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Abstract

A robust computational framework is presented for the risk-neutral valuation of capital

guarantees written on discretely-reallocated portfolios following the Constant Proportion

Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic)

cases where analytical results are unavailable, this framework accommodates risky-asset

jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and

autonomous CPPI floor trajectories. The two-asset state space representation developed

herein facilitates visualising the CPPI strategy, which in turn provides insight into grid

design and interpolation. It is demonstrated that given a deterministic process for the

risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial

integro-differential equations (PIDEs). This formulation’s stability and monotonicity are

studied. In addition to making more sense financially, the limited borrowing variant of

the CPPI strategy is found to be better suited than the classical (unlimited borrowing)

counterpart for bounded-domain calculations. Consequently, it is demonstrated how the

unlimited borrowing problem can be approximated by imposing an artificial borrowing limit.

For implementation validation, analytical solutions to special cases are derived. Numerical

tests are presented to demonstrate the versatility of this framework.
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ḡ`,j Probability used in FFT interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i Grid index (abscissa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

J Operator representing jump dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Jt Magnitude of a jump from St− to JtSt− at time t . . . . . . . . . . . . . . . . . . 15

j Grid index (ordinate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

K Number of CPPI portfolio reallocations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

k Reallocation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

L Operator representing jump-free dynamics . . . . . . . . . . . . . . . . . . . . . . . . 18

(LA)t Comp. of cont. CPPI dyn. that will not (a.s.) cause a shortfall . . . . 56

(LB)t Comp. of cont. CPPI dyn. that will (a.s.) cause a shortfall . . . . . . . . 56

` Dummy index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

Mj,k LHS matrix of the 1D PIDE’s fully implicit discretisation . . . . . . . . 39

m CPPI multiplier (leverage factor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

N Set of FFT indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

n Timestep index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

PQ Risk-neutral probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

p(J) Probability density when Jt is lognormally distributed . . . . . . . . . . . . . 16

Q Risk-neutral probability measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

r ‘Risk-free’ interest rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

re Relative error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

rl Grid refinement level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

S State variable for value of risky component in CPPI portfolio . . . . . 6

S? Dummy state variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

SAk\ The abscissa of Ak\ at B = Bk
min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

T Investment horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

t0o Instant of initial CPPI portfolio allocation, corresponding to t = 0 . 7

tko Instant of the kth CPPI portfolio reallocation . . . . . . . . . . . . . . . . . . . . . 7

tk
−

o The instant before tko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

tk
+

o The instant after tko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

tK+1
o Instant of CPPI portfolio liquidation, corresponding to t = T . . . . . . 7

t̄ Dummy variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

t? First instant when C̄t goes negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

u Dummy variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

xiii



List of symbols

Latin symbols (continued)

VI Risk-neutral expected value of a CPPI portfolio with guarantee . . . 7

VJ Risk-neutral expected value of a CPPI capital guarantee . . . . . . . . . . 23

VL Risk-neutral expected liability to a CPPI guarantor . . . . . . . . . . . . . . . 7

V Generic representation for VI , VJ and VL . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vk Generic representation of kth stage solution (with deferred interest) 19

vni,j Discretised version of vk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v0(W0, 0) The solution to V for initial wealth W0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v̄k vk, as a function of Xk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

W Wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

W0 Initial wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

W k+

min Minimum wealth provided by kth grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

W k+

max Maximum wealth provided by kth grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Xk CPPI analogue to strike price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

z Generic scale factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . —

xiv



List of symbols

Greek symbols

αi,j Leftward finite difference coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

βi,j Rightward finite difference coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

γ Scaling parameter when Jt is lognormally distributed . . . . . . . . . . . . . . . . . . . . 16

∆x FFT grid spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

∆τ Finite difference timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

δ Time between observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ζ Shorthand for Jt − 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

θJ Timestepping selector for discretisation of J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

κ Shorthand for EQ {Jt − 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

λ Risky asset jump parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

λ? Failure rate of C̄t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

µ Location parameter when Jt is lognormally distributed . . . . . . . . . . . . . . . . . . 16
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1 Introduction

1.1 Overview

Capital guarantees are structured investment products that provide (typically leveraged)

exposure to upside risks, and limited exposure to downside risk, with a portfolio insurance

feature that guarantees a minimum portfolio value at maturity [31]. Consequently, such

instruments offer an investor the safety of a bond during falling markets and the earning

potential of a leveraged equity portfolio during rising markets [6]. This arrangement appeals

to investors with low risk tolerance, or with a bearish outlook over the term of the contract.

On the other side of the deal, the counterparty acting as guarantor faces a liability when

at the product’s maturity the value of the managed portfolio falls short of the guaranteed

amount. Banks issuing this product will as a result charge a premium that (ideally) fully

offsets this risk. In this work we will study the pricing of these premia for the class of

capital guarantees that are structured using a Constant Proportion Portfolio Insurance

(CPPI) strategy.

The issuer is able to offer such a service by, at the outset of of the contract, constructing

a portfolio to superreplicate the guaranteed amount at maturity. In other words, the

maturity value of the portfolio—under all market movements—should be worth at least as

much as the guaranteed amount. One approach is for the issuer to buy a zero-coupon bond

worth the guaranteed amount at its maturity, and then invest the rest of the endowed wealth

in the risky asset or a contingent claim written thereon [31]. However, such a buy-and-hold

strategy could easily be executed by the client without professional wealth management.

Moreover, this static strategy fails to react to changing market conditions.

A more sophisticated approach would be to use a dynamic allocation strategy [42],

where the portfolio’s composition is monitored and adjusted accordingly. Such control is

beneficial because otherwise, as a portfolio’s constituent assets evolve, the portfolio will

deviate in trajectory from the investment goal. The CPPI strategy belongs to this class,

and its optimality is examined in [29, 10, 23] and other references therein. We stress that

the aforementioned strategies are predetermined and algorithmic, as opposed to those where

a portfolio manager reallocates as needed, based on their own outlook and revisions thereof.
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1.1. Overview

The two assets comprising a CPPI portfolio are (i) a risky asset, typically an equity fund

or index; and (ii) a risk-free asset, such as a position in a sovereign zero-coupon bond. Of

course, no financial asset is truly free of risk. CPPI contracts have also used funds-of-funds,

credit products [37] and commodities [36] for the underlying risky asset. Different asset

classes will naturally have different modelling requirements.

The CPPI strategy is attributed to Perold [41], with seminal papers by Black and

Jones [7], Perold and Sharpe [42] and Black and Perold [6]. A classical CPPI contract

specifies a constant leverage multiplier (also known as a gearing factor), and a guaranteed

amount (floor). At each adjustment, the allocation strategy considers the difference, or

cushion, between the portfolio’s value and the discounted floor. If the cushion is positive

then the risky asset exposure is set equal to the product of the cushion and the multiplier.

Otherwise, the strategy is deemed to be knocked-out [37] (alternatively, closed-out [13]) and

the risky asset exposure is set to zero. Leveraged upside exposure is achieved by choosing

a multiplier greater than 1. A self-financing condition dictates that any surplus portfolio

value (or debt) be invested in the risk-free asset. Consequently, CPPI strategies can dictate

a short position in the risk-free asset. At expiration the investor’s payoff is the larger of

the guaranteed amount and the portfolio value. Conversely, the guarantor’s liability is the

difference between the guaranteed amount and the portfolio value, if a shortfall exists.

For a capital guarantee based on a CPPI-managed portfolio, the premium charged by

the issuer at the inception of the contract should compensate for (i) the costs of managing

the CPPI portfolio, and (ii) the risk assumed by its obligation to cover any shortfall. In the

literature the second item is called the CPPI gap risk, and can be attributed to sudden,

steep drops in the risky asset value occurring before the portfolio manager can rebalance the

portfolio. One measure of gap risk is the present value of the claim’s risk-neutral expected

shortfall. This quantity represents the cost of hedging the gap risk. If a bank underestimates

the magnitude of this risk (through model error) then it could end up in a position where

the premium charged is insufficient to defray the knock-out liability. Such a scenario can

also occur if the financial institution underprices its product in order to be competitive.

Recent works demonstrate that the gap risk is non-negligible for discontinuous risky

asset time series [15] or when the CPPI portfolio is rebalanced infrequently [4]. These

results show that the ‘PI’ in CPPI is a misnomer: in practice a CPPI strategy has a

probability of failure that should not be neglected from the risk assessment, and it is the

premium—rather than the CPPI strategy itself—that mitigates shortfalls. However, until

lately, most articles in the CPPI literature used the same Black-Scholes-Merton assumptions

prevalent when portfolio insurance was first introduced: (i) perfect liquidity, (ii) perfect unit
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1.2. Contributions of this thesis

divisibility, (iii) continuous reallocation, (iv) free transactions, (v) asset price continuity and

(vi) constant market volatility. As noted in [15], such conditions also lead to the dubious

result that the expected portfolio value can increase unboundedly with the leverage factor.

Indeed, these classical assumptions (especially (v) and (vi)) are now regarded as overly

simplistic.

Following the papers of Cont and Tankov [15] and Balder et al. [4] there has been renewed

CPPI research activity. In [12] Brandl continues his work from [4], developing a discrete-

reallocation model that accommodates borrowing limits, triggered reallocation, transaction

costs and variable CPPI floors for the jump-free case. These extensions are achieved using

Laplace transforms. Jessen [26] has developed a gap risk model that incorporates discrete

reallocation, jump diffusions, transaction costs, profit lock-in and borrowing limits. Her

results are obtained through Monte Carlo simulations. In [39] and [40] Paulot and Lacroze

examine conditions under which CPPI-based claims can be formulated as a Markov process

in one variable.

Despite these developments, the CPPI gap risk literature lags behind the products used

in industry. Since 1986, practitioners and academics alike have proposed numerous variants

of the classical CPPI strategy, with features such as borrowing limits, volatility caps [37],

management fees, minimum exposures, early exercise, variable gearing factors, and floor

ratcheting (profit lock-in) [13]. Other exotic variants are presented in [36]. Of the ones

listed, only the first three can be classified as directly lowering the guarantor’s gap risk.

This is where we focus. The others serve to improve the investor’s expected return, with

the consequence of the guarantor assuming even more gap risk—and being able to charge

a larger premium for this service. Our objective for this work is to develop a framework

versatile enough to accommodate guarantees on a diverse range of CPPI variants.

1.2 Contributions of this thesis

The focus of this work is the development of a mathematical framework for computing the

fair-market values of capital guarantees written on CPPI-style portfolios. This is useful

to consumers, guarantors and regulators alike. Our treatment of CPPI gap risk is not the

first, but it aims to be the most versatile. The CPPI gap risk papers described previously

consider special cases under which a CPPI product can be calculated analytically or with

minimal computation; in this thesis we take a contrary philosophy, proceeding with minimal

assumptions about the contract or the underlying model. In summary:
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• We present a general-purpose numerical framework for pricing claims on a CPPI

portfolio. Our design permits

– discrete reallocation, with apparent convergence to the continuous case,

– nonuniform reallocation schedules,

– underlying risky assets with finite-activity jump discontinuities,

– any deterministic risk-free rate function,

– any deterministic CPPI floor function (defined by either an equation or a table

of values),

– volatility surfaces, and

– absolute limits on borrowing.

• We demonstrate that our framework is consistent with special cases from the literature.

• We design a time-varying sequence of computational grids with efficient convergence

in mind. Additionally, we consider the construction of these grids for situations where

a similarity extrapolant (in the sense of [47]) is not appropriate.

• We demonstrate that CPPI products with borrowing limits make sense both financially

and computationally.

1.3 Economic relevance

CPPI-based capital guarantees have significant market presence and are of regulatory

interest. Regarding the first point, we cannot quote a worldwide figure, owing to the

diversity of products and the reluctance of banks to disclose their structuring strategies.

Rather, we demonstrate CPPI prominence locally. In Canada, capital protected products

are classified as segregated funds and market-linked instruments [34]. Segregated funds

are payable upon death and are discussed elsewhere; our interest is in the latter product,

where the maturity is contractually specified. Market-linked instruments are also known as

market-linked guaranteed investment certificates, principal protected notes (PPNs) [34] and

deposit notes on principal protected products [1]. In [24] it is estimated that of active PPNs

in March 2005, 24% were written on hedge funds, and at one time this segment alone was

managing $7.7 billion in assets. By November of 2006, the entire Canadian PPN industry
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1.4. Outline

was controlling $14 billion, up from $1.9 billion in 2001 [9]. Furthermore, we have on the

authority of practitioners that CPPI is a leading management strategy for Canadian [34, 9]

and British [37] capital guarantees.

As to the second point, structured capital guarantee products have attracted criticism

and the attention of regulators. A portfolio managed by a CPPI strategy decreases its risky-

asset exposure when the underlying equity decreases in value. In the event of a significant

negative market shock, such a ‘buy-high, sell-low’ strategy dictates selling that further lowers

the price. This positive feedback behaviour can lead to a downward spiral unless checked

by other market forces. Part of the blame for the 1987 stock market crisis was assigned to

this same behaviour when it was exhibited by another portfolio insurance strategy; later

analysis has since advocated a weaker verdict of “not proven” [32]. More recently, a 2007

report the Organisation for Economic Co-operation and Development (OECD) identified

the gap risk of CPPI and related structured products as a “potential stability issue” and

“a major area of policy interest” [8]. The Bank of England elaborates, recognizing that

CPPI-backed guarantees have several consequential, interconnected drawbacks that can

affect financial stability in a manner contrary to the product’s advertised objective [37].

This same authority did not find the positive feedback effect of CPPI strategies to be

gravely detrimental during market upheaval in 2007; however, it was noted that this may

have masked price signals. Other reported concerns are (i) calibration error, (ii) issuers

experiencing higher-than-expected volatility and therefore incurring more gap risk, and

(iii) the scarcity of hedging instruments leading to deliberately imperfect hedges. These

issues deserve attention, and while our design cannot address all of them, it can aid the

sensitivity analyses of exotic CPPI claims.

1.4 Outline

The remainder of this thesis is organised as follows. In Chapter 2 we lay a mathematical

framework for describing this problem, and then recast the problem in a form that is easier

to solve. This leads into Chapter 3, where we discretise the problem so that it may be

solved on a computational grid. Here we also study our numerical approach’s convergence

properties. In Chapter 4 we derive analytical results for a few special cases of this problem.

In Chapter 5 we present our numerical results and validate them against the results obtained

in the previous chapter. This is followed by concluding remarks and suggestions for future

work in Chapter 6.
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2 CPPI with jumps and discrete reallocation

A capital guarantee can be viewed as a contingent claim; our ultimate objective is to price

contingent claims written on a discretely-reallocated CPPI portfolio. In this chapter we

introduce a state space framework for describing CPPI portfolios and their discrete-time

reallocation dynamics. From this, we model the payoffs and inter-rebalancing dynamics

of a CPPI claim. The resulting system is transformed into a system of one-dimensional

partial integro-differential equations (PIDEs) which in between reallocations can be solved

in parallel.

2.1 Preliminaries

Before we mathematically model the discrete-time CPPI strategy (Section 2.2) and charac-

terise the CPPI capital guarantee (Section 2.3), let us first introduce some notation.

2.1.1 Notation

Modelling a discrete-time version of the CPPI strategy described in Section 1.1 requires

notation for the observation times, guaranteed amount and the CPPI portfolio’s composition.

Our approach differs from that of Balder, Brandl and Mahayni [4]: we track the values of

the CPPI portfolio’s constituent assets rather than the units held of each.

Recall that at time t = 0 an investor endows their portfolio manager with initial wealth

W0 > 0. This capital is immediately invested to create a two-asset portfolio consisting of

1. a risky, liquid stock or index fund worth S(t) at time t, and

2. a risk-free, fixed-income asset worth B(t) at time t.

Models for these assets’ dynamics will be introduced in Section 2.4. It follows that at any

time t the portfolio has a value W (t) ≡ S(t) +B(t).
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To represent the contractually predetermined observation times we partition the invest-

ment horizon [0, T ]. Denote this partition by
{
tko
}K+1

k=0
, such that

t0o ≡ 0 < t1o < t2o < . . . < tK−1
o < tKo < tK+1

o ≡ T.

By this notation, the CPPI strategy is initially applied at the allocation event t0o and

reinforced at each of K reallocation events. Finally, at the payoff event tK+1
o the portfolio

is liquidated and the proceeds are paid to the investor. The observation times need not be

uniformly spaced.

We introduce the function F (t) to represent the value of the CPPI floor at time t. This

allows us to study cases where this reference value behaves independently of the risk-free

asset. The values of the CPPI floor at each observation time are defined contractually;

FT ≡ F (T ) represents the guaranteed amount of the CPPI claim at maturity.

For convenience, we employ the following notation:

• Sk−≡ S(tko− ε) to represent the risky asset exposure at the instant before reallocation;

• Sk ≡ S(tko) to represent the risky asset exposure at the instant of (re)allocation;

• Sk+≡ S(tko + ε) to represent the risky asset exposure at the instant after (re)allocation.

The same conventions apply to tko, B, W and F . However, F k− = F k = F k+ since F is

contractually defined and is not affected by reallocation.

2.1.2 State space

In this work we use the ordered pair (S,B) to represent the composition (or state) of the

CPPI portfolio at any given time. Since the strategies we will consider prohibit short stock

positions but do allow borrowing money, our state space is situated within

Ω ≡
{

(S,B) ∈ R≥0 × R
}
.

Our objective can now be stated as determining the t = 0 value for the functions VI(S,B, t)

and VL(S,B, t), respectively representing the risk-neutral value of a CPPI claim to an

investor and the risk-neutral liability of this claim to the guarantor. Apart from the payoffs

introduced in Section 2.3 and the boundary conditions of Section 3.2, these claims behave
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2.2. Discrete-time reallocation strategies

identically, and thus in the following sections we will often treat them collectively as V .

Later in this chapter we will show a parity relationship between these two functions, so

that it is only necessary to compute one of them.

Remark 2.1.1. Our choice of state variables is natural and intuitive for describing this

problem, but there are other, less apparent alternatives that simplify computation. Indeed,

in Section 2.5 we will apply a state space transformation for this very reason.

In some special cases it is possible to use a scalar state variable; other authors track the

cushion process (S(t) +B(t)− F (t)) and the discounted cushion process [15]. The tradeoff

is that it is no longer straightforward to impose important position-dependent features such

as borrowing restrictions and local volatilities.

2.2 Discrete-time reallocation strategies

We complete our discrete-time CPPI model by describing how portfolio compositions

are altered at each reallocation. In the literature equations of this type are called jump

conditions. It is these dynamics that characterise the CPPI strategy. In addition to the

classical CPPI, we will also develop jump conditions for a variant with borrowing restrictions.

The following introductory observations are common to both flavours of CPPI claim.

When executing a discrete-time CPPI strategy, the observation instants
{
tko
}K
k=0

are

met in ascending order, and the asset allocation at each tk
+

o is a result of the state at tk
−

o .

However, using a dynamic programming approach to price a CPPI-backed capital guarantee,

we solve the problem backwards in time from T , and thus these observation events are met

in descending order. Therefore the values of the pricing function V at tk
−

o depend on the

information at tk
+

o .

The discrete-time strategy, as we model it, prescribes what amount of the total wealth

should be invested in each of the assets. In practice, these proportions would be converted

into the number of units to be held for each asset. These values are calculated using the spot

prices at tko, and then held constant until tk+1
o . In contrast, the portfolio value will fluctuate

over this interval, and it is this that necessitates reapplication of the control strategy. It is

assumed permissible to hold each asset in any quantity, including fractional units.

The self-financing condition, along with the assumptions that rebalancing is achievable

(i) instantaneously without affecting the market price, and (ii) without transaction costs,
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implies that wealth is conserved at each allocation adjustment. We express this symbolically

as

W k− = W k = W k+ , (2.2.1)

or alternatively as

Bk− + Sk
−

= Bk+ + Sk
+

. (2.2.2)

Moreover, the value of a claim written on a wealth-preserving instrument should also remain

unchanged across rebalancing instants. We therefore have the general jump condition

V (Sk
−
, Bk− , tk

−

o ) = V (Sk
+

, Bk+ , tk
+

o ).

CPPI strategies prescribe a portfolio reallocation to the state (Sk
+
, Bk+) based on the

old state (Sk
−
, Bk−), for each reallocation instant tko. A significant consequence of this is

that only the information on the (re)allocation locus
{

(Sk
+
, Bk+)

}
is propagated backwards

in time at tko—all other information is discarded. This does not mean that we can ignore all

other states in Ω, since the inter-observation dynamics will still require this information (as

will be seen in Section 2.5). However, in solving the system at tk
+

o , we want our calculations

to achieve the highest accuracy on the kth allocation locus, and this requires knowing the

shapes of the loci in this family. The next section explains and examines Sk
+

and Bk+ for

the classical CPPI claim. The section after that will repeat the analysis for a CPPI variant

where borrowing is restricted.

2.2.1 Classical discrete-time CPPI jump conditions

Recall from Section 1.1 that the new risky-asset exposure Sk
+

depends on the state of the

cushion—the surplus portfolio wealth W k = Sk
−

+ Bk− with reference to the prevailing

CPPI floor value, F k. So, formally stated, the cushion value used to make the reallocation

decision at time tk
+

o is the quantity (W k − F k). Based on this, a portfolio following the

classical CPPI strategy falls in one of two classes.

In the positive-cushion case, Sk
+

is set proportional to the cushion by a leverage factor

m > 1. Since the strategy is intended to be self-financing, excess wealth (or debt) is
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2.2. Discrete-time reallocation strategies

allocated to Bk+ . This yields {
Sk

+
= m(W k − F k)

Bk+ = W k − Sk+
.

This strategy will typically result in a position in S that is larger than the current portfolio

value, thus necessitating a negative position in B. This represents borrowing.

If, on the other hand, the cushion is negative then all wealth is invested in B. In this

case, the prescribed reallocation is given by{
Sk

+
= 0

Bk+ = W k
.

Combining these cases results in the following sequence of mappings, at (re)allocation

instants t0o through tKo , and for all states (S,B) in Ω, setting W 0 = W0:
V (Sk

−
, Bk− , tk

−
o ) = V (Sk

+
, Bk+ , tk

+

o )

W k = Sk
−

+Bk−

Sk
+

= m ·max
{
W k − F k, 0

}
Bk+ = W k − Sk+

. (2.2.3)

As a consequence of (2.2.3), at any reallocation instant tko, all discrete-time CPPI

portfolios with the same wealth W k will be rebalanced to the same CPPI-prescribed

portfolio, also worth W k. A case-wise manipulation of (2.2.3), substituting (2.2.1) and

(2.2.2), yields the following characterisation of the jump condition mappings’ images:

Ak ≡ Ak| ∪ Ak\, (2.2.4)

where Ak| ≡
{(
Sk

+

, Bk+
) ∣∣∣ Sk+ = 0, Bk+ < F k

}
and Ak\ ≡

{(
Sk

+

, Bk+
) ∣∣∣ Sk+ > 0, Bk+ = F k − m−1

m
Sk

+
}
.

We will call (2.2.3) the kthclassical reallocation mapping, denoted by fk : Ω→ Ak.
A representative example of the locus Ak is illustrated in Figure 2.1. The vertical segment

Ak| corresponds to the negative-cushion states, and the oblique segment Ak\ corresponds to

positive-cushion states following the normal CPPI allocation strategy. The arrows illustrate
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Figure 2.1: Image of a typical classical reallocation mapping, for F k = 150 and m = 2.5.

Portfolios with W = 600 reallocate to (1125,−525) which is not shown.

that portfolios of the same wealth are reallocated identically. Portfolios (Sk
−
, Bk−) with

wealth greater than F k and below the oblique segment are rebalanced so that a smaller

proportion of the wealth is allocated to the risky asset. Conversely, portfolios situated above

the oblique segment are rebalanced to take on increased risk. A property of this strategy

is that short stock positions are not prescribed. Furthermore, risk-free positions worth

more than the prevailing CPPI floor value are not attainable at the instant of rebalancing,

although they may later exceed the CPPI floor through appreciation.

Further examination of Figure 2.1 reveals that any portfolio (Sk
−
, Bk−) with wealth

greater than 510 will reallocate to a portfolio outside the bounds of this plot1. As will

be seen in Section 3.5, a qualification of our numerical algorithm (stemming from our

model in Section 2.4.4) is that solving for a portfolio on Ak requires information from the

region above Ak. Hence, iteratively applying these forward mappings causes our analytical

domain of dependence to grow unboundedly. One workaround is presented in Section 3.3.2,

involving a special-case relation between portfolio values. Another option is to impose an

1More precisely, fk is an expansive mapping (in an L2 sense) when restricted to the region above Ak.

This can be verified using Figure 2.1 and geometric arguments.
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2.2. Discrete-time reallocation strategies

artificial borrowing limit (i.e. a lower bound) on the amount that can be borrowed.

2.2.2 Limited-borrowing discrete-time CPPI jump conditions

For this variant on the classical CPPI strategy the contract is modified so that there is a

lower bound B̂k on the CPPI-prescribed risk-free position Bk+ . If B̂k does not vary with k,

then the borrowing limit is fixed. Otherwise, the borrowing limit is variable. As a special

case of the latter, the borrowing limit is floating if F k − B̂k does not vary with k. Note

that B̂k only makes financial sense if it is less than F k. A negative value of B̂k corresponds

to a borrowing limit.

There are two reasons why this modification is an improvement over the classical

CPPI contract. Firstly, limiting leverage has value from regulatory and risk management

standpoints. For example, laws exist that prohibit capital guarantees written on a mutual

fund from exceeding 100% equity exposure [36]. This corresponds to a fixed borrowing limit

of B̂ = 0. Secondly, while this mapping still has subdomains in which it is expansive, we

are now able to design our grid to offset this effect. We will return to this point in the next

chapter.

The result of imposing this restriction on (2.2.3) is the following sequence of mappings,

at (re)allocation instants t0o through tKo , and for all states (S,B) in Ω, setting W 0 = W0:
V (Sk

−
, Bk− , tk

−
o ) = V (Sk

+
, Bk+ , tk

+

o )

W k = Sk
−

+Bk−

Bk+ = max
{
W k −m ·max {W k − F k, 0}, B̂k

}
Sk

+
= W k −Bk+

. (2.2.5)

The image of of this mapping is shown in Figure 2.2 and is described by the kth limited-

borrowing allocation locus,

Âk ≡
{(
Sk

+

, Bk+
) ∣∣∣ Sk+ = 0, Bk+ ∈ [B̂k, F k]

}
⋃{(

Sk
+

, Bk+
) ∣∣∣ Sk+ ∈ [0, ςk], Bk+ = F k − m−1

m
Sk

+
}

⋃{(
Sk

+

, Bk+
) ∣∣∣ Sk+ > ςk, Bk+ = B̂k

}
, (2.2.6)

where

ςk ≡ m
m−1

(
F k − B̂k

)
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Figure 2.2: Image of a typical limited-borrowing reallocation mapping, for F k = 150, B̂k = −250

and m = 2.5.

is the risky-asset exposure at which the limited-borrowing strategy deviates from the

classical strategy. We will call this mapping the kthlimited-borrowing reallocation mapping

f̂k : Ω→ Âk.

2.3 Payoffs

Having modelled the discrete-time CPPI strategy, we are now able to characterise a CPPI-

based capital guarantee.

An investor holding a CPPI claim is guaranteed at least FT at time T , so their payoff is

VI(S,B, T ) = max {S +B,FT}
= max {S − (FT −B), 0}+ FT . (2.3.1)
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Likewise, an institution issuing a CPPI claim has a liability of

VL(S,B, T ) = −max {FT − S −B, 0} (2.3.2)

= −max {(FT −B)− S, 0}. (2.3.3)

Offering the insured aspect of a capital guarantee (i.e. an instrument with payoff (2.3.2))

is equivalent to having a short position in a European put option written on the CPPI

portfolio with strike price FT . Cont and Tankov [15] call (2.3.3) a CPPI-embedded option

and, like Cipollini [13], explore the hedging relationship between this and a sequence of

forward vanilla puts.

In our implementation, we exploit the fact that for each fixed value of B (a row of

the state space Ω), Equation (2.3.3) is the payoff of a vanilla European put with strike

FT − B. Correspondingly, (2.3.1) is that of a European call with the same strike, along

with a zero-coupon bond with maturity FT .

We conclude with a result that shows the problem need only be solved for one of the

payoffs.

Proposition 2.3.1 (CPPI parity result). A relationship akin to put-call parity exists for

VI and VL:

VI(S,B, t) + VL(S,B, t) = S(t) +B(t), (2.3.4)

and most importantly,

VI(S,B, 0) + VL(S,B, 0) = S(0) +B(0) = W0. (2.3.5)

Proof. We start with the observation (using (2.3.1) and (2.3.3)) that

VI(S,B, T ) + VL(S,B, T ) = S(T ) +B(T ).

Intuitively, this is justified by noting that any investor who holds a capital guarantee on a

CPPI product and has issued an identical guarantee on the same product is left with an

unprotected CPPI-managed portfolio. At maturity this unprotected portfolio is worth the

sum of its components, so the risk-neutral expected value of this portfolio at time tK
+

o is

simply the sum of the time–tK
+

o values of its components. Under the risk-neutral measure,

both components of the CPPI portfolio are martingales, hence

VI(S,B, t
K+

o ) + VL(S,B, tK
+

o ) = S(tK
+

o ) +B(tK
+

o ).
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2.4. Dynamics between observations

Moreover, since the CPPI jump conditions (Section 2.2) are wealth-preserving,

VI(S,B, t
K−

o ) + VL(S,B, tK
−

o ) = S(tK
−

o ) +B(tK
−

o ). (2.3.6)

The final result is obtained by repeatedly applying this reasoning, descending in k.

2.4 Dynamics between observations

Until now our approach has been independent of the underlying asset dynamics. However,

we cannot proceed further without committing to models for the two portfolio assets and

the CPPI floor value’s trajectory. From these we model the dynamics of the CPPI claim

between observations.

2.4.1 Risky asset dynamics

We model the risky asset process (under the risk-neutral measure Q) as a geometric Brownian

motion with finite-intensity jumps [35]

dSt
St−

= (rt − λκ) dt+ σ(S−t , t) dZt + (Jt − 1) dqt, (2.4.1)

where

St− is the previous state,

rt is the ‘risk-free’ interest rate

λ is the jump frequency,

κ is EQ {Jt − 1},
σ is the local volatility,

Jt belongs to a sequence of independent and identically distributed (iid )

random variables representing jump intensity,

dZt is a Wiener process increment, and

dqt is a Poisson process increment with jump probability λ.

For simplicity we exclude dividends in our model and we follow the common assumption that

Jt and dqt are independent. Additionally, λ and Jt are both modelled as time-homogeneous:

λ is constant and Jt is stationary.
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2.4. Dynamics between observations

Since we are using the risk-neutral measure, λ and Jt (and therefore dqt and κ) are

market-calibrated quantities. More precisely, λ and the parameters characterising Jt’s

distribution must all be fitted to prevailing market data. The λκ term compensates the

processes’ drift rate for jumps, so that the risk-neutral expectation for dSt
St

grows at the

risk-free rate:

EQ
{dSt
St−

}
= (EQ {rt} − λκ) dt+ EQ {Jt − 1}EQ {dq}

= (EQ {rt} − λκ) dt+ κλ dt

= EQ {rt} dt.

If λ = 0 then the jump component vanishes and we have a regular geometric Brownian

motion. Typically J is assumed to be lognormally-distributed [35, 3], with density

p(J) =
exp(− (ln(J)−µ)2

2γ2
)

√
2πγJ

, (2.4.2)

so that ln J is normally-distributed with mean µ and variance γ2. In this situation we

have κ = eµ+ 1
2
γ2 − 1. Calibration details are given in [3]. A popular alternative is the

double-exponential density proposed by Kou [30]. Indeed, our framework is general enough

to accommodate any choice of density function.

More generally, jump diffusions are modelled as Lévy processes, which are studied

in a CPPI context in [15] but will not be addressed here. We also exclude stochastic

volatility from our model because this would add another dimension to our state space and

make our framework too computationally taxing for practical use. Instead, our framework

accommodates volatility surfaces, as was done in [47].

2.4.2 Risk-free asset dynamics

The interest rate governing the process Bt will in practice behave stochastically. However,

for the same dimensionality reasons as above, we restrict our risk-free interest rate model

to a deterministic function, r(t). The risk-free asset therefore follows

dBt

Bt−
= r(t) dt, (2.4.3)
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2.4. Dynamics between observations

which has the unique solution

B(t) = B(t̄) · exp

(∫ t

t̄

r(u) du

)
for some fixed reference time t̄. For convenience we define

ρk+1
k ≡ exp

(∫ tk+1
o

tko

r(u) du

)
(2.4.4)

to represent the appreciation of the risk-free asset between reallocation events.

2.4.3 CPPI floor dynamics

The flexibility of this framework allows us to use any deterministic function F (t) to describe

the CPPI floor dynamics. Furthermore, F need only be defined for each observation instant

tko, thus allowing the function to be defined tabularly. Financially, it makes the most sense

for F to be monotonically increasing in tko. Another constraint is that F (T ) = FT . For our

analysis we will assume this function is of the form

F (t) = FT · exp

(
−
∫ T

t

%(u) du

)
,

where %(t) is any positive-valued function (typically chosen to be constant). When % 6= r,

the CPPI floor value is said to be autonomous or independent of the risk-free rate.

Remark 2.4.1 (Effect of independent floors on the CPPI strategy). When %(t) ≥ r(t) for

all t, a portfolio experiencing a shortfall at time tko can be considered knocked-out since there

is never any possibility—under either the classical or limited-borrowing CPPI strategies—of

the portfolio reverting to a positive-cushion state over the interval (tko, T ].

However, we are careful to distinguish between a portfolio being negative-cushion

and knocked-out; under our formulation it is possible for a negative-cushion portfolio to

eventually re-achieve positive-cushion status, such as when %(t) < r(t) for all t (a capital

guarantee with this feature has more downside than an investment in a risk-free bond).

Our CPPI jump conditions should therefore be considered nonabsorbing. The conversion to

the absorbing case is straightforward.
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2.5. Deferred-interest state space transformation

2.4.4 CPPI claim dynamics

Applying Itō’s lemma and a hedging argument for systematic jump risk [21] yields the

following partial integro-differential equation (PIDE):

∂V

∂t
= − (L+ J )V − r(t)B∂V

∂B
, (2.4.5)

where LV ≡ 1

2
σ(S, t)2S2∂

2V

∂S2
+
(
r(t)− λκ

)
S
∂V

∂S
−
(
r(t) + λ

)
V,

and J V ≡ λ

∫ ∞
0

V (JS,B, t)p(J) dJ

for t ∈
K⋃
k=0

(
tko, t

(k+1)
o

)
.

This formulation may therefore be viewed as a sequence of cascading 2D PIDEs. Connecting

these PIDE stages are jump conditions (Section 2.2), applied at each tko. A payoff (Section

2.3) is applied as a terminal condition at tK+1
o . We will refer to the interval

(
tko, t

(k+1)
o

)
as

the kth stage of the inter-observation dynamics.

2.5 Deferred-interest state space transformation

Linear PIDEs such as Equation (2.4.5) are challenging to solve numerically in one spatial

dimension—let alone two—because of the nonlocal nature of the integral term. A survey of

techniques for solving 1D PIDEs arising in finance is provided in Chapter 12 of [14].

As noted in Section 2.2, at tk
+

o we are chiefly concerned with solving (2.4.5) along Ak (or

in the limited-borrowing case, Âk), for each k. Moreover, each of these loci is comprised of

a low number of line segments or rays. Our problem would therefore simplify conveniently if

we had a transformation that could reduce (2.4.5) to a finite system of 1D PIDEs, with one

equation for each piece of the allocation locus. However, such a transformation comes at the

expense of generality. For example, a new coordinate system with origin at (S,B) = (0, F k),

aligned with the two pieces of the classical allocation locus will fail to simplify (2.4.5) if F

does not evolve at the risk-free rate.

The best we can do (while still retaining a degree of generality) is to reformulate the

PIDE in Equation (2.4.5) as a system of infinitely many 1D PIDEs embedded in a 2D state
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2.5. Deferred-interest state space transformation

space. Our approach is inspired by the usefulness of semi-Lagrangian discretisations in

pricing Asian options [38, 17]. This technique originates in the meteorological literature

and was developed to counteract numerical problems arising from overlapping reference

frame trajectories (see Sections 14.3 and 14.12 of [11]). However, as will be seen, the

deterministic B dynamics are simple enough that discretisation is not necessary in order

to rewrite (2.4.5) in a more convenient form. Instead, we will transform the system, and

then later discretise each 1D PIDE individually. The following should therefore be thought

of as a fully Lagrangian state space transformation, rather than as a discretisation. The

transformation does not depend on our choice of jump conditions.

In order to reduce the number of spatial dimensions in (2.4.5), we use the Lagrangian

derivative. Unlike the partial derivative ∂V
∂t

, which measures the rate of change of a quantity

at a stationary observation point (a Eulerian frame of reference), the Lagrangian derivative
DV
Dt

is a total derivative describing a rate of change observed with a moving reference frame.

For clarity we introduce and prove our result here, and show the details of its application

in the next section. Henceforth, the notation vk will represent the reformulation of V over(
tk
−

o , t
(k+1)−
o

)
.

Proposition 2.5.1 (Lagrangian reformulation). These two formulations are equivalent:

• the CPPI claim dynamics of Section 2.4.4 (a sequence of 2D PIDEs), with the jump

conditions of Section 2.2;

• the following interest-deferred dynamics (a sequence of B-parameterised 1D PIDE

systems) with the system for each stage k (corresponding to
(
tk

+

o , t
(k+1)−
o

)
) defined by

∂vk(S, τ ;B)

∂τ
= (Lk + Jk)vk(S, τ ;B), (2.5.1)

where Lkvk ≡
1

2

[
σ(S, tk+1

o − τ)
]2
S2∂

2vk

∂S2
+
(
r(tk+1

o − τ)− λκ
)
S
∂vk

∂S
−
(
r(tk+1

o − τ) + λ
)
vk,

and Jkvk ≡ λ

∫ ∞
0

vk(JS, τ ;B)p(J) dJ

for τ ∈
(
0, tk+1

o − tko
)
, (2.5.2)

and with the jump conditions of Section 2.2 modified so that

W k ≡ Sk
−

+ ρkk−1B
k− .
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2.5. Deferred-interest state space transformation

Consequently, solving on Ω requires solving a family of one-dimensional PIDEs para-

meterised by B.

In the literature it is customary to use τ to represent the backwards time, or time until

maturity (at T ). Our usage differs; we instead use τ to represent the time until the next tko.

Financially, Equation (2.5.2) can be interpreted as deferring the payment of interest

accrued by the risk-free asset over
(
tko, t

k+1
o

)
until the end of this interval, at the last instant

before the rebalancing decision is made.

Proof of Proposition 2.5.1. The following applies to the kth stage of Equation (2.4.5), for t

in
(
tk

+

o , t
(k+1)−
o

)
. We address the PIDE and jump conditions separately.

Part I: PIDE transformation

Without loss of generality, consider the trajectory φ(t) = (φ1(t), φ2(t)) with the departure

point

φ(tk
+

o ) = (S?, B?).

Along this trajectory, the Lagrangian derivative for V (S,B, t) is

DV

Dt
= Vt + VS

dφ1

dt
+ VB

dφ2

dt
. (2.5.3)

Combining (2.4.5) with (2.5.3) and choosing φ(t) to satisfy

dφ

dt
= (0, r(t)B) , (2.5.4)

the PIDE of interest becomes

DV

Dt
= −(L+ J )V. (2.5.5)

Equation (2.5.4) has the unique solution

φ(t) =

(
S?, exp

(∫ t

tk+o

r(u) du

)
B?

)
. (2.5.6)
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2.5. Deferred-interest state space transformation

This development shows that the B dynamics can be entirely removed from our PIDE.

However, the variable B cannot be discarded from our state space: B still arises in the

jump conditions, so we need to retain it as a parameter in order to distinguish between

Lagrangian trajectories.

Applying the transformation τ ≡ t(k+1)−
o − t to Equation (2.5.5) yields Equation (2.5.1).

Part II: Interest-deferred jump conditions

By construction we have, for all times t in
(
tko, t

k+1
o

)
,

vk
(
S, t(k+1)−

o − t;B
)

= V

(
S, exp

(∫ t

tk+o

r(u) du

)
B, t

)
.

This holds since both sides of this equation are equivalent representations for the value of a

portfolio with composition

(
S, exp

(∫ t
tk+o
r(u) du

)
B

)
at time t. In particular, we have

vk(S, 0;B) = V (S, ρk+1
k B, t(k+1)−

o ) (2.5.7)

and

vk(S, t(k+1)−

o − tk+o ;B) = V (S,B, tk
+

o ) (2.5.8)

at the endpoints of the kth stage. Equations (2.5.7) and (2.5.8) tell us that in order to solve

for V (S?, B?, tk
+

o ), we should solve the related 1D PIDE (2.5.1) for

vk(S?, t
(k+1)−
o − tk+o ;B?), with initial conditions for the B = B? horizontal strip given by

vk(S, 0;B?) = V (S, ρk+1
k B?, t

(k+1)−
o ). Since the ρk+1

k factor is common to each strip, it

can instead be incorporated into the jump conditions, replacing Bk− with ρkk−1B
k− in the

calculation of W k.

Remark 2.5.2. In Part I of the preceding proof we assigned reference frames to each

point in Ω at tk
+

o , and then moved each reference frame—from its individual starting

point—exponentially in the B direction at the prevailing risk-free rate. The trajectory of

each reference frame depended on the initial B ordinate and was independent of S. We

therefore chose to group portfolios by their initial B ordinate. Financially, this amounts to
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2.6. Framework summary

identifying each portfolio at time t ∈ (tko, t
k+1
o ) by its risky position at t and its risk-free

position at tk
+

o . We could just as well have chosen the opposite convention, since by the

exponential nature of (2.5.6) there is a bijective relationship between trajectories’ states at

t
(k+1)−
o and tk

+

o .

This Lagrangian reformulation has transformed the problem from a PIDE in two spatial

dimensions to a system of PIDEs in one spatial dimension. Information is only passed

between the PIDEs at the reallocation instants. The system is therefore decoupled and

each element can be solved using a one-dimensional PIDE solver. For our implementation

we adapt the framework described in [22].

2.6 Framework summary

We conclude this chapter with a dynamic programming algorithm for solving this problem

with systems of 1D PIDEs:

1. Initialisation.

(a) For each row (parameterised by B), compute vK(S, 0;B) using the payoff

vKI (S, 0;B) ≡ max {S − (FT − ρK+1
K B), 0}+ FT , (2.6.1)

to value the claim from the investor’s perspective, or

vKL (S, 0;B) ≡ −max {(FT − ρK+1
K B)− S, 0} (2.6.2)

from the guarantor’s perspective;

(b) Set k = K.

2. Iteration.

(a) (Working backwards from t
(k+1)−
o to tk

+

o ) For each row (parameterised by B),

determine vk(S, t
(k+1)−
o − tk+o ;B) by solving

(vk)τ = (Lk + Jk) vk (2.6.3)

backwards in time from t
(k+1)−
o to T−tk+o , using the values computed for vk(S, 0;B)

as the initial condition;
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2.6. Framework summary

(b) (Working backwards from tk
+

o to tk
−

o ) For each row (parameterised by B), de-

termine v(k−1)(S, 0;B) by applying the jump conditions
v(k−1)(Sk

−
, 0;Bk−) = vk(Sk

+
, t

(k+1)−
o − tk+o ;Bk+)

W k = Sk
−

+ ρkk−1B
k−

Sk
+

= m ·max
{
W k − F k, 0

}
Bk+ = W k − Sk+

(2.6.4)

for the classical CPPI case, or
v(k−1)(Sk

−
, 0;Bk−) = vk(Sk

+
, t

(k+1)−
o − tk+o ;Bk+)

W k = Sk
−

+ ρkk−1B
k−

Bk+ = max
{
W k −m ·max {W k − F k, 0}, B̂k

}
Sk

+
= W k −Bk+

(2.6.5)

for the limited-borrowing CPPI case;

3. Repeat step 2 for each stage k, descending from (K−1) to 0 inclusive, where W 0 ≡ W0.

4. Report the solution v0(W0, t = 0) ≡ v0(S0, t1
−

o − t0
+

o ;B0), where S0 +B0 = W0.

So, solving such a system with K rebalancing events requires K+1 stages and K+1 grids.

Note that the expression for W 0 does not involve a discount factor (since no interest has

accrued yet), but all subsequent wealth calculations do.

Remark 2.6.1. Depending on the PIDE solver, it may be more suitable to calculate vI
using the related payoff

vKJ (S, 0;B) ≡ max {S − (FT − ρK+1
K B), 0} = vKI (S, 0;B)− FT (2.6.6)

in the above algorithm. The desired final result is recovered by linearity:

v0
I (W0, t = 0) = v0

J(W0, t = 0) + ρ0
K+1FT . (2.6.7)

This is the approach that we take when generating our results in Chapter 5.

The corresponding parity result is

v0
L(W0, t = 0) = W0 − ρ0

K+1FT − v0
J(W0, t = 0). (2.6.8)

In the special case where % = r, the sum of v0
L(W0, t = 0) and v0

J(W0, t = 0) is the CPPI

cushion.
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3 Discretisation and convergence properties

Having formulated the CPPI pricing problem, we turn our attention towards solving it

computationally. A computational approach offers the greatest versatility but cannot be

directly applied to the continuous-domain formulation summarised in Section 2.6; the

problem must first be discretised. This involves

• selecting a bounded, finite computational domain for our calculations (Section 3.1),

• imposing boundary conditions for situations when the inter-observation numerical

scheme (Section 3.2) and the reallocation jump conditions (Section 3.3) require

information outside of the computational domain,

• choosing an interpolation scheme for when the reallocation jump conditions require

data in between grid points (Section 3.4), and

• choosing a numerical scheme to approximate the inter-observation dynamics (Section

3.5).

In addition, we examine the stability (Section 3.6.1) and monotonicity (Section 3.6.2)

of our chosen discretisation. These two properties are imperative for any numerical imple-

mentation and are intermediate steps towards proving that the discretisation converges to

the continuous-domain formulation’s financially relevant solution.

3.1 Computational domain

Analytically, this problem has an infinite domain of dependence because of the integral term

in Equation (2.6.3) and the expansive nature of the reallocation mappings. For computa-

tional purposes it is necessary to localise the problem to a bounded, finite computational

domain. As will be seen, some bounds arise naturally and others must be artificially

imposed.
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3.1. Computational domain

We propose a computational domain that is a sequence of K + 1 structured grids in

(S,B) space. The kth grid applies to the kth stage of the PIDE solve (Section 2.6) and

exists for the time interval (tk
+

o , t
(k+1)−
o ). The k-varying aspect of these grids is a departure

from the fixed grids used in related studies (such as [48, 17, 47, 5]). It arises because the

CPPI floor value F k changes at each reallocation.

Only the information on the kth allocation locus (either Ak or Âk, which both reside on

the kth grid at time tk
+

o ) is used to populate the terminal (time tk
−

o ) data of the (k − 1)th

grid. For this reason, the grids are constructed with the following pertinent properties:

• each grid’s nodes are arranged in rows (indexed by the B ordinate);

• grid k has a maximum B ordinate of F k (consistent with the highest B ordinate of

the kth allocation locus);

• for the limited-borrowing CPPI case, grid k’s minimum B ordinate is the prevailing

borrowing limit B̂k;

• for the classical CPPI case, grid k’s minimum B ordinate is artificially-imposed and

nonpositive;

• each row has

– its leftmost node coincident with the vertical component of the kth reallocation

locus (at S = 0), as well as

– a node coincident with the oblique segment of the kth allocation locus;

• on the topmost row (where B = F k) the two aforementioned nodes are coincident;

• each other row’s remaining S abscissæ (including each row’s artificially-imposed

rightmost node) are scaled about the oblique segment of the kth allocation locus.

The remaining details of our grid design are relegated to Appendix B.

These properties result in grids with convex hulls that resemble right trapezoids. The

resemblance is not perfect because a lower bound is imposed on the row scaling factor to

avoid complications as Bk → F k. See Section B.2 for additional information.

Figure 3.1 depicts a representative computational domain (albeit with exaggerated

proportions and a simplified shape). Boundary conditions for the labelled segments will be

addressed in the following two sections.
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3.2. Boundary conditions between observations

0 Sk
imax,0

Bk
min

F k

 

 
Reallocation locus
Computational domain

(d)

(c)

(a)

(e) (f)

(b)

Figure 3.1: A representative computational domain, with superimposed classical reallocation

locus and labelled boundaries. Boundaries (a) through (d) apply to the inter-observation dynamics.

Boundary (e) applies to both the classical and limited-borrowing jump conditions. Boundary (f)

only applies to the classical jump condition.

3.2 Boundary conditions between observations

Under the Lagrangian reformulation of Section 2.5, information flow only has a nonzero

B component at each tko. Consequently, between reallocations we only need to consider

boundary conditions in the S direction: for the near-field (S = 0) and far-field (S →∞)

behaviour of our 1D PIDEs. These correspond, respectively, to segments (d) and (b) of

Figure 3.1; no boundary conditions are required on segments (a) and (c). Note that for both

boundaries the same results would have been achieved if λ were zero; at both boundaries

our PIDEs behave like classical Black-Scholes PDEs.

3.2.1 Near-field boundary between observations

When restricted to S = 0 our system of 1D PIDEs (2.6.3) simplifies to a family (indexed in

B) of ordinary differential equations,
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3.3. Boundary conditions at observations

(vk)τ = −rvk, (3.2.1)

which obey the relation

vk(0, τ = t(k+1)−

o − tk+o ;B) = ρkk+1v
k(0, τ = 0;B). (3.2.2)

3.2.2 Far-field boundary between observations

Unfortunately, option pricing theory does not furnish us with a natural choice of far-

field boundary condition. Instead, as is done throughout the literature, we must impose

conditions that make numerical sense but financially cannot be rigorously justified. The

numerical aspects of domain truncation and choice of artificial boundary conditions are

examined in [28, 45].

In practice we assume (vk)SS = 0 for large S. Then we can write

vk(S, τ ;B) = Svk1(τ ;B) + vk2(τ ;B) (3.2.3)

and the PIDE (2.6.3) (when S is large) collapses to

(vk)τ = −rvk2 = rS(vk)S − rvk.

However, theoretical results are more readily obtainable if we additionally assume the

far-field Dirichlet condition

lim
S→∞

VL(S, τ ;B) = 0 or lim
S→∞

VI(S, τ ;B) = S. (3.2.4)

Numerical tests for vanilla and exotic American options [19] show that if the domain is

sufficiently large in S then there is negligible difference in the results obtained with and

without Equation (3.2.4).

3.3 Boundary conditions at observations

Only one grid is active at each stage of the PIDE solve. At each tko the (old) kth grid is used

to populate its successor, the (new) (k − 1)th grid. More precisely, each new grid’s terminal

27



3.3. Boundary conditions at observations

values are calculated from the data on the old stage’s allocation locus. The shape of the

allocation locus will depend on whether the classical (2.6.4) or the limited-borrowing (2.6.5)

CPPI jump condition is applied, but in either case the information on the kth allocation

locus is a function of W k = Sk
−

+ ρkk−1B
k− .

In a computational setting the grid population operation is restricted by domain

truncation. Suppose, based on the chosen grid parameters, that grid k (more precisely, grid

k’s convex hull) intersects with the kth allocation locus in the wealth range [W k+

min,W
k+

max].

Situations will arise where the lookup value W k is outside of this interval: it was noted in

the previous chapter that our jump conditions (as originally stated in Section 2.2) were

expansive in regions above the allocation loci. Our interest-deferred transformation (Section

2.6) actually extends this effect to the regions below the allocation loci. However, we can

offset all expansive effects by imposing boundary conditions: a large shortfall boundary

condition for reallocation wealth W k < W k+

min, and a large cushion boundary condition for

W k > W k+

max.

Our approach for the large shortfall boundary condition is common to both CPPI flavours

and is described in the next subsection. Following that we describe a similarity extrapolant

for the classical product as for W k > W k+

max. These boundary conditions respectively apply

to segments (e) and (f) of Figure 3.1. For the limited-borrowing product it is possible to

avoid needing a large cushion boundary condition: under mild but technical conditions on

the grids’ bounds, we can design a sequence of grids tailored to the fixed-borrowing-limit

strategy. More precisely, the sequence corresponding to each grid’s maximum represented

wealth is bounded. The details are relegated to Section B.3 of the Appendix. We do this in

order to avoid introducing extraneous notation to the main body of this text. We will not

attempt to generalise this result to the variable borrowing limit case.

3.3.1 Large shortfall boundary condition

For W k < W k+

min, recursively applying the appropriate jump condition ((2.6.4) or (2.6.5))

will eventually allow the required off-grid portfolio to be expressed in terms of discounted,

on-grid information from a previous stage. Consider Bk
min, the smallest ordinate of the kth

grid. It follows that W k+

min = Bk
min. Choosing each Bk

min sufficiently low (so that all off-grid

portfolios with a shortfall at tko retain their shortfall status for the remaining reallocation

instants tk+1
o through tKo ) allows a special case where off-grid data can be computed directly

from the payoff vK(S, τ = 0;B). The following result permits this for all sequences of CPPI

floor values.
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3.3. Boundary conditions at observations

Lemma 3.3.1. If Bk
min < 0 for all k, then, for all W k < W k+

min = Bk
min,

vk(S = 0, τ = tk+1
o − tko;B = W k) = ρkK+1v

K(S = 0, τ = 0;B = ρK+1
k W k). (3.3.1)

Specifically,

vkI (S = 0, τ = tk+1
o − tko;B = W k) = ρkK+1FT ,

vkJ(S = 0, τ = tk+1
o − tko;B = W k) = 0,

and vkL(S = 0, τ = tk+1
o − tko;B = W k) = ρkK+1(FT − ρK+1

k W k) = ρKK+1FT −W k.

Proof. The valuation is the expected discounted payoff. The discounted payoff is certain

for states that are guaranteed to incur a shortfall at time T .

3.3.2 Large cushion boundary condition (classical CPPI case)

Definition 3.3.2 (Homogeneity of a function). A function f(x) is `th-degree homogeneous

when f(zx) = z`f(x) for all x and nonzero z.

In [47] a similarity extrapolant workaround is proposed: for valuing cliquet options,

off-grid information can be expressed in terms of on-grid information, by employing a

homogeneity property of the solution and making the assumption that far-field local

volatility is constant. Unfortunately, this approach is not directly applicable to our problem

because here our valuations—unlike the cliquet valuations—are not homogeneous of degree

zero. This is verified by an inspection of the payoff functions. For example:

max{F − zρK+1
K B − zS, 0} 6= max{F − ρK+1

K B − S, 0}.

However—under narrow conditions—an exact first degree homogeneity relation is at-

tainable, which when applied at a reallocation instant can serve as a similarity extrapolant.

Rather than arising in terms of B, homogeneity arises in terms of an auxiliary state variable

defined as

Xk ≡ F k+1 − ρk+1
k Bk+ = F k+1 − ρk+1

k B(k+1)− . (3.3.2)

Like B under the Lagrangian reformulation, Xk is fixed over the interval (tk
+

o , t
(k+1)−
o ). The

dual definition of Xk therefore arises from the fact that, by construction, Bk+ is equal to
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3.3. Boundary conditions at observations

B(k+1)− . Since payoffs can now be expressed in terms of the difference (S −X), Xk should

be viewed as the CPPI analogue to a European option strike price, with the distinction

that Xk can take negative values when r > % for a sufficiently large part of the interval

(tk
+

o , t
(k+1)−
o ).

We start with a homogeneity result between portfolios at the same instant τ .

Proposition 3.3.3 (Homogeneity). Recall the interest-deferred payoffs for vL and vJ defined

in Equations (2.6.2) and (2.6.6). If

(H1) the risk-free rate r and the volatility σ are piecewise constant over each interval(
tk

+

o , t
(k+1)−
o

)
,

(H2) the contract specifies classical CPPI reallocation (Section 2.2.1), and

(H3) the CPPI floor value F appreciates at the risk-free rate,

then vL is first-degree homogeneous in (S,X). Stated in terms of the usual interest-deferred

(S,B) state space, we have

vkL

(
zS, τ ;B = ρkk+1

(
F k+1 − zX

) )
= zvkL

(
S, τ ;B = ρkk+1

(
F k+1 −X

) )
(3.3.3)

for all positive z, S and X. The same can be said for vJ and (vJ + vL).

Proof. In the following we will work with vL. The same reasoning holds for vJ and (vJ + vL).

Although X may in general take negative values, Hypothesis (3.3.3.H3) guarantees that in

this case X will be nonnegative.

Adopting the notation

v̄k(S, τ ;Xk) ≡ vkL

(
S, τ ;B = ρkk+1

(
F k+1 −Xk

) )
, (3.3.4)

then Equation (3.3.3) is equivalent to

v̄k(zS, τ ; zXk) = zv̄k(S, τ ;Xk), (3.3.5)

which is the definition of first-degree homogeneity in (S,Xk).

It is now straightforward to verify that the payoff vKL (S, τ = 0;B) (defined in Equation

(2.6.2)) is first-degree homogeneous in (S,X), so that the hypotheses of Corollary 15.1
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3.3. Boundary conditions at observations

in [27] are satisfied. From this we can conclude that vKL is first-degree homogeneous (in

mutually nonzero coordinates (S,X), but not (S,B)) under log-type models (such as (2.4.1)

under (3.3.3.H1)) for the entire Kth stage.

In order for this result to extend to the other K stages, the jump condition must produce

first-degree homogeneous terminal data at each tk
−

o . More precisely, for k = 0, . . . , K, we

must show

v̄k(zS, τ = 0; zXk) = zv̄k(S, τ = 0;Xk) (3.3.6)

for all nonzero z, S and X.

Consider the interest-deferred version of the kth classical reallocation mapping fk, stated

in Equation (2.6.4). Substituting ρkk−1B
k−=F k −Xk−1, this can be expressed as

fk :

[
Sk
−

Bk−

]
7→
[
Sk

+

Bk+

]
=

 m ·max
{
Sk
− −Xk−1, 0

}
Sk
−
+ F k −Xk−1 −m ·max

{
Sk
−−Xk−1, 0

}  ,
or equivalently as

fkX :

[
Sk
−

Xk−1

]
7→
[
Sk

+

Xk

]
=

 m ·max
{
Sk
−−Xk−1, 0

}
F k+1− ρk+1

k

(
Sk
−
+ F k−Xk−1−m ·max

{
Sk
− −Xk−1, 0

}) .
Only under (3.3.3.H3) do the CPPI floor terms vanish, so that

fkX

([
zSk

−

zXk

])
= zfkX

([
Sk
−

Xk

])
, (3.3.7)

and thus

v̄(k−1)(zSk
−
, zXk−1, 0)

(a)
= v̄k

(
fkX(zSk

−
, zXk−1), tk+1

o − tko
)

(3.3.8)

(b)
= v̄k

(
zfkX(Sk

−
, Xk−1), tk+1

o − tko
)

(c)
= zv̄k

(
fkX(Sk

−
, Xk−1), tk+1

o − tko
)

(d)
= zv̄(k−1)(Sk

−
, Xk−1, 0).
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3.3. Boundary conditions at observations

Here we have mildly abused our notation for v̄k; understand that

v̄k
(
fkX(Sk

−
, Xk−1), τ

)
≡ v̄k

(
Sk

+

, τ ;Xk
)
.

Equalities a and d result from the conservation of wealth across reallocations. Equality b

results from Equation (3.3.7) and c is a consequence of homogeneity at tk
+

o .

This confirms Equation (3.3.6), as desired. Equation (3.3.3) then follows from (3.3.4)

and induction descending in k.

Next we extend this result across reallocation instants and remark on the stability of

this approach.

Corollary 3.3.4 (Classical similarity extrapolant). Adopt the same hypotheses as Proposi-

tion 3.3.3: assume that

(H1) the risk-free rate r and the volatility σ are piecewise constant over each interval(
tk

+

o , t
(k+1)−
o

)
,

(H2) the contract specifies classical CPPI reallocation (Section 2.2.1), and

(H3) the CPPI floor value F appreciates at the risk-free rate (i.e % = r).

Then the (k− 1)th stage terminal data for all positive-cushion (portfolio wealth exceeding

the prevailing CPPI floor) states (S1, B1) on grid (k − 1) can be expressed in terms of any

single point (S2, B2) on Ak\ from grid k:

v(k−1)(S1, 0;B1)
∣∣∣
S1+ρkk−1B1−Fk>0

=
m(S1 + ρkk−1B1 − F k)

S2

vk(S2, t
k+1
o − tko;B2). (3.3.9)

Likewise,

v0(W0, t = 0)
∣∣∣
W0>F 0

=
m(W0 − F 0)

S2

v0(S2, t
1
o − t0o;B2). (3.3.10)

We use this result to determine the time-tko value for a portfolio (prescribed by the kth

classical reallocation mapping) that has wealth above W k+

max. This valuation is related to

that of another portfolio with coordinates (S2, B2). The solid locus in Figure 3.2 illustrates
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3.3. Boundary conditions at observations

the set of related portfolios; computationally we require that B2 ∈ [Bk
min, F

k). In this

situation—when % = r—the locus of related portfolios is coincident with Ak\.

0

Bk
min

F k

Scaled S (S2)

S
ca

le
d

B
(B

2
)

 

 
̺ < r
̺ = r
̺ > r

Figure 3.2: The similarity extrapolant expresses the value for an off-grid portfolio (represented

by the circular marker) in terms of the value for a related on-grid portfolio. In our implementation

we use the related portfolio with ordinate Bk
min. When % = r this corresponds to the square

marker. For comparison, loci for autonomous CPPI floor situations are also depicted; they are

described by Equation (3.3.11).

Proof of Corollary 3.3.4. At tko the positive-cushion portfolio (S1, B1) on grid (k− 1) maps

to an equal-valued portfolio (on Ak\) that has the risky asset position m(S1 + ρkk−1B1 − F k).

By the previous homogeneity result, this new portfolio can be valued in terms another

portfolio (S2, B2) using z =
m(S1+ρkk−1B1−Fk)

S2
. By (3.3.4.H3) (which permits Equality b of

Equation (3.3.8)), (S2, B2) is also on Ak\.
Equation (3.3.10) applies to the initial allocation, where m(W0−F 0) from the endowment

W0 (which must exceed the initial CPPI floor F 0) is invested in the risky asset at the outset

of the contract.

Remark 3.3.5 (Stability). The factor
m(S1+ρkk−1B1−Fk)

S2
in (3.3.9) is larger than unity

whenever the similarity extrapolant is used as a large cushion boundary condition. From
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3.3. Boundary conditions at observations

the perspective of stability this may appear problematic, but it will be shown in Proposition

3.6.4 that the factor relevant to stability is actually the value of a specific European call

option divided by S2. This quantity approaches unity as K →∞.

For completeness we examine how the similarity extrapolant approach can be used to

approximate more exotic scenarios.

Corollary 3.3.6 (Applicability of Equation (3.3.9)). Assume

(i) the risk-free rate r and the volatility σ are piecewise constant over each interval(
tk

+

o , t
(k+1)−
o

)
, and

(ii) the contract specifies classical CPPI reallocation (Section 2.2.1).

Then the similarity extrapolant (Equation (3.3.9)) is exact when ρkk+1F
k+1 = F k. Moreover,

(i) when ρkk+1F
k+1 < F k, Equation (3.3.9) overvalues vJ and undervalues vL; and

(ii) when ρkk+1F
k+1 > F k, Equation (3.3.9) undervalues vJ and overvalues vL.

These relations can also be concluded for other log-type models such as those with stochastic

volatility.

Proof. Exactness when ρkk+1F
k+1 = F k was shown in Corollary 3.3.4.

Analogous to Equation (3.3.9), we have the more general relation

v(k−1)(S1, 0;B1)
∣∣∣
S1+ρkk−1B1−Fk>0

=
m(S1 + ρkk−1B1 − F k)

S2

vk(S2, t
k+1
o − tko;B2), (3.3.11)

where B2 = ρkk+1F
k+1 − S2

(
m− 1

m
+

ρkk+1F
k+1 − F k

m(S1 + ρkk−1B1 − F k)

)
.

This formula allows us to express an off-grid node in terms on an on-grid node with

coordinates (S2, B2). It is exact as long as the inter-reallocation dynamics are first-degree

homogeneous—even when the CPPI floor rate is not the same as the risk-free rate.

Note that the ordinate B2 is linear in S2. Furthermore, the line described by varying

S2 (i) intersects with Ak at S2 = m(S1 + ρkk−1B1 − F k) (corresponding to no scaling), and

(ii) has a B-intercept at B = ρkk+1F
k+1. This is depicted in Figure 3.2.
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Since the purpose of the similarity extrapolant is to express any off-grid node (with

abscissa m(S1 + ρkk−1B1 − F k)) in terms of an on-grid node (with abscissa S2), we are

interested in S2 in the interval [0,m(S1 + ρkk−1B1 − F k)]. Over this range, the locus of

(S2, B2) portfolios described by Equation (3.3.11) is above the allocation locus Ak when

ρkk+1F
k+1 > F k and below when ρkk+1F

k+1 < F k. As was noted earlier, when ρkk+1F
k+1 = F k,

the locus described by (S2, B2) is coincident with Ak\. Recall from Equation (3.3.2) that

lower values of B correspond to larger values of X, which in turn is analogous to the strike

price of a European call. The function vJ (with a call-style payoff) is decreasing in X.

Likewise, vL is increasing in X.

Other log-type models are admissible because they too are first-degree homogeneous in

the spot and strike prices [27].

Remark 3.3.7 (Generalising the similarity extrapolant stability result). The amount by

which independent-floor variants are misvalued by the similarity extrapolant is an issue

for future study. Equation (3.3.11) is a starting point for work in this direction. Note that

as K → ∞, Equation (3.3.11) becomes Equation (3.3.9) because the quantity tk+1
o − tko

implicitly decreases as K increases and limK→∞(F k+1 − ρk+1
k F k) = 0. We conclude that

the similarity extrapolant is exact as K →∞, regardless of the CPPI floor dynamics (as

long as the sequence {F k}K+1
k=0 is sampled from a continuous function). This leads us to

suspect that the similarity extrapolant (in conjunction with homogeneous inter-reallocation

dynamics) should have the same stability result for all continuous CPPI floor functions

F (t). In other words, it is likely that the stability result that will be presented for the

similarity extrapolant (Proposition 3.6.4) can be generalized to cases where % 6= r.

The applicability of the similarity extrapolant to the class of problems with nonhomogen-

eous models (such as those with S-dependent local volatilities) is unclear and also warrants

further investigation. We conjecture that stability can also be extended to situations where

the payoff is homogeneous but the inter-observation dynamics incorporate a nonhomogen-

eous model for the risky asset. It will be shown in Section 3.6.1 that stability relies on

whether the time-τ computed value an option converges to the payoff as τ → 0. This

property is expected of homogeneous and nonhomogeneous models alike.

Remark 3.3.8 (Other functions are not homogeneous). The functions vI and (vI + vL) do

not have homogeneous payoffs, so these functions are also not first-degree homogeneous for

times before maturity. It is for this reason that we calculate vJ instead of vI in Chapter 5.

The function vI can be recovered with Equation (2.6.7).
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3.3. Boundary conditions at observations

Remark 3.3.9 (Unlimited-borrowing case, large cushion boundary condition). Recall that

the smallest B ordinate on the kth computational grid is Bk
min. Our implementation uses

the similarity extrapolant (Equation (3.3.9)), with (S2, B2) =
(

m
m−1

(F k −Bk
min), Bk

min

)
. The

expression for S2 follows from the definition ofAk\ in Equation (2.2.4).

In the case of constant financial coefficients and lognormal jumps, there is an analytical

solution for each row of the Kth stage of (2.6.3) [35]. Combining this fact with the results

of this section allows us to price a class of classical CPPI problems analytically. This in

turn can be used to help validate our computational results, which apply to a much broader

class of problems. This idea will be developed in Chapter 4 and applied in Chapter 5.

Corollary 3.3.4 fails for limited-borrowing reallocation schemes because Equation (3.3.7)

does not hold for points where the borrowing limit is in effect—where B = B̂k+1. We

remind the reader that our limited-borrowing reallocation scheme does not require such

a boundary condition when we design our grid according to Proposition B.1. However, a

similarity relation does exist in special cases for the triplet (S,X, B̂):

Proposition 3.3.10 (Limited-borrowing CPPI similarity extrapolant). If

(H1) the risk-free rate r and the volatility σ are piecewise constant over each interval(
tk

+

o , t
(k+1)−
o

)
,

(H2) the contract specifies limited-borrowing CPPI reallocation (Section 2.2.2), and

(H3) the CPPI floor value F appreciates at the risk-free rate

then

vk
(
zS, τ ;B = ρkk+1

(
F k+1 − zX

)
, B̂ = ρkk+1

(
F k+1 − zX

) )
(3.3.12)

= zvk
(
S, τ ;B = ρkk+1

(
F k+1 − X

)
, B̂ = ρkk+1

(
F k+1 − X

) )
, (3.3.13)

and likewise for vJ and (vJ + vL) .

Proof. This follows the proof of Proposition 3.3.3. The limited-borrowing and classical

cases have the same payoffs, so the last stage of the PIDE solve is homogeneous. It is

straightforward to verify that, analogously to Equation (3.3.7),

f̂kX

([
zSk

−

zXk

]
; B̂ = ρkk+1

(
F k+1 − zX

))
= zf̂kX

([
Sk
−

Xk

]
; B̂k = ρkk+1

(
F k+1 −X

))
.
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3.4 Interpolation

Recall that the kth jump condition acts on the kth (either classical or limited-borrowing)

reallocation locus and is indexed by W k = Sk
−

+ ρkk−1B
k− . Computationally, this function’s

domain is limited to the grid k allocation wealth range [W k+

min,W
k+

max]. In the previous section

boundary conditions were introduced for situations where W k was outside this range. Now

we address the situation where W k is within this range.

The discrete nature of the grids necessitates interpolation. Recall that each grid is,

by design, aligned with the appropriate allocation locus. This enables wealth-indexed

interpolation in a single variable W k (much like the diagonal interpolation scheme described

in [47, 5]), instead of the more general two-dimensional interpolation in (S,B).

In our implementation we have considered four types of interpolation, each acting on a

stencil of nodes that are coincident with the allocation locus:

• linear interpolation;

• standard quadratic Lagrange interpolation;

• limited quadratic interpolation, adapted from [48];

• piecewise quadratic Lagrange interpolation, with standard quadratic Lagrange inter-

polation on each of three intervals (corresponding to the three segments of Figure

2.2).

The latter scheme prevents interpolation across these segments’ intersections, where v is

generally nonsmooth.

3.5 PIDE discretisation

We use a simple extension of the numerical scheme developed in [18] for a one-dimensional

jump diffusion, which in turn extends the positive coefficient discretisation method proposed

in [43]. For each fixed B, stage k of our interest-deferred, inter-observation dynamics (2.6.3)

discretises to

vn+1
i,j [1 + (αi,j + βi,j + r + λ) ∆τ ]−∆ταi,jv

n+1
i−1,j −∆τβi,jv

n+1
i+1,j (3.5.1)

= vni,j + (1− θJ) ∆τλ
∑
`∈N

χ
(
vn+1
j , i, `

)
ḡ`,j∆x+ θJ∆τλ

∑
`∈N

χ
(
vnj , i, `

)
ḡ`,j∆x
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3.6. Convergence

for timesteps n ≥ 0 and gridpoints
{

(Ski,j, B
k
j )
∣∣∣ 0 ≤ i < imax, 0 ≤ j ≤ jmax

}
, where

vni,j denotes the grid value vk(Ski,j, τ
n;Bk

j ),

τ 0 corresponds for the kth stage to t(k+1)−

o ,

αi,j and βi,j are non-negative finite difference coefficients defined in Appendix A,

∆τ is the timestep τn+1 − τn,
N denotes the set of FFT indices [−N

2
+ 1, N

2
] ∩ Z [18],

χ
(
vnj , i, `

)
is an interpolation operator that is linear and acts on the row

{
vni,j
}imax

i=0
,

ḡ`,j is related to f(J) (see [18] for details),

∆x is the grid spacing of the FFT grid, and

θJ determines whether the jump term is handled explicitly (θJ = 1),

implicitly (θJ = 0), or using Crank-Nicolson timestepping (θJ = 1
2
).

Most of these objects vary with the PIDE stage, but for simplicity we omit the index k

from the notation (i.e. αi,j should be interpreted as αki,j).

Our implementation’s handling of the boundary conditions is discussed in [22]. Recall

that with the assumptions of Section 3.2, our PIDEs collapse to Black-Scholes PDEs at the

near- and far-field boundaries. For theoretical purposes we follow (3.2.4) and additionally

assume a far-field Dirichlet boundary condition:

vn+1
imax,j

= vnimax,j =

{
Skimax,j, when the payoff is VJ ,

0, when the payoff is VL.

The upcoming stability results rely upon two important properties from [18]:

• ḡi,j is non-negative for all indices;

• ∑`∈N ḡ`,j∆x ≤ 1, for each row.

These properties are consequences of ḡ approximating a probability mass function.

3.6 Convergence

Assuming that our problem formulation satisfies a strong comparison result, then a unique

viscosity solution exists [5]. This is the financially-relevant solution to our problem [20].
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In order to prove our numerical scheme converges to the viscosity solution it is sufficient

to demonstrate stability, monotonicity and consistency; for the sake of robustness our

implementation should (in theory) obey these three criteria even as K tends to infinity. We

shall examine the first two requirements.

3.6.1 Stability

In the following we address the stability of the fully implicit PIDE discretisation (Equation

(3.5.1) with θJ = 0).

Notation

Let vnj be a vector representing the data on the jth row of grid k at timestep n. The

corresponding update equation for the fully implicit PIDE discretisation scheme (Equation

(3.5.1) with θJ = 0 and boundary conditions (3.2.1), (3.2.3) and (3.2.4)) is

Mj,kv
n+1
j = vnj , (3.6.1)

with each Mj,k defined such that

[Mj,kv
n+1]i =


(1 + r∆τ)vn+1

i,j , i = 0

[1 + (αi,j + βi,j + r + λ) ∆τ ] vn+1
i,j −∆ταi,jv

n+1
i−1,j

−∆τβi,jv
n+1
i+1,j −∆τλ

∑
`∈N χ

(
vn+1
j , i, `

)
ḡ`,j∆x , 1 ≤ i ≤ imax

vn+1
i,j , i = imax

and with imax corresponding to the the rightmost node of row j.

PIDE stability

We begin with a general result for the stability of the one dimensional PIDE in between

reallocations. This result mostly follows [18], although it is not explicitly stated there.

Proposition 3.6.1 (`∞ stability). The fully implicit PIDE discretisation scheme described

by Equation (3.6.1) is `∞-stable for all bounded initial conditions. Moreover, local and

time-independent bounds exist: if, for functions H+
j,k and H−j,k,

H−j,k(S
k
i,j, B

k
j ) ≤

[
v0
j

]
i
≤ H+

j,k(S
k
i,j, B

k
j ) for all i

then H−j,k(S
k
i,j, B

k
j ) ≤

[
vnj
]
i
≤ H+

j,k(S
k
i,j, B

k
j ) for all i and all n.
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Proof. The term χ
(
vn+1
j , i, `

)
, as defined in [18], is an interpolation between two other

interpolated values. By this and the properties of Section 3.5,
∑

`∈N χ
(
vn+1
j , i, `

)
ḡ`,j∆x

multiplied by −∆τλ contributes a term bounded by [−∆τλ, 0] to each element of Mj,k

(except for those on the top and bottom rows). Additionally, the row sums of these

contributions are each exactly −∆τλ.

Recalling the positive coefficient discretisation presented in Appendix A, it follows that

for all i,

• [Mj,k]i,i > 0,

• [Mj,k]i,` ≤ 0, for all ` 6= i and

• [Mj,k]i,i ≥ −
∑
6̀=i [Mj,k]i,` (with strict equality for the top and bottom rows).

Therefore, every entry of the inverse matrix Mj,k
−1 is positive, since Mj,k satisfies the

properties of an M-matrix [21].

Let unj be a vector, such that [unj ]i is solely a function of the corresponding grid coordinates

Si and Bj. Consequently, if every entry of the vector (u0
j − v0

j ) is nonpositive (respectively,

nonnegative) then the same can be said for (un+1
j − vn+1

j ) =
(
Mj,k

−1
)n+1

(u0
j − v0

j ). This

proves that there exist local bounds for each gridpoint, independent of n.

Corollary 3.6.2 (Bounds for discrete approximations of vJ and vL). Assume F k ≥ ρkk−1Bj.

If v0
i,j = max{Si + ρkk−1Bj − F k, 0} (corresponding to a payoff for vJ) then 0 ≤ vni,j ≤ Si for

all n. Likewise, if v0
i,j = max{F k − Si − ρkk−1Bj, 0} (corresponding to a payoff for vL) then

0 ≤ vni,j ≤ F k − ρkk−1Bj for all n.

Limited-borrowing case

With the preceding results, stability is now easily extended to limited-borrowing CPPI

products. The following result shows that `∞ stability is achievable for the fixed-borrowing-

limit case when the computational grids are attentively designed.

Proposition 3.6.3 (Stability for the fixed-borrowing-limit CPPI problem). If

• B̂ ≤ 0,

• the sequence {F k} samples a nondecreasing function, and
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3.6. Convergence

• the computational domain is a sequence of grids (such as the one developed in Appendix

B) constructed so that the following quantities are sufficiently large:

– F 0 − B̂;

– each Skimax−1,j;

– each Skimax,j,

then the numerical scheme incorporating

• the fully implicit PIDE discretisation (Equation (3.6.1)),

• the large shortfall boundary condition of Section 3.3.1,

• linear or limited higher-order interpolation (Section 3.4 ), and

• the interest-deferred, fixed-borrowing-limit CPPI jump condition (Equation (2.6.5)

with constant B̂k)

is `∞-stable for all K.

The above conditions on the computational domain are mild but technical; see Appendix

B for the details.

Proof of Proposition 3.6.3. After Corollary 3.6.2, it remains to prove that boundedness at

each tk
+

o implies boundedness at the corresponding tk
−

o . We proceed by induction, descending

in k.

Base case: (k = K + 1) This step is trivial, because here the terminal value of v is

defined by a payoff function. For example, in the case of vL the magnitude of our gridpoints’

values is bounded between 0 and FT + maxj{SKimax,j}+ ρK+1
K BK

jmax
.

Induction step: (0 < k < K + 1) Recall that the kth limited-borrowing jump condition is

handled in one of two ways, depending on the lookup value W k. A large-cushion boundary

condition is not required because we have assumed the hypotheses of Proposition B.1, thus

guaranteeing that W k ≤ W k+

max for all k.
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3.6. Convergence

We must resort to using Lemma 3.3.1 when the lookup value W k is below the range of

available data points supplied by the kth grid. The lookup value W k is calculated from the

coordinates of the (k − 1)th grid and is therefore bounded. For vI , Lemma 3.3.1 produces

values at tk
−

o bounded by
[
ρ0
K+1FT , FT

]
. For vJ , all results are identically zero. For vL, the

results for a given W k are within the interval
[
ρ0
K+1FT −W k, FT −W k

]
.

Wealth-indexed interpolation (Section 3.4) is used when W k ≥ W k+

min. For linear

interpolation, the interpolated value lies in between the two bounded neighbouring values

and is therefore also bounded. The same can be said for higher-order variants (such

as the limited quadratic interpolation scheme adopted from [48]) where boundedness by

neighbouring lookup values is explicitly enforced.

We conclude that the induction step is `∞-stable.

Classical case with similarity extrapolant

Proving our discretisation’s stability for the similarity extrapolant case (using Equation

(3.3.9)) would be straightforward if we could show that vKL
(
S2, T − tKo ;B2

)
≤ S2

m
, but with

Corollary 3.6.2 we can only achieve the weaker upper bound of S2. We therefore cannot

use the reasoning of Proposition 3.6.3.

Our numerical results (in particular, those to be presented in Section 5.3) suggest

that the implementation using Equation (3.6.1) and the similarity extrapolant is indeed

convergent under conditions where the similarity extrapolant is exact. From this we

conjecture that our numerical scheme for the classical CPPI product is `∞-stable. This may

seem counterintuitive; earlier it was noted in Remark 3.3.5 that the similarity extrapolant

multiplier is larger than unity.

To examine this discrepancy we derive an analytical solution for the classical CPPI

problem. It will be shown that when the similarity extrapolant is exact, we can express the

analytical CPPI valuation as a product of K + 1 vanilla option values. We can then prove

stability for this analytical special case by showing that the value of each vanilla option

approaches S2

m
as K →∞. This analytical work is later revisited in Chapter 4, towards the

development of a tractable analytical solution.

Let SAk\ ≡
m
m−1

(F k − Bk
min), denoting the abscissa of Ak\ at B = Bk

min. Let C(S;X,T )

represent the time-0 value of a European call option with spot S, strike X and maturity T .

For notational convenience, model-specific arguments (such as r, σ and λ) are omitted.
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3.6. Convergence

The following analysis is simpler if we work with vJ . An analogous result for vL can be

obtained: instead of (K + 1) call values, it involves the product of K call values and one

put value.

Proposition 3.6.4 (Analytical solution of the classical CPPI problem when the similarity

extrapolant is exact). If

• Bk
min ≤ 0 for all k,

• the risk-free rate r and the volatility σ are piecewise constant over each interval(
tk

+

o , t
(k+1)−
o

)
,

• the contract specifies classical CPPI reallocation (Section 2.2.1), and

• the CPPI floor value F appreciates at the risk-free rate,

then, using the large shortfall boundary condition (Lemma 3.3.1) and the classical similarity

extrapolant (Corollary 3.3.4), the time-0 risk-neutral value of a CPPI claim with payoff vJ
and initial wealth W0 can be expressed using the product of K + 1 call option values:

vJ(W0, 0) = max
{
W0 − F 0, 0

} K∏
k=0

[
m

SAk\
C
(
SAk\ ;F

k+1 − ρk+1
k Bk

min, t
k+1
o − tko

)]
. (3.6.2)

Proof. The hypotheses of Corollary 3.3.4 are assumed, and therefore a stage’s positive-

cushion terminal data can be expressed in terms of a single node from the previous grid. In

the case of vJ at time tK
−

, the result is

v
(K−1)
J

(
SK

−
, 0;BK−

) ∣∣∣
SK−+ρKK−1B

K−−FK>0

=
m(SK

−
+ ρKK−1B

K− − FK)

SAK\
vKJ (SAK\ , t

K+1
o − tKo ;BK

min). (3.6.3)

On the other hand, with the large shortfall boundary condition (Lemma 3.3.1) we have

v
(K−1)
J

(
SK

−
, 0;BK−

) ∣∣∣
SK−+ρKK−1B

K−−FK≤0
= 0, (3.6.4)
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3.6. Convergence

recalling that all negative-cushion portfolios are terminally knocked-out when F evolves at

or above the risk-free rate. Combining these two results yields

v
(K−1)
J

(
SK

−
, 0;BK−

)
=

m·max
{
SK
−

+ρKK−1B
K−−FK , 0

}
SAK\

vKJ

(
SAK\ , t

K+1
o − tKo ;BK

min

)
=

m·max
{
SK
−

+ρKK−1B
K−−FK , 0

}
SAK\

C
(
SAK\ ;FK+1 − ρK+1

K BK
min, t

K+1
o − tKo

)
.

(3.6.5)

The second equality results directly from the definition of the function C; the terminal value

associated with vKJ

(
SAK\ , t

K+1
o − tKo ;BK

min

)
is max

{
SAK\ −

(
FK+1 − ρK+1

K BK
min

)
, 0
}

which

can be thought of as a call payoff. Furthermore, there are no reallocations over the interval

(tKo , t
K+1
o ], so vKJ

(
SAK\ , t

K+1
o − tKo ;BK

min

)
is the time-0 value of a call with spot SAK\ , strike

FK+1 − ρK+1
K BK

min and maturity tK+1
o − tKo .

The only difference between Equation (3.6.5) (at time tKo ) and the original payoff

max
{
S(K+1)− + ρK+1

K B(K+1)− − FK+1, 0
}

(at time tK+1
o = T ) is the decremented reallocation index (from K + 1 to K) and a scaling

by the factor
m

SAK\
C
(
SAK\ ;FK+1 − ρK+1

K BK
min, t

K+1
o − tKo

)
which is independent of both SK

−
and BK− . This allows us to exploit linearity and

repeat the above reasoning to determine v
(K−2)
J

(
S(K−1)− , 0;B(K−1)−

)
, which is simply the

expression for v
(K−1)
J

(
SK

−
, 0;BK−

)
scaled by the factor

m

SAK−1
\

C
(
SAK−1
\

;FK − ρKK−1B
K−1
min , tKo − tK−1

o

)
.

Descending further in k introduces an additional factor at each iteration. We ultimately

obtain Equation (3.6.2), recalling that W0 = S0 +B0.

From this result it follows that when the similarity extrapolant is exact, the analytical
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3.6. Convergence

result for the classical case with K reallocations is bounded by

0 ≤ v0
J(W0, 0) ≤ max

{
W0 − F 0, 0

} (
C (K)

)bKc+1
C †(K), (3.6.6)

where C (K) ≡ max
0≤k≤bKc

{
m

SAk\
C
(
SAk\ ;F

k+1 − ρk+1
k Bk

min, t
k+1
o − tko

)}
,

SAk\ =
m

m− 1
(F k −Bk

min), as before,

and C †(K) is a factor that only arises when K takes a noninteger value.

Here b·c represents the floor function—this function determines the largest previous

integer, and is not to be confused with the CPPI floor, F . We have carefully defined the

upper bound in Equation (3.6.6), in a manner that facilitates studying its limit as K →∞
(calculating this requires treating K as a continuous variable). The function C †(K) relates

to the remaining, shortened time interval that arises when the interval [0, T ] is partitioned

into a noninteger number of equal subintervals. This function therefore varies with bKc−K
and is unity-valued when K is a nonnegative integer. The graph of this function looks

like a sawtooth function with decaying amplitude; it is a piecewise function in K that is

increasing over each subinterval, bounded below by one and bounded above by C (K).

Proving stability when the similarity extrapolant is exact therefore reduces to proving

that limK→∞
[
C (K)

]K+1
is finite. By Corollary 3.6.2 we have C (K) ≤ m. As noted earlier,

this bound is unfortunately not tight enough, because m > 1. We instead use the following

result.

Lemma 3.6.5. If y(K) is a differentiable function with lim
K→∞

y(K) = 1 then

lim
K→∞

(
y(K)

)K+1
= exp

(
lim
K→∞

−(K + 1)2∂y(K)

∂K

)
.

Proof. This is a consequence of l’Hôpital’s rule and the limit definition of ex. See Proposition

1.3.5 of [4] for details.

It is straightforward to verify that C (K)→ 1 as K →∞. As K increases, the duration

between reallocations decreases, and all of the functions C considered in Equation (3.6.6)

approach the payoff function. Hence

lim
K→∞

C (K) = lim
K→∞

(
m · max

0≤k≤bKc

SAk\ + ρk+1
k

(
F k − m−1

m
SAk\

)
− F k+1

SAk\

)
.
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3.7. Summary

The CPPI floor terms vanish from this equation when the limit is taken. This is a consequence

of the assumption about F in Proposition 3.6.4. Each candidate of the optimisation therefore

reduces to the same value, 1/m, as K →∞. From this we reach the desired conclusion.

We additionally require finiteness for limK→∞−(K + 1)2 ∂C (K)
∂K

, but we cannot generally

presume that ∂C (K)
∂K

is O (1/(K + 1)2)—or that this derivative exists at all. This is because

the largest-valued stage (corresponding to the optimal value of k) may vary with K, leading

to a piecewise definition for C (K). Such an issue is avoided when the financial parameters

are equal over each stage and the reallocation schedule is uniform. Calculations confirming

this are presented in Section 4.1.2.

This analytical stability finding is encouraging. However, further study is required in

order to apply this reasoning to the numerical result; it is not straightforward to extend

Proposition 3.6.4 to account for truncation errors.

3.6.2 Monotonicity

Unconditional monotonicity of the fully-implicit scheme between observations follows from

Lemma 3.1 of [19]. It remains to show monotonicity at the reallocation instants, and this is

straightforward. In the case of wealth-indexed linear interpolation, the relevant difference is[
vn+1
i,j − (v1 + ε1) q − (v2 + ε2) (1− q)

]
−
[
vn+1
i,j − v1q − v2(1− q)

]
=− (ε1q + ε2(1− q))
≤ 0,

for any non-negative perturbations ε1 and ε2. Here v1 and v2 represent the two lookup table

values and 0 ≤ q ≤ 1 and (1− q) are their respective weights. Similar calculations apply

to the similarity extrapolant (using Equation (3.3.9)) and the near-field boundary (using

Equation (3.2.2))—all of the coefficients in these two equations are positive. In general,

higher-order interpolation schemes do not guarantee positive coefficients and therefore do

not preserve monotonicity.

3.7 Summary

In this chapter we developed numerical schemes for solving the classical and limited-

borrowing CPPI problem. As an assessment of robustness we sought to verify whether
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3.7. Summary

these schemes would theoretically converge even as K →∞. Assuming a strong comparison

result holds, stability, monotonicity and consistency are sufficient to prove convergence

to the viscosity solution. In demonstrating that a scheme satisfies the first two of these

properties, the reallocation instants and the intervals between reallocations can be addressed

separately.

For the fixed-borrowing-limit case we have proven that the jump condition (2.6.5) can

be implemented in a way that preserves `∞ stability (independent of the timestep and grid

refinement level) and monotonicity. These conditions are met at the reallocation instants,

even as K →∞. Therefore the limited-borrowing case will be robustly stable and monotone

if the discretisation of the inter-reallocation dynamics also has these properties (as our

scheme does with fully-implicit timestepping and linear interpolation).

Our results are in contrast weaker for the similarity extrapolant workaround to the

classical case. The monotonicity of the jump condition (2.6.4) is again unconditional (for

linear interpolation), but it remains to be determined whether the similarity extrapolant

approach is numerically stable. Our analytical result developed herein is encouraging; we

find that stability can be achieved when truncation and roundoff errors are not present in

the calculation. This, along with our numerical results, leads us to conjecture the similarity

extrapolant approach is indeed stable. If this is true, then we additionally conjecture that

the stability result can be generalised to accommodate classes of problems with autonomous

CPPI floors and volatilities that vary with the underlying risky asset.

We recommend that computational implementations primarily use the limited-borrowing

approach. In addition to making more financial sense than the classical (unlimited-borrowing)

case, it is just as straightforward to implement and has fewer unresolved theoretical matters.

In Section 5.6 we will investigate the suitability of limited-borrowing approach as an

approximation for the classical case.
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4 Analytical special cases

In this chapter we derive analytical results for the classical CPPI pricing problem. The

formulæ we develop here are only suitable for pricing a special class of CPPI-backed

guarantees: those with unlimited borrowing, under a model where (i) the risk-free asset and

the CPPI floor both evolve at the same constant rate, and (ii) the volatility is constant.

Nevertheless, these formulæ are useful for validating some of our numerical results.

4.1 Discrete case

4.1.1 Formulation

The analytical solutions of Balder, Brandl and Mahayni for a CPPI claim under discrete

rebalancing [4] can be extended beyond the Black-Scholes case. Here we present an analogous

result for when the risky asset evolves according to the jump diffusion described by Equation

(2.4.1). It is easier to solve for vL by indirect means, by first pricing vJ and then applying

the parity relationship given by Equation (2.6.8).

Recall from Proposition 3.6.4 that the time-zero risk-neutral value of a classical CPPI

claim with payoff vJ and initial wealth W0 can be expressed using the product of K + 1

call option values:

vJ(W0, 0) = max
{
W0 − F 0, 0

} K∏
k=0

[
m

SAk\
C
(
SAk\ ;F

k+1 − ρk+1
k Bk

min, t
k+1
o − tko

)]
.

This holds when (i) %(t) = r(t), (ii) r and σ are piecewise constant, and (iii) Bk
min is always

nonpositive. As before, SAk\ = m
m−1

(F k −Bk
min) and C(S;X,T ) represents the time-0 price

of a European call option with spot S, strike price X and maturity T . For notational

convenience, model-specific arguments are omitted.

In an analytical context the choice of Bk
min is arbitrary because there is no domain
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4.1. Discrete case

truncation. So the above is more conveniently expressed (using homogeneity) as

vJ(W0, 0) = max
{
W0 − F 0, 0

} K∏
k=0

[
C
(
m;

m

SAk\

(
F k+1 − ρk+1

k Bk
min

)
, tk+1

o − tko

)]

= max
{
W0 − F 0, 0

} K∏
k=0

[
C
(
m; ρk+1

k (m− 1), tk+1
o − tko

) ]
.

The strike price simplification results from the definition of SAk\ and the assumption that

the CPPI floor evolves at the risk-free rate.

While this result is linear (for wealth W0 > 0) in the initial cushion W0 − F 0, the slope

is nontrivial.

When the risky asset evolves according to (2.4.1) with lognormal jumps (Equation

(2.4.2)), there is an analytical solution for a vanilla European call with spot price S, strike

X, maturity T , and the market parameters defined in Section 2.4.1:

C(S;X,T ) =
∞∑
`=0

[
Se−λ(κ+1)T (λ(κ+ 1)T )`

`!
Φ(d1,`)− e−(r+λ)TX

(λT )`

`!
Φ(d2,`)

]
, (4.1.1)

where d1,` ≡
ln
(
S
X

)
+
[
r + σ2

2
− λκ

]
T + `(µ+ γ2)√

σ2δ + `γ2
,

and d2,` ≡ d1,` −
√
σ2δ + `γ2.

Here Φ is the standardised normal cumulative distribution function. The analytical solution

for vanilla European options with lognormal jumps is a Poisson-weighted sum of the Black-

Scholes prices given that ` jumps have occurred. This result was first presented by Merton

in [35]. Although this expression is not closed-form, it is well-approximated by a suitably

high partial sum [25].

For the purposes of validating our numerical results we are interested in one final

simplification:

Proposition 4.1.1 (Analytical special case valuation of a discrete classical CPPI claim).

If

• the risky asset follows a Merton jump diffusion with constant parameters over the

entire investment horizon,
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4.1. Discrete case

• the risk-free asset and the guaranteed CPPI floor both evolve at the same rate, and

• reallocations are uniformly spaced,

then the time-zero risk-neutral value of a classical CPPI claim with initial wealth W0 is

vJ(W0, 0) = max
{
W0 − F 0, 0

} [
C
(
m; erδ(m− 1), δ

) ]K+1

,

where

C
(
m; erδ(m− 1), δ

)
=
∞∑
`=0

E`,

E` ≡ me−λ(κ+1)δ (λ(κ+ 1)δ)`

`!
Φ(d1,`)− (m− 1)e−λδ

(λδ)`

`!
Φ(d2,`),

δ ≡ tk+1 − tk ≡ T
K+1

,

d1,` ≡
ln
(

m
m−1

)
+
[
σ2

2
− λκ

]
δ + `(µ+ γ2)√

σ2δ + `γ2
,

and d2,` ≡ d1,` −
√
σ2δ + `γ2.

By Equation (2.6.8) the corresponding liability is

vL(W0, 0) = W0 − ρ0
K+1F

T −max
{
W0 − F 0, 0

} [
C
(
m; erδ(m− 1), δ

) ]K+1

.

4.1.2 Limiting behaviour

Next we use Lemma 3.6.5 to determine the limiting behaviour for Proposition 4.1.1 as

K →∞.

Preliminaries. The function Φ(x) is bounded and approaches 1 as x→∞.
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4.1. Discrete case

By direct evaluation, we see that limK→∞ d1,` is finite for ` > 0. The same can be said

for:

lim
K→∞

d2,` = lim
K→∞

d1,` −
√
`γ,

lim
K→∞

−(K + 1)2∂d1,`

∂K
=

(σ
2

2
− λκ)T√
`γ

−
σ2T lim

K→∞
d1,`

2`γ2
,

and lim
K→∞

−(K + 1)2∂d2,`

∂K
= lim

K→∞
−(K + 1)2∂d1,`

∂K
− σ2T

2
√
`γ
.

On the other hand, when ` = 0 we have

lim
K→∞

d1,0 =∞ = lim
K→∞

d2,0.

Let 1A(x) denote an indicator function that is 1 when x is in set A, and 0 otherwise.

Applying the above results yields

lim
K→∞

E` = m1{0}(`)− (m− 1)1{0}(`) = 1{0}(`),

since all but the 0th case of E` are nonzero degree polynomials in 1
N

that vanish in the limit.

Summing over ` confirms that limK→∞ C
(
m; erδ(m− 1), δ

)
= 1.

Applying Lemma 3.6.5. For convenience define

G ≡ ln m−1
m
− µ

γ
. (4.1.2)
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4.1. Discrete case

Then for nonzero `,

−(K + 1)2∂E`
∂K

=− λT (κ+ 1)me−λ(κ+1)δ (λ(κ+ 1)δ)`

`!
Φ(d1,`)

+ λT (m− 1)e−λδ
(λδ)`

`!
Φ(d2,`)

+ λT (κ+ 1)me−λ(κ+1)δ (λ(κ+ 1)δ)`−1

(`− 1)!
Φ(d1,`)

− λT (m− 1)e−λδ
(λδ)`−1

(`− 1)!
Φ(d2,`)

+me−λ(κ+1)δ (λ(κ+ 1)δ)`

`!
Φ′(d1,`)

(
−(K + 1)2∂d1,`

∂K

)
− (m− 1)e−λδ

(λδ)`

`!
Φ′(d2,`)

(
−(K + 1)2∂d2,`

∂K

)
.

The common factor of
(

1
K+1

)(`−1)
arising from the appearance of δ(`−1) causes most terms

to vanish:

lim
K→∞

−(K + 1)2∂E`
∂K

=

{
λT [m(κ+ 1)Φ(γ −G)− (m− 1)Φ(−G)] , ` = 1,

0, ` > 1.

On the other hand,

−(K + 1)2∂E0

∂K
=− λT (κ+ 1)me−λ(κ+1)δΦ(d1,0)

+ λT (m− 1)e−λδΦ(d2,0)

+me−λ(κ+1)δΦ′(d1,0)

(
−(K + 1)2∂d1,0

∂K

)
− (m− 1)e−λδΦ′(d2,0)

(
−(K + 1)2∂d2,0

∂K

)
.

Adding the last two terms together produces an expression that vanishes in the limit because

the Gaussian decay dominates. Hence

lim
K→∞

−(K + 1)2∂C
(
m; erδ(m− 1), δ

)
∂K

=− λT (κ+ 1)m+ λT (m− 1) +mλT (κ+ 1)Φ(γ −G)− (m− 1)λTΦ(−G)

= (m− 1)λTΦ(G)−mλT (κ+ 1)Φ(G− γ)
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4.2. Continuous case

and we conclude that under the assumptions of Proposition 4.1.1 (constant financial

parameters, Merton jumps, nonautonomous CPPI floors and uniform reallocations)

lim
K→∞

vJ(W0, 0) = eλT
(

(m−1)Φ(G)−m(κ+1)Φ(G−γ)
)

max{W0 − F 0, 0}. (4.1.3)

In the no-jumps case, the exponential factor is unity. This is consistent with the result in

[4] for risk-neutral drift.

4.2 Continuous case

Next we present an alternative derivation of the above result. Our work in this section

closely follows the proof of Proposition 3.2 in [15] which addresses expected CPPI shortfalls

for general Lévy processes. The difference is that here we present a more explicit set of

calculations for the specific case where the stock dynamics are described by a diffusion

process with lognormally distributed jumps.

In the following we use the notation ·t to denote a continuous-time process.

State variable

Previously, we used the values of the risky and risk-free assets as our state variables. This

permitted us to impose constraints on the CPPI portfolio’s composition. However, for the

unconstrained, continuous case it is preferable to describe the CPPI portfolio using the

discounted cushion process :

C̄t ≡ exp

(∫ 0

min{t,t?}
r(u) du

)(
Smin{t,t?} +Bmin{t,t?} − Fmin{t,t?}

)
, 0 < t ≤ T, (4.2.1)

with C̄0 = W0 − F0 ≥ 0.

The random variable t? is a stopping time representing the first instant where the CPPI

strategy fails (i.e. the CPPI portfolio is worth less than the prevailing CPPI floor Ft). More

formally,

t? ≡ inf{ t
∣∣ St +Bt − Ft < 0 } = inf{ t

∣∣ C̄t < 0 }. (4.2.2)

If t? occurs within the investment horizon then all remaining wealth is subsequently invested

in the risk-free asset. Consequently, C̄t is constant and negative on the interval [t?, T ].
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4.2. Continuous case

Continuous-time CPPI dynamics

For the continuous-time processes St, Bt and Ft we use the models presented in Section 2.4.

Once again we model the risk-free rate as a deterministic function of time. Additionally, we

assume that the CPPI floor appreciates at the risk-free rate. This leads to the following

characterisation of the continuous-time CPPI strategy.

Proposition 4.2.1. The pre-shortfall CPPI strategy’s discounted cushion process satisfies

the stochastic differential equation

dC̄t
mC̄t−

= (−λκ) dt+ σt dZt + (Jt − 1)dqt, 0 ≤ t ≤ t?
−
. (4.2.3)

Proof. As an intermediate step we will formulate the undiscounted cushion dynamics.

Recall that the CPPI strategy is wealth-preserving: St− +Bt− = St +Bt. As in Section

2.4, the subscript t− represents the instant preceding time t. Since the process Ft is

continuous, St− +Bt− − Ft− = St +Bt − Ft + ε.

The continuous-time analogue to Equation 2.2.3 requires that—at each instant t—the

risky holding be worth m(St− +Bt− − Ft−). Since the CPPI strategy is self-financing, the

risk-free holding is worth (1−m)(St− +Bt−) +mFt− . It then follows that the difference

between the risk-free asset and the CPPI floor is (1−m)(St− +Bt− − Ft−).

Consider the undiscounted cushion process St + Bt − Ft. This can be treated as a

two-asset wealth process [16] involving (i) the risky asset, and (ii) the difference between

the risk-free asset and the floor. For the risky asset, the change in value from t− to t is the

product of the risky position (at t−) and the unit change in S. By the above findings, this

product can be expressed as m(St− +Bt− − Ft−) dSt
St−

. The other asset class can be handled

with similar reasoning, recalling that both the risk-free asset and the CPPI floor value are

assumed to appreciate at the risk-free rate. It follows that the undiscounted CPPI cushion

dynamics are

d (St +Bt − Ft)
St− +Bt− − Ft−

= m
dSt
St−

+ (1−m)
dBt

Bt−

The final result is attained by substituting Equations (2.4.1) and (2.4.3), and then applying

Itō’s lemma.

Remark 4.2.2 (Relation to a single power option). For completeness, we note that when

% = r and λ = 0, the continuous-reallocation dynamics (Equation (4.2.3)) have a tractable
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4.2. Continuous case

solution that involves (St/S0)m [10, 36]. This observation allows this special case of CPPI-

backed guarantee to be treated as a power option written on the risky asset [36]. However,

in a risk-neutral context, this observation offers us little additional insight because the mth-

order terms all cancel out; after simplification the risk-neutral valuation has no dependence

on the underlying assets, apart from linear dependence on the initial cushion. This is

consistent with our previous findings.

An expression for gap risk

The justification for using C̄t rather than the undiscounted cushion is as follows. We seek

the time-0 fair-value liability on a continuously-reallocated CPPI instrument, for an initial

endowment of W0. This quantity was previously denoted as limK→∞ vL(W0, 0). As before,

we need to determine the risk-neutral time-0 expectation of the discounted payoff:

EQ
{

exp

(∫ 0

T

r(u) du

)
max {FT − ST −BT , 0}

∣∣∣ S0 +B0 = W0

}
,

noting that the reallocation behaviour will change if a shortfall is experienced in the lifetime

of the instrument. By Equation 4.2.1, this is equivalent (in the context of continuous-time

reallocation) to determining

EQ
{
−max

{
−C̄T , 0

} ∣∣ C̄0 = W0 − F0

}
= EQ

{
min

{
C̄T , 0

} ∣∣ C̄0 = W0 − F0

}
.

This expression would be more complicated had we instead used the undiscounted cushion.

Here C̄t obeys Equation (4.2.3) for t in the interval [0, t?].

Applying the law of total expectation yields

lim
K→∞

vL(W0, 0) =

∫ T

0

EQ
{

min
{
C̄T , 0

}
| t? = u, C̄0 = W0 − F0

}
PQ {t? ∈ du} du

+ EQ
{

min
{
C̄T , 0

}
| t? > T, C̄0 = W0 − F0

}
PQ {t? > T } ,

and this simplifies to

lim
K→∞

vL(W0, 0) =

∫ T

0

EQ {C̄T | t? = u, C̄0 = W0 − F0

}
PQ {t? ∈ du} du (4.2.4)

because the expectation conditional upon no shortfall taking place vanishes. We can

therefore solve the problem at hand by determining the expected shortfall under the

risk-neutral measure.
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4.2. Continuous case

Characterising the first shortfall

Before continuing it is necessary to introduce some notation and concepts from the realm

of stochastic calculus.

Recall that the ordinary differential equation dy = y(x) dx with initial condition

y(0) = y0 has the solution y(x) = y0e
x. The stochastic abstraction of the exponential

function is called the Doléans-Dade exponential.

Definition 4.2.3 ([14, 15]). The Doléans-Dade exponential E(·)t is the solution to the

stochastic differential equation dYt = Yt dXt with the initial condition Y0 = 1.

The Doléans-Dade exponential has two pertinent properties [14, 15]:

1. If Xt is a Lévy Process with jump component (∆X)t then E(X)t= E(X)t−
[
1+(∆X)t].

The rightmost factor is a random variable and is in general not strictly positive. So,

unlike the standard exponential function, the Doléans-Dade exponential has a nonzero

probability of attaining nonpositive values.

2. If Xt is a Lévy Process then ln E(X)t is also a Lévy Process.

We can characterise the right-hand side of Equation (4.2.3) with the Lévy triplet(
−λκ, σ2, ν (dζ)

)
, where ν(dζ) is the Lévy measure representing the probability of a jump

in dC̄t
mC̄t−

of magnitude ζ ≡ J − 1 happening in a given instant. Since the jump magnitude

and jump intensity are assumed independent, λ is finite, and J has the density p(J), we

have

ν(dζ) = λp(J) dJ.

To proceed, we decompose the right-hand side of Equation (4.2.3) into the subprocesses

LA
t and LB

t , where

1. LA
t ∼

(
−λκ, σ2, ν (dζ) 1{Jt>m−1

m }(Jt)
)

is a jump-diffusion process that will almost

surely not cause a shortfall, and

2. LB
t ∼

(
0, 0, ν (dζ) 1{Jt≤m−1

m }(Jt)
)

is a pure-jump process of stock price drops signi-

ficant enough to cause a shortfall.
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4.2. Continuous case

Since the Merton model has finite activity jumps, so does LA
t . This observation will

simplify later calculations.

The following confirms that only LB
t induces shortfalls. Equation (4.2.3) can now be

written as

dC̄t
d(LA

t + LB
t )

= mC̄t− ,

which has the solution

C̄t = C̄0E
(
mLA +mLB

)
t

= C̄0E
(
mLA +mLB

)
t−

[
1 +m(Jt − 1)dqt

]
= C̄0E

(
mLA

)
t−

[
1 +m(Jt − 1)dqt

]
for t in the interval [0, t?]. The second equality follows from the first property of the

Doléans-Dade exponential; the third equality holds because if t ≤ t? then the realised value

of LB
t− is zero.

In the event of a jump at time t?, dqt? = 1 and the discounted cushion scales by a factor

of
[
1 +m(Jt? − 1)

]
. It then follows that C̄t ceases to be positive at

t? = inf
{
t | Jt ≤ m−1

m
, dqt = 1

}
.

We can now state the CPPI discounted dynamics (for 0 ≤ t ≤ T ) as

C̄t = C̄0E
(
mLA

)
t
1{t?>t}(t

?) + C̄0E
(
mLA

)
(t?−)

[
1 +m(Jt? − 1)

]
1{t?≤t}(t

?)

and hence write Equation (4.2.4) as

lim
K→∞

vL(W0, 0)

=

∫ T

0

EQ
{

(W0 − F0)E
(
mLA

)
(t?−)

[
1 +m(Jt? − 1)

] ∣∣∣ t? = u
}

PQ {t? ∈ du} du.

= (W0 − F0) EQ
{

1 +m(Jt? − 1)
}∫ T

0

EQ
{
E
(
mLA

)
(t?−)

∣∣∣ t? = u
}

PQ {t? ∈ du} du.

The last equality is a consequence of J being independent of t?.

57



4.2. Continuous case

At this stage the result still does not look very tractable. The key observation [15] is

that ln E(mLA)t is also a Lévy Process, and if its characteristic function —which we can

calculate using the Lévy-Khinchin representation [14]—is of the form EQ {eitϕ(z)
}

, then

EQ {E(mLA)t?− | t? = u
}

= eϕ(−i)u.

The occurrence of jumps is governed by a Poisson process with rate λ, so the occurrence

of shortfall-inducing jumps in (LB)t is governed by a Poisson process with rate

λ? ≡ λPQ
{
Jt ≤

m− 1

m

}
= λΦ(G),

where Φ(·) is the standardised normal cumulative distribution function and G is as defined

in Equation (4.1.2). Therefore t? is exponentially distributed with density λ?e−λ
?u.

Incorporating these developments yields

lim
K→∞

vL(W0, 0) = (W0 − F0)λ? EQ
{

1 +m(Jt? − 1)
}∫ T

0

e[ϕ(−i)−λ?]u du

= (W0 − F0)λ? EQ
{

1 +m(Jt? − 1)
}e(ϕ(−i)−λ?

)
T − 1

ϕ(−i)− λ∗ .

after directly integrating. This is valid because ϕ(−i) is independent of t. The following

calculation will confirm this.

Final steps

The challenge here is to find an appropriate Lévy-Khinchin representation for the process

ln E(mLA)t. Since LAt is a finite-activity process we can use a simpler version of the

Lévy-Khinchin representation [15, Remark 3.1] :

ϕ(−i) = −mλκ+m

∫
ζ>− 1

m

ζ ν(dζ)

= −mλEQ {J − 1}+mλEQ
{
J − 1

∣∣∣ J > m− 1

m

}
PQ
{
J >

m− 1

m

}
= −mλ? EQ

{
J − 1

∣∣∣ J ≤ m− 1

m

}
(4.2.5)

= −mλ? EQ
{
J
∣∣∣ J ≤ m− 1

m

}
+mλ?

= mλ? −mλ(κ+ 1)Φ(G− γ)
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4.2. Continuous case

The last equality follows from the partial expectation of a lognormal random variable [2,

Equation 9.3] and the property Φ(−x) = 1− Φ(x).

From Equation (4.2.5) we see—perhaps surprisingly—that

ϕ(−i)− λ? = −λ? EQ
{

1 +m(Jt? − 1)
}
,

so the desired limit simplifies to

lim
K→∞

vL(W0, 0) = −(W0 − F0)
[
e

(
ϕ(−i)−λ?

)
T − 1

]
or more revealingly,

lim
K→∞

vL(W0, 0) = −(W0 − F0)

[
e
−λ?T EQ

{
1+m(Jt?−1)

}
− 1

]
.

After the appropriate substitutions we get

lim
K→∞

vL(W0, 0) = −(W0 − F0)

[
eλT
(

(m−1)Φ(G)−m(κ+1)Φ(G−γ)
)
− 1

]
.

Moreover, by Equation (2.6.8) and the fact that the initial cushion was assumed to be

nonnegative,

lim
K→∞

vJ(W0, 0) = eλT
(

(m−1)Φ(G)−m(κ+1)Φ(G−γ)
)

max{W0 − F0, 0}

which agrees with the previous result from Equation (4.1.3).
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5 Numerical results and validation

5.1 Overview

Here we present numerical experiments that demonstrate how this framework agrees with

—and extends—existing CPPI models. Our valuations are functions of the initial wealth

W0. To facilitate comparisons across various CPPI floor trajectories we will also state the

initial cushion, C0 = W0 − F 0. Unless noted otherwise, our computational tests’ financial

parameters take the values listed in Table 5.1.

Table 5.1: Financial parameters

Symbol Value Description

Contractually specified

m 5 Leverage factor

T 1 year Contract term

FT 150 CPPI floor at maturity

% 0.05 Constant CPPI floor rate

K 250 CPPI portfolio reallocations

Market-calibrated

r 0.05 Constant risk-free rate

σ 0.2 Constant volatility

λ 0.61 Jump frequency

µ -0.7 Mean log jump size

γ 0.85 Standard deviation of log jump size

These financial parameters were introduced in Chapter 2. The default value of K

roughly corresponds to one reallocation per business day. By market-calibrated we refer to

financial parameters which in practice should be estimated from market data. The values in

Table 5.1 are not calibrated to current market conditions; rather, we chose artificial values

that would challenge the numerical framework.
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5.1. Overview

The first two experiments (Sections 5.2 and 5.3) validate our framework against the

analytical results derived in Chapter 4. More precisely, we verify that (i) increasing the

resolution of the computational grid lowers the error between the numerical results and the

analytical solutions, and (ii) that the convergence behaviour of the results is consistent with

theory. This is done by comparing the results of trials run on successively finer grids. We

start with the timestep ∆τ and a coarse initial (S,B) grid. This corresponds to refinement

level (rl) 0. From rl = N to rl = N + 1 (i) the timestep is halved, and (ii) for the two

prototypical one-dimensional grids, new gridpoints are added equidistantly between each of

the old ones. So an n ×m grid refines to a (2n − 1) × (2m − 1) grid. Grids were scaled

about the prevailing allocation locus, following the design described in Appendix B. For the

sake of simplicity, each trial uses constant timesteps, although the framework does permit

adaptive timestepping.

For the other experiments our trials are arranged similarly, except that there are no

analytical results against which we can compare directly. In the penultimate experiment,

we begin with a high-resolution grid and observe the sensitivity to artificially imposed

borrowing limits.

We use two metrics for assessing our results. Let V (rl) represent the computational

approximation of v0(W0, 0) (for some fixed W0) at refinement level rl. The convergence

ratio , cr, is defined at rl = N by

cr ≡ V (rl = N − 1)− V (rl = N − 2)

V (rl = N)− V (rl = N − 1)
, (5.1.1)

with all other parameters remaining unchanged (unless noted otherwise). It is customary

to assume that in the error between theoretical and computational results, the higher-order

timestep and grid spacing terms are negligible. So as rl approaches infinity, a convergence

ratio of 2 corresponds to linear convergence, and similarly a ratio of 4 is theoretically

consistent with quadratic convergence.

Convergence ratios are useful for quantifying the uniformity of convergence and es-

timating the incremental tradeoff between computational cost and approximation error.

However, this metric says nothing about the accuracy on the initial grid. So, whenever

possible we also compute the percentage error (%re) for a computed value V (rl = N)

relative to the theoretical value theo:

%re ≡ V (rl = N)− theo

theo
. (5.1.2)
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5.2. Daily reallocation and unlimited borrowing

In Section 3.6.2 it was shown that the numerical scheme is monotone when using fully-

implicit timestepping. Our framework also accommodates Crank-Nicolson timestepping.

Despite the Crank-Nicolson scheme being only conditionally monotone for the chosen

discretisation [18], it was found that—in terms of convergence ratio consistency—using

Crank-Nicolson timestepping with Rannacher smoothing (two initial fully-implicit timesteps

for each stage of the PIDE solve) was usually preferable to using the fully-implicit scheme at

all timesteps. The datasets from each of the two schemes were consistent, but as expected,

the results with Crank-Nicolson timestepping converged more quickly since this scheme is

theoretically O(∆τ 2).

5.2 Daily reallocation and unlimited borrowing

We begin by applying this framework towards solving the problem treated in Section 4.1:

Merton jump diffusion in the underlying, discrete reallocation, unlimited borrowing and a

CPPI floor value appreciating at the risk-free rate. This is an appropriate starting point

because an analytical solution exists and is piecewise linear in the cushion, as given by

Proposition 4.1.1. Moreover, the homogeneity property (Proposition 3.3.3) holds, and the

similarity extrapolant is—neglecting truncation errors—exact. The numerical results, with

comparisons to the analytical results, are presented in Tables 5.2 and 5.3.

This experiment—and the next—should be viewed as validation exercises; for speed and

accuracy one would in practice favour using the analytical solution to a model whenever

possible. It should be recalled that this computational framework is intended to be used

with (arguably more realistic) models where an analytical solution to the CPPI gap risk

problem is not tractable. Such cases will be explored in Section 5.4 onward, but it is prudent

to first test the framework on easier problems.

The simplicity of this problem permits adequate results to be achieved with relatively

coarse initial grid dimensions, Crank-Nicolson timestepping and the wealth-indexed linear

interpolation described in Section 3.4. The percentage relative error decreases with each

refinement. Moreover, the reported convergence ratios are consistent with quadratic

convergence. This is in agreement with [19], where Crank-Nicolson timestepping achieved

quadratic convergence for a vanilla option, even when linear interpolation was used (to

transfer information, at each timestep, between a non-uniform S grid and a uniform FFT

grid).

The values in Table 5.4 are obtained by adding the corresponding computational results
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5.2. Daily reallocation and unlimited borrowing

Table 5.2: Values for v0
J with jumps, unlimited borrowing and discrete, daily

(K = 250) reallocation. These results were computed using Crank-Nicolson timestep-

ping, linear interpolation and the far-field similarity extrapolant, for initial cushions

C0 in the interval [0, 250000]. A representative subset of the data is presented. Re-

finement level (rl) 0 corresponds to a 52× 52 initial grid and a timestep ∆τ = T
K+1 .

The percentage error (%re) relative to the analytical value (theo) is defined in

Equation (5.1.2) and the convergence ratio (CR) is defined in Equation (5.1.1).

W0 = 143.684414 W0 = 160.184414 W0 = 267.684414

C0 = 1.000000 C0 = 17.500000 C0 = 125.000000

rl Value %re cr Value %re cr Value %re cr

0 2.477334 1.073 43.525177 1.474 312.338895 1.945

1 2.458994 0.325 43.073772 0.421 308.002875 0.530

2 2.453107 0.085 3.115 42.936092 0.100 3.279 306.718445 0.111 3.376

3 2.451568 0.022 3.826 42.903454 0.024 4.218 306.463650 0.028 5.041

4 2.451171 0.006 3.884 42.895566 0.006 4.138 306.397907 0.006 3.876

5 2.451068 0.001 3.821 42.893655 0.001 4.128 306.382660 0.001 4.312

theo 2.451031 42.893043 306.378878

Table 5.3: Values for v0
L with jumps, unlimited borrowing and discrete, daily (K = 250)

reallocation, computed under the same conditions as Table 5.2

W0 = 143.684414 W0 = 160.184414 W0 = 267.684414

C0 = 1.000000 C0 = 17.500000 C0 = 125.000000

rl Value %re cr Value %re cr Value %re cr

0 -1.462018 0.757 -25.654894 1.031 -183.884516 1.381

1 -1.453396 0.163 -25.456334 0.249 -181.966206 0.324

2 -1.451626 0.041 4.870 -25.406363 0.052 3.973 -181.467020 0.049 3.843

3 -1.451178 0.010 3.955 -25.396126 0.012 4.882 -181.406408 0.015 8.236

4 -1.451069 0.003 4.092 -25.393757 0.003 4.322 -181.385198 0.003 2.858

5 -1.451041 0.001 3.915 -25.393223 0.001 4.432 -181.380348 0.001 4.373

theo -1.451031 -25.393043 -181.378878
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5.3. Continuous reallocation and unlimited borrowing

Table 5.4: Confirming the parity relationship (Equation (2.6.8)) for the unlimited

borrowing, daily reallocation case. The Value columns arise from element-wise addi-

tion of the Value columns in Tables 5.2 and 5.3. The percentage error (%re) relative

to the analytical value (theo) is defined in Equation (5.1.2) and the convergence

ratio (CR) is defined in Equation (5.1.1).

W0 = 143.684414 W0 = 160.184414 W0 = 267.684414

C0 = 1.000000 C0 = 17.500000 C0 = 125.000000

rl Value %re cr Value %re cr Value %re cr

0 1.015316 1.532 17.870284 2.116 128.45438 2.764

1 1.005598 0.560 17.617438 0.671 126.036669 0.829

2 1.001481 0.148 2.361 17.529729 0.170 2.883 125.251424 0.201 3.079

3 1.000389 0.039 3.772 17.507328 0.042 3.915 125.057242 0.046 4.044

4 1.000103 0.010 3.805 17.501809 0.010 4.059 125.012709 0.010 4.360

5 1.000027 0.003 3.786 17.500432 0.002 4.011 125.002312 0.002 4.283

theo 1.000000 17.500000 125.000000

for v0
J and v0

L from Tables 5.2 and 5.3. This data confirms that the parity result (2.6.8) is

obeyed.

5.3 Continuous reallocation and unlimited borrowing

In the previous section we saw that for a fixed reallocation frequency, our computational

results converge to the exact discrete solution. Additionally, in the previous chapter we

showed that the exact discrete solution approaches the exact continuous solution. Now we

confirm that our computational results do the same, by successively halving the interval

between reallocations. We again use Crank-Nicolson timestepping and the wealth-indexed

linear interpolation described in Section 3.4.

Our implementation is parameterised by the number of reallocations, K. So in this

experiment we let K tend to infinity, with one timestep between reallocations (in addition

to the standard grid refinements). In particular, we start with a 64-stage PIDE solve

and double this number at each refinement. This corresponds to K taking values in the

sequence {26 − 1, 27 − 1, 28 − 1, . . .}. The starting value of this sequence was chosen with

computational time in mind; with one timestep per stage of the PIDE solve, starting instead
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5.3. Continuous reallocation and unlimited borrowing

with twice as many reallocations would double the computational time for each refinement

level.

Results are presented in Tables 5.5 and 5.6. Again, the practical value of this test is

limited to validating our implementation and showing that it is stable for large values of K.

Some difficulty was encountered in finding grid dimensions that were suitable for

achieving well-behaved convergence ratios for both v0
J and v0

L. The initial grid dimensions

used to produce Tables 5.5 and 5.6 were well-suited for v0
L; smaller dimensions were found

to produce more favourable results (not reported) for v0
J .

The computational results were found to converge to the sequence of theoretical, dis-

crete reallocation results (theo), which in turn appear to converge (albeit slowly) to the

theoretical result for continuous reallocation (inf). The theoretical data shows that even as

K = 2047, the differences between daily sub-daily reallocation and continuous reallocation

is not negligible for the set of financial parameters listed in Table 5.1. The computational

convergence ratios (cr) are eventually consistent with linear convergence. This agrees with

the theoretical findings for Asian options, where the discrete-reallocation model converges

to the continuous-reallocation result with a first-order discrete-observation error [48].

In a separate trial, stable results were achieved with K = 500000 and rl = 1. This is

consistent with the results of Section 3.6.1.

Table 5.7 confirms that the parity relation (2.3.5) is satisfied. Quadratic convergence is

achieved, despite the results of Tables 5.5 and 5.6 only achieving linear convergence. This is

explained by noting that the process v0
J + v0

L is constant when the CPPI floor moves at the

risk-free rate. More precisely, it is worth C0 for all t. This is readily verified using the parity

result (2.6.8), and the definitions of the cushion and the CPPI floor value. Moreover, the

value of v0
J + v0

L does not depend on the interval between allocations. Consequently, there

are no O(∆τ) = O(tk+1
o − tko) terms in the error; instead, the second-order grid discretisation

and interpolation errors dominate.
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5.3. Continuous reallocation and unlimited borrowing

Table 5.5: Values for v0
J with jumps, unlimited borrowing and reallocation approaching

the continuous case. These results were computed using fully-implicit timestepping, linear

interpolation and the large-cushion similarity extrapolant, for initial cushions C0 in the

interval [0, 250000]. A representative subset of the data is presented. Refinement level (rl) 0

corresponds to a 52×52 initial grid, 26−1 reallocations and a timestep ∆τ = T
K+1 . Percentage

errors (see Equation (5.1.2)) relative to the discrete analytical value (theo, calculated from

Proposition 4.1.1) and the continuous analytical value (inf, calculated from Equation (4.1.3))

are respectively represented by %red and %rec. The convergence ratio (CR) is defined in

Equation (5.1.1).

W0 = 143.684414 W0 = 267.684414

C0 = 1.000000 C0 = 125.000000

rl Value theo %red %rec cr Value theo %red %rec cr

0 2.448644 2.433147 0.637 -0.356 308.407008 304.143426 1.402 0.401

1 2.451243 2.445070 0.252 -0.250 306.997008 305.633702 0.446 -0.058

2 2.452833 2.451179 0.067 -0.185 1.634 306.684136 306.397353 0.094 -0.159 4.507

3 2.454706 2.454272 0.018 -0.109 0.849 306.859065 306.783942 0.024 -0.102 -1.789

4 2.455943 2.455828 0.005 -0.059 1.515 306.996630 306.978445 0.006 -0.058 1.272

5 2.456639 2.456608 0.001 -0.031 1.777 307.080377 307.076001 0.001 -0.030 1.643

inf 2.457390 307.173760

Table 5.6: Values for v0
L with jumps, unlimited borrowing and reallocation approaching the

continuous case, computed under the same conditions as Table 5.5.

W0 = 143.684414 W0 = 267.684414

C0 = 1.000000 C0 = 125.000000

rl Value theo %red %rec cr Value theo %red %rec cr

0 -1.434114 -1.433147 0.067 -1.597 -180.364687 -179.143426 0.6817 -0.993

1 -1.445774 -1.445070 0.049 -0.797 -180.998229 -180.633702 0.2018 -0.645

2 -1.451358 -1.451179 0.012 -0.414 2.088 -181.433632 -181.397353 0.0200 -0.406 1.455

3 -1.454315 -1.454272 0.003 -0.211 1.888 -181.798457 -181.783942 0.0080 -0.206 1.193

4 -1.455839 -1.455828 0.001 -0.106 1.941 -181.981674 -181.978445 0.0018 -0.105 1.991

5 -1.456612 -1.456608 0.0002 -0.053 1.974 -182.076689 -182.076001 0.0004 -0.053 1.928

inf -1.457390 -182.173760
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5.4. Daily reallocation with limited borrowing

Table 5.7: Confirming the parity relationship (Equation (2.6.8)) for the

unlimited borrowing, continuous reallocation case. The Value columns arise

from element-wise addition of the Value columns in Tables 5.5 and 5.6. The

percentage error (%re) relative to the analytical value (theo) is defined

in Equation (5.1.2) and the convergence ratio (CR) is defined in Equation

(5.1.1).

W0 = 143.684414 W0 = 267.684414

C0 = 1.000000 C0 = 125.000000

rl Value theo %re cr Value theo %re cr

0 1.014530 1.000000 1.453 128.042321 125.000000 2.434

1 1.005469 1.000000 0.547 125.998779 125.000000 0.799

2 1.001475 1.000000 0.148 2.269 125.250504 125.000000 0.200 2.731

3 1.000391 1.000000 0.039 3.684 125.060608 125.000000 0.048 3.940

4 1.000103 1.000000 0.010 3.770 125.014957 125.000000 0.012 4.160

5 1.000027 1.000000 0.003 3.777 125.003687 125.000000 0.003 4.051

inf 1.000000 125.000000

5.4 Daily reallocation with limited borrowing

We now apply our framework to scenarios with limited borrowing, where we do not have a

tractable analytical solution. These problems are more complicated than the previous ones,

and require a few computational adjustments in order to obtain satisfactory convergence

ratios.

In the previous experiments linear interpolation and Crank-Nicolson timestepping were

used, and this combination was (somewhat serendipitously) found to be sufficient for

obtaining quadratic convergence. The same was not observed in the limited-borrowing case,

probably because the similarity extrapolant (which is no longer exact) is not used, and the

result is no longer linear in the cushion.

For the limited-borrowing case, the combination of fully-implicit timestepping and quad-

ratic interpolation was found to be more appropriate for achieving quadratic convergence.

Standard quadratic Lagrange interpolation was found to be inadequate, so two variants

(introduced in Section 3.4) were used instead: (i) an adaptation of the limited quadratic

interpolation used in [48], and (ii) a piecewise modification of the standard scheme, with

wealth-indexed quadratic Lagrange interpolation on each of the three intervals (correspond-
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5.5. Continuous reallocation with limited borrowing

ing to the three segments of Figure 2.2). The latter scheme prevents interpolation across

these segments’ intersections, where v is generally nonsmooth. Between these two methods,

the results were marginally different, with neither alternative performing dominantly over

the other. However, both methods were an improvement over the standard quadratic

scheme.

Secondly, the imposition of a borrowing limit raises the issue of how to distribute each

kth grid’s B ordinates. We settled on uniform distribution over the interval [Bk
min, F

k];

Chebyshev spacing [44] was also implemented but was found to produce more erratic

convergence ratios.

The computational results for limited borrowing are presented in Tables 5.8 and 5.9.

Like previous experiments, quadratic convergence was only achieved when the grids were

sufficiently dense and the timestep sufficiently small. In the absence of an analytical solution,

the best validation tool is the parity result (applied in Table 5.10).

5.5 Continuous reallocation with limited borrowing

In order to further verify the stability of the limited-borrowing case, we repeat the previous

experiment with the interval between reallocations tending towards zero. Consequently,

K follows the same sequence as in Section 5.3. The results are presented in Tables 5.11

and 5.12. Despite quadratic convergence being obtained for the finite reallocation case,

here only linear convergence is observed. This is again consistent with the theoretical

first-order behaviour predicted for the convergence of a discretely-observed Asian model to

a continuously-observed Asian model[48].

The parity relation was obeyed (not shown), with quadratic convergence for the same

reasons as in Section 5.3. Another parallel with Section 5.3 is that the chosen numerical

parameters were found to be better suited for computing v0
L. Nevertheless, the convergence

ratios from Table 5.12 can also be indirectly achieved for v0
J , by calculating v0

L and then

applying the parity result. While this will improve the convergence behaviour for the

calculation of v0
J , it cannot be concluded that this will also result in smaller errors relative

to the actual value.
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5.5. Continuous reallocation with limited borrowing

Table 5.8: Values for v0
J with jumps, limited borrowing and daily reallocation (K = 250, % = r).

These results were computed using Crank-Nicolson timestepping and limited quadratic interpol-

ation. A representative subset of the data is presented. The grids are designed to circumvent

extrapolation for W → ∞, using a fixed borrowing limit of B̂ = 0. Refinement level (rl) 0

corresponds to a 52× 52 initial grid and a timestep ∆τ = T
K+1 . The convergence ratio (CR) is

defined in Equation (5.1.1).

W0 = 146.881014 W0 = 160.170249 W0 = 176.956650

C0 = 4.196600 C0 = 17.485835 C0 = 34.272237

rl Value cr Value cr Value cr

0 9.207987 32.632119 54.803378

1 9.210330 32.629499 54.789261

2 9.213594 0.718 32.633930 -0.591 54.787978 10.997

3 9.214412 3.992 32.635070 3.887 54.787474 2.547

4 9.214611 4.108 32.635360 3.936 54.787358 4.337

5 9.214660 4.060 32.635432 4.014 54.787328 3.890

Table 5.9: Values for v0
L with jumps, limited borrowing and daily reallocation

(K = 250, % = r). The conditions of Table 5.8 apply here, too.

W0 = 146.881014 W0 = 160.170249 W0 = 176.956650

C0 = 4.196600 C0 = 17.485835 C0 = 34.272237

rl Value cr Value cr Value cr

0 -4.978182 -15.121826 -20.495311

1 -5.006248 -15.137278 -20.508177

2 -5.015230 3.125 -15.146491 1.677 -20.513535 2.401

3 -5.017375 4.187 -15.148829 3.942 -20.514676 4.697

4 -5.017901 4.084 -15.149421 3.942 -20.514977 3.786

5 -5.018032 4.013 -15.149570 3.978 -20.515054 3.946
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5.5. Continuous reallocation with limited borrowing

Table 5.10: Confirming the parity relationship (Equation (2.6.8)) for the limited borrowing,

daily reallocation case. The Value columns arise from element-wise addition of the Value

columns in Tables 5.8 and 5.9, and the theo values match the cushions, C0. The percentage

error (%re) relative to the analytical value (theo) is defined in Equation (5.1.2) and the

convergence ratio (CR) is defined in Equation (5.1.1).

W0 = 146.881014 W0 = 160.170249 W0 = 176.956650

C0 = 4.196600 C0 = 17.485835 C0 = 34.272237

rl VJ + VL %re cr VJ + VL %re cr VJ + VL %re cr

0 4.229805 0.7912 17.510293 0.1399 34.308066 0.1045

1 4.204082 0.1783 17.492220 0.0365 34.281085 0.0258

2 4.198364 0.0420 4.498 17.487439 0.0092 3.780 34.274442 0.0064 4.062

3 4.197036 0.0104 4.307 17.486242 0.0023 3.995 34.272798 0.0016 4.038

4 4.196710 0.0026 4.070 17.485938 0.0006 3.947 34.272380 0.0004 3.939

5 4.196628 0.0007 3.985 17.485862 0.0002 3.945 34.272274 0.0001 3.930

theo 4.196600 17.485835 34.272237

Table 5.11: Values for v0
J with jumps, limited borrowing and real-

location approaching the continuous case (% = r). These results were

computed using fully-implicit timestepping and limited quadratic

interpolation. A representative subset of the data is presented. The

grids are designed to circumvent extrapolation for W →∞, using a

fixed borrowing limit of B̂ = 0. Refinement level (rl) 0 corresponds

to a 52×52 initial grid, 26−1 reallocations and a timestep ∆τ = T
K+1 .

The convergence ratio (CR) is defined in Equation (5.1.1).

W0 = 146.881014 W0 = 160.170249 W0 = 176.956650

C0 = 4.196600 C0 = 17.485835 C0 = 34.272237

rl Value cr Value cr Value cr

0 9.193331 32.647635 54.851529

1 9.207486 32.639050 54.808178

2 9.215270 1.819 32.637032 4.254 54.789493 2.320

3 9.219532 1.826 32.637202 -11.919 54.781606 2.369

4 9.221737 1.932 32.637566 0.464 54.778124 2.265
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5.6. Convergence to the unlimited borrowing case

Table 5.12: Values for v0
L with jumps, limited borrowing and

reallocation approaching the continuous case (% = r). The conditions

of Table 5.11 apply here, too.

W0 = 146.881014 W0 = 160.170249 W0 = 176.956650

C0 = 4.196600 C0 = 17.485835 C0 = 34.272237

rl Value cr Value cr Value cr

0 -4.966138 -15.138107 -20.545773

1 -5.003415 -15.146535 -20.526581

2 -5.016880 2.768 -15.149526 2.818 -20.514941 1.649

3 -5.022488 2.401 -15.150945 2.107 -20.508790 1.892

4 -5.025025 2.210 -15.151626 2.087 -20.505742 2.018

5.6 Convergence to the unlimited borrowing case

Next we examine the sensitivity of v0
L with respect to the borrowing limit B̂. For simplicity

we impose the same borrowing limit at each reallocation stage k, and assume that the CPPI

floor moves at the risk-free rate.

It is natural to suppose that the limited-borrowing results will approach the classical

(i.e. unlimited borrowing) case as B̂ → −∞. This hypothesis is supported by the data

presented in Figure 5.1. Moreover, we observe a similarity between the results for all five

borrowing limits. Outside of this figure’s range, the computed values for the three most

negative borrowing limits diverge further from the analytical values. Thus, this experiment

suggests that an artificial borrowing limit B̂ can always be chosen sufficiently large to ensure

that the distance between the limited- and unlimited-borrowing cases—over an interval (of

initial cushion or initial wealth values)—is within a specified tolerance.
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5.6. Convergence to the unlimited borrowing case
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Figure 5.1: For varying B̂, v0
L was computed for initial cushions (C0 = W0 − F 0) corresponding

to B0 in the range [B̂, F 0].

Sharpening the preceding statement requires methodological adjustments; the data

presented in Figure 5.1 is suitable for qualitative comparisons, but even with interpolation

the difference in scale between datasets’ domains hinders quantitative comparisons. To

compensate, we perform a new experiment, where each sequence Bk (the B ordinates for

the kth grid) is held identical across trials—except for Bk
min which is set to the prevailing

borrowing limit. So, unlike the B ordinate distribution described in Section 5.4, this

construction results in grids where all but the nodes corresponding to Bmin are independent

of the borrowing limit.

The data presented in Table 5.13 demonstrates that (for a fixed refinement level), doub-

ling the artificial borrowing limit results in linear convergence to the unlimited borrowing

case’s theoretical result. This finding allows for the approximation of a pointwise upper

bound on B̂. Details are presented in Appendix C. As Bmin → −∞ the truncation error

remains. This residual error varies between nodes (and grid spacings), but is observed to

decrease as the grid is refined.
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5.7. Limited borrowing with an independent CPPI floor

Table 5.13: Artificial borrowing limit sensitivity for v0
J with jumps, limited borrowing and

daily reallocation (K = 250, % = r). These results were computed using Crank-Nicolson

timestepping and limited quadratic interpolation. A representative subset of the data is

presented. A refinement level of 4 was used throughout. The convergence ratio (cr) is defined

in Equation (5.1.1), the theoretical value for unlimited borrowing (theo) is calculated using

Equation (4.1.3) and the error (%re) relative to this value is defined in Equation (5.1.2). The

computed values presented here do not converge exactly to the theo values as B̂ decreases; a

discretisation error persists because of the refinement level being held fixed throughout this

trial.

W0 = 142.871914 W0 = 156.043789 W0 = 258.309414

C0 = 0.187500 C0 = 13.359375 C0 = 115.625000

B̂ Value %re cr Value %re cr Value %re cr

−212 -0.271534 0.196 -18.552353 4.295 -138.735085 17.309

−213 -0.271714 0.130 -18.909642 2.452 -150.035858 10.573

−214 -0.271817 0.092 1.7425 -19.132228 1.303 1.6052 -157.950327 5.856 1.4279

−215 -0.271871 0.072 1.9181 -19.255337 0.668 1.8081 -162.651847 3.054 1.6834

−216 -0.271898 0.062 1.9811 -19.319285 0.338 1.9251 -165.168946 1.554 1.8678

−217 -0.271912 0.057 1.9901 -19.351767 0.171 1.9688 -166.460890 0.784 1.9483

−218 -0.271919 0.055 1.9936 -19.368132 0.086 1.9849 -167.114468 0.394 1.9767

−219 -0.271922 0.054 1.9966 -19.376345 0.044 1.9924 -167.443138 0.198 1.9886

−220 -0.271924 0.053 1.9983 -19.380460 0.023 1.9963 -167.607938 0.100 1.9943

−221 -0.271925 0.053 1.9990 -19.382519 0.012 1.9980 -167.690461 0.051 1.9970

−222 -0.271925 0.053 1.9996 -19.383549 0.007 1.9992 -167.731750 0.026 1.9987

−223 -0.271925 0.053 1.9998 -19.384064 0.004 1.9996 -167.752402 0.014 1.9993

theo -0.272068 -19.384868 -167.775462

5.7 Limited borrowing with an independent CPPI floor

Finally, we demonstrate that our framework can handle cases where borrowing is limited

and the CPPI floor moves independently of the risk-free rate. Such a scenario arises if the

CPPI floor rate is contractually fixed, or if it is set to float at a nonzero distance relative to

the risk-free rate. To our knowledge, this class of problems has not been examined in the

CPPI literature. For simplicity we consider the scenarios where (i) % = 0 and (ii) % = 2r.

Our findings are tabulated respectively in Tables 5.14 and 5.15, and plotted in Figure 5.2.
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5.7. Limited borrowing with an independent CPPI floor

Table 5.14: Values for v0
L with jumps, limited borrowing and daily reallocation

(K = 250, % = 0). These results were computed using Crank-Nicolson timestepping

and piecewise quadratic interpolation. A representative subset of the data is presented.

The grids are designed to circumvent extrapolation for W →∞, using a fixed borrowing

limit of B̂ = 0. Refinement level (rl) 0 corresponds to a 52× 52 initial grid and a timestep

∆τ = T
K+1 . The convergence ratio (CR) is defined in Equation (5.1.1).

W0 = 154.411765 W0 = 168.382353 W0 = 186.029412

C0 = 4.411765 C0 = 18.382353 C0 = 36.029412

rl Value cr Value cr Value cr

0 -6.890316 -15.788886 -20.234672

1 -6.892573 -15.796509 -20.238710

2 -6.897004 0.509 -15.802839 1.204 -20.240589 2.148

3 -6.899759 1.608 -15.804904 3.066 -20.241449 2.186

4 -6.900416 4.196 -15.805417 4.022 -20.241665 3.991

5 -6.900564 4.434 -15.805542 4.121 -20.241716 4.153

Table 5.15: Values for v0
L with jumps, limited borrowing and daily reallocation

(K = 250, % = 2r). These results were computed using Crank-Nicolson timestepping

and piecewise quadratic interpolation. A representative subset of the data is presented.

The grids are designed to circumvent extrapolation for W →∞, using a fixed borrowing

limit of B̂ = 0. Refinement level (rl) 0 corresponds to a 52× 52 initial grid and a timestep

∆τ = T
K+1 . The convergence ratio (CR) is defined in Equation (5.1.1).

W0 = 139.717542 W0 = 152.358653 W0 = 168.326373

C0 = 3.991930 C0 = 16.633041 C0 = 32.600760

rl Value cr Value cr Value cr

0 -5.080131 -14.229497 -20.569731

1 -5.047407 -14.233321 -20.574730

2 -5.045118 14.295 -14.240384 0.541 -20.579155 1.130

3 -5.045562 -5.148 -14.242394 3.515 -20.580449 3.417

4 -5.045742 2.474 -14.242935 3.715 -20.580771 4.027

5 -5.045787 3.968 -14.243076 3.821 -20.580853 3.919
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Figure 5.2: The effect of % on v0
L. These results correspond to Tables 5.9, 5.14 and 5.15.

Interestingly, both the % = 0 and the % = 2r cases are riskier than the % = r case,

because both variants dictate larger allocations in the risky asset. Recall from Remark

2.4.1 that our formulation of the CPPI jump conditions permits a negative-cushion state to

eventually regain positive-cushion status when % < r.

For brevity, analogous results for v0
J are not presented, but both scenarios did obey the

parity relationship of Equation (2.6.8).
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6 Conclusion

6.1 Summary of contributions

The CPPI portfolio allocation strategy has existed for about twenty-five years and has an

established role in the multibillion-dollar capital guarantee niche of finance. However, the

vulnerabilities of CPPI-backed guarantees to portfolio shortfalls have only recently received

attention in the literature. Motivated by this, we have developed a robust computational

framework for valuing discretely-reallocated CPPI-backed contingent claims in the presence

of risky-asset jumps.

Our framework models CPPI portfolios with a two-asset state space, in order to

accommodate composition-dependent variants of the classical strategy. From this, a

two-dimensional partial integro-differential equation (PIDE) was derived to represent the

pricing dynamics of the contingent claim in between reallocations. Discrete reallocations

are imposed as instantaneous, global shocks. More precisely, at each discrete reallocation

instant the domain is repopulated using information from a subset of the domain just

solved in the previous PIDE stage. Therefore, the pricing problem is equivalent to solving

a cascading sequence of 2D PIDEs.

Two types of CPPI reallocation strategy were considered: the classical scheme and

a limited-borrowing variant. The images of these reallocation operations were examined

so that the grid design and interpolation scheme could be tailored accordingly. This led

to a sequence of computational grids that updates with each stage of the PIDE solve.

From a dynamic programming perspective (solving backwards in time), both reallocation

mappings were found to have expansive regions. In the classical case this was handled

by using a similarity extrapolant that is exact in special cases. We showed that in the

fixed-borrowing-limit case the grid can be constructed so that the computational domain of

dependence is bounded.

In order to facilitate computation, the problem was reformulated as a system of 1D

PIDEs, using a Lagrangian transformation. Financially, this is equivalent to deferring the

interest paid on the risk-free asset until the instant before reallocation. Information is

only exchanged between 1D PIDE domains at the reallocation instants, permitting the
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6.2. Future work

inter-reallocation calculations to be performed with parallel instances of a general 1D PIDE

solver.

For our implementation of the fixed-borrowing-limit case we proved robust stability

and monotonicity. For our implementation of the classical CPPI case we have proven

monotonicity; to date we can only conjecture numerical stability, guided by our numerical

results and by our proof of stability for a special analytical case. For this reason we

advocate the use of limited borrowing computational models over their unlimited borrowing

counterparts. The former approach is also more appealing from financial and regulatory

perspectives.

A central theme of this work was the development of analytical results to complement

the computational framework. Each approach helps to advance the other: the analytical

results help validate the computational framework, which in turn (in addition to its general

applicability) provides insight that may inspire further analytical findings. In this work

we developed analytical results for a special case of the classical CPPI strategy, for both

continuous and discrete reallocation.

Our implementation used the PIDE discretisation of [18]. We confirmed our frame-

work’s ability to price CPPI products with absolute borrowing limits. Convergence to the

continuous-reallocation case was demonstrated. A guideline was established for approxim-

ating the unlimited borrowing case using an artificially imposed borrowing limit. A result

akin to put-call parity was introduced, enabling the risk-neutral expected values of the

claim and the guarantor’s liability to be determined from the same computation. Finally,

we examined situations where the floor’s movement was independent of the risk-free rate.

6.2 Future work

A desirable feature of this framework would be the ability to handle proportional borrowing

limits (i.e. restricting borrowing to a percentage of the portfolio value, rather than imposing

an absolute borrowing limit). This can be viewed as a compromise between the two CPPI

allocation strategies considered herein. Accordingly, we propose a CPPI variant where a

proportional borrowing limit yields to an absolute borrowing limit when the portfolio wealth

is above a suitably high artificial threshold. Graphically, this modification corresponds to a

‘chamfered’ transition between the oblique and horizontal components of Figure 2.2. This

can be implemented with minimal change to the existing grid design (Appendix B). We
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6.2. Future work

suspect that conditions analogous to those in Section B.3 can be devised so that the need

for a similarity extrapolant can be avoided.

CPPI strategies with a ratcheting feature switch to a more ambitious CPPI floor

trajectory if the risky component of the portfolio has performed well. Our implementation

can be extended—at the expense of increased computational load—to permit contractually

predetermined, discrete-time ratcheting events with a finite number of CPPI floor trajectories.

This is achieved by parallelly solving (S,B) planes for each CPPI floor function. Information

is exchanged between planes at each discrete ratcheting event. Such an extension would not

have been possible had our modelling assumed that the CPPI floor value always appreciates

at the risk-free rate.

Transaction costs are another practical consideration that may deserve attention. At a

given discretely-observed reallocation instant, transaction costs can avoided if the current

CPPI portfolio state is suitably close to the prescribed reallocated state. Referring to Figure

2.1 (resp. Figure 2.2), consider a region on the (S,B) plane that contains the relevant

allocation locus. States outside of this region follow the classical (resp. limited-borrowing)

reallocation strategy developed herein and will incur transaction costs. In contrast, states

within this region will at reallocation jump in the B direction (as a consequence of the

Lagrangian transformation) but will not incur transaction costs. It follows that for this

modification, the domain of dependence between reallocations is no longer just the prevailing

reallocation locus. This has interpolation and grid design implications.

It should be possible to derive a semi-analytical solution for the limited-borrowing

case when the CPPI floor moves at the risk-free rate. The key insight is that at each

reallocation instant, the difference between values for the limited- and unlimited-borrowing

strategies is only nonzero for wealth above a threshold (corresponding to B̂). Therefore

this difference can be viewed as a (typically nonlinear) call payoff. Moreover, the payoff can

be approximated as the payoff of a polynomial option, which can in turn be decomposed

into a linear combination of power options [33]. Even if this approach turns out to be

computationally intractable it may help sharpen the result presented in Appendix C.

This decomposition of a limited-borrowing CPPI-backed guarantee into simpler financial

instruments could also provide insight into how to hedge this guarantee in incomplete

markets.

Lastly, the issue of calibration must be addressed; our ultimate goal is to assess the

suitability of CPPI-backed guarantees and this can only go so far without empirically-

grounded financial parameters.
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Appendix A Positive coefficient discretisation

For convenience we state the positive coefficient discretisation for a 1D PIDE. This was

developed in [18]. Define the centred difference coefficients as

ᾱi,j ≡
σ2
i S

2
i,j

(Si,j − Si−1,j) (Si+1,j − Si−1,j)
− (r − λκ)Si,j
Si+1,j − Si−1,j

β̄i,j ≡
σ2
i S

2
i,j

(Si+1,j − Si,j) (Si+1,j − Si−1,j)
+

(r − λκ)Si,j
Si+1,j − Si−1,j

,

forward difference coefficients as

άi,j ≡
σ2
i S

2
i,j

(Si,j − Si−1,j) (Si+1,j − Si−1,j)

β́i,j ≡
σ2
i S

2
i,j

(Si+1,j − Si,j) (Si+1,j − Si−1,j)
+

(r − λκ)Si,j
Si+1,j − Si,j

,

and backward difference coefficients as

ὰi,j ≡
σ2
i S

2
i,j

(Si,j − Si−1,j) (Si+1,j − Si−1,j)
− (r − λκ)Si,j
Si+1,j − Si,j

β̀i,j ≡
σ2
i S

2
i,j

(Si+1,j − Si,j) (Si+1,j − Si−1,j)
.

Then, applying the following algorithm ensures both αi,j and βi,j are non-negative, while

maximising the use of centred finite differences:

• If ᾱi,j ≥ 0 and β̄i,j ≥ 0 then αi,j ≡ ᾱi,j and βi,j ≡ β̄i,j;

• otherwise, if β́i,j ≥ 0 then αi,j ≡ άi,j and βi,j ≡ β́i,j;

• otherwise, αi,j ≡ ὰi,j and βi,j ≡ β̀i,j.

This discretisation accommodates local volatilities, represented as σi ≡ σ(Ski,j, t). In this

case αi,j and βi,j will vary over the PIDE solve but will still retain the desired properties.
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Appendix B Grid design

B.1 Objectives and design constraints

Here we present the details of our computational grids. We proceed with the jump conditions

(2.6.4) and (2.6.5) in mind, and end up with distinct grid designs for each. Each design is a

sequence of bounded grids indexed by k.

We require that our grid designs satisfy the following objectives, in descending order of

importance:

(O1) grids must be consistent with the reallocation scheme specified in the CPPI contract;

(O2) grids must exploit the Lagrangian formulation of Section 2.6;

(O3) grid nodes should be distributed in a fashion that hastens convergence and simplifies

interpolation;

(O4) in instances where the similarity extrapolant applied in [47] is not appropriate, the

jump conditions should not require off-grid data.

The first objective is easily addressed. If there is no borrowing limit then the domain

must be artificially truncated in the B direction. In light of the large shortfall boundary

condition (Section 3.3.1) we require that this artificial borrowing limit be negative; in

practice its magnitude should be suitably large to restrict its influence on the initial wealth

range for which we wish to solve. Numerical tests in Section 5.6 show the effect of this

artificial borrowing limit. Conversely, if the contract specifies a borrowing limit B̂k then

the kth grid must have adequate coverage of the B = B̂k row, and no nodes below this row.

Objective (B.1.O2) suggests that all grids should be organized in rows, with each

gridpoint in a given row having the same B ordinate. This in turn allows us to model

the inter-observation dynamics as a system of PIDEs in one spatial dimension. Moreover,

since no information need be exchanged between rebalancing instants, the problem is

embarrassingly parallel and lends itself very well to parallel processing [46].
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B.2. Grid construction

In light of (B.1.O2) alone, a regular grid would suffice. However, to meet (B.1.O3) we

instead use a sequence of scaled two-dimensional scaled grids. This is motivated by similar

studies for other instruments (such as [48, 17, 47, 5]) and their use of grids that are tailored

to the appropriate jump conditions. The difference here is that our jump conditions change

at each reallocation, so our grids must as well.

Additionally, we take the kink in each PIDE stage’s initial conditions into account.

There is a payoff kink in the Kth stage, where one choice in the payoff function overtakes

the other. Likewise, there is also a reallocation kink in the other stages, at the interface

between information propagated from the vertical and oblique segments of the kth allocation

locus.

So, to improve the quality of the numerical solution we impose the additional requirement

that each row should have nodes situated where the row intersects (i) the payoff kink,

and (ii) the oblique segment of the appropriate allocation locus. The second constraint

allows for diagonal interpolation [47, 5] instead of the more-general, less-accurate method

of two-dimensional interpolation.

Each resultant grid is structured and can be indexed by the subscript pair (i, j). For

design flexibility we will allow our grid sequences to vary with k: the (i, j)th node of grid k

need not have the same coordinates as the (i, j)th node of grid k+1. Nor do we require that

each row have the same number of nodes.

Objective (B.1.O4) is the most demanding of all, requiring that we find a sequence of

computational grids where the range of wealth required to populate the kth grid falls within

the range of wealth supplied by the (k+1)th grid’s allocation locus. In Section B.3 we

determine conditions under which the fixed-borrowing-limit variant satisfies (B.1.O4).

B.2 Grid construction

Our construction begins with a two-dimensional sequence
{
Bk
}K
k=0
≡
{{
Bk
j

}jmax

j=0

}K
k=0

, with

Bk
J representing the jth ordinate of grid k. We constrain the endpoints and require that for

each k, the sequence Bk be monotonically increasing in j, from Bk
0 = Bk

min to Bk
jmax

= F k. In

the limited-borrowing case, Bk
min is B̂k and in the classical case we set Bk

min to be suitably

low. The interior points of each Bk should be concentrated at the ordinates of the kinks in

the kth CPPI allocation locus, since this is where one would expect the greatest nonlinearity

to arise.
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B.2. Grid construction

Next we construct our grid’s S coordinates (abscissæ). Each Bk
j has the corresponding

sequence {Ski,j}imax
i=0 . Consider the prototypical grid sequence s with which we will construct

each row’s abscissæ {Ski,j}imax−1
i=0 . Let s ≡ {si}imax−1

i=0 , constrained such that

1. the gridpoints of s are concentrated about a gridpoint s† contained within s,

2. s is strictly increasing in i, and

3. 0 ≡ s0 < s† � simax−1.

Having introduced our notation, we can now describe our grid construction procedure.

The limited-borrowing case requires a few grid parameter restrictions (see Section B.3) in

order to avoid needing a large-cushion boundary condition; the grid construction process

itself is identical for the classical and limited-borrowing cases. The result is a sequence of

grids, with each grid scaled about the prevailing reallocation locus. Additionally, each grid

has nodes coincident with the relevant reallocation locus and reallocation kink.

Step I. Grid scaling

Concentrating row j of grid k about S = xkj is a simple matter of scaling each element of

s by
xkj
s†

. In practice, numerical complications arise when the grid spacing falls within the

machine epsilon range, so we will ensure that the scale factor exceed a threshold of ε1 > 0.

Despite the Lagrangian state space transformation of Section 2.5, Ak and Âk (as defined

in Equations (2.2.4) and (2.2.6)) are still a valid representations of the allocation locus in

effect at time tk
+

o , since at this instant no interest on the risk-free asset has accrued since

the last update at tk
−

o . Rearranging the oblique segment of either previously mentioned

equation yields xkj =
(
F k −Bk

j

)
m
m−1

and hence the scaled grid abscissæ are defined by

Ski,j = max

{(
F k −Bk

j

) m

m− 1
, ε1

}
si
s†

(B.2.1)

for 0 ≤ i < imax.

The alternative approach of scaling our grids about the payoff kinks is more complicated:

the payoff kink does not always span the computational domain’s full range of B ordinates.

Such a situation arises under reasonable financial circumstances when the function F grows

slower than the prevailing risk-free rate.
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B.2. Grid construction
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Figure B.1: This is a typical grid centred about the allocation locus, with F k = 150 and m = 5.

Step II. Adding nodes of interest

The measures taken in the previous step have already guaranteed coincidence with the

appropriate allocation locus. Next, we adjust our scaled grids so that they are coincident the

relevant allocation kink. For each grid and row, the abscissa S̃kj is calculated, representing

the reallocation kink’s intersection with row j of grid k. These abscissæ are then inserted

into the grids, preserving row-wise abscissa monotonicity. No adjustments are made to rows

that do not intersect the allocation kink.

Suppose (i) that we find S̃kj lies between the pre-existing abscissæ Sk
ĩ,j

and Sk
ĩ+1,j

, and

furthermore (ii) that S̃kj is within a threshold ε2 > 0 of one or both of these nodes. Then it

might be prudent to reposition the closer of Sk
ĩ,j

and Sk
ĩ+1,j

to overlie S̃kj , instead of inserting

a new node.

A sample grid is illustrated in Figure B.1.
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B.3. Boundedness of the limited-borrowing grid sequence

Step III. Grid extension

Finally, it is necessary to extend each grid row in order to counteract our numerical scheme’s

susceptibility to FFT pollution (see [18], particularly Appendix B). This modification is

consequential to our grid design because it influences the maximum wealth represented on

each grid. In the same reference the task of determining an appropriate extension factor is

posed as finding ∆y+ such that p(ln ∆y+) < −2∆y+ε3. For general density functions it is

not possible to precisely solve this without a root-finding algorithm; any answer larger than

the minimum will suffice.

In the special case where the jump probability density is lognormal (see Equation (2.4.2))

then we can explicitly solve for ∆y+:

∆y+ > γ2 + γ
√
γ2 + 2µ− ln (2πγ2ε23) + µ.

In practice we will err on the side of caution and scale this result by a safety factor, C2.

What is important here is that we calculate a grid extension factor that is independent of

the row, j, and the grid number, k. Hence we need only calculate ∆y+ once. This property

will be used to simplify our calculations in the next section.

For notational convenience we represent the extension factor as

Υ ≡ e∆y++C2

and the abscissa arising from this extension as

Skimax,j ≡ ΥSkimax−1,j.

B.3 Boundedness of the limited-borrowing grid sequence

We end this appendix by showing that the fixed-borrowing-limit CPPI discretisation does

not require a far-field boundary condition at reallocations, under reasonable financial

assumptions and mild conditions on the grid bounds. This section proves the result alluded

to in Section 3.3.
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B.3. Boundedness of the limited-borrowing grid sequence

Proposition B.1. Consider the sequence of computational (S,B) grids proposed in Section

B.2 and characterised by the abscissæ

Ski,j =

{
max

{(
F k −Bk

j

)
m
m−1

, ε1
}
si
s†
, 0 ≤ i < imax

ΥSkimax−1,j, i = imax

(B.3.1)

with Υ� 1. If

(i) Bk
0 = B̂ ≤ 0 for all k,

(ii) the largest prototypical grid value simax−1 satisfies

simax−1

s†
>

1

Υ
· ρK+1

0 (FT − B̂)

(FT − B̂) m
m−1
− ε1

>
ρK+1

0

Υ
· m− 1

m
,

(iii) (F 0 − B̂) m
m−1

> ε1, and

(iv) the CPPI floor sequence {F k} samples a nondecreasing function

then the S coordinate resulting from the composition f̂K ◦ f̂K−1 ◦ · · · ◦ f̂k+1 ◦ f̂k
(
Ski,j, B

k
j

)
is

bounded above by Υ simax−1

s†

(
FT − B̂

)
m
m−1

, for all imax, jmax and K. In words, conditions (i)

through (iv) are sufficient for the limited-borrowing CPPI case not needing a large cushion

boundary condition.

Proof. The fixed-borrowing-limit CPPI discretisation does not require a large-cushion

boundary condition at each tk+1
o if, for any positive-cushion node (S,B) on grid k, f̂k+1(S,B)

lies within the wealth range of Âk+1 on the (k+ 1)th grid (thus permitting the interpolation

described in Section 3.4). Since f̂k+1 depends solely on the time t
(k+1)−
o wealth, an equivalent

condition (for the fixed-borrowing-limit case) is that

W (k+1)−

max ≡ max
i,j

{
Ski,j + ρk+1

k Bk
j

}
< W (k+1)+

max ≡ Sk+1
imax,0

+ B̂ for all k. (B.3.2)

First we calculate W
(k+1)−
max . Since Ski,j is increasing in i, the maximum occurs when

i = imax. So, by Equation (B.3.1), we seek to maximise Υ max
{(
F k −Bk

j

)
m
m−1

, ε1
} simax−1

s†
+

ρk+1
k Bk

j over j. The quantity
(
F k −Bk

j

)
m
m−1

is decreasing in j, so if
(
F k −Bk

j?

)
m
m−1

> ε1
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B.3. Boundedness of the limited-borrowing grid sequence

then the same can be said for 0 ≤ j ≤ j?. Conditions (iii) and (iv) guarantee that such a

j? exists.

For 0 ≤ j ≤ j? we have

Υ
(
F k −Bk

j

) m

m− 1

simax−1

s†
+ ρk+1

k Bk
j

= Bk
j

(
ρk+1
k −Υ

simax−1

s†
m

m− 1

)
+ Υ

simax−1

s†
F k m

m− 1
. (B.3.3)

The second inequality of condition (ii) guarantees that the above quantity in the parentheses

is negative for all k. So, since Bk
j is increasing in j, (B.3.3) is decreasing in j and is optimised

at j = 0.

For j > j? the optimal index is j = jmax because Bk
j is increasing in j.

Combining these two cases, we have

max
i,j

{
Ski,j + ρk+1

k Bk
j

}
= max

{
Υ
(
F k − B̂

) m

m− 1

simax−1

s†
+ ρk+1

k B̂, Υε1
simax−1

s†
+ ρk+1

k F k

}
.

The first inequality of condition (ii) guarantees that—for all k—the above maximum is

achieved at j = 0, so that

W (k+1)−

max = Skimax,0 + ρk+1
k B̂ = Υ

(
F k − B̂

) m

m− 1

simax−1

s†
+ ρk+1

k B̂.

Next we verify (B.3.2). By Equation (B.3.1) we have

W (k+1)+

max −W (k+1)−

max = Υ
(
F k+1 − F k

) m

m− 1

simax−1

s†
− B̂

(
ρk+1
k − 1

)
.

Conditions (i) and (iv) guarantee that this quantity is positive for all k, as desired.

The upper bound on Ski,j is the risky position of the portfolio with wealth WK+1
max .
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Appendix C Approximate bound for artificial B̂

Consider the scenario where the unlimited-borrowing (classical) case is to be approximated

by the limited-borrowing case (with an artificial borrowing limit B̂). This raises the issue

of how to choose a value for B̂ so that the classical case is approximated within a desired

tolerance.

Let Vh represent the computed limited-borrowing value v0(W0, t = 0; B̂ = −2h) at a

fixed refinement level, and let ed represent the discretisation error between V∞ ≡ limh→∞ Vh
and the theoretical classical value V̄ ≡ v0(W0, t = 0). For simplicity we restrict h to integer

values.

An examination of the data gathered in Section 5.6—of which Table 5.13 is a sub-

set—shows that the convergence ratios are (in the interior of the grid) all very close to

2 when B̂ is sufficiently small (i.e. h is sufficiently large). The value 2, corresponding to

ideal linear convergence, was only ever exceeded by less than 1% in this experiment. It is

therefore reasonable to state that

Vh − Vh+1 . 2(Vh+1 − Vh+2).

If equality is achieved for all h then (Vh − Vh+1) follows a geometric progression. So

Vh − V∞ & 2(Vh − Vh+1).

With equality, it is also true that for any fixed value of h, if |Vh+1 − Vh| is less than a

tolerance δh, then

1. |Vh+1+` − Vh+`| < 2−`δh, and

2. |V∞ − Vh| < 2δh.

Let ε > |ed|. It then follows that for h? ≡ h+
⌈
log2

(
2δh
ε−|ed|

)⌉
,

|Vh?+1 − Vh?| <
ε− |ed|

2
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and

|V∞ − Vh?| < ε− |ed| ,

so that ∣∣V̄ − Vh?∣∣ = |V∞ − ed − Vh?|
< |V∞ − Vh?|+ |ed|
< ε.

This analysis shows that given a target tolerance ε, and knowing from prior computations

that |Vh+1 − Vh| < δh, then B̂ = −2
h+

⌈
log2

(
2δh
ε−|ed|

)⌉
is an approximate upper bound on the

artificial borrowing limits that will ensure the computed value differs from the theoretical

value by no more than ε. As should be expected, a bound does not exist if the discretisation

error is greater than ε.

This is a pointwise result; the values δh and ed will naturally vary with W0 (and with

the grid spacing).

Finally, it is worth repeating that this is only an approximate bound because there is

no theoretical reason that the convergence ratios for varying values of h should be bounded

above by 2. Indeed, the computed convergence ratios did occasionally slightly exceed this

value. For this same reason—if the convergence ratios obtained with the Chapter 4 analytical

results (varying K) are any indication—the bound derived here is also approximate for the

exact values of {Vh} (i.e. when ed is zero at all gridpoints, for all h).
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