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Abstract

This thesis has two related goals: the first involves the concept of self-similarity
of images. Image self-similarity is important because it forms the basis for many
imaging techniques such as non-local means denoising and fractal image coding.
Research so far has been focused largely on self-similarity in the pixel domain.
That is, examining how well different regions in an image mimic each other. Also,
most works so far concerning self-similarity have utilized only the mean squared
error (MSE).

In this thesis, self-similarity is examined in terms of the pixel and wavelet rep-
resentations of images. In each of these domains, two ways of measuring similarity
are considered: the MSE and a relatively new measurement of image fidelity called
the Structural Similarity (SSIM) Index. We show that the MSE and SSIM Index
give very different answers to the question of how self-similar images really are.

The second goal of this thesis involves non-local image processing. First, a
generalization of the well known non-local means denoising algorithm is proposed
and examined. The groundwork for this generalization is set by the aforementioned
results on image self-similarity with respect to the MSE. This new method is then
extended to the wavelet representation of images. Experimental results are given
to illustrate the applications of these new ideas.
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Chapter 1

Mathematical Preliminaries

1.1 Introduction

This chapter contains the background material necessary to understand the meth-
ods of this thesis. This discussion is not meant to be extensive and results are given
without proof. Image functions are described, some measurements of image fidelity
are given, several spaces are defined, and a short primer on one and two-dimensional
wavelet methods is provided.

1.2 Images as Functions

A digital image is essentially a matrix I whose entries are known as greyscale or
colour values. Given an m× n grid I ⊂ Z2, an m× n digital image may be viewed
as a function u on I. Let i ∈ I and consider the pair (i, u(i)) which is called a pixel.
The second component u(i) is the image value at i. If u(i) ∈ R then u is called a
greyscale image. In this case, I is simply a two-dimensional matrix. In the case of
colour images, u(i) ∈ R3 (one component for each of red, green and blue) and I is
a three-dimensional matrix.

The u(i) are also restricted further to what is called a greyscale range. For
example, the greyscale range could be 0− 255, in which case u would represent an
8-bit image (there are 28 possible values for each u(i)). In the case of normalized
images the greyscale range is [0, 1].

In the rest of this thesis only greyscale images are considered but the concepts
introduced can certainly be extended to include other types of images.

1.3 Comparison of Images

To compare results and measure error, it is necessary to be able to quantify error
in some way. There are several ways by which this will be accomplished in this the-
sis, and for reference they are all included here. The first of these is the L2 distance.
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Definition 1.1. Let x = {x1, x2, · · · , xN} and y = {y1, y2, · · · , yN} be two real sets
of data. The L2 distance between x and y is

(

N
∑

k=1

(xk − yk)
2

)

1

2

.

A variation on the L2 distance is the root mean squared error (RMSE) which is
obtained by a rescaling of the L2 distance.

Definition 1.2. The root mean squared error between x and y is

RMSE(x, y) =

(

1

N

N
∑

k=1

(xk − yk)
2

)

1

2

.

Occasionally the RMSE will be reported as the mean squared error (MSE) where√
MSE = RMSE.

The last form of measurement that will be used differs greatly from the L2 distance
and is called the Structural Similarity (SSIM) Index. As an entire chapter is devoted
to the development and usefulness of the SSIM Index as a measurement of image
fidelity, only a definition will be given here.

Definition 1.3. The SSIM value of x relative to y is

S(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2sxsy + C2

s2x + s2y + C2

sxy + C3

sxsy + C3
,

where

x̄ =
1

N

N
∑

k=1

xk,

sxy =
1

N − 1

N
∑

k=1

(xk − x̄)(yk − ȳ), and

s2x =
1

N − 1

N
∑

k=1

(xk − x̄)2.

The parameters C1, C2 and C3 are small positive constants.

1.4 Metric spaces

A metric space is a set X with a metric d which gives a notion of distance between
two elements of X .
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Definition 1.4. A metric d on a set X is a real-valued function d(x, y) defined for
all x, y ∈ X such that the following conditions are satisfied:

1. Positivity: d(x, y) ≥ 0 and d(x, x) = 0 for all x, y ∈ X .

2. Strict positivity: d(x, y) = 0 implies x = y.

3. Symmetry: d(x, y) = d(y, x).

4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

The pair (X, d) is called a metric space.

Convergence of sequences in metric spaces is very important in the formulation of
the proper setting for wavelet theory. This concept is now defined rigorously.

Definition 1.5. An infinite sequence {xn} in a metric space (X, d) is said to be
a Cauchy sequence if given ε > 0, there is an N > 0 so that d(xn, xm) < ε for all
n,m > N .

Definition 1.6. An infinite sequence {xn} in a metric space (X, d) converges to
x ∈ X if for any ε > 0, there is an N > 0 such that d(xn, x) < ε for all n > N .

Definition 1.7. A metric space (X, d) is said to be complete if every Cauchy
sequence converges to an element in X .

1.5 Normed linear spaces

A norm ‖ · ‖ on a vector space X gives a notion of size for each element of X .

Definition 1.8. Let X be a real or complex vector space. A real-valued function
‖ · ‖ defined on X is a norm on X if

1. Positivity: ‖x‖ ≥ 0 for all x ∈ X .

2. Strict positivity: ‖x‖ = 0 if and only if x = 0.

3. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X .

4. Homogeneity: ‖αx‖ = |α|‖x‖ for any scalar α and all x ∈ X .

The quantity ‖x‖ is the length of x and the pair (X, ‖ · ‖) is called a normed linear
space.

A norm ‖ · ‖ on a vector space X induces a metric by d(x, y) = ‖x − y‖ for all
x, y ∈ X . This is easily verified by checking the four conditions in the definition of
a metric.

3



Definition 1.9. Let (X, ‖ · ‖) be a normed linear space and let d be the metric
induced by the norm ‖ · ‖. If the metric space (X, d) is complete, then (X, ‖ · ‖) is
called a complete normed linear space, also known as a Banach space.

A pertinent example of a complete normed linear space in the context of this thesis
is (RN , ‖ · ‖2) where

‖x‖2 =
(

N
∑

k=1

|xk|2
)

1

2

is the Euclidean or L2 norm. The L2 distance is generated by the L2 norm.

1.6 Inner product spaces

Inner product spaces are important in the formulation of wavelet theory. They are
also intimately related to normed linear spaces and metric spaces.

Definition 1.10. Let X be a complex vector space. An inner product 〈 , 〉 on X
satisfies 〈x, y〉 ∈ C for all x, y ∈ X and

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ X.

〈αx, y〉 = α〈x, y〉 for all x, y ∈ X,α ∈ C.

〈x, y〉 = 〈y, x〉 for all x, y ∈ X. The bar denotes complex conjugation.

〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

The pair (X, 〈 , 〉) is called an inner product space.

Given an inner product space (X, 〈 , 〉), the inner product induces a norm by
‖x‖ =

√

〈x, x〉. As mentioned, the norm induces a metric. Therefore, an inner

product 〈 , 〉 on a vector space X induces a metric by d(x, y) =
√

〈x− y, x− y〉.
The next definition then follows naturally.

Definition 1.11. Let (X, 〈 , 〉) be an inner product space and let d be the metric
induced by 〈 , 〉. If the metric space (X, d) is complete then (X, 〈 , 〉) is called a
complete inner product space, also known as a Hilbert space.

An important part of the construction of a Hilbert space (X, 〈 , 〉) is the ability to
construct a basis for X . This forms the groundwork for Generalized Fourier Series
of which the traditional sine and cosine basis seen in Fourier analysis is a special
case. To this end, a definition and a theorem are now given.

Definition 1.12. An orthonormal sequence {en} in a Hilbert space H is maximal
(complete) if 〈x, en〉 = 0 for all n implies that x = 0.

Theorem 1.1 (Generalized Fourier Series). Let {en} be an orthonormal sequence

in a Hilbert space H which has a countable dense subset. If {en} is complete then

for any x ∈ H, x =
∑∞

n=1〈x, en〉en.
Proof. See Section 3.5 of [13].
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1.7 Special spaces

Two spaces are now introduced that will be particularly useful in the development
of wavelet-based methods. These are the Lp and `p spaces.

Definition 1.13. Let X ⊆ RN and p ∈ [1,∞). Define the space Lp(X) by

Lp(X) =

{

f : X → R |
∫

X

|f(x)|pdx <∞
}

.

If p = 2 then the pair (L2(X), 〈 , 〉), where 〈f, g〉 =
∫

X
f(x)g(x)dx, is a Hilbert

space.

Definition 1.14. Let X ⊆ RN and let {xn} be a sequence on X. For 1 ≤ p ≤ ∞,
the space

`p(X) =

{

{xn} |
∞
∑

n=1

|xn|p <∞
}

is the set of all p-summable sequences on X.

Once again, if p = 2 then the pair (`2(X), 〈 , 〉), where 〈x, y〉 =

∞
∑

n=1

xnyn, is a

Hilbert space.

1.8 Wavelets

1.8.1 Wavelets in one dimension

A common setting for image processing lies in the wavelet representation of an
image. To this end, a brief background on wavelets will now be provided in order
to establish the notation and theory that will be used later on.

Much of the background for the current theory of wavelets was established by
Haar in 1909 when he showed that one can generate a complete orthonormal basis
for L2(R) from the following function known as the Haar wavelet:

ψ(t) =







1, 0 ≤ t < 0.5,
−1, 0.5 ≤ t < 1,
0, otherwise.

In particular, by considering translations and dilations of ψ(t) of the form

ψjk(t) = 2j/2ψ(2jt− k), j, k ∈ Z,

Haar showed that {ψjk(t) | j, k ∈ Z} is a complete orthonormal basis for L2(R). The
work done by Haar is in fact a special case of what is now known as a multiresolution
analysis (MRA) of L2(R). We give a definition [8]:
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Definition 1.15. Let {Vj}j∈Z be a sequence of closed subspaces of L2(R). Then
{Vj} is called a multiresolution analysis with scaling function φ ∈ L2(R) and mother
wavelet ψ ∈ L2(R) if:

1. The subspaces are nested: Vj ⊂ Vj+1, j ∈ Z.

2. Density: ∪jVj = L2(R) (the bar denotes closure of the set).

3. Separation: ∩jVj = {0}.

4. There is a sequence of orthogonal complements Wj ⊥ Vj such that Vj+1 =
Wj ⊕ Vj.

5. The set of functions {φjk(t) = 2j/2φ(2jt − k) | k ∈ Z} forms an orthonormal
basis for Vj.

6. The set of zero-mean functions {ψjk(t) = 2j/2ψ(2jt − k) | k ∈ Z} forms an
orthonormal basis for Wj .

When writing Vn+1 = Wn ⊕ Vn it is said that Vn+1 is the direct sum of the
vector spaces Wn and Vn. That is, if z ∈ Vn+1 then z may be written uniquely as
z = x+ y where x and y are the projections of z in Wn and Vn, respectively.

Of particular importance are functions f(x) ∈ L2(R) that admit expansions of
the form

f(x) = b00φ00(x) + c00ψ00(x) +
∞
∑

j=1

2j−1
∑

k=0

cjkψjk(x),

where b00 = 〈f, φ00〉 and cjk = 〈f, ψjk〉. If the scaling function φ and the mother
wavelet ψ have compact support on R, it follows that f(x) has compact support
as well. The coefficient b00 is called an approximation coefficient and the cij are
known as wavelet or detail coefficients. These coefficients can be arranged in the
form of an infinite binary tree as in Table 1.8.1. Note that in the last row, Bjk

denotes the binary tree of infinite length whose root is cjk.

b00
c00

c10 c11
c20 c21 c22 c23

B30 B31 B32 B33 B34 B35 B36 B37

Table 1.8.1: Arrangement of wavelet coefficients in an infinite binary tree
.
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1.8.2 Wavelets in two dimensions

To work with images, a two-dimensional extension of the above theory is vital.
The first task is to construct an orthonormal basis for L2(R2). The obvious choice
is to take {ψjkψlm | j, k, l,m ∈ Z}. The problem with this choice is that the
multiresolution structure from one dimension is not preserved since basis functions
at different resolutions are mixed. There is in fact a very elegant way to construct
an MRA for L2(R2) using an MRA for L2(R) that preserves the useful features seen
in one dimension.

Let {Vn}n∈Z with scaling function φ and mother wavelet ψ be an MRA for
L2(R). To construct a wavelet basis for L2(R), consider the sequence of closed
subspaces {Vj}j∈Z of L2(R2) defined by

Vn = Vn ⊗ Vn = span{F (x, y) = f(x)g(y)|f, g ∈ Vn},

called tensor product spaces [8]. The bar denotes the closure of the set. Several
properties can be deduced now. First, the subspaces are nested:

Vj ⊂ Vj+1, j ∈ Z.

Next,
∪jVj = L2(R2).

Finally,
∩jVj = {0}.

Since the set of functions

{φjk(t) = 2j/2φ(2jt− k) |k ∈ Z}

forms an orthonormal basis for Vj , the set of functions

{Φjkl(x, y) = 2jφ(2jx− k)φ(2jy − l) | k, l ∈ Z}

forms an orthonormal basis for Vj. For each Vn, define Wn to be the orthogonal
complement of Vn in Vn+1. Then

Vn+1 = Vn+1 ⊗ Vn+1

= (Wn ⊕ Vn)⊗ (Wn ⊕ Vn)

= (Vn ⊗ Vn)⊕ [(Wn ⊗ Vn)⊕ (Vn ⊗Wn)⊕ (Wn ⊗Wn)]

= Vn ⊕Wn (1.8.1)

WriteWv
n = (Wn⊗Vn),Wh

n = (Vn⊗Wn), andWd
n = (Wn⊗Wn). Then Wn consists

of three pieces and each of these pieces (Wv
n,W

h
n, and Wd

n) have orthonormal bases
given by

{Ψv
nij(x, y) = ψni(x)φnj(y) | i, j ∈ Z},

{Ψh
nij(x, y) = φni(x)ψnj(y) | i, j ∈ Z}, and

{Ψd
nij(x, y) = ψni(x)ψnj(y) | i, j ∈ Z},

7



respectively. Thus, {Vn}n∈Z with scaling function Φ = Φ000 ∈ L2(R2) and mother
wavelet Ψ = Ψ000 ∈ L2(R2) forms an MRA for L2(R2). Having completed construc-
tion of an MRA, consider again functions f(x, y) ∈ L2(R2) admitting expansions
of the form

f(x, y) = b000Φ000(x, y)+

∞
∑

j=0

2j−1
∑

k=0

2j−1
∑

l=0

[

chjklΨ
h
jkl(x, y) + cvjklΨ

v
jkl(x, y) + cdjklΨ

d
jkl(x, y)

]

.

(1.8.2)
In one dimension, the coefficients were arranged in the form of an infinite binary

tree. In two dimensions, the coefficients are arranged in quadtrees. These quadtrees
may be represented by a pyramid of blocks as Fig. 1.8.1 illustrates. For some J > 0
each of the blocks, Dh

j , D
v
j , and Dd

j , 0 ≤ j ≤ J , contain 22j detail coefficients
chjkl, c

v
jkl, and c

d
jkl respectively. The collections of blocks

Dh =

∞
⋃

j=0

Dh
j , Dv =

∞
⋃

j=0

Dv
j , Dd =

∞
⋃

j=0

Dd
j ,

comprise the horizontal, vertical, and diagonal quadtrees of the coefficient tree.

AJ−1

Dd
JDv

J

Dh
J

Dh
J−1

Dd
J−1Dv

J−1

Figure 1.8.1: Pyramid of blocks of wavelet quadtree coefficients.

There exists a computationally practical way [15] to determine the expansion
coefficients in (1.8.2) with what is known as an analysis algorithm. Briefly, begin
with an “image” which is a matrix of coefficients denoted AN . These can be ob-
tained from a discrete sampling of a continuous signal (this is essentially what a
digital image is). From AN , compute the blocks AN−1, D

h
N−1, D

v
N−1, and D

d
N−1 in a

process known as decomposition. These last three blocks are stored and AN−1 is de-
composed into the blocks AN−2, D

h
N−2, D

v
N−2, and D

d
N−2. This process is continued

iteratively until the single entry blocks A0, D
h
0 , D

v
0, and D

d
0 (the top of the pyramid

of quadtrees) are reached. The image can be constructed in reverse fashion with
what is known as a synthesis algorithm.
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Chapter 2

Self-similarity of images with
respect to the L2 norm

2.1 Introduction

In the context of imaging, the term “self-similar” brings to mind an image whose
pixel values or structures in different parts of the image mimic each other in some
way. However, before embarking on an investigation of image self-similarity, a
natural question to ask is “Why study image self-similarity?” In a nutshell, it
warrants study because it forms an integral part of many imaging techniques. It
is particularly important in fractal image coding and non-local means denoising,
two techniques which will be investigated later in this thesis. The success of these
techniques hinges upon being able to find (possibly modified) subblocks of an image
whose L2 distance is small (or subblocks that are similar with respect to L2). This
is in fact just one of many possible definitions of image self-similarity.

At a very simplistic level, image self-similarity can be interpreted in terms
of translations of image subblocks. That is, given a grid I, an image function
u = {u(i) | i ∈ I}, and two m × n pixel blocks Ri and Rj in I, the two image
subblocks u(Ri) and u(Rj) are similar (“close”) if ‖u(Ri) − u(Rj)‖ is small for
some norm ‖ · ‖. When the L2 norm is used, this definition forms the basis for
the traditional non-local means denoising algorithm [7] which will be explored in
Chapter 4.

This strictly translational definition is often too restrictive, particularly in the
context of imaging. For example, when looking at a unevenly lit wall in a room, one
could consider the differently lit parts as being similar up to a shift in brightness
or a greyscale shift. Therefore, the above definition for image self-similarity could
be modified to say that two image subblocks are similar if ‖u(Ri)− u(Rj)− β‖ is
small for some constant β depending on u(Ri) and u(Rj).

This relaxation can be taken one step further by allowing for affine greyscale
transformations of image subblocks. In this case, two image subblocks are said to
be similar if ‖u(Ri)− αu(Rj)− β‖ is small for some constants α and β depending
on u(Ri) and u(Rj). When combined with a decimation in pixel space, this forms
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the basis for fractal image coding [3, 4, 14]. Informally, this is written as u(Ri) ≈
αu(Dj) + β where Dj is larger than Ri. This idea will be explored in detail later.

These three definitions will be important in forming models of image self-
similarity in the pixel domain. Later, modified versions of these models will be
applied in the wavelet domain.

2.2 Image self-similarity in the pixel domain

Let I be a grid and let u represent a greyscale image on I. In order to mathe-
matically define the concept of self-similarity of an image, consider the following
model that was introduced in [2]. There are several components which comprise
the model:

1. Range blocks: A set R of non-overlapping n×n pixel blocks Ri, 1 ≤ i ≤ NR,
that forms a partition of I.

2. Domain blocks: A set D of m × m pixel blocks Di, 1 ≤ i ≤ ND such that
∪iDi = I. The Di are not necessarily disjoint.

3. Affine geometric transformations w
(k)
ij : Dj → Ri, 1 ≤ k ≤ 8. There are eight

possible mappings (four rotations and four inversions about the centre) since

both blocks are square. If m > n, the w
(k)
ij are contractive mappings and

incorporate a pixel decimation operation.

4. Affine maps φ : Rg → Rg of the form φ(t) = αt + β, where Rg denotes an
appropriate greyscale range, usually [0, 1] or 0− 255.

The goal is to examine how well a portion of u can be approximated by another
portion of u. Based on the above this can be written as

u(Ri) ≈ φij(u(w
−1
ij (Ri))) = αiju(Dj) + βij, 1 ≤ i ≤ NR, 1 ≤ j ≤ ND, (2.2.1)

omitting the k superscripts for notational convenience. For each non-overlapping
range block u(Ri), the distribution of errors ∆ij between u(Ri) and u(Dj) associ-
ated with (2.2.1) is of primary interest. These errors take the form

∆ij = min
α,β

‖u(Ri)− αu(Dj)− β‖2, (2.2.2)

where the (α, β) pairs are chosen from an appropriate parameter space to ensure
that φ : Rg → Rg. Four cases involving optimization over α and β as well as
decimations in pixel space will be considered. The four cases are:

1. Purely translational: The domain and range blocks Dj and Ri have the same

size. The w
(k)
ij are translations. Set α = 1 and β = 0.

2. Translational and greyscale shift: The domain and range blocks have the same
size. The w

(k)
ij are translations. Set α = 1 and optimize over β.
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3. Affine, same-scale: The domain and range blocks have the same size. The
w

(k)
ij are translations. Optimize over α and β.

4. Affine, two-scale: The domain blocks are larger than the range blocks. The
affine transformations w

(k)
ij incorporate a decimation in pixel space. Optimize

over α and β.

The problem of solving for the optimal coefficients α and β is a simple least
squares problem which takes the following form: Given two real-valued data sets
{u1, · · · , uN} and {v1, · · · , vN}, minimize the sum of the squared errors,

R(α, β) =
N
∑

k=1

(uk − αvk − β)2. (2.2.3)

In the context of images, the data sets are the pixel intensities of two different
image subblocks. It is easy to show that the optimal parameters for cases 2 and 3
are

1. Case 2: β = ū− v̄.

2. Case 3: α = suv
s2v

and β = ū− αv̄.

Here,

ū =
1

N

N
∑

k=1

uk,

suv =
1

N − 1

N
∑

k=1

(uk − ū)(vk − v̄), and

s2u =
1

N − 1

N
∑

k=1

(uk − ū)2.

In what follows, images with normalized greyscale ranges are used. That is,
u(i) ∈ [0, 1] for all i ∈ I. Also, non-overlapping 8 × 8 range blocks are used for
computational efficiency. The distance reported between two images subblocks of
the same size is the root mean squared error (RMSE).

2.2.1 Cases 1, 2, and 3

For these cases, the standard 8-bit 512 × 512 Lena and Mandrill images are used.
Results are illustrated with histograms that describe the error distribution between
distinct domain and range blocks pairs. A histogram with a peak close to zero
indicates a good degree of self-similarity, and the more closely concentrated a his-
togram is to zero, the higher the degree of self-similarity. Since more parameters
are optimized over as the case numbers increase, the errors will satisfy

0 ≤ ∆Case 3
ij ≤ ∆Case 2

ij ≤ ∆Case 1
ij . (2.2.4)
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Figure 2.2.1: Case 1-3 pixel-based error distributions for normalized Lena (left)
and Mandrill (right). From top to bottom are case 1, case 2 and case 3.

Note that case 4 involves a decimation in pixel space, and therefore its results are
not directly comparable to cases 1, 2 and 3. Its usefulness is more in its application
to fractal image coding and will be explored in the next section.

The top row of Fig. 2.2.1 corresponds to case 1 with Lena’s results on the
left and Mandrill’s results on the right. Note that both images exhibit peaking
in their error distributions at approximately 0.15. The next two rows show that
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the error distributions for Lena become extremely concentrated about zero when
affine transformations are allowed. Even in the case where only β is allowed to vary
great improvements are observed. On the other hand, while the Mandrill error
distributions move closer to zero in cases 2 and 3, the improvement is not nearly
as pronounced as with Lena. The conclusion from these error distributions is that
both images are fairly self-similar translationally.

With a little ingenuity, it turns out that Lena’s remarkable improvement can
be explained in terms of block variances. To see this, modify case 2 slightly by
setting α = 0 and optimize over β. By optimizing R(0, β) over β, it is not difficult
to show that the optimal value is β = u(Ri) (the bar denotes the mean). Thus this
modified case 2 is simply approximating an image subblock with its mean. A plot
of the RMSE histogram is then a plot of the block standard deviations. Fig. 2.2.2
gives the standard deviation histogram distributions for Lena and Mandrill. These
show that the majority of Lena’s subblocks have standard deviations close to zero
while Mandrill’s standard deviations are much more diffuse. In other words, Lena’s
blocks are generally “flatter” than those of Mandrill.
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Figure 2.2.2: Histogram distributions of image subblock standard deviations for
Lena (left) and Mandrill (right).

The best approximation of an image subblock by a constant (obtained by setting
α = 0 and optimizing over β in (2.2.2)) will generally produce poorer results than
when α is non-zero. Symbolically,

0 ≤ ∆Case 2
ij ≤ σ(u(Ri)).

Therefore, since Lena’s blocks are generally quite flat, this should have the effect
of pushing its case 2 error distribution closer to zero which implies that its case 3
error distribution should be closer to zero as well. On the other hand, the same
conclusion cannot be drawn for Mandrill since its standard deviation histogram is
so dispersed.

A simple test of this theory about block variances involves examining how
well an image can be approximated by another distinct image. In particular, we
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Figure 2.2.3: Pixel-based error distributions obtained by approximating Lena with
Goldhill (left) and Mandrill with Barbara (right). The top row is case 1 and the
bottom row is case 3.

tested how well Lena was approximated by Goldhill and how well Mandrill was
approximated by Barbara. The pictures shown in Fig. 2.2.3 show the results for
cases 1 and 3 (Lena on the left, Mandrill on the right). Note the striking similarity
to the case 1 and 3 histograms seen before in Fig. 2.2.1. This shows that the source
of image domain blocks is not as important as how well an image range block can
be approximated. Since a block’s variance is the main contributing factor to how
well the block may be approximated, this shows that the degree of self-similarity
of an image is a direct consequence of the variance of its subblocks.

2.2.2 Case 4

This section considers the case wherem > n, i.e., where the range blocks are smaller
than the domain blocks. In particular, given an image function u representing a
512×512 image, we examine how well all 4096 non-overlapping 8×8 image subblocks
u(Ri) are approximated by all 1024 non-overlapping 16×16 image subblocks u(Dj).
For the pixel decimation operation, 2×2 subblocks of u(Dj) are averaged. Fig. 2.2.4
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shows the error distribution histograms for Lena and Mandrill. These indicate that
an image subblock is generally well-approximated by a number of larger subblocks,
especially in the Lena case. Also note that the case 4 histograms strongly mimic
the case 3 histograms.
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Figure 2.2.4: Case 4 pixel-based error distributions for normalized Lena (left) and
Mandrill (right).

The previous discussion of self-similarity is not limited to Lena and Mandrill.
Indeed, as the plots in Fig. 2.2.5 show, many other images also exhibit a good degree
of self-similarity under optimization over α and β. Of course, this is still a small
sample of images. Extensive experimentation [2] has shown that self-similarity is a
common feature of natural images, the degree of which varies from better to worse
than what is shown in the results presented here.

2.2.3 Application of case 4 to fractal coding

Let u be an image function. The idea behind fractal image coding is to approximate
an image subblock u(Ri) with a geometrically-contracted, affine greyscale-modified
copy of a larger image subblock u(Dj) [3]. Finding the best domain block for each
range block by defining the pairs (i, j(i)) and the optimal greyscale parameter pairs
(αi, βi) comprises the fractal code of u. This then defines a fractal operator T by
modifying Eqn. (2.2.1). For such a pairing (i, j(i)), rewrite Eqn. (2.2.1) as

u(x) ≈ (Tu)(x) = αiu(w
−1
i,j(i)(x)) + βi, x ∈ Ri, 1 ≤ i ≤ NRi

. (2.2.5)

The following theorem will be useful.

Theorem 2.1 (Banach’s fixed point theorem). Let (X, d) be a complete metric

space and let T : X → X be an operator and suppose there exists 0 ≤ c < 1 such

that d(T (x), T (y)) ≤ cd(x, y) for all x, y ∈ X. Then T has a unique fixed point in

X. That is, there exists a unique x∗ ∈ X such that T (x∗) = x∗.
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Zelda

Figure 2.2.5: Case 4 pixel-based error distributions for six other normalized test
images.

Such a T is called contractive (with contractive factor c). Under certain condi-
tions on the maps wi,j(i), the operator T defined in (2.2.5) is a contractive operator
in L2(X) [11] and by Banach’s theorem has a unique fixed point u∗. This fixed
point u∗ is an approximation to u. In application, it is desirable to make u∗ as
close to u as possible. How good this approximation can be depends on a variety
of things including, most significantly, how self-similar an image is with regards to
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the mapping in Eqn. (2.2.5). One result that gives an upper bound on the distance
between u and u∗ is a corollary to Banach’s theorem.

Corollary 2.1. Let (X, d) be a complete metric space and let T : X → X be a

contractive mapping on X with fixed point x∗ ∈ X and contractive factor c. Then

for all x ∈ X

‖x− x∗‖ ≤ 1

1− c
‖x− Tx‖.

To exploit this property, for each range block u(Ri) the domain pool is searched
for the domain block u(Dj(i)) that minimizes‖u(Ri)−Tu(Dj(i))‖2. The image block
u(Ri) is then replaced with a modified copy of u(Dj(i)).

To give an example, the fractal operator T associated with Lena was computed.
Fig. 2.2.6 shows the resulting images after three and six iterations of T starting
from a blank black image. Also included is a histogram showing the steady-state
distribution of errors for the domain and range block pairs which define the fractal
transform for Lena. Since it is concentrated so closely around zero, this histogram
shows that most of the range blocks of Lena are well approximated by domain
blocks at a larger scale.
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Figure 2.2.6: Left, centre: Fixed point approximation to Lena after 3 and 6 iter-
ations of the fractal transform. Right: Distribution of errors for the best domain
and range block pairings.

Also of interest are histogram distributions for α and β. On pp. 77-78 of [1],
the α and β distributions for Lena and Mandrill were examined. For both of
the images, the α distributions had a large symmetric peak about zero and the β
distributions had their largest peaks around 0.5. As we showed earlier, Lena and
Mandrill are quite different images in terms of their block variances and L2-based
error distributions. It is quite interesting then that their α and β statistics are so
similar.

2.3 Image self-similarity in the wavelet domain

Consider an image of size 2K × 2K (K ≥ 0) and the standard tensor-product
(real) wavelet basis expansion of this image as discussed in Sec. 1.8.2. The wavelet
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coefficients can be arranged in a pyramid of blocks at each decomposition level. At
level k of this decomposition, 0 ≤ k ≤ K, the coefficients can further be partitioned
into horizontal, vertical, and diagonal detail coefficients which will be denoted by
Ah

k , A
v
k, and A

d
k respectively. Given a wavelet coefficient aλkij, λ ∈ {h, v, d}, let Aλ

kij

denote the unique quadtree rooted at aλkij.
The concept of self-similarity is extended to the wavelet domain by examining

how well quadtrees in the wavelet expansion of an image are approximated by
other quadtrees, both at the same and different scales. Some preliminary work on
this subject has already been done in [17]. These approximations will be of the
form Aλ

kij ≈ αAλ′

k′i′j′, 0 ≤ k′ ≤ k. This is similar to what was done in the pixel
domain except for the omission of the constant β. The reasoning behind this is
that these wavelet quadtree expansions are theoretically of infinite length and we
wish to preserve the `2-summable nature of the expansion coefficients. There are
three cases:

1. Purely translational: Wavelet quadtrees are compared at the same scale. Set
k = k′ and α = 1.

3. Affine, one-scale: Quadtrees at the same scale are compared. Optimize over
α.

4. Affine, two-scale: Let k′ < k. Quadtrees at higher scales are approximated
using quadtrees at lower scales. This is equivalent to a pixel decimation
operation. Optimize over α.

The cases are numbered so that they may be considered as counterparts to the
cases explored in the pixel domain. To find the optimal α, simply minimize R(α, β)
in Eqn. (2.2.3) for the case β = 0. This yields

α =
N
∑

k=1

ukvk

/

N
∑

k=1

v2k , (2.3.1)

Here, u and v are N -vectors containing wavelet detail coefficients from Aλ
kij and

Aλ′

k′i′j′ respectively.
For the numerical experiments, we set k = 6 (there are three decompositions

total) and for case 4, k′ = 3. For computational purposes, only quadtrees with
the same orientation are compared (so λ = λ′). The Haar wavelet is used and the
RMSE between quadtrees is reported.

2.3.1 Cases 1 and 3

Fig. 2.3.1 contains plots of the error distributions for cases 1 and 3 for Lena (left)
and Mandrill (right). Note that Lena’s error distributions both have their peaks
fairly close to zero. This indicates that in the wavelet domain, Lena exhibits a
good degree of similarity. By allowing for optimization over α, the peak of the
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error distribution is pushed quite dramatically towards zero and the histogram is
much less diffuse.

In contrast to Lena’s results, the error distributions forMandrill are much more
diffuse, similar to what was seen in the pixel domain. The peak gets pushed closer
to zero when α is allowed to vary but the results are not nearly as good as what is
achieved with Lena.
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Figure 2.3.1: Cases 1 and 3 wavelet-based error distributions for Lena (left) and
Mandrill (right). Top row: Case 1. Bottom row: Case 3.

To give an idea of what values the parameter α takes on, we refer the reader to
the histogram distributions of α shown in Fig 2.3.2 for Lena and Mandrill. Note
how similar the two histograms are and that they both have a large symmetrical
peak about zero.

In the pixel domain, the degree of self-similarity of an image was found to
be a direct consequence of how approximable its subblocks were. Also observed
was that the lower the variance of a subblock, the easier it was to approximate.
A natural question at this point is whether a similar result holds for the wavelet
representation of an image. To this end, let u and v be two N -vectors and let α be
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Figure 2.3.2: Histogram distributions of α in case 3 for Lena (left) and Mandrill

(right).

given by (2.3.1). A simple calculation shows that

‖u− αv‖2 ≤

√

√

√

√

N
∑

k=1

u2k, (2.3.2)

which is the square root of the energy of u. If u and v are two wavelet coefficient
quadtrees, what this says is that the lower the energy of u, the lower the error in
approximating u will be. That is, u is more approximable.

This analysis suggests examining the histogram distributions of the square roots
of the energies of the quadtrees to explain Lena’s great improvement in case 3.
Fig. 2.3.3 contains these histograms for the quadtrees in the wavelet representations
of Lena and Mandrill. These show that Lena’s quadtrees generally have energy
close to zero but Mandrill’s energies are much more dispersed. By the above, this
has the effect of pushing Lena’s case 3 distributions closer to zero.
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Figure 2.3.3: Histogram distributions of
√
energy for wavelet quadtrees in Lena

(left) and Mandrill (right).
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Figure 2.3.4: Cases 1 and 3 wavelet-based error distributions obtained by approxi-
mating Lena with Goldhill (left) and Mandrill with Barbara (right). The top row
is case 1 and the bottom row is case 3.

Mimicking the work done in the pixel domain, we attempted to approximate
quadtrees in Lena and Mandrill with quadtrees from Goldhill and Mandrill respec-
tively. Fig. 2.3.4 shows the case 1 and 3 results of these experiments for Lena (left)
and Mandrill (right). Like in the pixel domain, there is a remarkable resemblance
to the case 1 and 3 results seen in Fig. 2.3.1.

This shows that the source of the quadtrees in an approximation is not as
important as how well a quadtree can be approximated. Therefore, the analysis
done in the pixel domain has a direct analogue in the wavelet domain: self-similarity
of an image in the wavelet domain is a direct result of how well the quadtrees in
the image’s wavelet representation can be approximated. As we have shown, the
lower a quadtree’s energy, the easier it is to approximate the quadtree.

At this time it should be noted that these results do not contradict what was
found in the pixel domain. In fact, they could almost be expected. This is because
the lower the variance of an image, the lower the energy of its wavelet quadtrees
should be.
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2.3.2 Case 4

Ignoring the new scale, the case 4 results are almost identical to case 3 for both
of the images. Referring to Fig. 2.3.5, Lena still has a huge peak right near zero
while Mandrill is still fairly diffuse. More importantly, the plots show that higher-
scale wavelet quadtrees can be well approximated by scaled lower-scale (coarser)
quadtrees. This result is significant in that it forms the basis for the fractal wavelet
transform, an extension of the well-known pixel-based fractal transform to the
wavelet domain [9, 12, 16].
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Figure 2.3.5: Case 4 wavelet-based error distributions for Lena (left) and Mandrill

(right).

Finally, these results on self-similarity in the wavelet domain are not limited to
Lena and Mandrill. Case 1 and 4 error distribution histograms were computed for
the six other test images used in the pixel-based cases. For the case 4 histograms,
see Fig. 2.3.6. The case 1 histograms were similar to the case 4 histograms although
more diffuse and are omitted. Note that all of the images have their peaks quite
close to zero indicating a high degree of self-similarity in the wavelet domain.

Also of significance is the degree to which (ignoring the scale) these error dis-
tributions mimic those of the pixel-based case (see Fig. 2.2.5 to compare). If any
contrast can be drawn between the two sets of images, it is that in the wavelet case,
the error distributions seem to be concentrated more closely about zero. The fact
that these error distributions are concentrated so close to zero lends support to a
wavelet-based version of the non-local means denoising algorithm. This idea will
be explored in a later chapter.

2.4 Summary

In this chapter, a pixel-based model for affine self-similarity of images was intro-
duced and extended to the wavelet representation of images. It was shown that im-
ages tend to exhibit a high degree of self-similarity with respect to the L2 distance in
both the pixel and wavelet domains. In the pixel domain, this amounted to showing
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Figure 2.3.6: Case 4 wavelet-based error distributions for six other normalized test
images.

that image subblocks are generally well-approximated by other (modified) image
subblocks (both at the same scale and larger). In the latter context, demonstrating
self-similarity involved showing that quadtrees in the wavelet representation of an
image are generally well-approximated by other (modified) quadtrees, both at the
same and different scales. Demonstrating that self-similarity carries over to the
wavelet representation of images is an original result and it supports the extension
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of the non-local means denoising algorithm to the wavelet domain for the purpose
of denoising wavelet quadtrees.

It was also found that self-similarity of an image is a consequence of how well its
blocks (in the pixel domain) or quadtrees (in the wavelet domain) can be approx-
imated. We showed that the lower the variance of an image subblock, the easier
it was to approximate. For a quadtree, the lower its energy, the easier it was to
approximate. This analysis in the wavelet domain is a new result.
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Chapter 3

Image Self-Similarity and the
Structural Similarity Index

3.1 Introduction

The root mean squared error (RMSE) has been and continues to be one of the
most dominantly used signal quality metrics. Indeed, the last chapter focused
exclusively on the RMSE and using it to measure image similarity. However, despite
its widespread usage, the RMSE fails to act as a measure of image fidelity, making
it highly inappropriate to use in the context of imaging. To see this, consider the set
of pictures taken from [19] in Fig. 3.1.1. They are modified versions of an original
“Einstein” image (top left) created by various distortions: a contrast stretch, mean
luminance shift, distortion, JPEG compression, and blurring. Along with these
images are their MSE and SSIM values (relative to the original). The SSIM values
will be explained shortly. Perceptually, many of the images are very different from
each other and the original image but yield quite similar MSE values. On the
other hand, some of the images hardly seem modified at all from the original image
yet they exhibit very large MSE values. Clearly another form of measurement
more suited to imaging is needed. This chapter takes a step away from the MSE to
consider another measure of image similarity called the Structural Similarity Index.

3.2 The Structural Similarity Index

3.2.1 The standard SSIM Index

Introduced in [18], the Structural Similarity Index (hereafter known as the SSIM
Index) is an effort to avoid potential drawbacks exhibited by more traditional forms
of image similarity measurement such as the MSE. As its name implies, the SSIM
Index focuses on structural features of images such as blurriness, noisiness, and
blockiness. The motivation for formulating the SSIM Index in this way is that the
human visual system is highly adapted to picking out structural information from
images. From the standpoint of wanting an image similarity measure to mimic the
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(a) MSE=0, SSIM=1 (b) MSE=306, SSIM=0.928 (c) MSE=309, SSIM=0.987

(d) MSE=313, SSIM=0.730 (e) MSE=309, SSIM=0.580 (f) MSE=308, SSIM=0.641

(g) MSE=871, SSIM=0.404 (h) MSE=873, SSIM=0.399 (i) MSE=590, SSIM=0.549

Figure 3.1.1: Comparison of MSE and SSIM values for an “Einstein” image and
modified versions of it. (a) Original image. (b) Mean contrast stretch. (c) Lu-
minance shift. (d) Impulsive noise contamination. (e) JPEG compression. (f)
Blurring. (g) Spatial shift to the right. (h) Spatial shift to the left. (i) Counter-
clockwise rotation.
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human visual system, incorporating this idea into it is a very natural one.
Another important aspect of an image quality measure is that it should in-

corporate Weber’s law of perception. This states that visual sensitivity Σ to a
change ∆I in a greyscale intensity value I is well-approximated by Σ ≈ ∆I

I
, for

0 < I0 < I < I1 < ∞. The implication of this result is that it suggests working
with ratios of intensities, means, etc., when creating an image quality measure.

Given two positive N -dimensional signals x and y, the SSIM Index looks at
their differences between luminance (brightness), contrasts, and structures. For
luminance, average values of a signal are used. For contrast, signal variances are
examined. Similarity of local patch structures is used to compare structures. An
overall similarity measurement is created by combining the measurements of these
three quantities in some way, for example, by multiplying them together. This is, of
course, just one way of arriving at a similarity measurement. It remains to be seen
whether more accurate results could be obtained by combining the measurements
in a different way. With the above in mind, the SSIM function is defined as

S(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2sxsy + C2

s2x + s2y + C2

sxy + C3

sxsy + C3
(3.2.1)

where

x̄ =
1

N

N
∑

k=1

xk,

sxy =
1

N − 1

N
∑

k=1

(xk − x̄)(yk − ȳ), and

s2x =
1

N − 1

N
∑

k=1

(xk − x̄)2.

The first, second, and third components of S(x, y) model (respectively) luminance,
contrast, and structural features. The parameters C1, C2, and C3 are small con-
stants (relative to the maximum size of the intensities) used to provide numerical
stability and model the deviation from Weber’s law as the intensities approach zero.

The SSIM Index has two very useful properties. First, it is symmetric: S(x, y) =
S(y, x). Second, it is bounded: −1 ≤ S(x, y) ≤ 1, with S(x, y) = 1 if and only if
x = y. In practice, the SSIM value of an image (relative to another image) is often
computed by moving a sliding window pixel-by-pixel across the images to get local
SSIM estimates, and then these estimates are combined by averaging.

To see how the SSIM Index mimics the human visual system, the reader is once
again referred to the Einstein pictures. The SSIM values are more in tune with our
perceptual definition of similarity than the MSE values.

3.2.2 The SSIM Index in terms of real-valued wavelets

All of the work in this thesis done so far has been done in both the pixel and wavelet
domains and structural similarity will be no exception. Therefore, it is necessary
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to extend the SSIM Index to work with wavelet detail coefficient quadtrees.
Let x, y ∈ RM , where M = 2K for some K ≥ 0. Now consider the projections

of x and y onto a set of N orthonormal zero-mean (real) wavelet basis functions
{ψk | 1 ≤ k ≤ N} which correspond to a quadtree with N nodes in the wavelet
decompositions of x and y. For example, if the quadtree is rooted at the very top
of the coefficient pyramid, N = 2K − 1. This set of basis functions does not itself
constitute a basis but rather is a subset of a basis for RM . The best L2-based
approximations of x and y in terms of this basis are written as

Px =
N
∑

k=1

akψk, and

Py =
N
∑

k=1

ckψk,

where ak = 〈x, ψk〉, ck = 〈y, ψk〉 and 〈 , 〉 denotes the dot product. It now remains
to define Px, sPxPy, and s

2
Px in terms of these expansion coefficients. First,

Px =
N
∑

k=1

akψk = 0

since the wavelet basis functions are zero-mean. Next,

sPxPy =
1

N − 1

N
∑

k=1

(Pxk − Px)(Pyk − Py)

=
1

N − 1
〈Px, Py〉

=
1

N − 1

N
∑

k=1

akck.

The last step follows because the basis functions are orthonormal. To get s2Px, let
y = x in the formula for sPxPy to arrive at

s2Px =
1

N − 1

N
∑

k=1

a2k.

Now consider the SSIM function defined with zero stability constants. That is,

S(x, y) =
4x̄ȳ

x̄2 + ȳ2
sxy

s2x + s2y
. (3.2.2)

Let us now make the above substitutions in the SSIM function, remembering that
since Px = Py = 0 the first component of (3.2.2) is one. Adding in the stability
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constants, the SSIM function can be expressed in terms of the projection coefficients
of x and y as

SW,R(x, y) =

2
N−1

N
∑

k=1

akck + C

1
N−1

N
∑

k=1

[a2k + c2k] + C

. (3.2.3)

Formula (3.2.3) will be used to explore self-similarity of wavelet coefficient quadtrees.

3.3 Self-similarity of images with respect to the

SSIM Index

3.3.1 Pixel-based structural self-similarity

This section explores a modified version of the pixel-based model of image self-
similarity from Sec. 2.2 obtained by replacing the L2 distance with the SSIM func-
tion S(x, y). The reader is therefore referred to Sec. 2.2 for the technical details.
The main point of interest here is the distribution of errors ∆ij between distinct
subblocks of an image u(Ri) and u(Dj) in terms of the SSIM function. Affine
transformations of the u(Dj) are considered and these take the form φ(t) = αt+β.
If x and y denote two N -dimensional signals, the parameters α and β are chosen to
maximize S(x, αy + β). A detailed derivation for these coefficients may be found
in Appendix B.4 and it turns out that the optimal values are

α = sgn(sxy)
sx
sy

and β = x̄− αȳ.

There are four cases involving optimization over α and β as well as decimations:

1. Purely translational: The domain and range blocks Dj and Ri have the same

size. The w
(k)
ij are translations. Set α = 1 and β = 0.

2. Translational and greyscale shift: The domain and range blocks have the same
size. The w

(k)
ij are translations. Set α = 1 and optimize over β.

3. Affine, same-scale: The domain and range blocks have the same size. The
w

(k)
ij are translations. Optimize over α and β.

4. Affine, two-scale: The domain blocks are larger than the range blocks. The
affine transformations w

(k)
ij incorporate a decimation in pixel space. Optimize

over α and β.

The following experiments were performed with stability constants C1 = C2 =
C3 = 30 and used unmodified 8-bit images. For each domain and range block
pairing, the error reported is

∆ij = 1− S(u(Ri), αu(Dj) + β).
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Figure 3.3.1: Case 1-3 pixel-based error distributions of 1-S for Lena (left) and
Mandrill (right). From top to bottom are case 1, case 2 and case 3.

Before discussing the experimental results, it should be emphasized that the SSIM
Index is a measure of structural similarity. Therefore, for an image to be highly
self-similar with respect to the SSIM Index, it should be periodic or there should
be a repetition of structures in the image. For a general image, this may be an
unreasonable expectation. Finally note that since 0 ≤ 1 − S ≤ 2, the more closely
concentrated the error distribution histogram for an image is about zero, the more
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(structurally) self-similar the image is.
Fig. 3.3.1 shows that Lena and Mandrill do not exhibit a high degree of struc-

tural self-similarity. Allowing for optimization over α and β pushes the distributions
of 1 − S closer to zero, more so for Lena. On the other hand, the Mandrill his-
tograms remain largely concentrated around one in all three cases. In the case of
Lena, as more parameters are allowed to vary, peaks develop close to zero (and so
S is close to one) but a large portion of the errors are still clustered about S = 0.
That being said, the Ci were not toyed with extensively so perhaps better results
could be obtained while still employing reasonable values for the stability constants.
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Figure 3.3.2: Case 4 pixel-based distributions of 1-S for Lena (left) and Mandrill

(right).

For completeness, the case 4 histograms for Lena and Mandrill are included in
Fig. 3.3.2. Note that these histograms are nearly identical to the case 3 histograms.
This was also the case for the other six test images so their histograms are omitted.

Fig. 3.3.3 shows the case 1 error histograms for six other test images. We refrain
from commenting on them at this point. These histograms will be compared to
wavelet-based structural similarity histograms in the next section.

The case 3 histograms (Fig 3.3.4) were computed for six other test images to see
if the trends seen so far are consistent and indeed they are. These error histograms
exhibit peaking in a variety of areas, both close to and away from zero. With the
exceptions of Barbara and Goldhill, the largest peaks seem to be situated near zero
but many of the values fall too far away from zero for these images to be considered
self-similar with respect to the SSIM Index.

3.3.2 Structural vs. L2-based self-similarity of image sub-
blocks

The last section showed that images don’t exhibit a high degree of structural self-
similarity. As it turns out, this can be explained in terms of the function 1−S that
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Figure 3.3.3: Case 1 pixel-based distributions of 1− S for six other test images.

was plotted in the preceding histograms. Let x, y ∈ R
N be two signals and consider

1 − S(x, αy + β) where α and β are the coefficients that maximize S(x, αy + β).
For cases 2 and 3, these coefficients were given by

1. Case 2: α = 1 and β = x̄− ȳ.

2. Case 3: α = sgn(sxy)
sx
sy

and β = x̄− αȳ.
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Figure 3.3.4: Case 3 pixel-based distributions of 1− S for six other test images.

Let u = x and v = αy+ β and for simplicity, consider the SSIM function with zero
stability constants. By the choices for α and β, ū = v̄. Since the means are equal,

1− S(u, v) = 1− 2suv
s2u + s2v

=
s2u + s2v − 2suv

s2u + s2v
=

1

N − 1

‖u− v‖22
s2u + s2v

. (3.3.1)

Originally derived in [6], this result shows that 1 − S(u, v) is an inverse variance-
weighted squared L2 distance. In fact, even more is true. From [5],

√

1− S(x, y)
is a metric when the means of the two signals are matched like above.
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Recall that when examining self-similarity of images in terms of the L2 distance
there was a strong bias towards image subblocks of low variance and that it was
easier to approximate low-variance subblocks. From (3.3.1), we see that it is exactly
this variance property that keeps the distributions of 1−S away from zero in cases
2 and 3. This then gives another interpretation for the self-similarity of images.
That is, perhaps images are not as self-similar as we once thought.

3.3.3 Wavelet-based structural self-similarity

Now self-similarity in the wavelet domain with respect to the SSIM Index will be
investigated using the wavelet-based version of the SSIM function,

SW,R(x, y) =

2
N−1

N
∑

k=1

akck + C

1
N−1

N
∑

k=1

[a2k + c2k] + C

.

Consider then the standard tensor-product (real) wavelet basis expansion of a 2K×
2K image for which the detail coefficients can be arranged into a pyramid of blocks
at each decomposition level. At level k of this decomposition, 0 ≤ k ≤ K, the
coefficients can further be partitioned into horizontal, vertical, and diagonal detail
coefficients which will be denoted by Ah

k , A
v
k, and A

d
k respectively. Given a wavelet

coefficient aλkij, λ ∈ {h, v, d}, let Aλ
kij denote the unique quadtree rooted at aλkij.

The concept of self-similarity is extended to the wavelet domain by examining
how well quadtrees in a wavelet decomposition of an image are approximated by
other quadtrees, both at the same and different scales. These approximations will
be of the form Aλ

kij ≈ αAλ′

k′i′j′, 0 ≤ k′ ≤ k. Since wavelet quadtrees are being
compared, the ak and ck will be the wavelet coefficients of these quadtrees. Three
cases will be explored:

1. Wavelet quadtrees at the same scale are compared. Set α = 1.

3. Affine, one-scale: Quadtrees at the same scale are compared. Optimize over
α.

4. Affine, two-scale: Let k′ < k. Quadtrees at higher scales are approximated
using quadtrees at lower scales. This is equivalent to a pixel decimation
operation. Optimize over α.

The cases above are numbered so that they may roughly be considered as counter-
parts to the cases considered in the pixel domain. To find the optimal α, maximize
SW,R(x, αy) with respect to α. As is shown in Appendix B.5, this gives

α = sgn

(

N
∑

k=1

akck

)

N
∑

k=1

a2k

/

N
∑

k=1

c2k .
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In the calculations that follow, wavelet quadtrees of unmodified 8-bit images
with same orientation are compared (that is, λ = λ′). The errors reported are

λ∆kij
k′i′j′ = 1− S(Aλ

kij, αA
λ
k′i′j′).

For the numerical experiments, we set k = 6 (there are three decompositions total)
and for case 4, k′ = 3. The Haar wavelet is used. Like before, the stability constant
C is fixed at 30.
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Figure 3.3.5: Cases 1 and 3 wavelet-based distributions of 1−S for Lena (left) and
Mandrill (right). The top row is case 1 and the bottom row is case 3.

First, Fig. 3.3.5 shows the histogram distributions of 1 − S (cases 1 and 3)
for Lena and Mandrill. These histograms show significant peaking away from
zero which indicates that Lena and Mandrill do not exhibit a high degree of self-
similarity in the wavelet domain. Even though allowing α does yield an improve-
ment, it is not enough to change this conclusion. Next, compare with Fig. 3.3.1
which contains some of the pixel-based distributions of 1−S for Lena and Mandrill.
The two sets of histograms have generally the same shape, but the pixel-based ones
seem to be more concentrated about zero. This indicates that quadtrees in the
wavelet representation of an image generally exhibit a lower degree of structural
self-similarity than the original image subblocks.
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Once again, plots of the α histogram distributions for case 3 are interesting
to look at. These histograms for Lena and Mandrill are included in Fig. 3.3.6.
The Lena histogram exhibits a huge peak around zero and the Mandrill histogram
appears to be a more diffuse version of Lena’s.
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Figure 3.3.6: Histogram distributions of the parameter α in case 3 for Lena (left)
and Mandrill (right).

For case 4, as Fig. 3.3.7 shows, approximating quadtrees with scaled quadtrees
higher up in the wavelet coefficient tree does not yield significant improvements
for Lena and Mandrill. The histograms for the other six test images are omitted
here but they indicated the same thing. In general, the case 4 distributions tend
to mimic the case 3 results, and there is still a large amount of peaking away from
zero.
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Figure 3.3.7: Case 4 wavelet-based distributions of 1−S for Lena (left) andMandrill

(right).

Fig. 3.3.8 shows the case 1 histograms of 1 − S for the six other test images.
Note the similarity to the histograms found in Fig. 3.3.3. As with Lena and Man-

drill, the wavelet-based histograms tend to be more concentrated around zero than
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their pixel-based counterparts. That being said, there is still a very significant con-
centration of errors about S = 0 in the wavelet-based case. This further evidences
the fact that structural self-similarity of images is not a feature generally present
in the wavelet domain either.
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Figure 3.3.8: Case 1 wavelet-based distributions of 1− S for six other test images.

Finally, the case 3 error distributions for the other test images are shown in
Fig. 3.3.9. They show that all of the distributions of 1−S get pushed towards zero
when α is allowed to vary. Still though, for several of the images (most notably
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San Francisco, Boat and Barbara), there are large peaks around one, indicating a
generally low degree of structural similarity between distinct quadtrees.
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Figure 3.3.9: Case 3 wavelet-based distributions of 1− S for six other test images.

3.3.4 Structural vs. L2-based self-similarity of wavelet quadtrees

In the pixel domain, the poor degree of structural similarity exhibited by all of
the test images was explained by showing that if two signals x, y ∈ RN have equal
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means then 1 − S(x, y) is an inverse variance-weighted squared L2 distance. Now
consider

1− SW,R(x, y) = 1−

2
N−1

N
∑

k=1

akck + C

1
N−1

N
∑

k=1

[a2k + c2k] + C

=

1
N−1

N
∑

k=1

(ak − ck)
2

1
N−1

N
∑

k=1

[a2k + c2k] + C

. (3.3.2)

This shows that 1 − SW,R(x, y) is an inverse energy-weighted L2 distance. In the
last chapter, when examining self-similarity of wavelet quadtrees with respect to
the L2 distance, it was shown that a strong bias existed towards quadtrees having
low energy. From (3.3.2) then, if a quadtree has low energy, 1−S should be pushed
away from zero. To summarize, the lower the energy of the quadtrees from an
image, the less structurally self-similar the image will be in the wavelet domain.

3.4 Summary

In this chapter the Structural Similarity Index was introduced and examined in
detail. Previously an unexplored topic, it was shown that images are not generally
self-similar with respect to the structural similarity index in both the pixel and
wavelet domains. In the pixel domain, this was explained by showing that 1−S(x, y)
is an inverse variance-weighted squared L2 distance when x̄ = ȳ. The implication of
this is that the lower the variance of subblocks in an image (and therefore the more
self-similar it is with respect to the L2 distance), the less self-similar the image will
be with respect to the SSIM Index. Given that the SSIM Index seems to be much
more accurate than the L2 error when it comes to measuring image quality, this
offers new insight into the concept of image self-similarity. That is, perhaps images
are not as self-similar as the results obtained using L2 lead us to believe.

To explore structural similarity of wavelet detail coefficient quadtrees, we de-
rived a new form of the SSIM function in terms of real-valued wavelet basis func-
tions and denoted it by SW,R(x, y). To explain the lack of structural similarity in
the wavelet domain, it was shown that 1−SW,R(x, y) is an inverse energy-weighted
squared L2 distance. As a result, the lower the energy of the wavelet quadtrees in
an image (and the more self-similar it is with respect to the L2 distance), the less
self-similar it will be with respect to the SSIM Index. The work done in the wavelet
domain is completely original.
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Chapter 4

Non-local image processing

4.1 Introduction

Let u be an image function. Non-local image processing modifies part of the image,
u(x), with other parts of the image, u(yi), where the points yi are not necessarily
close to x. This is in contrast to many local methods of image processing which
are based on the values of neighbouring pixels of x such as local averaging. This
chapter focuses on a non-local procedure called non-local means denoising.

4.2 Non-local means denoising in the pixel do-

main

4.2.1 The non-local means denoising alorithm

Non-local (NL) means denoising [7] is an attempt to restore a noisy digital image
by using information from different parts of the image. This is done by computing
an estimate for a denoised pixel as a weighted sum of the other pixels in the noisy
image. Consider an image defined on a grid I which will be denoted by u =
{u(i) | i ∈ I}. Next, let n = {n(i) | i ∈ I} be a noisy image created by adding
independent and identically distributed (i.i.d.) samples of zero-mean noise to u.
The value of a pixel in the noiseless image is computed as

d(i) =
∑

j∈I
w(i, j)n(j).

The weights satisfy 0 ≤ w(i, j) ≤ 1 and
∑

j∈I w(i, j) = 1. They are determined by
the similarity between windows (image subblocks) about pixels i and j which will
be denoted by Ni and Nj respectively. The reason for approaching the denoising
process with averaging is that because the noise is zero-mean, when large numbers
of samples are averaged over, the noise will average out to zero.

To compare windows, the L2 distance is used. Roughly, the reason the L2

distance works so well is that it preserves the order of similarity between pixels [10].
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Therefore, the most similar pixels to a pixel p in n are expected to be the most
similar pixels to p in u. The weights are given by the formula

w(i, j) =
1

Zi
exp

(

−‖Ni −Nj‖22
h2

)

,

where

Zi =
∑

j∈I

exp

(

−‖Ni −Nj‖22
h2

)

.

The parameter h controls the decay of the weights. From the formula for w(i, j) it
is clear that the smaller ‖Ni − Nj‖22 is the larger the weight w(i, j), and that the
smaller h is, less pixels contribute significantly to the weighted sum.

NL means denoising exploits the fact that images tend to exhibit a high degree
of self-similarity with respect to the L2 distance, a topic explored extensively in
Chapter 2. The goal of the first part of this chapter is to generalize the usual NL
means algorithm by allowing for affine transformations of image subblocks. Once
again, these transformations take the form φ(t) = αt + β. The value of a pixel in
a noiseless image will be estimated as

d(i) =
∑

j∈I
w(i, j)(αn(j) + β)

The weights satisfy 0 ≤ w(i, j) ≤ 1 and
∑

j∈I w(i, j) = 1. However, they are now
calculated as

w(i, j) =
1

Zi
exp

(

−‖Ni − αNj − β‖22
h2

)

,

where

Zi =
∑

j∈I

exp

(

−‖Ni − αNj − β‖22
h2

)

.

The parameters α and β are chosen to minimize

∆ij = ‖Ni − αNj − β‖2.

Three cases of the transformation φ(t) = αt+ β and their effects on NL means
denoising will be explored:

1. Purely translational: Set α = 1 and β = 0. This is the traditional form of
the NL means denoising algorithm.

2. Translational and greyscale shift: Set α = 1 and optimize over β.

3. Affine, same-scale: Optimize over both α and β.

In the experiments that follow, noisy versions of the test images were created by
adding N (0, 0.01) white noise to the original. Here, N (µ, σ2) denotes the normal
probability distribution with mean µ and variance σ2. Fig. 4.2.1 shows four of these
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noisy test images and Table 4.2.1 shows the RMSE and SSIM values (relative to
their respective originals) for these noisy images and four others.

Lena Mandrill Goldhill Boat

RMSE 0.0990 0.0996 0.0986 0.0985
SSIM 0.2587 0.5381 0.3209 0.3117

Barbara Peppers San Fran. Zelda

RMSE 0.0990 0.0968 0.0999 0.0978
SSIM 0.3773 0.2618 0.2563 0.1968

Table 4.2.1: RMSE and SSIM values relative to their originals for eight noisy test
images.

(a) Lena (b) Peppers

(c) Zelda (d) San Francisco

Figure 4.2.1: Four noisy test images created by adding N (0, 0.01) white noise to
the originals.

The generalized NL means denoising algorithm proposed above will be con-
sidered in two different ways: the first is the traditional pixel-based way already
described. The second is a block-based method useful primarily for its lower com-
putational cost. The second method is inspired by the idea that since a denoised
pixel value can be estimated with a weighted sum of the other pixels in the noisy
image, the same method should work for image subblocks. In other words, letting
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n(Bi) denote a block of pixels centred at pixel i in the noisy image n, the denoised
image subblock will be estimated by

d(Bi) =
∑

j∈I

w(Bi, Bj)(αn(Bj) + β).

The weights are calculated in an analogous manner.

4.2.2 Experimental results

In the experimentation process, several noisy test images were processed using the
proposed generalized NL means denoising algorithm under the three cases discussed
above. For these experiments, normalized 8-bit greyscale images were used and the
parameter h = 0.5.

For the pixel-based algorithm, 7× 7 similarity neighbourhoods centred at each
of the pixels were used. Fig. 4.2.2 shows the pictoral results for Lena, Peppers,
and Zelda and Table 4.2.2 gives the RMSE and SSIM values for eight denoised test
images including the three just mentioned. First notice that for both Peppers and
Zelda the RMSE and SSIM values decrease and increase respectively as the case
number is increased. For Lena, however, only when moving from case 1 to case 2
is a decrease in RMSE and increase in SSIM observed. This seems to be a trend as
the calculations for the other five test images show. The RMSE and SSIM values
in case 3 seem to be worse than for case 2.

Pixel-based results
Case Lena Mandrill Goldhill Boat

1
RMSE 0.0404 0.0745 0.0464 0.0476
SSIM 0.4558 0.6275 0.5020 0.4427

2
RMSE 0.0370 0.0716 0.0424 0.0444
SSIM 0.4985 0.6548 0.5463 0.4675

3
RMSE 0.0352 0.0717 0.0422 0.0433
SSIM 0.4925 0.5205 0.4876 0.4307

Barbara Peppers San Fran. Zelda

1
RMSE 0.0495 0.0447 0.0466 0.0342
SSIM 0.5703 0.4617 0.3489 0.5040

2
RMSE 0.0458 0.0416 0.0449 0.0300
SSIM 0.6050 0.5054 0.3527 0.5688

3
RMSE 0.0477 0.0397 0.0443 0.0280
SSIM 0.5593 0.5162 0.3245 0.6077

Table 4.2.2: RMSE and SSIM values relative to their respective originals for eight
images produced by pixel-based NL means denoising.

Interestingly, allowing for optimization over only β (case 2) seems to preserve
more details in the image compared to the strictly translational model. For example,
look at the band on the hat in Lena when moving from case 1 to case 2. In case
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Figure 4.2.2: Denoised Lena, Peppers, and Zelda images created using a pixel-based
NL means denoising algorithm. The first row is case 1, the second is case 2, and
the third is case 3.

1, the band is more washed out and of uniform texture while in cases 2 and 3,
more lines and folds are visible. However, along with this heightened detail comes
blurring. The blurring is even worse in case 3. This blurring causes a decrease in
the SSIM values from case 2 to case 3 for most of the test images. Also notable
is the presence of some sort of spurious texture across the images in cases 2 and 3
which is not present in the original image.

One may question whether the choice of h is optimal for the denoising process.
Additional tests were performed to see if any better results could be achieved by al-
lowing h to vary between 0.35 and 1, and the results were similar or inferior to what
was found above. Therefore, judging by the image quality (both perceptual and
mathematical), when implementing the generalized NL means denoising algorithm,
there is a benefit to considering greyscale shifts, but it is generally detrimental to
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consider affine transformations.
Let us now make the transition to a block-based version of the generalized

NL means denoising algorithm. Here an attempt is made to estimate an 8 × 8
denoised image subblock by writing it as a weighted sum of all non-overlapping
8 × 8 subblocks in the noisy image. The non-overlapping condition is chosen for
numerical efficiency.

Block-based results
Case Lena Mandrill Goldhill Boat

1
RMSE 0.0509 0.0785 0.0554 0.0581
SSIM 0.3945 0.6017 0.4553 0.3917

2
RMSE 0.0441 0.0692 0.0481 0.0508
SSIM 0.363 0.6135 0.4545 0.4024

3
RMSE 0.0460 0.0704 0.0515 0.0518
SSIM 0.4048 0.5582 0.3959 0.3946

Barbara Peppers San Fran. Zelda

1
RMSE 0.0634 0.0537 0.0548 0.0416
SSIM 0.4784 0.3894 0.3165 0.393

2
RMSE 0.0553 0.0465 0.0479 0.0367
SSIM 0.5053 0.5317 0.3350 0.4777

3
RMSE 0.0573 0.0477 0.0490 0.0383
SSIM 0.4808 0.4166 0.3427 0.4509

Table 4.2.3: RMSE and SSIM values relative to their respective originals for eight
images produced by block-based NL means denoising.

Fig. 4.2.3 and Table 4.2.3 show the results of the block-based experiments for
Lena, Peppers, and San Francisco. The first column is case 1, the second column is
case 2, and the third column is case 3. San Francisco is included here because for
the block-based algorithm, it was the only image that achieved its best SSIM value
in case 3. However, as in the pixel-based case, we see that case 2 is generally the
best according to the RMSE and SSIM values relative to the original image. That
being said, case 1 suffers from less blockiness than cases 2 and 3. Also, judging by
the presence of more lines on the band of the hat in Lena and the quality of the
windows on the buildings in San Francisco, case 1 seems to preserve details the
best.

The blockiness seen here could be improved by considering smaller blocks at
a larger computational cost. In an effort to improve the case 3 results, h was
allowed to vary between 0.35 and 1. Unfortunately, no significant improvements
were observed.

To summarize, for all but one test image (Goldhill), an increase in the SSIM
values was observed when moving from case 1 to case 2. Only once was an increase in
SSIM observed when moving from case 2 to case 3. Therefore, the same conclusion
as in the pixel-based case is reached: allowing for affine transformations is generally
detrimental to the denoising process.
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Figure 4.2.3: Denoised Lena, Peppers, and San Francisco images created using a
block-based NL means denoising method. The first row is case 1, the second is case
2, and the third is case 3.

To briefly compare the block-based and pixel-based methods, look at Tables
4.2.2 and 4.2.3. From these we see that the results of the block-based method are
inferior to the pixel-based results except for Mandrill, cases 2 and 3, and Peppers,
case 2. Given the results for the rest of the images, Mandrill and Peppers seem
to be a deviation from the norm. Indeed, this conclusion is not entirely surprising.
Replacing entire blocks does not utilize pixel similarity windows as well as the
pixel-based method and so second-rate results are generally expected.
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4.3 Non-local means denoising in the wavelet do-

main

Consider a wavelet expansion of an image of resolution 2K × 2K , K ≥ 0. It has
already been shown that wavelet quadtrees can generally be well-approximated by
(scaled) copies of other wavelet quadtrees at the same or higher levels. With this
in mind, it is natural to consider an extension of the non-local means denoising
algorithm to the wavelet domain.

Consider the standard tensor-product (real) wavelet basis expansion of a noisy
image for which the wavelet coefficients can be arranged into a pyramid of blocks
at each decomposition level. At level k of this decomposition, 0 ≤ k ≤ K, the
coefficients can be further partitioned into horizontal, vertical, and diagonal detail
coefficients (denoted by Ah

k , A
v
k, and A

d
k respectively). Given a wavelet coefficient

nλ
kij , λ ∈ {h, v, d}, from a noisy image, let Nλ

kij denote the unique quadtree rooted at

nλ
kij . An estimate for a denoised quadtree is found by computing a weighted sum of

all of the other quadtrees in the wavelet expansion of the noisy image. Futhermore,
transformations of quadtrees of the form φ(t) = αt are allowed. Letting Dλ

kij denote
the estimate for the denoised quadtree, this gives

Dλ
kij =

∑

0≤k′≤k

0≤i′,j′≤2k
′−1

w(Nλ
kij, N

λ′

k′i′j′)αN
λ′

k′i′j′, (4.3.1)

The weights are calculated as

w(Nλ
kij, N

λ′

k′i′j′) =
1

Zi
exp

(

−
‖Nλ

kij − αNλ′

k′i′j′‖22
h2

)

,

where

Zi =
∑

0≤k′≤k

0≤i′,j′≤2k
′−1

exp

(

−
‖Nλ

kij − αNλ′

k′i′j′‖22
h2

)

.

The parameter α is chosen to minimize

∆λ kij
λ′ k′i′j′ = ‖Nλ

kij − αNλ′

k′i′j′‖2.

Of course, to compare quadtrees at different levels, the tree rooted at the higher
level in the quadtree structure has to be truncated to ensure that the quadtrees
being compared are of the same size.

For the following experiments, two special cases of the transformation φ(t) = αt
are considered. Numbering them so that the cases correspond somewhat to the work
done previously, they are:

1. Purely translational: Wavelet quadtrees at the same scale are compared. Set
α = 1. Since entire quadtrees are being replaced, this is analogous to block-
based NL means denoising.
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3. Affine, same-scale: Wavelet quadtrees at the same scale are compared. Opti-
mize over α.

Optimization over β is not allowed since at least theoretically, these quadtrees are
of infinite length and should be `2-summable.

To perform the wavelet-based denoising, estimates were calculated for detail
coefficient quadtrees rooted at level k = 6 (there are three decompositions total).
For computational ease, only quadtrees rooted at the same level and with the same
orientation were compared. That is, k = k′ and λ = λ′ in Eqn. (4.3.1). The
Daubechies-6 wavelet is used. While a variety of values for h were tested, the
following pictures display the results for h = 0.3. Different values for h led to many
different RMSE and SSIM values but 0.3 seemed to be the value that generally led
to high SSIM values for both cases.

Fig. 4.3.1 shows the pictorial results of these calculations for Lena, Peppers,
Zelda, and San Francisco. Table 4.3.1 shows the numerical results for all eight test
images. Visually there is very little variation between the two cases except that
case 1 is sharper and more detailed. The case 1 images look most similar to the
case 2 images from the block and pixel-based denoising. Examining the table of
RMSE and SSIM values, there is no pattern to which case is better since the values
change so much from image to image. When h was allowed to vary, substantial
change in the RMSE and SSIM values was observed. For some values of h, case 1
was better while for others case 3 was best. Since the results seem to be largely
image-dependent, we are not able to say at this time which approach is truly better
when performing wavelet-based NL means denoising. With that being said, both
cases do offer an improvement over the original noisy image in both SSIM and
RMSE.

Case Lena Mandrill Goldhill Boat

1
RMSE 0.0402 0.0621 0.0432 0.0451
SSIM 0.4651 0.6569 0.5320 0.4463

3
RMSE 0.0405 0.0694 0.0455 0.0470
SSIM 0.4713 0.5502 0.4695 0.4262

Barbara Peppers San Fran. Zelda

1
RMSE 0.0477 0.0405 0.0454 0.0332
SSIM 0.5612 0.4774 0.3388 0.4309

3
RMSE 0.0502 0.0414 0.0459 0.0317
SSIM 0.5467 0.4831 0.3492 0.5882

Table 4.3.1: RMSE and SSIM values relative to their respective originals for eight
images produced by wavelet-based NL means denoising.

We also include the α histogram distribution associated with case 3 for Lena

and Mandrill in Fig. 4.3.2. These histograms are virtually identical and highly
symmetric about zero.

One question that should be asked is “How (or should) the approximation
coefficients be denoised?” One possibility is to save the approximation coefficients
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Figure 4.3.1: Denoised images created using the wavelet-based denoising method.
Rows 1 and 2: Cases 1 and 3 for Lena and Peppers. Rows 3 and 4: Cases 1 and 3
for San Francisco and Zelda.

at the highest decomposition level. Since these coefficients can be displayed in block
format, NL means denoising algorithm could be performed on this two-dimensional
coefficient matrix. This idea was explored during the experimentation process and
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Figure 4.3.2: Histogram distributions of the parameter α in case 3 of the wavelet-
based NL means denoising algorithm for noisy Lena (left) and Mandrill (right).

the results were virtually identical whether the approximation coefficients were
modified or not. This indicates that most of the noise in the wavelet expansion is
contained within the detail coefficients.

4.4 Summary

In this chapter a generalization of the well known non-local means denoising al-
gorithm involving affine transformation of image subblocks was proposed and im-
plemented in two ways: a pixel-based and a block-based method. The model was
then adapted to the wavelet representation of images for the purpose of denoising
wavelet quadtrees.

To compare the pixel and block-based methods, it suffices to say that the while
the block-based method offers a great computational advantage (depending on what
size of blocks are used of course), it can’t keep up with the pixel-based method in
terms of image quality due to the blockiness the denoised image takes on. Com-
paring the results from the wavelet-based method to the block- and pixel-based
results, the quality of the images for the wavelet-based method can’t compete. In
the wavelet-based images there is also a lot of blurring and ringing around edges
which makes it an unattractive choice.

Of large significance is whether any advantage is found by allowing for affine
transformations of the form φ(t) = αt + β in NL means denoising. For the pixel
and block-based methods, there is no advantage to considering optimization over
α because of the obvious degradation in image quality (most noticeably, blurring
and spurious texturing). On the other hand, allowing for greyscale shifts improves
the image quality according to the SSIM Index and seems to preserve more details.
The computational cost is not much more here than in the strictly translational
case so this could be an attractive choice for NL means denoising.

In the wavelet-based cases, such a wide range of results are observed that we
are unable to say definitively at this time whether letting α vary is good or bad for
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denoising process. That being said, because of the extra blurring and loss of detail
that results when α varies, allowing it to change is probably a poor choice.
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Chapter 5

Optimizing the SSIM function on
an L2 ball

5.1 Introduction and the problem

Consider the following set of Einstein pictures, some of which were presented in
Chapter 3.

(a) MSE=0, SSIM=1 (b) MSE=309, SSIM=0.987 (c) MSE=309, SSIM=0.576

(d) MSE=313, SSIM=0.730 (e) MSE=309, SSIM=0.580 (f) MSE=308, SSIM=0.641

Figure 5.1.1: Comparison of modified versions of an “Einstein” image which are
approximately constrained to the L2 ball of radius 310 centred on the original. (a)
Original image. (b) Luminance shift. (c) Additive Gaussian noise. (d) Impulsive
noise contamination. (e) JPEG compression. (f) Blurring.
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The modified images all have MSE values quite close to 310 but they are very
different perceptually. These perceptual differences are further illustrated by the
wide range of SSIM values. Given a reference image I0, it would be interesting to
be able to mathematically describe images that are a prescribed L2 distance away
from I0 as being the “best” or “worst” approximation to I0 according to SSIM. In
fact, this is a specific case of the following more general problem [21]: find the best
and worst approximations to a reference image (according to some image similarity
measure) while being constrained away from the reference image on a level set of
some other distance function.

In [21], they propose using a gradient ascent/descent to approximate these crit-
ical points. The problem with this is that there is no guarantee of reaching an
absolute maximum or minimum. In this chapter, we take a more mathematical
approach and seek an analytic solution to the following problem:

Given a point a = (a1, · · · , aN) ∈ RN , let SD(a) denote the L2 ball of radius D
centered at a. That is,

SD(a) = {x ∈ R
N | ‖x− a‖2 = D}.

Find and classify the critical points of the SSIM function,

S(x, a) =
4x̄āsxa

(x̄2 + ā2)(s2x + s2a)
, (5.1.1)

on SD(a).

5.2 The solution

The method of Lagrange multipliers will be used to tackle this problem but first a
few definitions are necessary:

x̄ =
1

N

N
∑

k=1

xk,

s2x =
1

N − 1

N
∑

k=1

(xk − x̄)2,

sxa =
1

N − 1

N
∑

k=1

(xk − x̄)(ak − ā). (5.2.1)

Now consider the Lagrangian function

L(x) = S(x, a) + λg(x),

where

g(x) =
N
∑

k=1

(xk − ak)
2 −D2,
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and λ denotes a Lagrange multiplier. Impose the conditions that

∂L

∂xp
= 0, 1 ≤ p ≤ N,

and
∂L

∂λ
= 0. (5.2.2)

The final condition specifies that g(x) = 0 or x ∈ SD(a). Computing partial
derivatives, it is found that

∂S

∂xp
=

4ā

N(x̄2 + ā2)2(s2x + s2a)
2

[

sxa(s
2
x + s2a)(ā

2 − x̄2) (5.2.3)

+
N

N − 1
x̄(x̄2 + ā2)(s2x + s2a)(ap − ā)− 2N

N − 1
x̄sxa(x̄

2 + ā2)(xp − x̄)

]

Then the constraints ∂L
∂xp

= 0 become

4ā

N(x̄2 + ā2)2(s2x + s2a)
2

[

sxa(s
2
x + s2a)(ā

2 − x̄2) +
N

N − 1
x̄(x̄2 + ā2)(s2x + s2a)(ap − ā)

− 2N

N − 1
x̄sxa(x̄

2 + ā2)(xp − x̄)

]

+ 2λ(xp − ap) = 0, 1 ≤ p ≤ N. (5.2.4)

Summing up both sides of (5.2.4) for 1 ≤ p ≤ N , the following equality is obtained:

4ā

(x̄2 + ā2)2(s2x + s2a)
2
sxa(s

2
x + s2a)(ā

2 − x̄2) + 2Nλ(x̄− ā) = 0. (5.2.5)

This is clearly satisfied if x̄ = ā. To fully solve the problem, it will also be necessary
to consider the case x̄ 6= ā.

Case 1: x̄ = ā

In this case, the equations in (5.2.4) become, after some simplification and manip-
ulation,

1

(N − 1)(s2x + s2a)
2

[

(s2x + s2a)(ap − xp) +(s2x + s2a − 2sxa)(xp − ā)
]

+ λ(xp − ap) = 0, 1 ≤ p ≤ N. (5.2.6)

It is easy to show that

s2x + s2a − 2sxa =
D2

N − 1
. (5.2.7)

Substituting this into (5.2.6) yields the set of equations

1

(N − 1)(s2x + s2a)
2

[

(s2x + s2a)(ap − xp) +
D2

N − 1
(xp − ā)

]

+λ(xp−ap) = 0, 1 ≤ p ≤ N.

(5.2.8)
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Rewrite these equations as follows:

[

1

(N − 1)(s2x + s2a)
− λ

]

(ap − xp) = − D2

(N − 1)(s2x + s2a)
2
(xp − ā), 1 ≤ p ≤ N.

(5.2.9)
If xp = ā for any p ∈ {1, 2, · · · , N}, then there are two possibilities:

1. xp = ap, implying that ap = ā. Note that the equations xp = ap cannot be
true for all p ∈ {1, 2, · · · , N} since this would imply that x = a, violating the
condition that x ∈ SD(a).

2. The Lagrange multiplier λ satisfies the equation,

λ =
1

(N − 1)(s2x + s2a)
, (5.2.10)

at the extremum.

Case 2: If Eqn. (5.2.10) holds, then, from Eqn. (5.2.9), xp = ā for all 1 ≤ p ≤ N .
But this implies that

N
∑

k=1

(xk − ak)
2 =

N
∑

k=1

(ak − ā)2 = (N − 1)s2a, (5.2.11)

which is not necessarily equal toD2. In fact, s2a and D can be chosen independently.
Hence x does not necessarily lie on SD(a), violating the constraint.

Case 1: Rearrange the equations in (5.2.8) for those values of p such that ap 6= xp
and call this set of p-values P1:

(N − 1)(s2x + s2a)
2

D2

[

1

(N − 1)(s2x + s2a)
− λ

]

=
xp − ā

xp − ap
, p ∈ P1. (5.2.12)

For each pair (a,D), the LHS of (5.2.12) is a constant at each extremum, indepen-
dent of p. Denote this constant as

β = β(a,D) =
xp − ā

xp − ap
, p ∈ P1. (5.2.13)

It is now useful to examine the consequences of (5.2.13), noting that

xp − ā = β(xp − ap), 1 ≤ p ≤ N, (5.2.14)

since for p /∈ P1, both sides of the equation are zero. First,

N
∑

k=1

(xk − ā)2 = β2D2. (5.2.15)
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Clearly then, since x̄ = ā,

s2x =
1

N − 1
β2D2. (5.2.16)

Now assume β 6= 0. This is reasonable, since not all of the xp are equal to ā. Then
we can write

2sxa =
1

N − 1
β2D2 − 1

N − 1
D2 + s2a. (5.2.17)

Also assume that β 6= 1. If β = 1 then from (5.2.14), ap = ā and so s2a = 0. By
substituting Eqns. (5.2.17) and (5.2.16) into (5.1.1), it is immediate that S(x, a) = 0
and the problem is trivial. So, under the assumption β 6= 1, from the definition of
sxa and Eqn. (5.2.7), it can be shown that

sxa =
β

β − 1
s2a. (5.2.18)

Returning to the structural similarity function and employing the results obtained
so far, including x̄ = ā, it is found that:

S(x, a) =
βs2a

βs2a +
β−1
2

D2

N−1

.

Now combine Eqs. (5.2.17) and (5.2.18) to get

2β

β − 1
s2a =

D2

N − 1
β2 − D2

N − 1
+ s2a. (5.2.19)

Multiplying both sides by β − 1 and rearrangement produces the following cubic
equation in the unknown β:

D2

N − 1
β3 − D2

N − 1
β2 −

(

D2

N − 1
+ s2a

)

β +

(

D2

N − 1
− s2a

)

= 0. (5.2.20)

One root of this cubic equation is β = −1. Dividing by β + 1, the other two roots
are found to be

β = 1±
√

(N − 1)s2a
D2

.

It remains to find the values of S(x, a) that correspond to each value of β. Substi-
tuting β = −1 into Eqn. (5.2.14) and rearranging yields the point

x =
1

2
(a− ā1),

which does not generally lie on the ball (here, 1 denotes the N -vector (1, 1, · · · , 1)).
Thus, β = −1 is rejected.

1. β = 1 +
√

(N−1)s2a
D2 . In this case, the structural similarity is given by

S1(x, a) =
s2a + sa

D√
N−1

s2a + sa
D√
N−1

+ D2

2(N−1)

.
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2. β = 1−
√

(N−1)s2a
D2 . In this case, the structural similarity is given by

S2(x, a) =
s2a − sa

D√
N−1

s2a − sa
D√
N−1

+ D2

2(N−1)

.

To compare the values of S1 and S2, it is convenient to express them as follows:

S1,2 =
a± c

a± c+ b
,

where

a = s2a, b =
D2

2(N − 1)
, c = sa

D√
N − 1

.

Since a, b, c > 0, it follows from simple algebra that S1 > S2.

Since the values of β corresponding to the extrema have been identified, the points
x ∈ RN at which each of the extrema occur can be computed from Eqn. (5.2.13).
For the β value corresponding to each case, solve for xp:

xp =
1

β − 1
(βap − ā), 1 ≤ p ≤ N. (5.2.21)

Summing over all p and dividing by N yields

x̄ =
β − 1

β − 1
ā = ā,

confirming that the condition x̄ = ā is satisfied. Then, substituting for β and
rewriting Eqn. (5.2.21) gives

xp = ap ±
D

sa
√
N − 1

(ap − ā). (5.2.22)

In vector format, Eqn. (5.2.22) may be written as

x = a± D

sa
√
N − 1

a′,

where a′ = a−ā1 denotes the zero-mean component of a. In fact, a closer inspection
shows that

x = a±Dâ′,

where â′ is the unit vector in the direction of the zero-mean component a′. Thus,
x ∈ SD(a).
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Case 2: x̄ 6= ā

Returning to Eqn. (5.2.5), if x̄ 6= ā, then the factor x̄ − ā may be divided out to
obtain the result

λ =
2āsxa(x̄+ ā)

N(x̄2 + ā2)2(s2x + s2a)
.

Substituting this result into Eqn. (5.2.4) and rearranging yields the equation

(xp − x̄)σxa

[

(σ2
x + σ2

a)(ā + x̄)− 2N

N − 1
x̄(x̄2 + ā2)

]

+(ap − ā)(σ2
x + σ2

a)

[

N

N − 1
x̄(x̄2 + ā2)− σxa(x̄+ ā)

]

= 0. (5.2.23)

As in Case 1, rearrange the equations in (5.2.23) for those values of p such that
ap 6= ā and call this set of p-values P2. After this rearrangement, an analysis similar
to that of Case 1 shows that the following ratio is constant at each extremum:

α = α(a,D) =
xp − x̄

ap − ā
, p ∈ P2.

The consequences of this relation will again be examined, noting that

xp − x̄ = α(ap − ā), 1 ≤ p ≤ N, (5.2.24)

since for p /∈ P2, both sides of the equation are zero. First, squaring both sides and
summing over 1 ≤ p ≤ N yields

s2x = α2s2a. (5.2.25)

Further, directly from the definition of sxa it is found that,

sxa = αs2a. (5.2.26)

It now remains to determine acceptable values for α. To this end, return to Eqn.
(5.2.3) which gives the components of the gradient vector ~∇S. At a stationary

point x, it is necessary that ~∇S(x) be a constant multiple of the outward normal
vector n̂ to the sphere SD at x, given by

n̂ =
1

D
(x1 − a1, x2 − a2, · · · , xN − aN ) =

1

D
(x− a). (5.2.27)

This is the essence of Eqn. (5.2.4), which is a result of the Lagrangian optimization
method.

To solve for the acceptable α values, substitute Eqns. (5.2.24), (5.2.25) and (5.2.26)
into Eqn. (5.2.3):

∂S

∂xp
=

4ā

N(x̄2 + ā2)2(s2x + s2a)
2

[

αs4a(1 + α2)(ā2 − x̄2)

+
N

N − 1
x̄(x̄2 + ā2)(1− α2)(ap − ā)

]

. (5.2.28)
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In general, the only way that the gradient vector ~∇S can be a multiple of the
normal vector n̂ is when the final term in the above equation vanishes, i.e., when
α = ±1. Then

∂S

∂xp
=

4ā

N(x̄2 + ā2)2(s2x + s2a)
2

[

αs4a(1 + α2)(ā2 − x̄2)
]

, 1 ≤ p ≤ N. (5.2.29)

Now both of the possible values for α are considered separately.

1. Case 1: α = 1. In this case, Eqn. (5.2.24) can be written as

xp − ap = x̄− ā. (5.2.30)

Furthermore, since x must lie on the sphere SD(a) squaring both sides of
(5.2.30) and summing over 1 ≤ p ≤ N yields

N
∑

p=1

(xp − ap)
2 = D2 = N(x̄− ā)2.

This implies that

x̄ = ā± D√
N
. (5.2.31)

Substituting this result into Eqn. (5.2.30) gives

xp = ap ±
D√
N
.

This implies that

x = a± D√
N
(1, 1, · · · , 1) = a±D1̂,

where 1̂ is the unit vector in the direction 1 = (1, 1, · · · , 1). In other words,
the vector x− a is perpendicular to the plane x̄ = ā.

From Eqn. (5.2.31), there are two more subcases:

(a) Case 1(a): The mean of x is given by

x̄ = ā+
D√
N
.

Evaluating S(x, a) at this point gives

S1a(x, a) =
2ā
(

ā+ D√
N

)

2ā
(

ā + D√
N

)

+ D2

N

.
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(b) Case 1(b): The mean of x is given by

x̄ = ā− D√
N
.

Once again, evaluating S(x, a) at this point gives:

S1b(x, a) =
2ā
(

ā− D√
N

)

2ā
(

ā− D√
N

)

+ D2

N

.

2. Case 2: α = −1. In this case, Eqn. (5.2.24) becomes

xp − x̄ = ā− ap. (5.2.32)

Rewrite the above equation as

xp − ap = (x̄− ā) + 2(ā− ap).

Now square both sides and sum over the index 1 ≤ p ≤ N :

D2 =
N
∑

p=1

(xp − ap)
2

= N(x̄− ā)2 + 4

N
∑

p=1

(ap − ā)2 + 2(x̄− ā)

N
∑

p=1

(ā− ap)

= N(x̄− ā)2 + 4(N − 1)s2a.

A slight rearrangement yields

x̄ = ā± 1√
N

√

D2 − 4(N − 1)s2a (5.2.33)

This result is feasible provided D and N are chosen so that

∆ = D2 − 4(N − 1)s2a ≥ 0.

If this is true then by substituting (5.2.33) into (5.2.32) it is found that the
two critical points are given by

x1 = 2ā1− a+
√
∆1̂, and

x2 = 2ā1− a−
√
∆1̂,

with corresponding values of S(x, a) given by

S−1a =
2ā
(

ā+
√

∆
N

)

2ā
(

ā +
√

∆
N

)

+ ∆
N

, and

S−1b =
2ā
(

ā−
√

∆
N

)

2ā
(

ā−
√

∆
N

)

+ ∆
N

.
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The quantities S1a, S1b, S−1a, and S−1b are of the same form that was encountered
in the equal means case. The same analysis shows that

S1a > S1b and S−1a > S−1b if ā > 0,

S1a < S1b and S−1a < S−1b if ā < 0.

5.3 Conclusion and some results

Let us summarize our findings below, introducing appropriate notation to differen-
tiate between the two cases. The following critical points and corresponding values
of S(x, a) were identified:

1. Case 1: x̄ = ā

S
(1)
β =

s2a + sa
D√
N−1

s2a + sa
D√
N−1

+ D2

2(N−1)

at x = a+Dâ′

S
(2)
β =

s2a − sa
D√
N−1

s2a − sa
D√
N−1

+ D2

2(N−1)

at x = a−Dâ′

2. Case 2: x̄ 6= ā

S(1)
α =

ā
(

ā+ D√
N

)

ā
(

ā + D√
N

)

+ D2

2N

at x = a+D1̂

S(2)
α =

ā
(

ā− D√
N

)

ā
(

ā− D√
N

)

+ D2

2N

at x = a−D1̂.

S(3)
α =

ā
(

ā+
√

∆
N

)

ā
(

ā +
√

∆
N

)

+ ∆
2N

at x = 2ā1− a+
√
∆1̂,

S(4)
α =

ā
(

ā−
√

∆
N

)

ā
(

ā−
√

∆
N

)

+ ∆
2N

at x = 2ā1− a−
√
∆1̂.

The last two critical points exist provided ∆ = D2 − 4(N − 1)s2a ≥ 0.

These formulas have been verified numerically. It would be desirable to be able
to derive a condition that guarantees whether the global extrema for S(x, a) occur
on or off the plane x̄ = ā. Indeed, numerical results show that global maxima
and minima may be obtained both on and off the plane. Unfortunately, actually
classifying and comparing these critical points seems quite complicated if it is indeed
possible. However, it has been shown that S

(1)
β > S

(2)
β . It is also true that

S(1)
α > S(2)

α and S(3)
α > S(4)

α if ā > 0, and

S(1)
α < S(2)

α and S(3)
α < S(4)

α if ā < 0.
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The above results will now be illustrated with a couple of examples using Lena

and Peppers. Instead of using the entire image, a local approach is taken. Let
Ri denote an image subblock. For each Ri, we seek the best approximation to Ri

according to SSIM while being constrained on an L2 ball about Ri. In the following
calculations, 8× 8 non-overlapping image subblocks are used and the radius of the
L2 ball is D = 300. Fig. 5.3.1 shows the results of these experiments.

(a) Best: SSIM = -0.0972 (b) Original: SSIM = 1 (c) Worst: SSIM = -0.1586

(d) Best: SSIM = -0.0435 (e) Original: SSIM = 1 (f) Worst: SSIM = -0.0701

Figure 5.3.1: Best and worst approximations to Lena and Peppers while constrained
on an L2 ball of radius 300.

The calculations that produced these images showed that the best approxima-
tions on the L2 ball almost always occurs off the plane x̄ = ā, while the worst
approximations are usually obtained on it. In fact, of all the eight test images
used, Peppers was the only image where a best approximation occurred on the
plane x̄ = ā. However, even for Peppers, this was the case only the case a hand-
ful of times. Visually, the best approximations on the L2 ball often appear to be
a greyscale shift of the original image (these correspond to the SSIM value S

(1)
α ).

The blocky appearance of the images is a result of maximum and minimum values
being obtained for values of x not corresponding to S

(1)
α or S

(2)
α . The reason for this

blocky appearance then is that S
(1)
α and S

(2)
α result from a uniform greyscale shift

of the image subblocks, and all the other SSIM values do not.
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Appendix A

Test images

Several 8-bit greyscale images are used repeatedly in experiments throughout this
thesis and they are included here for reference.

(a) Lena (b) Mandrill

(c) San Francisco (d) Boat

Figure A.0.1: Test images.
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(e) Peppers (f) Barbara

(g) Goldhill (h) Zelda

Figure A.0.1: Test images.
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Appendix B

More on the SSIM function

B.1 Notation

Let x, y ∈ RN . Throughout this appendix the SSIM function with zero stability
constants will be used:

S(x, y) = S1(x, y)S2(x, y) =
2x̄ȳ

x̄2 + ȳ2
· 2sxy
s2x + s2y

, (B.1.1)

where

x̄ =
1

N

N
∑

k=1

xk,

sxy =
1

N − 1

N
∑

k=1

(xk − x̄)(yk − ȳ), and

s2x =
1

N − 1

N
∑

k=1

(xk − x̄)2.

B.2 The SSIM Index in terms of complex wavelets

An extension of the SSIM Index to complex-valued wavelets is given in [20]. There
is, however, very little mathematical justification given for the formula. This section
shows that much like in the case of real-valued wavelets considered earlier in the
chapter on the SSIM Index, their formula can be justified by considering projections
of vectors onto complex-valued wavelet basis functions.

Before this can be done, a few modified definitions are required. Let x, y ∈ RM

where M = 2K for some K ≥ 0. The mean of the signal, x̄, is still defined the same
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way. However, the definitions for sxy and s2x are modified:

sxy =
1

N − 1

M
∑

k=1

(xk − x̄)(yk − ȳ)∗, and

s2x =
1

N − 1

M
∑

k=1

|xk − x̄|2.

Here, z∗ denotes complex conjugation and |z| denotes the modulus. Note that sxy
is no longer symmetric and as result, the SSIM Index is no longer symmetric with
respect to its arguments.

Now consider the projections of x and y onto a set of orthonormal zero-mean
(complex) wavelet basis functions {Ψk | 1 ≤ k ≤ N} which corresponds to a
quadtree with N nodes in the wavelet decompositions of x and y. For example, if
the quadtree is rooted at the very top of the pyramid of coefficients, N = 2K − 1.
This set of functions does not itself constitute a basis but is a subset of a basis
for C

M . The best L2-based approximations of x and y in terms of this basis are
written as

Px =

N
∑

k=1

akΨk and

Py =

N
∑

k=1

ckΨk,

where ak = 〈x,Ψk〉 and ck = 〈y,Ψk〉. It now remains to define Px, sPxPy, and s
2
Px

in terms of these expansion coefficients. First,

Px =
N
∑

k=1

akΨk = 0

since the wavelet basis functions are zero-mean. Next,

sPxPy =
1

N − 1

N
∑

k=1

(Pxk − Px)(Pyk − Py)∗

=
1

N − 1
〈Px, Py〉

=
1

N − 1

N
∑

k=1

akc
∗
k

The last step follows because the basis functions are orthonormal. To get s2Px, let
y = x in the formula for sPxPy to get

s2Px =
1

N − 1

N
∑

k=1

|ak|2.
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Let us now make these substitutions in the SSIM function remembering that
since Px = Py = 0, S1(x, y) = 1 and so S(x, y) = S2(x, y). Adding in the stability
constants, the SSIM function can be expressed in terms of the projection coefficients
of x and y as

SW,C(x, y) =

2
N−1

N
∑

k=1

akc
∗
k + C

1
N−1

N
∑

k=1

[|ak|2 + |ck|2] + C

. (B.2.1)

There are two glaring issues with SW,C(x, y). First, because there is no partial
ordering on CN , SSIM values cannot be directly compared. Furthermore, SW,C(x, y)
is not symmetric with respect to its arguments.

Before giving the complex wavelet SSIM (CW-SSIM) formula from [20], we
emphasize that it is subject to a greatly different interpretation than SW,C(x, y).
For this formula, let a = {ak | 1 ≤ k ≤ N} and c = {ck | 1 ≤ k ≤ N} denote
two sets of coefficients extracted from the same spatial location in the same level of
the wavelet coefficient quadtree structure of two vectors x and y, respectively. The
second CW-SSIM function is

S̃W,C(x, y) =

2|
N
∑

k=1

akc
∗
k|+ C

N
∑

k=1

[|ak|2 + |ck|2] + C

. (B.2.2)

The formula S̃W,C(x, y) can be seen to be obtained from SW,C(x, y) by taking
the modulus of the sum in the numerator. Also, it can be thought of as a kind
of special case of SW,C(x, y) where the basis functions used only correspond to one
level of the wavelet coefficient pyramid. Computationally, it is implemented by
moving a sliding window across the matrices of detail coefficients at each level in
the wavelet decomposition pyramid structure to get local estimates. These local
estimates are pooled by averaging to get an SSIM value for the entire image.

To briefly examine S̃W,C(x, y), it is symmetric with respect to x and y and
satisfies −1 ≤ S̃W,C(x, y) ≤ 1. An advantage to S̃W,C(x, y) is that it is immune to
local phase shifts in the image. It is, however, missing the factors of 1

N−1
present

in SW,C(x, y). It remains to be seen whether taking the modulus of the numerator
is the best way to compare SSIM values.

B.3 An extension to vector-valued signals

Applying the same type of argument as above, one could consider many different
bases on CN or RN and come up with many different expressions for the SSIM
function. However, a truly interesting and unique way of looking at the SSIM
function arises when vector-valued signals on RN are considered. This includes, for
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example, the RGB colour system where each sample is a triplet. In this section
some preliminary ideas on this subject are provided along with issues that were
encountered.

Let x and y be two N -vectors where each of the N samplings are n-dimensional
real vectors. Before the extension to SSIM is considered, it is once again necessary to
redefine the notions of the mean, variance and covariance of the signals in question.
Let

x = (x1, x2, · · · , xN )
where

xk = (xk1 , xk2 , · · · , xkn), 1 ≤ k ≤ N.

The mean of x is defined as

x̄ =
1

N

N
∑

k=1

xk

=
1

nN

N
∑

k=1

n
∑

l=1

xkl .

Instead of a single value for the sample covariance between two signals x and y,
there will now be an n-by-n matrix C = (cij) called the covariance matrix between
x and y whose entries are given by

cij =
1

N − 1

N
∑

k=1

(xik − xi)(yjk − yj), 1 ≤ i, j ≤ n. (B.3.1)

Letting y = x in (B.3.1) gives the definition for the covariance matrix of the
signal x. Again, this will be an n × n matrix S2

x = (s2x,ij) whose entries are given
by

s2x,ij =
1

N − 1

N
∑

k=1

(xik − xi)(xjk − xj), 1 ≤ i, j ≤ n (B.3.2)

Note that S2 is symmetric with respect to the main diagonal.
Before an attempt to make sense of the SSIM function defined in terms of these

new quantities C and S2
x can be made, several issues need to be resolved:

• What is the interpretation of 1
S2
x+S2

y
?

• How is matrix division interpreted in the SSIM function?

• The SSIM function needs to be made consistent with the matrix/vector di-
mensions.

At the time of this writing, this is an open problem which will need to be addressed
at a later date.
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B.4 Maximizing structural similarity between two

real-valued signals

In this section the parameters α and β that maximize S(u, αv+β) are derived. To
start, it is easily seen that when one makes the substitutions x = u and y = αv+β
in (B.1.1) that

S1(u, αv + β) =
2ū(αv̄ + β)

ū2 + (αv + β)2
, and

S2(u, αv + β) =
2αsuv

s2u + α2s2v
.

As is well known, to find the optimal parameters α and β, set

∂S(u, αv + β)

∂α
=
∂S(u, αv + β)

∂β
= 0. (B.4.1)

Note that the above expression for S2(u, αv+β) does not depend on β so the second
condition in (B.4.1) will only involve S1. First compute

∂S1(u, αv + β)

∂β
=

2ū[ū2 − (αv̄ + β)2]

[ū2 + (αv̄ + β)2]2
.

Clearly ∂S1

∂b
= 0 only when ū = ±(αv̄ + β) or

β = ū∓ αv̄.

If β = ū+ αv̄ then S1 = −1. This case then corresponds to an absolute minimum.
The absolute maximum is achieved when β = ū− αv̄ and in this case, S1 = 1.

Now compute

∂S2(u, αv + β)

∂α
=

2suv
[s2u + α2s2v]

2
[s2u − α2s2v] = 0. (B.4.2)

If ∂S2

∂α
= 0 then clearly α2 = s2u

s2v
which implies that

α = ±su
sv
.

From (B.4.2), it is easy to see that α = su
sv

corresponds to a maximum of S2 when
suv > 0 and a minimum of S2 when suv < 0. Further, since S1 is maximized for
β = ū − αv̄ regardless of the value of α, it follows that α = su

sv
corresponds to a

maximum of S when suv > 0 and a minimum of S when suv < 0. Therefore, the
parameters α and β that maximize S(u, αv + β) are

α = sgn(suv)
su
sv

and β = ū− αv̄.
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B.5 Maximizing structural similarity for real-valued

wavelet expansions

This section shows the derivation for the coefficient α that maximizes SW,R(u, αv).
Let x, y ∈ RN be two signals. The real-valued wavelet-based structural similarity
function is given by

SW,R(x, y) =

2

N
∑

k=1

akck

N
∑

k=1

[a2k + c2k]

. (B.5.1)

As it is not important in what follows, we omit any discussion of this formula here
and direct the reader to Sec. 3.2.2 for details. Make the substitutions x = u and
y = αv in the formula for SW,R(x, y). The expansion coefficients of αv are simply
the coefficients of v scaled by α. Thus we have that

SW,R(u, αv) =

2α
N
∑

k=1

akck

N
∑

k=1

[a2k + (αck)
2]

.

Now compute
dSW,R(u,αv)

dα
:

dSW,R(u, αv)

dα
=

[

2

N
∑

k=1

akck

][

N
∑

k=1

a2k − α2c2k

]

[

N
∑

k=1

a2k + α2c2k

]2 . (B.5.2)

Setting
dSW,R

dα
(u, αv) = 0 and solving for α yields α2 =

∑N
k=1

a2
k∑N

k=1
c2
k

which implies that

α± = ±
N
∑

k=1

a2k

/

N
∑

k=1

c2k .

Upon examining (B.5.2), it is clear then that if
∑N−1

k=1 akck > 0 then α+ corre-

sponds to a maximum of SW,R and that if
∑N−1

k=1 akck < 0 then α+ corresponds to
a minimum. Summarizing the above, the parameter α that maximizes SW,R(u, αv)
is given by

α = sgn

(

N
∑

k=1

akck

)

N
∑

k=1

a2k

/

N
∑

k=1

c2k .
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