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Abstract

A coaxial loudspeaker in which the woofer and tweeter oscillate at angular fre-

quencies ω1 and ω2 respectively, is known to produce sum and difference frequencies

ω± = ω1 ± ω2 [1]. The generation of these can be attributed to both the nonlin-

earity of the equations of motion and the Lagrangian boundary behaviour of the

low-frequency transducer. In order to characterize the phenomena of interest a

perturbation expansion of the field variables is introduced (sometimes called quasi-

linear approximation). After deriving a second-order equation for pressure, from

which the intermodulation frequencies are obtained, an attempt is made to justify

the dominance of the boundary mechanism over that of the fluid nonlinearity. An

exact integral solution is then given for the spatial factor of the ω± pressure terms.

In the special case of a farfield on-axis observer an analytic solution is obtained.

Several numerical investigations are performed and compared with experiment.
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Chapter 1

Introduction

1.1 Preamble

Before we begin our investigation, the following quote by Beyer [2] is worth men-

tioning:

“The analysis of a finite-amplitude wave in a real medium involves such a large

number of complications that it is not possible to carry the problem through to

solution without making an equally large number of mathematical approximations.”

1.2 History

While there exist various electro-acoustic transducer technologies [3, 4] the most

common type of loudspeaker driver comes in the form of a (typically) circular

diaphragm which oscillates as a result of the interaction between a permanent

magnet and a varying electromagnetic coil. Although a full study of a loudspeaker

would include the physics of the electrical/mechanical components themselves, here

we are only interested in the modulation of the air surrounding the speaker and

thus, for the sake of tractability, abstract the physical object into a simplified

mathematical model.
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Although typical electro-dynamic drivers have a conical shape, the standard

representative model is that of a flat vibrating piston in an infinite baffle as shown

in figure 1.1. According to Chernof [5] this model provides a valid approximation

of a loudspeaker up to frequencies of 1kHz.

The solution for the pressure anywhere in the field (based on the first-order

wave equation) was given by Rayleigh [6] over a century ago

p(x, y, z, t) = ρ0

∫
Sw

u̇p(ξ, η, t− r/c)
2πr

dSw (1.1)

where up is the velocity of the piston, ρ0 is the density of air and c is the speed of

sound. The surface Sw is shown in figure 1.1 and need not be circular but must lie

on the z = 0 plane for (1.1) to be valid. The distance r, also shown in the figure, is

given by r =
√

(x− ξ)2 + (y − η)2 + z2. While analytic solutions to this equation

can only be obtained in special cases (e.g. farfield, on axis of a circular piston) the

method used to obtain it is present in much of this thesis. For other results based

on non-circular geometries, off-axis observations and various solution methods the

reader is directed to [7–13].

(x,y,z)

x

y

z

Sw

(ξ,η,0)
r

Figure 1.1: Vibrating piston in infinite baffle.

For a more accurate investigation of a very specific structural/acoustic profile

a boundary element method would be required. The point here, however, is not to
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determine the output of any particular loudspeaker brand but to see if a simplified

mathematical model is a good representation of reality. If it is then we also seek to

determine what predictions can be made from varying the parameters within the

model. If it is not then there should be an attempt to justify any discrepancies

between theory and practice.

At this point we should clarify the specifics of the current undertaking. As was

mentioned, there is no shortage of investigations on modeling of a simple woofer

type loudspeaker. Often however, speaker systems contain both a low-frequency

woofer and high-frequency tweeter. Many, if not most, consumer models have these

two transducers located at two different positions on the baffle (typically the front of

the cabinet). An alternative is to have both transducers performing coaxially with

the high-frequency tweeter centered on the woofer (as it’s typically the smaller

of the two). This setup was previously examined internally by Timko [14] and

Gutfraind [15]. Unfortunately there aren’t many in-depth scientific investigations

of the benefits of one type versus the other. A technical document [16](white paper)

released by Frazier Loudspeakers lists some of the following features of coaxial

designs:

• Symmetry - Signals arrive at the same time regardless of listener position.

• Equal Phase - Due to the symmetry and the difficulty in building perfect

cutoff filters, varying phase profiles at different positions causes amplitude

distortions that are uniform as compared with a component setup.

• Seamless Crossover - With both tweeter and woofer at the same location it is

difficult to tell when the signal switches between the two.

• Size - The total size of the speaker system is reduced due to transducer coin-

cidence.

Note that these are simply characteristics of coaxial speakers and do not neces-

sarily represent absolute benefits. Depending on the required use of the transducer
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one may be inclined to choose a component setup over a coaxial design. Assum-

ing the aforementioned model-to-reality condition is satisfied, the purpose here is

to investigate in a mathematical fashion how the proximity of the tweeter to the

woofer is affected by the finite moving boundary.

Although many problems in acoustics are solved using the standard linear wave

equation, as we will see, these equations are in fact approximations derived from

nonlinear constitutive equations for fluids. Because of this, certain phenomena can

only be explained using the full nonlinear description. Moreover, when moving

boundaries are present there exists an additional source of complication within the

mathematics. Deciding which factor plays a more dominant role in any given situ-

ation is a non-trivial task. There have been extensive debates over the importance

of moving boundaries versus fluid nonlinearities as regards acoustic motion [17, 18].

As with several other studies, we choose to use a quasi-linear approximation to

the equations of motion in order to characterize the second-order behaviour from

both the boundaries and the fluid. Such an approach is based on Lighthill’s work

[19] on aerodynamics and its current form is due to many early investigations of the

scattering of sound by sound from Ingard & Pridmore-Brown [20] and Westervelt

[21] among others.

According to [20] it has been known since at least the 19th century that when

sound propagates through air the nonlinearity of the air not only distorts the wave

but also generates harmonics of the fundamental tone. Likewise, when multiple

sources are present in the medium, the same mechanism will generate sum and

difference frequencies of the underlying tones. Experiments by Thuras et al. [22]

confirm this. However, this type of generation requires intense acoustic pressures

of the order of 200 MPa to get harmonics which are between 36 to 24 decibels

lower than the fundamental. Since Thuras concludes that the combination tones

are proportional to the product of the magnitudes of the pressures of the individual

tones and since normal listening environments are between 0.002 to 0.02 Pa it seems

very unlikely that the nonlinearities of the air should contribute much. The moving
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boundary should be the main generator of sum and difference frequencies.

Nonetheless as we shall see, we present a method of solution which presupposes

the existence of both types of combination tone generation in order to be as general

as possible. Only then do we neglect certain terms based on the arguments above

and those to follow. Much of the forthcoming work will be concerned with time

harmonic vibrations generated by physical boundaries and as such will depend more

on these boundary values than initial values. Thus, we assume a steady state of

fluctuations and focus on solutions to boundary value problems with little interest

in the initial values and transient terms.

Chapter 2 will present the necessary background to and derivation of the quasi-

linear approximation method in order to obtain equations that are used throughout

this thesis. Chapter 3 introduces the method of solution based on Green’s functions

as well as certain mathematical concepts which will assist in the formulation of the

problem at hand. Chapter 4 gives various solutions, both analytical and numerical,

to the equations presented in Chapter 2 and establishes an integral solution to

the original problem from which various results are obtained and compared with

experimental setups.
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Chapter 2

Fundamentals

2.1 Fluid Equations

We begin by establishing the basic equations often used in acoustics. These stem

from the fundamental equations of fluid dynamics (with no sources), taken here

from Blackstock [23], namely

Dρ

Dt
+ ρ∇ · u = 0 (continuity),

ρ
Du

Dt
+∇p = (λ+ 2µ)∇(∇ · u)− µ∇×∇× u (momentum),

ρCv
DT

Dt
+ p∇ · u = Φ(λ, µ,u) + κ∇2T (energy),

p = RρT (ideal gas). (2.1)

The derivation of these can be found in any standard text on acoustics or fluid

mechanics1

The operator D/Dt is the standard material or advective derivative and the

variables have their conventional meanings:

1See for example the books by Kundu [24] or Kinsler [25]. A very detailed derivation (albeit

without any images) is given by Hunt [26]
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ρ - density

u = (u(x), v(x), w(x)) - fluid particle velocity

p - pressure

T - temperature

R - ideal gas constant

λ, µ - dilatational and shear viscosity coefficients

κ - heat conduction coefficient

Cv - specific heat at constant volume.

The function Φ represents viscous dissipation. It is customary [27] to assume

that, in air, acoustic waves are non-viscous and adiabatic (no heat flow, see footnote

below) so that λ = µ = κ = 0. Also, the function Φ, as given in [23], vanishes

when λ = µ = 0. With these assumptions, and using the ideal gas law, the energy

equation becomes

ρ
Cv
R

D

Dt

(
p

ρ

)
+ p∇ · u = 0. (2.2)

Then, using the fact that R = Cp − Cv and defining γ = Cp
Cv

and applying the

continuity equation, (2.2) becomes

ρ

γ − 1

D

Dt

(
p

ρ

)
− p

ρ

Dρ

Dt
= 0 (2.3)

which reduces, after several lines of algebra, to

D

Dt
(pρ−γ) = 0 or

p

ργ
= constant =

p0

ργ0
(2.4)

so for inviscid (λ = µ = 0) nonconducting (κ = 0) fluids, assuming an ideal gas, we

have the homentropic2 gas law

p

p0

=

(
ρ

ρ0

)γ
(2.5)

so that with the given assumptions, equation (2.5) and the continuity and momen-

tum equations of (2.1) form a set of 3 equations in 3 unknowns (5 if you consider

each component of u separately).

2The entropy s of the system is governed by ρT Ds
Dt = Φ + κ∇2T . The adiabatic assumption

simply implies κ = 0 and so when we also have Φ = 0 we see that Ds
Dt = 0 and therefore entropy

is constant, hence homentropic.
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2.2 Derivations

2.2.1 Speed of Sound

In the next sections we will be deriving the quasi-linear equations via successive

approximations using non-dimensional variables. Before doing so however, we must

establish the scalings to be used for each of the field variables. The notion of sound

speed is an important tool towards this development.

Generally, the speed of sound, in any medium, is proportional to its stiffness and

inversely proportional to its density [28]. Also, in a given material, temperature

has a significant effect on propagation speed. Since the equation of state describes

the relationship between these three quantities it seems plausible that it would

characterize the speed of sound. We will see later that in fact3 the speed of sound

in any fluid is given by

c2 =
dp

dρ
(2.6)

which, with our current equation of state yields

dp

dρ
= γ

p0

ρ0

(
ρ

ρ0

)γ
. (2.7)

Although we will be using a perturbation style technique in order to gain informa-

tion about the various field quantities at different orders, we use a constant speed

of sound at all orders, namely the equilibrium value c0 . According to Borwick [29],

this assumption is valid so long as the magnitude of the pressure disturbance is

small relative to atmospheric pressure.

To obtain the equilibrium sound speed then, one need only assume ρ = ρ0 in

(2.7) to arrive at

c0 =

√
γp0

ρ0

. (2.8)

As was mentioned at the outset, we are trying to obtain appropriate scalings for the

field variables to use in our non-dimensional expansion. Even though we choose to

3The quantity c2 represents the advective term in the equations to follow.
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use a constant speed of sound we will develop the expansion for all field quantities

in order to maintain generality.

2.2.2 Scaling Quantities

Assuming typical listening situations, coaxial speakers, like any other acoustic

transducer, produce field disturbances (e.g., pressure, density) much smaller than

the ambient pressure. Because of this, perturbation techniques can be used to sepa-

rate different orders of the field variables. This approach has been taken by various

authors in differing forms. Morse and Ingard [30] use a generic expansion

ψ = ψ0 + ψ1 + ψ2 + · · ·

for any field quantity ψ. Blackstock [23] uses a similar method but is more careful in

stating the restrictions between quantities at each order. The investigation by van

Wulfften Palthe [31] provides a dimensionless approach, however it is applied to the

spherically symmetric case. In the above studies there are no explanations as to the

validity of the expansions in terms of a perturbative framework. Since it was not

immediately clear to the author that the combination of two first-order4 quantities

(say pressure and velocity) would yield the same order as two other quantities (say

density and pressure) a full investigation was undertaken to ensure that no other

“middle orders” were possible. To do this as accurately as possible a dimensionless

approach was used.

First we attempt to find appropriate scalings to create the non-dimensional

parameters in order to pursue with the investigation mentioned in the previous

paragraph. We assume that the field quantities obey an expansion of the form

ρ = ρ0 + ρ1 + ρ2 + · · ·

p = p0 + p1 + p2 + · · ·

u = 0 + u1 + u2 + · · · (2.9)

4The convention from here on is that the equilibrium conditions are considered zeroth order
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According to Morse & Ingard [30], for normal acoustic pressures it is reasonable to

impose the conditions

ρ0 � ρ1 � ρ2 · · · , p0 � p1 � p2 · · · ,u1 � u2 � · · · (2.10)

with

ρ2
1 = O(ρ2), p2

1 = O(p2), |u1|2 = O(|u2|) etc. (2.11)

meaning that each quantity is in and of itself a series of successively decreasing

terms. To establish that products of different field quantities are of the same mag-

nitude as products of the same field quantities (e.g., p1ρ2 = O(|u1|3)) we proceed to

establish the scalings for each of the variables. We arbitrarily choose to use density

as a starting point to give us our first scaling ρ0.

To find the scaling for the pressure we first expand p in a Taylor series about

the equilibrium density ρ0

p = p(ρ0) +
dp

dρ
(ρ0)(ρ− ρ0) +

1

2

d2p

dρ2
(ρ0)(ρ− ρ0)2 +

1

6

d3p

dρ3
(ρ0)(ρ− ρ0)3 + · · · (2.12)

then using the equation of state (2.5) to evaluate we obtain

p = p0+γp0

(
ρ− ρ0

ρ0

)
+
γ(γ − 1)p0

2

(
ρ− ρ0

ρ0

)2

+
γ(γ − 1)(γ − 2)p0

6

(
ρ− ρ0

ρ0

)3

+· · ·

(2.13)

If we now replace the difference quantities ρ−ρ0, p−p0 with their subsequent order

terms (up to second-order for brevity) using (2.9) and do some factoring we can

arrive at the following

p1

(
1 +

p2

p1

)
=
γp0

ρ0

ρ1

(
1 +

ρ2

ρ1

)1 +
(γ − 1)ρ1

2

(
1 + ρ2

ρ1

ρ0

)
+

(γ − 1)(γ − 2)ρ2
1

6

(
1 + ρ2

ρ1

ρ0

)2

+ · · ·


(2.14)

then by assumptions (2.10) we arrive, quite concisely, at

p1 � γp0 (2.15)

so that γp0 can be used as our scaling for the pressure. Before proceeding in the

same fashion with the particle velocity we mention that, given equation (2.13) we

10



can use the definition (2.6) to obtain a series expansion for the speed of sound

c2 =
γp0

ρ0

+
γ(γ − 1)p0

ρ2
0

(ρ− ρ0) +
γ(γ − 1)(γ − 2)

2ρ3
0

(ρ− ρ0)2 + · · · (2.16)

which at equilibrium reduces to (2.8). With this we can rewrite (2.15) as

p1 � c2
0ρ0. (2.17)

Finally, to find a characteristic measure for the fluid particle velocity we introduce

the notion of specific acoustic impedance5, denoted by Z, which relates the sound

pressure to the fluid particle velocity. The specific acoustic impedance will depend

on the type of wave that is produced and the medium through which it propagates

but the point here is merely to obtain some measure of scale in the particle velocity.

For this we resort to the impedance of a plane wave in air which is simply6 [23]

Z =
p− p0

u
= ρ0c0. (2.18)

Then by using the same idea as before we can relate the particle velocity and

pressure via

u1

(
1 +

u2

u1

)
=

p1

ρ0c0

(
1 +

p2

p1

)
(2.19)

which again, under the assumptions (2.10) reduces to u1 = p1
ρ0c0

and finally, using

(2.17) gives

u1 � c0. (2.20)

Therefore, in assuming a decreasing perturbation series for the field variables and

the first condition for the density, we arrive at the following restrictions

ρ1 � ρ0,

p1 � γp0,

|u| � c0. (2.21)

5Impedance is an important concept in many acoustical settings. The purpose here however

is to simply use it as a tool to find an appropriate scale.
6Recall we are assuming a plane wave so that in an appropriate coordinate system u = u

11



2.3 Non-dimensional Equations

We now introduce dimensionless variables in order to gain a better understanding

of the magnitudes of the disturbances under the conditions (2.21). According to

Fahy [32], for small enough disturbances, a fractional change in one of the field

variables results in a similar fractional change in the others. That is to say, relative

to their equilibrium states, each field quantity deviates by an equal percentage.

This implies that the dimensionless quantities

u

c0

= εũ,
ρ− ρ0

ρ0

= ερ̃,
p− p0

γp0

= εp̃, (2.22)

all share a common value7 of ε� 1 where each of the tilde quantities are O(1).

2.3.1 Continuity

Putting these variables first into the continuity equation of (2.1) we obtain

ρ0ε
∂ρ̃

∂t
+ ε2c0ρ0ũ · ∇ρ̃+ εc0ρ0∇ · ũ + ε2ρ0c0ρ̃∇ · ũ = 0. (2.23)

In order to ensure that the magnitudes of derivatives of the variables are comparable

to the variables themselves we introduce a characteristic time, tc and a characteristic

length, c0tc so that we may define τ = t
tc

and ∇̃ = c0tc∇ to give

ερ̃τ + ε2ũ · ∇̃ρ̃+ ε∇̃ · ũ + ε2ρ̃∇̃ · ũ = 0. (2.24)

Note that we have not yet introduced any series expansions and that the inherent

nonlinearities of the continuity equation are characterized by the ε2 terms. To

obtain the successive approximations (stopping at third order) we let

ρ̃ = ρ̃1 + ερ̃2 + ε2ρ̃3, ũ = ũ1 + εũ2 + ε2ũ3 (2.25)

and substitute into (2.24) to obtain

ε(ρ̃1τ + ερ̃2τ + ε2ρ̃3τ ) + ε2(ũ1 + εũ2 + ε2ũ3) · ∇̃(ρ̃1 + ερ̃2 + ε2ρ̃3) +

ε∇̃ · (ũ1 + εũ2 + ε2ũ3) + ε2(ρ̃1 + ερ̃2 + ε2ρ̃3)∇̃ · (ũ1 + εũ2 + ε2ũ3) = 0,

(2.26)

7ε is often characterized by the first of (2.22); the so called Mach Number

12



from which we can pick off the first-, second- and third-order equations

O(ε) ρ̃1τ + ∇̃ · ũ1 = 0 (2.27)

O(ε2) ρ̃2τ + ũ1 · ∇̃ρ̃1 + ∇̃ · ũ2 + ρ̃1∇̃ · ũ1 = 0 (2.28)

O(ε3) ρ̃3τ + ũ2 · ∇̃ρ̃1 + ũ1 · ∇̃ρ̃2 + ∇̃ · ũ3 + ρ1∇̃ · ũ2 + ρ̃2∇̃ · ũ1 = 0.(2.29)

2.3.2 Momentum

Substitution of (2.22) into the momentum equation of (2.1) under the current as-

sumptions (λ = µ = 0) yields

(ρ0 + ερ0ρ̃)(εc0ũt + ε2c2
0(ũ · ∇)ũ) +∇(p0 + γεp0p̃) = 0. (2.30)

Again, using the characteristic length and time of the previous section, this equation

reduces to

εũτ + ε2(ũ · ∇̃)ũ + ερ̃ũτ + ε3ρ̃(ũ · ∇̃)ũ + ε∇̃p̃ = 0. (2.31)

From here we can use the expansions (2.25) along with a similar ansatz for the

pressure, p̃ = p̃1 + εp̃2 + ε2p̃3 to obtain a rather large equation which, after order

separation becomes 8

O(ε) ũ1τ + ∇̃p̃1 = 0, (2.33)

O(ε2) ũ2τ + (ũ1 · ∇̃)ũ1 + ρ̃ũ1τ + ∇̃p̃2 = 0, (2.34)

O(ε3) ũ3τ + (ũ1 · ∇̃)ũ2 + (ũ2 · ∇̃)ũ1 + ρ̃1ũ2τ + ρ̃2ũ1τ + ρ̃(ũ1 · ∇̃)ũ1 + ∇̃p̃3 = 0

. (2.35)

8If one assumes irrotational flow (which we will in the forthcoming section) the last of these

equations can be simplified using the vector identity

∇(F ·G) = (F · ∇)G + (G · ∇)F + F× (∇×G) + G× (∇× F) (2.32)

where the last two terms vanish under irrotationality.

13



2.3.3 State

The ordered equations of state materialize rather quickly from the pressure expan-

sion (2.13). After substituting the dimensionless quantities (2.22) into (2.13) to

get

εp̃ = ερ̃+

(
γ − 1

2

)
ε2ρ̃2 +

(γ − 1)(γ − 2)

6
ε3ρ̃3 . . . (2.36)

and using the expansions for pressure and density, followed by order separation, we

arrive at

O(ε) p̃1 = ρ̃1 (2.37)

O(ε2) p̃2 = ρ̃2 +

(
γ − 1

2

)
ρ̃2

1 (2.38)

O(ε3) p̃3 = ρ̃3 + (γ − 1)ρ̃1ρ̃2 +
(γ − 1)(γ − 2)

6
ρ̃3

1. (2.39)

2.4 Wave Equations

To solve these equations we reduce each order from 3 variables to 1 variable. The

first-order equations are easily reduced to any variable of choice however the higher

order expressions are quite cumbersome. Since pressure is easily measured in the

lab (and commonly used in acoustic theory) we will solve the equations in terms of

pressure p.

2.4.1 First-Order

Combining the time derivative ( ∂
∂τ

) of (2.27) and the divergence (∇̃·) of (2.33) we

obtain

ρ̃1ττ + ∇̃ · u1τ = 0, ∇̃ · u1τ + ∇̃2p̃1 = 0,

⇒ ρ̃1ττ − ∇̃2p̃1 = 0, (2.40)

and using (2.37) we derive the standard first-order non-dimensional wave equation

for pressure

p̃1ττ − ∇̃2p̃1 = 0 . (2.41)

14



Note that a similar equation can be derived for density using (2.37). That for

particle velocity is obtained by taking the time derivative of (2.33) and the gradient

of (2.27) to obtain (using a vector identity)

u1ττ − [∇̃ × (∇̃ × u1) + ∇̃2u1] = 0. (2.42)

Vorticity

According to Blackstock [23] acoustic phenomena are generally irrotational and

vorticity is only significant when shear stresses along boundaries are important.

Irrotational flow is represented mathematically [24] as ∇ × u = 0 so that when a

flow is vorticity-free the equation for velocity reduces to the standard wave equation

u1ττ − ∇̃2u1 = 0. (2.43)

Since we have ignored shear stresses at the outset (thus giving us a zero right hand

side for the momentum equation), we can obtain a time evolution equation for the

first-order vorticity by taking the curl of (2.33) and noting that ∇̃×∇̃p̃1 ≡ 0 to get

(∇̃ × ũ1)τ = 0 (2.44)

and since we assumed the equilibrium condition ũ = 0, meaning each order of the

velocity expansion (2.25) is initially 0, then we have that ∇̃ × ũ1 = 0. A similar

argument applies to the second-order velocity field. Taking the curl of (2.34) and

using several vector identities along with (2.37) and (2.33) we arrive at

(∇̃ × ũ2)τ = −ρ̃1(∇̃ × ũ1)τ + ∇̃ × (ũ1 × (∇̃ × ũ1)) (2.45)

which, after using the result of (2.44) and the zero initial state, we obtain ∇̃×ũ2 = 0.

We can continue in this fashion for third and higher order but it is perhaps more

convenient to point out that these results can alternatively be obtained using the

the fundamental equation of momentum (2.1) for an inviscid, barotropic flow (an

ideal gas satisfies this condition). This result is famously referred to as Kelvin’s

circulation theorem [24].
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In the following section and indeed throughout the rest of this thesis we will focus

on the acoustic pressure p. When necessary, quantities such as particle velocity u

will be derived from the equations of momentum or continuity once the solution

for the pressure has been obtained.

2.4.2 Higher-Orders

The wave equation for pressure at second-order follows much the same procedure

as in the previous section. Combining the τ derivative of (2.28) with the divergence

of (2.34) and using some vector identities along with the irrotational assumption

gives, after much simplification

ρ̃2ττ + ∇̃ · (ρ̃1τ ũ1)− 1

2
∇̃2|ũ1|2 − ∇̃2p̃2 = 0. (2.46)

Then using (2.37), (2.38) and (2.27) we arrive at the non-dimensional second-order

wave equation for pressure

p̃2ττ − ∇̃2p̃2 =
(
γ−1

2

)
(p̃2

1)ττ + (p̃1τ )
2 − ∇̃p̃1τ · ũ1 + 1

2
∇̃2|ũ1|2 . (2.47)

Although we will not use it in this thesis, we state the third-order non-dimensional

wave equation for pressure which, as was done previously, can be obtained by taking

the τ derivative of (2.29) and the divergence of (2.35). After numerous substitutions

of the equations of state, continuity and momentum we obtain

p̃3ττ − ∇̃2p̃3 = (γ − 1)(p̃1p̃2)ττ +
(γ − 1)(1− 2γ)

6
(p̃2

1)ττ + ∇̃2(ũ1 · ũ2)

+
p̃1

2
∇̃2|ũ1|2 +

∇̃p̃1

2
· ∇̃|ũ1|2 − ∇̃ · (p̃1τ ũ2)− ∇̃ · (p̃2τ ũ1)

+

(
γ − 1

2

)
(p̃2

1)τ∇̃ · ũ1 +

(
γ − 1

2

)
ũ1 · ∇̃(p̃2

1). (2.48)

We have derived the wave equations that will be used in much of the forthcoming

sections. It should be noted that these equations are assuming no physical sources

within the medium. Later we will modify these slightly to include sources once we

have introduced the notion of acoustic monopole.

16



As is typical with a perturbation approach we note that (2.47) has terms on

the right hand side that only depend upon the solution of (2.41). Similarly, (2.48)

can be solved (in principle) once the first two wave equation solutions have been

obtained.

The benefit of this approach compared to using the full nonlinear equations in

(2.1) is that analytic solutions to the wave equation are well established for certain

geometries [33]. In other cases if we can obtain a formal solution to the general

inhomogeneous wave equation ptt − c2∇2p = f then since we can write both (2.47)

and (2.48) in this form, we can arrive at the corresponding formulas for p2 and

p3 (in the dimensional case). Indeed due to the linearity of the wave equation a

formal solution exists in the form of an integral with a specific kernel often called

the Green’s function (or fundamental solution [34]). The subsequent chapter will

delve into the foregoing method, which as we will see, relies heavily on boundary

conditions.

2.5 Boundary Conditions

The final expansion that we require is one for the boundary condition. Whereas the

previous derivations were rather general and can be used for a variety of physical

problems we now specify conditions for the problem at hand.

We are to investigate the modulation of a high frequency wave due to the motion

of a nearby woofer. As was mentioned in the introduction, the woofer is modeled by

a flat moving piston located on an infinite plane baffle coinciding with the xy plane

(see Figure 1.1). We assume that all points on the piston (x, y, z) ∈ Sw move in

unison such that z = B1(t) where the function B1 prescribes the motion (position)

of the boundary in time, i.e., the piston moves parallel to the z-axis. Every other

point (x, y) /∈ Sw on the baffle is assumed to have zero velocity. This allows us to
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establish the boundary condition for the particle velocity

u(x, y, B(t), t) · n = −Ḃ1(t) for (x, y) ∈ Sw

u(x, y, 0, t) · n = 0 for (x, y) /∈ Sw (2.49)

where n = (0, 0,−1) is normal to the boundary9. Since u = (u, v, w) the non-trivial

boundary condition (2.49) implies

w(x, y, B1(t), t) = Ḃ1(t), for (x, y) ∈ Sw (2.50)

which essentially says that the particle velocity in the z direction at the position

z = B1(t) is equal to the velocity of the woofer Ḃ1(t). Prescribing the boundary

condition at z = B1(t) instead of the more convenient (and often used z = 0) is

essential to the method of solution. It is in fact because of this requirement that

we are able to obtain the results that will follow.

Since we assume that the boundary (and the tweeter) are the only sources of

disturbance in an otherwise quiescent medium, it must be a small boundary dis-

turbance that causes the respective perturbative disturbances in the field variables.

Seeing that B1 is a length we can nondimensionalize as10

B1(t)

c0tc
= εB̃1(τ) (2.51)

where B̃1 is order 1. Applying τ = t
tc

gives

Ḃ1(t) = εc0B̃1τ (τ). (2.52)

For notational convenience we omit the x and y dependence in the following since

it is only our z dimension which is of interest.

9The sign of the normal here is rather arbitrary in that we could use −n and change the sign

of the function B1 (assuming periodic motion) to accommodate the situation. In the next chapter

it is convenient to use this normal.
10A reasonable choice for c0tc for oscillatory motion would be the wavelength λ (making tc the

period). For woofer amplitudes less than 1cm with frequencies below 100Hz, λ > 3m so that

ε� 1.
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Defining w(z, t) = w̃(z̃, τ) where z̃ = z
c0tc

and using the fact that u
c0

= εũ and

the expansion for ũ (2.25) we have, from (2.49)-(2.52)

εc0(ũ1 + εũ2 + ε2ũ3 . . .) · n = −εc0B̃1τ (τ),

εw̃1(εB̃1(τ), τ) + ε2w̃2(εB̃1(τ), τ) + ε3w̃3(εB̃1(τ), τ) = εB̃1τ (τ). (2.53)

To obtain conditions at each order we expand (2.53) in a Taylor series about z = 0,

again, suppressing the x and y dependence

ε

[
w̃1(0, τ) + w̃1z̃(0, τ)εB̃1(τ) +

1

2
w̃1z̃z̃(0, τ)ε2B̃2

1(τ) +
1

6
w̃1z̃z̃z̃(0, τ)ε3B̃3

1(τ) + · · ·
]

+ ε2
[
w̃2(0, τ) + w̃2z̃(0, τ)εB̃1(τ) +

1

2
w̃2z̃z̃(0, τ)ε2B̃2

1(τ) +
1

6
w̃2z̃z̃z̃(0, τ)ε3B̃3

1(τ) + · · ·
]

+ ε3
[
w̃3(0, τ) + w̃3z̃(0, τ)εB̃1(τ) +

1

2
w̃3z̃z̃(0, τ)ε2B̃2

1(τ) +
1

6
w̃3z̃z̃z̃(0, τ)ε3B̃3

1(τ) + · · ·
]

= εB̃1τ (τ). (2.54)

Once the orders have been separated we arrive at the following conditions

O(ε) w̃1(0, τ) = B̃1τ (τ), (2.55)

O(ε2) w̃2(0, τ) = −w̃1z̃B̃1(τ), (2.56)

O(ε3) w̃3(0, τ) = −1

2
w̃1z̃z̃(0, τ)B̃2

1(τ)− w̃2z̃(0, τ)B̃1(τ).. (2.57)

The meaning behind these expressions is not very mysterious. At first-order we

expect that the particle velocity in the z direction be identical to that of the moving

piston (albeit at the position z = 0). The second of these is a correction for the

fact that at first-order we assume the motion to be strictly at z = 0. It attempts to

compensate for how much the first-order particle velocity varies with position(w̃1z̃)

and then multiplies this quantity by the position that we are currently at (B̃1).

The third-order condition has a similar dependence although it is compensating for

the second-order position and thus has a second term to deal with the first-order

changes as well.

As we will see, it is in fact the second of these, (2.56), which gives us much

of the information about how nearby acoustic sources are affected by the non-zero

boundary position.
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2.6 Final Dimensional Equations

The previous sections were meant to derive, in a somewhat rigorous fashion, the

perturbation expansions of the equations of fluid motion as well as of the boundary

problem. To achieve this we used a non-dimensional approach in order to quell any

concerns about the relative magnitudes of various quantities and their derivatives.

In doing so, we established the wave equations to be used in the forthcoming sec-

tions. At this point however, it is easier (for both notational and reference purposes)

to revert to dimensional quantities within these equations. Doing so is simply a

matter of algebra and so we state, without display of procedure, the equivalent

equations to those presented in the previous sections. Also, as was noted in section

2.2.1, we will be using a constant speed of sound c0 =
√

γp0
ρ0

. Because of this, we

shall suppress the subscript 0 and simply write c0 = c.

The following is a summary of the equations that will be used, separated by

order

0th order:

p = p0, ρ = ρ0, u = 0. (2.58)

1st order

ρ1t + ρ0∇ · u1 = 0 (continuity), (2.59)

ρ0u1t +∇p1 = 0 (momentum), (2.60)

p1 − c2ρ1 = 0 (state), (2.61)

p1tt − c2∇2p1 = 0 (wave). (2.62)
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2nd order

ρ2t + ρ0∇ · u2 = −ρ1∇ · u1 −∇ρ1 · u1 (continuity), (2.63)

ρ0u2t +∇p2 = −ρ1u1t − ρ0(u1 · ∇)u1 (momentum), (2.64)

p2 − c2ρ2 =
(γ − 1)c2

2ρ0

ρ2
1 (state), (2.65)

p2tt − c2∇2p2 =
(γ − 1)

2ρ0c2
(p2

1)tt +
1

ρ0c2
(p1t)

2

−∇p1t · u1 +
ρ0c

2

2
∇2|u1|2 (wave). (2.66)

Boundary conditions

1st order w1(x, y, 0, t) = Ḃ1(t), for (x, y) ∈ Sw (2.67)

2nd order w2(x, y, 0, t) = −w1z(x, y, 0, t)B1(t), for (x, y) ∈ Sw (2.68)

w(x, y, 0, t) = 0 for (x, y) /∈ Sw
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Chapter 3

Tools

3.1 Sources

3.1.1 Point Source

The concept of a point source is common to many fields of applied mathematics.

Here we will derive the notion of an acoustic monopole which will be used as the

model for the high-frequency tweeter. Generally, a source is a region of space that

by contact with the medium converts mechanical (or other forms of) energy to

acoustic energy which is radiated through the medium [30]. According to Pierce

[27], any small source which can be enclosed in a small time varying volume has

all the attributes of a point source, so long as the dimensions of the source are

small compared with the wavelength produced. Note that this behaviour applies

to sources of any shape, not necessarily spherical in any way.1 In the current

situation, we are dealing with a high-frequency transducer that is typically circular

and rather tiny. Although tweeter sizes do vary, for the frequencies of interest

here the wavelengths produced in air are an order of magnitude greater than the

dimensions of the source. It should also be pointed out that we must restrict our

investigation to distances that are several characteristic lengths (of the source, not

1See page 163 of [27].
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to be confused with the characteristic length given in the preceding chapter) away

from the source. This poses no difficulty however since the compact size of the

tweeter would only create measurement problems within a few centimetres of the

speaker; not a typical listening situation. As we will see, the concept of a point

source also plays an important role outside its obvious realm of applicability. In

fact, situations which cannot be modelled by a single point source can be viewed as

a distribution of point sources [23]. Also, solutions to the general theory of acoustic

radiation and diffraction governed by the inhomogeneous wave equation are based

on the idea of a simple source.2

Mathematically a point source is essentially the limiting case of a pulsating

spherical radiator as the radius goes to zero. To compensate for the diminishing

radius however, the velocity of the boundary motion must increase so as to maintain

the source strength of the original pulsating sphere [27]. To do this in a rigorous

fashion we first find the solution for the finite sized sphere. The following process

is adapted from the knowledge in [23, 27, 30].

In an unbounded medium, a pulsating sphere will produce an acoustic field

which is spherically symmetric. To solve for this pressure field we use (2.62) with

the Laplacian modified for spherical coordinates

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

r2 sin2 φ

∂2

∂θ2
(3.1)

where φ is the zenith angle and θ the azimuth angle.3 For spherically symmetric

waves the solution only depends on the radial distance r so that the last two terms

drop which gives, upon applying (2.62)

p1tt − c2

(
p1rr +

2

r
p1r

)
= 0. (3.2)

A clever substitution of h = rp1 turns (3.2) into

htt − c2hrr = 0 (3.3)

2The terminology varies between authors. Some use point source, others use simple source and

still others use acoustic monopole.
3According to [35] this is the American mathematical convention. It is common to switch the

roles of θ and φ.
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which has the famous d’Alembert solution

h = f(t− r

c
) + g(t+

r

c
) ⇒ p1 =

f(t− r
c
)

r
+
g(t+ r

c
)

r
(3.4)

for arbitrary functions f and g. The first term represents outgoing spherical waves

while the second represents incoming spherical waves. Since we have assumed an

unbounded medium so that only outgoing waves exist the pressure field can be

described by only the first term so that

p1 =
f(t− r

c
)

r
. (3.5)

In order to find the function f we must match the solution to boundary conditions

on the surface of the sphere.

For a pulsating sphere of radius a, we call Q(t) the volume flow of air (often

called the ‘volume velocity’) which is given mathematically by

Q(t) = 4πa2u(r)(a, t) (3.6)

where u(r) is the radial component of velocity (the only non-zero component in this

case). To relate the particle velocity to the pressure p1 we can use (2.60) which in

spherical coordinates4 gives

ρ0u
(r)
t +

∂p1

∂r
= 0 (3.7)

With our solution (3.5) we obtain

u
(r)
t (r, t) =

f(t− r
c
)

ρ0r2
+
f ′(t− r

c
)

ρ0cr
. (3.8)

Up until now we have not made any assumptions other than spherical symmetry.

To obtain the solution for a point source we let r = a and substitute our particle

velocity from (3.6) into the above equation to get

Q′(t)

4πa2
=
f(t− a

c
)

ρ0a2
+
f ′(t− a

c
)

ρ0ca
. (3.9)

4∇ = r ∂
∂r + φ 1

r
∂
∂φ + θ 1

r sinφ
∂
∂θ in spherical coordinates. The last two drop in spherically

symmetric cases.
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Multiplying both sides by a2 and then taking the limit as a→ 0 causes the second

term on the right-hand side to drop out leaving

f(t) =
ρ0Q

′(t)

4π
(3.10)

which upon substitution into (3.5) shows how the pressure is related to the rate of

volume flow

p1 =
ρ0Q

′(t− r
c
)

4πr
. (3.11)

Since Q represents volume per unit time or “volume velocity”, then Q′(t) is the

“volume acceleration”. We see then that the pressure field is proportional to the

acceleration of the boundary and not the velocity. In other words, it is only a

change in flow which affects the change in pressure. This should make sense since if

we were to put ourselves within a medium undergoing a strict mean flow (constant

velocity) we would hear no sound.

For a real physical source to be represented by a mathematical point in space

we must be able to characterize the physical source by some quantity. Indeed it

is the magnitude of this value Q, often called the “source strength”, which allows

us to do this. For example in time harmonic motion the idea is that we assume

u(r) = b0 cos(ωt) so that Q(t) = 4πa2b0 cos(ωt) = Q0 cos(ωt) so that for various

radii, the magnitude of the boundary velocity b0 adjusts to keep the source strength

Q0 constant. There is a caveat however; as can be seen from (3.6) a vanishing

radius requires a radial velocity which tends to infinity. Mathematically this is fine,

however clearly not physically realizable. On the other hand a sphere whose radius

shrinks to zero but still generates an acoustic field is equally absurd. However, as

Pierce points out

“Although an extremely small source of sufficiently large strength to generate audible

sound at appreciable distances would in actuality require consideration of nonlinear

terms, the concept of a point source generating waves governed by the linear acoustic

equations is a convenient extrapolation consistent with the general framework of

linear acoustic theory”.5

5Taken from [27] p.160.
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Despite its physical impossibility we will indeed be using the notion of a point

source to represent the high-frequency tweeter as under the appropriate conditions

it is a valid approximation and mathematically simple to apply.

In the next section we will determine what modifications to the equations given

in Chapter (2) are required in order to account for sources within the region. With

respect to the aforementioned point sources, to describe their location in a three

dimensional setting we add a spatial component given by the Dirac Delta6 function

so that the volume flow is given by

q(x− x0, t) = Q0[s(t)δ(x− x0)] (3.12)

where x0 is the location of the point source in space and s(t) is an O(1) function

describing the signal .

3.1.2 Modification to Wave Equations to Include Sources

When an object oscillates within a medium it creates a volume flow of air. A

specific example is found in the previous section where we had a pulsating sphere

creating the changes in volume denoted by Q(t). Since Q is measured in units of

volume per unit time (or volume flow), multiplying this quantity by the density ρ

gives units of mass per unit time. Of the fundamental equations given by (2.1) it is

the continuity equation that deals with mass generation. It is in fact a statement

of the conservation of mass which says

Rate of change Mass flow through Mass generation

of mass in a = the boundaries + within the volume

fixed volume of the volume per unit time

(3.13)

with the corresponding integral relationship (see figure 3.1 for notation)

d

dt

∫
V

ρdV = −
∫
S

ρu · ndS +

∫
V

ρq(x, t)dV. (3.14)

6A derivation of sorts is given in [27] beginning with a general distributed source over a small

region.
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V

S

u

n

sources

Figure 3.1: Arbitrary fixed volume within the medium. Here there are a finite number of point

sources that could be represented by a summation of amplitude varying delta functions. The

general case of mass generation would have a continuum function within the whole of the region,

such as in Equation (2.66) which will be discussed in chapter 4.

The function q(x, t) represents the volume velocity generated by all sources and is

measured in units of volume per unit time per unit volume, or, volume flow density

(also called source strength density).

Assuming all field variables are continuous, the integral form (3.14) can be con-

verted to differential form by taking the time integral inside (for a time independent

region) using the divergence theorem and the fact that V is arbitrary within the

medium, yielding
∂ρ

∂t
+∇ · (ρu) = ρq(x, t) (3.15)

which can be converted to that in (2.1) by using the material derivative D
Dt

. To

obtain order relations based on (3.15) we make the assumption that our function

Q is given by (3.12) where Q0 is of the same order as ε based on the argument

given in the paragraph above equation (2.51). That is to say, we assume that the

woofer and the tweeter, being the only acoustic sources in the medium, produce

sound pressures which are of the same order of magnitude.
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We can then write (suppressing the spatial dependence)7q(t) = εq̃(τ) and, using

(2.25) for the density obtain the modified continuity equations

O(ε) ρ̃1τ + ∇̃ · ũ1 = q̃(τ), (3.16)

O(ε2) ρ̃2τ + ũ1 · ∇̃ρ̃1 + ∇̃ · ũ2 + ρ̃1∇̃ · ũ1 = ρ1q̃(τ), (3.17)

(3.18)

with modified wave equations

O(ε) p̃1ττ − ∇̃2p̃1 = q̃τ (τ), (3.19)

O(ε2) p̃2ττ − ∇̃2p̃2 =

(
γ − 1

2

)
(p̃2

1)ττ + (p̃1τ )
2 − ∇̃p̃1τ · ũ1,

+
1

2
∇̃2|ũ1|2 + p̃1τ q̃(τ) + p̃1q̃τ (τ), (3.20)

whose full dimensional versions become

O(ε) p1tt − c2∇2p1 = ρ0c
2q̇(x, t), (3.21)

O(ε2) p2tt − c2∇2p2 =
(γ − 1)

2ρ0c2
(p2

1)tt +
1

ρ0c2
(p1t)

2

−∇p1t · u1 +
ρ0c

2

2
∇2|u1|2 + p1tq(x, t) + p1q̇(x, t). (3.22)

3.2 Fundamental Solution of the Wave Equation

Similar to the notion of impulse response for linear, time-invariant systems, partial

differential equations have what is called a fundamental solution. General PDEs are

not guaranteed to have a fundamental solution [36]; however, for an equation which

7Although this equation is completely valid one may note that unless that tweeter and woofer

are radiating at the same frequency, one of the non-dimensional functions B̃1(τ) and q̃(τ) will

contain the ratio of the two frequencies. This is not an immediate issue however since the am-

plitudes of the functions will not change. The issue arises upon derivation of the wave equation

when a time derivative is necessary. The author did in fact create a system of equations based

on different time scales but for the purposes of estimating relative magnitudes it was found to be

more cumbersome than useful. We therefore classified the source q based solely on amplitude and

investigated its importance after solutions were obtained. See Chapter 4.
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is both linear and has constant coefficients, existence of the fundamental solution

(from here on referred to as the Green’s function) is assured by the Malgrange-

Ehrenpreis Theorem [37]. Fortunately the wave equation satisfies these criteria.

The purpose of the Green’s function (which we will denote by G and which is

sometimes called the influence function ) is to determine how much of an “influ-

ence” points surrounding an observation point contribute to the overall solution.

The function G therefore, accepts twice the number of parameters as the original

function we seek to find, that is G = G(ξ, η, ζ, τ, x, y, z, t) where the Greek variables

represent the influence points and the Roman variables represent the observation

point. Based on this description one might suspect that, in order to determine the

influence of all points in a region on a single point (x, y, z, t), a four-dimensional

integral is required; this is indeed the case.

Before performing this integration we must first find the function G. To do so,

in general, we are required to solve the equation

LG(χ − x) = δ(χ − x) (3.23)

where L is the linear differential operator associated with the PDE. In our case we

have 8

L =
∂2

∂τ 2
− c2∇2 (3.24)

and x = (x, y, z, t), χ = (ξ, η, ζ, τ) so that we are attempting to solve

Gττ − c2∇2G = δ(ξ − x, η − y, ζ − z, τ − t) (3.25)

with G = 0 for τ > t. That is, we assume future events do not influence the

present; the standard causality condition. We also assume we are in an unbounded

medium so that we are finding what is called the free-space Green’s function. What

is important here is that G satisfies the homogeneous version of (3.25) everywhere

other than the point (x, y, z, t). To determine G we use a method that, while not

8Note that this τ is unrelated to the dimensionless τ given above and in Chapter 2. Also, the

Laplacian is with respect to the influence variables.

29



terribly rigorous, is rather intelligible. An alternative and more pedantic derivation

is provided in Appendix B.

A physical way to interpret (3.25) is to note that, in the absence of any bound-

aries, the only disturbance comes from the delta function on the right-hand side.

There is no activity until τ = t at which time there is an impulse at the point

(x, y, z). If we assume a homogeneous medium then it is reasonable to seek G as a

function of r alone [38], where r =
√

(ξ − x)2 + (η − y)2 + (ζ − z)2.

We know from dealing with the point source in section 3.1.1 that the homoge-

neous wave equation in spherical coordinates admits solutions of the form

G =
f(τ − r

c
)

r
+
g(τ + r

c
)

r
(3.26)

for arbitrary functions f and g. Given a unit pulse disturbance, we expect only

outgoing waves meaning g = 0.

To find the form of the function f we integrate equation (3.25) using an epsilon

ball (unrelated to the dimensionless ε used previously, see Figure 3.2) surrounding

the point (x, y, z)∫
V

Gττ dV − c2

∫
V

∇2GdV =

∫
V

δ(ξ − x, η − y, ζ − z, τ − t) dV. (3.27)

Using the sifting property9 of the delta function, the right-hand side reduces to∫
V

GττdV − c2

∫
V

∇2GdV = δ(τ − t). (3.28)

The next step involves using the divergence theorem on the second term on

the left which, as Greenberg points out, is not actually valid due to the nature of

G around the point r = 0. The method is mostly formal though since, strictly

speaking, equation (3.25) is also invalid as the delta function is a distribution and

9The reader can find ample resources on the delta function if not in self-contained volumes

then certainly in almost any book about differential equations. A fine treatment, with regard to

its uses in finding Green’s functions, is given by Greenberg in section 3 of [38]
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(x,y,z)

r

n

(ξ,η,ζ)

ε
r

Figure 3.2: Epsilon ball used in finding the Green’s function for the wave operator,

ε > 0.

should be acting on a suitable test function10.

Proceeding with the theorem therefore and using our ansatz G =
f(τ− r

c
)

r
gives∫

V

f ′′

r
dV − c2

∫
S

∇G · n dS = δ(τ − t). (3.29)

In spherical coordinates ∇ is given in the footnote after equation (3.10) which

for radial-only dependence yields ∇G = ∂G
∂r

r with r being a unit vector. Also,

dS = r2 sinφ dφ dθ and, for a sphere surrounding (x, y, z), we have n = r so that

∇G · ndS = ∂G
∂r

(r2 sinφdφdθ). Then since ∂G
∂r

= − f ′

rc
− f

r2
we obtain∫

V

f ′′

r
dV + c2

∫
S

(
f ′

rc
+
f

r2

)
r2 sinφ dφ dθ = δ(τ − t). (3.30)

When the functions in question do not depend on the angles φ and θ we have

10It should be pointed out that not performing this step would lead to the rather peculiar result

0 = δ(τ−t) since our guess for G satisfies the homogenous wave equation. It would seem therefore

that the divergence theorem is helping us determine the nature of the singularity. Again, we refer

the reader to Appendix B for a rigorous derivation. The author finds it interesting however that

the result can be obtained by the method used above despite the lax approach.
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dV = 4πr2dr so that the first term above becomes∫
V

f ′′

r
dV =

∫ ε

0

4πrf ′′ dr (3.31)

which can be made arbitrarily small and therefore we neglect it. On the surface S

we have that r = ε is constant so that after simplifying we obtain∫
S

(
f ′

rc
+
f

r2

)
r2 sinφ dφ dθ = 4π(

f ′ε

c
+ f) (3.32)

so that for arbitrarily small ε we arrive at

c24πf(τ) = δ(τ − t) ⇒ f(τ − r

c
) =

δ(τ − t− r
c
)

4πc2
(3.33)

which gives us a Green’s function of

G =
δ(τ − t− r

c
)

4πrc2
. (3.34)

Unfortunately this formula doesn’t satisfy our causality condition G = 0 for

τ > t. To get the result we desire note that if G(τ − t, ·) is a solution to (3.25) we

have

LG(τ − t, ·) = δ(τ − t, ·). (3.35)

Let G∗ = G(t − τ, ·) then since Gττ = G(−τ)(−τ) the operator L does not change

under this transformation so that we have

LG∗ = δ(t− τ, ·) (3.36)

and since δ(t− τ) = δ(τ − t) we see that G∗ satisfies (3.25). With that we have our

final free-space Green’s function

G(ξ, η, ζ, τ, x, y, z, t) =
δ(t− τ − r

c
)

4πrc2
(3.37)

which satisfies G = 0 for τ > t since r =
√

(ξ − x)2 + (η − y)2 + (ζ − z)2 ≥ 0.

We see from this that G is not a standard function but in fact, like the delta

function from which it was created, a distribution. As such it must act on some

test function to be fully exploited. Indeed, along with obtaining the solution for the

inhomogeneous wave equation, the next section will reveal exactly which functions

our Green’s function G will influence.
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3.3 General Solution to Inhomogeneous Wave Equa-

tion

As we have demonstrated, using the quasi-linear approximation (perturbation ex-

pansions) to the basic equations of fluids (2.1) reduces the system to an ordered

collection of inhomogeneous wave equations. Therefore, if we can solve the general

inhomogeneous wave equation then we can, in principle, obtain solutions to any

order of the field variables.

To do this we start with a generic inhomogeneous wave equation

ptt − c2∇2p = f(x, y, z, t) (3.38)

and multiply by our Green’s function G(ξ, η, ζ, τ, x, y, z, t). The next step is to

create a four-dimensional integral in time and space. The time integral is taken to

some arbitrary time T > t where t is our current time. The integral in space has 3

separate cases (see figure 3.3):

• the volume of interest includes our observation point (x, y, z)

• the volume of interest doesn’t include the point (x, y, z). This will be discussed

in the subsequent chapter when we deal with the solution to the second-order

wave equation.

• the volume of interest includes our observation point on its boundary. Not

used in this thesis.

It should be stated that for all three cases, the volumes of integration can be

arbitrarily chosen and need not be bounded by physical surfaces; it is typically,

however, convenient to do so.

For our purposes we will work out the details of the first case since this is the

one which we will be using. The other two cases are mentioned in Appendix C.
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Case 1 Case 2 Case 3

(x,y,z)

(x,y,z)

r

(ξ,η,ζ)

(ξ,η,ζ)(ξ,η,ζ)

r

(x,y,z)

r

n

n

n

n

V

V

V

S1

S2

Figure 3.3: Volumes of various regions used in three separate cases to derive integral solution

of inhomogeneous wave equation. Note in Case 1 that the ball around our observation point is

used to keep the functions sufficiently smooth in the dotted region. This ball (like the half-ball in

case 3) is shrunk to 0 so that our observation point is included, unlike in Case 2.

Upon multiplying (3.38) by G and integrating over our region we have∫
V

∫ T

0

Gpττ dτ dV − c2

∫
V

∫ T

0

G∇2p dτ dV =

∫
V

∫ T

0

Gf dτ dV (3.39)

with dV = dξ dη dζ and T > t.

The main method behind using Green’s functions is to break down the left

hand side using integration by parts. This will require taking derivatives of the

Green’s function G which is not straightforward since G is in fact a distribution

(even though in solving for G we implictly assumed it could be differentiated since

it was the solution to a PDE).

The theory behind distributions and how they can be manipulated is beyond

the scope of this thesis. Suffice it to say that the delta function is at least as

differentiable as the function upon which it acts. Since we are using it to act

on physical quantities such as pressure and particle velocity we assume they are

sufficiently smooth to allow this operation. For a detailed investigation of the delta
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function and other generalized functions used as mathematical tools in the context

of acoustics see Chapter 2 of [39].

Proceeding with the derivation, the first term of (3.39) becomes (suppressing

the differentials)∫
V

∫ T

0

Gpττ =

∫
V

Gpτ |T0 −
∫
V

∫ T

0

Gτpτ

=

∫
V

Gpτ |T0 −
∫
V

Gτp|T0 +

∫
V

∫ T

0

Gττp

=

∫
V

(Gpτ −Gτp) |T0 +

∫
V

∫ T

0

Gττp. (3.40)

To transform the second term of (3.39) we use the vector identity

G∇2p = ∇ · (G∇p− p∇G) + p∇2G (3.41)

and the divergence theorem on the first term (which is valid in the regions given

by Figure 3.3) to obtain 11∫
V

∫ T

0

G∇2p =

∫
S

∫ T

0

(G∇p− p∇G) · n +

∫ T

0

∫
V

p∇2G (3.42)

where the surface S = S1 ∪ S2 and the normal n is as shown in Figure 3.3. The

term on the right hand side of (3.39) is considered known. Combining all of this

information gives us the integral equation∫
V

(Gpτ −Gτp) |T0−c2

∫
S

∫ T

0

(G∇p−p∇G)·n+

∫
V

∫ T

0

p
(
Gττ − c2∇2G

)
=

∫
V

∫ T

0

Gf.

(3.43)

In the volume V , the Green’s function satisfies the homogeneous version of

(3.25) so that the third term above is identically zero. The second term can be

broken up as follows∫ T

0

∫
S1

(G∇p− p∇G) · n +

∫ T

0

∫
S2

(G∇p− p∇G) · n. (3.44)

11Since there is a hole in the region we are technically applying the generalized divergence

theorem as given in section 4.2.3 of [40].
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The surface given by S2 is meant to approach 0 so as to include all the points

surrounding our observation point (x, y, z). To do this in a rigorous fashion we ex-

amine the second integral above in more detail. Since we have chosen an arbitrarily

small ε-sphere we can write this integral as

−
∫ T

0

∫
S2

G
∂p

∂ε
− p∂G

∂ε
dS2 dτ (3.45)

since r = ε on the surface of S2 and n = −r (unit vector). Upon substitution of

our Green’s function (3.37) we get

−
∫ T

0

∫
S2

[
δ(t− τ − ε

c
)

4πεc2

∂p

∂ε
+ p

δ′(t− τ − ε
c
)

4πεc3
+ p

δ(t− τ − ε
c
)

4πε2c2

]
dS2 dτ. (3.46)

Next we let t∗ = t− ε
c

and, using the fact that T > t and the following property of

derivatives of delta functions [39]∫ T

0

p(τ)δ′(t∗ − τ)dτ =

∫ T

0

∂p

∂τ
δ(t∗ − τ)dτ =

∂p

∂t
|t∗ (3.47)

we evaluate the time integral to arrive at

−
∫
S2

[
1

4πεc2

∂p

∂ε
|t∗ +

1

4πεc3

∂p

∂t
|t∗ +

1

4πε2c2
p|t∗
]
dS2. (3.48)

Assuming now that our function p and its derivatives are continuous at our obser-

vation point we can approximate each of them by using the value at (x, y, z) and

take them out of the integral. Using the fact that dS2 = ε2 sinφ dφ dθ we see that

as ε→ 0 only the third term above will remain. Also, t∗ → t which leaves us with

− p(x, y, z, t)
∫ 2π

0

∫ π

0

1

4πc2
sinφ dφ dθ. (3.49)

The integration trivially gives 4π so that we finally conclude that∫ T

0

∫
S2

(G∇p− p∇G) · n = − 1

c2
p(x, y, z, t). (3.50)

Substituting this result into (3.43) and moving all the integral terms to the right-

hand side yields the general integral solution

p(x, y, z, t) =

∫
V

∫ T

0

GfdτdV+c2

∫
S1

∫ T

0

(G∇p−p∇G)·ndS1dτ−
∫
V

(Gpτ −Gτp) |T0 .

(3.51)
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This is the most general solution to the wave equation (3.38). This solution can be

used for interior problems (where S1 is some finite shape) or for exterior problems

(where the surface S1 extends out to infinity).

Unfortunately, none of this work has made the problem any easier since our

unknown function p appears under the integral sign on the right. Nonetheless, the

integral solution does give light to the factors influencing the function p. The first

integral represents the contribution from the forcing term f throughout the whole

volume V . The third integral represents the contributions from initial conditions.

The second integral is the most interesting of the three. It says that in the absence

of any forcing and initial conditions the solution for p anywhere in the region is

obtained by knowledge of p and ∇p · n on the boundary. The term ∇p · n is often

converted to normal particle acceleration using a momentum equation (see Section

2.6). That is, if we know the pressure and the velocity on the boundary (so that we

can compute the acceleration) then computing p anywhere in the field is a matter

of quadrature. Unfortunately, we typically require one of these quantities to get the

other and so in its full generality there is no other option but to solve the integral

equation numerically.

All is not lost however. It is possible to remove some of the terms of (3.51) in

cases with simplifying geometry. Indeed for our original model of a piston in an in-

finite baffle the geometry of the volume V will help us achieve these simplifications.

3.4 Geometry of Problem and Simplifying Con-

ditions

The volume V for our problem can be defined as the semi-infinite volume z ≥ 0

in Figure 3.4. The baffle (solid line) is located at z = 0 and is given by Sb. The

woofer is the surface Sw which we assume to be flat and circular (the figure below

is a cross-section so the woofer is drawn to be noticeable). Conditions on Sb and Sw

are given by equations (2.67) and (2.68) restated here using the current notation:
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1st order w1(x, y, 0, t) = Ḃ1(t) on Sw, (3.52)

2nd order w2(x, y, 0, t) = −w1z(x, y, 0, t)B1(t) on Sw, (3.53)

all orders w(x, y, 0, t) = 0 on Sb. (3.54)

V
Sb

S∞

Sw

(x,y,z)

n

(ξ,η,ζ)

r

Figure 3.4: Volume V and associated surfaces for use in baffled piston model. For an unbounded

medium, surface S∞ extends to infinity. The grey dot represents the point source tweeter. The

point (x, y, z) is our fixed observation point while (ξ, η, ζ), the integration point, moves throughout

the region.

We wish to establish conditions on the surface S∞ so that as the surface is

extended to infinity it provides no contribution to the solution.
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3.4.1 Radiation Condition at Infinity

Our surface integral in (3.51) is taken over S1 = Sb ∪Sw ∪S∞. Here we investigate

that over S∞. In the limit as the surface goes to infinity the normal derivative is

replaced with the radial derivative, however this time the unit vectors n and r are

in the same direction giving us∫ T

0

∫
S∞

[
δ(t− τ − r

c
)

4πrc2

∂p

∂r
+
∂p

∂τ

δ(t− τ − r
c
)

4πrc3
+ p

δ(t− τ − r
c
)

4πr2c2

]
dS∞ dτ. (3.55)

Now in writing the lower bound of 0 for our time integration we were implicitly

assuming r < ct, that is, that we are waiting long enough for contributions from

anywhere in the region to reach our observation point. This is expressed in the

argument of the delta function δ((t − r
c
) − τ) so that r < ct ⇒ T > t > t − r

c
> 0

and our τ integration is nontrivial. However as r tends to infinity, there will be no

time t so that r < ct and the argument of the delta function will never be 0 giving

us a trivial integration.

Now an argument could be made towards our lower bound of 0 and taking the

r limit before evaluating the integral. Indeed, we should start our time integration

as far back as possible so as to include all contributions for any given value of r.

We thus assume

ϕ(t, ·) ≡ 0 for t < t0 (3.56)

for any given field quantity ϕ. The lower limit on the time integral will then be

replaced by t0 ∈ R and, using a finite value of r < c(t−t0) we can write the limiting

behaviour as

lim
r→∞

∫ T

t0

ϕ(τ)δ(t− r

c
− τ)dτ = lim

r→∞
ϕ(t− r

c
). (3.57)

As it stands, since r < c(t−t0) then t− r
c
> t0 so that our function ϕ is nonzero (not

identically zero anyway) before the limit is taken. However, being a field quantity,

ϕ is assumed continuous yielding

lim
r→∞

ϕ(t− r

c
, ·) = ϕ(−∞, ·) = 0 (3.58)

from our assumption (3.56) so that all integrations give 0 again.

39



The final situation worth considering is that of time-harmonic behaviour. Truly,

the approach above is still valid because in principle there must be some time t0

before which there was no activity. Nonetheless it is worth mentioning since much

of the literature only considers the analysis below.

For time-harmonic behaviour (that we assume has been going on indefinitely)

the equivalent of the wave equation is the Helmholtz equation

∇2P + k2P = F (x, y, z) (3.59)

where k = ω
c

with ω the harmonic frequency (i.e., p(x, y, z, t) = P (x, y, z)ejωt).

This PDE has a corresponding Green’s function [41]

Ḡ =
e−jkr

4πr
, r =

√
(x− ξ)2 + (y − η)2 + (z − ζ)2 (3.60)

and a general solution given by [30]

P (x, y, z) =

∫
V

FḠdV +

∫
S

(
Ḡ∇P − P∇Ḡ

)
· n dS. (3.61)

Again, we are to investigate the integral over the surface which tends to infinity

lim
r→∞

∫
S∞

e−jkr

4πr

∂P

∂r
− P ∂

∂r
(
e−jkr

4πr
) dS∞. (3.62)

Since ∂
∂r

( e
−jkr

4πr
) = −jk

(
e−jkr

4πr

)
− e−jkr

4πr2
and dS∞ = Ωr2 (with Ω being the solid angle

subtended by S∞), in the limit of large r the first term of ∂Ḡ
∂r

dominates and we

arrive at
Ω

4π
lim
r→∞

e−jkrr

(
∂P

∂r
+ jkP

)
. (3.63)

In order for this term to disappear we require that

lim
r→∞

r

(
∂P

∂r
+ jkP

)
= 0, (3.64)

which is famously known as the Sommerfeld radiation condition. According to

Skudrzyk [33] this will be satisfied so long as the function P goes as r−1 in the

farfield (see example below). As we will see in the next chapter, the pressure

from our woofer acts like a point source in the farfield so that this requirement
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is satisfied for the pressure generated by both the woofer and tweeter. Therefore,

even for time-harmonic behaviour the surface integral over S∞ tends to 0.

The difference between the methods amounts to a time condition vs. a radia-

tion/spreading condition. In the first method we insist that contributions from the

expanding boundary will not reach the observation point in finite time whereas the

second case says that we should only consider sufficiently behaved outgoing waves

from the sources; incoming waves are meaningless. As Sommerfeld [42] himself

put it, no energy may be radiated inward from infinity towards the sources. For

example, a time harmonic solution to the spherical wave equation (3.2) is

p =
ejω(t− r

c
)

r
+
ejω(t+ r

c
)

r
(3.65)

but a quick check will show that only the first of these (representing outgoing waves)

satisfies (3.64). The conclusion from all of this is that, regardless of the method

used, the integral over S∞ in (3.51) is discarded and we are left with those over Sb

and Sw.

3.4.2 Woofer and Baffle Conditions

Computing the surface integral in 3.51 requires knowledge of ∇p ·n and p over the

given surface. For the case where S1 = Sb ∪ Sw we can obtain the former by using

the momentum equations to write the pressure gradient in terms of particle velocity

and then use the boundary conditions given in Section 3.4. Alas, we do not have

knowledge of pressure p on these surfaces for this is what we are trying to solve.

The beauty of the Green’s function method is that for simple geometries (or if

one is clever enough to work with more difficult arrangements, see for example [43])

we can modify our function G so as to cause one of the two terms (G or ∇G · n)

to vanish over the surface of interest. In our case we wish to find the required

modification so that ∇G · n = 0 on Sw and Sb.

To do this we must add a term to our Green’s function which satisfies the homo-

geneous version of (3.25) everywhere in the volume V so that its only contribution
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occurs at the boundary in question. Since our surfaces Sb and Sw are essentially

the plane z = 0 a standard approach is to use an image source on the other side

of the plane for each integration point. That is, add a second Green’s function,

identical to the first, except reflect the ζ variable in the xy-plane giving us

G = G(ξ, η, ζ, τ, x, y, z, t) +G(ξ, η,−ζ, τ, x, y, z, t) = G1 +G2. (3.66)

To show that this gives ∇G · n on the z = 0 plane note that

∇G = ∇G1 +∇G2 = (
∂G1

∂ξ
,
∂G1

∂η
,
∂G1

∂ζ
) + (

∂G2

∂ξ
,
∂G2

∂η
,
∂G2

∂ζ
) (3.67)

but, using either the Helmholtz or wave equation Green’s functions, on the surfaces

Sb ∪ Sw we have ∂G1

∂ξ
= ∂G2

∂ξ
, ∂G1

∂η
= ∂G2

∂η
, ∂G1

∂ζ
= −∂G2

∂ζ
and n = (0, 0,−1) (recall the

Footnote 2.5) so that

∇G · n = 0, on Sb ∪ Sw. (3.68)

Indeed the infinite plane baffle helps reduce our integral equation rather sub-

stantially since condition (3.68) transforms our problem from an integral equation

into an integration with a known integrand.

From this result we can write our solution thus far

p(x, y, z, t) =

∫
V

∫ T

0

Gf dτ dV+c2

∫
Sw∪Sb

∫ T

0

G∇p·n dS1 dτ−
∫
V

(Gpτ −Gτp) |T0 dV.

(3.69)

As was mentioned at the beginning of this section, the function ∇p · n is known

from the momentum equations (2.60) and (2.64) and the boundary conditions

(3.52),(3.53) and (3.54). Solving for this quantity at first- and second-order we

get

∇p1 = −ρ0u1t (3.70)

∇p2 = −ρ0u2t − ρ1u1t − ρ0[(u1 · ∇)u1] (3.71)

so that on our baffle (Sb), when computing ∇p · n with our normal n = (0, 0,−1),

the first-order equation yields

∇p1 · n = −ρ0(u1 · n)t = ρ0w1t(x, y, 0, t) = 0 (3.72)
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using the fact that the normal is time-invariant and invoking (3.54) at the end.

At second-order the calculation is similar but not as straightforward. We can see

immediately from looking at (3.71) that the first and second terms will be 0 by a

similar argument to that given above. The third term when dotted with the normal

gives

− [(u1 · ∇)u1] · n = −
[(

(u1, v1, w1) · ( ∂
∂x
,
∂

∂y
,
∂

∂z
)

)
(u1, v1, w1)

]
· (0, 0,−1)

= −
[
(u1

∂

∂x
+ v1

∂

∂y
+ w1

∂

∂z
)(u1, v1, w1)

]
· (0, 0,−1)

= u1
∂w1

∂x
+ v1

∂w1

∂y
+ w1

∂w1

∂z
. (3.73)

On the baffle the first two derivative terms are zero because by (3.54) w1(x, y, 0, t) =

0 for all x and y so there is no change along those axes. The third derivative term

is unknown since we must take the derivative before evaluating z = 0. However

the function w1 is 0 for z = 0 so that all three terms indeed vanish and we get the

conclusion that

∇p · n = 0, on Sb for p = p1 or p2. (3.74)

Our solution is therefore

p(x, y, z, t) =

∫
V

∫ T

0

Gf dτ dV + c2

∫
Sw

∫ T

0

G∇p · n dS1 dτ −
∫
V

(Gpτ −Gτp) |T0 dV.

(3.75)

3.4.3 Time Conditions

The final simplification that can be made is on the last term of our solution above.

With the following established property of the Green’s function

G = Gτ = 0, τ > t (3.76)

and the assumption that (see Section 3.4.1) there is no disturbance for t ≤ 0 (or

more generally t ≤ t0)

ϕ(t, ·) = 0, t ≤ 0 (3.77)

for any field variable ϕ, the last integral in (3.75) vanishes upon evaluation at the

boundary values τ = 0 and τ = T > t.
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3.5 Final Solution and Remarks

After using the many geometrical and temporal simplifications, our general solution

to the wave equation (3.51) has been reduced to

p(x, y, z, t) =
∫
V

∫ T
0
Gf dτ dV + c2

∫
Sw

∫ T
0
G∇p · n dτ dSw (3.78)

with our modified Green’s function G = G1 +G2 as given by (3.66).

3.5.1 Point Source Equivalence

It should be mentioned that we have avoided the boundary of the tweeter in our

domain V . We have assumed the tweeter to be a mass source of negligible size which

is included in our function f . An alternative approach would be to alter the region

V so as to include the boundary of a finite sphere representing the tweeter and

then take the limit as the boundary shrinks to 0. The mathematics are nontrivial

however since, in this case, we do not have the spherical symmetry surrounding

our observation point (x, y, z) that we had for the boundary integrals given prior.

Indeed we can show that12

lim
a→0

c2

∫
St

∫ T

0

(G∇p−p∇G)·n dST dτ = ρ0c
2

∫ T

0

∫
V

GQ̇(τ)δ(χ− x0) dV dτ, (3.79)

that is to say, the pressure at (x, y, z) generated by the boundary integral of ST

(see Figure 3.5) whose radius shrinks to 0 is the same as that given by the volume

integral where the forcing term is solely due to a point mass source.

Essentially, we are going to show the equivalence of two methods of solution:

either we assume a no-source situation where the only contribution comes from a

finite sphere

p(x, y, z, t) = lim
a→0

c2

∫
ST

∫ T

0

(G∇p− p∇G) · n dST dτ, (3.80)

12Here we have chosen f = ρ0c
2Q̇(t)δ(x− x0), as seen in (3.21).
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or assume there are no boundaries (other than infinity) in the medium and we only

have a point source

p(x, y, z, t) = ρ0c
2

∫ T

0

∫
V

GQ̇(τ)δ(χ− x0) dV dτ. (3.81)

The reason for investigating this is that in deriving (3.78) we used the divergence

theorem in our volume V (see Figure 3.4). However this was not strictly valid since

having a point source in the medium should not allow the theorem to be used.

Therefore, the correct approach requires the use of a finite boundary. We can

however show the equivalence of the methods which allows us to use the point

source formulation alongside the divergence theorem as it is much simpler.

(x,y,z)

(ξ,η,ζ)

r

a

r1

Φ

θ

V

ST

(x0,y0,z0)

n

Figure 3.5: Sphere with surface ST in unbounded volume V . The relationship between the

lengths is given by r2 = r21 + a2 − 2r1a cosφ. Note r is independent of θ.

To evaluate the integrals in closed form we assume a time harmonic radial vi-

bration such that u(r) = b0e
jωt which gives us a source function Q(t) = 4πa2b0e

jωt =

Q0e
jωt(see the paragraph after (3.11)). The second method (3.81) then gives 13

p(x, y, z, t) = jωρ0c
2Q0

∫ T

0

∫
V

δ(t− τ − r
c
)

4πrc2
ejωτδ(χ − x0)dV dτ. (3.82)

13Since we are assuming no boundaries we use the regular Green’s function (3.37).
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Now as r is integrated over the volume its only contribution will come when χ= x0

so that r → r1 and we have

p(x, y, z, t) =
jωρ0Q0

4πr1

∫ T

0

δ(t− τ − r1

c
)ejωτdτ. (3.83)

Again, this is easily evaluated to give a final solution of

p(x, y, z, t) =
jωρ0Q0

4πr1

ej(ωt−kr1) (3.84)

identical to (3.11), derived using the differential form.

The first method (3.80) requires knowledge of both p and ∇p · n on the surface

ST . Again, we have knowledge of the latter by equation (3.7) and our prescribed

boundary velocity. We could, as with the case for the plane boundary, create a

modified Green’s function which would eliminate ∇G · n on the surface of the

sphere. However, constructing such a function is not a straightforward affair (see

[43]). Instead it is much easier to compute p using the same approach given in

Section 3.1.1.

The solution for a finite pulsating sphere is given by (3.5)

p =
f(t− r1

c
)

r1

, (3.85)

where f satisfies the ODE (3.8):

u
(r1)
t (r1, t) =

f(t− r1
c

)

ρ0r2
1

+
f ′(t− r1

c
)

ρ0cr1

. (3.86)

At r1 = a we have u(r1)(a, t) = b0e
jωt so that we can solve the ODE to get

f(t) = ρ0b0c

(
jka2

1 + jka

)
ej(ωt+ka) (3.87)

which gives our solution for p in the region r1 ≥ a as

p = ρ0b0c

(
jka2

1 + jka

)
ej(ωt−k(r1−a))

r1

. (3.88)

We next compute G∇p · n recalling that ∇p · n is the normal acceleration of

the boundary from our momentum equation (2.60). Noting the orientation of the

normal from Figure 3.5 and using our function u(r) = b0e
jωt we obtain∫

ST

∫ T

0

G∇p · n =
ρ0b0jω

4πc2

∫
ST

ej(ωt−kr)

r
dST . (3.89)
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Now dST = a2 sinφ dφ dθ so that the integration would be taken over
∫ 2π

0

∫ π
0

. How-

ever, using the fact that r2 = a2 + r2
1 − 2r1a cosφ we get dr = ar1 sinφdφ

r
so that

dST = ar
r1
dr dθ and the integral becomes

ρ0b0jωa

4πr1c2

∫ 2π

0

∫ r1+a

r1−a
ej(ωt−kr) dr dθ (3.90)

which evaluates to
jωρ0b0a

kc2r1

ej(ωt−kr1) sin(ka). (3.91)

To get p∇G · n we evaluate (3.88) at r1 = a giving

p =
A

a
ejωt, A = ρ0b0c

(
jka2

1 + jka

)
. (3.92)

Unfortunately, as can be seen in Figure 3.5, ∇G · n (equivalently ∂G
∂n

) is no longer

equal to ∂G
∂r

but rather −∂G
∂a

. The integral of p∇G · n over the surface ST is then

− A

a

∫
ST

∫ T

0

ejωτ
∂G

∂a
dτdST . (3.93)

Then, evaluating the time integral and using the following:

• ∂G
∂a

= ∂G
∂r

∂r
∂a

,

• ∂G
∂r

= − δ′(t−τ− r
c
)

4πrc3
− δ(t−τ− r

c
)

4πr2c2
,

• ∂r
∂a

= a−r1 cosφ
r

,

• dST = a2 sinφ dφ dθ,

our integral becomes

A

4πac2
ejωt

∫ 2π

0

∫ π

0

[
jk
e−jkr

r
+
e−jkr

r2

](
a− r1 cosφ

r

)
a2 sinφ dφ dθ. (3.94)

The appearance of the cosφ term removes the benefit of our previous substitution

dST = ar
r1
dr dθ and we are left to integrate over θ and φ with r =

√
a2 + r2

1 − 2r1a cosφ.

Somewhat remarkably, the integral itself has a closed form solution of

−4πa

r1

e−jkr1
[
cos(ka)− sin(ka)

ka

]
(3.95)
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so that our term
∫
ST
p∇G · n is

− A

c2r1

ej(ωt−kr1)

[
cos(ka)− sin(ka)

ka

]
. (3.96)

Combining (3.91) with (3.96) gives our full solution

p = c2

∫
ST

∫ T

0

(G∇p− p∇G) · n dST dτ (3.97)

as

p =
jωρ0b0a

kr1

ej(ωt−kr1) sin(ka) +
A

r1

ej(ωt−kr1)

[
cos(ka)− sin(ka)

ka

]
. (3.98)

Recalling that we defined Q0 = 4πa2b0 we can rewrite this as

p =
jωρ0Q0

4πr1

ej(ωt−kr1) sin(ka)

ka
+

jkρ0Q0c

4πr1(1 + jka)
ej(ωt−kr1)

[
cos(ka)− sin(ka)

ka

]
(3.99)

and then in the limit as a→ 0 the value of Q0 is held constant (see Section 3.1.1)

and the second term drops out (since limx→0
sin(x)
x

= 1) and we are left with

p =
jωρ0Q0

4πr1

ej(ωt−kr1) (3.100)

matching both (3.84) and (3.11).

As we have seen, the surface integral solution is not the easiest way to solve for

the pressure of a simple point source. Indeed the simplest way to compute a purely

radial field is to either follow the method given in Section 3.1.1 or to note that our

solution for the finite sphere (3.88) reduces to those given in (3.84) and (3.100) in

the limit of a→ 0.

The reason for carrying out these integrations is to show the equivalence of the

methods so as to justify the form of our main solution (3.78). In the next chapter

we will be using this formula to compute the second-order field and it is much

simpler to do so in its current form than to include a finite shaped sphere with

vanishing boundary.
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Chapter 4

Solutions

In this chapter we obtain both approximate and exact analytic solutions for both

the first- and second-order wave equations based on (3.78). We also derive an

integral solution for p2 which we solve numerically and compare with experiments

performed in a lab. Finally, we determine the effects of varying the parameters

using our theoretical model since they are not so easily measured in practice.

4.1 First-Order

We assume that our woofer is vibrating with frequency ω1 such that B1(t) =

B sin(ω1t) with B the amplitude of vibration. To simplify calculations we use

exponentials so that B1(t) = <{B
j
ejω1t} and our woofer velocity is then Ḃ1(t) =

<{bwejω1t} where bw = Bω1 is the velocity amplitude. Likewise, our tweeter is as-

sumed to satisfy (3.12) such that s(t) = ejω2t so thatQ(x, t) = <{Q0e
jω2tδ(x− x0)}.

From here on we omit taking the real part assuming that this operation is

done at the very end to get meaningful results. Note however that this is only

valid at first-order since at second-order we have quadratic terms and in general

<(z1z2) 6= <(z1)<(z2). We will deal with this in section 4.2.3.
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Our first-order problem is to solve

p1tt − c2∇2p1 = ρ0c
2Q̇(x, t). (4.1)

From our work in the previous chapter we know that this equation has solution

p1 = ρ0c
2

∫
V

∫ T

0

GQ̇(χ, t) dτ dV + c2

∫
Sw

∫ T

0

G∇p1 · n dτ dSw (4.2)

with G given by (3.66). For our purposes G will be written as

G =
δ(t− τ − ra

c
)

4πrac2
+
δ(t− τ − rb

c
)

4πrbc2
, (4.3)

where

ra =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2, (4.4)

rb =
√

(x− ξ)2 + (y − η)2 + (z + ζ)2, (4.5)

and our tweeter point x0 = (0, 0, d) (see Figure 4.1)

4.1.1 Volume Integral - Tweeter

With our choice of function Q the volume integral in (4.2) becomes

jω2ρ0Q0

∫
V

∫ T

0

[
δ(t− τ − ra

c
)

4πra
+
δ(t− τ − rb

c
)

4πrb

]
ejω2τδ(χ− x0) dτ dV. (4.6)

As the integration point χ= (ξ, η, ζ) (see Figure 4.1) moves throughout the region,

the only contribution occurs when χ= x0 so that ra → r1 and rb → r2 which gives

a nice closed form solution of

tweeter =
jω2ρ0Q0

4π

[
ej(ω2t−k2r1)

r1

+
ej(ω2t−k2r2)

r2

]
. (4.7)

This solution represents the field coming from two point sources, one a mir-

ror image of the other across the plane z = 0. It is this symmetry that allows

our solution to satisfy the vanishing normal particle velocity condition over the

boundary.
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x

y

z

(x,y,z)

(0,0,d)(0,0,-d)

(ξ,η,ζ)(ξ,η,-ζ)

r1

r2

rarb

Sw

x0

Figure 4.1: Geometry used in evaluating integrals. Note that we are technically only integrating

in the region z ≥ 0; however, due to our Green’s function (4.3), we are essentially integrating

over all of space. The lengths ra and rb are the integration variables while r1 and r2 are the fixed

distances from the observation point to the tweeter and its image.

4.1.2 Surface Integral - Woofer

The field produced by the woofer is given by the second integral of (4.2). Again,

using our momentum equation (2.60) and our boundary condition (3.52) we get

that, on the surface Sw

∇p1 · n = −ρ0(u1 · n)t = ρ0B̈1(t) = jω1ρ0bwe
jω1t. (4.8)

Also, on Sw, ra = rb = r so our Green’s function reduces to

G =
δ(t− τ − r

c
)

2πrc2
, r =

√
(x− ξ)2 + (y − η)2 + z2 (4.9)

which gives us an integral of

woofer =
jω1ρ0bwe

jω1t

2π

∫
Sw

e−jk1r

r
dSw. (4.10)

This integral is not solvable in general but has various approximating forms and

special case solutions.1 Here we obtain the on-axis solution as it will be a useful

1See the introduction in [11] for an in-depth discussion on the subject.
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undertaking for the second-order solution. We also derive the farfield solution for a

similar reason. Moreover it will serve to justify the Sommerfeld radiation condition

at infinity given in Section 3.4.1. The procedure is adapted from [23].

On-axis

When our observation point (x, y, z) is placed on the axis of the woofer our inte-

gration is simplified by a change to polar coordinates

ξ = σ cos θ

η = σ sin θ

ζ = 0 (4.11)

Since x = y = 0 the distance r satisfies

r2 = σ2 + z2 (4.12)

The surface element dSw = σ dθ dσ for 0 ≤ θ ≤ 2π and 0 ≤ σ ≤ a. Using the

equation above for r we have that rdr = σdσ where ro ≤ r ≤ re (see Figure 4.2) so

x

y

z(0,0,z)

(ξ,η,ζ)=(σcosθ,σsinθ,0)

Sw

θ

σ r

a

ro=z
re2=a2+z2

Figure 4.2: Coordinates used in evaluating the surface integral over Sw when observation point

is on-axis.
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that dSw = rdrdθ and the integral becomes

jω1ρ0bwe
jω1t

2π

∫ 2π

0

∫ re

r0

e−jk1rdr dθ. (4.13)

This is easily evaluated to give

wooferon-axis = ρ0bwc
[
ej(ω1t−k1ro) − ej(ω1t−k1re)

]
. (4.14)

We see then that the solution on the axis of a circular piston is made up of two

waves, one due to the edge and one from the centre. Note that as z →∞, re ≈ ro

and we are left with a null field. Indeed, we can show that as z →∞ the solution

drops as r−1. It is possible, however, to arrive at this result in general and not just

for on-axis observation.

Farfield

The geometry of the general case where the observation point is off-axis is given

by Figure 4.3. Due to the circular symmetry of the woofer we can assume that our

observation point lies on the plane y = 0.

With the change of variables given by (4.11) as well as those for our observation

point

x = R sin β, (4.15)

y = 0, (4.16)

z = R cos β, (4.17)

our integration distance r becomes

r =
√
R2 + σ2 − 2σR sin β cos θ. (4.18)

Substitution of this value of r into (4.10) yields an unsolvable integral; approxima-

tions must therefore be made. In the farfield we assume R � a. Rewriting our

distance r as

r = R

√
1− 2σ

R
sin β cos θ +

( σ
R

)2

(4.19)
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β

Figure 4.3: Coordinates used in evaluating the surface integral over Sw when observation point

is off-axis.

we can neglect the third term using our farfield assumption. We can also approx-

imate
√

1 + x by the first two terms of its Taylor series thus transforming our

integration distance to

r = R− σ sin β cos θ. (4.20)

We then use this expression in our integral (4.10) but only for the phase component

since the attenuation term will not contribute as much change and the integral is

more easily computed when r = R. This leaves us to evaluate

jω1ρ0bwe
j(ω1t−k1R)

2πR

∫ a

0

∫ 2π

0

ejk1σ sinβ cos θσdθdσ. (4.21)

Using the Hansen formula [33]

J0(x) =
1

2π

∫ π

−π
ejx cos θdθ (4.22)

where Jn(x) is the nth order Bessel function of the first kind, a quick change of vari-

able and the fact that J0 is even, the inner integral is evaluated and we are left

with
jω1ρ0bwe

j(ω1t−k1R)

R

∫ a

0

σJ0(k1σ sin β)dσ. (4.23)
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Finally, invoking the Bessel identity [44]∫ x

0

sJ0(s)ds = xJ1(x) (4.24)

and a change of variable u = k1σ sin β ⇒ du
k1 sinβ

= dσ gives∫ a

0

σJ0(k1σ sin β)dσ =
1

(k1 sin β)2

∫ k1a sinβ

0

uJ0(u)du =
a

k1 sin β
J1(k1a sin β)

(4.25)

providing a final expression of

jω1ρ0bwa

R

J1(k1a sin β)

k1 sin β
ej(ω1t−k1R). (4.26)

Because of the fact that limx→0
J1(x)
x

= 1
2

the expression above is often rewritten to

give the result

wooferoff-axis =
jω1ρ0bwa

2

2R

(
2J1(k1a sin β)

k1a sin β

)
ej(ω1t−k1R) (4.27)

where the term in brackets is called the directivity function [23]. It represents how

much the the signal drops off when one moves off the central axis of the woofer.

Note that since 0 ≤ β ≤ π
2

the argument of the directivity function, k1a sin β, varies

between 0 and k1a so that as the observation point moves between on-axis (β = 0)

to a position parallel to the baffle (β = π
2
) the number of zeroes of the directivity

function will depend on the “strength” of k1a (refer to Figure 4.4).

For example, we see that for k1a less than approximately 4 (more accurately

3.832) the directivity function will not pass through any zeros as its argument varies

from 0 to k1a, that is to say there will not be any nulls in the field as an observer

moves from a position on-axis to 90◦ off-axis. On the other hand, for larger k1a it

is clear that there will be certain angles which will produce null fields. Indeed, the

larger the value of k1a the more nulls will be produced.

What does k1a represent physically? Since k1 = ω1

c
= 2πf1

λ1f1
= 2π

λ1
(with λ1, f1 the

wavelength and non-angular frequency of the wave respectively) and a is the radius

we see that k1a = 2πa
λ1

represents the ratio of the circumference of the woofer to the

wavelength of the wave it produces. Limiting situations are often categorized as

k1a� 1 and k1a� 1.
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Figure 4.4: Dependence of woofer directivity function on maximum value of argument, x = k1a

In the first case we have that circumference� wavelength which, for a woofer

of fixed radius, say 10 cm, would be satisfied for frequencies below approximately

100 Hz. Since k1a � 1 in this instance the woofer produces a field with no nulls

and little drop-off as we move off axis (see Figure 4.5).

If we were to take that same woofer and excite it at frequencies above, say, 3000

Hz then we would be in the k1a � 1 regime and would pass through one (if not

several) zeroes as we moved off axis. There are now “side lobes” in addition to the

“main lobe” of the directivity function. More importantly however is how much

amplitude drop-off there is in this case as we can see how quickly and how close

the function J1(x)
x

oscillates about 0 once k1a is approximately 3 (or once we excite

our 10 cm woofer at 1500 Hz). This shows that using an average sized woofer as a

high-frequency oscillator produces a highly directional beam of sound.

Figure 4.5 shows various polar plots for increasing values of the parameter k1a.
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Figure 4.5: Polar plots of directivity function for various parameters k1a. Here r = 2J1(k1a sin β)
k1a sin β

and −π2 ≤ β ≤
π
2

4.1.3 Final Solution

The first-order pressure field generated by the woofer and tweeter is thus

p1(x, y, z, t) =
jω1ρ0bwe

jω1t

2π

∫
Sw

e−jk1r

r
dSw +

jω2ρ0Q0

4π

[
ej(ω2t−k2r1)

r1

+
ej(ω2t−k2r2)

r2

]
(4.28)

where

r2 = (x− ξ)2 + (y − η)2 + z2,

r2
1 = x2 + y2 + (z − d)2,

r2
2 = x2 + y2 + (z + d)2, (4.29)
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where the first integral can be approximated by either (4.14) or (4.27) depending

on the situation. In the next section we look at ways of solving the second-order

wave equation whose solution depends on the general equation for p1 (4.28).

4.2 Second-Order

The solution given in the previous section describes the field produced by two pure

tones in a multiway speaker setup rather accurately. However, due to the assumed

linearity of the solution, not all phenomena will be accounted for. Indeed one can

see immediately from (4.28) that only the fundamental frequencies ω1 and ω2 will

appear in the solution.

This is not necessarily a problem, since, for non-coaxial setups, intermodula-

tion frequencies are essentially inaudible [1]. For coaxial setups however, Klipsch’s

experiment clearly reveals the presence of sum and difference frequencies in the

sound field. As Klipsch’s himself put it “The distortion from the coaxial system

was plainly audible; that from the spaced system barely audible.”

Admittedly, the purpose of this whole endeavour is to mathematically formulate

and deduce the experimental results given by Klipsch [1]. Achieving such a goal

would allow us to better understand the inherent dependencies.

4.2.1 Change of Variable

Generation of sum and difference frequency tones is governed by our second-order

wave equation (3.22) which, for brevity’s sake, we will write as

p2tt − c2∇2p2 = ψ(x, y, z, t). (4.30)

This equation has the general solution (3.78)

p2 =

∫ T

0

∫
V

Gψ(ξ, η, ζ, τ)dV dτ + c2

∫ T

0

∫
Sw

G∇p2 · n dSw dτ. (4.31)
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At second-order neither these integrals nor their integrands are trivial. Several

authors have investigated solutions to this equation when no boundary is present

(i.e., no surface integral, see the following section). The function ψ(x, y, z, t) is

often recast into a different form in order to be more manageable [21]. Here we

follow the clever substitution given by Dean [45]

p2 = p′2 −
1

2
ρ0|u1|2 −

p2
1

2ρ0c2
− p1t

ρ0c2

∫
p1dt. (4.32)

Substitution of this into our PDE (4.30) and using several vector identities (see

Appendix A) gives

p′2tt − c2∇2p′2 =
γ + 1

2ρ0c2
(p2

1)tt + p1tq(x, t) + p1qt(x, t). (4.33)

The solution of this equation is still given by (4.31) except with p2 replaced by

p′2 and the function ψ replaced with the right-hand side of (4.33). A modification

remains in our surface integral term∇p2 ·n as we are now required to find the equiv-

alent second-order momentum equation of (2.64) for p′2. We save this calculation

for our actual evaluation of the surface integral.

Although we see that (4.33) has reduced the number of integrations necessary

to obtain our solution, a problem still remains in evaluating the volume integral.

The second and third terms are ‘controlled’ by the delta function in q; however, as

Thierman [46] points out, the first term has no such restriction and we are thus

required to integrate our whole first-order solution over the entire semi-infinite range

z ≥ 0 in order to obtain the second-order solution at a single point. Given both the

impracticality of performing such an integration and the author’s suspicion of the

importance of volume nonlinearities when the acoustic pressures used are of such a

low magnitude, further simplifications are required.

4.2.2 Bulk Nonlinearities vs. Doppler Effect

Our solution (4.31) is made up of two integrals representing two very different

generating mechanisms. The first term deals with the waves produced by the
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inherent nonlinearity of the medium while the second deals with that due to the

moving boundary. Determining the dominant contribution from either of these

phenomena ( so called ‘bulk nonlinearity’ vs. ‘Doppler effect’ ) has been the subject

of recent research activity.

Separately, there has been no shortage of investigations. In a completely un-

bounded medium the surface Sw is non-existent and attempts to solve (4.30) date

back to the mid 1950s with analyses by Ingard [20] and Westervelt [21] on what is

dubbed the ‘scattering of sound by sound’.

The method used in these works is to assume a finite volume of interaction away

from the observer so that the integration is taken over a bounded region. Although

the idea would seem to relate to Case 2 in Figure 3.3, the solution given in that case

is not quite correct (see Appendix C). Indeed, even though we assume the effects

of interest stem from a fixed region in space, we are still required to include our

observation point so as to isolate our field quantity of interest (typically p(x, y, z, t).

Compare the solution given by Case 1 to that by Case 2).

The justification for the finite region of integration comes from the assumption

that the fundamental field produced is highly directional so that when multiple

acoustic beams interact their overlapping regions in space (the source of sum and

difference frequencies) must be a restricted volume. A detailed four part investiga-

tion is given in [47–50].

For solutions other than those given by plane waves and plane beams Dean [45]

computed, by finding a particular solution to the differential equation, solutions

based on concentric spherical and cylindrical waves. Exemplary mathematical skill

was demonstrated by Sakov and Lyamshev [51, 52] in determining the interaction

between non-concentric spherical waves as well as that by plane and spherical waves.

Investigation of the Doppler effect due to the motion of boundaries is encom-

passed by the surface integral in (4.31). Admittedly, the author was unable to find

a single article using such an approach. That is not to say, however, that there is a

lack of research into the area. Early work done by Beers and Belar [53] discusses the
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distortion produced when a single transducer is excited at two frequencies. Their

characterization is based on the standard Doppler formula

fo =
vo − c
vs − c

fs, (4.34)

with c the speed of sound and fo, vo, fs, vs the frequency and velocity of the observer

and the source respectively. In this case, the observer is stationary and the source

is the high-frequency wave, ω2, with a velocity vs that is oscillatory with angular

frequency ω1.

Allison and Villchur [54] extend the work of Beers and Belar by performing

listening tests with actual music and conclude that, for a single radiator, Doppler

distortion is inaudible.2

Despite this, Butterweck [55] set out to establish the distortion factor for general

excitations from a moving piston, assumed to produce plane waves. He points out

that in order to provide solutions the analysis is “confined to the moving boundary

effect as the nonlinear bulk phenomena seems to become rather complicated”.

As we have done so far, van Wulfften Palthe [31] maintained the effects of both

the medium and the boundary in deriving his solution. Unfortunately not only

is the loudspeaker assumed to be a pulsating sphere but the obtained results are

rather confusing due to the excessive notation. Attempts to ascertain the dominant

distortion effect using the supplied formula proved ineffective.

Motivated by the work of the previous authors, Zóltogórski [56] sought to deter-

mine the effect of both forms of nonlinearity (what he calls nonlinear propagation,

NP, and moving boundary condition, MBC) in a loudspeaker modelled by a plane

wave. Using Burgers’ equation he concludes that the distortions caused by the

moving boundary are dominant in a low-frequency range adding that

“special attention should be paid when applying the results to a real loudspeaker,

since the real field differs considerably from the assumed field model. A decrease in

real acoustic wave amplitude causes NP effects to vanish more quickly than they do

2Recall that the experiments done by Klipsch used a multiway loudspeaker.
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in the plane-wave case, although such a decrease does not affect the magnitude of

MBC effects”.

Characterization of these effects was first given in the important work done

by Mujica et al. [18]. Using a basic time delay argument, they deduce that the

characteristic magnitude of the Doppler effect is given by the parameter

∆ΦD = 2k2A, (4.35)

where A is the vibration amplitude of the low-frequency wave (woofer). The excel-

lent work by Zverev and Kalachev [57], confirmed by experiment, showed that the

characteristic magnitude of the bulk nonlinear effect is given by

∆ΦNL =
(γ − 1 + 2 cos θ)P1ω2L

2ρ0c3

(
sin[k1L

2
(1− cos θ)]

k1L
2

(1− cos θ)

)
(4.36)

where θ is the angle of interaction of the two waves (assumed to be two beams3),

γ is the ratio of specific heats (as defined right after (2.2)), P1 is the characteristic

pressure amplitude of the low frequency wave and L is the observation distance.

It is then easily seen that the maximum modulation occurs when the waves are

collimated (θ = 0) so that our maximum bulk modulation index is given by

∆ΦNL =
γ + 1

2ρ0c3
Lω2P1. (4.37)

Using this result, Mujica et al. created the non-dimensional parameter

Y =
∆ΦD

∆ΦNL

(4.38)

and performed various experiments in both air and water4 to determine the depen-

dence of acoustic waves on both types of nonlinearities.

For our waves in question, we have

3 A beam is essentially a right prism with the shape of the radiator as its base. With this

assumption, each wave is mathematically modeled by a plane wave where the pressure is zero

outside of the prism. See the polar plots for large ka in Figure 4.5.
4The results in water use a slightly different version, see [18].
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• P1 = ρ0cbw (see for example (4.26) or (4.14))

• A = bw
ω1

(see the paragraph at the beginning of Section 4.1)

• ω
k

= c

so that our non-dimensional parameter Y reduces to

Y = µ
λ1

L
∝ λ1

L
, µ =

2π

1 + γ
. (4.39)

For low frequency vibrations of the boundary, 20 ≤ f1 ≤ 100 Hz, the wavelength

λ1 satisfies, 3 ≤ λ1 ≤ 17 m, so that for listening distances L ≤ 1 m our parameter

Y ≥ 1 and the Doppler boundary effect is dominant.

It should be noted that this is indeed a best case scenario for the bulk nonlinear

effect due to the fact that P1 = ρ0cbw is actually the pressure of a plane wave. This

can be seen from (4.14) where the second term vanishes in the limit of re →∞ since

the edge wave is delayed indefinitely (see [23]). In actuality, for our woofer P1 <

ρ0cbw thus increasing the value of the parameter Y (see the quote by Zóltogórski

above). Also, the waves emitted by both the woofer and the point source are hardly

collimated beams so that our angle θ in (4.36) is not actually 0 everywhere and our

value of ∆ΦNL is further reduced thus increasing the parameter Y .

Actual experiments by Mujica et al. lead them to the following conclusions

(using our notation)

“Finally, it is interesting to compare the transition values of Y observed with air

and water. In the water experiments, Y has been varied in the range 0.11 < Y < 22

corresponding to 30 < f1 < 6000 Hz. Y ≈ 1 corresponds to f1 ≈ 700 Hz whereas, as

shown in Section 3, the Doppler shift is still dominant at much higher frequencies.

This shows that the criterion Y ≈ 1 for the transition should be taken with care. It

is roughly correct when the waves are one dimensional as for the experiments in air

that have been performed in a tube. The experiments in water have been performed

in non-confined geometry and both the low and high frequency waves are slightly
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divergent. This decreases the strength of bulk nonlinearities and the Doppler shift

thus remains dominant at lower Y i.e. higher frequencies.”

Using these results, we therefore focus our attention on solutions of the surface

integral, since, in our regime, our Y value is greater than unity and the contributions

from the boundary are dominant.

4.2.3 Surface Integral

Our problem of interest then, using our substitution5 from Section 4.2.1 is to solve

p′2 = c2

∫ T

0

∫
Sw

G∇p′2 · n. (4.40)

What is presently required is a formula for ∇p′2 · n. Currently our momentum

equation (2.64) is

∇p2 = −ρ0u2t −
p1

c2
u1t − ρ0 [(u1 · ∇)u1] . (4.41)

Taking the gradient of our substitution (4.32) and applying the result to the above

gives

∇p′2 = −ρ0u2t− ρ0 [(u1 · ∇)u1]− p1u1t

c2
+
ρ0

2
∇(|u1|2) +

∇(p2
1)

2ρ0c2
+

1

ρ0c2
∇(p1t

∫
p1dt).

(4.42)

Although it may seem that we have made the boundary integral more difficult, if

we use the following

• (u · ∇)u ≡ 1
2
∇(|u|2)− u× (∇× u),

• ∇ × u = 0 (irrotational),

• ∇p1 = −ρ0u1t (first-order momentum),

•
(∫

p1dtu1

)
tt
≡ p1tu1 + 2p1u1t + u1tt

∫
p1dt,

5Based on the arguments from the last section, one may reason that the change of variable is

unnecessary since we are focusing on the surface integral. As we will see, the substitution for p′2

also simplifies the boundary condition.
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and the fact that the normal is constant in time, our term p′2 · n simplifies to

∇p′2 · n = −ρ0(u2 · n)t −
1

c2

(∫
p1dt(u1 · n)

)
tt

. (4.43)

We now focus our attention on each of the two terms in (4.43).

First term of ∇p′2 · n

The expression ρ0(u2 ·n)t can be transformed using our boundary condition (2.68)

to give

ρ0(w1zB1(t))t. (4.44)

Unfortunately we are required to compute the function w1 in order to take its

z derivative (that is, we can’t simply substitute one of our boundary conditions

despite being on the surface z = 0). To do this we need to find the particle velocity

u1. We see from our first-order momentum equation (2.60) that u1 can be computed

as

u1 = − 1

ρ0

∫
∇p1dt. (4.45)

Performing this operation is not all that mysterious but very cumbersome. From our

solution (4.28) we first take the time integral then using the standard ∇ operator

in Cartesian coordinates and the chain rule and finally dividing by −ρ0 we arrive

at

u1 =
bw
2π
ejω1t

∫
Sw

g(k1, r)
r

r
dSw +

Q0

4π
ejω2t

(
g(k2, r1)

r1

r1

+ g(k2, r2)
r2

r2

)
, (4.46)

where

g(k, r) = e−jkr
(
jk

r
+

1

r2

)
,

r = (x− ξ, y − η, z),

r1 = (x, y, z − d),

r2 = (x, y, z + d), (4.47)

and the non-bold versions are given by the magnitude of these or by (4.29).
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Of interest here is the function w1, the third component of u1, which we can

write as

w1(x, y, z, t) =
bw
2π
ejω1t

∫
Sw

g(k1, r)
z

r
dSw+

Q0

4π
ejω2t

(
g(k2, r1)

z − d
r1

+ g(k2, r2)
z + d

r2

)
.

(4.48)

Before taking the z derivative, note that

∂r

∂z
=
z

r
,
∂r1

∂z
=
z − d
r1

,
∂r2

∂z
=
z + d

r2

. (4.49)

If we then substitute these into the three locations where they appear above and

finally take the z derivative, we get (after several product and chain rule applica-

tions)

w1z = Woofer + Tweeter, (4.50)

Woof =
bw
2π
ejω1t

∫
Sw

[
∂g(k1, r)

∂r

(
∂r

∂z

)2

+ g(k1, r)
∂2r

∂z2

]
dSw, (4.51)

Tweet =
Q0

4π
ejω2th(k2, r1, r2), (4.52)

h(k2, r1, r2) =
∂g(k2, r1)

∂r1

(
∂r1

∂z

)2

+ g(k2, r1)
∂2r1

∂z2

+
∂g(k2, r2)

∂r2

(
∂r2

∂z

)2

+ g(k2, r2)
∂2r2

∂z2
.

(4.53)

Before computing (4.44) we take a moment to discuss our use of complex no-

tation towards our main goal as was mentioned at the beginning of Section 4.1.

At first-order, we simply needed to take the real part of our solution to obtain

meaningful results; we seek a similar property at second-order. Due to the fact

that <(z1z2) 6= <(z1)<(z2), before multiplying two first-order quantities we must

take their real parts to get the proper results. To this end, consider our expression

(4.44). Based on our formula for w1z and that of B1 we can separate our terms as

follows

w1zB1(t) = (ν1 + ν2)(υ1) (4.54)

where ν1 and ν2 are Woofer and Tweeter and υ1 is B1(t) (we change the notation

in this section in order to better manipulate the complex quantities more easily).
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In order to properly compute this expression we are required to take the real

parts of each function w1 and B1 before multiplying. This can be performed as

follows

<(ν1 + ν2)<(υ1) =
1

2
(ν1 + ν̄1 + ν2 + ν̄2)

1

2
(υ1 + ῡ1),

=
1

4
(ν1υ1 + ν1ῡ1) +

1

2

(
ν2υ1 + ν̄2ῡ1

2

)
+

1

2

(
ν2ῡ1 + ν̄2υ1

2

)
,

=
1

4
(ν1υ1 + ν1ῡ1) +

1

2
<(ν2υ1) +

1

2
<(ν2ῡ1). (4.55)

The use of subscripts is to denote the frequency of each term. We see from the final

expression above that our product w1zB1(t) will contain two terms from our woofer

only (the first harmonic and a dc component, see Thierman [46] for a discussion)

and two terms from the combination of the woofer and tweeter frequencies; these

are our intermodulation terms. Since our main interest is in describing the sum

and difference frequencies we focus our attention on the last two terms.

To avoid any dependence on the actual time we further separate these as follows

ν2 = Z2e
jω2t, υ1 = Z1e

jω1t (4.56)

where Z1 and Z2 are generally complex and depend only on spatial variables. Using

these we obtain

1

2
<(ν2υ1) =

1

2
<(Z1Z2e

jω+t),
1

2
<(ν2ῡ1) =

1

2
<(Z̄1Z2e

jω−t), (4.57)

where ω+ = ω2 + ω1 and ω− = ω2 − ω1. This is helpful since, in computing

our solution (4.40), we can separate out the time dependence and compute the

magnitude of Z1Z2 to get a maximum pressure amplitude.6

Given the similarities between the forms in (4.57) we will focus on the first one,

the sum frequency. One need only take the conjugate of our spatial function Z1

to obtain the solution for the difference frequency (as well as to use ω− obviously).

We must also not forget to divide our final solution by 2.

6For example, say Z1Z2 = a+ jb. Then <((a+ jb)ejω+t) = a cos(ω+t)− b sin(ω+t) which has

a magnitude (or pressure amplitude in our case) of
√
a2 + b2. Therefore, we can compute the real

and imaginary part of Z1Z2 separately and then use these to find the maximum amplitude.
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Note in doing our expansion (4.55), our terms of interest are combinations of ν2

and υ1, that is, Tweet and B1(t). We can write these as

υ1 =
bw
jω1

ejω1t = Z1e
jω1t, (4.58)

ν2 =
Q0

4π
h(k2, r1, r2)ejω2t = Z2e

jω2t, (4.59)

which gives our final form of (4.44) for the sum frequency (remembering to take

the real part and divide by 2 at the end)

ρ0(w1zB1(t))t = ρ0(Z1Z2e
jω+t)t,

= ρ0jω+Z1Z2e
jω+t,

sumfreq =
ρ0Q0bw

4π

(
ω+

ω1

)
h(k2, r1, r2)ejω+t, (4.60)

with h given by (4.53). Since Z̄1 = jbw
ω1

, the equivalent version for the difference

frequency is given by

difffreq = −ρ0Q0bw
4π

(
ω−
ω1

)
h(k2, r1, r2)ejω−t. (4.61)

Second term of ∇p′2 · n

The term 1
c2

(∫
p1dt(u1 · n)

)
tt

is easily obtained due to the first-order boundary

condition (2.67). We can separate this product in a similar fashion as was done

above with the pressure term containing both frequencies and the boundary term

containing only ω1. First we have

u1 · n = −Ḃ1(t) = −bwejω1t, (4.62)∫
p1dt =

ρ0bw
2π

ejω1t

∫
Sw

e−jk1r

r
dSw +

ρ0Q0

4π

(
e−jk2r1

r1

+
e−jk2r2

r2

)
ejω2t (4.63)

so that

υ1 = −bwejω1t = Z1e
jω1t, (4.64)

ν2 =
ρ0Q0

4π
f(k2, r1, r2)ejω2t = Z2e

jω2t, (4.65)

f(k2, r1, r2) =

(
e−jk2r1

r1

+
e−jk2r2

r2

)
. (4.66)
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Similarly to the section above we can then write (for the sum frequency, recalling

what was stated above (4.60))

1

c2

(∫
p1dt(u1 · n)

)
tt

=
1

c2
(Z1Z2e

jω+t)tt

= −(k+)2Z1Z2e
jω+t,

sumfreq =
ρ0Q0bw

4π
(k+)2f(k2, r1, r2)ejω+t, (4.67)

with f given by (4.66). In this case Z̄1 = Z1 so the difference frequency has the

form

difffreq =
ρ0Q0bw

4π
(k−)2f(k2, r1, r2)ejω−t. (4.68)

4.2.4 Surface Integral - Final Expression

We can now substitute our expressions (4.60) and (4.67) into (4.43) and then into

(4.40) to obtain (for the sum frequency)

p′2 = Ac2

∫
Sw

∫ T

0

δ(t− τ − r
c
)

2πrc2

((
ω+

ω1

)
h(k2, r0, r0) + (k+)2f(k2, r0, r0)

)
ejω+τ dτ dSw

(4.69)

A = −
(
ρ0Q0bw

4π

)
(4.70)

Here we have used our Green’s function (4.9) since we are on the surface Sw. Also,

note that on this surface our functions r1 and r2 given by (4.29):

r1 =
√
x2 + y2 + (z − d)2 (4.71)

r2 =
√
x2 + y2 + (z + d)2, (4.72)

are transformed into integration distances as (x, y, z) → (ξ, η, 0) over Sw and we

get

r1 = r2 = r0 =
√
ξ2 + η2 + d2 (4.73)

which represents the distance from the tweeter to the integration point on Sw. It

is this distance which is crucial in measuring the strength of the intermodulation.

For now we have fixed the tweeter on the axis. Shortly we will modify this distance

r0 to account for placing the tweeter off the axis.
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With our current distance r0 our functions f and h simplify to

f(k2, r0) =
2e−jk2r0

r0

, (4.74)

h(k2, r0) = 2

(
∂g(k2, r0)

∂r0

(
∂r0

∂z

)2

+ g(k2, r0)
∂2r0

∂z2

)
. (4.75)

Care must be taken in reading the above. The notation is a bit abusive since clearly

r0z = 0 from (4.73). We must be sure to find r1z and r1zz first before letting z → 0

(likewise for r2). This is done in the next section.

Evaluating the time integration we can write a final integral expression to be

solved for the spatial factor of the sum frequency of p′2

p′2+ = −ρ0Q0bw
4π

(
ejω+t

2π

)∫
Sw

(
(k+)2f(k2, r0) +

(
ω+

ω1

)
h(k2, r0)

)
e−jk+r

r
dSw.

(4.76)

Based on (4.61) and (4.68) we can write a similar integral expression for the differ-

ence frequency

p′2− = −ρ0Q0bw
4π

(
ejω−t

2π

)∫
Sw

(
(k−)2f(k2, r0)−

(
ω−
ω1

)
h(k2, r0)

)
e−jk−r

r
dSw.

(4.77)

4.2.5 Surface Integral - Solutions

Given the impossibility of solving (4.10) in general we note that the expressions

given by (4.76) and (4.77) are similar in form with an added spatial factor and

are thus also intractable in general. We are thus required to solve this integral

numerically, varying parameters to get an idea of the inherent dependencies. We can

however obtain a special-case analytic solution if the tweeter and woofer are coaxial

and we are in the farfield and on-axis. It is hoped that with better mathematical

craftiness one can manipulate the integrals to obtain analytic solutions similar to

those at first-order (4.14), (4.27).

To obtain the analytic solution described we first simplify our function h. As

was mentioned above, the notation ∂r0
∂z

is shorthand for ∂r1
∂z
|z→0 which is not quite
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equal to ∂r2
∂z
|z→0 since, from (4.49)

∂r1

∂z
|z→0 =

−d
r0

, (4.78)

∂r2

∂z
|z→0 =

d

r0

, (4.79)

however note that our function h has these derivatives squared so they will be equal,

hence justifying the first part of (4.75).

Likewise, the second derivatives are given by

∂2r1

∂z2
=
r2

1 − (z − d)2

r3
1

, (4.80)

∂2r2

∂z2
=
r2

2 − (z + d)2

r3
2

, (4.81)

which, as z → 0 gives the same function

∂2r0

∂z2
=
r2

0 − d2

r3
0

, (4.82)

so that using the following

• g(k2, r0) = e−jk2r0
(
jk2
r0

+ 1
r20

)
,

• ∂g(k2,r0)
∂r0

= e−jk2r0
(
k2
2r

2
0−2jk2r0−2

r30

)
,

•
(
∂r0
∂z

)2
= d2

r20
,

• ∂2r0
∂z2

=
r20−d2
r30

,

our function h becomes

h(k2, r0) =
2e−jk2r0

r5
0

[
r2

0 + (dk2r0)2 − 3d2 + j(k2r
3
0 − 3k2r0d

2)
]
. (4.83)

Substituting this, and our expression for f (4.74), into (4.76) leaves us to evaluate

p′2+ = 2A(t)

∫
Sw

(Coeff)
e−j(k2r0+k+r)

r r5
0

dSw, (4.84)

Coeff ≡
[
(k+)2r4

0 +

(
ω+

ω1

)(
r2

0 + (dk2r0)2 − 3d2 + j(k2r
3
0 − 3k2r0d

2)
)]
, (4.85)

A(t) ≡ −ρ0Q0bw
4π

(
ejω+t

2π

)
. (4.86)
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The most general distances r0 and r are given by7

r =
√

(x− ξ)2 + (y − η)2 + z2, (4.87)

r0 =
√

(ξ − h)2 + η2 + d2. (4.88)

Since we are integrating over a circular disk we can make the substitution

ξ = σ cos θ

η = σ sin θ (4.89)

so that our integration distances become

r =
√
x2 + y2 + z2 + σ2 − 2xσ cos θ − 2yσ sin θ, (4.90)

r0 =
√
σ2 + d2 − 2hσ cos θ + h2. (4.91)

The general solution is then obtained by substituting these into (4.84), changing

dSw to σ dθ dσ and integrating over 0 ≤ θ ≤ 2π, 0 ≤ σ ≤ a.

Coaxial, Farfield & On-axis

We can obtain an analytic solution if we assume the tweeter and woofer are coaxial

and that the observer is sufficiently far away on this axis. In this case we have the

situation as given in Figure 4.6. With the coaxial, on-axis assumption x = y = h =

0, we have the following simplifications:

r2 = z2 + σ2, (4.92)

r2
0 = d2 + σ2, (4.93)

⇒ r2 = r2
0 + z2 − d2, (4.94)

dSw = 2πσdσ. (4.95)

7Here we have included the possibility of the tweeter being off axis by an amount h (not to

be confused with our function h(k, r). The use of h is to be consistent with the MATLAB code).

Without loss of generality we assume the tweeter would move up the x-axis. Note that this doesn’t

change any of our derivations since all derivatives were taken with respect to z.
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x

y

z(0,0,z)

(ξ,η,ζ)=(σcosθ,σsinθ,0)

Sw

θ

σ r

a

rd2=d2+a2

(0,0,d)

r0

Figure 4.6: On-axis coordinate system for second-order surface integral.

The second of these implies r0dr0 = σdσ so that dSw = 2πr0dr0. Our integrand no

longer depends on θ and our range for r0 is d ≤ r0 ≤ rd (see Figure 4.6) so that we

can write our integral (4.84) in compact form

p′2+ = −2

(
ρ0Q0bw

4π

)
ejω+t

∫ rd

d

cp
e−jk2r0

r4−p
0

e−jk+
√
r20+z2−d2√

r2
0 + z2 − d2

dr0, p = 0, 1, 2, 3, 4. (4.96)

The denominator r4−p
0 is written as such so that the coefficients cp correspond to

those terms in (4.85) attached to powers of rp0. For example c0 = −3d2(ω+/ω1),

c1 = −j3k2d
2(ω+/ω1), c4 = (k+)2 and so on.

This integral is still not solvable (to the best of the author’s knowledge) so we

impose the farfield assumption z � a. Since we can write√
r2

0 + z2 − d2 = z

√
1 +

r2
0 − d2

z2
(4.97)

and since r2
0 − d2 = σ2, our farfield assumption implies that (Taylor expansion)

z

√
1 +

σ2

z2
≈ z. (4.98)

Note that this is similar to the farfield approximation at first-order (4.20) where
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β = 0. This leaves us to evaluate

p′2+ = −2

(
ρ0Q0bw

4π

)
ejω+t

(
e−jk+z

z

)∫ rd

d

cp
e−jk2r0

r4−p
0

dr0, p = 0, 1, 2, 3, 4. (4.99)

Again, somewhat remarkably, due to the specific form of the coefficients cp, all of

the exponential integral terms, Ei(jk2r0), that arise from this integration end up

cancelling and the integral itself yields(
ω+

ω1

)[(
d2 − r2

d

r3
d

)
e−jk2rd + j

(
d2k2

r2
d

e−jk2rd − k2e
−jk2d

)]
+j

(k+)2

k2

[e−jk2rd−e−jk2d].

(4.100)

After various attempts, the author could not find a more interesting way to rewrite

this expression. The term d2 − r2
d is indeed equal to −a2, the radius of the woofer,

but that does little to help in creating an enlightening arrangement. Instead it is

left the way it is, separated by the scaling factors (ω+/ω1) and k2
+ which correspond

to the contributions from the two functions h(k2, r0) and f(k2, r0), they themselves

are a result of the two terms of the boundary condition (4.43). We can compare this

solution to the numerical versions to follow to get an idea of the range of validity.

Note that as the radius of the woofer shrinks to 0 the distance from the tweeter

to the edge of the woofer, rd, goes to d so that our expression above vanishes,

which is expected. One may be tempted to determine the limiting behaviour as

rd → ∞; however this would invalidate the assumption made in obtaining this

solution, namely z � a.

We can, however, examine the behaviour as d → 0. In this case, rd → a and

the integral becomes

−
(
ω+

ω1

)[
e−jk2a

a
+ jk2

]
+ j

(k+)2

k2

[e−jk2a − 1]. (4.101)

Rewriting the first bracket as

−
(
ω+

ω1

)[
k2

cos(k2a)

k2a
− jk2

sin(k2a)

k2a
+ jk2

]
+ j

(k+)2

k2

[e−jk2a − 1] (4.102)

we see that if k2a� 1 this expression reduces nicely to

−
(
ω+

ω1

)[
k2

cos(k2a)

k2a

]
. (4.103)
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In this case, since k2 represents the wave number for the high-frequency wave, this

limiting situation would only be realistic if the woofer radius were rather small or

if the frequency of the tweeter was sufficiently low enough.

The purpose of the previous derivation was to demonstrate that it is indeed

possible to obtain an analytic solution given the proper geometry. Perhaps with

more mathematical cunning an analytic solution could be obtained in the general

farfield as was done at first-order.
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4.3 Numerical Investigation of Surface Integral

In this section, more interesting results are obtained via a numerical integration of

the general surface integral (4.84)-(4.91). The only assumption that is made in this

section is that our observation point is on-axis. The reasons for this are twofold.

The first is that, as Olson [58] points out, experimental investigations are in general

conducted on the axis of the cone. Secondly, we have been working out solutions to

the quantity p′2. To obtain the final pressure p2 we must add the correction terms

for the sum (or difference) frequency given in (4.32) which is not a trivial matter.

For on-axis observation points these terms at least have analytic representations.

Computation of these is deferred to Appendix D. The results presented in this

section contain the contribution from all terms, that is, p′2 and those terms in

(4.32) which affect the sum (or difference) frequency. The MATLAB code used is

given in Appendix E.

4.3.1 Experimental Setup and Results

Although motivated by the work of Klipsch [1], his experiments are difficult to

compare to the theory due to a lack of knowledge of all the parameters in the setup.

To better serve the current undertaking, a baffled coaxial speaker was constructed

in a lab environment as shown in Figure (4.7).

The speakers themselves were mounted separately onto their own small sub-

baffle and then onto the main baffle so as to be able to switch between a variety

of transducer types. The tweeter of a given speaker setup was driven on its own

while the woofer was acoustically driven by another large woofer located at the back

labelled ‘woofer driver’ in the diagram. This was done to avoid any electromagnetic

coupling between the coils of the tweeter and woofer since, at least for the Uni-Q

driver, they are in close proximity and may interfere with one another when a low

and high frequency signal is sent through their respective voice-coils.

Two speaker systems were tested, a 20 cm KEF Uni-Q C35 and a superelliptical
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z

speaker

microphone

woofer driver

ba�e

125cm

122cm

147cm

Figure 4.7: Lab setup used for experimental results. Note the speaker is mounted on its

own small sub-baffle and then onto the main baffle so that multiple systems can more easily be

interchanged. The “speaker” is merely a placeholder for either the pre-made coaxial Uni-Q or our

improvised coaxial B139 as seen in Figure 4.8.

KEF B139 woofer with a separately mounted 2.5 cm KEF high-frequency tweeter8.

The Uni-Q is manufactured as a coaxial loudspeaker and has a standard conical

shape with a 1.9 cm tweeter at its centre. The B139, although unfortunately not

completely circular in shape, is a perfectly flat woofer. The setup is made coaxial

by the mounted tweeter which is held in place by a thin metal beam secured into

the smaller rectangular wooden plate, see Figure 4.8.

Unfortunately, due to unforeseen circumstances, not many tests could be con-

ducted. The short list of experimental results is given in Table 4.1. For comparative

purposes a table of theoretical results, corresponding to Figures 4.9-4.12, is provided

in Table 4.2.
A few comments are in order. First, as Vanderkooy [59] suggests, the closer

the microphone to the speakers the more accurate the results should be. This is

8 A Google image search for ‘KEF B139’ and ‘uni-q speaker’ will give respectable image results.
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7cm

11cm

1cm

a b

Figure 4.8: Schematic diagram of makeshift coaxial speaker. a) KEF B139 on its own. b)

tweeter attached in the front.

Speaker type
f1

(Hz)
f2

(kHz)
z-distance

(m)
woofer amplitude B

(mm)
Pω−/Pω2

(dB)
Pω+/Pω2

(dB)

B139 50 3 1 1 -14.76 -10.41

B139 50 3 0.5 1 -20.03 -17.92

B139 50 3 0.25 1 -20.17 -18.76

B139 50 3 0.25 2 -15.36 -13.95

Uni-Q 30 3 1 1 -28.6 -30.74

Table 4.1: Experimental results.

due to the fact that the boundary effects dominate those due to room reflections

and any edge diffraction waves. Therefore those taken at 0.25 m should be most in

correspondence with the theory.

The doubling of the amplitude on the B139 from 1 mm to 2 mm resulted in

an approximate increase of 5 dB. Given that the amplitude is a scaling factor in

our solution (4.84), a doubling of amplitude should lead to an increase of 6 dB.

As we will see below, the results are rather sensitive to the smallest changes in the

amplitude and so it is likely that our ballpark estimation of 1 mm to 2 mm is a bit

off.

78



Speaker type
f1

(Hz)
f2

(kHz)
z-distance

(m)
woofer amplitude B

(mm)
Pω−/Pω2

(dB)
Pω+/Pω2

(dB)

B139 50 3 1 1 -18.4 -17.6

B139 50 3 0.5 1 -18.9 -18.4

B139 50 3 0.25 1 -20.1 -19.7

B139 50 3 0.25 2 -14.1 -13.7

Uni-Q 30 3 1 1 -29 ≤ · ≤ -26.5

Table 4.2: Theoretical results. The range of values for the Uni-Q are from Figure 4.12. A

range was used since it was difficult to determine the exact value of d. See the first paragraph of

Section 4.3.2.

Finally, the Uni-Q driver has a slight anomaly in that its difference-frequency

distortion is actually greater than its sum-frequency distortion. The author is

uncertain as to the exact reason for this although given that our lab setup was

not perfectly anechoic it could potentially be due to some geometrically caused

phase cancellation that only occurs for the sum frequency and not for the differ-

ence frequency. More tests should be done on the Uni-Q to better compare the

measurements and to determine if this anomaly is present at closer microphone

distances. We can state however that the relative difference between the flat B139

and the conical Uni-Q is between 14 and 20 dB. Indeed, the modulation distortion

was more audible in the former.

4.3.2 Comparisons Between Theory and Experiment

In order to use our solution (4.84) to determine the theoretical results given in Table

4.2 we must establish the parameters for each model. The Uni-Q has a very small

distance d between the tweeter and the woofer. Values in the range 0 ≤ d ≤ 0.005

m are appropriate (the woofer is in fact an annular region with the tweeter at its

centre). The radius a of the woofer is approximately 10 cm. The B139 setup has

a semi-minor axis length of 7 cm and a semi-major axis of 11 cm(see Figure 4.8).

For the simulations we approximated the B139 as a 10 cm radius circular piston.
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Although this is obviously not completely accurate we will later investigate the

dependence of the solution on the radius a. Finally, the tweeter in the B139 setup

has a d value of approximately 2.4 cm.

Since we are only interested in relative measurements, we note that all values,

unless otherwise stated, are scaled to the first-order, high-frequency acoustic output.

Mathematically that means the common factor ρ0Q0

4π
, present at both orders, cancels

(see 4.84) and (4.28)). One should therefore note that these quantities do not show

up in the code.

B139

Our first comparison is for the B139 setup. Since our measurement of the amplitude

of vibration as given in Table 4.1 is subject to human error (it was visually computed

while the speaker was moving) our first group of theoretical plots Figures 4.9-4.11

show the relative magnitudes of the intermodulation frequencies as we vary the

amplitude of vibration by 0.1 mm increments.

0 0.5 1 1.5 2 2.5
x 10−3

−40

−35

−30

−25

−20

−15

−10

−5

0

woofer amplitude B (m)

P 2/P
1 (d

B)

Observation distance 1m, f1 = 50Hz, f2 = 3kHz, a = 10cm, d=2.4cm

 

 
ωdiff
ωsum

Figure 4.9: Theoretical plot of p2/p1 (dB) vs. woofer amplitude B (m). The observation

distance is z = 1 m. The values at B = 1 mm (-18.4 and -17.6) are used in Table 4.2.

80



0 0.5 1 1.5 2 2.5
x 10−3

−40

−35

−30

−25

−20

−15

−10

−5

0
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Figure 4.10: Theoretical plot of p2/p1 (dB) vs. woofer amplitude B (m). The observation

distance is z = 0.5 m. The values at B = 1 mm (-18.9 and -18.4) are used in Table 4.2.
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Figure 4.11: Theoretical plot of p2/p1 (dB) vs. woofer amplitude B (m). The observation

distance is z = 0.25 m. The values at B = 1 mm (-20.1 and -19.7) and B = 2 mm (-14.1 and

-13.7) are used in Table 4.2.
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Observe how the theoretical values in Figures 4.9-4.11 approach those given by

the experiments in Table 4.1 as we move our observation point closer to the baffle

confirming what was suggested by Vanderkooy. Increasing the woofer amplitude

produces a logarithmic increase in the relative magnitudes of the sum and difference

frequencies, which is expected from the definition of sound pressure level (SPL =

20 log10(p2/p1)). The values are in rather good agreement in the case of the flat

B139.

Uni-Q

Theoretical results for the Uni-Q are not as easily compared due to the geomet-

rical differences from the mathematical model. Nonetheless we attempt various

configurations for comparative purposes. The numerical investigation is performed

with continuous values of the parameter 0 < d ≤ 0.005 m as previously mentioned.

Also, since the woofer is actually an annular region with inner radius 1 cm, we

perform an annular integration where our integration radius σ satisfies 1 ≤ σ ≤ a

cm. The results of this are shown in Figure 4.12. Excluding the previously men-

tioned anomaly between the sum and difference frequencies in Table 4.1, it is a bit

surprising that the results at 1 m seem to match well with the experiment given

the disparity between theory and reality for the B139 at 1 m (first row of Table 4.1

vs. first row of Table 4.2.

Again, it is difficult to make a direct comparison because of the fact that the

Uni-Q is in actuality conical in shape and so the normal at each point on the woofer

is not simply n = (0, 0,−1).

Regardless, the results, especially those of the B139, are in rather good agree-

ment so that we may analyze a variety of plots to examine how the intermodulation

factors change as we vary the parameters of the model.
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Figure 4.12: Theoretical value of p2/p1 (dB) vs tweeter distance from baffle d (m) for Uni-Q.

The tweeter distance was varied due to the nature of construction of the Uni-Q speaker. With its

tweeter at the centre of the conically shaped woofer, obtaining an exact value for d is difficult.

4.3.3 Theoretical Predictions

In this section a variety simulations are performed to investigate the dependence of

the intermodulation factor on various parameter changes. The results to come are

strictly theoretical since we were unable to perform the corresponding experiments.

Where possible the author attempts to justify some of the observed behaviour.

However, many of the plots are not all that intuitive and leave several questions

unanswered.

Radius

The first group of plots Figures 4.13-4.17 show the relationship between our solution

(4.84) and the radius of the woofer. Note the strong dependence for small values of

the parameter a. This is a reflection of the fact that the integration distance r0 is
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Figure 4.13: Theoretical dependence of relative intermodulation factor p+/p1 on radius of

woofer for frequency f2 = 3 kHz. Note how this is only for the sum frequency. The difference

frequency exhibits similar behaviour.

initially very small and (4.84) has essentially a r−3
0 dependence9. As a gets bigger

(around 0.07 m) and the integration distance r0 is increased past this point, the

added contributions from the integral have a significantly smaller effect by nature

of (4.85). The oscillatory behaviour in Figure 4.13 is clearly due to the exponential

in (4.84) which is dominantly oscillatory with wavenumber k2 (giving a wavelength

of approximately 11 cm for f2 = 3 kHz). Note that in (4.84) r does not vary much

over the integration when our observation distance z = 1 m (r being the distance

form the observation point to the integration point on the woofer). Indeed the

oscillations are dominated by ejk2r0 . A similar plot, Figure 4.14, with f2 = 12 kHz

shows how the wavelength of the oscillations corresponds to the wavelength of f2

(approximately 3 cm) .

9When multiplied by the values in (4.85), the integrand of (4.84) has no more than a r−3
0

dependence.
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Figure 4.14: Theoretical dependence of relative intermodulation factor p+/p1 on radius of

woofer for frequency f2 = 12 kHz. This is similar to Figure 4.13 except note the oscillations

correspond to the high-frequency f2.

Some interesting behaviour occurs in Figures 4.15-4.17 which show the depen-

dence of p2+/p1 on the radius as a is increased up to 2 m (as opposed to the 20

cm of Figures 4.13 and 4.14) for three fixed positions of d (arbitrarily chosen as

multiples of the original distance d = 2.4 cm).

The author is uncertain as to why there seems to be a generally decreasing

trend in Figure 4.15, especially when one considers the two plots Figure 4.16 and

Figure 4.17 where we have moved the location of the tweeter to 4.8 cm and 7.2 cm

respectively. The overall magnitude decrease in Figures 4.16 and 4.17 compared

to Figure 4.15 is likely due to some combination of the larger r0 values when d

is increased as well as the increased p1 as the tweeter approaches the observation

point. The trends for large a however, are not obvious at all. An asymptotic

analysis of (4.84) as a→∞ would perhaps prove fruitful.
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Figure 4.15: Theoretical dependence of intermodulation factor p+/p1 on radius of woofer a for

d = 2.4 cm, f2 = 3 kHz. This is an extended version of Figure 4.13.
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Figure 4.16: Theoretical dependence of intermodulation factor p+/p1 on radius of woofer a for

d = 4.8 cm, f2 = 3 kHz. This is similar to Figure 4.15 with d = 4.8 cm.
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Figure 4.17: Theoretical dependence of intermodulation factor p+/p1 on radius of woofer a for

d = 7.2 cm, f2 = 3 kHz. This is similar to Figure 4.15 with d = 7.2 cm.

Tweeter Distance - On-Axis

Other interesting phenomena are exhibited if we vary our distance d for fixed radii.

For these simulations however, we only plot the spatial factor p2 (as opposed to

p2/p1). The reason for this is that the first-order pressure p1 fluctuates substantially

as we change the value of d (see Figure 4.18).

The oscillatory behaviour of Figure 4.18 is due to the fact that at d values

λ2

4
, 3λ2

4
, 5λ2

4
etc. (λ2 is the wavelength of the high-frequency wave) the distance be-

tween the tweeter and its image source is exactly one half wavelength (or 11
2
, 21

2

etc.) so that when we are on-axis the reflected tweeter signal arrives 180◦ out of

phase with the original and thus cancellation occurs. Consequently, to better un-

derstand the qualitative behaviour of the intermodulation terms for varying values

of d, we avoid plotting the values of p1.10

Figures 4.19-4.21 show that as d increases the general intermodulation factor

10Note that this was not a problem for our plots Figures 4.9-4.17 as p1 was essentially constant

in those cases.
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Figure 4.18: Theoretical effect of varying the tweeter distance on the first-order pressure p1.

The units are arbitrary decibel units because we have not calculated Q0 and thus are lacking the

ρ0Q0/4π factor. For f2 = 3 kHz the wavelength is approximately 11.4 cm and so the nulls occur

at odd multiples of approximately 2.85 cm.

drops, which is expected. There are also some interesting local maxima which seem

to occur when the tweeter is positioned at a point on-axis equivalent to the piston

radius. For the 30 cm woofer we also see a local minimum appear at around 15

cm (Figure 4.21). To see how these extrema might be affected by the frequencies

themselves we plot a similar graph but for f2 = 5 kHz (Figure 4.22).

The qualitative behaviour in Figure 4.22 shows similarities to Figure 4.21 except

there seems to be an increasing trend near the end of the graph. To examine this

further we extend our range of tweeter distances in Figure 4.23.

The discontinuity at 1 m in Figure 4.23 is due to the correction terms from

equation (4.32) which become singular as our tweeter distance moves closer to our

observation point. Indeed there is an eventual decreasing trend as d is positioned

far enough away, however not before there are significant oscillations as the tweeter

is moved between the observer and the boundary. There is also a noticeable drop

at around 2 m.
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Figure 4.19: Theoretical dependence of sum frequency p+ on tweeter distance d (arbitrary

decibel units) - radius 3 cm.
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Figure 4.20: Theoretical dependence of sum frequency p+ on tweeter distance d (arbitrary

decibel units) - radius 10 cm.
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Figure 4.21: Theoretical dependence of sum frequency p+ on tweeter distance d (arbitrary

decibel units) - radius 30 cm.
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Figure 4.22: Theoretical dependence of sum frequency p+ on tweeter distance d (arbitrary

decibel units) - radius 30 cm. Similar to Figure 4.21 with f2 now 5 kHz.
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Figure 4.23: Extended theoretical dependence of sum frequency p+ on tweeter distance d

(arbitrary decibel units) - radius 30 cm, f2 = 5 kHz. Similar to Figure 4.22 except we have

extended the tweeter distance up to 10 m.

To see what might cause this we plot the same graph without the correction

terms in Figure 4.24. Comparison with Figure 4.23 shows that the correction terms

seem to cause negligible change in the overall qualitative behaviour of the inter-

modulation frequency except near the observation point. The large drop at around

2 m is present in both situations and must be the result of some extreme phase

cancellation. A similar plot of p′2 (that is, p2 without the correction terms) for our

original frequency f2 = 3 kHz is given in Figure 4.25. Note the position of the

apparent null. Predicting this from the integral (4.84) would seem nontrivial given

the complexity of the integrand for values of r0 = O(1).
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Figure 4.24: Theoretical dependence of sum frequency without correction terms p′+ on tweeter

distance d (arbitrary decibel units) - radius 30 cm, f2 = 5 kHz. Similar to Figure 4.23 except

missing the correction terms in (4.32).
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Figure 4.25: Theoretical dependence of sum frequency without correction terms p′+ on tweeter

distance d (arbitrary decibel units) - radius 30 cm, f2 = 3 kHz. Similar to Figure 4.24 except the

tweeter is emitting a 3 kHz tone.
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Tweeter Distance - Off-Axis

The plots of Figures 4.19-4.25, while interesting, are mostly theoretical since for

real speaker setups (coaxial or otherwise) it is unlikely that the tweeter would be

positioned so far away. A more useful simulation, and one which should agree with

the experiments by Klipsch [1] (at least qualitatively), is to examine the behaviour

as the tweeter is moved off the axis. Again for these plots the ordinate is only the

pressure p2 for the same reasons given in the On-Axis Section (although varying

the parameter h, which represents our distance off the axis, does not have as strong

an effect on p1 as did varying the d parameter). We first use a d value of 2.4 cm,

similar to our B139 setup, and see what happens as h is increased past the edge of

the woofer (Figures 4.26-4.28).
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Figure 4.26: Theoretical effect of moving the tweeter off the axis of a woofer with radius 3 cm

(arbitrary decibel units). Only the sum frequency p+ is shown. The horizontal distance d between

the tweeter and baffle is 2.4 cm.

93



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
100

110

120

130

140

150

160
Observation distance 1m, f1 = 50Hz, f2 = 3kHz, a = 10cm, B=1mm, d=2.4cm

tweeter distance off−axis h (m)

P su
m (d

B)

Figure 4.27: Theoretical effect of moving the tweeter off the axis of a woofer with radius 10

cm (arbitrary decibel units). Only the sum frequency p+ is shown. The horizontal distance d

between the tweeter and baffle is 2.4 cm.
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Figure 4.28: Theoretical effect of moving the tweeter off the axis of a woofer with radius 30

cm (arbitrary decibel units). Only the sum frequency p+ is shown. The horizontal distance d

between the tweeter and baffle is 2.4 cm.
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As expected the intermodulation factor drops off quite substantially as the

tweeter moves past the edge of the woofer. Physically, it would seem that this

drop should be stronger the closer the tweeter is to the boundary and weaker as

the tweeter is positioned further away. Figures 4.29-4.31 show the behaviour for

the same three woofers (radii 3, 10 and 30 cm) when the tweeter is now located 5

mm from the boundary.
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Figure 4.29: Theoretical effect of moving the tweeter off the axis of a woofer with radius 3 cm

(arbitrary decibel units). Only the sum frequency p+ is shown. This is similar to Figure 4.26

except that the horizontal distance d between the tweeter and baffle is now 5 mm.
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Figure 4.30: Theoretical effect of moving the tweeter off the axis of a woofer with radius 10

cm (arbitrary decibel units). Only the sum frequency p+ is shown. This is similar to Figure 4.27

except that the horizontal distance d between the tweeter and baffle is now 5 mm.
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Figure 4.31: Theoretical effect of moving the tweeter off the axis of a woofer with radius 30

cm (arbitrary decibel units). Only the sum frequency p+ is shown. This is similar to Figure 4.28

except that the horizontal distance d between the tweeter and baffle is now 5 mm.
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For comparison, Figure 4.32 shows the result for the 30 cm woofer when the

tweeter is now 10 cm from the boundary.
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Figure 4.32: Theoretical effect of moving the tweeter off-axis for a woofer with radius 30 cm

(arbitrary decibel units). Only the sum frequency p+ is shown. This is similar to both Figures

4.28 and 4.31 except that the horizontal distance d is now 10 cm.

Indeed Figures 4.29-4.32 show the expected behaviour as the tweeter height

is increased beyond the edge of the woofer. Notice the rate of decrease is much

quicker for the d = 5 mm case (Figure 4.31) than for the d = 10 cm case (Figure

4.32). In fact, for the three plots Figures 4.29-4.31, there seems to be a large drop

(approx 5 dB) right as the tweeter reaches the edge of the woofer. Interestingly,

this drop is quickly followed by a subsequent jump of about 4 dB. Intuition would

suggest the initial drop when the tweeter is located so close to the boundary. The

subsequent jump however, is not so easily understood. It would be interesting to

see if experiments agree with these simulations.

We conclude this section by mentioning that although direct numerical compar-

isons with the experiments of Klipsch [1] are difficult to perform, the qualitative

behaviour of the plots in this section agree with his observations. In other words,
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that a coaxial setup (h = 0) has a substantially more audible modulation distortion

than that of a separated system (h > a).

Analytic validity

In this final section we examine the range of validity of the on-axis (both tweeter

and observation point) analytic approximation (4.99)-(4.100). We restate the ap-

proximation as a single equation

p′2+approx = −2

(
ρ0Q0bw

4π

)
ejω+t Γ(z)

Γ(z) =

(
e−jk+z

z

)(
ω+

ω1

)[(
d2 − r2

d

r3
d

)
e−jk2rd + j

(
d2k2

r2
d

e−jk2rd − k2e
−jk2d

)]
+

(
e−jk+z

z

)
j

(k+)2

k2

[e−jk2rd − e−jk2d]. (4.104)

to be compared with the exact pressure p′2+exact
given by formula (4.84).

Recall that our derivation of (4.104) was based on the assumption z � a. We

therefore give plots of the error |p′2exact
− p′2approx | as our observation distance z

varies between 0 and 1 m for both the sum and difference frequencies11. Figures

4.33 and 4.34 show the expected behaviour for woofers with radii 1 cm and 10

cm respectively. That is, the approximation formula exhibits greater error for the

larger radius (figure 4.34, note the different scales).

What may be somewhat surprising, when the radius is further increased to 1 m,

is that the magnitude of the error (Figure 4.35) does not differ much from the case

a = 10 cm (Figure 4.34). Clearly the condition z � a is no longer satisfied so there

must be other factors involved. We can identify a possible reason for the apparent

validity of the approximation even for z ≤ a (Figure 4.35) by looking at equation

(4.98) and Figures 4.15-4.17. During the initial values of the integration variable

σ, the approximation (4.98) is still valid. As σ → a, this approximation becomes

less and less accurate and the exact distance needs to be used. However, we see

11Although (4.104) is only for the sum frequency, following the procedure in Section 4.2.5 using

equation (4.77) instead of (4.76) yields a formula for p′2−approx .
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Figure 4.33: Error in analytic approximation |p′2exact
− p′2approx | as computed from (4.84) and

(4.104) respectively (along with the equivalent difference frequency formula). The woofer radius

is 1 cm.

from Figures 4.15-4.17 that the contributions from the outer part of the radius are

much less significant than those in a small circle approximately 0 ≤ σ ≤ 10 cm.

This would suggest that the condition z � 10 cm is perhaps more appropriate.

We deduce then that for values of z approximately greater than 50 cm (based on

Figures 4.15-4.17) the analytic approximation is a good one regardless of radius. A

final plot (Figure 4.36) of a 5 m woofer confirms this.
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Figure 4.34: Error in analytic approximation |p′2exact
− p′2approx | as computed from (4.84) and

(4.104) respectively. Similar to Figure 4.33 with the woofer radius now 10 cm.
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Figure 4.35: Error in analytic approximation |p′2exact
− p′2approx | as computed from (4.84) and

(4.104) respectively. Similar to Figure 4.33 with the woofer radius now 1 m. Note that the

condition z � a is no longer valid, however the error is still small.
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Figure 4.36: Error in analytic approximation |p′2exact
− p′2approx | as computed from (4.84) and

(4.104) respectively. Similar to Figure 4.33 with the woofer radius now 5 m. Here z < a and the

approximate formula is still rather good. See the explanation in the text.
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Chapter 5

Conclusions

We have established a set of inhomogeneous wave equations, based on the method

of successive approximations, to solve for the pressure field of the intermodulation

frequencies generated by two interacting acoustic transducers. A dimensionless ap-

proach was used in order to be as thorough as possible. Using the Green’s function

of the wave operator a general solution to the inhomogeneous wave equation was

obtained in the form of an integral equation. Employing geometrical simplifications

this integral equation was reduced to a matter of quadrature over a semi-infinite

volume and a finite surface. To further simplify this integration an argument was

made to establish the Doppler effect as the dominant source of sum and difference

frequency generation under the current regime. This allowed us to express the so-

lution to the intermodulation frequency component as an integral over the surface

of the woofer.

An analytic solution to this integral was obtained for the on-axis, farfield, coaxial

case. Numerical simulations however, suggested that the farfield assumption could

potentially be relaxed. Comparison between experiment and theory showed that for

the parameter values used in the lab, the agreement is rather good. Possible sources

of error include room reflections, edge wave diffraction, measurement inaccuracies

and geometric disparity. Further experiments would help isolate specific causes.

Using the second-order integral expression (4.84) for the sum and difference fre-
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quencies, a numerical investigation was undertaken to observe the dependence of

the intermodulation factor on various parameter changes. Several results agreed

with intuition although further analysis would seem appropriate for certain obser-

vations.

Although it would appear unlikely that a full analytic solution to (4.84) is

possible, a general (off-axis) farfield solution similar to the first-order equation

(4.27) is potentially attainable. Even without this, however, further experiments

to compare with the simulations given in Chapter 4 would prove beneficial.
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Appendix A

Vector Identities

Below are some not-so-standard vector identities that have been used in various

derivations throughout the text. The latter half are mostly used in the derivation

of the reduced wave equation for p′2 (4.33). The functions f, g are scalar, F,G,u

are vector.

1. ∇× (fu) ≡ f∇× u− u×∇f

2. ∇× (F×G) ≡ (G · ∇)F− (F · ∇)G + (∇ ·G)F− (∇ · F)G

3. ∇(F ·G) ≡ (F · ∇)G + (G · ∇)F + F× (∇×G) + G× (∇× F)

4. ∇ · (∇f ×∇g) ≡ 0

5. ∇× (∇× F) ≡ ∇(∇ · F)−∇2F

6. ∇ · (F×G) ≡ G · (∇× F)− F · (∇×G)

7. (u · ∇)u ≡ 1
2
∇(|u|2)− u× (∇× u)

8. ∇ · [(u · ∇)u] ≡ 1
2
∇2(|u|2)− |∇ × u|2 + u · (∇×∇× u)

9. ∇2(f 2) ≡ 2|∇f |2 + 2f∇2f

10. (f 2)tt ≡ 2(ft)
2 + 2fftt
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11. ( ∂
2

∂t2
− c2∇2)(f 2) ≡ 2f(ftt − c2∇2f) + 2[(ft)

2 − c2|∇f |2]

12. ∂2

∂t2
(|u|2) ≡ 2u · utt + 2|ut|2

13. ( ∂
2

∂t2
− c2∇2)(ft

∫
fdt) ≡

∫
fdt( ∂

2

∂t2
− c2∇2)(ft) + 2fftt − 2c2∇ft · ∇

∫
fdt +

ft(
∂2

∂t2
− c2∇2)(

∫
fdt)
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Appendix B

Alternative Derivation of Green’s

Function for Wave Equation

The following derivation is adapted from [60].

We seek to find the free space Green’s function G = G(ξ, η, ζ, τ, x, y, z, t) solving

Gττ − c2∇2G = δ(ξ − x)δ(η − y)δ(ζ − z)δ(τ − t) (B.1)

subject to the condition G = 0 for τ > t. Define the spatial Fourier transform pair

F [G] := g(k1, k2, k3, τ, x, y, z, t) =
1

(
√

2π)3

∞∫ ∫ ∫
−∞

Gei(k1ξ+k2η+k3ζ)dξdηdζ

(B.2)

F−1[g] := G(ξ, η, ζ, τ, x, y, z, t) =
1

(
√

2π)3

∞∫ ∫ ∫
−∞

ge−i(k1ξ+k2η+k3ζ)dk1dk2dk3

(B.3)

Multiply both sides of (B.1) by 1
(
√

2π)3
ei(k1ξ+k2η+k3ζ) and integrate over infinite

(ξ, η, ζ) space using the properties

• F [Gττ ] = gττ

• F [Gξiξi ] = −k2
i g
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and the sifting property of the delta function to get the equation

gττ + c2k2g =
1

(
√

2π)3
ei(k1x+k2y+k3z)δ(τ − t) (B.4)

where k =
√
k2

1 + k2
2 + k2

3. The condition G = 0 for τ > t can be restated as (see

section 3.4.3) G = Gτ = 0 at τ = T > t which transfers to g as

g|τ=T =
∂g

∂τ
|τ=T = 0, T > t. (B.5)

This ODE (B.4) with time conditions (B.5) has the standard homogeneous solution

gh = c1 sin(ckτ) + c2 cos(ckτ) = c1u1(τ) + c2u2(τ). (B.6)

To find a particular solution we employ the method of variation of parameters

which, for a second order ODE with inhomogeneous function f , fundamental solu-

tions u1 and u2 and Wronskian W , has the solution formula

gp = v1(τ)u1(τ) + v2(τ)u2(τ) (B.7)

v1(τ) = −
∫ τ u2(s)f(s)

W
ds (B.8)

v2(τ) =

∫ τ u1(s)f(s)

W
ds. (B.9)

The lower bound of integration is not important as it yields a constant which will

in turn be multiplied by one of our fundamental solutions and can therefore be

absorbed into c1 and c2.

In our case, the function f is given by

f(τ) =
1

(
√

2π)3
eik·xδ(τ − t) (B.10)

where k = (k1, k2, k3) and x = (x, y, z) and W = −ck. This gives us a particular

solution of

gp =
sin(ckτ)eik·x

ck(
√

2π)3

∫ τ

cos(cks)δ(s− t)ds− cos(ckτ)eik·x

ck(
√

2π)3

∫ τ

sin(cks)δ(s− t)ds.

(B.11)
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Due to the delta function in our expression for f two cases need to be considered.

For τ < t, the integrals vanish and the whole particular solution is simply 0. For

τ > t the integration is easily computed and we thus obtain

gp = 0, τ < t (B.12)

gp =
sin(ckτ) cos(ckt)eik·x

ck(
√

2π
3
)

− cos(ckτ) sin(ckt)eik·x

ck(
√

2π)3
, τ > t (B.13)

Using a Heaviside step function this can be rewritten as a single expression which,

after a trig simplification, combines with our homogeneous solution gh to yield

g =
sin[ck(τ − t)]eik·x

ck(
√

2π)3
H(τ − t) + c1 sin(ckτ) + c2 cos(ckτ) (B.14)

With a bit of algebra our coefficients c1 and c2 are obtained from our conditions

(B.5)

c1 = −cos(ckt)eik·x

ck(
√

2π)3
(B.15)

c2 =
sin(ckt)eik·x

ck(
√

2π)3
(B.16)

to give a solution (after another trig identity)

g =
sin[ck(τ − t)]eik·x

ck(
√

2π)3
H(τ − t) +

sin[ck(t− τ)]eik·x

ck(
√

2π)3
. (B.17)

Using the fact that sine is odd we can change the sign of the first term by switching

the order of t and τ . Then, due to the second term being equal and opposite, we

can combine these and switch the Heaviside function to get a final expression

g =
sin[ck(t− τ)]eik·x

ck(
√

2π)3
H(t− τ) (B.18)

which trivially satisfies (B.5).

Our next step is to invert this to obtain our function G. Substitution of (B.18)

into (B.3) leaves us to integrate

G =
H(t− τ)

(2π)3

∞∫ ∫ ∫
−∞

sin[ck(t− τ)]eik·r

ck
dk1dk2dk3 (B.19)
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where we have defined r = (x − ξ, y − η, z − ζ). This integration is more easily

evaluated in spherical coordinates (k, φ, θ) defined from

k1 = k cosφ (B.20)

k2 = k sinφ cos θ (B.21)

k3 = k sinφ sin θ. (B.22)

From these we have the standard transformation dk1dk2dk3 = k2 sinφdθdφdk. Also,

we can rewrite k · r as kr cosα where α is the angle between k and r. To simplify

the calculation we place our zenith in the direction of r (which is fixed during the

integration) so that the angle α is actually equal to φ. We must then compute

G =
H(t− τ)

c(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0

k sin[ck(t− τ)]eikr cosφ sinφdθdφdk. (B.23)

The first of these integrations trivially gives 2π. For the second we have∫ π

0

eikr cosφ sinφdφ = −e
ikrcosφ

ikr
|π0 =

2 sin(kr)

kr
(B.24)

which leaves us with a final integral of

G =
H(t− τ)

2π2rc

∫ ∞
0

sin[ck(t− τ)] sin(kr)dk. (B.25)

Since sin(a) sin(b) = 1
2

(cos(a− b)− cos(a+ b)), define t1 = [c(t− τ)− r] and t2 =

[c(t− τ) + r] so that our integration becomes

G =
H(t− τ)

4π2rc

∫ ∞
0

(cos(kt1)− cos(kt2))dk (B.26)

To make this integration meaningful we use the fact that cosine is even and sine is

odd and rewrite this as

G =
H(t− τ)

8π2rc

∫ ∞
−∞

(eikt1 − eikt2)dk. (B.27)

Finally, invoking the Fourier transform identity [61]∫ ∞
−∞

eibkdk = 2πδ(b) (B.28)
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we get a final solution of

G =
H(t− τ)

4πrc
[δ(t1)− δ(t2)] (B.29)

To make this match our solution given by equation (3.37) we note that this function

is only nonzero when t− τ > 0. Under this condition however, t2 is always greater

than 0 so that δ(t2) vanishes. The Heaviside function is then redundant due to the

fact that δ(t1) is also only nonzero for t− τ > 0. This gives us

G =
1

4πrc
δ(c(t− τ)− r) (B.30)

which is identical to (3.37) upon applying δ(ax) = 1
|a|δ(x).
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Appendix C

Integral solution of Wave

Equation for Cases 2 and 3

Here we investigate the derivation of the integral equation for the remaining ge-

ometries in figure 3.3. In both situations the derivation follows exactly as in section

3.3 up until equation (3.43). The only difference is the surface S.

Case 2

In this case the surface S = S1 only and we do not have the same ε-sphere surround-

ing the observation point. Because of this, our field quantity of interest, namely

p(x, y, z, t) does not appear in isolation and we are left with the modified version

of (3.51)

0 =

∫
V

∫ T

0

GfdτdV +c2

∫
S1

∫ T

0

(G∇p−p∇G) ·ndS1dτ−
∫
V

(Gpτ −Gτp) |T0 (C.1)

which is an integral equation to be solved for p.

Case 3

The geometry of this situation is more akin to that of Case 1. The only difference

here is that instead of using a full sphere to surround our observation point we

111



must use a modified volume and shrink its surface to 0. The derivation follows

exactly as in section 3.3 up until equation (3.49) where the once trivial integration

no longer gives 4π. The actual value of this integral will depend on the solid angle

Ω subtended by our observation point subject to the given boundary structure. For

example, if the point is on a flat surface our integration is over a hemisphere and

we obtain 2π. Similarly, a 90◦ wall would yield a value of π. The solution is then

given by

Ω

4π
p(x, y, z, t) =

∫
V

∫ T

0

GfdτdV+c2

∫
S1

∫ T

0

(G∇p−p∇G)·ndS1dτ−
∫
V

(Gpτ −Gτp) |T0
(C.2)

For a more detailed investigation of these integral equations (often called the

Helmholtz integral equation) see [62] or [63].
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Appendix D

Correction Terms to p2

Having dealt with p′2 for most of the derivations we return to our original pressure

p2 by means of the substitution (4.32)

p2 = p′2 −
p2

1

2ρ0c2
− p1t

ρ0c2

∫
p1dt−

1

2
ρ0|u1|2. (D.1)

Calculation of the last three terms is not analytically possible for a general obser-

vation point (x, y, z) due to the integral in (4.28). Therefore, the following assumes

our observation point to be on axis (0, 0, z). For reference our first-order pressure

is given as

p1(x, y, z, t) =
jω1ρ0bwe

jω1t

2π

∫
Sw

e−jk1r

r
dSw +

jω2ρ0Q0

4π

[
ej(ω2t−k2r1)

r1

+
ej(ω2t−k2r2)

r2

]
(D.2)

First term - p2
1

As in Section 4.2.3, care must be taken when dealing with expressions involving

quadratics of complex quantities. Accordingly, we separate the first order pressure

p1 into two terms

p1 = υ1 + υ2 (D.3)

υ1 =
jω1ρ0bwe

jω1t

2π

∫
Sw

e−jk1r

r
dSw (D.4)

υ2 =
jω2ρ0Q0

4π

[
ej(ω2t−k2r1)

r1

+
ej(ω2t−k2r2)

r2

]
. (D.5)
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Calculation of p2
1 is then

p2
1 = [<(υ1 + υ2)]2 (D.6)

=
1

4
(υ1 + ῡ1 + υ2 + ῡ2)2 (D.7)

=
1

4
(υ1 + ῡ1)2 +

1

4
(υ2 + ῡ2)2 +

1

2
(υ1υ2 + υ1υ2 + υ1ῡ2 + ῡ1υ2). (D.8)

Of interest is the last bracket which is responsible for the sum and difference fre-

quency tones. It can be separated and rewritten as

1

2
(υ1υ2 + υ1υ2 + υ1ῡ2 + ῡ1υ2) =

sum freq︷ ︸︸ ︷
<(υ1υ2) +

diff freq︷ ︸︸ ︷
<(ῡ1υ2) . (D.9)

Letting υ1 = Y1e
jω1t and υ2 = Y2e

jω2t the amplitude of the sum frequency is then

given by the magnitude of Y1Y2; that of the difference frequency by the magnitude

of Ȳ1Y2 (see the comments after equation (4.57). We thus have

Y1Y2 = −ρ
2
0Q0bw
8π2

(ω1ω2)

[∫
Sw

(
e−j(k1r+k2r1)

rr1

+
e−j(k1r+k2r2)

rr2

)
dSw

]
(D.10)

Ȳ1Y2 =
ρ2

0Q0bw
8π2

(ω1ω2)

[∫
Sw

(
ej(k1r−k2r1)

rr1

+
ej(k1r−k2r2)

rr2

)
dSw

]
. (D.11)

This is the general form of the spatial factor for the sum and difference frequencies

of p2
1. We have not yet restricted ourselves to the on-axis solution since the form

given above will reappear in the following section.

Second term - p1t

∫
p1dt

Arriving at the sum and difference contributions in this case is similar to that given

above except we have four kinds of terms instead of two. Again we must take the

real parts before doing the multiplication so that

<(p1t)<(

∫
p1dt) =

1

4
(z1 + z̄1 + z2 + z̄2)(v1 + v̄1 + v2 + v̄2) (D.12)
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where the the vi, zi are computed from (D.2) and given as

z1 = −ρ0bwω
2
1

2π

∫
Sw

ej(ω1t−k1r)

r
dSw (D.13)

z2 = −ρ0Q0ω
2
2

4π

[
ej(ω2t−k2r1)

r1

+
ej(ω2t−k2r2)

r2

]
(D.14)

v1 =
ρ0bw
2π

∫
Sw

ej(ω1t−k1r)

r
dSw (D.15)

v2 =
ρ0Q0

4π

[
ej(ω2t−k2r1)

r1

+
ej(ω2t−k2r2)

r2

]
. (D.16)

Expanding (D.12) and separating out the intermodulation terms we have

<(p1t)<(

∫
p1dt)± =

sum frequency︷ ︸︸ ︷
1

2
<(v1z2) +

1

2
<(v2z1) +

difference frequency︷ ︸︸ ︷
1

2
<(v̄1z2) +

1

2
<(v2z̄1) . (D.17)

Using the substitutions

v1 = V1e
jω1t, v2 = V2e

jω2t, z1 = Z1e
jω1t, z2 = Z2e

jω2t (D.18)

we have the two spatial factors for the sum frequency

V1Z2 = −ρ
2
0Q0

8π2
(ω2

2)

[∫
Sw

(
e−j(k1r+k2r1)

rr1

+
e−j(k1r+k2r2)

rr2

)
dSw

]
(D.19)

V2Z1 = −ρ
2
0Q0

8π2
(ω2

1)

[∫
Sw

(
e−j(k1r+k2r1)

rr1

+
e−j(k1r+k2r2)

rr2

)
dSw

]
(D.20)

and those for the difference frequency

V̄1Z2 = −ρ
2
0Q0

8π2
(ω2

2)

[∫
Sw

(
ej(k1r−k2r1)

rr1

+
ej(k1r−k2r2)

rr2

)
dSw

]
(D.21)

V2Z̄1 = −ρ
2
0Q0

8π2
(ω2

1)

[∫
Sw

(
ej(k1r−k2r1)

rr1

+
ej(k1r−k2r2)

rr2

)
dSw

]
. (D.22)

Computing sum and difference contributions of 1
2ρ0c2

p2
1 + 1

ρ0c2
p1t

∫
p1dt

The total contribution to the sum frequency is given by the coefficient 1
2ρ0c2

times

equation (D.10) plus 1
ρ0c2

times 1
2

from in front of the real part of (D.17) and

equations (D.19) and (D.20). The difference frequency is similar except we use

equations (D.11),(D.21) and (D.22).
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We note that the bracketed terms in all of (D.10), (D.11) and (D.19)-(D.22)

are identical for their respective frequencies. Also the c2 in the denominator of

the coefficients transforms all the ω terms into their respective wavenumbers k.

Combining all of these we obtain final expressions for the spatial factors of the sum

and difference frequencies of the two middle terms of (D.1):

Sum freq = −ρ0Q0

16π2
(k2

1 + k1k2 + k2
2)

[∫
Sw

(
e−j(k1r+k2r1)

rr1

+
e−j(k1r+k2r2)

rr2

)
dSw

]
(D.23)

Diff freq = −ρ0Q0

16π2
(k2

1 − k1k2 + k2
2)

[∫
Sw

(
ej(k1r−k2r1)

rr1

+
ej(k1r−k2r2)

rr2

)
dSw

]
.

(D.24)

The on-axis solution is easily obtained from these since in this case we have (see

Section 4.1.2) dSw = 2πrdr for z ≤ r ≤ re and the integral is easily computed.

Third term - |u1|2

Determining the square of the magnitude of the velocity vector is achieved by

computing u1 · u1. It easier in this case to assume from the beginning that we are

on-axis as our vector function then simplifies substantially.

The expression for the first-order velocity is given by equation (4.46)

u1 =
bw
2π
ejω1t

∫
Sw

g(k1, r)
r

r
dSw +

Q0

4π
ejω2t

(
g(k2, r1)

r1

r1

+ g(k2, r2)
r2

r2

)
(D.25)

with the r values give by (4.47). On-axis we have x = y = 0 so that the velocity

can be written as

u1 =
bw
2π
ejω1t

∫
Sw

g(k1, r)

r
(−ξ,−η, z)dSw+

Q0

4π
ejω2t

(
g(k2, r1)

r1

(0, 0, z − d) +
g(k2, r2)

r2

(0, 0, z + d)

)
.

(D.26)

If we let ξ = σ cos θ and η = σ sin θ then since our distance r does not depend on

the angle θ the x and y components of the surface integral vanish as a result of

integrating over 0 ≤ θ ≤ 2π. We are therefore left with a single nonzero component
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w1 given by

u1on-axis
= w1 =

bw
2π
ejω1t

∫
Sw

g(k1, r)

r
zdSw+

Q0

4π
ejω2t

(
g(k2, r1)

r1

(z − d) +
g(k2, r2)

r2

(z + d)

)
.

(D.27)

Using the definition of g(k, r) from equation (4.47) and the substitution dSw =

σdθdσ = rdrdθ = 2πrdr our surface integral becomes∫
Sw

g(k1, r)

r
zdSw = −2πz

(
ejk1r

r

)
|rez . (D.28)

The final form of the on-axis velocity is then

w1 = bwze
jω1t

[
e−jk1z

z
− e−jk1re

re

]
+
Q0e

jω2t

4π

[
g(k2, r1)

r1

(z − d) +
g(k2, r2)

r2

(z + d)

]
.

(D.29)

As before we let w1 = s1 + s2 = S1e
jω1t + S2e

jω2t so that as with p2
1 when we

compute <(w1)<(w1) our intermodulation terms are given by <(s1s2) and <(s̄1s2).

We therefore obtain, for the spatial factor of the sum and difference frequencies:

S1S2 =
bwQ0z

4π

[
e−jk1z

z
− e−jk1re

re

] [
g(k2, r1)

r1

(z − d) +
g(k2, r2)

r2

(z + d)

]
(D.30)

S̄1S2 =
bwQ0z

4π

[
ejk1z

z
− ejk1re

re

] [
g(k2, r1)

r1

(z − d) +
g(k2, r2)

r2

(z + d)

]
.(D.31)

All that remains is to include the coefficient term ρ0
2

when calculating the inter-

modulation frequency of choice.

Final comments

Recall from the footnote below equation (4.57) that once we have separated the

expressions as we have above (that is, in complex form z1 = Z1e
jω1t, s2 = S2e

jω2t

etc.) what remains is to collect the spatial functions of either the sum or difference

frequency and calculate the magnitude of the spatial factor. All of this is performed

in the MATLAB code in the next appendix.
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Appendix E

MATLAB Code for Evaluating

Surface Integral

The following is the MATLAB code used to perform the simulations given in Chap-

ter 4. If one were to scan the code carefully and compare it with the equations given

in that chapter there are two notable omissions. The first is the factor ρ0Q0

4π
. For

those plots where we computed the relative change p1/p2 this factor cancels alto-

gether. For the plots of just p2 (or p′2) the decibel units are specified to be arbitrary

because of this missing factor. The qualitative behaviour of the graph is unaffected.

The other omission is the factor 2 which comes from our integral solution (4.84).

This is simply because it cancels with the 1/2 from our complex separation (4.55).

The code is not all that user-friendly since to investigate the dependence of the

pressure on any given parameter, one must comment out the sections of the other

parameters. Also the name of the routine plot_harmonics is a bit of a misnomer

since the sum and difference frequencies are technically not harmonics.

Finally, we originally had our z-axis as the x-axis and this was only recently

changed for the written thesis. To avoid any errors the code here still uses x instead

of z.
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plot harmonics

This function is used to plot the dependence of p2/p1 (or just p2) on various pa-
rameters. The actual computation of both p1 and p2 is in the subsequent routines.

function ret = plot_harmonics

b = 0.001; %1mm amplitude

f1 = 50; %woofer frequency

f2 = 3000; %tweeter frequency

w1 = 2*pi*f1;

w2 = 2*pi*f2;

bw = w1*b;%woofer velocity

c = 343; %speed of sound

k1 = w1/c;

k2 = w2/c;

%w = w2+w1;

%k = w/c;

a = 0.3; %radius of woofer

d = 0.024; %tweeter distance

h = 0; %tweeter distance off-axis

x = 1; %observation point 1m away

% progress bar %

wtbar = waitbar(0, ’Calculating...’);

%%%%%%%%%%%%%%%%%%%%Vary h parameter%%%%%%%%%%%%%%%%%%%%%%

% last = 500;

% p2_h = zeros(1,last);

% p2_h_d = zeros(1,last);

% p1_h = zeros(1,last);

% incr = 0.001; %1mm

% for i=0:last-1;

% %calculate p2 for sum frequency

% h = incr*(i);

% [re im] = surface_integral(x,d,a,h,f1,f2,true);

% z = [re im];

% [re_corr im_corr] = correction(b,d,h,x,true);

% re_p2 = bw*z(1)/(2*pi) - re_corr;

% im_p2 = bw*z(2)/(2*pi) - im_corr;

% max_p2 = sqrt(re_p2^2 + im_p2^2);

% p2_h(i+1) = max_p2;

%

% % %calculate p2 for difference frequency
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% % h = incr*(i);

% % [re_d im_d] = surface_integral(x,d,a,h,f1,f2,false);

% % z_d = [re_d im_d];

% % [re_corr_d im_corr_d] = correction(b,d,h,x,false);

% % re_p2_d = bw*z_d(1)/(2*pi) - re_corr_d;

% % im_p2_d = bw*z_d(2)/(2*pi) - im_corr_d;

% % max_p2_d = sqrt(re_p2_d^2 + im_p2_d^2);

% % p2_h_d(i+1) = max_p2_d;

%

% %calculate p1

% p1_h(i+1) = first_pressure(x,d,h,f2);

%

% %update waitbar

% waitbar(i/last);

% end

% x_axis = 0:incr:(last-1)*incr;

% ref = 2*10^(-5);

% %plot(x_axis,p1_h,x_axis,p2_h);

% % plot(x_axis,20*log10(p2_h./p1_h));

% plot(x_axis,20*log10(p2_h/ref));

% title([’Observation distance ’,num2str(x),’m, f_1 = ’,num2str(f1),’Hz, f_2 = ’,num2str(f2/1000),’kHz, ...

% a = ’,num2str(a*100),’cm, B=’,num2str(b*1000),’mm, d=’,num2str(d*100),’cm’]);

% xlabel(’tweeter distance off-axis h (m)’);

% ylabel(’P_{sum} (dB)’);

%%%%%%%%%%%%%%%%%%%%%Vary d parameter%%%%%%%%%%%%%%%%%%%%%

last = 1000;

incr = 0.01; %0.1mm increments

p2_h = zeros(1,last); %sum frequency

p2_h_d = zeros(1,last); %diff frequency

p1_h = zeros(1,last);

if h < a

for i=1:last;

%calculate p2 for sum frequency

d = incr*(i);

[re im] = surface_integral(x,d,a,h,f1,f2,true);

z = [re im];

[re_corr im_corr] = correction(b,d,h,x,true);

re_p2 = bw*z(1)/(2*pi) - re_corr;

im_p2 = bw*z(2)/(2*pi) - im_corr;

max_p2 = sqrt(re_p2^2 + im_p2^2);

p2_h(i) = max_p2;

%calculate p2 for difference frequency

[re_d im_d] = surface_integral(x,d,a,h,f1,f2,false);

z_d = [re_d im_d];
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[re_corr_d im_corr_d] = correction(b,d,h,x,false);

re_p2_d = bw*z_d(1)/(2*pi) - re_corr_d;

im_p2_d = bw*z_d(2)/(2*pi) - im_corr_d;

max_p2_d = sqrt(re_p2_d^2 + im_p2_d^2);

p2_h_d(i) = max_p2_d;

%calculate p1

p1_h(i) = first_pressure(x,d,h,f2);

%updatewaitbar

waitbar(i/last);

end

x_axis = incr:incr:incr*last;

else

for i=0:last-1;

%calculate p2 for sum frequency

d = incr*(i);

[re im] = surface_integral(x,d,a,h,f1,f2,true);

z = [re im];

[re_corr im_corr] = correction(b,d,h,x,true);

re_p2 = bw*z(1)/(2*pi) - re_corr;

im_p2 = bw*z(2)/(2*pi) - im_corr;

max_p2 = sqrt(re_p2^2 + im_p2^2);

p2_h(i+1) = max_p2;

%calculate p2 for difference frequency

[re_d im_d] = surface_integral(x,d,a,h,f1,f2,false);

z_d = [re_d im_d];

[re_corr_d im_corr_d] = correction(b,d,h,x,false);

re_p2_d = bw*z_d(1)/(2*pi) - re_corr_d;

im_p2_d = bw*z_d(2)/(2*pi) - im_corr_d;

max_p2_d = sqrt(re_p2_d^2 + im_p2_d^2);

p2_h_d(i) = max_p2_d;

%calculate p1

p1_h(i+1) = first_pressure(x,d,h,f2);

%updatewaitbar

waitbar(i/last);

end

x_axis = 0:incr:incr*(last-1);

end
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ref = 2*10^(-5);

% plot(x_axis,20*log10(p1_h/ref));

plot(x_axis,20*log10(p2_h/ref));

% p_sum = 20*log10(p2_h./p1_h);

%p_diff = 20*log10(p2_h_d./p1_h);

%plot(x_axis,p_sum,x_axis,p_diff);

title([’Observation distance ’,num2str(x),’m, f_1 = ’,num2str(f1),’Hz, f_2 = ’,num2str(f2/1000),’kHz, ...

a = ’,num2str(a*100),’cm, B=’,num2str(b*1000),’mm’]);

xlabel(’tweeter distance d (m)’);

ylabel(’P_{sum} (dB)’);

%%%%%%%%%%%%%%%%%%%%Vary b parameter%%%%%%%%%%%%%%%%%%%%%%

% last = 20;

% b_incr = 0.0001; %0.1mm

% decibels = zeros(last,2);

%

% for i=1:last;

% %calculate p2

% b = b_incr*(i);

%

% %calculate p1

% p1 = first_pressure(x,d,h,f2);

% %decibels(i,2) = 20*log10( p1/(2*10^(-5)) );

%

% %calculate sum frequency

% [re im] = surface_integral(x,d,a,h,f1,f2,true);

% z = [re im];

% [re_corr im_corr] = correction(b,d,h,x,true);

% re_p2 = -b*w1*z(1)/(2*pi) - re_corr;

% im_p2 = -b*w1*z(2)/(2*pi) - im_corr;

% max_p2 = sqrt(re_p2^2 + im_p2^2);

% decibels(i,2) = 20*log10( max_p2/p1 );

%

% %calculate difference frequency

% [re im] = surface_integral(x,d,a,h,f1,f2,false);

% z = [re im];

% [re_corr im_corr] = correction(b,d,h,x,false);

% re_p2 = -b*w1*z(1)/(2*pi) - re_corr;

% im_p2 = -b*w1*z(2)/(2*pi) - im_corr;

% max_p2 = sqrt(re_p2^2 + im_p2^2);

% decibels(i,1) = 20*log10( max_p2/p1 );

%

%

%
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% %updatewaitbar

% waitbar(i/last);

%

%

%

% end

%

% if last == 1

% x_axis = [0 b_incr];

% else

% x_axis = b_incr:b_incr:b_incr*last;

% end

% bar(x_axis,decibels,’group’);

% title([’Observation distance ’,num2str(x),’m, f_1 = ’,num2str(f1),’Hz, f_2 = ’,num2str(f2/1000),’kHz, ...

% a = ’,num2str(a*100),’cm, d=’,num2str(d*100),’cm’]);

% xlabel(’woofer amplitude B (m)’);

% ylabel(’P_2/P_1 (dB)’);

%%%%%%%%%%%%%%%%%%%%Vary a parameter%%%%%%%%%%%%%%%%%%%%%%

% last = 200;

% a_incr = 0.001; %1mm

% a = a_incr;

% decibels = zeros(last,2);

%

% for i=1:last;

% %calculate p2

% a = a + a_incr;

% [re im] = surface_integral(x,d,a,h,f1,f2,true);

% z = [re im];

% [re_corr im_corr] = correction(b,d,h,x,true);

% re_p2 = b*w1*z(1)/(2*pi) - re_corr;

% im_p2 = b*w1*z(2)/(2*pi) - im_corr;

% max_p2 = sqrt(re_p2^2 + im_p2^2);

% decibels(i,2) = 20*log10( (max_p2)/(2*10^(-5)) );

% %calculate p1

% p1 = first_pressure(x,d,h,f2);

% decibels(i,1) = 20*log10( p1/(2*10^(-5)) );

%

%

% %updatewaitbar

% waitbar(i/last);

%

%

%

% end
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% x_axis = a_incr:a_incr:a_incr*last;

% plot(x_axis,decibels(:,2)-decibels(:,1));

% title([’Observation distance ’,num2str(x),’m, f_1 = ’,num2str(f1),’Hz, f_2 = ’,num2str(f2/1000),’kHz, ...

% B=’,num2str(b*1000),’mm, d=’,num2str(d*100),’cm’]);

% xlabel(’woofer radius a (m)’);

% ylabel(’P_{sum}/P_1 (dB)’);

%bar(x_axis,decibels,’group’,’r’);

%%%%%%%%%%%%%%%%%%Vary x parameter (compare to analytic solution)%%%%%%%%%

% do not use correction terms since comparing p2’_exact to p2’_approx and

% correction terms blow up as x moves toward tweeter. Also, they are

% independent of the method used

% last = 100;

% x_incr = 0.01;

% decibels = zeros(last,4);

% ref = 2*10^(-5);

% x=x_incr;

%

% for i=1:last;

% %calculate p2

%

% %calculate sum frequency

% [re im] = surface_integral(x,d,a,h,f1,f2,true);

% z = [re im];

% re_p2 = -b*w1*z(1)/(2*pi);

% im_p2 = -b*w1*z(2)/(2*pi);

% max_p2 = sqrt(re_p2^2 + im_p2^2);

% decibels(i,1) = 20*log10( max_p2/ref );

% w = w1+w2; k=w/c;

%

% %analytic solution sum frequency

% rd = sqrt(a^2 + d^2);

% temp = (w/w1)*(d^2/rd^3*cos(k*x+k2*rd) + d^2*k2/rd^2*sin(k*x+k2*rd)-cos(k*x + k2*rd)/rd ...

% - k2*sin(k*x + k2*d)) + k^2/k2*(sin(k*x + k2*rd) - sin(k*x + k2*d));

% temp = temp/x;

% %imaginary part

% temp2 = (w/w1)*(-d^2/rd^3*sin(k*x+k2*rd) + d^2*k2/rd^2*cos(k*x+k2*rd)+sin(k*x + k2*rd)/rd ...

% - k2*cos(k*x + k2*d)) + k^2/k2*(cos(k*x + k2*rd) - cos(k*x + k2*d));

% temp2 = temp2/x;

% max_approx_sum = b*w1*sqrt(temp^2 + temp2^2);

% decibels(i,2) = 20*log10( max_approx_sum/ref );

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%

% %calculate difference frequency

% [re_d im_d] = surface_integral(x,d,a,h,f1,f2,false);

% z_d = [re_d im_d];

% re_p2_d = -b*w1*z_d(1)/(2*pi);

% im_p2_d = -b*w1*z_d(2)/(2*pi);

% max_p2_d = sqrt(re_p2_d^2 + im_p2_d^2);

% decibels(i,3) = 20*log10( max_p2_d/ref );

% w = w2-w1; k=w/c;

%

%

% %analytic approximation difference frequency

% %real part

%

% rd = sqrt(a^2 + d^2);

% temp = -(w/w1)*(d^2/rd^3*cos(k*x+k2*rd) + d^2*k2/rd^2*sin(k*x+k2*rd)-cos(k*x + k2*rd)/rd ...

% - k2*sin(k*x + k2*d)) + k^2/k2*(sin(k*x + k2*rd) - sin(k*x + k2*d));

% temp = temp/x;

% %imaginary part

% temp2 = -(w/w1)*(-d^2/rd^3*sin(k*x+k2*rd) + d^2*k2/rd^2*cos(k*x+k2*rd)+sin(k*x + k2*rd)/rd ...

% - k2*cos(k*x + k2*d)) + k^2/k2*(cos(k*x + k2*rd) - cos(k*x + k2*d));

% temp2 = temp2/x;

% max_approx_d = b*w1*sqrt(temp^2 + temp2^2);

% decibels(i,4) = 20*log10( max_approx_d/ref );

%

%

% %updatewaitbar

% waitbar(i/last);

%

% x = x_incr*i;

%

%

% end

%

% x_axis = x_incr:x_incr:x_incr*last;

% %bar(x_axis,decibels,’group’);

%

% plot(x_axis,abs(decibels(:,1)-decibels(:,2)),x_axis,abs(decibels(:,3)-decibels(:,4)));

% title([’Analytic comparison, f_1 = ’,num2str(f1),’Hz, f_2 = ’,num2str(f2/1000),’kHz, ...

% a = ’,num2str(a*100),’cm, d=’,num2str(d*100),’cm’]);

% xlabel(’observation distance x (m)’);

% ylabel(’P_2 exact - P_2 approx (dB) - arbitrary units’);

%

%close waitbar

close(wtbar);
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function [re_corr im_corr] = correction(b,d,h,x,sum)

rx = sqrt(a^2 + x^2);

r1 = sqrt( (x-d)^2 + h^2 );

r2 = sqrt( (x+d)^2 + h^2 ); %for on axis observation

%pressure terms

if sum

re_corr = (1/(2*r1*k1))*(sin(k1*rx+k2*r1) - sin(k1*x+k2*r1)) + (1/(2*r2*k1))*(sin(k1*rx+k2*r2) ...

-sin(k1*x+k2*r2));

im_corr = (1/(2*r1*k1))*(cos(k1*rx+k2*r1) - cos(k1*x+k2*r1)) + (1/(2*r2*k1))*(cos(k1*rx+k2*r2) ...

-cos(k1*x+k2*r2));

factor = (-b*w1/c^2)*(w1^2 + w1*w2 + w2^2);

re_corr = factor*re_corr;

im_corr = factor*im_corr;

else %difference frequency

re_corr = (1/(2*r1*k1))*(sin(k1*rx-k2*r1) - sin(k1*x-k2*r1)) + (1/(2*r2*k1))*(sin(k1*rx-k2*r2) ...

-sin(k1*x-k2*r2));

im_corr = (1/(2*r1*k1))*(cos(k1*rx-k2*r1) - cos(k1*x-k2*r1)) + (1/(2*r2*k1))*(cos(k1*rx-k2*r2) ...

-cos(k1*x-k2*r2));

factor = (-b*w1/c^2)*(w1^2 - w1*w2 + w2^2);

re_corr = factor*re_corr;

im_corr = -factor*im_corr;

end

%velocity term

if sum

re_u1 = (k2/(r1^2))*(-sin(k1*rx+k2*r1)/rx +sin(k1*x+k2*r1)/x) - cos(k1*rx+k2*r1)/(rx*r1^3) ...

+ cos(k1*x+k2*r1)/(x*r1^3);

re_u1 = b*w1*x*(x-d)*re_u1/2;

re_u2 = (k2/(r2^2))*(-sin(k1*rx+k2*r2)/rx +sin(k1*x+k2*r2)/x) - cos(k1*rx+k2*r2)/(rx*r2^3) ...

+ cos(k1*x+k2*r2)/(x*r2^3);

re_u2 = b*w1*x*(x+d)*re_u2/2;

re_u = re_u1+re_u2;

im_u1 = (k2/(r1^2))*(-cos(k1*rx+k2*r1)/rx +cos(k1*x+k2*r1)/x) + sin(k1*rx+k2*r1)/(rx*r1^3) ...

- sin(k1*x+k2*r1)/(x*r1^3);

im_u1 = b*w1*x*(x-d)*im_u1/2;

im_u2 = (k2/(r2^2))*(-cos(k1*rx+k2*r2)/rx +cos(k1*x+k2*r2)/x) + sin(k1*rx+k2*r2)/(rx*r2^3) ...

- sin(k1*x+k2*r2)/(x*r2^3);

im_u2 = b*w1*x*(x+d)*im_u2/2;

im_u = im_u1 + im_u2;
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else %difference frequency

re_u1 = (k2/(r1^2))*(sin(k1*rx-k2*r1)/rx - sin(k1*x-k2*r1)/x) - cos(k1*rx-k2*r1)/(rx*r1^3) ...

+ cos(k1*x-k2*r1)/(x*r1^3);

re_u1 = b*w1*x*(x-d)*re_u1/2;

re_u2 = (k2/(r2^2))*(sin(k1*rx-k2*r2)/rx - sin(k1*x-k2*r2)/x) - cos(k1*rx-k2*r2)/(rx*r2^3) ...

+ cos(k1*x-k2*r2)/(x*r2^3);

re_u2 = b*w1*x*(x+d)*re_u2/2;

re_u = re_u1+re_u2;

im_u1 = (k2/(r1^2))*(-cos(k1*rx-k2*r1)/rx +cos(k1*x-k2*r1)/x) - sin(k1*rx-k2*r1)/(rx*r1^3) ...

+ sin(k1*x-k2*r1)/(x*r1^3);

im_u1 = b*w1*x*(x-d)*im_u1/2;

im_u2 = (k2/(r2^2))*(-cos(k1*rx-k2*r2)/rx +cos(k1*x-k2*r2)/x) - sin(k1*rx-k2*r2)/(rx*r2^3) ...

+ sin(k1*x-k2*r2)/(x*r2^3);

im_u2 = b*w1*x*(x+d)*im_u2/2;

im_u = im_u1 + im_u2;

end

re_corr = re_corr + re_u;

im_corr = im_corr + im_u;

end%correction

end%plot_harmonics

first pressure

This function computes the first order pressure for on-axis observation

function p1_max = first_pressure(x,d,h,f2)

w2 = 2*pi*f2;

c = 343;

k2 = w2/c;

r1 = sqrt( (x-d)^2 + h^2 );

r2 = sqrt( (x+d)^2 + h^2 ); %for on axis observation

re = sin(k2*r1)/r1 + sin(k2*r2)/r2;

im = cos(k2*r1)/r1 + cos(k2*r2)/r2;

re = w2*re;

im = w2*im;

p1_max = sqrt(re^2 + im^2);

end
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surface integral

This function computes our surface integral (4.84) for on-axis observation

function [re im] = surface_integral(x,d,a,h,f1,f2,sum)

c = 343;

w1 = 2*pi*f1;

w2 = 2*pi*f2;

k1 = w1/c;

k2 = w2/c;

if sum

w = w2+w1;

else %difference frequency

w = w2 - w1;

end

k = w/c;

tol = exp(-12);

re = dblquad(@re_intgrnd,0,a,0,2*pi,tol,@equad);

im = dblquad(@im_intgrnd,0,a,0,2*pi,tol,@equad);

function z = re_intgrnd(sigma,theta)

r0 = sqrt(d^2+sigma.^2 - 2*sigma*h*cos(theta) + h^2);

ra = sqrt (x^2 + sigma.^2);

I1 = cos(k2*r0 + k*ra).*(1./r0.^3 +(d*k2)^2./r0.^3 - 3*d^2./r0.^5) ...

+ sin(k2*r0 + k*ra).*(k2./r0.^2 - 3*k2*d^2./r0.^4);

if sum

I1 = I1*(w/w1);

else %difference frequency

I1 = -I1*(w/w1);

end

I2 = cos(k2*r0 + k*ra)./r0;

I2 = I2*k^2;

I = (I1 + I2)./ra;

z = I.*sigma;

end %re_integrnd

function z = im_intgrnd(sigma,theta)

r0 = sqrt(d^2+sigma.^2 - 2*sigma*h*sin(theta) + h^2);

ra = sqrt (x^2 + sigma.^2);

I1 = -sin(k2*r0 + k*ra).*(1./r0.^3 +(d*k2)^2./r0.^3 - 3*d^2./r0.^5) ...

+ cos(k2*r0 + k*ra).*(k2./r0.^2 - 3*k2*d^2./r0.^4);
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if sum

I1 = I1*(w/w1);

else %difference frequency

I1 = -I1*(w/w1);

end

I2 = -sin(k2*r0 + k*ra)./r0;

I2 = I2*k^2;

I = (I1+I2)./ra;

z = I.*sigma;

end %im_integrnd

end%surface_integral

equad

This is simply a wrapper function in order to use the quadgk quadrature routine in
the dblquad command of the previous surface_integral function. This quadra-
ture method was used solely based on the recommendation by MATLAB.

function q = equad(fun,a,b,tol,trace,varargin)

q = quadgk(@(x)fun(x,varargin{:}),a,b,’AbsTol’,tol, ’Waypoints’, linspace(a,b,10),’MaxIntervalCount’,8000);
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