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Abstract

We present a well-defined framework to deform the phase spaces of classical particles.
These new phase spaces, called Heisenberg doubles, provide a laboratory to probe the
effects of quantum gravity. In particular, they allow us to equip momentum space with
a non-abelian group structure by the introduction of a single deformation parameter. In
order to connect Heisenberg doubles with classical phase spaces we begin with a review of
Hamiltonian systems, symmetries and conservation laws in the classical framework. Next,
we provide a comprehensive review of the theory behind Poisson-Lie groups, including Lie
bialgebras and the construction of the Drinfeld double. Lastly, we build the Heisenberg
double from Poisson-Lie group components. We then identify the Heisenberg double as
a deformation of the cotangent bundle of Lie groups and extend many of the notions of
classical Hamiltonian systems to this new picture with Poisson-Lie symmetries. As an
example, we look at a new presentation of the deformed rotator.
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Chapter 1

Introduction

‘As quantum mechanics is to classical mechanics, quantum groups are to Lie groups’ 1

In classical mechanics phase space (most of the time) is the cotangent bundle of con-
figuration space and symmetries are captured by Lie groups. In the following we present
a well-defined method to deform this picture based on the theory of Poisson-Lie groups.
Most notably this new phase space, called the Heisenberg double, allows us to introduce
curvature in momentum space controlled by a single deformation parameter. Usual mo-
mentum spaces are flat and consist of the collection of cotangent planes of a configuration
space. This curvature is relevant in the context of constructing effective models for quan-
tum gravity. In particular, this new type of phase space allows us to introduce a scale
by hand in the momentum space to generate first order quantum gravity effects while
maintaining some symmetries. Heisenberg doubles have already been used to investigate
models of 3 dimensional loop gravity [14]. Some other approaches where this development
is relevant include relative locality [7, 24, 13] and κ-Minkowski space [8, 19]. A particular
case of interest is the dynamics of deformed particles in (2+1) dimensional gravity with
Lorentzian and Euclidean metric [12, 9, 35] and in (3+1) dimensional gravity [26]. The
inclusion of spin presents a challenge to be tackled in future work.

The author aims to provide a consistent and comprehensive introduction to the theory
of Poisson-Lie groups for physicists unfamiliar with the subject, since much of the literature
on Poisson-Lie groups is directed towards the study of integrable systems and intended for
mathematicians. This material will also provide the background necessary to understand

1This statement is paraphrased from the introductory sentence of Chapter 1 of [16].
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the construction of the Heisenberg double. Further, the Heisenberg double will be intro-
duced and presented as a well-defined framework for deforming the phase spaces of classical
particles. In particular, it has been known that Heisenberg doubles are a generalization
of cotangent bundles of Lie groups (the phase spaces of classical particles) [36, 3] and it
will be shown that many familiar notions, like momentum maps and conservation laws,
carry over to this new framework. New contributions in this thesis include the extension
of body and space coordinates to Heisenberg doubles and the momentum maps of the left
and right action of the Drinfeld double (the symmetry structure of the Heisenberg double)
and it subgroups on the Heisenberg double. Several new examples are presented along the
way, including a new representation of the deformed spinning top, whose phase space cor-
responds with a (2+1) gravity model with Euclidean signature and negative cosmological
constant.

Poisson-Lie groups are of interest, not only to those studying integrable systems, but
to the greater physics community because they are the classical limit of quantum groups 2.
Quantum groups are seen as a generalization of the symmetries given by Lie groups and
are utilized in order to encompass quantum gravitational effects. Hence they provide new
types of symmetries relevant in the study of the quantum gravity regime. Since Poisson-
Lie group symmetries are the classical analog of these symmetries it is hoped that the
study of classical systems with Poisson-Lie group symmetries will provide insight into the
corresponding quantized system where quantum gravitational effects will be apparent [32].
This thesis provides a stepping stone between classical mechanics and quantum groups via
classical systems with Poisson-Lie group symmetries.

The approach presented brings together a number of important features. Firstly,
Heisenberg doubles are mathematically well-defined objects and so provide a concrete
foundation to develop and study physically interesting models. Secondly, they provide
a bridge between quantum groups and classical mechanics by new types of symmetries.
Poisson-Lie group symmetries are not canonical symmetries in that they don’t need to
preserve the symplectic structure of the phase space but are defined so that the Poisson
brackets are invariant once the symmetry group is equipped with a non-trivial Poisson
bracket itself. Further, with Heisenberg doubles we are able to introduce curvature into
momentum space by introducing a deformation parameter to ideally encode some quantum
gravitational effects. In the limit of this parameter we recover the classical ‘cotangent bun-
dle picture’ with flat momentum space. This curvature corresponds to momentum space

2Quantum groups are an active area of research in the physics community in the context of non-
commutative spacetimes. They can be understood as deformations of the algebra of functions on a Lie
group, or equivalently, as a deformation of the universal enveloping algebra of the associated Lie algebra
[16, 27, 36].
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being equipped with a non-abelian group structure and implies that the corresponding
quantized theory would be inherently non-local, a feature desired by some approaches to
quantum gravity. This introduces new and interesting problems, such as, how does one
add momenta? This thesis doesn’t aim to answer these questions but aims to provide a
comprehensive foundation to build and investigate models with these novel features that
are anchored to a classical system, particularly in the context of quantum gravity theories.

This thesis begins with a review of classical mechanics in the modern Hamiltonian for-
malism. We describe the important roles that the phase space and Hamiltonian function
play in determining the equations of motion. We review symmetries and the characteriza-
tion of classical particles, group actions and their corresponding momentum maps. Then
we present a version of Noether’s theorem that holds in this picture. Next we take a special
look at the cotangent bundles of Lie groups. We cover in detail their canonical symplectic
form and Poisson structure as well as their global trivializations. Lastly, we conclude by
presenting Euler’s conservation law. All of these pieces are connected to familiar physical
examples throughout.

Next we introduce Poisson-Lie groups and outline the theory behind them beginning
with Poisson manifolds. We define Poisson-Lie groups by equipping a Lie group with a
Poisson structure compatible with its product. At the infinitesimal level we find Poisson-
Lie groups have a corresponding Lie bialgebra structure. These are Lie algebras together
with a special linear map called a cocommutator. The relation between Poisson-Lie groups
and Lie bialgebras is captured by a theorem of Drinfeld, which effectively states there is
a one to one relation between Lie bialgebras and connected, simply connected Poisson-
Lie groups. We will see that the cocommutator defines a dual Lie bialgebra structure
so that Lie bialgebras and, in turn, Poisson-Lie groups always come in dual pairs. Next
we look at a special class of Lie bialgebras, called coboundary Lie bialgebras. They have
cocommutators of a special form defined by r-matrices. Using this theory we show how
to construct a double Lie bialgebra from a dual pair of Lie bialgebras and a canonical r-
matrix. Then, for the first time, it is shown that the group corresponding to the double Lie
bialgebra admits factorizations that correspond exactly to the trivializations of cotangent
bundles of Lie groups seen in the first section. Equipping the double group with the
Poisson structure associated to the r-matrix we construct the Drinfeld double which is a
Poisson-Lie group built out of a pair of dual Poisson-Lie groups. Poisson-Lie groups are
best studied in terms of the Drinfeld double since it captures all the ‘symmetries’ present
in the construction of Poisson-Lie groups. Since we are concerned in this presentation only
with physics at the classical level we don’t cover the quantization of Poisson-Lie groups
and its relation to quantum groups.

In the last section we finally reveal the Heisenberg double. It is simply the double group
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with an affine Poisson structure. Heisenberg doubles are not Poisson-Lie groups themselves
but nonetheless are built out of Poisson-Lie group components. We show how a Heisenberg
double is related to cotangent bundles of Lie groups. We will see that a Heisenberg double
constructed from a Lie group with trivial Poisson structure shares the same manifold
and Poisson structure as a cotangent bundle on that group with its canonical Poisson
structure. Hence introducing a scale parameter into the Poisson-structure of a Poisson-
Lie group allows us to go from a Heisenberg double to its associated cotangent bundle
in the limit. Further, we see that equivalent notions of momentum maps and Noether’s
theorem hold on the Heisenberg double. Also, for the first time, Euler’s conservation law
is presented in this setting, as well as the momentum maps of the full symmetry structure
(the Drinfeld double) acting on the Heisenberg double. We conclude by investigating a
new representation of the deformed rotator.

In the following we assume all objects are real, smooth and of finite dimension, un-
less stated otherwise. All groups considered are Lie groups. We have also used Einstein
summation convention throughout the thesis.
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Chapter 2

Hamiltonian Systems, Particles and
Symmetry

The following is a review of the contemporary formulation of Hamiltonian mechanics that
will be relevant in the upcoming discussion. We do not go into full details here. The
interested reader should consult [1].

We also give a definition of a classical particle based on space-time symmetry groups.
Using this outlook we examine the consequent phase spaces with examples.

2.1 Hamiltonian Mechanics

Hamiltonian mechanics is built from the notions of a phase space and energy function.
Phase space is captured by a symplectic manifold (M,ω) (the symplectic form ω is a closed
non-degenerate 2-form). The energy function H ∈ F(M) is the Hamiltonian of the system.
Together these form a Hamiltonian system (M,ω,H) from which the equations of motion
can be found. Hamilton’s equations, which can be presented succinctly in geometric terms
as

ω(XH , ·) = dH (2.1)

define the Hamiltonian vector fieldXH ∈ X(M) where X(M) is the space of vector fields
on the manifold M . The trajectories of the system are the flow lines of the Hamiltonian
vector field. The flow parameter is identified as time and the Hamiltonian vector field is
said to generate time translation.
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Example 2.1. Consider a free particle of mass m travelling in one dimension with position
and momentum given by (q, p) ∈ R2. Then M = R2 is our phase space with canonical

symplectic form ω = dq ∧ dp. Letting H = p2

2m
, the associated Hamiltonian vector field is

XH = p
m

∂
∂q

. Since the Hamiltonian vector field generates time translation, i.e. XH = d
dt

,

we find dp
dt

= 0 and dq
dt

= p
m

. This tells us that the particle has constant momentum p = p0
and motion given by q(t) = p

m
t + q0 where p0, q0 ∈ R are constants dependent on initial

conditions.

Since the phase space (M,ω) is symplectic there always exist, by Darboux’s theorem [1],
local coordinates (qi, pi) called canonical coordinates where the symplectic form can be
written ω = dqi ∧ dpi. In these coordinates

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

and Hamilton’s equations (2.1) take on a familiar form

dpi
dt

= −∂H
∂qi

,
dqi

dt
=
∂H

∂pi
.

Both the Hamiltonian H and symplectic form ω determine the systems behaviour.
Different choices of Hamiltonian clearly lead to different behaviours of the system, but
ω is free to be chosen as well as long as it remains a symplectic form. For example,
the introduction of a magnetic field changes the kinematics of a charged particle which
corresponds to a change in ω [38]. The freedom in our choice of symplectic form will be
exploited and expanded upon later in this paper. The symplectic form is in fact where our
deformation parameter will lie.

The classical algebra of observables of a Hamiltonian system is the algebra of functions
F(M) on the phase space. This algebra is associative and commutative with pointwise
product. Using the symplectic form we can equip this algebra with an extra structure, a
Poisson bracket. The Poisson bracket formalism provides one of the clearest connections
between classical and quantum physics. This formalism will be relied upon extensively
in the following and so will be reviewed first in the context of our classical Hamiltonian
formalism.

The Poisson bracket of two functions f, h ∈ F(M) is the function

{f, h} = ω(Xf , Xh). (2.2)
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Note that we can also write {f, h} = df(Xh) since df = ω(Xf , ·). We may immediately
note the that the bracket is skew-symmetric and satisfies the Jacobi identity since the
symplectic form is skew-symmetric and closed (i.e. 0 = dω(Xf , Xg, Xh) =	f,g,h {f, {g, h}}
for all f, g, h ∈ F(M)). A more general way to get a Poisson bracket is to equip the
manifold with a Poisson bivector Π ∈ ∧2TM such that the bracket

{f, h} = Π(df, dh)

is a Lie bracket on F(M). The details of this construction and the properties of Poisson
structures will be explained in detail in section 3.1.

In canonical coordinates the bracket takes the familiar form

{f, h} =
∂f

∂pi

∂h

∂qi
− ∂f

∂qi
∂h

∂pi
.

From this expression, it is easy to see that XH = {H, ·} so that the Hamiltonian vector field
is easily defined using the Poisson structure. The evolution of any observable f ∈ F(M)
may be written

d

dt
(f ◦ Ft) = {H, f ◦ Ft}

where Ft is the solution of Hamilton’s equations (i.e. Ft is the flow of the Hamiltonian
vector field). In particular, if f is a constant of motion then {H, f} = 0.

It is important to note that the symplectic form defines a Poisson bracket and so
these two elements are intimately related. An important fact that will be relevant later is
that symplectic maps preserve the Poisson brackets, i.e. for f, h ∈ F(N), {f, h}N ◦ F =
{f◦F, h◦F}M where a symplectic map is a diffeomorphism between symplectic manifolds
F : (M,ω)→ (N, ρ) such that F ∗ρ = ω and F ∗ is the pullback of F .

2.2 Symmetries and Momentum

Symmetries provide deep insights into the workings of nature. They provide unity and
clarity to muddied paths once uncovered. A symmetry of a system is a transformation
that preserves the systems action and so preserves the Hamiltonian and ‘respects’ the
phase space structure. Symmetries naturally form a group. Noether’s theorem tells us
that to each symmetry of a system corresponds a conserved quantity, i.e. an element
in the algebra of functions on the phase space whose value is constant over time. This
well-known result applies to the Lagrangian formulation of mechanics and the calculus of

7



variations. In the modern geometric formulation of Hamiltonian mechanics, the relation
between symmetries and conserved quantities is expressed in terms of group actions and
momentum maps.

A symmetry of a Hamiltonian system (M,ω,H) is a function S : M → M that
preserves both ω and H, i.e. S∗ω = ω and H ◦S = H [38]. These symmetries are captured
by group actions. An action of the group G on M is a smooth function Φ : G×M →M
such that

• Φ(e, p) = p, for all p ∈M where e is the identity element of G

• Φ(g,Φ(h, p)) = Φ(gh, p), for all p ∈M and g, h ∈ G.

Often we write Φ(g, p) = Φg(p). So the above two conditions may be written as Φe = id
and Φg ◦Φh = Φgh. A group action is a symplectic action if Φg : M →M is a symplectic
map for all g ∈ G.

Given a group G acting on M we can define a vector field corresponding to X ∈ g,
where g is the Lie algebra of the group G, by

ΦX(p) =
d

dt

∣∣∣∣
t=0

Φ(exp tX, p).

Example 2.2. The infinitesimal generator of the left (right) action of G on itself, Lg(h) =
gh (Rg(h) = hg) for g, h ∈ G is given by the right (left) invariant vector field on G.
The invariant vector fields of a group are those related to the elements of the Lie algebra
by the pushforward of the group action. The left (right) invariant vector fields can be
written as XL(g) = (Lg)∗X (XR(g) = (Rg)∗X) for X ∈ g. More explicitly, for X ∈ g, the
corresponding generator of the left action is

LX(h) =
d

dt

∣∣∣∣
t=0

Lexp(tX)h = (Rh)∗X = XR(h).

The same is the case for the right action with R and L switched.

Example 2.3. The coadjoint action of G on the dual of the Lie algebra g∗ is a group
action defined by

Ad∗ : G× g∗ → g∗

(g, α) 7→ (Adg−1)∗α

8



where (Adg−1)∗ : g∗ → g∗ satisfies 〈(Adg−1)∗α,X〉 = 〈α, (Adg−1)∗X〉 where (Adg)∗X =
(Lg ◦Rg−1)∗X for X ∈ g, α ∈ g∗ and 〈·, ·〉 is the canonical scalar product between elements
of g and g∗. The infinitesimal generator of the coadjoint action is

Ad∗X = −ad∗X (2.3)

so Ad∗X(Y )(α) = −〈ad∗Xα, Y 〉 = −〈α, adXY 〉 = −〈α, [X, Y ]〉 for X, Y ∈ g, α ∈ g∗. Note
that the subscript X in (2.3) plays different roles on the left and right side of the equation.

Given a symplectic action Φ of G on (M,ω) then J : M → g∗ is a momentum map
for the action Φ given that

dĴ(X) = ω(ΦX , ·) (2.4)

for all X ∈ g where Ĵ(X) : M → R is given by Ĵ(X)(p) = 〈J(p), X〉. The above condition
is equivalent to

ΦX = {Ĵ(X), ·}. (2.5)

Momentum maps are the modern geometric generalization of conserved quantities. The
map Ĵ(X) is a real valued function on the phase space and can be seen as a Hamiltonian
associated to the momentum map J through the similarity between (2.1) and (2.4). Note
by (2.5) for each X ∈ g the associated momentum map Ĵ(X) is conserved under the group
action in the direction X, i.e. ΦX(Ĵ(X)) = 0. Thus we see that the Hamiltonian vector
field of the momentum map must equal the generator of the symplectic group action. We
shall also see that for each X ∈ g, Ĵ(X) will be a conserved quantity if the Hamiltonian
H is invariant under the group action Φ.

It is important to note that symplectic group actions are not guaranteed to have corre-
sponding momentum maps. Group actions with momentum maps are called Hamiltonian
actions. Some group actions fail to have momentum maps because not all locally Hamil-
tonian vector fields are globally Hamiltonian [1]. For example, the following action of R on
S1 × S1, Φt(θ, φ) = (θ, φ + t) has no associated momentum map, where θ, φ are the angle
parameterization of S1 × S1 [38]. However, for some special cases there are guaranteed
momentum maps. For example, the case where the symplectic manifold is a cotangent
bundle M = T ∗Q with canonical symplectic form and the group action of G on M is the
lift ΦT∗ of the group action Φ on the base manifold Q. This will be explained in the next
section. Below we present the two most common examples of momentum maps, the linear
and angular momentum associated with translational and rotational invariance.
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Example 2.4 (Linear momentum). Consider the translational action of Rn on M = R2n×
R2n. We may view M as the phase space of two particles in Rn. We already expect the
momentum map to be the total linear momentum of the two particles.

First we choose coordinates (q(1),q(2),p(1),p(2)) where (q(i),p(i)) = (qi1, . . . , qin, pi1, . . . , pin).
The canonical symplectic form can be written ω = dq(1) ∧ dp(1) + dq(2) ∧ dp(2) where
dq(i) ∧ dp(i) =

∑
j dq

ij ∧ dpij (no summation over i!). The symplectic action of Rn is given
by

Φ : Rn × R2n × R2n → R2n × R2n

s× (q(1),q(2),p(1),p(2)) 7→ (q(1) + s,q(2) + s,p(1),p(2))

Now for x = (x1, . . . , xn) ∈ Lie(Rn) ' Rn, the associated infinitesimal generator is

Φx(q(1),q(2),p(1),p(2)) = x∂q(1) + x∂q(2)

where x∂q(i) =
∑

j xj
∂
∂qij

. By equation 2.4, we require the momentum map’s associated

Hamiltonian Ĵ(x) : R2n × R2n → R to satisfy

dĴ(x) = xdp(1) + xdp(2)

where xdp(i) =
∑

j xjdpij. Thus Ĵ(x) = xp(1) + xp(2). And hence,

J : R2n × R2n → Lie(Rn)∗ ' Rn

(q(1),q(2),p(1),p(2)) 7→ p(1) + p(2)

is the associated momentum map, as expected [38]. In this example, we can see that

Φx(Ĵ(y)) = 0, for all x,y ∈ Rn.

Thus the total linear momentum of the system (i.e. of the two particles) is conserved under
all translations.

Example 2.5 (Angular Momentum). Consider the rotational action of SO(3) on M =
R3 × R3 with canonical symplectic form. This action is given by

Φ : SO(3)× R3 × R3 → R3 × R3

R× (q,p) 7→ (Rq,pRT )

10



and is symplectic. We can identify elements of so(3) with R3 via the map

Xv =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ∈ so(3) 7→ v =

v1v2
v3

 ∈ R3.

Using this identification we can write the product Xvz = v × z ∈ R3, where × is the
cross product and z ∈ R3. Further we may identify the dual so(3)∗ with so(3) using
〈Xv, Xu〉 = −1

2
Tr(XvXu) = uTv as the natural inner product. Thus, we can identify

so(3)∗ with R3 and our momentum map can be written as a map J : R3 × R3 → R3.

The infinitesimal generator of the rotational action is given by

ΦXv(q,p) = (Xvq,−pXv) = (v × q)∂q + (v × pT )∂p

for Xv ∈ so(3), since XT
v = −Xv where z∂y =

∑
i zi

∂
∂yi

. Then by (2.4),

dĴ(v)(q,p) = (v × q)dp− (v × pT )dq

= d((q× pT ) · v)

where we have used the scalar triple product identity. Thus we see that J(q,p) = q×pT ,
the angular momentum, is the momentum map of the rotational action [38, 1]. Note that
the momentum map Ĵ(Xw) is not conserved under rotations in all directions since

ΦXv(Ĵ(Xw))(q,p) = [(v × q)∂q + (v × pT )∂p]((q× pT ) ·w)

= (v · pT )(w · q)− (w · pT )(v · q)

is zero only when v = aw for some a ∈ R assuming v,w are non-zero. The quantity
Ĵ(Xw) = (q× pT ) ·w is conserved only under rotations generated by Xw.

Using the terminology developed thus far we can state the following fundamental con-
servation law1 that captures the significance of momentum maps:

Theorem 1. If H ∈ F(M) is invariant under the symplectic action Φ of G, i.e. H(p) =
H(Φg(p)) for all p ∈M, g ∈ G and supposing this action has a momentum map J , then J
is an integral for XH , i.e. if Ft is the flow of XH then J(Ft(p)) = J(p) for all p ∈M and
t ∈ R where Ft is defined.

1This theorem is sometimes referred to as the Noether’s theorem for Poisson manifolds [15].
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Since H is invariant we know H(Φexp tX(p)) = H(p) for all X ∈ g. Differentiating at
t = 0,

0 = dH(ΦX) = −ω(ΦX , XH) = −dĴ(X)(XH) = −{Ĵ(X), H}.
This proves the theorem above. Thus momentum maps are conserved quantities of Hamilto-
nian systems with symmetries. In this formulation we see that symmetries are paramount.
Given a symmetry captured by a group action Φ we can (sometimes) find conserved quan-
tities even before defining our choice of Hamiltonian H as long as H co-operates with the
symmetries, i.e. is invariant under the group action Φ.

2.3 Classical Particles and the Cotangent Bundle For-

mulation

The phase space M of many mechanical systems can be identified with a cotangent bundle
T ∗Q where Q is the configuration space and the collection of cotangent planes makes up
the momentum space. A cotangent bundle is naturally equipped with a symplectic form
ω = −dθ ∈ Ω2(T ∗Q) where θ ∈ Ω1(T ∗Q) is the Liouville form. The Liouville form is
related to the projection map πQ : T ∗Q→ Q and is defined by

θ(X)(αq) = 〈αq, (πQ)∗(X)〉

where αq ∈ T ∗qQ, X ∈ Tαq(T
∗Q), q ∈ Q and 〈·, ·〉 is the canonical pairing of 1-forms and

tangent vectors on Q. In canonical coordinates θ = pidq
i so ω = dqi ∧ dpi as expected.

Inspired by the definition in [34] we consider a classical particle to be a Hamiltonian
system whose configuration space Q is a homogeneous space of the group G of space-time
transformations that relate inertial reference frames according to some relativity principle.
The group G acts transitively on the configuration space meaning any two points q, q′ in
the configuration space are related by the action of some group element, i.e. there exists a
g ∈ G such that Φ(g, q) = q′. This means all points in Q share the same local properties
and that Q is in fact the orbit of any point in Q under the action of G. Choosing such a
point is equivalent to choosing an origin of the configuration space. Homogeneous spaces
of the group G can always be constructed as a quotient of G by some continuous subgroup.
Thus the largest and most versatile homogeneous space of G is G itself. Using this we
can make the space-time symmetries manifest by identifying the configuration space with
the space-time symmetry group itself. For example, a particle with spin may have its
configuration space identified with the Poincaré group ISO(3, 1), the symmetry group of
special relativity [25, 28] or an isotropic body may have its configuration space identified
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with the rotation group SO(3) [1]. Hence once we choose a space-time symmetry group G
to work with the particles in this space-time will be Hamiltonian systems on T ∗G.

In order to better grasp the canonical symplectic structure and corresponding Poisson
bracket we introduce the following maps and notations on a Lie group G with Lie algebra
g. The details of the following exposition can be found in [5]. First we denote left and
right translation by Lg, Rg : G → G, respectively, so that gh = Lg(h) = Rh(g). Further,
the left and right Maurer-Cartan forms κL, κR : X(G)→ g, respectively, are given by

κLg , κ
R
g : TgG→ g

κLg (Xg) = (Lg−1)∗(Xg)

κRg (Xg) = (Rg−1)∗(Xg)

for Xg ∈ TgG. Notice that the left and right invariant vector fields are given by XL
g =

(Lg)∗(X) and XR
g = (Rg)∗(X), respectively for X ∈ g so that κL(XL) = X and κR(XR) =

X. The left and right ‘inverse’ Maurer-Cartan forms mL,mR : Ω1(M) → g∗, respectively,
are given by

mL
g ,m

R
g : T ∗gG→ g∗

mL
g (αg) = ((κRg )−1)∗(αg) = (Rg)

∗(αg)

mR
g (αg) = ((κLg )−1)∗(αg) = (Lg)

∗(αg)

for αg ∈ T ∗gG. Using this notation the Liouville form of the cotangent bundle of a Lie
group can be written

θ =
1

2

(
〈mL ◦ πT ∗G, (πG)∗κR〉+ 〈mR ◦ πT ∗G, (πG)∗κL〉

)
∈ Ω(T ∗G)

where πM : TM, T ∗M →M is a projection map onto the base manifold. Notice, mA◦πT ∗G :
TT ∗G → g∗ and (πG)∗κA : TT ∗G → g for A = R,L. The canonical symplectic form can
then be written

ω = −dθ = −1

2

(
〈dmL∧,(πG)∗κR〉+ 〈dmR∧,(πG)∗κL〉

)
∈ Ω2(T ∗G)

where we have used the short form 〈A∧,B〉(X, Y ) = 〈A(X), B(Y )〉 − 〈A(Y ), B(X)〉 .

Letting Xi be a basis of g and ξi the dual basis of g∗ we can write for A = R,L,

mA(·) =
∑
i

mA
i (·)ξi, mA

i = 〈mA(·), Xi〉 ∈ F(T ∗G).
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So dmA =
∑

i dm
A
i (·)ξi with dmA

i ∈ Ω1(T ∗G). Similarly,

κA(·) =
∑
i

κAi (·)Xi, κAi = 〈ξi, κA(·)〉 ∈ Ω1(G).

Then in these coordinates we uncover,

ω = −1

2

∑
i

(dmL
i ∧ (πG)∗κRi + dmR

i ∧ (πG)∗κLi ).

This expression can be inverted to find the corresponding Poisson structure. Let XL
i , X

R
i

be the left and right invariant vector fields, respectively, on G corresponding to the basis
element Xi ∈ g. They generate right and left translation on G and their corresponding
flows are given by FL

t (g) = g exp(tXi) and FR
t (g) = exp(tXi)g. These flows have lifts

(FL
t )∗ and (FR

t )∗ on T ∗G with generators given by

XL∗
i (αg) =

d

dt

∣∣∣∣
t=0

(FL
t )∗(αg) ∈ X(T ∗G), XR∗

i (αg) =
d

dt

∣∣∣∣
t=0

(FR
t )∗(αg) ∈ X(T ∗G).

These satisfy
(πG)∗κAi (XA∗

j ) = κAi ((πG)∗X
A∗
j ) = κAi (XA

j ) = δij

for A = R,L. Since it can be verified that these flows preserve the Liouville form,
ω(·, XR∗

j ) = −dmL
i and ω(·, XL∗

j ) = −dmR
i . Lastly, we define the vector fields ZL

i , Z
R
i ∈

X(T ∗G) satisfying

ω(·, ZL
i ) = −(πG)∗κLi , ω(·, ZR

i ) = −(πG)∗κRi

The Poisson structure can now be written as,

Π = −ω−1 =
1

2

∑
i

XR∗
i ∧ ZR

i +XL∗
i ∧ ZL

i .

This expression is rather opaque and unenlightening but can be simplified greatly by triv-
ializing the cotangent bundle [5, 3].

Cotangent bundles of Lie groups are trivial bundles and admit two global trivializa-
tions. By abuse of terminology, these trivializations are commonly referred to as choices
of coordinates and are called

• body coordinates:

B = (πG,m
R) : T ∗G→ G× g∗

α 7→ (g, (Lg)
∗α)
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• space coordinates:

S = (mL, πG) : T ∗G→ g∗ ×G
α 7→ ((Rh)

∗α, h)

We will see that these coordinate choices are analogous to the Iwasawa decomposition of
double Lie groups in section 3.7. Note that in the above expressions h = g. The name
of these trivializations originates from the study of the rigid body. If we think of the left
action Lg of a group on itself as the ‘natural’ action then once we lift it to (Lg−1)∗, an
action on T ∗G, this action is realized as

LBg′(g, µ) = B ◦ (Lg′−1)∗ ◦B−1(g, µ) = (g′g, µ)

LSg′(ν, h) = S ◦ (Lg′−1)∗ ◦ S−1(ν, h) = ((Adg′−1)∗ν, g′h).

where (g, µ) are body and (ν, h) space coordinates. So if we think of µ as the angular
momentum vector attached to the body it would not vary relative to an observer fixed to
that body under the action but would vary to an observer in space since the left action
is the group action relating inertial observers. As we see above µ in body coordinates is
unchanged but ν in space coordinates does vary, hence their names.

Expanding on the bases introduced earlier, we let the structure constants of g be given
by [Xi, Xj] = ckijXk and choose coordinates xi on the dual space g∗ so that any ξ ∈ g∗ can
be written as ξ =

∑
i x

iξi. Then in body and space coordinates

ωB = (B−1)∗ω = −
∑
i

dxi ∧ κLi +
1

2

∑
ijk

xicijkκ
L
j ∧ κLk

ωS = (S−1)∗ω = −
∑
i

dxi ∧ κRi −
1

2

∑
ijk

xicijkκ
R
j ∧ κRk

and

ΠB = (B−1)∗Π =
∑
i

∂

∂xi
∧XL

i +
1

2

∑
ijk

xicijk
∂

∂xj
∧ ∂

∂xk
(2.6)

ΠS = (S−1)∗Π =
∑
i

∂

∂xi
∧XR

i −
1

2

∑
ijk

xicijk
∂

∂xj
∧ ∂

∂xk
. (2.7)

From these expressions we note that the Poisson bracket of two functions on the underlying
group G will always be zero and thus the Poisson structure is trivial on the configuration
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space. Equipping the configuration space G with a non-trivial Poisson structure will be
the first step when constructing our deformed phase space. The above expressions are a
special case of the Heisenberg double Poisson structure. This will be detailed in section
4.2.

Example 2.6 (The rigid body). An isotropic rigid body is symmetric under rotations.
Thus we can identify the phase space of this system with T ∗SO(3). Working with the
following matrix representation, the generators of SO(3) are given by

E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

 , (2.8)

which satisfy [Ei, Ej] = εkijEk. In body coordinates SO(3) × R3 = {(R,u)} the bracket
structure follows from (2.6)

{ui, uj} = εkijuk, {ui, R} = REi, {R,R} = 0.

In space coordinates R3 × SO(3) = {(v, R)}, the bracket structure follows from (2.7)

{vi, vj} = −εkijvk, {vi, R} = EiR, {R,R} = 0.

Note the above expressions are in terms of matrix elements, so EL
i Rjk = (REi)jk and

ER
i Rjk = (EiR)jk.

Example 2.7 (The particle with spin). The Poincaré group PG = ISO(3, 1) = R3,1 o
SO(3, 1) is the symmetry group of a classical particle with spin [25, 28]. The associated Lie
algebra pg has 4 generators Pµ of translation, 3 generators Ji of rotations and 3 generators
Ki of boosts. These satisfy the relations

[Ji, P0] = 0, [Ji, Pj] = εkijPk, [Ki, P0] = Pi, [Ki, Pi] = P0,

[Ji, Jj] = εkijJk, [Ji, Kj] = εkijKk, [Ki, Kj] = −εkijJk.

If we choose coordinates on pg∗ so an element ξ can be written ξ = pµP
∗µ + jiJ

∗i + kiK
∗i

where A∗ ∈ pg∗ is dual to A ∈ pg, then in space coordinates R10 × ISO(3, 1) 3 (ξ, h) the
Poisson bivector can be read off as

ΠB(ξ, h) =
∂

∂pµ
∧ PR

µ +
∂

∂ji
∧ JRi +

∂

∂ki
∧KR

i

− εkijpk
∂

∂ji
⊗ ∂

∂pj
− pi

∂

∂ki
⊗ ∂

∂p0
− p0

∂

∂ki
⊗ ∂

∂pi

− εkijjk
∂

∂ji
⊗ ∂

∂jj
− εkijkk

∂

∂ji
⊗ ∂

∂kj
+ εkijjk

∂

∂ki
⊗ ∂

∂kj
. (2.9)
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Using more familiar terms we write h = (xµ,Λµν) ∈ ISO(3, 1) where xµ ∈ R4,Λµν ∈
SO(3, 1) the Poisson brackets then read

{xµ, xν} = 0, {xρ,Λµν} = 0, {Λµν ,Λρσ} = 0,

{pµ, xν} = δνµ, {pµ,Λρσ} = 0,

{ji, xν} = 0, {ji,Λµν} = JiΛ
µν ,

{ki, xν} = 0, {ki,Λµν} = KiΛ
µν ,

{ji, p0} = 0, {ji, pj} = −εkijpk, {ki, p0} = −pi, {ki, pi} = −p0,
{ji, jj} = −εkijjk, {ji, kj} = −εkijkk, {ki, kj} = εkijjk.

As stated previously certain symplectic actions on cotangent bundles have guaranteed
momentum maps. Given a symplectic action Φ on the configuration space Q, Φ : G×Q→
Q we can define its lift onto the full cotangent bundle T ∗Q by

ΦT∗ : G× T ∗Q→ T ∗Q

(g, α) 7→ (Φg−1)∗α

This lifted action is also symplectic and has momentum map J : T ∗Q→ g∗ given by

〈J(αq), X〉 := θ(ΦX)(q) = 〈αq,ΦX(q)〉

for X ∈ g and where ΦX is the infinitesimal generator of the non-lifted action Φ on Q.

The momentum map of the lifted left action (Lg−1)∗ is a map J : T ∗G→ g∗ given by

J(αg) = (Rg)
∗αg (2.10)

for X ∈ g. If the Hamiltonian H : T ∗G → R is left invariant (i.e. H ◦ (Lg)
∗ = H for all

g ∈ G) then Ĵ(X) is constant on the orbits of XH (i.e. {Ĵ(X), H} = 0) for all X ∈ g and
XH is left invariant. This is called the Euler conservation law [1].

We now restate the Euler conservation law in terms of our coordinate systems. In
body coordinates the momentum map associated to the left action (i.e. (2.10) in body
coordinates) is

JB : G× g∗ → g∗

(g, µ) 7→ (Adg−1)∗µ
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So if H : G × g∗ → R is left invariant (i.e. H(g′g, µ) = H(g, µ) for all g′, g ∈ G, µ ∈ g∗)
then ĴB(X) is constant on the orbits of the left invariant vector field XH for all X ∈ g.
And in space coordinates (2.10) is given by

JS : g∗ ×G→ g∗

(ν, h) 7→ ν

So if H : g∗ × G → R is left invariant (i.e. H((Adg′−1)∗ν, g′h) = H(ν, h) for all g′, h ∈
G, ν ∈ g∗) then ĴS(X) is constant on the orbits of the left invariant vector field XH for all
X ∈ g.

Example 2.8 (The rigid body cont’d). We continue with example 2.6 using space co-
ordinates. We let our Hamiltonian be H(v, R) = 1

2

∑
i v

2
i = 1

2
vTv, the total angular

momentum. The coadjoint action of SO(3) on so(3)∗ is simply the left action of SO(3)
on R3, i.e. (AdS)∗ξv = Sv where we have identified ξv ∈ so(3)∗ with v ∈ R3, as in the
example on page 10. Hence, it is clear to see that this Hamiltonian is left invariant,

H(S−1v, SR) =
1

2
(S−1v)TS−1v =

1

2
vTv = H(v, R)

as S ∈ SO(3) so S−1 = ST . The momentum map is then given by JS(v, R) = v. So we
see that the angular momentum is conserved under time evolution, as expected. Recall
that the angular momentum was conserved under rotational symmetry and now that the
Hamiltonian is invariant under the same rotational action the angular momentum is also
constant in time. Using the Poisson brackets found in example 2.6 this is expected since
Hamilton’s equations tell us

d

dt
vi = {H, vi} = 0,

d

dt
R = {H,R} =

∑
i

viEiR = ξvR.

From the first equation it is clear to see that v is conserved on the orbits of H.

18



Chapter 3

Poisson-Lie Groups and Lie
Bialgebras

In the following we introduce the theory of Poisson-Lie groups. We begin by generalising
symplectic manifolds to Poisson manifolds which increases the class of possible Poisson
algebras of observables under consideration. It also allows us to expand the class of sym-
metries under consideration to those beyond the canonical symplectic structure preserving
symmetries. We saw in section 2.1 that a symplectic structure naturally defines a Poisson
bracket, however the converse is not always true. A Poisson bracket structure on a man-
ifold is equivalent to equipping the manifold with a Poisson bivector. In the symplectic
case the bivector can be seen as the negative of the ‘inverse’ of the symplectic form.

Next, we equip a Lie group with a compatible Poisson structure and so define a Poisson-
Lie group. This is the first step to defining our new deformed phase spaces. We now
have a way to attach a non-trivial Poisson structure to our particles configuration space.
This will change the symplectic structure of the resulting phase space and introduce some
quantum gravitational effects. The compatibility is with respect to the groups product and
in turn defines strict relations at the infinitesimal level. The infinitesimal counterpart to
a Poisson-Lie group is called a Lie bialgebra. These two components, Poisson-Lie groups
and Lie bialgebras, determine each other as given by a theorem of Drinfeld. A special class
of Lie bialgebras have their structure determined by an r-matrix that satisfies a special
relation called the generalized Yang-Baxter equation which has a quantum counterpart the
quantum Yang-Baxter equation.

Further, the study of Lie bialgebras naturally leads to the realization that their duals
define compatible Lie bialgebras. A Lie bialgebra and its dual can be glued together by
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choice of canonical r-matrix to form a double Lie bialgebra. This double in turn has
a corresponding unique (connected, simply-connected) Poisson-Lie group associated to it
called the Drinfeld double. The underlying double group of this Poisson-Lie group is the
manifold of our new deformed phase space. It consists of a compatible pair of Poisson-Lie
groups of equal dimension that can be identified with configuration and momentum space.
We shall see that both spaces can be non-abelian groups and that the cotangent bundle is
a limiting case where the configuration space is equipped with a trivial Poisson structure.
At this stage we have not yet equipped the double group with the proper Poisson structure
to construct our deformed phase spaces. That will be done in the following section where
we define Heisenberg doubles. Much of this material can be found in [16, 27].

3.1 Poisson Manifolds

A Poisson structure on a manifold M is a bilinear map

{ , } : F(M)×F(M)→ F(M)

on the algebra of functions F(M) on M called the Poisson bracket satisfying,

• skew-symmetry: {f, g} = −{g, f}

• Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

• Leibniz identity: {fg, h} = f{g, h}+ {f, h}g

for all f, g, h ∈ F(M). Note that { , } is a Lie bracket on F(M) by the first two properties
above. This bracket is equivalent to having a skew-symmetric contravariant 2-tensor Π ∈∧2 TM called the Poisson bivector such that

{f, g} = Π(df, dg)

where df, dg ∈ T ∗M . In coordinates we can write,

Π(p) =
1

2
Πij(p)

∂

∂xi

∣∣∣∣
p

⊗ ∂

∂xj

∣∣∣∣
p

=
∑
i,j

{xi, xj}(p) ∂

∂xi

∣∣∣∣
p

⊗ ∂

∂xj

∣∣∣∣
p

for p ∈M so that Π is a Poisson bivector if and only if,

Πil∂Πjk

∂xl
+ Πjl∂Πki

∂xl
+ Πkl∂Πij

∂xl
= 0 (3.1)
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for all cyclic permutations of i, j, k. We can see that this condition is equivalent to the
bracket { , } satisfying the Jacobi identity. A Poisson manifold denoted (M, { , }) or
(M,Π) is a manifold M with a Poisson structure given by a Poisson bracket { , } or
equivalently, a Poisson bivector Π (sometimes the Poisson structure will be denoted { , }M
or ΠM if confusion is possible). Equation 3.1 is an instance of a special type of product on
multivector fields called the Schouten bracket [| , |] (see Appendix B). Equation 3.1 is
equivalent to

[|Π,Π|] = 0,

the vanishing of the Schouten bracket of Π with itself.

In the previous section we saw that the Poisson bracket defines the Hamiltonian vector
field Xf of a function f ∈ F(M) via the equation Xf = {f, ·}. This can now be equivalently
written as Xf = Π(df, ·). Thus we see that the Poisson bivector Π provides a map

Π : T ∗M → TM

df 7→ Xf

The mapping of a function to its Hamiltonian vector field f 7→ Xf is a homomorphism of
the Lie algebra F(M) with Poisson bracket and the Lie algebra of vector fields [23]. This
gives us an alternative necessary and sufficient condition for Π to be a Poisson bivector
which is that the following holds

X{f,g} = [Xf , Xg]

for all f, g ∈ F(M). This equation hints at the relations that will be found at the infinites-
imal level of a Poisson-Lie group.

Symplectic manifolds are always Poisson manifolds, however the converse is not in
general true. A Poisson manifold is symplectic if the Poisson bivector is everywhere non-
degenerate, i.e. Πij(p) is invertible for all p ∈M . In this case we can define the symplectic
form by ω = −Π−1 (more specifically, ωikΠ

kj = −δji ). We will see that the Poisson structure
of a Poisson-Lie group is never symplectic since Π must vanish at the identity.

Example 3.1. If M = Rn × Rn with global coordinates (qi, pi) the canonical Poisson
bivector is given by ∂

∂pi
∧ ∂

∂qi
with corresponding brackets given by {qi, qj} = {pi, pj} =

0, {pj, qi} = δij. This Poisson bivector can be represented by the constantmatrix

Πij =

(
0n×n In×n
−In×n 0n×n

)
.
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Example 3.2 (The linear Poisson structure). Noting that a Poisson bracket is a Lie bracket
on the algebra of functions we can see that the dual g∗ of a finite dimensional Lie algebra
g is naturally a Poisson manifold. Let ζ ∈ g∗ and Z ∈ g. As vector spaces g is isomorphic
to T ∗ζ g

∗ so we can consider Z ∈ T ∗ζ g∗ ⊂ F(g∗). Then

Π(Z, ·)(ζ) = −ad∗Zζ ∈ Tζg∗ ' g∗

where ad∗ satisfies 〈ζ, adZY 〉 = −〈ad∗Zζ, Y 〉. This is called the linear Poisson structure
or sometimes the Berezin-Kirillov-Kostant-Souriau Poisson structure (or some sub-
set of these names). In particular, if X1, . . . , Xn is a basis of g then

Πij(ξ) = 〈ξ, [Xi, Xj]〉

As we shall see below this is part of a bigger picture involving Poisson-Lie groups and their
duals.

Example 3.3. Consider the Lie algebra su(2) with basis σi satisfying the relations [σi, σj] =
εkijσk. Let ξi be the basis of su(2)∗ with coordinate functions xi so an element ξ in the dual
can be written ξ =

∑
i x

iξi. The linear Poisson structure on the dual then reads,

Π(ξ) =
∑
i,j,k

εkijx
k ∂

∂xi
⊗ ∂

∂xj
.

In order to compare Poisson manifolds and to build new ones we define the following
notions. The direct product of two Poisson manifolds M × N has a product Poisson
structure given by

{f, h}M×N(x, y) = {f(·, y), h(·, y)}M(x) + {f(x, ·), h(x, ·)}N(y), (3.2)

where x ∈ M, y ∈ N and f(·, y) denotes f with y fixed. This product Poisson structure
has an associated bivector field ΠM×N on M × N which under the projection of M × N
onto M and N gives ΠM and ΠN , respectively. Identifying F(M ×N) with an appropriate
tensor product F(M)⊗F(N) we may write the product Poisson bracket as

{f1 ⊗ f2, h1 ⊗ h2}M×N = {f1, h1}M ⊗ f2h2 + f1h1 ⊗ {f2, h2}N .

A map φ : M → N between Poisson manifolds M,N is a Poisson map if

{f ◦ φ, h ◦ φ}M = {f, h}N ◦ φ (3.3)
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or equivalently,
φ∗ΠM(x) = ΠN(φ(x)).

That is, the map φ is consistent with the Poisson structure in the sense that the induced
map φ∗ : F(M) → F(N) is a homomorphism of Poisson brackets [23]. Poisson maps are
a generalisation of symplectic maps. The product Poisson structure is the unique bracket
on M ×N such that the natural projections πM : M ×N →M and πN : M ×N → N are
Poisson maps.

Before we define Poisson-Lie groups let us consider the following scenario. A group G
acts on a Poisson manifold M

Φ : G×M →M

(g, p) 7→ Φ(g, p).

Just as the group actions on symplectic manifolds we considered were symplectic in order
to respect the phase space structure we can demand the group action Φ be a Poisson map
so it is consistent with the Poisson bracket. Physically, this is equivalent to demanding that
the Poisson brackets be invariant under the group action. For example, we may require this
if we wish the Poisson brackets be consistent under rotations or Poincaré transformations.
In order to maintain consistency of the brackets we have the freedom to equip the group G
with a non-trivial Poisson structure. This is an important first step towards constructing
our deformed phase spaces. By (3.2) and (3.3) we require

{f, h}M ◦ Φ(g, p) = {f ◦ Φ, h ◦ Φ}G×M(g, p)

= {f ◦ Φ(·, p), h ◦ Φ(·, p)}G(g) + {f ◦ Φ(g, ·), h ◦ Φ(g, ·)}M(p) (3.4)

for f, h ∈ F(M).

Example 3.4. (A motivating example) Let G = SU(2) and M = C2 with global coordi-
nates (z1, z2). The canonical Poisson structure is

{zi, z̄j}M = −iδij (3.5)

with all other brackets zero. We may write an element of SU(2) as g =

(
α −γ̄
γ ᾱ

)
where

α, γ ∈ C and αᾱ + γγ̄ = 1. Under the group action the coordinates of C2 transform as

(g, zi) 7→
∑
j

gijzj = z′i, (g, z̄i) 7→
∑
j

ḡij z̄j = z̄′i.

23



Now by demanding consistency of the group action with the bracket, from the left hand
side of (3.4) we desire

{z′i, z̄′j}M =
∑
l,k

{gilzl, ḡjkz̄k}M =
∑
l,k

gilḡjk{zl, z̄k}M = −i
∑
l,k

gilḡjkδlk = −iδij

and from the right hand side of (3.4) we also have that

{z′i, z̄′j}M =
∑
l,k

{gil, ḡjk}Gzlz̄k − iδij.

Thus it follows that {gil, ḡjk}G = 0 maintains the Poisson brackets under the group action.
That is, a trivial Poisson structure on SU(2) is required to maintain a consistent Poisson
structure with the canonical Poisson structure (3.5). Now, if we equip C2 with a non-
standard Poisson structure let us see what happens to the compatible Poisson structure
on SU(2).

Consider C2 with the following non-standard Poisson bracket, as given in [37],

{z1, z2}M =
i

β
z1z2, (3.6)

{z1, z̄2}M =
i

β
z1z̄2, (3.7)

{z1, z̄1}M = −i
(

1− 2

β
(z1z̄1)

)
, (3.8)

{z2, z̄2}M = −i
(

1− 2

β
(z1z̄1 + z2z̄2)

)
(3.9)

where β is a deformation parameter and all other brackets are zero. Demanding consistency
we require these equations to hold with all variables primed. Similar to our previous
example the first bracket relation (3.6) gives us the following two equations,

{z′1, z′2}M =
i

β
z′1z
′
2 =

∑
l,k

i

β
g1lg2kzlzk

{z′1, z′2}M =
∑
l,k

{g1l, g2k}Gzlzk +
i

β
z1z2

using the fact g11g22 − g12g21 = αᾱ + γγ̄ = 1. Putting these two together∑
l,k

{g1l, g2k}Gzlzk =
i

β

(∑
l,k

g1lg2kzlzk − z1z2

)
.
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Since this holds for all zl, zk we can read off the following three equations;

{g12, g22}G =
i

β
g12g22, (3.10)

{g11, g21}G =
i

β
g11g21, (3.11)

{g11, g22}G + {g12, g21}G =
i

β
(g11g22 + g12g21 − 1) (3.12)

Notice (3.11) is just the conjugate of (3.10), thus it contains no new information since
{a, b} = {ā, b̄}.

In a similar manner the second and third bracket relations, (3.7) and (3.8), tell us that

{g11, ḡ21}G =
i

β
g11ḡ21, (3.13)

{g11, ḡ11}G = −2i

β
g12ḡ12. (3.14)

Combining (3.14) with (3.12) we get,

{g12, g21}G =
i

β
(g11g22 + g12g21 − 1) +

2i

β
g12ḡ12 (3.15)

Writing (3.10), (3.13), (3.14), (3.15) in terms of the matrix entries and simplifying, the
Poisson brackets on SU(2) consistent with the Poisson structure given by (3.6)-(3.9) on
C2 are the following:

{α, ᾱ} = −2i

β
γγ̄, {α, γ} =

i

β
αγ

{α, γ̄} =
i

β
αγ̄, {γ, γ̄} = 0.

This is in fact (up to isomorphism) the only non-trivial Poisson structure on SU(2) that is
compatible with its group product. In other words this is the only non-trivial Poisson-Lie
structure on SU(2) [29]. Also note the limit β →∞ recovers the canonical (trivial) Poisson
bracket.

3.2 Poisson-Lie Groups

A Poisson-Lie group is a Lie group G with a compatible Poisson structure { , } so that
group multiplication µ : G×G→ G is a Poisson map,

{f, h}G ◦ µ = {f ◦ µ, h ◦ µ}G×G
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for all f, h ∈ F(G) where G×G is endowed with the product Poisson structure. In more
explicit terms this condition reads, using (3.2) and (3.3),

{f, h}(gg′) = {f ◦ Lg, h ◦ Lg}(g′) + {f ◦Rg′ , h ◦Rg′}(g) (3.16)

for all g, g′ ∈ G. This compatibility relation is not strong enough to single out a unique
compatible Poisson structure for a given Lie group since, for example, the trivial Poisson
structure is always an option. Classifying all such compatible Poisson structures for Lie
groups is an open area of research.

The above compatibility relation is equivalent to the Poisson bivector Π on G being
multiplicative. That is, Π satisfies

Π(gg′) = (Lg)∗Π(g′) + (Rg′)∗Π(g) (3.17)

where (Lg)∗ and (Rg′)∗ denote the differential maps of left and right translations by g and
g′ extended to multivector fields 1. We may note immediately that Π(e) = 0 by setting g, g′

to e in (3.17). Thus Poisson-Lie groups cannot be symplectic since the Poisson structure
is degenerate at the identity.

Example 3.5 (Poisson-Lie structures on Rn). We can already find all the compatible Pois-
son structures of the abelian group Rn. We begin by considering the possible compatible
Poisson bivectors. Using global coordinates we let x = (xi),y = (yi) ∈ Rn . For a bivector
Π to be multiplicative

Π(x + y) = (Lx)∗Π(y) + (Ry)∗Π(x) = Π(y) + Π(x)

since the group product is simple addition. This tells us that the component functions Πij

are linear in the coordinates so Πij(x) =
∑

l Π
ij
l x

l. Using this fact and equation 3.1 Π is a
Poisson bivector if and only if

Πil
mΠjk

l + Πjl
mΠki

l + Πkl
mΠij

l = 0.

This is exactly the relation the structure constants of an n dimensional Lie algebra. Thus
the compatible Poisson bivectors on Rn are given by

Π(x) = Πij
l x

l ∂

∂xi
⊗ ∂

∂xj

1 Explictly, (Lg)∗Π(df, dh)(g′) = Π(d(f ◦ Lg), d(h ◦ Lg))(g′) = {f ◦ Lg, h ◦ Lg}(g′). Thus it is clear to
see the connection between (3.16) and (3.17).
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where Πij
l are the structure constants of any n dimensional Lie algebra. The corresponding

Poisson bracket is given by

{f, g}(x) =
1

2
Πij
l x

l

(
∂f

∂xi
∂g

∂xj
− ∂f

∂xj
∂g

∂xi

)
(x).

From this we can see that a flat Poisson-Lie group (i.e. an abelian Poisson-Lie group)
is intimately connected with another Lie group through its Lie algebra structure which
comes from the compatibility condition. We will see that this holds for general Poisson-Lie
groups when we study Poisson-Lie groups at the infinitesimal level in the next section.

Example 3.6 (g∗ as a Poisson-Lie group). The dual g∗ of Lie algebra g regarded as an
abelian Lie group is a Poisson-Lie group when equipped with the linear Poisson structure.
See example 3.2.

We note the above two examples are in fact the same, just approached from different
perspectives. In the first, we begin with Rn and find, through the compatibility relations,
a related Lie group G. In the second, we begin with Lie group G and its Lie algebra g.
Then on its dual g∗ we define a Poisson structure using the structure constants of g. These
are equivalent since as we shall see there exists a symmetry between a Poisson-Lie group
and its dual. In particular, it is important to note that any Lie group G, which we may
identify as a configuration space, can be paired with a flat group of equal dimension. This,
we will see, is exactly a copy of the groups cotangent bundle T ∗G.

Let (G,ΠG) be a Poisson-Lie group and (M,ΠM) a Poisson manifold with Φ : G×M →
M an action of G on M the this action is a Poisson action if Φ is a Poisson map, i.e. it
satisfies

{f, h}M ◦ Φ(g, x) = {f ◦ Φ(·, x), h ◦ Φ(·, x)}G(g) + {f ◦ Φ(g, ·), h ◦ Φ(g, ·)}M(x). (3.18)

Note if the Poisson structure on G is trivial (i.e. ΠG = 0) then the action simply preserves
the bracket on M much like symplectic actions considered in chapter [?]. Using a general
Poisson-Lie group we can introduce an action that does not necessarily preserve the Poisson
structure on M . We saw this in example 3.4 which motivated our consideration of Poisson-
Lie groups.

Example 3.7. For any Lie group G with Lie algebra g, the action of g∗ on T ∗G defined
by

Φ : g∗ × T ∗G→ T ∗G

(ξ, αg) 7→ αg + (Lg−1)∗ξ

is a Poisson action.
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An important class of Poisson-Lie structures is given by bivectors of the form

Π(g) = (Lg)∗Λ− (Rg)∗Λ

where Λ ∈ g⊗ g. It is simple to check this bivector is multiplicative

Π(gg′) = (Lgg′)∗Λ− (Rgg′)∗Λ

= (Lg)∗(Lg′)∗Λ− (Rg′)∗(Rg)∗Λ

= (Lg)∗[(Lg′)∗Λ− (Rg′)∗Λ]− (Rg′)∗[(Rg)∗Λ− (Lg)∗Λ]

= (Lg)∗Π(g′) + (Rg′)∗Π(g).

Poisson-Lie structures of this type are in fact quite natural and intimately related to Lie
theory cohomology. They arise from the r-matrix formalism which will be presented in
section 3.4. The following is a corollary of Whitehead’s Lemma (see Appendix A) given
by Drinfeld

Theorem 2. Every multiplicative Poisson structure on a connected semi-simple or compact
Lie group G is of the form:

Π(g) = (Lg)∗Λ− (Rg)∗Λ

where Λ ∈ g ∧ g and [|Λ,Λ|] ∈ g ∧ g ∧ g is invariant under the adjoint action of G.

Example 3.8 (SU(2) as a Poisson-Lie group). Let us consider the group G = SU(2).
Since g∧ g∧ g is one dimensional and (Adg)∗ invariant for all g ∈ G, any Λ ∈ g∧ g, [|Λ,Λ|]
is (Adg)∗ invariant for all g ∈ G [29]. Let σ1, σ2, σ3 be a basis of g = su(2) where

σ1 =
1

2

(
i 0
0 −i

)
, σ2 =

1

2

(
0 1
−1 0

)
, σ3 =

1

2

(
0 i
i 0

)
and [σi, σj] = εkijσk. Now letting Λ = − 2

β
(σ2 ∧ σ3) the Poisson structure on SU(2) is given

by

Π(g) = − 2

β
((Lg)∗(σ2 ∧ σ3)− (Rg)∗(σ2 ∧ σ3)).

This yields the same Poisson bracket as given in example 3.4.

3.3 Lie Bialgebras

A Lie bialgebra is the linearization of a Poisson-Lie structure at the identity of a group.
Just as Lie algebras enlighten us about groups, Lie bialgebras play a fundamental role in
understanding Poisson-Lie groups.
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Recall { , } is a Lie bracket on the algebra F(G) and that in order for Π to be a Poisson
bivector the following must hold

X{f,h} = [Xf , Xh] (3.19)

for all f, h ∈ F(G). Considering this statement about the group identity, we expect a
relation between the group’s Lie algebra and Poisson structure to hold. Let us look at
what happens infinitesimally about the identity 1 of a simple Poisson-Lie group (G,Π).
We let X ∈ g = T1G and consider the element g = 1 +X ∈ G close to the identity. Then
to first order

Π(1 +X) = (1 +X)⊗ (1 +X)Λ− Λ(1 +X)⊗ (1 +X)

= [X ⊗ 1 + 1⊗X,Λ] + . . .

The map δ(Λ) : g→ g⊗ g : X 7→ [X ⊗ 1 + 1⊗X,Λ] is an example of 1-cocycle and is in
fact the extra structure we are looking for.

There is more to say about equation 3.19. It also tells us we can expect there to be
a relation between the Poisson structure and the dual of the group’s Lie algebra. Since
Xf = Π(df, ·) for f ∈ F(G) and df ∈ T ∗G we can, again by considering (3.19) about the
identity, define a bracket on T ∗eG ' g∗ by the following,

d{f, h}(e) = [dfe, dhe]
∗.

From this we see that [ , ]∗ is skew symmetric and satisfies the Jacobi identity. So provided
[ , ]∗ is well-defined this defines a canonical Lie-bracket on g∗.

As we shall later see these two insights are intimately related and reveal an underlying
symmetry of Lie bialgebras. This symmetry will be later used in the study of Poisson-Lie
groups and the notion of the double. At this point, we have enough motivation to define
Lie bialgebras.

A Lie bialgebra (g, δ) is a Lie algebra g with a linear map δ : g → g ⊗ g called a
cocommutator such that

1. the transpose of δ defines a Lie bracket [ , ]∗ on g∗ via the canonical pairing 〈·, ·〉 of
g and its dual g∗, i.e.

〈δ(X), ξ ⊗ ζ〉 = 〈X, [ξ, ζ]∗〉 (3.20)

for X ∈ g and ξ, ζ ∈ g∗.
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2. δ is a 1-cocycle of g with values in g⊗ g, i.e. δ : g→ g⊗ g is linear and

δ([X, Y ]) = [X ⊗ 1 + 1⊗X, δ(Y )] + [δ(X), Y ⊗ 1 + 1⊗ Y ] (3.21)

where it is understood that [X ⊗ 1 + 1⊗X, Y ⊗Z] = [X, Y ]⊗Z + Y ⊗ [X,Z] for all
X, Y, Z ∈ g.

The preceeding discussion and expression 3.20 hints at the symmetry between the
structures on g and g∗. The dual of a Lie bialgebra (g, δ) is a Lie bialgebra denoted
(g∗, δ∗) where δ∗ is the transpose of the Lie bracket of g, i.e. 〈X ⊗ Y, δ∗(ξ)〉 = 〈[X, Y ], ξ〉.
The symmetry between a Lie bialgebra and its dual is now readily apparent. The bracket
of g defines a cocommutator on g∗ and the cocommutator of g defines a Lie bracket on g∗,
and vice-versa. This is why bialgebras are often denoted (g, g∗) since knowledge of the dual
and its bracket is equivalent to knowing the cocommutator δ on g. The relations between
the Lie brackets and cocommutators are captured by the arrows in Figure 3.1. Further we
note that the dual of the dual of a Lie bialgebra is the original Lie bialgebra. Also if (g, δ)
is a Lie bialgebra then (g, kδ) is a Lie bialgebra for any scalar k. This will be important
since we can introduce our deformation parameter here.

(
(g, [ , ]), δ

)
(
(g∗, [ , ]∗), δ∗

)
Figure 3.1: The relations of a Lie bialgebra (g, δ) and its dual (g∗, δ∗)

If we choose a particular basis of (g, δ) that satisfies

[Xi, Xj] = ckijXk, δ(Xl) = fnml Xn ⊗Xm

then the dual basis of (g∗, δ∗) satisfies [11],

[ξi, ξj] = f ijk ξ
k, δ∗(ξl) = clnmξ

n ⊗ ξm

and the 1-cocycle condition (3.21) reads as a compatibility condition between the structure
constants

ckijf
mn
k = cmikf

kn
j + cnikf

mk
j + cmkjf

kn
i + cnkjf

mk
i .
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The infinitesimal structure of Poisson-Lie groups are Lie bialgebras. The Poisson struc-
ture Π and the cocommutator δ are connected via the intrinsic derivative. The intrinsic
derivative at the identity of a contravariant k-tensor P on G which is trivial at the identity
is a linear map

DP : g→
k⊗

g

X 7→ [LX̂P ](e)

for all X ∈ g, where X̂ is an arbitrary vector field on G satisfying X̂(e) = X and L is the Lie
derivative. The Poisson bivector of a Poisson-Lie group (G,Π) defines the cocommutator
of its associated Lie bialgebra (g, δ) via the formula

δ(X) := DΠ(X) = LXLΠ

for all X ∈ g. In a basis, this expression reads

δ(Xk) = (LXL
k

Π)(e)

= [LXL
k

(ΠijXL
i ⊗XL

j )](e)

= (XL
k Πij)(e)Xi ⊗Xj + Πij(e)[Xk, Xi]⊗Xj + Πij(e)Xi ⊗ [Xk, Xj]

= (XL
k Πij)(e)Xi ⊗Xj

=
d

dt

∣∣∣∣
t=0

Πij(exp tXk)Xi ⊗Xj

= f ijk Xi ⊗Xj

where we take advantage of the fact Π(e) = 0. The skew symmetry of the structure
constants f ijk of g∗ clearly comes from the skew-symmetry of Πij. Further, the fact that
constants f ijk satisfy the Jacobi identity comes from the condition [|Π,Π|] = 0, as mentioned
earlier. The following is a theorem of Drinfeld’s [31] which makes the correspondence
between Lie bialgebras and Poisson-Lie groups clear. This relation is captured in Figure
3.2.

Theorem 3. Let (G,Π) be a Poisson-Lie group with Lie(G) = g and δ : g→ g⊗ g, X 7→
DΠ(X). Then (g, δ) is a Lie bialgebra which is said to be associated to the Poisson-Lie
group (G,Π).

Conversely, let (g, δ) be a Lie bialgebra and let G be the connected, simply connected
Lie group with Lie(G) = g. Then there exists a unique Poisson structure Π on G such that
(G,Π) is a Poisson-Lie group whose associated Lie bialgebra is isomorphic to (g, δ).
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Figure 3.2: The relation of a Poisson-Lie group (G,ΠG) to its Lie bialgebra (g, δ)

Thus to a Poisson-Lie group (G,Π) there is an associated Lie bialgebra (g, δ) which
has a natural dual (g∗, δ∗) that in turn is related to a unique connected, simply connected
Poisson-Lie group (G∗,Π∗) called the dual Poisson Lie group. These relations are
captured by the arrows in Figure 3.3. Note that in general the dual of (G∗,Π∗) may not
be (G,Π) because G need not be connected and simply connected to begin with.

Example 3.9. There is one non-abelian 2 dimensional Lie algebra up to isomorphism
which we call e2. Denoting the generators by X, Y it can identified by the relations

[X,X] = [Y, Y ] = 0, [X, Y ] = Y.

There are only two possible commutators (up to isomorphism and scalar multiples) on e2

given by δα(X) = 0, δα(Y ) = αX ∧ Y and δβ(X) = βX ∧ Y, δβ(Y ) = 0 [16]. If α = 0 or
β = 0 the dual Lie bialgebra is the 2-dimensional abelian Lie algebra, for α 6= 0 the dual
is a scaled version of e2 with [X̃, Ỹ ]∗ = αỸ and for β 6= 0 the dual is a scaled isomorphic
copy of e2 with [X̃, Ỹ ]∗ = βX̃ where X̃, Ỹ are the generators of the dual

Example 3.10 (Poisson-Lie structures on SU(2)). Consider the groupG = SU(2). The Lie
algebra su(2) has basis σi satisfying [σi, σj] = εkijσk (see example 3.8). From cohomological
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(
G, ΠG

) (
(g, [ , ]), δ

)
(
G∗, ΠG∗

) (
(g∗, [ , ]∗), δ∗

)

Figure 3.3: The relations of a Poisson-Lie group (G,ΠG) and its dual (G∗,ΠG∗)

arguments it is known this Lie algebra can be equipped with two (non-isomorphic) bialgebra
structures.

The simplest is the trivial bialgebra structure (su(2), 0) where δ(σi) = 0 for all i =
1, 2, 3. The dual Lie bialgebra then has a corresponding trivial bracket and can be identified
with R3. The Poisson-Lie dual of (SU(2), 0) is then R3 with the linear Poisson structure
inherited from su(2).

The second bialgebra structure (up to isomorphism and scaling) corresponds to the
element Λ = − 2

β
(σ2 ∧ σ3) where we can interpret β as a scale relevant to quantum gravity.

As we shall see in section ?? Λ is an example of an r-matrix. The commutator defined by
Λ on the basis elements is

δ(σ1) = 0, δ(σ2) =
2

β
σ1 ∧ σ2, δ(σ3) =

2

β
σ1 ∧ σ3.

If we denote the dual basis by ρi then the bracket on the dual is given by

[ρ1, ρ2]∗ =
2

β
ρ2, [ρ1, ρ3]∗ =

2

β
ρ3, [ρ2, ρ3]∗ = 0.

The dual su(2)∗ can be identified with the Lie algebra of the book group SB(2,C). The
basis of sb(2,C) can be represented by

ρ1 =
1

β

(
1 0
0 −1

)
, ρ2 =

1

β

(
0 1
0 0

)
, ρ3 =

1

β

(
0 i
0 0

)
.

Thus the dual of SU(2) with non-trivial Poisson structure is SB(2,C). Note that in the
limit β → ∞ we recover the previous trivial case. Thus we can see that the introduction
of a scale β relevant to the quantum gravity regime deforms the dual structures.
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3.4 Coboundary Lie Bialgebras and r-matrices

We now look at an important class of Lie bialgebras. These bialgebras have cocommutators
that are given by an r-matrix. The study of r-matrices originated from the study of inverse
scattering methods in the theory of integrable systems. The reader is encouraged to read
Appendix A to familiarize themselves with the basics of Lie theory cohomology. From Lie
algebra cohomology we know {coboundaries} ⊂ {cocycles}. Elements r ∈ g ⊗ g whose
coboundary define a cocommutator δ(r) are called r-matrices. Many cocommutators
of Lie bialgebras are of the coboundary type and have corresponding r-matrices. In the
following we will see how we can transform the conditions on Lie bialgebra cocommutators
to conditions on r itself. This will lead to the Yang-Baxter equation, its variants and the
corresponding classes of r-matrices.

A Lie bialgebra (g, δ) is called a coboundary Lie bialgebra if there exists an r-
matrix r ∈ g⊗ g such that δ = δ(r). Letting X1, . . . , Xn be a basis of g and ξ1, . . . , ξn be
the dual basis of g∗ with relations [Xi, Xj] = ckijXk and 〈Xi, ξ

j〉 = δji we can then write
r = rijXi ⊗Xj and the action of δ(r) on the basis of g

δ(r)(Xl) = [Xl ⊗ 1 + 1⊗Xl, r]

= rij([Xl, Xi]⊗Xj +Xi ⊗ [Xl, Xj])

= rij(ckliXk ⊗Xj +Xi ⊗ ckljXk)

= (rkjcilk + rikcjlk)Xi ⊗Xj

The Lie bracket on g∗ defined by the r-matrix is called the Sklyanin bracket and can be
found using the symmetry relations between a Lie bialgebra and its dual. It is given by

[ξi, ξj]∗ = (rkjcilk + rikcjlk)ξ
l.

The Sklyanin bracket is often written [ , ]r instead of [ , ]∗ to make the r-matrix dependence
clear.

The above paragraph gives a brief synopsis of the structures defined by an r-matrix,
but when do we know an element r ∈ g ⊗ g is an r-matrix? An element r ∈ g ⊗ g is
a 0-cochain on g with values in g ⊗ g. Thus the coboundary of r is a 1-cochain that is
necessarily a 1-cocycle. The only necessary and sufficient condition remaining is that δ(r)
defines a Lie bracket on g∗. Thus δ(r)∗ must be skew-symmetric and satisfy the Jacobi
identity, where δ(r)∗(ξ ⊗ η) = [ξ, η]∗.

Before we examine these conditions we introduce some new notation. Let 1 denote the
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identity map from g to itself. We define the following elements in the tensor algebra of g

r12 = rijXi ⊗Xj ⊗ 1

r23 = rij1⊗Xi ⊗Xj

r13 = rijXi ⊗ 1⊗Xj.

Then in g⊗ g⊗ g we have

[r12, r13] = rijrkl[Xi, Xk]⊗Xj ⊗Xl = rjkrlmcijlXi ⊗Xk ⊗Xm,

and similarly,

[r12, r23] = rijrlmckjlXi ⊗Xk ⊗Xm,

[r13, r23] = rijrklcmjlXi ⊗Xk ⊗Xm.

Further we define the algebraic Schouten bracket of r with itself (see appendix B),

[|r, r|] := [r12, r13] + [r12, r23] + [r13, r23] (3.22)

= (rjkrlmcijl + rijrlmckjl + rijrklcmjl )Xi ⊗Xk ⊗Xm

and the symmetric element

r12 + r21 = (rij + rji)Xi ⊗Xj.

The bracket [ , ]∗ is skew symmetric if and only if δ(r) takes values in ∧2g. This occurs

precisely when r12 + r21 is invariant under the adjoint action of g (i.e. ad
(2)
X [r12 + r21] = 0) .

Writing r = a+s where a, s are the skew-symmetric and symmetric parts of r, respectively,
the adjoint action of an element Xk ∈ g on r12 + r21 looks as follows

ad
(2)
Xk

[r12 + r21] = [Xk ⊗ 1 + 1⊗Xk, r12 + r21]

= (rij + rji)([Xk, Xi]⊗Xj +Xi ⊗ [Xk, Xj])

= (rij + rji)(clkiXl ⊗Xj + clkjXi ⊗Xl)

= ((rlj + rjl)cikl + (ril + rli)cjkl)Xi ⊗Xj

= ((alj + ajl)cikl + (ail + ali)cjkl + (slj + sjl)cikl + (sil + sli)cjkl)Xi ⊗Xj

= 2(sljcikl + slicjkl)Xi ⊗Xj.

This condition is clearly equivalent to the symmetric component s being ad invariant. Thus
the skew symmetry of δ(r)∗ is equivalent to the condition

sljcikl + slicjkl = 0
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for all i, j, k. We note when this is satisfied δ(s)(X) = 0 for all X ∈ g. Thus if r defines a
Lie bialgebra structure and r′ = r + s′ where s′ is symmetric (equivalently, ad-invariant)
then r′ defines the same Lie bialgebra structure as r. That is, only the skew-symmetric
component of an r-matrix contributes to the corresponding cocommutator. All coboundary
Lie bialgebras can be obtained from a purely skew-symmetric r-matrix. The symmetric
component does however play a role in the classification of r-matrices.

Given that this first condition has been satisfied we only need focus on the anti-
symmetric component of r since by the above comments δ(r) = δ(a). Now δ(a), a ∈ ∧2g
defines a Lie bracket on g∗ if and only if [ , ]a satisfies the Jacobi identity. This is true
if and only if the algebraic Schouten bracket of a with itself [|a, a|] ∈ ∧3g is ad-invariant
(Note: [|a, a|] is ad-invariant iff [|r, r|] is ad-invariant, provided the first condition is sat-
isfied [2]). The condition [|a, a|] be ad-invariant (or equivalently, [|r, r|] ad-invariant) is
called the generalized Yang-Baxter equation. In conclusion, r is an r-matrix if and
only if s and [|a, a|] are ad-invariant (or equivalently, r12 + r21 ∈ ⊗2g and [|r, r|] ∈ ⊗3g are
ad-invariant).

The simplest way to satisfy the second condition is to assume [|r, r|] = 0. This is
called the Classical Yang-Baxter Equation (CYBE). If r satisfies the CYBE and s is
ad-invariant then it follows that [|a, a|] is ad-invariant and so r is an r-matrix. A solution
of the CYBE is called a classical r-matrix. A Lie bialgebra arising from a solution of
the CYBE is called quasitriangular (also r-matrices satisfying the CYBE may be called
quasitriangular). Further, if r satisfies the CYBE and is skew-symmetric the associated Lie
bialgebra is called triangular (similarly, skew-symmetric r-matrices satisfying the CYBE
may be called triangular). Lastly, if r is quasitriangular and s is invertible so that it defines
a non-degenerate symmetric bilinear form on g∗, then r is called factorizable.

Example 3.11. The only coboundary bialgebra structure on Rn is the trivial bialgebra
corresponding to the trivial r-matrix.

Example 3.12 (The Weyl-Heisenberg algebra and triangular r-matrices). Consider the
Weyl-Heisenberg algebra wh generated by Q,P, Z with relations

[Q,P ] = i~Z, [Q,Z] = [P,Z] = 0.

Now let’s try and find a triangular r-matrix to turn wh into a Lie bialgebra. We require

0 = [|r, r|]kmi = (rjmrlickjl + rkjrlicmjl + rkjrmlcijl)

for all indices k,m, i = q, p, z. Since the only non-zero structure constants of wh are
czqp = i~ = −czpq we only need to consider the cases where jl = pq, qp. So

0 = [|r, r|]kmi = (rqkrpm − rpkrqm)ciqp + (riqrpm − riprqm)ckqp + (riqrkp − riprkq)cmqp.

36



This yields 12 independent equations corresponding to the choices of index kmi. In par-
ticular the choices zzz, zzp, zzq, zpz, zqz, pzz, qzz, zqq, zpp, zqp, zpq, and qzp lead to the
independent set of equations. Solving these we find

rqq = rpp = rzz = rpq = rqp = 0

and
rqz = −rzq = A, rpz = −rzp = B

for any A,B ∈ R. Thus the possible triangular r-matrices that turn wh into a Lie bialgebra
have two free parameters. If we consider the dual bialgebra we shall see these parameters
do not determine any structure at the bialgebra level. We denote the dual by wh∗ with
dual basis Q̃, P̃ , Z̃. The brackets on wh∗ are given by the Sklyanin bracket. Since the only
nonzero terms are czqp = i~ = −czpq and rqz = −rzq = A, rpz = −rzp = B. The brackets on
wh∗ are in fact all zero. For example

[Q̃, Z̃]r = (rkzcqqk + rqkczqk)Q̃+ (rkzcqpk + rqkczpk)P̃ + (rkzcqzk + rqkczzk)Z̃

= rqkczpkP̃ + rqkczqkQ̃

= rqqczpqP̃ + rqpczqpQ̃

= 0.

Thus wh∗ = R3 and we see the parameters A,B don’t determine any particular structure
at the infinitesimal level.

3.5 Coboundary Poisson-Lie Groups

Coboundary Poisson-Lie groups, as their name suggests, are Poisson-Lie groups whose
Poisson structure are associated to an r-matrix. In other words, they are Poisson-Lie
groups whose tangent Lie bialgebras are coboundary. We may assume without loss of gen-
erality that the r-matrices in the following discussion are all skew-symmetric, as the skew
component is what determines the cocommutator and the subsequent Poisson structure
uniquely.

Suppose (g, δ(r)) is a coboundary Lie bialgebra with corresponding Poisson-Lie group
(G,Π). The Poisson structure Π is a 1-cocycle of G with values in g ⊗ g obtained by
‘integrating out’ δ(r). It is easy to see that

ΠR(g) = (Adg ⊗ Adg)∗(r)− r
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has the correct derivative δ at the identity and satisfies the cocycle property

ΠR(gg′) = (Adgg′ ⊗ Adgg′)∗(r)− r
= (Adg ⊗ Adg)∗[(Adg′ ⊗ Adg′)∗(r)− r + r]− r
= (Adg ⊗ Adg)∗(ΠR(g′)) + ΠR(g).

The Poisson bivector Π at g is given by the right translate of ΠR(g) to g.

If we write the r-matrix as r = rijXi ⊗Xj then the corresponding bracket is given by

{f, h}(g) = rij((XL
i f)(XL

j h)− (XR
i f)(XR

j h)) (3.23)

= rij(((Adg)∗X
R
i f)((Adg)∗X

R
j h)− (XR

i f)(XR
j h)) (3.24)

= rij((XL
i f)(XL

j h)− ((Adg−1)∗X
L
i f)((Adg−1)∗X

L
j h)). (3.25)

We can simplify this if G is a matrix group of n×n matrices. Then r is a n2×n2 matrix and
there is a straightforward formula to calculate the Poisson brackets of the matrix elements,
which is enough to determine the Poisson bracket on the group completely. If M ∈ G then

XLMij = (MX)ij, and XRMij = (XM)ij

where Mij is the ijth entry of the matrix M . So,

{Mij,Mkl} = rab((XL
aMij)(X

L
b Mkl)− (XR

a Mij)(X
R
b Mkl))

= rab((MXa)ij(MXb)kl − (XaM)ij(XbM)kl)

= ((M ⊗M)(rabXa ⊗Xb)− (rabXa ⊗Xb)(M ⊗M))ijkl

= [M ⊗M, r]ijkl

This is captured succintly by the second Russian formula

{M⊗,M} = [M ⊗M, r] (3.26)

where {M⊗,M}ijkl = {Mij,Mkl}. This formula makes it clear that the Poisson brackets
of any two entries of M is a quadratic function of the entries of M , justifying the name
quadratic bracket which is commonly seen in the literature. This equation is the basic equa-
tion of classical inverse scattering theory. Sometimes {M⊗,M} is also written as {M1,M2}
where M1 = M ⊗ 1,M2 = 1⊗M .

Example 3.13 (SU(2) cont‘d). Let G = SU(2) and recall the r-matrix Λ = − 2
β
(σ2 ∧ σ3)

given example 3.8. Writing an element of SU(2) as g =

(
α −γ̄
γ ᾱ

)
with α, γ ∈ C and

38



αᾱ+ γγ̄ = 1 the second Russian formula allows us to compute the Poisson brackets using
only matrix multiplication. We obtain

{g⊗, g} =


{α, α} {α,−γ̄} {−γ̄, α} {−γ̄,−γ̄}
{α, γ} {α, ᾱ} {−γ̄, γ} {−γ̄, ᾱ}
{γ, α} {γ,−γ̄} {ᾱ, α} {ᾱ,−γ̄}
{γ, γ} {γ, ᾱ} {ᾱ, γ} {ᾱ, ᾱ}

 and Λ =
i

β


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .

From which we use the second Russian formula to find,

{α, ᾱ} = − i
β
γγ̄, {α, γ} =

i

β
αγ

{α, γ̄} =
i

β
αγ̄, {γ, γ̄} = 0.

Example 3.14 (The Weyl-Heisenberg group and triangular r-matrices). The Weyl-Heisenberg
group WH is a 3-dimensional manifold with elements given by g = (q, p, z) and product
gg′ = (q, p, z) · (q′, p′, z′) = (q+ q′, p+ p′, zz′ exp i

2~(qp′− pq′)). The right and left invariant
vector fields on WH are

XR
(q) =

∂

∂q
+

i

2~
pz

∂

∂z
, XR

(p) =
∂

∂p
− i

2~
qz

∂

∂z
, XR

(z) = z
∂

∂z
,

XL
(q) =

∂

∂q
− i

2~
pz

∂

∂z
, XL

(p) =
∂

∂p
+

i

2~
qz

∂

∂z
, XL

(z) = z
∂

∂z
.

Using the triangular r-matrix computed in example 3.12 we can use (3.23) to compute the
corresponding coboundary Poisson structure on WH. The only nonzero elements of the
r-matrix are rqz = −rzq = A, rpz = −rzp = B for A,B ∈ R. Since

XL
(q)fX

L
(z)h−XR

(q)fX
R
(z)h =

(
− i
~
pz2

∂f

∂z

∂h

∂z

)
= XL

(z)fX
L
(q)h−XR

(z)fX
R
(q)h

XL
(p)fX

L
(z)h−XR

(p)fX
R
(z)h =

(
i

~
qz2

∂f

∂z

∂h

∂z

)
= XL

(z)fX
L
(p)h−XR

(z)fX
R
(p)h

for f, h ∈ F(WH) the Poisson structure on WH is trivial, by the skew-symmetry of the
r-matrix. Hence, the free parameters A,B are really meaningless since they determine no
structure at the group level or infinitesimal level on WH.

Thus the only Poisson-Lie structure on WH arising from a solution of the CYBE is
the trivial Poisson structure. Considering the similarity between WH and R3 we observe
a trend that the more ‘abelian-ess’ a group exhibits the less likely it will have a non-trivial
coboundary Poisson-Lie structure.
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3.6 The Classic Double Lie Bialgebra

Lie bialgebras always come in pairs due to the symmmetry in their duality relations. We
can construct a factorizable Lie bialgebra out of any such pair of Lie bialgebras with a
canonical choice of r-matrix.

Let (g, δ) be a Lie bialgebra and (g∗, δ∗) its dual. The double Lie algebra denoted
d = g ./ g∗ is a Lie algebra on g ⊕ g∗ with brackets arising from g, g∗ and their adjoint
actions on each other. It is the unique Lie algebra structure on g⊕ g∗ such that g and g∗

are Lie subalgebras and that the natural scalar product on g⊕ g∗ is invariant.

The natural scalar product on g⊕ g∗ is defined by

〈(X, ξ), (Y, η)〉d = 〈ξ, Y 〉+ 〈η,X〉

for X, Y ∈ g and ξ, η ∈ g∗. The invariance condition tells us the bracket structure on the
double d is given by

[(X, ξ), (Y, η)] = ([X, Y ]− ad∗ηX + ad∗ξY, [ξ, η]∗ + ad∗Xη − ad∗Y ξ).

In particular, if the bases of g and g∗ satisfy

[Xi, Xj] = ckijXk, [ξi, ξj] = f ijk ξ
k,

then the bracket on d is given by [16, 33],

[Xi, Xj] = ckijXk

[Xi, ξ
j] = −cjikξ

k + f jki Xk

[ξi, ξj] = f ijk ξ
k.

The double d can be equipped with a factorizable bialgebra structure by a canonical
r-matrix. We call this bialgebra (d, δd) the Drinfeld or classic double Lie bialgebra.
The canonical choice of r-matrix is [33]

rd = ξi ⊗Xi ∈ g∗ ⊗ g ⊂ d⊗ d

so that the commutator of the double bialgebra is

δ(rd)(Y ) = [Y ⊗ 1 + 1⊗ Y, rd], for all Y ∈ d.
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In terms of the basis

δ(rd)(Xk + ξl) = [Xk + ξl ⊗ 1 + 1⊗Xk + ξl, ξi ⊗Xi]

= −fnik Xn ⊗Xi + clinξ
i ⊗ ξn

and in particular

δ(rd)(Xk) = −δ(Xk) = −f ijk Xi ⊗Xj, δ(rd)(ξ
k) = δ∗(ξk) = ckijξ

i ⊗ ξj.

Thus we see that (g,−δ), (g∗, δ∗) are sub-Lie bialgebras of (d, δ(rd)). We may note

r̂d =
1

2
(ξi ∧Xi) =

1

2
(prg − prg∗)

where prg : g ⊕ g∗ → g, prg∗ : g ⊕ g∗ → g∗ are the projection operators and we consider
r̂d ∈ d⊗ d as a linear map from d to d by contracting against the first element.

The dual d∗ ' g∗⊕ g of the Drinfeld double can be read off using our duality relations.
We denote the basis of d∗ by Y i, γi such that the following duality relations hold

〈Xi, Y
j〉 = 〈ξj, γi〉 = δji , 〈Xi, γj〉 = 〈ξi, Y j〉 = 0.

The brackets are then given by

[Y i, Y j] = −f ijl Y
l

[Y i, γj] = 0

[γi, γj] = ckijγk.

Thus we see that the dual of d is d∗ = g∗op × g where gop is the Lie algebra associated to
Gop where Gop is G with opposite product, i.e. for a, b ∈ G, ab = b ∗op a.

Example 3.15. Any Lie algebra g is a Lie bialgebra when equipped with the trivial
commutator. The dual of (g, δ = 0) is then abelian with commutator coming from the Lie
bracket on g. The corresponding double of this pair is the semidirect product gn g∗.

Example 3.16 (The double of SU(2)). Continuing example 3.10. The double correspond-
ing to the pair su(2) and sb(2,C) is precisely sl(2,C) = su(2) ./ sb(2,C).

Example 3.17 (The Lorentz algebra as a double Lie algebra). The Lorentz algebra so(3, 1)
has a number of decompositions into double Lie algebras which can be found in [11]. One
of them is the decomposition so(3, 1) = so(3) ./ an(2) where an(2) is the 3 dimensional
hyperbolic Lie algebra. This decomposition is isomorphic to the previous example.
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We will now realize the double so(3, 1) = so(3) ./ an(2) using a new 4×4 representation.
so(3, 1) is generated by boosts P1, P2, P3 and rotations J1, J2, J3 with the following relations

[Ji, Jj] = εkijJk, [Pi, Pj] = −εkijJk, [Pi, Jj] = εkijPk.

They have the following (non-standard) 4× 4 matrix representation,

Pi =

[
0 −eTi
−ei 03×3

]
, Ji =

[
0 0T

0 Ei

]
where Ei are as defined in example 2.6 and ei ∈ R3 are 0 column vectors with a 1 in the
ith entry. We now introduce a deformation parameter β into the boosts.

Pi → P β
i =

[
0 −eTi
−ei

β
03×3

]

These satisfy,

[Ji, Jj] = εkijJk, [P β
i , P

β
j ] = −εkij

Jk
β2
, [P β

i , Jj] = εkijP
β
k .

Notice if β = 1 then we recover the original relations, as expected. Further, if β →∞ then
the boosts P β

i commute and the Lie algebra is that of SO(3) nR3.

We now define a new basis

X1 =
1√
2

(J1 + J2) , X2 =
1√
2

(−J1 + J2) , X3 = J3

x1 =
1√
2

(P β
1 + P β

2 +
1

β
(−J1 + J2)), x2 =

1√
2

(−P β
1 + P β

2 −
1

β
(J1 + J2)), x3 = P β

3 .

These satisfy the relations

[Xi, Xj] = εkijXk,

and

[x1, x2] = 0, [x1, x3] =
1

β
x1, [x2, x3] =

1

β
x2,
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with mixed brackets given by

[x1, X1] = − 1

β
X3, [x1, X2] = x3, [x1, X3] = −x2

[x2, X1] = −x3, [x2, X2] = − 1

β
X3, [x2, X3] = x1

[x3, X1] = x2 +
1

β
X1, [x3, X2] = −x1 +

1

β
X2, [x3, X3] = 0

We see that the Xi satisfy the relations of so(3) and the xi satisfy the relations of an(2).
Further the mixed brackets satisfy the relations of a double Lie algebra. Hence we have
realized so(3, 1) = so(3) ./ an(2).

We introduced the deformation parameter β at the level of the generators of an(2). Due
to the relations on Lie bialgebras summarized in Figure 3.1 this is equivalent to introducing
β in the commutator of the Lie bialgebra (so(3), δ). In particular, the above is equivalent
to defining the commutator on so(3) by the r-matrix 1

β
X1 ∧ X2. In the limit β → ∞ we

can see that the double corresponds to iso(3) = so(3) nR3.

3.7 Double Poisson-Lie Groups

Corresponding to the double of a Lie bialgebra, there is a double of a Poisson-Lie group.
A Poisson-Lie group (G,Π) has a tangent Lie bialgebra (g, δ). This Lie bialgebra has a
double Lie bialgebra (d, δ(rd)) which is factorizable. The connected and simply-connected
Poisson-Lie group (D,Π−) with Lie bialgebra (d, δ(rd)) is called the Drinfeld double of
(G,Π) where D = G ./ G∗ is the double Lie group associated to the Lie algebra d = g ./ g∗

(the reason for the − on the Poisson structure will become more apparent when we consider
affine Poisson structures in section 4.1). The relations of a Drinfeld double to its building
blocks is given in Figure 3.4.

The Poisson structure of a Drinfeld double is given conveniently by (3.23)

Π−(a) = ξiL ⊗XL
i − ξiR ⊗XR

i (3.27)

where a ∈ D. Since the Poisson structure is determined uniquely by the skew-symmetric
component of the r-matrix the above is equivalent to either [6]

Π−(a) = XR
i ⊗ ξiR −XL

i ⊗ ξiL
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(
G, ΠG

) (
(g, [ , ]), δ

)
(
D = G ./ G∗, Π−

) (
d = g ./ g∗, δ(rd)

)
(
G∗, ΠG∗

) (
(g∗, [ , ]∗), δ∗

)

Figure 3.4: The relation of a Drinfeld double (D,Π−) to its subgroups.

or,

Π−(a) =
1

2

(
(ξiL ⊗XL

i −XL
i ⊗ ξiL)− (ξiR ⊗XR

i −XR
i ⊗ ξiR)

)
.

Since (g,−δ), (g∗, δ∗) are sub-Lie bialgebras of (d, δD) (G,−ΠG) and (G∗,ΠG∗) are
Poisson-Lie subgroups of (D,Π−). The following product maps are diffeomorphisms about
the identity of the double group D

ϕ : G×G∗ → D, (g, u) 7→ ϕ(g, u) = gu ∈ D,

φ : G∗ ×G→ D, (v, h) 7→ φ(v, h) = vh ∈ D.
This means that in an open neighbourhood of the identity we can factor the elements into
products on GG∗ or G∗G by an Iwasawa-type decomposition [16, 6]. The following are
projections that map onto the different factors about the identity,

pR : D ∼ G∗G→ G, vh 7→ h ∈ G,
pL : D ∼ GG∗ → G, gu 7→ g ∈ G,
p∗L : D ∼ G∗G→ G∗, vh 7→ v ∈ G∗,
p∗R : D ∼ GG∗ → G∗, gu 7→ u ∈ G∗.

We often call, with some abuse of terminology, g, u and v, h different coordinates choices. If
the maps ϕ, φ are globally defined diffeomorphisms then D is a complete double group
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and the projections are also globally defined. If either G or G∗ is compact then the double
group D is complete [29].

We can now see how a cotangent bundle is a special case of a double group. Given a
group G we can equip it with a trivial Poisson structure to construct the Poisson-Lie group
(G,Π = 0). This has an associated Lie bialgebra (g, δ = 0) which has a dual Lie bialgebra
(g∗, δ∗). The associated double Lie algebra is d = gn g∗ with bracket given by

[(X, ξ), (Y, η)] = ([X, Y ], ad∗Xη − ad∗Y ξ).

The double group is then D = Gn g∗ with multiplication

(g, µ) · (h, ν) = (gh, (Adh−1)∗µ+ ν), (g, µ)−1 = (g−1,−(Adg−1)∗µ).

The elements of D can be factorized as

(g, µ) = (g, 0)(e, µ) = (e, (Adg−1)∗µ)(g, 0)

where we have identified the subgroups G, g∗ with elements of the form (g, 0) and (e, µ),
respectively. This pair of factorizations corresponds with the pair of body and space coor-
dinates of the cotangent bundle T ∗G. In particular, if an element α of T ∗G is (g, µ) in body
coordinates then in space coordinates α is written ((Adg−1)∗µ, g) since the coadjoint map
relates body and space coordinates. We can thus straightforwardly extend the definition
of body and space coordinate to general double groups,

• body coordinates:

B = ϕ−1 = (pL, p
∗
R) : D → G×G∗

gu 7→ (g, u)

• space coordinates:

S = φ−1 = (p∗L, pR) : D → G∗ ×G
vh 7→ (v, h)

It is important to note that these projection maps satisfy some simplifying relations. For
example, if a ∈ D and g ∈ G then p∗R(ga) = p∗R(a) since we are projecting onto G∗ on the
right. Thus we have for example p∗R(vh) = p∗R(Adh−1v) where define the Ad map to be the
conjugate map, e.g. Adh−1v = h−1vh. This will make it easier to relate the coordinates
on the double D = G ./ G∗ and cotangent bundle T ∗G. These relations can be found in
Table 3.1.

45



Table 3.1: Comparison of Coordinate Systems
Phase Space Body Space Body ↔ Space

T ∗G

T ∗G→ G× g∗ T ∗G→ g∗ ×G
α 7→ (g, µ) α 7→ (ν, h) (g, µ) 7→ ((Adg−1)∗µ, g)
g = πG(α) h = πG(α) (ν, h) 7→ (h, (Adh)

∗ν)
µ = (Lg)

∗α ν = (Rh)
∗α

D = G ./ G∗

D → G×G∗ D → G∗ ×G
a 7→ (g, u) a 7→ (v, h) (g, u) 7→ (p∗L(Adgu), pR(Adu−1g))
g = pL(a) h = pR(a) (v, h) 7→ (pL(Advh), p∗R(Adh−1v))
u = p∗R(a) v = p∗L(a)

Example 3.18 (Identifying T ∗SO(3) with a Heisenberg double). Consider the Poisson-Lie
group (SO(3),Π = 0). The Poisson-Lie dual is then so(3)∗ ' R3 with the linear Poisson
bracket. We denote the generators of so(3) by Xi with relations [Xi, Xj] = εkijXk and the
generators of the dual by ξi with relations [ξi, ξj] = 0. The generators of the double Lie
bialgebra so(3)⊕ R3 then satisfy

[Xi, Xj] = εkijXk, [Xi, ξ
j] = εjkiξ

k [ξi, ξj] = 0.

We can represent this Lie algebra in terms of 4× 4 matrices by

Xi =

[
0 0T

0 Ei

]
, ξi =

[
0 ei

T

0 03×3

]
where Ei, ei are as defined in example 3.17. Exponentiating these generators we can see
the double group is ISO(3) = SO(3) nR3 with elements,

g =

[
1 uT

0 R

]
= (R,u) ∈ ISO(3)

and product

(R,u) · (S,w) = (RS, S−1u + w), (R,u)−1 = (R−1,−R−1u)

where R, S ∈ SO(3), u,w ∈ R3.

An element of the group can be factorized in terms of SO(3) · R3 or R3 · SO(3)

(R,u) = (R, 0) · (I,u) = (I, R−1u) · (R, 0)

where we identify elements (R, 0) with SO(3) and (I,u) with R3. Since the coadjoint action
of SO(3) on so(3)∗ is simply the left action of SO(3) on R3 we can write R−1u = (AdR−1)∗ξu
where ξu =

∑
i uiXi ∈ so(3)∗.
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Double Poisson-Lie groups provide the full landscape in which to study Poisson-Lie
groups since we can take advantage of all the ‘symmetries’ present in their construction.
Decomposing (3.27) the Poisson structures on the subgroups G,G∗ of the Drinfeld double
can be written in terms of the the generators Xi ∈ g, ξi ∈ g∗ of the double lie algebra d

−ΠG(g) = −
∑
i

(Lg)∗Xi ⊗ (Rg)∗prg((Adg)∗ξ
i) =

∑
i

(Rg)∗Xi ⊗ (Lg)∗prg((Adg−1)∗ξ
i)

(3.28)

ΠG∗(u) =
∑
i

(Lu)∗ξ
i ⊗ (Ru)∗prg∗((Adu)∗Xi) = −

∑
i

(Ru)∗ξ
i ⊗ (Lu)∗prg∗((Adu−1)∗Xi)

(3.29)

where g ∈ G and u ∈ G∗. This decomposition takes some effort and the details can be
found in [6]. Using this decomposition the Poisson-structure of the Drinfeld double can be
conveniently written in body and space coordinates. Following the decomposition we have

Π−(gu) =
∑
i

(Lgu)∗ξ
i ⊗ (Lgu)∗Xi − (Rgu)∗ξ

i ⊗ (Lgu)∗Xi

= −(Ru)∗ΠG(g) + (Lg)∗ΠG∗(u)

so in body coordinates the Poisson structure is given by

ΠB
−(g, u) = −ΠG(g) + ΠG∗(u) ∈ ∧2T (G×G∗).

Similarly, the Poisson structure in space coordinates is given by

ΠS
−(v, h) = −ΠG(h) + ΠG∗(v) ∈ ∧2T (G∗ ×G).

The Poisson-Lie group dual to the Drinfeld double (D = G ./ G∗,Π−) is G∗op×G with
Poisson structure

Π∗−(v, h) = ΠG(h) + ΠG∗(v)−
∑
i

(Rv)∗Y
i ∧ (Rh)∗γi +

∑
i

(Lv)∗Y
i ∧ (Lh)∗γi

where (Rv)∗Y
i, (Lv)∗Y

i are right and left invariant vector fields with respect to the opposite
group structure on G∗.
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Example 3.19 (The Lorentz group as a double group). As we saw in example 3.17 we
have so(3, 1) = so(3) ./ an(2). An element of AN(2) can be written as [20]

v = exp(t1x1 + t2x2) exp(t3x3)

=


w(v21+v

2
2)

2β2 + cosh(v3/β) v1 v2 −w(v21+v
2
2)

2β
+ β sinh(v3/β)

wv1
β2 1 0 −wv1

β
wv2
β2 0 1 −wv2

β
w(v21+v

2
2)

2β3 + sinh(v3/β)
β

v1
β

v2
β
−w(v21+v

2
2)

2β2 + cosh(v3/β)


where w = exp t3

β
, v1 = t2−t1√

2
, v2 = − t2+t1√

2
, v3 = −t3 and elements of SO(3) can be written

as

h = exp(θ1X1) exp(θ2X2) exp(θ3X3) =

[
1 0T

0 R

]
.

Then,

lim
β→∞

v =

[
1 vT

0 13×3

]
and lim

β→∞
h = h.

Thus in the limit β → ∞ we have SO(3, 1) = SO(3) ./ AN(2) → SO(3) n R3. The
deformation parameter β was originally introduced in the cocommutator of so(3) which
lead to the deformation of the dual group. We will see that this can be interpreted as a
deformation of the momentum space of the rigid rotator.

We can, for the sake of interest, introduce another deformation parameter in this ex-
ample which we will see under some interpretion is relevant to quantum gravity. Again we
introduce the scale α at the level of the Lie algebras. We only inject α into three of the
generators

P β
1 → P β+α

1 =


0 −1 0 0
− 1
αβ2 0 0 0

0 0 0 0
0 0 0 0

 , J2 → Jα2 =


0 0 0 0
0 0 0 1

α

0 0 0 0
0 −1 0 0

 , J3 → Jα3 =


0 0 0 0
0 0 − 1

α
0

0 1 0 0
0 0 0 0

 .
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The algebra then satisfies

[J1, J
α
2 ] = Jα3 , [J1, J

α
3 ] = −Jα2 , [Jα2 , J

α
3 ] =

1

α
J1

[P β+α
1 , P β

2 ] = − 1

β2
Jα3 , [P β+α

1 , P β
3 ] =

1

β2
Jα2 , [P β

2 , P
β
3 ] = − 1

β2
J1

[P β+α
1 , J1] = 0, [P β+α

1 , Jα2 ] =
1

α
P β
3 , [P β+α

1 , Jα3 ] = − 1

α
P β
2

[P β
2 , J1] = −P β

3 , [P β
2 , J

α
2 ] = 0, [P β

2 , J
α
3 ] = P β+α

1

[P β
3 , J1] = P β

2 , [P β
3 , J

α
2 ] = −P β+α

1 , [P β
3 , J

α
3 ] = 0.

Notice if β = 1 and α → ∞ then the rotations Ji contract to iso(2) and the double Lie
algebra is that of ISO(2) ./ AN(2). Thus this scale deforms the top’s configuration space.
When both β, α→∞ the double reduces to ISO(2) nR3.

We define the basis Xi, xi the same as before but replacing the generators appropriately
with their newly scaled counterparts. These then have the relations

[X1, X2] = X3,

[X1, X3] =
1

2

((
1

α
− 1

)
X1 −

(
1

α
+ 1

)
X2

)
,

[X2, X3] =
1

2

((
1

α
+ 1

)
X1 −

(
1

α
− 1

)
X2

)
,

and

[x1, x2] = 0, [x1, x3] =
1

β
x1, [x2, x3] =

1

β
x2,

and the mixed brackets are

[x1, X1] =
1

2

(
1

α
− 1

)
x3 −

1

β
X3, [x1, X2] =

1

2

(
1

α
+ 1

)
x3,

[x1, X3] = −1

2

((
1

α
− 1

)
x1 +

(
1

α
+ 1

)
x2

)
, [x2, X1] = −1

2

(
1

α
+ 1

)
x3,

[x2, X2] = −1

2

(
1

α
− 1

)
x3 −

1

β
X3, [x2, X3] =

1

2

((
1

α
+ 1

)
x1 +

(
1

α
− 1

)
x2

)
,

[x3, X1] = x2 +
1

β
X1, [x3, X2] = −x1 +

1

β
X2,

[x3, X3] = 0.
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Group elements v ∈ AN(2), h ∈ SO(3) now take on the form

v =


wv21
2β2α

+
wv22
2β2 + cosh(−v3/β) v1 v2

wv21
2βα
− wv22

2β
− β sinh(−v3/β)

wv1
βα

1 0 −wv1
βα

wv2
β2 0 1 −wv2

β
wv21
2β3α

+
wv22
2β3 − sinh(−v3/β)

β
v1
β

v2
β
− wv21

2β2α
− wv22

2β2 + cosh(−v3/β)

 ,
h =

[
1 0T

0 R(α)

]
where R(α) is a rotation matrix dependent on α. Then

lim
α→∞

v =


wv22
2β2 + cosh(−v3/β) v1 v2 −wv22

2β
− β sinh(−v3/β)

0 1 0 0
wv2
β2 0 1 −wv2

β
wv22
2β3 − sinh(−v3/β)

β
v1
β

v2
β
−wv22

2β2 + cosh(−v3/β)

 ,

lim
α→∞

h =


1 0 0 0
0 1 0 0
0 (θ3 + 1) cos θ1−θ2√

2
− 2 cos θ1√

2
+ 1 cos θ1−θ2√

2
− sin θ1−θ2√

2

0 (θ3 + 1) sin θ1−θ2√
2
− 2 sin θ1√

2
sin θ1−θ2√

2
cos θ1−θ2√

2

 .
If we interpret SO(3, 1) as the phase space of a deformed top the introduced α parameter
then flattens part of the configuration space (i.e. SO(3)→ ISO(2) as α→∞) and leaves
the curved momentum space intact. This is possible since the algebras before and after
contraction happen to be compatible. Really though this interpretation breaks down when
we take the limit α → ∞ since a particle with phase space ISO(2) is no longer the top.
We can, however, interpret this double deformation as a deformation of the phase space of
a 2 dimensional particle with spin (i.e. T ∗ISO(2)) where we have added curvature to the
configuration space with α representing the cosmological constant and added curvature to
momentum space with β to acquire quantum gravitational effects.
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Chapter 4

Heisenberg Doubles

We are now in a position to define a new type of deformed phase spaces, Heisenberg doubles.
Heisenberg doubles are double Lie groups equipped with a Poisson structure closely related
to the multiplicative structures of Poisson-Lie groups. This makes them closely related to
the Drinfeld double, but unlike the Drinfeld doubles they are not Poisson-Lie groups. Their
Poisson structure is non-degenerate in a neighbourhood about the identity and we can thus
define a corresponding symplectic form in such a neighbourhood.

Cotangent bundles are a special type of Heisenberg double. In this section we generalize
the concepts introduced on cotangent bundles, like body/space coordinates, momentum
maps and Noether’s theorem to Heisenberg doubles. Heisenberg doubles allow us to define,
in a well-defined manner, phase spaces with a momentum space that has a non-abelian
group structure. The non-abelian group structure is achieved by introducing a deformation
parameter dependent on the quantum gravity scale. Hence they are a natural lab in which
to study possible quantum gravitational effects.

4.1 The Heisenberg Double an Affine Poisson Struc-

ture

Recall that the Drinfeld double (D,Π−) is a Poisson-Lie group built from a pair of dual
Poisson-Lie groups (G,ΠG), (G∗,ΠG∗) and a canonical r-matrix rd = ξi ⊗ Xi ∈ d ⊗ d.
A Heisenberg double is built from the same pieces. A Heisenberg double has the same
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underlying group D but with Poisson structure Π+ given by

{a⊗, a}+ = (a⊗ a)rd − r∗d(a⊗ a) (4.1)

where r∗d = Xi ⊗ ξi and a ∈ D. We can decompose (4.1) using the coordinates a = gu =
vh ∈ D, g, h ∈ G, u, v ∈ G∗ to find the brackets between the elements of the subgroups

{g1, g2}+ = −[g1g2, r], {u1, u2}+ = −[u1u2, r
∗], {g1, u2}+ = g1ru2, {u1, g2}+ = g2r

∗u1,

{h1, h2}+ = −[h1h2, r
∗], {v1, v2}+ = −[v1v2, r], {v1, h2}+ = v1rh2, {h1, v2}+ = v2r

∗h1,

{g1, h2}+ = 0, {g1, v2}+ = −r∗g1v2, {u1, v2}+ = 0, {u1, h2}+ = u1h2r,

where we have used the tensor notation g1 = g ⊗ 1, g2 = 1⊗ g.

The relation between the Poisson structure of a Drinfeld double Π− and Heisenberg
double Π+ can be easily deduced from the following formula

Π± =
1

2

(
(ξiL ⊗XL

i −XL
i ⊗ ξiL)± (ξiR ⊗XR

i −XR
i ⊗ ξiR)

)
. (4.2)

In terms of the second Russian formula this is the same as

{a⊗, a}± = [a⊗ a, r̂d]± (4.3)

where r̂d = 1
2
ξi ∧Xi is the antisymmetric part of rd = ξi ⊗Xi and [ , ]−, [ , ]+ are the com-

mutator and anti-commutator, respectively. We denote a Heisenberg double by (D,Π+).
The reason for the ± in the notation should now be apparent since the difference between
the Poisson structure of a Drinfeld double Π− and the Poisson structure of a Heisenberg
double Π+ can be boiled down to a change in sign. Simplifying the Heisenberg Poisson
structure Π+ in equation 4.2 we get the equivalent formulas

Π+ = ξiL ⊗XL
i −XR

i ⊗ ξiR = ξiR ⊗XR
i −XL

i ⊗ ξiL. (4.4)

It is important to note that a Heisenberg double is not a Poisson-Lie group. Since
Π+(e) = rd − r∗d 6= 0 is non-degenerate, Π+ is non-degenerate in a neighbourhood of the
identity. Π+ is an example of an affine Poisson structure. A Poisson structure Π on a
group G is affine if

Π(gg′) = (Lg)∗Π(g′) + (Rg′)∗Π(g)− (Lg)∗(Rg′)∗Π(e)

for g, g′ ∈ G [29]. This condition is very similar to the multiplicativity condition of a Poisson
structure, see (3.17) on page 26. In fact, we can characterize affine Poisson structures by
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their similarity to multiplicative ones. A Poisson structure Π on a group G is affine if and
only if the new bivector field ΠL defined by

ΠL(g) = Π(g)− (Lg)∗Π(e)

is multiplicative (or, equivalently, if and only if ΠR is multiplicative where ΠR(g) = Π(g)−
(Rg)∗Π(e)).

4.2 The Cotangent Bundle Relation

Recall in section 3.7 we saw that a cotangent bundle can be identified with a double group.
This was done by recognizing that a Poisson-Lie group (G,Π) with trivial Poisson structure,
i.e. Π = 0, has a corresponding double group D given by D = Gng∗. The factorizations of
the elements of this group then corresponded to the trivializations of the cotangent bundle
T ∗G. Using this we extended our definition of body and space coordinates to general
double groups. At the level of manifolds we then had a straightforward identification of
T ∗G with the double D = G n g∗. In that discussion we neglected to discuss the second
important part of our construction, the Poisson structure. Cotangent bundles have a
canonical symplectic structure arising from the Liouville form. This symplectic structure,
which is non-degenerate by definition, then defines a canonical Poisson structure. The
multiplicative Poisson structures of Poisson-Lie groups are degenerate about the identity
and thus cannot be seen as a generalization of the canonical Poisson structure of a cotangent
bundle.

We shall see now, presented in detail for the first time, how the affine structure of a
Heisenberg double can be identified with the canonical Poisson structure of a cotangent
bundle. In body and space coordinates the Poisson structure Π+ of the Heisenberg double
(D = G ./ G∗,Π+) can be written as

ΠB
+(g, u) = ΠG(g) + ΠG∗(u) +

∑
i

(Ru)∗ξ
i ∧ (Lg)

∗Xi ∈ ∧2T (G×G∗) (4.5)

ΠS
+(v, h) = −ΠG(h)− ΠG∗(v) +

∑
i

(Lv)∗ξ
i ∧ (Rh)

∗Xi ∈ ∧2T (G∗ ×G) (4.6)

where g, h ∈ G, u, v ∈ G∗, and ΠG,ΠG∗ are as defined in (3.28), (3.29), respectively [6].
Supposing we choose coordinates xi on the dual space g∗ so that any ξ ∈ g∗ can be written
as ξ =

∑
i x

iξi. Then on the double group G n g∗ we can identify the generators ξi of g∗
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with ∂
∂xi

. From the construction of the double we know ΠG(g) = 0 and

ΠG∗(ξ) =
∑
ijk

xicijk
∂

∂xj
⊗ ∂

∂xk

is the linear Poisson structure on g∗ where cijk are the structure constants of g. The

dual g∗ is also abelian so (Ru)∗
∂
∂xi

= (Lu)∗
∂
∂xi

= ∂
∂xi

∣∣
u
. Rewriting (4.5) and (4.6) with

this knowledge we recover exactly (2.6) and (2.7), the canonical Poisson structure of the
cotangent bundle in body and space coordinates.

Example 4.1. Recall example 3.18. There we constructed the double associated to the
Poisson-Lie group SO(3) with the trivial Poisson structure. Equipping this double with
the Heisenberg Poisson structure the brackets on the group elements g = (R,u) ∈ ISO(3)
can be computed easily using (4.1) to find

{ui, uj} = εkijuk, {ui, R} = REi, {R,R} = 0.

This is in exact agreement with the Poisson brackets found on T ∗SO(3) in body coordi-
nates, see example 2.6.

4.3 Symmetries and Momentum Maps

We saw that the symmetries of a symplectic manifold (M,ω) were captured by a symplectic
group action Φ. This action respected the symplectic structure of (M,ω). Our notion of
symmetry can now be generalized to include group actions where the group carries a non-
trivial Poisson structure. Recall a Poisson action is an action Φ : G × M → M of a
Poisson-Lie group (G,ΠG) on a Poisson manifold (M,ΠM) such that Φ is a Poisson map,
i.e.

{f, h}M ◦ Φ(g, p) = {f ◦ Φ(·, p), h ◦ Φ(·, p)}G(g) + {f ◦ Φ(g, ·), h ◦ Φ(g, ·)}M(p)

for g ∈ G, p ∈ M . If the Poisson-Lie group (G,ΠG) has trivial Poisson structure then Φ
is simply the Poisson action of G on (M,ΠM), which is the obvious generalization of the
symplectic action to Poisson manifolds.

Poisson actions like symplectic group actions define a corresponding vector field. A
Poisson action Φ defines an infinitesimal Poisson action of the Lie bialgebra (g, δ) on
(M,ΠM). It is a map from the Lie bialgebra to the space of vector fields X(M)

X ∈ g 7→ ΦX(p) =
d

dt

∣∣∣∣
t=0

Φ(exp tX, p) ∈ X(M) (4.7)
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for all p ∈M .

A momentum map corresponding to a (left) Poisson action Φ : G ×M → M is a
map J : M → G∗ where G∗ is the Poisson-Lie dual of G. J must satisfy

ΦX = ΠM(J∗(Xr), ·) (4.8)

for all X ∈ g where ΦX is as defined in (4.7) and Xr is the right invariant 1-form on G∗

defined by X. To clarify J∗(Xr) is the image of Xr under the pullback of J , J∗ : T ∗G∗ →
T ∗M . This is sometimes referred to as the cotangent lift of J . Further, Xr(u) = (Ru−1)∗X
where u ∈ G∗ since 〈Xi, ξ

j〉 = δji = (Ru−1)∗Xi)(ξ
jR)(u) as ξjR(u) = (Ru)∗ξ

j ∈ TuG∗.
In the special case where Φ is a Hamiltonian action then the above definition of mo-

mentum mapping recovers the traditional definition of a momentum map found on page 9.
In this scenario the Poisson-Lie group (G,ΠG) has a trivial Poisson structure so that the
dual G∗ = g∗ is abelian and Xr = X ∈ g is a constant 1-form on g∗. Then

J∗(Xr) = dĴ(X)

where Ĵ(X)(p) = 〈J(p), X〉, p ∈M and J : M → g∗. So

ΦX = ΠM(dĴ(X), ·) = {Ĵ(X), ·}

which is exactly (2.5).

Momentum maps are not guaranteed to exist for all Poisson actions. However, we know
that every Poisson action on a simply connected symplectic manifold has a momentum
mapping [30].

Example 4.2. The left (and right) action of Poisson-Lie group on itself does not have a
corresponding momentum map. By definition the multiplication map µ : G × G → G is
a Poisson action. However, as the Poisson structure is trivial at the identity there is no
corresponding momentum map. We can see this by the following, first we write the Poisson
structure as,

ΠG(g) =
∑
i

(Lg)∗prg((Adg−1)∗ξ
i)⊗ (Rg)∗Xi.

The generator of the left action is a right invariant vector field. Thus a momentum map
J : G→ G∗ must satisfy,

J∗(Xr
j )((Lg)∗prg((Adg−1)∗ξ

i)) = δij

for all g ∈ G. This is not possible at the identity.
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There is a version of Noether’s theorem that holds in this generalized framework [30].
It is the analogue of the conservation law presented in Theorem 1.

Theorem 4. Let Φ : G ×M → M be a Poisson action of a Poisson-Lie group G on a
Poisson manifold M with momentum mapping J : M → G∗. If H ∈ F(M) is invariant
under the Poisson action Φ of G, i.e. H(p) = H(Φg(p)) for all p ∈M, g ∈ G then J is an
integral of the Hamiltonian vector field XH .

This can be proven similarly to Theorem 1. Using the invariance ofH and differentiating
we get,

0 = dH(ΦY ) = ΠM(J∗(Y r), dH) = −J∗(Y r)(XH) = −Y r(J∗XH)

for all Y ∈ g. Hence J∗XH = 0 and J is an integral of XH . Thus J is conserved during
time evolution.

There is a version of Euler’s conservation law that holds as well in this context which
we present now for the first time. First, we recognize that the left action σ of the Drinfeld
double (D,Π−) on the Heisenberg Double (D,Π+) is a Poisson action. The left action

σ : (D,−Π−)× (D,Π+)→ (D,Π+)

(b, a) 7→ ba

satisfies
{ba(1), ba(2)}+ = (b⊗ b){a(1), a(2)}+ − {b(1), b(2)}−(a⊗ a)

since

(ba⊗ ba)rd − r∗d(ba⊗ ba) = (b⊗ b)[(a⊗ a)rd − r∗d(a⊗ a)]− [(b⊗ b)rd − rd(b⊗ b)](a⊗ a)

and is thus Poisson [6].

The left action L : (G,ΠG) × (D,Π+) → (D,Π+) : (g, a) 7→ ga is also Poisson since
(G,−ΠG) is a Poisson Lie subgroup of (D,Π−). The associated infinitesimal generator is

LX(a) =
d

dt

∣∣∣∣
t=0

exp tXa = XR(a)

for X ∈ g, a ∈ D. A momentum map associated to this action is a map J : D → G∗

satisfying (4.8), where G∗ is the Poisson-Lie dual of (G,ΠG). Using the later half of (4.4)

Π+(J∗(Xr), ·) =
∑
i

[J∗(Xr)(ξiR)]XR
i − [J∗(Xr)(XL

i )]ξiL
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where we recall that ξ ∈ g∗ ⊂ d by construction of the double Lie bialgebra (d, δ(rd)). Thus
J must satisfy

XR
j =

∑
i

[J∗(Xr
j )(ξiR)]XR

i − [J∗(Xr
j )(XL

i )]ξiL

for all Xj ∈ g. Thus,

J∗(Xr
j )(XL

i ) = 0, J∗(Xr
j )(ξiR) = δij.

So in particular from the second equation, J∗ξ
iR = ξiR|G∗ ∈ TG∗. By definition

ξiR|G∗(f)(w) =
d

dt

∣∣∣∣
t=0

f(exp tξiw), J∗ξ
iR(f)(a) =

d

dt

∣∣∣∣
t=0

(f ◦ J)(exp tξia)

for all f ∈ F(G∗) and w ∈ G∗, a ∈ D. Supposing J(a) = w ∈ G∗, J must satisfy

d

dt

∣∣∣∣
t=0

f(exp tξJ(a)) =
d

dt

∣∣∣∣
t=0

f(J(exp tξa))

for all f ∈ F(G∗) and ξ ∈ g∗ where we consider the argument of J as an element in D.
Hence,

J(a) = u−1J(ua), for all u ∈ G∗.

The map J(a) = p∗L(a) satisfies this equation. Further, this map satisfies the first equation,
J∗X

L
i = 0 ∈ TG∗. We can see that

J∗X
L
i (f)(a) =

d

dt

∣∣∣∣
t=0

f(J(a exp tXi)) =
d

dt

∣∣∣∣
t=0

f(p∗L(a exp tXi)) = 0

for all f ∈ F(G∗). Thus J(a) = p∗L(a) is a momentum map associated to the group action
L. In Table 4.1 we summarize this result in comparison to the Euler conservation law as
presented on the cotangent bundle.

Taking advantage of the group structures that abound we can extend this to find the
momentum maps of both the right and left actions of G and G∗ on the Heisenberg double
D. Continuing as in the previous case the left action L∗ : (G∗,−ΠG∗) × (D,Π+) →
(D,Π+) : (u, a) 7→ ua is also Poisson since (G∗,ΠG∗) is a Poisson Lie subgroup of (D,Π−).
A momentum map associated to this action is a map J : D → Gop satisfying (4.8), where
Gop is G with opposite product, i.e. gh = h∗op g. Gop is the Poisson-Lie dual of (G∗,−ΠG∗)
since the Poisson structure is negative. Solving ξjR = Π+(J∗(ξjr), ·) we find that

J(a) = g ∗op J(ga), for all g ∈ G.
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Table 4.1: Comparison of Euler’s Conservation Law on the Heisenberg Double
Phase Space Action Momentum Map

T ∗G

LT∗ : G× T ∗G→ T ∗G J : T ∗gG 7→ g∗

g′ × α 7→ (Lg′−1)∗α J(α) = (Rg)
∗α

Body: LBg′(g, µ) = (g′g, µ) JB(g, µ) = (Adg−1)∗µ
Space: LSg′(ν, h) = ((Adg′−1)∗ν, g′h) JS(ν, h) = ν

(D,Π+)

L : (G,ΠG)× (D,Π+)→ (D,Π+) J : D 7→ G∗

g′ × a 7→ g′a J(a) = p∗L(a)

Body: LBg′(g, u) = (g′g, u) JB(g, u) = p∗L(Adgu)
Space: LSg′(v, h) = (p∗L(Adg′v), pR(Adg′v)g′h) JS(v, h) = v

Thus the associated momentum map is J(a) = [pL(a)]−1 = pR(a−1).

So far we have considered left actions as the underlying natural action of a group. We
now give the definition of a momentum map for right actions. The momentum map of a
right Poisson action Φ : M × G → M is a map J : M → G∗ where G∗ is the Poisson-Lie
dual of G. J must satisfy

ΦX = −ΠM(J∗(X l), ·) (4.9)

for all X ∈ g where ΦX is as defined (4.7) and X l is the left invariant 1-form on G∗ defined
by X. The difference between this definition and that of a left action is only a change in
sign and a change from right invariance to left invariance of the 1-form.

The right action τ : (D,Π+) × (D,Π−) → (D,Π+) : (a, c) 7→ ac is a Poisson action
since it satisfies

{ac(1), ac(2)}+ = (a⊗ a){c(1), c(2)}− + {a(1), a(2)}+(c⊗ c).

Using this the following are right Poisson actions

R : (D,Π+)× → (D,Π+) : (a, h) 7→ ah

R∗ : (D,Π+)× (G∗,ΠG∗)→ (D,Π+) : (a, v) 7→ av

since (G,−ΠG), (G∗,ΠG∗) are Poisson-Lie subgroups of (D,Π−). The momentum maps are

J : D → G∗op : a 7→ [p∗R(a)]−1 = p∗L(a−1)

J : D → G : a 7→ pR(a)
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Table 4.2: Euler’s Conservation Laws on the Heisenberg Double
Action Momentum Map

L : (G,ΠG)× (D,Π+)→ (D,Π+) J : D 7→ G∗

g′ × a 7→ g′a J(a) = p∗L(a)

Body: LBg′(g, u) = (g′g, u) JB(g, u) = p∗L(Adgu)
Space: LSg′(v, h) = (p∗L(Adg′v), pR(Adg′v)g′h) JS(v, h) = v

L∗ : (G∗,−ΠG∗)× (D,Π+)→ (D,Π+) J : D 7→ Gop

u′ × a 7→ u′a J(a) = pR(a−1)

Body: L∗Bu′ (g, u) = (pL(Adu′g), p∗R(Adu′g)u′u) JB(g, u) = g−1

Space: L∗Su′ (v, h) = (u′v, h) JS(v, h) = pL(Advh)−1

R : (D,Π+)× (G,−ΠG)→ (D,Π+) J : D 7→ G∗op

a× g′ 7→ ag′ J(a) = p∗L(a−1)

Body: RB
g′(g, u) = (gg′pL(Adg′−1u), p∗R(Adg′−1u)) JB(g, u) = u−1

Space: RS
g′(v, h) = (v, hg′) JS(v, h) = p∗R(Adh−1v)−1

R∗ : (D,Π+)× (G∗,ΠG∗)→ (D,Π+) J : D 7→ G
a× u′ 7→ au′ J(a) = pR(a)

Body: R∗Bg′ (g, u) = (g, uu′) JB(g, u) = pR(Adu−1g)
Space: R∗Sg′ (v, h) = (vu′p∗L(Adu′−1h), pR(Adu′−1h)) JS(v, h) = h

associated to R,R∗, respectively. We summarize this in Table 4.2.

So far we have examined the action of the Poisson-Lie subgroups on the Heisenberg
double and seen how these actions and their associated momentum maps are related,
particularly to the lifted left action on the cotangent bundle. We shall now see that the
full symmetry structure of the Heisenberg double is the whole of the Drinfeld double. The
momentum maps of the action of the Drinfeld double are presented here for the first time
and have no known classical analogue.

The associated infinitesimal generators of the left and right Poisson actions, σ and τ
respectively, of the Drinfeld double (D,Π−) on the Heisenberg double (D,Π+) are the right
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and left invariant vector fields of D, respectively. That is, for X + ξ ∈ d, a ∈ D

σX+ξ(a) =
d

dt

∣∣∣∣
t=0

exp t(X + ξ)a = (X + ξ)R(a),

τX+ξ(a) =
d

dt

∣∣∣∣
t=0

a exp t(X + ξ) = (X + ξ)L(a).

A momentum map associated to these actions is a map J : D → D∗ where D∗ = G∗×Gop

or D∗ = G∗op×G is the Poisson-Lie dual of (D,−Π−) or (D,Π−), respectively. The double
Lie algebras of these are given by d∗ = g∗ × gop and d∗ = g∗op × g, respectively.

Let us focus on the left action σ first. We let Y i generate g∗ and γi generate gop in
d∗ = g∗ × gop so they satisfy the relations

[Y i, Y j] = f ijk Y
k, [Y i, γj] = 0, [γi, γj] = −ckijγk.

Further, the duality relations between these generators and those of d read

〈Xi, Y
j〉 = 〈ξj, γi〉 = δji , 〈Xi, γj〉 = 〈ξi, Y j〉 = 0.

The Poison structure Π+ of the Heisenberg double (D,Π+) can be written

Π+(a) =
∑
i

(Ra)∗ξ
i ⊗ (La)∗prg((Ada−1)∗Xi)− (Ra)∗Xi ⊗ (La)∗prg∗((Ada−1)∗ξ

i)

for a ∈ D [6]. A momentum map J : D → D∗ = G∗ ×Gop associated to σ must satisfy

XR
j + ξkR = −Π+(·, J∗(Xr

j + ξkr))

from which we get

J∗(Xr
j + ξkr)((La)∗prg((Ada−1)∗Xi)) = −δki

J∗(Xr
j + ξkr)((La)∗prg∗((Ada−1)∗ξ

i)) = δij

for all Xj ∈ g, ξk ∈ g∗. Using the duality relations between d and d∗ we see that the vector
fields on D∗ dual to Xr

j and ξkr are Y jR and γRk , respectively. Thus

J∗[(La)∗prg((Ada−1)∗Xi)] = −γRi , J∗[(La)∗prg∗((Ada−1)∗ξ
i)] = Y iR.

From these equations we get

J(a) = (e, h) · J(apL(Ada−1h)) ∈ G∗ ×Gop

J(a) = (v, e) · J(ap∗L(Ada−1v)) ∈ G∗ ×Gop
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where h ∈ G, v ∈ G∗. Combining the momentum maps of L,L∗ we can verify that
J(a) = (p∗L(a), pR(a−1)) satisfies these relations. Firstly, if a = gu, g ∈ G, u ∈ G∗ then

apL(Ada−1h) = hgp∗L(g−1h−1gu)

ap∗L(Ada−1v) = gp∗L(g−1vgu)

where we have used the identity pL(a) = ap∗L(a−1). Using our choice of factorization we
have

p∗L(hgp∗L(g−1h−1gu)) = p∗L(gu), pR([hgp∗L(g−1h−1gu)]−1) = g−1h−1

p∗L(gp∗L(g−1vgu)) = v−1p∗L(gu), pR([gp∗L(g−1vgu)]−1) = g−1.

and J(gu) = (p∗L(gu), g−1). Noting that we have the opposite product on G we see that

(e, h) · (p∗L(gu), g−1h−1) = J(gu)

(v, e) · (v−1p∗L(gu), g−1) = J(gu).

Thus J(a) = (p∗L(a), pR(a−1)) is a momentum map associated to the left action of the
Drinfeld double (D,−Π−) on the Heisenberg double (D,Π+).

In a similar manner we find that J(a) = (p∗L(a−1), pR(a)) ∈ G∗op × G is a momentum
map associated to τ , the right action of (D,Π−) on (D,Π+). For these calculations it is
important to note that the Poison structure Π+ can also be written as

Π+(a) =
∑
i

(La)∗ξ
i ⊗ (Ra)∗prg((Ada)∗Xi)− (La)∗Xi ⊗ (Ra)∗prg∗((Ada)∗ξ

i)

for a ∈ D [6]. These results are summarized in Table 4.3.

Example 4.3 (The deformed rigid rotator). From the examples 3.17, 3.19 we can see that
the Heisenberg double (SO(3, 1) = SO(3) ./ AN(2),Π+) is a deformation of T ∗SO(3). We
now choose the Hamiltonian H(a) = 1

2
Tr(aaT ) − 2, a ∈ SO(3, 1) since 1

2
Tr(aaT ) − 2 =

1
2
Tr(vvT )−2→ 1

2
vTv in the limit β →∞ which is exactly the Hamiltonian of the classical

rotator (see example 2.8)[32]. Using Hamilton’s equations we know that for any function
f ∈ F(SO(3, 1))

d

dt
f(a) = {H, f}+(a)

=
1

2

∑
i

[xLi Tr(aa
T )− 4][XL

i f(a)]− [XR
i Tr(aa

T )− 4][xRi f(a)]
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Table 4.3: Actions of the Drinfeld Double on the Heisenberg Double
Action Momentum Map

σ : (D,−Π−)× (D,Π+)→ (D,Π+) J : D 7→ G∗ ×Gop

b× a 7→ ba J(a) = (p∗L(a), pR(a−1))

Body: σBg′u′(g, u) = (g′pL(Adu′g), p∗R(Adu′g)u′u) JB(g, u) = (p∗L(Adgu), g−1)
Space: σSv′h′(v, h) = (v′p∗L(Adh′v), pR(Adh′v)h′h) JS(v, h) = (v, pL(Advh)−1)

τ : (D,Π+)× (D,Π−)→ (D,Π+) J : D 7→ G∗op ×G
a× c 7→ ac J(a) = (p∗L(a−1), pR(a))

Body: σBg′u′(g, u) = (gg′pL(Adg′−1u), p∗R(Adg′−1u)u′) JB(g, u) = (u−1, pR(Adu−1g))
Space: σSv′h′(v, h) = (vv′p∗L(Adv′−1h), pR(Adv′−1h)h′) JS(v, h) = (p∗R(Adh−1v)−1, h)

where we have used the first half of (4.4) to capture the Poisson structure. In particular,

d

dt
h = {H, pR}+(a) =

∑
i

1

2
Tr(hTvTvh(xi + xTi ))hXi

d

dt
v = {H, p∗L}+(a) =

∑
i

1

2
Tr(vvT (Xi +XT

i ))xiv = 0

Now in the limit β → ∞ we have
∑

i
1
2
Tr(hTvTvh(xi + xTi ))hXi → viJih. And thus

we can recover the dynamics of the standard rigid rotator. In the deformed case, Vi =
1
2
Tr(hTvTvh(xi + xTi ))hXi plays the role of the angular momenta. This Hamiltonian is

invariant under the left and right actions of SO(3) thus v and p∗R(Adh−1v)−1 are conserved,
see Table 4.2. This action is not invariant under the left or right action of whole of SO(3, 1).
Nonetheless we see that the lack of invariance of the Hamiltonian under the left and right
action of AN(2) tells us that dynamics breaks the AN(2) Poisson-Lie symmetry of the
space.
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Chapter 5

Conclusion

We have seen that Heisenberg doubles provide a well-defined framework in which to deform
the momentum of classical phase spaces. Beginning with a new notion of symmetry, where
we replaced symplectic group actions with Poisson group actions, we were able to enlarge
the set of phase spaces under consideration. The addition of a non-trivial Poisson structure
on the symmetry group, controlled by a single deformation parameter, ultimately resulted
in the non-abelian group structure of momentum space. We could say that the curvature of
momentum was a result of the new symmetries or that the deformation of momentum led
to the new symmetries. Either way, these symmetries are hoped to contain clues informing
us about the structure of spacetime in the quantum gravity regime. The Heisenberg double
gives us a well-defined laboratory in which to investigate some of the first order effects of
quantum gravity.

With a direct route to classical mechanics, Heisenberg doubles provide a bridge be-
tween classical mechanics and quantum groups. They allow us to introduce a cosmological
constant and quantum gravity scale by hand. We saw that Heisenberg doubles encompass
the cotangent bundles of Lie groups and that many notions defined in the classical setting
carry over to the new deformed picture. These include, choices of coordinates, momentum
maps and conservation laws. Further we saw that the Heisenberg double has a larger sym-
metry structure given by the Drinfeld double. The momentum maps of these symmetries
was presented here for the first time.

Snyder first demonstrated that the curvature of momentum space implies the non-
commutativity of spacetime [39]. With non-commutativity hinted at by many approaches
to quantum gravity and given that quantum groups are a powerful and consistent approach
to defining non-commutative spacetimes, quantum groups serve as an important tool to
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investigate models of quantum gravity. Poisson-Lie groups, the classical counterpart of
quantum groups, are then another tool to shed light on the mysteries of quantum gravity.
In this thesis we have illustrated a method to take the phase space of a classical system
and introduce some quantum gravitational effects by the introduction of a scale. What this
method will tell us about our space-time, is yet unknown. Components of this approach
have begun to be utilized to investigate (2+1) dimensional gravity theories [14, 9, 12].

Of particular interest for future work is the deformed particle with spin in 4 dimensions.
In example 3.19 we have deformed a particle with spin in 2 dimensions. A deformation of
a particle with spin in the context of Poisson-Lie symmetries and the Heisenberg double
has not yet been done. The undeformed phase space of a particle with spin is given by
T ∗ISO(3, 1) [25, 28]. To begin, it is known that there are at least 21 possible coboundary
Lie bialgebras on iso(3, 1) [41] of which only one corresponds to the common κ-Minkowski
space. This provides us with many deformation possibilities to investigation. Following the
notation of [41] the basis of iso(3, 1) is given by H,X±, JH, JX±, e0, . . . , e3 with relations

[H,X+] = X+, [H,X−] = −X−, [X+, X−] = 2H,

[JA, JB] = −[A,B], [JA,B] = J [A,B]

[H, e0] = e3, [H, e3] = e0, [JH, e1] = −e2, [JH, e2] = e1

[X±, e0] = e1, [X±, e1] = e0 ± e3, [X±, e3] = ∓e1,
[JX±, e0] = ∓e2, [JX±, e2] = ∓e0 − e3, [JX±, e3] = e2

and all other brackets zero, where A,B ∈ {H,X±}. The H,X±, JH, JX± generate so(3, 1)
and the e0, . . . , e3 generate R4. If we choose the r-matrix

r = γJH ∧H − 2e0 ∧ e3 + α̃e1 ∧ e2

where γ, α, α̃ ∈ R (this corresponds to N = 1 of [41]) then using the Sklyanin bracket the
dual Lie algebra iso(3, 1)∗ with generators H∗, X∗±, JH

∗, JX∗±, e
∗
0, . . . , e

∗
3 has brackets given

by

[H∗, X∗±] = ∓γJX∗±, [H∗, JX∗±] = ±X∗±, [H∗, e∗1] = γe∗2, [H∗, e∗2] = −γe1,
[JH∗, X∗±] = ∓γJX∗±, [JH∗, JX∗±] = ∓X∗±, [JH∗, e∗1] = γe∗2, [H

∗, e∗2] = −γe1,
[e∗0, e

∗
1] = α̃(JX∗+ − JX∗−) + 2α(X∗+ −X∗−),

[e∗0, e
∗
2] = −2α(JX∗+ + JX∗−) + α̃(X∗+ +X∗−),

[e∗1, e
∗
3] = −α̃(JX∗+ + JX∗−)− 2α(X∗+ +X∗−),

[e∗2, e
∗
3] = 2α(JX∗+ − JX∗−)− α̃(X∗+ −X∗−).
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This is 10 dimensional solvable Lie algebra. The next stage, ripe for work, would be to
define the constraints on the corresponding dual group such that they recover the mass-
shell and spin constraints of a classical particle in the limit γ, α, α̃ → 0. These deformed
constraints would then inform us of some first-order corrections in terms of the deformation
parameter to the behaviour of a particle with spin. This is hoped to be carried out in future
work.
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Appendix A

Lie Algebra Cohomology

Lie bialgebras by construction are related with a Chevalley-Eilenberg Lie algebra cohomol-
ogy. The classic cohomolgy question, ‘when is a closed form exact?’ is important in the
distinction of special cocycles that are called coboundary and correspond to r-matrices.
The following is a summary of material found in [40, 27, 17].

Let g be a Lie algebra with bracket [ , , ] and V a vector space. A linear map ρ : g →
End(V ) is called a representation of g on V if

ρ([X, Y ]) = [ρ(X), ρ(Y )]

for all X, Y ∈ g, where End(V ) is the space of linear endomorphisms of V . We say that g
acts on V and denote ρ(X)(v) as X.v for X ∈ g, v ∈ V . We call a representation trivial
if V = R and sometimes write ρ = 0.

Every finite dimensional Lie algebra g has a generalized adjoint representation.
For fixed k ∈ N it is a representation of g on ⊗kg = g⊗ · · ·⊗ g (p times). Given a basis Xi

of g an element Z ∈ ⊗kg can be written as Z = Zi1···ikXi1 ⊗ · · ·Xik and the representation
ρ : g→ End(⊗kg) is then

Y.Z = ad
(k)
Y (Z) = Zi1···ik

k∑
n=1

Xi1 ⊗ · · · ⊗ adY (Xin)⊗ · · · ⊗Xik

for Y ∈ g where adX(Y ) = [X, Y ] for X, Y ∈ g. In particular, for k = 2,

ad
(2)
Y (Z) = Zij(adYXi ⊗Xj +Xi ⊗ adYXj) = Zij([Y,Xi]⊗Xj +Xi ⊗ [Y,Xj]).
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If we denote the identity map from g to g by 1 then we may write

ad
(2)
Y (Z) = (adY ⊗ 1 + 1⊗ adY )(Z) = [Y ⊗ 1 + 1⊗ Y, Z].

This expression can be further decomposed in terms of the structure constants of g and
the components of Z.

For integers k ∈ N a k-cochain of g with values in V is a skew-symmetric k-linear map-
ping from g to V , where V is the vector space of a representation of g. The coboundary
operator δ is a map that promotes k-cochains to (k + 1)-cochains. Let u be an arbitrary
k-cochain then the coboundary δ(u) of u is given by

δ(u)(Y0, . . . , Yk) =
k∑
i=0

(−1)iYi.(u(Y0, . . . , Ŷi, . . . , Yk))

+
∑
i<j

(−1)i+ju([Yi, Yj], Y0, . . . , Ŷi, . . . , Ŷj, . . . , Yk)

for Y0, . . . , Yk ∈ g where Ŷi indicates the element Yi is omitted. We note that this equation
resembles the formula for the explicit computation of the exterior derivative of a differential
k-form. If u is a k-form on the Lie group G and the Yis are vector fields on G, then u
takes values in F(G) and if we replace ρ(Yi) by the action of the vector field Yi on F(G)
then the definiton of δ is just the definition of the exterior derivative d. If we consider
the generalized adjoint action then for k = 0, u is simply a constant element of g and
δ(u)(X) = [X, u], X ∈ g and for k = 1, u is a linear map from g to itself and

δ(u)(X, Y ) = [X, u(Y )]− [Y, u(X)]− u([X, Y ]), X, Y ∈ g.

A k-cochain is called a k-cocycle if δ(u) = 0 or k-coboundary if u = δ(v) for some
(k − 1)-cochain v. In particular, a 0-cocycle is an invariant element of g, i.e. [X, u] = 0
for all X ∈ g and a 1-cocycle satisfies u([X, Y ]) = [X, u(Y )]− [Y, u(X)]. Since δ(δ(u)) = 0
always, any k-coboundary is a k-cocycle. The converse is not true.

For a representation ρ of g on V the quotient of the vector space of k-cocycles Zk
ρ (g, V )

by the vector space of k-coboundaries Bk
ρ (g, V )

Hk
ρ (g, V ) = Zk

ρ (g, V )/Bk
ρ (g, V )

is called the k-th cohomology space of g on V corresponding to the representation ρ.

An important result that allows us to classify the Poisson structures of Poisson-Lie
groups is the following lemma:
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Theorem 5. (Whitehead’s Lemma [17]) If g is semi-simple then H2
0 (g,R) = 0.

Since r-matrices are coboundary this result tells us that all Poisson-Lie structures of
semi-simple Lie groups have an associated r-matrix.
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Appendix B

The Schouten Bracket

The Schouten bracket is a generalization of the commutator of vector fields discovered by
Jan Schouten in 1940 and further developed by his student Albert Nijenhuis. It plays a
role in finding the r-matrices of coboundary Lie groups. The following is a summary of
definitions found in [40, 29, 27].

Let M be a manifold of dimension n. We denote the space of of k-times contravariant
skew-symmetric tensor fields on M by Vk(M). In particular, V0(M) = F(M) and V1(M) =
X(M). The multivector field algebra is the direct sum

V (M) :=
n⊕
k=0

Vk(M)

equipped with the exterior product ∧. Multivectors in a particular subspace Vk(M) are
homogoneous. The degree of a homogeneous non-zero element A ∈ Vk(M) is defined as
k and denoted |A| = k. Elements in Vk(M) of the form X1 ∧ · · · ∧Xk where Xi ∈ X(M)
are called simple.

The Schouten bracket of multivector fields is an R-bilinear map on multivector fields.
On homogeneous simple elements of V (M) it is defined as

[|X1∧· · ·∧Xn, Y1∧· · ·∧Ym|] =
n∑
i=1

n∑
j=1

(−1)i+j[Xi, Yj]∧X1∧· · ·∧X̂i∧· · ·∧Xn∧Y1∧· · ·∧Ŷj∧· · ·∧Ym

where X̂i denotes omission of the vector field in the product. It is the unique map satisfying:

1. it is a biderivation of degree −1, i.e. for all A,B,C ∈ V (M)
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• it is bilinear

• |[|A,B|]| = |A|+ |B| − 1

• [|A,B ∧ C|] = [|A,B|] ∧ C + (−1)(|A|+1)|B|B ∧ [|A,C|]

2. for all f, g ∈ F(M) and X, Y ∈ X(M)

• [|f, g|] = 0

• [|X, f |] = Xf

• [|X, Y |] = [X, Y ] (the usual Lie bracket for vector fields)

3. [|A,B|] = (−1)|A||B|[|B,A|]

The Schouten bracket also satisfies the graded Jacobi identity

(−1)|A||C|[|[|A,B|], C|] + (−1)|A||B|[|[|B,C|], A|] + (−1)|C||B|[|[|C,A|], B|] = 0.

For an explicit expression of the Schouten bracket in coordinates see [40].

Every bivector Π ∈ V2(M) that satisfies [|Π,Π|] = 0 defines a Poisson bracket on
M . And conversely, the Poisson bivector of every a Poisson manifold (M,Π) satisfies
[|Π,Π|] = 0. This ensures that the Poisson structure satisfies the Jacobi identity. At
the infinitesimal level of a coboundary Poisson-Lie group (G,ΠG) it is required that the
r-matrix of the corresponding Lie bialgebra (g, δ(r)) defines a Lie bracket [ , ]r on g∗. In
particular, the Jacobi identity must be satisfied by that bracket. This condition has an
alternate formulation involving the Schouten bracket.

Working with the generalized adjoint representation of g, the algebraic Schouten
bracket of an element r ∈ ∧2g is an element in ∧3g defined as

[|r, r|](ξ, η, ζ) :=	ξ,η,ζ −2〈ζ, [r(ξ), r(η)]〉

where r : g∗ → g is defined by 〈ζ, r(ξ)〉 = r(ξ)(ζ) = r(ζ, η). This expression is equivalent
to (3.22) found on page 35, see [27] for details. If we write our elements in terms of a
chosen basis then

[|r, r|](ξ, η, ζ) = −2rijrklcmjl (	i,k,m ξiηkζm)

where ckij are the structure constants of g.

We can view [|r, r|] as a 0-cochain of g with values in ⊗3g and so for X ∈ g we have

δ([|r, r|])(X) = ad
(3)
X [|r, r|]
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where δ is the coboundary operator and ad
(3)
X = (adX ⊗ 1⊗ 1 + 1⊗ adX ⊗ 1 + 1⊗ 1⊗ adX).

It can be proven that the ad-invariance of [|r, r|] (i.e. δ([|r, r|]) = 0) is equivalent to [ , ]r

satisfying the Jacobi identity. In terms of a chosen basis this ad-invariance can be expressed
as

	i,j,k (rpmrilcjmlc
k
np + rplrkmcjmlc

i
np + rkmrilcpmlc

j
np) = 0.

Thus the algebraic Schouten bracket gives us a condition at the level of r-matrices to
ensure we have Poisson-Lie structure at the group level, just as the Schouten bracket of
multivector fields gives us a condition to guarantee a Poisson structure on a manifold.
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