Topics in Quantum Foundations:
Ontological Models, and
Distinguishability as a Resource

by

Ryan Morris

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Applied Mathematics

Waterloo, Ontario, Canada, 2009

© Ryan Morris 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i



Abstract

This thesis covers research in two disjoint research areas:

The ontological model program (formerly hidden-variables program) for quan-
tum theory has a long and noble tradition in the quantum foundations literature.
By postulating a physical reality beyond the quantum state, we gain intuition on
quantum phenomena and also come to understand constraints on realist interpre-
tations of quantum theory. Bell’s theorem tells us that such an underlying reality
must be non-local, while the Kochen-Specker contextuality theorem abuses the
classical notion that measurement should simply reveal pre-existing properties of
reality. Recent research programs suggest that it is beneficial to view the quantum
state as representing purely information. We show that the only current model
which does this in a satisfactory manner is unable to reproduce all the statistics of
quantum measurements. A recent generalization of the notion of contextuality has
allowed for proofs of contextuality which differ from the original Kochen-Specker
notion. We add a new result which shows that measurements in a model where the
quantum state represents information must be contextual. Additionally, we refine
the generalized notion of contextuality into strong and weak forms in order to parse
the relationship between new and old results.

Entanglement resource theory is a highly successful investigation of the useful-
ness of entanglement for information processing tasks. In this thesis we apply the
ideas from entanglement resource theory to another resource: state distinguishabil-
ity. We show analogies between distinguishability resource theory and entanglement
resource theory. In particular, the analogy includes: measures which are monotonic
under a class of transformations; units of a resource; and bounds on measures in
terms of the amount of the unit resource needed to form states and the amount
of unit resource that can be extracted from states. We show that the pairs of
states which can be reversibly converted into classical states are exactly the pairs
of simultaneously diagonalizable states. Lastly, we characterize the trace-distance
distinguishability of formation on a qubit system.
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Chapter 1

Introduction to Quantum Theory

Quantum theory is a theory of physical systems, typically thought to apply to sys-
tems at the atomic or subatomic scales. More ambitiously, it is thought to be a
physical theory applicable a system of any scale, including the entire universe. In
its most abstract form, is a mathematical tool which describes probabilities of out-
comes for experiments. In this form, it is not a physical theory in the sense that it
does not apply to a specific physical scenario. Classical mechanics can also be pre-
sented in an abstract mathematical form [3]. When an abstract theory of classical
mechanics is applied to a particular physical system, the connection between ab-
stract outcomes and actual physical properties becomes apparent. Arguably, this
is due to the fact that classical theories allow us to predict the outcomes of all
experiments with certainty. In their famous paper refuting the ‘completeness’ of
quantum theory [19], Einstein, Podolsky and Rosen, define an element of reality as
any variable whose value can be predicted with certainty. Thus by the EPR cri-
terion, classical mechanics, when applied to a physical experiment, describes real
properties. Quantum theory, in contrast, does not allow for the outcomes of all
experiments to be predicted with certainty. Thus despite its unassailable applica-
bility to physical systems, the theory does not make a clear connection between its
abstract outcomes and real properties of the systems under study.

Research in Quantum Foundations occupies itself primarily with trying to un-
derstand the differences and similarities between quantum theory and classical me-
chanics. A well-established project in Quantum Foundations research is to inves-
tigate the consequences of postulating underlying physical properties, typically in
addition or in lieu of the state-vector 1, of a system described by quantum theory.
Historically, such a research program has been called a hidden-variables program.
In order to accommodate viewpoints wherein the quantum state-vector is funda-
mental and complete, as well as models such as Bohmian mechanics where the
‘hidden-variables’ are not really hidden, this research path has been re-dubbed as
the ontological model program. Famous results from this program include theorems
by Bell [0, 8] on the non-locality of quantum theory and a theorem by Kochen and
Specker [40] on the contextuality of quantum theory. Recent work by Spekkens [58]



and others [31] has generalized the notion of contextuality and rendered it a much
more understandable phenomenon.

A growing trend [4], 20, 22], 23, 58, B3] in Quantum Foundations research is to
investigate the consequences of viewing the quantum state as a state of incomplete
information. It has been found that this view point assuages much of the mystery
and paradox typically associated with quantum theory. However, a fully satisfac-
tory ontological model for quantum theory with such a character has yet to be fully
developed.

The first chapter of this thesis gives an introduction to quantum theory and
the fundamental concepts within that are necessary for the subsequent chapters.
Chapters 2 through 4 constitute, for the most part, a literature review of the onto-
logical model program. Chapter [2|introduces the ontological model framework and
some commonly considered features of ontological models. In particular we discuss
the results on non-locality and contextuality, the notion of outcome determinism,
and a simple but new distinction of convex vs. non-convex models. This chapter
presents several example ontological models, including the most fully developed
model, Bohmian mechanics. In Chapter |3| the characterization of i-epistemic [33]
models is presented and we investigate the problem of finding models in which the
quantum state represents incomplete information. We present a recent model by
Rudolph, and a novel proof of why the only other known -epistemic model, the
Kochen-Specker model [40] is not sufficient. Chapter [4| describes the generalization
of contextuality put forth in [58]. Several proofs of the necessity of contextuality
for quantum theory are presented, as well as a new proof that 1-epistemic theories
must always possess measurement contextuality. This chapter concludes with a dis-
cussion on advantages that contextual theories have over non-contextual theories
for certain information and communication tasks, and whether or not the general-
ized notion of preparation contertuality should be viewed as non-classical resource
or phenomenon.

Chapter |5 deals with a disjoint research project, in collaboration with Matt
Leifer, which deals with quantum information theory. In the spirit of studying
entanglement as a resource theory, we develop a framework for viewing distin-
guishability as a resource. The main contribution of the research comes with the
characterization of the trace distance of formation on a qubit system. We also
present a characterization of states reversibly convertible to classical states.

1.1 The Postulates of Quantum Theory

This thesis concerns itself entirely with a branch of quantum theory which applies
only to experiments for which there are a finite number of outcomes. We call this
finite dimensional quantum theory. In the following presentation of the postulates
of quantum theory, we follow the exposition in Nielsen and Chuang [49]E]. Their
presentation focuses on quantum theory as a computational model and thus gives



an operational formulation of the postulates, which is well-suited to the topics of
this thesis. We begin, as they do, with the postulates for state vectors, and then
generalize to the case of density matrices.

The first postulate dictates the mathematical objects that are associated with
the possible states of the quantum system.

Postulate 1. Associated to any isolated physical system is a complez, finite dimen-
sional vector space with an inner product (that is, a Hilbert space) known as the
state space of the system. The system is completely described by its state vector,
which is a unit vector in the system’s state space.

A general complex Hilbert space will be referred to as H, whereas a Hilbert
space of a specific finite dimension d will be referred to as C?. The canonical
notation for a unit-norm vector in a Hilbert space is the Dirac ‘ket’: |z ). The
Dirac ‘bra’ notation: (x|, is used to denote a linear functional on H, which acts
via the standard inner product between complex vectors: (z|y), to produce a
complex number. As a Hilbert space is self-dual, the elements of H are in one-
to-one correspondence with the linear functionals on H, and we write the linear
functional (the ‘bra’) which identifies with |z ) as (x| i.e. the functional (x| is the
unique unit-norm functional such that (2| ) = 1. The transformation between the
unit-vector |z ) (a column vector) and its corresponding functional (a row vector)
is the complex-transpose, which is denoted as |z ) = (z].

The second postulate concerns the dynamics of a quantum system.

Postulate 2. The evolution of a closed quantum system s described by a unitary
transformation. That is, the state p of the system at time t; is related to the state
P of the system at time ty by a unitary operator U which depends only on the times
tl and tg,

W) =Ulv). (1.1)

The word ‘closed’ in the above statement indicates that the system is completely
isolated, hence it is not interacting with any other system. The evolution of an
isolated quantum system is always expressible as a unitary operator acting on the
state vector. If the quantum system is interacting strongly with another, then the
representation of the dynamics on the original system can no longer necessarily be
described as a unitary transformation. We will touch more on this after the 4
postulate is presented.

In classical mechanics a space of real properties is posited, known as a con-
figuration space. Classical mechanics also dictates a set of possible evolutions of
particles through configuration space. It is tacitly assumed that at any point an ex-
perimenter or observer could observe the exact configuration or physical properties
of the system without affecting the evolution. This observation could be called a
measurement. In quantum theory, an explicit statement about how measurements

!The mathematical statements in this section are taken from [49], [36] or [14].



can occur is given. Furthermore, this third postulate also indicates that the process
of measurement will change the quantum state.

Postulate 3. Quantum measurements are described by a collection {M,,} of mea-
surement operators. These are operators acting on the state space of the system
being measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is | ) immediately before the
measurement then the probability that result m occurs is given by

p(m) = (9| MMy [9), (1.2)
and the state of the system after the measurement is

M |0)

: (1.3)
VO MM, )
The measurement operators satisfy the completeness equation,
> MM, =1, (1.4)

where I 1s identity matriz on H. The completeness equation expressed the fact that
probabilities sum to one:

1= p0m) = 3 (0 MiM ). (1.5)

m

This postulate is stated with maximal generality, and we need to discuss par-
ticular special cases of measurements. There exists a set of ‘most-precise’ mea-
surements from which any general measurement as described in Postulate [3| can be
constructed. This set of measurements are the rank-1 Projector-Valued Measures
(PVMs). In a PVM (not necessarily rank-1), the collection B = {M,,} = {P,,}" _,
is comprised of projectors which sum to identity. If the projectors are all rank-1,
then it is a rank-1 PVM, and the set of projectors corresponds to an orthonormal
basis for H. In this case, we may refer to the measurement as a measurement in
the B basis. Projectors have two important properties: they are self-adjoint and
idempotent:

Pl =P,  P:=P,. (1.6)

m

These properties can be seen quite easily when we write a rank-1 projector in Dirac
notation: P, = |m )} m],

(|mYm )" = ({(mDI(|m)' = [m}m],

(Im)Xm|)* =[m)(m|m) (m|=|m)m].

(1.7)

Given these properties and the fact that a set of d mutually orthogonal projectors
acting on C? form a resolution of the identity, a PVM will satisfy the completeness

4



equation ([1.24). These properties also simplify equations ([1.22)) and ([1.23)). The
probability of outcome m becomes:

p(m) = (¢ | PLPy|v) = (¢ |PL|v)

(] P ) = (| m)m] [ %) = | (] m) 2 (18)
The update rule simplifies to:
Pulv) _lm¥mllv) | 19)

V| P [) (m| )

Regardless of the quantum state | ), unless (m| ) = 0, the state will update
to the pure state corresponding to outcome m. The set of PVM measurements is
a strictly smaller set than the set of measurements described in Postulate [3] The
relationship between the two formalisms will be discussed in the next section.

Some statements of the measurement postulate will associate a measurement
process with any self-adjoint operator A. A, being self-adjoint, will have a spectral
decomposition

A= N150i] (1.10)

with respect to a unique set of eigenvalues {\;} and a complete set of orthonormal
eigenvectors {|j ) j|}. Thus a self-adjoint operator A dictates a PVM with a bit of
added structure. The eigenvectors form the PVM as presented above; however, the
eigenvalues are interpreted to be numerical values associated to each outcome. An
observable A is intended to correspond to a ‘property’ of a quantum state, and if
the outcome j of the associated PVM occurs, then the quantum state is considered
to ‘have value \; for observable A’. For example, suppose one were presented with
three closed numbered boxes (1 to 3), each containing a specified number of marbles,
and randomly choose to open one of the boxes. Then the analogy would be that
each box corresponds to an eigenvector, and the number of marbles in each box
would correspond to the associated eigenvalue. The experiment of simply choosing
a box to open, and ignoring the contents, is analogous to the PVM.

It is often the case that we are not concerned with how the quantum state is
updated after a measurement. If this is the case, then a more simplified formalism
than presented in Postulate [3| is employed. A Positive Operator Valued Measure
(POVM) is a collection of positive operators {F,,} satisfying a completeness con-

dition,
> E.=1 (1.11)

Being unconcerned with state update, we simply state that the probability of out-
come m given that the system has state | 1) is given by

p(m) = (Y| Em[1) . (1.12)



A matrix F is positive if and only if it can be decomposed as the product of a
matrix and its complex-conjugate, i.e., if and only if E is a Gram matrix of a set
of vectors. Thus any measurement as presented in Postulate [3| can be expressed
as a POVM since M M,, is positive. Conversely, any positive matrix F,, can be
decomposed into the product of two operators E,, = M/ M,,. Hence the POVM
formalism describes the same set of measurements as Postulate 3l We often refer
to the elements of a POVM as quantum effects.

The last postulate describes how two separate quantum systems can interact
with each other. When two separate systems are brought together and considered
as one whole system, this is called a composite system or a bipartite system.

Postulate 4. The state space of a composite system is the tensor product of the
state spaces of the component systems. Moreover, if we have systems 1 through n,
each independently prepared in the respective states |1;), then the joint state of
these n systems is |1 ) @ |12) @ ... |y ).

If |2),, € CM and |y), € CV, then |z),, ® |y)y € CMY. Such a state is
also typically abbreviated as |xpyy) or just |zy). The postulates 1 through 3
apply to an isolated composite system just as well as they do to an isolated non-
composite system. If {|m)}¥_, is an orthonormal basis for CM and {|n )}, is

an orthonormal basis for CV, then {|mn )} is an orthonormal basis for MY,

As indicated by Postulate [T} the full set of state vectors for the composite system
is given by the unit vectors on CMY, However, this set is larger than the set of
states that can be achieved through the independent preparation of a state on C
and a state on CV. Mathematically, the set of product states,

{lzy) [|z) e CY,]y) e CV},
is strictly smaller than the set of unit vectors on C*N~1. For example, the state
1
V2
in C*, where {|m)}. _, and {|n)}._, are orthonormal bases for separate two-
dimensional quantum systems, cannot be expressed as a product state. However,
this state can be realized by independently preparing two separate systems and then

performing appropriate transformations on the two systems together. A quantum
state comprised of two separate quantum states is called a bipartite state.

(100) +[11))

In the next section, we discuss how state vectors and rank-1 PVMs, together
with probability and interactions with other systems, are enough to derive a more
generalized formulation of states and measurements than given in the above postu-
lates. The generalized states are called density operators and the generalized mea-
surements were mentioned in Postulate 2] We also discuss a generalization of the
possible evolutions or operations that can be performed on quantum states. Such
general operations are called called Trace-Preserving Completely Positive maps.



1.2 Generalized States, Measurements and Op-
erations

Suppose we wish to describe a quantum system whose state is only known prob-
abilistically, or suppose that we wish to describe a system A as it interacts with
another system (often called an ancilla system) which we do not explicitly describe.
The postulates presented in the previous section do not account for such situations.
However, this can be easily rectified by switching to the density operator formalism.

A density operator or matriz is a positive linear operator p with trace one,
acting on the state space of the systemP] The space of density matrices, which we
denote as K(H), is a convex set whose extreme points are the rank-1 projectors,
i.e. operators (matrices) of the form |z )} x|, whose action on vector |y ) is given
by |zXx||y) = (x|y)|x). The rank-1 projectors are called pure states. The set
of density matrices is the convex hull of the pure states, so any density matrix can
be decomposed as:

p= il Na;| where p; >0, p;=1 (1.13)

j=1 j=1

for some set of pure states {|x; (x;[}/_;. As the density matrices are positive,
they are necessarily self-adjoint, and thus have a spectral decomposition. Hence
every density matrix has a convex decomposition in terms of an orthonormal basis

{li)}L, for €.

d d
p=> piliXjl where p; >0, pi=1, (i|j) =0y (1.14)
j=1

=1

As a rank-1 projector is an outer product of a unit vector in H, there is a simple
relationship between the set of state vectors on H and the set of pure states.
Specifically, if two unit vectors are related to each other by a global phase, i.e.
|z) = exp(ig) |y ), then |z ¥ x| = |y ) y| since the global phase cancels with itself.
Thus there is a bijection between the pure states and the projective Hilbert space
PH, which is the space of unit vectors under the equivalence class of global phase
multiplication. For a particular finite dimension Hilbert space C¢, the projective
Hilbert space is denoted as CP4~1. Thus a pure state may be written as a projector
on H (Jx X z|), or as a unit vector in H (| x)).

For a given density matrix p, there are generally two mechanisms by which a
system could be prepared to correspond to p. The first is probability based. A
density matrix always has a decomposition as a convex combination of pure states
(1.13)). Experimentally, this state can come about purely through the ignorance of
the experimenter. The experimenter could sample the value j from the probability
distribution p; and subsequently prepare the state |z; )(z; |. Every non-pure state

2 Positive will be taken to mean the more precise term positive-semidefinite.



has, in fact, an infinite number of such decompositions [49], and so there are an
infinite number of ways to prepare any non-pure state.

However, p can also arise as the state describing a system which is part of
a larger composite system. Suppose two systems, represented by Hilbert spaces
H, = C% and Hp = C% are interacting. Postulate {4 tells us that the state space
for the composite system is given by the tensor product: Hap = C42? = C4 @ C%.
Denote the state of the composite system as pag. Consider the set of measurements
on the system H4p which are completely ignorant of the subsystem B. These
measurements are of the form {E,, ® Iz} where Ip is the identity matrix on Hp
and {F,,} is a POVM on H,4. There is a unique density matrix p4 that reproduces
the statistics of psp for all such measurements. This is called the reduced density
matriz on A, and it can be calculated via the partial-trace operation on p4p,

do

pa =trp(pag) = Z(]A ® (Jp)pas(Ia®|jB)), (1.15)

j=1

where {| jp )} is any orthonormal basis for Hp. The density matrix p4 arising as a
subsystem cannot be viewed as a probabilistic combination of pure states on H 4,
as it is in fact an element of a known state psp on Hp.

Despite the fact that these two processes can give rise to the exact same set
of density matrices, there have been historical and philosophical reasons for distin-
guishing between the two types. A non-pure density matrix prepared via ignorance
is referred to as a proper mizture, while a non-pure density matrix representing a
subsystem of a larger system is referred to as an improper mizture. The proper
mixture captures the states of a system that can be produced if the experimenter
has access only to that isolated system, and a source of randomness or ignorance.

Having explained the density matrix, we can now restate Posulate 1.

Postulate 1. Associated to any isolated physical system is a complex, finite-dimensional
vector space with an inner product (that is, a Hilbert space) known as the state space
of the system. The system is completely described by its density operator, which is
a positive linear operator p with trace one, acting on the state space of the system.

The remaining Postulates easily adapt to this new description of the system
state.

First, consider evolution. If a state vector evolves as |1 ) — U |1), then it is
clear that a density matrix will evolve as:

p=2pi|wi><¢i| esz-Uwixwiw*:UpU*. (1.16)

Thus a restated Postulate 2 is:

Postulate 2. The evolution of a closed quantum system s described by a unitary
transformation. That is, the state p of the system at time t; is related to the state

8



P’ of the system at time ty by a unitary operator U which depends only on the times
t1 and ts,
o =Up. (1.17)

Consider measurements. If the quantum state is |1 ), then the probability of
a measurement outcome M, is given by (| M} M, [¢) = tr(| X | M M,,).
Thus if the density operator is p = Y. p; | ¥; (¥ |, then the probability of outcome
M, is given by

In the POVM formalism, this is simply tr(pE,,). If the quantum state was | )

then it updates to

\/<77Z)1|MTTan|¢z>

Thus if the system is in state |1;) with probability p; (i.e. in the state p =
> pi| i i |) then the density operator updates to

= 3 i |0 07| (1.19)

i) =

where p;,,, is the probability that the state was | ;) given that outcome m occured.
By Bayes theorem,

_ Pmpipi _ pitr(| i X4 | Mgsz).

ilm = 1.20
o tr(pMh M) (1.20)
Thus the updated density matrix is
My |95 i | M}, Myp M},
Pm = E i [ ko] = (1.21)

tr(pM,M,,) B tr(pMhM,,)

Thus the restated third postulate reads:

Postulate 3. Quantum measurements are described by a collection {M,,} of mea-
surement operators. These are operators acting on the state space of the system
being measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is p immediately before the
measurement then the probability that result m occurs is given by

p(m) = tr(M], Myp), (1.22)
and the state of the system after the measurement is

M, pM],

tr(Mj, Myp) (129
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The measurement operators satisfy the completeness equation,

> MM, =1, (1.24)

m

where I s identity matrix on H.

Lastly, the fourth postulate generalizes easily as:

Postulate 4. The state space of a composite system is the tensor product of the
state spaces of the component systems. Moreover, if we have systems 1 through n,
each independently prepared in the respective states p;, then the joint state of these
n systems s p1 Q P2 @ ... Py.

We now consider how measurements other than rank-1 PVMs arise from igno-
rance/relabeling or from coupling with an ancilla system. We start by considering
measurements arising from ignorance.

It is not hard to see that any PVM (elements not necessarily rank-1) can be
implemented with rank-1 PVM. A set of projectors which sums to identity is at
most a coarse graining of a set of rank-1 projectors which sum to identity. Thus we
can imagine that a general PVM can be realized by performing a rank-1 PVM and
then relabeling the outputs. Mathematically, let B = {Pj}j:l be a rank-1 PVM on
C2. If outcome j gets relabeled as outcome m(j), then we represent this with the
vector ™) which has a 1 in the m(5)" position and is zero elsewhere. Then the
PVM arising from performing B, and then relabeling, has effects given by:

Pp=> endp;.
J
However, we could also probabilistically mix PVMs of this sort. That is, prior
to performing an actual measurement, an experimenter could sample a value k
randomly, and then perform a PVM associated with k. For example, denoting

the k" PVM as B, = {Pf}, and (p1,...,pk) as a K-dimensional probability
distribution, the probabilistic mixture of PVMs By has effects given by

E, = Z pkez(j’k) P]k7
k.j

where m/(j, k) is the label assigned to the j* outcome of the k* PVM. In analogy
with the nomenclature for density matrices, we make the following definition.

Definition 1.1 (Proper d-level POVM). A POVM (which is not a PVM) acting
on C? which can be realized through a combination of randomness and relabeling
will be called a proper d-level POVM.

Another method of performing POVMs, similarly to an improper mixture, re-
quires an ancilla system. The most general measurement that can be performed on

10



a system in H 4 is to couple to an ancilla (Hp), perform a unitary transformation
on the total system, and then perform a PVM on the B system i.e. a PVM of the
form {I4 ® |jg )X jp |} for some orthonormal basis {|jg )} jp|} on Hp. It can be
shown that any POVM on H 4 can be performed in this fashion [49].

Definition 1.2 (Improper d-level POVM). A POVM on C? performed by coupling
and measuring on an ancilla system is called an improper d-level POVM.

Unlike the situation for density matrices, the set of improper d-POVMs is a strict
superset of the proper POVMs. There are POVMs which cannot be implemented
as proper d-level POVMs. This will be shown explicitly in a later section (see

Section (3.3.1)).

Postulate [2] states that the evolution of a closed quantum system is described
by a unitary operator. As was the case with pure states and PVMs, unitary oper-
ators are not the most general allowed operations on a quantum state. In fact, a
quantum measurement, together with the update rule , could be considered
as an operation as it induces a change in the quantum state. Also, similarly to how
an improper POVM arises from coupling to an ancilla system and measuring, we
can evolve a quantum state by coupling to an ancilla, evolving the entire system
by a unitary, and then discarding a portion of the whole system. In such a scenario
we say that the original system evolves through interaction with an environment,
or undergoes open evolution. If we choose to discard a portion of the system that
is more or less than the original ancilla, then we can describe operations that take
quantum states between Hilbert spaces of different dimension.

A general quantum operation, £ : K(C*) — K(CV), which encompasses uni-
tary evolution, measurements, and environment interactions has the following prop-
erties:

e Linearity;
e Trace preservation - tr[€(p)] = 1;

e Complete Positivity - The requirement of positivity for £ is that for any
p € K(CM), &(p) is positive. The requirement of complete positivity is that
for any ancilla system C¥ and any state p on the coupled Hilbert space
CN @ CM, (T ® E)(p) is positive, where 7 is the identity operator on CV [}

These general operations are typically referred to as Trace-Preserving Completely

Positive (TPCP) maps.

An important characterization of the TPCP maps comes from the Kraus rep-
resentation. Specifically, any TPCP completely positive map £ from K(CM) to

3The tensor product operator (£ ® &) is the unique linear operator on CY ® CM that acts
as follows on a product state: (&1 ® &)(p1 ® p2) = E1(p1) @ E2(p2)

11



K(CY) can be represented by a set {E;};_, of M-by-N matrices such that

> ElE =1y, (1.25)
=1
and .
E(p) = EpE]. (1.26)
i=1

We refer to any set of matrices {E;}"_, satisfying (1.25]) as set of Kraus operators.
Conversely, any set of Kraus operators specifies a valid TPCP map.

1.3 The Bloch Sphere Model of the Qubit

The geometry of the quantum states on a 2-dimensional Hilbert space lends itself to
a particularly nice geometrical picture, known as the Bloch Sphere. A 2-dimensional
quantum system is referred to as a qubit in analogy to a bit as being the fundamental
element of classical computation. Similarly, the qubit is the fundamental element
of quantum computation. Recall that a pure quantum state is a one-dimensional
projector, so it has the form |z )z |, with |z ) € C? and (x| ) = 1. Suppose now
that we take the vectors |0) and | 1) to be the standard basis vectors for C2. Then,
any unit vector can be written as

lz) =al0)+5|1) where |af* + 8] =1 (1.27)
Hence we may choose the following parameterization:

o = cos($)e”, B = sin(§)e'@* (1.28)

with 6 € [0, 7] and ¢,y € [0, 27]. Thus,
|2) =€ (cos(8)|0) +sin(§)e'@ | 1)) . (1.29)

However, from a statistical point of view, the global phase v plays no role, as was
mentioned in Section [I.I] Thus any pure state projector can be parameterized by
{(0,6) |0 €[0,7],0 €[0,27]}. The set of pure states for a qubit, CP', is then
isomorphic to the points on the unit 2-sphere S?, parameterized in the standard
way by 6 and ¢ (with 6 as the zenith angle, and ¢ as the azimuth angle.). See
Figure [1.1]

Thus we can refer to a point on the sphere S and a qubit pure state |z ¥ z |
interchangeably. In particular the point on the sphere corresponding to coordinates
(0,7) is given by the Hilbert space vector

160,6) = cos(8)|0) +sin(4)e”| 1), (1.30)

or the projector |0, ¢ )X 6, ¢|.
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[+z)

B2 YD

2>

Figure 1.1: In the standard view of the Bloch Sphere, the standard basis states |0)
and | 1) correspond respectively to |+z) and | —z). In the parameterization we have
set up, the states on the other axes are: |+z) = |7/2,0), |—x) = |—7/2,0), |+y) =
7/2,7/2), | —y) = | —7/2,7/2).

Notice that the two orthogonal vectors |0) and | 1) occur at antipodal points
on the Bloch sphere, at coordinates (0, ¢) and (7, ¢) respectively. Such is the case
for all pairs of orthogonal vectors in CP'. Also of note is the fact that the interior
of the Bloch sphere can be used to visualize the mixed qubit states. This is a
consequence of the fact that all density matrices on C? are convex combinations of
the pure states, and the unit ball is the convex hull of the unit sphere. Given that
any vector # such that ¥ - # < 1 represents a quantum state p on C2, we refer to
such a vector as the Bloch vector for p.

The Bloch sphere is also useful for visualizing the possible observables associated
with a 2-dimensional quantum system. The set L.,(C?) of hermitian matrices acting
on C? can be viewed as a real vector space with the following basis:

10 1 0
=) = ),
(0 =i (01
b= \i o) 7 \1 o)

The three matrices {o,,0,,0.}, are known as the Pauli matrices, and are in fact
also unitary operators. Notice that they are traceless, i.e. tr(c,) = 0, and [ is not.
The trace being linear, the Pauli matrices form a basis for the real-vector space
V of traceless Hermitian operators acting on C2. If we assign the three canonical

(1.31)

unit vectors {5,3, /Ac} respectively to the Pauli matrices, then we derive a linear
isomorphism P between V and R? [40]:

~

P(z,y,2) = 2P(i) + yP()) + 2P(k) = 20, + yo, + 20, = 0. (1.32)
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Let C be the change in coordinates between the Cartesian coordinates (z, y, 2) where
2,2 .2 . : _
x® 4+ y* + z° = 1 and the spherical coordinates (6, ¢):

Clz,y,z) = (arctan (M) ,arctan (%)) : (1.33)

C 10, ¢) = (sin(f) cos(¢), sin() sin(¢), cos(A)). (1.34)
Then if (z,y,2) is a unit vector (a point on &%), then the Hilbert space vector
|C(x,y,2)) is the +1 eigenvector of the of the hermitian matrix P(x,y, z). Thus a
point on the Bloch sphere corresponds to a pure state and also to the unique PVM
(together with its antipodal point) for which the outcome corresponding to that
pure state is certain.

In the case where the quantum system described by C? corresponds to an elec-
tron spin, the Hermitian matrix P(z,y,z) is interpreted as the observable corre-
sponding to measuring the electron spin component in the direction (x,y, z). Such
an experiment is typically thought to be done by having the electron pass through
with a Stern-Gerlach magnet oriented and polarized in the direction (z,y, 2).

Any other observable A € L,,(C?) can be thought of as an observable in V with
its outcomes relabeled. For example, if A has two distinct eigenvalues A\; and Ao,

then [40]

_ 2 e A1+ Ao
A= A At — A

is a traceless hermitian operator. Moreover, o(A) has the same eigenvectors as

A, with the Ay (\g) eigenvector having eigenvalue +1 (—1). If A has identical

eigenvalues A, then this just corresponds to the experiment where one checks if the

system is there and assigns outcome A to that outcome.

o(A)

I (1.35)

Thus we see that the Bloch sphere is a useful tool for visualizing the states
and measurements that are possible on a qubit system. As such it also provides a
simple way to calculate the statistics of outcomes. Suppose that the system is in
the quantum state |0,0) 0,0/, and we perform the PVM involving the observable
PC71(0,¢) i.e the PVM containing |0, ¢ ¥ 0, ¢ | as one of its rank-1 projectors. The
probability that getting the outcome +1 (corresponding to |6,¢ ¥ 6, ¢ |) when in
state |0,0)0,0] is

tr(|0,6)X0,6(10,050,0]) =(0[]6,6)0,6|0) =cos® (§). (1.36)

Due to the choice of |0,0)0,0| as the system state, the value 6 appearing in
cos? (Q) is the angular separation of the Bloch sphere points corresponding to the
state and the observable PC~1(6, ¢).

2

Given any pure state |, 5 ) «, 3| there is always a unitary matrix U such that
Ula,B)a,3|U"=|0X0]. If we transform another projector |z )z | by the same
unitary, then

tr (Ula)z|UT0X0]) =tr (U|zXz|U'U|a,B)Xa,B|UT)
=tr([z)z||a, 0 e B]),

14
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where we used the cyclic property of the trace and the fact that UUT = UTU = I
in the last line. Thus the probability of outcome +1 for the observable with +1
eigenvector | x }{ « | when in the state | v, 8 ) o, 3, is cos (g), where 6 is the angular
separation between the points corresponding to |0 )0 |and U | o, 3 X o, 3] UT. How-
ever, the action of the unitary matrices, translated to the Bloch sphere, amounts to
a smooth rotation of the sphere. Thus angular separations are preserved, and we
can always calculate probabilities of outcomes in terms of the angular separation
between representations of pure states and PVM projectors on the Bloch sphere.
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Chapter 2

Ontological Models for
Operational Theories

In order to understand the differences and similarities between quantum theory and
classical theory, it is enlightening to place them both within the context of a general
framework which can accommodate both theories. This approach is very typical
of much research in quantum foundations. For example, there have been efforts
to provide axiomatizations for quantum theory in which the change or removal of
one axiom gives rise to classical theory [30), 53], [54]. The study of quantum logic
associates the projectors of quantum theory with propositions and examines how
the logical structure differs from classical logic |11, [65].

In this chapter we describe a program of study in quantum foundations called
the ontological model program, where the word ‘ontological’ implies pertinence to
physical reality. The motivation is that clarity can be brought to the understand-
ing of quantum theory through the positing of ontological models. Consider the
situation before the arrival of Bell’s theorem (see Section [2.3.2). Physicists and
philosophers argued about whether or not quantum entanglement (see Section
was a non-classical phenomenon. By positing the existence of an ontological model
for quantum theory, and imposing classical restrictions upon it (i.e. local causality
in a separable universe), he was able to generate a restriction on possible mea-
surement correlations. Entangled states are able to violate this restriction both
theoretically and experimentally, thus concluding the debate on the classicality of
entanglement. The study of ontological models should help us to further under-
stand and classify the various features of quantum theory and how they differ from
features of classical theories.

In Section we present the concept of an operational theory, which is thought
to capture the notion of any conceivable experimental situation, and we discuss
in particular how it captures quantum theory. Section presents the ontolog-
ical model framework, introduces the notion of outcome determinism and makes
a simple but new distinction between conver and non-convexr ontological models.
Section describes two ‘extreme case’ ontological models which are adaptable
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to any operational theory, and discusses the shortcomings of both approaches. In
Sections [2.3.1] and [2.3.2| we present the theorems of Kochen/Specker and Bell and
the ramifications of their discovery for ontological models describing quantum the-
ory. In Section we describe Bohmian mechanics as an ontological model and
discuss its features. We also show a trivial model attributed to Bell. In light of
the distinction between convex and non-convex models, we present an example of a
non-convex model and analyze why perhaps non-convex models should be avoided.

2.1 Operational Theories

An operational theory is a procedural abstraction of statistics for outcomes as-
sociated with various ways of preparing and measuring some system. That is, it
is simply a description of a set of experiments that one could perform and the
statistics of the outcomes of these experiments. The theories we will be discussing
are prepare-and-measure theories. We will be discussing one-shot measurements
wherein once a measurement outcome has been obtained, the experiment is con-
cluded. We are generally not interested in state update and hence in the case of
quantum theory we focus on the POVM formalism over the more general formalism
introduced by Postulate [3] The present discussion of operational theories is derived
from recent work [29] B2 31, 58], but mention of operational theories for studying
quantum theory has also been found in older publications [34 [44].

The operational theory begins with a notion of a system & upon which the
experiment is performed. At the level of the operational theory, there is no speci-
fication of what & is or could be. To begin an experiment, S must be manipulated
to be put into any one of a number of possible states. Since the operational theory
does not deal with physical reality necessarily, it provides not a listing of possible
states S could be placed in, but a set P of possible preparation procedures that
could be performed on §. Any element P € P could be viewed as a list of instruc-
tions to be performed on §. Alternatively, it is common to refer to a preparation
device and view P as a possible setting for the preparation device.

Together with P comes a set of possible measurements M that can be performed
on S (perhaps via a measurement device). It is assumed that any measurement in
M can be performed on & no matter what preparation in P has been performed.
Each measurement M € M has a possible set of outcomes. We make another
simplifying assumption that all measurements in M have as outcomes elements of
a global indexing set I. Depending on the operational theory, I could be a finite set,
the set of integers or the set of real numbers, for example. The pair (M, k) € M x I
is referred to as an effect. To avoid any confusion with the effects of quantum theory,
the effects in an operational theory will be referred to as operational effects if the
distinction is necessary.

The last piece of an operational theory is a prescription of statistics for the
various combinations of preparations, measurements and outcomes. The value
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Pr(k|P, M) is the probability of outcome k € [ given that S was prepared via
P € P and measured according to M € M. Most generally, if I is not a discrete
set, we may instead have Pr(B|P, M) as the probability of an outcome occurring
in the measurable set B C [ given preparation P and measurement M. However,
we will typically be dealing with discrete outcome sets and our notation will reflect
this. One further assumption imposed on the operational theory is a probabilistic
consistency requirement:
> Pr(k|M,P)=1. (2.1)
kel
This requirement states that for any preparation and measurement, some outcome
k € I must occur. For every M and P we can view Pr(:|M, P) as a probability
distribution on [.

Definition 2.1 (Operational Theory). An Operational Theory is a quadruplet
of possible preparations, measurements, outcomes, and probabilities of outcomes
for all combinations of preparations and measurements on an abstract system:

(P, M, I,Pr).

2.1.1 Convex Operational Theories

If we allow for the experimenter to introduce randomness into the preparations,
then the set P takes on a convex structure.

Definition 2.2 (Mixed Preparations). Suppose that p = (py,...,p,) is a proba-
bility vector, and Py, ..., P, € P. We will denote the preparation whereby a value
i € {1,...,n} is sampled from the probability vector p'and preparation P; is per-
formed, as the convex combination p; Py +. ..+ p, P, or as the ensemble {p;; Pi}?:l.
For a non-trivial probability vector p, this is called a mized preparation.

It is clear that given the specification of statistics for the preparations { P, ..., P,},
the statistics for the probabilistic preparation P' = {p;; P;},_, are already known
to be

Pr(k|P', M) =Y piPr(k|P, M)  V(Mk)eMxI. (2.2)

i=1

If the set P is convex, that is the specification of preparation procedures allows
for all possible mixed preparations, then we make the assumption that the set of
extreme points of P is included in P. The extreme elements of P, denoted ext P, are
the preparations whose statistics cannot be expressed as a convex combination of
statistics for other preparations, as in . We refer to them as pure preparations.
Note that the mixed preparations are exactly analogous to the proper mixtures of
density matrices discussed in Section [[.2]

We speculate that this is not a strong assumption. In particular, we specu-
late that for any or most convex operational theories, the extreme preparations
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are precisely the preparations that would remain if mixed preparations were not
allowed.

Similarly to the proper POVM defined for quantum measurements, we can define
a concept of a mixture of measurements in an operational theory.

Definition 2.3 (Mixed Measurements). To define a measurement with possible
outcomes in M C [, let p' = (p1,...,px) be a K-dimensional probability vector,
(M}, € M and let m(j, k) € M for all j € I and k € 1... K. Consider the
measurement whereby k € {1,..., K} is chosen according to p, measurement My, is
then performed, and if outcome j occurs then the measurement outcome is labeled
m(j, k). We denote this measurement as {px, m(j, k); Mk}le. If p’ is non-trivial,
we refer to this as a mized measurement.

If such mixed measurements are allowed then we see that this induces a linear
structure on the set of effects M x I. Indeed, for a measurement M’ as defined in
Definition [2.3] the probability of outcome m is determined to be

Pr(m|P,M') = Z emUk) Pr(outcome j|My) Pr(My)
—Z mGk) e Pr(j| P, Mj,) VPeP.

Thus we could write the effect (M’,m) as

Ze Gk p (My, 7). (2.4)

As with the preparations, if M contains all possible mixed measurements, then
we assume that M x [ contains its extreme points ext(M x I). These are the effects
which cannot arise in a mixed measurement. We also define the set of extreme
measurements ext M to be the measurements comprised of extreme effects.

Definition 2.4 (Convex Operational Model). An operational theory is called con-
vex if both the set of preparations and measurements include all possible mixed
preparations and measurements, as well as their extreme elements.

2.1.2 A Quantum Example

The most pertinent example of an operational theory is quantum theory itself. In
quantum theory, every density matrix p corresponds to a preparation, and every
positive operator valued measure (POVM) B = {E}} corresponds to a measure-
ment. The quantum effects comprising a POVM are the effects of the operational
theory. The statistics are given by the Born rule (|1.12):

Pr(k|P,, Mp) = tr(pE}). (2.5)
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However, given that operational theories are statistical abstractions of physical
experiments, we wish to define operational theories which include only physically
implementable subsets of the full set of quantum preparations and measurements.
In any particular experiment, one may be restricted in what sorts of quantum
systems they have access to.

Definition 2.5. We will define Q4 to be the convex operational theory representing
the preparations and measurements one can perform with access to a single d-level
quantum system. Thus the set P corresponds to the d-by-d density matrices, and
ext P corresponds to pure states on C?. The set M includes all proper d-level
POVMs, but not the improper d-level POVMs. The extreme effects are the rank-1
projectors and the extreme measurements are the rank-1 PVMs.

It will also be convenient to consider the operational theory representing only
the extreme preparations and measurements of Q.

Definition 2.6. We define 9Q, to be the non-convex operational theory represent-
ing only the pure states and PVMs of a single d-level quantum system.

It is clear that Qy is the theory obtained by allowing all mixed preparations and
measurements in 0Qy.

2.2 Ontological Models for Operational Theories

The operational theory is a very abstract concept. On its own, it provides only the
ability to make statistical predictions. The goal of the ontological model formalism
is to provide an underlying framework which roots an operational theory in a phys-
ical reality. This discussion is motivated by the same recent work as our discussion
of operational theories, except that we have slightly generalized the exposition to
involve probability measures instead of distributions (see |A| for a brief exposition
of measure theory and integration).

Each element of an operational theory has a corresponding representation in an
ontological model. To the abstract system S of an operational theory an ontological
model associates a space of actual physical properties Af] We will always require
A to be a measurable space, and so it must come equipped with a o-algebra 3,
making (A, ) a measurable space. The set A will be referred to as an ontic space
and the elements A € A will be referred to as ontic states. The word ontic is a
philosophical term which pertains to existence or reality. In an ontological model,
a preparation P from an operational theory is considered to set the ontic state to a
specific element of A. However, in general, it is not assumed that P determines an

In a more complete discussion, we would impose certain restrictions on what Acould be. For
example, we may require that Abe configuration space or phase space for a classical system, or
that it possess certain symmetries.
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ontic state with certainty. Most generally, we assume that P induces a probability
measure over A. Thus we posit a map:

p:P — M (A)

2.6
b (2.6)

where M7 (A) denotes the set of probability measures on (A,Y). For any set
B € X, up(B) is the probability that the actual ontic state is contained in the set
B given that preparation P was performed. Thus any preparation is associated with
a set of possible real physical situations, and relative probabilities of occurrence.
The measure pup is often referred to as an epistemic state. The word epistemic is a
philosophical term which means ‘pertaining to knowledge’. The state up represents
our knowledge, possibly imprecise, of the ontic state A\. The support, supp up
indicates the set of ontic states that are consistent with the preparation P.

A probabilistic interpretation is also given to a measurement in an ontologi-

cal model. In particular, any effect (M, k) is associated with a fuzzy indicator
functionPbver A:

g:M X[ — [07XA]

The notation [0, xa] denotes the set of functions on A taking values in [0, 1] and
which are measurable with respect to the measurable space (A,3). If the ontic
state is A, then £y is the probability of outcome & when measurement M is
performed. Thus £ can be viewed as a conditional probability. Recall that equation
(2.1)) requires that for any measurement and any preparation, some outcome must
occur. This requirement is passed down to the level of the ontic state by requiring
that an outcome occurs for every measurement and every ontic state:

VAEA, D &umnN) =1 (2.8)
k

(2.7)

Given the interpretation of p and &, it is clear how the statistics of the opera-
tional theory must be reproduced in an ontological model:

Pr(k| M, P) / CornNdup(\) V(M k) e MxI,PEP. (29

Definition 2.7 (Ontological Model for an Operational Theory). An ontological
model for an operational theory, (P, M, I, Pr), is a triplet (A, u, §) satisfying equa-
tions (2.6)(2.7) (2.8) and (2.9). We label the set of all ontological models for oper-

ational theories as Q.

The above is a minimal definition of an ontological model. As these general
models are applied to physical theories we may wish or be forced to discuss further
properties of such models, such as convexity.

2See Appendix [Bfon classical and fuzzy probability theories.
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2.2.1 Convex Ontological Models

An operational theory may possess a convex structure in its preparations and effects
This structure is motivated by the possibility of performing preparations and
measurements involving uncertainty. It seems reasonable that the probabilistic
interpretation of a probabilistic preparation or measurement should be passed onto
the ontic level. Hence we define the following natural class of ontological models.

Definition 2.8 (Convex Ontological Model). An ontological model for a convex
operational theory is convex itself if the maps p and & preserve the structure of
mixed preparations and measurements respectively. That is, if the epistemic state
for the preparation {p;; P;}._, is

Py, = ) Pilte, (2.10)
=1

and the fuzzy indicator functions for the measurement M’ = {py, m(j, k); My},
are given by

K
Enrm = DY emOMps, ;. (2.11)

k=1 jeI

The set of convex ontological models is denoted as Qg -

A non-convex ontological model for a convex operational theory results in seem-
ingly strange physical and causal properties. Nevertheless, non-convexity is mathe-
matically consistent with the above Definition of an ontological model. We will
demonstrate and discuss a specific example of a non-convex model for quantum

theory at the end of this chapter (see Section [2.4.3]).

2.2.2 QOutcome Determinism

The ‘measurement problem’ [43] of quantum theory is rooted in the inherent in-
determinism of outcomes that comes with the assumption that quantum theory is
complete and describes an objective physical reality. Such a viewpoint inexorably
leads one to consider the possibility that macroscopic indicators of outcomes may
actually exist as some physical mixture (see the start of Chapter 3| for a more
formal discussion). The most common example of such a thought experiment is
Schrodinger’s cat who at some point in an experiment must be both alive and
dead. In much of the literature on ontological models, it is assumed that a success-
ful ontological model should be fundamentally deterministic. Given the ontological
model framework defined in Section [2.2] the only way to account for indeterminism
while staying rooted in a deterministic reality is to require that the indicator func-
tions be idempotent (£2 = £). Such a property assures us that if the actual state
of the system (A € A) were to be known, then the outcome of any measurement
would be known.
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However, we can quickly prove that it is generally nonsensical to require this
property for every measurement effect.

Proposition 2.1. In (A, i, &) € Oy, there ezists an effect (M’ k') € (M, k) of a
mixed measurement for which Eyp g is not idempotent.

Proof. By ([2.11)) the effects for mixed measurement {py, m(j, k); Mk}szl are given

K m(j,k .
by 5M’,m = Zje],k:l em(J )Pkng,j‘ If say m(]v k?) = k, then fM',m = ngpmem,j =
Pm- As long p'is non-trivial, then £y ,, is not idempotent. O

This suggests the definition:

Definition 2.9 (Outcome Determinism). We say that an ontological model is out-
come deterministic if when (M, k) € ext(M x I) then the indicator function &
is idempotent.

2.2.3 Fuzzy and Unfuzzy Quantum Models

Appendix [B] describes the frameworks of classical and fuzzy probability theory.
Any operational theory may be represented in either of these frameworks, although
these representations will have different characteristics. If an operational theory is
always indeterministic, then a fuzzy probability representation is necessary if one
wishes the ontic state to be precisely analogous to a pure preparation (e.g. the pure
states in quantum theory). Also, a classical probability theory is equivalent to an
outcome deterministic ontological model. Thus, in general, outcome determinism
can only be achieved in a model where the pure preparations and the ontic state
are not identified with each other.

Kochen and Specker’s Unsatisfactory Model

Kochen and Specker provide an abstract but fully general demonstration of an
outcome deterministic model for any operational theory [40]. Firstly, the ontic
space is taken to be the set of all I-valued functions on the space of measurements,

A=I"M={N|X: M—1}.
For a given effect (M, k), we define the indicator function as:
Enk(N) = Xsu(A),  where Sy = {N| M(M) =k} .

This indicator function picks out all the states (which are also functions) which
assign value k£ to measurement M. We now need to define the preparation measures
such that the measure given to the set Sy, when the preparation is P is precisely
Pr(k|P, M). This can be accomplished by taking pp to be a product measure,

IT Pr(lpar).

M'eM
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With this measure, the set Sy is assigned the value Pr(k|P, M). To see this
explicitly, we ask: for each M’ € M, what values in I do the functions in Sy, take
on? Call this set Uy;. For any M’ # M, we have Uy = I, and for M we have
Uy = k. Thus pup assigns the value

[ Prw|P, M) = [] Pr(I|M,P) x Pr(k|M, P) = Pr(k|M,P).  (2.12)

M'eM M'#£M

The problem with this model, as is pointed out by Kochen and Specker [40], is that
all the effects from distinct measurements are statistically independent.

Suppose we fix the preparation P and consider calculating the probability
Pr(ky|P, My & ko| P, Ms).  We simply have to determine the measure of the set
S = {N| AM;) = k1 & AN(Ms) = ka} = Say iy N Sy, But similarly to how we
determined (2.12)), we see that the probability assigned to S by pp is Pr(k;|P, M) x
Pr(ky| P, Ms). Thus all effects are independent. The issue with independent effects
is that some structure or intuition of a physical theory becomes irrelevant.

For example, in quantum theory consider the positive observable A and the
observable A%2. Given a quantum state 1, the distribution of outcomes for A and
A? are identical, except that the outcomes for A? are the squares of the outcomes
for A. In fact, A% can be implemented by performing the experiment corresponding
to observable A and then squaring the outcome. But, if we model quantum theory
using the above model, the implication is that if the system is in the ontic state
A, which assigns value a to observable A, then since effects for A and A? are
all completely independent, the ontic state A could easily result in a value for A2
which is not a2. In Section [2.3.1 we will discuss how Kochen and Specker hoped the
functional relationships between observables of quantum theory would be respected
by an ontological model.

Aside from the independence issue, the above model also appears to be much
too abstract to explain a physical theory with any level of satisfaction. We will find
that this is not necessarily the case for all outcome deterministic models when we
discuss the de Broglie-Bohm model for quantum theory (see Section .

The Beltrametti-Bugajski Model

The following discussion is in the context of quantum theory but can be easily
adapted to accommodate any operational theory.

The notion of fuzzy probability theory (see is necessary for anyone who
wants to take seriously the notion that the quantum pure state v is real and com-
pletely describes everything physical about the system under investigation. For
those with this view, the ontic state space would have to be A = PH, and the
epistemic states correspond to delta distributions on PH:

() = 60\ — ).
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Consequently, the measurements of the theory are fuzzy random variables (i.e. the
effects are represented by fuzzy indicator functions). Given the POVM E = {E,, },
the corresponding indicator functions (Markov kernels in the fuzzy probability lan-
guage) are given by

Epm(N) = tr(AEy,). (2.13)

Then the statistics of quantum theory are trivially reproduced:

Eem(A)O(A = V)dA = Epm (V) = tr(YEn). (2.14)

PH

In quantum theory, for every effect F,, aside from the identity matrix, there are
quantum states such that 0 < tr(¢E,,) < 1, hence &g, () is always a fuzzy
indicator function. This model is often referred to as the Beltrametti-Bugajski
model [9]. Note that in the fuzzy probability language, the indicator functions
Epm(A) for measurement E are equivalent to the Markov kernel Kg(\,m).

The problems with such a model are the problems that have been plaguing
all who have attempted to view the quantum state as ‘the whole story’. Most
prominent is the measurement problem or Schrédinger’s cat paradox [43] (see the
opening of Chapter [3)).

2.3 Two Major Restrictions on Models for Quan-
tum Theory

The theorems of Kochen/Specker and Bell have had a significant impact on the
allowed properties of any ontological model for quantum theory. In Section [2.3.1]
we describe the Kochen-Specker theorem and how it restricts the mathematical
objects in quantum theory that we can possibly view as representing pre-existing
properties of a system. In Section we present Bell’s theorem and the necessity
of non-locality. Section discusses the relationship between these two results.

2.3.1 Kochen-Specker Theorem and Contextuality

In Section we presented a general ontological model for any given operational
theory. Kochen and Specker found this model in that all effects were statistically
independent of each other. It is argued in [40] that an ontological model should
preserve the functional relationships between the observables of quantum theory. It
is important to note that in their discussion of quantum mechanics and ontological
models, Kochen and Specker consider only outcome deterministic models for 0Qy
(pure states and PVMs on CY).

The basic requirements that Kochen and Specker impose on an ontological
model for quantum theory are:
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e a pure quantum state 1 should be mapped to a probability measure f,, on a
measurable space A;

e every observable A with eigenvalues {ai}le and corresponding eigenspace
projectors {Pi}?:l should be associated with a function f4 : A — R where

faA) = {a:

e 1y and f4 should reproduce the statistics of the PVM corresponding to A
when the quantum state is :

pos(fa* (ai)) = Pr(ail, A) = tr(y P). (2.15)

Given that the codomain of f4 is the spectrum of A, we can interpret the function
fa as assigning values or properties to the ontic states. We interpret f4(\) = a; to
mean that the ontic state A has value q; for observable A. We can show the above
set of requirements is equivalent to the requirement of an ontological model which

is outcome deterministic (see Definition and Definition .

Define the set Aaq, = f;'(a;) = {\ € A|fa()\) = a;} i.e the set of ontic states
which have value a; for the observable A. Then disjoint idempotent indicator
functions can be defined:

1 if e Ay,
Xaa(N) = i (2.16)
0 else
Since
d
fa=>aiXaa (2.17)
i=1

a set of disjoint idempotent indicator functions for the projectors {Pk}‘,le exists if
and only if f4 exists. Furthermore, we have that

s (F7 (@) = / Y Ny (V). (2.18)

Therefore f4 will reproduce the statistics in ([2.15)) if and only if x4, reproduces
the probability for outcome i for the measurement corresponding to A. Thus we
have our stated equivalence.

In addition to the above basic conditions, Kochen and Specker also require that
the functions f4 maintain the functional relationships between observables:

e for all observables A and all Borel functions ¢

foy = 9(fa). (2.19)
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For two observables A and B, there exists a g such that B = g(A) if and only if A
and B commute. We can understand the action of g as the action of a function on
the eigenvalues. That is, the function g on L4, (C?) is given by the function g on R

such that:
d d

9(A) =g(2ai|wi X i |) =Zg(az-)|wi X i |- (2.:20)

i=1 i=1

We can imagine the ramifications of requirement with respect to physical
experiments. Suppose that B = g(A), and the state v is prepared, inducing the
probability measure p, over the ontic space, and putting the system into some
actual ontic state A. A measurement of observable B will yield fz()), and a mea-
surement of observable A will yield f4(\). However, if holds, we have that
g(fa(N\)) = fp. Thus we can measure A, plug the output into g, and the result will
be identical to that of having measured B instead.

To give an intuitive idea of the term contextuality, the observable B could be
measured by measuring A, or by measuring any other observable C' such that
¢'(C) = B for some Borel function ¢’. Thus A and C are two contexts for measuring
B. Moreover, it may even be that A and C' do not commute, such that one could
not measure A by measuring C', or vice-versa. The assumption implies that
the measurement outcomes are independent of the context.

Kochen and Specker were able to prove that outcome deterministic ontological
models for 0Q, satisfying are impossible by first reducing to a require-
ment on prediction functions. A prediction function is a mapping h : L.,,(C?) — R
predicting the outcome for any given observable. If an ontological model sat-
isfying exists, then each ontic state A\ induces a prediction function via
ha(A) = fa(A).

Proposition 2.2. In an outcome deterministic ontological model, the satisfaction
of is equivalent to the existence of functions fp : A — {0,1} for every
projector P € CP*! such that

d

fa=)Y aifr,. (2.21)
=1
where
d
A=>"a;P; (2.22)
=1

Furthermore, for any complete set of orthogonal projectors {Pi}?zl and for all A € A
it must be the case that fp,(\) =1 for exactly one i € {1,...,d}.

Proof. Suppose (2.21)) is true. Then for any Borel function g,
d

d
9(fa) =g (Z aifpi) = Zg(az‘)fa- = fo(a)- (2.23)

i=1

3See Appendix
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Conversely, let A,B € L,(C% be any two observables which both contain
the projector P in their spectral decomposition, with eigenvalues a and b for P
respectively. We can consider P itself as an observable with eigenvalues 0 and 1.
Given the ability to measure the observable A, one could measure P by measuring
A and outputting 1 if outcome a is obtained and 0 otherwise. Similarly, one could
measure P by measuring B. This indicates that there are Borel functions g; and
g2 such that g1(A) = go(B) = P. In particular

1 z=a 1 z=0b
o) = {0 x € Sp(A)\a 92(7) = {0 x € Sp(B)\b (2.24)

where Sp() denotes the spectrum of an operator. By (2.19) it must be the case that

fr = gi(fa) = g2(fp). Therefore (2.24)) implies that fp = x4, = xpp- Finally,
(2.17) implies that f4 and fp must have the form ([2.21)).

Now let B = {Pi}f:l be a complete set of orthogonal projectors, and let A
be an observable having B forming its spectral decomposition and its eigenvalues
{ai}le having the property that no one eigenvalue is the sum of any other set of
eigenvalues. Since f4 = Z?Zl a; fp,, given the stated property of the eigenvalues, it
must be the case that fp,(\) = 1 for exactly one ¢ € {1,...,d} for every A € A. [

Consider a predictor function h : L,,(C?) — R restricted to the set of projectors.
The above theorem indicates that A must be such that

d
V {P}., C Li(CY) such that PPy = B and » P =1,

] = (2.25)
W(P) €{0,1} and Y h(P)=1.

In words, only one of any complete orthogonal set of projectors may be assigned
the value 1 by a prediction function h. All others must be assigned the value 0.

Theorem 2.1 (Kochen-Specker Theorem). For d > 2, there exists a finite set of
orthonormal bases {B;} for C* such that no prediction function h : CP*' — {0,1}

exists satisfying (2.25)) for all B;.

Proof Sketch. The original proof by Kochen and Specker [40] involves a careful
selection of 117 unit vectors in R? (and hence in C* and hence corresponding to
elements of CP?). Various triplets of these vectors are orthogonal to each other and
hence correspond to complete sets of orthogonal projectors. It is then shown that
1s and Os cannot be assigned to the 117 vectors without violating . O]

Thus the hope of a non-contextual assignment of outcomes for all measurements

is dashed, as long as the Hilbert space is of dimension 3 or higher. Any outcome
deterministic ontological model for quantum theory (d > 3) will be forced to assign
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different indicator functions to projectors, depending on which PVM the projectors
are in.

To explicitly see the consequences of this result, suppose that we have two
orthonormal bases for C3:

By ={[¢1),|¢2),|¥3)}
By ={[V1), |t ),|3)}.

These specify two different PVMs, both of which contain the projector | ) ¥ |.
Now let (A, u,&) be any outcome deterministic ontological model for 9Qs. The
Kochen-Specker result states that for an appropriately chosen 1 and 3, it must
be the case that g, 1 # £p, 1, despite the fact that they both represent the same
effect.

(2.26)

On a finer level, there must be some ontic state A such that &g, 1(\) = 1 and
€,1(A) = 0. Thus we conclude that the effect |11 )11 | does not represent a pre-
existing property{pf the system in state A\. At most, what can be said is that the
effect |11 91| in the context of the PVM By might be a pre-existing property
of the system, and the effect |1y X 11 | in the context of the PVM By might be a
pre-existing property of the system.

We will see that in Bohmian mechanics, even this is not true. An effect within
the context of a certain PVM does not represent a pre-existing property, as in
Bohmian mechanics, the physical implementation of a PVM also has an effect on
the indicator functions for the measurements.

Improved proofs of contextuality for quantum theory, involving a smaller num-
bers of vectors and bases, exist and are presented in [50].

2.3.2 Bell’s Theorem

One of the two postulates of Einstein’s theory of special relativity is the constancy
of the speed of light. The speed of light is considered to be an upper bound on
the propagation speed of anything physical, and thus stipulates a limitation on the
regions of possible future and past influence (light cones) for any point in space
and time. A famous theorem due to Bell [0l [7] implies that quantum theory can
have influences that act instantaneously in regions that lay outside of these light
cones, and hence implies that any realistic elements (ie ontic properties) attributed
to quantum theory have causal influence outside of these limits. This flies in the
face of classical intuition.

The EPR-Bell Experiment

In their 1935 paper [19], Einstein, Podolsky and Rosen (EPR) discussed a thought
experiment of the following sort as a motivation for the belief that quantum theory

4We use the term pre-eristing property to mean a property which is definitely possessed by the
system.
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is ‘incomplete’. Bell revised the thought experiment into the form presented here.
A bipartite quantum system is prepared in the ‘singlet state’
1
V2

and the two qubit subsystems, labeled A and B, are then separated and propagated
in opposite directions, while maintaining the state between them. At some
unspecified distance, each subsystem is subjected to a Stern-Gerlach measurement.
The A magnet is oriented in the @ direction while the B magnet is oriented in the
b direction. Recall that for a qubit system a directional choice is equivalent to
choosing a PVM, or a measurement in certain basis (see Section [1.3)).

|Yap) = —=(101) = [10)) (2.27)

If a PVM is performed on subsystem A, leaving it in a particular pure state |1 ),
then subsystem B is definitely in the pure state ‘ ¢+ ) orthogonal to |¢). To see
this, let {|v), | ¥ )} be any orthonormal basis for C2. Thus there exist complex
numbers a and b such that

10) =al¥)+bly") and [1)=0blv)—aly"), (2.28)

where a denotes the complex conjugate of a. Substituting these decompositions

into (2.27)) gives
_ 1 L\ L
|¢AB>—\/§(}W )~ [vHe)). (2:29)

Then suppose that the A subsystem of |15 ) is measured with respect to the
PVM corresponding to the states ¢ and 1*. The measurement update rule (1.23))
dictates that if the outcome of the measurement is v, then the bipartite system
will be left in the state } Ypt > and if the outcome is ¢, then the bipartite system
will be left in the state |¢"e ).

For one who take seriously the idea that the quantum state is real and is a
complete description of a physical system, the discussion of the EPR experiment
leads one to conclude that quantum theory must be non-local: if measurement A is
performed before measurement B, we see that the state is updated instantaneously
at a space-like separated distance. For those wishing to hold onto their classical
intuition of locality, the logical conclusion is that quantum theory must be incom-
plete, i.e. it is an operational theory for which an ontological model over a more
detailed ontology exists.

Any Ontological Model for Quantum Theory is Non-Local

Despite the hope that a more detailed ontology for quantum theory would bypass
the apparent non-locality issue, Bell proved that this is not the case [6), [7].
Firstly, if measurement directions @ and b are equal (both systems are measured

in the same basis), then the measurement outcomes will be perfectly anti-correlated.
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Moreover, if we assign the values +1 to the outcomes of Stern-Gerlach measure-
ments, this implies that the expectation value of the joint experiment where A is
measured in the direction @ and B in the direction b is [6]

—.

(@b) = —a - b. (2.30)

Consider an experiment of the EPR sort, where the bipartite state is
prepared, and the two subsystems are propagated in opposite directions. We will
posit an ontological model (A, p, &) for Q2. Suppose that the preparation of the state
(2.29) induces the measure p on A. If a measurement in direction @ is performed on
subsystem A and a measurement in direction b is performed on subsystem B, then
this constitutes a rank-1 PVM performed on the state of the whole system. Thus
we have the four indicator functions £, ; , where a and b denote the outcomes of
the measurements on each subsystem, which we label as 1. In general we have

Pr(aa. B an) = [ €asOdu(), 231)

and hence the expectation value of the product of the two outcomes is

—.

(ab) == /A (56,5,1,10‘) + 55,5,—1,—1()‘) - 56,5,1,—1()‘) - 55,5,—1,1()‘)> du(r).  (2.32)

The assumption of locality implies that the outcome of the measurement for sub-
system A is independent of the measurement choice at subsystem B and vice-versa.
Recall that the indicator function &,z ,(A) can be interpreted as the probability of

-,

outcome (a,b) given the measurement (d,b) and the ontic state A:
EaranN) = Pr(a,b]d,b,\). (2.33)
Thus the locality assumption implies:
Pr(a,bld,b, \) = Pr(a | @A) Pr(b | b,A) = &.a(N\)&;,(A) (2.34)

for some indicator functions £z, and &;,.

Now suppose that experimenters at the two ends of the experiments each inde-
pendently choose two measurement directions: a1, ds, 51, by. As before, we denote,
for example, the expectation value of measurement @; on subsystem A and mea-
surement b; on subsystem B by (6151>. In the ontological model framework, these
expectations are again given by an equation of the form . If the indicator
functions corresponding to these measurements are local, i.e. given in the form

(2.34]), then one can show the following inequality [7, [16]:

— — - —

(@b} + (@) + (@b — @iba)| < 2 (2.35)

This is called the CHSH inequality, named after those who derived it: Clauser,
Horne, Shimony and Holt [16]. It is a generalization of Bell’s original inequality,

31



presented in [6]. One can then simply show that quantum theory can violate this
inequality in the case of the EPR singlet experiment.

Suppose A measures in directions d; = (0,0,1), de = (0,1,0) and B measures in

directions b, = \%(O, 1,1), by = \%(0, 1,—1). Then by (2.30]), the left-hand side of

2.35) evaluates to 2¢/2 > 2. Thus quantum theory violates the locality inequality
2.35)).

There are two ways in which an ontological model can achieve non-locality
[38, 58]. Firstly, it may have an ontology which is non-separable. Loosely speaking,
this means that the ontic state A cannot be localized to some particular space-
time region. This is precisely why orthodox quantum theory i.e. the Beltrametti-
Bugajski model (Section [2.2.3), is non-local. If two particles are jointly in the
singlet state and space-like separated, there are no two quantum states for
the subsystems which combine to give the same description that does. If an
ontological model is in fact separable, then, as will be discussed subsequently, it
can achieve non-locality by being contextual.

2.3.3 Non-Locality as Contextuality

We saw in Section how contextuality implies the inability to assign outcomes
to projector P independently of other projectors measured with P in a PVM.
The proof of contextuality involved an explicit attempt to assign outcomes, and a
demonstration of the impossibility of the task.

Another flavour of contextuality proof considers two subsystems of a larger
system, and then assumes that a choice of measurement on one subsystem does
not affect the outcome of a measurement on the other subsystem, and vice-versa.
In particular, a PVM for the whole system would be comprised of two PVMs, one
for each subsystem. If we assume the outcomes of the PVM for one subsystem are
independent of the choice of PVM on the other subsystem, this is again the non-
contextuality assumption. However, in this case it can be motivated by locality.
Belief in locality would allow one to assume that it was impossible for the outcomes
of one PVM to be dependent on the choice of a distant PVM.

Adhering to such an assumption and drawing it to a logical conclusion leads
to the Bell/CHSH inequalities. Thus derivation of the Bell/CHSH inequality and
demonstrating that quantum theory can violate these is another proof of contex-
tuality. However, the Bell/CHSH inequality does not require an assumption of
outcome determinism. Thus this proof of contextuality implies that even in an
outcome indeterministic model, if the model is separable, then the indicator func-
tions associated to a projector are dependent on the PVM. This is a different sort
of result than the Kochen-Specker result which speaks only to outcome determin-
istic results. The generalized contextuality presented in Section will define a
framework such that both the Kochen-Specker Theorem and Bell’s Theorem imply
a form of contextuality.
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2.4 Example Ontological Models

To conclude this chapter, we briefly discuss three ontological models for quantum
theory and their properties.

2.4.1 Bohmian Mechanics

The most successful (arguably) ontological model to date was presented by Louis de
Broglie at the 1927 Solvay conference [I7] and was further developed by David Bohm
in 1952 [12], 13]. The theory, referred to as Bohmian mechanics, de Broglie-Bohm
theory, or the causal interpretation, grounds quantum mechanics in a physical,
dynamic and deterministic reality by positing as a ‘hidden variable’ the actual
positions of the particles that quantum mechanics predicts the statistics of outcomes
for.

Postulates of Bohmian Mechanics

The following discussion on Bohmian mechanics comes largely from the compresh-
ensive text by Holland [35], titled ‘The Quantum Theory of Motion’. This pre-
sentation is largely a pedagogical exposition on Bohmian mechanics where all the
mathematical statements are backed up by rigour and calculation presented in [35].

Holland lists the following as the postulates of Bohmian mechanics for a single
system:

1. An individual physical system comprises a wave propagating in space and time
together with a point particle which moves continuously under the guidance
of the wave.

2. The wave is mathematically described by ¥ (x,t), a solution to Schrodinger’s
wave equation.

3. The particle motion is obtained as the solution x(t) to the equation
%= (1/m) VS (%, 1) exiy (2.36)

where S is the phase of ¢ [and m is the mass of the particle]. To solve this
equation we have to specify the initial condition x(0) = x¢. This specification
constitutes the only extra information introduced by the theory that is not
contained in 1 (x, t) (the initial velocity is fixed once we know S). An ensemble
of possible motions associated with same wave is generated by varying xg.

In the above second postulate, the wave 1 is essentially the same object as
was defined in Postulate [l The statement of Postulate [I] presented in this the-
sis suppresses the possible spatial dependence of . The second postulate above
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also makes reference to Schrodinger’s equation, which was not mentioned in Sec-
tion [[.1 The Schrodinger equation is an equivalent way of stating Postulate [2] for
the evolution of the quantum system, and takes the form

L dy

ih—- = H, (2.37)

where H is the Hamiltonian of the isolated system.

The phase S of the wave-function, mentioned in the third postulate, is simply
the phase of ¥ which comes about when writing the complex wave-function in
phase-amplitude form: 1 = Re™. The third postulate stipulates that Bohmian
mechanics is not simply a prescription for calculating probabilities of outcomes of
future measurements. Given a specified wave-function and initial position, (2.36))
gives the particle a definite and deterministic trajectory. Since all measurements in
Bohmian mechanics are essentially position measurements, the initial position and
the wave-function ¢ are enough to predict with certainty the outcome of any future
measurement. Thus Bohmian mechanics is able to provide a causal and dynamical
explanation for the statistics of quantum theory. Through VS associates
with each space-time coordinate a unique tangent vector. Thus the trajectories in
space-time are non-intersecting.

Bohmian Mechanics as an Ontological Model

In Bohmian mechanics, it is clear that the position of the particle is treated as a
real property, which has a definite and deterministic value at all times. Thus R?
is taken as part of the ontic space. However, the wave-function ¢ plays a physical
role as well in that it determines the trajectory of the particle through its phase.
All measurements at some point boil down to a measurement of position, and thus
anything that ‘guides’ the position of particles must be taken to be ontic. Thus the
ontic space is A = R* x PH. We will denote the ontic variable as A = (Ay, Ay J]
The postulates above list the initial particle position X, as an extra parameter which
needs to be specified for the theory to be deterministic, once 1 is given. Quantum
theory is indeterministic, and thus an initial distribution of particle positions needs
to be specified in order for Bohmian mechanics to agree with quantum theory, and
moreover, to be put into the ontological model framework. Thus an additional
assumption [35] is that an ensemble of particles prepared with quantum state ¢ (x)
will be distributed according to |¢(xo,t)]%.

Generally, if the ignorance of the wave-function can be described by the ensemble
o = {pi; ¥;}, then the distribution over the ontic space is

Ho(Ao) = 3 piltr e, DI = A) (2.38)

®Not all who study Bohmian mechanics consider 1 to be ontological, but more “’law-like’ in
the sense that it dictates evolution, much like Newton’s laws dictate evolution [18].

34



In Bohmian mechanics, the theory of measurement is incorporated directly into
the formalismﬂ. A measurement is carried out by having the system of interest
interact with a measurement ‘device’. The measurement device is idealized to
be a particle localized around some point in its own configuration space. The
interaction correlates the value of the observable in question with the position of
the measurement particle, thus the value can be inferred by determining the position
of the measurement particle after the interaction is completed.

Consider A, an observable which is a function of the position and momentum
observables x and p. Since Bohmian mechanics postulates that the particle does
have a definite position and momentum at all times, the particle does indeed possess
a value for A at all times. This value can be determined by evaluating

Re("(Ay)(x, 1))
[P0

A(x, 1) = (2.39)

at the position and time of interest.

Suppose we are interested in measuring the observable A, beginning at time
to. Suppose further that at t5, x = x¢ and ¥ = g = ), 1., Where the ¥,
are eigenvectors of the observable A. We consider the measurement system wave-
function to be described by a probability distribution ¢(y, o) localized around a
point yo. Thus the wave-function of the whole system at time tg is 1o(x, t9)@(y, to)-

We then evolve the whole system under the Hamiltonian H = gflﬁy, where
py is the momentum conjugate to the position y of the measurement system. It is
assumed that the interaction is an impulse, and will be sufficiently strong and short
that the free evolution of either system is negligible during the interaction. If this
is done successfully, then after an interaction of duration 7', the wave-function of
the whole system will have evolved into ¢y = Y cae@(y — gaT). If the initial ¢
is sufficiently localized, then the position of the measurement system will be very
highly correlated with a specific eigenfunction of the observable A. Thus if we
find the measurement system to be located near y, + gal’, then we infer that i
is comprised (nearly) entirely of 1,, and thus the particle itself must possess the
value a for observable A. However, this does not imply that the particle possessed
the value a prior to measurement, but the process of the measurement has caused
the particle to evolve such that it now has the value a.

If we know the initial ontic states of the system (A, = xo, Ay = 1), then we
can determine how they will evolve under the interaction H with the measurement
system and hence we can calculate not only ¢y but x; as well. We can then plug
both into to determine the value of A. Thus it is clear that we can write
down idempotent indicator functions over A for the measurement of observable
A. In particular, let x;()\,) and ¥;(\,) be the final position and wave-function
of the system having started in the state (\;, \y) and evolved under H with a

5The following discussion of measurement in Bohmian mechanics also comes from Holland [35].
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measurement system. Then the value of A for the system will be
Ahe Ao) = | Re(ip(Aun) /1P| - (2.40)

Thus the indicator function for the measurement for outcome a of observable A at
time ¢y is given by

€(alAes Ay A) = 0o, 400000 (2.41)
and hence we see that Bohmian mechanics is outcome deterministic. The discussion
above applies to all possible PVMs, but can be extended to accommodate proper
POVMs. The above discussion is catered to the case of a single particle, but the
formalism is extendible to multiple system [35]. Thus for any given d, improper
d-level POV Ms are also accommodated by the theory.

Revealed Properties, Non-Locality, and Contextuality

Despite the fact that Bohmian mechanics is a fundamentally deterministic theory,
there are still an abundance of unusual features worth discussing.

Measurements in classical mechanics are always thought to passively reveal pre-
existing properties of a system. For example, a police officer can measure the speed
(and hence momentum) of a car and then correctly deduce whether or not the
driver was speeding. In Bohmian mechanics, a measurement is an interference into
the system which affects the property that is being measured. Since the Bohmian
particle is travelling along a specific trajectory, it always has an actual value of
momentum. However, a measurement of momentum will not reveal what the mo-
mentum of the particle was before the measurement. The momentum measurement
will influence the momentum of the particle, and then report back the new, dis-
turbed value of the momentum. In fact, the only property of the particle which
is faithfully revealed or preserved by measurement in Bohmian mechanics is the
particle position [1].

Bohmian mechanics is also non-local, as the wave-function ¢ is still a part of
the ontology. One can affect the values of 1) in space-like separated regions by
acting on ¢ locally. In the EPR experiment for example, the measurement of spin
in region A involves a coupling of ¢ to a measurement apparatus, both of which
then evolve together. This evolution will effect ¢ in the space-like separated region
B, in some-sense ‘communicating’ what measurement was performed in region A.
However, the non-locality is to be expected, as Bell’s theorem tells us.

The contextuality of quantum theory is rendered completely understandable
by Bohmian mechanics [25, 28| [I]. Bohmian mechanics incorporates measurement
directly into the theory. Thus the ontological representation of different measure-
ments are explicitly different in the Bohmian model. We can illustrate the point
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with a rather simple example, which simultaneously shows that Bohmian mechanics
is in a sense more contextual than is required by the Kochen-Specker theorem.

Consider a Stern-Gerlach experiment on a qubit system and suppose we restrict
the spatial extent of the prepared wave-function to two dimensions: (x,t) =
W(x,y,t). Suppose that at time to, 1) localizes the ontic state A\, to an exact value
Zp, and to an extended region in the y dimension. The system is propagated in the
+x direction towards the Stern-Gerlach apparatus. The wave-function and appara-
tus interact such that the wave-function splits and some of the possible trajectories
head in the +y direction and others in the —y direction with no trajectories cross-
ing (see Figure 2.1). The proportions of trajectories that deviate upwards will be
exactly what is needed in order for repeated trials to confirm the statistics of quan-
tum theory. In the typical language that we use with regards to properties and
measurements, we would say that the particles whose trajectories go upwards have
a +1 component of spin in the 4+y direction. But now consider what happens if the
polarization of the Stern-Gerlach magnet is reversed, such that a trajectory trav-
elling downwards corresponds to a +1 component of spin in the 4y direction. The
proportion of trajectories that travel downwards must be equal to the proportion
of trajectories that traveled upwards in the previous arrangement. However, tra-
jectories cannot intersect each other in space-time. Thus some trajectories which
deviated upwards in the previous set-up must still deviate upwards in order to pre-
serve the quantum statistics, and thus will receive a different outcome assignment

(see Figure [2.2).

Thus we see that the Bohmian model is contextual even for the qubit, which is
not required by the Kochen-Specker theorem. Moreover, it is a sort of contextuality
that is not required by the Kochen-Specker theorem. The outcome assigned to a
particle is dependent on precisely how a PVM is measured, whereas the Kochen-
Specker theorem only requires that a particle may change its outcome with respect
to a projector depending on what PVM the projector appears in. This example
makes explicit the fact that it is meaningless to say that the Bohmian particle has
a particular value for a given quantum effect, or even a full PVM. However, if one
knows the Bohmian ontic state, and the precise physical setup, then one can predict
what the outcome of the experiment will be.

2.4.2 Bell’s First Model

Prior to Bell’s paper concerning his famous inequality, he published a paper [§]
concerning the viability of hidden variable models in light of many arguments and
supposed proofs against their existence [61,[39]. In it he demonstrates a very simple,
albeit very cheap, ontological model for Q;. The model is easily extendible to a
model for quantum theory of all dimensions, and is also able to handle POVMs.
We present such an extension below. One can understand this ontological model as
an actualizing of the probabilities of outcomes; as a model in which the quantum
state comes coupled with its own set of dice to roll. This model is used as basis
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Figure 2.1: A simplified depiction of Bohmian particle trajectories in a Stern-Gerlach
experiment. The trajectory of the particle, and hence the assignment of +1 as an outcome
depends on the measurement and the initial particle position.
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Figure 2.2: The Stern-Gerlach magnet is flipped. Some particles that would have traveled
downwards in the previous setup before now travel upwards. However, some particles
which would have registered +1 in the previous experiment register —1 in this one.

for another model presented later (see Section [3.3.2]) which possesses interesting
properties.

Consider as an ontic space A = A; x Ay = PH x [0, 1], the projective Hilbert
space coupled with the unit interval. When the pure state v is prepared, the ontic
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state of Ay is ¢ itself, and the ontic state of [0,1] is drawn uniformly:

The indicator functions in this model amount to appropriately slicing up the unit
interval so that the probability of Ay being in each bin corresponds to the probability
of a certain outcome. In particular, let {E,,}" _, be a POVM. Then

e (V) = {1 if Y07 tr(Bd)) < Ao < S0 tr(En). (243

0 else

It should be clear that the probability of outcome m when the quantum state is v
is exactly tr(FE,,1).

This model is clearly outcome deterministic, and in fact represents any quantum
effect via an idempotent indicator function. However, in light of the fact that
a convex ontological model must represent some mixed measurements via non-
idempotent indicator functions (Lemma , it must be the case that this model
is non-convex.

Non-locality manifests itself in this model for the same reason as in the Bohmian
model: 1 is part of the ontology, and hence the model in inseparable.

2.4.3 Non-Convex Model

In Section [2.1| we briefly discussed the motivation behind considering the class Qo
of convex ontological models as candidates for rooting an operational theory in a
realistic and physical framework. Here we demonstrate in a straight-forward man-
ner that convexity is not a necessary feature of an ontological model representing a
operational theory. As a counter-example, we construct here a simple non-convex
ontological model for @, which is based upon the Beltrametti-Bugajski model (see

Section [2.2.3)).

Recall that the Beltrametti-Bugajski model is non-local by virtue of being non-
separable. It is also not outcome deterministic. Another interesting property of
the Beltrametti-Bugajski model is that it is not contextual in the Kochen-Specker
sense because the model is not outcome deterministic. It is also not contextual
in the sense of Bell’s Theorem, since even the indicator functions for projectors,
outcome deterministic or not, depend only on the projector they are representing,
without reference to the PVM.

We now construct the non-convex model. For every preparation P, consider the
density matrix pp associated with P. Unless pp = %, then pp is a non-degenerate
matrix with a unique spectral decomposition:

pp=ei|er)er|+ez|ex)ez].
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For such pp, we make the definition for p,

pp =y, =e0(X—e)er])+ead(A—ez)ez]),

which is simply the linear combination of epistemic states of the Beltrametti-
Bugajski model corresponding to the spectral decomposition of pp. If pp = % then
there is no unique spectral decomposition, since there are degenerate eigenvalues.
However, we can choose a preferred basis in which to decompose the degenerate
eigenspace:

pr =50 —0)0) + 55— [1)(1)). (2.44)

I
2

Defined in this way, p is not convex. For any non-pure density matrix, p has an
infinite number of decompositions into pure states [49]. Suppose that >, p;1); is a
decomposition of p, other than the spectral decomposition. Then

Zpid()\ — ) #£erd(A—ler e |) +ead(A—|ea)Xea]), (2.45)

since the supports of these two measures will differ. However, the above two mea-
sures would have to be equal if u were a convex function. This model, together
with the indicator functions of the Beltrametti-Bugajski model will reproduce the
statistics of Q; since for each density matrix p, p, is a convex decomposition into
the measures corresponding to some valid convex decomposition of p into pure
states.

While this model is mathematically consistent with quantum statistics and the
ontological model framework, it presents interpretive problems. Let {|e;),|e1)}
be any basis for C* which is not the standard basis {|0),]1)}. Suppose a sequence
of experiments is performed wherein | e; ) or | ey ) is prepared with equal probability.
Considering any one run, if the state | e; ) is prepared, the model implies that the
value of the ontic state is A = | ey )( ey |, and if the state | ey ) is prepared, then the
ontic state is A = | e )} ea|. However, since these individual runs take place in a
sequence of probabilistic experiments, the quantum state being prepared is

1 1
§|€1><€1’+§|62><€2\=%7

which the model tells us should be associated with the epistemic state
1 1
SO = 10X 0] + 260~ 1)1]).

If this is the case, then the possible ontic values for A are |0 ) 0] and |1 ) 1|, which
is contradictory with the assumption that in any single run that the possible values
for X are |eg )(e1] or | e X ea|. Thus a non-convex model could potentially imply a
dependence of the ontic state on whether or not a preparation takes place within a
probabilistic ensemble of preparations or not. This does not seem like a desirable
property for an ontological model.
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We can define similar models for higher dimensional quantum systems. The
problem that arises is that in higher dimensions there are an infinite number of
degenerate density matrices. Thus we need a rule, as in , for choosing a
convex decomposition for any degenerate density matrix. Such a choice amounts
to choosing an orthogonal basis for any possible subspace of the Hilbert space C¢.

For example, suppose a density matrix p has eigenvalues {a;}. Associated to
each eigenvalue will be a projector P; onto the eigenspace corresponding to a; such

that

However, if any eigenvalue a; is degenerate, then the projector P; will have rank
larger than 1, and hence (2.46) will not be a convex decomposition in terms of pure
states. Thus for each P; of rank larger than 1, we need to find pure states {Pf }j
such that P, =" ; Pij . We can make the choice in the following way.

Suppose S is subspace of dimension 2 or greater. Starting with the standard
basis B = {|i >}f:1 for the entire Hilbert space, we first project each element onto
S. This gives B’ such that span B’ = S. Then simply perform a Gram-Schmidt
procedure on B’ in order to get an orthonormal basis for S.
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Chapter 3
Epistemics

The epistemic view of the quantum state is one in which the quantum state is not
taken to be a complete descriptor of a physical system. The quantum state, in this
view, should at most specify a distribution or measure over other properties, and
thus the quantum state corresponds to an ensemble of systems, rather than any
one system. KEinstein was one of the first physicists to espouse the epistemic view
of the quantum state. However, his motivations for this view were derived from an
obligation to locality. Bell’s Theorem quashes the validity of this motivation, but
other arguments have been made for this viewpoint.

Ballentine [4] has argued that an epistemic view of the quantum state is vital for
doing away with the measurement problem. The measurement problem involves a
conflict between the mathematical structure of quantum theory and our classical in-
tuition for macroscopic objects. In particular, suppose a quantum system interacts
with a measurement apparatus, which we can also describe with quantum theory.
The measurement apparatus starts in a ready state | M cady > The quantum system
and the measurement apparatus are considered to be a closed system, and so their
evolution (the measurement) can be described by a unitary U. If the measurement
interaction and apparatus faithfully measures in the standard basis, then we have

U0) [ Mreaay) = 10) [Mo)  U[1)[Mreaay) = |1)[My). (3.1)

In order for this to be an effective measurement procedure | My ) and | M; ) must
be macroscopically distinguishable states. Now suppose that the initial state of the
quantum system is given by a superposition:

|¢) =a|0)+0b|1) suchthat |a|>+ |b?| = 1. (3.2)
Then the measurement interaction yields
Ul) | Mreaay) = a|0) [ Mo) +0|1) [ My ). (3.3)

If this state is to be taken as a full description of the system, then we see that there
is no sense in which the macroscopic measurement apparatus is in a macroscopically
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distinguishable state. Furthermore, it is not until the measurement apparatus is
observed by the experimentalist that the post-measurement state is determined
to be |0)|My) or |1)|M;). If the quantum state is taken to be a complete
description, then this accounting of measurement requires a discontinuous evolution
of the quantum state which is dependent on the act of observation. Such odd
characteristics of measurement do not occur when one assumes that the quantum
state describes a statistical ensemble [4].

However, there is also evidence that such an epistemic view can demystify much
of quantum theory. Arguments and work presented over the years by Ballentine,
Emerson, Spekkens and Fuchs (to name a few) all demonstrate that many feats
and features thought to be unique to quantum theory are in fact reproducible in
models where the most precise state of knowledge is restricted to be a non-trivial
measure over some ontic space, i.e. a truly epistemic state [4l, 59, 20].

In Section we present characterizations of ontological models intended to
capture the cases where the quantum state represents a truly epistemic state. Such
models are called -epistemic [33]. In Section we present the historically first
model which falls into the -epistemic characterization. The problem of existence
of satisfactory v-epistemic models is discussed in Section [3.3] Within this section
we contribute a new result, namely that the model of Section cannot be ex-
tended to accommodate all measurements. We also present a recently proposed
1-epistemic model due to Rudolph[]. This model ends up not being ‘y-epistemic
enough’. In light of this character of Ruldolph’s model, in Section we suggest
alternative characterizations to capture the desired idea that the quantum state is
truly epistemic. These suggestions lead to some questions for further research.

3.1 A Characterization of Epistemic Ontological
Models

In [33], a new characterization of ontological models was introduced which catego-
rized based on the ontological status the model accorded to a pure quantum state.
At one end of the categorization spectrum is the orthodox realist view, responsible
for the measurement problem, that the quantum state is the most descriptive one
can get about physical reality.

Definition 3.1 (i-complete). An ontological model (A, p, &) for Qg is 1-complete
if the ontic space A is isomorphic to the set of pure states CP?~! and the preparation
of a pure-state 1) induces a delta distribution over ¢ on A i.e. p, = 0(A — ).

This idea is precisely that which is encompassed by the Beltrametti-Bugajski
model (see Section [2.2.3)). However, this is not the only sense in which the quan-
tum state can be viewed as ontological. Consider Bohmian mechanics, in which

!This model is not published, but has been reproduced here with permission from Rudolph.
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the quantum state of the system dictates the motion of the particle, and hence
determines measurement outcomes. The quantum state is supplemented with a
hidden position variable, and yet it still plays an ontological role. Hence Bohmian
mechanics falls into the following category:

Definition 3.2 (¢-ontic). An ontological model (A, u, &) for Qg is v-ontic if for
every pair of distinct pure states ¥, and s, it is the case that

T o (3.4

Intuitively, condition ([3.4)) states that for two distinct pure states, the prepa-
rations of these pure states result in ontic states from disjoint sets in A. The
motivation for this definition is the following. If a change in the quantum state
necessarily induces a change in the ontic state, then the quantum state must have
some direct correspondence to physical reality. Knowledge of the ontic state allows
one to determine the quantum state, thus the quantum state is ontological.

A 1)-complete theory is also 1-ontic, thus it is useful to make a sub-categorization
of y-ontic for the case where ¢ is not ‘the whole story’.

Definition 3.3 (¢-supplemented). An ontological model (A, p,&) for Qg is -
supplemented if it is 1-ontic but not y-complete.

Lastly, we can define a theory in which not all ontic states can be connect with
particular quantum states.

Definition 3.4 (i-epistemic). An ontological model (A, u, &) for Q is 1-epistemic
if it is not ¢-ontic. In particular, if there exist two quantum states ¢y and vy such
that

[ s s> (3.5)

then the ontological model is ¥-epistemic.

In Section |3.3| we show why the above definition is not entirely satisfactory. We
give an explicit example of a model (Section |3.3.2)) which satisfies it, and yet does
not seem to capture the notion that pure states have ‘epistemic character’.

3.2 Kochen-Specker Qubit Model

In their classic paper [40], Kochen and Specker present an ontological model for
quantum mechanics on a 2 dimensional Hilbert space. What is particularly inter-
esting about this model is that it is one of the only known -epistemic models.

21 is any measure with respect to which both gy, and g, are absolutely continuous. i.e.
d/u‘T/Jl = My ()‘)d:u‘7 d:u‘wz = Hapy (/\)d/j,
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Figure 3.1: The Kochen-Specker Qubit Model. Depicted here is the epistemic state y)¢)
for the preparation of the |0) state, and a typical indicator function. The epistemic state
is centered around the Bloch sphere point of the quantum state that it represents. It
decreases like cosf, and has support only on a hemisphere. The indicator function is
idempotent and also has support only on the hemisphere centered on the Bloch sphere
point of the projector it represents.

The Kochen-Specker (KS) model is presented as a model for 0Q,. Consider
the ontic space A to be the 2-sphere, S?. Since S&? is isomorphic to the projective
Hilbert space CP', there is a bijection between points on the sphere and the pure
states (see Section[1.3). Here we will write A(¢) to represent the point on the Bloch
sphere corresponding to pure state v. Kochen and Specker then define the maps u
and £ in the following way. The pure-state projector 1 is represented as

leosh 0<O<ZI
pp(A) =97 2 (3.6)
0 else

where 6 is the angular separation between A and A(¢) on the Bloch sphere. In
terms of PVMs, the representation of the projector v is given by

fw(A)Z{(l) 0=<6=y (3.7)
else

To verify that these choices of distributions and indicator functions reproduce
the qubit statistics, we simply have to verify that if ¢» = [0,0)0,0| and ¢/ =
16,2 X 0,% | then [g, py&ydA = cos? (§). We will be parameterizing the sphere in
two ways. The first set of coordinates are the standard (6, ¢) coordinates the we
have been using previously. The second set is (3, a) where (3 is the zenith angle off
of the +z-axis and « is the corresponding azimuth angle in the yz-plane off of the
+y-axis. The two are displayed side-by-side in Fig Given the choice of ¢ and
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', a sample area of integration is displayed in Fig 3.3 which gives an idea for why
we choose to work with the (3, @) coordinate system.

[+2> [+z)

B2 YD |y

2> -z>

Figure 3.2: The two coordinate systems in use.

One important thing to note is that given a point (3, «), the value of cos() for
the corresponding point in (6, ¢) coordinates is given by sin(a/) sin(3). To see this,
we simply note that cos(€) is the length of the projection of the vector corresponding
to (3, ) onto the z axis, as is the value sin(«) sin(/3). Thus we have

/32 pSpr AN = /07T /Ow—f? % sin(a) sin?(8)dad3
= [1 + cos(0)] 1 /07r sin(3)dg .

— [1+ cos(8)] —

27
- cost(9),
which verifies the correctness of the model.

In principle such a model could be implemented physically with a classical an-
gular momentum. We merely have to impose restrictions on how the spin can be
prepared and measured. It can be prepared probabilistically in a cos-distribution
over any hemisphere of orientation, and the allowed measurements are restricted
to learning only which of two disjoint hemispheres the spin is pointing in (see Fig-

ure .

It is easy to extend this model to a convex ontological model for all of Q. We
simply allow for mixed preparations and extend u linearly on this set. Similarly we
allow for mixed measurements i.e. proper d-level POVMs, and extend ¢ linearly.
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3.3 Existence of i-epistemic Models for Qg

The vast majority of proposed ontological models for quantum theory to date have
not been w-epistemic. Until recently, the only known example has been the KS
model, which as presented only applies to Q;. All other proposed models have been
w-ontic. Given the lack of i-epistemic models, one might consider the possibility
that none exist which are applicable to all levels of quantum theory.

Additionally, one could validly be concerned that an ontological model satis-
fying Definition [3.4] may be entirely unsatisfactory. The definition requires that
there only exist two quantum states for which their induced probability measures
‘overlap’. By that condition, every other pair of quantum states could have non-
overlapping measures, and thus most quantum states would still retain an ontic
character. In fact, it is possible to construct a model for Q; for which most quan-
tum states do not have overlapping preparation measures. Such a model has been
suggested by Rudolph, but remains unpublished. We give a summary of his model

in Section 3.3.2]

It is reasonable to wonder whether or not the KS model could be extended
in some way to incorporate POVMs which are not proper 2-level POVMs (see
Section . If this was the case, it could be seen as evidence that the KS model
could be extended to a w-epistemic model for Qg (d > 2). In the next section,
we present a new result that the KS model cannot reproduce the statistics for all
improper 2-level POVMs. In particular, we show that a measurement referred to
as the ‘trine’ measurement, can not be represented in the KS Model.

3.3.1 No Trine in the KS Model

Theorem 3.1. The so-called trine POVM on a qubit system has no representation
in the KS model.

Since the KS model is an ontological model for 5, it must be able to reproduce
all proper 2-level POVMs. Thus a direct corollary of this result is the separation
of the proper and improper POVMs. Since the trine is not reproducible in the KS
model, it must not be a proper 2-level POVM.

Proof. The trine measurement has effects

2 2 2
Er=2|05X0.5] EB=g|F5X5.5] B=3[-%

AERNC3 =g X 2.5
We will show that there are no indicator functions {&;,&, &3} on S? such that
Y &(A) =1 and tr(pE;) = [ (A& (N)dA, where p, is given by the distribution in
the KS model (3.6)).

To simplify the argument, we will only be considering pure states that lie in

the yz-plane (i.e. pure states with Bloch vectors at (0, 5) and (3, «) in the above

vl
no
vl
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coordinate systems, with o = 6). In general, we will refer to such states as |6), or
pe for the associated density matrix. The point on the Bloch sphere corresponding
to pg will be referred to as py.

The first thing to note is that & must be zero outside of the hemisphere centered
at po. Indeed, if the state |7 ) 7| is prepared, which has support on the opposite
hemisphere, the trine measurement will never give outcome Ej, as (7| 0) = 0.

For 0 < # < 7 the quantum statistics give

2 2T =0 5 oy
tr(pz—gl1) = 3 cos 5 = 3sil 5.

Thus & must be such that

/,upﬂ_e()\)fl()\)d)\ = 2sin* 4. (3.9)

Figure depicts the area of integration for (3.9).

2

|-v> Hy>

|-2>

Figure 3.3: Area of overlap between the support of £ and p,_,
Using this as a visual guide and parameterizing with (a, 3) gives

sin?

27 s
- /0 /0 oo (B, )61 (8, o) sin fdBdar

wnN
N

S0 (3.10)
= / / % cos(7)&1(N) sin Bdfda,
0o Jo

where v denotes the angular separation between the point (3, «) and the point p,_g
at the center of the distribution p,_ ,. We make a substitution for cos~y in terms
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of (8, «) and continue:
0 pm
= / / Lsin Fcos(0 — /2 — )& (o, B)dBda
o Jo

0 T
:/ / %sinzﬁsin(ﬁ—04)51(0675)dﬁd05
o Jo
9

_ /0 sin(6 — )& () da

In the second line, we have used the fact that & is zero outside of the hemisphere
centered at [0) 0| and that p,_ , is zero outside of the hemisphere centered at
pr_g (see. Figure . In the last line we have performed the integration over the
[ variable and defined

&= /Owisirﬂ(ﬁ) &, B)dB. (3.11)

Now, since
0
1 220
/0 3 8in(f — a)da = £ sin” 3,

using (3.10) gives

0= /0 (5 — &1()) sin(0 — a)dov.

This implies that 1/3 — & (a) = 0, by a zero lemma (see .

Similarly, we can show that each & must take on values 0 or % over S?. But

since we require Z?:1 & = 1, the definition of € yields

which contradicts & () € (5,0). O

3.3.2 Rudolph’s y-epistemic Model

Rudolph’s model is based on the idea of Bell’s first model (see Section. Thus,
consider again the ontic space A = CP41 x [0,1]. The measurement procedure is
exactly the same as in Bell’s first model, with the one important difference that the
outcomes are ordered in a specific way.

Suppose that there is a fixed special quantum state ¢ € CP?! known to
every preparation and measurement device in the universe, and that a measurement
device is set to measure a PVM M = {Pi}?:l. The device knows the probabilities of
the outcomes for this PVM when the quantum state is ¢p (py = tr(¢pPy),...pg =

3For the zero lemma to go through, we assume that §~ must be piece-wise continuous
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tr(vrPy)). The measurement device in Rudolph’s model always indexes the effects
such that p; > ps... > p,. That is the ‘first outcome’ is always the outcome which
is most likely for the quantum state ¢p. When we write Py, it is implicit that this
is the effect (in any PVM) which is most likely for ¢ p.

The preparation device will be aware of this fact and is able to take advantage
of it in the following way. For any state ¢ we can calculate a lower bound G, on the
probability that ¢ will have the ‘first” outcome (by the ordering of the measurement
device) for any PVM that may be performed. Intuitively, this lower bound should
increase as 1 gets closer to ¥r. The preparation device will begin the preparation
procedure for ¢ by calculating G. Then A, € [0, 1] is drawn uniformly at random.
If \, < Gy, then the preparation device knows that no matter what PVM is
performed, the outcome will be whichever effect is most likely for the quantum
state 1, since the measurement device will allocate the first block of [0,1] to this
outcome (this is what is done in Bell’s first model, except that here the outcome
ordering is specific). The preparation device then has a freedom of which value
to pick for A\;,. Any ¢’ for which Gy > A, will in fact work. Why? Suppose the
PVM is given by M = {Pi}f:l. The measurement device, set to measure M, will
receive the ontic state A = ¢’ x A\, and will calculate the probabilities of outcomes
for M and . It will determine that p; = tr(¢'P;) > Gy > A, and so will register
outcome 1, as it would have done if the preparation device set A\, = 1. Thus,
having drawn )\, < Gy, the preparation device then chooses randomly any " such
that Gy > A, and sets A\, = 1"

This model reproduces the statistics of quantum theory: in the case where A\, >
Gy (normal operation), it performs in the exact same fashion as Bell’s first model; in
the case where )\, < G, the measurement outcome (for any measurement!) under
normal operation is known at the time preparation, and A, is chosen to ensure this
outcome persists.

We now discuss the derivation of the bound G.

Claim 3.1. For any PVM M = {P;} and any pure state 1),

m]vi[n max tr(vP;) = 1. (3.12)

Proof. 1t is clear that if mj\}n max tr(yYP;) < }17 then the sum of all d probabilities

will be less than 1, thus the minimum probability must be bounded below by é.
However, the value é can be achieved. Let ¢ be a uniform superposition of the
elements of any basis and let M be the measurement of the same basis. Then all

outcomes have probability %l. O]

As mentioned, if we fix a PVM M = {F;}, the measurement device orders the

outcomes such that p; > py... > pg. By the above claim, p; is bounded below by

%l. If p = tr(111)e) for two pure states ¢y and 1)y, then arccosp defines an angle

between these states, since tr(AfB) defines an inner product on the space of linear
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operators on C?. Since 0 < p < 1, taking the inverse cosine gives 0 < arccosp < 5
Now define a to be the angle between ¢ and Pj, # to be the angle between 1 and
Y. It follows from a triangle inequality on angles that o < 6 + arccos(é).

We then hope to take the cosine of this expression to achieve a lower bound on
cos . However, a lower bound is only achieved if 6 + arccos(é) is in the range of
arccos, as cos is only guaranteed to be decreasing on this domain. However, we
have 0 < 6, arccos(2) < 2, thus 0 < 6 + arccos(3) < 7. Hence we do in fact derive

a lower bound for cosa = tr(¢¥Py):
G(d, ) = cos(f + arccos(})). (3.13)

Notice though that since it is possible that 6 + arccos(é) > 7, then we could have
G(d, 1) <0 (see Fig. [3.3.2). In this case, the bound on tr(¢)P;) is trivial, and we
can never have \, < G(d, ).

Without explicitly writing down the formula for z,,,we can show that this model
is 1-epistemic. If it is possible that the ontic state A\; x A, could be sent to rep-
resent two different quantum states, 1) and 1/, then the model is -epistemic by
Definition . In particular, if A\, < Gy, then an ontic state ¢’ x \,, with 9" #
could be prepared. However, it is clear that )’ x A, must also be consistent with a
preparation of v’

This model, although very clever, is unsatisfying as a -epistemic model since
G(d,vy) > 0 for a limited set of . If preparing a ¢ such that G(d,¢) < 0, the
preparation device will always set A\, = . Similarly, A, = % could never be
prepared in lieu of another ontic state. Thus the probability measure for v has
no overlap with any other preparation. Thus this particular ¥ could be viewed as
having an ontic character, since it corresponds to specific ontic states. Alternatively
we say that it does not have epistemic character. Moreover, as d gets larger, arccos é
gets ever closer to 5. Thus the angular separation between 1) and 1r needed for
G(d,v) > 0 becomes smaller, and the proportion of quantum states which can

share ontic states decreases.

cos” X
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Figure 3.4: Arccos
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3.3.3 Proposed Alternative Definition of y-epistemic and
Discussion

The characterization in Section would label Rudolph’s model as -epistemic.
However, given that most pure states in this model do not have epistemic character,
one should modify the epistemic characterization to exclude such models. A clear
alternative which requires all pure states to have epistemic character is the following;:

Definition 3.5 (Completely ¥-epistemic). An ontological model (A, u, &) for Qg is
completely 1-epistemic if for every pure state ¢, there exists a pure state 1)’ such
that

[ e >0 (3.14)

holds.

This definition requires that every pure state has overlap with at least one other
state. As such, we might say that all pure states have an epistemic character if an
ontological model for Qg is completely ¢-epistemic.

However, for every pair of non-orthogonal pure states {11,1}, the quantum
projector effect £, corresponding to 1 has a non-zero inner product with v, and
vice-versa. That is, in a PVM which includes Ey,, if the quantum state is v, there
is a non-zero probability that the outcome will be £, . Thus one may suppose that
the epistemic state fuy, should have overlap with f,,. Consequently, we have the
following stronger notion of an epistemic model.

Definition 3.6 (Super Completely 1-epistemic). An ontological model (A, u, §) for
Qq is super completely ¢-epistemic if for every pair of non-orthogonal pure states

¥ and v/,
[ ey > 0 (3.15)

holds.

It is shown in Section that two orthogonal pure states must have non-
overlapping support, thus the above definition requires that each pure state shares
ontic states with every other pure state that it can. The Kochen-Specker model
satisfies this definition, as can be seen by the fact that each epistemic state has
support on an entire hemisphere. This notion of an epistemic model was actually
suggested by Spekkens [58] in a paper previous to [33] in which the stated definition
of 1-epistemic is presented.

The following argument shows that an ontological model may fail to satisfy any
definition of 1-epistemic, while still essentially obeying the spirit of these definitions.

Let (A, i, &) be a ((super) completely) ¢-epistemic model for Q4. We can define
a new ontological model in the following way:
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o A=A x PH;
o [iy(AN) = pyp(A)S(N —);

o Enr(kIN X)) = Epr(kN).
This model reproduces the statistics of Qy:
[ €uulhia, X))
_ / Enr (kN i (V) / SN — )dN (3.16)
A (de—l
_ /A Enr (kN iy () = tr (M),

However, for ¢ # ', we have

J i) X) = [ S =08 = )N A )N) =0 (317

As such, this new model is ¢-ontic, despite the fact that the extra space contributes
nothing to the measurement. Indeed, £ is independent of X', and without the extra
ontology the model is y-epistemic.

The above discussion suggests a number of questions worth exploring. Can we
rigourously define a notion of a reduced ontological model which removes any possi-
ble ‘junk’ ontology which might be obstructing a true epistemic character? Can we
find a reduced ontological for Qg, d > 2 which is (super) completely -epistemic?
In light of the fact that i-epistemic models seem to mitigate the measurement
problem, can we make a precise characterization of ontological models which suc-
cessfully do so? In what way would such a characterization be related to the above
1-epistemic characterizations?

Undoubtedly, to fully consider any question about the existence of a satisfactory
model for quantum theory, we must ensure that the model handles all aspects
of quantum theory. The majority of the models considered thus far are clearly
lacking. Some fail to accommodate quantum systems of all dimensions. Most do
not give an adequate account of dynamics, or how separate systems couple with each
other. The only model which accomplishes either of these is Bohmian mechanics,
which is certainly not -epistemic. A very wide open problem then is to consider
how incorporation of dynamics and system coupling restrict the possibilities for an
ontological model, and whether or not these restrictions rule out the possibility of
a ((super) completely) 1-epistemic model.
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Chapter 4

Generalized Contextuality

In Section we discussed the contextuality result of Kochen and Specker for
quantum systems of dimension greater than 2. We found that an ontological model,
under the assumption of outcome determinism, is forced to distinguish between
measurement contexts when assigning indicator functions to effects in a PVM. In
particular, the indicator function assigned to a projector must depend on the PVM
in which the projector is included.

Spekkens [58] has generalized the notion of contextuality such that it can be
stated as a property of any ontological model, not just for quantum theory. More-
over, the idea of the generalization naturally allows notions of preparation and
measurement contertuality, while fully incorporating the contextuality shown by
Kochen and Specker as a special case. To make the distinction, the contextuality
of Kochen and Specker will be referred to as traditional contextuality. With this re-
vised definition of contextuality, one can in fact show quantum theory is contextual
in ways other than the traditional contextuality.

In Section we present Spekkens’ notions of generalized contextuality, along
with his results on the necessity of this contextuality for quantum theory. The
proofs are adapted to a more general notion of ontological model (wherein prepa-
rations map to measures) than presented in the original paper. In Section we
present a proof of contextuality for ¢-epistemic ontological models, which as far is
we know is new and is not directly implied by any other results.

The framework presented by Spekkens has the effect of equalizing the contextu-
ality put forth by Kochen and Specker and the new contextualities proven in [58].
There is some suspicion [27) 48] that the contextuality proven by Spekkens has a
different quality than traditional contextuality. Thus in Section we present new
refinements of generalized contextuality which explicitly places traditional contex-
tuality in a stronger position than the results on generalized contextuality.

In the discussion and future work section we mention two communication
tasks (Appendix @ for which quantum implementations have advantage over clas-
sical implementations. It has been shown that contextuality (traditional and gen-
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eralized) can be considered as the source of these advantages. We discuss these
results and the consequences for viewing contextuality as a quantum resource.

4.1 Spekkens’ Generalized Contextuality and Re-
sults

This section describes the contextuality framework and results in [58].

The probabilities of an operational theory give rise to a definition of equivalence
classes on the spaces of preparations and effects.

Definition 4.1. Given an operational theory (P, M, I, Pr), two preparations P;, P,
P are said to be equivalent if

Pr(k| Py, M) = Pr(k|Py, M) Y(M,k) € M x I.

The set of preparations equivalent with a preparation P is denoted as [P].

Two effects (M, k1), (Ma, ke) € M x I are said to be equivalent if
Pr(]ﬁ]P, Ml) = Pr(kQ‘P, Mg) VP € P.

The set of effects equivalent to an effect (M, k) is denoted as [(M, k)].

Statistically, it is clear that the equivalence class of a preparation or effect is
all that is relevant. In quantum theory, a density matrix specifies the statistics
corresponding to a preparation and a quantum effect specifies the statistics corre-
sponding to a measurement outcome. Thus the equivalence class of a preparation
is represented by a density matrix and the equivalence class of an operational effect
is represented by a quantum effect. Any change in a preparation or effect which
preserves the equivalence class is then a change in context.

Definition 4.2. The context of a preparation or effect is any specification, addi-
tional to the equivalence class, which determines the preparation or effect.

We can view the reference frame for an experiment with classical physics to
be an example of a context. The reference frame of a laboratory has no effect on
outcomes of experiments, thus if P, and P, are experiments which differ only in
the reference frame of the experiment then they are in the same equivalence class.
Thus the reference frame is an example of a preparation context.

With this definition of context in hand we can define preparation and measure-
ment non-contertuality for an ontological model.

Definition 4.3 (Non-Contextuality of Ontological Models). An ontological model
(P, M, I,Pr) for an operational theory is said to be preparation non-contezctual if

P.P e [Pﬂ = Up, = Upy- (41)
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The ontological model is said to be measurement non-contextual if

(Mb kl)? (M27 kQ) < [(Mh kl)] = £M1,k1 = €M2,k2' (42)

Explicitly, an ontological model is preparation (measurement) non-contextual
if a change in the context of the preparation (effect) has no effect on the represen-
tation in the ontological model. The property of non-contextuality is a bijection
between statistically equivalent operational objects and the physical objects of the
ontological model. The property of contextuality is then the negation of non-
contextuality. An ontological model is contextual if the ontological representation
of an operational object is dependent on the context of the operational object.

We can make a definition for contextuality of operational theories based on the
necessity or non-necessity of contextuality for an ontological model.

Definition 4.4 (Contextuality of Operational Theories). An operational theory is
said to be preparation (measurement) contextual if any ontological model for the
operational theory must be preparation (measurement) contextual.

We can see that the result of Kochen and Specker fits cleanly into this frame-
work. Their result states that an ontological model for 0Q,; which is outcome
deterministic must be measurement contextual for d > 3. Indeed, their discussion
is limited to pure states and PVMs and so theirs is a statement about models for
0Qq. Discussion in Section together with Lemma [2.2] showed the equivalence
between the assumptions of Kochen and Specker and the framework of an outcome
deterministic ontological model where a unique idempotent indicator function could
be associated to every projector, independent of the PVM i.e. a non-contextual as-
signment of indicator functions to projectors.

Next we state and prove a lemma needed to demonstrate Spekkens’ results
concerning the necessity of preparation and measurement contextuality for Q.

Definition 4.5. If an experimenter knows that one of two preparations, P; or P,
has been prepared, and there is a measurement M which allows her to perfectly
retrodict which one it was, then P, and P, are perfectly distinguishable.

As a quantum example, consider preparations corresponding to orthogonal pure
quantum states 1) and . If we perform any PVM which contains | )¢ | and

‘ Pt >< Pt | then that PVM will distinguish between v and )" with a perfect success
rate.

Lemma 4.1. If two preparations are perfectly distinguishable then the intersection
of the supports of their measures in an ontological model must be empty.

Proof. Let P, and P, be perfectly distinguishable preparations, and let p; and o
be their ontological measures. We have supp p; € X and supp p2 € X. Thus F =
supp p1Nsupp e € X by the definition of a o-algebra (Definition|A.1]). Suppose E #
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(). Since E € ¥ and E C supp g it must be that p(E) > 0 by the definition of supp
(Definition [A.7). Similarly we have ps(E) > 0. Thus with non-zero probability,
a preparation of P, puts the system in an ontic state A € F and similarly for P.
However, if the ontic state is in £, no measurement could determine whether or not
the ontic state came about from a preparation of P; or from P,. This contradicts
the perfect distinguishability of P; and P, thus we must have E = (). O]

4.1.1 The Necessity of Preparation Contextuality for Quan-

tum Theory

Theorem 4.1. Any convex operational theory for Qg is preparation contextual for
all d > 2.

Proof. Consider first Q2. Let

bu= 0.5 Y05
o= |m 5 Xm 3]

o= |33 )35 s
oo = | ~4m. 8 X 45| |
o= | dm 2 X k5]

o= |4m 5 Xim 31,

and denote preparations which induce each state respectively as P,, Pa, Py, P, P., Pc.
The states are depicted on a plane of the Bloch sphere in Figure 4.1} Let (A, 41, €)
be an ontological model for @, and denote the measures corresponding to the listed
preparations as fia, fia, iy, 1B, fe and pc. Consider the following convex prepara-
tions:

1 1
Pa==-P,+=-P
A= 5 +2A
1 1
Pp=-P+ =P
bB 2b+23
Po—ip4lip (4.4)
00_20 20 .
1 1 1
Pac:_Pa _Pa _Pc
be = glatglaty
P —1P +1P +1P
apc = gha+olp+ gl

The quantum states corresponding to these preparations are all the maximally
mixed state %. We could verify this algebraically, or we can use the isomorphism

between the qubit density matrices and the Bloch sphere to verify it visually in
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¥a>

|Wa>

Figure 4.1: A Depiction of the six pure states used in the proofs of preparation and mea-
surement contextuality. The ways in which the pure states mix to create the maximally
mixed state % are depicted. The coloured triples form decompositions, as do each of the
three dashed pairs.

Figure 4.1l The assumption of convexity gives us:

1 n 1
HaA = 2;“(1 QIUA

1 n 1
HbB = 2,ub 2MB

1 1

4.5
IR

Habe = Slua 3,ua 3Nc

B 1 n 1 n 1
HABC = 3MA BMB SMC-

Now assume that (A, u, §) is preparation non-contextual. Since each preparation
in (4.4) represents the same density matrix, namely %, the assumption of prepa-
ration non-contextuality dictates that the measures in are identical to each
other. Denote this measure as p. We will derive a contradiction by showing that p
must in fact be the zero measure.

Consider any F € X. Define
Ejjx = E Nsupp ; N supp f; M supp f
where i € {a, A}, j € {b,B}, k € {¢,C}. Let

=E\|JEi suchthat E=E U JEi.

ijk ijk
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Since E’ is not in the support of u, or g4, we have that p,4(E’) = 0, implying
p(E") = 0. Now we consider the case of E;j; for the case when all three of i, j, k are
lower case, and the case where one is upper and the other two are lower case. The
other cases follow by symmetry. For Fg,., we have that pa(Egupe) = 0, pp(Fape) = 0,
and po(Ege) = 0. Therefore papc(Eape) = 0 and so p(Eup.) = 0. Next, for Eap.
we have pio(Fape) = 0, pp(Eap.) =0, and puc(Eap.) = 0. Thus

s1A(Eape) = paa(Bane) = (B ave) = pasc(Eane) = 5pa(Eape)

which implies that p(FEap.) = 0. Thus

WE) = p(E' U Eigr) = p(E') + > n(Eiyx) = 0.

ijk ijk

Since E was arbitrary, we have p = 0, contradicting that it must be a probability
measure.

Lastly, since any quantum system of dimension d > 2 has a 2-dimensional
subsystem on which the above argument can be made, the theorem holds. O

4.1.2 The Necessity of Measurement Contextuality for Quan-
tum Theory

The following are the results of Spekkens proving the necessity of measurement con-
textuality in outcome deterministic ontological models of quantum theory, as well as
a result showing that preparation non-contextuality implies outcome determinism.

We begin with a small lemma concerning restrictions on indicator functions
corresponding to orthogonal projectors.

Lemma 4.2. Let ¢ and 1" be pure orthogonal quantum states, with p, and Py
their representations in an ontological model. Let &, be any indicator function
reproducing the statistics of the effect associated with |1 )X+ |, and let &1 be any
indicator function reproducing the statistics of the effect associated with | Pt >< Pt ‘
Then

1 A€ supp by 1 X\ € supp e
§y(A) =90 X e€supp e, §pr(A) =<0 X€Esuppuy - (4.6)
7 else 7 else

Proof. In order for jiy, fiyr, &, and §,1 to reproduce the perfect distinguishability
of 1 and 9", they need to satisfy
[ =1 [ &0dn) =0
A A (4.7)
[ & W) =0 [ g ) = 1.
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Since each integral above can be reduced to an integral over the support of the
measure, and by Lemma we know that supp py and supp ji,1 are disjoint, we
arrive immediately at the conditions (4.6]). ]

This is not a proof of outcome determinism. In order for this result to imply
outcome determinism, we would need that for any orthonormal basis {@Z),-}?Zl for
C4, |, supp py;, = A (this would erase the ‘else’ conditions in (4.6)). However, this
is true if we assume preparation non-contextuality.

Lemma 4.3. If a convex ontological model for Qg is preparation non-contextual,
then for any orthonormal basis {%}le for C¢, |, supp py; = A.

Proof. 1t is possible that we could define A such that there exist elements or subsets
of A that lie in the support of no measures corresponding to preparations. For
simplicity, we will assume that A = Upep supp pp.

In quantum theory, if p is any density matrix, then p appears in a convex decom-
position of the maximally mixed state 1. For example, suppose p = S ai i)

for some orthonormal basis {|i )i |}Z.:1. Without loss of generality, suppose a; =
max; a;. Then the decomposition

d
dalp+Zaaafz =N " Llii| =
=1

is a convex decomposition of %. Therefore, in a convex model, it must be the case

Y

UlH

that A = supp %. However, if {¢i}?:1 is an orthonormal basis for C?, then

Thus if the ontological model is convex and preparation non-contextual, we have

ERE

and hence | J; supp iy, = A. O

&IH

&lm
&I —_

These two lemmas combine to give

Theorem 4.2. Preparation non-contextuality in a convex ontological model for Qg
imply outcome determinism.

Given that the preparation non-contextuality implies outcome determinism, the
following theorem can be considered as a proof that quantum theory is preparation
contextual, if not measurement contextual.

60



Theorem 4.3. Any convex and outcome deterministic ontological model for Qg is
measurement contextual.

Proof. As with the proof of preparation contextuality, we give a proof for Q; which
can be used in any quantum system of higher finite dimension.

We again use the six pure states given in the proof of preparation contextuality
(4.3). Denote the PVM comprised of projectors {1, ¥4} as M,, and similarly
define M, and M,. Denote the indicator functions corresponding to the relevant
effects as {&,,&a} and so forth.

Define the mixed measurement M in the following way. With uniform prob-
ability we choose to perform M,, M, or M., and record only whether or not the
outcome corresponds to an upper or lower case letter. The quantum effects for this
measurement are

{%wa Sw + 3wca 3¢A + 3¢B + 3wC} {2, 2} (48)

Under the assumption of convexity, the indicator functions for these effects are
{360+ 56 + 560, 36 + 588 + 380} -

At this point, we argue simply that the indicator functions for the measurement

with quantum effects {%, %} must both be equal to % everywhere. Indeed, for any
state p, we have that tr(pl) = 1. Thus we can perform this measurement by

completely ignoring the system and simply choosing an outcome from a uniform

binary distribution. Then for any ontic state A of the system, it must be that the

probablhty of the first outcome is = and the probablhty of the second outcome is
. Thus the indicator functions for {2, 2} are {2, 5

Assume that the ontological model is measurement non-contextual. Thus by
(4.8) and the fact that the indicator function for the effect I is the constant function

1
5, we get

1 1 1
38+ 358 + 38 =

l\.’)ln—l\')l’_‘

€4+ 38+ 360 =
However, it is impossible to satisfy these equations if each of the &,,&4, &, B, & Ec
are idempotent. O

The results of Spekkens [58] show that generalized measurement contextuality
is a necessary feature of an outcome deterministic model for Q4, d > 2. We know
that outcome determinism is necessary for this result, as the Beltrametti-Bugajski
model is a clear counter-example of an outcome in-deterministic model which is
measurement non-contextual. To see this, note equation , which specifies the
indicator functions of the Beltrametti-Bugajski model. Indeed, the indicator func-
tion is dependent only on the quantum effect E,,, and thus can have no dependence
on any other context. The conclusion is that while an ontological model for quan-
tum theory must always be preparation contextual, it can avoid being measurement
contextual by not being outcome deterministic.
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4.2 The Necessity of Measurement Contextuality
for 1-epistemic Theories

Here we demonstrate that by dropping the requirement of outcome determinism,
and adding another desirable property, namely 1/-epistemicity, we can prove the
necessity of measurement contextuality.

Theorem 4.4. A convex i-epistemic model for Q4 is measurement contextual for
all d > 2.

Proof. Consider the Hilbert space C?, and let ¢, = |60,¢ X6, ¢| be any pure state.
By the definition of i-epistemic, we know that there exists a 15 such that the

measures /iy, and g, are overlapping ((3.5)).

Let Py, and Py, be the points on the Bloch sphere corresponding to 1; and
5. Let Py, be any point on the Bloch sphere such that the center (representing
the density matrix g) is in the convex hull of {Py,, Py,, Py, }. For simplicity, and
without loss of generality, let us suppose that ¢; = ‘ g, o >, Py = ‘ —g, Z > Then
the possible pure states 3 which give rise to a valid P, are 93 = ‘7, 5 >, for

m— g <y <m+ g. The situation is depicted in Fig|4.2|

Wi W, >

N
Nj@

>I\J.I-—<<

Vs
Figure 4.2: A depiction of the states 11 and 1 and the range of possible states for 3.

A straight-forward use of trigonometry yields the unique convex decomposition
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for £ in terms of {Py,, Py,, Py, }:

5 = a1Py, + ayPy, + azP,y,

_ sin (g — fy)
M= (6) + sin (£ 4+ ) +sin (4 — )
0y = sin (5 +7) (4.9)
sin (0) + sin (£ + ) +sin (4 — )
sin (0)
a3 =

sin (8) +sin (§ +7) +sin (5 —7)

Now consider the three PVMs corresponding to the unique bases defined by
11, 1y and 13 (and their orthogonal partners 1y, 1y and v3). We denote these
measurements as

My = { By, By }
My ={Ey, Ej} (4.10)
Ms = { By, gy} -
The E,, outcome for each will be considered as outcome k£ = 0, and the Ey;, outcome
as k = 1. Consider the measurement M whereby measurement M; is performed

with probability a;, and the outcome 0 or 1 is registered. The effects for these
outcomes are

E() = alel + a2E¢2 + CL3E¢3 = % (4 11)
E1 = a,lET/jl + CLQE,(/;Z + agE% = %
The assumption of convexity gives
=a +a +a
Enr0 = a1éan 0 T 280150 + 38050 (4.12)

Evn = a1, 1+ a2énn 1 + asg,i-

However, since Fy = E; = %, the statistics for M are equivalent to those of the
experiment M’ where we simply randomly pick between outcome 0 and outcome 1.
The indicator functions for this experiment must be &y g = &g = % Therefore,
the assumption of non-contextuality dictates that for all A € A

Enr0(A) = a1éan 0(A) + a2éan0(A) + aséano(N) = %
; (4.13)
Ear1(A) = ar&an 1 (A) + a2éan 1 (A) + @zl 1 (N) = 7

Now, by the definition of i-epistemic, we know that there exists a measure pu
such that s, and p, are absolutely continuous with respect to p. Let piy, (M)
be functions such that du,, = py, (A)dp. Now let S be a subset of A such that
the py, (A*) > 0 and muy, (A*) > 0, for all A* € S. Since A* € S, we must have
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Enio(N) = &ano(N) = 1, and also &y 1(A) = vy (A*) = 0. Subbing these
equalities into (4.13]) gives

1
Emo(N) = a1 +as+ aséao(NY) = 5

fM,l(/\*) = a3§M3,1(/\*) =5

(4.14)

Invoking &, 0 + a1 = 1 (2.8) and subbing in values for the a; (4.9) allows us to
solve for &pp 0(AN):

sin(f) — sin(4 — v) —sin(4 + )

Eaz0(X7) = 25 (0) : (4.15)
However, when 0 < 6 < 7w and —g <y < g,
sin(f) — sin(¢ — 7) —sin(4 + )
=sin(f) — sin(¥) cos(y) + cos() sin(v) — sin(%) cos(y) — cos(%) sin(v)
R . 2]
= s?n(G) -2 s?n(§) cos(7) (4.16)
<sin(f) — 2sin() cos(¥)
=sin(f) — sin(0)
=0.

Thus &, 0(A*) is negative, contradicting the fact that &, o is assumed to be an
indicator function. O

4.3 Strong and Weak Notions of Contextuality

The generalized notion of contextuality is useful indeed for capturing traditional
contextuality within a framework which allows for other forms of contextuality.
However, we wish to present a refinement of this framework which makes more
explicit the relationship between traditional contextuality (Section and the
contextuality proven by Spekkens (Section {4.1)).

To start, we redefine the generalized notions of contextuality as weak contextu-

ality.

Definition 4.6 (Weak Preparation and Measurement Contextuality). Let (A, u, )
be a convex ontological model. If there exist two preparations Py, P, € [P;] such
that up, # up,, then we say the model is weakly contextual for preparations.

If there exist two effects (M, k1), (Ma, ko) € [(Mu, k1)) and &, ky 7# €k, then

we say the model is weakly measurement contextual.
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Notice that we have explicitly defined weak contextuality to occur in convex
ontological models. The idea is that weak contextuality can occur for mixed prepa-
rations and within mixed measurements, as well as possibly for the extreme prepara-
tions and effects. Our definition of strong contextuality only allows for contextuality
that occurs for the extreme preparations and effects.

Definition 4.7 (Strong Preparation and Measurement Contextuality). If there
exists two extreme preparations Py, P, € extP in the same equivalence class, and
Ip, # [tp,, then we say the model is strongly contextual for preparations.

If (My,ky),(Ms, ko) € ext(M x I) are in the same equivalence class, and
Eny by 7 EM ko, then we say the model is strongly measurement contextual.

The intention of this distinction is to capture the relationship between tradi-
tional contextuality and the preparation and measurement contextuality proven by
Spekkens and in Section [4.2] Indeed, traditional contextuality is a strong contextu-
ality, as it requires the indicator functions for projectors to be context-dependent in
an outcome deterministic model. The proofs of Spekkens as well as the new proof
in Section make explicit use of mixed preparations and measurements in order
to prove contextuality. Thus it is clear that these latter results show a necessity of
weak contextuality in quantum theory, but not strong contextuality.

Another important reason for this distinction is the existence of the Kochen-
Specker quibit model (see Section , which is weakly measurement contextual,
but not strongly measurement contextual. Recall that we can extend it to acco-
modate mixed measurements. We know from Section that any model which
accounts for the mixed measurements of quantum theory must exhibit weak mea-
surement contextuality. However, it is not strongly measurement contextual. In
particular, the indicator functions for the PVM measurements depend only on pro-

jector they are representing ((3.7)).

We can explicitly state the discussed contextuality results within this refined
framework.

e Spekkens: Any convex ontological model for Qg, d > 2 is weakly preparation
contextual .

e Spekkens: Any convex outcome deterministic model for Qg, d > 2 is weakly
measurement contextual.

e Kochen-Specker: Any outcome deterministic model for Qy, d > 3 is strongly
measurement contextual.

e Section 4.2} Any t-epistemic convex model for Qq, d > 2 is weakly measure-
ment contextual.

The fact that strong (preparation/measurement) contextuality implies weak
(preparation/measurement) contextuality is trivial from the definitions, and thus
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the nomenclature seems appropriate. However, we can show explicitly that strong
contextuality implies contextuality for mixed preparations or measurements (i.e

contextuality on ext P or ext(M x I) implies contextuality on the interior of P or
(M, k)).

Proposition 4.1. In a convex ontological model, strong preparation contextuality
arising on the extreme preparations implies contextuality for mized preparations.

Proof. Suppose (A, i, §) is convex and strongly preparation contextual. Thus 3P, P, €
[P] € extP such that up, # pp,- Take P ¢ [P] and consider two non-extreme
preparations:

Pl=1lpP+lP P=1P+1P (4.17)
By the convexity assumption,

fp; = i, + 3P

(4.18)
Hpy = e+ ghp

But since pp, # pp, by assumption, we have pp; # fip;. m

Proposition 4.2. In a convex ontological model, strong measurement contextuality
implies contextuality for the effects in mized measurements.

Proof. Suppose (A, i1,£) € Qpony is strongly measurement contextual. Thus

E'(Ml,kfl), (Mz,kz) S [M, l{?] S ext(/\/l X ])

4.19
such that €, p, 7 Enpis and My £ My, (4.19)

Let M3 be any third measurement distinct from M; and M,. Consider the measure-
ment M, (and M) where the first step is to pick between between measurement
M3 and measurement M; (respectively My). If measurement Mj is performed, any
outcome is relabeled as outcome k; (respectively kq). If measurement M; (respec-

tively M) is performed, the outcome is stated as is. The probability of outcome
ki for Mj is

PI‘(]CHM{,P) = %Pr(k’l‘Mgg,P) + %Pr(k‘l\Ml,P) == %(1 + PI‘(/{Z1|M1,P>) VP € P
(4.20)

Since Pr(ko|Ma, P) = Pr(ki| My, P), the probability of outcome ko for M will
be the same, thus the effects (M7, ki) and (M, k1) are equivalent. Recall that
condition ([2.8)) states effectively that for any ontic state, an outcome must occur
for any measurement. Thus if we have a measurement with only one outcome, the
representation of this effect in the ontological model must be the identity function
1(A\) = 1. Thus by the assumption of convexity we have

€M{,k1 = %1()‘> + %€M17k17 (4 21)
Entyky = S1(N) + 301 s
Hence Eupr i, 7 Entg ok, SINCE E0gy ey 7 Et oy O
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4.3.1 Discussion and Future Work

An important point to make is that strong preparation contextuality may possibly
be a feature of an ontological model, but it is never the case that an operational
theory must have an strongly preparation contextual ontological model, given the
ontological model framework presented in Section [2.2] The proof of this is elemen-
tary.

Proposition 4.3. Any operational theory has an ontological model which is not
strongly preparation contextual.

Proof. Suppose that (A, p, €) is a strongly preparation contextual ontological model
for an operational theory. For each [P] € [P], choose a preferred representative
P’ € [P]. For every P € [P], define fip = pup. Replacing p with g in (A, u,§)
gives an ontological model for operational theory which is not strongly preparation
contextual. O

The corresponding statement for effects is not true, as is evidenced by the
Kochen-Specker theorem. We can see this asymmetry as arising from the fact that
effects occur within the structure of a measurement, which imposes the restriction
in an ontological model. If an extreme effect can occur within the context of
two statistically distinct measurements M; and M,, then the functions &y, x, and
Enty ke, Will have to satisfy with distinct sets of other indicator functions. This
requirement does indeed then dictate the necessity of strong measurement contex-
tuality in an outcome deterministic ontological model for quantum theory. Without
this requirement, one could easily present a result analogous to Proposition for
measurements.

We may find that if we were to extend the idea of an operational theory /ontological
model to account for transformations and compositions of systems, this may impose
additional restrictions on the representations of extreme preparations and effects.
This may allow us to find other ways for strong contextuality to arise in models for
quantum theory. It may even allow for a form of strong preparation contextuality.
As an example of another type of strong contextuality that arises from extending
the scope of operational theories and ontological models, Westman [64] has shown
that if we consider sequences of measurements, then there is a strong contextuality
based on the ordering of measurements for commuting observables. The general
problem of extending the ontological model framework and seeking other forms of
contextuality constitutes a possible avenue of future research.

4.4 Quantum Advantages Derived from Contex-
tuality

E]It has been argued [58], (59, 24] that contextuality is at the heart of some information
theoretical advantages that quantum theory has over classical theory. In particular,
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Galvao [24] has suggested that a quantum random access code (QRAC) protocol
performs better than its classical counterpart due to the contextuality demonstrated
by Kochen and Specker. Spekkens and collaborators [59] have proven that prepara-
tion contextuality is at the heart of a quantum advantage for the Parity-Oblivious
MultiPlezing (POMP) protocol. See Appendix [D] for a description of these pro-
tocols and arguments for the role of contextuality in the advantage for quantum
implementations.

The analysis of the POMP protocol involves the derivation of a contextuality
upper bound on the success rate of a preparation non-contextual operational theory
used to implement the protoco]ﬂ. This contextuality inequality is shown to be
identical to an upper bound on the success rate of any classical operational theory.
It is then shown that there exists a quantum protocol involving a qubit system
which beats these bounds.

Thus if an operational protocol beats a ‘classical” bound for POMP, then any
ontological model for it must be preparation contextual. This logically leads one
immediately to conclude that preparation contextuality is a ‘non-classical’ feature.
However, there is confusion if one considers the fact that the quantum protocol
for POMP (as well as for QRAC) is completely implementable with Q,, as is de-
scribed in Appendix [D] As we have seen in Section [3.2] Qo is implementable via
the Kochen-Specker (KS) model for a qubit, which we have argued is entirely im-
plementable with classical angular momenta coupled with a source of randomness.
Thus, theoretically, one could devise an experiment with classical physics which
reproduces the improved success rates of both QRAC and POMP.

This thought process leads us to conclude that although a protocol could be
carried out with classical physics, this does not imply that a quantum system is
not advantageous. Why is this? Suppose we construct devices which prepare and
measure a classical angular momentum according to the KS model for a qubit. We
could give these classical devices to A and B and they could proceed to perform
the optimal quantum POMP protocol. However, this does not quite capture the
entire point of POMP. The idea behind POMP is that even if B wanted to be able
to learn parity information, he should not be able to. Realistically, if B receives
a system from A prepared by her classical device, he could choose not to feed it
into his device, and instead just measure the orientation of the angular momentum,
and thus gain information on the parity of A’s message. In a quantum system, the
parity-oblivious restriction is built in. This fundamental restriction is what, in this
example, makes the qubit more powerful than the classical KS system.

However, this argument can be leveled at other examples of quantum features
which can be seen as arising from epistemic restrictions. For example, in [59] a

L Appendix |§| is required reading for this discussion

2Recall that an operational theory involves a set of procedures that can be carried out, and thus
any physical implementation of a protocol, whether it be a classical or quantum implementation
(or something else!) stipulates an operational theory. Then as per Definition the operational
theory is preparation non-contextual if there exists an ontological model for the theory which is
preparation non-contextual.
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toy model is described for which the elementary system is a ball in one of four
boxes. The maximal state of knowledge is to know that the ball is in one of two
boxes (this makes the theory epistemic in nature). Within this toy theory, one
can prove a no-cloning theorem in analogy to the no-cloning theorem in quantum
theory [49]E|. However, since the epistemic restriction on ball location is ad-hoc, in
an actual physical implementation of this theory, one could easily clone a state by
determining the exact location of the ball and then creating another system with
the ball in that location.

Thus it would seem as though the advantage gained by a quantum system for
POMP is analogous to the property of no-cloning: both can be seen as arising
from an appropriate epistemic restriction on a classical model. One goal of the toy
model paper [59] was to categorize quantum phenomena based whether or not they
can arise from an epistemic restriction. It would seem that quantum advantages
for POMP and QRAC should fall into this category, despite the fact that they are
viewed [60] as arising from contextuality, where contextuality has been considered
to be independent of epistemic restrictions. The question of the full relationship
between epistemic restrictions and instances of contextuality looks to be open, and
could be the focus of future research.

3The no-cloning theorem for quantum theory states that given an arbitrary unknown pure
state 1) on one system and a known state 1)’ on another, there is no operation on the joint system
which is guaranteed to result in the state ¢’ @)’ for all 1. This has been generally thought to be
a uniquely quantum result.
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Chapter 5

Distinguishability as a Resource

In information theory it is useful to ask how similar or different two states are.
Suppose party A wishes to convey one of two messages, m; or mo, to party B, but
along the way the message is subject to a known noise function, ®. This induces
a state of uncertainty on the true value of the received message. In effect, party
B receives ®(m;) or ®(my), probability distributions over possible messages. B’s
ability to determine the intended message is related to B’s ability to distinguish
the probability distributions ®(m;) and ®(ms). As quantum theory is a funda-
mentally probabilistic theory, questions about distinguishing quantum states are
natural extensions of questions about distinguishing probability distributions.

The goal of this research is to study distinguishability as a resource theory. A
study of resources is a common feature of information theory, both classical and
quantum. In general, we can think of a resource as anything that might be useful
for some sort of elementary task. In classical information theory a prime example
is Shannon theory, and in quantum information theory, entanglement is the most
studied resource.

A major theorem in classical information theory is Shannon’s noiseless coding
theorem [57]. Suppose we have a source of text, m, and the relative frequency of the
alphabet in m is given by a probability distribution p. Shannon’s theorem states
that source text can be compressed and decompressed without losing any data in
m, and the average number bits needed to encode a character in m is given by
H(p) = —>_;p;jlogp;, which is called the Shannon entropy of p.

This example highlights key components of the study of resources. Two re-
sources exist: the source message m, and classical bits. The utility of a message is
obvious, and the bit is clearly useful as a mode for conveying or communicating the
message, or other information. Shannon’s theorem is ultimately a statement about
inter-conversion between resources, a key component of resource study. It dictates
the number of classical bits needed such that m can be converted to classical bits
and back again, without losing any of m. This question of reversible convertibility
is common in resource theories, and we will examine it in our study of distinguisha-
bility. Implicit in the discussion of inter-convertibility is a quantification of how
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much of each resource is present. In particular, the measure on classical bits is the
average number of classical bits per character needed. There is even an implicit
measure of how much with regards to m. The theorem states that m remains unal-
tered by the compression/decompression process, and thus the process should leave
any measure of m invariant. Suppose, however, that the number of bits required
to compress/decompress m flawlessly is not available. Then one would want to
quantify in what way the compression/decompression procedure alters the utility
of m. Studying quantifications of distinguishability will also be a major component
of our analysis.

Many other examples of resource theories exist. For example, Spekkens and
Gour [26] make note of the fact that any restriction on performable quantum oper-
ations gives rise to a resource theory in which the resource is any state that could
be prepared were the restriction not in place. There is also a quantum equivalent
of Shannon’s noiseless coding theorem [56].

We will be using entanglement as our main example of a resource theory. We
begin with an exposition on entanglement theory, in which we will make note of
the main structures and features. Having done this, we will begin a development
of distinguishability as a resource theory and point out the many analogies to
entanglement theory. In the course of this development, we pick out two problems
for analysis: a question of inter-convertibility between quantum and classical states;
and a calculation of a particular distinguishability measure, the trace distance of
formation.

5.1 Entanglement - A Resource Theory

In this section we will be describing entanglement on bipartite systems. In general,
this exposition follows from the summary of entanglement theory given by Plenio
and Virmani [51]. We begin with a definition of an entangled state:

Definition 5.1. If a bipartite quantum state on the Hilbert space Hap = HA®Hp
has the form

pas =Y pips @ pig (5.1)

where py € K(Ha) and ply € K(Hp) and the p; form a probability vector, then
we call the state separable. Any state on H,p which is not separable is called
entangled. In particular, if a pure state cannot be expressed as a product state
|14 ) ® [¥p), then it is entangled.

Entanglement is viewed as a resource which is beneficial for the performance of
various quantum information and communication tasks. The most common benefit
is derived from two separated parties sharing an entangled state between them.
One of the most elementary examples is the teleportation protocol [10], which we
now describe.
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5.1.1 Teleportation, LOCC and ebits

Suppose a party A wishes to send an unknown qubit pure state |9 ) to party B,
but no quantum channel exists between them for communicating quantum states.
The teleportation protocol allows for B to ‘receive’ the state | 1) as long as A and
B share an entangled ‘Bell state’ between them, and A is allowed to communicate
two classical bits to B. The Bell states are the following four bipartite pure states:

\@*}—%(mow\n)) (5.2)
@) = —=(00) ~ 1)) (5.3
|\1/+>=i2(|01>+|10>) (5.4)
) = == (l01) ~ [ 10)) 5:5)

These four states form an orthonormal basis for C*, and as such they correspond
to a PVM. Suppose that A and B share the state | ®1 ), and A possesses the state
| 1) which she wishes B to have. One can show that the state of |1¢) possessed by
A, and |®T ) shared by A and B can be expressed as

‘w>A®|q)+>AB:

%d@*h@\wu+¢®>A®0Aw5+WWWA®aﬂwm+ww>A®ouwm)
(5.6)

where o0,,0, and o, are qubit unitary operators defined in Section , equation
(1.31). Notice we have added the subscripts A and B to explicitly denote the
portions of the state that are possessed by A and B respectively.

Given that the Bell states form an orthonormal basis, A can perform the cor-
responding PVM on her system. Equation guarantees that no matter what
the outcome of A’s measurement, B’s system will be left in a state which is one
of four possible unitary rotations away from the state |¢). A can communicate
which of these four states by sending two classical bits to B. For example, if A
measures in the Bell basis, and receives the outcome corresponding to | ®~ ), then
(5.6) and the measurement update rule indicate that the joint system is left in the
state |®7 ), ® 0. |1 ). Given this outcome, A will communicate to B that he
needs to perform the inverse of ¢, on his system. Doing so will leave B’s system in
the state |9 ), and the unknown state has been teleported.

In a two party protocol, such as teleportation, where two parties are spatially
separated and can only communicate classical bits, there is an implicit restriction
on the operations that can be performed on a shared bipartite state. In partic-
ular, they can only perform local qubit operations on their own subsystems and
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communicate classically. We say they can perform Local Operations and Classi-
cal Communication - LOCC. The LOCC class of operations is fundamental to the
theory of entanglement. In particular, entangled states are precisely the quantum
states that allow a bypass of an LOCC restriction. This follows from two facts:

e starting with no entanglement, LOCC between two parties can create only
separable states [63];

e starting with a Bell state, LOCC between two parties can deterministically
create any bipartite state [51].

The latter point also motivates the labeling of a Bell state as the fundamental unit
of entanglement on bipartite states, which is often called an ebit. Naturally, any
state which can be used to create a Bell state through LOCC should also be viewed
as an ebit, since such a state is just as useful as a Bell state. With respect to
resource accounting, we say that the teleportation protocol converts one ebit and
two communicated classical bits into one communicated qubit.

It should be noted that an ebit is a mazimally entangled state on C? @ C?, but
in general, the maximally mixed state on C? ® C? is:
00)+[11)+...+|(d—1)(d—1
< 0+ 4 (=1 =1) -
Vd
or any state which is equivalent via local unitary operations. The state (5.7)) is also
the state used in the d-dimensional generalization of the teleportation protocol [55].

The teleportation protocol indicates that ebits and other maximally entangled
states have utility, but what about other entangled states? Recent work by Masanes
has shown that the presence of any entangled states p allows for improved efficiency
in the teleportation of some other quantum state ¢ between two parties [45], [46].
This example demonstrates that any entanglement is useful. However, if an entan-
gled state is not an ebit, then how do we characterize how much entanglement is
used? This question brings us to the important study of entanglement measures.

5.1.2 Entanglement Measures

Ideally, an entanglement measure should have some operational meaning: perhaps
pertaining to a relationship to ebits, or perhaps quantifying; the utility of a quan-
tum state for use in protocols where operations are restricted to LOCC. Two such
measures are the entanglement of distillation and the entanglement cost. Opera-
tionally, these are defined as [51]:

e Ep(p) - the entanglement of distillation - is the maximal ratio of singlet states
(maximally entangled states on C*), that can be produced per n copies of p,

as n — 0o, by LOCC.
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o Ec(p) - the entanglement cost - is the minimal ratio of singlet states needed
to produce n copies of p, as n — oo, by LOCC.

We denote n copies of p as p® ... ® p = p®". Mathematically, we can write these
entanglement measures as:

Ep(p) = sup {7" : lim LeiLnOfCCtr T (p*") — (| @+ @F !)W\} - 0}7 (5.8)

E =inf<r: li inf  tr|p®" —T ((| @ X T )*™)|| =0. 5.9
clp) =int {r lim ||t tr]” = 7 (o X o)) 5.9)
Note that tr| - | is a measure of distance or distinguishability between quantum
states which we talk about extensively in the next section. These definitions allow
for the possibility that the ratio for cost or distillation can only be approached
arbitrarily closely, and even then, only asymptotically.

It is worth discussing what properties of these functions make them reasonable
measures of entanglement. Both these measures will assign value 1 to any ebit, and
in general assign the value logd to any maximally entangled state. Also, we know
that no separable state can create entanglement via LOCC, so Ep = 0 for any
separable state. Similarly, no entanglement is needed to create a separable state
and so Fo = 0 for any separable state.

Another interesting property of Ep and E¢ is that they are both monotonically
decreasing under LOCC:

Ep(T(p)) < Ep(p) VT € LOCC

Ec(T(p)) < Ec(p) VT € LOCC. (5.10)

One would expect this from any entanglement measure: given that LOCC cannot
create entanglement from no entanglement, LOCC should not be able to produce
more entanglement from less. Additionally, any state p which can be converted to
p' through LOCC must have at least the same utility as p’ in any LOCC protocol.

Other important properties possessed by Ep and FE¢, relating to their asymp-
totic nature, are:

o Additivity:
E(s°") = nE(p) (5.11)

e Continuity: if p, € K(C** @ C*") then
(0 o[ 57) = 1 LB () )~ B 0. (612

It turns out that both Ep and Eo are equivalent on bipartite pure states. In
particular, they are equal to an easy-to-calculate quantity called the entropy of
entanglement. It is unfortunately the case that this equivalence does not hold
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for mixed states, and in general Ex and Ep become difficult to calculate. This
motivates the study of entanglement measures which may be easier to calculate,
but at the cost of losing any clear operational significance.

The examples of Ep and E¢o do suggest a number of desirable properties that
any entanglement measure should have. Thus they are taken as axioms in a more
abstract study of entanglement measures. In particular:

Definition 5.2 (Entanglement Monotone). An entanglement monotone is a func-
tion £ : K(H) — R* which satisfies:

1. E(p) = 0 for any separable p

2. E(|®q)(Pal) =logd

3. If {pi; p;} is an ensemble of possible quantum states resulting from an inde-
terministic LOCC operation on p, then

E(p) > szE(Pz) (5.13)

Indeed, these axioms state that an entanglement monotone is normalized to
log cﬂon maximally entangled states, is 0 on non-entangled states, and does not
increase unded LOCC.

A major result in the study of axiomatic entanglement measures was presented
in [37):

Theorem 5.1. An entanglement monotone E also satisfying additivity (5.11)) and
continuity (5.12)) is bounded below and above by Ep and E¢ respectively:

Ep(p) < E(p) < Ec(p), (5.14)

for any bipartite p.

Given that Fp = E¢ for pure bipartite states, this theorem additionally proves
the existence of a unique entanglement measure (satisfying the given axioms) on
pure states. Additionally, we can think of this theorem as a statement on resources
consumed (ebits) during a conversion between ebits and some state p, and back
again.

Aside from the basic introduction given here, entanglement theory is a rather
complex subject of typically incalculable quantities and few general results. Perhaps
insight can be gained on approaches to take in entanglement theory by studying a
resource theory with a simpler structure, namely, distinguishability.

Nog d being the asymptotic number of Bell states that can be created from one maximally
entangled state on a d-level system.
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5.2 Distinguishability - A Resource Theory

In entanglement theory, we discussed the definition, quantification, and utility of
entanglement for bipartite states. In our study of distinguishability, we attempt to
do the same. In this case, the fundamental objects we consider are not bipartite
states, but pairs of quantum states, typically p and o, belonging to the same Hilbert
space H.

5.2.1 Omne-Shot Distinguishability, d-bits, and TPCP maps

We begin by motivating one of the simplest known distinguishability measures, the
trace distance, by considering a fundamental question: given either the state p or
the state o with equal likelihood, what is the maximum probability of successfully
distinguishing which state one has with a single measurement?

Theorem 5.2. Let ps(p,0) be the mazimal probability of distinguishing p and o
with a single measurement. Then

pszi(tr|p—a|—|—2), (5.15)
where |A| = VAT A is the unique positive square root of ATA.
Of importance in (5.15)) is the value
1
D™(p,0) = 5tr|p—a| (5.16)

which we call the trace distance.

We prove this theorem with two lemmas.

Lemma 5.1. A Hermitian matriz A can be written in the form Q — S where @
and S are positive definite, and QS = SQ = 0.

Proof. Since A is Hermitian, it has a spectral decomposition:

d
A= al il
i=1

for some eigenvalues {a;}¢_, and orthonormal projectors {|; X1 |}°_,. Suppose
the eigenvalues are indexed in increasing order, and let a, be the last negative
eigenvalue, and a, be the first positive eigenvalue. Then define:

n d
s:Dainixwi\ Q=> ailiXei].

i=p
Then since —S = Y7 a; |¥; {¢; |, we have A = @ — S, and since ) and S are
supported on orthogonal sets of projectors, QS = SQ = 0. O
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Lemma 5.2.
D"(p,0) = max tr(E(p — o))

for all positive operators EE < 1.

Proof. From [49]. Since p — o is hermitian, it can be written as p —o0 = Q — S
as in Lemma [5.1 Thus since @ + S is positive, and (Q + S)* = (Q — 5)? =
Q? + 52, we have that [p — 0| = Q + S. Therefore D" (p,0) = tr@Q + 3 tr S. But
tr@Q —trS =tr(Q —S) =tr(p—o0) =0, since p and o are both of unit trace. Thus
tr@ =trS =D"(p,0).

Let £ < I be any positive operator. Then tr(E(p — o)) = tr(E(Q — 5)) <
tr FQ < trIQ = D¥(p, o), establishing tr(E(p — o)) < DY(p,0). To show the
maximum can be achieved, let E be the projector onto the support of ). Then
tr(E(p—o0)) =tr(E(Q—S)) =tr EQ — 0 =trQ = D"(p,0). O

Proof of Theorem[5.3. Any measurement procedure ending with a choice between
two outcomes can be formulated as a two outcome POVM in which the first label
corresponds to guessing p and the second label corresponds to guessing o. So given
a two outcome measurement M = {E;, Ex} = {E1,T — E;}, the optimal procedure
for distinguishing known possible states p and ¢ with one measurement is the
following. The measurement M induces probability distributions p; = tr(pE}), ps =
tr(pEy) and ¢ = tr(oE)), g = tr(0Ey). Without loss of generality, suppose that
p1 > q1, which implies that g > p,. Then, supposing that one knows they have
either quantum state p or ¢ with equal probability, in the event of measuring M
and receiving output 1, it is most likely that the state was p. Upon receiving 2,
it is most likely that the state was 0. Guessing in this way produces the following
optimal probability of success:

Pr(success) = Pr(outcome 1|p) Pr(p) + Pr(outcome 2|o) Pr(c) = 3p1 + 3¢

Now we wish to show that picking the measurement which maximizes Pr(success)
gives the desired linear relation to D™ (p, o).

Since g2 = p1 + p2 — q1, we have
Pr(success) = 1(pi — 1) + 3 = Ltr(Ex(p - o)) + 1.

Thus applying Lemma , and picking M to maximize %tr(El (p — o)) gives the
relation:

D" (p, o) = 2 {maximum probability of one-shot distinguishing p and o} — 1

]

Thus the quantity D" (p, o) is linearly related to the maximum probability of
distinguishing between p and o with a single measurement. Moreover, notice that if
we can never distinguish between p and o, then D¥(p, o) = 0 and if we can always
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distinguish between p and o, then D" (p,0) = 1. Thus D"(p, o) appears to be a
good operational indicator of the distinguishability of p and 0. Moreover, we notice
that D" (p, o) = 0 if and only if p = 0.

Another thing to notice about D" is that it is unitarily invariant. Indeed, since
D" (p, o) is the sum of the absolute values of the eigenvalues of p — o, and unitary
action on a matrix does not change eigenvalues, we must have D" (UpUT, UcUT) =

D" (p,0).

The trace distance is also related to a common metric on probability distribu-
tions. Indeed, suppose that p and o are diagonal in the same basis:

PZsz‘IiX@'I 0=Z%U>(Z’|~

Then the trace distance simplifies to
1
D"(p,0) = DY (5 ) = 5 3 i — ai (5.17)
i=1

which is known as the Kolmogorov distance or L' distance on probability distribu-
tions [49].

Just as we saw that entanglement was a beneficial resource in quantum infor-
mation theory, we suggest that distinguishability is also a useful resource. In any
protocol where B needs to receive and interpret a message from A, which could
be one of a number of messages, the distinguishability of the received messages
is important. In quantum information theory, messages can come in the form of
quantum states, and hence we study distinguishability as a quantum information
resource.

In our discussion of entanglement theory, we defined the ebit as the fundamental
unit of entanglement. In particular, possession of an ebit is more beneficial than
possessing any other entangled state. Similarly, we define a dbit as any pair of
quantum states which are perfectly distinguishable in a single-shot measurement.
Thus, for example, two orthogonal quantum states p and o, pure or mixed, con-
stitute a dbit. In order to distinguish two orthogonal states, we simply perform a
measurement in which the projector E onto the support of p is one of the effects. If
the outcome corresponding to E' comes up, the state must have been p, otherwise o.
With respect to the classical trace distance on probability vectors (the Kolmogorov
distance), it is clear that two probability vectors are perfectly distinguishable if
and only if p'- ¢ = 0. That is, if the supports of the two probability vectors are
disjoint. It can be shown that any non-orthogonal quantum states are not perfectly
distinguishable [49], thus orthogonal quantum state pairs constitute all dbits.

Entanglement theory is heavily entwined with LOCC. This is due to the fact
that entanglement could not increase under LOCC, and consequently, entanglement
measures were required to be monotonically non-increasing under LOCC. Also, an
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ebit could be transformed into any other state via LOCC. We argue now that
the analogous set of operations for distinguishability theory is in fact all trace-
preserving completely-positive maps.

First notice that any procedure that one can use to distinguish between states
p and o may very well start with a transformation on p and o, i.e. any TPCP map.
Thus a TPCP map should not create distinguishability. Moreover, we can show
that under TPCP maps, a dbit can be transformed into any possible pair of states.

Proposition 5.1. If p,o € C* constitute a dbit, then for any pair of states p', o’ €
C%, there exists a TPCP map T such that o' =T (p) and o' =T (o).

Proof. Suppose that p and o are orthogonal. Let M = {Ej, E;} be the measure-
ment that distinguishes p and o with certainty, where outcome 1 corresponds to
choosing p. Consider the following procedure performed on any state in H4. The
measurement M is performed, and if the outcome 1 occurs, then the state p’ is
prepared in Hp and if outcome 2 occurs then the state o’ is prepared in Hp.

To show that this procedure is a TPCP map, we will give a Kraus representation
for it. Without loss of generality, let

n dy
p=> prlk)k| o= > aqlk)k|
k=1 k=n+1

] . (5.18)
DA C I ED AT CHE
i=1 Jj=1

where the coefficients in each decomposition form a probability vector. Define
the Kraus operators Ej, = \/E’Q/JZ></€| for ke l...n, ¢ € 1...dy and Ej, =
V/a§|¢7><k|7j S 1...d27k7€ n/+-1...d1.

Then indeed:

S EVEw 4> ELER=> pilk) (Wil i) (k14> qi1k) (6] ;) (k]
ik ik ik Jk

=D IkXkl+ > kXk[=1,

k=n+1

(5.19)

so these operators define a TPCP map. Lastly we verify that this map takes p to

/

o
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> BupEL+ > EppEL =Y pili) (klplk) (¢ +0
ik ik ik

= D w1 s (k] kD) (]

i (5.20)
= ZP; | i X i |
= plz'
Similarly we can show this map takes o to o’. O]

In the discussion of entanglement, we considered the problem of converting
states to ebits and back again. In general, this problem was considered in the
asymptotic regime. Our exposition on distinguishability theory has thus far been
concerned with single-shot operations, rather than distinguishability in an asymp-
totic regime. However, we can still address a similar question of conversion. We
know that in general, no TPCP map can create a dbit out of two states that do
not constitute a dbit. However, in light of the fact that commuting states can be
viewed as a pair of classical probability distributions, we can consider the question
of converting pairs of states to classical probability distributions.

5.2.2 Reversible Distinguishability

In K(C%), we will define as state as ‘classical’ if it is diagonal in some preferred
eigenbasis and denote this set as K,.(C?). The elements of K.(C?) are in one-to-one
correspondence with the elements of Ay, the d-dimensional probability vectors. In
particular, the probability vector = (py,...,pn) € Ay associated with p € K .(C?)
is the vector of eigenvalues of p.

We now define two sets of TPCP maps which represent conversions from quan-
tum to classical states, and vice versa:

oC ={®: K(C") — K (C™)|M,N €2,3,...} (5.21)

CQ={d: K (CM) = K(C")|M,N €2,3,..} (5.22)

Maps in QC and CQ are intimately related to the processes of measurement and
preparation respectively. In particular, any OC map can be viewed as a measure-
ment procedure, and any CQ map can be viewed as a preparation procedure.

Proposition 5.2. Any map ® € QC mapping K(CN) to K.(CM) is equivalent to
an M-outcome POVM {E,}M_ acting on K(CN), such that § = (py,...,pu) =
(tr(pE1), ..., tr(pEy)) is the vector of eigenvalues for ®(p).
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Proof. Given ® € QC mapping K (CV) to K.(CM), consider the map ®,, : K(CV) —
R, which picks the m® eigenvalue of ®(p) = Zi\r{:l Pm |m Y m|, ie. p(p) = P
Since @ is linear, so must be ®,,. Thus ®,, is a linear functional on K(C") which
can be extended to a linear function on L(C"). Since ®,,(p) = p, > 0 for all
p € K(CV), ®,, is a positive map. Thus, by the Riesz representation theorem [14],
there exists a unique positive operator A,, € L1 (CV) such that ®,,(p) = tr(Ap).
Since ® is trace-preserving, 1 = tr®(p) = S} _ p, = Z%thr(/lmp), for all
p € K(CN). Thus it must be the case that S-™_ A,, = I, and so ® specifies a
unique M-outcome POVM.

Conversely, given an M-outcome POVM {Am}%:p we can perform the POVM
and then on the condition of receiving outcome m, prepare the state | m ) m|. Such
a procedure will map the state p to 320 p,, | m ) m| where p,, = tr(pA,,). We
know from Lemma that such a procedure indeed specifies a TPCP map. n

Proposition 5.3. Any map ® € CQ mapping K.(CM) to K(CV) is equivalent a
to a set of M states P = {om}_, C K(CN) such that ®(p) = SN pmom where
7 is the vector of eigenvalues of p € K.(CM). We denote this map induced by P as
Dp.

Proof. Let ® € CQ map K.(CM) to K(CV). Since K.(CM) is isomorphic to Ay,
and @ is a linear map, it preserves the structure of K.(CM) in the range of ®. In par-
ticular, consider the extreme points of K.(CM), which are the states {|m }m [}}_,
of the preferred eigenbasis. Denote o, = ®(|m ) m]). Then for any p € K.(CM),
p= Zi\n/[:l Pm | m Y m | for some probability vector p. Then the linearity of ® gives

®(p) = 2%21 PmOm.
Conversely, if P = {0, }2_, ¢ K(CV), then the map ®p(p) is clearly in CQ. [

Lastly we wish to characterize the state pairs in any quantum system which
are always reversibly convertible to classical states. Such state pairs, in the sense
of distinguishability, are ‘as good as classical states’. As it turns out, the notion
of classicality provided by this characterization is equivalent to the condition for
broadcastability [5]. In particular,

Theorem 5.3. A pair of quantum states p, o are reversibly convertible to classical
states if and only if they are simultaneously diagonalizable, i.e they commute.

Proof. Two quantum states p,o € K(CV), are reversibly convertible to classical
states if and only if there exists a map & € QC and a map F € CQ, such that
p=F[P)=Fo&(p) and 0 = F(q) = F o &(0), for some probability vectors p’and
7 in K.(CM).

First suppose that p and o are simultaneously diagonalizable in the eigenbasis
B = {|¢: ) ¢; |}X, and the eigenbasis for K (CN) is C' = {| ¢; X ¢:|},. We can
choose the map £ € QC to be the procedure which measures in the eigenbasis B,
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and on receiving outcome i prepares the state | ¢; X ¢; |. Similarly, we can choose
the map F € QC to be the reverse procedure.

Let us then suppose that p and o are not simultaneously diagonalizable, and
that the OC and CQ maps £ and F exist, such that both p and ¢ are fixed points
of F o &. We will derive a contradiction.

A theorem in [41] characterizes all fixed points of a completely positive map. In
particular any fixed point y of a TPCP map acting on CV can be written as

X = D1 Pefik © T (5.23)

where the iy is any density matrix on Hilbert spaces Hyy, the 7 are fixed density
matrices on a Hilbert spaces Hye, CV = @f:ﬂ'{kl ® Hyie, and the p, form any
probability distribution on 1... K. That is, any choices for p’ and u; gives a fixed
point.

Suppose characterizes the fixed points for the map F o & for which p and
o are fixed points. Suppose further that each of the Hyy are trivial (1-dimensional)
spaces. Then any fixed points would be the weighted sum of operators acting
on orthogonal subspaces, due to the direct sum structure. Hence all fixed points
would be simultaneously diagonalizable. Since we are assuming that p and o are
not simultaneously diagonalizable, it is necessary that at least one of the Hy, are
non-trivial.

Without loss of generality, assume H1; is non-trivial, and that we fix the py for
k > 2, and that we fix the p; such that p; > 0. With these fixed choices, picking
any operator on Hj; specifies a fixed point of the map Fo&.

Consider the following map taking elements of K (H;j;) to fixed points of F o &.

G: K(Hyu) — K(CY)

K (5.24)

V=P @ T+ > Ptk © T
k=2

This map is reversible, as given G(v), projecting onto the Hi; ® Hyo subspace and
then tracing out Hsy, gives the state 1.

Consider two distinct and non-orthogonal pure states, 1) and ¢, on Hy;. Now
G(v) and G(¢) are fixed points of F o £, hence ¢ and ¢ can be reversibly mapped
to classical states 7= E0G(¢)), §= E0G(¢) (the inverse map is G~ o F). However,
since this map and its inverse are linear, they must preserve convex structure,
and so if ¢ and ¢ are pure states, then 7 and § must be extreme points of a
simplex. Specifically, they must be trivial probability vectors (1 in one location, 0
everywhere else). However, such vectors would be perfectly distinguishable by one-
shot sampling. Consequently, we could perfectly distinguish ) and ¢ by converting
them to 7 and s. But we know that since v and ¢ are non-orthogonal, they are not
perfectly distinguishable [49]. Thus we have a contradiction} O
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5.2.3 Distinguishability Measures

As we did with entanglement measures, we will consider that not all distinguisha-
bility measures may have an operational meaning, and as such we take an axiomatic
approach. In Section [5.2.1], we introduced the trace distance as measure of distin-
guishability. We saw that it had value 0 on equal states, and value 1 on dbits. We
also argued that a TPCP map should not ‘create distinguishability’. We now verify
mathematically that indeed a TPCP map does not increase the trace distance of
two quantum states.

Proposition 5.4. Suppose ® is a TPCP map. Then
D(®(p), B(0)) < D (p, ) (5.25)

Proof. From [49]. Write p—o = @ — S, as in lemma/[5.2] and let P be the projector
such that D" (®(p), ®(0)) = tr(P(®(p) — ®(0))). Since, as shown in lemma [5.2]
tr @ = tr S, the trace-preserving property of ® gives tr (@) = tr &(S). Thus we
have the following chain of (in)equalities:

D"(p,0) = 5tr(Q + 5)
=1tr(Q) + S tr &(9)
= tr ®(Q)
> tr PO(Q) (5.26)
> tr(P(2(Q) — 2(5)))
= tr(P(2(p) — ©(0)))
=D"(2(p), ®(0)).

]

For any conceivable measure of distinguishability, it should be the case that it
is monotonically non-increasing under TPCP maps. Thus we make the following
definition of a distinguishability monotone.

Definition 5.3 (Quantum Distinguishability Monotone). A distinguishability mono-
tone is a function D : K(H) x K(H) — R* satisfying

D(®(p)-2(0)) < D(p,0) (5.27)
for any TPCP map ®, and
1 -
D(p, o) = { po =0 (5.28)
0 p=o
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An immediate corollary arising from two applications of (5.27)) states that a
distinguishability monotone is unitarily-invariant, as we already know the trace
distance to be.

D(p,o) = D(UTUpUTU, UUcUTU) < D(UpUT,UcU") < D(p,0). (5.29)

At this point it is worth noting that any quantum distinguishability monotone
induces a classical distinguishability monotone, in much the same way that the
trace distance induces a classical analogue . We define a classical probability
monotone as:

Definition 5.4 (Classical Distinguishability Monotone). A classical distinguisha-
bility monotone is a function D¢ : A x A — R* satisfying

D(®@(p), 2(q)) < D*(p,9) (5.30)

for any stochastic map ®, and

1 7-G=0

b (5.31)
0 p=gq

The stochastic maps are the set of possible operators on probability vectors. In
particular, a stochastic map from Aj; to Ay is equivalent to a N-by-M matrix for
which the rows sum to 1.

Now if D is a distinguishability monotone, then consider two states p and o
which are diagonal in the same eigenbasis. Given that p and o are diagonal in
the same eigenbasis, they are both completely parameterized by their vector of
eigenvalues, p and ¢ respectively. Thus we effectively have:

D(p,0) =D(p,q) (5.32)

for some positive function D°. We can verify that D¢ is in fact a classical distin-
guishability monotone. In particular, p'= ¢'if and only if p = o, and p- ¢ = 0 if and
only if po = 0. Thus is satisfied via . Also, if ¢ is a stochastic matrix
on A then there is a TPCP map @’ which preserves the commutativity of p and o
such that

D(®'(p), 9'(0)) = D(2(p), 2(q))- (5.33)
In particular, this map could arise from the procedure whereby the input state is
measured in the eigenbasis {|m ) m|} of p and o, and if outcome m occurs, the
state |n)(n| is prepared with probability [®],,,. On density operators with the
same eigenvectors as p and o, this map has the effect of acting the stochastic map ®
on the eigenvalues. Hence this map has the property . Thus is satisfied
via (5.27]).

Any distinguishability monotone D gives rise to another distinguishability mono-
tone related to its induced classical distinguishability monotone D¢. In particular,
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we can map to classical states with a QC map and apply the induced classical dis-
tinguishability monotone D¢. Moreover, for a given p and o, we can maximize this
value over all QC maps:

Dp(p,0) = Sup D (2 (p), @(0)). (5.34)

In analogy to the entanglement of distillation, we call this the distinguishability
of distillation induced by D. This is the maximum amount classical distinguisha-
bility (according to D¢) that can be achieved from p and o through a QC map.
These types of distinguishability monotones have been studied previously. For ex-
ample, one can verify that DY is actually equal to its induced distinguishability of
distillation [49], which we now show:

Proposition 5.5. For all p, o, D™ (p,0) = D" p(p,0).

Proof. First, recall that any QC map ¢ corresponds to a POVM {Em}nj‘;le such that
O(p) = (tr(pEy),...,tr(pEy)). This fact, combined with the form of the induced
classical trace distance (5.17)), gives

Dp(p,0) = sup D"(®(p), ®(0))

PQC
| M
= sup — tr(Ep(p—o
o | g 2 Bl =) (5.35)
M
= sup 5 [Pm— Gl
POV M{Ep}m 2 ;

where p,,, = tr(pE,,) and q,, = tr(cEy,).

Now we will show that for any POVM {E,,,}2_ | there is a two-outcome POVM
{EY, E}} such that

DO | —

M 2
1
mz_l [P = am| = 5 > ltr(pE]) — te(o E))l. (5.36)

i=1

Indeed, let P be the set of all indices such that p,, > ¢,,, and let N be the set of
all indices such that p,, < ¢,,. Then

%Z ’Pm _C]m| - % (Z(pm _Qm) + Z(Qm _pn)>

meP meN

(5.37)
1
=3 (19} — @l + 1Py — ),

where p| = > pPm, Ph = D.,.cnPm and similarly for ¢’. Thus if we define
El =3 ,cpEmand By =3 ., we have our desired two outcome POVM.
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Now the result is almost immediate from Lemma [(5.2l Since there exists a
projector E such that D¥(p, o) = tr(E(p— o)), it remains to show that for the two
outcome measurement M = {E, I — E},

tr(E(p — o)) = 5(|tx(pE) — tr(0 E)| + | tr(p(I — E)) — tr(o (I = E))|).

Without loss of generality, we assume that tr(pE) > tr(c E), implying that tr(p(I — E)) < tr(c(I — E))
Thus

(ltr(pE) — tr(o E)| + [ tr(p(T — E)) — tr(o (I — E))])

= L(tr(pE) — (0 ) — (oI — E)) + tr(o(1 — E)))

1(2tr(pE) — 2tr(0E) —trp+tro)

]

Any distinguishability monotone also gives rise a monotone we call the induced
distinguishability of formation, or reverse distinguishability, which is analogous to
the entanglement cost. Essentially, this is the minimum classical distinguishability
(according to D°) required to form p and o through a CQ map. Fix p and o, and
a CQ map ®. Define the set VEU as the set of probability vector pairs p and ¢ such
that ®(p) = p and ®(¢) = 0. Recall that any CQ map corresponds to a set of states
P, and the range of the map is the convex hull of P. If ® corresponds to a set P
for which the convex hull does not contain both p and o, then Vg; is empty. Now
we define the induced distinguishability of formation as

Dr(p.0) = inf D(7.9). (5.38)

PIEVE,

The induced distinguishabilities of formation have not been studied as much as
the induced distinguishabilities of distillation. However, there is recent work by
Matsumoto which investigates such a distinguishability measure with respect to
the Fischer metric [47].

Theorem for entanglement theory states that any entanglement measure is
bounded above and below by the particular entanglement measures Fp and Eg.
We have a similar theorem for distinguishability monotones.

Theorem 5.4. For any distinguishability monotone D,

DD(pa U) < D(p, 0) < DF(ﬂ? U)' (539)

Proof. Suppose ® € QC maps p to p'and ¢ to ¢. Then by the monotonicity of D,
D(p, o) > D(D(p), D(0)) = D(F, ). (5.40)
Taking the supremum over ® € OC gives

Dp(p,0) < D(p,0). (5.41)
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Suppose ¢ € CQ, and (p,q) € V;I’U. Then again by the monotonicity of D,
De(p, q) == D(2(p), ©(q)) = D(p, o). (5.42)
Minimizing over all possible ® € CQ and (7, q) € V., gives
D(p,0) < Drlp, 0). (5.43)

O

The analogous theorem in entanglement theory could be viewed as uniqueness
theorem when the bipartite states were restricted to be pure. This followed from
the fact that Fp and E¢ were in fact equal on pure states. Similarly we may like to
know when a classical distinguishability measure and a restriction to a certain set
of states induces a unique distinguishability monotone, i.e. when does Dr = Dp?.
Or, for a given distinguishability monotone and a pair of states (p, o), we may wish
to know if there is a gap between Dr and Dp. Such knowledge allows us to quantify
the cost in classical distinguishability for conversion to quantum states. In general,
both kinds of questions involve calculating or understanding more about Dy and
Dp.

As mentioned, it is known that DY = DYp. Thus to answer these sorts of
questions with respect to the trace distance, we must understand D% . In the
concluding section, we explicitly characterize D for qubit states.

5.2.4 Trace-Distance and the Qubit System

The trace distance of formation has the following general form,

M
1
tr 3 - _
D"r(p,0) —éelglgfq) 5 zzllpm G| (5.44)
paevd, ~ m=

where M is dependent on ®, and in particular is the number of quantum states in
the set P corresponding to a ® € CQ. Our goal is to calculate ((5.44)) for any qubit
states p and o.

We start by assuming that the infimum in the definition of D" is attainable.
The analysis will show that this is justified. Then, in general, the problem can be
stated as follows: for a pair of quantum states in C?, find

1. a set of states P = {0,,}1_, for which p and ¢ are both contained in the in
the convex hull,

2. and probability vectors p, ¢ € Ay such that > pmowm = p, D, GmOm = 0
which ...

3. minimize } Z%:l |Pim — G-
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4. Then write down a formula for the minimized value in terms of p and o, or
parameters which uniquely specify them.

Firstly we show that it suffices to consider any potential set of states P to be a
set of pure states.

Lemma 5.3. For any P = {am}%zl and probability vectors p, ¢, define p = ®p(p)
and o = ®p(q) (the map ®p was defined in the statement of Proposition[5.5). Then
there exists a set P’ = {Hm}%lzl of pure states, and probability vectors z;’, (? with
p=Pp(p)) and o = p/(¢') such that D" (', ¢') = D (§,q)

Proof. We have D" (p,q) = %Z%:l |Pm — @m|- It will be enough to show that
we can replace one mixed state in P with pure states without altering the in-
duced classical trace distance. Without loss of generality, suppose o1 is a mixed
state. Let Z?Zl z;II; be any pure state decomposition of o;. Then we have

p = pizlly + Z%:z Pm0m and similarly for . Consider the classical trace
distance on the probability distributions 157 = (p1%j,- - P1%n, P2 - .., pu) and q7 =
(12j, - @1 %n, G2 - - -, qur). We have

—

n M M
Dtr(p,7q,) = %Z |Zj(p1 - QI)| + Z |pm - Qm| = Z |pm - Qm| = Dtr(ﬁv 67)
j=1 m=2 m=1
]

In the following we show that the set P which gives D" for a given p and o
contains at most three pure states, and we discuss how these pure states should be
chosen. The analysis will conclude with a formula for D", as well as a calculable
condition for when D% p = DY = D' p,.

The analysis is heavily rooted in geometric intuition provided by the fact that
we can view quantum states on C? as points on or in the Bloch sphere S2. The
trace distance itself has a convenient interpretation in terms of points in the Bloch
sphere. Specifically, if 7 and § are the Bloch vectors (see Section of states p
and o respectively, then [49]

D™(p,0) = %|F— s]. (5.45)

Thus Lemmal5.5/implies that p and o are such that D% . = D', if and only if their
distinguishability of formation is equal to half the straight-line distance between
the Bloch vectors of p and o.

Consider any decomposition of the state p in terms of pure states. This involves
aset P = {Hm}%:1 of pure states containing p in the convex hull, and vector p’'such
that p = an‘il Pmll,. In the Bloch sphere picture, we can view this decomposition
as a piecewise linear path of unit length, originating at the maximally mixed state %
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Figure 5.1: The quantum qubit state p as a path of length one. Each line segment in
the path corresponds to a term in the pure-state decomposition of p

Figure 5.2: A geometric picture of equation (5.46). The difference between path A (%
to p) and path B (5 to o) is the red path C, which runs from p to 0. Minimizing the
length of C' is equivalent to finding the trace distance of formation.
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and concluding at the ‘point’ p. We view each pure state as a unit vector specifying a
direction from the origin g (see Figure . The path commences with a segment of
length p; in the direction given by the vector II;, followed by a segment of length p
in the direction given by the vector Il,, and so on up to the M** segment. However,
just as we could reorder the terms in the decomposition, we could reorder the
segments of the path. Furthermore, we could cut each segment into smaller pieces,
and rearrange all of these into a more fragmented path. Thus, any decomposition of
p in terms of P, given by probability vector p; defines a class of unit length piecewise
linear paths from % to p. For the remainder of the present discussion, we need not
specify a set P containing p in its convex hull, nor as a specific decomposition of p
in terms of P. Instead, we discuss piecewise linear paths of unit length from % to
p, and the corresponding set P and decomposition is implied.

We can also include a notion of D" (p, o) into the geometric picture. Suppose
that we have a unit length path to p, A, and a unit length path to o, B, which
respectively specify pure state sets P and Q, and probability vectors p'and ¢. If we
take the union of these two sets, and call it P’ then we are guaranteed that both p
and o lie in the convex hull of P’. For simplicity, we will assume that A and B are
as non-fragmented as possible. That is each direction occurs only once in A and
B. Subtracting path A piece-wise from path B gives a path from p to o, which
we call C. C will have a segment in the II,, direction of length |p,, — ¢n| for all
1 <m < M (see Figure . The total length of C' is

M
m=1

which is proportional to the value we are trying to minimize (5.44). Thus if we
can find paths A and B for which the length of the path difference is minimized,
then we have found the distinguishability of preparation for the states p and o.
Moreover, if we can find the set of state pairs (p, o), such that C' can be made to be
the straight line between p and o, then we will have classified the states for which
there is no gap between D" and DY p.

Valuable geometric insight into the problem can be gained by answering the
following question: What sort of bounds exist on any path, A, to p? Since the
path must be of length 1, it follows that it must lie within the volume of a solid
ellipsoid, E,, having % and p as its focii, and a major axis length of 1. Any path of
length one from % to p must lie within such an ellipsoid, since the points reachable
by such paths are an exact description of such an ellipsoid (see Figure .

The problem of minimizing in this geometric picture can be viewed equiv-
alently as the problem of maximizing the amount of overlap between the paths A
and B. This will leave a minimal difference between the two paths. Suppose we
reorder A and B such that all overlap occurs at the beginning of the paths. Then
all overlap between A and B must then lie within £ = E, N E,, the intersection
of the bounding ellipsoids for p and o (see Figure . Otherwise, either A or B
would fall outside of its bounding ellipsoid.
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Figure 5.3: The path representations of p are bounded by the ellipse E,. Any path
extending outside of E, necessarily has length greater than 1.

Figure 5.4: All possible overlap between a path to p and a path to o must lie in the
intersection of E, and E,, denoted £ in this 2-dimensional slice. The points g; and go
play an important role in determining the trace distance of formation.
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We can now obtain the following characterization of the states for which D% =
D" . We will call such state pairs reversibly distinguishable. The result also gives
a construction on how to calculate D" in general.

Theorem 5.5. Consider two states p and o, the intersection E of their bounding
ellipsoids, and the line segment L joining p and o. Then p and o are reversibly
distinguishable if and only iof L intersects E. The decompositions of p and o which
give rise to the minimization D™ p(p, o) lie in the same plane as p, o and g, which
we call F', and contain three pure states in total.

Proof. Suppose that L passes through E. It is now easy to construct two paths, A
and B, from % to p and o respectively, whose difference is the line L (see Figure .
Both paths may start off with a segment from g to a point on L within F. Both
can then finish with segments along the line L. Exactly three directions are used
in total, so the corresponding decompositions involve three pure states in the plane

F. Thus p and o are reversibly distinguishable.

Figure 5.5: Depicted here is the case where L intersects E. Paths A and B are
constructible such that all difference between the two lies in L.

Suppose that L does not intersect E. Recall that minimizing C' is equivalent to
maximizing the overlap of paths A and B. Thus we desire to find the point x in F
which minimizes the function

D(z) = [lp — x| + [lo — =[]

We claim that this point will be one of the two intersection points of the bounding
ellipses in the plane F. These points are labeled g; and g, in Figure The
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paths A and B will then consists a joint segment from % to one of g; or go, followed
by a concluding segment to p or o. In order to substantiate this claim, we first
remark that the desired point x must lie in the plane F. Any point not in F' can
be projected onto F'; and thus will be closer to both p and . We now argue via
two arguments that D is minimized on points which are equidistant to p and o.

Subclaim 1: For any d > 0, consider the line of points Ly which have perpendic-
ular distance d to L. Of the points on Ly, the unique point x4 which is equidistant
to p and o minimizes D. This claim can be verified with a simple calculus exercise.

~—_ A

Figure 5.6: Existence of x4 implies existence of zy. The central line indicates the set

of points which are equidistant to p and o. If we postulate that the paths %—xd—p and
%—xd—a have length at most one, then it is clear that %—J,‘d/—p and %—md/-a will also have

length at most one.

Given that equidistant points are better than non-equidistant points, it remains
to show that we can in general include such a point in paths A and B to p and o.

Subclaim 2: If there is a point x4, which is a perpendicular distance d from L
and lies in E N F, then there is a point x4, which is equidistant to p and o, has
perpendicular distance d' from L with d" < d, and lies in E N F. See Figure [5.6
for a visual aid. Consider paths A (from  to x4 to p) and B (from 1 to z4 to
o). Since x4 is in £ N F, the lengths of both of these paths are no greater than
one. Supposing that z, is not already equidistant to p and o, then at least one of
A or B passes through such a point x4, after passing through x;. Suppose this
path is A. The point x4 will necessarily be no further from L than x4, and thus
D(zg) < D(zy). Tt is clear that a path of length at most one exists through x4 to
p, as this is the path that A is taking. However, since z4 is equidistant to p and

o, a path of length at most one exists from % to x4 to o. Therefore 2/, is in ENF.

We have shown that to minimize the length of C', both paths should pass through
a point equidistant to p and o and in the plane F'. Both g; and g, are such points,
and all such points in £ N F' are convex combinations of g; and go. Hence, one of
g1 or go is the required point in £ N F', and hence F, which minimizes D. Call
that point g. Since g is at an intersection point of F, and E,, the most trivial
paths to p and o through g already have length one. The length of the difference of
these two paths is equal to the minimized quantity D(g). Thus, the decompositions
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given by these paths give D" (p, o). This value must be greater than the length
of L, since we assumed that g did not lie on the line L. Thus p and o are not
reversibly distinguishable. Also, the paths (decompositions) lie in the plane F', and
are comprised of three pure states in total. O

Since the proof of the above claim was constructive, we can relatively easily
derive formulaic expressions for D (p, o) and the reversible distinguishability con-
dition. We first parameterize the relevant aspects of p and ¢ in polar coordinates.
Viewing p and o by their Bloch vectors, let a and b be the magnitude of these
vectors (magnitude 1 implies the state is pure, whereas magnitude 0 implies the
state is g), and let 6 be the angle between the Bloch vectors.

Firstly, the length of the line segment L between p and o is given by:

d = \/a® + b> — 2abcos(h). (5.47)

In the argument for the reversibly distinguishable case, we initiated A and B with
a line segment from % to L. The length of this line segment is minimized if we take
it to be the path perpendicular to L from %. A little bit of trigonometry will reveal
that the perpendicular distance from % to L can be written as
absin(6
e = 2bsin(®) (5.48)
d

The perpendicular line segment from % to L, which has length e, splits L into two
pieces which have lengths

— beos(f b(b — 0
_ala=beos(®) o Hb—acos(6)) (549
d d
Thus we know the line L lies in the ellipse intersection E' if
b . 9 o 0 2
ot f— ab(sin(6) ;OS( ) ta =1 (5.50)
and b(sin(6 0 v?
g O —cosO) +¥ (5.51)

d
If (5.50) and (5.51)) are satisfied, then the trace distance of formation is ¢ and

p and o are reversibly distinguishable in terms of the trace distance.

If (5.50) and (5.51]) are not satisfied then we need to calculate the intersection

point g of E, and E, which lies in the plane F' and minimizes D. Then the

distinguishability of formation will be %.
Appealing to ellipse equations [62], we can calculate the distance between the

intersection point g and p (or o), and hence the trace distance of formation, as

D(g)

D\ Jraton? + a2 — 2ar(or) coslm — o), (5.52)
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where

31— a?)
_ 2
rp(0) = 1 2 cos(d) (5.53)
is the radius-valued equation of the planar ellipse F,, and
b — a? b sin(0)
¢I — arccos ( d ) + arctan <m) (554)

gives the angle of the minimal intersection point g of £, and E,, and

d = +/a? + b2 —2a'V cos(f), d =a(l—"b%), and b = b(1 — a?).

An appealing question is whether or not we can derive simpler expressions for the
reversibility condition and for D" when it is not equal to D p. Such expressions
may come about through algebraic rather than geometric considerations.

5.3 Future Work

The study of distinguishability as a resource is a relatively new endeavour, and
many open problems remain. A most obvious immediate follow up to this work
would be to continue the characterization of the trace distance of formation to
arbitrary dimensional quantum systems. One could investigate further the shape
of the region of reversible distinguishability for a given distinguishability measure,
perhaps by considering e-balls around the maximally mixed state, or investigating
whether or not certain classes of states are always reversibly distinguishable or
always not.

Another interesting problem would be to study the relationship between dis-
tinguishability and compatibility [52]. With compatibility, we consider two parties
with different information about the exact same quantum system. Given their dif-
fering information, they may describe the system differently, with distinct quantum
states p and . Compatibility attempts to quantify the likelihood that the subjec-
tive states p and o could arise from the same true quantum state. In some sense
compatibility is inverse to distinguishability, but fully understanding the relation-
ship between the two notions could be mutually beneficial.
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Appendix A

Measure Theory

The following exposition on measure theory is derived from [21].

A.1 o-algebras

Let X be a non-empty set.

Definition A.1 (o-algebra). A o-algebra on X is a nonempty collection ¥ of
subsets of X such that:

e feXand X € X,
o if {£;}°, C X then |JZ, E; € ¥, and
o if £ €3 then F° € X,

where E€ is the complement of the set F.
Proposition A.1. The intersection of any family of o-algebras on X is a o-algebra
on X.

Since the power-set of X', P(X), is a o-algebra, if £ is any subset of P(X), then
there exists a unique smallest o-algebra, M(E), containing £.
Definition A.2 (Generated c-algebra). For any €& C P(X), define the o-algebra
generated by & as the intersection of all o-algebras containing &£.

A particularly important example of a generated o-algebra is the Borel o-

algebra.

Definition A.3 (Borel g-algebra). If X is a metric space (or any topological space),
then the o-algebra generated by the open sets (the topology) of X is called the Borel
o-algebra of X.
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For the purposes of defining a product measure later, we now define a product
o-algebra.

Definition A.4 (Product c-algebra). Let {X,}, .4
sets, with g-algebras »,. Define the product set as

X =] X = {(xa)aea | 7a € X, Va € A}, (A1)

acA

be a collection of non-empty

and the coordinate maps m, : X — X, ma((p)pea) = xo. Then the product o-
algebra on X is the o-algebra generated by the set

{7, (Ea) | Ea € 20, a € AY[Y (A.2)
We denote this o-algebra as ®qc42,.

A.2 Measures

Let X be a non-empty set with a o-algebra X.

Definition A.5 (Measure). A measure on X is a function p : ¥ — [0, 00] such
that

o u(®) =0,
o if {E;}°, is a sequence of disjoint sets in X, then u(U;E;) = Y, u(E;).

In the context of a measure pu, the elements of ¥ are called measurable sets,
the pair (X,Y) is called a measurable space, and the triplet (X, %, 1) is called a
measure space.

Definition A.6 (Finite / Probability Measures). If pu(X) < oo then pu is a finite
measure. In particular, if p(X) = 1, then u is a probability measure.

In the context of probability theory, a probability measure on a sample space
gives the probabilities of an event in some measurable set occurring. The support
of a measure in some sense indicates the subset of events that could possibly occur.

Definition A.7 (Support of a Measure). The support of a measure p is defined
as:
supp = {AA € Ny € ¥ = u(N,) > 0}.

Definition A.8 (Product Measure). Let X = [] ., A, be a product space with
a product o-algebra ®,c4>,, and u, a measure on &, for all a € A. The product
measure on X is the unique measure on X such that if £ € ®,c42, is expressible
as F = ®uealy,, where E, = X, for all but a finite set J C A then

p(B) = [T el By) (4.3)

jeJ

!The notation 7, !(E,) denotes the pullback of the set E, through m,. Thus it is the set
{(xb)vea | a € Eo}.
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A.3 Integration of Non-Negative Functions

Definition A.9 (Measurable Function). Suppose that (X}, %) and (X3, ) are
measurable spaces. Then f : X7 — A5 is a measurable function if E € ¥y implies
fYE) e

As an important example, suppose that X; = R and ¥, is the Borel o-algebra
on R. Then a measurable function f : X; — R is called a Borel function.

We now proceed to define integration for Borel functions. Let (X, %, ) be a
measure space.

Definition A.10 (Characteristic and Simple Functions). For any subset £ C X,
the characteristic function of E is the function

1 z€F
xe(x) = {0 i B (A4)

A simple function is any finite linear combination of characteristic functions of
measurable sets:

=1
for F; € 2, z; € R.

Integration on simple functions is defined easily, and the following result allows
the generalization to measurable functions.

Proposition A.2. If f: X — [0, 00| is Borel measurable, then there is a sequence
{fn} of simple functions such that 0 < f1 < fo... < f, and f, converges to f
pointwise and uniformly on any set on which f is bounded.

Definition A.11 (Lebesgue Integration of Simple Functions). If f = 7" | z,xg,
is a simple function, then the Lebesgue integral of f is given by

/Xf dp = Z zi(E;). (A.6)

Definition A.12 (Lebesgue Integration for Non-Negative Borel Functions). If f :
X — [0, 00| is Borel measurable, then we define the Lebesgue integral of f as

/fdy:sup{/gdu!0§g§f,gsimple}- (A7)
X X
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Appendix B

Probability Theory

We present here a simple exposition of some of the basic concepts and structures of
classical probability theory as originally given by Kolmogorov [42]. We also present
a generalization of classical probability theory called fuzzy probability theory [15],
which encapsulates the idea that a knowing a precise physical state may not induce
precise knowledge of an experimental outcome.

B.1 Classical Probability Theory

Classical probability theory concerns itself with the probability of occurrence of
events within a set € of possible events. A particular element w € € is called an
atomic event. A subset A € P()) (the power set of events) is also considered to
be an event; the event where any one of the atomic events w € A occurs. The set
of possibly occurring events A C P({2) is given by a o-algebra of subsets of Q. It
need not be the case that the singleton sets {w} are in A. If they are, the algebra is
called atomic. Due to the g-algebra A, it is possible to define a probability measure
on the space €. We can think the elements of {2 as being possible configurations
of some physical system, and the value p(A) prescribing the probability that the
system is in a configuration w € A. The measure p represents ignorance of the true
configuration of the system.

We can now imagine performing an experiment on the system which has out-
comes occurring in the set I. Suppose the set I also comes equipped with a o-
algebra B. Consider any function f : {2 — [ from the event space to the outcome
space. The function f is called measurable if whenever B € B, then f~!(B) € A.
Here, f~! does not denote the functional inverse, but the pull-back operation i.e.
fYB) ={w € Q|f(w) € B}. Given a measure p on €, such a function f is called
a random variable. In the context of physics, f is also known as an observable; each
observable assigns properties to the configurations of the system. If f(w) = e, then
we say that the configuration, or state, w has the value e for the observable f.
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Notice that p induces a probability distribution & on I via f:

AB) = u(f~1(B)). (B.1)
The function [ is called the distribution of the random variable f. The distribution
it is also known as an effect. An effect is typically a function which assigns a
probability to an outcome of an experiment given a certain state of the system. In
the case of classical probability theory, the state of the system is encompassed by

the measure u, and the experiment is given by f, whose outcomes lie in /. Thus
we write the effect as By p(u) = p(f~1(B)).

B.2 Fuzzy Probability Theory

Classical probability theory is certainly a useful tool to reason about uncertainty
in physics. However, in some senses it is still an idealization. The assumption of
applying classical probability theory to physics is that all the uncertainty lies in
knowledge, or lack-thereof, of the current configuration of the system. However, if
w € () is known precisely, then the outcome of any observable f is known precisely.
In a physical experiment, it is reasonable to assume that there may be errors in
measurement, procedure. If the causes of these errors are not specifically modeled,
or if there is simply a fundamental inability to measure precisely, then mapping a
specific configuration w to a specific outcome e is an over-simplification.

Bugajski and collaborators present in [15] a framework to account for such im-
precise measurement scenario. Instead of an observable associating configurations
in Q with particular outcomes in I they suggest an association with a probability
measure on the outcome space, K : @ — M7 (I). In the context of a specific ob-
servable K, each actual configuration is associated with a set of possible outcomes,
and a probability distribution over those outcomes. K can also be viewed as a
bivariate function K : Q x B — [0, 1] called a Markov kernel. As a function on £,

Kp(w) is known as an indicator function. The set of indicator functions on a set
S, {f:S —[0,1]}, is denoted by [0, xs].

The standard classical observables of the previous section can have their coun-
terparts as Markov kernels. If f : 2 — [ is a classical random variable, then its
counter part is K/ (w, B) = xj-1(p)(w) = d,(B) € {0,1}. Notice that the Markov
kernel for a classical random variable is idempotent (takes on values 0 or 1). These
random variables, and the corresponding indicator function / Markov kernels are
referred to as sharp. If the indicator function of K takes on values between 0 and
1, then it is referred to as fuzzy. Under reasonable assumptions about the spaces 2
and I, and assuming that both A and B are atomic, then the set of sharp indicator
functions are the extreme points of the convex set [0, yq] [15].

In the fuzzy probability framework, we again have a concept of the distribution
of a random variable,

i(B) = | K(w.Bduw) = Bralp) (B.2)
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where the effect corresponding to fuzzy random variable K and outcome-set B has
also been defined.
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Appendix C

Zero Lemma

Claim C.1. If fogf(a,ﬁ)g(a) = 0 for all 0 within a domain D = [0,b], f(a,0) is
positive and continuous within this domain, and g(«) is piece-wise continuous, then

g(la)=01in D.

Supposing this was not true, then there would be some oy € (0,b) such that
g(ap) # 0. W.lo.g, let us assume that g(ag) > 0. Then as long as g is at least
piece-wise continuous, then there is a small region § = (a,t’) C D with o € J such
that g(9) > 0. Then

f(a,0)g /fa0 f(a0>()

0

=0+ f(Oéﬁ)() >0

a

which is a contradiction.
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Appendix D

The Role of Contextuality of
Protocols with a Quantum
Advantage

D.1 Random Access Codes

A known example of the advantage of quantum information processing over classi-
cal information processing is with respect to the random access code task [2], 24].
Suppose that participant A has a string of m uniformly random bits, and wishes to
send participant B n bits (n < m) such that B can learn any one of the original m
bits that he chooses. A has no a priori knowledge of which of the m bits B might be
interested in. Of course, this is impossible to do since the m-bit string is uniformly
random and A can only send n < m bits. The goal is to find a protocol which
maximizes the probability that B is able to correctly learn the value of a single bit
that he chooses. Such a protocol as described is called a m — n random access
code.

In [2, 24] it is shown that using classical bits, the optimal 2 — 1 random
access code protocol has a probability of success of p. = %. Note that this is
the probability of success averaged uniformly over the 2™ possible inputs to the
protocol, and uniformly over the m possible choices B could make. As presented in
[2, 24], there exists a quantum protocol in which two bits are encoded into 1 qubit
(a 2 — 1 quantum random access code (QRAC)) which has a success rate beating

the optimal classical success rate. This is reproduced here.

Depending on her input, b = byb;, A prepares one of 22 = 4 states:

Yoo = |55 X5 5|
v = |2 5K 5 .
¢:‘5_7r£><5_7r£‘ <)
1 472 402
vio=| T3 XT3



She then sends the state ¢, to B. If B wishes the know the value of first bit, by, he

[+2>

B

2>

Figure D.1: The four states of the 2 — 1 QRAC protocol depicted on the Bloch sphere.

measures the state he receives along the y-axis i.e with the PVM
{15:5X551 155X 551}

If the first outcome occurs, B guesses that by = 0, and if the second outcome occurs,
B guesses by = 1. Similarly, if B wishes to know the value of the second bit, he
measures along the z-axis. In both cases, given the state that A has sent, B’s
probability of receiving the measurement outcome which allows him to guess the
correct bit-value is p, = cos*(%) &~ 0.85 > 3

)

In Galvao’s doctoral thesis [24], he makes an argument for why the above per-
formance can be attributed to the contextuality of quantum theory.

D.1.1 Galvao’s Necessity of Contextuality for QRAC

Firstly, recall that an experiment which verifies the non-locality of quantum theory
is also an experiment which verifies the measurement contextuality of quantum
theory[2.3.3] Galvao takes advantage of this fact by showing that the above protocol
can be performed in a manner which is akin to an experiment which would violate
a Bell inequality.

Participant A could prepare the states (D.1) for B by initially preparing the
state

1
E(\OO)—HH)) (D.2)

on two qubit systems. If she wants to prepare the state corresponding to b = 00
or b = 11, she measures the first qubit of (D.2)) with the PVM given by {0, ¢11}-
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If she gets the first outcome then by properties of the state , she knows that
the second system is in the 1)y, state and if she gets the second outcome, she knows
that the system is in the 1)q; state. If either one of the outcomes is the opposite
of what she wants to prepare for B, she performs a rotation (by 7 with respect
to the x-axis) which puts the second qubit in the intended state. She can prepare
the states corresponding to b = 01 and b = 10 strings via a similar procedure i.e
measure the PVM {v1, %10} and perform a conditional rotation. The resulting
second system is then sent to Bob, who performs the measurement that he wishes.

Galvao argues that the procedure is statistically equivalent to the following.
Alice and Bob start with the state (D.2)) 50% of the time and start with state

1
V2

50% of the timd'} Alice then performs a measurement on the first subsystem in one
of the two bases mentioned above. Bob measures the second subsystem in either
the z or the y basis. Notice that these two measurements for A and B each are
precisely the measurements required to maximally violate the Bell/CHSH inequal-
ity 2.3.2l Thus, if statistics of outcomes are compared for the cases when they
started with (D.2)and separately for the cases when they started with (D.3), then
they will find that for the separate cases, their statistics will violate a Bell/CHSH
inequality, and thus they will have demonstrated contextuality. Since the particular
QRAC protocol presented can be viewed as CHSH experiment in this fashion, and
the success rate for this protocol mimics the statistics of a Bell/CSHS inequality
violation, then Galvao’s conclusion is that the success of the QRAC protocol is due
to the contextuality of quantum theory.

(100) = [11)) (D.3)

D.1.2 A Counter-Argument to Galvao’s Analysis

The following seemingly straightforward criticism of Galvao’s argument has not
been found in the literature. However, it is clear that although A may prepare the
states as Galvao indicates, it is not necessary. That is, A is not forced to use
a bipartite quantum state (a state in Hy) in order to perform the protocol. She may
instead simply have access to only qubit states which she can prepare and send to
B. In a setup where A is restricted to only single qubits at a time, she and B can
still perform the protocol properly. Thus the contextuality of Q is not necessary.

D.2 Parity-Oblivious Multiplexing

In his paper on generalized contextuality [59], Spekkens hypothesizes that contextu-
ality may be responsible for some advantages that quantum information processing

I This is because on half of the runs through the random access code protocol Alice will perform
the rotation on the second system. This rotation, applied to state (D.2) gives (D.3)).
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has over classical information processing. In a subsequent paper [60], Spekkens de-
scribes an information process task called parity oblivious multiplexing (POMP
henceforth). It is proven that an operational theory for which a better-than-
‘classical’ protocol exists must be preparation contextual.

The task is as follows. Two parties A and B wish to pick a protocol which max-
imizes their success rate for a goal while maintaining a restriction on information
available to B. In particular, the first party, A, receives a random n-bit binary
string ¥y = Y192 . .. yn € {0,1}". A can then send any message m to a second party
B, as long as the message does not allow B to gain any parity information about .
That is for every binary string s € {0, 1}" such that the Hamming weight (number
of 1s) of s is greater than 1, B may not gain any information about s -y (the inner
product of the binary strings, mod 2). By information, it is meant that having
received m and performed any possible measurement on it, B must not have a bet-
ter than 50% change of correctly guessing the parity of m with respect to any valid
s. Having received the message m, B then also receives a random value 2 € 1...n.
The protocol is successful if B correctly outputs the binary value of y;.

It is shown in [60] that the best classical (involving classical bits) protocol is to
have A send one agreed upon bit of y, say m = y;. If B receives the random value
1 = 1, then m is output. Otherwise B outputs 1 or 0 at random. The probability

3

of success is p, = % + an1% = ”2—21 In the case of n = 2 POMP, this gives p. = 1.

There exists a quantum protocol for n = 2 POMP, which exactly mimics the
QRAC protocol. Truly, the only difference in the protocol is that B’s choice for
which bit to learn is given randomly, not chosen by B. In terms of the goals of the
task, the difference is that there is information which B must not learn, namely any
parity information of the input string y. Again, the success rate of the quantum
protocol for POMP is p, = cos?(%) ~ 0.85 > 2.

The main result of [60] is a derivation of an upper bound on the success rate of
any preparation non-contextual operational theory used to perform a POMP pro-
tocol. Suppose we have an operational theory (P, M, I, Pr). With this operational
theory, A and B can formulate a POMP protocol. Given an input y, A will perform
a preparation P, on the system &. The system will be sent to B, who upon receiving
input integer ¢ will perform measurement M; on S. Given that B must decide on a
value 0 or 1, this implies that M; is essentially a two-outcome measurement, which
we will label £ = 0 and £ = 1. The k outcome indicates that B guesses y; = k.
Thus the probability of success for this protocol in given operational theory is

S 3 PP, M) (D.4)

y€0,1™ =1

This protocol is parity-oblivious if Vs € {0,1}" and V(M, k) € M x I

> Pr(P,|k, M) =) Pr(P,|k, M) (D.5)

s-y=0 sy=1
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where Pr(P,|k, M) is calculated by Bayesian inversion. It is then assumed that
(P, M, I,Pr) has a convex and preparation non-contextual ontological model (A, y, £).
In such a framework, it is proven that the optimal classical bound (p. = %) is an up-
per bound on the success rate. Thus, preparation contextuality must be necessary
in order to beat the classical bound. Of course, a quantum protocol exists which
beats this bound, thus the analysis of [60] counts as another proof of preparation
contextuality.
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