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Abstract

Density stratification is one of the essential underlying physical mechanisms for atmospheric
and oceanic flow. As a first step to investigating the mechanisms of stratified turbulence,
linear stability plays a critical role in determining under what conditions a flow remains sta-
ble or unstable. In the study of transition to stratified turbulence, a common vortex model,
known as the Lamb-Chaplygin dipole, is used to investigate the conditions under which
stratified flow transitions to turbulence. Numerous investigations have determined that a
critical length scale, known as the buoyancy length, plays a key role in the breakdown and
transition to stratified turbulence. At this buoyancy length scale, an instability unique to
stratified flow, the zigzag instability, emerges. However investigations into sub-buoyancy
length scales have remained unexplored. In this thesis we discover and investigate a new
instability of the Lamb-Chaplyin dipole that exists at the sub-buoyancy scale. By nu-
merically performing the linear stability analysis we show that this short-wave instability
exhibits growth rates similar to that of the zigzag instability. We conclude with nonlinear
studies of this short-wave instability and demonstrate this new instability saturates at a
level proportional to the cube of the aspect ratio.
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Chapter 1

Introduction

Vortices play a fundamental role in the transition to turbulence by providing a mecha-
nism to cascade energy from large to small scales. In the atmosphere and ocean, vortices
are strongly influenced by density stratification and the rotation of the earth. However,
stratification dominates at intermediate length scales – the small-scale end of the atmo-
spheric mesoscale and the oceanic submesoscale – which are small enough for the Coriolis
effects to be weak, but large enough for the stable density stratification to be strong (e.g.
[52, 54, 65]). There has recently been much work, using full direct numerical simulations
of the Boussinesq equations with various initial configurations, to uncover the emergence
and evolution of stratified turbulence from vortices [2, 3, 20, 66]. Turbulence in this regime
is governed by the Reynolds number Re = UR/ν as well as the horizontal Froude num-
ber Fh = U/NR, where U is the characteristic velocity, R is the characteristic horizontal
length, N is the Brunt-Väisälä frequency, and ν is the kinematic viscosity. Because of
this extra dependence on the Froude number, the underlying dynamics are not as well
understood and a full picture of stratified turbulence is not complete [38, 52, 53, 54, 65].

In large-scale atmosphere and ocean simulations, it is difficult or impossible to resolve
all possible processes. As a result, obtaining a proper parameterisation of small-scale phe-
nomena is critical to correctly modelling the evolution. A useful approach to investigating
these small-scale dynamics is to consider the transition problem in an idealised flow, which
can elucidate the key features that govern the more comprehensive turbulence problem.
One model that may be used to study the transition to stratified turbulence is that of a
columnar counter-rotating vortex dipole. There is a large body of literature on the insta-
bility of vortex dipoles in unstratified fluids, including the Crow instability at large length
scales (e.g. [19, 70, 36]) and the elliptic instability at smaller scales (e.g. [70, 49, 4, 68]).
In stratified fluids, laboratory and numerical experiments of dipoles have uncovered an
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instability unique to stratified flow, the zigzag instability, so named due to the zigzag-like
structure exhibited by the flow [9, 11]. The zigzag instability has a dominant vertical wave-
length of around U/N , which is known as the buoyancy scale [64]. This instability has also
been found in other flow configurations including co-rotating vortices [48] and vortex arrays
[21]. The breakdown of this dipole into turbulence due to the growth and saturation of
the zigzag instability has also been investigated [66, 2, 20]. However, these studies mainly
consider dipoles perturbed at the zigzag scale U/N , and do not investigate the growth of
smaller vertical scale perturbations. Growth in such small-scale perturbations has been
reported in nonlinear simulations [66]. In this work we investigate the linear stability of
the dipole at these small vertical scales.

The buoyancy scale is an important length scale in stratified turbulence. It is the
vertical scale at which the vertical Froude number is O(1) [12], and it naturally emerges as
the thickness of layers in stratified turbulence [12, 65]. There is a direct transfer of energy,
believed to be due to Kelvin-Helmholtz instability [64, 3], from large horizontal scales
into the buoyancy scale in stratified turbulence [64] and in the breakdown of the zigzag
instability [3]. This breakdown generates small-scale turbulence which ultimately fills the
spectrum at scales below the buoyancy scale. But it is possible that primary instabilities
of the large-scale vortex may also directly excite vertical scales below the buoyancy scale.
We investigate this possibility here.

In this thesis we extend the linear stability analysis of Billant and Chomaz [11] by
investigating short, sub-buoyancy scale vertical wavelength perturbations of the Lamb-
Chaplygin dipole in a stratified flow. In addition, we further investigate the nonlinear
evolution of these sub-buoyancy scales.

The thesis is organised as follows. Chapter 2 and 3 deal with the relevant background
on fluid dynamics and numerical methods used. Chapter 4 investigates the linear stability
of sub-buoyancy scales. Chapter 5 investigates the nonlinear evolution of the short-wave
instability derived through linear theory. Parts of this thesis, including the introduction,
linear stability background and results, and conclusions are based on the manuscript Bovard
and Waite [13].

2



Chapter 2

Fluids background

2.1 Boussinesq approximation

The Navier-Stokes equations are the mathematical equations that govern the evolution of
fluid flow. In the context of the ocean and atmosphere, the Navier-Stokes equations, along
with equations for conservation of mass and energy and an equation of state, provide a good
model of the evolution of fluid flow (e.g. Batchelor [6]). For our purposes, however, these
equations are too general and an approximation, called the Boussinesq approximation, can
be made which results in a simplified version of the Navier-Stokes equations:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p− ρ′g

ρ0
êz + ν∇2u, (2.1)

∇ · u = 0, (2.2)

∂ρ′

∂t
+ u · ∇ρ′ = κ∇2ρ′ − ∂ρ̄

∂z
w, (2.3)

where we have the following dimensional variables:

• u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is the velocity field in the x, y, z-
directions respectively,

• p(x, y, z, t) is the pressure field,

• ρ(x, y, z, t) is the density,

• ρ0 is a constant reference density,
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• ρ̄(z) is a background density profile,

• ρ′(x, y, z, t) = ρ(x, y, z, t)− ρ̄(z) is the perturbation density,

• g is the gravitational constant,

• ν = µ/ρ0 is the constant kinematic viscosity,

• µ is the constant dynamic viscosity,

• κ is the constant molecular diffusivity.

Equations (2.1)-(2.3) are a set of five coupled partial differential equations for the unknowns
u, p, ρ. Herein, we will refer to equation (2.1) as the velocity or momentum equations,
equation (2.2) as the continuity equation, and equation (2.3) as the density equation. An
additional useful quantity is the buoyancy frequency or the Brunt-Väisälä frequency which
is defined as

N2 = − g

ρ0

dρ̄

dz
. (2.4)

Since the background density is assumed to decrease upwards, N2 is non-negative and N
is real. We now assume that N is constant, which implies ρ̄(z) is linear.

A rigorous derivation of the Boussinesq equation is quite delicate and we provide a
brief overview of the derivation. A complete derivation, along with many of the subtleties
can be found in numerous books such as [6, 32, 58, 60]. The Navier-Stokes equations for a
compressible Newtonian fluid can be written as

ρ
Du

Dt
= −∇p− ρg + µ∇2u, (2.5)

1

ρ

Dρ

Dt
+∇ · u = 0. (2.6)

ρcp
DT

Dt
− αT Dρ

Dt
= k∇2T + φ, (2.7)

where α = −ρ−1(∂ρ/∂T )p is the coefficient of thermal expansion, cp is the specific heat,
and φ represent conversion of kinetic energy to internal energy by viscous dissipation [63].
To close the system, we need an equation of state, for which a simple approximation for
water is [32],

ρ = ρ0(1− α(T − T0)). (2.8)
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The first approximation we make is that of incompressibility. The conditions for in-
compressibility are [6, 32, 63]

1. Unsteadiness: the time scale of the flow is longer than that of the sound waves.

2. Speed: the characteristic velocity of the flow is much smaller than the speed of sound.

3. Gravity: the vertical scale of the flow is not too large.

Mathematically, letting v denote the speed of sound in the medium, T the characteristic
time, u the characteristic velocity, and Lv the characteristic vertical length, these three
conditions become [63]

unsteadiness: T 2 � L2/v2, (2.9)

speed: (u/v)2 � 1, (2.10)

gravity: Lv � v2/g. (2.11)

For the atmosphere, v ≈ 330 m/s and g = 9.8 m/s2. The speed condition is easily satisfied
if u < 100 m/s. The gravity condition holds as long as L � 11 km which implies that
the unsteadiness condition holds as long as T � 30 s. Such conditions are reasonable
for shallow motions in the atmosphere. For the ocean v ≈ 1500 m/s, and thus the speed
condition is satisfied if u� 500 m/s, L� 230 km, and T � 300 s. Again, such conditions
are satisfied in the ocean. Assuming incompressibility, the conservation of mass equation
can be approximated as [32, 63]

1

ρ

Dρ

Dt
+∇ · u = 0⇒ ∇ · u = 0. (2.12)

The Boussinesq approximation is based on the following decomposition of the density
[32, 60]

ρ(x, t) = ρ0 + ρ̄(z) + ρ′(x, t), (2.13)

where we assume that |ρ′| � |ρ̄(z)| � |ρ0|. In other words, variations to the density are
small compared to a reference density. Using this approximation, some basic thermody-
namics, and the linearity of ρ̄(z), Eq (2.7) simplifies [32, 60] to

DT

Dt
= κ∇2T. (2.14)
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Substituting in the equation of state (2.8) and using (2.13) we obtain (2.3).

Consider the first two terms in (2.13). To these background densities, we associate
[32, 60] a corresponding background pressure term in hydrostatic balance so that

∇p̄(z) = −(ρ0g + ρ̄(z)g). (2.15)

Substituting in (2.13) into the momentum equation (2.1) and dividing through by ρ0 we
obtain (

1 +
ρ̄

ρ0
+
ρ′

ρ0

)
Du

Dt
= − 1

ρ0
∇p−

(
1 +

ρ̄

ρ0
+
ρ′

ρ0

)
g + ν∇2u, (2.16)

and subtracting (2.15) yields(
1 +

ρ̄

ρ0
+
ρ′

ρ0

)
Du

Dt
= − 1

ρ0
∇p′ − ρ′

ρ0
g + ν∇2u, (2.17)

where p′ = p− p̄. Using |ρ′| � |ρ̄| � |ρ0|, we can neglect the ratios in front of the material
derivative to obtain [32] (2.1). Thus we have derived the Boussinesq equations.

2.2 Linear stability analysis

The study of flow stability has a long and rich history within fluid dynamics. The classic
experiment on the stability of fluid flow is that of Reynolds [51]. In this experiment,
Reynolds injected dye into the laminar flow through a pipe. By varying the velocity of the
flow through the pipe Reynolds observed various effects. If the velocity was sufficiently low,
Reynolds was able to observe “a beautiful straight line through the tube” [51]. At slightly
higher velocities, the straight line behaviour remained near the initial part of the pipe
but further down “the streak would shift about the tube, but there was no appearance
of sinuosity” [51]. By increasing the velocity significantly, the dye would again initially
remain straight near the initial part of the tube, but instead of shifting about the tube
“the colour band would all at once mix up with the surrounding water, and fill the rest of
the tube with a mass of coloured water” [51].

What Reynolds observed was the transition and breakdown of a flow into turbulence.
Through careful observation, he determined that the dimensionless quantity that governed
the behaviour of the flow was the Reynolds number

Re =
UL

ν
, (2.18)
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a dimensionless number which represents the ratio between the inertial and viscous terms
in the Navier-Stokes equations. Reynolds found that if Re < 13000 then the flow would
remain stable [51].

A natural question to ask is whether we can predict such criteria for any given flow.
Ideally, given information about a certain flow, one would be like to be able to determine
how the fluid will evolve based on various parameters of the flow, such as viscosity, tem-
perature, or velocity. Unfortunately this task has not been achieved in general and there is
no known way to determine such criteria for any arbitrary flow. This is due to the compli-
cated nonlinear behaviour of the Navier-Stokes equations which makes devising a general
algorithm for this task incredibly difficult. Tackling this goal in general is immensely diffi-
cult and beyond current mathematics, indeed it is not even known whether or not in three
dimensions given an initial condition a solution even exists for all times [29].

Thus, to proceed, a simplifying approach must be derived. In order to do this, consider
the following idea. Let (u0, p) denote a basic steady state that solves the Navier-Stokes
equations and let (u′, p′) denote a small unknown perturbation such that |u′, p′| � |u0, p|.
Mathematically this means

u(x, t) = u0(x) + u′(x, t), p(x, t) = p0(x, t) + p′(x, t). (2.19)

Now let us plug (2.19) into the Navier-Stokes equations and expand, dropping the (x, t)
notation,

∂u0

∂t
+
∂u′

∂t
+ (u0 + u′) · ∇(u0 + u′) = − 1

ρ0
∇(p0 + p′) + ν∇2(u0 + u′), (2.20)

∇ · u0 +∇ · u′ = 0. (2.21)

Expanding out the advection term yields

(u0 + u′) · ∇(u0 + u′) = u0 · ∇u0 + u0 · ∇u′ + u′ · ∇u0 + u′ · ∇u′ (2.22)

= u0 · ∇u0 + u0 · ∇u′ + u′ · ∇u0 +O(u′2), (2.23)

where we have written the u′ ·∇u′ term has O(u′2) because this term is of order u′ squared,
which we assume to be small. Now recall that the basic state has the form u0 solves the
Navier-Stokes equations. Thus in (2.20) there are terms that depend just on u0 and they
will vanish by definition of it being a solution to the Navier-Stokes equations. Thus we
now have that

∂u′

∂t
+ u0 · ∇u′ + u′ · ∇u0 +O(u′2) = − 1

ρ0
∇p′ + ν∇2u′, (2.24)

∇ · u′ = 0. (2.25)
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So far, the above equations are exact and we have just rewritten the quadratic nonlinear
term in the Big-O notation. The critical assumption we make is that the magnitude of
the perturbation, |u′|, is small compared to the basic state, |u0|, i.e. |u′| � |u0|. In other
words, we are neglecting the quadratic nonlinearity because the perturbation is small.

Now making the approximation that O(u′2) is small we obtain

∂u′

∂t
+ u0 · ∇u′ + u′ · ∇u0 = − 1

ρ0
∇p′ + ν∇2u′, (2.26)

∇ · u′ = 0. (2.27)

The above set of equations is linear which means they are more amenable to analytical
and numerical techniques.

To illustrate the usefulness in this approach, we present an example of linear stability
and apply the method to the problem of plane parallel shear flow. This is a standard
example and we follow the derivation of [22]. It will also elucidate the key features of
linear stability analysis that we will use throughout this thesis.

The first simplifying assumption we make is that the basic state u0 = U(z)êx, a parallel
shear flow, which simplifies the above equations to

∂u′

∂t
+ U

∂u

∂x
+ w′

dU

dz
êx = − 1

ρ0
∇p′ + ν∇2u′, (2.28)

∇ · u′ = 0. (2.29)

If we had considered the Euler equations instead of the Navier-Stokes equations, we would
have the same equations as above except with ν = 0. Despite this seemingly simple
modification, the resulting equation is very different. When the inviscid equations are
considered, there are many elegant results about the stability of the flow that can be
derived for the special case of parallel shear flow. For example, the Rayleigh’s inflection
point theorem states that a necessary condition for instability is that the basic velocity
profile should have an inflection point [22]. Unfortunately, many of the results for inviscid
flow theory do not hold for viscous flow theory. A complete discussion of this result and
its generalisation, among other theorems, can be found in [22, 32].

Since the resulting set of equations is a set of coupled linear equations, the solution set
involves complex exponentials. Thus, the next natural step is to expand the solution as
Fourier modes

u′(x, t) = û(z)ei(αx+βy−αct), (2.30)

p′(x, t) = p̂(z)ei(αx+βy−αct), (2.31)
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where we take the real part of the above solutions. We require that the solution remains
bounded as x, y → ±∞ which means that α, β must remain real. For c, however, we let it
remain an arbitrary complex number c = cr + ici. Depending on the sign of ci the result
will either decay or grown exponentially as time goes to infinity. We thus associate stability
with ci ≤ 0 and instability with ci > 0. Hence, if we are able to solve the above system for
ci as a function of the parameters we will be able to derive some criteria for the stability
of the flow.

Substituting in the above Fourier expansions into the linear equations would yield
an eigenvalue problem with c being the undetermined eigenvalue as a function of α, β,Re.
Then, we can apply methods from numerical linear algebra to solve for c for various Re, α, β
and obtain a stability curve for c. However, a result due to Squire allows us to simplify
the problem significantly. Squire’s theorem states that to obtain the minimum critical
Reynolds number it is sufficient to consider only two-dimensional disturbances [22]. In
other words, for every three dimensional mode, there is a more unstable two dimensional
eigenmode. A proof is provided in [22]. Because we only need to consider two-dimensional
flow, the unknown velocity u′ can be rewritten in terms of the stream function ψ′(x, z, t).

Expanding ψ′ as a complex exponential and denoting φ as the amplitude of the stream
function and D = d/dz, the linear equations can be re-written as a single equation,

(D2 − α2)2φ = (iαRe)(U − c)(D2 − α2)φ− (iαRe)U ′′φ, (2.32)

along with the appropriate boundary conditions. This equation is known as the Orr-
Sommerfeld equation and has a rich history in the development of fluid mechanics. A
comprehensive discussion of the various methods of solving this equation and others like it
using techniques such as WKB theory, asymptotics, and perturbation theory, is contained
in [22, 61, 7].

This simple derivation has resulted in a single equation with three parameters α, c, Re
and by choosing different Re and α, we can determine a criteria for c. Although much
work has been done at the beginning of the 20th century to derive approximate solutions
to the Orr-Sommerfeld equation, numerically it is very easy to solve. We can reformulate
the above equation as a generalised eigenvalue problem for a given parallel shear flow and
solve the problem rather easily on a computer [56].

Linear stability is a useful technique for determining whether or not a given flow is
stable, however it is important to not forget the underlying assumptions. Since we are
explicitly assuming that |u′| � |u0| the resulting linear equations are only valid when this
is the case. As we shall see in numerical simulations, this assumption is not necessarily
valid at all times.
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Additionally, depending on whether we or not we ignore viscosity, energy may or may
not be conserved. However, in both cases, in the absence of external forcing, the energy
will always remain bounded since energy is not being pumped into the system. However we
have stated that if ci > 0 then we have exponential growth. Clearly, as time advances, this
energy grows very quickly which implies that the perturbation will grow unbounded. This
seems to violate conservation of energy, since the total amount of energy of the perturbation
is growing, and violates the assumption that the perturbation is small.

The reason this occurs in linear stability analysis is simple: we implicitly assume that
the basic state remains undisturbed, i.e. that the perturbations are small enough so they
do not change the basic state. This means, when running a numerical simulation, the
perturbation is able to grow in time while the basic state remains unchanged. Thus we
can think of the basic state as continuously pumping in energy into the perturbation
state, allowing it to grow unbounded. Physically, this is not the case. In a full nonlinear
simulation, the basic state does not remain unchanged and as the perturbation begins to
grow, the basic state loses energy and changes and eventually reaches a point where we
can no longer assume the perturbation is small compared to the basic state. Thus we have
a breakdown of the linear theory and would need to turn to a nonlinear theory to continue
our modeling.

However, linear stability still provides useful information. Even though the individual
eigenmodes grow exponentially, which eigenmodes are growing gives insight into what
mechanisms are causing the growth. As we shall see, linear stability theory tells us what
length scales dominate in the transition to turbulence in a stratified fluid. Given this
information, it is possible to assume a certain scaling of the full nonlinear equations that
can provide us with a potential simplified model to study the problem of turbulence in
stratified fluids.

So far, we have considered the Navier-Stokes equations directly instead of the simpler
Euler equations. Recall the Euler equations arise by setting the viscosity to 0 or letting the
Reynolds number go to infinity. The Euler equations also have some other nicer features,
such as explicit conservation of energy which might provide a useful potential invariant
that we can exploit in the study of stability and turbulence.

To motivate the possible use of the Euler equations, consider the observation that
turbulence is very often observed at a high Reynolds number. In the atmosphere for
example, the Reynolds number is on the order of 108 − 109 or higher. Since the inverse of
the Reynolds number appears in front of the diffusion term, it seems reasonable to instead
ignore the diffusion term since the coefficient is O(Re−1) � 1, Re � 1. This would be
a mistake. This is because the limit Re → ∞ is a singular limit. Consider the following
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simplified model which arises in the study of boundary layers of shear bounded wall flow
[1, 7, 32] (even though our work does not involve boundaries directly, it cleanly illustrated
the problems with setting ν = 0 in our equations and trying to draw conclusions from the
resulting equations):

εy′′ − y = 0, y(0) = 0, y(1) = 1. (2.33)

Suppose that we are interested in the limiting behaviour of ε → 0. If we set ε = 0 the
problem would become

−y = 0, y(0) = 0, y(1) = 1. (2.34)

which has the solution y = 0 which only satisfies one of the boundary conditions. If we
tried a perturbation expansion of the form y(x) =

∑
n=0 yn(x)εn we would get nowhere

because the lowest order term does not exist. If we solve the full equation we obtain

y(x) =
ex/ε − 1

e1/ε − 1
. (2.35)

In this equation, we cannot set ε = 0 because that results in a singular limit. Thus
regardless of how small we choose ε, there will be a thin layer, called the boundary layer,
which is essential to the fluid flow. For a discussion of techniques in singular perturbation
theory in terms of the linear stability of the Navier-Stokes equations see [22, 61]. Hence,
even though it seems reasonable to neglect the diffusion term to study instability and
turbulence, it is not as promising an avenue as one might first expect. In one sense,
this singular limit of the Navier-Stokes equations contributes to making turbulence a very
difficult problem to investigate analytically and numerically.

Finally, the experimental investigation into instability of fluids and the transition to
turbulence produces very appealing images which really illustrate the beauty of fluid dy-
namics and the reader is recommended to peruse the coffee table book by Van Dyke [62]
which illustrates many images from experiments of the classical results in stability theory.

2.3 The zigzag instability

2.3.1 A brief history of vortex instabilities

The origin of the study of vortex instabilities begins with Lord Kelvin who in 1880 studied
perturbations to columnar vortices and determined that they were stable. For the next 90
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years, the theory of vortex instability remained relatively quiet until the field was re-ignited
by the investigations of Crow [19]. Motivated by aeronautical engineering applications, he
discovered that for long wavelength perturbations of a pair of counter-rotating vortices
that there was a symmetric deformation of the vortices. This work was extended a few
years later by Widnall et al. [70] to small wavelength perturbations. Further investigations
into small wavelength perturbations were carried out by numerous others e.g. [24, 59]. It
was noticed in these studies that the streamlines of the vortex became elliptical when
perturbed. Motivated by this, Pierrehumbert [49] investigated the simple case of a single
two-dimensional (2D) elliptical vortex subject to a three-dimensional (3D) perturbation.
Extensions to this elliptical model were done by Bayly [4] and Waleffe [68] and led to this
instability being called the elliptical instability. A complete and detailed history of the
elliptical instability, including derivations and results of the above papers and nonlinear
investigations, is presented in the review by Kerswell [30]. Most of the investigations into
the elliptical instability were concerned with unstratified flow, but an investigation by
Miyazaki and Fukumoto [43] showed with a sufficiently strong stratification, the elliptical
instability is suppressed. The effects of weak stratification, which we do not considere here,
has been studied in the context of Kelvin-Helmholtz billows (e.g. Potylitsin and Peltier
[50]).

2.3.2 Discovery of the zigzag instability

Experimental studies on the elliptical instability by Leweke and Williamson [35] led Billant,
Brancher, and Chomaz [8] to investigate the stability of a three dimensional vortex pair
numerically. As we shall show below, their basic state provides a good model for the
vortices generated in the experiment. Initially this work was unstratified and confirmed the
existence of the elliptical instability. However, following up this work, Billant and Chomaz
added in the effects of stratification and discovered a new type of instability at small
scales that was distinct from the elliptical instability. They labeled this new instability the
“zigzag instability” due to its zigzag-like structure, as we shall see below. In a series of
three papers they investigated experimentally [9], theoretically [10], and numerically [11]
the evolution of a pair of columnar vortices in a stratified tank.

First Billant and Chomaz investigated the zigzag instability experimentally [9]. To
do this, they investigated a columnar vortex pair created by a pair of flaps in a tank
of stratified fluid. We now briefly discuss their experimental procedure since it provides
important motivation for the resulting numerical study.

In order to study the effects of stratification on the evolution of vortices, they first
needed to create the vortices. To do this, they used a pair of motor-controlled flaps whose
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initial angle and closing time could be controlled precisely by a computer. When the
flaps were closed, a pair of counter-rotating vortices was produced. They found that the
important determining factor in the creation of the vortices was the initial angle of the flaps.
If the angle was too small, additional vortices created when the flaps finally stopped closing
were being advected by the dipole and causing spurious instability. For large angles, fluid
that was initially in-between the flaps was being injected in the flow and again causing
spurious oscillations. In order to balance out these effects, an angle of 14◦ was chosen.
Additionally, to enforce the emergence of the zigzag instability, tape was applied to the
flaps in order to force certain wavenumbers of the evolving flow (see Fig. 8 of [9] for the
importance of forcing).

After fixing the separation angle they found that by varying the closing time of the
flaps, the velocity of the pair of vortices could be changed. Interestingly, the decay of the
vortices, was roughly 90s, was independent of the closing time of the flaps. This variation
in the velocity determined the experimental parameters for the experiment.

The two important dimensional parameters in this experiment were the horizontal
Froude number

Fh =
U

NR
, (2.36)

and the Reynolds numbers

Re =
UR

ν
, (2.37)

where U is the propagating velocity of the dipole as above, R is the radius of the dipole,
ν is the viscosity of the tank, and N is the buoyancy frequency. Here the viscosity ν and
the radius R were fixed by experimental conditions and could not be varied. Thus the
only parameters that could be varied were N and U . Since the buoyancy frequency was
more difficult to vary, as changing it required draining and refilling the tank, only four
stratifications were considered ranging from N = 1.26 rad s−1 to N = 1.97 rad s−1. Thus
the parameter that was easiest to control was the initial velocity U . Because U shows up
in both dimensionless numbers, changing U resulted in the changing of both numbers, i.e.
they are directly related by the following relationship

Re = Fh
NR2

ν
, (2.38)

and for the given stratification numbers the range of Froude numbers was between 0.10−
0.23 and for the Reynolds number was 200− 450.
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To derive a theoretical model of the dipole, they computed the Fourier transform of the
measured vorticity in order to determine the stream function. They found that there was
a linear fit between the vorticity ω and the stream function ψ such that ω = k2ψ where
k2 = 1.15cm−2 which, as we will show below, corresponds to a columnar Lamb-Chaplygin
dipole.

Figure 10 of [9] demonstrates the evolution for the zigzag instability for Fh = 0.19 and
Re = 365. The structure of the vortices displays a zigzag like structure. Additionally, the
anisotropy between the vertical and horizontal directions is quite clear. The behaviour of
the vertical structure of the vortex pair is also evident.

Following up the experimental work, Billant and Chomaz provided a theoretical account
of the zigzag instability starting from the Boussinesq equations [10]. We will only discuss
the main result of their paper, which is a long technical perturbation analysis of the
Boussinesq equations. In the paper, they investigated the limit where Fh,v = U/Lh,vN � 1
and found that the zigzag motion was accounted for by combination of translation and
rotation, which agrees with the experimental observations of [9]. Additionally, they found
that the most unstable vertical length scale of the zigzag instability should behave as
Fv ∼ O(1), i.e. Lv ∼ U/N . This length is known as the buoyancy length scale (e.g. Waite
[64]) and has proven to be a very important length scale in stratified fluid flow, as we shall
discuss below. This emergence of the buoyancy length scale in their calculations, however,
should be treated with some care since Billant and Chomaz assumed that Fv � 1 and
showed that Fv ∼ O(1).

In the third paper, Billant and Chomaz conducted a numerical linear stability analysis
of the zigzag instability [11]. In this study, they numerically solved the linear Boussinesq
equations for the growth rate of the leading eigenmode for specific wavenumbers. We will
not discuss the results of the paper here as their paper forms the basis for much of this thesis
and we will re-derive and discuss their results throughout the next three chapters. In the
remainder of this chapter we derive the numerical equations that Billant and Chomaz used
in [11] and provide some more background information. In Chapter 3 we introduce and
discuss the numerical technique of spectral methods used to solve the numerical equations.
In Chapter 4 we extend the analysis of Billant and Chomaz to length scales well below the
sub-buoyancy scale of Lb ∼ U/N .
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2.4 Formulation of the linear problem

Following Billant and Chomaz [11], we consider the non-dimensional Boussinesq approxi-
mation to the Navier-Stokes equations in Cartesian co-ordinates

Du

Dt
= −∇p− ρ′êz +

1

Re
∇2u, (2.39)

∇ · u = 0, (2.40)

Dρ′

Dt
− w

F 2
h

=
1

ReSc
∇2ρ′, (2.41)

where we have non-dimensionalised by the characteristic velocity U , length R, time-scale
R/U , pressure ρ0U

2, density ρ0U
2/gR, and defined Sc = ν/κ as the Schmidt number,

where κ is the molecular diffusivity, ρ0 is the background density, and g is the gravitational
constant. The Reynolds and horizontal Froude number are as defined above. The buoyancy
frequency N , and hence the Froude number Fh, is assumed to be constant.

In order to investigate the linear growth rate, we proceed as in Section 1.2 and expand
the full velocity field as the sum of a basic state and a perturbation state:

u = u0 + ũ, (2.42)

p = p0 + p̃, (2.43)

ρ′ = ρ′0 + ρ̃′. (2.44)

The basic is chosen to be the Lamb-Chaplygin dipole which we will now discuss and explain
how it provides a convenient theoretical model for the experiment by Billant and Chomaz
[9].

2.4.1 The Lamb-Chaplygin dipole

As the basic state for linear stability analysis we use the Lamb-Chaplygin dipole in a
comoving frame [40]. This dipole is a solution to the 2D inviscid Euler equations. This basic
state is motivated by numerous laboratory experiments [9, 35], as discussed above, which
demonstrated that a vertically oriented Lamb-Chaplygin dipole is a good approximation
to the vortex generated by two flaps closing in a tank of salt-stratified water. The dipole,
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Figure 2.1: The vertical vorticity ωz of the Lamb-Chaplygin dipole.

in cylindrical coordinates, is given by the stream function

ψ0(r, θ) =


− 2

µ1J0(µ1)
J1(µ1r) sin θ r ≤ 1,

−r
(

1− 1

r2

)
sin θ r > 1,

(2.45)

and the corresponding vertical vorticity ωz0 = ∇2
hψ0

ωz0(r, θ) =

{
µ2
1ψ0(r, θ) r ≤ 1,

0 r > 1,
(2.46)

where J0, J1 are the zero and first order Bessel functions, µ1 ≈ 3.8317 is the first root of
J1, and ∇h is the horizontal Laplacian. The basic state velocity is purely horizontal and
is given by uh0 = ∇hψ0× êz. Recall from the previous section, Billant and Chomaz found
experimentally that ω = k2ψ where k = 1.15. Here we have that ωz0 = µ2

1ψ0. If we consider
the dimensional version, we would have that k2 = µ2

1/R
2 where R = 3.6 cm. This gives

k2 = 1.13 cm−2 which corresponds very well with the experimental value of 1.15. Fig. 2.1
is a plot of the vorticity.

Let us now discuss the derivation of this result, which was first written down by Lamb
and investigated further, independently, by Chaplygin [40]. Although Lamb was the first to
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write down the above solution to the Euler equations, he did not provide any motivation for
the derivation beyond it being an exact solution of the 2D steady Euler equations. However,
a decade later, Lamb provided a slightly more in depth derivation motivating somewhat the
study of this dipole. Independently, in Russia, Chaplygin provided a complete derivation
and motivation for studying this dipole, although it remained unknown outside of Russia
until the 1980s[40]. Following [40] we repeat the key points of Chaplygin’s argument.

Recall that the steady 2D Euler equations can be written in terms of the stream function
ψ and a vorticity ω , where

∇2ψ = −ω. (2.47)

To choose ω, Chaplygin was motivated by the situation where we have a continuous vortex
whose outer region is steady irrotational flow while the cylindrical inner region is a trans-
lating vortex. Recall that the potential function for irrotational flow outside a cylinder
is

ψ = v0

(
r − a2

r

)
sin θ, (2.48)

where a is the radius of the dipole and v0 is the propagation velocity.

Inside the radius a, Chaplygin chose the vorticity to be ω = n2ψ where n is a constant.
In polar coordinates (2.47) becomes the following boundary value problem

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
= n2ψ, (2.49)

which we can guess has a solution of the form ψ(r, θ) = Z(r) sin θ. Although Chaplygin did
not provide specific motivation for choosing this specific vorticity, the above equation has a
form that is similar to the irrotational flow outside the dipole and this makes the matching
conditions simple. The resulting equation for Z(r) is the well known Bessel equation [40]
and after working through the algebra, one obtains (2.45). Chaplygin also investigated the
resulting pressure field produced by the dipole and was able to compute the circulation of
the dipole [40]. Unlike Lamb, he also considered a generalisation of the above where the
dipole is no longer symmetric about the x-axis. The corresponding vorticity in this case is
given by

ω = n2(ψ − λ), (2.50)

where λ is an arbitrary parameter where λ = 0 is a completely symmetric dipole and λ→∞
corresponds to a completely asymmetric dipole. Here, again, Chaplygin investigated fully
the pressure and circulation produced by this dipole. Additionally, in the same set of
papers, Chaplygin also investigated the case of the dipole in a rotating fluid, which was
independently rediscovered 80 years later. Full details of this derivation are in [40].
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2.5 Scaling analysis

We have mentioned two dimensionless numbers in stratified flows, the Reynolds number
and the Froude number. Both these dimensionless numbers arise when comparing the
relative sizes of various terms in the Navier-Stokes equations. Depending on what aspect
of a problem we are looking at, these numbers can appear in different places when we
choose different scalings. We will now discuss some of the scaling arguments that have
been used in stratified flow as it can provide insights into what mechanisms underlie the
transition to and evolution of turbulence. A comprehensive review of scaling in stratified
turbulence is provided in a recent review by Riley and Lindborg [54] and we will discuss
the important scaling arguments therein.

For reference, we reproduce the Boussinesq equations here

∂u′h
∂t′

+ u′h · ∇′hu′h + u′z
∂u′h
∂z′

= − 1

ρ0
∇′hp′ + ν∇′2uh, (2.51)

∂u′z
∂t′

+ u′h · ∇′hu′z + u′z
∂u′z
∂z′

= − 1

ρ0

∂p′

∂z′
− ρ′g

ρ0
+ ν∇′2uz, (2.52)

∇′h · u′h +
∂u′z
∂z′

= 0, (2.53)

∂ρ′

∂t′
+ u′h · ∇′hρ′ + u′z

∂ρ′

∂z′
= κ∇2ρ′, (2.54)

where the primed quantities denote the dimensional quantities.

As a starting point, we produce a scaling argument that separates the horizontal and
vertical directions. As we saw in the experiment of Billant and Chomaz [9], in the zigzag
instability there was a clear separation between the vertical and horizontal scales. This
difference in the vertical and horizontal directions suggests defining two length scales, the
horizontal length scale Lh and the vertical length scale Lv. Associated with this separation
we introduce the horizontal velocity scale U and the vertical velocity scale W . The resulting
scaling is

x′ = Lhx, y′ = Lhy, z′ = Lvz, u′h = Uu, u′z = Wuz. (2.55)

We also define another useful quantity that plays an important role in the scaling of
stratified flows, the aspect ratio

δ =
Lv
Lh
, (2.56)
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which measures how anisotropic the length scales are. For the time scale, we choose the
advective time scale

t′ =
Lh
U
t, (2.57)

which is the characteristic time of a vortex to be advected around the characteristic length
[53, 12, 37]. Following these references the pressure scales such that the horizontal pressure
gradient is the same order as the advection terms and density scales from approximate
hydrostatic balance

p′ = ρ0U
2p, ρ′ =

U2ρ0
gLv

ρ. (2.58)

The only quantity left unspecified is the vertical velocity which can be determined by
balancing the linear terms and the time derivative terms in the density equation [12, 53]
giving the scaling

u′z = U
F 2
h

δ
uz. (2.59)

This scaling now leads to the following set of equations [54]

∂uh
∂t

+ uh · ∇huh +
F 2
h

δ2
uz
∂uh
∂z

= −∇hp+
1

Re

(
∇2
huh +

1

δ2
∂2uh
∂z2

)
, (2.60)

F 2
h

(
∂uz
∂t

+ uh · ∇huz +
F 2
h

δ2
uz
∂uz
∂z

)
= −∂p

∂z
− ρ+

F 2
h

Re

(
1

δ2
∂uz
∂z2

+∇2
huz

)
, (2.61)

∇h · uh +
F 2
h

δ2
∂uz
∂z

= 0, (2.62)

∂ρ

∂t
+ uh · ∇hρ+

F 2
h

δ2
uz
∂ρ

∂z
=

1

ReSc

(
1

δ2
∂2ρ

∂z2
+∇2

hρ

)
, (2.63)

where

Re =
ULh
ν

, Fh =
U

LhN
, Sc =

ν

κ
. (2.64)

Lilly was the first to write these equations down although he assumed isotropy, i.e. δ = 1.

Let us now investigate the limit of strong stratification, i.e. Fh → 0 but let us leave the
behaviour of Fh/δ undetermined. Additionally, let us consider Re � 1 and following [54]
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ignore the diffusion terms that only depend on Re while keeping those with Reδ2. This
results in the following equations

∂uh
∂t

+ uh · ∇huh +
F 2
h

δ2
uz
∂uh
∂z

= −∇hp+
1

Re

1

δ2
∂2uh
∂z2

, (2.65)

0 = −∂p
∂z
− ρ, (2.66)

∇h · uh +
F 2
h

δ2
∂uz
∂z

= 0, (2.67)

∂ρ

∂t
+ uh · ∇hρ+

F 2
h

δ2
uz
∂ρ

∂z
=

1

ReSc

1

δ2
∂2ρ

∂z2
. (2.68)

It was initially assumed by Lilly [37] and Riley et al.[53] that as Fh → 0 then so does Fh/δ.
Thus the resulting equations are

∂uh
∂t

+ uh · ∇huh = −∇hp+
1

Re

1

δ2
∂2uh
∂z2

, (2.69)

0 = −∂p
∂z
− ρ, (2.70)

∇h · uh = 0, (2.71)

∂ρ

∂t
+ uh · ∇hρ =

1

ReSc

1

δ2
∂2ρ

∂z2
. (2.72)

Notice that in these resulting equations, the horizontal and vertical velocity equations have
become almost completely decoupled. They are not completely decoupled because there is
still dependence through the pressure term. However this decoupling led Lilly to conjecture
that stratified turbulence in the strong stratification limit will resemble layerwise 2D tur-
bulence with an inverse energy cascade [37]. However, subsequent numerical simulations of
stratified turbulence were not able to reproduce an inverse cascade, raising doubts about
the applicability of Lilly’s equations (e.g. Herring and Metais [41], Waite and Bartello
[65]).

Building on the work of Lilly [37] and Riley et al.[53], Billant and Chomaz [12] modified
the argument suggesting that instead Fh/δ → 1, not 0, as Fh → 1. This scaling analysis
leads to Lv ∼ U/N which is the dominant vertical scale for the zigzag instability. The
resulting equations are
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∂uh
∂t

+ uh · ∇huh + uz
∂uh
∂z

= −∇hp+
1

Re

1

δ2
∂2uh
∂z2

, (2.73)

0 = −∂p
∂z
− ρ, (2.74)

∇h · uh +
∂uz
∂z

= 0, (2.75)

∂ρ

∂t
+ uh · ∇hρ+ uz

∂ρ

∂z
=

1

ReSc

1

δ2
∂2ρ

∂z2
. (2.76)

The assumption that Fh/δ → 1 can be rewritten to state that Lv ∼ U/N , which is the buoy-
ancy scale. In this case, there is no decoupling between the horizontal and vertical direc-
tions and the advection terms and incompressibility condition are fully three-dimensional.
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Chapter 3

Numerical background

In this chapter we discuss the numerical techniques and methods used in this thesis. In
this thesis we use the spectral method to numerically solve the linear and nonlinear Navier-
Stokes equations. Fourier-based spectral methods provide a convenient and quick way to
compute derivatives of sufficiently well-behaved periodic functions. In evaluating deriva-
tives of smooth periodic functions, spectral methods provide an advantage over other meth-
ods of evaluating derivatives, such as finite difference, as the derivatives can be computed
with greater accuracy, in exchange for only a relatively modest increase in complexity.
Specifically, finite difference methods run in O(N) time, where N is the number of grid
points, but the error tends to be on the order of O(N−p) where p is a small integer [23].
Spectral methods, however, run in O(N logN) time but the errors are on the order of
O(N−p) when the function is Cp [56]. A complete overview of spectral methods is beyond
the scope of this thesis and we only discuss the key features needed for numerical work.
Comprehensive reviews of spectral methods are provided in many books, e.g. Trefethen
[56], Boyd [14], and Canuto [16].

3.1 Spectral methods motivation

Spectral methods have their origins in the Fourier transform. Let us denote the Fourier
transform, F , of f(x) as F(f(x)) = f̂(k), given by

F(f(x)) = f̂(k) =

∫ ∞
−∞

dxe−ikxf(x). (3.1)
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Now consider the Fourier transform of the derivative df/dx:

F
(
df

dx

)
=

∫ ∞
−∞

dxe−ikx
df

dx
= e−ikxf(x)

∣∣∣∣∞
−∞

+ ik

∫ ∞
−∞

dxe−ikxf(x) = ikf̂(k), (3.2)

and thus the Fourier transform of a derivative is just ik times the Fourier transform of f(x).
An important assumption here that f(x) vanishes sufficiently quickly at infinity otherwise
the e−ikxf(x) term is non-negligible. For most applications of the Fourier transform, but
not all, this assumption is valid. For a complete treatment of the conditions of the existence
of the Fourier transform, see e.g. Kammler [31]. With this result in hand, it is easy to
show via induction that the Fourier transform of dnf/dxn is (ik)nf̂(k). Hence, once we
have the Fourier transform f̂(k), the n-th derivative is obtained by computing the inverse
Fourier transform

dnf

dxn
=

1

2π

∫ ∞
−∞

dxeikx(ik)nf̂(k). (3.3)

This procedure suggests a method to compute the derivative of a function. Computa-
tionally, if we have a way to evaluate f̂(k) from f(x) and f(x) from f̂(k), then the n-th
derivative is easy to compute via the following algorithm:

1. Compute f̂(k) from f(x)

2. Multiply f̂(k) by (ik)n

3. Invert (ik)nf̂(k) to obtain f (n)(x)

We need a method to evaluate the integrals (3.1) and (3.3). One possible avenue would
be to apply well known integral quadratures to evaluate these integrals. However, there
are more efficient and better alternatives. The correct avenue to implementing the above
algorithm is to consider the discrete analogue of the Fourier transform, the discrete Fourier
transform. From the discrete Fourier transform, we discuss the Fast Fourier Transform,
which is a fast way to evaluate the discrete Fourier transform.

3.2 FFT and spectral derivatives

Let us now investigate how we can quickly compute the Fourier transform of a function
on a computer. In analogy to the Fourier transform, we define [56] the discrete Fourier
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transform1 (DFT) on N data points vj

v̂k =
2π

N

N∑
j=1

e−ikxjvj, k = −N
2

+ 1, . . . ,
N

2
, (3.4)

and the inverse discrete Fourier transform (IDFT) on N data points v̂k

vj =
1

2π

N/2∑
k=−N/2+1

eikxj v̂k, j = 1, . . . , N. (3.5)

where xj ∈ [0, 2π]. Here we take N to be even to simplify the formulas, however all results
hold for odd N with slight modification. The range of the wavenumbers is from −N/2 + 1,
not −N/2, due to the 2π periodicity of vj. Wavenumbers −N/2 are equivalent to N/2 and
we do not want to count this wavenumber twice.

From the definitions of the DFT and inverse DFT, we can see a close analogy to the
continuous Fourier and inverse Fourier transforms. It can be shown [56] that these are the
correct discrete analogies.

In order to approximate the derivative of a function, we first need to determine how to
sample the function f(x). We assume f(x) to periodic on 0 ≤ x ≤ 2π. If the domain is
different, a simple scaling can transform the periodic domain to this standard interval. To
compute the derivative of f(x), we first sample at the points

xj =
2πj

N
, j = 1, . . . , N, (3.6)

and set vj = f(xj). Now we can compute the DFT from vj giving the coefficients v̂k which

is the discrete analogue of f̂(k). Since this is the analogue of the Fourier transform, we
now multiply by ik resulting in the analogue of computing the first derivative. Finally,
we compute the inverse DFT from ikv̂k which produces the spectral approximation, v′j, to
the derivative of the sampled function f ′(x) at points xj. However, there is some subtlety
involved in treating the wavenumber N/2, which is usually set to zero [56].

Despite having a discrete algorithm to compute an analogue of the Fourier transform,
our goal has still not been reached because we are still left with doing O(N2) operations.
This results because there are N coefficients and for each coefficient a sum of N terms
must be added together. For small N , computing spectral derivatives are not that much

1Note that there is no universal standard on where to put the factors of N and 2π.
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slower than finite differences methods, however they quickly become impractical for large
N . This barrier can be overcome through the Fast Fourier Transform (FFT) algorithm.
This algorithm has a rich history and has been rediscovered multiple times, beginning
with Gauss in the early 1800s before Fourier published his results on Fourier series [31].
The modern FFT algorithm was developed by Cooley-Tukey in 1965 [17], although it had
previously been discovered by others, including Gauss.

The FFT employs a divide and conquer algorithm. The basic idea is to notice that
computing the discrete Fourier transform can be divided into even and odd terms which
can be computed independently of each other. Thus assuming N is a power of two, we have
two new discrete Fourier transform problems of size N/2. Each other those problems can
themselves be decomposed into problems of size N/4. Repeating this process recursively
we are able to divide the computation of the DFT into O(logN) problems. Computing
the DFT of each problem takes roughly O(N) and thus the total running time is on the
order of O(N logN). In this simple case, it is easy to prove rigorously from the recursion
relationship that the running time is O(N logN) using the Master theorem [18].

O(N logN) is a general result that holds for all values of N , but the proofs are more
complicated and in most applications, N is chosen to be a power of small primes for
which their exist many well optimised and developed algorithms. The derivation and
implementation of the FFT for general values of N is an interesting and complicated
question that has sparked a lot of research into the best way to decompose the problem.
Additionally, the actual implementation details can differ depending on the value of N ,
the type of computer, and the type of data being considered. It is beyond the scope of this
thesis to discuss such implementation details and further technical and hardware details
that can be used in implementations can be found in [26].

Now that we have an algorithm to compute the FFT, the inverse Fast Fourier Transform
(IFFT) can easily be derived since the form of (3.5) is very similar to that of (3.4) and
the same strategy of divide and conquer can be applied. With this we have the following
algorithm for computing the spectral derivative:

1. Sample function f(x) at N data points xj to obtain vj, j = 1, . . . , N .

2. Compute, using the FFT, v̂k from vj.

3. Multiply v̂k by (ik)n to compute the n-th derivative.

4. Invert (ik)nv̂k using the IFFT to obtain an approximation to f (n)(x) at xj.
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To illustrate spectral derivatives, we follow [56] and demonstrate spectral differentiation
using two simple examples. Consider the following two periodic functions

f(x) = max(0, 1− |x− π|/2), g(x) = esinx (3.7)

which are both periodic on the interval [0, 2π].

As we can see in Fig. 3.1 when the original function is sufficiently smooth and periodic,
here g(x), the accuracy of the derivative is very good. However, when the function is not
smooth, as exhibited in f(x), the accuracy is not very good. Here g(x) is not differentiable
at π and spectral methods have a difficult time dealing with this. For a complete discussion
of the specific smoothness and accuracy is contained in Chapter 4 of [56].

In this section, we have focused only on simple one-dimensional examples, but the
method easily generalises to arbitrary dimensions. To compute multiple partial derivatives,
the only change to the algorithm is that we have separate wavenumbers for the different
directions. The only modification is computing the higher dimensional FFTs. To compute
the n-dimensional FFT of a given function, we must compute the FFT of the all the
columns and all the rows in each dimension [31]. For example in 2D dimensions, we would
compute the FFT of each of the columns, and then computing the FFT of all the rows of
the previous result [39].

3.3 Dealiasing

In the previous section we demonstrated that spectral differentiation can produce very
accurate results in only O(N logN) operations. However, we have only considered the
spectral derivative of a single function f(x). The question naturally arises about what
happens if we have products of functions, for example the nonlinear advection terms in the
Navier-Stokes equations

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
, (3.8)

where we now have a product of a function and a derivative. Such terms are known as a
convolution and require a more careful treatment. In this section, we introduce two closely
related methods for evaluating expressions of the above form, the spectral method and the
pseudospectral method. For this we carefully follow the treatment of Durran [23].

Consider the following general 1D non-linear PDE

∂ψ

∂t
+ F (ψ) = 0, (3.9)
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Figure 3.1: Spectral differentiation of two functions max(0, 1 − |x − π|/2) (top) and esinx

(bottom) following [56]. On the right is the spectral derivative computed with n = 24.
Red curve represents the exact derivative. Even with such small N , the derivative of esinx

is very smooth and the Linf error is on the order of O(10−13). The spectral derivative of
max(0, 1− |x− π|/2) is not as good due to the non-differentiability at x = π.
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where F (ψ) is some general nonlinear function. Consider seeking a series expansion of the
form [23]

ψ(x, t) ≈ φ(x, t) =
N∑
k=1

ak(t)ϕk(x), (3.10)

where ϕk are basis functions around which we are interested in expanding the solution.
Some examples of such functions might be complex exponentials, Bessel functions, or
spherical harmonics. In general, we will not be able to find the eigenfunctions that provide
the natural basis to seek a series expansion. Without the proper basis functions, it is clear
that the approximate solution will never exactly solve the original PDE and we have to
determine a way to minimise the error. For many problems, there is often some degree of
symmetry so choosing a certain basis makes sense. For example, for a problem within a
periodic box, it makes sense to choose complex exponentials as a basis; if the problem is
based on a sphere, spherical harmonics are a natural choice. Thus, we are interested in
not finding the correct ϕk for a given problem but instead focus picking a known basis and
appropriately choosing ak(t) to minimise the residual [23],

R(φ) =
∂φ

∂t
+ F (φ), (3.11)

in some way.

3.3.1 Spectral method

How we choose to minimise this error leads to different methods of solving the problem. The
spectral method is a special case of a very general technique called Galerkin approximation.
The spectral method requires the residual be orthogonal to the basis functions ϕk, i.e.∫

S

R(φ(x))ϕk(x)dx = 0 k = 1, . . . , N. (3.12)

For the special case of the spectral method, we require that the basis functions be orthog-
onal. Other basis functions that are not orthogonal but satisfy other constraints, such as
support over very small areas, lead to a different approximation known as the finite element
method [23]. It can be shown [23] that (3.12) is equivalent to minimising the L2 error of
the residual.
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By imposing the above integral, it can be shown [23] that the resulting system of ODEs
for the above is

dak
dt

= − 1

Mk,k

∫
S

[
F

(
N∑
n=1

anϕn

)
ϕk

]
dx k = 1, . . . , N, (3.13)

where Mk,k = 〈ϕk, ϕk〉. For our work, we are interested in a specific case of basis functions,
ϕk(x) = eikx and the inner product is the standard inner product for complex functions∫

S

g(x)h∗(x)dx = 0. (3.14)

To demonstrate the above formulation, we use the spectral method to solve the 1D
advection equation with variable windspeed on the interval [0, 2π],

∂φ

∂t
+ c(x, t)

∂φ

∂x
= 0, F (φ) = c(x, t)

∂φ

∂x
. (3.15)

We now expand out φ(x, t) as the sum of N = 2K + 1 Fourier modes, where here we are
now letting N be an odd number in contrast to the previous section where N was even.
This is chosen because it simplifies the formulas, however the results hold for even N as
well, but with some slight alterations to the algebra. Expanding the variable in terms of a
Fourier basis

φ(xj, t) =
K∑

n=K

an(t)einxj , (3.16)

and substituting this into the above yields

dak
dt

= − i

2π

K∑
n=−K

nan

∫ π

−π
c(x, t)ei(n−k)xdx k = −K, . . . ,K. (3.17)

Expanding out c(x, t) as a Fourier series we obtain

dak
dt

= − i

2π

K∑
n=−K

K∑
m=−K

nancm

∫ π

−π
ei(n+m−k)xdx k = −K, . . . ,K, (3.18)

and upon using the orthogonality of the integral, we obtain

dak
dt

= −
∑

m+n=k
|m|,|n|≤K

incman, (3.19)
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where we require that n+m = k and |n|, |m| ≤ K. If we want to evaluate this sum directly,
we would need to evaluate O(K2) operations due to the double sum in the convolution.
Historically, this was a barrier for spectral methods because even though they provided
accurate results, this O(K2) bottleneck did not allow for larger numerical simulations,
where O(K) finite differences method could [23].

In order to get around this bottleneck, we can turn the O(K2) to O(K logK) using
the FFT. The general idea is as follows: transform the Fourier coefficients to real space in
O(K logK), multiply the two terms together at each grid point in O(K), and transform
back to Fourier space in O(K logK). The resulting algorithm is O(K logK). However, if
we were to implement this naively, errors would arise, due to the phenomena of aliasing.

At a basic level, aliasing is the result of multiplying two terms grid-pointwise that
generate short waves that can be aliased into long waves. This arises in the spectral
method when we compute the product of two Fourier coefficients. A very similar, but
exaggerated example, is known as the wagon wheel effect and can illustrate the general
idea of short waves being interpreted as long waves [72]. The wagon wheel effect arises
when an object appears to be stationary but is really moving. For example, imagine a
camera that takes a picture every second of a turbine, but the turbine is moving at 10
revolutions per second. For someone looking at the shots from the camera, they would
claim the turbine isn’t moving. If the turbine is moving slightly faster, say 10.1 revolutions
per second, the camera would show that the turbine is moving, albeit rather slowly. If it
were moving slightly slower, say 9.9 revolutions per second, the camera would show the
turbine moving backwards. Thus one would interpret the turbine as moving very slowly
in either case and thus conclude that it must have a very slow period, or long wavelength.
In actuality, the period is much more rapid and the wavelength of one revolution is much
shorter.

Mathematically, we can see a similar phenomena by sampling a sine wave. Consider
Fig. 3.2 which has 11 points. The short wavelength red sine curve samples these points
with a short wavelength while a longer wavelength blue curve also samples, despite being
non-existent in the actual data. The goal is to minimise this effect.

To illustrate this consider two functions f(x), g(x). We want to compute the Fourier
coefficients of the product

f(x)g(x) =
K∑

m=−K

pke
ikx, (3.20)

30



0 1 2 3 4 5 6 7 8 9 10

0

Figure 3.2: Different sine curves that fit the same set of data points (from [71]). This is
an example of aliasing.

and we can expand f(x), g(x) as Fourier series

f(x) =
K∑

m=−K

ame
imx, g(x) =

K∑
n=−K

bne
inx. (3.21)

The above algorithm states that we convert the Fourier coefficients am, bn to real space
and multiply. Suppose that in real space the spacing between the grid points is

∆x =
2π

2N + 1
, (3.22)

where we let 2N + 1 denotes the total number of grid points.

How do we choose N? Naively, it seems logical to set that N = K so that both real
and Fourier space have the same number of co-efficients. This naive choice leads to aliasing
error and instead we must choose N > K to avoid this aliasing error. To get intuition
for why, aliasing error arises when two poorly resolved waves are multiplied together and
produce a longer wavelength wave, as discussed above in Fig. 3.2. We can avoid this if all
short wavelengths are resolved properly.

To find the optimal value of N , consider multiplying two functions given by Fourier
modes, each with the largest wavenumberK. This product generates a wave with wavenum-
ber 2K, recalling that multiplication of waves is addition of the wavenumbers. The largest
possible resolvable wavenumber in the real space grid is π/∆x = N . Here we can explicitly
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see what happens if K = N . The 2K = 2N waves would not be resolved properly because
the largest possible wavenumber to be resolved is only N . An obvious choice to fix this
is to choose N = 2K and thus we could resolve all possible wavenumbers. However this
choice is too loose a bound since it would imply that for every simulation, we would require
twice as many grid space coefficients as Fourier coefficients. It is possible to do better.

To do better, consider which wavenumber the 2K would be aliased into, which will be
2K − 2π/∆x thus

K < |2K − 2π

∆x
|, (3.23)

and upon subbing in ∆x we find that

N >
3

2
K − 1. (3.24)

There is an alternative way to get at the same result. Consider the discrete Fourier
transform of the product f(x)g(x)

pk =
1

2N + 1

2N+1∑
j=1

f(xj)g(xj)e
−ikxj , (3.25)

and now plug in the

f(x) =
N∑

m=−N

ame
imx, g(x) =

N∑
n=−N

bne
inx, (3.26)

where we have replaced K with N where N > K. This is the same expansion as before
but we have set al, bl = 0 if K < |l| ≤ N . Substituting these into the above yields

pk =
1

2N + 1

N∑
m=−N

N∑
n=−N

2N+1∑
j=1

ambne
i(m+n−k)xj . (3.27)

Recalling that xj = 2πj/(2N + 1) the inner summation is

2N+1∑
j=1

ei(m+n−k)xj =


1 m+ n− k = 0,

1 m+ n− k = 2N + 1,

1 m+ n− k = −(2N + 1),

0 otherwise,

(3.28)
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which is a restatement of the well known orthogonality condition [23]. Thus we can break
up the above summation into three cases, m+ n = k,m+ n = k ± (2N + 1) which gives

pk =
∑

m+n=k
|m|,|n|≤N

ambn +
∑

m+n=k+2N+1
|m|,|n|≤N

ambn +
∑

m+n=k−2N−1
|m|,|n|≤N

ambn. (3.29)

Note the similarity with the result from the spectral method, which is identical to summa-
tion encountered in the spectral method, recalling that the coefficients are zero for values
greater then K. The aliasing error arises from the second two terms. We want to eliminate
this error so we have to decide how to choose N to eliminate this term. We consider the first
aliasing error term. We have that if m,n > K then ambn = 0. It follows that m+ n > 2K
this term will vanish, i.e. m + n = k + 2N + 1 > 2K for all k = −K, . . . ,K. Thus we
want to consider k = −K since this is the smallest possible value of this summation, i.e.
−K + 2N + 1 > 2K. Rearranging this yields N > (3K − 1)/2 as before. An identical
argument gives the same result for the other aliasing term.

This dealiasing rule is known as the “two-thirds rule” and will completely eliminate
aliasing effects. The above algorithm tells us how to choose N given K, however in many
applications we typically work the other way around, choosing N and limiting K. We now
can now write down the algorithm for evaluating the following term c(x)∂φ/∂x in Fourier
space, when we are initially only given M samples:

• Sample c(x), φ(x, t) at M points.

• Compute the Fourier coefficients of c(x), φ(x, t) using the FFT yielding M Fourier
coefficients ai, bj respectively.

• Evaluate the spectral derivative of φ by multiplying the coefficients by ik, i.e al = ikal.

• Modify the Fourier coefficients so the top 1/3 are zero.

• Take the IFFT back to real space.

• Multiply the real space coefficients gridwise.

• Take the FFT of this product.

This procedure will allow us to evaluate the Navier-Stokes equations in Fourier space by
evaluating convolution terms by multiplying fields in real space and to eliminate numerical
error. In the next section, we provide a simple example that illustrates this method in
practice.
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3.3.2 Pseudospectral method

We have so far been focusing on eliminating the aliasing error at the cost of eliminating
some Fourier modes which can be achieved by taking N > 3K/2. A closely related method
known as the pseudospectral method is an alternative way to evaluate the above equations.
In this case, instead of enforcing that the residual is orthogonal to the basis functions, we
instead choose a collocation method [23], i.e.

R(φ(j∆x)) = 0, (3.30)

where we enforce that the coefficients satisfying the equation at each grid point. An
alternate viewpoint of the pseudospectral method using interpolation of sinc functions
[14, 56]. Let us now expand φ(x, t), c(x, t) are Fourier series

φ(x, t) =
K∑

n=−K

ane
inx, c(x, t) =

K∑
m=−K

cme
imx. (3.31)

Substituting into the test equation and enforcing the collocation requirement yields

K∑
n=−K

dan
dt

einxj +
K∑

m=−K

cme
imxj

K∑
n=−K

inane
inxj = 0. (3.32)

which we can alternatively write as

dφj
dt

+ cj
∂φj
∂x

= 0, (3.33)

where we have written

φ(xj) =
K∑

n=−K

ane
inxj , c(xj) =

K∑
n=−K

cne
inxj ,

∂φj
∂x

=
K∑

n=−K

inane
inxj . (3.34)

This is the set of equations we want to solve. Thus we now have a way to evaluate using
the following algorithm:

1. Evaluate φ(x, t), c(x, t) at M points.

2. Compute the spectral derivative of φ(x, t) using the methods of the previous sections.

3. Multiply all the coefficients gridpoint wise.

4. Timestep the resulting solution.
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3.3.3 Spectral vs pseudospectral

The equations resulting from the pseudospectral method are actually very similar to the
spectral equations except that there is no dealiasing. To see why, multiply the above
equation by e−ikxj and sum over all j and we will obtain

dak
dt

= −
∑

m+n=k
|m|,|n|≤K

incman −
∑

m+n=k+2K+1
|m|,|n|≤K

incman −
∑

m+n=k−2K−1
|m|,|n|≤K

incman. (3.35)

For comparison, the spectral method equations are

dak
dt

= −
∑

m+n=k
|m|,|n|≤K

incman, (3.36)

where in both equations k = −K. . . . ,K.

There are many similarities between these two equations but we have to remember that
they were derived in two completely different ways. Recall that to evaluate the convolution
term in the spectral method, we obtained the following equation

pk =
∑

m+n=k
|m|,|n|≤N

ambn +
∑

m+n=k+2N+1
|m|,|n|≤N

ambn +
∑

m+n=k−2N−1
|m|,|n|≤N

ambn. (3.37)

which has the exact same form as the pseudospectral method but the crucial difference is
that the sum is over N and not K. If we set N = K, which would result in dealiasing
error, we would obtain the pseudospectral method. Thus, at a fundamental level, the
pseudospectral method is just the spectral method without dealiasing.

3.4 Timestepping and examples

Recall that our model 1D problem is

∂ψ

∂t
+ F (ψ) = 0. (3.38)

We have been focusing on evaluating the F (ψ) term but now we turn to the time derivative
term. Fortunately, this term is much simpler to deal with than the nonlinear terms since
it appears only as a single derivative.
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To evaluate this term, consider the approximation to the first derivative [23]

∂ψ

∂t
≈ ψn+1 − ψn

∆t
. (3.39)

Here the subscript now denote the solution ψ evaluated at nth timestep. Now that the time
derivative is handled, at what timestep do we evaluate the F (ψ) term? We could evaluate
it at ψn or ψn+1 or maybe other possible previous times. Let us consider evaluating at
ψn. Now substituting everything in we obtain the following scheme, known as the forward
Euler scheme [23]

ψn+1 = ψn −∆tF (ψn). (3.40)

Here the right hand side is a function solely of ψn. When a scheme can be written as a
function of all previous terms, the scheme is known as explicit. However, we could have
chosen to evaluate ψ at ψn+1 and we would obtain the backward Euler scheme [23]

ψn+1 = ψn −∆tF (ψn+1). (3.41)

Here, if F (ψ) is nonlinear function, we cannot isolate for ψn+1. Instead we would have
to use some sort of root finding solver to find the correct ψn+1 given ψn. Schemes that
exhibit this property are known as implicit schemes. Depending on the problem at hand,
one scheme may be better than the other. For this thesis, we uses second and third order
Adams-Bashforth, following previous work [11, 66].

Once we have chosen a time-stepping scheme, the stability of the scheme is important
to know. If we pick ∆t too large, for example, the right hand side might grow too large
and become unstable. By finding the stability region of a scheme, it tells us when we can
except our solution to not blow up. To investigate this we define the amplitude A to be

A =
ψn+1

ψn
, (3.42)

and stability is defined to be

|A|2 ≤ 1, (3.43)

since A can potentially be complex. The reasoning from this equation arises from rear-
ranging the above so that ψn+1 = Aψn. If |A| ≤ 1 then the solution is not growing in time.
If |A| > 1 then at each time-step the solution is being multiplied by a number greater then
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one, hence it is growing. To illustrate, we use the second order Adams-Bashforth scheme
[23]

ψn+1 = ψn +
∆t

2
(3F (ψn)− F (ψn−1)). (3.44)

Clearly the growth rate of a scheme will depend on the given function F (ψ). However the
standard procedure is to investigate the following model problem [23]

dψ

dt
= (λ+ iω)ψ. (3.45)

where λ, ω are real numbers.

To determine the stability region we use the method from Leveque [34] which gives a
stability region of

z =
2(ξ2 − ξ)

3ξ − 1
, (3.46)

where ξ is the unit circle. Fig. 3.3 illustrates the stability region of the Adams-Bashforth
second order.

To illustrate time-stepping schemes and how they are applied to problems, consider the
following one dimensional advection equation [56]

∂u

∂t
+ c(x)

∂u

∂x
= 0, c(x) =

1

5
+ sin2(x− 1), u(x, 0) = e−100(x−1)

2

, x ∈ [0, 2π],

(3.47)

that we solve on a periodic domain. The physical interpretation of this equation is the
simple one dimensional advection of a velocity field u(x, t) by the fixed velocity c(x).
To evaluate the advection term, we use a spectral method with 2/3-rule dealiasing. As
discussed in the previous section, there is still non-standard terminology throughout the
literature regrading the names of the various methods of using FFTs. Trefethen, for ex-
ample, calls pseudospectral methods, ‘collocation methods’ [56] which is also a term used
by Durran [23], although Durran prefers the term pseudospectral.

For a time-stepping scheme, we use a second-order Adams-Bashforth[23] scheme. Re-
writing wave-equation as

∂u

∂t
= −c(x)

∂u

∂x
= F (u), (3.48)
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Figure 3.3: Stability region of Adams-Bashforth second order. Adapted from [56]
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which we can write in Fourier space as

∂û

∂t
=

̂
−c(x)

∂u

∂x
= F (û), (3.49)

where the dependence on k has been suppressed for clarity. The Adams-Bashforth scheme
is

ûn+1 = ûn +
∆t

2
[3F (ûn)− F (ûn−1)]. (3.50)

Since the Adams-Bashforth scheme uses a previous time-step, we will use forward Euler for
the first time-step. To evaluate F (û) we will use the spectral differentiation, as discussed
above. See Appendix A for the sample MATLAB code which illustrates how to achieve
dealiasing in practice.

Fig. 3.4 demonstrates the solution to the above advection equation using spectral meth-
ods. As can be observed, the solution is very smooth and evolves very clearly for only
N = 128.

In the previous section we discussed spectral and pseudospectral schemes. To illustrate
another difference between the two, we solve the viscous Burgers equation using both
spectral and pseudospectral methods [23]

∂ψ

∂t
+ ψ

∂ψ

∂x
= ν

∂2ψ

∂x2
. (3.51)

The initial condition used was a Gaussian. To handle the time-stepping, we use an Adams-
Bashforth second order as discussed above. Fig. 3.5 illustrates the results of the numerical
experiment. Initially, both the spectral and pseudospectral codes have similar energy but
after around 1 time unit, the pseudospectral solution is dissipating energy faster than the
spectral. However, the key difference is that at around T = 3.6 the pseudospectral code
blows up due to nonlinear instability associated with aliasing error [23]. The spectral code,
which does dealiasing, does not experience this divergence and continues to decay due to
viscous effects. Indeed, it can be shown [23] that for inviscid problems, the spectral method
will conserve energy. This example illustrates the importance and necessity of dealiasing.

3.5 Navier-Stokes equations in Fourier space

3.5.1 Fourier transformed Navier-Stokes

We now turn to the formulation of the Navier-Stokes equations in the Fourier domain which
provides a convenient formulation to analyse the underlying mechanisms of turbulence.
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Recall that in the Fourier domain, derivatives become multiplication of wavenumbers which
converts the spatial derivatives of the Navier-Stokes equations into algebraic equations.
To demonstrate the formulation in Fourier space, let us cast the standard Navier-Stokes
equations into Fourier space.

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ ν∇2u, ∇ · u = 0, (3.52)

Taking the Fourier transform of the above equation is straight-forward for all terms except
the advection term u · ∇u, which we postpone for now.

In Fourier space, we can also exploit the following observation to eliminate the pressure
term (e.g. [33]). The incompressibility condition becomes k · û(k, t) = 0 in Fourier space.
Geometrically, this means that the vectors k and û are orthogonal. This realisation tells
us that vectors that are proportional to û are orthogonal to vectors that are proportional
to k . Thus writing out the Navier-Stokes equations

∂û

∂t
+ F(u · ∇u) = − 1

ρ0
kp̂− νk2û, (3.53)

take the dot product with k and using the orthogonality condition we obtain

k · F(u · ∇u) +
1

ρ0
k2p̂ = 0. (3.54)

Isolating for pressure and substituting back into (3.53) we obtain

∂û

∂t
+ F(u · ∇u)(1− kk

k2
) = −νk2û. (3.55)

This result is unsurprising, since all we have done is take the divergence of the Navier-Stokes
equations, which in Fourier space corresponds to taking the dot product with respect to
k. But using this observation we can avoid the need for solving the pressure altogether
because the pressure term is orthogonal to the û-plane. But what about the advection
term? As can be seen in (3.55), it has this factor 1 − kk/k2 multiplying it. This term
represents a projection into the û-plane. The advection term can thought of a vector
that is pointing in some direction in-between the planes of k and û. By projecting the
advection term into the û-plane, we would have a set of equations that are independent of
the pressure completely.
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3.5.2 Projection tensor

In order to project the Navier-Stokes equations onto the û-plane, we define the following
projection operator

P = 1− kk

k2
or Pij(k) = δij −

kikj
k2

, (3.56)

where we are using Einstein summation notation [33, 67]. It is straightforward to verify
that PijPjk = Pik or in matrix notation P2 = P, in other words the projection tensor is
idempotent. Idempotence is a defining feature of projection operators [42]. It is straight-
forward to verify that kjPij = 0 and ûjPij = ûi. These simple observations confirm that
the projection tensor projects a vector onto the û-plane.

Applying Pij to (3.53) we obtain the following

∂û

∂t
+ PF(u · ∇u) = −νk2û, (3.57)

where P is acting on the Fourier transform of the advection term. In order to compute the
Fourier transform of the advection term, we note that

u · ∇u = uj
∂ui
∂xj

=
∂(uiuj)

∂xj
, (3.58)

where the incompressibility condition has been used to bring the velocity inside the deriva-
tive. Thus we are able to write

F(u · ∇u) = ikj

∫
p+q=k

dkûi(p)ûj(q), (3.59)

and hence we can finally write out the Navier-Stokes equations in Fourier space as [33]

∂ûi
∂t

+ iPijkm

∫
p+q=k

dkûj(p)ûm(q) = −k2ûi. (3.60)

3.5.3 Numerical formulation of Navier-Stokes in Fourier

Although we have eliminated the pressure completely, we still have the nonlinear term in
the equation. To formulate this problem numerically, we make the following observation
that is useful in spectral methods [33, 47].
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Recall the following identity [32, 1]

u · ∇u = ω × u− 1

2
∇u2, (3.61)

When we apply the projection operator P to the above equation, the ∇u2 term will vanish
since it is orthogonal to the û-plane. For the cross product between the vorticity and
velocity, we use the methods discussed above from dealiasing. Thus to evaluate the cross
product term, we assume we have the Fourier transform of the vorticity and velocity ω̂, û
and re-write the cross product term as

F(ω × u) = F(F−1(ω̂)×F−1(û)). (3.62)

Using this result we can reformulate the Navier-Stokes equations into a form to be solved
numerically using a spectral method

∂û

∂t
= −P(k)F(F−1(ω̂)×F−1(û))− νk2û, (3.63)

where the F ,F−1 can be evaluated by FFTs, as discussed above.

This reformulation of the Navier-Stokes equations into Fourier space simplifies numeri-
cal calculations immensely and provides many advantages over the real space formulation.
The absence of the pressure term means that there is no Poisson equation to be solved
at each time-step for the pressure. If one did want the pressure, one can solve (3.54) for
p̂. In addition there is no need to enforce a divergence free solution2 as the equations are
formulated by definition to satisfy divergence free condition. The only additional technical
difficulty is evaluating the vorticity, but this can easily be handled because of the simple
structure of the curl.

The above has been focused on the Navier-Stokes equations and not the Boussinesq
equations, however the extension to these equations is straightforward. The only additional
complexities are an additional equation which can be solved analogously to the momentum
equation [33].

3.5.4 Integrating factor

Another advantage of the Fourier formulation is the ability to exactly integrate the diffusion
term. Let us denote the advective projective term as F (û) and we have

∂û

∂t
+ νk2û = F (û), (3.64)

2Except possibly at the initial time step and periodically during a simulation due to numerical errors.
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where the left-hand side has been explicitly written out. Written in this form, the common
trick of writing a product as a derivative is observed since

∂û

∂t
+ νk2û = e−νk

2t ∂

∂t
(ûeνk

2t), (3.65)

Thus we can re-write the Navier-Stokes equations as

∂

∂t
(ûeνk

2t) = eνk
2tF (û). (3.66)

For notational convenience, let us write g(t) = eνk
2t and note the following trivial identities

g(t±∆t) = g(t)g(±∆t), g(0) = 1, g(t)−1 = g(−t). (3.67)

With this notation the Navier-Stokes equations become

∂(ûg(t))

∂t
= g(t)F (û). (3.68)

Now let us solve the above system using an Adams-Bashforth second order time-stepping
scheme. Initially we obtain

ûn+1g(tn + ∆t) = ûng(tn) +
3

2
∆tg(tn)F (ûn)− 1

2
∆tg(tn−1)F (ûn−1). (3.69)

Using the identities in (3.67) the scheme reduces to

ûn+1 = g(−∆t)ûn +
3

2
∆tg(−∆t)F (ûn)− 1

2
∆tg(−2∆t)F (ûn−1), (3.70)

and the diffusion term has been reduced to a multiplication by a constant factor g(−α∆t).

3.5.5 Hyperviscosity

Unless we are performing direct numerical simulations, in which all scales down to the
viscous scales are resolved, fluid simulations will not resolve all scales of a flow. As a
result, some mechanism is necessary to smooth the solution at small scales and avoid a
build-up of energy at the grid scale. Approaches for spectral methods, which have no
implicit numerical diffusion, include filtering and hyperviscosity (e.g. Boyd [14]).

Hyperviscosity is a method of simulating higher Reynolds number flow by replacing the
diffusion term with higher derivatives. In the Fourier picture, the diffusion term is −νk2û.
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The diffusion timescale τd is given by the inverse of νk2. This implies that the longest
wavelengths (smallest k) have very long diffusive time-scales while the shortest wavelengths
(larger k) have very short diffusive time-scales. This picture makes physical sense since
viscosity plays the most important role at the very small scales. As we decrease the
viscosity ν the time-scales of all scales increases. Numerically, if we decrease the viscosity
too much, resolution of the smallest scales becomes critical and can lead to unwanted
grid-scale effects. Thus, in order to decrease the diffusive time-scales of all wavelengths
we can instead vary the power of the wave number. For example, going from k2 to k4,
and adjusting the coefficient accordingly, the time-scales of the various wavelengths would
decrease. This is illustrated in Fig 3.6.

In order to incorporate hyperviscosity numerically, we scale the coefficient by the max-
imum wavenumber kmax. We want the diffusive timescales of the smallest scales to be the
same for both the regular viscosity and the hyperviscosity. That is we want

νk2max = νik
i
max, (3.71)

where i is an even integer. Solving for νi then gives the following replacement

νk2 ⇒ νk2−imaxk
i. (3.72)

For hyperviscosity simulations in this thesis, we will use i = 4, although i = 8 is also
common [3, 38].

3.5.6 Concluding remarks

Although we have done all our manipulations in Fourier space, we could have equally well
formulated the above equations in real space. The idea of projecting the velocity field onto
the û-plane is motivated by the Helmholtz decomposition. This decomposition states, for
any C2 vector field in a bounded region of R3, we can decompose the vector field into a
divergence-free and curl-free component. The divergence free part corresponds to taking
the divergence of the Navier-Stokes equations which would yield the Poisson equation for
the pressure. Taking the curl of the Navier-Stokes equation - which we define to be the
vorticity - would yield the vorticity equation which does not have a pressure term.

3.6 Numerical scheme for linear Boussinesq equations

We now write the fields as a basic state, denoted by a subscript 0, plus perturbations, de-
noted by∼. Ignoring the viscous diffusion of the basic state [11, 22] and neglecting products
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Figure 3.6: The inverse diffusion times, 1/τd, of the wavenumbers for the regular viscosity,
blue, and the hyperviscosity case, red. The hyperviscosity inverse diffusion times are lower
then the regular viscosity case, corresponding to longer diffusion times. This has the effect
of simulating larger Reynolds numbers. Note that the hyperviscosity coefficient is chosen
such that at kmax the two cases coincide.
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of the perturbations, we obtain the following set of linear equations for the perturbations

∂ũ

∂t
+ ωz0êz × ũ + ω̃ × uh0 = −∇(p̃+ uh0 · ũ)− ρ̃′êz +

1

Re
∇2ũ, (3.73)

∇ · ũ = 0, (3.74)

∂ρ̃′

∂t
+ uh0 · ∇hρ̃

′ − 1

F 2
h

w̃ =
1

ScRe
∇2ρ̃′, (3.75)

where ω̃ = ∇× ũ.

To justify ignoring the diffusion of the basic state, we used the full nonlinear code,
which will be discussed below, with the same Lamb-Chaplygin dipole initial state and no
perturbation, and let it diffuse out. We found that over 50 time units, the total kinetic
energy decreased by about 10%, and hence we are justified in ignoring the viscous diffusion
of the basic state. As we shall see in the next chapters, the timescales of the instability
are much smaller than the diffusive time scales. Thus, in our simulations, the diffusion of
the basic state is negligible over the time scales of the instability.

As stated above, the Lamb-Chaplygin dipole is oriented vertically. As a result we can
separate the dependence of the perturbation the vertical and horizontal directions as

[ũ, p̃, ρ̃′](x, y, z, t) = [u, p, ρ′](x, y, t)eikzz + c.c., (3.76)

where c.c. is the complex conjugate. From here we can now take the 2D Fourier transform
and recall the projection operator P(k), with components Pij(k) = δij−kikj/k2 to eliminate
pressure, to obtain a set of equations for the Fourier coefficients

∂û

∂t
= P(k)[ ̂u× ωz0êz + ûh0 × ω − ρ̂′êz]−

k2

Re
û, (3.77)

∂ρ̂′

∂t
= −ikh · ûh0ρ′ +

1

F 2
h

ŵ − k2

ScRe
ρ̂′, (3.78)

where kz, Re, Sc, Fh are input parameters, kh = (kx, ky) is the horizontal wavenumber and
k2 = k2x + k2y + k2z is the total wavenumber.

To numerically solve (3.77) and (3.78), we use a spectral transform method to evaluate
derivatives, with 2/3-rule de-aliasing and second order Adams-Bashforth for time-stepping.
Each simulation was initialised with a random field and integrated over an N ×N grid for
100 time units to determine the behaviour of the fastest growing mode. After several time
units, the leading eigenmodes for u, ρ behave exponentially (e.g. Billant and Chomaz [11])

u, ρ ∝ C(x, y)eσt, (3.79)
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and we can obtain the largest growth rate by the formula

σ = lim
t→∞

1

2

d lnE

dt
, (3.80)

where σ is the real growth rate of the mode and E is the kinetic energy 1
2
(u2 + v2 + w2).

This follows directly from the exponential behaviour of the leading eigenmode. The energy
behaves as

E ∼ 3

2
C(x, y)2e2σt ⇒ lnE = ln(3C2/2) + 2σt, (3.81)

and upon taking the time derivative of both sides yields the desired result. To obtain the
energy, we use Parseval’s theorem which relates the real space energy to the sum of the
squares of the Fourier coefficients. Thus the total kinetic energy is obtained by summing
the squares of the Fourier transform of the velocities over all wavenumbers.

To evaluate σ, we compute the average value of the growth rate from the later portion
of the time series. Initially, there is transient behaviour where the various modes are all
growing and none dominant. After t = 20, after the initial transient behaviour has died
out and the leading mode dominants in all the cases observed. In the case of an oscillatory
growth rate, as considered in [8], we drop the assumption that σ is real and instead compute
the growth rate from

σr = lim
t→∞

1

2T
ln

(
E(t+ T )

E(t)

)
, (3.82)

where T is the period of the oscillatory mode. The imaginary growth rate is given as
σi = 2π/T . As above, we compute σ from the time series beginning at t = 20, however we
first measure the period T from roughly 10 oscillations, and then compute the average.
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Chapter 4

Linear equation simulations

4.1 Introduction

In this chapter we extend the results of Billant and Chomaz [11] to the sub-buoyancy
length-scales. We also reproduce the numerical results presented by Billant and Chomaz
and confirm their conclusions about the existence of the zigzag instability at the buoyancy
scale. The results in this chapter are based on the paper by Bovard and Waite [13] which
focused on the short-wave instability. More background information has been included in
this chapter.

4.2 Set-up

The equations that we want to solve are the linear Boussinesq equations, which we derived
in Chapter 2 and for which we derived the numerical scheme in Chapter 3. We repeat the
equations here:

∂û

∂t
= P(k)[ ̂u× ωz0êz + ûh0 × ω − ρ̂′êz]−

k2

Re
û, (4.1)

∂ρ̂′

∂t
= −ikh · ûh0ρ′ +

1

F 2
h

ŵ − k2

ScRe
ρ̂′. (4.2)

The parameter regime to be explored is a function of kz, Re, Fh.

In our simulations, we investigate a range of Reynolds numbers Re = 5000−20,000 and
Froude numbers Fh = 0.05− 0.2. These numbers have been chosen to be within the range
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Re Fh ∆t kz
10,000 ∞ 0.000950 1-220
20,000 0.2 0.000950 1-160
10,000 0.2 0.000950 1-160
5000 0.2 0.000950 1-160
2000 0.2 0.000950 1-160

20,000 0.1 0.000375 1-160
10,000 0.1 0.000375 1-160
5000 0.1 0.000375 1-160
2000 0.1 0.000375 1-160

20,000 0.05 0.000375 1-140
10,000 0.05 0.000375 1-140
5000 0.05 0.000375 1-140
2000 0.05 0.000375 1-140

Table 4.1: Overview of the numerical parameters.

of the results of Billant and Chomaz [11]. Additionally, these parameters are within the
range of potential experimental studies using techniques of Billant and Chomaz [9]. For
each Fh and Re a wide range of vertical wavenumber, kz, were investigated with kz ranging
from 1 to 200. This wavenumber range incorporates the scale of the zigzag instability
down to the viscous damping scale. We additionally consider the Schmidt number to be
unity, following the main results of Billant and Chomaz [11]. In order to compare with
experiments, Billant and Chomaz investigated a non-zero Schmidt number, however their
numerical work mainly focused on Sc = 1 and thus we do not consider different Schmidt
numbers here.

For our simulations a box size of L = 9 with N = 512 grid points was used. The reason
for choosing L = 9 was to minimise interactions of the fields with themselves across the
periodic boundary. Domain sizes of L = 5 have been used in practice [3], however we erred
on the side of caution and repeated the box size conditions of Billant and Chomaz [11]. For
robustness results were checked at smaller box size and agree with the tests of [11]. The
parameters for our simulations are summarised in Table 4.1. These were chosen following
Billant and Chomaz [11].

The code was written in Fortran and all the FFTs were done by FFTW V3.0 [26] and
was tested by comparing the growth rates given by Billant and Chomaz in [11], specifically
their Figure 1 and Tables 1 and 2. Unlike Billant and Chomaz [11] we did not restart
each simulation with the previous eigenmode which allowed us to use a serial farming par-
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allel approach for evaluating multiple kz simultaneously as we did not need the previous
wavenumber eigenmode to initialise the simulation. The trade-off is the individual sim-
ulations had to be run longer but they could be done in parallel allowing for a greater
variability in the parameters explored.

4.3 Growth rate

As discussed in Chapter 3, the growth rates are computed by evaluating the time derivative
of the energy of the eigenmode. Fig. 4.1 demonstrates two different types of growth rates
that are representative of all the growth rate plots for all the simulations. Here we have
chosen Fh = 0.1, Re = 20,000 and kz = 20 in panel (a) and kz = 60 in panel (b). In both
panels, the perturbation initially goes through some transient behaviour which is when the
various eigenmodes all grow together and none of have become dominant. After about 20
time units this transient behaviour has died off and the dominant eigenmode has emerged.
This 20 time unit delay was observed for all simulations. In panel (a), there is a case of
an oscillatory growth rate. As can be observed, the growth rate of this wavenumber is
highly oscillatory and thus the true value of the growth rate must be computed using the
period of the oscillation. Panel (b) represents the more typical case of the growth being
non-oscillatory and quickly settling down onto a certain value.

Using these types of plots of the growth rate, we are able to extract the leading growth
rate of the eigenmode with the maximum growth rate by examining the long term be-
haviour. From these times series, we determined the maximum growth rate of the leading
eigenmode for a wide range of wavenumbers, Reynolds numbers, and Froude numbers. The
growth rate curves for a given Fh and Re can be plotted by determining this maximum
growth rate for each vertical wavenumber. Following Billant and Chomaz [11], we scale the
vertical wavenumber by Fh to obtain kzFh. This is, in our units, the vertical wavenumber
scaling by the buoyancy scale Lb = U/N . Recall that kz has been non-dimensionalised by
R, i.e. kz = k′zR where k′z is the dimensional wavenumber with units of inverse length. So
the dimensionless Fhkz would become Fhk

′
zR in dimensional units, k′z denoting the dimen-

sional vertical wavenumber. Re-writing this we obtain Fhk
′
zR = k′zU/N = k′zLb, using the

definition of the Froude number, and hence dimensional Fhk
′
zR = k′zLb.

Fig. 4.2 shows the largest eigenmode growth rate as a function of vertical wavenumber
for fixed Fh and Re for a wide range of Fh and Re. The qualitative behaviour for the growth
rates at different Reynolds numbers are very similar to one another. We now investigate
the various regimes in some detail.
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Figure 4.1: Time series of the growth rate, obtained from the derivative of the energy, for
Fh = 0.1 and Re = 10,000. Panel (a) is kz = 20 and Panel (b) is kz = 60.

At small Fhkz, the growth rate reaches a local maximum, the zigzag peak, as predicted
by Billant and Chomaz [9, 10, 11]. As discussed in Chapter 2 the zigzag instability appears
at the buoyancy wavelength Lb. It is clear from the figure where we see the peak growth rate
occurs at the same Fhkz, here roughly Fhkz ≈ 0.6. In panels (a) and (b) it is especially clear
that the growth rate curves all collapse onto each other and have almost identical growth
rates regardless of Reynolds number, confirming the results of the prediction of Billant and
Chomaz [10, 11]. Panel (c) has similar growth rates for Re = 20,000, 10,000, and 5000 but
for Re = 2000 the growth rate is a bit lower. Despite the slight difference in growth rates,
they do all occur at the same kzFh. The lower growth rates of the Re = 2000 cases suggests
that diffusion is playing an important role and is damping out the instability, as can be
seen by the rapid decrease in the growth rate of the curve. Since the theoretical results
of Billant and Chomaz [10] were conducted in an inviscid regime, it is not unexpected to
observe a breakdown of this assumption. Some numerical experiments were run at even
lower Froude number, but here the diffusion was dominating and the growth rate curves
were dropping off very rapidly near the zigzag peak and thus even obscuring the zigzag
peak. Thus for Fh < 0.05 and Re < 10,000 we find that the sub-buoyancy length scales
are being diffused out.

For kz increasing beyond the zigzag peak, the growth rate then decreases for increasing
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Figure 4.2: Growth rate σ as a function of kzFh for fixed Fh = 0.2 (a) , 0.1 (b), 0.05 (c)
with Re= 2000 (cyan), Re= 5000 (red), Re= 10,000 (black), Re= 20,000 (blue). In panel
(b) the green line is the hyperviscosity case with Re = 20,000.
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Figure 4.3: Frequency of the growth rate for Fh = 0.05 and Re = 20,000 (blue) and
Re = 10,000 (black).

Fhkz to a local minimum before increasing to a second local maximum. At this local
minimum oscillatory growth rates are observed. The imaginary part of the growth rate,
the frequency, σi remains zero everywhere else except in this small region between the two
local maxima, with the exception of very small kzFh. Oscillatory growth rates are also
observed in this small wavenumber regime, as observed in [8] and we did not explore this
regime further. Fig. 4.3 displays the frequency growth rates for Fh = 0.05 and Re = 10,000
and 20,000. The frequency growth rate for Re = 10,000 is a straight line but such a trend
is not observed for Re = 20,000. The shape of this curve, when it did appear, depended
highly on the Reynold and Froude number, and did not suggest any sort of general result
that could be determined about the frequency growth rate. Additionally, the range of this
oscillatory instability also depended on the Reynolds and Froude numbers and also did not
suggest any sort of general result.

After this local minimum, the growth rate increases to a secondary maximum. We will
discuss this maximum further below. Continuing to even smaller vertical scales, viscous
effects increase and may damp out the instability, and hence the growth rate decays with
increasing kzFh in the limit of large kzFh.

For Fh = 0.2 (Fig. 4.2a), the peak growth rate of the short-wave instability exceeds that
of the zigzag instability for increasing Reynolds numbers. The growth rates at the second
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peak is smaller for Fh = 0.1 (Fig. 4.2b), but they continue to increase with increasing Re.
For Fh = 0.05 (Fig. 4.2c), the second peak is weaker than the zigzag peak. Fig. 4.4 shows
the growth rate for fixed Reynolds numbers with varying Froude numbers. Examining
the case of Re = 20,000 (Fig. 4.4a), the growth rate at the second peak increases with
increasing Froude. A similar result is observed for Re = 10,000 and 5000 (Fig. 4.4b-c).
Re = 2000 is not included because viscous effects have damped out the second peak in
this case. Overall, the dependence of the short-wave growth rate on Froude is also more
pronounced than that of Reynolds. For example, the growth rate of the second peak at
fixed Re = 20,000 (Fig. 4.4a) doubles from Fh = 0.05 to Fh = 0.2. By contrast, at fixed
Fh = 0.2 (Fig. 4.2a), the increase in the growth rate from Re = 5000 to Re = 20,000 is
only about 25% larger.

The above analysis demonstrates that the short-wave growth-rate peak moves to larger
kzFh with increasing Fh and increasing Re, but has a stronger dependence on Froude than
Reynolds. Some of this joint dependence can be explained by examining the dependence
on the buoyancy Reynolds number Reb = F 2

hRe [15, 28, 52]. In stratified turbulence,
the buoyancy Reynolds number is analogous to the Reynolds number in the viscous term
due to the vertical gradients [15]. Recall from the scaling analysis in Chapter 2, that the
vertical diffusion term has a scale-factor of Reδ2. At the buoyancy length scale, this can
be rewritten as ReF 2

h and has been found to be an important dimensionless parameter
in stratified turbulence [15]. As kz increases, we move to smaller vertical scales where
the vertical viscosity terms, controlled by the buoyancy Reynolds number, dominates, so
it follows that the second peak may be governed by Reb. In Fig. 4.5 the location of the
second peak from Fig. 4.2 is plotted as a function of the buoyancy Reynolds number. The
peak location line is approximately linear and can be fitted with the curve kzFh = Re

2/5
b ,

which is plotted. This scaling implies that the vertical wavenumber, kz, of the short-wave
instability is approximately

kz ∼ F
−1/5
h Re2/5. (4.3)

The dependence of the growth rate on kzFh appears to be similar in the cases with different
Fh and Re but the same Reb. Fig. 4.6 demonstrates the similarity of the growth rate plotted
against kzFh for two cases with Reb = 500 and two cases with Reb = 50. For both cases,
the locations of the zigzag and second peak line up quite well. The difference between
the red and blue curves at the second peak is 4% for Reb = 200 and 6% for Reb = 50, a
reasonable variation.

In Fig. 4.2 (b) the green curve corresponds to a hyperviscosity run with Re = 20,000,
which has Reh = 2.8×108. The motivation for using hyperviscosity is to capture the higher-
Reynolds number regime by restricting dissipation to only the largest wavenumbers. As
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Figure 4.4: Growth rate σ as a function of kzFh for fixed Re = 20,000 (a) , 10,000 (b),
5000 (c), with Fh = 0.05 (red), Fh = 0.1 (black), Fh = 0.2 (blue).
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Figure 4.6: Growth rate σ as a function of Fhkz for fixed Reb. In (a), red is Re =
20,000, Fh = 0.1 and blue is Re = 5000, Fh = 0.2, both corresponding to Reb = 500; in
(b) red is Re = 20,000, Fh = 0.05 and blue is Re = 5000, Fh = 0.1, both corresponding to
Reb = 50.

the hyperviscosity run demonstrates, the zigzag peak is independent of Reynolds number
and the existence of the peak would be expected at higher Reynolds numbers. For the
second peak, we note that the growth rate of the hyperviscosity run exceeds that of Re =
20,000 for kzFh > 3 and reaches a maximum around kzFh = 7. The maximum growth
rate in the hyperviscosity case is around 25% larger than the regular viscosity case with
Re = 20,000. At kzFh = 12 we see the hyperviscosity and non-hyperviscosity curves cross.
This intersection corresponds to the horizontal wavenumber at which the hyperviscosity
damping rate equals the regular viscous damping rate for Re = 20,000. For kz greater than
this maximum, the hyperviscosity operator experiences greater damping than the regular
viscosity, which can be seen by the sudden drop off of the growth rate. This simulation
presents evidence that as Re→∞, the growth rate of the second peak will the same order
as, or larger than, the growth rate of the zigzag instability.

4.4 Structure

Briefly, we discuss the structure of the zigzag instability. Fig. 4.7 demonstrates the vertical
vorticity of the zigzag peak for Fh = 0.2, 0.1, 0.05 and Re = 20,000. In all vertical vorticity
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Figure 4.7: Perturbation vertical vorticity ωz at the zigzag peak for Fh = 0.2 (left), 0.1
(middle) , 0.05 (right) and Re = 20,000.

plots that follow, we have normalised the plots so red represents the maximum velocity
or vorticity and blue represents the minimum velocity or vorticity. Since the vorticity
field is real, we have chosen the real part. Only Re = 20,000 has been included, since
the structure is nearly identical for Re = 10,000 and 5000. This confirms the assumption
made by Billant and Chomaz [10] that the zigzag peak emerges at the buoyancy scale U/N
independent of Re. A detailed study of the structure of the zigzag instability is done by
Billant and Chomaz [11].

The minimum between the zigzag and short-wave instability is the oscillatory minimum.
Fig. 4.9 and Fig. 4.10 are the vorticity and velocity fields respectively at the oscillatory
minimum. Following Billant and Chomaz [11] we only plot the real part of the velocity
fields. In the vorticity structure, for Re = 20,000 the structure is much more defined than
the smoothed out structure of the zigzag instability. At Fh = 0.2, (a),(d),(g) , the vorticity
is in thin strips around the dipole. At at Fh = 0.1, panels (b),(e),(h), new structure has
emerged in the core of the dipole and has a swirl-like pattern. At the Fh = 0.05, (c),(f),(i),
this structure has become much more detailed and a swirl-like pattern has clearly emerged.
Additionally, as we increase the viscosity, this swirl-like structure becomes more diffused
out.

Fig. 4.11 and Fig. 4.12 show the spatial structure of the perturbation vertical vorticity
and fields at the second peak for different Re and Fh. Qualitatively, we observe greater vari-
ation for different Froude numbers versus different Reynolds number as suggested above.
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Figure 4.8: Perturbation fields u, v, w, ρ at the zigzag peak for Fh = 0.1 and Re = 20,000.
Here kz = 6.
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Figure 4.9: Perturbation vertical vorticity ωz at local oscillatory minimum for Re = 20,000
(top) , 10,000 (middle) , 5000 (bottom); and Fh = 0.2 (left) , 0.1 (middle) , 0.05 (right).
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Figure 4.10: Perturbation fields u, v, w, ρ at the oscillatory minimum for Fh = 0.1 and
Re = 20,000. Here kz = 20.
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Figure 4.11: Perturbation vertical vorticity ωz at the short-wave peak for Re = 20,000
(top), 10.000 (middle), 5000 (bottom) ; and Fh = 0.2 (left) , 0.1 (middle) , 0.05 (right).
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Figure 4.12: Perturbation fields u, v, w, ρ at the short-wave instability for Fh = 0.1 and
Re = 20,000. Here kz = 60.
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Figure 4.13: Perturbed vertical vorticity ωz at (a) the zigzag peak (b) the second peak for
Re = 5000, Fh = 0.2.

At the largest Froude number, the perturbation vorticity is organised in thin strips around
and inside the dipole core between the two vortices. Panels (b),(e),(h) have Fh = 0.1
and have a similar overall structure to the larger Froude number. Here, in the cores of
the vortices, there is an emergence of a swirl-like pattern. At lower Reynolds number,
the structure is spread out due to diffusion, while at higher Reynolds number, small-scale
structure is beginning to emerge. This trend continues overall as we move to lower Froude
numbers.

Examining Figs. 4.11 (g)-(i) (fixed Re and decreasing Fh), the core of the dipoles has
a twisting-like behaviour as the Froude number decreases. From this we can conclude that
the instability structure of the second peak depends more on the Froude number than
on the Reynolds number, which again reinforces the buoyancy Reynolds number scaling.
Indeed, if we consider the cases with Reb = 50 and 200 as above, which correspond to
Fig. 4.11 (b),(g) and (c),(h) respectively, we can see similar structure in the vorticity
fields. Additionally, the anti-symmetric structure of the perturbation can be observed in
the dominant eigenmodes in all cases, as found by [8, 11].

Fig. 4.13 shows the perturbation structure for the zigzag peak (a) and the short-wave
peak (b) for the case of Re = 5000, Fh = 0.2. This case was chosen because the growth rates
of the two wavenumbers is roughly the same (see Fig 4.2 a). The zigzag instability exhibits
a quadrupole vorticity structure as discussed in [11], which corresponds to a bend and a
twist of the basic state dipole. The short-wave instability shares some common overall
structure with the zigzag instability. Both have a line of vorticity centred in between two
Lamb-Chaplygin vortices and have a ring of negative vorticity around the outer edges of
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the dipoles. Additionally, the number of local maxima and minima remains the same.
However, in the short-wave instability, these bands of vorticity have been squeezed into
thinner strips and are much more localised along the outer edges of the vortices. In the
cores of the dipoles, there is almost no structure and we do not see a quadrupole moment.
The full vorticity field of the short-wave instability has a much more dominant twist then
the zigzag instability and the bending of the dipole is reduced. As the stratification is
increased, this behaviour continues but there is a significant emergence of structure within
the cores of the vortices, as observed in Fig 4.11.

Fig. 4.14 demonstrates the structure of the v component of velocity for Fh = 0.1 and
Re = 20,000 for a range of wavenumbers. Here the transition from the zigzag peak, through
the oscillatory minimum to the short-wave instability is explicit. Initially the structure has
a large positive and negative velocity but as we increase kz this positive velocity is stretched
forward and flattened out and becomes stretched out in the middle of the velocity field.
The initial negative velocity simply dies out. The initial small areas of positive velocity in
front of the dipole undergo an interesting evolution and become larger and stretched out
wrapping around the back of the dipole and become very thin. The small initial negative
velocity also becomes stretched out but instead forms a v-like shape behind the dipole.
The evolution of this wake looks quantitatively similar to the wake of a boat through
water. Fig. 4.15 is a loglog plot of the angle of this wake as a function of the perturbation
wavelength. The red line is a reference slope of k = 1 and suggests the relationship between
the angle and the wavenumber to be

θ ∼ 1

kz
. (4.4)

An investigation by Sharman and Wurtele [55] found an inverse relationship between the
angle of the wake and the vertical wavenumber, similar to our result here. However their
stratification set-up is non-constant and is not directly applicable to our constant value
stratification. But, their result does suggest that a similar result could be derived for the
case of waves behind vortices.

4.5 Subdominant modes

The method we have used so far is limited to only determining the leading eigenmode.
An interesting question is whether or not we can determine sub-dominant eigenmodes and
what we can learn from these modes. For example, is the same eigenmode dominating
at both the zigzag peak and the short-wave peak? To investigate this question, we use a
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Figure 4.14: Structure of the v velocity from kz = 3 up to kz = 110 for Fh = 0.1 and
Re = 20,000. The wavenumber is increasing left to right and top to bottom, with the
wavenumber in the top right. Unlike in previous figures, we have not normalised with
respect to the maximum vorticity. When a normalisation was applied, the wake behind
the dipole was obscured. Here red corresponds to the maximum vorticity and blue the
minimum vorticity.
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Figure 4.15: Angle of the wake behind the v velocity field as a function of the perturbation
wavelength for Fh = 0.1 and Re = 20,000. The red line is a reference slope of 1.

Krylov space method to obtain the growth rates for subdominant modes [25]. Recall that
our linear stability problem can be written as

du

dt
= Au (4.5)

where u = u(x, t) is vector of the unknowns and A is the associated linear operator.
We can consider solutions of the form u(x, t) = û(x)eσt, where σ is the growth rate.
Substituting in we obtain the following eigenvalue equation for u

σû = Aû. (4.6)

As mentioned, we have only been trying to find the leading eigenvalue σ but since this is
an eigenvalue problem, many algorithms exist to find the eigenspectrum.

If we want to solve this eigenvalue problem, we must discretise the operator A. For our
numerical scheme, we do not explicitly construct this operator because it would get very
large. Our code is equivalent to this matrix multiplication if one were to write all the FFTs
as a matrix multiplication. Writing out operators this way in practice is unfeasible since
for our problem, it would require a matrix that is of size 4N2 × 4N2 and is very dense.
Thus trying to find the eigenvalues using a direct eigenvalue routine is not possible. Instead
we investigate other algorithms that can determine the eigenvalues without computing A
explicitly.
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4.5.1 Krylov eigenvalue routines

One of the simplest and easiest to code algorithms for finding eigenvalues is the power
method. It is given by the following iteration [42]

uk+1 =
Auk
|Auk|

, σk =
utkAuk
utkuk

. (4.7)

The reasoning for this algorithm is very simple. If we suppose that the operator A has
a spectrum of eigenvalues such that λ1 > λ2 > . . . then by the spectral theorem we can
re-write the operator A as

A = λ1u1u
T
1 + λ2u2u

T
2 + λ3u3u

T
3 + . . . (4.8)

where ui is the eigenvector associated with λi. Now recall that by the spectral theorem we
have the following [42](

A

λ1

)n
= u1u

T
1 +

(
λ2
λ1

)n
u2u

T
2 +

(
λ3
λ1

)n
u3u

T
3 + . . . (4.9)

and since there is an ordering on the eigenvalues we have that λi/λ1 < 1 and hence as
n → ∞ these terms will vanish. Thus if we consider a random initial vector b0 we have
that

Anb0
λn1
→ u1u

T
1 b0, n→∞. (4.10)

Now in practice we don’t have λ1 but if we replace λ1 with the norm of |Anb0| we can still
get a good approximation [42]. By repeated iteration we obtain the scheme from above.
This very simple algorithm is able to give us the leading eigenvalue and eigenvector starting
from any random initial vector. A rigorous derivation is contained in any good numerical
linear algebra book, e.g. Trefethen and Bau [57].

One drawback of this method is that we are throwing away a lot of information at each
iteration. It does not seem unreasonable that maybe these previous approximations can
tell us something. Utilising this extra information is the key of Krylov methods. First, we
define a Krylov sequence to be

{u,Au,A2u, . . . , An−1u}. (4.11)

This definition is just taking the first n iterations of the power method and defining a
sequence of them. Likewise we can also define the Krylov matrix as

Kn(A, u) = (u|Au|A2u| . . . |An−1u), (4.12)
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where we are defining a new matrix whose ith column is the i iteration. This Krylov matrix
allows us to compute the sub-dominant modes.

Consider the following matrix, L = K−1AK, which is the similarity transformation of
A by K. Recall that the eigenvalues of similar matrices are the same [42]. This is the key
idea of the Krylov methods, if we apply a similarity transform to our original matrix A
by K we can instead compute the eigenvalues of L. However we still are stuck with the
inverse matrix K−1. To compute this inverse, we orthogonalise K (by the Gram-Schmidt
method ) and thus K−1 = Kt.

So far everything has been exact since the size of K must be the same size as A. Now we
make the approximation that we can replace K with Kn. Now taking the first n iterations,
and n being small in some sense, let us define a new matrix P as above

P = Kt
nAKn. (4.13)

Now P is no longer the same size as A. Clearly the similarity properties no longer hold but
if the eigenvalues of P are computed, they, rather amazingly, turn out to be a very good
approximation to A. This leads to a very simple idea for finding dominant eigenvalues for
A: simply choose a small n and then find the eigenvalues of P which is only n × n and
there exist many good algorithms for finding the eigenvalues of small n.

This amazing fact has been fairly well understood for symmetric A and leads to the
Lanczos algorithm [42]. The non-symmetric case leads to the Arnoldi iteration [42]. Similar
ideas of using Krylov sequences and matrices form the theoretical basis for conjugate
gradient and GMRES algorithms for solving linear systems [69].

4.5.2 Results

Fig. 4.16 shows the results from applying the Krylov method for finding sub dominant
eigenvalues for the linear stability of a Lamb-Chaplygin dipole in a stratified fluid for
Re = 10,000, Fh = 0.1 with resolution N = 256. The reason N = 256 was chosen was
for memory issues in MATLAB. Some tests of various sizes of N showed some robustness
although a thorough convergence investigation was not completed and the results were
only compared to those of the previous sections. To find the Krylov sequence, the output
from the simulation of the previous section was saved at n times. This sequence of outputs
was then orthogonalised using a Gram-Schmidt procedure and used to form the Krylov
matrix K. To evaluate AK the linear code was simulated as normal and reformatted into
a giant vector. Then P was constructed and the eigenvalues of the resulting matrix were
found using MATLAB’s eigs routine.

71



Figure 4.16: Growth rates computed with Krylov methods for two different choices of
n = 50 (left), 100 (right) for Re = 10,000, N = 256, Fh = 0.1. Star denotes the dominant
eigenvalues from the energy method, circle is the leading approximation from the Krylov
method, triangle and x are the second and third eigenvalues respectively.

The results of Fig. 4.16 are somewhat promising. As can be seen, doubling n does
improve convergence, although there are still numerical anomalies, such as the random
jump in growth rate at kz = 60, 65 for n = 100. As mentioned above, the theory of Krylov
methods for non-symmetric matrices is still not well developed and few rigorous results on
errors have been derived. The leading eigenvalue is reproduced accurately up to just about
the short-wave peak before the Krylov results decay faster. The most promising result is
at the local minimum between the two peaks. Here there is a very smooth curve of the
growth rates of the second and third eigenmodes whose values are close to the values of the
leading eigenmode. This result suggests that different eigenmodes might be responsible
for the zigzag and short-wave peaks. Returning to the structure, Fig. 4.14 supports this
viewpoint as the zigzag and short-wave peak velocity fields are different and the oscillatory
region in between suggests a combination of the two which might be the two different
modes interchanging dominance.

4.6 Dimensional analysis

Motivated by the scale analysis of those presented in the Chapter 2 review [12, 15, 37, 53],
we present a modified scale analysis for small vertical scales as considered in the above
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numerical simulations. We consider the Boussinesq equations

∂u′h
∂t′

+ u′h · ∇′hu′h + u′z
∂u′h
∂z′

= − 1

ρ0
∇′hp′ + ν∇′2uh, (4.14)

∂u′z
∂t′

+ u′h · ∇′hu′z + u′z
∂u′z
∂z′

= − 1

ρ0

∂p′

∂z′
− ρ′g

ρ0
+ ν∇′2uz, (4.15)

∇′h · u′h +
∂u′z
∂z′

= 0, (4.16)

∂ρ′

∂t′
+ u′h · ∇′hρ′ + u′z

∂ρ′

∂z′
+
∂ρ

∂z′
u′z = D∇2ρ′, (4.17)

where the primed notation denotes the dimensional variables in this section only.

Following [12] let U,W be the characteristic velocities in the horizontal and vertical
directions, Lh, Lv be the corresponding characteristic length scales, P be the pressure, and
R be density perturbation scales, not to be confused with the dipole radius R from above.
We assume, differing from the analysis of [12, 37], that in addition to U,Lh being imposed
on the system, we also impose a separate vertical scale Lv. This scaling is motivated by the
above numerical simulations where we impose a vertical length scale through the vertical
wavenumber kz. The aspect ratio δ = Lv/Lh is assumed to be small, i.e. δ < 1. We
define the horizontal Froude number to be Fh = U/NLh, which is also assumed to be
small. Following the above numerical simulations, let δ < Fh, which we can also write as
Lv < U/N , i.e. vertical scales are assumed to be smaller than the buoyancy scale. We now
define the advective time scale T = Lh/U . To determine the characteristic scale of W , we
are left with two choices: imposing the scaling from the continuity equation or from the
density equation. Previous work [12] chose the latter and obtained a characteristic velocity

W .
RFhg

ρ0N
. (4.18)

By contrast, we use the continuity equation (4.16), which implies

W . δU. (4.19)

This scaling for w is consistent with the assumption that δ < Fh. Using (4.19), the vertical
momentum equation (4.15) gives a density scaling of R ∼ ρ0U

2/(gLv). Substituting this
result into (4.18), we obtain W ∼ UF 2

h/δ. Because δ < Fh we have Uδ < UF 2
h/δ so our

assumptions are consistent. Setting W ∼ Uδ the horizontal momentum equation (4.14)
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gives P ∼ ρ0U
2. Combining this all, we obtain the following scaling for the Boussinesq

equations with Lv < U/N :

u′h = Uuh, u′z = Uδuz, ρ′ =
U2ρ0
gLv

ρ, p′ = ρ0U
2p,

x = Lhx, z′ = Lvz, t′ =
Lh
U
t, Re =

ULh
ν

, Sc =
ν

D
, (4.20)

which leads to

∂uh
∂t

+ uh · ∇huh + uz
∂uh
∂z

= −∇hp+
1

Re
∇2
huh +

1

δ2Re

∂2uh
∂z2

, (4.21)

δ2
(
∂uz
∂t

+ uh · ∇huz + uz
∂uz
∂z

)
= −∂p

∂z
− ρ′ + δ2

Re
∇2
huz +

1

Re

∂2uz
∂z2

, (4.22)

∇h · uh +
∂uz
∂z

= 0, (4.23)

∂ρ′

∂t
+ uh · ∇hρ

′ + uz
∂ρ′

∂z
− δ2

F 2
h

uz =
1

ReSc
∇2
hρ+

1

δ2ReSc

∂2ρ

∂z2
, (4.24)

which holds when δ < Fh � 1. This suggests that for very small vertical scales with
δ � Fh the effects of stratification should be negligible. At such small vertical scales,
density variation due to stratification would be negligible and thus we would not expect
stratification to play an important role in the overall evolution. Additionally, the presence
of the factors of δ in the denominator of the vertical viscous terms suggests that the effects
of viscosity become more dominant at very small vertical scales.

As a result of this scaling analysis we expect that the nature of the instability at
short vertical scales to become independent of Fh for large kz. To test this hypothesis
Fig. 4.17 shows growth rate as a function of kz for four sets of simulation with Re = 10,000:
Fh = 0.2, 0.1, 0.05 and a new unstratified case with Fh =∞ (note that, unlike in Fig. 4.4,
we are not scaling kz by Fh). The growth rate curves appear to be converging for large kz
where δ � Fh, which agrees with the conclusion of the above scaling analysis. These large
kz are well into the viscous damping range and as discussed above, the effects of viscosity
become stronger and we observe a sharper decrease in the growth rate. The curves stop
at different kz due to the range of kz initially explored. Since these scales are well into
the damping range, we did not probe too far as viscosity was smoothing out any potential
instabilities.

For the short-wave instability examined above, δ/Fh = 1/(kzFh) ranges from ≈ 0.5
down to 0.1, which is < 1 but not � 1. As a result, we do not necessarily expect the
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Figure 4.17: Growth rate σ as a function kz at Re = 10,000 with Fh =∞ (green), Fh = 0.2
(blue), Fh = 0.1 (black), Fh = 0.05 (red).

characteristics of this instability to be independent of Fh for the parameters considered
here. Indeed, our stability analysis shows that the (unscaled) wavenumber kz of the short-

wave peak is weakly dependent on Fh, through the F
1/5
h factor in (4.3). However, by

examining even larger kzFh (i.e. even smaller δ/Fh), this scale analysis suggests that the
nature of the short-wave instability will eventually become independent of Fh.
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Chapter 5

Nonlinear equation simulations

5.1 Introduction

In the previous chapter, we investigated the linear stability of the Lamb-Chaplygin dipole
and we showed that the short-wave instability can have growth rates that are comparable
to those of the zigzag instability. An important question is if both of these instabilities
exist, which will dominate in the transition to turbulence? In the atmosphere and ocean,
a wide range of length scales are excited, so it is expected that both the zigzag instability
and the short-wave instability will be excited in nature. Understanding the evolution of
these two instabilities and what role they play in the transition to turbulence is important
to correctly understand the mechanisms at play in the transition to stratified turbulence.
Unfortunately, as alluded to in Chapter 2, linear stability analysis can only take us so far.

In this chapter we evolve the full nonlinear Boussinesq equations to determine how the
short-wave instability evolves and what role it plays in the transition to turbulence. The
importance of the zigzag instability in the breakdown and transition to turbulence has
been well studied [2, 3, 20, 66] but apart from a brief mention in [66], the role of the short-
wave instability has not been considered. In this chapter we investigate the role of the
short-wave instability in the transition to turbulence. Through nonlinear simulations, we
will demonstrate that the saturation level of the short-wave instability is relatively small
and depends upon the aspect ratio δ = Lv/Lh. Thus, for many geophysical flows, where
δ � 1, the short-wave instability may not affect the overall breakdown and transition to
turbulence.
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5.2 Set-up

To investigate the nonlinear evolution, we use a code developed by Waite [64], which is
a parallel version of the code originally developed by Bartello [5]. The code implements
the spectral method technique discussed in Chapter 3 to solve the nonlinear Boussinesq
equations. Unlike in linear stability analysis, nonlinear analysis of the Boussinesq equations
is much more complicated as particular attention must be taken to ensure proper resolution
of the small scales. The breakdown of the zigzag instability exhibits small scale turbulence
[3] which suggests that we might observe a similar result for the short-wave instability.
Thus we need to choose grid sizes that resolve the smallest scales of such turbulence,
known as the Kolmogorov scale.

The Kolmogorov scale is given by [33]

η =

(
ν3

ε

)1/4

, (5.1)

where ε is the kinetic energy dissipation rate, which is commonly approximated as [38]

ε ∼ U3

R
, (5.2)

where U,R are the characteristic velocity and length respectively. Rewriting the Kol-
mogorov scale η in terms of the Reynolds number by multiplying by the characteristic
length R we obtain

η

R
=

1

Re3/4
. (5.3)

We want to choose the number of grid points to be such that the horizontal and vertical
grid spacings satisfy ∆x ≈ ∆z ≈ η/R, where the factor of R takes into account the ∆x,∆z
are the grid spacings of the dimensionless equations Eqs. (2.39-2.41).

To focus specifically on the short-wave instability, we choose the vertical scale to be
that of the short-wave instability. To illustrate, consider Re = 2000, Fh = 0.2 where the
short-wave instability peaks at kz = 20. Here we set the vertical domain size to be one
vertical wavelength of the short-wave instability, i.e.

Lv =
2π

kz
=

2π

20
. (5.4)
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Re Fh ∆t kz
2000 0.2 10−4 10-50
5000 0.2 10−4 20-45 20-45

Table 5.1: Overview of the numerical parameters.

From our linear results, we again take L = 9. Due to the set-up of the code, the number
of grid points in every direction has to be a power of small primes; we choose powers of
2. Thus let us a priori consider the number of horizontal grid points to be nx = 1024. We
have that the horizontal resolution is

∆x =
L

nx
=

9

1024
≈ 0.00878,

η

R
∼ 1

Re3/4
= 0.003343, (5.5)

and we approximately have that ∆x ∼ η/R. In nonlinear simulations of the zigzag in-
stability, Augier et al. [2] used nx = 512 with Re = 2500 and L = 10; our resolution is
slightly higher. If we choose nz = 32 grid points in the vertical, we find that ∆z ≈ 0.00982
which is very similar to ∆x. For our timestep we choose ∆t = 5.0 × 10−4. Each run was
initialised with a random density perturbation that was random in x and y and sinusoidal
in z, with amplitude 0.01. The parameters are summarised in Table 5.1.

5.3 Saturation level of short-wave instability

As mentioned in the introduction, previous investigations into the transition to turbulence
have focused only on the zigzag instability. In all these simulations, it is clear that the
dominant instability is the zigzag instability. For example, in Waite and Smolarkiewicz
[66], the growth rates of the zigzag instability agree with the linear theory. It is possible
that these simulations were not resolving the small scales, although this does not seem
likely based on the parameters given. This is because the length scale of the short-wave
instability is about an order of magnitude or so smaller than that of the zigzag instability.
Since these simulations were intended to study the transition to turbulence, they would
be resolving, or close to resolving, the Kolmogorov scale, which is much smaller than the
short-wave instability. Hence it is unlikely a resolution issue. Instead, it could be the
case that the short-wave instability is present but saturates out and does not contribute
significantly to the transition to turbulence. We explore this option here.

Consider the following scaling argument and results due to Ngan et al. [46]. They
were interested in three-dimensionalisation of a two-dimensional flow in small aspect ratio
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domains, which they referred to as quasi-two-dimensional turbulence. They considered this
as they were interested in geophysical flows which exhibit small aspect ratios, δ = 0.01−0.1
[46]. As we have seen, stratified turbulence tends to have a small aspect ratio and, as
discussed in Chapter 2, exhibits characteristics of geophysical flow. However, it is important
to note that Ngan et al. [46] did not consider stratification and they were only focusing on
the unstratified case of turbulence with small aspect ratios.

To investigate this three-dimensionalisation, in their numerical experiments they took
fully developed 2D turbulence and subjected it to a 3D perturbation. They then measured
the saturation level of this 3D perturbation. The saturation level is defined to be

saturation =
u

U

∣∣∣∣
tsat

, (5.6)

where the ratio between the 3D rms velocity u and the 2D rms velocity U are evaluated
at the saturation time. The saturation time is the time at which the time series of the
3D rms velocity levels off or saturates. They found, numerically, that this saturation level
depended linearly on the aspect ratio δ, up to a certain aspect ratio, δ = 0.5. Beyond
δ = 0.5 the numerical simulations could no longer be considered quasi-two dimensional.

To explain this result, Ngan et al. considered a simple scaling argument [45, 46]. Initially
the time scales of the 2D base flow is long compared to that of the 3D perturbation flow.
However once the 3D perturbation settles down and saturates, its timescale becomes similar
to that of the 2D flow. Consider the following timescales for these flows [46] as

T2D =
U

L
, T3D =

u

H
, (5.7)

where U is the characteristic velocity of the 2D flow at saturation and u is the characteristic
velocity of the 3D flow at saturation. At saturation T2D ∼ T3D and thus we have that

U

L
∼ u

H
⇒ u

U
∼ H

L
= δ, (5.8)

which is the result they confirmed numerically.

Motivated by this result, we consider the saturation levels of the short-wave instability
for Re = 2000, 5000 and Fh = 0.2. These two cases were chosen as they both had short-
wave instability growth rates similar to that of the zigzag peak. Higher Re could not be
explored due to resolution issues, as alluded to in the previous section.

There are different strategies available for determining the perturbation energy in these
simulations. One approach is to compute the 2D and 3D rms velocities using the vertical
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wavenumber kz
1 kinetic energy spectrum. The two-dimensional kinetic energy is in kz = 0;

the three-dimensional kinetic energy is the contribution from all non-zero kz.

However, a simpler approach is to use the potential and kinetic energy, since the po-
tential energy is entirely due to the perturbation, while (at early times at least) the kinetic
energy is mainly due to the dipole.

Both methods were used to compute the saturation level and it was found that the
results using the kinetic and potential energy collapsed better than those of the 2D and 3D
kinetic energy. Fig. 5.1 demonstrates the evolution of these quantities for Re = 5000, Fh =
0.2, kz = 40. As can be observed, the total kinetic and 2D kinetic energies are nearly
indistinguishable. The 3D kinetic and potential energies have similar amplitude and trend,
but the saturation level seems clearer and better defined in the potential energy. For this
reason, we choose to use the potential energy to identify the saturation level. Despite
the differences, both curves have the same saturation time, roughly t = 20. For the
parameters investigated, the saturation time was approximately t = 20. Nevertheless, it
is still interesting to consider the evolution of the contributions to the kinetic energy from
different vertical wavenumbers. Fig. 5.2 demonstrates this for the parameters given above.
Here we can explicitly see which wavenumbers are contributing to the total 3D kinetic
energy. For almost the entire simulation, the primary vertical mode (kz = 20) domainted.
However at around the saturation time t = 20, kz = 2× 20 appears to make a small, but
noticeable contribution to the total 3D kinetic energy. This lasts for about 5 time units
before diffusion begins to rapidly diffuse out the smaller scales, which is especially evident
in the highest wavenumbers.

To determine the saturation level as a function of δ, we performed a number of simula-
tions of the short-wave instability perturbed at a range of kz values around the short-wave
peak for Re = 2000, 5000, Fh = 0.2. Fig. 5.3 is the case of Re = 2000. As found by Ngan
et al. [46], the saturation level increases for increasing delta. Using a least-squares fit we
find that the best fit curve is δ3.02 and have plotted a reference curve of slope 3. Fig. 5.4
is the case of Re = 5000. Again, the trend of saturation level with increasing aspect ratio
is observed here. Using a least-squares fit we find that the best fit curve is δ3.16 and a
reference curve of slope 3 is plotted. At this higher Reynolds number, it was observed that
although the saturation was clear, the actual time to choose to evaluate the saturation
ratio was not well defined. In Fig. 5.1 although the saturation level here is fairly flat, there
is still a bit of variation in the saturation level. In some cases this variation was more
pronounced so defining where to evaluate the saturation ratio was not well defined. For
consistency, the first maximum after t = 20 times unit was chosen.

1This is the vertical wavenumber of the nonlinear simulation, not that of the short-wave instability.
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Figure 5.1: Time series demonstrating the two ways of computing the energy for Re =
5000, Fh = 0.2, and kz = 40. The blue curves correspond to the kinetic energy separated
into 2D (solid) and 3D (dashed); the black curves are the total kinetic energy (solid) and
potential energy (dashed). All energies are domain averages.

81



0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
n
e
rg

y

Time

Figure 5.2: Time series for the contribution to the kinetic energy from different vertical
wavenumbers for Re = 5000, Fh = 0.2, and kz = 40. The top black curve corresponds to
kz = 0, i.e. the 2D kinetic energy. The remaining curves correspond to kz = 40n where
n = 1 (red), 2 (blue), 3 (black), etc. The black curve that is obscured by the red line is
the total 3D kinetic energy.
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Figure 5.3: Saturation levels for a range of aspect ratios δ for Re = 2000 and Fh = 0.2.
The curve is the linear best with slope of 3.
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Figure 5.4: Saturation levels for a range of aspect ratios δ for Re = 5000 and Fh = 0.2.
The curve is the linear best with slope of 3.
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From these two curves it suggests that the saturation level of the short-wave instability
is given by

E2D

E3D

∣∣∣∣
tsat

∼ δ3, (5.9)

which suggests that as the aspect ratio decreases, the saturation level decreases. From the
linear theory, the wavenumber of maximum short-wave instability was found to scale as
kz ∼ F

−1/5
h Re2/5 or k′z ∼ F

−1/5
h Re2/5/R in dimensional units. Then the aspect ratio scales

as δ = 2π(kzR) ∼ F
1/5
h Re−2/5 and hence the saturation level is

E2D

E3D

∣∣∣∣
tsat

∼ (2π)3F
3/5
h Re−6/5. (5.10)

Substituting in Re = 5000 and Fh = 0.2 yields a ratio on the order of 10−3 which agrees
with Fig. 5.1. For Fh � 1 and Re � 1 this ratio is � 1. Thus given that the short-wave
instability seems to saturate at a relatively low level, we should not expect the short-
wave instability to play a significant role in the evolution of the Lamb-Chaplygin dipole’s
transition to turbulence.

This scaling for the saturation level differs from that of Ngan et al. [46]. If we square
Eq. (5.6) we obtain

u2

U2
=
KE3D

KE2D

∼ δ2, (5.11)

which suggests that the saturation level will scale quadratically instead of cubically.

Fig. 5.5 is the vertical vorticity at three times, t = 15, 20, and 25. Just before saturation
(t = 20) the structure of the dipole does not exhibit any small-scale features. However
at t = 20, the saturation time, the dipole exhibits many small-scale features. By t = 25
they appear to have been diffused out and the structure of the dipole has returned to one
similar to before saturation, albeit with the two cores of the dipole more homogeneous
in vorticity. The structure suggests that the saturation time is important as the dipole
is undergoing some sort of transition, but as we saw, this transition is short lived as 5
time units later, small-scale behaviour has diffused out and there is no suggestion that
the system will transition to turbulence. Indeed, this result reaffirms that the gridspacing
is sufficient enough to resolve the nonlinear evolution. Note that there are small vortices
outside the main dipole because the initial condition is not perfectly periodic. If the
domain size was larger, these vortices would disappear. They do not contribute to the
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Figure 5.5: Evolution of the vertical vorticity for Re = 5000, Fh = 0.2, kz = 40 for t = 15
(top right), t = 20 (top left), t = 25 (bottom). Red corresponds to maximum vorticity and
blue corresponds to minimum vorticity. The domain size is 9× 9.
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overall simulation. Since this system does not suggest it will transition to turbulence,
resolving the Kolmolgorov scales is likely unnecessary.

We now examine the growth rate of the linear theory compared to that seen in the
nonlinear simulations. In comparing the linear theory with the nonlinear theory, there is
a problem with what defines the linear regime of the nonlinear simulation. If we examine
the growth of the potential energy between t = 5 and t = 20 in Fig. 5.1, it is very difficult
to justify approximating this growth rate as linear. For most of the cases of Re = 5000
and Fh = 0.2, we were unable to determine a consistent way to determine the growth rate
of the perturbation and thus we have not included the results for this simulation. For
Re = 2000 and Fh = 0.2, the growth rate of the potential energy was more linear and a
linear fit was done to determine the growth rate. Fig. 5.6 illustrates the results for the
linear and nonlinear theories for Re = 2000 and Fh = 0.2. Here the nonlinear growth rates
are greater than those of the linear theory; however the shape of the curve follows the
linear theory curve reasonably well. Again, the issue of the growth in the potential energy
not being perfectly linear could contribute to this discrepancy of 8%− 40%. It is unclear
why the nonlinear simulations do not exhibit exponential growth, even at early times when
the initial perturbation is small. It could be that sub-dominant modes with similar growth
rates are contributing to the time series in Fig. 5.1 and the discrepancy with the linear
theory, but more work is required to resolve this question.

We conclude with a brief discussion of the robustness of the results. To ensure our
results were not under-resolved, we ran another simulation with double the horizontal and
vertical resolution. In order to keep the computational cost manageable, we shrank the
horizontal domain to L = 5, but kept nx = 1024, however nz doubled to 64. The results are
plotted in Fig. 5.7. As can be observed, the domain-averaged kinetic and potential energy
in the system is higher with L = 5 because the domain is smaller and hence the dipole
takes up a greater percentage of available grid points. Calculating the saturation level,
here taken to be the maximum of the potential energy, yields a difference of 2% between
L = 5 and L = 9. In calculating the growth rate there is a difference of 8%. Thus if we
increase the resolution, we will obtain similar results.
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Figure 5.6: Growth rate for Re = 5000 and Fh = 0.2 with the linear results (red) and the
nonlinear results (blue). Note we have not scaled by Fh unlike the results in Chapter 3.
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Figure 5.7: Time series of the potential energy (bottom curves) and kinetic energy (top
curves) for L = 5 (blue) and L = 9 (black). Here Re = 2000, Fh = 0.2, kz = 20.
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Chapter 6

Conclusions

In this thesis, we have investigated the linear stability of the Lamb-Chaplygin dipole for
perturbations with small vertical scales. In particular, we have considered vertical scales
from around the buoyancy scale U/N , where the zigzag instability occurs [11, 12, 64, 65],
down to the dissipation scale. We have discovered a short-wave instability that emerges
at scales much smaller than the buoyancy scale. This instability can exhibit a growth rate
that is comparable to, and possibly even greater than, that of the zigzag instability. Despite
having a similar growth rate in some cases, the structure of the instability is qualitatively
different than the structure of the zigzag instability suggesting a different mechanism is
governing the evolution. We have discovered that the location of the peak depends upon
a combination of the Reynolds and Froude numbers, specifically the buoyancy Reynolds
number Reb which plays an important role in stratified fluids. The wavenumber of max-
imum growth rate for the short-wave instability is found to scale like Fhkz ∼ Re

2/5
b for

the range of Reb considered here. We expect this may change at even larger Reb. By
contrast, the maximum growth rate of the zigzag instability occurs for Fhkz ∼ 1 [10]. As a
result, these instabilities will be widely separated when Reb � 1, as in the case of strongly
stratified turbulence [15].

Despite the similar growth rates, we have discovered that these short-wave instabili-
ties saturates at a level proportional to the cubed of the aspect ratio. For geophysical
applications, δ is frequently � 1, which suggests that the short-wave instabilities do not
contribute significantly to the breakdown of the Lamb-Chaplygin dipole to turbulence.

Some unanswered questions still remain and provide inspiration for future work. Structure-
wise the short-wave instability is very different from that of the zigzag instability. As
suggested by the sub-dominant mode analysis, there is likely a transition of leading eigen-
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modes between the zigzag and short-wave peaks. Furthermore, the nature of this transition
is also interesting as it exhibits oscillations not observed in either the short-wave or zigzag
instabilities. Briefly discussed were the waves behind the dipole, which resmeble a ship
wave pattern with an angle that follows a simple scaling law. Investigations into waves
behind vortices, especially those behind stratified vortices, has remained unexplored. Such
flow might resemble flow over terrain which predicts a similar scaling law for the angle of
those waves [55]. It would be interesting to investigate the short-wave instability in other
systems, specifically adding in the effects of rotation. Such investigations of buoyancy
length effects have illustrated the zigzag instability, which demonstrates the universality
of the result in other flow configurations. It is likely that such short-wave instabilities may
be universal as well.

Throughout, we have assumed that the stratification is constant. While this is possible
in a lab setting, it is not a very physical assumption for real geophysical systems where
the stratification is non-constant. While there are vertical leves in the atmosphere and
ocean over which N is approximately constant, both fluids are characterised by distinctive
stratification profiles – e.g. the pycnocline in the ocean, and boundary layer inversions
and the tropopause in the atmosphere (e.g. Gill [27]) – which may sigificantly alter the
structure of the instabilities discussed. Furthermore, it seems unlikely that the short-
wave instability generates turbulence which will make future computations significantly
easier as there is no need to resolve the Kolmogorov scales. This will allow for a greater
potential computational parameter search, specifically in a larger Reynolds number limit.
Furthermore, since we have determined a scaling law for the short-wave instability through
the buoyancy Reynolds number, it would be interesting to investigate how robust this
observation is in more physical systems.

In this thesis we focused specifically on the numerical aspects of vortex instabilities.
The impetus for this work was an experiment [9] and it would be interesting to investigate
the possibility of observing the short-wave in an experimental setting. However there are
technical details that would need to be addressed. To isolate the short-wave instability, a
tank that has a height that is roughly an order of magnitude smaller than that of [9] would
be required. However, given lab constraints, such experiments would encounter boundary
effects due to the smaller size of the tank whereas such effects were avoided in [9]. Such
technical details are left to future experimentalists.
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Appendix A

Matlab Code for Solving Advection
Equation

The following code is the MATLAB code for evaluating the advection-diffusion equation
with 2/3-rule deliasing

%construct the grid and basic parameters

N=128; dx=2*pi/N; x=dx*(1:N);t=0;dt=dx/10;tf=5;nsteps=ceil(tf/dt);

c=0.2+sin(x-1).^2;

%store the wavenumbers

kx=[0:N/2-1 0 -N/2+1:-1];

%define cut to cut out the highest Fourier modes

cut=ones(1,N); ksq=kx.*kx;

%cut out the Fourier co-efficients according to dealiasing

%because of wavenumber ordering cut out (most negative wave numbers start

%at N/2) e.g. (2/3)*(N/2) : (N/2+(1/3)(N/2) for 2/3s

cut(ceil(dealias_coeff*N/2):(N/2+ceil((1-dealias_coeff)*N/2))+1)=0;

%initial condition

u=exp(-100*(x-1).^2);uhat=fft(u);

%do initial timestep using Euler

Fold=-fft(c.*real(ifft(1i*cut.*kx.*uhat)));

uhat=(uhat+dt*Fold);

%do Adams Bashforth

for i=1:nsteps
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F=-fft(c.*real(ifft(1i*cut.*kx.*uhat)));

uhat=uhat+1.5*dt*F-0.5*dt*Fold;

Fold=F;

end

In the above code the line ifft(1i*cut.*kx*uhat) evalutes the spectral derivative of
the velocity field and adds in the dealiasing by cutting out the top 1/3 of the Fourier
coefficients. Note that MATLAB stores the wavenumbers kx=[0:N/2-1 0 -N/2+1:-1]

and thus to zero out the correct coefficients requires some clever index manipulation.
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