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Abstract

The barotropic tide dissipates a well established estimate of 2.5 TW of energy
at the M2 frequency. Bottom topography is responsible for part of this dissipation,
and the generation of the internal tide is also partly responsible. The fate of this
energy is largely described by a cascade from large scales to small scales by non-
linear wave-wave interactions where it gets dissipated.

This thesis aims to investigate how the presence of mesoscale eddies (vortices)
in the ocean affect the internal tide. Previous work has looked at the interaction
of the barotropic tide with eddies. Krauss (1999) found that the interaction can
produce a modulated internal tide, however a scaling analysis suggests that the
effect may not be as strong as reported.

The MITgcm is used to simulate internal wave generation by barotropic flow over
topography and comparisons are made with Dr. Lamb’s IGW model. Baroclinic
eddies are analytically prescribed and then geostrophically adjusted also using the
MITgcm. Finally, the two are combined, and the internal tide field is analysed with
and without the presence of eddies of various magnitude and length scales.

The results of this investigation do not find a strong transfer of energy between
modes; the modal distribution of energy in the internal tide remains the same
when an eddy is added. However, focusing and shadow beams of internal waves
are produced in the wake of an eddy as the internal waves pass through it. The
beams show very strong variations in intensity, vertically integrated energy flux can
reduce almost to zero in the shadow regions and increase more than double in the
focusing regions.

Modal decomposition of the horizontal flow field reveals that mode 2 and 3 waves
are most strongly affected by the eddies and contribute strongly to the formation of
the beams. Mode 1 appears to be less affected by the eddy. The larger wavelength
and faster group velocity of mode 1 supports the notion that the eddy interacts
with it less.
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Chapter 1

Introduction

The purpose of this thesis is to investigate the interaction of internal waves with
mesoscale eddies. Internal gravity waves of tidal frequency (internal tides) are
generated by barotropic tides flowing over topography and represents a conversion
of energy from barotropic to baroclinic modes. The length scales of such waves are
tens to hundreds of kilometres. These waves interact with other features in the
ocean including other internal waves, and the energy cascades to small scales where
it is dissipated. The interaction of interest here is that with oceanic mesoscale
eddies. Such eddies are typically generated by meandering jets such as the Gulf
Stream and can be observed year round in the ocean. A typical mesoscale eddy is
50-200 km in radius and can penetrate several kilometres deep into the ocean.

Work by Krauss (1999) suggests that the interaction of eddies and the barotropic
tide can result in the generation of a modulated baroclinic tide. However by consid-
ering the scales of these phenomena, such an interaction may not be as significant
as proposed. The barotropic tides are typically basin-scale (order 1000-5000 km)
and mesoscale eddies much smaller (50-200 km). Thus it is expected that eddies
will be primarily advected by the barotropic tide without transfer of energy.

The total global rate at which M2 tidal energy is dissipated is a well deter-
mined value of 2.5 ± 0.1 TW (Ray, 1997). However the details of how this energy
is accounted for is less clear. Bottom topography and conversion to baroclinic
modes are two agents responsible for a sizable chunk of the energy. The fate of the
baroclinic energy is largely dissipation at small scales after cascading downscale,
however some may be transferred to eddies. Eddies such as Gulf Stream rings are
often reabsorbed into the Gulf Stream and this may be a secondary fate for internal
tide energy.
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Chapter 2

Background

This chapter presents background material needed and describes techniques used
to investigate the interaction of eddies with internal waves. The first section is a
summary of the equations of motion that describe fluid flow on a rotating sphere.
The next section deals with internal waves; observational information, theory and
techniques used to analyse such waves is provided. Mesoscale eddies are described
in the third section including observations and their connection to quasigeostrophic
theory. The fourth and final section is concerned with the MITgcm (Massachusetts
Institute of Technology’s General Circulation Model), the numerical model chosen
to conduct numerical experiments in this investigation.

2.1 Equations of motion

The equations of motion governing idealised oceanic flow on a rotating sphere that
we consider are

ρ
D~u

Dt
+ ρ2~Ω× ~u = −∇p+ ρ~g + µ∇2~u, (2.1)

1

ρ

Dρ

Dt
+ ~∇ · ~u = 0, (2.2)

DT

Dt
= κT∇2T, (2.3)

DS

Dt
= κS∇2S, (2.4)

ρ = ρ(S, T ), (2.5)

where ~u(x, y, z, t) = (u, v, w) is the velocity field, ρ = ρ(x, y, z, t) is the density
field, p = p(x, y, z, t) is the pressure field, S = S(x, y, z, t) is the salinity field,

T = T (x, y, z, t) is the temperature field, ~Ω = (0,Ω cos θ,Ω sin θ) where θ is latitude,
~g = (0, 0,−g) is the gravitational acceleration constant, µ is the coefficient of
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dynamic viscosity, κT is the thermal diffusivity, κS is the coefficient of salt diffusion,
∇ = ∂

∂x
+ ∂

∂y
+ ∂

∂z
is the vector differentiation operator and D

Dt
= ∂

∂t
+ ~u · ~∇ is the

material derivative.

The first equation (2.1) is the momentum equation. On the left hand side, the
first term is the rate of change of velocity of a fluid particle. The second term is
the Coriolis force that accounts for the effects of rotation. On the earth,

Ω =
2π

24× 60× 60
≈ 0.727× 10−4 rad s−1, (2.6)

which corresponds to one rotation every 24 hours.

On the right hand side, the first term is the pressure gradient, a vector field
resulting from the gradient operator acting on the scalar pressure field. The second
term is gravitational acceleration and only acts in the vertical direction. The third
term accounts for viscosity that acts to dissipate small scale motion at molecular
length scales.

The second equation (2.2) is the continuity equation which states that mass is
conserved. A net flow of fluid into or out of a fixed volume must be associated with
a corresponding change in density, in the absence of any mass sources or sinks.

The third equation (2.3) is the energy equation. All sources of thermal energy
are ignored in this form; heat is conserved following the flow with the exception of
diffusivity. The coefficient κT is assumed to be spatially constant.

The fourth equation (2.4) states that salt is conserved. Any change in salt
concentration is balanced by molecular diffusion of salt. Again we assume the
coefficient κS is spatially constant.

The fifth equation (2.5) is the equation of state that relates density ρ to the
active tracers T and S. In this thesis we use the linear equation of state,

ρ(T, S) = ρ0(1− α(T − T0) + β(S − S0)), (2.7)

where ρ0 = 1028 kg m−3, T0 = 10 oC and S0 = 35 psu are values for reference
density, temperature, and salinity; T is the temperature, S is the salinity, α =
1.7×10−4 oC−1 is the thermal expansion coefficient and β = 7.6×10−4 psu−1 is the
haline contraction coefficient. The linear equation of state is suitable for this thesis
because perturbations of T and S from their reference values are small, although
it is less suitable for use in a global ocean model where variations are much larger.

2.1.1 f-plane approximation

When studying regions much smaller than the sphere it is typical to make the
f -plane approximation. This approximation states that the rate of rotation is con-
stant over the domain rather than varying as sine of latitude as is the case on a
sphere. Further, the meridional component of ~Ω (also called the non-traditional

3



component) is dropped and only the vertical component (the traditional compo-
nent) is retained. The definition f = 2Ω sin θ is made and the second term in (2.1)

is reduced to ~f × ~u, where ~f = (0, 0, f).

2.1.2 Oceanic approximations

In the ocean we can use the Boussinesq approximation to simplify the equations
of motion. The approximation states that variations in density are quite small
and can be neglected everywhere except in the momentum equation’s gravitational
acceleration term (buoyancy term) containing ~g. We rewrite the density as ρ =
ρ0 + ρ′(x, y, z, t) asserting that |ρ′| � ρ. Substituting this into the continuity
equation (2.2) yields

Dρ′

Dt
+ ρ0(~∇ · ~u) + ρ′(~∇ · ~u) = 0. (2.8)

We notice that the third term is much smaller than the second and neglect it due
to the assumption |ρ′| � ρ. The two remaining terms must make up the dominant
balance. Expanding the second term yields

Dρ′

Dt
+ ρ0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0. (2.9)

Making the incompressibility approximation states that the dominant balance in
the continuity equation is achieved by the three terms that make up the divergence
term,

~∇ · ~u = 0, (2.10)

which is called the incompressible form of the continuity equation.

Similarly we substitute ρ = ρ0 + ρ′(x, y, z, t) into the momentum equation,
yielding

(ρ0 + ρ′)
D~u

Dt
+ (ρ0 + ρ′)2~Ω× ~u = −∇p+ (ρ0 + ρ′)~g + µ∇2~u. (2.11)

As mentioned before, in every term except the gravitational acceleration term
we remove the perturbation part which simplifies to

ρ0
D~u

Dt
+ ρ02~Ω× ~u = −∇p+ (ρ0 + ρ′)~g + µ∇2~u. (2.12)

Now we write the pressure as p = p0 +p′ where p0 is in hydrostatic balance with
ρ0g, i.e.

∂p0(z)

∂z
= ρ0~g, (2.13)

4



and subtract this from the momentum equation. Dividing by ρ0 we get

D~u

Dt
+ 2~Ω× ~u = − 1

ρ0

∇p′ + ρ′

ρ0

~g + ν∇2~u. (2.14)

where we have defined ν = µ
ρ0

as the coefficient of kinematic viscosity. Apply-
ing the f -plane approximation leaves us with the viscous diffusive incompressible
Boussinesq equations,

D~u

Dt
+ ~f × ~u = − 1

ρ0

∇p′ + ρ′

ρ0

~g + ν∇2~u, (2.15)

~∇ · ~u = 0, (2.16)

DT

Dt
= κT∇2T, (2.17)

DS

Dt
= κS∇2S, (2.18)

ρ = ρ(S, T ). (2.19)

We can further simplify by assuming that the flow is inviscid (ν = 0) and non-
diffusive (κT = κS = 0). Taking the material derivative of (2.19) and substituting
(2.17) and (2.18) yields a familiar form of the incompressible Boussinesq equations:

D~u

Dt
+ ~f × ~u = − 1

ρ0

∇p′ + ρ′

ρ0

~g, (2.20)

~∇ · ~u = 0, (2.21)

Dρ

Dt
= 0. (2.22)

(2.23)

2.1.3 Hydrostatic approximation

The hydrostatic approximation is concerned with the non-viscous linearised vertical
momentum equation,

ρ0
∂w

∂t
= −∂p

′

∂z
+ ρ′g. (2.24)

The hydrostatic approximation consists of assuming that the acceleration of
vertical velocity on the left hand side is much smaller in magnitude than both the
vertical pressure gradient and gravitational acceleration on the right. A scaling
analysis provides insight as to when this approximation is valid. Let L and H
be vertical length scales and T be a time scale. The horizontal velocity scales by
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V ≈ L/T and vertical velocity by W ≈ H/T or W ≈ HV/L. By the horizontal
momentum equation (neglecting the Coriolis term) we have a scaling for the pres-
sure perturbation, ∆P ≈ ρ0V

2. Finally by assuming that the two terms on the left
hand side of the vertical momentum equation are similar in magnitude we have a
scaling for the density perturbation, ∆ρ ≈ V 2ρ0/gH. Substituting these scalings
and eliminating T on the right hand side yields

ρ0
HV 2

L2
� V 2ρ0

H
≈ V 2ρ0

H
, (2.25)

and dividing by the left hand side leaves the requirement that

H2

L2
� 1. (2.26)

Thus, the hydrostatic approximation holds for “thin” flows where the aspect
ratio H/L is small. By dominant balance we can neglect the left hand side term
and the pressure is determined from the remaining terms:

1

ρ0

∂p′

∂z
≈ ρ′

ρ0

g, (2.27)

p′(z) =

∫ η

z

ρ′g dz, (2.28)

where η is the sea surface height. This pressure is the hydrostatic pressure. This
approximation is widely used in numerical models because it is a computationally
cheap way to compute the pressure field. The hydrostatic method requires the
vertical integration of (2.28) and the inversion of a 2-D Laplacian, whereas the
non-hydrostatic method requires inverting a 3-D Laplacian. Models that use the
non-hydrostatic method typically require about one order of magnitude in increased
computing time to solve a given problem.

2.1.4 Brunt-Väisälä frequency

Consider a linearly stratified fluid at rest. Now imagine that one were to raise a
parcel of water by a small amount. The parcel of water is now surrounded by less
dense water than itself and experiences a gravitational restoring force acting on it
downwards. Assume now that the parcel is released; it will accelerate downwards.
The parcel will move downwards, overshooting its original position, at which point
it will be surrounded by denser water. The restoring force reverses, now directed
upward and works to stop the parcel’s downward motion and induce upward mo-
tion. The parcel will oscillate indefinitely (or until dissipative effects stop it) at
a fixed rate; a rate dependant on the strength of the restoring force. This rate
is known as the Brunt-Väisälä frequency (also called buoyancy frequency). Under
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the Boussinesq approximation the Brunt-Väisälä frequency N(z) is related to the
density by

N2(z) = − g

ρ0

∂ρ̄(z)

∂z
. (2.29)

where ρ̄(z) is the undisturbed density profile.

2.2 Internal gravity waves

Internal gravity waves are phenomena that exist in stratified fluids when density
surfaces are displaced. Such a wave can exist due to the gravitational restoring
force acting on the vertically displaced fluid. Fluid with non-constant density is
needed to support these waves.

There are numerous types of internal waves; some are oscillatory with a char-
acteristic frequency such as internal tides, others exist as dispersive wave packets
that separate as they propagate. One interesting type of internal wave is called
a solitary wave - a nonlinear wave that does not change its shape as it propa-
gates. All of these waves exist in the interior of the ocean, unlike surface waves
that exist at the boundary between the ocean and the atmosphere. (Technically
the atmosphere-ocean boundary is an infinitesimally thin pycnocline with a large
density jump across it. Surface waves are different enough from internal waves to
be their own variety).

Although internal waves exist within the interior of the ocean they are sometimes
large enough to be observed in the sea surface elevation. The relative density of air
compared to water is order 10−3 so it requires roughly 1000 times as much energy to
raise the sea surface than it does to raise an internal isopycnal by the same distance
(Ray, 1997). Hence many internal waves produce very small sea surface signatures
and are unobservable due to noise. However exceptionally large internal waves may
produce a 10 cm or larger sea-surface signal. This signal modulates the sea-surface
and changes the way light/radar is reflected. It is these changes that are detectable
from a satellite. An example of such surface visible internal waves was imaged by
NASAs Terra satellite and is shown in Figure 2.1.

2.2.1 Generation

Energy may be imparted into internal waves in the interior of the ocean through
many mechanisms. Thorpe (1975) looks at generation mechanisms and finds that
travelling pressure and wind stress fields (such as atmospheric storm systems), and
interacting surface waves are among surface sources. At the bottom, tidal flow over
bottom topography produces the internal tide and constant flow over topography
can produce lee waves. For example, Ray (1997) finds that at the Hawaiian Ridge
15 GW of energy is converted from the barotropic M2 tide to the mode 1 internal
tide of the same frequency. Other mesoscale processes existing in the interior of the

7



Figure 2.1: Internal waves observed in the Red Sea by the MODIS sensor on NASA’s
Terra satellite on 26 July 2003. Egypt is on the west and Saudi Arabia is on the
east. Figure reproduced from http://visibleearth.nasa.gov/view rec.php?

id=5805
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Figure 2.2: Generating mechanisms for internal gravity waves. Illustration repro-
duced from Thorpe (1975).

ocean are candidates for producing internal waves including eddies which generate
internal waves as they adjust. Figure 2.2 illustrates many of the mechanisms for
producing internal waves.

Energy is continually injected into the internal wave field, and nonlinear inter-
actions between waves cause energy to be transferred between length scales and
frequencies. This is believed to at least partly explain the Garrett-Munk inter-
nal wave spectrum that describes the distribution of energy over wavenumber and
frequency space.

2.2.2 Garrett-Munk spectrum

The GM79 spectrum (Garrett and Munk, 1979) is a model designed to describe the
distribution of energy in the ocean’s internal wave field in wavenumber-frequency
space. The model is based on observations collected from a variety of sources such
as moored sensors, towed sensors and lowered sensors. The objective of the model
is to describe the “typical” internal wave conditions that one would expect at a
random location in the open ocean.
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Figure 2.3: The frequency-horizontal wavenumber spectrum from GM79. Note that
energy is constrained to be above the inertial frequency f and below the buoyancy
frequency N . Reproduced from Garrett and Munk (1979).

The GM79 model makes the assumption that the internal wave spectrum is
isotropic with respect to horizontal wavenumber. The distribution of vertical dis-
placement, horizontal velocity and energy per unit mass are described in Munk
(1981). A summary of the internal wave energy spectrum is shown in Figures
2.3 and 2.4. The relative energy density is shown as a function of frequency and
(vertical or horizontal) wavenumber. Note that there is no energy above N (the
buoyancy frequency) or below f (the inertial frequency). This is consistent with
the expectation from the dispersion relation for internal waves - more on this later.
The figures show that the highest energy is in the low wavenumbers and near the
inertial frequency and the lowest energy at large wavenumbers near the buoyancy
frequency.
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Figure 2.4: The frequency-vertical wavenumber spectrum from GM79. Reproduced
from Garrett and Munk (1979).
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2.2.3 Linearised equations

The equations described in section 2.1.2 can be simplified in order to find linear so-
lutions describing small amplitude internal waves. We assert that we are interested
in small amplitude signals and linearise about (u, v, w, ρ, p) = (0, 0, 0, ρ̄, p̄) where
dp̄/dz = −gρ̄, by adding O(ε) perturbations and retaining the O(ε) terms. This
leaves us with a simplified set of equations

∂u

∂t
− fv = − 1

ρ0

∂p′

∂x
, (2.30)

∂v

∂t
+ fu = − 1

ρ0

∂p′

∂y
, (2.31)

∂w

∂t
= − 1

ρ0

∂p′

∂z
− g

ρ0

ρ′, (2.32)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.33)

∂ρ′

∂t
+ w

∂ρ̄

∂z
= 0. (2.34)

We are interested in wave solutions so we wish to derive a wave equation
describing internal waves. The first step is to take the horizontal divergence
(∇H = ( ∂

∂x
, ∂

∂y
)) of the horizontal momentum equations, yielding

∂

∂t

(
∂u

∂x
+
∂v

∂y

)
+ f

(
∂u

∂y
− ∂v

∂x

)
= − 1

ρ0

(
∂2p′

∂x2
+
∂2p′

∂y2

)
. (2.35)

Next we take the curl of the horizontal momentum equations

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ f

(
∂u

∂x
+
∂v

∂y

)
= − 1

ρ0

(
∂2p′

∂x∂y
− ∂2p′

∂y∂x

)
= 0. (2.36)

Solving (2.35) for ( ∂v
∂x
− ∂u

∂y
) and substituting into (2.36) as well as using (2.33)

gives

∂

∂z

(
∂2w

∂t2
+ f 2w

)
= − 1

ρ0

∂

∂t

(
∂2p′

∂x2
+
∂2p′

∂y2

)
. (2.37)

Taking ∂
∂t

of the vertical momentum equation and substituting into the density
equation produces

∂2w

∂t2
− g

ρ0

w
∂ρ̄

∂z
= − 1

ρ0

∂2p′

∂z∂t
. (2.38)
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Noticing that the second term contains the buoyancy frequency allows us to
simplify

∂2w

∂t2
+N2(z)w = − 1

ρ0

∂2p′

∂z∂t
. (2.39)

Taking ∂
∂z

of (2.37) and taking both ∂2

∂x
and ∂2

∂y
of (2.39) and then adding the

result gives

∂2

∂t2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
w +N2(z)

(
∂2

∂x2
+

∂2

∂y2

)
w + f 2 ∂

2

∂z2
w = 0, (2.40)

which is the non-hydrostatic wave equation for the vertical velocity of internal
waves in a continuously stratified fluid on an f-plane. Making the hydrostatic
approximation reduces this equation to

∂2

∂t2

(
∂2

∂z2

)
w +N2(z)

(
∂2

∂x2
+

∂2

∂y2

)
w + f 2 ∂

2

∂z2
w = 0. (2.41)

2.2.4 Internal wave energy

The energy equation for linear internal waves can be obtained (following Gill (1981))
as follows. First, multiply the momentum equations by ρ0u, ρ0v and ρ0w and
multiply the continuity equation by g2ρ′

ρ0N2 ,

ρ0u(
∂u

∂t
− fv) = u(−∂p

′

∂x
), (2.42)

ρ0v(
∂v

∂t
+ fu) = v(−∂p

′

∂y
), (2.43)

ρ0w(
∂w

∂t
) = w(−∂p

′

∂z
− gρ′), (2.44)

g2ρ′

ρ0N2
(
∂ρ′

∂t
+ w

∂ρ̄

∂z
) = 0. (2.45)

Now sum the equations to get

ρ0

(
u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t

)
+

g2ρ′

ρ0N2

∂ρ′

∂t
+

g2ρ′

ρ0N2
w
∂ρ̄

∂z
= −u∂p

′

∂x
− v∂p

′

∂y
−w∂p

′

∂z
−wgρ′.

(2.46)
The last term on both sides are equal with use of the Brunt-Väisälä frequency
equation (2.29). This simplifies to
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∂

∂t

(
1

2
ρ0(u

2 + v2 + w2) +
g2ρ′2

ρ0N2

)
= p′

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
− ~∇ · (p′~u). (2.47)

Using the incompressibility condition and moving the last term to the left hand
side we get

∂

∂t

(
1

2
ρ0(u

2 + v2 + w2) +
1

2

g2ρ′2

ρ0N2

)
+ ~∇ · (p′~u) = 0. (2.48)

The first three terms are identified with the kinetic energy and the fourth term
with the available potential energy. The remaining three terms are energy flux
terms. Thus the energy equation can be interpreted as a conservation equation;
the rate of change of kinetic plus potential energy added to the rate that work is
done by the pressure perturbation sums to zero.

2.2.5 Dispersion relation

If N is constant we can seek plane wave solutions of the form w = ei(kxx+kyy+kzz−ωt)

and substitute this into the non-hydrostatic wave equation (2.40), yielding the
dispersion relation

ω2 =
N2(k2

x + k2
y) + f 2(k2

z)

k2
x + k2

y + k2
z

. (2.49)

We observe from this dispersion relation that waves are horizontally isotropic.
Further we notice that for a perfectly horizontal wave the frequency ω is N and
for a perfectly vertical wave the frequency is f . Frequencies below f or above N
cannot exist and hence N and f bound the oscillation rate of internal waves.

If we make the hydrostatic approximation and substitute instead into (2.41) we
get the hydrostatic dispersion relation,

ω2 =
N2(k2

x + k2
y) + f 2(k2

z)

k2
z

. (2.50)

2.2.6 Vertically trapped solutions

Consider a horizontally unbounded ocean of constant depth with a rigid lid on
top. The corresponding boundary conditions at the top and bottom will be no
normal flow, or w(0) = w(−H) = 0. Internal waves in such an ocean will be ver-
tically trapped in that they can only propagate horizontally. We seek horizontally
propagating waves with vertical velocity of the form

w = W (z)ei(kxx+kyy−ωt), (2.51)
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and substitute this into the wave equation (2.40) yielding an eigenvalue problem
for W (z)

dW (z)

dz2
+ (k2

x + k2
y)

(
N2(z)− ω2

ω2 − f 2

)
W (z) = 0. (2.52)

This eigenvalue problem describes the vertical structure of the horizontally prop-
agating trapped waves. There are an infinite number of eigenfunctions that satisfy
the eigenvalue problem and they are referred to as modes. The N(z) need not
be a constant and this means that the vertical structure depends on the ocean
stratification.

The eigenvalue problem is modified under the hydrostatic approximation,

dW (z)

dz2
+ (k2

x + k2
y)

(
N2(z)

ω2 − f 2

)
W (z) = 0. (2.53)

2.2.7 Vertical eigenvalue problem

The vertical structure of the vertical velocity is thus described by the solution of
the eigenvalue problem

dφn(z)

dz2
+ κ2

nQ
2(z)φn(z) = 0, (2.54)

φn(0) = φn(−H) = 0. (2.55)

Here we assume that the frequency ω is a fixed parameter such that the eigen-
value is the horizontal wavenumber κ2

n = k2
x +k2

y and the eigenfunction φn(z) is the
associated vertical structure. The dimensionless weighting function Q2(z) is

Q2(z) =


N2(z)− ω2

ω2 − f 2
for non-hydrostatic,

N2(z)

ω2 − f 2
for hydrostatic.

(2.56)

The eigenvalue problem 2.54 can be easily solved for the case of constant N ; by
inspection we find solutions of the form φn = sin(nπz/H), n = 0, 1, 2, .... However
the variable N(z) case will require a numerical approach and the method we choose
follows (Talbot and Crampton, 2005) and is described in Section 2.2.12.

To obtain the orthogonality condition for pairs of φn(z), we multiply (2.54) by
φm(z) and integrate over z

∫ 0

−H

φ′′nφm + κ2
nQ

2φnφm dz = 0. (2.57)
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Integrating the first term by parts yields

φmφ
′
n

∣∣∣∣0
−H

−
∫ 0

−H

φ′nφ
′
m dz +

∫ 0

−H

κ2
nQ

2φnφm dz = 0. (2.58)

The first term is zero by use of the boundary conditions. Integrating the middle
term by parts yields

− φ′mφn

∣∣∣∣0
−H

+

∫ 0

−H

φnφ
′′
m dz +

∫ 0

−H

κ2
nQ

2φnφm dz = 0. (2.59)

As before the boundary conditions eliminate the first term. Switching n and m
in (2.57) allows us to replace the second term resulting in

−
∫ 0

−H

κ2
mQ

2φmφn dz+

∫ 0

−H

κ2
nQ

2φnφm dz = (κ2
n−κ2

m)

∫ 0

−H

Q2φnφm dz = 0. (2.60)

For the case of m 6= n the integral must be zero as (κ2
n − κ2

m) is nonzero. For
the n = m case we rescale the eigenfunction such that the integral is unity. Thus
we have the orthogonality condition∫ 0

−H

Q2φnφm dz = δnm. (2.61)

Incidentally, we notice that equation (2.58) contains the orthogonality condition
for the derivative of φ,∫ 0

−H

φ′nφ
′
m dz =

∫ 0

−H

κ2
nQ

2φnφm dz = κ2
nδnm. (2.62)

2.2.8 Vertical modes

If we consider the constant N case, the vertical modes described above have vertical
wavenumbers of the form

kz =
nπ

H
. (2.63)

Substituting this into the dispersion relations (2.49) and (2.50) yields a new
dispersion relation,

ω2 =


N2κ2

hH
2 + f 2n2π2

κ2
hH

2 + n2π2
for non-hydrostatic,

N2κ2
hH

2 + f 2n2π2

n2π2
for hydrostatic,

(2.64)
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2.2.9 Phase speed

With constant N , the phase speed is found by dividing the frequency ω by the
horizontal wavenumber κh yielding

c =
ω

κh

=



Hω

nπ

√
N2 − ω2

ω2 − f 2
for non-hydrostatic,

Hω

nπ

√
N2

ω2 − f 2
for hydrostatic.

(2.65)

where n is the wave’s vertical mode and H is the water depth.

2.2.10 Group velocity

With constant N , we find the group velocity by differentiating the frequency ω with
respect to wavenumber in the dispersion relation and yields

~cg =
∂ω

∂~k
=



H

nπ

(N2 − ω2)
3
2 (ω2 − f 2)

1
2

κhω(N2 − f 2)
(kx, ky) for non-hydrostatic.

H

nπ

N3(ω2 − f 2)
1
2

κhω(N2 − f 2)
(kx, ky) for hydrostatic,

(2.66)

2.2.11 Chebyshev pseudo spectral method

Chebyshev polynomials are a set of orthogonal polynomials defined over the region
[−1, 1]. These orthogonal functions can be used as basis functions much like the
Fourier basis functions. A function can be approximated by a unique polynomial
of degree N by the coefficients ck in

f(x) =
N∑

k=0

ckφk(x). (2.67)

However, the same function can be uniquely represented by its value at N + 1
collocation points rather than the coefficients resulting from the projection onto
the basis functions. The Chebyshev collocation points are defined over the interval
[−1, 1] and are given by

xi = cos(iπ/N) i = 0, 1, ..., N. (2.68)

The spacing of these points gives a resolution of O(N−2) near the endpoints
and O(N−1) near the centre. The derivative at the same points is determined by
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a linear combination of the function values which we can write as a matrix-vector
product

f ′(xi) =
N∑

k=0

di,kf(xk), i = 0, ...N, (2.69)

and we define

D =

d0,0 · · · d0,n
...

. . .
...

dn,0 · · · dn,n

 . (2.70)

as the Chebyshev differentiation matrix (Mason and Handscomb, 2003). The matrix
is a full matrix (unlike for example a tri-diagonal matrix that arises from 2nd order
finite differences) and its entries, following (Trefethen, 2000), are

d00 =
2N2 + 1

6
, (2.71)

dNN = −2N2 + 1

6
, (2.72)

djj =
−xj

2(1− x2
j)

j = 1...N − 1, (2.73)

dij =
ci
cj

(−1)i+j

(xi − xj)
i 6= j i, j = 1...N − 1, (2.74)

where ci =

{
2 for i = 0 or N ,

1 otherwise.
(2.75)

For further information regarding Chebyshev methods see Trefethen (2000) or Ma-
son and Handscomb (2003).

2.2.12 Solving the eigenvalue problem

The discretisation points are chosen to be the Chebyshev collocation points as de-
scribed previously. The Chebyshev polynomials approach is chosen as it maintains
high accuracy (“spectral” accuracy). The non constant N(z) is now discretised
at the N + 1 collocation points and the derivative operators ∂

∂z
are discretised by

replacing them with (N+1)×(N+1) Chebyshev differentiation matrices produced
by the DMSUITE package (Weideman and Reddy, 2000). The eigenvalue problem is
then rewritten as

D2φn + κ2
nQ

2(z)φn = Aφn + (k2
x + k2

y)Bφn = 0, (2.76)
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where

A = D2, (2.77)

B = Q2(z). (2.78)

However before proceeding we enforce the Dirichlet boundary conditions by
removing the first and last row and column from the matrices A and B. The problem
has now been reduced to a generalised matrix eigenvalue problem, and we use
MATLAB’s eig function to solve it. The Dirichlet endpoints are then appended to
the resulting eigenfunctions yielding the desired φn solutions.

The Chebyshev differentiation matrix is also used to compute φ′n which is needed
for the decomposition of the horizontal flow fields. Finally the resulting eigenfunc-
tions are interpolated from the Chebyshev points onto model grid points as needed
by the Chebyshev interpolation function included in the DMSUITE package. The
MATLAB code used to solve this problem is shown in Appendix A.1.

2.2.13 Vertical mode projection

The goal is to express the velocity and density fields as a sum of contributions
from each vertical mode. This will be useful later when analysing model results to
identify the presence of each internal wave mode.

We make the assumption that all waves present are of the same (tidal) frequency.
If we separate the horizontal and vertical dependence as follows

u = U(x, y)φ′n(z)e−iωt, (2.79)

v = V (x, y)φ′n(z)e−iωt, (2.80)

w = W (x, y)φn(z)e−iωt, (2.81)

ρ′ = R(x, y)φn(z)e−iωt, (2.82)

then we can express the field at each (x, y) as a sum over vertical mode contributions

u =
1

κn

∞∑
1

unφ
′
n(z), (2.83)

v =
1

κn

∞∑
1

vnφ
′
n(z), (2.84)

w =
∞∑
1

wnφn(z), (2.85)

ρ′ =
∞∑
1

rnN
2(z)φn(z). (2.86)
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To find the un, vn, wn, and rn we project by taking inner products

un =
1

κn

∫ η

−H

uφ′n(z) dz, (2.87)

vn =
1

κn

∫ η

−H

vφ′n(z) dz, (2.88)

wn =

∫ η

−H

wQ2(z)φn(z) dz, (2.89)

rn =

∫ η

−H

ρ′N2(z)Q2(z)φn(z) dz. (2.90)

In discrete coordinates (such as when analysing numerical model results) the
integrals become sums over model levels. The horizontal kinetic energy in each
vertical mode for the horizontal flow fields is computed as a vertical integral

Euv =

∫ η

−H

1

2
(u2 + v2) dz =

1

2

∫ η

−H

(
N∑
1

unφ
′
n(z)

)2

+

(
N∑
1

vnφ
′
n(z)

)2

dz. (2.91)

Due to the orthogonality condition between φ′n and φ′m we immediately notice
all of the cross terms are zero and the horizontal kinetic energy is simply

Euv =

∫ η

−H

1

2
(u2 + v2) dz =

1

2

N∑
1

u2
n +

1

2

N∑
1

v2
n. (2.92)

This expression states that the vertically integrated energy in the horizontal
velocity fields is equal to the sum of the vertically integrated energy in each mode.

The vertically integrated energy in the vertical velocity is a bit more complex due
to the weighting function in the orthogonality condition. For the vertical velocity,

Ew =

∫ η

−H

1

2
w2 dz =

1

2

∫ η

−H

(
N∑
1

wnφn(z)

)2

dz, (2.93)

and for the available potential energy,

Eρ =

∫ η

−H

1

2

g2ρ′2

ρ0N2(z)
dz =

1

2

∫ η

−H

(
N∑
1

g2r2
n

ρ0

φn(z)

)2

dz. (2.94)

In general the cross terms in the expressions for Ew and Eρ are nonzero when
integrated vertically and thus cannot be written as a sum of contributions from
each mode. However, in the case of constant N they are zero and the energy can
be expressed in terms of the projection coefficients wn and rn.
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2.3 Mesoscale eddies

Eddies are one of the predominant mesoscale phenomena observed in the world’s
oceans. Mesoscale features are defined to have length scales on the order of the
first baroclinic Rossby radius of deformation, Rd = NH/f away from the equator,
or Rd =

√
NH/β near the equator (McWilliams, 2008). Here N is the buoyancy

(Brunt-Väisälä) frequency of the main pycnocline, H is the water depth, f is the
local Coriolis parameter, and β is the gradient of the Coriolis parameter. At the
highest latitudes this deformation radius is order 10 km, and at mid-latitudes or-
der 100 km. Observations analysed by (Krauss et al., 1990) and by (Eden, 2007)
indicate that the length scale of ocean eddies does indeed vary roughly with the
baroclinic Rossby radius of deformation, although they did not find a strong linear
relationship.

Eddies are the ocean equivalent of atmospheric storm systems in that they
have approximately circular rotation and are believed to have common generation
mechanisms. One main difference, however, is the time scale; atmospheric storm
systems evolve on time scales of hours to days while ocean eddies evolve on the
order of weeks to months, and in some cases years.

The dynamics of ocean eddies are described by the quasi-geostrophic model.
Quasigeostrophic motions are governed by

∂q

∂t
+ J(ψ, q) = 0, (2.95)

q = ∇2ψ +
∂

∂z

(
f 2

0

N2(z)

∂ψ

∂z

)
, (2.96)

where q is the potential vorticity and ψ is the streamfunction. Once the stream-
function is determined the velocities and density and pressure perturbations are
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recovered from

u = ug + uag, (2.97)

v = vg + vag, (2.98)

ug = −∂ψ
∂y
, (2.99)

vg = +
∂ψ

∂x
, (2.100)

uag = − 1

ρ0f

∂p′

∂y
− 1

ρ0f 2

∂2p′

∂t∂x
− 1

ρ0
2f 3

J

(
p′,
∂p′

∂x

)
, (2.101)

vag = +
1

ρ0f0

∂p′

∂x
− 1

ρ0f 2

∂2p′

∂t∂y
− 1

ρ0
2f 3

J

(
p′,
∂p′

∂y

)
, (2.102)

w = − f

N2

[
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

)]
(2.103)

ρ′ = −ρ0f

g

∂ψ

∂z
, (2.104)

p′ = ρ0fψ, (2.105)

where J(a, b) = (∂a
∂x

∂b
∂y
− ∂a

∂y
∂b
∂x

) is the Jacobian operator and the “g” and “ag”
subscripts indicate the geostrophic and ageostrophic, respectively.

The solutions for u and v are broken into geostrophic and ageostrophic parts
to emphasise that quasigeostrophy is a correction to geostrophy. The ageostrophic
parts are small compared to the geostrophic terms. However, the small terms
are needed to explain the evolution of quasigeostrophic features from their static
geostrophic counterparts.

Vertically trapped solutions

As in the internal wave case we consider a flat bottomed ocean with a rigid lid. The
boundary conditions are the same, w(0) = w(−H) = 0, and we need to convert
them to conditions on ψ. Using the linearised form of (2.103) gives us

∂ψ

∂z
(z) = 0 z = 0,−H. (2.106)

We linearise (2.95) and substitute (2.96) for q to obtain

∂q

∂t
=

∂

∂t

(
∇2ψ +

∂

∂z

(
f 2

N2(z)

∂ψ

∂z

))
= 0. (2.107)

We seek vertically trapped solutions of the form

ψ = ψ̂(z)ei(kx+ly−ωt), (2.108)
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and substitute into (2.107). This yields an eigenvalue problem describing the ver-
tical structure of quasigeostrophic motions

d

dz

f 2

N2(z)

dψ̂n

dz
= −(k2 + l2)ψ̂n ≡ −λ2

nψ̂n (2.109)

subject to the boundary conditions

dψ̂n

dz
(z) = 0 z = 0,−H. (2.110)

To derive the orthogonality condition we define A(z) = f2

N2(z)
, multiply (2.109)

by ψm and integrate over z,

− λ2
n

∫ 0

−H

ψ̂nψ̂m dz =

∫ 0

−H

ψ̂m(Aψ̂′n)′ dz. (2.111)

Integrating by parts produces

− λ2
n

∫ 0

−H

ψ̂nψ̂m dz = ψ̂mAψ̂
′
n

∣∣∣∣0
−H

−
∫ 0

−H

Aψ̂′mψ̂
′
n dz. (2.112)

The first term on the right is zero via the boundary conditions. Integrating by
parts again produces

− λ2
n

∫ 0

−H

ψ̂nψ̂m dz = −ψ̂′mAψ̂n

∣∣∣∣0
−H

+

∫ 0

−H

ψ̂n(Aψ̂′m)′ dz. (2.113)

Again by the boundary conditions the first term on the right is zero. We now
switch n and m in (2.111) and substitute, yielding

− λ2
n

∫ 0

−H

ψ̂nψ̂m dz = −λ2
m

∫ 0

−H

ψ̂nψ̂m dz, (2.114)

which reduces to

(λ2
m − λ2

n)

∫ 0

−H

ψ̂nψ̂m dz = 0. (2.115)

For the n 6= m case the integral is zero. For the case of n = m we rescale the
eigenfunction such that the integral is unity. Thus the orthogonality condition is∫ 0

−H

ψ̂nψ̂m dz = δnm. (2.116)

There are an infinite number of solutions (modes), where the eigenvalue λn is the
inverse of the radius of deformation (Carton, 2001). Mode 0 is the barotropic mode,
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and the higher modes are baroclinic modes. Observations show that the vertical
structure of oceanic eddies is dominated by the first baroclinic mode (Krauss et al.,
1990). This means that the first vertical mode explains most of the deflection of
isopycnal surfaces from equilibrium.

The solutions for u and v are dominated by the pressure gradient (geostrophic)
terms and hence mesoscale eddies are often referred to as geostrophic eddies. The
pressure gradient has two primary contributors; the gradient of the sea-surface
elevation, and the gradient of isopycnal surfaces. At the surface, the horizon-
tal gradient of the sea-surface balances the velocity and the density surfaces do
not contribute. In other words, without a sea-surface gradient there can be no
geostrophic flow at the surface. However, as one moves downward in the water col-
umn, horizontal gradients in density contribute to the horizontal pressure gradient,
either increasing or decreasing the magnitude of the flow depending on the sign.

The eigenvalue problem (2.109) is easily solved for the constant N case; by
inspection we find solutions of the form ψ̂n = cos(nπz/H), n = 0, 1, 2, ..., however
the non constant N(z) case requires a numerical method to find ψ̂(z). The method
used closely follows (Talbot and Crampton, 2005) but is modified to include the
Neumann conditions at both the top the bottom.

2.3.1 Solving the eigenvalue problem

The non constant N2(z) is now discretised at the N + 1 Chebyshev collocation
points and the derivative operators ∂

∂z
are discretised by replacing them with (N +

1) × (N + 1) Chebyshev differentiation matrices. The eigenvalue problem is then
rewritten as

D
f 2

N2(z)
Dp ≡Mp = −λp. (2.117)

Next we remove the top and bottom entries of M such that

M =

 . · · · .
E0 E EN

. · · · .

 , (2.118)

and we can rewrite (2.117) as

Ep = −λp− E0pn(x0)− ENpn(xn). (2.119)

Here, pn(x0) and pn(xn) are unknowns. By writing the boundary conditions in
the form

24



n∑
k=0

d0,kpn(xk) = d0,0pn(x0) +
n−1∑
i=1

d0,ipn(xi) + d0,npn(xn) = 0, (2.120)

n∑
k=0

dn,kpn(xk) = dn,0pn(x0) +
n−1∑
i=1

dn,ipn(xi) + dn,npn(xn) = 0, (2.121)

we get a matrix problem for pn(x0) and pn(xn):

[
d0,0 d0,n

dn,0 dn,n

] [
pn(x0)
pn(xn)

]
= −

[
d0,1 d0,2 · · · d0,n−1

dn,1 dn,2 · · · dn,n−1

]
pn(x1)
pn(x2)

...
pn(xn−1)

 . (2.122)

Labelling the matrices in (2.122) as B0 and B1, and substituting into (2.119)
yields

(E − [E0 EN ]B−1
0 B1)p = −λp. (2.123)

The problem has now been reduced to a matrix eigenvalue problem, and we use
MATLAB’s eig function to solve it. The MATLAB code used to solve this problem
is shown in Appendix A.2.

2.3.2 Observations

In the case of an eddy we can assume that it is perfectly circular and work in
polar coordinates such that horizontal pressure gradient is radial, and the veloc-
ities (u, v) are replaced by the azimuthal velocity. The azimuthal velocities may
switch sign with depth depending on how the density surfaces are deflected in the
vertical. However, as mentioned above, the first mode is most commonly observed.
For example, a hydrographic section of density across the Agulhas current system
(Gladyshev et al., 2008) is shown in Figure 2.5. The authors have labelled three
regions as E1, E2 and E3 to indicate eddies. Note that in each case the isopycnals
are deflected; in E1 and E2 downward and in E3 first upward and then downward.
The stronger the deflection the stronger the contribution to the radial pressure gra-
dient and hence the azimuthal velocity. E1 and E2 appear to be mode 1 and E3
mode 2. A barotropic eddy would not be visible in the density field as the velocity
is vertically uniform and driven by the pressure gradient at the surface.

Some of the most eddy-rich regions of the ocean are found in the vicinity of
western boundary currents. One famous region is the Gulf Stream (North Atlantic
Current) system found off the east coast of North America. Meanders that occur in
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Figure 2.5: Hydrographic data section across the Agulhas current system collected
in November, 2004. Three eddies labelled E1, E2 and E3 are indicated on the
plot. Note the deflections of the isopycnal surfaces associated with each. Figure
reproduced from Gladyshev et al. (2008)
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Figure 2.6: Time evolution of the Gulf Stream during the production of a cold
core eddy observed during February-March of 1977. Figure adapted from The Ring
Group (1981).

the jet as it leaves the coast results in the formation of numerous mesoscale eddies
often called Gulf Stream rings. Gulf stream rings have been studied extensively
over the last several decades. One of the main features of such rings is that they
are produced in two varieties: warm core and cold core. The warm core rings are
produced when current loops detach on the north side of the current, encasing
Sargasso Sea water in their core. A similar mechanism is responsible for the cold
core eddies on the south side of the current. Figure 2.6 shows the time evolution
of the jet during the production of a cold core eddy.

A hydrographic section of temperature across the Gulf Stream, shown in Figure
2.7. The isotherms (roughly isopycnals) are deflected upwards, indicating cyclonic
rotation. This eddy is a cold-core ring as its core is colder than the surrounding
water and it is found to the south of the Gulf Stream.

The Gulf Stream is also responsible for producing eddies in the Gulf of Mexico.
One to two are produced each year by meanders in the stream as it loops through
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Figure 2.7: Hydrographic data section across the Gulf Stream from April 1960.
The isotherms are deflected upwards strongly, indicating cyclonic rotation. Figure
reproduced from Kamenkovich et al. (1986).
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the southeast corner of the Gulf. These loop current eddies then propagate slowly
west and break on the coast of Mexico or Texas.

Other Western boundary currents that produce eddies include the Kuroshio
system off the coast of Japan and the Brazil current on the east coast of South
America. Also the Agulhas Current, which exists south of Africa is also responsible
for producing eddies.

Eddies have also been discovered beneath the ice in Canada Basin (Timmermans
et al., 2008). Tethered profilers have recorded measurements indicative of eddies
with a radius of approximately 10 km radius. This is somewhat smaller than
the typical 50-200 km observed in the ice-free ocean and is consistent with other
observations of decreasing radius with increasing latitude.

2.3.3 Meddies

Meddies are unique subsurface eddies found in the East North Atlantic ocean. The
origin of such eddies is attributed to the Mediterranean Sea hence the name meddies
(Mediterranean eddies). Warm salty Mediterranean Sea water overflows from the
Straight of Gibraltar and flows down the continental slope to a depth of 500-1500
m. At this depth the influence of local currents causes this water to detach from
the slope in the form of 40-100 km diameter lenses. The lenses propagate Westward
into the Atlantic while rotating anticyclonically (clockwise) at velocities up to 30
cm s −1. Due to the large deviation in temperature (up to 4oC) and salinity (up
to 1 psu), meddies are easily identified in hydrographic sections in the North East
Atlantic. It is estimated that 17 meddies are generated each year and have mean
lifespans of 1.7 years and that approximately 30 meddies exist at any given time.
One of the primary fates for meddies is collision with seamount. For more details
on meddies see Richardson (2000).

2.3.4 Sea surface signature

A drop in sea-surface height is associated with the cold core eddies and an in-
crease with the warm cores. Maps of sea-surface variability can be used to identify
eddy-rich regions because eddies almost always have a sea-surface height signature.
Geostrophic eddies can only have nonzero surface currents if they have a sea-surface
height gradient. Such a map of sea-surface variability is shown in Figure 2.8. Re-
gions of high sea surface variation correspond to known locations of high eddy
activity, particularly in the vicinity of the Gulf Stream, the Kuroshio Current, the
Brazil current and the Algulhas current.

Further, one can identify regions dominated by cold-core and by warm-core type
eddies by looking at the skewness of the sea-surface variability. The variability is
skewed negative if there are primarily cold core eddies (sea surface is depressed),
and positive for warm core eddies (sea surface is elevated). A map of the skewness
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Figure 2.8: Standard deviation of sea-surface height of the world’s ocean computed
from ten years of altimeter data. Regions of high sea surface activity correspond
to locations of increased eddy activity. Figure reproduced from Thompson and
Demirov (2006).

is shown in Figure 2.9. The statistic is most meaningful in regions of high eddy
activity and is not very useful otherwise. For example, the large red patch just
west of South America is not indicative of the world’s largest warm core eddy field
because the eddy activity there is low.

Detecting eddies by altimeter is limited to eddies with a sea-surface signature
and hence subsurface eddies such as meddies and eddies existing below ice cover
will not be observed.

2.3.5 Generation mechanisms

Eddies are believed to be generated by means of baroclinic instability. Such an
instability exists when a steady state system exists in unstable equilibrium. A
small perturbation to such an unstable equilibrium will move the system from its
steady state and exponential growth results until other considerations prevent it
from continuing. A classic example of baroclinic instability was formulated by Eady
(1949). The problem consists of zonal flow on an f -plane in geostrophic balance
with a meridional density gradient. A rigid lid is also prescribed for simplicity. Eady
showed that perturbations to this system are unstable below a critical wavelength.
Since perturbations are ubiquitous in nature they will inevitably occur and such
perturbations grow exponentially via nonlinear effects until they are limited by
other physical means. Boundary currents resemble this problem. Perturbations to
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Figure 2.9: Skewness of sea-surface height of the world’s ocean computed from ten
years of altimeter data. Red (blue) regions correspond to a preference for warm
(cold) core eddies. Figure reproduced from Thompson and Demirov (2006).

such currents grow into meanders which eventually lead to the shedding of eddies.
Figure 2.6 shows an example of such a meander producing a Gulf Stream ring.

2.4 MITgcm

The model used in this thesis to carry out numerical simulations is the MITgcm,
the general circulation model developed at MIT. The model is very flexible as it
can be used for both atmospheric and ocean modelling, can scale from running on a
single PC to running on hundreds of processors on a large scale computing cluster,
and has a wide variety of packages available to use in experimental setups. This
section will describe some features of the model and summarise the equations that
it solves prognostically.

2.4.1 Computational features

The MITgcm is written in FORTRAN-77, a language widely used in the field of
computational fluid dynamics. It can be compiled and operated on a wide variety
of platforms, although it is typically operated on UNIX/LINUX based systems.
Running as a single thread (one processor) it can run on a PC for small to medium
size simulations. Running with numerous threads (spanning multiple processors
and/or nodes such as in a cluster) the model can scale to very large simulations.
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Parallelism is achieved via horizontal domain decomposition. Since the model does
not need global access to the domain (as for example a Fourier based spectral
model would), each thread can operate on its fraction of the global domain. Each
subdomain has a copy of its neighbour’s boundary cells (called ghost cells) such
that the spatial operators can work locally and are updated by boundary exchanges
after each time step. The MITgcm scales well until the ghost cell exchanges become
significant with respect to the rest of the computation.

2.4.2 Numerical features

The MITgcm uses an Arakawa C-grid for placement of the model’s physical arrays.
The tracers (here, temperature and salinity) are located at the centre of each grid
cell. The velocity vector ~u = (u, v, w) is split into its components, u specified on
the east/west side of each cell, v on the north/south, and w at the top/bottom.
The sea surface height η is located at top and centre of the top cell in each column
of cells.

Other noteworthy features are

1. The horizontal grid may use spherical coordinates or Cartesian coordinates
with both f - and β- plane options available.

2. The vertical grid uses fixed z-levels.

3. Time stepping is either leap-frog or Adams-Bashforth 3.

4. The surface may be rigid-lid, linear free surface, or nonlinear free surface.

5. Partial cells are available for improved representation of bottom topography
(also called lopped-cells).

6. Non-hydrostatic formulation is available as well as hydrostatic.

2.4.3 Equations solved

The MITgcm solves the non-hydrostatic incompressible Boussinesq equations,

D~uh

Dt
+ fk̂ × ~uh +

1

ρc

∇hp
′ = ~Fh, (2.124)

εnh
Dw

Dt
+
gρ′

ρc

+
1

ρc

∂p′

∂z
= εnhFv, (2.125)

~∇h · ~uh +
∂w

∂z
= 0, (2.126)

ρ′ = ρ(θ, S, p0(z))− pc, (2.127)

Dθ

Dt
= Qθ, (2.128)

DS

Dt
= QS, (2.129)
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where ~uh is the horizontal velocity vector, f is the Coriolis parameter, k̂ is the
vertical unit vector, ρc is a constant reference density, ∇h is the horizontal gradient
operator, p′ is the pressure perturbation, ~Fh is the horizontal momentum forcing,
εnh is a non hydrostatic parameter, w is the vertical velocity, g is the gravitational
acceleration constant, ρ′ is the density perturbation, ρ0(z) is a reference density
profile, θ is the temperature, Qθ is the temperature forcing, S is the salinity, and
QS is the salinity forcing.

When operating in non-hydrostatic mode εnh is set to one. However, when the
model is switched to hydrostatic mode εnh is set to zero and the equations become
the hydrostatic incompressible Boussinesq equations. These hydrostatic equations
are often referred to as the hydrostatic primitive equations (HPE) within the ocean
modelling community.
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Chapter 3

Methods

This chapter describes the setup of the numerical model MITgcm and three config-
urations that are used to investigate eddy-internal wave interactions. Background
stratification profiles are defined and modifications are made to the MITgcm to
facilitate the experiments. Following this are three configurations, one for internal
waves, one for an eddy, and one including both phenomena.

3.1 Stratification

Two functions are designed for use as the reference density profile, a linear density
profile (ρ̄1) and a profile containing a pycnocline (ρ̄2):

ρ̄1(z) = ρ0(1−N2
0 z/g), (3.1)

ρ̄2(z) = ρ0(1−N2
0 z/g) + 0.5∆ρ(1− tanh(A(z +B)/H)), (3.2)

where N0 = 1.0× 10−3 s−1, ρ0 = 1028 kg m−3, ∆ρ = 1 kg m−3, A = 50 m, B = 400
m and H = 5000 m.

Figure 3.1 shows a plot of each of these functions as well as their associated
buoyancy frequency frequency N(z). The first three internal wave modes and their
derivatives are shown for ρ̄1 in Figure 3.2 and for ρ̄2 in Figure 3.3. The first
quasigeostrophic mode and its derivative are shown in Figure 3.4 for both ρ̄1 and
ρ̄2.

3.2 Modifications to the MITgcm model

Energy flux computation

Calculations to find the energy flux due to baroclinic disturbances are added to the
MITgcm model. Included with MITgcm is a prototype package called mypackage
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Figure 3.1: The reference density profiles used in this thesis. The solid lines show
ρ̄1(z) and N1(z), and the dashed lines show ρ̄2(z) and N2(z). The left panel shows
density and the right panel buoyancy frequency.
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Figure 3.2: The first three internal wave modes (left) and their derivatives (right)
for the linear density case (ρ̄1). The modes are sinusoidal as expected.
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Figure 3.3: The first three internal wave modes (left) and their derivatives (right) for
the nonlinear density case (ρ̄2). The curves deviate substantially near the pycnocline
from their otherwise sinusoidal shape.
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Figure 3.4: Mode 1 eigenfunctions obtained by solving the eigenvalue problem for
the vertical structure of quasigeostrophic eddies. The left curves are the mode 1
functions and the right curves are the derivatives. Solid indicates the linear density
profile (ρ̄1) and dashed indicates the pycnocline profile (ρ̄2).
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for the purpose of adding customisations without needing to modify the rest of
the model’s source code files. This package is enabled, and the code to compute
energy flux was added. The benefit of performing this computation online is that
it is much faster than computing it offline from saved snapshot data. Further the
time resolution of energy flux calculations can be as high as the time step duration;
this would be very costly to achieve offline as fields would need to be saved at each
time step. Output of the energy fluxes is done using the diagnostics package
and allows the user to output averages, snapshots and statistics for both the entire
domain and for subdomains.

The baroclinic energy flux is the product of baroclinic velocity ubc and the
pressure due to the baroclinic velocity pbc. Following Munroe (2003), we compute
these quantities and vertically integrate the energy flux as follows

~ubc = ~u− ~ubt = ~u− 1

η +H

∫ η

−H

~u dz, (3.3)

pbc =

∫ η

z

gρ′ dz, (3.4)

~Ef = ~ubcpbc, (3.5)

~Ef,2D =

∫ η

−H

~Ef dz, (3.6)

where ~u = ~u(x, y) is the horizontal model velocity, η is the sea-surface elevation, H
is the undisturbed water depth, g is the gravitational acceleration constant and ρ′

is the density perturbation. The subscripts “bt” and “bc” indicate barotropic and
baroclinic, respectively.

Barotropic tide forcing

The obcs_calc routine included in the OBCS package is modified to prescribe a
barotropic tide at the west side of the domain and a radiation condition at the east
for the tidally forced model configurations. At the west boundary,

uwest = − c

H
(η − η0 sin(ωt)), (3.7)

where ω = 2π/44712 rad s−1 is the frequency of the M2 tide, c =
√

gHw2

w2−f2 is the

linear long wave speed, H is the deep water depth, η is the sea-surface elevation
and η0 is computed from the desired barotropic tide magnitude u0 = 5.0 cm s−1

via η0 = u0
H
c
. At the east boundary,

ueast =
c

H
η, (3.8)

is a radiation condition that allows the barotropic mode exit the domain.
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Finally, the reference density profiles described previously are are coded into
MITgcm with the modified mypackage to facilitate the online energy flux compu-
tations. The FORTRAN 77 source code files that implement these computations
are included in Appendices C.1, C.2 and C.3.

3.3 Model choices

There are a very large number of options and parameters in the MITgcm model
and it is not feasible to do an exhaustive study of all of them. However, for the
simplicity of the test problem considered in this thesis, it is possible to narrow down
the options to test a much more manageable subset.

Leap-frog vs. Adams-Bashforth-3

Adams-Bashforth-3 (AB3) is a higher order time-marching scheme than leap frog
and is expected to produce better results. A time-step convergence test was per-
formed, comparing leap frog and AB3 at a nominal time step and at several reduc-
tions down to 1 percent of the nominal time step. Using the smallest time step and
AB3 as the reference the AB3 consistently showed smaller errors than leap frog.
Thus we choose AB3 for the time stepping scheme in all simulations.

Linear vs. Nonlinear Free Surface

Nonlinear free surface would be the preferred choice by default as it is the most
accurate. However, some MITgcm options are unavailable when the nonlinear free
surface is selected; for example the Orlanski radiation condition. To determine
if the non-linear free surface is important, the 2D internal wave setup (see later
section) was simulated with and without the nonlinear free surface. Comparisons
of the zonal velocity field after 15 tidal periods showed differences smaller than 0.1
percent of the size of the velocities. Since the free surface displacements are small
in these simulations (0.1-1 cm) it is not surprising that the linear approximation
holds. Thus the linear free surface is chosen as it opens up more model options.

Momentum viscosity

A Shapiro filter is chosen to take the place of horizontal viscosity. The Shapiro
filter is linear and it removes completely the smallest resolvable scales (two grid cell
signals). The drawback is that it partly removes larger scales (such as four grid
cell signals) but scales larger than this are essentially unaffected. For more on this
filter see Shapiro (1970). The end result is that we control the accumulation of
energy at small scales by removing it with the Shapiro filter, effectively dissipating
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it. The time scale used for the Shapiro filter is one half of a tidal period (22356 s).
For vertical viscosity we set the coefficient Av to zero.

Tracer options

In this thesis we set temperature to a constant value and allow variations in
salinity to control the density. Consequently, it is not necessary to time-step
the temperature. A modest model speed-up is achieved by setting the option
tempStepping=.FALSE. in the MITgcm input file data which disables time step-
ping of the temperature field.

Several advection schemes for tracers are available (see the MITgcm manual
for details). The centred fourth order scheme is chosen as it is higher order than
centred second order, the default. The diffusion coefficients for both temperature
and salinity are set to zero.

Grid spacing

The open boundaries in the configurations considered here are somewhat problem-
atic. As designed, the condition on the left prescribes a barotropic tide and the
condition on the right permits it to exit the domain. However, baroclinic modes are
reflected at each boundary and will propagate back toward the topography. This
would complicate analysis as they will interact with the baroclinic modes leaving
the topography. A sponge layer was experimented with at the open boundaries to
linearly relax to the barotropic mode over several grid cells. The result was good
with the exception of the spurious emission of very low amplitude baroclinic waves
from the inner edge of the sponging region. Although smaller in magnitude than
the internal waves generated by the tide, it was decided to abandon the sponge
layer approach.

To avoid the unwanted internal wave-wave interactions we propose a grid-
stretching method that moves the boundaries far away from the vicinity of the
ridge. We consider relatively short simulations (order 20 tidal periods) and moving
the boundaries far enough away avoids the reflection issue.

The horizontal grid spacing is set by a constant plus a difference in shifted
hyperbolic tangent functions of the form

dx[n] = C +
D

2
(2 + tanh(A(x[n]/L− 1/2−B/2))− tanh(A(x[n]/L− 1/2 +B/2))),

(3.9)
where C is the inner grid spacing, C +D is the outer grid spacing, L is the domain
length, A is a parameter controlling how quickly the spacing transitions from inner
to outer resolution, B specifies the fraction of the inner domain to have inner
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resolution, and n is the grid cell index ranging from 1 to N , the number of grid
points. The grid cell centres are then specified by

x[n] =

{
1
2
dx[1] for n = 1,

x[n− 1] + 1
2
(dx[n− 1] + dx[n]) for n > 1.

(3.10)

Typically A and B are fixed with values of 20 and 0.5, respectively. However
there is flexibility in choosing the remaining variables C, D, L and N . Choosing C,
D and L leads to a requirement on N , however this is not desirable as the resulting
N may not be easily divisible for multi-processor domain decomposition. Choosing
L and N , and defining D in terms of C is an option as it allows us to control how
the outer resolution is related to the inner; however this is also not desirable as the
exact value of the inner spacing is not controlled. The most favourable approach is
to specify C, L and N , and then determine the required value of D. The value of
D is the least important variable to control; it’s value does not matter other than
it should be a few times larger than C. To proceed one specifies a domain length
L, a number of grid points N , and a desired inner resolution C which is less than
L/N . D is then iteratively determined as follows

1. Estimate an initial x[n] (ex: equal grid spacing)

2. Estimate an initial D (ex: (L/N − C)/(1−B))

3. Compute dx[n] by (3.9)

4. Compute x[n] by (3.10)

5. Compute the length of this grid spacing by L∗ =
N∑

n=1

dx[n]

6. Compute a new D by D = D
L

L∗

7. Repeat 3-6 until L∗ is sufficiently close to L

The ratio C/D gives a rough estimate of the fraction of computational time
spent working on the “far fields”. Typically we choose N (and thus D) such that 90
percent of the grid points (and thus 90 percent of the computation time) is allocated
for the interior domain and the remaining 10 percent for the outer domain. Solving
for D typically takes less than a second using MATLAB R2008b on the LINUX
system thelon and the M-file used is shown in Appendix A.3. Figure 3.5 shows an
example grid spacing obtained from this method.
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Figure 3.5: A sample grid spacing obtained with N=400, L=4000 km, A=20, B=0.5,
C = 5km. Notice that the majority of the points (the dots) are clustered in the
high resolution centre of the domain and relatively few are stationed near the edges.
The transition between the low and high resolution is smooth to avoid reflection of
signals.

3.4 Internal wave configuration

The internal wave configuration is a 2-D model setup designed for the sole purpose
of generating internal waves by forcing barotropic tidal flow over topography. Waves
generated by this mechanism will be used later to interact with mesoscale eddies.
This configuration is used to tune up the model and to verify that the generation
of waves and energy flux computations are correct.

Despite the ubiquity of internal waves in the open ocean at a wide variety of
wavenumbers and frequencies (see GM79 spectrum) we choose to focus on only the
internal tide. The M2 tide with a period of 12.42 hours is chosen as the tide of
interest.

A Gaussian ridge of the form h(x) = H − h0e
−x2

a2 is centred in the domain
where H is the nominal depth of 5 km, h0 is the ridge height of 1.5 km, and a is a
parameter controlling the width of the ridge. A small enough value of a will produce
super critical topography, however, we choose a such that the maximum slope is
75 percent of critical. The east and west boundary conditions are as described in
Section 3.2. Finally, energy flux lines are prescribed every 250 km along the domain
in the x direction and at each line a time series of energy flux is saved. Table 3.1
lists the rest of the parameters used in this configuration.
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Figure 3.6: The model topography used for generating internal waves (top) and a
zoomed in look at just the ridge (bottom).

Table 3.1: Parameters used for the 2D internal wave configuration.

Parameter Value
Coriolis parameter f 0.5× 10−4 rad s−1

Reference buoyancy frequency N0 1.0× 10−3 rad s−1

Density profile both (ρ1 and ρ2)
Barotropic tide u0 5.0 cm s−1

Domain size 3000× 1000× 5 km
Grid cells 1500× 1× 100
Horizontal grid spacing (fixed) 2 km
Vertical grid spacing (fixed) 50 m
Time step 103.5 s
Duration (tidal periods) 15
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3.5 Eddy configuration

Initialising a model with a steady state analytical solution can lead to adjustment.
Differences in numerics are one of the reasons that the fields are not balanced in
the model. The adjustments are typically small as the model simulates and the
adjustments manifest themselves as emitted gravity waves.

We wish to initialise a model with an eddy for the purposes of looking at its
interaction with internal waves but spurious gravity wave emissions can complicate
the analysis. Hence we design an eddy-only configuration for the sole purpose of
adjusting an eddy to be consistent with the model fields. An eddy is designed from
quasigeostrophic theory and then adjusted in the MITgcm. The end result is that
we have fields consistent with the discretisation in the MITgcm and need not be
concerned with any substantial adjustment.

3.5.1 Initialisation of a baroclinic eddy

The eddy is analytically initialised and is prescribed by specifying isopycnal dis-
placements and consistent velocity and sea-surface elevation fields. The density is
specified in terms of a reference density profile with shifted isopycnals

ρ(x, y, z) = ρ̄(z − η(x, y, z)), (3.11)

where ρ̄(z) is either (3.1) or (3.2). Asserting that η is small we expand (3.11) in a
Taylor series about z and retain only the first two terms to get the the expression

ρ̄(x, y, z − η) = ρ̄(z) +
N2(z)ρ0

g
η(x, y, z) = ρ̄+ ρ′. (3.12)

Note that for the case of linear density (constant N), this Taylor series is exact
because all of the higher derivatives of ρ̄(z) are zero. However, this is not true
in general, and the omission of the rest of the terms contributes a small error.
Following Carton (2001) we let the vertical structure of the streamfunction be
Fm(z), the solution obtained by solving the eigenvalue problem (2.109). Switching
to polar coordinates for the horizontal part we write the streamfunction in the form

ψ = ψh(r)ψv(z) = ψh(r)Fm(z). (3.13)

Noticing that ρ′ is related to the streamfunction by (2.104) and to the isopycnal
displacement by (3.12) we relate the streamfunction to the isopycnal displacement
by

ψhF
′
m(z) =

−N2(z)

f
η. (3.14)
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We can now choose a function for the horizontal structure of the stream function,

ψh = Msech2(r/LE), (3.15)

where LE is an eddy length scale, giving an expression for η

η = −fMsech2(r/LE)
F ′

m(z)

N2(z)
, (3.16)

and we can complete the expression for the streamfunction,

ψ = Msech2(r/LE)Fm(z). (3.17)

Using the streamfunction we compute u and v by equations (2.99) and (2.100).
A barotropic mode is added such that the velocity is zero at z = −H by subtracting
the bottom level’s velocity field. A sea-surface elevation is computed to be consis-
tent with the surface flow. Finally, the linear equation of state (2.7) is inverted to
find a salinity field (recall temperature is constant). These are the fields used to
initialise the model.

These fields are a good approximation of a quasigeostrophic eddy however the
fields are not in perfect balance and the imbalances are due to several mechanisms.
One of the first to stand out is that we omit the ageostrophic terms in the solutions
for (u, v). A second problem is the difference in numerics between the computation
of the initial fields and the MITgcm model. For the initialisation we use analyti-
cal derivatives (for example, taking radial derivative of ψh) but in the MITgcm a
numerical finite difference scheme is used. Thus some imbalance is expected in the
fields due to the differences in taking numerical derivatives.

3.5.2 Geostrophic adjustment

The model adjustment is performed by initialising the MITgcm with an above-
described eddy and then integrating the model forward for ten days. The idea here
is that the fields are very close to steady state and need small changes to achieve this
balance. Indeed this is the case; time stepping the model as described produces
some small amplitude surface gravity waves that are emitted as the sea-surface
height adjusts. The magnitude of these waves is small (order 1 percent of the
maximum elevation) which is consistent with our expectation that the fields were
very close to balanced. It is desirable to have this adjustment completed before
using such an eddy in the internal-wave-eddy setup because the energy fluxes due
to the adjustment waves may contaminate the signals of interest.
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Table 3.2: Parameters used for the eddy adjustment configuration.

Parameter Value
Coriolis parameter f 0.5× 10−4 rad s−1

Reference buoyancy frequency N0 1.0× 10−3 rad s−1

Density profile both (ρ1 and ρ2)
Domain size 500× 500× 5 km
Grid cells 256× 256× 64
Horizontal grid spacing (fixed) 1.95 km
Vertical grid spacing (fixed) 78.125 m
Time step 90 s
Duration (days) 10

Table 3.3: Parameters used for the eddy-internal wave configuration.
Parameter Value
Coriolis parameter f 0.5× 10−4 rad s−1

Reference buoyancy frequency N0 1.0× 10−3 rad s−1

Domain size 3000× 2000× 5 km
Grid cells 900× 540× 64
Grid spacing 2 × 2 km
Time step 138 s

3.6 Eddy-internal wave configuration

This section describes the primary purpose of this thesis which is to investigate the
transfer of energy between eddies and the internal wave field. The domain from
the internal wave configuration is extended in the meridional (y) direction to span
2000 km. Periodicity is chosen for the north and south boundaries. Periodicity is
chosen because the alternative, solid walls, results in coastally trapped Kelvin waves
propagating west along the north boundary and east along the south boundary.
This setup provides the reference run referred to later as the no eddy case.

Next the geostrophically adjusted eddies - one clockwise rotating and one coun-
terclockwise rotating are inserted into the domain’s initialisation fields. The clock-
wise (counterclockwise) eddy is stationed 250 km to the west (east) of the ridge, a
distance far enough away that it will not impinge upon the ridge. This describes
the single eddy case (although there are two eddies), single refers to number of
eddies “per side” of the ridge.

The eddy’s azimuthal velocity and length scale as well as the barotropic tide
velocity are the parameters that we adjust to better understand the effect of each.
The fixed parameters are tabulated in Table 3.3.
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Chapter 4

Results

The results from the numerical experiments are shown in this chapter. First, the
waves generated from the internal wave configuration and second an adjusted eddy
from the eddy configuration. Following these are the results from the internal
wave-eddy interaction experiments.

4.1 Internal wave configuration

Two model runs are done for the internal wave configuration, one for each of the
reference density profiles. The model is initialised from rest (~u = 0) and integrated
forward for 15 tidal periods. Snapshots of the model flow variables and time series of
energy flux are saved. The barotropic tide of 5 cm s−1 starts immediately. However,
no shock is introduced because the tide is modelled as a sin(t) function which takes
on a value of zero at t = 0.

4.1.1 Linear density profile

First we look at the results from the linear density case after 10.5 tidal periods
have elapsed. The baroclinic part of the zonal velocity and the vertical velocity are
of interest. Figure 4.1 shows these velocities and the characteristic internal wave
patterns expected from tidal flow over topography are clearly visible. Near the
ridge, persistent beams have formed and their existence is due to the superposition
of many vertical modes. The maximum zonal velocity is 5 cm s−1. The vertical
velocities are about one order of magnitude lower at 5 mm s−1.

4.1.2 Nonlinear density profile

Now we look at the nonlinear density case. The same velocity fields as before are
shown in Figure 4.2. Notice this time that the beams are still present, however, there
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Figure 4.1: Zonal baroclinic velocity in cm s−1 (top) and vertical velocity in cm
s−1 (bottom) from the MITgcm configuration after 10.5 tidal periods have elapsed
using the linear density profile. Only the east half of the domain is shown and only
up to 2500 km.
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Figure 4.2: Zonal baroclinic velocity in cm s−1 (top) and vertical velocity in cm
s−1 (bottom) from the MITgcm configuration after 10.5 tidal periods have elapsed
using the pycnocline density profile. Only the east half of the domain is shown and
only up to 2500km.

are some interesting features occurring in and above the pycnocline. Wave energy
is concentrated in the pycnocline as well as above and this can be attributed to the
shape of the vertical modes obtained by solving the eigenvalue problem in Section
2.2.12. Looking to the east, the vertical structure matches the derivative of the
first mode baroclinic eigenfunction. This is a confirmation that we have generated
internal waves as the horizontal velocity is decomposed onto the derivatives of the
eigenmodes. The maximum zonal velocity is 5 cm s−1, much like the linear case.

4.1.3 Vertical mode decomposition

A vertical mode decomposition is applied to the MITgcm zonal velocity field after
10.5 tidal periods (the same field shown in the upper panel of Figure 4.1 and Figure
4.2). The decomposition onto modes uses the hydrostatic form of the eigenvalue
problem for internal waves and ω is fixed at the M2 tidal frequency. The decom-
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position un(x) for the first five modes is shown in Figure 4.3 for the linear density
case and in Figure 4.4 for the non-linear density.

The first observation is that the distance propagated by each mode reflects
the expectation: mode 1 has propagated the furthest, followed by mode 2, 3, etc.
There is some difficulty in measuring the group velocity from the model results.
Tracking peaks between time levels would be straightforward but would yield the
phase velocity rather than group velocity. Instead we use the plots in Figures 4.3
and 4.4 and look for the leading edge of the wave packet to estimate the distance
travelled by the wave after 10.5 tidal periods.

To compare this with expectations we also recognise that, due to the free surface
method used, there will be a delay before the production of internal waves begins.
The barotropic tide is prescribed at the boundary and must propagate along half
of the domain before interacting with the topography and producing waves, hence
the delay. We compute this delay by taking the distance to the ridge (1500 km)
and dividing by the barotropic wave speed (237 m s−1) yielding 1.76 hours (0.14
tidal periods). Taking this delay into account when looking at the leading edge of
the un(x) plots we can estimate a group velocity for each of the first five modes.
Using the hydrostatic group velocity expression (2.66) we get the expected group
velocity for the linear density case; an analytic formula for the group velocity in the
non-linear density case is not available. The results of the measured and expected
group velocities are tabulated in Table 4.1.

Table 4.1: Expected and estimated group velocities for the first five internal wave
modes.

Stratification Mode Distance Measured cg Expected cg
(km) (m s−1) (m s−1)

1 1 740 1.60 1.45
1 2 360 0.78 0.72
1 3 280 0.60 0.48
1 4 220 0.47 0.36
1 5 180 0.39 0.29
2 1 950 2.05 N/A
2 2 600 1.29 N/A
2 3 320 0.69 N/A
2 4 250 0.54 N/A
2 5 200 0.43 N/A

One observation we make is that the group velocity for each wave in the linear
density case is larger than the expected value. The larger than expected group
velocities was also noted by Liu (2009) when comparing model results from the
MITgcm to IGW. Future investigation is needed to resolve this as it is currently
unexplained.
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Figure 4.3: Zonal velocity decomposition un(x) for the first five modes for the linear
density case. The data is unreliable near the ridge and is removed.
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Figure 4.4: Zonal velocity decomposition un(x) for the first five modes for the
non-linear density case. The data is unreliable near the ridge and is removed.
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Looking at the equation for group velocity (2.66) we notice that it is proportional
to N3 for the linear stratification. Adding a pycnocline locally increases the value
of N , and qualitatively we can expect an increase in group velocity as a result.
Indeed this is the case as all of the group velocities measured are larger for the
nonlinear case than in the linear case

The decomposition into modes also allows us to quantify the energy in each
mode. In the linear stratification case this can be applied to u, v and w for the
kinetic energy and to ρ for the potential energy. In the non-linear density case we
are restricted to quantifying only the horizontal flow fields. Further, we assume
that for a fixed frequency, the partitioning between modes for the vertical velocity
and density perturbation roughly matches that of the horizontal velocities.

The fields are decomposed onto vertical modes and associated energies are com-
puted over two regions. The first region is the area between the ridge (but not
including the ridge) to the maximum distance that the mode 5 waves have prop-
agated. This distance is 180 (200) km for the linear (non-linear) case. Energy
partitioning over this limited area shows how much energy has been produced in
each mode and only the first five modes are reported. The data is tabulated in
Table 4.2. The second area is the entire domain, again excluding the ridge. The
entire domain data shows how much energy is explained by internal waves of tidal
frequency; the first eight modes are reported here. The data is tabulated in Table
4.3.

Looking at the first table we see that for the linear case about half of the energy
is in the first mode, with roughly half as much in each mode moving down the table.
However, in the second case, mode two has half of the energy and the remainder
is divided among the other four modes. The main result of this table is that each
mode is generated in substantial quantities and the first mode does not overwhelm
the rest in amplitude.

The second table shows that the first eight modes explain the vast majority
of the internal wave energy present. The residual is insignificant in the linear
density case and only a fraction of a percent in the non-linear case. The remaining
energy is explained by waves of higher modes, waves of other frequencies and other
perturbations.
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4.1.4 Comparison with Dr. Lamb’s model

For further confirmation that the model is operating properly, the same configu-
ration is setup using Dr. Lamb’s model IGW. There are a few differences between
IGW and the MITgcm configuration that make an exact comparison difficult, how-
ever a qualitative comparison is still possible. The differences are

1. In MITgcm the hydrostatic assumption is made; in IGW the non-hydrostatic
equations are used.

2. In MITgcm z levels with partial steps are used; in IGW terrain-following
coordinates (also called sigma levels) are used.

3. In MITgcm a free surface is used; in IGW a rigid lid is imposed.

The first two differences are not expected to be important except for a slight
difference in propagation speeds, however the last difference will have impact on the
comparison. With a rigid lid the barotropic tide has an infinite wavelength and with
a free surface the tide has a finite wavelength. The consequence of this discrepancy
is that upon initialisation in the rigid lid case the ridge will immediately be subject
to the barotropic tide. In the free surface case the wave will need to propagate
almost halfway across the domain before interacting with the ridge. Thus a phase
shift is expected when comparing waves generated by MITgcm and IGW. In spite of
this, the wave magnitudes, modes and energy fluxes are expected to be comparable.

4.1.4.1 Baroclinic velocities

Plots of the baroclinic zonal velocity and of the vertical velocity obtained from
IGW are shown in Figure 4.5 for the linear density profile and in Figure 4.6 for the
nonlinear density profile. These figures should be compared with Figures 4.1 and
4.2. The snapshots are taken after 10.39 tidal periods have elapsed. The earlier
time used here for the IGW snapshots accounts for the expected phase shift of 0.14
tidal periods and was the closest saved snapshot to 10.36 tidal periods. A visual
inspection of the plots reveals that the fields are very similar and thus we conclude
that the MITgcm is working well in producing internal waves.

4.1.4.2 Energy flux

A time series depicting the energy flux passing a point 250 km to the east of the
ridge is shown for the linear density case in Figure 4.7. Curves for MITgcm and
IGW are shown in the top two panels. The dashed line shows the energy flux and
the solid line shows a sliding time average one tidal period wide. The bottom panel
overlays the curves for comparison, however two modifications are made. First, the
expected phase shift of 1.76 hours (0.14 tidal periods) is applied to the MITgcm
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Figure 4.5: Zonal baroclinic velocity (m/s) (top) and vertical velocity (bottom)
from the IGW configuration after 10.39 tidal periods have elapsed using the linear
density profile. Only the east half of the domain is shown and only up to 2500km.
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Figure 4.6: Zonal baroclinic velocity (m/s) (top) and vertical velocity (bottom) from
the IGW configuration after 10.39 tidal periods have elapsed using the pycnocline
density profile. Only the east half of the domain is shown and only up to 2500km.
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data and, by inspection, we see that the arrival of the first waves matches well.
Second, the MITgcm data has been reduced in magnitude by 10% and this brings
the average level into good agreement.

The phase shift is expected and explained. The reason for the overestimate of
the energy flux by the MITgcm is not immediately clear. One possibility is that
the larger group velocity observed from MITgcm is responsible for the larger energy
flux. Energy flux is energy density multiplied by group velocity, so an overestimated
group velocity could explain the overestimate of energy flux.

The same curves are shown for the non-linear density case in Figure 4.8. The
curves are similar to those in the linear density case. We notice that the first waves
arrive about half a tidal period earlier; this is explained by the larger propagation
speed observed for the mode 1 waves. The average energy flux level is similar
between the density cases beyond 12 tidal periods.

4.2 Eddy configuration

The results of this section show the results of geostrophic adjustment of two baro-
clinic eddies. The adjustment is similar for the other eddies that are used in the
next section.

4.2.1 Linear density profile

A clockwise eddy is initialised with a maximum surface velocity of Umax=25 cm
s−1 and a length scale LE of 50 km. The resulting cross section after ten days of
adjustment is shown in Figure 4.9. We observe first that the sea-surface height
has dropped 3.1 cm at the centre of the eddy. Second we notice that there is an
increase in the eddy’s azimuthal velocity of 3.7 cm s−1. An increase in velocity after
adjustment indicates that the sea surface gradient was too high upon initialisation
and acted to accelerate the flow. This is consistent with the sea-surface dropping
as it adjusts; the velocities were not strong enough to support the original elevation
field and an equilibrium is reached.

The general shape of the eddy has not changed significantly with the adjustment.
The density contours show isopycnal displacements of about 400 metres which is
comparable to the displacements depicted in the hydrographic sections shown in
Section 2.3.

4.2.2 Nonlinear density profile

A similar clockwise eddy is adjusted using the non-linear density profile and the
cross section is shown in Figure 4.10. A 2.9 cm reduction in sea surface height
is observed as well as a 5.7 cm s−1 increase in azimuthal velocity. The vertical
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Figure 4.7: Energy flux for the linear stratification passing a point 250 km to the
east of the ridge for MITgcm (top), IGW (middle), both (bottom). The dashed line
shows the energy flux and the solid line shows a sliding average one tidal period
wide. The MITgcm data on the bottom panel has been adjusted to best match
IGW by (a) a phase shift of 0.14 tidal periods and (b) a reduction in magnitude of
10%.
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Figure 4.8: Energy flux for the non-linear stratification passing a point 250 km
to the east of the ridge for MITgcm (top), IGW (middle), both (bottom). The
dashed line shows the energy flux and the solid line shows a sliding average one
tidal period wide. The MITgcm data on the bottom panel has been adjusted to
best match IGW by (a) a phase shift of 0.14 tidal periods and (b) a reduction in
magnitude of 10%.
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Figure 4.9: Cross section of a baroclinic eddy after it has been adjusted in MITgcm
(ρ̄1 case). The panels show: (top) sea-surface elevation, initial is dashed and final is
solid, (second) density contours in kg m−3, (third) zonal cross section of meridional
velocity in cm s−1, (bottom) final minus initial zonal cross section of meridional
velocity in cm s−1. The eddy length scale is 50 km, the azimuthal velocity is 50 cm
s−1, although it increased slightly during adjustment.
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structure is quite different from the constant N case in that the velocities are
concentrated above the main pycnocline. The velocity is quite weak below the
pycnocline, and this vertical structure is consistent with the eigenfunction shown
in Figure 3.4.

4.3 Eddy-internal wave configuration

This section describes the results obtained from the eddy-internal wave interaction
experiments.

The parameters we vary in the interaction experiments are the stratification
(ρ̄(z)), barotropic tide velocity (UBT ), eddy length scale (LE) and maximum az-
imuthal eddy velocity (Uθ).

Ideally, we should run a large number of cases to fully explore the parameter
space. For example, considering two density profiles and five values for each of
UBT , Uθ and LE leads to a requirement of 250 runs. Considering multi-eddy runs
would raise this even further. Limitations on time and computing resources make
this difficult to achieve. Instead we present a subset of runs. The chosen runs and
their parameters are listed in Table 4.4.

The table is partitioned into four parts. The first part varies only the azimuthal
velocity and allows us to investigate the effects of eddy speed. The second part does
the same except with the non-linear density profile. The third part repeats two of
the first runs with a reduced eddy length scale. Finally, the fourth part returns to
the original eddy length scale and increases the barotropic tidal velocity.

4.3.1 Effect of azimuthal velocity

First we look at the “A” series of runs that use the linear density profile. Energy
flux plots averaged over one tidal period are drawn for each value of Uθ in Figures
4.11 through 4.15. The runs are 25 tidal periods in length and the average is taken
over the last tidal period in the simulation. The masked out area removes the
regions where the calculation of energy flux is not useful (the eddy and the ridge),
as well as where the grid spacing becomes large. The black lines indicate the points
used to estimate the beam angles.

From the group velocities measured in Section 4.1.3 we estimate the distance
travelled by modes one through three at 1780, 860 and 670 km, respectively. From
Figure 4.11 we see that the energy flux level shifts around 2000 km and again
around 2300 km. These distances correspond to the wave front of the mode three
and two waves, respectively. Each of these distances is large enough such that the
corresponding modes will be well past the eddy location after 25 tidal periods. This
ensures that the eddy has interacted with at least the first 3 modes.
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Figure 4.10: Cross section of a baroclinic eddy after it has been adjusted in MITgcm
(ρ̄2 case). The panels show: (top) sea-surface elevation, initial is dashed and final is
solid, (second) density contours in kg m−3, (third) zonal cross section of meridional
velocity in cm s−1, (bottom) final minus initial zonal cross section of meridional
velocity in cm s−1. The eddy length scale is 50 km, the azimuthal velocity is 50 cm
s−1, although it increased slightly during adjustment.
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Table 4.4: Summary of runs
Run Name Stratification UBT (cm s−1) LE (km) Uθ (cm s−1)

A1 ρ̄1 5 - 0
A2 ρ̄1 5 50 10
A3 ρ̄1 5 50 25
A4 ρ̄1 5 50 50
A5 ρ̄1 5 50 75
B1 ρ̄2 5 - 0
B2 ρ̄2 5 50 10
B3 ρ̄2 5 50 25
B4 ρ̄2 5 50 50
B5 ρ̄2 5 50 75
C3 ρ̄1 5 25 25
C4 ρ̄1 5 25 50
D1 ρ̄1 10 - 0
D2 ρ̄1 10 50 10
D3 ρ̄1 10 50 25

Figure 4.11: Baroclinic energy flux magnitude for the A1 run. This is the reference
run with the linear density profile as no eddies are present. Units are W m−1.
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Figure 4.12: Baroclinic energy flux magnitude for the A2 run. LE is 50 km and Uθ

is 10 cm s−1. Units are W m−1.

Figure 4.13: Baroclinic energy flux magnitude for the A3 run. LE is 50 km and Uθ

is 25 cm s−1. Units are W m−1.
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Figure 4.14: Baroclinic energy flux magnitude for the A4 run. LE is 50 km and Uθ

is 50 cm s−1. Units are W m−1.

Figure 4.15: Baroclinic energy flux magnitude for the A5 run. LE is 50 km and Uθ

is 75 cm s−1. Units are W m−1.
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For the eddy cases, the most visible effect is the production of focusing and
shadow regions in the wake of the eddy. They are comparable for the anticyclonic
(east) eddy and the cyclonic (west) eddy in the sense that they are reflected about
the ridge. The plots with non-zero eddies are similar in that they all contain two
main focusing beams, one tilted north and one tilted south. A single main shadow
region is also prominent, and is tilted slightly north. There are a number of smaller
and weaker beams that are much more evident in the stronger eddy cases.

The approximate angle of four primary beams is measured across the “A” runs
to see how the velocity of the eddy affects the angle. We label the beams from north
to south beginning with the most intense beam (Focus 1), followed by Shadow 1,
Focus 2 and Focus 3. There is a shadow beam between Focus 2 and Focus 3 but it
is weakly defined for the low eddy velocity cases. The angles are measured between
two points with fixed x positions and y positions determined by seeking the local
maximum/minimum in a beam. The eddy flux figures contain a black line along
each beam, and the angle of this line is what is reported here. The results of the
measurements are tabulated in Table 4.5

Table 4.5: Angle of focus/shadow beams for the A series of runs (in degrees)
Uθ Focus 1 Shadow 1 Focus 2 Focus 3

(cm s−1) (degrees) (degrees) (degrees) (degrees)
10 15.0 14.5 -10.1 -14.8
25 14.5 7.4 -7.9 -15.4
50 10.2 7.4 -2.8 -14.3
75 7.4 5.7 -5.1 -14.3

The main focusing beam “Focus 1” has a consistent angle at low velocities but at
high velocities decreases somewhat. At higher velocities, particularly 75 cm s−1 the
beam appears to be broken into two parts, a part near the eddy with a large angle
and a part further from the eddy with reduced angle. The shadow region shows
an almost consistent decreasing angle with increasing eddy velocity. The second
data value may be an outlier due to the local minimum method of deciding the
angle. The second focusing beam also shows a consistent decreasing trend, again
with a single outlier. Finally, the third focusing beam is quite consistent in angle.
Overall the trend shows that the angle of the focusing/shadow regions decreases as
the eddy velocity increases.

At 2200 and 2400 km we take a meridional section of the energy flux magnitude
and plot in for each value of Uθ in Figure 4.16. Reading the curves from left to
right corresponds to north to south in the energy flux pseudo colour plots. The
curves show that the intensity of the beams increases with eddy azimuthal velocity
in the focusing regions and decreases in the shadow regions. The constant energy
flux values from the no eddy case are also shown, 952 and 1200 W m−1 at 2200
and 2400 km, respectively. The magnitude of the intensification at 2400 km was
unexpected; in the shadow region the intensity of energy flux almost reaches zero
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and in the upper focusing region the intensity is almost doubled. The trend is quite
clear: increasing eddy azimuthal velocity increases (decreases) the energy flux in
the focusing (shadow) regions. The values from the peaks and troughs of Figure
4.16 are tabulated in Table 4.6.

Table 4.6: Intensification of energy flux in the focus/shadow beams for the “A”
series of runs. The values here are the peaks/troughs of the curves in Figure 4.16.
The reference values from the no eddy case are 952 and 1200 W m−1 at 2200 and
2400 km, respectively.

Uθ Distance Focus 1 Shadow 1 Focus 2 Focus 3
(cm s−1) (km) (W m−1) (W m−1) (W m−1) (W m−1)

10 2200 1413 866 1612 1341
25 2200 1938 645 1740 1641
50 2200 2481 223 1663 1916
75 2200 2546 122 1564 2077
10 2400 1148 780 1108 1087
25 2400 1470 517 1278 1304
50 2400 1981 170 1349 1629
75 2400 2302 17 1189 1831

4.3.2 Effect of non-linear density profile

We look now at the “B” runs where the density profile has been modified to include
a pycnocline. Figures 4.17 through 4.21 show the same magnitude of energy flux
averaged over the last tidal period as before. The angles and intensifications are
also measured as before and are tabulated in Table 4.7 and 4.8. The meridional
sections are shown in Figure 4.22.

Table 4.7: Angle of focus/shadow beams for the “B” series of runs (in degrees)
Uθ Focus 1 Shadow 1 Focus 2 Focus 3

(cm s−1) (degrees) (degrees) (degrees) (degrees)
10 10.2 6.8 -7.4 -18.0
25 10.2 6.8 -7.4 -17.5
50 10.7 6.8 -6.8 -17.6
75 10.2 6.8 -6.2 -17.6

The energy flux figures reveal similar patterns as were observed in the linear
density case. The beams intensify with increasing azimuthal velocity. We also
notice that with the larger velocities the primary focusing beam again appears to
be a superposition of two or more beams.
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Figure 4.16: Magnitude of energy flux at 2200 km (top) and 2400 km (bottom)
from the “A” series of runs. The solid vertical line indicates the centre of the eddy
and the dashed vertical lines are drawn 2LE away, roughly indicating the eddy size.
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Figure 4.17: Baroclinic energy flux magnitude for the B1 run. This is the reference
run with the linear density profile as no eddies are present. Units are W m−1.

Figure 4.18: Baroclinic energy flux magnitude for the B2 run. LE is 50 km and Uθ

is 10 cm s−1. Units are W m−1.

72



Figure 4.19: Baroclinic energy flux magnitude for the B3 run. LE is 50 km and Uθ

is 25 cm s−1. Units are W m−1.

Figure 4.20: Baroclinic energy flux magnitude for the B4 run. LE is 50 km and Uθ

is 50 cm s−1. Units are W m−1.
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Figure 4.21: Baroclinic energy flux magnitude for the B5 run. LE is 50 km and Uθ

is 75 cm s−1. Units are W m−1.

Table 4.8: Intensification of energy flux in the focus/shadow beams for the “B”
series of runs. The values here are the peaks/troughs of the curves in Figure 4.22.
The reference values from the no eddy case are 1097 and 1149 W m−1 at 2200 and
2400 km, respectively.

Uθ Distance Focus 1 Shadow 1 Focus 2 Focus 3
(cm s−1) (km) (W m−1) (W m−1) (W m−1) (W m−1)

10 2200 1343 902 1361 1200
25 2200 1615 556 1600 1298
50 2200 1927 150 1757 1507
75 2200 1936 13 1627 1729
10 2400 1286 899 1268 1163
25 2400 1570 603 1450 1280
50 2400 1959 219 1535 1506
75 2400 2134 40 1383 1720
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Figure 4.22: Magnitude of energy flux at 2200 km (top) and 2400 km (bottom) for
the “B” series of runs. The solid vertical line indicates the centre of the eddy and
the dashed vertical lines are drawn 2LE away, roughly indicating the eddy size.
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However, one of the effects of changing the density profile to contain a pycnocline
is the beam angles have become almost invariant under varying azimuthal velocity.
The maximum variation in the angles reported is 2.1 degrees, whereas in the linear
case the angles varied almost 10 degrees. Looking at the intensification values we
see that the shadow region drops almost to zero, similar to the linear case. However,
the focusing regions do not double in intensity as they do in the linear case. This
suggests that switching to the nonlinear density profile results in a smaller effect
on the internal wave field.

Recall the cross section of the eddy velocity in Figures 4.9 and 4.10. In both
cases the maximum velocity is at the surface and is zero at the bottom. The
linear case has velocity that varies smoothly (cosine function) with depth and a
substantial velocity is present halfway to the bottom and further. However, for
the non-linear case, the interior the velocity is concentrated above the pycnocline
(between 0 and 500 m depth). The relative quiescence of the eddy deeper than 500
m in the non-linear case may be responsible for reduced effect on the internal wave
field when compared with the linear density profile.

4.3.3 Effect of eddy length scale

Comparing the “C” runs to the “A” runs with the same velocity shows a significant
difference. The primary dissimilarity observed is that the eddies with the larger
length scale had a much more dramatic effect on creating focusing and shadow
regions; the smaller length scale had a much weaker effect. The eddy is smaller so
a weaker effect results from the reduced area of internal waves that are subject to
interaction. We again observe the emergence of a superposition of beams in the
vicinity of the “primary” focusing beam.

4.3.4 Effect of barotropic tide

Comparing the “D” runs to the “A” runs shows that the effect of increasing the
barotropic tide from 5 to 10 cm s−1 results in larger energy fluxes. This is attributed
to the generation of stronger internal waves at the ridge. However, the interaction
cases with the 10 and 25 cm s−1 eddies resulted in qualitatively the same result as
the 5 cm s−1 barotropic tide in terms of beam angles and relative changes in energy
flux intensity.

4.3.5 Effect of eddy direction

So far the analysis has been restricted to the anticyclonic eddies placed to the east
of the ridge. A similar but cyclonic eddy has been placed to the west of the ridge
for the purpose of comparing the effect of eddy spin direction. Qualitatively the
effect of changing the effect of the eddy’s direction of spin is only to change the
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Figure 4.23: Baroclinic energy flux magnitude for the “C” runs. LE is 25 km, Uθ

is 25 cm s−1 (top) and 50 cm s−1 (bottom). Units are W m−1.
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orientation of the formed beams. That is, if both eddies were anticyclonic the
pattern of the beams would be symmetrical about y = x instead of about y = 0.
By visual inspection we see that the intensity of the beams compares well although
small differences are visible. The asymmetry between cyclonic and anticyclonic
eddies may explain the small differences in the the eddy flux magnitude features.

4.3.6 Vertical decomposition

A vertical decomposition into modes is applied to the velocity and density fields
after 25 tidal periods have elapsed. Treating run A1 as the reference and looking
at the modal breakdown of energy from the other “A” runs showed no significant
energy transfer between modes. Variations on each mode were less than 1 percent
compared to the reference case. However, there was some energy transferred from
the zonal to the meridional velocity field, although the horizontal sum matches the
reference case. The zonal to meridional exchange is explained by the fact that the
direction of propagation has been modified somewhat in the wake of an eddy.

The results of the vertical decomposition provides un(x, y) which, when plotted,
gives some insight into the mechanism causing the focusing and shadow beams. The
decomposition results from run A3 are used to plot un(x, y) for the first 3 modes
and are presented in Figures 4.24 through 4.26. The units of the colour scale are m
s−1, however, the large values are difficult to interpret in terms of the original flow
field velocity. The orthogonality condition reduces the magnitude of the vertical
mode structure functions φn(z) and the values of un are misleadingly large. This is
not important in that we are seeking interference patterns and are not immediately
concerned with the exactly values of un.

From the figures showing un(x, y), we notice that directly in the wake of the
eddies there is a substantial alteration of the otherwise y-independent pattern.
Common to all three figures, in the vicinity of the “primary focusing beam”, we
see a constructive interference pattern. To the south of this is a destructive pat-
tern. Moving even further south results in a band of alternating constructive and
destructive interference patterns.

However, the intensity of the interference is not consistent between the three
modes. The mode 1 waves are the least distorted by the eddy. Mode two shows
a pattern most like the energy flux diagrams shown earlier in this section, as does
mode 3. The interference pattern of mode 1 suggests a small contribution to the
forming of the beams. Mode 2 is twice the amplitude of mode 3 so we expect that
the contribution from mode 2 is most important in forming the beams.

The strength of the interference can be related to the group speed and wave-
length of the waves. Mode 1 has the fastest group speed and the largest wavelength
and spends the least time in the eddy. Thus its phase adjustment is small. Mode
2 has half the group speed and wavelength. From the interference pattern we see
that its phase is adjusted substantially, causing strong interference contributing to
the focusing/shadow regions. Mode 3 is similar to mode 2.
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Figure 4.24: Zonal baroclinic velocity from run A3 projected onto mode 1 after 25
tidal periods. Units are m s−1.

Figure 4.25: Zonal baroclinic velocity from run A3 projected onto mode 2 after 25
tidal periods. Units are m s−1.
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Figure 4.26: Zonal baroclinic velocity from run A3 projected onto mode 3 after 25
tidal periods. Units are m s−1.

The run A1 is extended beyond 25 tidal periods to 100 tidal periods. The
un(x, y) is shown for modes 2 and 3 after 75 tidal periods in Figures 4.27 and 4.28
(mode 1 matches with Figure 4.24). The energy flux magnitude is shown after 75
tidal periods in Figure 4.29. These figures support the notion that interference
patterns of the mode 2 waves dominates the formation of shadow/focusing regions
with contributions from mode 1 and 3. Higher modes may also make a contribution
to the focusing but are dwarfed in magnitude by the first three modes.
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Figure 4.27: Zonal baroclinic velocity from run A3 projected onto mode 2 after 75
tidal periods. Units are m s−1.

Figure 4.28: Zonal baroclinic velocity from run A3 projected onto mode 3 after 75
tidal periods. Units are m s−1.
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Figure 4.29: Baroclinic energy flux magnitude after 75 tidal periods for the A3 run.
LE is 50 km and Uθ is 25 cm s−1. Units are W m−1.
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Chapter 5

Conclusion

The results from this thesis are shown, first for the internal wave configuration,
then for the eddy configuration and finally for the interaction experiments.

5.1 Summary

Internal Gravity Waves

Internal waves were generated by flow over a Gaussian ridge and a comparison of the
horizontal baroclinic and vertical velocities match well with analogue simulations
performed by Dr. Lamb’s IGW model. Differences are observed in energy flux
magnitude; the MITgcm overestimates IGW by approximately 10 percent. The
group velocity of internal waves produced by the MITgcm exceed the expectation
from the analytical formula provided in the background section. This may partly
explain the discrepancy in energy flux magnitude.

Eddies

Eddies are initialised and geostrophically adjusted. The excess sea-surface height
that the model is initialised with is partly converted to kinetic energy because
the adjusted eddies have larger magnitudes than they had at initialisation. This
is consistent with geostrophic flow theory; excess potential energy is converted to
kinetic as a system undergoes geostrophic adjustment. Gravity waves are also
emitted as the eddy adjusts.

Eddy-wave interaction

The results from this thesis show that the effect of eddies on the internal wave field is
primarily to cause beams of constructive and destructive interference in their wake.
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No significant exchange of energy between modes was measured when comparing the
energy levels of the internal wave field with and without an eddy. Some energy was
transferred from the zonal component to the meridional component of horizontal
velocity, however the sum remained the same at least to two decimal places.

The redirection of internal waves is of interest. The focusing and shadow zones
that are formed beyond the eddy can fluctuate substantially in terms of energy flux
magnitude. The energy flux in the shadow zones can be reduced to almost zero. In
the focusing regions the energy flux magnitude can be doubled.

Decomposition of the horizontal flow field showed interference patterns that
depended on the wave mode. Mode 1 was least affected by the eddy, and modes
2 and 3 were affected substantially. The beam patterns of interference coincides
with the locations of the beams observed in the vertically integrated energy flux
magnitude plots.

The regions of where intensification has happened may lead to increased inter-
action between internal waves. This may accelerate the cascade of energy to small
scales. A more detailed is needed to determine the magnitude of this effect, if it is
at all present.

5.2 Future work

Future work on the effects of mesoscale eddies on the internal wave field should
consider the following issues:

• Use higher resolution to resolve higher mode waves,

• Longer simulations to allow higher mode waves to interact with the eddies,

• More than one eddy. For example, placing a second eddy in a focusing region
may yield interesting interactions,

• Further optimise model parameters: tune or replace the Shapiro filter for
dealing with grid scale noise, non-hydrostatic formulation, etc.,

• Resolve the reason for the above expected internal wave group velocities in
the MITgcm,

• More model runs to further explore the parameter space,

• Use sub-mesoscale eddies as their length scale is more favourable for interac-
tion.

84



APPENDICES

85



Appendix A

MATLAB M-files

A.1 Internal wave eigenvalue problem

This M-file implements the procedure described in Section 2.2.12 for finding the
vertical structure of internal gravity waves of fixed frequency.

1 function [PHI,LAMBDA,DPHI] = mdeigiw(modes,NZ,opts)
2 % Solve the eigenvalue problem for internal waves
3 % input: modes − number of modes to extract
4 % NZ − number of Chebyshev points to use
5 % opts − options struct for passing parameters
6 % (which stratification, f, omega, etc)
7

8 H=opts.H; f=opts.f; wm2=opts.wm2; g=opts.g; RHO0=opts.RHO0;
9

10 % using Chebyshev from dmsuite
11 [z, Dz zz] = chebdif(NZ, 2);
12 z=−0.5*(z'+1)*H;
13 Dz = Dz zz(:,:,1);
14 Dzz = Dz zz(:,:,2);
15

16 % Get Nˆ2(z) profile
17 N2=(−g/RHO0)*drhobar(z,opts);
18

19 % Construct A & B matrices for generalised eigenvalue problem
20 A = Dzz;
21 %B = diag((N2 − wm2*wm2) / (wm2*wm2−f*f)); % nonhydrostatic
22 B = diag((N2) / (wm2*wm2−f*f)); % hydrostatic
23

24 % trim ends to enforce zero Dirichlet conditions
25 A=A(2:end−1,2:end−1);
26 B=B(2:end−1,2:end−1);
27

28 % now solve the eigenvalue problem
29 [V,EV]=eig(A,−B);
30 [evs ii]=sort((diag(EV)),'ascend');
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31 efs = V(:,ii);
32

33 % extract first 'modes' modes
34 PHIcut = efs(:,1:modes);
35 LAMBDA = evs(1:modes);
36

37 % append zero endpoints
38 PHI=zeros(NZ,modes);
39 PHI(2:end−1,:)=PHIcut;
40

41 % compute DPHI as well
42 DPHI=Dz*PHI;
43

44 end

A.2 Quasigeostrophic eigenvalue problem

This M-file implements the procedure described in Section 2.3.1 for finding the
mode 1 vertical structure of an eddy described by quasigeostrophic theory.

1 function [PHI,LAMBDA] = mdeig(mode,NZ,opts)
2 % Solve the eigenvalue problem for quasigeostrophy
3 % input: mode − which mode to extract
4 % NZ − number of Chebyshev points to use
5 % opts − options struct for passing parameters
6 % (which stratification, f, omega, etc)
7

8 H=opts.H; f=opts.f; g=opts.g; RHO0=opts.RHO0;
9

10 % using Chebyshev from dmsuite
11 [z, Dz zz] = chebdif(NZ, 2);
12 z=−0.5*(z'+1)*H;
13 Dz = Dz zz(:,:,1);
14

15 % Get Nˆ2(z) profile
16 N2=(−g/RHO0)*drhobar(z,opts);
17

18 % Construct E matrix
19 EFULL = Dz*(diag(f*f./N2))*Dz;
20 E = EFULL(2:end−1, 2:end−1);
21 E0 = EFULL(2:end−1, 1 );
22 EN = EFULL(2:end−1, end );
23

24 % prepare eigenvalue problem with
25 % ends modified to enforce d/dz phi n = 0
26 B0=[Dz(1,1) Dz(1,end); Dz(end,1) Dz(end,end)];
27 B1=[Dz(1,2:end−1) ; Dz(end,2:end−1)];
28

29 % Construct A matrix for MATLAB's eig function
30 A = E − [E0 EN]*inv(B0)*B1;
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31

32 % now solve the eigenvalue problem
33 [V,EV]=eig(−A);
34 [evs ii]=sort((diag(EV)),'ascend');
35 efs = V(:,ii);
36

37 for n=1:NZ−2
38 % extract the current eigenvalue/eigenfunction
39 cev = evs(n); cef = efs(:,n);
40

41 % determine "mode" of this eigenfunction by zero crossings
42 nzc=nnz(sign(cef(2:end))−sign(cef(1:end−1)));
43

44 % export desired mode
45 if nzc == mode
46 % compute the endpoints and append them
47 p0pN = −inv(B0)*B1*cef;
48 phi = [p0pN(1); cef; p0pN(end)];
49

50 % let the first point be positive
51 PHI = phi ./sign(phi(end));
52

53 % return the eigenvalue also
54 LAMBDA=cev;
55

56 % quit after we've found the desired mode
57 return
58 end
59 end
60 end

A.3 Grid spacing

This M-file produces a grid spacing by following the method described in Section
3.3.

1 function [x, dx] = getres(nx, L, dxmin, frac, smth, dispflag)
2 % Determines the variable grid spacing given a few parameters
3 % L = length of dimension
4 % dxmin = desired dx at the centre of the domain
5 % frac = fraction of the domain requested at low resolution (0.5)
6 % smth = how smooth/sharply to transition between resolutions (20)
7 % dispflag = flag to turn on plotting the prodecure as it goes
8

9 if nargin == 2
10 fprintf('Using fixed resolution: L=%.0f km, n=%d\n',L/1e3,nx);
11 dx=(L/nx)*ones(1,nx);
12 else
13 fprintf('Using variable resolution: L=%.0f km, n=%d, ', ...
14 L/1e3,nx);
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15 fprintf('dxmin=%.1f km, frac=%.3f, smth=%.1f\n', ...
16 dxmin/1e3,frac,smth);
17 A = smth; B = frac; C = dxmin;
18 D = (L/nx −C) / (1−B); % rough estimate for D
19

20 x=linspace(0,L,nx);
21 dx=C + D*0.5*(2 + tanh(A*(x/L − 1/2 − B/2)) − ...
22 tanh(A*(x/L − 1/2 + B/2)));
23

24 flag=1; scal=1e20; npass=0;
25 while(flag)
26 npass=npass+1;
27 if abs(abs(scal)−1) < 1e−5
28 if abs(sum(dx) −L) < 1e−8
29 flag=0;
30 end
31 end
32 if npass>1e4
33 disp('problem: npass>1e4');
34 disp('did not converge, consider using more points');
35 return;
36 end
37 scal = (L) / sum(dx);
38 scal = (scal −1)/10 + 1; % don't scale too much per iter
39 scal = min(scal,1.01); scal=max(0.99,scal); % 1% change max
40 D=D*scal;
41

42 dx=C + D*0.5*(2 + tanh(A*(x/L − 1/2 − B/2)) − ...
43 tanh(A*(x/L − 1/2 + B/2)));
44 x = cumsum([dx(1)/2 0.5*(dx(1:end−1)+dx(2:end))]);
45

46 if (D < 0.1*dxmin)
47 disp('problem: D<dxmin: need fewer points');
48 return;
49 end
50 if (D > L)
51 disp('problem: D>L: need more points');
52 return;
53 end
54

55 if(dispflag)
56 clf;
57 subplot(2,1,1); plot(x,dx,'b',x,dx*L/sum(dx),'k')
58 subplot(2,1,2); semilogy(x,abs((dx − dx*L/sum(dx))))
59 drawnow
60 end
61 end
62 fprintf('scal=%.5f, D=%.3f, npass=%d\n',scal,D,npass);
63 end
64 fprintf('−−> min dx: %.3f km, max dx: %.3f km', ...
65 min(dx)/1e3,max(dx)/1e3);
66 fprintf('−−> sum(dx) = %.10f\n',sum(dx));
67 x = cumsum([dx(1)/2 0.5*(dx(1:end−1)+dx(2:end))]);
68 end
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Appendix B

MITgcm input files

This appendix shows the namelist input files used with the MITgcm for the internal
wave-eddy simulations. The input files for the other configurations are similar and
are not reproduced here.

Main MITgcm parameters file data:

# ====================

# | Model parameters |

# ====================

#

# Continuous equation parameters

&PARM01

tRefFile=’MD.tRef’,

sRefFile=’MD.sRef’,

viscAz=0.E-4,

viscAh=0.E2,

viscAhMax=0.E2,

no_slip_sides=.FALSE.,

no_slip_bottom=.FALSE.,

viscA4=0.E9,

viscA4Max=0.E9,

diffKhT=0.E3,

diffKzT=0.E-5,

diffKhS=0.E3,

diffKzS=0.E-5,

f0=0.5e-4,

beta=0.E-11,

useConstantF=.TRUE.,

tAlpha=1.7E-4,

sBeta =7.6E-4,

gravity=9.81,

gBaro=9.81,
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rhoConstFresh=1028.0,

rhoConst=1028.0,

rhoNil=1028.0,

rigidLid=.FALSE.,

implicitFreeSurface=.TRUE.,

nonlinFreeSurf=0,

exactConserv=.TRUE.,

vectorInvariantMomentum=.TRUE.,

tempStepping=.FALSE.,

momViscosity=.FALSE.,

momForcing=.FALSE.,

eosType=’LINEAR’,

hFacMin=0.25,

nonHydrostatic=.FALSE.,

readBinaryPrec=64,

saltAdvScheme=4,

tempAdvScheme=4,

#- not safe to use globalFiles in multi-processors runs

#globalFiles=.TRUE.,

&

# Elliptic solver parameters

&PARM02

cg2dMaxIters=1000,

cg2dTargetResidual=1.E-13,

cg3dMaxIters=400,

cg3dTargetResidual=1.E-13,

&

# Time stepping parameters

&PARM03

niter0=0,

nTimeSteps=10801,

deltaT=103.5,

abEps=0.1,

pChkptFreq=0.0,

chkptFreq=0.0,

dumpFreq=22356.0,

monitorFreq=2484.0,

writePickupAtEnd=.TRUE.,

&

# Gridding parameters

&PARM04

usingCartesianGrid=.TRUE.,

91



usingSphericalPolarGrid=.FALSE.,

delXfile=’MD.dx’,

delYfile=’MD.dy’,

delRfile=’MD.dr’,

&

# Input datasets

&PARM05

bathyFile=’MD.topo’,

hydrogSaltFile=’MD.S.init’,

hydrogThetaFile=’MD.T.init’,

uVelInitFile=’MD.U.init’,

vVelInitFile=’MD.V.init’,

pSurfInitFile=’MD.eta.init’,

&

Open boundaries parameter file data.obcs:

# Open-boundaries

&OBCS_PARM01

OB_AMPL=5.0d-2,

OB_OMEGA=1.405257046694307d-04,

OB_RAMP=.FALSE.,

OB_Ieast=540*-1,

OB_Iwest=540*1,

useOBCSsponge=.FALSE.,

&

Shapiro filter parameter file data.shap:

# Shapiro Filter parameters

&SHAP_PARM01

shap_filt_uvStar=.FALSE.,

shap_filt_TrStagg=.FALSE.,

Shap_funct=2,

nShapT=2,

nShapUV=2,

nShapTrPhys=0,

nShapUVPhys=0,

Shap_Trtau=22356.,

Shap_uvtau=22356.,

&

MYPACKAGE parameter file data.mypackage:
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&MYPACKAGE_PARM01

myPa_N0 = 1e-3,

myPa_T0 = 10.,

myPa_S0 = 35.,

myPa_RHOBAR = 1,

myPa_U0File = ’MD.U.init’,

myPa_V0File = ’MD.V.init’,

&
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Appendix C

MITgcm FORTRAN
modifications

C.1 OBCS boundary conditions

This file, obcs_calc.F, implements the boundary conditions to force a barotropic
tide at the west boundary and a radiation condition at the east boundary. Some
irrelevant code is omitted for brevity.

1 #include "OBCS OPTIONS.h"
2

3 SUBROUTINE OBCS CALC( bi, bj, futureTime, futureIter,
4 & uVel, vVel, wVel, theta, salt, etaN,
5 & myThid )
6 C |==========================================================|
7 C | SUBROUTINE OBCS CALC |
8 C | o Calculate future boundary data at open boundaries |
9 C | at time = futureTime |

10 C |==========================================================|
11 C | |
12 C |==========================================================|
13 IMPLICIT NONE
14

15 C === Global variables ===
16 #include "SIZE.h"
17 #include "EEPARAMS.h"
18 #include "PARAMS.h"
19 #include "GRID.h"
20 #include "OBCS.h"
21 #ifdef ALLOW PTRACERS
22 #include "PTRACERS SIZE.h"
23 #include "PTRACERS PARAMS.h"
24 #include "PTRACERS FIELDS.h"
25 #include "OBCS PTRACERS.h"
26 #endif /* ALLOW PTRACERS */
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27

28 C == Routine arguments ==
29 INTEGER bi, bj
30 INTEGER futureIter
31 RL futureTime
32 RL uVel (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
33 RL vVel (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
34 RL wVel (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
35 RL theta(1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
36 RL salt (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
37 RL etaN (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
38 INTEGER myThid
39

40 #ifdef ALLOW OBCS
41

42 C == Local variables ==
43 C I,J,K − loop indices
44 C I obc, J obc − local index of open boundary
45 C msgBuf − Informational/error meesage buffer
46 C zomega, zampl − frequency and magnitude of tide
47 C zomega2, zc, zH, zeta0, zf, zeta − temp variables
48 INTEGER I, J , K, I obc, J obc
49 CHARACTER*(MAX LEN MBUF) msgBuf
50 RL zomega, zampl
51 RL zomega2, zc, zH, zf, zeta0, zeta, zramp
52

53 C ! constants: set them in data.obcs
54 zomega = OB OMEGA
55 zampl = OB AMPL
56

57 zomega2 = zomega*zomega
58 zH = abs(rF(Nr+1))
59 IF (OB RAMP) THEN
60 IF( futureTime .lt. 0.5*PI/zomega ) THEN
61 zramp = 0.5*(1 − cos(2*zomega*futureTime))
62 ELSE
63 zramp = 1. d 0
64 ENDIF
65 ELSE
66 zramp = 1. d 0
67 ENDIF
68

69 #ifdef ALLOW OBCS BALANCE
70 RL Tr T, Ar T, Tr, Ar
71 #endif /* ALLOW OBCS BALANCE */
72 #ifdef ALLOW PTRACERS
73 INTEGER iTracer
74 #endif /* ALLOW PTRACERS */
75

76

77 #ifdef ALLOW DEBUG
78 IF ( debugLevel .GE. debLevB )
79 & CALL DEBUG ENTER('OBCS CALC',myThid)
80 #endif
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81

82 #ifdef ALLOW OBCS EAST
83 C Eastern OB
84 #ifdef ALLOW DEBUG
85 IF ( debugLevel .GE. debLevB )
86 & CALL DEBUG MSG('OBCS CALC: East',myThid)
87 #endif
88 IF (useOrlanskiEast) THEN
89 #ifdef ALLOW ORLANSKI
90 CALL ORLANSKI EAST(
91 & bi, bj, futureTime,
92 & uVel, vVel, wVel, theta, salt,
93 & myThid )
94 #endif
95 ELSE
96 DO K=1,Nr
97 DO J=1−Oly,sNy+Oly
98 I obc=OB Ie(J,bi,bj)
99 IF (I obc.ne.0) THEN

100 zf = fCori(I obc,J,bi,bj)
101 zc = sqrt(gravity*zH*zomega2/(zomega2−zf*zf))
102 OBEu(J,K,bi,bj)=(zc/zH)*etaN(I obc−1,J,bi,bj)
103 OBEv(J,K,bi,bj)=0.
104 OBEt(J,K,bi,bj)=tRef(K)
105 OBEs(J,K,bi,bj)=sRef(K)
106 #ifdef ALLOW NONHYDROSTATIC
107 OBEw(J,K,bi,bj)=0.
108 #endif
109 #ifdef NONLIN FRSURF
110 OBEeta(J,bi,bj)=0.
111 #endif
112 ENDIF
113 ENDDO
114 ENDDO
115 ENDIF
116 #endif /* ALLOW OBCS EAST */
117

118 C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119

120 #ifdef ALLOW OBCS WEST
121 C Western OB
122 #ifdef ALLOW DEBUG
123 IF ( debugLevel .GE. debLevB )
124 & CALL DEBUG MSG('OBCS CALC: West',myThid)
125 #endif
126 IF (useOrlanskiWest) THEN
127 #ifdef ALLOW ORLANSKI
128 CALL ORLANSKI WEST(
129 & bi, bj, futureTime,
130 & uVel, vVel, wVel, theta, salt,
131 & myThid )
132 #endif
133 ELSE
134 DO K=1,Nr
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135 DO J=1−Oly,sNy+Oly
136 I obc=OB Iw(J,bi,bj)
137 IF (I obc.ne.0) THEN
138 zf = fCori(I obc,J,bi,bj)
139 zc = sqrt(gravity*zH*zomega2/(zomega2−zf*zf))
140 zeta0 = zramp * zampl * (zH/zc)
141 zeta = etaN(I obc,J,bi,bj)
142 OBWu(J,K,bi,bj)=−(zc/zH)*
143 & (zeta − zeta0*sin(zomega*futureTime))
144 OBWv(J,K,bi,bj)=0.
145 OBWt(J,K,bi,bj)=tRef(K)
146 OBWs(J,K,bi,bj)=sRef(K)
147 #ifdef ALLOW NONHYDROSTATIC
148 OBWw(J,K,bi,bj)=0.
149 #endif
150 #ifdef NONLIN FRSURF
151 OBWeta(J,bi,bj)=0.
152 #endif
153 ENDIF
154 ENDDO
155 ENDDO
156 ENDIF
157 #endif /* ALLOW OBCS WEST */
158

159 C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160

161 #ifdef ALLOW OBCS NORTH
162 C Northern OB
163 #ifdef ALLOW DEBUG
164 IF ( debugLevel .GE. debLevB )
165 & CALL DEBUG MSG('OBCS CALC: North',myThid)
166 #endif
167 IF (useOrlanskiNorth) THEN
168 #ifdef ALLOW ORLANSKI
169 CALL ORLANSKI NORTH(
170 & bi, bj, futureTime,
171 & uVel, vVel, wVel, theta, salt,
172 & myThid )
173 #endif
174 ELSE
175 DO K=1,Nr
176 DO I=1−Olx,sNx+Olx
177 J obc=OB Jn(I,bi,bj)
178 IF (J obc.ne.0) THEN
179 OBNv(I,K,bi,bj)=0.
180 OBNu(I,K,bi,bj)=0.
181 OBNt(I,K,bi,bj)=tRef(K)
182 OBNs(I,K,bi,bj)=sRef(K)
183 #ifdef ALLOW NONHYDROSTATIC
184 OBNw(I,K,bi,bj)=0.
185 #endif
186 #ifdef NONLIN FRSURF
187 OBNeta(I,bi,bj)=0.
188 #endif
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189 ENDIF
190 ENDDO
191 ENDDO
192 ENDIF
193 #endif /* ALLOW OBCS NORTH */
194

195 C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
196

197 #ifdef ALLOW OBCS SOUTH
198 C Southern OB
199 #ifdef ALLOW DEBUG
200 IF ( debugLevel .GE. debLevB )
201 & CALL DEBUG MSG('OBCS CALC: South',myThid)
202 #endif
203 IF (useOrlanskiSouth) THEN
204 #ifdef ALLOW ORLANSKI
205 CALL ORLANSKI SOUTH(
206 & bi, bj, futureTime,
207 & uVel, vVel, wVel, theta, salt,
208 & myThid )
209 #endif
210 ELSE
211 DO K=1,Nr
212 DO I=1−Olx,sNx+Olx
213 J obc=OB Js(I,bi,bj)
214 IF (J obc.ne.0) THEN
215 OBSu(I,K,bi,bj)=0.
216 OBSv(I,K,bi,bj)=0.
217 OBSt(I,K,bi,bj)=tRef(K)
218 OBSs(I,K,bi,bj)=sRef(K)
219 #ifdef ALLOW NONHYDROSTATIC
220 OBSw(I,K,bi,bj)=0.
221 #endif
222 #ifdef NONLIN FRSURF
223 OBSeta(I,bi,bj)=0.
224 #endif
225 ENDIF
226 ENDDO
227 ENDDO
228 ENDIF
229 #endif /* ALLOW OBCS SOUTH */
230

231 #ifdef ALLOW PTRACERS
232 *** UNUSED CODE NOT REPRODUCED FOR THIS APPENDIX ***
233 #endif /* ALLOW PTRACERS */
234

235 #ifdef ALLOW OBCS PRESCRIBE
236 *** UNUSED CODE NOT REPRODUCED FOR THIS APPENDIX ***
237 #endif /* ALLOW OBCS PRESCRIBE */
238

239 #ifdef ALLOW OBCS BALANCE
240 *** UNUSED CODE NOT REPRODUCED FOR THIS APPENDIX ***
241 #endif /* ALLOW OBCS BALANCE */
242
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243 #endif /* ALLOW OBCS */
244

245 #ifdef ALLOW DEBUG
246 IF ( debugLevel .GE. debLevB )
247 & CALL DEBUG LEAVE('OBCS CALC',myThid)
248 #endif
249 RETURN
250 END

C.2 MYPACKAGE density profiles

This file, mypackage_rhobar.F, implements the two density profiles described in
Section 3.1.

1 #include "MYPACKAGE OPTIONS.h"
2

3 RL FUNCTION MYPACKAGE RHOBAR(z)
4 C !DESCRIPTION:
5 C Function for rhobar, customised for eddy−internal wave

experiments.
6

7 C !USES:
8 IMPLICIT NONE
9 #include "SIZE.h"

10 #include "EEPARAMS.h"
11 #include "PARAMS.h"
12 #ifdef ALLOW MYPACKAGE
13 #include "MYPACKAGE.h"
14 #endif
15

16 C == Global variables ==
17 #include "GRID.h"
18 #include "EOS.h"
19

20 C !INPUT PARAMETERS:
21 C z :: depth ( m )
22 RL z
23

24 #ifdef ALLOW MYPACKAGE
25 C !LOCAL VARIABLES:
26 C ! rhobar1
27 RL zgammat, zgammas
28 C ! rhobar2
29 RL A, B, H, DRHO
30

31 IF ( myPa RHOBAR .EQ. 1 ) THEN
32 zgammas = (myPa N0*myPa N0)/(−sBeta*gravity);
33 zgammat = 0;
34 MYPACKAGE RHOBAR = rhoConst *
35 & (1 − tAlpha*(zgammat*z) + sBeta*(zgammas*z))
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36

37 ELSEIF ( myPa RHOBAR .EQ. 2 ) THEN
38 A=50
39 B=400
40 DRHO=1
41 H=−rF(Nr+1)
42

43 MYPACKAGE RHOBAR = rhoConst*(1 −myPa N0*myPa N0*z/gravity
44 & + (DRHO/rhoConst)*0.5*(1 − tanh(A*(z+B)/H)))
45 ENDIF
46 #endif /* ALLOW MYPACKAGE */
47 RETURN
48 END

C.3 MYPACKAGE energy flux computations

This file, mypackage_diagnostics_state.F, implements the online computation
of depth-integrated energy flux. Kinetic and potential energy is also computed but
it is not used.

1 #include "MYPACKAGE OPTIONS.h"
2

3 CBOP 0
4 C !ROUTINE: MYPACKAGE DIAGNOSTICS STATE
5

6 C !INTERFACE:
7 SUBROUTINE MYPACKAGE DIAGNOSTICS STATE(
8 I myTime, myIter, myThid )
9

10 C !DESCRIPTION:
11 C Compute kinetic, potential energies
12 C Compute energy flux
13

14 C !USES:
15 IMPLICIT NONE
16 #include "SIZE.h"
17 #include "EEPARAMS.h"
18 #include "PARAMS.h"
19 #ifdef ALLOW MYPACKAGE
20 #include "MYPACKAGE.h"
21 #endif
22

23 C == Global variables ==
24 #include "GRID.h"
25 #include "DYNVARS.h"
26 #include "RESTART.h"
27 #include "SURFACE.h"
28 #include "EOS.h"
29

30 C !INPUT PARAMETERS:
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31 C myTime :: Current time of simulation ( s )
32 C myIter :: Current iteration number in simulation
33 C myThid :: my Thread Id number
34 RL myTime
35 INTEGER myIter, myThid
36 CEOP
37

38 #ifdef ALLOW MYPACKAGE
39 C !LOCAL VARIABLES:
40 INTEGER I,J,K,bi,bj
41 RL MYPACKAGE RHOBAR
42 EXTERNAL MYPACKAGE RHOBAR
43

44 #ifdef MYPACKAGE ENERGY
45 RL keuprime (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
46 RL keubar (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
47 RL petmp (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
48

49 RL rhotmp (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
50

51 RL ubc (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
52 RL wu (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
53 RL swu (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
54 RL ubt (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
55

56 RL vbc (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
57 RL wv (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
58 RL swv (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
59 RL vbt (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
60

61 RL pint (1−OLx:sNx+OLx,1−OLy:sNy+OLy,Nr,nSx,nSy)
62

63 RL efu2d (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
64 RL efv2d (1−OLx:sNx+OLx,1−OLy:sNy+OLy,nSx,nSy)
65

66 RL za, etaupt, zubcc, etavpt, zvbcc
67 RL zrho, zrhobarzme, zdzpe, zzme, zp
68 RL zgammas, zgammat
69

70 #endif /* MYPACKAGE ENERGY */
71

72 #ifdef ALLOW DIAGNOSTICS
73 IF ( useDiagnostics ) THEN
74

75 #ifdef MYPACKAGE ENERGY
76

77 C MAIN LOOP OVER BI,BJ
78 DO bj=myByLo(myThid),myByHi(myThid)
79 DO bi=myBxLo(myThid),myBxHi(myThid)
80

81

82 C Compute rho and potential energy; rho stored as it's used
later

83 DO K=1,Nr
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84 DO J=1−OLy,sNy+OLy
85 DO I=1−OLx,sNx+OLx
86 rhotmp(I,J,K,bi,bj) = rhoConst *
87 I (1 − tAlpha*(theta(I,J,K,bi,bj)−myPa T0)
88 I + sBeta*( salt(I,J,K,bi,bj)−myPa S0))
89 petmp(I,J,K,bi,bj) = gravity*rhotmp(I,J,K,bi,bj)*rC(K)
90 ENDDO
91 ENDDO
92 ENDDO
93

94 C Find kinetic energies: 0.5*rho*uˆ2
95 DO K=1,Nr
96 DO J=1−OLy,sNy+OLy−1
97 DO I=1−OLx,sNx+OLx−1
98 C Borrowing KEscheme=3 from mom calc ke.F
99 keuprime(I,J,K,bi,bj) = rhotmp(I,J,K,bi,bj)*0.25*(

100 & (
101 & uVel(I ,J,K,bi,bj)
102 & *(uVel(I ,J,K,bi,bj)−myPa U0(I ,J,K,bi,bj))
103 & * hFacW(I ,J, K,bi,bj)*rAw(I ,J, bi,bj)
104 & +uVel(I+1,J,K,bi,bj)
105 & *(uVel(I+1,J,K,bi,bj)−myPa U0(I+1,J,K,bi,bj))
106 & * hFacW(I+1,J,K,bi,bj)*rAw(I+1,J,bi,bj)
107 & )
108 & + (
109 & vVel(I,J ,K,bi,bj)
110 & *(vVel(I,J ,K,bi,bj)−myPa V0(I,J ,K,bi,bj))
111 & * hFacS(I, J, K,bi,bj)*rAs(I ,J, bi,bj)
112 & +vVel(I,J+1,K,bi,bj)
113 & *(vVel(I,J+1,K,bi,bj)−myPa V0(I,J+1,K,bi,bj))
114 & * hFacS(I,J+1,K,bi,bj)*rAs(I,J+1,bi,bj)
115 & ) )* recip hFacC(I,J,K,bi,bj)
116 & * recip rA(I,J,bi,bj)
117

118

119 keubar(I,J,K,bi,bj) = rhotmp(I,J,K,bi,bj)*0.25*(
120 & (
121 & uVel(I ,J,K,bi,bj)*myPa U0(I ,J,K,bi,bj)
122 & * hFacW(i ,j, k,bi,bj)*rAw(i ,j, bi,bj)
123 & +uVel(I+1,J,K,bi,bj)*myPa U0(I+1,J,K,bi,bj)
124 & * hFacW(i+1,j,k,bi,bj)*rAw(i+1,j,bi,bj)
125 & )
126 & + (
127 & vVel(I,J ,K,bi,bj)*myPa V0(I,J ,K,bi,bj)
128 & * hFacS(I,J,K,bi,bj)*rAs(I,J, bi,bj)
129 & +vVel(I,J+1,K,bi,bj)*myPa V0(I,J+1,K,bi,bj)
130 & * hFacS(I,J+1,K,bi,bj)*rAs(I,J+1,bi,bj)
131 & ) )* recip hFacC(I,J,K,bi,bj)
132 & * recip rA(I,J,bi,bj)
133

134 ENDDO
135 ENDDO
136 ENDDO
137
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138

139 C Compute weights for UBC
140 DO J=1−OLy,sNy+OLy
141 DO I=1−OLx,sNx+OLx−1
142 za = 0.5 * dxF(I,J,bi,bj) * recip dxC(I,J,bi,bj)
143 etaupt = (1.0−za)*etaN(I+1,J,bi,bj) + (za)*etaN(I,J,bi,bj)
144 wu(I,J,1,bi,bj) = ( drF(1) + etaupt )*HFacW(I,J,1,bi,bj)
145 swu(I,J,bi,bj) = wu(I,J,1,bi,bj)
146 ubt(I,J,bi,bj) = wu(I,J,1,bi,bj) * uVel(I,J,1,bi,bj)
147 ENDDO
148 ENDDO
149 DO K=2,Nr
150 DO J=1−OLy,sNy+OLy
151 DO I=1−OLx,sNx+OLx
152 wu(I,J,K,bi,bj) = drF(K) * HFacW(I,J,K,bi,bj)
153 swu(I,J,bi,bj) = swu(I,J,bi,bj) + wu(I,J,K,bi,bj)
154 ubt(I,J,bi,bj) = ubt(I,J,bi,bj)
155 I + wu(I,J,K,bi,bj) * uVel(I,J,K,bi,bj)
156 ENDDO
157 ENDDO
158 ENDDO
159 C Find baroclinic part of U
160 DO K=1,Nr
161 DO J=1−OLy,sNy+OLy
162 DO I=1−OLx,sNx+OLx
163 ubc(I,J,K,bi,bj) = uVel(I,J,K,bi,bj)
164 I − (ubt(I,J,bi,bj) / swu(I,J,bi,bj))
165 ubc(I,J,K,bi,bj) = ubc(I,J,K,bi,bj) * maskC(I,J,K,bi,bj)
166 ENDDO
167 ENDDO
168 ENDDO
169

170

171 C Compute weights for VBC
172 DO J=1−OLy,sNy+OLy−1
173 DO I=1−OLx,sNx+OLx
174 za = 0.5 * dyF(I,J,bi,bj) * recip dyC(I,J,bi,bj)
175 etavpt = (1.0−za)*etaN(I,J+1,bi,bj) + (za)*etaN(I,J,bi,bj)
176 wv(I,J,1,bi,bj) = ( drF(1) + etavpt )*HFacS(I,J,1,bi,bj)
177 swv(I,J,bi,bj) = wv(I,J,1,bi,bj)
178 vbt(I,J,bi,bj) = wv(I,J,1,bi,bj) * vVel(I,J,1,bi,bj)
179 ENDDO
180 ENDDO
181 DO K=2,Nr
182 DO J=1−OLy,sNy+OLy
183 DO I=1−OLx,sNx+OLx
184 wv(I,J,K,bi,bj) = drF(K) * HFacS(I,J,K,bi,bj)
185 swv(I,J,bi,bj) = swv(I,J,bi,bj) + wv(I,J,K,bi,bj)
186 vbt(I,J,bi,bj) = vbt(I,J,bi,bj)
187 I + wv(I,J,K,bi,bj) * vVel(I,J,K,bi,bj)
188 ENDDO
189 ENDDO
190 ENDDO
191 C Find baroclinic part of V
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192 DO K=1,Nr
193 DO J=1−OLy,sNy+OLy
194 DO I=1−OLx,sNx+OLx
195 vbc(I,J,K,bi,bj) = vVel(I,J,K,bi,bj)
196 I − (vbt(I,J,bi,bj) / swv(I,J,bi,bj))
197 vbc(I,J,K,bi,bj) = vbc(I,J,K,bi,bj) * maskC(I,J,K,bi,bj)
198 ENDDO
199 ENDDO
200 ENDDO
201

202 C Find pinternal
203 DO J=1−OLy,sNy+OLy
204 DO I=1−OLx,sNx+OLx
205 zzme = rC(1) − etaN(I,J,bi,bj)
206 zdzpe = drC(1) + etaN(I,J,bi,bj)
207 zrhobarzme = MYPACKAGE RHOBAR(zzme)
208 pint(I,J,1,bi,bj) = gravity
209 I *(rhotmp(I,J,1,bi,bj) − zrhobarzme)*

zdzpe
210 pint(I,J,1,bi,bj) = pint(I,J,1,bi,bj) * maskC(I,J,1,bi,bj)
211

212 ENDDO
213 ENDDO
214 DO K=2,Nr
215 DO J=1−OLy,sNy+OLy
216 DO I=1−OLx,sNx+OLx
217 zzme = rC(K) − etaN(I,J,bi,bj)
218 zdzpe = drC(K) * hFacC(I,J,K,bi,bj)
219 zrhobarzme = MYPACKAGE RHOBAR(zzme)
220 pint(I,J,K,bi,bj) = pint(I,J,K−1,bi,bj) + gravity
221 I *(rhotmp(I,J,K,bi,bj)−zrhobarzme)*zdzpe
222 pint(I,J,K,bi,bj) = pint(I,J,K,bi,bj) * maskC(I,J,K,bi,bj)
223

224 ENDDO
225 ENDDO
226 ENDDO
227

228

229 C Find energy flux in U direction
230 DO J=1−OLy,sNy+OLy
231 DO I=1−OLx,sNx+OLx−1
232 zubcc = 0.5* (ubc(I,J,1,bi,bj) + ubc(I+1,J,1,bi,bj))
233 zdzpe = drC(1) + etaN(I,J,bi,bj)
234 efu2d(I,J,bi,bj) = pint(I,J,1,bi,bj) * zubcc * zdzpe
235 ENDDO
236 ENDDO
237 DO K=2,Nr
238 DO J=1−OLy,sNy+OLy
239 DO I=1−OLx,sNx+OLx−1
240 zubcc = 0.5* (ubc(I,J,K,bi,bj) + ubc(I+1,J,K,bi,bj))
241 zdzpe = drC(K) * hFacC(I,J,K,bi,bj)
242 efu2d(I,J,bi,bj) = efu2d(I,J,bi,bj)
243 I + pint(I,J,K,bi,bj) * zubcc * zdzpe
244 ENDDO

104



245 ENDDO
246 ENDDO
247

248 C Find energy flux in V direction
249 DO J=1−OLy,sNy+OLy−1
250 DO I=1−OLx,sNx+OLx
251 zvbcc = 0.5* (vbc(I,J+1,1,bi,bj) + vbc(I,J,1,bi,bj))
252 zdzpe = drC(1) + etaN(I,J,bi,bj)
253 efv2d(I,J,bi,bj) = pint(I,J,1,bi,bj) * zvbcc * zdzpe
254 ENDDO
255 ENDDO
256 DO K=2,Nr
257 DO J=1−OLy,sNy+OLy−1
258 DO I=1−OLx,sNx+OLx
259 zvbcc = 0.5* (vbc(I,J+1,K,bi,bj) + vbc(I,J,K,bi,bj))
260 zdzpe = drC(K) * hFacC(I,J,K,bi,bj)
261 efv2d(I,J,bi,bj) = efv2d(I,J,bi,bj)
262 I + pint(I,J,K,bi,bj) * zvbcc * zdzpe
263 ENDDO
264 ENDDO
265 ENDDO
266

267 C END LOOP OVER BI,BJ
268 ENDDO
269 ENDDO
270

271

272 C ! write states
273 CALL DIAGNOSTICS FILL( petmp, 'POT E ',
274 & 0,Nr, 0, 1, 1, myThid )
275 CALL DIAGNOSTICS FILL( keuprime, 'KEUPRIME',
276 & 0,Nr, 0, 1, 1, myThid )
277 CALL DIAGNOSTICS FILL( keubar, 'KEUBAR ',
278 & 0,Nr, 0, 1, 1, myThid )
279 CALL DIAGNOSTICS FILL( ubc, 'UBC ',
280 & 0,Nr, 0, 1, 1, myThid )
281 CALL DIAGNOSTICS FILL( vbc, 'VBC ',
282 & 0,Nr, 0, 1, 1, myThid )
283 CALL DIAGNOSTICS FILL( pint, 'PINTERN ',
284 & 0,Nr, 0, 1, 1, myThid )
285 CALL DIAGNOSTICS FILL( efu2d, 'EFLX U2D',
286 & 0, 1, 0, 1, 1, myThid )
287 CALL DIAGNOSTICS FILL( efv2d, 'EFLX V2D',
288 & 0, 1, 0, 1, 1, myThid )
289

290 #endif /* MYPACKAGE ENERGY */
291

292 ENDIF
293 #endif /* ALLOW DIAGNOSTICS */
294

295 #endif /* ALLOW MYPACKAGE */
296

297 RETURN
298 END
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