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Abstract

This study solves the problem of unsteady free convection from an inclined
heated tube both numerically and analytically. The tube is taken to have an ellip-
tic cross-section having a constant heat flux applied to its surface. The surrounding
fluid is viscous and incompressible and infinite in extent. The Boussinesq approxi-
mation is used to describe the buoyancy force driving the flow. The underlying as-
sumptions made in this work are that the flow remains laminar and two-dimensional
for all time. This enables the Navier-Stokes and energy equations to be formulated
in terms of the streamfunction, and vorticity.

We assume that initially an impulsive heat flux is applied to the surface and
that both the tube and surrounding fluid have the same initial temperature. The
problem is solved subject to the no-slip and constant heat flux conditions on the
surface together with quiescent far-field and initial conditions.

An approximate analytical-numerical solution was derived for small times, t
and large Grashof numbers, Gr. This was done by expanding the flow variables in
a double series in terms of two small parameters and reduces to solving a set of
differential equations. The first few terms were solved exactly while the higher-order
terms were determined numerically.

Flow characteristics presented include average surface temperature plots as well
as surface vorticity and surface temperature distributions. The results demonstrate
that the approximate analytical-numerical solution is in good agreement with the
fully numerical solution for small t and large Gr.
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Chapter 1

Introduction

1.1 Setting Up The Problem

Unsteady free, or natural, convection from a horizontal two-dimensional body is
a fundamental thermal-fluid problem. Numerous theoretical, experimental and
numerical studies related to the this problem have been done over the years. This
thesis deals with the unsteady behavior of laminar, two-dimensional flow caused
by free convection from an inclined elliptic cylinder in a fluid which is otherwise at
rest. This problem is of interest for both theoretical and practical reasons since it
has important applications in engineering such as hot wire anemometry, flow past
heated tubes or wires, thermal pollution, dispersion of pollutants, and even in the
design of heat exchangers.

This thesis investigates the initial development of the unsteady free convection
problem in an unbounded domain. The surface of the cylinder has a constant heat
flux and the fluid is assumed to be viscous, incompressible and Boussinesq. Also,
the governing equations are the Navier-Stokes and energy equations.

The physical configuration is illustrated in Figure 1.1. The Cartesian axes x
and y are rotated to coincide with the major and minor axes of the ellipse having
lengths 2a and 2b, respectively. Gravity acts in the vertical direction, and the ellipse
is inclined at an angle η measured relative to the horizontal. The cylinder surface
has a constant heat flux Q, while the far-field temperature of the fluid is T∞, with
T > T∞. Here, T denotes the temperature of the cylinder surface which varies with
time and with position on the surface. The buoyancy-induced flow is considered to
be unsteady and laminar with negligible viscous dissipation.

An approximate analytical-numerical solution valid for small times, t, and large
Grashof numbers, Gr, is obtained by applying double series expansions for the flow
variables. The expansions generate a hierarchy of simplified problems to the full
governing equations. Boundary and initial conditions are defined for each problem,
and integral conditions are derived for the vorticity using Green’s Theorem. The
leading-order terms as well as several higher-order terms were determined analyti-
cally, while the higher-order terms were determined numerically. This approximate
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Abstract

This study presents a numerical method for solving the unsteady problem of laminar free convection
from a heated tube in an otherwise quiescent fluid. The tube is taken to have an elliptic cross-section
with a constant surface heat flux. The fluid is viscous and incompressible and the Boussinesq approx-
imation is used to describe the buoyancy force driving the flow. Since the flow is assumed to remain
two-dimensional for all time, the Navier-Stokes and energy equations are formulated in terms of the
streamfunction and vorticity. A conformal mapping suitable for the elliptic geometry is introduced.
The setup is illustrated in Figure 1 and is completely characterized by the following dimensionless
parameters: the Grashof number, Gr, the Prandtl number, Pr, the angle of inclination of the tube
with the horizontal, η, and the tube aspect ratio, r = b/a.

The numerical scheme is designed to handle a large range of Grashof numbers and to capture the
physical behaviour inherent in the initial flow. For example, because of the impulsively applied heat
flux, Q, on the surface, a transformation which stretches the radial coordinate is introduced to better
resolve the thin thermal-boundary layer. This boundary-layer coordinate is used to compute the early
stages of the flow. However, once the boundary layer thickens appreciably the numerical scheme then
switches back to the original coordinate to integrate the equations for large times. To numerically solve
the governing equations a spectral finite-difference method is proposed. The temperature and vorticity
are advanced in time using an implicit scheme of Crank-Nicholson type. The streamfunction, on the
other hand, is expanded in a truncated Fourier series where an efficient marching algorithm is employed
to solve the resulting set of ordinary differential equations. To determine the surface vorticity exact
integral conditions are derived and incorporated into the numerical method.

The numerical results have been verified against derived analytical solutions which are valid for small
times. The numerical and analytical results were found to be in good agreement. The next stage is
to make connections with experimental results to further demonstrate that the proposed numerical
method realistically mimics the physical problem in the laminar regime.

Figure 1: The flow setup
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√
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and ∆T =
Qc

k
, Pr =

ν

κ
, η, r

Figure 1.1: The flow configuration

solution serves to provide a reasonably accurate description of the initial flow and
heat transfer process.

The thesis is organized as follows. In the next section a literature review is given.
In chapter 2, derivation of the governing equations,boundary and initial conditions
are explained. Chapter 3 describes the analytical method used to solve the problem
while chapter 4 outlines the numerical method used in solving the higher order
problems. In chapter 5, results and comparisons are presented. Finally, a summary
is given in chapter 6.

1.2 Literature Review

The problem considered in this thesis is similar to that studied by Williams [35].
He also examined the unsteady problem of laminar two-dimensional free convec-
tive heat transfer from an inclined elliptic cylinder and also focused on the initial
development of heat transfer and flow. However, to solve the problem analytically,
he used perturbation theory and expanded the flow variables in powers of

√
t and

considered the isothermal case whereby the surface was maintained at constant
temperature. The expansion used is valid for small t and small Gr, and analytic
solutions to the problem were found for the case when the Prandtl number, Pr,
is equal to unity. The scaling adopted in that study is identical to that outlined
in section 2.2.3. The main difference between the work by Williams [35] and this
study are as follows. First, we solve the unsteady free convection problem resulting
from a cylinder emitting a constant heat flux. Second, a double series expansion

is applied in the parameters λ =
√

4t√
Gr

and t. These parameters are better suited

for investigating the early unsteady flow for large Gr. Third, analytical solutions
have been found for the cases when Pr = 1 and Pr 6= 1. Lastly, a different scaling
given in section 2.2.2, has been utilized. The main difference in the scaling of the
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equations lies in the velocity scale U . Williams [35] uses U = ν
c

whereas the scale
used here is U =

√
αg∆Tc.

In this present study an expansion procedure involving the parameter λ =
√

4t√
Gr

is carried out. This parameter will be small if t is small and Gr is large. We will
see that the resulting differential equations in the series expansion in λ are still too
complicated to solve analytically. If we take t to be a second small parameter, we
can expand each of the equations in another series in terms of t. This amounts to
doing a double expansion and enables us to further simplify the resulting equations
and to solve them analytically. For small times we expect the gradients in the
radial-direction (normal to the cylinder surface) to be much larger than those in
the angular-direction. Also, for small times velocities will be very small. Thus, for
small times the main mechanism of heat transfer will be by conduction. From this
and the similarity solution to the heat conduction equation, the form of λ can be
obtained.

A similar double expansion has been previously used in the study of two-
dimensional laminar viscous flows at constant temperature. In these problems the

parameter λ is defined as λ =
√

8t
R

where R is the Reynolds number. It turns out

that our equation for the streamfunction and vorticity are identical if we replace
1√
Gr

by 2
R

. Some previous studies that have used this approach include Rohlf and

D’Alessio [28], Badr and Dennis [1], Collins and Dennis [5] for the case of a cir-
cular geometry, while Staniforth [32] was one of the first studies that successfully
applied this approach to the elliptic geometry. In this thesis the double expansion
procedure has been extended to solve the problem of free convection.

Another problem worth mentioning is the laminar plume formed above a line
source explained in Leal [21]. This refers to a well known analytical solution for
steady free convection from a line source of constant heat flux. This corresponds
to the solution at large distances since far away the cylinder can be treated as a
line source. For large Gr the equations can be simplified by making boundary layer
approximations and rescaling the horizontal coordinate and velocity by a factor
of Gr

1
4 . It turns out that an exact similarity solution can be found for Prandtl

numbers Pr = 2, 5
9

(Yih [36]). The problem studied here can be thought of the
other extreme case in that the laminar plume case is valid for large t and at large
distances while our problem is valid for small t and close to the cylinder. It is
interesting to point out that both the laminar plume problem and this problem
have the factor of Gr

1
4 appearing in the solutions.

Extensive research has been conducted for circular cylinders experimentally, an-
alytically, and numerically. Among the pioneers, Langmuir [20] concluded that the
heat transfer rate could be evaluated as the amount of heat conveyed by pure con-
duction through a film of stationary fluid surrounding the wire, which is called the
film theory. McAdams [24] correlated experimental data of flows over circular cylin-
ders by other workers for Rayleigh numbers in the range between 10−4 and 109. The
problem of laminar free convection from a horizontal circular cylinder with constant

3



surface temperature or constant surface heat flux has been dealt with by Koh [17].
Analytical studies based on the boundary-layer approximation were conducted by
Muntasser and Mulligan [26]. Numerical studies of the circular cylinder case with
an isothermal cylinder surface have been reported in Saitoh, Sajiki and Maruhara
[29]. They adopted a high-accuracy fourth-order finite difference method and a
coordinate transformation technique to solve the two-dimensional natural convec-
tion problem for Pr = 0.7. Numerical solutions of the governing Navier-Stokes and
energy equations were obtained by Kuehn and Goldstein [18], Farouk and Guceri
[12], and Wang, Kahawita and Nguyen [34] to name a few.

Although problems related to heated circular cylinders are well studied, rela-
tively little work has been done for the more general geometry of an elliptic cylinder
which is considered here. Lin and Chao [22] utilized a suitable coordinate transfor-
mation to solve the boundary-layer equations for two-dimensional and axisymmetric
bodies of arbitrary contour in terms of series solutions. Results were obtained for
Prandtl numbers in the range between 0.72 and infinity, aspect ratio of the ellip-
tic cross-section from 0.25 to 1, and the cases when the major axis either vertical
or horizontal,respectively. Raithby and Hollands [27], following the film theory of
Langmuir, proposed an approximate procedure for the prediction of the amount of
heat exchanged by free convection at the surface of slender elliptic cylinders over
a wide range of the Rayleigh numbers. Later Hassani [14] simplified the Raithby-
Hollands method and extended its application to asymmetric horizontal cylinders
having an arbitrary convex cross-section.

Merkin [25] numerically solved the boundary-layer equations for horizontal cylin-
ders with the major axis oriented vertically to the direction of gravity. For a slender
elliptic cylinder suspended in air, numerical solutions of the full conservation equa-
tions of mass, momentum and energy were obtained by Badr and Shamsher [2].
The problem has been solved for Rayleigh numbers ranging from 10 to 1000 and
for a constant value of Prandtl number (Pr = 0.7). The cylinder axis ratio varies
from 0.1 to 0.964 approaching a flat plate at one end and a circular cylinder at
the other. Results were presented for the local and average Nusselt numbers along
with details of the thermal and velocity fields given in the form of isotherm and
streamline patterns.

Finlay [13] solved the steady problem of free convective heat transfer from an
isothermal inclined elliptic cylinder numerically and derived asymptotic boundary
conditions that could be applied at large distances. She also studied the stability of
the flow to a specific type of disturbance. D’Alessio, Finlay and Pascal [8] considered
the steady and unsteady problems of free convection from elliptic cylinders for
small Gr numbers. The current study is an unsteady extension of [8] for large Gr
numbers.

Work on the case of uniform heat flux has been done by Mahfouz and Kocabiyik
[23]. They performed a numerical study of the transient buoyancy driven flow
adjacent to a cylinder of elliptic cross-section with major axis horizontal, whose
surface is subjected to a sudden uniform heat flux. This was executed for different
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values of the modified Rayleigh number in the range between 103 and 107, the
Prandtl number in the range between 0.1 and 10, and the axis ratio in the range
between 0.05 and 0.998.

Experiments have been performed by Elsayed, Ibrahim and Elsayed [11] for free
convection of air around the outer surface of a horizontal elliptic tube with constant
heat flux. The local and average Nusselt number distributions were presented
at different values of Rayleigh numbers ranging from 1.1 × 107 to 8 × 107 and
different tube inclination angles. Average Nusselt numbers were evaluated and
correlated with the Rayleigh number corresponding to the elliptic tube with vertical
major axis. Comparison between the convection characteristics of isothermal and
constant heat flux elliptic tubes has been presented. The experiment showed that
the maximum average Nusselt number is achieved when the major axis of the tube
is vertical. Huang and Mayinger [15] also performed experiments in which laminar
natural convection from elliptic tubes was investigated for different orientations and
for different axis ratios.

Works on the extreme geometry of a flat plate were also conducted. Badr and
Shamsher [2] performed a numerical study of the free convection from an elliptic
cylinder with major axis vertical, for different values of the axis ratio in the range
between 0.05 and 0.998 and validated the method by comparing results with the
available experimental and numerical data for the circular cylinder and the flat
plate as limiting cases. Experiments for the flat plate case was done by Saunders
[31] while numerical solutions were obtained by Suriano and Yang [33].

The combined problems of forced and mixed convection from inclined elliptic
cylinders undergoing uniform acceleration was studied by D’Alessio, Saunders and
Harmsworth [9]. An approximate analytical solution valid for small times and
large Reynolds numbers was presented. Also, a numerical solution was obtained by
solving the full Navier-Stokes and energy equations using a spectral-finite difference
method. More recently, the problem of unsteady heat transfer from an elliptic
cylinder was solved numerically by Juncu [16]. In his paper, the influence of the
volume heat capacity ratio and axis ratio on the heat transfer rate was investigated
for various Reynolds and Prandtl numbers for the case of elliptic cylinders with
spatially uniform, but changing with time, temperature.

In summary, this work offers an approximate analytical-numerical solution pro-
cedure to solve the problem of unsteady free convection from an inclined ellipti-
cal cylinder with constant heat flux which is limited to small times following the
impulsive startup. Comparisons between this approximate solution and the fully
numerical solution [7] have also been carried out.

5



Chapter 2

The Governing Equations

2.1 Deriving The Equations

Let us start with the continuity equation, taken from Kundu[19]:

Dρ

Dt
+ ρ∇ · ~u = 0 , (2.1)

where ~u = (u, v) is the velocity of the flow, with u the velocity component in the
x-direction, v in the y-direction and D

Dt
= ∂

∂t
+ (~u · ∇) is the material derivative.

We assume that the fluid is incompressible, and simplify the continuity equation to

∇ · ~u = 0 . (2.2)

We also assume that the fluid is viscous, and has a constant dynamic viscosity µ.
Then the Navier-Stokes equations are given by

ρ
D~u

Dt
= −∇p+ ρ~g + µ∇2~u . (2.3)

Here, ~g = −g(sin η, cos η) is the gravitational vector with g denoting the gravi-
tational constant; η is the angle of inclination of the elliptical cylinder with the
horizontal plane. Using the Boussinesq approximation ( replace ρ by ρ0 everywhere
except in the gravitational term), we obtain the following form for the Navier-Stokes
equations

ρ0
D~u

Dt
= −∇p+ ρ~g + µ∇2~u . (2.4)

Introducing the kinematic viscosity ν = µ
ρ0

, the Navier-Stokes equations can be
written as

D~u

Dt
= − 1

ρ0

∇p+
ρ

ρ0

~g + ν∇2~u . (2.5)

We use a linear equation of state as in Kundu[19]:

ρ

ρ0

= 1− α(T − T∞) , (2.6)

6



where α is the thermal expansion coefficient, T is the temperature and T∞ is the
far-field temperature. Then the Navier-Stokes equations become

D~u

Dt
= −∇

(
p

ρ0

)
+ (1− α(T − T∞))~g + ν∇2~u . (2.7)

Expanding the material derivative gives

∂~u

∂t
+ (~u · ∇)~u = −∇

(
p

ρ0

)
+ ~g − α~g(T − T∞)) + ν∇2~u . (2.8)

We know that vorticity ~ω is defined as ~ω = ∇ × ~u. To obtain an equation which
involves vorticity, we use the following vector identity

∇× (∇× ~f) = ∇(∇ · ~f)−∇2 ~f . (2.9)

Plugging ~f = ~u and the continuity equation (2.2) into (2.9), we obtain the following
equation for vorticity in terms of ~u:

∇× ~ω = −∇2~u .

Substituting this into (2.8) we obtain

∂~u

∂t
+ (~u · ∇)~u = −∇

(
p

ρ0

)
+ ~g − α~g(T − T∞))− ν(∇× ~ω) . (2.10)

Using a second vector identity

(~u · ∇)~u =
1

2
∇(~u · ~u)− ~u× ~ω , (2.11)

(2.10) becomes

∂~u

∂t
− ~u× ~ω = −∇

(
p

ρ0

+
1

2
~u · ~u

)
+ ~g − α~g(T − T∞))− ν(∇× ~ω) . (2.12)

We write the gravitational vector ~g, as a gradient of a scalar ~g = ∇Λ, where

Λ = −g (x sin η + y cos η) .

Next, we introduce the quantity Γ as

Γ =
p

ρ0

+
1

2
~u · ~u− Λ− αT∞Λ .

Then, (2.12) becomes

∂~u

∂t
− ~u× ~ω = −∇Γ− α~gT − ν (∇× ~ω) . (2.13)

7



Now we take the curl of the above to obtain

∂

∂t
(∇× ~u)−∇× (~u× ~ω) = −∇× (∇Γ)− α(∇× ~gT )− ν(∇× (∇× ~ω)) . (2.14)

Since ∇× (∇Γ) = ~0, and by the definition of vorticity, we can reduce (2.14) to the
following form

∂~ω

∂t
−∇× (~u× ~ω) = −α(∇× ~gT )− ν(∇× (∇× ~ω)) . (2.15)

Using vector identity (2.9), and setting ~f = ~ω, we can further simplify (2.15) to

∂~ω

∂t
−∇× (~u× ~ω) = −α(∇× ~gT ) + ν∇2~ω . (2.16)

Using the vector identity

∇× (~u× ~ω) = ~u(∇ · ~ω)− ~ω(∇ · ~u) + (~ω · ∇)~u− (~u · ∇)~ω , (2.17)

along with the continuity equation and noting that the flow is 2-D, the above
reduces to

∇× (~u× ~ω) = −(~u · ∇)~ω . (2.18)

Finally, we obtain the following for the vorticity equation in vector form

∂~ω

∂t
+ (~u · ∇)~ω = −α(∇× ~gT ) + ν∇2~ω . (2.19)

The term −α(∇× ~gT ), corresponds to the generation of vorticity due to the baro-
clinicity of the flow, or generation of vorticity when surfaces of constant pressure
and density are not parallel. The term ν∇2~ω, corresponds to the change in vorticity
due to molecular diffusion.

Since we assumed that the flow is 2-D, we can introduce the streamfunction ψ,
where

u = −∂ψ
∂y

, v =
∂ψ

∂x
. (2.20)

If ~ω = ∇× ~u = (0, 0, ζ), then

ζ =
∂v

∂x
− ∂u

∂y
=
∂2ψ

∂x2
+
∂2ψ

∂y2
. (2.21)

Also,

∇× T~g = ∇× (−g(T sin η, T cos η, 0)) = −g
(

0, 0,
∂T

∂x
cos η − ∂T

∂y
sin η

)
. (2.22)

Using equations (2.21) and (2.22), and plugging them to equation (2.19), we obtain
the governing equation for the scalar vorticity ζ,

∂ζ

∂t
+ (~u · ∇)ζ = αg

(
∂T

∂x
cos η − ∂T

∂y
sin η

)
+ ν∇2ζ . (2.23)
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Using

~u·∇ζ = (u, v)·
(
∂ζ

∂x
,
∂ζ

∂y

)
=

(
−∂ψ
∂y
,
∂ψ

∂x

)
·
(
∂ζ

∂x
,
∂ζ

∂y

)
= −∂ψ

∂y

∂ζ

∂x
+
∂ψ

∂x

∂ζ

∂y
, (2.24)

and substituting this into equation (2.23), we can further reduce the scalar vorticity
equation to

∂ζ

∂t
=
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
+ ν

(
∂2ζ

∂x2
+

∂ζ

∂y2

)
+ αg

(
∂T

∂x
cos η − ∂T

∂y
sin η

)
. (2.25)

To derive an equation governing the fluid temperature,T , we begin with the thermal
energy equation

ρ
De

Dt
= −∇ · ~q − p(∇ · ~u) + ε , (2.26)

where e is the internal energy of the fluid, ~q is the heat flux per unit area, and ε is
viscous dissipation. We will neglect viscous dissipation and thus set ε = 0.

We can write e and ~q in terms of the fluid temperature T , the specific heat at
constant pressure Cp, and the thermal conductivity of the fluid k, as

e = CpT , ~q = −k∇T . (2.27)

Using the continuity equation and (2.27), the thermal energy equation simplifies to

ρCp
DT

Dt
= k∇2T . (2.28)

Expanding for constant k and Cp, the material derivative gives

DT

Dt
=
∂T

∂t
+ ~u · ∇T =

∂T

∂t
− ∂ψ

∂y

∂T

∂x
+
∂ψ

∂x

∂T

∂y
. (2.29)

If we define the thermal diffusivity κ, with κ = k
ρCp

, then the thermal energy

equation reduces to
∂T

∂t
=
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
+ κ∇2T . (2.30)

Thus, the three main governing equations in terms of streamfunction ψ, vorticity
ζ and temperature T are

∂2ψ

∂x2
+
∂2ψ

∂y2
= ζ , (2.31)

∂ζ

∂t
=
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
+ ν

(
∂2ζ

∂x2
+

∂ζ

∂y2

)
+ αg

(
∂T

∂x
cos η − ∂T

∂y
sin η

)
, (2.32)

∂T

∂t
=
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
+ κ∇2T . (2.33)
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2.2 Non-dimensionalization Methods

2.2.1 Non-dimensionalization Method 1

At large distances, we expect a balance to exist between the viscous force and the
buoyancy force. For a sphere of radius R we have that

6πµRu∞ =
4

3
πR3∆ρg , (2.34)

according to creep flow.

From the linear equation of state (2.6), we obtain

∆ρ = ρ0 − ρ = αρ0∆T ,

and (2.34) gives

u∞ =
2

9

R2

ν
αg∆T . (2.35)

If we set the length scale to c =
√
a2 − b2, the semi-focal length of the ellipse (see

figure 1), then (2.35) suggests the following non-dimensionalization:

(x̃, ỹ) =
(x
c
,
y

c

)
, U =

c2αg∆T

ν
,

φ =
T − T∞

∆T
, ∆T = c

Q

κ
,

t̃ =
U

c
t , ψ̃ =

1

Uc
ψ , ζ̃ =

c

U
ζ , (2.36)

where Q is the constant heat flux and the tildes denote dimensionless quantities.

Applying the above scaling to the streamfunction equation (2.31) leads to

∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
= ζ̃ . (2.37)

Further applying this scaling to the vorticity-transport equation (2.32), we obtain

∂ζ̃

∂t̃
=

(
∂ψ̃

∂ỹ

∂ζ̃

∂x̃
− ∂ψ̃

∂x̃

∂ζ̃

∂ỹ

)
+

ν

cU

(
∂2ζ̃

∂x̃2
+
∂2ζ̃

∂ỹ2

)

+
αgc∆T

U2

(
∂φ

∂x̃
cos η − ∂φ

∂ỹ
sin η

)
. (2.38)

Finally, the temperature equation (2.33) under this scaling becomes

∂φ

∂t̃
=

(
∂ψ̃

∂ỹ

∂φ

∂x̃
− ∂ψ̃

∂x̃

∂φ

∂ỹ

)
+

κ

cU

(
∂2φ

∂x̃2
+
∂2φ

∂ỹ2

)
. (2.39)
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We define the following dimensionless parameters: Prandtl number Pr, where Pr =
ν
κ

and Grashof number Gr, where Gr = c3αg∆T
ν2 . The Prandtl number represents the

ratio of momentum diffusivity to thermal diffusivity of the fluid, while the Grashof
number represents the relative strength of the buoyancy force to the viscous force.

In terms of these parameters our equations in dimensionless form become

∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
= ζ̃ , (2.40)

∂ζ̃

∂t̃
=

(
∂ψ̃

∂ỹ

∂ζ̃

∂x̃
− ∂ψ̃

∂x̃

∂ζ̃

∂ỹ

)
+

1

Gr

(
∂2ζ̃

∂x̃2
+
∂2ζ̃

∂ỹ2

)

+
1

Gr

(
∂φ

∂x̃
cos η − ∂φ

∂ỹ
sin η

)
, (2.41)

∂φ

∂t̃
=

(
∂ψ̃

∂ỹ

∂φ

∂x̃
− ∂ψ̃

∂x̃

∂φ

∂ỹ

)
+

1

GrPr

(
∂2φ

∂x̃2
+
∂2φ

∂ỹ2

)
. (2.42)

2.2.2 Non-dimensionalization Method 2

Near the surface we expect a balance to occur between inertia and buoyancy. If u
is the speed of a fluid parcel rising and h the distance from the surface we can write

1

2
ρ0u

2 = (ρ− ρ0)gh , (2.43)

from which we obtain

u2 = 2
(ρ− ρ0)

ρ0

gh .

From the linear equation of state (2.6), it follows that

ρ− ρ0

ρ0

= α∆T .

Hence,
u =

√
2α∆Tgh . (2.44)

If we set the length scale to c =
√
a2 − b2, then (2.44) suggests the following non-

dimensionalization:
(x̃, ỹ) =

(x
c
,
y

c

)
, U =

√
αg∆Tc,

φ =
T − T∞

∆T
, ∆T = c

Q

κ
,

t̃ =
U

c
t , ψ̃ =

1

Uc
ψ , ζ̃ =

c

U
ζ . (2.45)
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Applying the above scaling to the streamfunction equation (2.31), we obtain

∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
= ζ̃ , (2.46)

while the vorticity-transport equation (2.32) becomes

∂ζ̃

∂t̃
=

(
∂ψ̃

∂ỹ

∂ζ̃

∂x̃
− ∂ψ̃

∂x̃

∂ζ̃

∂ỹ

)
+

ν

cU

(
∂2ζ̃

∂x̃2
+
∂2ζ̃

∂ỹ2

)

+
αgc∆T

U2

(
∂φ

∂x̃
cos η − ∂φ

∂ỹ
sin η

)
, (2.47)

and the temperature equation (2.33) yields to

∂φ

∂t̃
=

(
∂ψ̃

∂ỹ

∂φ

∂x̃
− ∂ψ̃

∂x̃

∂φ

∂ỹ

)
+

κ

cU

(
∂2φ

∂x̃2
+
∂2φ

∂ỹ2

)
. (2.48)

In terms of Gr and Pr the dimensionless equations read

∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
= ζ̃ , (2.49)

∂ζ̃

∂t̃
=

(
∂ψ̃

∂ỹ

∂ζ̃

∂x̃
− ∂ψ̃

∂x̃

∂ζ̃

∂ỹ

)
+

1√
Gr

(
∂2ζ̃

∂x̃2
+
∂2ζ̃

∂ỹ2

)
+

(
∂φ

∂x̃
cos η − ∂φ

∂ỹ
sin η

)
, (2.50)

∂φ

∂t̃
=

(
∂ψ̃

∂ỹ

∂φ

∂x̃
− ∂ψ̃

∂x̃

∂φ

∂ỹ

)
+

1√
GrPr

(
∂2φ

∂x̃2
+
∂2φ

∂ỹ2

)
. (2.51)

2.2.3 Non-dimensionalization Method 3

Another possible scaling is given by

(x̃, ỹ) =
(x
c
,
y

c

)
, U =

ν

c
,

φ =
T − T∞

∆T
, t̃ =

ν

c2
t,

ψ̃ =
1

ν
ψ , ζ̃ =

c2

ν
ζ , (2.52)

from which we obtain:

∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
= ζ̃ , (2.53)
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∂ζ̃

∂t̃
=

(
∂ψ̃

∂ỹ

∂ζ̃

∂x̃
− ∂ψ̃

∂x̃

∂ζ̃

∂ỹ

)
+

(
∂2ζ̃

∂x̃2
+
∂2ζ̃

∂ỹ2

)
+Gr

(
∂φ

∂x̃
cos η − ∂φ

∂ỹ
sin η

)
, (2.54)

∂φ

∂t̃
=

(
∂ψ̃

∂ỹ

∂φ

∂x̃
− ∂ψ̃

∂x̃

∂φ

∂ỹ

)
+

1

Pr

(
∂2φ

∂x̃2
+
∂2φ

∂ỹ2

)
. (2.55)

2.2.4 Non-dimensionalization Method 4

This last scaling is similar to the previous one and is given by

(x̃, ỹ) =
(x
c
,
y

c

)
, U =

κ

c
,

φ =
T − T∞

∆T
, t̃ =

κ

c2
t,

ψ̃ =
1

κ
ψ , ζ̃ =

c2

κ
ζ . (2.56)

This scaling introduces another dimensionless parameter known as the Rayleigh
number, Ra, given by Ra = PrGr = c3αg∆T

νκ
. The Rayleigh number represents the

relative strength of the viscous force to the buoyancy force within the fluid which
can be expressed as

αgc3∆T

κ2
=
αgc3∆T

κν

ν

κ
= RaPr .

This leads to the dimensionless set:

∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
= ζ̃ , (2.57)

∂ζ̃

∂t̃
=

(
∂ψ̃

∂ỹ

∂ζ̃

∂x̃
− ∂ψ̃

∂x̃

∂ζ̃

∂ỹ

)
+

(
∂2ζ̃

∂x̃2
+
∂2ζ̃

∂ỹ2

)
+RaPr

(
∂φ

∂x̃
cos η − ∂φ

∂ỹ
sin η

)
, (2.58)

∂φ

∂t̃
=

(
∂ψ̃

∂ỹ

∂φ

∂x̃
− ∂ψ̃

∂x̃

∂φ

∂ỹ

)
+

(
∂2φ

∂x̃2
+
∂2φ

∂ỹ2

)
. (2.59)
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2.2.5 Non-dimensionalization Method Used

In the previous subsections, we have presented four possible non-dimensionalization
methods. Although any one of these can be adopted, we have selected method 2.
Henceforth, our governing equations will be

∂2ψ

∂x2
+
∂2ψ

∂y2
= ζ , (2.60)

∂ζ

∂t
=

(
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y

)
+

1√
Gr

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
+

(
∂φ

∂x
cos η − ∂φ

∂y
sin η

)
, (2.61)

∂φ

∂t
=

(
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y

)
+

1√
GrPr

(
∂2φ

∂x2
+
∂2φ

∂y2

)
, (2.62)

where the tildes have been dropped for the ease of notation.

2.3 Transformation to Elliptical Coordinates
CHAPTER 2. THE GOVERNING EQUATIONS 16

xy

θ

2π

0 ξ

x+ iy = cosh [(ξ + ξ0) + iθ]

Figure 2.1: The conformal transformation

where tanh ξ0 = r, and r = a
b

is the ratio of the semi-minor to semi-major axes of

the ellipse.

This choice of the constant ξ0 is such that the contour ξ = 0 will coincide with

the surface of the cylinder. In terms of the coordinates (ξ, θ), the domain is confined

to the semi-infinite rectangular strip ξ ≥ 0, 0 ≤ θ ≤ 2π, (see figure 2.1). In the

above figure, θ = 0 and θ = π correspond to the leading and trailing tips of the

cylinder respectively.

This transformation has been used in several other works, including D’Alessio

[4] and Saunders [15].

Recalling that:

coshx =
ex + e−x

2

Figure 2.1: The mapping from Cartesian to elliptical co-ordinates

To make computations easier, we use a conformal mapping shown in figure 2.1.
The transformation is given by

x+ iy = cosh[(ξ + ξ0) + iθ] , (2.63)

where tanh ξ0 = r , and r = b
a

is the ratio of the semi-minor and semi-major
axis lengths of the ellipse. This choice of the constant ξ0 is such that the contour

14



ξ = 0 will coincide with the surface of the cylinder. Applying the identity cosh z =
1
2
(ez + e−z) to (2.63), and comparing the real and imaginary parts we obtain

x = cosh(ξ + ξ0) cos θ , y = sinh(ξ + ξ0) sin θ . (2.64)

D’Alessio [6] and Saunders [30] also used this transformation in their work.

The scale factors for the elliptical co-ordinate system (ξ, θ), are defined by

hξ =

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

,hθ =

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

.

Using equation (2.64), we obtain

hξ =

√
cosh2(ξ + ξ0)− cos2 θ ,hθ =

√
cosh2(ξ + ξ0)− cos2 θ . (2.65)

We define the metric M of the transformation (2.63) as M(ξ, θ) = hξ = hθ. Then,

M2(ξ, θ) = cosh2(ξ + ξ0)− cos2 θ =
1

2
[cosh 2(ξ + ξ0)− cos 2θ] . (2.66)

For the remainder of the thesis, the dependence of M on ξ and θ will not be
explicitly shown, but will assumed to exist.

We differentiate equations (2.64) with respect to x and y to obtain the following
set of equations

∂θ

∂x
= −cosh(ξ + ξ0) sin θ

M2
, (2.67)

∂θ

∂y
=

sinh(ξ + ξ0) cos θ

M2
, (2.68)

∂ξ

∂x
=

sinh(ξ + ξ0) cos θ

M2
, (2.69)

∂ξ

∂y
=

cosh(ξ + ξ0) sin θ

M2
. (2.70)

Differentiating (2.67)− (2.70) with respect to x and y gives

∂2θ

∂x2
=

sin θ cos θ

M4

[
1 +

2 cosh2(ξ + ξ0)(sinh2(ξ + ξ0)− sin2 θ)

M2

]
, (2.71)

∂2θ

∂y2
=

sin θ cos θ

M4

[
1− 2 sinh2(ξ + ξ0)(cosh2(ξ + ξ0)− cos2 θ)

M2

]
, (2.72)

∂2ξ

∂x2
=

sinh(ξ + ξ0) cosh(ξ + ξ0)

M4

[
1− 2 cos2(θ)(sinh2(ξ + ξ0)− sin2 θ)

M2

]
, (2.73)

∂2ξ

∂y2
=

sinh(ξ + ξ0) cosh(ξ + ξ0)

M4

[
1− 2 sin2(θ)(cosh2(ξ + ξ0)− cos2 θ)

M2

]
. (2.74)
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We apply the chain rule for differentiation:

∂Ω

∂xi
=
∂Ω

∂ξ

∂ξ

∂xi
+
∂Ω

∂θ

∂θ

∂xi
,

∂2Ω

∂xi2
=
∂2Ω

∂ξ2

(
∂ξ

∂xi

)2

+
∂Ω

∂ξ

∂2ξ

∂xi2
+
∂2Ω

∂θ2

(
∂θ

∂xi

)2

+
∂Ω

∂θ

∂2θ

∂xi2
,

where Ω is one of φ,ψ, or ζ and xi is either x or y. Using the above derivatives and
equations (2.67) − (2.74), the equation for the streamfunction (2.60) in elliptical
co-ordinate system becomes

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
= M2ζ . (2.75)

The vorticity equation (2.61) becomes

∂ζ

∂t
=

1

M2

[
∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

1√
Gr

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)]

+
1

M2

[
A(ξ, θ)

∂φ

∂ξ
−B(ξ, θ)

∂φ

∂θ

]
, (2.76)

where functions A(ξ, θ) and B(ξ, θ) are introduced for brevity and are defined as

A = sinh(ξ + ξ0) cos(η) cos(θ)− cosh(ξ + ξ0) sin(η) sin(θ) , (2.77)

B = cosh(ξ + ξ0) cos(η) sin(θ) + sinh(ξ + ξ0) sin(η) cos(θ) . (2.78)

Finally, the temperature equation (2.62) becomes

∂φ

∂t
=

1

M2

[
∂ψ

∂θ

∂φ

∂ξ
− ∂ψ

∂ξ

∂φ

∂θ
+

1√
GrPr

(
∂2φ

∂ξ2
+
∂2φ

∂θ2

)]
. (2.79)

2.4 Boundary Conditions

To solve the governing equations, we need to impose some boundary conditions.
On the cylinder surface (ξ = 0) we require the no-slip condition, no flow through
the surface, and constant heat flux at the surface. To carry out the no-slip and
impermeable conditions, we need to express the flow velocity in terms of the stream-
function, ψ. We express the flow velocity as: ~u = (uξ, uθ) where uξ and uθ are the ξ
and θ-components of the velocity, respectively. Then the no-slip condition becomes

uθ = 0 on ξ = 0 , (2.80)

and the impermeable condition becomes

uξ = 0 on ξ = 0 . (2.81)
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To write the velocity components in terms of the streamfunction, we use the diver-
gence of a curvilinear co-ordinate system:

∇ · ~u =
1

hξhθ

[
∂(hθuξ)

∂ξ
+
∂(hξuθ)

∂θ

]
,

where hξ = hθ = M as previously found. Using the continuity equation (2.2), we
simplify the above equation to

1

M2

[
∂(Muξ)

∂ξ
+
∂(Muθ)

∂θ

]
= 0 .

Thus, we can define the streamfunction ψ in the (ξ, θ)-plane such that

Muξ = −∂ψ
∂θ

and Muθ =
∂ψ

∂ξ

so that the velocity is given by

(uξ, uθ) =

(
− 1

M

∂ψ

∂θ
,

1

M

∂ψ

∂ξ

)
. (2.82)

The impermeable condition (2.81) in terms of the streamfunction becomes

∂ψ

∂θ
= 0 on ξ = 0 .

This implies that ψ is constant on ξ = 0. Because there is only one solid boundary,
without loss of generality we set this constant to zero. Thus, the no-slip and the
impermeable conditions in terms of the streamfunction yield

ψ =
∂ψ

∂ξ
= 0 on ξ = 0 . (2.83)

The condition of constant heat flux gives

∂φ

∂ξ
= −M on ξ = 0 . (2.84)

Considering the stagnation streamline that extends from the surface of the cylin-
der (ξ = 0) to infinity, we develop far-field conditions for the streamfunction and
vorticity. On the cylinder surface a stagnation point is a point at which the fluid
comes to rest inviscidly. The stagnation streamline is the streamline that goes
through the stagnation point. Since we have a quiescent flow far away from the
cylinder, it follows that

uξ , uθ → 0 as ξ →∞ ,

or in terms of the streamfunction this becomes

1

M

∂ψ

∂ξ
,

1

M

∂ψ

∂θ
→ 0 as ξ →∞ .
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Since ψ is constant everywhere on the stagnation streamline, the value must be
same as the constant on the surface ξ = 0. However, we showed that ψ = 0 on
ξ = 0. The far-field condition for the streamfunction then becomes

ψ → 0 as ξ →∞ .

For a quiescent flow, the far-field condition for vorticity is

ζ → 0 as ξ →∞ .

Since T → T∞ as ξ →∞, the far-field condition for temperature is simply

φ→ 0 as ξ →∞ .

Therefore, the far-field conditions for streamfunction, vorticity, and temperature
are

ψ , ζ , φ→ 0 as ξ →∞ . (2.85)

2.5 Integral Conditions

We now show that the vorticity satisfies integral conditions. We start with the
Green’s second identity as demonstrated in [10]∫ ∫

D

(g∇2h− h∇2g)dA =

∮
C

(g
∂h

∂n̂
− h∂g

∂n̂
)dS , (2.86)

where D is the fluid domain, C is the closed curve surrounding the domain D, and
n̂ is the direction normal to the curve C and g,h are twice differentiable functions.
If we let

g = ψ and hn = e−nξ
(

sin(nθ)
cos(nθ)

)
for n = 0, 1, 2, · · · ,

then
∇2g = ∇2ψ = M2ζ .

Since the functions hn are harmonic, it follows that

∇2hn = 0 .

From the boundary conditions, we obtain the following along the solid boundary

g = ψ = 0 ,

∂g

∂n̂
=
∂ψ

∂ξ
= 0 .

As ξ →∞,
hn → 0 for n 6= 0 ,

∂hn
∂n̂

=
∂hn
∂ξ
→ 0 .

Plugging the above conditions into equation (2.86), we obtain the integral condi-
tions for the vorticity∫ ∞

0

∫ π

−π
e−nξM2ζ

(
(sin(nθ)
cos(nθ)

)
dθdξ = 0 for n = 0, 1, 2, · · · . (2.87)
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2.6 Initial Conditions

Since the fluid is at rest at t = 0, we have that

ψ(ξ, θ, t = 0) = 0 , (2.88)

ζ(ξ, θ, t = 0) = 0 . (2.89)

We assume that initially both the fluid and cylinder are maintained at temperature
T∞. Thus,

φ(ξ, θ, t = 0) = 0 . (2.90)

2.7 Boundary-layer Coordinate

Figure 2.2: Illustration of the grid expansion with time

At t = 0 we impulsively apply a constant heat flux on the cylinder surface. To
better resolve the early stages of the flow following this impulsive startup at t = 0,
we define a boundary-layer coordinate z by

ξ = λz where λ =

√
4t√
Gr

. (2.91)

The left and right sets of ellipses of figure 2.2 correspond to lines of constant ξ at
times t = t1 and t = t2, respectively, where t2 > t1. Figure 2.2 illustrates how lines
of constant ξ evolve in time in the boundary-layer coordinate system. We have
that,

∂Φ

∂ξ
=

1

λ

∂Φ

∂z
,

∂2Φ

∂ξ2
=

1

λ2

∂2Φ

∂z2
,

∂Φ

∂t
=
∂Φ

∂t
− z

2t

∂Φ

∂z
,

where Φ is one of ψ, ζ, or φ.
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Substituting the above into equations (2.75),(2.76) and (2.79), yields the follow-
ing transformed equations for the streamfunction, vorticity and temperature.

∂2ψ

∂z2
+ λ2∂

2ψ

∂θ2
= λ2M2ζ , (2.92)

1

M2

∂2ζ

∂z2
+ 2z

∂ζ

∂z
= 4t

∂ζ

∂t
− λ2

M2

∂2ζ

∂θ2
+

4t

λM2

(
∂ψ

∂z

∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂z

)
− 4tA

λM2

∂φ

∂z
+

4tB

M2

∂φ

∂θ
, (2.93)

1

PrM2

∂2φ

∂z2
+ 2z

∂φ

∂z
= 4t

∂φ

∂t
− λ2

PrM2

∂2φ

∂θ2
+

4t

λM2

(
∂ψ

∂z

∂φ

∂θ
− ∂ψ

∂θ

∂φ

∂z

)
. (2.94)

Since we will be concerned with the early stages of the flow, we will work with this
set of equations for the remainder of the thesis.

The boundary conditions become

ψ =
∂ψ

∂z
= 0 on z = 0 . (2.95)

The constant heat flux condition is

∂φ

∂z
= −Mλ on z = 0 . (2.96)

The far-field and the integral conditions yield

ψ , ζ , φ→ 0 as z →∞ , (2.97)∫ ∞
0

∫ π

−π
λe−nλzM2ζ

(
(sin(nθ)
cos(nθ)

)
dθdz = 0 for n = 0, 1, 2, · · · . (2.98)

Finally, the initial conditions become

ψ(z, θ, t = 0) = ζ(z, θ, t = 0) = φ(z, θ, t = 0) = 0 . (2.99)
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Chapter 3

Analytical Solution Procedure

3.1 Series Expansion Procedure

The governing equations represent three coupled non-linear second-order partial
differential equations (PDEs). Because of the complexity of the equations, it is
very difficult to find an exact analytical solution. Instead we attempt to find an
approximate analytical solution using perturbation theory. If Gr is large and t is
small, then λ is also small, and it is possible to expand the flow variables in a double
series in terms of λ and t. First, we expand the flow variables φ , ζ and ψ in a
series of the form

φ(z, θ, t) = φ0(z, θ, t) + λφ1(z, θ, t) + λ2φ2(z, θ, t) + · · · , (3.1)

ζ(z, θ, t) = ζ0(z, θ, t) + λζ1(z, θ, t) + λ2ζ2(z, θ, t) + · · · , (3.2)

ψ(z, θ, t) = ψ0(z, θ, t) + λψ1(z, θ, t) + λ2ψ2(z, θ, t) + · · · . (3.3)

Then each φn, ζn, ψn, n = 0, 1, 2, · · · , can be further expanded in a series of the
form

φn(z, θ, t) = φn0(z, θ) + tφn1(z, θ) + · · · , (3.4)

ζn(z, θ, t) = ζn0(z, θ) + tζn1(z, θ) + · · · , (3.5)

ψn(z, θ, t) = ψn0(z, θ) + tψn1(z, θ) + · · · . (3.6)

We also need to expand the functions M2,A,B and e−nλt:

M2 = M2
0 (θ) + sinh(2ξ0)λz + cosh(2ξ0)λ2z2 + · · · ,

A(z, θ) = A0(θ) + A1(θ)λz +
A0(θ)

2
λ2z2 + · · · ,

B(z, θ) = B0(θ) +B1(θ)λz +
B0(θ)

2
λ2z2 + · · · .

e−nλz = 1− nλz +
n2λ2z2

2
− n3λ3z3

6
+ · · · .
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where

M2
0 =

1

2
[cosh(2ξ0)− cos(2θ)] ,

A0(θ) = sinh(ξ0) cos(η) cos(θ)− cosh(ξ0) sin(η) sin(θ) ,

A1(θ) = cosh(ξ0) cos(η) cos(θ)− sinh(ξ0) sin(η) sin(θ) ,

B0(θ) = cosh(ξ0) cos(η) sin(θ) + sinh(ξ0) sin(η) cos(θ) ,

B1(θ) = sinh(ξ0) cos(η) sin(θ) + cosh(ξ0) sin(η) cos(θ) .

Substituting the above series into equations (2.92)-(2.99) produces a hierarchy
of problems at various orders.

We see that there are two small parameters appearing in this problem t and λ.
These parameters will be the same when t = λ or when t = 4√

Gr
. For a fixed value

of Gr our procedure is expected to be valid for t << 4√
Gr

. This will be important
later when we make comparisons with the fully numerical solution.

An alternate expansion procedure is presented in Appendix B.

3.2 Solving for the Temperature

3.2.1 The O(1) problem

The first term in the series (3.1), φ0, satisfies the following equation

1

PrM2
0

∂2φ0

∂z2
+ 2z

∂φ0

∂z
= 4t

∂φ0

∂t
. (3.7)

The constant heat flux and the far-field conditions are

∂φ0

∂z
= 0 on z = 0 , φ0 → 0 as z →∞ . (3.8)

Since equation (3.7) is too complicated to solve analytically, an expansion in t is
also necessary to make analytical progress. We now continue the procedure of
determining some of the other terms in the double series (3.4). As we will see the
procedure gets more and more complicated as more terms are sought.

If we introduce the transformation w =
√
PrM0z we can eliminate the explicit θ-

dependence, and the problem reduces to essentially solving the following differential
equations

∂2φ0N

∂w2
+ 2w

∂φ0N

∂w
− 4Nφ0N = 0 , (3.9)

subject to the constant heat flux conditions

∂φ0N

∂w
= 0 when w = 0 , N = 0, 1, 2, · · · , (3.10)
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and the far-field conditions

φ0N → 0 as w →∞ , N = 0, 1, 2, · · · . (3.11)

In order to solve equation (3.9), we first make the transformation φ0N = F (θ)f(w)e−
w2

2 ,
to obtain

d2f

dw2
+ (−w2 − 1− 4N)f = 0 . (3.12)

Using the transformation w = u√
2

then yields

d2f

du2
+ ((−2N − 1) +

1

2
− u2

4
)f = 0 . (3.13)

In this form the solution can be expressed in terms of the Parabolic Cylinder Func-
tions (see [3]). If we let ν = −2N − 1, a negative integer, the solution to (3.13)
is

f = AD−2N−1(u) +BD2N(iu) , (3.14)

where A and B are arbitrary constants. If we substitute u =
√

2w into (3.14) we
obtain

φ0N = F (θ)Ae−
w2

2 D−2N−1(
√

2w) + F (θ)Be−
w2

2 D2N(i
√

2w) , (3.15)

and by properties of Parabolic Cylinder Functions, it follows that

D2N(i
√

2w) =
e
w2

2

2N
H2N(iw) , (3.16)

where H2N represents a Hermite polynomial in degree 2N. Further,

D−2N−1(
√

2w) =

(
√

2)−2N−1e
w2

2

[
Γ
(

1
2

)
Γ
(

1
2
− 1

2
(−2N − 1)

)Φ

(
−1

2
(−2N − 1) ,

1

2
, w2

)]

+ (
√

2)−2N−1e
w2

2

[
w

Γ
(
−1

2

)
Γ
(
−1

2
(−2N − 1)

)Φ

(
1

2
− 1

2
(−2N − 1) ,

3

2
, w2

)]
, (3.17)

where

Γ

(
1

2

)
=
√
π ,

Γ

(
−1

2

)
= −2

√
π ,

Γ

(
1

2
− 1

2
(−2N − 1)

)
= N ! ,

Γ

(
−1

2
(−2N − 1)

)
=

(2N − 1)!!

2N
√
π ,
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Φ

(
−1

2
(−2N − 1) ,

1

2
, w2

)
= 1 +

(N + 1
2
)

1
2
!!

w2 +
(N + 1

2
)(N + 3

2
)

1
2

3
2

w4 + · · · ,

Φ

(
1

2
− 1

2
(−2N − 1) ,

3

2
, w2

)
= 1 +

(N + 3
2
)

1
2
!!

w2 +
(N + 1)(N + 2)

3
2

5
2

w4 + · · · ,

taken from [3].

SinceH2N is a polynomial of degree 2N (> 1), H2N(iw) is unbounded as w →∞.
Therefore, to satisfy the far-field condition (3.11), we must have B = 0.

Then (3.15) becomes

φ0N = F (θ)Ae−
w2

2 D−2N−1(
√

2w) . (3.18)

Plugging (3.18) into constant heat flux condition (3.10) we obtain that A = 0.
Thus, φ0N becomes

φ0N(w) = 0 , N = 0, 1, 2, · · · , (3.19)

from which it immediately follows that

φ0(w, θ, t) = 0 . (3.20)

3.2.2 The O(λ) problem

The non-zero leading-order term for the temperature corresponds to φ1 and satisfies
the equation

1

PrM2
0

∂2φ1

∂z2
+ 2z

∂φ1

∂z
− 2φ1 = 4t

∂φ1

∂t
. (3.21)

The constant heat flux and the far-field conditions are

∂φ1

∂z
= −M0 on z = 0 , φ1 → 0 as z →∞ . (3.22)

Since equation (3.21) is too complicated to solve analytically, an expansion in t is
also necessary to make analytical progress. If we introduce the transformation w =√
PrM0z the problem reduces to essentially solving the following set of differential

equations
∂2φ10

∂w2
+ 2w

∂φ10

∂w
− 2φ10 = 0 , (3.23)

∂2φ1N

∂w2
+ 2w

∂φ1N

∂w
− (2 + 4N)φ1N = 0 , (3.24)

for N = 1, 2, 3, · · · , subject to the constant heat flux condition

∂φ10

∂w
= − 1√

Pr
,
∂φ1N

∂w
= 0 on w = 0 (3.25)

along with the far-field conditions

φ10 → 0 , φ1N → 0 as w →∞ . (3.26)
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For the N = 0 case, the homogeneous differential equation has two linearly
independent solutions of the following form

φ101 = w ,

and
φ102 = e−w

2

+
√
πwerf(w) ,

where erf(w) = 2√
π

∫ w
0

e−u
2
du. So, the solution for φ10 can be written as

φ10(w) = Cw +D(e−w
2

+
√
πwerf(w)) ,

where C(θ) and D(θ) are arbitrary functions. Rearranging the above equation gives

φ10(w) = w
(
C +D

√
πerf(w)

)
+De−w

2

, (3.27)

and applying the heat flux condition we find that C = − 1√
Pr

.

Then equation (3.27) becomes

φ10(w) = w

(
− 1√

Pr
+D
√
πerf(w)

)
+De−w

2

. (3.28)

To satisfy the far-field condition (3.26), we must have(
− 1√

Pr
+D
√
πerf(w)

)
→ 0 as w →∞ .

Thus, we can conclude that

D =
1√

π
√
Pr

.

Thus, the solution for φ10 is

φ10(w) =
1√

π
√
Pr

e−w
2 − w√

Pr
erfc(w) , (3.29)

where erfc(w) = 1− erf(w).

For the N = 1, 2, 3, · · · cases, the differential equations can be expressed in
terms of the Parabolic Cylinder Functions (discussed in section 3.2.1). Using a
similar argument we can show that

φ1N(w) = 0 for N = 1, 2, 3, · · · . (3.30)

Thus, we arrive at

φ1(t, w) = φ10(w) =
1√

π
√
Pr

e−w
2 − w√

Pr
erfc(w) . (3.31)
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3.2.3 The O(λ2) problem

The equation for φ2 is given by

1

Pr

∂2φ2

∂z2
+ 2M2

0 z
∂φ2

∂z
− 4tM2

0

∂φ2

∂t
− 4M2

0φ2 = 4t
∂φ1

∂θ

∂ψ2

∂z
− 4t

∂φ1

∂z

∂ψ2

∂θ

− 2 sinh(2ξ0)
∂φ1

∂z
z2 + 4t sinh(2ξ0)

(
∂φ1

∂t
+
φ1

2t

)
z . (3.32)

The constant heat flux and the far-field conditions are

∂φ2

∂z
= 0 on z = 0 ,φ2 → 0 as z →∞ . (3.33)

Using the double expansion, the problem reduces to solving the differential equa-
tions

1

PrM2
0

∂2φ20

∂z2
+ 2z

∂φ20

∂z
− 4φ20 =

2 sinh(2ξ0)

M2
0

z

(
φ10 − z

∂φ10

∂z

)
, (3.34)

1

PrM2
0

∂2φ2N

∂z2
+ 2z

∂φ2N

∂z
− 4(1 +N)φ2N = 0 , N = 1, 3, 4, · · · , (3.35)

1

PrM2
0

∂2φ22

∂z2
+ 2z

∂φ22

∂z
− 12φ22 =

4

M2
0

z

(
∂φ10

∂θ

∂ψ21

∂z
− ∂φ10

∂z

∂ψ21

∂θ

)
, (3.36)

subject to the constant heat flux condition

∂φ2N

∂z
= 0 , when z = 0 , N = 0, 1, 2, · · · , (3.37)

and the far-field conditions

φ2N → 0 , as z →∞ , N = 0, 1, 2, · · · . (3.38)

For the N = 0 case, we introduce the transformation w =
√
PrM0z, then the

equation and boundary conditions become

∂2φ20

∂w2
+ 2w

∂φ20

∂w
− 4φ20 =

2 sinh(2ξ0)

PrM3
0

√
π
we−w

2

,

∂φ20

∂w
= 0 , when w = 0 ,

φ20 → 0 , as w →∞ . (3.39)

If we introduce a new variable Φ(w) = M3
0 (θ)φ20(w), then (3.39) transforms to

d2Φ

dw2
+ 2w

dΦ

dw
− 4Φ =

2 sinh(2ξ0)

Pr
√
π

we−w
2

,
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dΦ

dw
= 0 ,when w = 0 ,

Φ→ 0 , as w →∞ . (3.40)

We next solve the above problem using the method of variation of parameters.

The homogeneous differential equation has two linearly independent solutions
having the following form

Φ1 = w2 +
1

2
,

and

Φ2 = we−w
2

+
√
π

(
w2 +

1

2

)
erf(w) .

Thus, a particular solution to (3.40) can be written as

Φp(w) = UΦ1 + V Φ2 (3.41)

where

U ′ = −Φ2F

R
and V ′ =

Φ1F

R
,

and R is the Wronskian given by

R = Φ1Φ′2 − Φ2Φ′1 = e−w
2

,

and

F =
2 sinh(2ξ0)

Pr
√
π

we−w
2

.

By integrating U ′ and V ′ with respect to w, and setting the arbitrary constants to
zero, we obtain

U =
sinh(2ξ0)

Pr

[
1

8
erf(w)− 1

4
√
π
we−w

2 − 1

2
w4erf(w)− 1

2
√
π
w3e−w

2 − 1

2
w2erf(w)

]
,

V =
sinh(2ξ0)

2
√
πPr

(
w4 + w2

)
.

Then, the full solution of (3.40) can be written as

Φ(w) = K1

(
w2 +

1

2

)
+K2

(
we−w

2

+
√
π

(
w2 +

1

2

)
erf(w)

)

+
sinh(2ξ0)

Pr

[
1

8
erf(w)

(
w2 +

1

2

)
− 1

8

we−w
2

√
π

]
. (3.42)

Applying the constant heat flux condition, we obtain

K2 = 0 ,
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and applying the far-field condition, we obtain

K1 = 0 .

Therefore, (3.42) simplifies to

Φ(w) =
sinh(2ξ0)

Pr

[
1

8
erf(w)

(
w2 +

1

2

)
− 1

8

we−w
2

√
π

]
. (3.43)

Since φ20(w) = Φ(w)

M3
0

, it follows that

φ20(w, θ) =
sinh(2ξ0)

PrM3
0

[
1

8
erf(w)

(
w2 +

1

2

)
− we−w

2

8
√
π

]
. (3.44)

For the N = 1, 3, 4, · · · cases, we introduce the transformation w =
√
PrM0z,

then the equations and boundary conditions become

∂2φ2N

∂w2
+ 2w

∂φ2N

∂w
− 4(1 +N)φ2N = 0 , N = 1, 3, 4, · · · ,

∂φ2N

∂w
= 0 ,when w = 0 , N = 1, 3, 4, · · · ,

φ2N → 0 , as w →∞ , N = 1, 3, 4, · · · . (3.45)

To solve the above equations we use a procedure similar to the N = 0 case. Since
the differential equations are homogeneous, and from the constant heat flux and
far-field conditions we can derive that

φ2N(w, θ) = 0 for N = 1, 3, 4, · · · . (3.46)

φ22(w, θ) is numerically solved and is explained in the next chapter.

Thus, we can conclude that

φ2(t, w, θ) = φ20 + t2φ22 . (3.47)

In the next chapter a numerical method to solve for φ30 will be outlined. Sum-
marizing, we have that the approximate analytical solution for temperature φ is
given by

φ(t, w, θ) = λφ10 + λ2φ20 + λ3φ30 +O(λ3t+ λ4) . (3.48)
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3.3 Solving for the Vorticity

3.3.1 The O(1) problem

The first term in the series (3.2), ζ0, satisfies the following equation

1

M2
0

∂2ζ0

∂z2
+ 2z

∂ζ0

∂z
= 4t

∂ζ0

∂t
− 4tA0

M2
0

∂φ1

∂z
. (3.49)

The far-field and the integral conditions are

ζ0 → 0 as z →∞ ,∫ ∞
0

∫ π

−π
M2

0 ζ0 sin(nθ)dθdz = 0 for n = 0, 1, 2, · · · ,∫ ∞
0

∫ π

−π
M2

0 ζ0 cos(nθ)dθdz = 0 for n = 0, 1, 2, · · · . (3.50)

To solve for the leading-order problem for the vorticity expansion, we introduce the
transformation s = M0z. Then, ζ0, satisfies the equation and conditions given by

∂2ζ0

∂s2
+ 2s

∂ζ0

∂s
= 4t

∂ζ0

∂t
− 4tA0

∂φ1

∂s
,

ζ0 → 0 as s→∞ ,∫ ∞
0

∫ π

−π
M0ζ0 sin(nθ)dθds = 0 for n = 0, 1, 2, · · · ,∫ ∞

0

∫ π

−π
M0ζ0 cos(nθ)dθdz = 0 for n = 0, 1, 2, · · · . (3.51)

Further expanding in t, the problem reduces to solving the following differential
equations

∂2ζ00

∂s2
+ 2s

∂ζ00

∂s
= 0 , (3.52)

∂2ζ01

∂s2
+ 2s

∂ζ01

∂s
− 4ζ01 = −4A0

∂φ10

∂s
, (3.53)

∂2ζ0N

∂s2
+ 2s

∂ζ0N

∂s
− 4ζ0N = 0 forN = 2, 3, 4 · · · , (3.54)

subject to the far-field conditions

ζ0N → 0 as s→∞ for N = 0, 1, 2, · · · ,

and the integral conditions∫ ∞
0

∫ π

−π
M0ζ0N sin(nθ)dθds = 0 ,
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∫ ∞
0

∫ π

−π
M0ζ0N cos(nθ)dθds = 0 ,

for n,N = 0, 1, 2, · · · .
It immediately follows from the initial condition (2.99) that

ζ00(s, θ) = 0 . (3.55)

Since
∂φ10

∂s
=
√
Pr

∂φ10

∂w
= −erfc(w) = −erfc(

√
Prs) ,

we can write equation (3.53) as

∂2ζ01

∂s2
+ 2s

∂ζ01

∂s
− 4ζ01 = 4A0

(
1− erf(

√
Prs)

)
. (3.56)

Now we break up the solution ζ01 = ζ
(1)
01 + ζ

(2)
01 where ζ

(1)
01 , ζ

(2)
01 satisfy

∂2ζ
(1)
01

∂s2
+ 2s

∂ζ
(1)
01

∂s
− 4ζ

(1)
01 = 4A0 , (3.57)

and
∂2ζ

(2)
01

∂s2
+ 2s

∂ζ
(2)
01

∂s
− 4ζ

(2)
01 = −4A0erf(

√
Prs) . (3.58)

A particular solution for (3.57) is

ζ
(1)
01 = −A0 . (3.59)

Next, we solve equation (3.58) for the case when Pr = 1 using the method of
variation of parameters. The homogeneous differential equation has two linearly
independent solutions of the following form

ζ
(2)
01,1 = s2 +

1

2
,

and

ζ
(2)
01,2 = se−s

2

+
√
π

(
s2 +

1

2

)
erf(s) .

Thus, a particular solution to (3.58) is

ζ
(2)
01 = uζ

(2)
01,1 + vζ

(2)
01,2 (3.60)

where

u′ = −ζ01,2f

R
, v′ =

ζ01,1f

R
, R = ζ01,1ζ

′
01,2 − ζ01,2ζ

′
01,1 = e−s

2

, f = −4A0erf(s) .

By integrating u′ and v′ with respect to s, and setting the arbitrary constants to
zero, we obtain that

u

−4A0

=
1

2
s2erf(s)− 1

4
erf(s) +

1

2
√
π
se−s

2 −
√
π

2
se−s

2

erf(s)2 ,
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v

−4A0

=
1

2
ses

2

erf(s)− 1

2
√
π
s2 .

Then, the full solution of (3.56) can be assembled as

ζ01 = D1(θ)ζ
(2)
01,1 +D2(θ)ζ

(2)
01,2 + ζ

(1)
01 + ζ

(2)
01 .

Thus,

ζ01 = D1(θ)

(
s2 +

1

2

)
+D2(θ)

(
se−s

2

+
√
π

(
s2 +

1

2

)
erf(s)

)

− A0 − 4A0

[
1

4

(
s2 − 1

2

)
erf(s) +

ses
2

4
√
π

]
. (3.61)

Applying the far-field condition, we obtain

D1(θ) = A0 −
√
πD2(θ) .

Now we can write
ζ01 = D2(θ)K(s) + A0(θ)E(s) , (3.62)

where

K(s) = se−s
2 −√π

(
s2 +

1

2

)
erfc(s) ,

E(s) =

(
s2 − 1

2

)
erfc(s)− se−s

2

√
π

.

Plugging (3.61) into the integral conditions, and noting that
∫∞

0
K(s)ds = −1

3
and∫∞

0
E(s)ds = − 2

3
√
π

we obtain the following∫ π

−π
M0(θ)D2(θ) sin(nθ)dθ = − 2√

π

∫ π

−π
M0(θ)A0(θ) sin(nθ)dθ ,

∫ π

−π
M0(θ)D2(θ) cos(nθ)dθ = − 2√

π

∫ π

−π
M0(θ)A0(θ) cos(nθ)dθ . (3.63)

Now we write D2(θ)M0(θ) as a Fourier series

D2(θ)M0(θ) =
α0

2
+
∞∑
l=1

(αl cos(lθ) + βl sin(lθ)) . (3.64)

Then using (3.63) and (3.64), we can write

α0 = − 2

π
√
π

∫ π

−π
M0(θ)A0(θ)dθ ,

αl = − 2

π
√
π

∫ π

−π
M0(θ)A0(θ) cos(nθ)dθ ,
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βl = − 2

π
√
π

∫ π

−π
M0(θ)A0(θ) sin(nθ)dθ .

Using the MAPLE computer algebra system, the values of α0, α1, · · · and β1, β2, · · ·
can easily be computed and are listed in Appendix A. Then D2(θ) becomes

D2(θ) =
1

M0

(
α0

2
+
∞∑
l=1

(αl cos(lθ) + βl sin(lθ))

)
. (3.65)

For Pr = 1 the general solution for ζ01 becomes

ζ01(s, θ) = D2(θ)

[
se−s

2 −√π
(
s2 +

1

2

)
erfc(s)

]

+ A0(θ)

[(
s2 − 1

2

)
erfc(s)− se−s

2

√
π

]
(3.66)

For Pr 6= 1, we solve equation (3.56) using the method of variation of parame-
ters. The homogeneous differential equation has two linearly independent solutions
of the following form

ζ∗01,1 = s2 +
1

2
,

and

ζ∗01,2 = se−s
2

+
√
π

(
s2 +

1

2

)
erf(s) .

Thus, a particular solution to (3.56) is

ζ∗01,p = u∗ζ∗01,1 + v∗ζ∗01,2 (3.67)

where

u∗′ = −ζ
∗
01,2f

∗

R
, v∗′ =

ζ∗01,1f
∗

R
,

R = ζ∗01,1ζ
∗
01,2
′ − ζ∗01,2ζ

∗
01,1
′ = e−s

2

, f ∗ = 4A0erfc(
√
Prs) .

By integrating u∗′ and v∗′ with respect to s, and setting the arbitrary constants to
zero, we obtain

u∗ = −4A0

√
π

2
ses

2

erf(s)erfc(
√
Prs)

−4A0

√
Pr

e(1−Pr)s2

2 (1− Pr)erf(s) +
4A0

2 (1− Pr)erf
(√

Prs
)
,

v∗ =
4A0

2
ses

2 − 4A0

2
ses

2

erf(
√
Prs) +

4A0

√
Pr√
π

e(1−Pr)s2

2 (1− Pr) .

Then, the full solution of (3.56) for Pr 6= 1 can be written as

ζ01 = D̂1(θ)ζ∗01,1 + D̂2(θ)ζ∗01,2 + ζ01,p
∗
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Applying the far-field condition, we obtain

D̂1(θ) = − 4A0

2 (1− Pr) −
√
πD̂2(θ) .

Now we can write
ζ01 = D̂2(θ)K∗(s) + A0(θ)E∗(s) , (3.68)

where

K∗(s) = se−s
2 −√π

(
s2 +

1

2

)
erfc(s) ,

E∗(s) = 4

[
−
(
s2 + 1

2

)
2 (1− Pr)erfc(

√
Prs) +

s2

2
erfc(
√
Prs) +

√
Prs

2
√
π

e−Prs
2

(1− Pr)

]
.

Plugging (3.68) into the integral conditions, and noting that
∫∞

0
K∗(s)ds = −1

3
and∫∞

0
E∗(s)ds = − 2

3
√
π(1−Pr)

√
Pr

, we obtain the following∫ π

−π
M0(θ)D̂2(θ) sin(nθ)dθ = − 2√

π (1− Pr)
√
Pr

∫ π

−π
M0(θ)A0(θ) sin(nθ)dθ ,

∫ π

−π
M0(θ)D̂2(θ) cos(nθ)dθ = − 2√

π (1− Pr)
√
Pr

∫ π

−π
M0(θ)A0(θ) cos(nθ)dθ .

(3.69)
Similar to previous work, we write D̂2(θ)M0(θ) as a Fourier series

D̂2(θ)M0(θ) =
α̂0

2
+
∞∑
l=1

(
α̂l cos(lθ) + β̂l sin(lθ)

)
. (3.70)

Then using (3.69) and (3.70), we can write

α̂0 = − 2

π
√
π (1− Pr)

√
Pr

∫ π

−π
M0(θ)A0(θ)dθ ,

α̂l = − 2

π
√
π (1− Pr)

√
Pr

∫ π

−π
M0(θ)A0(θ) cos(nθ)dθ ,

β̂l = − 2

π
√
π (1− Pr)

√
Pr

∫ π

−π
M0(θ)A0(θ) sin(nθ)dθ .

Again using the MAPLE computer algebra system, the values of α̂0, α̂1, · · · and
β̂1, β̂2, · · · can be easily computed and are listed in Appendix A. Then D̂2(θ) be-
comes

D̂2(θ) =
1

M0

(
α̂0

2
+
∞∑
l=1

(
α̂l cos(lθ) + β̂l sin(lθ)

))
. (3.71)

For Pr 6= 1 the general solution for ζ01 becomes

ζ01(s, θ) = D̂2(θ)

[
se−s

2 −√π
(
s2 +

1

2

)
erfc(s)

]
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+4A0(θ)

[ −1

2(1− Pr)(s2 +
1

2
)erfc(

√
Prs)

]

+ 4A0(θ)

[
s2

2
erfc(
√
Prs) +

√
Pr

2
√
π(1− Pr)se

−Prs2
]
. (3.72)

In the above D2(θ) and D̂2(θ) have been solved explicitly using the Maple computer
algebra system.

To solve for the N = 2, 3, · · · cases, we write equation (3.54) in terms of the
Parabolic Cylinder functions. Using a similar method used in previous sections, we
can show that the solution of (3.54) has the following form

ζON = H(θ)e−
1
2
s2D−2N−1(

√
2s) + J(θ)e−

1
2
s2D2N(i

√
2s) . (3.73)

Using the far-field condition, we can show that

J(θ) = 0

then (3.73) will be

ζ0N = H(θ)e−
1
2
s2D−2N−1(

√
2s) . (3.74)

Plugging (3.74) into the integral conditions, we obtain∫ ∞
0

∫ π

−π
M0H(θ)e−

1
2
s2D−2N−1(

√
2s) sin(nθ)dθds = 0 for n = 0, 1, 2, · · · ,

∫ ∞
0

∫ π

−π
M0H(θ)e−

1
2
s2D−2N−1(

√
2s) cos(nθ)dθds = 0 for n = 0, 1, 2, · · · .

Rearranging the above equations∫ ∞
0

e−
1
2
s2D−2N−1(

√
2s)ds

∫ π

−π
M0H(θ) sin(nθ)dθ = 0 for n = 0, 1, 2, · · ·

∫ ∞
0

e−
1
2
s2D−2N−1(

√
2s)ds

∫ π

−π
M0H(θ) cos(nθ)dθ = 0 for n = 0, 1, 2, · · ·

Since
∫∞

0
e−

1
2
s2D−2N−1(

√
2s)ds 6= 0, we must have∫ π

−π
M0H(θ) sin(nθ)dθ = 0 for n = 0, 1, 2, · · · , (3.75)

∫ π

−π
M0H(θ) cos(nθ)dθ = 0 for n = 0, 1, 2, · · · . (3.76)

Now we write H(θ) as a Fourier series

H(θ) =
a0

2
+
∞∑
l=1

(al cos(lθ) + bl sin(lθ)) .
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Applying the above Fourier series into (3.75) and (3.76) we can show that

a0 = a1 = · · · = b1 = b2 = · · · = 0 .

So we conclude that

ζ0N(s, θ) = 0 for N = 2, 3, 4, · · · . (3.77)

Thus, we obtain
ζ0(t, s, θ) = tζ01 . (3.78)

In the next chapter a numerical method for determining ζ11 will be given. We
can now conclude that

ζ1(t, s, θ) = tζ11 +O(t2) . (3.79)

Summarizing, we have that the approximate analytical solution for the vorticity ζ
is

ζ(t, s, θ) = tζ01 + λtζ11 +O(λt2 + λ2) . (3.80)

3.4 Solving for the Streamfunction

3.4.1 The O(1) and O(λ) problem

The first two terms in the series (3.3), ψ0 and ψ1, satisfy the following equations

∂2ψi
∂z2

= 0 for i = 0, 1 . (3.81)

The no-slip and impermeable boundary conditions are

ψi = 0 on z = 0 , for i = 0, 1 ,

∂ψi
∂z

= 0 on z = 0 , for i = 0, 1 . (3.82)

Solving these boundary value problems yield

ψ0(z, θ) = ψ1(z, θ) = 0 . (3.83)

3.4.2 The O(λ2) problem

Then the non-zero leading-order problem corresponds to solving

∂2ψ2

∂z2
= M2

0 tζ0 , (3.84)
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and the no-slip and impermeable boundary conditions are

ψ2 =
∂ψ2

∂z
= 0 on z = 0 . (3.85)

Making use of the double expansion and the variable s = M0z, the problem reduces
to solving the following differential equations

∂2ψ2N

∂s2
= 0 for N = 0, 2, 3, · · · , (3.86)

∂2ψ21

∂s2
= ζ01 , (3.87)

subject to the no-slip and impermeable conditions

ψ2N = ψ21 =
∂ψ2N

∂s
=
∂ψ21

∂s
= 0 on s = 0 .

Solving these equations, we find that

ψ2N(s, θ) = 0 for N = 0, 2, 3, · · · , (3.88)

while for Pr = 1

ψ21(s, θ) =

√
π

48

(
3D2(θ) +

9A0(θ)√
π

)
erf(s)

−
√
π

12

[
D2(θ)erfc(s)− A0(θ)√

π
erfc(s)

]
s4

+
1

12

(
D2(θ)− A0(θ)√

π

)
s3e−s

2

+
1

24

(
5D2(θ) +

7A0(θ)√
π

)
se−s

2

−
√
π

4

(
D2(θ) +

A0(θ)√
π

)
s2erfc(s) − 1

3

(
D2(θ) +

2A0(θ)√
π

)
s , (3.89)

and when Pr 6= 1

ψ21(s, θ) =
1

16
D̂2(θ)

√
πerf(s)

+

(
3A0(θ)

8 (1− Pr) +
A0(θ)

4Pr (1− Pr)

)
erf(
√
Prs)

+

(
−D̂(θ)

√
π

12
− PrA0(θ)

6 (1− Pr)

)
s4 +

A0(θ)

6 (1− Pr)s
4erf(

√
Prs)

+
D̂(θ)

√
π

12
s4erf(s) +

D̂2(θ)

12
s3e−s

2

+

√
PrA0(θ)

6 (1− Pr)√πs
3e−Prs

2

+
5D̂2(θ)

24
se−s

2

+

(
−D̂2(θ)

√
π

2
− A0(θ)

(1− Pr)

)
s2

2
+
D̂2(θ)

√
π

4
s2erf(s)
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+

(
A0(θ)

2 (1− Pr)
√
Prπ

−
√
PrA0(θ)

12 (1− Pr)
√
Prπ

)
se−Prs

2

+
A0(θ)

2 (1− Pr)s
2erf(

√
Prs) +

(
−D̂2(θ)

3
− 2

√
PrA0(θ)

3 (1− Pr)√π

)
s . (3.90)

Thus, we obtain
ψ2(t, s, θ) = tψ21 . (3.91)

Note that ψ21 diverges as s → ∞. This is because we chose to apply the surface
conditions instead of far-field conditions when solving for ψ21.

Finally, the approximate analytical solution for the streamfunction ψ becomes

ψ(t, s, θ) = λ2tψ21 +O(λ3) . (3.92)
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Chapter 4

Numerical Solution Procedure

4.1 Solving the O(λ3) problem for Temperature

Using the series (3.1), we obtain the following equation for φ3

1

Pr

∂2φ3

∂z2
+ 2z

[
M2

0

∂φ3

∂z
+ sinh(2ξ0)z

∂φ2

∂z
+ cosh(2ξ0)z2∂φ1

∂z

]
= − 1

Pr

∂2φ1

∂θ2

+4t

[
M2

0

(
∂φ3

∂t
+

3φ3

2t

)
+ sinh(2ξ0)z

(
∂φ2

∂t
+
φ2

t

)
+ cosh(2ξ0)z2

(
∂φ1

∂t
+
φ1

2t

)]
+ 4t

[
∂ψ2

∂z

∂φ2

∂θ
+
∂ψ3

∂z

∂φ1

∂θ
− ∂ψ2

∂θ

∂φ2

∂z
− ∂ψ3

∂θ

∂φ1

∂z

]
. (4.1)

The constant heat flux and the far-field conditions are

∂φ3

∂z
= 0 on z = 0 , φ3 → 0 as z →∞ . (4.2)

Further expanding in t, and introducing the transformation w =
√
PrM0z, the

problem reduces to solving the following differential equation for φ30

∂2φ30

∂w2
+ 2w

∂φ30

∂w
− 6φ30 = − 1

PrM2
0

∂2φ10

∂θ2

+
2 cosh(2ξ0)w2

PrM4
0

(
φ10 − w

∂φ10

∂w

)
+

2 sinh(2ξ0)w√
PrM3

0

(
φ20 − w

∂φ20

∂w

)
, (4.3)

subject to the constant heat flux and the far-field conditions

∂φ30

∂w
= 0 on w = 0 , φ30 → 0 as w →∞ . (4.4)

Using the following differentials

dM0

dθ
=

sin(2θ)

2M0

,
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d2M0

dθ2
=

cos(2θ)

M0

− sin(2θ)2

4M3
0

,

and the known solutions for φ10 and φ20, we can simplify (4.3) to

M6
0

∂2φ30

∂w2
+ 2wM6

0

∂φ30

∂w
− 6M6

0φ30 = f1(w) + f2(w) cos(2θ) + f3(w) cos(4θ) . (4.5)

In the above

f1(w) = −w4e−w
2 sinh(2ξ0)2

Pr1/2π1/2
− 3

8Pr3/2
+ werf(w)

[
sinh(2ξ0)2

8Pr1/2
+

3

8Pr3/2

]

+w2e−w
2

[
cosh(2ξ0)2

Pr3/2π1/2
− sinh(2ξ0)2

4Pr1/2π1/2
− 1

4Pr3/2π1/2

]
− w3erf(w)

sinh(2ξ0)2

4Pr1/2
,

f2(w) = cosh(2ξ0)

[
1

2Pr3/2
− werf(w)

2Pr3/2
− w2e−w

2

Pr3/2π1/2

]
,

f3(w) = − 1

8Pr3/2
+
werf(w)

8Pr3/2
+

w2e−w
2

4Pr3/2π1/2
.

If we set χ = M6
0φ30, (4.5) becomes

∂2χ

∂w2
+ 2w

∂χ

∂w
− 6χ = f1(w) + f2(w) cos(2θ) + f3(w) cos(4θ) . (4.6)

Letting
χ = χ1(w) + χ2(w) cos(2θ) + χ3(w) cos(4θ) , (4.7)

equation (4.6) reduces to solving the following differential equations

d2χk
dw2

+ 2w
dχk
dw
− 6χk = fk(w) for k = 1, 2, 3 , (4.8)

subject to the constant heat flux conditions

dχk
dw

= 0 on w = 0 (4.9)

and the far-field conditions

χk → 0 as w →∞ . (4.10)

Adopting the notation χk(wi) ≡ χk,i, approximating infinity by w∞, and discretiz-
ing the equation for χk using central differences with a uniform grid having a spacing
of h = w∞/d, leads to the algebraic system of equations given by

(χk,i+1 + χk,i−1 − 2χk,i)

h2
+ 2wi

(χk,i+1 − χk,i−1)

2h
− 6χk,i = fk,i , (4.11)

for i = 1, 2, · · · , d− 1.
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Simplifying further,we obtain

(1− hwi)χk,i−1 − 2
(
1 + 3h2

)
χk,i + (1 + hwi)χk,i+1 = h2fk,i . (4.12)

Using the Taylor series, we write

χk,i+1 = χk,i + hχ′k,i +
h2

2
χ′′k,i +O(h3) , (4.13)

χk,i+2 = χk,i + 2hχ′k,i + 2h2χ′′k,i +O(h3) . (4.14)

Here, the prime denotes differentiation with respect to w.Then, subtracting 4 times
equation (4.13) from equation (4.14) gives

χk,i+2 − 4χk,i+1 = −3χk,i − 2hχ′k,i . (4.15)

Using (4.15) and setting i = 0, the constant heat flux condition in discretized form
becomes

χk,0 =
4

3
χk,1 −

1

3
χk,2 for k = 1, 2, 3 . (4.16)

The far-field conditions are simply

χk,d = 0 for k = 1, 2, 3 . (4.17)

The boundary value problem (BVP) in matrix form becomes
1 −4

3
1
3

0 .
(1− hw1) −2(1 + 3h2) (1 + hw1) 0 .

. . . . .

. 0 (1− hwd−1) −2(1 + 3h2) (1 + hwd−1)
0 . . 0 1




χk,0
χk,1
.

χk,d−1

χk,d



= h2


0
fk,1
.

fk,d−1

0

 .

If we let

Ah =


1 −4

3
1
3

0 .
(1− hw1) −2(1 + 3h2) (1 + hw1) 0 .

. . . . .

. 0 (1− hwd−1) −2(1 + 3h2) (1 + hwd−1)
0 . . 0 1

 ,

χh =


χk,0
χk,1
.

χk,d−1

χk,d

 and F h =


0
fk,1
.

fk,d−1

0

 ,
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then, we can write the BVP as

Ahχh = F h . (4.18)

Thus, we can easily solve for χk for i = 1, 2, 3 to obtain

χh = Ah
−1
F h . (4.19)

We have computed χk for k = 1, 2, 3 using the MATLAB software package, and
then constructed φ30 using

φ30(w, θ) =
χ1 + χ2 cos(2θ) + χ3 cos(4θ)

M6
0

. (4.20)

The solution for φ22 is solved using a similar procedure. The only difference is
that φ22 has to be expanded in a full Fourier series. We set

φ22(w, θ) =
R̂0

2
+
∞∑
l=1

(
R̂l cos(lθ) + Ŝl sin(lθ)

)
.

Using MATLAB, the values of R̂0, R̂1, · · · and Ŝ1, Ŝ2, · · · can be easily computed
and are listed in Appendix A.

4.2 Solving the O(λ) problem for Vorticity

Using the series (3.2), we obtain the following equation for ζ1

1

M2
0

∂2ζ1

∂z2
+ 2z

∂ζ1

∂z
+

2

M2
0

z2 sinh(2ξ0)
∂ζ0

∂z
= 4t

(
∂ζ1

∂t
+
ζ1

2t

)

+
4t

M2
0

z sinh(2ξ0)
∂ζ0

∂t
+

4t

M2
0

∂ψ2

∂z

∂ζ0

∂θ
− 4t

M2
0

∂ψ2

∂θ

∂ζ0

∂z

− 4t

M2
0

A0
∂φ2

∂z
− 4t

M2
0

zA1
∂φ1

∂z
+

4t

M2
0

B0
∂φ1

∂θ
, (4.21)

subject to far-field condition

ζ1 → 0 as z →∞ , (4.22)

and the integral conditions∫ ∞
0

∫ π

−π
M2

0 ζ1 sin(nθ)dθdz =

∫ ∞
0

∫ π

−π

(
nM2

0 − sinh(2ξ0)
)
zζ0 sin(nθ)dθdz , (4.23)

∫ ∞
0

∫ π

−π
M2

0 ζ1 cos(nθ)dθdz =

∫ ∞
0

∫ π

−π

(
nM2

0 − sinh(2ξ0)
)
zζ0 cos(nθ)dθdz ,

(4.24)
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for n = 0, 1, 2, · · · .
Introducing the transformation s = M0z, expanding in t, and using (3.78), the

problem reduces to solving the following differential equations

∂2ζ10

∂s2
+ 2s

∂ζ10

∂s
− 2ζ10 = 0 , (4.25)

∂2ζ11

∂s2
+ 2s

∂ζ11

∂s
− 6ζ11 = − 2

M3
0

s2 sinh(2ξ0)
∂ζ01

∂s
− 4

M0

A0
∂φ20

∂s

+
4

M3
0

s sinh(2ξ0)ζ01 −
4

M2
0

sA1
∂φ10

∂s
+

4

M2
0

B0
∂φ10

∂θ
, (4.26)

∂2ζ13

∂s2
+ 2s

∂ζ13

∂s
− 14ζ13 =

4

M3
0

∂ψ21

∂s

∂ζ01

∂θ
− 4

M3
0

∂ψ21

∂θ

∂ζ01

∂s
, (4.27)

∂2ζ1N

∂s2
+ 2s

∂ζ1N

∂s
− (4N + 2)ζ1N = 0 , N = 2, 4, 5, 6, · · · , (4.28)

subject to the far-field conditions

ζ1N → 0 as s→∞ , (4.29)

and the integral conditions∫ ∞
0

∫ π

−π
M2

0 ζ1N sin(nθ)dθds =

∫ ∞
0

∫ π

−π

(
nM0 −

sinh(2ξ0)

M0

)
sζ01 sin(nθ)dθds , (4.30)∫ ∞

0

∫ π

−π
M2

0 ζ1N cos(nθ)dθds =∫ ∞
0

∫ π

−π

(
nM0 −

sinh(2ξ0)

M0

)
sζ01 cos(nθ)dθds , (4.31)

for fixed N and n = 0, 1, 2, · · · .
For the N = 0 case, the homogeneous differential equation has two linearly

independent solutions of the following form: s and (e−s
2

+
√
πserf(s)). Thus, we

can write the solution to (4.25) as

ζ10 = A(θ)s+B(θ)(e−s
2

+
√
πserf(s)) , (4.32)

where A(θ) and B(θ) are arbitrary functions.

Using (4.29) we obtain
A(θ) = −√πB(θ) ,

so, (4.32) becomes

ζ10 = B(θ)
(

(e−s
2 −√πserfc(s)

)
.
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Substituting the above into (4.30),(4.31), and noting that
∫∞

0
e−s

2
ds = 1

2

√
π, and∫∞

0
serfc(s)ds = 1

4
we find that

B(θ) = 0 .

Thus, we conclude that
ζ10 = 0 . (4.33)

For the N = 1 case, using the transformation Ω = M2
0 ζ11, the problem reduces to

solving
∂2Ω

∂s2
+ 2s

∂Ω

∂s
− 6Ω = − 4

M0

A0
∂φ20

∂s
+ 4B0

∂φ10

∂θ

− 4A1s
∂φ10

∂s
− 2s2 sinh(2ξ0)

M0

∂ζ01

∂s
+

4s2

M0

sinh(2ξ0)ζ01 (4.34)

subject to far-field condition

Ω→ 0 as s→∞ , (4.35)

and the integral conditions∫ ∞
0

∫ π

−π
Ω sin(nθ)dθds =

∫ ∞
0

∫ π

−π

(
nM0 −

sinh(2ξ0)

M0

)
sζ01 sin(nθ)dθds , (4.36)

∫ ∞
0

∫ π

−π
Ω cos(nθ)dθds =

∫ ∞
0

∫ π

−π

(
nM0 −

sinh(2ξ0)

M0

)
sζ01 cos(nθ)dθds , (4.37)

for n = 0, 1, 2, · · · .
We use a similar method developed by Staniforth [32] to solve (4.34). First, we

expand Ω(s, θ) in the truncated Fourier series

Ω(s, θ) =
G0(s)

2
+

L∑
l=1

(Gl(s) cos(lθ) + Fl(s) sin(lθ)) . (4.38)

When this series is substituted into (4.34) the Fourier coefficients G0,Fl and Gl will
satisfy differential equations having the form

d2P

ds2
+ 2s

dP

ds
− 6P = Q(s) , (4.39)

where Q(s) is a known function. Also, (4.39) must obey conditions of the type

P → 0 as s→∞ , and

∫ ∞
0

Pds = Γ . (4.40)

In order to solve the above problem, we restrict our domain to a finite region. We
choose an outer boundary s∞ to approximate infinity. To find a value for s∞, we
first write the integral as∫ ∞

0

Pds =

∫ s∞

0

Pds+

∫ ∞
s∞

Pds
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and choose s∞ such that
∫∞
s∞
Pds is negligible. Thus, the following integral and

far-field conditions used to solve (4.39) numerically become

P = 0 when s = s∞ and

∫ s∞

0

Pds = Γ . (4.41)

Since (4.39) is a linear second-order differential equation, we can write the general
solution as

P = γPh + Pp , (4.42)

where Ph, Pp denote the homogeneous and particular solutions, respectively, and γ
is a yet to be determined constant.

In discretized form the differential equation (4.39) becomes

−2
(
1 + 3h2

)
P1 + (1 + hs1)P2 = h2 (Q1 + 1)− 1 for i = 1 ,

(1− hsi)Pi−1 − 2
(
1 + 3h2

)
Pi + (1 + hsi)Pi+1 = h2Qi for i = 2, · · · , d− 2 ,

(1− hsM−1)PM−2 − 2
(
1 + 3h2

)
PM−1 = h2QM−1 for i = d− 1 ,

where as before h is the uniform grid spacing and s∞ is used to approximate infinity.
We can also write the above set of equations in matrix form as AhP h = Qh where
Ah is an (d − 1) × (d − 1) tridiagonal matrix. This can be numerically solved by
using an efficient routine such as that found in Burden & Faires [4]. A unique
solution is guaranteed if the following is satisfied

h <
2

D
where D = max

0≤s≤s∞
(2s) = 2s∞.

If we construct our solution so that

Ph(0) = Pp(0) = 1 and Ph(s∞) = Pp(s∞) = 0 ,

then it follows from the integral condition that

γ =
Γ−

∫ s∞
0

Ppds∫ s∞
0

Phds
. (4.43)

Numerically solving the systems of algebraic equations for the Fourier coefficients
together with Simpson’s rule to compute the integrals, we are then able to assemble
the solution for ζ11 through the relation

ζ11(s, θ) = Ω/M2
0 . (4.44)

Using the MAPLE computer algebra system, the values ofG0, G1, · · · and F1, F2, · · ·
can easily be computed and are listed in Appendix A.

Note that ζ1N for N = 2, 3, 4, · · · are not yet determined. Lastly, higher-order
terms for the streamfunction can also be obtained numerically. However, since
these higher-order terms do not enter at the level of approximation considered, we
did not pursue this.
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Chapter 5

Results and Comparisons

Presented in this chapter are analytical results obtained by the methods described
in the previous chapters. The problem is controlled by the following dimensionless
parameters: Gr,Pr,η and r. The Prandtl number was fixed at Pr = 0.7 which
corresponds to air while the remaining parameters were varied. After running
various trial cases, the following values for the computational parameters were
selected: w∞, s∞ = 4, and L = 20. As mentioned in chapter 4, a unique solution
is guaranteed if the uniform grid spacing, h, satisfies h < 1

s∞
. Thus, h must

be less than 0.25, so we set h = 0.05 as our grid spacing. Also, the analytical
results will be compared to the fully-numerical results obtained using the procedure
described in D’Alsessio [7]. In the comparisons to be presented the analytical
solution corresponds to that which includes all the terms found either numerically
or analytically as explained in the previous chapters. Lastly, our comparisons will
focus on the temperature and vorticity.

We begin by comparing the time variation of the average surface temperature
for the case when Gr = 106, r = 0.5 and η = π

4
. Figure 5.1 contrasts the analytical

and numerical results over the period 0 ≤ t ≤ 1. It is clear from this diagram that
the two curves appear to be shifted from one another. The discrepancy seems to
originate at very small times following the impulsive startup. To investigate this
further the numerical solution procedure was started shortly after t = 0 using the
analytical solution as an initial condition. Plotted in Figure 5.2 is another compar-
ison between the numerical and analytical solutions. In this plot we have started
the numerical solution procedure at t = 0.01 instead of t = 0 using the leading
order terms in the expansions for φ, ζ and ψ as initial conditions ( including more
terms was not necessary as the contributions were small at t = 0.01). As shown
in Figure 5.2, the agreement improves significantly. This suggests that the source
of the problem is associated with the impulsive startup and how the numerical
solution procedure responds to this abrupt change. In the plots that follow, the
numerical solutions were started at t = 0.01. It is interesting to point out that
Gr = 106 for the case illustrated in Figure 5.2 and accordingly the analytical so-
lution is expected to be valid for t << 4√

Gr
= 0.004. However, the agreement is

good for much larger times as revealed in Figure 5.3. As expected the agreement
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worsens as time increases. This is clearly evident if we plot the difference between
the analytical and numerical solutions as shown in Figure 5.4. Note that the error
is not exactly zero initially because the numerical solution procedure used only the
first term in the analytical solution, not the entire solution.

We now compare the surface temperature distribution at various times for the
same case as in Figures 5.1 - 5.4 which is Gr = 106, r = 0.5 and η = π

4
. As shown in

Figure 5.5, the agreement is good over the flatter sections and poor near the tips of
the ellipse (located at θ = 0 and θ = π). We see that the temperature drops near the
tips due to curvature. Since the curvature is larger near the tips, the area to heat
up is greater. Since large areas need more energy to heat up than small areas, and
since a constant heat flux is applied to the cylinder surface, the energy applied to
each section is the same. Thus, the temperature is reduced at sections having larger
curvature than those at smaller curvature, and this is clearly evident in Figure 5.5.
With the good agreement shown in Figure 5.2 in the average surface temperature,
we would also expect the same for the surface temperature distributions. However,
the agreement in the surface temperature distribution is not as good as the average
surface temperature. The averaging process has the effect of hiding the larger errors
occurring at the tips. We must also remember that the comparisons are made well
outside the expected region of validity t << 4√

Gr
= 0.004. Since the numerical

solution procedure starts at t = 0.01, we cannot make comparisons at very small
times. Note also that the agreement does not change appreciably for the times
t = 0.05, 0.1 and 0.2 shown in Figure 5.5. The agreement is also reasonable at
the larger times t = 0.5 and 1 plotted in Figure 5.6. Shown in Figure 5.7 are the
surface vorticity distributions at times t = 0.05 and 0.1 for the same parameter
values as mentioned above. We see that the surface vorticity distributions resemble
negative sine curves. The surface vorticity becomes zero roughly at θ = π

8
and

θ = 9π
8

. Also the surface vorticity is positive (or rotates counterclockwise)in the
ranges 0 ≤ θ ≤ π

8
and 9π

8
≤ θ ≤ 2π and negative (or rotates clockwise) between

π
8
≤ θ ≤ 9π

8
. This makes physical sense since the directions of rotation indicate

the paths that buoyant fluid elements near the surface will follow before ultimately
rising vertically. Note that the agreement is not as good for the vorticity because
fewer terms were retained in that series.

We now change only the Grashof number and keep the other parameter values
the same. With Gr = 104 the region of validity is extended to t << 0.04. Figure 5.8
illustrates the surface temperature distributions for the time interval 0.05 ≤ t ≤ 0.2.
Although we are still not in the appropriate time domain, the agreement in surface
temperature does improve over the entire surface, especially at t = 0.05. Thus, we
can expect the agreement to get even better for smaller t. The agreement in surface
vorticity, shown in Figure 5.9, does not change appreciably because the leading and
dominant term in the expansion for ζ does not depend on Gr. Decreasing the value
of Gr further to Gr = 100, increases the region of validity to t << 0.4. Here,
we would expect the agreement to get even better. However, poor agreement was
obtained since Gr is not sufficiently large. Recall that the expansion assumes λ to
be small and for a fixed time t it behaves like Gr−

1
4 . Figure 5.10 shows the poor
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agreement in the average surface temperature distribution. Comparing Figures
5.5, 5.8 and 5.10 for the time interval 0.05 ≤ t ≤ 0.2, Gr = 104 provides the best
agreement. For the remaining plots we set Gr = 104.

The level of agreement will also depend on the parameters r and η. We expect
the agreement to improve as r increases (approaching a circular geometry), and
when η = 0 or π

2
(minor or major axis is aligned with gravity, respectively). Figure

5.11, confirms this prediction for the case η = π
2

and r = 0.8. Similar agreement
was found when η = 0. Notice that the temperature distribution is almost uniform
as one would expect to get for a circular cylinder, since the curvature is uniform ev-
erywhere. On the other hand, we expect the agreement to worsen when r decreases
and when η 6= 0, π

2
(that is, the cylinder configuration is not aligned with gravity).

This is also confirmed in Figure 5.12 for the case r = 0.3 and η = π
4
. Note that

the temperature distribution gets flatter as r decreases and also the temperature
changes near the tips become larger. Recall that the mapping given by equation
(2.63) is valid for 0 < r < 1. We have observed that the analytical solution gives
physical results for the range 0.25 < r < 0.9. Outside this interval the analytical
solution breaks down; that is, there is a temperature increment near the tips instead
of a decrement.

As a final note, it is worth making some connections between the results ob-
tained here with those obtained by Williams [35]. Both problems involve an abrupt
startup resulting from an initial discontinuity. In the problem studied by Williams
the initial discontinuity is in temperature while in the problem investigated here the
discontinuity is in the heat flux. The difference in the nature of the discontinuities
arise from the different boundary conditions applied. Both discontinuities lead to
the same results, that is, to heat the fluid adjacent to the surface by the mechanism
of conduction thus causing the heated fluid to rise. While quantitative comparisons
cannot be made, qualitative comparisons can be drawn. Clearly, comparisons in
the surface temperature distributions are not possible since in his case they will
be uniform due to the isothermal surface condition used. However, comparisons in
surface vorticity distributions are possible. In fact, the surface vorticity distribu-
tions obtained here are very similar to those obtained by Williams, apart from a
scaling. Both distributions resemble negative sine curves. This is interesting given
that the equations used in the two studies are significantly different due to the dif-
ferent scalings adopted. The difference in the scaling of the vorticity distributions
is a result of the different ranges in Grashof numbers considered; Williams focused
on small Gr while this study focused on large Gr.

As for comparisons with experimental studies, the work that is closest to this
study is the recent investigation by Elsayed, Ibrahim and Elsayed [11] which dealt
with free convection of air around the outer surface of a horizontal elliptic tube
maintained at constant heat flux for large Rayleigh numbers. A stainless steel
elliptic tube which had a 90 mm major axis, a 50 mm minor axis, and a 1000 mm
length was chosen. A cylindrical 1 kW electrical heater with a 10 mm diameter
placed inside the tube’s center was used as the heating element. The gap between
the heater and the inner surface of the tube was filled with fine sand. The supplied
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electrical power was measured via a digital watt meter. Eight thermocouples were
fixed on the tube surface to measure the local surface temperature. The surface heat
flux of the tube was calculated from the electrical power imparted to the heater and
the total surface area of the tube. However, in the experiments the measurements
were recorded after 3-4 hours of heating when steady-state conditions were achieved.
Since this study is only concerned with the small time behaviour, comparisons with
those experiments are not possible.
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Figure 5.1: The time variation of the average surface temperature for the case
Gr = 106, P r = 0.7, r = 0.5, η = π

4
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Figure 5.2: The time variation of the average surface temperature for the case
Gr = 106, P r = 0.7, r = 0.5, η = π

4
with modified numerical solution
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Figure 5.3: The time variation of the average surface temperature for the case
Gr = 106, P r = 0.7, r = 0.5, η = π

4
at 0 ≤ t ≤ 10
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Figure 5.4: The absolute difference between the analytical and numerical solutions
of the average surface temperature for the case Gr = 106, P r = 0.7, r = 0.5, η = π
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Figure 5.5: The surface temperature distribution for the case case Gr = 106, P r =
0.7, r = 0.5, η = π

4
, at times t = 0.05, 0.1, 0.2
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Figure 5.6: The surface temperature distribution for the case case Gr = 106, P r =
0.7, r = 0.5, η = π

4
, at times t = 0.5, 1
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Figure 5.7: The surface vorticity distribution for the case Gr = 106, P r = 0.7, r =
0.5, η = π
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, at times t = 0.05, 0.1
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Figure 5.8: The surface temperature distribution for the case case Gr = 104, P r =
0.7, r = 0.5, η = π

4
, at times t = 0.05, 0.1, 0.2
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Figure 5.9: The surface vorticity distribution for the case Gr = 104, P r = 0.7, r =
0.5, η = π

4
, at times t = 0.05, 0.1

57



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

t

A
v
e
ra

g
e
 S

u
rf

a
c
e
 T

e
m

p
e
ra

tu
re

 

 
Numerical
Analytical

Figure 5.10: The time variation of the average surface temperature for the case
Gr = 102, P r = 0.7, r = 0.5, η = π

4
at 0 ≤ t ≤ 0.5
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Figure 5.11: The surface temperature distribution for the case case Gr = 104, P r =
0.7, r = 0.8, η = π

2
, at times t = 0.05, 0.1, 0.2
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Figure 5.12: The surface temperature distribution for the case Gr = 104, P r =
0.7, r = 0.3, η = π

4
, at times t = 0.05, 0.2

60



Chapter 6

Summary

In this study the unsteady problem of laminar two-dimensional free convection
from an inclined elliptic tube emitting a constant heat flux at the surface was
investigated. The tube is inclined at an arbitrary angle η with the horizontal, and
is surrounded by an incompressible viscous Boussinesq fluid which is infinite in
extent. Initially, a constant heat flux Q is applied to the surface of the tube, and
both the tube and surrounding fluid have the same initial temperature T∞, where
T∞ is the far-field temperature of the fluid. We were interested specifically in the
initial development of the flow and heat transfer process. To solve the Navier-Stokes
and energy equations analytically, a double series expansion was applied to the flow
variables. This enabled us to obtain a solution valid for small times, t, and large
Grashof numbers, Gr. The higher-order terms in the expansion were increasingly
difficult to obtain analytically, so they were determined numerically.

The average surface temperature as well as surface vorticity and surface tem-
perature distributions were determined from the derived approximated analytical
solutions. Agreement between the analytical and fully numerical results [7] was
reasonable provided that t << 4/

√
Gr and Gr is sufficiently large. Agreement

improved as r was increased and when η was set to either 0 or π
2
. The analytical

solution accurately predicted the surface temperature behaviour immediately fol-
lowing the abrupt startup while the numerical solution could not respond quickly
enough. While the analytical solution may have limited usefulness, it is still im-
portant given that the exact solution is still unknown. At the very least, it serves
to furnish an initial condition to help get past the impulsive startup, as it was used
in this study.

An obvious extension of this work is to examine the limiting case of large t and
large Gr. This will likely involve a fully numerical investigation.
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Appendix A

Fourier Coefficients

A.1 α0, α1, · · · and β0, β1, · · · values

Listed in table A.1 are the first 20 Fourier coefficients of (3.65), and they are defined
as follows

α0 = − 2

π
√
π

∫ π

−π
M0(θ)A0(θ)dθ ,

αl = − 2

π
√
π

∫ π

−π
M0(θ)A0(θ) cos(nθ)dθ ,

βl = − 2

π
√
π

∫ π

−π
M0(θ)A0(θ) sin(nθ)dθ .

α0 = 0 α1 = −0.3445496 α2 = 0 α3 = 0.0709378
α4 = 0 α5 = 0.0062749 α6 = 0 α7 = 0.0010755
α8 = 0 α9 = 0.0002277 α10 = 0 α11 = 0.0000537
α12 = 0 α13 = 0.0000135 α14 = 0 α15 = 0.0000036
α16 = 0 α17 = 0.0000009 α18 = 0 α19 = 0.0000002

β1 = 0.9513136 β2 = 0 β3 = −0.1203389
β4 = 0 β5 = −0.0089868 β6 = 0 β7 = −0.0014121
β8 = 0 β9 = −0.0002835 β10 = 0 β11 = −0.0000645
β12 = 0 β13 = −0.0000158 β14 = 0 β15 = −0.0000041
β16 = 0 β17 = −0.0000011 β18 = 0 β19 = −0.0000002

Table A.1: The first 20 values of α0, α1, · · · and β1, β2, · · · when Pr = 1

We use the following analytical argument to show that αeven and βeven are zero.
Since

M2
0 (θ) =

1

2
[cosh(2ξ0)− cos(2θ)] = cosh2(ξ0)− cos2(θ) ,
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we can write M0 as

M0(θ) = cosh(ξ0)

(
1− cos2(θ)

cosh2(ξ0)

) 1
2

.

Since −1 ≤ cos(θ)
cosh(ξ0)

≤ 1, we can apply the Binomial series to obtain

M0(θ) = cosh(ξ0)
∞∑
n=0

(
1
2

n

)
(−1)n cos2n(θ)

cosh2n(ξ0)
,

and the identity

cos2n(θ) =
1

22n

(
2n

n

)
+

1

22n−1

n−1∑
k=0

(
2n

k

)
cos(2(n− k)θ) ,

we can write M0 as

M0(θ) = cosh(ξ0)
∞∑
n=0

(
1
2

n

)
(−1)n

cosh(ξ0)2n

[
1

22n

(
2n

n

)
+

1

22n−1

n−1∑
k=0

(
2n

k

)
cos(2(n− k)θ)

]
.

Thus, M0(θ) is a series involves cos(2lθ). Since

A0(θ) = sinh(ξ0) cos(η) cos(θ)− cosh(ξ0) sin(η) sin(θ) ,

we see that A0(θ) cos(nθ) contains terms cos(θ) cos(nθ) and sin(θ) cos(nθ). Since

cos(θ) cos(nθ) =
1

2
[cos((n+ 1)θ) + cos((n− 1)θ)] ,

sin(θ) cos(nθ) =
1

2
[sin((n+ 1)θ)− sin((n− 1)θ)] ,

for n even A0(θ) cos(nθ) contains terms involving odd harmonics. Using orthogo-
nality, it follows that αn = 0 for n = 0, 2, 4, · · · .

Similarly, A0(θ) sin(nθ) contains terms cos(θ) sin(nθ) and sin(θ) sin(nθ). Since

cos(θ) sin(nθ) =
1

2
[sin((n− 1)θ) + sin((n+ 1)θ)] ,

sin(θ) sin(nθ) =
1

2
[cos((n− 1)θ)− cos((n+ 1)θ)] ,

and using the same argument as above we conclude that βn = 0 for n = 2, 4, 6 · · · .
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A.2 α̂0, α̂1, · · · and β̂0, β̂1, · · · values

The first 20 Fourier coefficients of (3.71) are defined and listed in table A.2 as
follows

α̂0 = − 2

π
√
π (1− Pr)

√
Pr

∫ π

−π
M0(θ)A0(θ)dθ ,

α̂l = − 2

π
√
π (1− Pr)

√
Pr

∫ π

−π
M0(θ)A0(θ) cos(nθ)dθ ,

β̂l = − 2

π
√
π (1− Pr)

√
Pr

∫ π

−π
M0(θ)A0(θ) sin(nθ)dθ .

α̂0 = 0 α̂1 = −1.3727184 α̂2 = 0 α̂3 = 0.2826229
α̂4 = 0 α̂5 = 0.02499992 α̂6 = 0 α̂7 = 0.0042849
α̂8 = 0 α̂9 = 0.0009073 α̂10 = 0 α̂11 = 0.0002139
α̂12 = 0 α̂13 = 0.0000539 α̂14 = 0 α̂15 = 0.0000142
α̂16 = 0 α̂17 = 0.0000038 α̂18 = 0 α̂19 = 0.0000008

β̂1 = 3.7901242 β̂2 = 0 β̂3 = −0.4794415

β̂4 = 0 β̂5 = −0.0358043 β̂6 = 0 β̂7 = −0.0056257

β̂8 = 0 β̂9 = −0.0011296 β̂10 = 0 β̂11 = −0.0002571

β̂12 = 0 β̂13 = −0.0000631 β̂14 = 0 β̂15 = −0.0000163

β̂16 = 0 β̂17 = −0.0000044 β̂18 = 0 β̂19 = −0.0000001

Table A.2: The first 20 values of α̂0, α̂1, · · · and β̂1, β̂2, · · · when Pr = 0.7

The previous argument also shows that α̂even and β̂even are zero.
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A.3 G0, G1, · · · and F0, F1, · · · values

Listed in table A.3 are the first 20 Fourier coefficients of (4.38).

G0 = 0 G1 = −0.3489500 G2 = 0 G3 = −0.1109000
G4 = 0 G5 = −0.0364720 G6 = 0 G7 = −0.0120720
G8 = 0 G9 = −0.0040055 G10 = 0 G11 = −0.0013308
G12 = 0 G13 = −0.0004425 G14 = 0 G15 = −0.0001472
G16 = 0 G17 = −0.0000490 G18 = 0 G19 = −0.0000163

F1 = 0.3639500 F2 = 0 F3 = 0.1121700
F4 = 0 F5 = 0.0366900 F6 = 0 F7 = 0.0121180
F8 = 0 F9 = 0.0040165 F10 = 0 F11 = 0.0013336
F12 = 0 F13 = 0.0004432 F14 = 0 F15 = 0.0001474
F16 = 0 F17 = 0.0000490 F18 = 0 F19 = 0.0000017

Table A.3: The first 20 values of G0, G1, · · · and F1, F2, · · · when Pr = 0.7

A.4 R̂0, R̂1, · · · and Ŝ0, Ŝ1, · · · values

Listed in table A.4 are the first 12 Fourier coefficients of φ22.

R̂0 = 0 R̂1 = 0.065306 R̂2 = 0 R̂3 = 0.016005

R̂4 = 0 R̂5 = 0.003413 R̂6 = 0 R̂7 = 0.000498

R̂8 = 0 R̂9 = 0.000046 R̂10 = 0 R̂11 = 0.000001

Ŝ1 = −0.009842 Ŝ2 = 0 Ŝ3 = −0.002483

Ŝ4 = 0 Ŝ5 = −0.002749 Ŝ6 = 0 Ŝ7 = −0.001556

Ŝ8 = 0 Ŝ9 = −0.000731 Ŝ10 = 0 Ŝ11 = −0.000002

Table A.4: The first 12 values of R̂0, R̂1, · · · and Ŝ0, Ŝ1, · · · when Pr = 0.7
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Appendix B

Alternate Expansion Procedure

In this appendix an alternate expansion procedure is outlined. Recall the tempera-
ture, vorticity and streamfunction equations in the elliptical coordinate system are
given by

M2∂φ

∂t
=
∂ψ

∂θ

∂φ

∂ξ
− ∂ψ

∂ξ

∂φ

∂θ
+

1√
GrPr

(
∂2φ

∂ξ2
+
∂2φ

∂θ2

)
, (B1)

M2∂ζ

∂t
=
∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

1√
Gr

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
+ A(ξ, θ)

∂φ

∂ξ
−B(ξ, θ)

∂φ

∂θ
, (B2)

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
= M2ζ . (B3)

We define a boundary-layer coordinate z given by

ξ = λz where λ =

√
4t√
Gr

.

If we set t = εT where ε denotes a small parameter, then λ becomes

λ =

√
4εT√
Gr

.

Various partial derivatives will have the following form when expressed in terms of
ε and Gr

∂Φ

∂ξ
=

1

λ

∂Φ

∂z
=

Gr
1
4

2
√
εT

∂Φ

∂z
,

∂2Φ

∂ξ2
=

1

λ2

∂2Φ

∂z2
=

√
Gr

4εT

∂2Φ

∂z2
,

∂Φ

∂t
=
∂Φ

∂T

dT

dt
+
∂Φ

∂z

dz

dT

dT

dt
=

1

ε

∂Φ

∂T
− z

2εT

∂Φ

∂z
,

where Φ denotes φ, ζ, or ψ.
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Equations (B1),(B2) and (B3) now become

4M2T
∂φ

∂T
− 2zM2∂φ

∂z
= 2
√
εTGr

1
4

(
∂ψ

∂θ

∂φ

∂z
− ∂ψ

∂z

∂φ

∂θ

)

+
1

Pr

∂2φ

∂z2
+

4εT√
GrPr

∂2φ

∂θ2
, (B4)

4M2T
∂ζ

∂T
− 2zM2∂ζ

∂z
= 2
√
εTGr

1
4

(
∂ψ

∂θ

∂ζ

∂z
− ∂ψ

∂z

∂ζ

∂θ

)
+
∂2ζ

∂z2
+

4εT√
Gr

∂2ζ

∂θ2
+ 2
√
εTGr

1
4A

∂φ

∂z
− 4εTB

∂φ

∂θ
, (B5)

∂2ψ

∂z2
+

4εT√
Gr

∂2ψ

∂θ2
=

4M2εT√
Gr

ζ . (B6)

If 1√
Gr

= O(ε), then 1√
Gr

= µε where µ is an O(1) constant. Equations (B4) -

(B6) written in terms of the small parameter ε now become

4M2T
∂φ

∂T
− 2zM2∂φ

∂z
= 2

√
T√
µ

(
∂ψ

∂θ

∂φ

∂z
− ∂ψ

∂z

∂φ

∂θ

)

+
1

Pr

∂2φ

∂z2
+

4µTε2

Pr

∂2φ

∂θ2
, (B7)

4M2T
∂ζ

∂T
− 2zM2∂ζ

∂z
= 2

√
T√
µ

(
∂ψ

∂θ

∂ζ

∂z
− ∂ψ

∂z

∂ζ

∂θ

)
+
∂2ζ

∂z2
+ 4µTε2

∂2ζ

∂θ2
+ 2

√
T√
µ
A
∂φ

∂z
− 4TεB

∂φ

∂θ
, (B8)

∂2ψ

∂z2
+ 4µTε2

∂2ψ

∂θ2
= 4µTε2M2ζ . (B9)

We next expand the flow variables in powers of ε as follows

φ = φ0 + εφ1 + ε2φ2 + · · · , (B10)

ζ = ζ0 + εζ1 + ε2ζ2 + · · · , (B11)

ψ = ψ0 + εψ1 + ε2ψ2 + · · · . (B12)

Various partial derivatives will have the following form

∂Φ

∂T
=
∂Φ0

∂T
+ ε

∂Φ1

∂T
+ ε2

∂Φ2

∂T
+ · · · , (B13)

∂Φ

∂z
=
∂Φ0

∂z
+ ε

∂Φ1

∂z
+ ε2

∂Φ2

∂z
+ · · · , (B14)
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∂Φ

∂θ
=
∂Φ0

∂θ
+ ε

∂Φ1

∂θ
+ ε2

∂Φ2

∂θ
+ · · · . (B15)

where Φ denotes φ, ζ, or ψ.

According to Chapter 3 (page 21), the functions M2, A and B will have the
following form when expanded for small ε

M2(z, θ, T ) = M2
0 (θ) + 2

√
µ
√
Tε sinh(2ξ0)z + 4µTε2 cosh(2ξ0)z2 + · · · , (B16)

A(z, θ, T ) = A0(θ) + 2
√
µ
√
TεA1(θ)z + 2µTε2A0(θ)z2 + · · · , (B17)

B(z, θ, T ) = B0(θ) + 2
√
µ
√
TεB1(θ)z + 2µTε2B0(θ)z2 + · · · , (B18)

where the functions A0(θ), B0(θ), A1(θ) and B1(θ) are defined on page 22.

Substituting the series (B10) - (B12) and (B16) - (B18) into equations (B7) -
(B9) we obtain the following equations at various orders of ε.

The O(1) and O(ε) problems for the streamfunction reduce to solving the fol-
lowing equations for ψ0 and ψ1, respectively,

∂2ψ0

∂z2
= 0 , (B19)

∂2ψ1

∂z2
= 0 . (B20)

In order to satisfy the no-slip and impermeable boundary conditions (2.95), both
ψ0 and ψ1 must be zero. Thus, series (B12) becomes

ψ = ε2ψ2 + ε3ψ3 + · · · . (B21)

The O(ε2) problem for the streamfunction will have the following form

∂2ψ2

∂z2
= 4µM0

2Tζ0 , (B22)

and is in agreement with equation (3.84), apart from a factor of 4µ.

Next we proceed to the O(1) problem for the temperature. This corresponds to
solving the following equation for φ0

4M0
2T
∂φ0

∂T
− 2zM0

2∂φ0

∂z
=

1

Pr

∂2φ0

∂z2
. (B23)

This equation is in exact agreement with equation (3.7). Applying the constant
heat flux condition (2.96), it follows that φ0 = 0. Thus, series (B10) becomes

φ = εφ1 + ε2φ2 + · · · . (B24)

Since ψ0 = ψ1 = φ0 = 0, the nonlinear term will not appear in the O(ε) and O(ε2)
problems for the temperature. Thus, the equations for φ1 and φ2 are

4M0
2T
∂φ1

∂T
− 2zM0

2∂φ1

∂z
=

1

Pr

∂2φ1

∂z2
, (B25)
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4M0
2T
∂φ2

∂T
− 2zM0

2∂φ2

∂z
+ 4
√
µ
√
Tz sinh(2ξ0)

(
2T

∂φ1

∂T
− z∂φ1

∂z

)
=

1

Pr

∂2φ2

∂z2
. (B26)

Note that equation (B25) is similar to (3.21); the only difference is that (3.21) has
the extra term −2φ1. Equation (B26), on the other hand, is quite different from
(3.32). The nonlinear term makes an appearance in (3.32) but not in (B26). In
addition, (3.32) contains two extra terms.

Finally, the O(1), O(ε) and O(ε2) problems for the vorticity yield the following
equations for ζ0, ζ1 and ζ2, respectively,

4M0
2T
∂ζ0

∂T
− 2zM0

2∂ζ0

∂z
=
∂2ζ0

∂z2
, (B27)

4M0
2T
∂ζ1

∂T
− 2zM0

2∂ζ1

∂z
+ 4
√
µ
√
Tz sinh(2ξ0)

(
2T

∂ζ0

∂T
− z∂ζ0

∂z

)
=
∂2ζ1

∂z2

+2A0

√
T√
µ

∂φ1

∂z
, (B28)

4M0
2T
∂ζ2

∂T
− 2zM0

2∂ζ2

∂z
+ 4
√
µ
√
Tz sinh(2ξ0)

(
2T

∂ζ1

∂T
− z∂ζ1

∂z

)
+8µTz2 cosh(2ξ0)

(
2T

∂ζ0

∂T
− z∂ζ0

∂z

)
=
∂2ζ2

∂z2

+
2
√
T√
µ

(
∂ψ2

∂θ

∂ζ0

∂z
− ∂ψ2

∂z

∂ζ0

∂θ

)
+ 4µT

∂2ζ0

∂θ2

+
2
√
T√
µ

(
A0
∂φ2

∂z
+ 2A1

√
µ
√
Tz

∂φ1

∂z

)
+ 4TB0

√
µ
∂φ1

∂θ
. (B29)

When the leading order equation (B27) is compared with equation (3.49), we see
that the source term in (3.49) is not present in (B27). Equation (B27) can be
solved by separation of variables as follows. In terms of the variable s = M0z,
equation (B27) transforms to

∂2ζ0

∂s2
+ 2s

∂ζ0

∂s
= 4T

∂ζ0

∂T
. (B30)

Setting ζ0(s, T ) = X(s)Y (T ) and substituting into (B30) it follows that

Y (T ) = aT
k
4 , (B31)

where k is the separation constant and a is an arbitrary constant. Imposing the
initial condition (2.99), we must have that k ≥ 0. ThenX(s) satisfies the differential
equation

d2X

ds2
+ 2s

dX

ds
− kX = 0 . (B32)

69



Applying the integral conditions (3.51), the far-field condition (2.97) and the prop-
erties of the Parabolic Cylinder Functions, it can be shown that ζ0(s, T ) = 0. Thus,
series (B11) now becomes

ζ = εζ1 + ε2ζ2 + ε3ζ3 + · · · . (B33)

It then follows that ψ2 = 0 from equation (B22). Thus, equation (B28) simplifies
to

4M0
2T
∂ζ1

∂T
− 2zM0

2∂ζ1

∂z
=
∂2ζ1

∂z2
+ 2A0

√
T√
µ

∂φ1

∂z
. (B34)

Equation (B34) is now in close agreement with equation (3.49), apart from a factor

of 2
√
T√
µ

. Equation (B29) also simplifies to

4M0
2T
∂ζ2

∂T
− 2zM0

2∂ζ2

∂z
+ 4
√
µ
√
Tz sinh(2ξ0)

(
2T

∂ζ1

∂T
− z∂ζ1

∂z

)

=
∂2ζ2

∂z2
+

2
√
T√
µ

(
A0
∂φ2

∂z
+ 2A1

√
µ
√
Tz

∂φ1

∂z

)
+ 4TB0

√
µ
∂φ1

∂θ
. (B36)

The first nonzero term in the streamfunction expansion, ψ3, satisfies

∂2ψ3

∂z2
= 4µM0

2Tζ1 , (B36)

which also agrees with equation (3.84), apart from a factor of 4µ.

In summary, the first nonzero terms in the expansions for ψ, φ and ζ are ψ3, φ1

and ζ1, respectively, and satisfy very similar equations as those obtained using the
expansion procedure in Chapter 3. This leads one to ask whether one procedure is
advantageous over the other. The answer to this depends on the goal of the exercise.
Certainly the approach outlined here is more traditional and less complicated than
that of Chapter 3. However, the method of Chapter 3 has at least two advantages
over this one. First, the method of Chapter 3 provides a systematic procedure
by which analytical solutions can be obtained, whereas the approach here leads to
equations (such as (B26) and (B34)) that are too complicated to solve analytically.
Second, the small parameter λ used in Chapter 3 is one that is suggested by the
physics. To see this, we examine the equation (2.79). Retaining the dominant terms
for small times leads to the conduction equation given by

∂φ

∂t
=

1

M0
2Pr
√
Gr

∂2φ

∂ξ2
, (B37)

where

M0
2(θ) =

1

2
(cosh(2ξ0)− cos(2θ)) . (B38)

The solution to (B37) satisfying the boundary conditions

1

M0

(
∂φ

∂ξ

)
= −1 on ξ = 0 and φ→ 0 as ξ →∞
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is found to be

φ(ξ, θ, t) =
t
√
Pr√
4t√
Gr

 1√
πM0

e
−M0

2Prξ2

4t√
Gr − ξ

√
Pr√
4t√
Gr

erfc

M0

√
Prξ√
4t√
Gr

 4M0√
Gr

. (B39)

Expressed this way we see that the solution naturally involves the similarity variable
z∗ defined by

z∗ =

√
PrM0ξ

λ
where λ =

√
4t√
Gr

.

For these reasons together with the fact that this was primarily an analytical study,
the procedure of Chapter 3 is more appropriate.
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