′ at tf . We assume that the system starts in the state ρ(ti) = ρ(1)ρ(2)ρ(3),
where the initial state of Alice’s detector, ρ(1), is arbitrary, the initial state of the Bob’s
detector, ρ(2), is the ground state and the initial state of the field, ρ(3), is the vacuum. The
full density matrix evolves according to ρ(tf ) = U(tf , ti)ρ(ti)U

†(tf , ti). As always, the time
evolution can be formulated in terms of an infinite series of commutators [50]:

ρ(tf ) = ρ(1)ρ(2)ρ(3) +
∞∑
j=1

(
(i)j

∫ tf

ti

dt1...

∫ tj−1

ti

dtj[[...[ρ
(1)ρ(2)ρ(3), Hint(tn)], ...], Hint(t1)]

)
.

(2.3)

21



Then, the trace over detector 1 and the field gives the final state ρ(2)(tf ) = ξ(ρ(1)) of Bob’s
detector:

ξ(ρ(1)) = ρ(2) +
∞∑
j=1

(
(i)j

∫ tf

ti

dt1...

∫ tj−1

ti

dtjTr(1,3)[[...[ρ
(1)ρ(2)ρ(3), Hint(tn)], ...], Hint(t1)]

)
.

(2.4)

To prove causality from this starting point, we will use the following simple lemmas:

I) Traces are cyclic and Tr ([A,B]) = 0.

II) [A(1)B(2)C(3), D(1)E(2)I(3)] ={
[A(1), D(1)]

(
B(2)E(2)

)
+
(
D(1)A(1)

)
[B(2), E(2)]

}
C(3).

III) ∃ {R(1)
k , S

(2)
k , T

(3)
k } such that [[...[A(1)B(2)C(3), D(1)E(2)], ...], F (1)G(3)] =

∑
k R

(1)
k S

(2)
k T

(3)
k .

Now in Eq. (2.4), the terms that have a dependence on the input ρ(1) must have at
least one m(1)φ(x1) which multiplies ρ(1) since otherwise we simply have Tr(ρ(1)) = 1. In
addition, since the trace of commutators vanishes (I), the non-vanishing terms which have
a dependence on ρ(1) need to be interacting with at least one m(2)φ(x2), such that all the
terms dependent on ρ(1) will be of the form

fn
(
ρ(1)
)

= Tr(1,3)

(
[[...[ρ(1)ρ(2)ρ(3),m(j)φ(xj)], ...],m

(r)φ(xr)]
)

(2.5)

where at least one of the indices {j...r} is equal to 1 and at least one of the indices is equal
to 2, and n is the number of commutators (n ≥ 2). Note that the time dependence is
implicit in this formulation, each φ(x) is integrated over time such that the time difference
between two φ(x) is at most tf − ti. If the last index in Eq. (2.5) is 1, using (III) for
everything before the last commutator, and (II) to expand the last commutator, fn

(
ρ(1)
)

would simplify to:

fn
(
ρ(1)
)

=
∑
k

Tr(1,3)

(
[R

(1)
k S

(2)
k T

(3)
k ,m(1)φ(x1)]

)
=

∑
k

S
(2)
k

{
Tr(3)

(
T

(3)
k φ(x1)

)
Tr(1)

(
[R

(1)
k ,m(1)]

)
+Tr(3)

(
[T

(3)
k , φ(x1)]

)
Tr(1)

(
m(1)R

(1)
k

)}
= 0. (2.6)
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Thus the non-vanishing contributions of fn
(
ρ(1)
)

must come from commutators for which
the very last index is 2. Now, let us consider the rightmost occurrence of index 1 and let
us apply (III) to the commutators to the left of it:

fn
(
ρ(1)
)

=
∑
k

Tr(1,3)

(
[[...[[R

(1)
k S

(2)
k T

(3)
k ,m(1)φ(x1)],m(2)φ(x2)]...],m(2)φ(x2)]

)
. (2.7)

We can expand the most inner commutators with (II) to obtain:

[R
(1)
k S

(2)
k T

(3)
k ,m(1)φ(x1)] = [R

(1)
k ,m(1)]

(
S

(2)
k T

(3)
k φ(x1)

)
+m(1)R

(1)
k

(
S

(2)
k [T

(3)
k , φ(x1)]

)
.(2.8)

Notice that when the first term is back in Eq. (2.7) it forms an expression of the form∑
k

Tr(1,3)

(
[R

(1)
k ,m(1)][[...[S

(2)
k T

(3)
k φ(x1),m(2)φ(x2)]...],m(2)φ(x2)]

)
(2.9)

which implies that after the tracing out of detector 1 this term is always absent. Notice
also that when the second term is back in Eq. (2.7), it gives an expression of the form:

fn
(
ρ(1)
)

=
∑
k

Tr(1,3)

(
m(1)R

(1)
k [[...[S

(2)
k [T

(3)
k , φ(x1)],m(2)φ(x2)]...],m(2)φ(x2)]

)
. (2.10)

Therefore, the term [T
(3)
k , φ(x1)] will be multiplied on each side by some powers of φ(x2),

so there exists a set of operators V
(2)
k,i,j such that:

fn
(
ρ(1)
)

=
∑
k,i,j

{
V

(2)
k,i,jTr(1)

(
m(1)R

(1)
k

)
Tr(3)

(
φi(x2)[T

(3)
k , φ(x1)]φj(x2)

)}
. (2.11)

Using cyclicity of the trace (I), this expression can be simplified to:

fn
(
ρ(1)
)

=
∑
k,i,j

{
V

(2)
k,i,jTr(1)

(
m(1)R

(1)
k

)
Tr(3)

(
T

(3)
k [φ(x1), φi+j(x2)]

)}
. (2.12)

Note that all the information about ρ(1) is contained in the operators R
(1)
k . Causality in

the channel therefore follows directly from microcausality in quantum field theory, see Sec.
1.1.2. If the two detectors are spacelike separated during the entire interaction, ρ(2)(tf )
does not depend on the state ρ(1), i.e., Bob’s detector 2 is not sensitive to the state in
which Alice prepared detector 1.

This is in many ways reminiscent of the EPR experiment. In the EPR thought ex-
periment, the two spacelike separated spins A and B have quantum correlations that are
stronger than any classical correlations because they are in the maximally entangled state

|ψA,B〉 =
1√
2

(
| ↑(A)↑(B)〉+ | ↓(A)↓(B)〉

)
. (2.13)
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Thus, a measurement performed on system A will affect the outcome of a measurement
on system B. But, here again causality is not violated because the outcomes’ probabilities
of the measurement made on system B are unchanged by the measurement performed
on system A. Indeed, if the two systems are spacelike separated, B cannot know the
outcome of the measurement made on system A. Therefore, he has only access to his
state Tr(A)

(
|ψA,B〉〈ψA,B|

)
= 1/2

(
| ↑(B)〉〈↑(B) |+ | ↓(B)〉〈↓(B) |

)
which does not contain any

information about the outcome of the measurement performed on A.

2.1.3 Different detector models

A quantum channel modeled by an atom interacting with a photon has recently been
analyzed in [51]. The model uses an atom-photon interaction given by the Jaynes-Cumming

interaction Hamiltonian Hint = α
(
|g(d)〉〈e(d)| ⊗ a†k + |e(d)〉〈g(d)| ⊗ ak

)
where ak and a†k are

the annihilation and creation operator for a single mode k. This interaction Hamiltonian
has a natural quantum field generalization, the Glauber scalar detector [52], which can be
used to model two detectors interacting with a quantum scalar field

Hint =
2∑
j=1

αjη(t)
(
|g(j)〉〈e(j)|φ−(~xj) + |e(j)〉〈g(j)|φ+(~xj)

)
(2.14)

where φ+(x) =
∫

d3p

(2π)3
√

2Ep
eipxa~p and φ−(x) = φ+†(x) are respectively the positive and

negative frequency part of the field. While this detector is not sensitive to the quantum
fluctuations of the field, i.e., in our notation, Pe = 0, this detector model allows non-
local effects, see [53]. We can confirm the non-locality by using in our channel Glauber
detectors instead of Unruh-DeWitt detectors. To this end, we use Eq. (2.14) in Eq. (2.4).
We see that then terms that are dependent on ρ(1) are no longer necessarily proportional
to [φ(x1), φ(x2)]. Using the perturbative expansion of the channel in Eq. (2.4) shows that
non-causal terms appear already in the O(α2) order:

ξ(ρ(1)) = |g(2)〉〈g(2)| − α1α2

∫ tf

ti

dt1

∫ t1

ti

dt2

[
η(t1)η(t2)× ei∆E(t1−t2)|e(2)〉〈g(2)|

×〈e(1)|ρ(1)|g(1)〉D (x2 (t1) , x1 (t2)) + c.c.
]

+O
(
α4
)
. (2.15)

Since the correlator D (x, y) is not vanishing outside the light cone, detector 2 would indeed
be influenced by detector 1 as soon as the interaction is turned on even if the detectors are
spacelike separated. It may be interesting to see how similar effectively non-local detectors,
such as the one in [54], behaves under our channel picture.

Note that if instead of using a scalar field φ(x) we use a fermionic field like a Dirac field
ψ(x), then the proof of causality does not change even if fermionic fields anti-commute for
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spacelike separations. To see this, note that the detector monopole m must be coupled to
a Lorentz scalar. An obvious reason for this requirement is that we want the excitation
probability Pe of a point-like detector to be invariant under a boost. For a fermionic field,
we need an even number of instance of the field to have a Lorentz scalar, for example
ψ̄ψ(x) for a Dirac field [4] (where ψ̄(x) = ψ†(x)γ0 and γ0 is essentially a four dimensional
version of the σx Pauli matrix), and this combination acts as a boson so it commutes for
spacelike separations.

2.2 Analysis of the quantum channel

In this section we make an analysis of our relativistic quantum channel modeled by the
interaction Hamiltonian (2.1) using the tools of Sec. 1.2.1. We start by obtaining its
operator-sum representation, then we discuss its various channel capacities and we end
with a perturbative expansion of the channel.

2.2.1 Noise structure

Let us start by calculating the precise quantum channel for both timelike and spacelike
separations with the tools introduced in Sec. 1.2.1. Since the evolution of the full system
is unitary, our channel is necessarily described by a CPTP map. Then, as we will show,
assuming detector 2 starts in the ground state, ρ(2) = |g(2)〉〈g(2)|, we can write the channel
map in the following way, in the basis |e(2)〉, |g(2)〉,

ξ
((

θ γ
γ∗ β

))
= ( 0 0

0 1 ) +
(
Pe 0
0 −Pe

)
+ θ

(
A 0
0 −A

)
+ β

(
B 0
0 −B

)
+ γ ( 0 C

D 0 ) + γ∗ ( 0 D∗
C∗ 0 ) (2.16)

where we use θ + β = 1. All terms are spacetime scalars. Note that A,B,C and D are
causal terms in the sense that they depend on the input density matrix ρ(1). In contrast, Pe
represents noise in the quantum channel since its presence does not depend on the input
ρ(1). To prove Eq. (2.16), we will use the following properties which are easy to verify
(k ∈ Z):

i) Tr
(
ρ(3)φ2k+1

)
= 0.

ii) m2k+1 has no diagonal elements,
and therefore Tr

(
m2k+1Md

)
= 0 where Md is any diagonal matrix.

iii) m2k has only diagonal elements,
and therefore Tr

(
m2kMnd

)
= 0 where Mnd is any matrix with no diagonal elements.
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In a series expansion of the non-causal terms, each order has the form ρ(2)m(2)kTr
(
ρ(3)φ(x2)k

)
.

Thus, because of (i) the non-vanishing terms will be proportional to ρ(2)m(2)2k, and because
of (iii) we know that these are diagonal. Therefore, because we have trace preservation
and because detector 2 starts initially in the ground state, there cannot be a more general
expression for the non-causal terms of Eq. (2.16). For the causal terms, each order in a se-
ries expansion have the form ρ(2)m(2)kTr(m(1)jρ(1))Tr

(
ρ(3)φ(x1)jφ(x2)k

)
. Now consider the

case where the input density matrix ρ(1) is diagonal, then because of (ii) the non-vanishing
terms will have j even. Using (i), this also means we need k to be even, hence ρ(2)m(2)k is
diagonal following (iii). A similar argument can show that an input density matrix with
no diagonal elements cannot have diagonal elements at the output. Finally, trace preserva-
tion, hermeticity and linearity of the channel are sufficient properties to prove the validity
of Eq. (2.16).

From this analysis, we can find an operator-sum representation by imposing ξ
(( α γ

γ∗ β

))
=∑4

k=1Ek
( α γ
γ∗ β

)
E†k and

∑4
k=1E

†
kEk = I where we use Ek = ( a1k a2k

a3k a4k ). Solving this non-
linear system of equations is relatively straightforward as we have more unknowns than
equations, so for simplicity we try to have as many zero matrix elements as possible. We
arrive at a simple representation, in the basis |e(2)〉〈e(1)|, |e(2)〉〈g(1)|, |g(2)〉〈e(1)|, |g(2)〉〈g(1)|:

E1 =

( C√
1−Pe−B

0

0
√

1− Pe −B

)
E2 =

(√
Pe + A− |C|2

1−Pe−B 0

0 0

)

E3 =

(
0 D∗√

1−Pe−A√
1− Pe − A 0

)
E4 =

(
0
√
Pe +B − |D|2

1−Pe−A
0 0

)
. (2.17)

There exists no representation with a smaller number of Kraus operator since we verified
that the rank of the matrix (I(Q) ⊗ ξ(1))|β(Q,1)〉〈β(Q,1)|, where |β(Q,1)〉 is the maximally
entangled state |β(Q,1)〉 = 1√

2
(|e(Q), e(1)〉+ |g(Q), g(1)〉), is equal to 4.

2.2.2 Channel capacities

In this section we apply the ideas of Sec. 1.2.1 to our quantum channel model. We start by
computing the classical capacity with Eq. (1.34). After a tedious calculation using Maple,

we find that it is optimal to send the input states ρ
(1)
1 = |e(1)〉〈e(1)| and ρ

(1)
2 = |g(1)〉〈g(1)|
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with probability p1 and p2 = 1− p1,

p1 =
2w − Pe −B

A−B

w − ln(1− 2w) =
H(Pe +B)−H(Pe + A)

A−B
(2.18)

where we used the binary entropy H(p) := −p ln p− (1− p) ln(1− p). We finally arrive at
the classical channel capacity C, which we divide by tf − ti to get R, namely the amount
of bits/time which can be sent reliably:

R =
1

tf − ti

[
H (Pe + p1A+ (1− p1)B)− p1H (Pe + A)− (1− p1)H (Pe +B)

]
. (2.19)

As expected the classical channel capacity is zero for spacelike interactions since in that
case A = B = 0.

We remark that the channel capacity as a function of the spacetime separation is a
non-analytic function since it identically vanishes outside the light cone but is a nontrivial
function inside. Any analytic function that vanishes on a finite interval would of course
vanish everywhere. The occurrence of this non-analyticity may seem surprising since our
quantum channel is mapping in between finite dimensional spaces and therefore appears
to be a matter of mere linear algebra. The non-analyticity arises, of course, from the
non-analyticity of the commutator [φ(x), φ(y)] which originates in the fact that, in the full
system, the field lives in an infinite dimensional Hilbert space. Conversely, if ultraviolet
and infrared cut-offs are imposed on the quantum field theory so that its Hilbert space
H(3) becomes finite dimensional, this would reduce these calculations to linear algebra and
will therefore yield some non-vanishing capacity outside the light cone. Interestingly, this
does not mean that the presence of a natural UV cut-off in nature would imply a violation
of causality. This is because an ultraviolet cut-off implies that there is in effect a smallest
resolvable length, which in turn means that the very boundaries of the light cone become
unsharp. The capacity should decay to essentially zero outside the light cone at a distance
from the light cone that is about the size of the unsharpness scale induced by the UV
cut-off. Any candidate quantum gravity theory has to reduce to quantum field theory in
a limit and most come with a natural UV cut-off, see e.g., [55]. It should be interesting to
check causality for such theories by calculating the channel capacity at distances close to
the light cone.

Let us now consider the quantum channel capacity, Eq. (1.35). For spacelike sep-
arated detectors, the quantum channel capacity is zero since the channel is then anti-
degradable. Indeed, for spacelike separated detectors the output of the channel does
not depend on the input: ξ(ρ(1)) = F (ρ(2), φ(x2))(2). Thus, we can easily build a chan-
nel Γ that maps the output of the complementary channel ξC to the known function
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F (ρ(2), φ(x2))(2). Note that this also means that we cannot transfer entanglement faster
than the speed of light. Indeed, if the input is entangled with some auxiliary system, say
ρ(1,aux) =

∑
i,j,r,s ci,j,r,s|i(1), j(aux)〉〈r(1), s(aux)|, then for spacelike separated detectors the

output is not entangled with the auxiliary system:

I(aux) ⊗ ξ(1)
(
ρ(1,aux)

)
=

∑
i,j,r,s

ci,j,r,sξ
(
|i(1)〉〈r(1)|

)
⊗ |j(aux)〉〈s(aux)|

=
(
F (ρ(2), φ(x2))(2)

)
⊗

(∑
i,j,r,s

ci,j,r,s|j(aux)〉〈s(aux)|

)
. (2.20)

This confirms that superluminal propagation of classical or quantum information is not
possible. For timelike separated detectors, the quantum channel capacity is extremely
hard to compute because the channel is not degradable. Indeed, a theorem in [31] states
that any channel with input and output of dimension 2 and with Choi rank (minimum
number of Kraus operators) bigger than 2 cannot be degradable. Since the channel we
consider has Choi rank equal to 4, it cannot be degradable. We therefore leave open the
question of finding an explicit expression for the quantum channel capacity of our quantum
channel.

2.2.3 Perturbative expansion

Using time-dependent perturbation theory, we can find explicit expressions for the terms
Pe, A,B,C and D in the weak coupling regime (αj � 1). To this end we use the first
orders of the perturbative expansion of equation (2.4) along with equation (2.16), and for
simplicity we assume that the field starts in the vacuum |0〉:

Pe(∆E) = α2
2

∫ tf

ti

dt1

∫ tf

ti

dt2η(t1)η(t2)〈0|φ (x2(t1))φ (x2(t2)) |0〉e−i∆E(t1−t2) +O
(
α4
)

(2.21)

A(∆E) = 2(α1α2)2

∫ tf

ti

dt1

∫ t1

ti

dt2

∫ t2

ti

dt3

∫ t3

ti

dt4η(t1)η(t2)η(t3)η(t4)
{

cos (∆E (t1 − t2))

×[φ (x2(t1)) , φ (x1(t3))]
[
e−i∆E(t3−t4)〈0|φ (x1(t4))φ (x2(t2)) |0〉

−ei∆E(t3−t4)〈0|φ (x2(t2))φ (x1(t4)) |0〉
]

+ (t1 ↔ t2) + (t2 ↔ t3) + i sin (∆E (t2 − t3)) [φ (x1(t2)) , φ (x2(t1))]

×
[
e−i∆E(t1−t4)〈0|φ (x1(t3))φ (x2(t4)) |0〉+ ei∆E(t1−t4)〈0|φ (x2(t4))φ (x1(t3)) |0〉

]}
+O

(
α6
)

(2.22)
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FIG. 2.2: Feynman diagrams involved in the quantum channel. Dj stands for detector j,
j ∈ {1, 2}.

B(∆E) = A(−∆E) + 4(α1α2)2

∫ tf

ti

dt1

∫ t1

ti

dt2

∫ t2

ti

dt3

∫ t3

ti

dt4

{
η(t1)η(t2)η(t3)η(t4)

× sin (∆E(t2 − t3)) sin (∆E(t1 − t4)) [φ (x1(t2)) , φ (x2(t1))]

×[φ (x2(t4)) , φ (x1(t3))]
}

+O
(
α6
)

(2.23)

C(∆E) = α1α2

∫ tf

ti

dt1

∫ t1

ti

dt2η(t1)η(t2)ei∆E(t2−t1)[φ (x1(t2)) , φ (x2(t1))]

+O
(
α4
)

(2.24)

D(∆E) = −α1α2

∫ tf

ti

dt1

∫ t1

ti

dt2η(t1)η(t2)ei∆E(t2+t1)[φ (x1(t2)) , φ (x2(t1))]

+O
(
α4
)
. (2.25)

We can picture the perturbative expansion with Feynman diagrams [4], see Fig. (2.2) (the
expressions of Eq. (2.21)-(2.25) are represented by the first diagram of their respective
series). A connection between the two detectors represents a photon emission/absorption
process and a connection between a detector and itself (a loop) represents a quantum field
fluctuation. The terms {A,B} have an even number of connections between the detectors
while the terms {C,D} have an odd number of connections. The only distinction between
A and B is the input state at detector 1: the excited state for A and the ground state
for B. Thus, the causal connections of A are resonant while the causal connections of B
are not resonant. A similar argument is also true for C and D, the connections of C are
resonant while the connections of D are not resonant.

Using Eq. (2.21)-(2.23) along with Eq. (2.19), we can numerically evaluate the classical
channel capacity as a function of time for inertial detectors in Minkowski spacetime, for
example, for a massless field, see Fig. (2.3). The arrow points to the threshold when
the spacetime windows in which the detectors are switched on start to become partially
timelike.
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FIG. 2.3: Classical channel capacity as a function of time (tf− ti) with L = 1 and ∆E = 1.
The arrow points to the light cone tf − ti = | ~x1 − ~x2|.
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Chapter 3

Entanglement generation between
two Unruh-DeWitt detectors

In this chapter we study the entanglement dynamics of two Unruh-DeWitt detectors. We
focus on only one aspect of entanglement dynamics, namely entanglement generation.
Indeed, the two detectors are always assumed to be initially non-entangled, but because of
their interaction with the field, entanglement can be generated. We present two approaches
to this problem, a time-dependent approach and a time-independent approach. The two
approaches are different mostly because they use different tools, namely time-dependent
perturbation theory and time-independent perturbation theory. We discuss in Sec. 3.2.1
how to interpret the results of the time-dependent approach with the results of the time-
independent approach.

3.1 Time-dependent approach

It has been shown using time-dependent perturbation theory in [22, 23] that detectors
coupled to a massless quantum field can become entangled even when spacelike separated.
The entanglement was found to appear to propagate in quantum fields at a speed which
depends on the switching functions η(τ) and on the energy gap ∆E. The speed of propaga-
tion was found to be larger than the speed of light for suitable η(τ) and ∆E. In this section
we briefly review this time-dependent approach to the study of entanglement generation
between two Unruh-DeWitt detectors. We then expend this analysis to the case where the
detectors are near a weak gravitational field.
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3.1.1 Review of the approach

To study entanglement generation between two Unruh-DeWitt detectors, we keep the same
model as in the previous chapter. This means that we use the interaction Hamiltonian of
Eq. (2.1), but here we do not assume from the start that τ = t. Moreover, we do not
trace over the final state of detector 1, we just trace over the final state of the field. We
therefore have a setup of entanglement swapping, just like the one illustrated on Fig. (1.2).
The detectors play the role of system A1 and A2, while the field plays the role of system
B. As we previously discussed, this setup may allow creation of entanglement outside the
light cone especially if the initial quantum state of system B is naturally entangled. Thus,
since we have evidence from algebraic quantum field theory [56] that the vacuum state |0〉
is an entangled state in position space, we may be able to swap the entanglement from the
vacuum to the detectors, even at spacelike separations.

For simplicity, we assume that the field is massless and that the initial state of the
system is the ground state of the free theory, namely |g(1), g(2), 0〉. After the unitary
evolution in the interaction picture, which we only carry perturbatively, we trace out the
field such that the final state of the detectors can be shown to be at O(α2) [22, 57]

ρ
(1,2)
f = Tr(3)

(
Te−i

∫
dτ ′Hint(τ ′)|g(1), g(2), 0〉〈g(1), g(2), 0|T †ei

∫
dτHint(τ)

)
=

(
0 0 0 X
0 Pe1 Y 0
0 Y ∗ Pe2 0
X∗ 0 0 1−Pe1−Pe2

)
+O(α4) (3.1)

in the basis |e(1), e(2)〉, |e(1), g(2)〉, |g(1), e(2)〉, |g(1), g(2)〉, where we have:

Pej = α2
j

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′η(τ)η(τ ′)e−i∆E(τ−τ ′)D (xj(τ), xj(τ
′)) (3.2)

X = −α1α2

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′η(τ)η(τ ′)ei∆E(τ+τ ′) (D (x1(τ), x2(τ ′)) +D (x2(τ), x1(τ ′)))

(3.3)

Y = α1α2

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′η(τ)η(τ ′)e−i∆E(τ−τ ′)D (x1(τ), x2(τ ′)) . (3.4)

A simple calculation can show that the negativity of this final state is:

N = max
(√

(Pe1 − Pe2)2 + 4|X|2 − Pe1 − Pe2, 0
)

+O(α4). (3.5)

Let us first consider the special case where the detectors are separated by a constant
distance L in Minkowski spacetime such that x0

j(τ) = τ = t. We also assume that α1 =
α2 = α such that in Minkowski spacetime Pe1 = Pe2 = Pe and N = 2 max(|X|−Pe)+O(α4).
One usually interprets X as an exchange of a virtual quanta between the two detectors.
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Recall that Pej is the detection of a local quantum field fluctuation by detector j. We thus
see that the negativity is a fight between the exchange term and the local noise term. Since
we use point-like detectors, we need a continuous switching function. The authors of [22, 23]
used superoscillating functions, but we found that the same results can be achieved with
a Gaussian switching function. Thus for simplicity we choose the switching function to be
Gaussian η(τ) = e−τ

2/(2σ2). Of course, it may seem like a very bad idea to use a Gaussian
window function if we want to study the speed of entanglement propagation because it has
non-vanishing tails. Nevertheless, this window function effectively models a detector being
on for an amount of time equal to σ. In fact, none of the results change if we put a smooth
cut-off to the Gaussian [57]. For reasons that will become clear in the next subsection, it is
often useful to make both Pej and X functions of the propagator. To do this, we just have
to make sure that the time ordering is respected. For X this is straightforward since the
time integration respects time ordering by construction. Nevertheless we can still simplify
X by using the variable change s = τ − τ ′ and u = τ + τ ′ such that we have

X =
−α2

2

∫ ∞
−∞

du

∫ ∞
0

dsη

(
s+ u

2

)
η

(
u− s

2

)
ei∆Eu (D(~x1, ~x2, s) +D(~x2, ~x1, s))

(3.6)

= −α2eσ
2∆E2

σ
√
π

∫ ∞
0

dse−s
2/(4σ2) (G(~x1, ~x2, s) +G(~x2, ~x1, s)) (3.7)

where recall that G(x, y) := 〈0|Tφ(x)φ(y)|0〉 = G(~x, ~y, x0− y0) is the propagator. For Pej,
we introduce a convenient change of variables for the double integral over the (τ, τ ′) plane
[27], making u = τ , s = τ − τ ′ in the lower half-plane τ ′ < τ and u = τ ′, s = τ ′ − τ in the
upper half-plane τ < τ ′, Pej becomes:

Pej = 2α2<
(∫ ∞
−∞

du

∫ ∞
0

dsη(u)η(u− s)e−i∆EsD(~xj, ~xj, s)

)
(3.8)

= 2α2σ
√
π<
(∫ ∞

0

dse−s
2/(4σ2)−i∆EsG(~xj, ~xj, s)

)
. (3.9)

We may now use the above expressions with Eq. (1.16) to calculate the local noise and
the exchange term in Minkowski spacetime. The local noise term was already computed
in chapter 1, see Eq. (1.24). For the exchange term we have:

X = −α2eσ
2∆E2

σ
√
π

∫ ∞
0

dse−s
2/(4σ2) (G(~x1, ~x2, s) +G(~x2, ~x1, s))

=
2α2σ

√
π

4π2
e−∆E2σ2

lim
ε→0+

(∫ ∞
0

ds
e−s

2/(4σ2)

s2 − L2 − iε

)

=
α2σi

4L
√
π
e−∆E2σ2−L2/4σ2

erfc

(
−iL
2σ

)
. (3.10)
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With Eq. (1.24) and (3.10), we now look at the regime where ∆Eσ →∞ and L/σ →∞.
In other words, we look at the regime where the detectors have a large spacelike separation.
Using the known asymptotic expansion of the error function, we obtain in this regime:

Pe ≈
α2e−∆E2σ2

8π∆E2σ2
(3.11)

|X| ≈ α2σ2e−∆E2σ2

2πL2
. (3.12)

To get a non-vanishing negativity, we need |X| > Pe. This translates to ∆Eσ > L
2σ

= ventan
2

where we defined the speed of entanglement propagation as ventan := L
σ

. This shows that
with this model, entanglement can propagate faster than light, but it is still bounded by a
finite speed, namely 2σ∆E. Finally, to maximize the negativity in this regime, we simply
require ∂N

∂∆E
= 0, which gives ∆Eopt ≈ L

2σ2 (1 + 2σ2/L2). The resulting negativity is then
[23]:

Nopt =
4α2σ4e−L

2/4σ2

πL4
. (3.13)

This shows that with this approach, the negativity of the vacuum decays exponentially
with the amount of spacelikeness L/σ. We will show in Sec. 3.2 that using a different
approach we can achieve a polynomial decrease with the amount of spacelikeness.

3.1.2 Weak gravitational field

In this subsection we use the tools of the previous subsection to analyze the entanglement
of the vacuum in the presence of gravity. Studies of entanglement were already conducted
in an expanding spacetime [57, 58] or near a black hole [14]. Using two Unruh-DeWitt
detectors, the authors of [57] found that the entanglement of the vacuum decreases sig-
nificantly in an expanding spacetime because of the Gibbons-Hawking temperature [59].
This result supports the common belief that gravity always acts as a decohering agent.
We follow-up on this analysis by studying entanglement generation between two Unruh-
DeWitt detectors near a star or a planet. We show that contrary to intuition, the weak
gravitational field can actually increase the entanglement generated in the detectors.

Newtonian limit

Let us now briefly review the Newtonian limit of general relativity, see e.g. [60]. In this
limit we can write the metric as gγβ = ηγβ + hγβ where |hγβ| � 1. Note that under
a small change of coordinates xµ → xµ + ξµ the term hγβ has a gauge transformation
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hγβ → hγβ − ∂βξγ − ∂γξβ. Let us define the quantity h̄µν := hµν − ηµνhγγ/2. To simplify
the Einstein equation, we choose to work in the Lorentz gauge in which h̄µν ,ν = 0. In this
gauge, the linearized Einstein equation reads ∂γ∂

γh̄µν = −16πT µν . In the Newtonian limit
the gravitational field is too weak to produce velocities near the speed of light, thus only the
T 00 component of the stress-energy tensor contributes significantly and we can make the
approximation ∂γ∂

γ ≈ ∇2. This means that the Einstein equation can be approximated as
∂γ∂

γh̄00 ≈ ∇2h̄00 ≈ −16πρ. From this we conclude that the dominant component of h̄µν

is h̄00, such that in terms of hγβ we have h00 = hii = h̄00/2. Thus, the line element takes
the form:

ds2 = −
(
1− h̄00/2

)
dt2 +

(
1 + h̄00/2

) (
dx2 + dy2 + dz2

)
. (3.14)

Now assume we have a compact object, say a star of dark matter that does not interact
with the quantum field, and if of radius Ro and of constant density ρ = 3M/(4πR3

o). We

solve ∇2h̄00 ≈ −16πρ with the usual boundary conditions h̄00(|~r| → ∞) = 0, ∂h̄00(~r)
∂r

(r =

0) = 0 and with the continuity conditions h̄00(|~r| → Ro−ε) = h̄00(|~r| → Ro+ε), ∂h̄00

∂r
(|~r| →

Ro − ε) = ∂h̄00

∂r
(|~r| → Ro + ε) in the limit ε→ 0. This gives

h̄00(~r) =

{
2M
Ro

(
3− |~r|

2

R2
o

)
when |~r| < Ro,

4M
|~r| when |~r| > Ro

(3.15)

so to have |hγβ| � 1 we require M/Ro � 1.

Let us first look at the Klein-Gordon equation on this perturbed background �φ −
m2φ = 0, where �φ = 1√

−g∂µ (
√
−ggµν∂νφ). At first order g is g = −1 − hγγ = −1 − h̄00

such that
√
−g ≈ 1 + h̄00/2. We therefore have

�φ(x)−m2φ(x) ≈ 1

1 + h̄00(x)/2
∂µ
[
(1 + h̄00(x)/2)gµν(x)∂νφ(x)

]
−m2φ(x)

−φ̈(x) + (1− h̄00(x))∇2φ(x)−m2φ(x) +
h̄00(x)

2
m2φ(x) = 0 (3.16)

where we used ˙̄h00(x) = 0. We could now solve this modified Klein-Gordon equation,
quantize the field and compute the negativity of two detectors interacting linearly with the
field. This approach is somewhat complicated for our needs. We therefore use a different
approach, namely the approach of [61]. In [61] the authors calculated the decay rate of
an Unruh-DeWitt detector near a star in the infinite time limit. They found that for a
minimally coupled field, the decay rate decreases because of the weak gravitational field.
To do this, they computed the first order correction to the propagator on the perturbed
background. Since in the last section we formulated both Pej and X in terms of the
propagator, the approach of [61] is very useful.
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Detectors on the curved background

Let us now consider the two Unruh-DeWitt detectors on the curved background. From
now on in this subsection we assume that the field is massless. We assume that the two
detectors and the center of the star are all on a same axis. Therefore, detector 1 is located
at a fixed distance r1 from the center of the star and similarly detector 2 is located at
r2 = r1 +L from the center of the star. This means that their proper times do not coincide
τ1 6= τ2, so we may write the evolution operator as

U = T exp

{
− i
∫
dτ1α

[
η(τ1)m(1)(τ1)φ (x1(τ1))

+η (τ2(τ1))m(2) (τ2(τ1))φ (x2 (τ2(τ1)))
dτ2(τ1)

dτ1

]}
(3.17)

and using Eq. (3.14) we have:

τ2(τ1) = τ1

√
1− h̄00(r2)/2

1− h̄00(r1)/2

= τ1

(
1− h̄00(r2)

4
+
h̄00(r1)

4
+O

(
[h̄00]2

))
. (3.18)

To simplify our analysis we want to avoid this blueshift effect. To do this, we assume that
the two detectors are close enough such that their internal clocks have the same speed at
first order in perturbation theory. This will be so if |h̄00(r2)/4− h̄00(r1)/4| . O

(
[h̄00(r2)]2

)
which for detectors outside the star gives L . 16M . Under that assumption, we have
τ2 = τ1

(
1 +O

(
[h̄00]2

))
such that one can easily verify that Eq. (3.2) and Eq. (3.3) still

hold up to O
(
[h̄00]2

)
.

We are therefore left with two different first order contributions to the exchange term
X and the local noise term Pej. The first one which we denote by X̃(1) and P̃ej(1) is
essentially a result of the time dilation caused by the star and the second one which
we denote by δX(1) and δPej(1) comes from a modification of the propagator caused by
the curved background. Let us denote the perturbative expansion of the propagator as
G(x, y) = G(0)(x, y)+G(1)(x, y) and since it is widely believed that a Boulware-like vacuum
is the right vacuum for a quantum field near a star [61, 62, 63], we use Eq. (1.16) for
G(0)(x, y). We can easily evaluate the contribution coming from the time dilation by
noting that

xj(τj) =

(
τj√

1− h̄00(rj)/2
, ~rj

)
. (3.19)
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Thus, when L . 16M we have using Eq. (1.16):

G(0)

(
|~x1(τ)− ~x2(τ ′)|, x0

1(τ)− x0
2(τ ′)

)
=(

1− h̄00(r1)/2
)
G(0)

(
Lp
(
1− h̄00(r1)/2

)
, τ − τ ′

)
+O

(
[h̄00]2

)
(3.20)

where

Lp :=

∫ r1+L

r1

√
1 + h̄00(r)/2dr ≈ L(1 + h̄00(r1)/4) (3.21)

is the proper distance between the two detectors. Hence, when we put this back in Eq.
(3.9) and Eq. (3.7) the time dilation causes the first order corrections

P̃ej(1) = − h̄
00(rj)

2
Pe(0) (3.22)

X̃(1) = − h̄
00(r1)

2

(
X(0) + Lp

∂X(0)

∂Lp

)
(3.23)

where the zeroth order terms are given by Eq. (1.24) and (3.10). These corrections slightly
reduce the magnitude of the local noise while the exchange term is almost unchanged.

First order correction to the propagator

Let us now compute the first order correction to the propagator on the perturbed back-
ground. The first steps of our calculation can be found in [61]. To focus on the correction
caused by gravity, we assume that the field is minimally coupled to curvature and to the
matter that composes the star. Recall from Eq. (1.17) that the propagator is a Green’s
function of the Klein-Gordon operator:

�xG(x, y) =
iδ(x− y)√
−g(x)

. (3.24)

Using G(x, y) = G(0)(x, y) +G(1)(x, y) we have:

1√
1 + hαα

∂µ

[√
1 + hαα (ηµν − hµν) ∂ν

(
G(0)(x, y) +G(1)(x, y)

) ]
=
iδ(x− y)√

1 + hαα
.(3.25)

Expanding everything to first order only and using the fact that G(0)(x, y) solves the zeroth
order equation, we obtain

− hµν∂µ∂νG(0)(x, y) +�(0)xG(1)(x, y)− ∂µhµν∂νG(0)(x, y) + ∂µ(hαα/2)ηµν∂νG(0)(x, y)

= −iδ(x− y)hαα/2 (3.26)
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where we used �(0)x := ηµν∂µ∂ν . Using again the fact that iδ(x− y) = �(0)xG(0)(x, y) we
can simplify the previous equation,

�(0)xG(1)(x, y) = ∂µh̄
µν∂νG(0)(x, y)

+h̄µν∂µ∂νG(0)(x, y)

= h̄µν∂µ∂νG(0)(x, y)

= h̄00(x)∂2
x0G(0)(x, y) (3.27)

where we used the fact that we are in the Lorentz gauge and that in the Newtonian limit
h̄00 is the dominant component of h̄µν . Note that since the spacetime we consider is static
and asymptotically flat, the propagator G(x, y) can be seen as the analytic continuation
of the unique Green’s function on the positive definite section [61]. Since this holds order
by order in perturbation theory, at first order perturbation we can use G(0) as the inverse
of �(0) such that:

G(1)(x, y) = −i
∫
d4zG(0)(x, z)h̄

00(z)∂2
z0G(0)(z, y). (3.28)

This equation gives us explicitly the first order correction to the propagator. It is clear
from this equation that the entire spacetime perturbation modifies the propagator and the
most significant contribution comes from the patch of spacetime near x and y. Using Eq.
(1.16) in Eq. (3.28) and using the fact that h̄00(x) is independent of time, we obtain

G(1)(x, y) =
−i

16π4

∫
dz0d3zh̄00(~z)

×

[
8(z̃ + s)2

(z̃ − z1)3(z̃ − z2)3(z̃ − zo)(z̃ + zo)
− 2

(z̃ − z1)2(z̃ − z2)2(z̃ − zo)(z̃ + zo)

]
(3.29)

where we use the definitions Zx := |~x − ~z|, Zy := |~y − ~z|, s := x0 − y0, z̃ := z0 − x0,
zo := X + iε, z1 := −s+Y + iε, z2 := −s−Y − iε and the limit ε→ 0+ is implicit. We can
then perform the z0 integration with residue method. We choose a closed contour in the
upper half of the complex plane and the upper part of the contour is equal to zero because
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the integrand vanishes sufficiently rapidly as z0 = Reiθ
∣∣∣
R→∞

. We thus have:

G(1)(x, y) =
1

8π3

∫
d3zh̄00(~z)

[
8(zo + s)2

(zo − z1)3(zo − z2)32zo
+ 4

d2

dz̃2

(
(z̃ + s)2

(z̃ − z2)2(z̃ − zo)(z̃ + zo)

) ∣∣∣
z̃=z1

− 2

(zo − z1)2(zo − z2)22zo
− d

dz̃

(
2

(z̃ − z2)2(z̃ − zo)(z̃ + zo)

) ∣∣∣
z̃=z1

]

=
1

8π3

∫
d3zh̄00(|~z|)

[
3(s2 + ZxZy)(Zx + Zy) + Z3

x + Z3
y

(ZxZy + iε)(s2 − [Zx + Zy + iε]2)3

]
. (3.30)

To further simplify this expression we need a simple way to evaluate the angular part of
the integral.

Spherical shell integration

We now show how to simplify the integral in Eq. (3.30) by using a simple change of
variable. To do this, we consider a general function of the form

Figure 3.1: Spherical shell integration.

A =

∫
d3xf(|~x|)g(s1, s2) (3.31)

where we have s1 := |~x − ~x1| and s2 := |~x − ~x2|. We need to assume that the origin, ~x1

and ~x2 are all on the same axis, just like it is illustrated on Fig. (3.1). Let us first use the
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cosine law to relate θ and {s1, s2}:

s2
1 = R2 + r2

1 − 2Rr1 cos(θ) (3.32)

s2
2 = R2 + (r1 + L)2 − 2R(r1 + L) cos(θ)

= s2
1

(
1 +

L

r1

)
+ L

(
r1 + L− R2

r1

)
. (3.33)

Then, using spherical coordinates and noting that the integrand is constant over the angle
φ, we have d3x → 2πR2 sin(θ)dθdR. Using Eq. (3.32) we have s1ds1 = Rr1 sin(θ)dθ such
that d3x→ 2πRs1ds1dR

r1
. Putting this back in Eq. (3.31) we have

A =
2π

r1

(∫ r1

0

dRRf(R)

∫ r1+R

r1−R
ds1s1g(s1, s2)

+

∫ ∞
r1

dRRf(R)

∫ r1+R

R−r1
ds1s1g(s1, s2)

)
=

2π

r1

∫ ∞
0

dRRf(R)

∫ r1+R

|r1−R|
ds1s1g(s1, s2) (3.34)

where s2 =

√
s2

1

(
1 + L

r1

)
+ L

(
r1 + L− R2

r1

)
.

Negativity on the perturbed background

We now have all the tools to compute explicitly δPej(1) and δX(1). For δPej(1), we have
Zx = Zy = Z, such that the correction to the propagator can be greatly simplified with
the spherical shell integration method

G(1)(~x, ~x, s) =
1

4π3

∫
d3zh̄00(|~z|) 3s2 + 4Z2

(Z + iε)(s2 − 4Z2 − iε)3

=
1

r2π2

∫ ∞
0

dRRh̄00(R)

∫ r+R

|r−R|
dv

3s2 + 4v2

(s2 − 4v2 − iε)3
(3.35)

where r is the distance between ~x and the center of the star. The v integral then can
be performed analytically. Note that Eq. (3.9) and (3.7) were derived for detectors in
Minkowski spacetime, where x0

j(τ) = τ , but since we are only interested at the first order
perturbation, the effect of the time dilation in the corrected propagator would be a second
order term which we neglect. We can thus use Eq. (3.9) and (3.7) with the first order
correction to the propagator and with no time dilation, that is x0

j(τ) = τ . For the same
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reason, we can also use at this order Lp = L. Thus, we can put Eq. (3.35) in Eq. (3.9)
and we obtain the first order correction to the local noise δPej(1):

δPej(1) =
α2σ
√
π

π2rj
<

{∫ ∞
0

dse−s
2/(4σ2)−i∆Es

∫ ∞
0

dRRh̄00(R)

×

[(
ln

(
2(rj +R) + (s− iε)
2(rj +R)− (s− iε)

)
− ln

(
2|rj −R|+ (s− iε)
2|rj −R| − (s− iε)

))
1

4(s− iε)3

− 2(rj +R)(2(rj +R)2 − s2)

(s− iε)2(4(rj +R)2 − (s− iε)2)2
+

2|rj −R|(2(rj −R)2 − s2)

(s− iε)2(4(rj −R)2 − (s− iε)2)2

]}
.

(3.36)

Similarly for the exchange term δX(1), we put Eq. (3.30) in Eq. (3.7) and we then use the
spherical shell integration method to obtain

δX(1) = −α
2σ
√
πe−σ

2∆E2

4π3

∫ ∞
0

dse−s
2/(4σ2)

∫
d3z

×h̄00(|~z|)
[

3(s2 + ZxZy)(Zx + Zy) + Z3
x + Z3

y

(ZxZy + iε)(s2 − [Zx + Zy + iε]2)3

]
= −α

2σ
√
πe−σ

2∆E2

2π2r1

∫ ∞
0

dse−s
2/(4σ2)

∫ ∞
0

dRRh̄00(R)

×
∫ r1+R

|r1−R|
dv1v1

[
3(s2 + v1v2)(v1 + v2) + v3

1 + v3
2

(v1v2 + iε)(s2 − [v1 + v2 + iε]2)3

]
(3.37)

where v2 =

√
v2

1

(
1 + Lp

r1

)
+ Lp

(
r1 + Lp − R2

r1

)
. The s integration can be performed an-

alytically, such that we are left with a relatively simple expression for X which involves
only two integrations:

X(1) =
α2σ
√
πe−σ

2∆E2

2π2r1

∫ ∞
0

dRRh̄00(R)

∫ r1+R

|r1−R|
dv1

1

16(v2 + iε)σ4

×

{
iπe−(v1+v2))2/(4σ2)erfc

(
−i(v1 + v2)

2σ

)[
2σ2 − (v1 + v2)2

]
− 2
√
πσ(v1 + v2)

}
.

(3.38)

We now have all the tools to compute explicitly the corrected negativity. Using the
h̄00(|~r|) of Eq. (3.15) in Eq. (3.36) and (3.38), we can find δPej(1) and δX(1) by numerically

evaluating the remaining integrals. P̃ej(1) and X̃(1) can then be evaluated exactly using Eq.
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Figure 3.2: The Local noise P ′e = 8π2Pe1/α
2, the exchange term X ′ = 8π2X/α2 and

the negativity N ′ = 8π2N/α2 as a function of r1/Ro. We fixed Lp/Ro = 0.01, σ∆E =
0.00674,∆ERo = 1 and M/Ro = 0.001. The lower (green) line is the asymptotic line
r1/Ro →∞. 42



(3.22) and (3.23) such that we end up with the full noise term Pej = Pe(0) + P̃ej(1) + δPej(1)

and the full exchange term X = X(0) + X̃(1) + δX(1) using Eq. (1.24) and (3.10) for the
zeroth order terms. This allows us to compute the negativity between the two detectors
using Eq. (3.5).

Numerical evaluations show that |X| linearly increases with the strength of the grav-
itational potential M/Ro of the star while Pej linearly decreases with M/Ro. Therefore,
the negativity N linearly increases with the strength of the gravitational field M/Ro. In
a similar fashion, numerical evaluation of |X| and Pej show that the correction to the
negativity N decreases roughly like Ro/r1 as r1/Ro → ∞ but remains positive, see Fig.
(3.2). We found that the corrections due to the change of the propagator, δPej(1) and

δX(1), are significantly greater than the corrections due to time dilation, P̃ej(1) and X̃(1).
This had to be expected since the change of propagator is sensitive to the entire spacetime
while the time dilation is a localized effect. On Fig. (3.2) we chose the parameters Lp/σ
and σ∆E such that we have N = 0 and |X| ≈ Pe without the gravitational field. Thus,
in that particular case we not only have entanglement enhancement by gravity but also
entanglement creation by gravity.

We may heuristically interpret this phenomenon by looking at the local noise term Pej
and the exchange term |X| separately. Since the gravitational field increases the momentum
of virtual particles near the star (as seen by the fixed detector j), it is more energetically
expensive to have many of them so the local noise has to decrease. As for the exchange
term, we can see that it increases because the gravitational field creates a lensing effect
such that more virtual particles emitted by detector 2 hit detector 1.

As we previously mentioned this effect scales linearly with the strength of the gravi-
tational field M/r1, so for detectors with σ � 1/∆E and σ & Lp we have for the Earth
N(1) . 10−9N(0) while for the Sun we have N(1) . 10−6N(0). Since the vacuum entangle-
ment N(0) has still not been observed, we conclude that N(1) will be very hard to observe.
Nevertheless, it should be interesting to see if this effect can be modeled in a quantum field
analog like a linear ion trap [64].

This effect is clearly a consequence of the fact that we used a Boulware vacuum. If we
had considered two Unruh-DeWitt detectors near a black-hole in an Unruh or a Kruskal
vacuum [26], the Hawking temperature seen by both detectors would have increase the
local noise significantly such that the entanglement between both detectors should be
degraded, not enhanced. It should therefore be interesting to investigate this in it should
be interesting more detail and see how the entanglement degradation near black-holes is
affected by the choice of vacuum.
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3.2 Time-independent approach

In this section we start by showing that extraction of entanglement from the vacuum
can also be done with a time-independent approach, i.e. by calculating the entanglement
contained in the ground state of the interacting theory with the help of time-independent
perturbation theory. Note that even if we use a time-independent approach, this is still
in essence the entanglement swapping setup of Fig. (1.2). Using this approach, we show
that the two detectors can adiabatically and therefore instantaneously become entangled,
namely through what is essentially the Casimir-Polder effect. We find that the Casimir-
Polder effect entangles significantly, which is encouraging for experimental verification. We
then follow-up on this result by studying the same model but with various modifications,
such as the presence of boundary conditions and the presence of a classical potential.

3.2.1 Ground state entanglement

We start by showing that the ground state of the interacting theory is an entangled state
from the point of view of the two detectors and then we discuss using the adiabatic theorem
at what speed this entanglement kicks in.

Ground state of the interacting theory

We now switch from the interaction picture to the Schrödinger picture and we assume
detectors at rest in Minkowski spacetime separated by a constant distance L. We also
temporarily assume that the interaction is fully on, so η = 1. We therefore need to we give
a spatial extent to our detectors to regularize the ultraviolet (UV):

Hint =
2∑
j=1

αjm
(j)

∫
d3xfj(~x)φ(~x). (3.39)

Recall that the functions fj(~x) describe the smearing of the detectors, and for simplic-

ity we choose f2(~x) = f1(~x − ~L). Under these assumptions, our total Hamiltonian is
time-independent so this allows us to use perturbation theory for time-independent per-
turbations [65]. We obtain the new ground state

|eg,new〉 = |eg〉+
∑
k 6=g

|ek〉
〈ek|Hint|eg〉
Eg − Ek

+
∑
k 6=g

∑
l 6=g

|ek〉
〈ek|Hint|el〉〈el|Hint|eg〉
(Eg − Ek)(Eg − El)

−|eg〉
2

∑
k 6=g

|〈ek|Hint|eg〉|2

(Ek − Eg)2
+O(α3) (3.40)

44



where |ek〉 are the eigenstates of the free Hamiltonian and we used the fact that in our case
〈eg|Hint|eg〉 = 0. Our initial ground state is |eg〉 = |g(1), g(2), 0〉, and using Eq. (3.40) the
new ground state |eg,new〉 is

|eg,new〉 =

[
|g(1), g(2)〉

(
1− (S1 + S2)

2

)
− |e(1), g(2)〉Q(3)

1 − |g(1), e(2)〉Q(3)
2

+|e(1), e(2)〉R + ...

]
|0〉 (3.41)

where we have:

Q
(3)
j = αj

∫
d3p

(2π)3

∫
d3xfj(~x)e−i~p·~xa†~p√
2E~p(E~p + ∆E)

(3.42)

R = α1α2

∫
d3p

(2π)3

ei~p·
~L
∣∣∫ d3xf1(~x)e−i~p·~x

∣∣2
2E~p(E~p + ∆E)(∆E)

(3.43)

Sj = α2
j

∫
d3p

(2π)3

∣∣∫ d3xf1(~x)e−i~p·~x
∣∣2

2E~p(E~p + ∆E)2
. (3.44)

The resulting state is clearly entangled because it is a pure state which cannot be written
in a tensor product form. Let us now ask whether this is indeed an entangled state from
the point of view of the detectors. To see this we need to trace out the field, leaving the
remaining system in a mixed state ρg,new,d := Tr(3) (|eg,new〉〈eg,new|)

ρg,new,d =

(
0 0 0 R
0 S1 T 0
0 T S2 0
R 0 0 1−S1−S2

)
+O(α4) (3.45)

where the matrix is written in the basis |e(1), e(2)〉, |e(1), g(2)〉, |g(1), e(2)〉, |g(1), g(2)〉 and we
have:

T = α1α2

∫
d3p

(2π)3

ei~p·
~L
∣∣∫ d3xf1(~x)e−i~p·~x

∣∣2
2E~p(E~p + ∆E)2

. (3.46)

Note that the structure of the matrix (3.45) does not depend much on our choice of
interaction Hamiltonian or our choice of initial state. In fact, one can easily show that

as long has we have an interaction of the form Hint =
∑2

j=1 αj

(
|e(j)〉〈g(j)|+ |g(j)〉〈e(j)|

)
U

(3)
j

with an initial eigenstate |g(1), g(2), ψ(3)〉 such that 〈ψ(3)|U (3)
j |ψ(3)〉 = 0 then the matrix

structure of the new ground state of the two detectors is the same as in Eq. (3.45). Only
the values of Sj, R and T may differ.
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Negativity of the ground state

To measure the entanglement of this mixed state, we use again the negativity. We find the
negativity N for the density matrix ρg,new,d:

N = max
(√

(S1 − S2)2 + 4|R|2 − S1 − S2, 0
)
. (3.47)

Let us assume for simplicity α1 = α2 = α such that S1 = S2 = S andN = 2 max (|R| − S, 0).
Just like with the time-dependent approach, we see that the negativity is a fight between
the exchange term R and the noise term S. Indeed, in the ground state of the interact-
ing theory, each detector has a cloud of particles, this is represented by S, and the two
detectors are also continuously exchanging virtual particles, this is represented by R.

As an illustrative example, we can analyze the negativity when the smearing functions
are Gaussian

f1(~x) =
e−
|~x−~x1|

2

2∆X2

(2π)3/2 ∆X3
(3.48)

so the size of the detectors is about ∆X. Such smearing functions could be physically
implemented by putting the detectors in a quantum harmonic potential. Even if Gaussian
smearing functions have a finite probability for the detectors to overlap, we are only looking
at the regime L

∆X
→∞, and in this regime the overlap is insignificant. In fact, in this regime

all the smearing functions have the same effect, namely to create an effective momentum
cut-off. Thus our results would not change for detectors which are delocalized within a
region of space which has compact support.

Using the Gaussian smearing function, we can easily evaluate its Fourier transform such

that
∣∣∫ d3xf1(~x)e−i~p·~x

∣∣2 = e−~p
2∆X2

. Then, using the change of variable ~p′ = ~pL, we have
to approximate two integrals, namely

S = α2

∫
d3p′

(2π)3

e−~p
′2∆X2/L2

2E~p′(E~p′ + L∆E)2
=

α2

4π2

∫ ∞
0

dp′
p′2e−p

′2∆X2/L2

Ep′(Ep′ + L∆E)2
(3.49)

R = α2

∫
d3p′

(2π)3

e−~p
′2∆X2/L2−i~p′

2E~p′(E~p′ + L∆E)L∆E
=

α2

4π2

∫ ∞
0

dp′
p′ sin(p′)e−p

′2∆X2/L2

Ep′(Ep′ + L∆E)L∆E
(3.50)

where E~p′ =
√
~p′2 +m2L2. First note that in the limit L/∆X → ∞, the Gaussian factor

simply acts as an effective momentum cut-off. Therefore, for simplicity in the rest of this
thesis we will always replace the smearing functions by a momentum cut-off Λ = 1/∆X in
the momentum space of the field theory. In the regime L/∆X →∞, Lm→ 0, ∆EL→ 0,
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and m� ∆E we can crudely approximate S and R to:

S ≈ α2

4π2

∫ L/∆X

0

dp′
p′

(p′ + L∆E)2
≈ α2

4π2
ln

(
1

∆X∆E

)
(3.51)

R ≈ α2

4π2L∆E

∫ L/∆X

0

dp′
sin(p′)

(p′ + L∆E)
≈ α2

8πL∆E
. (3.52)

We can also consider a slightly different regime, namely when m� ∆E. In that case, we
can approximate S and R this way:

S ≈ α2

4π2

∫ L/∆X

0

dp′
p′2

(p′2 +m2L2)3/2
≈ α2

4π2
ln

(
1

m∆X

)
(3.53)

R ≈ α2

4π2L∆E

∫ L/∆X

0

dp′
p′ sin(p′)

(p′2 +m2L2)
≈ α2

8πL∆E
. (3.54)

Thus, if ∆E � m like for the case of a massless field, we arrive at:

N ≈ α2

2π2
max

(
π

2L∆E
− ln

(
1

∆E∆X

)
, 0

)
. (3.55)

Similarly if ∆E � m we have:

N ≈ α2

2π2
max

(
π

2L∆E
− ln

(
1

m∆X

)
, 0

)
. (3.56)

We therefore see that the ground state of the interacting theory is entangled from the point
of view of the detectors if L < π

2∆E ln(1/∆E∆X)
when ∆E � m and if L < π

2∆E ln(1/m∆X)

when ∆E � m. We thus have a spatial version of entanglement sudden death [66]. Indeed,
entanglement sudden death is the observation that the negativity can decay completely in
a finite amount of time. Note that this non-analyticity is not caused by the fact that the
field lives in an infinite dimensional Hilbert space. Indeed, it is instead related to the fact
that there is a sharp boundary in the space of mixed states between entangled states and
non-entangled states which exhibit classical correlations.

Note that for these results to hold, we need perturbation theory to hold. In other
words, the results are true as long as S � 1 and R� 1. This will be so if α2 � L∆E and
α2 � ln(∆X∆E). Thus, even though it may look as if the negativity blows up in the limit
L∆E � α2 this is not the case because in this limit our results are no longer valid. Note
also that this does not mean that we cannot look at the regime where the two detectors
are very close to one another. Indeed, this regime is allowed by perturbation theory but we
have to be careful because in that regime the assumption L/∆X →∞ is no longer valid.
A proper analysis of this regime should be of interest.
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It is also interesting to calculate the negativity in a 1-dimensional space to see how it
differs from the 3-dimensional case. First, note that in one dimension we do not need to
give the detectors a spatial extent because there are no UV divergences. Second, we need
a massive field because there is an infrared (IF) divergence in one dimension. Using our
previous derivation, we have for the 1-dimensional case:

R = α2

∫
dp

2π

eipL

2Ep(Ep + ∆E)∆E
(3.57)

S = α2

∫
dp

2π

1

2Ep(Ep + ∆E)2
. (3.58)

We can approximate these expressions in the usual limit m � ∆E and Lm → 0. We
obtain R ≈ α2

4∆Em
and S ≈ α2

2πm2 such that:

N ≈ α2

m
max(

1

2∆E
− 1

πm
, 0) ≈ α2

2m∆E
. (3.59)

Note that in this regime the entanglement does not decay as a function of L. This is
obviously a special feature of the 1-dimensional case. We thus conclude that it is much
easier to extract entanglement from a 1-dimensional vacuum than from a 3-dimensional
vacuum.

Adiabatic switching

To estimate how long it takes to extract entanglement from the vacuum, we use the adi-
abatic theorem. We assume the system starts in the ground state of the free theory,
|eg〉 = |g(1), g(2), 0〉. Then, the interaction Hamiltonian is smoothly turned on using a
switching function η(t) ∈ [0, 1] such that H(t) = Ho + η(t)Hint where Ho is the free Hamil-
tonian. For the system to remain in the ground state, we need η(t) to increase slowly
enough such that the perturbation is adiabatic. Following the validity condition for adia-
batic behaviour [67, 68], we need

max
t

∣∣∣∣∣ 〈ek|Ḣ(t)|eg〉
Eg(t)− Ek(t)

∣∣∣∣∣� min
t
|Eg(t)− Ek(t)| (3.60)

to hold for any energy level Ek. A rigorous use of the adiabatic theorem requires normalized
eigenstates, so let us put our system in a large box of volume V = L3

IR. This procedure
creates an infrared cut-off and normalizes the eigenstates of the free Hamiltonian. Hence,
in our case, if we retain only the dominant order, the adiabatic condition translates to:

max
t
|η̇(t)| �

[
m2 + 3

(
2π

LIR

)2
]1/4

√m2 + 3

(
2π

LIR

)2

+ ∆E

2

/α. (3.61)
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Thus, according to this equation, for a massive field it is always possible to adiabatically
turn on the interaction. Moreover, if the field is massless, we can still turn on the interaction
adiabatically, for any finite size of box to which we confine our system. Note that this
adiabatic condition only holds for a field in a box, and is only a first order approximation.
In addition, the adiabatic theorem is a sufficient but not necessary requirement for adiabatic
evolution. We can therefore find a better constraint on η(t) by taking a more operational
approach. We take a simple test function ηtest(t), then use time-dependent perturbation
theory in the interaction picture without putting the field in a box and look at the difference
between the final state we obtain and our calculated ground state ρg,new,d. Using several
simple test functions we found that the biggest contribution to the error is of the order
of α2maxt |η̇(t)|2/∆E2, for both a massive and a massless field. Therefore, to have a very
small error in the ground state negativity, we simply require maxt |η̇(t)| � ∆E. Thus, if
we follow that prescription, we can adiabatically switch on the interaction and have all α2

contributions of Eq. (3.45) intact. In other words, we will always be in the instantaneous
ground state, and since the ground state of the interacting theory is entangled, there will
be an instantaneous creation of entanglement. Therefore, while Alice and Bob cannot
exchange classical or quantum information faster than the speed of light, their ability to
extract entanglement by interacting with the vacuum is not bounded by any finite speed.

Note that this is not in contradiction with the results of the previous section where
we used a time-dependent approach. In fact, we can now really see what is happening
in the time-dependent approach using our time-independent picture. Since in the former
we considered point-like detectors, we needed a continuous switching function, or in other
words we needed to turn on the interaction and then turn it off. Thus, as we turned on the
interaction we went to the ground state of the interacting theory, which may be entangled,
but as we turned off the interaction we went back to the ground state of the free theory,
which is not entangled. But of course the process was not entirely adiabatic, so we did not
fully return to the ground state of the free theory which means that we effectively stole some
entanglement from the interacting ground state. This explains why the negativity in the
time-dependent approach is so much weaker than in the time-independent approach. This
method is also much more transparent than the time-dependent approach. That being said,
the time-dependent approach can give the same results as the time-independent approach,
one just has to consider detectors with a spatial extent and have a switching function which
adiabatically turns on the interaction without turning off the interaction afterwards.

Notice that in order to obtain the full amount of entanglement from the ground state,
the system needs an interval of time of the order of 1/maxt |η̇(t)| � 1/∆E. This entangle-
ment could either be used in computations or swapped to other quantum systems for distil-
lation. After the entanglement is used up, the interaction Hamiltonian may be switched off
and the system can be put back in the ground state of the free theory |eg〉 = |g(1), g(2), 0〉,
for example, by cooling. Thus, Alice and Bob can extract entanglement by interacting
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with the field in a cyclic and therefore sustainable way. However, we also see that the
extraction of a large amount of entanglement from the vacuum by this method will cost a
large amount of time. Interestingly, the amount of time needed is determined in a similar
way to how the speed of adiabatic quantum computation is determined. Recall that the
closeness of eigenvalues determines how fast specific states such as the ground state can
be reached via an adiabatic approach or through cooling, see e.g. [69]. The reason why
the finite rate of entanglement extraction does not lead to a finite speed of entanglement
“propagation” is that there is no threshold: the negativity between the two detectors can
arise immediately as their interaction with the field is switched on.

3.2.2 Casimir-Polder effect

The underlying reason why the two detectors are entangled when in the ground state of the
interacting theory is that this ground state is a state in which the detectors continuously
exchange virtual particles. This exchange interaction is in effect the scalar field version of
the Casimir-Polder force [70], which is known to be the relativistic generalization of the
Van der Waals force between atoms or molecules.

For completeness, let us now derive the Casimir-Polder force for point-like detectors
f1(~x) = δ(~x − ~x1). To do this we first need to find the energy of the ground state of
the perturbed system Eg,new = Eg + δEg. Using time-independent perturbation theory
[65], we have to go up to fourth order to find the first contributions which have a L
dependence. These contributions are the only measurable contributions in the Casimir
force and in the Casimir energy. Thus, the only terms which remain after the normalization
δẼg(∆E,L) = Eg,new(∆E,L)− limL→∞Eg,new(∆E,L) are the following:

δẼg(∆E,L) =
∑
n6=g

∑
k 6=g

∑
l 6=g

〈eg|Hint|en〉〈en|Hint|ek〉〈ek|Hint|el〉〈el|Hint|eg〉
(Eg − En)(Eg − Ek)(Eg − El)

+O(α6).

(3.62)

The sequences of states which have a non-vanishing contribution in this sum can be sum-
marized in the following table

|el〉 |ek〉 |en〉
|e(1), g(2), 1~p〉 |e(1), e(2), 0〉 |g(1), e(2), 1~p〉
|e(1), g(2), 1~p〉 |e(1), e(2), 0〉 |e(1), g(2), 1~p〉
|e(1), g(2), 1~p〉 |g(1), g(2), 1~p11~p2〉 |g(1), e(2), 1~p〉
|e(1), g(2), 1~p〉 |e(1), e(2), 1~p11~p2〉 |g(1), e(2), 1~p〉
|e(1), g(2), 1~p〉 |e(1), e(2), 1~p11~p2〉 |e(1), g(2), 1~p〉
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plus inversion of the detectors 1 � 2 and we also need to integrate over the various
momenta. The resulting Casimir energy is:

δẼg(L,∆E) = −2α4

[
1

∆E

∣∣∣ ∫ d3p

(2π)3

e−i~p·(~x1−~x2)

2E~p(E~p + ∆E)

∣∣∣2
+

∫
d3p1

(2π)3

∫
d3p2

(2π)3

e−i(~p1−~p2)·(~x1−~x2)

4E~p1E~p2(E~p1 + E~p2)

(
1

E~p1 + ∆E
+

1

E~p2 + ∆E

)2

+2

∫
d3p1

(2π)3

∫
d3p2

(2π)3

e−i(~p1−~p2)·(~x1−~x2)

4E~p1E~p2(E~p1 + E~p2 + 2∆E)

× 1

(E~p1 + ∆E)(E~p2 + ∆E)
+

∫
d3p1

(2π)3

∫
d3p2

(2π)3

e−i(~p1−~p2)·(~x1−~x2)

4E~p1E~p2(E~p1 + E~p2 + 2∆E)

×
(

1

(E~p1 + ∆E)2
+

1

(E~p2 + ∆E)2

)]
+O(α6). (3.63)

We thus see that the ground state energy is lowered because of the interaction, causing

the two detectors to attract each other with the Casimir force FC = −∂δẼg(L)

∂L
. For a

massless field, one can easily show that δẼ(∆E,L) ∼ −α4

L3∆E2 in the limit L∆E → ∞.
For comparison, the electromagnetic Casimir-Polder energy scales as ∼ −L−7 for large
distances [70].

3.2.3 Different detector models

Let us now briefly discuss to what extent these results depend on the detector model.
First, note that the Glauber scalar detector of Eq. (2.14) cannot extract entanglement
from the vacuum. Indeed, this detector is such that the ground state of the free theory is
also an eigenstate of the interacting theory. Thus, if the system starts in the ground state
of the free theory |g(1), g(2), 0〉, then after a unitary evolution it will still be in the same
non-entangled state. Second, what if we consider a fermionic field, like a Dirac field ψ,
instead of a bosonic field ? For instance, consider two detectors which have the following
interaction Hamiltonian

Hint =
∑
j

αjm
(j) : ψ̄ψ(~xj) : (3.64)

where the normal ordering :: [4] allows us to use perturbation theory. This kind of detector
was first analyzed in the context of the Unruh effect in [71] and then for the entanglement
of the vacuum in a time-dependent picture in [72]. We use the standard Dirac field mode
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expansion [4]

ψ(~x) =

∫
d3p

(2π)3
√

2E~p

∑
s

(
as~pu

s(p)ei~p·~x + bs†~p v
s(p)e−i~p·~x

)
(3.65)

such that:

: ψ̄ψ(~x) : |0〉 =

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∑
s,r e

−i~x·(~p1+~p2)ūs(p1)vr(p2)

2
√
E~p1E~p2

as†~p1
br†~p2
|0〉. (3.66)

Using this expression we can now easily calculate the local noise Sj by following similar
steps to the ones that lead to Eq. (3.44),

Sj = α2
j

∑
k

∣∣〈k| : ψ̄ψ(~xj) : |0〉
∣∣2

(Ek + ∆E)2

= α2
j

∫
|~p3|<1/∆X

d3p3

(2π)3

∫
|~p4|<1/∆X

d3p4

(2π)3

∑
k,l

|〈0|bl~p4
ak~p3

: ψ̄ψ(~xj) : |0〉|2

(E~p3 + E~p4 + ∆E)2

= α2
j

∫
|~p3|<1/∆X

d3p3

(2π)3

∫
|~p4|<1/∆X

d3p4

(2π)3

∑
k,l

|ūk(p3)vl(p4)|2

4E~p3E~p4(E~p3 + E~p4 + ∆E)2

= α2
j

∫
|~p3|<1/∆X

d3p3

(2π)3

∫
|~p4|<1/∆X

d3p4

(2π)3

Tr ((p3/+m)(p4/−m))

4E~p3E~p4(E~p3 + E~p4 + ∆E)2

= α2
j

∫
|~p3|<1/∆X

d3p3

(2π)3

∫
|~p4|<1/∆X

d3p4

(2π)3

(E~p3E~p4 − ~p3 · ~p4 −m2)

E~p3E~p4(E~p3 + E~p4 + ∆E)2
(3.67)

and similarly for R we obtain

R = α1α2

∫
|~p1|<1/∆X

d3p1

(2π)3

∫
|~p2|<1/∆X

d3p2

(2π)3

e−i( ~x1−~x2)·(~p1+~p2) (E~p1E~p2 − ~p1 · ~p2 −m2)

∆EE~p1E~p2(E~p1 + E~p2 + ∆E)
(3.68)

where we used the matrix technology of Dirac spinors [4]. Note that because each detector
is coupled to two instances of the field, there is now two particles (a positron and an
electron) involved in Sj and R. Moreover, note from the above equations that Sj and R
are integrals of expressions which depend on the relative directions of these two particles.
Indeed, the factor (Ep1Ep2 − ~p1 · ~p2 −m2) shows that it is optimal if the two particles have
momentum in opposite direction to one another. To some extent, this is the only really
new feature that spin 1/2 particle detectors have over spin 0 particle detectors. In fact,
for a massless field in the usual regime L/∆X →∞, L∆E → 0 and α1 = α2 = α, we can
find a rough approximation to the negativity using Eq. (3.47),

N ∼ α2

∆X
max

(
1

∆EL4
− 1

∆X3
, 0

)
(3.69)
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which is essentially the same expression as one would obtain with a coupling to πφ instead
of ψ̄ψ (as one could have predicted by dimensional analysis). We thus see that the general
shape of the ground state negativity is roughly independent of the coupling choice. Hence,
for simplicity in the rest of this thesis we will always use a scalar field detector.

3.2.4 Boundary conditions

This subsection is collaborative work with Andrzej Veitia. In this subsection we compute
the entanglement generated in the Unruh-DeWitt detectors when the scalar quantum field
in the vacuum state is subject to boundary conditions. This setup could easily be imple-
mented by perfectly conducting plates. In fact, such setups have been extensively studied
in the context of the Casimir effect [73], but here our goal is to see whether the presence of
boundary conditions augments or degrades the entanglement of the vacuum. To simplify
our notation, in this subsection we denote position vectors by ~r = (x, y, z) instead of ~x.
For simplicity we only consider a massless field. In this case, the field operator is expanded
in terms of creation and annihilation operators as

φ(~r) =
∑
~p

1√
2|~p|

(
a~pu~p(~r) + a†~pu

∗
~p(~r)

)
(3.70)[

a~p, a
†
~p′

]
= δ~p,~p′ (3.71)

where u~p(~r) are solutions of Helmholtz equation (∆+|~p|2)u~p(~r) = 0 satisfying the boundary
conditions. The matrix elements S1, S2 and R are easily expressed in terms of the mode
functions u~p(~r) and we obtain:

S1 = α2
1

∑
~p

1

2|~p|
|u~p(~r1)|2

(|~p|+ ∆E)2
(3.72)

S2 = α2
2

∑
~p

1

2|~p|
|u~p(~r2)|2

(|~p|+ ∆E)2
(3.73)

R = α1α2<

[∑
~p

1

2|~p|
u~p(~r1)u∗~p(~r2)

(∆E)(|~p|+ ∆E)

]
. (3.74)

Let us consider the scenario in which the field φ(~r) satisfies Dirichlet boundary conditions
φ(±dx

2
, y, z) = 0. In addition, we temporarily impose the periodic boundary conditions

φ(x, y + dy, z + dz) = φ(x, y, z). Under these assumptions, the mode functions u~p(~r) read

u~p(~r) =

√
2

dx
sin

[
px

(
x+

dx
2

)]
ei~p‖·~r√
dydz

(3.75)
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where ~p‖ = (0, 2πny
dy
, 2πnz

dz
) and px = πnx

dx
. Here ny and nz assume the values 0,±1,±2, . . .

whereas nx = 1, 2, . . .. Note that in Eq. (3.72), (3.73) and (3.74) we need to determine
sums of the form

∑
~p c(~p)u~p(~r1)u∗~p(~r2). In the limit dy →∞ and dz →∞, these sums take

the form∑
~p

c(~p)u~p(~r1)u∗~p(~r2) =
∑
n∈Z

∫
d2p‖
(2π)2

c(n, p‖)

2dx
ei~p‖·(~r1−~r2)

(
ei
nπ
dx

(x1−x2) − ei
nπ
dx

(x1+x2+dx)
)
.

(3.76)

Making use of Poisson summation formula
∑

n∈Z e
2iπnx =

∑
n∈Z δ(x − n) one can rewrite

the above sum as∑
~p

c(~p)u~p(~r1)u∗~p(r2) =
∑
n∈Z

∫
d3p

(2π)3
c(~p)(ei~p

~Rn − ei~p~R
′
n) (3.77)

where ~Rn = (x1 − x2 + 2ndx, y1 − y2, z1 − z2) and ~R
′
n = (x1 + x2 + (2n+ 1)dx, y1 − y2, z1 −

z2). From the above equations one can determine the entanglement in the detectors for
arbitrary positions of the detectors. We will however limit our discussion to two symmetric
configurations. Let us first consider a symmetric configuration such that the detectors are
located at ~rj = (±L

2
, 0, 0) with L < dx. Assuming α1 = α2 = α and making use of Eq.

(3.72), (3.74) and (3.77) we arrive at the following expressions:

S = α2
∑
n∈Z

∫
|~p|<1/∆X

d3p

(2π)3

1

2|~p|(|~p|+ ∆E)2

(
eipx2ndx − eipx(L+(2n+1)dx)

)
(3.78)

R = α2
∑
n∈Z

∫
|~p|<1/∆X

d3p

(2π)3

1

2|~p|(|~p|+ ∆E)∆E

(
eipx(L+2ndx) − eipx(2n+1)dx

)
. (3.79)

Note that the free space situation (i.e. in the absence of boundary conditions) may be
recovered by taking the limit dx → ∞. Indeed, in the regime dx � L, expressions (3.78)
and (3.79) reduce to Eq. (3.44) and (3.43). It is convenient to express Eq. (3.78), (3.79)
in terms of the dimensionless quantities |~q| = |~p|dx, ε = L∆E, γ = L

dx
and Λ̃ = L/∆X.

After simple manipulations we obtain:

S =
α2

4π2

∫ Λ̃/γ

0

dq
1

(q + ε/γ)2

∑
n∈Z

[
sin(2nq)

2n
− sin ((2n+ γ + 1) q)

2n+ γ + 1

]
(3.80)

R =
α2γ

4π2ε

∫ Λ̃/γ

0

dq
1

q + ε/γ

∑
n∈Z

[
sin ((2n+ γ) q)

2n+ γ
− sin ((2n+ 1) q)

2n+ 1

]
. (3.81)

Finally, by means of the formula [74]∑
n∈Z

sin ((2n+ a) q)

2n+ a
=

π

2 sin(πa
2

)
sin
(

(2m+ 1)
πa

2

)
(3.82)
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Figure 3.3: The local noise S ′ = 8π2S/α2, the exchange term R′ = 8π2R/α2 and the
negativity N ′ = 8π2N/α2 as a function of γ = L

dx
with Λ̃ = 30000, ε = 0.02 and ~rj =

(±L
2
, 0, 0).
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for mπ < q < (m+ 1)π we reduce Eq. (3.80) and (3.81) to the simpler form

S =
α2

8π2

Mmax∑
m=0

2m+ 1

(m+ ε
γπ

)(m+ ε
γπ

+ 1)

[
1−

sin
(
(2m+ 1) (γ + 1) π

2

)
(2m+ 1) sin

(
(γ + 1) π

2

)] (3.83)

R =
α2γ

8πε

Mmax∑
m=0

ln

(
m+ ε

γπ
+ 1

m+ ε
γπ

)[
sin
(
(2m+ 1) γπ

2

)
sin
(
γπ
2

) − (−1)m

]
(3.84)

where Mmax ≈ Λ̃/(πγ). Note that in the limit γ → 1 the above expressions vanish in
accordance with the boundary conditions. Using these expressions we may now compute
the negativity numerically with Eq. (3.47), see Fig. (3.3). We see on Fig. (3.3) that as
the boundary gets closer to the detectors, the entanglement of the ground state decreases
until it completely dies. Another interesting case is that where the detectors are located
at ~rj = (0,±L

2
, 0). Making use of Eq. (3.77) we obtain expressions analogous to Eq. (3.80)

and (3.81). They read

S =
α2

4π2

∫ Λ̃/γ

0

dq
1

(q + ε/γ)2

∑
n∈Z

[
sin(2nq)

2n
− sin ((2n+ 1) q)

2n+ 1

]
(3.85)

R =
α2γ

4π2ε

∫ Λ̃/γ

0

dq
1

q + ε/γ

∑
n∈Z

[
sin(
√

(2n)2 + γ2q)√
(2n)2 + γ2

−
sin(
√

(2n+ 1)2 + γ2q)√
(2n+ 1)2 + γ2

]
.

(3.86)

Clearly, in this case the boundary conditions do not imply that S and R should vanish as
dx → L. Numerical results for this configuration are presented on Fig. (3.4). Both graphs,
Fig. (3.3) and (3.4), indicate that the entanglement generated in the detectors reduces
monotonically as the separation dx decreases. We may interpret this degradation of the
vacuum entanglement by realizing that the boundary conditions give the field an effective
mass of meff ∼ 1/dx. Thus, as γ increases the effective mass also increases. Moreover,
when the mass of the field increases the correlations in the field decrease (see Sec. 1.1.2),
so the exchange term R has to decrease significantly and as a consequence the negativity N
decreases as well. Finally, note that in the regime dx � L, the orientation of the detectors
relative to the planes x = ±dx/2 becomes irrelevant and as a consequence S R and N
coincide for the two cases considered.

3.2.5 Stability of the negativity

If this subsection we answer the following question: does the presence of another quantum
system interacting with the field change the entanglement available for the two detectors
? We show that under the assumption that all interactions are weak, the presence of an
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Figure 3.4: The local noise S ′ = 8π2S/α2, the exchange term R′ = 8π2R/α2 and the
negativity N ′ = 8π2N/α2 as a function of γ = L

dx
with Λ̃ = 30000, ε = 0.02 and ~rj =

(0,±L
2
, 0).
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intruder does not significantly affect the entanglement available for the two detectors. In
other words, the ground state negativity is stable.

In this subsection the overall Hilbert space is H = H(1)⊗H(2)⊗H(3)⊗H(4), where the
first two Hilbert spaces belong to the two detectors, the third Hilbert space belongs to the
intruder and the fourth Hilbert space is that of the field. The interaction Hamiltonian is:

Hint =
2∑
j=1

αjm
(j)φ(~xj) + α3V

(3)U(φ(~x3)). (3.87)

The self-Hamiltonian and the coupling choice in the interaction Hamiltonian of the third
system, the intruder, is left arbitrary for now, but a natural choice would be a third detec-
tor. The ground state of the free theory is simply |g(1), g(2), g(3), 0〉. Using this interaction
Hamiltonian, we can compute the ground state of the interacting theory |eg,new〉. For
simplicity we only focus on the terms which depend on the intruder interaction,

|eg,new〉
∣∣∣
α3

= −α3

∑
(k,j)6=(0,g)

|g(1), g(2), j(3), k〉〈k|U(φ(~x3))|0〉〈j(3)|V (3)|g(3)〉
Ek + ∆Ej

−α
2
3

2
|g(1), g(2), g(3), 0〉

∑
(k,j)6=(0,g)

∣∣∣〈k|U(φ(~x3))|0〉〈j(3)|V (3)|g(3)〉
∣∣∣2

(Ek + ∆Ej)2

+α2
3

∑
(k,l) 6=(0,g),j 6=g

|g(1), g(2), j(3), 0〉

∣∣∣〈k|U(φ(~x3))|0〉
∣∣∣2〈j(3)|V (3)|l(3)〉〈l(3)|V (3)|g(3)〉

∆Ej(Ek + ∆El)

+α2
3

∑
j 6=g

|g(1), g(2), j(3), 0〉

∣∣∣〈0|U(φ(~x3))|0〉
∣∣∣2〈j(3)|V (3)|g(3)〉〈g(3)|V (3)|g(3)〉

∆E2
j

+α3α1

∑
(k,j)6=(0,g)

|e(1), g(2), j(3), 0〉

(
〈0|φ(~x1)|k〉〈k|U(φ(~x3))|0〉〈j(3)|V (3)|g(3)〉

(Ek + ∆Ej)(∆E + ∆Ej)

+
〈0|U(φ(~x3))|k〉〈k|φ(~x1)|0〉〈j(3)|V (3)|g(3)〉

(Ek + ∆E)(∆E + ∆Ej)

)
+ (1� 2) (3.88)

where |j(3)〉 is an eigenstate of the self-Hamiltonian of the intruder with energy Ej (∆Ej :=
Ej − Eg) and |k〉 is an eigenstate of the free Hamiltonian of the field HF with energy Ek.
With the full ground state, we then trace out the field and the intruder, the remaining
density matrix reads

ρg,new =

( 0 0 0 R
0 S1 T W1
0 T S2 W2
R W ∗1 W ∗2 1−S1−S2

)
+O(α4) (3.89)
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where R, Sj and T are the usual terms defined in Eq. (3.43), (3.44) and (3.46), and we
now define Wj:

Wj = α3αj〈g(3)|V (3)|g(3)〉
∫
|~p|<1/∆X

d3p

(2π)3

(
ei~p·~xj〈0|U(φ(~x3))a†~p|0〉√

2E~p∆E(E~p + ∆E)

+
e−i~p·~xj〈0|a~pU(φ(~x3))|0〉√

2E~pE~p∆E

)
. (3.90)

Finally, we compute the negativity of this density matrix perturbatively and we obtain

N = max
(√

(S1 − S2)2 + 4|R|2 − S1 − S2, 0
)

+ O(α3), namely the same result we would

have obtained by setting α3 = 0, see Eq. (3.47). This shows that as long as the intruder is
weakly interacting with the field, the amount of entanglement between the two detectors
remains the same, at least at second order in perturbation theory. To some extent, this
is simply because for the intruder to change the negativity it would need to interact with
both detector 1 and detector 2 in the ground state, but in the weak interaction regime such
a contribution is negligible. In fact, one can easily show that if 〈g(3)|V (3)|g(3)〉 6= 0 then the
intruder causes a correction to the negativity of order O(α3) and if 〈g(3)|V (3)|g(3)〉 = 0 then
the correction to the negativity is of order O(α4). In that sense, it could be interesting to
calculate explicitly higher order corrections to see how the entanglement changes because
of the intruder: a first step in that direction will be taken in the next subsection.

3.2.6 Potential barrier

This subsection is collaborative work with Andrzej Veitia. Let us now analyze the entan-
glement contained in a quantum field theory which is interacting with a classical potential.
We consider a simple toy model which in the regime of non-relativistic quantum mechanics
reduces to a usual weak potential problem. This toy model allows us to see what happens
to the entanglement of the vacuum when the field is not entirely free.

The model

Our toy model consists of an additional term in the interaction Hamiltonian,

Hint =
2∑
j=1

αjm
(j)φ(~xj) +m

∫
d3xV (~x) : φ2(~x) : (3.91)

where we assume V (~x) � m and denote the additional term by Hpot = m
∫
d3xV (~x) :

φ2(~x) :. Studies of this model or similar models can be found in the literature, see e.g. [75]
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where the author calculated the vacuum energy in the presence of the classical background
field V (~x). This model can be seen as an analog of quantum electrodynamics (QED) where
the electromagnetic field is in a coherent state and therefore can be treated classically.
Furthermore, to see why Hpot is a good toy model for a potential barrier, we look at the
equation of motion for φ with just the additional Hamiltonian Hpot:

− φ̈(x) +∇2φ(x)−m2φ(x)− 2mV (~x)φ(x) = 0. (3.92)

For a piecewise constant potential (like a rectangular potential barrier) we may use a

mode decomposition such that ∂t = −iE and ~∇ = i~p. This means that we have E2 =
~p2 +m2 + 2mV (~x), such that in the non-relativistic regime where |~p| � m we have:

E ≈ ±
(
~p2

2m
+m+ V (~x)

)
. (3.93)

The positive solution is exactly what we would have obtained in non-relativistic quantum
mechanics, with the exception of the constant mass term m which does not matter in first
quantization. Thus, for non-relativistic momentum |~p| � m, a wave function that satisfies
the Schrödinger equation with a piecewise constant potential V (~x) will also satisfy Eq.
(3.92). This shows that Hpot should be a good toy model to study the entanglement of the
vacuum in the presence of a weak classical potential, and as a bonus we may be able to
use some of our non-relativistic quantum mechanics intuition. Finally, note that when we
compare Eq. (3.92) with Eq. (3.16) we see that a weak gravitational field is just the regular
Newton potential V (~x) = −Mm/|~x| and a relativistic correction (−4M/|~x|)∇2φ(x) that
implies that massless particles gravitate too.

Corrections to the negativity

We are now ready to compute the ground state of the interacting theory, trace out the
field and calculate the negativity. This can be a very tedious calculation since we have
to go all the way to third order in perturbation theory. To simplify this calculation, we
argue that once we trace out the field, there cannot be any new matrix elements in the
matrix of Eq. (3.45). To see this, imagine we can solve exactly the quantum field theory
with just the free Hamiltonian of the field and the Hamiltonian of the potential, that is
H = HF + Hpot. The resulting expression for the field would be very similar to Eq. (1.9)
but the mode functions would now solve Eq. (3.92) instead of the regular Klein-Gordon
equation. Then, using this field we would use time-independent perturbation theory to
find the ground state of the full Hamiltonian, that is the Hamiltonian which includes the
two detectors, and we would finally trace out the field. The matrix structure resulting
from this procedure would obviously be the same as Eq. (3.45), thus as we expand this
matrix in powers of V there are no new matrix elements. Therefore, all we have to do is to
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compute the corrections to S1, S2 and R which are caused by the presence of the potential
and use Eq. (3.47) to compute the negativity.

Let us first focus on the corrections to S1, namely the local noise seen by detector 1
which can also be seen as the factor of the matrix element |e(1), g(2)〉〈e(1), g(2)|. There are
two terms at second order which end up contributing to S1:∑

k 6=g

∑
l 6=g

|ek〉
〈ek|Hint|el〉〈el|Hint|eg〉
(Eg − Ek)(Eg − El)

∣∣∣
S1

=

α1m

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3xV (~x)

(
〈0|a~p2 : φ2(~x) : a†~p1

|0〉〈0|a~p1φ(~x1)|0〉
)
a†~p2
|e(1), g(2), 0〉

(E~p1 + ∆E)(E~p2 + ∆E)

+α1m

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3

(2π)3

∫
d3xV (~x)

×

(
〈0|a~p3φ(~x1)a†~p1

a†~p2
|0〉〈0|a~p1a~p2 : φ2(~x) : |0〉

)
a†~p3
|e(1), g(2), 0〉

2(E~p1 + E~p2)(E~p3 + ∆E)
. (3.94)

As this point it is useful to compute some matrix elements with the field, so using Wick’s
theorem [4] we find:

〈0|a~p1φ(~x1)|0〉 =
e−i~p1·~x1√

2E~p1

(3.95)

〈0|a~p2 : φ2(~x) : a†~p1
|0〉 =

ei~x·(~p1−~p2)√
E~p1E~p2

(3.96)

〈0|a~p2a~p3φ(~x1)a†~p1
|0〉 = (2π)3

(
e−i~p3·~x1√

2E~p3

δ(~p2 − ~p1) +
e−i~p2·~x1√

2E~p2

δ(~p3 − ~p1)

)
(3.97)

〈0|a~p1a~p2 : φ2(~x) : |0〉 =
e−i~x·(~p1+~p2)√
E~p1E~p2

. (3.98)

Once we trace out the field, Eq. (3.94) is combined with the first order term Q
(3)
1 (Eq.

(3.42)) such that the correction to S1 at third order is

S1 = S1(0) − α2
1

m

2

∫
|~p1|<1/∆X

d3p1

(2π)3/2

∫
|~p2|<1/∆X

d3p2

(2π)3/2

Ṽ (~p1 − ~p2)e−i~x1·(~p1−~p2)

E~p1E~p2

×

{
1

(E~p1 + E~p2)

[
1

(E~p1 + ∆E)2
+

1

(E~p2 + ∆E)2

]

+
1

(E~p1 + ∆E)(E~p2 + ∆E)

[
1

(E~p1 + ∆E)
+

1

(E~p2 + ∆E)

]}
(3.99)
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where S1(0) is the local noise seen by detector 1 without the potential (Eq. (3.44)) and we
define:

Ṽ (~p) :=

∫
d3x

(2π)3
V (~x)ei~p·~x. (3.100)

To make sure that we did not forget any contributions, we can take the potential V (~x) = h
which models a correction to the mass such that m2

eff = m2 + 2mh. A straightforward
calculation can show that the expression we obtain for S1(1) is the first order term in the

Taylor expansion of S1(0)

∣∣∣
m=meff

. For the correction to S2, all we have to do is take S1 and

exchange x1 for x2 and α1 for α2.

Let us now focus on the corrections to R. For R, we are looking at corrections to the
factor of the matrix element |e(1), e(2)〉〈g(1), g(2)|. We need to consider two major contribu-
tions, the first one comes from a third order correction to the ground state, and the second
one comes from a first order correction to the ground state. Let us start with the third
order contribution. The third order correction to the ground state is:

|eg(3)〉 =
∑
n6=g

[
−
∑
k 6=g

|〈ek|Hint|eg〉|2〈en|Hint|eg〉
(Eg − Ek)(Eg − En)

(
1

(Eg − En)
+

1

2(Eg − Ek)

)

+
∑
k 6=g

∑
l 6=g

〈en|Hint|ek〉〈ek|Hint|el〉〈el|Hint|eg〉
(Eg − Ek)(Eg − El)(Eg − En)

]
|en〉 − 〈eg(2)||eg(1)〉|eg〉.

(3.101)

where |eg(j)〉 is the jth order correction to the ground state and |ej〉 is the jth eigenstate
of the free Hamiltonian (i.e. |ej(0)〉). Because we trace out the field, and because we are
only interested at third order contributions to R, we need a third order correction to the
ground state of the form |0e(1)e(2)〉. Since by construction 〈0|Hint|0〉 = 0, the only relevant
contribution comes from:

|eg(3)〉
∣∣∣
R

=
∑
n6=g

∑
k 6=g

∑
l 6=g

〈en|Hint|ek〉〈ek|Hint|el〉〈el|Hint|eg〉
(Eg − Ek)(Eg − El)(Eg − En)

|en〉. (3.102)

Three sequences of states in this sum give a non-vanishing contribution,

|el〉 |ek〉 |en〉
|g(1), e(2), 1~p〉 |g(1), e(2), 1~p11~p2〉 |e(1), e(1), 0〉
|g(1), g(2), 1~p11~p2〉 |g(1), e(2), 1~p〉 |e(1), e(2), 0〉
|g(1), e(2), 1~p〉 |g(1), e(2), 1~p〉 |e(1), e(2), 0〉
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plus inversion of the detectors 1 � 2 and we also need to integrate over the various
momenta. Hence, we have the third order correction:

|eg(3)〉
∣∣∣
R

= −|e(1), e(2), 0〉α1α2m

2

∫
d3p1

(2π)3/2

∫
d3p2

(2π)3/2

Ṽ (~p1 − ~p2)e−i~x2·~p1+i~x1·~p2

∆EE~p1E~p2

×

{
1

2

[
1

(E~p1 + ∆E)
+

1

(E~p2 + ∆E)

] [
1

(E~p1 + E~p2 + 2∆E)
+

1

(E~p1 + E~p2)

]

+
1

(E~p2 + ∆E)(E~p1 + ∆E)

}
. (3.103)

In the density matrix of the ground state of the detectors, this term gives a third order
correction to R because it gets combined with the zeroth order term |g(1), g(2), 0〉.

The other relevant contribution comes from a first order term. Indeed, because of
Hpot there is a first order correction to the ground state of the form mV |g(1), g(2), 1~p11~p2〉,
which when we trace out the field is combined with the second order exchange term
α2|e(1), e(2), 1p11p2〉. More explicitly, we have∑

k 6=g

|ek〉
〈ek|Hint|eg〉
(Eg − Ek)

∣∣∣
R

= −m
∫

d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3x

×V (~x)
[〈0|a~p1a~p2 : φ2(~x) : |0〉

2(E~p1 + E~p2)

]
a†~p1
a†~p2
|g(1), g(2), 0〉 (3.104)

and ∑
k 6=g

∑
l 6=g

|ek〉
〈ek|Hint|el〉〈el|Hint|eg〉
(Eg − Ek)(Eg − El)

∣∣∣
R

=

α1α2
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3

(2π)3

[〈0|a~p3a~p2φ(~x2)a†~p1
|0〉〈0|a~p1φ(~x1)|0〉

2(E~p3 + E~p2 + 2∆E)(E~p1 + ∆E)

]
a†~p3
a†~p2
|e(1), e(2), 0〉

+(~x1 � ~x2) (3.105)

such that together, after we trace out the field, these terms give a correction to the factor
of the matrix element |e(1), e(2)〉〈g(1), g(2)|. We can combine this correction with the third
order contribution, and we obtain an overall correction to R:

R = R(0) − α1α2
m

2

∫
|~p1|<1/∆X

d3p1

(2π)3/2

∫
|~p2|<1/∆X

d3p2

(2π)3/2

Ṽ (~p1 − ~p2)e−i~x2·~p1+i~x1·~p2

E~p1E~p2∆E

×

{
1

(E~p1 + E~p2)

[
1

(E~p1 + ∆E)
+

1

(E~p2 + ∆E)

]
+

1

(E~p1 + ∆E)(E~p2 + ∆E)

}
.

(3.106)
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Here again, one can easily verify with the potential V (~x) = h that our perturbative solution
matches the Taylor expansion of the exact solution.

Example: 1-d rectangular barrier potential

As an example of the machinery developed, let us look at the entanglement of the vacuum
in a one dimensional space when we have a rectangular potential barrier,

V (x) =

{
0 when |x| > a/2,
h when |x| < a/2

(3.107)

where h � m. For simplicity we assume α1 = α2 = α and we also assume that the
detectors’ positions are x1 = −L/2 and x2 = L/2. Using Eq. (3.107) in Eq. (3.99) and in
Eq. (3.106) we find:

S = S(0) − α2mh

∫
dp1

2π

∫
dp2

2π

[
1

Ep1Ep2

sin ((p1 − p2) a/2) eiL(p1−p2)/2

p1 − p2

×

{
1

(Ep1 + Ep2)

[
1

(Ep1 + ∆E)2
+

1

(Ep2 + ∆E)2

]

+
1

(Ep1 + ∆E)(Ep2 + ∆E)

[
1

(Ep1 + ∆E)
+

1

(Ep2 + ∆E)

]}]
(3.108)

R = R(0) − α2mh

∫
dp1

2π

∫
dp2

2π

[
1

Ep1Ep2∆E

sin ((p1 − p2) a/2) e−iL(p1+p2)/2

p1 − p2

×

{
1

(Ep1 + Ep2)

[
1

(Ep1 + ∆E)
+

1

(Ep2 + ∆E)

]
+

1

(Ep1 + ∆E)(Ep2 + ∆E)

}]
.

(3.109)

With the above expressions we can then evaluate the negativity with Eq. (3.47). We
cannot evaluate these expressions analytically, but we can perform numerical integration
to evaluate them. We first look at the regime which has little entanglement in the absence
of the potential, that is ∆E ∼ m, see Fig. (3.5). In this regime, we see that in the region
a < L, the negativity dies and revives in an oscillatory manner. Then near a ≈ L the
negativity jumps to a new level and as a� L its oscillations around the equilibrium value
decrease. We therefore see that to maximize the entanglement between the two detectors
in the regime ∆E ∼ m, we need the potential to have a width of size a ' L. To interpret
this phenomenon, we look at the terms R and S individually. Intuitively, a potential
barrier should reduce the exchange term R because it almost blocks the exchange of virtual
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particles. This is indeed what we see on Fig. (3.5). The entanglement also depends on
the local quantum field fluctuations S, which is somehow greatly reduced by the potential
once the detectors are immersed in the potential. This can be interpreted as an effective
mass change. Indeed, recall that a constant flat potential models a small perturbation to
the mass of the field, so when a� L we have meff ≈ m and when a� L we roughly have
meff ≈ m+h. Thus, since a bigger mass makes the cloud of particles around each detector
more energetically expensive, a bigger mass reduces the local noise. Indeed, in a second
quantization framework, the mass term really matters because we allow the creation of

particles and each one of them costs energy E~p =
√
~p2 +m2

eff . We thus conclude that the

entanglement of a one dimensional vacuum is enhanced by a classical potential barrier in
the regime ∆E ∼ m. Let us now look at the regime ∆E � m, which is to say the fully
non-relativistic regime. The numerical results of Fig. (3.6) show that S and R keep the
same shape, but as expected from energy considerations, in that regime the exchange term
dominate over the noise term, both the zeroth order term and the first order correction. We
therefore find that the negativity decreases with an increase of a, see Fig. (3.6). Note that
the negativity never dies because the initial negativity is much bigger than the decrease
caused by the potential. Thus, we conclude that in the regime ∆E � m the entanglement
of a one dimensional vacuum decreases because of the classical repulsive potential.
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Figure 3.5: The local noise S ′ = 8π2S/α2, the exchange term R′ = 8π2R/α2 and the
negativity N ′ = 8π2N/α2 as a function of a/L with ∆E/m = 0.47 and h/m = 0.0025.
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Figure 3.6: The local noise S ′ = 8π2S/α2, the exchange term R′ = 8π2R/α2 and the
negativity N ′ = 8π2N/α2 as a function of a/L with ∆E/m = 0.002 and h/m = 0.0025.

67



Chapter 4

Conclusion

In this thesis we analyzed how both information and entanglement propagate between
two Unruh-DeWitt detectors. We first modeled a relativistic quantum channel using two
Unruh-DeWitt detectors. This channel incorporates both special relativity effects as well
as the fundamental noise caused by quantum field fluctuations. A throughout analysis
of this channel was performed using quantum information tools. Using this channel, we
showed that while information is bounded by the speed of light, entanglement propaga-
tion is not bounded by any finite speed. We then showed that the entanglement of the
vacuum increases in the presence of a weak gravitational field while it decreases when the
field is subject to Dirichlet boundary conditions. We also showed that depending on the
initial amount of entanglement, a classical potential can either increase or decrease the
entanglement of a one dimensional vacuum.

Most of our analysis was done with a quantum scalar field. While we expect that all our
results would still hold in a proper QED framework, it should be interesting to redo some
of our calculations in QED. In fact, a direct experimental verification would first require
us to go to a full QED treatment, with proper atoms coupled to the electromagnetic
field. Another perhaps more promising experimental possibility is to use a quantum field
analog such as a linear ion trap [76, 64]. In this context, Dirichlet boundary conditions
are already effectively implemented because of the finite number of ions and we could
implement a classical potential by introducing an electric field. It should be interesting
see what happens when we consider other kinds of boundary conditions such as periodic
boundary conditions because this could easily be simulated with a circular arrangement of
ions.

It should also be straightforward to generalize our study to detectors with any number
of energy levels. The number and spacing of the energy levels of the detectors should
translate into an effective alphabet size. This should also allow one to generalize the
results of [77, 78], where it was shown how quantum noise imposes a natural bound to the
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capacity of an otherwise noiseless bosonic channel. The analysis of [77, 78] employed the
time-energy uncertainty principle to describe the limit to the distinguishability of photons
of energy difference ∆E in an observation time ∆t. It should be interesting to re-analyze
these results within the present information-theoretic framework of the quantum channel
in which all effects of quantum noise are built in from the start.

It should also be interesting to generalize our model to yield a new approach to analyzing
the setup of [79, 80], where Alice and Bob are inertial observers which are exchanging modes
of a quantum field, while Eve is accelerating and tries to intercept the message. It was
shown there that, because of the Unruh effect, it is always possible for Alice and Bob to
communicate privately. To show this, the approach to the Unruh effect using Bogoliubov
transformations was used. Generalizing our setup, one may use Unruh-DeWitt detectors,
which are known to allow a more flexible description of the Unruh effect. For example,
Eve would not have to accelerate uniformly and could indeed take an arbitrary trajectory.

The model we studied here should also be generalizable to any curved spacetime to
study, for example, the impact of spacetime expansion and horizons. Indeed, as we previ-
ously discussed it should be very interesting to see whether the entanglement of the vacuum
still persists when the detectors are near a black hole and see the Hawking radiation as
a source of local noise. Finally, let us recall that, in the presence of a suitable natural
ultraviolet cut-off, the density of degrees of freedom in quantum fields is finite, see e.g.
[81]. It should be interesting to investigate how this finite density of degrees of freedom
translates into a finite information carrying capacity of quantum fields.
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