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Abstract

In a roll-to-roll web system lateral motion of a web caused by disturbances, which are
often periodic, results in poor product quality. To reduce the effect of such disturbances,
two control strategies are applied. First, the internal model principle is used to reject a
sinusoidal disturbance. Second, repetitive control theory is used to reject a general periodic
disturbance. We provide the synthesis procedure for both strategies, and demonstrate
its use in several simulation studies on a five-roller web system. The simulation results
show that the effect of disturbances, either sinusoidal or triangular, on lateral motion are
significantly reduced with the internal model controller or the modified repetitive controller.
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Chapter 1

Introduction

The term web is used to define a strip of continuous material where its length is much
larger than its width. Webs describe many different types of material: paper, plastic,
steel, fabrics and so on. A typical application involving webs is shown in Figure 1.1, where
a web is released from a roll of material by the unwinder, transported around by rollers so
that the material can be processed, and then accumulated into another roll of material by
the rewinder. Such a system is called a roll-to-roll (RTR) web system or web processing
line, and it has a wide range of applications in manufacturing such as mass production
of metal products like aluminum or flexible electronics like solar cells. The study of web
systems is essential for ensuring that webs do not break and product quality is consistent.
Among several specifications, one specification is to eliminate the effect of the disturbance
on lateral motion. Thus, the disturbance rejection problem for a web system serves as the
motivation for this research.

1.1 Background

The web system shown in Figure 1.1 uses many rollers to transport the web in the longitu-
dinal direction, the direction of transport. Among the rollers, there are the unwinder, the
nip rollers, the guide rollers, and the rewinder. The unwinder, nip rollers, and rewinder
are used to solve problems relating to web tension and velocity; see [1] for a survey. The
guide rollers are used to solve problems relating to lateral motion, the motion in the plane
of the web that is perpendicular to the longitudinal direction. The study of lateral motion
is important, because it can cause a number of problems like web wrinkle, breaking of the
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Figure 1.1: Web system.

web, inconsistent products, and low product quality. To ensure that these problems do not
happen, the guide rollers are used to control the lateral motion.

The study of web lateral dynamics is achieved in three parts: first, modeling the lat-
eral dynamics of the web; second, stabilizing the lateral motion, and third, rejecting any
disturbances that affect lateral motion. The first two parts have been studied extensively.
The third part is the main focus of this thesis.

The first major work in modeling web lateral dynamics was done by Shelton [2]. He
used beam theory to model the lateral displacement of a web between two rollers. He then
investigated the interaction between the web and a rotating roller in an effort to control
the lateral motion. Subsequent works to improve the accuracy of his model were done in
[3, 4, 5].

Based on the web lateral dynamics, researchers applied various control strategies to
stabilize the lateral motion. A proportional controller was constructed in [3]. A lead-lag
compensator was designed in [5]. A linear quadratic regulator (LQR) was synthesized in
[6]. An observer-based feedback controller was constructed in [7]. In the series of papers,
the main goals were to asymptotically stabilize the output or the full-state, and to meet
some other performance specifications.

The disturbance rejection problem for web lateral dynamics has received little attention.
Feedforward control was used to reject a deterministic sinusoidal disturbance [8]. Compared
with proportional-integral control, feedforward control offered 50% reduction in steady-
state lateral displacement in a simulation study. None of the past works have considered
non-sinusoidal periodic disturbances.

Repetitive control theory has been developed for tracking periodic references or rejecting
periodic disturbances or both. The main idea of the theory is to insert the model of
the reference or disturbance into the controller, which is known as the internal model
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principle [9]. The Laplace transform of a general periodic signal with period τd has infinite

many poles at j 2πk
τd

, k = 0 , ±1, · · · . Therefore, a suggested internal model is e−τds

1−e−τds .
However, stability of the closed-loop system cannot be achieved by adding this model into
a feedback loop with a strictly proper plant. Hence, the modified repetitive controller
(also called filtered repetitive controller) has been developed to overcome the stability
problem [9]. Much improvements have been made in repetitive control theory, such as in
performance [10], robustness [11, 12, 13], and capacity to reject multi-periodic disturbances
[14]. Practical uses of repetitive control have been used for optical disk drives [11, 12] and
cold rolling mills [14]. See [15] for a complete review of repetitive control theory and its
applications.

1.2 Summary

The main contribution of this thesis is analyzing the disturbance rejection problem for
the lateral motion of a roll-to-roll web system. In other words, we successfully apply the
internal model controller presented in [16], the modified repetitive controller presented in
[10], and the two period modified repetitive controller presented in [14] to reject certain
disturbances that cause lateral motion in a RTR system.

The remainder of this thesis is organized as follows. In Chapter 2, the Timoshenko beam
model for the lateral displacement of a web between two rollers is reviewed, and then the
equations governing the lateral dynamics of the web and roller are derived. The model
is extended to a five-roller web system. In Chapter 3, we look at existing works on the
stabilization of lateral motion. In Chapter 4, we study the disturbance rejection problem
for linear feedback systems. The theory of the internal model principle is studied for
disturbances that are sinusoidal, and the theory of repetitive control is studied for general
periodic disturbances. Synthesis procedures are given for each strategy. In Chapter 5,
we synthesize an internal model controller and the modified repetitive controllers for a
five-roller web system. Simulation results demonstrate that both strategies are effective
in reducing the effect of the disturbance on the lateral motion. Chapter 6 contains the
conclusions of the thesis.
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Chapter 2

Web Lateral Dynamics

This chapter reviews a model of the lateral dynamics of a web between two rollers. Dynam-
ics are obtained by first modeling the lateral displacement of the web using beam theory,
and then analyzing the interaction of the web with a rotating roller. The model is then
extended to the web between every two rollers in a five-roller web system. The state-space
form of this system is proposed, and is shown to be both stabilizable and detectable.

2.1 Description of a Roll-to-Roll Web System

Roll-to-roll web systems like the one shown in Figure 2.1 are used in the mass production of
flexible electronics. In the application, for example, a plastic web is transported by rollers
through the web system and at some location, an electronic is printed onto the web.

In addition to transporting the web, active or driven rollers, such as a displacement
guide aid in the control of lateral motion. Rollers R1 and R2 are the displacement guide,
and it freely pivots about an axis parallel to the incoming web at roller R1; see Figure
2.2 [3]. The idle or passive rollers R0, R3, and R4 only provide transport for the web. A
sensor is placed at roller R0 to measure the the lateral displacement y0(t). Another sensor
is placed at roller R2 to measure the controlled output. Other properties of the system,
such as distance between rollers, web properties, and operating conditions of the system is
described in Table 1 of Appendix A.3.

The model of web lateral dynamics of this chapter is limited by the following assump-
tions [2, 3]:
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Figure 2.1: Web path. Figure 2.2: Displacement guide.

1. The contact area between the web and the roller is small in relation to the distance
between two rollers.

2. Web velocity and tension are assumed to be constant or change slowly over time.
Tension is so great that sagging of the web is small.

3. No web slippage.

4. All lateral displacements are small.

5. The web is homogeneous.

6. The length to width ratio of the web is relatively small. For example, less than a
factor of ten.

2.2 Modeling Web Lateral Dynamics

The partial differential equation (PDE) that describes the lateral motion of the web is
derived by treating the web as a Timoshenko beam experiencing tension in the direction

6



Figure 2.3: Web between two rollers

of transport. The fourth-order PDE that governs the lateral displacement y(x, t) is

0 = (Jv2 − EI)

(
nmv2

GA
− nT

GA
− 1

)
∂4y

∂x4
+ (mv2 − T )

∂2y

∂x2
+ 4mv

∂2y

∂x∂t
+m

∂2y

∂t2

+

(
18Jnmv2

GA
− EInm

GA
− JnT

GA
− J

)
∂4y

∂x2∂t2
+
Jnm

GA

∂4y

∂t4
+

8Jnmv

GA

∂4y

∂x∂t3

+

(
8Jnmv3

GA
− 4EInmv

GA
− 4JnTv

GA
− 4Jv

)
∂4y

∂x3∂t
; (2.1)

see Appendix A.1 for derivation of PDE. Equation (2.1) is simplified using three assump-
tions: 1) displacements and stresses do not change over time; that is, partial derivatives
with respect to time are set to zero. This is called the quasistatic assumption, 2) T � mv2;
3) EI � Jv2. The simplified equation is

∂4y(x, t)

∂x4
−K2∂

2y(x, t)

∂x2
= 0, (2.2)

where K2 = T

EI(1+ nT
GA)

. The four boundary conditions for equation (2.2) are given as

follows:

y(0, t) = y0(t), θ(0, t) =
∂y(0, t)

∂x
+
EIn

GA

(
nT

GA
+ 1

)
∂3y(0, t)

∂x3
= θ0(t), (2.3)

y(L, t) = yL(t), θ(L, t) =
∂y(L, t)

∂x
+
EIn

GA

(
nT

GA
+ 1

)
∂3y(L, t)

∂x3
= θL(t), (2.4)
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where y0(t) and yL(t) are respectively the lateral displacement of the web at x = 0 and
x = L; see Figure 2.3, and θ0(t) and θL(t) are respectively the angle of face rotation at
x = 0 and x = L. The expression for the angle of face rotation is derived in Appendix A.1.
Solving equation (2.2) with boundary conditions (2.3) and (2.4), we obtain the general
solution:

y(x, t) = C1(t) sinh(Kx) + C2(t) cosh(Kx) + C3(t)x+ C4(t), (2.5)

where

C1(t) =
a sinh(KL)

R
(y0(t)− yL(t)) +

[1− cosh(KL)]

KR
(θ0(t)− θL(t)) +

aL sinh(KL)

R
θ0(t),

C2(t) =
a [1− cosh(KL)]

R
(y0(t)− yL(t)) +

[sinh(KL)− aKL cosh(KL)]

KR
θ0(t)

+
[aKL− sinh(KL)]

KR
θL(t),

C3(t) =
a2K sinh(KL)

R
(yL(t)− y0(t)) +

a [1− cosh(KL)]

R
(θ0(t) + θL(t)) ,

C4(t) =
a [1− cosh(KL)]

R
(y0(t) + yL(t)) +

a2KL sinh(KL)

R
y0(t)

− [sinh(KL)− aKL cosh(KL)]

KR
θ0(t)−

[aKL− sinh(KL)]

KR
θL(t).

The variables a and R are defined as

a = 1 +K2EI
n

GA

(
1 +

nT

GA

)
, (2.6)

R = a [2− 2 cosh(KL)] + a2KL sinh(KL). (2.7)

The lateral displacement of a web changes as the web approaches the second roller in
Figure 2.3, because of the interaction between the roller and the web. The interaction is
based on the property that a web approaching any given roller aligns itself perpendicular
to the roller [2]. As a result, we can control the lateral displacement of the web yL by
rotating the roller. The lateral dynamics of yL are

dyL
dt

= v

(
γ − ∂yL

∂x

)
+
dz

dt
,

d2yL
dt2

= v2
∂2yL
∂x2

+
d2z

dt2
,

where z and γ are respectively the lateral displacement and pivot angle of the guide roller,
∂yL
∂x

is the web slope and ∂2yL
∂x2

is the web curvature at x = L. Both equations are derived
below [2, 3].
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Figure 2.4: Roller at rest. Figure 2.5: Roller is rotating.

2.2.1 Derivation of Web Lateral Velocity

We consider the contact position x = L of the web and roller as shown in Figure 2.4. The
constant web velocity is v, and the web slope is ∂yL

∂x
as the web makes contact with the

roller. The lateral velocity of the web can be obtained by decomposing the velocity into
its vector components. In other words, the lateral velocity, using the reference frame in
the figure, is the velocity in the y-direction:

dyL
dt

= −v sin

(
∂yL
∂x

)
≈ −v∂yL

∂x
, (2.8)

assuming web slope is small. The lateral velocity equation (2.8) is only valid when the
roller is at rest. If the roller is rotating at an angle γ, and moving at a lateral velocity of
dz
dt

as shown in Figure 2.5, then the lateral velocity of the web, using the same reference
frame, is the velocity in the y-direction plus the lateral velocity of the roller:

dyL
dt

= −v sin

(
∂yL
∂x
− γ
)

+
dz

dt
≈ v

(
γ − ∂yL

∂x

)
+
dz

dt
, (2.9)

assuming web slope and pivot angles are small. Furthermore, we use the approximation
γ ≈ z

L
to simplify equation (2.9) to the following

dyL
dt

= v

(
z

L
− ∂yL

∂x

)
+
dz

dt
. (2.10)
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Figure 2.6: Lateral acceleration of the web at the location of x = L.

2.2.2 Derivation of Web Lateral Acceleration

We consider the contact position x = L of the web and roller as shown in Figure 2.6. The
constant web velocity is v, the web slope at the contact position is ∂yL

∂x
, and the web slope

at 4x before the contact position is
∂yL−4x
∂x

. The lateral acceleration of the web is derived
by considering the change in web velocity v from the point x = L−4x to the point x = L:

4v
4t

=
vL − vL−4x
4t

. (2.11)

We use the Tyalor approximation of vL−4x at x = L and take the limit as 4t→ 0:

d2yL
dt2

= lim
4t→0

4v
4t

=
−v ∂yL

∂x
+ v

(
∂yL
∂x

+4x∂2yL
∂x2

+O ((4x)2)
)

4t

= lim
4t→0

[
v
4x
4t

∂2yL
∂x2

+
4x
4t

O(4x)

]
(2.12)

= v2
∂2yL
∂x2

. (2.13)

To obtain equation (2.13) from (2.12), we use 4x4t → v as 4t → 0, and ignore terms of

O(4x). The lateral acceleration equation (2.13) considers the roller at rest. If the roller
is moving with lateral acceleration d2z

dt2
, then equation (2.13) becomes

d2yL
dt2

= v2
∂2yL
∂x2

+
d2z

dt2
. (2.14)

The combination of lateral velocity (2.10), and lateral acceleration (2.14) governs the

lateral dynamics of yL. In order to compute ∂yL
∂x

and ∂2yL
∂x2

easily, we change the form of the
general solution (2.5) into a more convenient form:

y(x, t) = y0(t)X1(x) + θ0(t)X2(x) + yL(t)X3(x) + θL(t)X4(x), (2.15)
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with
X1(x) = {a sinh(KL) sinh(Kx) + a [1− cosh(KL)] cosh(Kx)

− a2 sinh(KL)Kx+ a2KL sinh(KL)

+ a [1− cosh(KL)]}/R,
X2(x) = {[1− cosh(KL) + aKL sinh(KL)] sinh(Kx)

+ [sinh(KL)− aKL cosh(KL)] cosh(Kx)

+ a [1− cosh(KL)]Kx

− [sinh(KL)− aKL cosh(KL)]}/KR,
X3(x) = {−a sinh(KL) sinh(Kx)

− a [1− cosh(KL)] cosh(Kx)

+ a2 sinh(KL)Kx+ a [1− cosh(KL)]}/R,
X4(x) = {− [1− cosh(KL)] sinh(Kx) + a [1− cosh(KL)]Kx

+ [aKL− sinh(KL)] cosh(Kx)

− [aKL− sinh(KL)]}/KR,

(2.16)

where a and R are respectively defined by equations (2.6) and (2.7). Now, the expressions
for the slope and curvature of the web are obtained by differentiating the solution (2.15)
with respect to x and evaluating it at x = L:

∂yL
∂x

= y0(t)X
′
1(L) + θ0(t)X

′
2(L) + yL(t)X ′3(L) + θL(t)X ′4(L),

∂2yL
∂x2

= y0(t)X
′′
1 (L) + θ0(t)X

′′
2 (L) + yL(t)X ′′3 (L) + θL(t)X ′′4 (L).

2.3 Extension to the Five-Roller Web System

We consider the five-roller web system shown in Figure 2.7. Let the superscript u denote the
upstream contact point of the roller and the superscript d denote the downstream contact
point of the roller. For example, yu1 (t) is the lateral displacement of the web upstream of
roller R1. The lateral displacement of web, y(x, t), between every pair of rollers in Figure
2.7 is modeled using beam theory. In other words, we solve the PDE (2.2) for the boundary
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Figure 2.7: Lateral displacement and face rotation upstream and downstream of the rollers.

conditions:

R0 −R1 : y(0, t) = yd0(t), θ(0, t) = θd0(t), y(L1, t) = yu1 , θ(L1, t) = θu1 , (2.17)

R1 −R2 : y(0, t) = yd1(t), θ(0, t) = θd1(t), y(L2, t) = yu2 , θ(L2, t) = θu2 , (2.18)

R2 −R3 : y(0, t) = yd2(t), θ(0, t) = θd2(t), y(L3, t) = yu3 , θ(L3, t) = θu3 , (2.19)

R3 −R4 : y(0, t) = yd3(t), θ(0, t) = θd3(t), y(L4, t) = yu4 , θ(L4, t) = θu4 . (2.20)

At the rollers, two matching conditions for the joining web segments are necessary for
simplifying the boundary conditions (2.17) to (2.20). The following approximations for the
matching conditions are used:

yui ≈ ydi = yi, (2.21)

θui ≈ θdi = θi. (2.22)

These approximations are valid if the roller radius is much less than roller spacing [3].
Using matching conditions (2.21) and (2.22), the simplified boundary conditions are

y(0, t) = yi−1(t), θ(0, t) = θi−1(t), y(Li, t) = yi(t), θ(Li, t) = θi(t), (2.23)

for i = 1 . . . 4, where yi(t) is the lateral displacement, and θi(t) is the angle of face rotation
at roller Ri. The set of solutions are given in the convenient form:

y(x, t) = yi−1(t)X1(x) + θi−1(t)X2(x) + yi(t)X3(x) + θi(t)X4(x), i = 1, . . . , 4, (2.24)

where X1(x), X2(x), X3(x), X4(x) are defined in equation (2.16).
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Figure 2.8: Schematic view of the five-roller web system.

We extend the lateral dynamics (2.10) and (2.14) to rollers R1, R2, R3, and R4 with
rollers R1–R2 as a displacement guide; see Figure 2.8. As a result, we obtain eight equa-
tions:

dy1
dt

= −v∂y1
∂x

, (2.25)

d2y1
dt2

= v2
∂2y1
∂x2

, (2.26)

dy2
dt

= v

(
z2
L2

− ∂y2
∂x

)
+
dz2
dt
, (2.27)

d2y2
dt2

= v2
∂2y2
∂x2

+
d2z2
dt2

, (2.28)

dy3
dt

= −v∂y3
∂x

, (2.29)

d2y3
dt2

= v2
∂2y3
∂x2

, (2.30)

dy4
dt

= −v∂y4
∂x

, (2.31)

d2y4
dt2

= v2
∂2y4
∂x2

. (2.32)

Note that the pivot angle, lateral velocity, and acceleration of the rollers are zero except
for the the displacement guide.
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Figure 2.9: Boundary conditions.

2.4 Other Lateral Dynamics Models

This section briefly reviews two other beam models for describing web lateral dynamics.

2.4.1 Euler-Bernoulli Beam

If the web is described as a static beam under tension with negligible mass, then the
following PDE governs the lateral displacement y(x, t):

∂4y(x, t)

∂x4
−K2∂

2y(x, t)

∂x2
= 0,

where K2 = T
EI

. The four boundary conditions are a result of the web lateral displacement,
and angle of entry of the web as it approaches the two rollers:

y(0, t) = y0(t),
∂y(0, t)

∂x
= θω0(t), (2.33)

y(L, t) = yL(t),
∂y(L, t)

∂x
= θωL(t), (2.34)

where y0(t) and yL(t) are the lateral displacement, and θω0(t) and θωL(t) are the angle of
entry of the web on the rollers; see Figure 2.9. The general solution is of the same form of
solution (2.5) with different Ci(t), for i = 1, 2, 3, 4 [2, 6].

2.4.2 Timoshenko Beam

This model has been studied in detail in the previous sections.
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2.4.3 Euler-Bernoulli Beam with Viscoelasticity

If web viscoelasticity is considered, then the following PDE governs the lateral displacement
y(x, t):

EI
∂4y(x, t)

∂x4
− T ∂

2y(x, t)

∂x2
+ ηI

∂5y

∂x4∂t
+m

∂2y

∂t2
= 0

where η is the viscosity of the material [5]. The numerical solution is computed using a
finite-difference scheme with the same boundary conditions (2.33) and (2.34).

The Timoshenko model is an improvement to the E-B model, because it considers the
shear deformation. As a consequence, the boundary conditions and the constant K for
the PDE are different. Sievers states this improvement is necessary if the the ratio of the
length to width is less than a factor of ten [3]. On the other hand, the need for adding the
viscoelastic term to the E-B model depends the web material used. For example, viscosity
of the material is important for rubber or paper webs [5]. If viscosity and shear deformation
are not important factors, then the simple E-B beam model is suitable at describing the
web lateral dynamics.

2.5 State-Space Form of the System Dynamics

We put the system dynamics (2.25) to (2.32) in state-space form:

ẋ(t) = Ax(t) +Bu(t) + Fw(t)

y(t) = Cx(t),
(2.35)

where the state x(t), the output y(t), the control input u(t), and the disturbance or exoge-
nous input w(t) are given respectively by

x =
[
y1

dy1
dt

y2
dy2
dt

y3
dy3
dt

y4
dy4
dt

z2
dz2
dt

]T
,

y(t) = y2(t), u(t) =
d2z2(t)

dt2
, w(t) =

[
y0(t) θ0(t)

]T
.
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The matrices A, B, C, and F are given as follows:

A =



0 1 0 0 0 0 0 0 0 0
a21 a22 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
a41 a42 a43 a44 0 0 0 0 a49 a4,10
0 0 0 0 0 1 0 0 0 0
a61 a62 a63 a64 a65 a66 0 0 a69 a6,10
0 0 0 0 0 0 0 1 0 0
a81 a82 a83 a84 a85 a86 a87 a88 a89 a8,10
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0


, (2.36)

B =
[

0 0 1 0 0 0 0 0 0 1
]T
, (2.37)

C =
[

0 0 1 0 0 0 0 0 0 0
]
, (2.38)

F =

[
0 f21 0 f41 0 f61 0 f81 0 0
0 f22 0 f42 0 f62 0 f82 0 0

]T
; (2.39)

see Appendix A.2 for derivation of the expressions in matrices A and F . The disturbance
w(t) has two components: y0(t) and θ0(t). The first component y0(t) is caused by the
combination of web camber, method of web formation, and interaction of web with machine
parts [3]. It is measured by a sensor placed at roller R0. We provide two experimental
examples from literature of y0(t), and its effect on the lateral displacement; see Figure 2.10
for the five-roller web system [4], and see Figure 2.11 for the system described in [6]. We
see that y0(t) can be described by an approximate sinusoidal wave or a periodic function.
The second component θ0(t) cannot be measured [4]. However, for the remainder of the
thesis, it is assumed to be negligible; that is, set it to zero. We evaluate the expressions in
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A and F with values in Table 2 of Appendix A.3 and set θ0(t) to zero:

A =



0 1.0 0 0 0 0 0 0 0 0
−5.4 −3.4 0 0 0 0 0 0 0 0

0 0 0 1.0 0 0 0 0 0 0
7.3 −0.9 −8.4 −4.1 0 0 0 0 8.4 4.1
0 0 0 0 0 1.0 0 0 0 0

0.9 −1.1 1.2 −1.3 −3.4 −2.7 0 0 2.1 1.3
0 0 0 0 0 0 0 1.0 0 0

0.6 −0.7 1.0 −0.9 −0.9 −1.2 −1.8 −2.0 1.5 0.9
0 0 0 0 0 0 0 0 0 1.0
0 0 0 0 0 0 0 0 0 0


,

F =
[

0 5.4 0 1.1 0 1.3 0 0.9 0 0
]T
,

w(t) = y0(t).

Before control design, we examine the stabilizability and detectability of the system. We
refer the reader to Chapter 6 of [16] for definitions and theorems relating to controllability,
stabilizability, observability, and detectability.

First, we check for controllability of the pair (A,B) by computing the rank of the
controllability matrix for (A,B):

rank
[
B AB · · · A9B

]
= 6.

Since the controllability matrix is not of full rank, the pair (A,B) is not controllable.
However, there is a similarity transformation

A1 = P1AP
−1
1 , B1 = P1B,

such that (A,B) is decomposed into its uncontrollable part, (Auc, 04×1) of dimension 4 and
controllable part (Ac, Bc) of dimension 6

A1 =

[
Auc 0
A21 Ac

]
, B1 =

[
0
Bc

]
.

The dynamics of the uncontrollable subsystem is verified to be exponentially stable; see
the uncontrollable modes in Table 2.1. The system is said to be stabilizable. Second, we
check for observability of the pair (C,A) by computing the rank of the observability matrix
for (C,A):

rank
[
CT ATCT · · · (AT )9CT

]
= 6.
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Since the observability matrix is not of full rank, the pair (C,A) is not observable. However,
there is a similarity transformation

A2 = P2AP
−1
2 , C2 = CP−12 ,

such that (C,A) is decomposed into its unobservable part, (01×4, Ano) of dimension 4 and
its observable part (Co, Ao) of dimension 6

A2 =

[
Ano A12

0 Ao

]
, C2 =

[
0 Co

]
.

The dynamics of the unobservable part is verified to be exponentially stable; see the unob-
servable modes in Table 2.1. Hence, the system (2.35) is both stabilizable and detectable.
These two properties allow us to design an observer-based feedback controller.
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Figure 2.10: Effect of a periodic disturbance on lateral displacement.

Figure 2.11: Disturbance and its effect on lateral displacement.

Table 2.1: Uncontrollable modes and unobservable modes
Uncontrollable –2.07 + j2.03 –1.67 + j1.62
modes –2.07 – j2.03 –1.67 – j1.62
Unobservable –1.34 + j1.25 –1.01 + j0.88
modes –1.34 – j1.25 –1.01 – j0.88
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Chapter 3

Control of Lateral Motion

In this chapter, we review existing works on the stabilization of lateral motion in a roll-to-
roll web system. The focus has been to use linear control strategies to control the lateral
displacement of the web.

3.1 Proportional-Integral-Derivative (PID) Control

PID is among the first control strategy used because of its simplicity. The system dynamics
(2.35) are changed into an equivalent unity feedback control form and then the gains, such
as the proportional gains are tuned for performance [3]. The drawback of this method is
that if the proportional gains are significantly increased, the feedback system may become
unstable.

3.2 Observer-Based Feedback Control

An observer-based feedback controller offers an improvement to PID control for system
(2.35), because the full-state, not only the output, are stabilized. The stabilizability and
detectability of the system (see Chapter 2) allows us to design a controller, and a Luen-
berger observer so that the full state is stabilized using dynamic output feedback. This
procedure is a standard pole-placement problem that can be found in [17].
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3.3 Linear-Quadratic Regulator (LQR)

In [6], an LQR is used and its performance is evaluated under different operating conditions,
such as changes in web tension and velocity. A reason for using optimal control is that
the designer may not know the desirable closed-loop pole locations. For example, choosing
pole locations far from the origin may give fast dynamic response, but require large gains
that exceed physical limitations. In such cases, the closed-loop behavior may not behave
as intended. Therefore, optimal control serves as a good initial design for a system [17].

3.4 Lead-Lag Compensator

A lead-lag compensator (3.1) is designed to control the lateral motion by analyzing the
sensitivity function [5]. The lead-lag compensator has the form:

G

(
s+ z1
s+ p1

)(
s+ z2
s+ p2

)
, (3.1)

where G is a constant gain, z1, z2 are the zeros, and p1, p2 are the poles. Lead-lag
compensation is a classic control tool that is useful for lowering the high-frequency gain,
improving steady-state error, and improving transient response [18].

3.5 Feedforward Control

The feedforward control structure in Figure 3.1 for a web system under the influence of
a known sinusoidal disturbance is studied in [8]. The objective of this study is to use
PID control to stabilize the lateral displacement without disturbance, and then use the
feedforward controller to reduce the effect of the disturbance. Their simulation results
showed 50% improvement in reduction of lateral displacement compared to PID control
[8].

The control objective of existing works have been to stabilize the lateral motion, but
none have focused on the disturbance rejection problem with the exception of [8]. We see
in the next chapter that if the disturbance can be accurately approximated by a sinusoidal
wave, then we can completely eliminate it by using the well known internal model principle.
However, if the disturbance is not sinusoidal but periodic, then we can use the repetitive
control strategy to reduce the effect of the disturbance on lateral motion.
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Figure 3.1: Feedforward control structure.
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Chapter 4

Disturbance Rejection

In this chapter, we study the disturbance rejection problem for the closed-loop system
considered in Figure 4.1. Given the plant transfer function P (s) and the disturbance d(t),
the problem is to find a controller C(s) so that the feedback system is asymptotically sta-
ble and meets other specifications. One important specification is to require the effect
of the disturbance signal d(t) to approach zero as t → ∞; that is, y(t) → 0 as t → ∞.
This is called asymptotic or perfect disturbance rejection. However, for certain distur-
bances, asymptotic disturbance rejection may be unrealistic to achieve, so in these cases
we require that the output y(t) to remain bounded. This is called disturbance rejection.
The disturbance rejection problem is studied for disturbances that are sinusoidal functions
with known periods in Section 4.1, and general periodic functions with known periods in
Sections 4.2, 4.3, 4.4.

4.1 Internal Model Principle

We consider a sinusoidal disturbance d(t) with a known period in the closed-loop system
shown in Figure 4.2, where D(s), Y (s), R(s) are respectively the Laplace transform of
d(t), y(t), r(t). To achieve asymptotic disturbance rejection for the feedback system, the
controller C(s) must contain a model of the disturbance [19]. This strategy is known as
the internal model principle, which is stated more formally by the next theorem.

Theorem 1 (Theorem 9.3 [16]). Consider the feedback system shown in Figure 4.2 with

a strictly proper plant P (s) = Np(s)

Dp(s)
. It is assumed Dp(s) and Np(s) are co-prime. The

disturbance is modeled as D(s) = Nd(s)
Dd(s)

. Let φ(s) be the unstable poles of D(s). If no roots
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Figure 4.1: General closed-loop system.

Figure 4.2: Closed-loop system with an internal model.

of φ(s) is a zero of P (s), then there exists a proper controller K(s) = B(s)
A(s)

such that the

overall system will reject d(t), both asymptotically and robustly.

If no roots of φ(s) is a zero of P (s), then D̃(s) = Dp(s)φ(s) and Np(s) are coprime.

This means that there exists a proper controller K(s) = B(s)
A(s)

such that the polynomial

F (s) in
F (s) = A(s)D̃(s) +B(s)Np(s) (4.1)

has any desired roots (Theorem 9.1 [16]). We choose

C(s) =
B(s)

A(s)φ(s)
, (4.2)

as shown in Figure 4.2, to achieve the design. Let us compute the transfer function from
D(s) to Y (s):

Y (s) = D(s) + C(s)P (s) (−Y (s)) ,

Y (s) =
1

1 + C(s)P (s)
D(s). (4.3)

By using equations for D(s), C(s), and P (s), equation (4.3) becomes
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Y (s) =
1

1 + Np(s)B(s)

Dp(s)A(s)φ(s)

Nd(s)

Dd(s)

Y (s) =
A(s)Dp(s)φ(s)

A(s)Dp(s)φ(s) +Np(s)B(s)

Nd(s)

Dd(s)

Y (s) =
Dp(s)A(s)Nd(s)

F (s)

φ(s)

Dd(s)
(4.4)

Because all the unstable poles of D(s) are canceled by φ(s), the poles of Y (s) can be
assigned to have negative real parts. Thus, the system achieves asymptotic disturbance
rejection; y(t) → 0 as t → ∞. In addition, we see that even if Np(s), Dp(s), B(s) and
A(s) change, as long as the overall system remains stable, and the unstable poles of the
disturbance D(s) are canceled by φ(s), the system will achieve asymptotic disturbance
rejection. Therefore, the design is robust.

The procedure for synthesizing C(s) consists of two steps. First, we insert the model 1
φ(s)

of the disturbance signal inside the loop. Second, we carry out the pole-placement problem
for F (s). The details of the procedure for a sinusoidal disturbance are given below [16].

S1: Insert the internal model 1
φ(s)

= 1
s2+ω2

d
inside the loop, where T = 2π

ωd
is the known

period of the sinusoidal disturbance.

S2: Carry out the pole-placement problem for a desired F (s):

F (s) = A(s)D̃(s) +B(s)Np(s), D̃(s) = Dp(s)φ(s), (4.5)

S2a: Assume degNp(s) < deg D̃(s) = n, degB(s) < degA(s) = m, and then the degree
of F (s) is at most n+m.

S2b: Write the following:

A(s) = A0 + A1s+ A2s
2 + · · ·+ Ams

m

B(s) = B0 +B1s+B2s
2 + · · ·+Bms

m

Np(s) = N0 +N1s+N2s
2 + · · ·+Nns

n

D̃(s) = Dp(s)φ(s) = D̃0 + D̃1s+ D̃2s
2 + · · ·+ D̃ns

n

F (s) = F0 + F1s+ F2s
2 + · · ·+ Fn+ms

n+m,

where all coefficients are real constants, some of which are zero.
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S2c: Match all the like powers of s of equation (4.5) and then solve for the coefficients of
A(s) and B(s):

A0D̃0 +B0N0 = F0

A0D̃1 + A1D̃1 +B0N1 +N0B1 = F1

...

AmD̃n +BmNn = Fn+m,

or in the matrix form:[
A0 B0 A1 B1 · · · Am Bm

]
Sm =

[
F0 F1 · · · Fn+m

]
, (4.6)

where

Sm =



D̃0 D̃1 . . . D̃n 0 . . . 0
N0 N1 . . . Nn 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 D̃0 . . . D̃n−1 D̃n . . . 0
0 N0 . . . Nn−1 Nn . . . 0
. . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 D̃0 . . . D̃n

0 0 . . . 0 N0 . . . Nn


.

4.2 Repetitive Control

We consider a general periodic disturbance d(t) with a known period in the closed-loop
system shown in Figure 4.3, where D(s), Y (s), R(s) are respectively the Laplace transform
of d(t), y(t), r(t). The disturbance D(s) with period τd is given by

D(s) = L [d(t)] =
1

1− e−τds

∫ T

0

e−std(t)dt.

In view of the internal model principle from the previous section, we expect that the closed-
loop system in Figure 4.3 achieves asymptotic disturbance rejection with an appropriate
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Figure 4.3: Closed-loop system with a repetitive controller.

Figure 4.4: A system equivalent to Figure 4.3.

proper controller K(s) and an internal model 1
φ(s)

= 1
1−e−τds , which is called a repetitive

controller. To see if the expectation holds, we study the stability of system below [9]. Note
that we say a transfer function is stable or asymptotically stable if the poles of the transfer
function have negative real parts.

Consider the single-input single-output (SISO) system in Figure 4.3 where G(s) =
K(s)P (s) is a compensated plant that is a strictly proper transfer function, b1(s) is a
proper transfer function, and Y (s), D(s), and E(s) are respectively the Laplace transform
of the output y(t), the bounded continuous periodic disturbance d(t), and the error signal
e(t). The following relations from the SISO system hold:

E(s) = −Y (s) (4.7)

Y (s) = G(s)V (s) +D(s) + Ȳ (s) (4.8)

V (s) = E(s) + b1(s)W (s) (4.9)

W (s) = e−τds [W (s) + E(s)] + W̄ (s), (4.10)

where Ȳ (s) and W̄ (s) are respectively the initial responses of G(s) and e−τds. We use
equations (4.7) to (4.10) to get

E(s) = e−τds (1 +G(s))−1 (1− b1(s)G(s))E(s) + (1 +G(s))−1De(s), (4.11)
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where
De(s) =

(
1− e−τds

) (
−D(s)− Ȳ (s)

)
−G(s)W̄ (s). (4.12)

Equation (4.11) is used to form the equivalent system shown in Figure 4.4. Bounded-
input bounded-output (BIBO) stability of the equivalent system is guaranteed if the two
conditions below are satisfied; see [9] or Appendix A.4 for proof.

1) (1 +G)−1G is asymptotically stable,

2) the following inequality is satisfied:

‖ (1 +G) (1− b1G) ‖∞ < 1 (4.13)

where ‖ · ‖∞ = supω | · |.

In other words for any bounded continuous periodic disturbance of period τd, if both 1)
and 2) are satisfied, then the error signal

e(t) = L−1 [E(s)] ∈ L2, (4.14)

where e(t) ∈ L2 if
∫∞
0
e(t)e(t)dt < ∞. We see that 2), however, cannot be satisfied for

strictly proper transfer function G(s), because G(jω)→ 0 as ω →∞, and then ‖ · ‖∞ = 1,
which violates the inequality in equation (4.13). We can conclude that the equivalent
system in Figure 4.4 is not BIBO stable. Therefore, the stability of the closed-loop system
cannot be achieved with the internal model 1

φ(s)
.

The failure of a repetitive controller in guaranteeing the closed-loop stability with
strictly proper compensated plant G(s) can be reasoned by Theorem 1 in Section 4.1.
It states that asymptotic disturbance rejection is possible when the plant zeros do not
cancel the poles of the disturbance. Applying this principle to the current situtation (al-
though it is nonclassical), we see that it is not satisfied, because G(s) has infinity as its
zero whereas the periodic disturbance has a pole of arbitrary high frequency [9].

The demand in asymptotic disturbance rejection for any general periodic disturbance is
apparently unrealistic, because the disturbance contains arbitrarily high frequency modes.
Therefore, we expect the stability condition can be relaxed, at the expense of asymptotic
disturbance rejection, by reducing the loopgain in the higher frequency range. This leads to
the idea of replacing e−τds by q1(s)e

−τds for a suitable function q1(s), such that |q1(jω)| < 1
for all ω. The controller of this type is called the modified repetitive controller.
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Figure 4.5: Closed-loop system with a modified repetitive controller.

4.3 Modified Repetitive Control

We study the stability condition and synthesis procedure for the closed-loop system in
Figure 4.5 where H(s) is called the modified repetitive controller. The stability of the
system is given in the next theorem.

Theorem 2 ([9] or [10]). Consider the closed-loop system shown in Figure 4.5 with a
strictly proper plant P (s), stable proper transfer functions q1(s) and b1(s), a proper transfer
function K(s), and bounded continuous periodic disturbance d(t) with period τd. If

C1a: the transfer function K(s)P (s)
1+K(s)P (s)

is asymptotically stable,

C2a: the following inequality is satisfied:

R(ω) = |q1(jω)F (jω)| < 1 ∀ω ≥ 0, (4.15)

where

F (jω) = 1− b1(jω)
KP (jω)

1 +KP (jω)
, (4.16)

then the closed-loop system is asymptotically stable and the output y(t) is bounded.

Proof. We compute the transfer function from D(s) to Y (s):

Y (s) = D(s)−
(

1 + b1(s)
q1(s)e

−τds

1− q1(s)e−τds

)
K(s)P (s)Y (s)

=
(1− q1(s)e−τds)D(s)

1 +K(s)P (s) + (b1(s)K(s)P (s)−K(s)P (s)− 1) q1(s)e−τds
.
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The poles of the transfer function is given as

1 +K(s)P (s) + (b1(s)K(s)P (s)−K(s)P (s)− 1) q1(s)e
−τds. (4.17)

Let the following

P (s) =
Np(s)

Dp(s)
, K(s) =

B(s)

A(s)
, b1(s) =

Nb(s)

Db(s)
, q1(s) =

Nq(s)

Dq(s)
,

then the poles (4.17) can be written as

DbDq (ADp +BNp) + [NqNbBNp −DbNq (ADp +BNp)] e
−τds.

We apply Theorem 4 in Appendix A.5 with X(s) = DbDq (ADp +BNp), where degX = n
and Z(s) = [NqNbBNp −DbNq (ADp +BNp)], where degZ = m < n since q1(s) and P (s)
are strictly proper. The condition that |bn1| < 1 is satisfied since degZ < degX; the con-

dition that all the roots of DbDq (ADp +BNp) have negative real parts implies K(s)P (s)
1+K(s)P (s)

is asymptotically stable since q1(s) and b1(s) are stable. The condition that
∣∣∣ Z(jω)X(jω)

∣∣∣ < 1

∀ω ≥ 0 implies condition C2a since |e−jωτd | = 1. Therefore, the closed-loop system
is asymptotically stable. The output y(t) is bounded, since L−1 [(1− q1(s)e−τds)D(s)] is
bounded.

4.3.1 Synthesis Procedure

Condition C1a is equivalent to constructing a controller K(s) so that the closed-loop
system is asymptotically stable when H(s) = 0. One method to construct K(s) is to carry
out the pole-placement in the same way as S2 in Section 4.1. Another method, which
is explained here, is to use an observer-based feedback controller. This type of feedback
controller has the advantage that the controllable but unobservable poles can be reassigned
[16]. Given a realization (A,B,C) of P (s) in Figure 4.5 that is stabilizable and detectable,
the observer-based feedback controller is given as:

˙̂x(t) = Ax̂(t) +Bu(t) + L (y − Cx̂(t)) , (4.18)

u(t) = −Gx̂(t), (4.19)

where the gain matrices G and L are to be designed. Since (A,B) is stabilizable and (C,A)
is detectable, we can find gains G and L such that A−BG and A−LC are Hurtwitz [16].
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Figure 4.6: Modified repetitive controller.

Figure 4.7: Implementable modified repetitive controller.

A way to compute such gains is to solve the algebraic Ricatti equations (ARE):

0 = ATP + PA+Q− PBR−1BTP, (4.20)

0 = AS + SAT + V1 − SCTV −12 CS. (4.21)

We choose (Q,A) to be detectable and (A, V1) to be stabilizable to obtain unique solutions
of P and Q in the ARE [20], and set

G = R−1BTP, (4.22)

L = SCTV −12 . (4.23)

Furthermore, the controller K(s) in Figure 4.5 is computed using the equation

K(s) = G (sI − A+BG+ LC)−1 L. (4.24)

Condition C2a is analyzed in the frequency domain to see the roles of q1(s) and b(s).
We see that P (jω) → 0 as ω → ∞, because P (s) is strictly proper so equation (4.15)
implies that R(ω) ≈ |q1(jω)| for high frequencies. If |q1(jω)| is close to zero then stability
is guaranteed but the disturbance rejection performance deteriorates because we expect
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asymptotic disturbance rejection when q1(s) = 1 from the internal model principle. There-
fore, the design of q1(s) can be viewed as a trade-off between stability and performance [9].

In low frequency range, we see that if b1(jω) ≈ 1+KP (jω)
KP (jω)

then R(ω) ≈ 0, which improves

the stability of the system [10]. A proper transfer function is chosen for |b1(jω)| such that

|b1(jω)| ≈
∣∣∣1+KP (jω)
KP (jω)

∣∣∣ for low frequencies. It is customary to add small time advances to

both b1(s) and q1(s) [13], and then define them as follows:

b1(s) = b11(s)e
τbs, q1(s) = q11(s)e

τqs, τq, τb > 0, (4.25)

where b11(s) and q11(s) are proper transfer functions which are often low pass filters of first
order or second order; τq and τb are chosen to be much smaller than τd, the period of the
disturbance. The stability conditions of Theorem 2 remain the same, but an implementa-
tion problem occurs since τq and τb are positive. We can resolve this by absorbing τq and
τb into τd. In other words, we transform the modified repetitive controller in Figure 4.6
into the one in Figure 4.7.

To summarize the design procedure discussed above, we give a detailed procedure.

T1: Find controller K(s).

T1a: Choose Q, R, V1 and V2 such that (Q,A) is detectable, (A, V1) is stabilizable, and
other desired closed-loop characteristics are met.

T1b: Solve the algebraic Riccati equations (4.20) and (4.21) for unique P and S, and then
use equations (4.22) and (4.23) for gains G and L.

T1c: Use equation (4.24) to compute K(s).

T2: Find b1(s) and then q1(s).

T2a: Use a Bode plot of 1+KP (jω)
KP (jω)

and change parameters in b11(s) such that they are
approximately equal up to a certain frequency, ωb.

T2b: Choose τb, which is much less than τd, so that eτb cancels the negative phase of
KP (s)

1+KP (s)
up to ωb.

T2c: Choose parameters in q11(s) such that the inequality (4.15) is satisfied. The cutoff
frequency of q11(s) should be greater than ωb in step T2a.

T2d: Choose τq, which is much less than τd, so that eτq cancels the negative phase of q11(s)
up to its cutoff frequency.
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Figure 4.8: Closed-loop system with a two-period modified repetitive controller.

We note that if the design specifications involve requirements on the sensitivity function,
then a procedure already exists; see [13].

4.4 Two Period Modified Repetitive Control

We study the stability condition and synthesis procedure of the closed-loop system in Figure
4.8 with a disturbance d(t) that is a sum of two periodic functions with known periods, τd1
and τd2 , that are irrationally related, i.e., τd1/τd2 is an irrational number. If the periods are
rationally related then the one period modified repetitive controller in the previous section
can be tuned to the least common multiple of the two periods. For irrationally related
periods, a new configuration for the modified repetitive controller is needed, which we call
the two period modified repetitive controller.

The two period modified repetitive controller suggested in [14] is given as follows:

H(s) = b1(s)

[
q1(s)e

−τd1s

1− q1(s)e−τd1s
+

q2(s)e
−τd2s

1− q2(s)e−τd2s
+

q1(s)q2(s)e
−(τd1+τd2 )s

(1− q1(s)e−τd1s) (1− q2(s)e−τd2s)

]
,

(4.26)
where b1(s), q1(s), and q2(s) are to be designed. The stability of the closed-system with
H(s) in equation (4.26) is given in the next theorem.

Theorem 3 ([14]). Consider the closed-loop system in Figure 4.8 with a strictly proper
plant P (s), H(s) in equation (4.26), stable proper transfer functions q1(s), q2(s), b1(s),
and K(s). The bounded continuous disturbance d(t) is given as the sum of two periodic
functions with known periods, τd1 and τd2, that are irrationally related. If

C1b: the transfer function K(s)P (s)
1+K(s)P (s)

is asymptotically stable,
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C2b: the following inequality is satisfied:

M(ω) = |F (jω)| (|q1(jω)|+ |q2(jω)|+ |q1q2(jω)|) < 1 ∀ω ≥ 0, (4.27)

where F (jω) is given in equation (4.16),

then the closed-loop system is asymptotically stable and the output y(t) is bounded.

Proof. We compute the transfer function from D(s) to Y (s):

1 +KP + (b1KP −KP − 1)
(
q1e
−τd1s + q2e

−τd2s − q1q2e−(τd1+τd2)s
)
, (4.28)

and then apply Theorem 4 in Appendix A.5 to this equation to obtain the two stability
conditions. The first condition in Theorem 4 requires K(s)P (s)

1+K(s)P (s)
to be asymptotically stable.

The second condition requires the inequality in (4.27) since
∣∣e−jωτd1 ∣∣ =

∣∣e−jωτd2 ∣∣ = 1.
Therefore, the closed-loop system is asymptotically stable. The output y(t) is bounded,
since L−1 [(1− q1e−τd1s) (1− q2e−τd2s)D(s)] is bounded.

4.4.1 Synthesis Procedure

The design of the stabilizing controller K(s) in Condition C1b is equivalent to Condition
C1a. In Condition C2b, we propose that each repetitive controller is designed one at a
time; that is, find q1(s) and b1(s) satisfying C2a, and then find q2(s) satisfying C2b. If
we assume q1(s) and b1(s) are known, then we solve the inequality (4.27) for |q2(jω)|:

|q2(jω)| < 1− |F (jω)| |q11(jω)|
|F (jω)| (1 + |q11(jω)|)

=: N(jω). (4.29)

We add small time advances to the filters b1(s), q1(s), and q2(s), and then define them as
follows:

b1(s) = b11(s)e
τbs, q1(s) = q11(s)e

τq1s, q2(s) = q22(s)e
τq2s, τq1 , τq2 , τb > 0, (4.30)

where b11(s), q11(s), q22(s) are transfer functions which are often low pass filters of first
order or second order; τb, τq1 , and τq2 are chosen to be much smaller than τd1 or τd2 . With
these newly defined transfer functions, the stability conditions of Theorem 3 remain the
same, but an implementation problem can arise, because τb, τq1 , and τq2 are positive. To
resolve the issue, we transform the two period modified repetitive controller in Figure 4.9
into the one in Figure 4.10.

The design procedure discussed is summarized in detail here.
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Figure 4.9: Two period modified repetitive controller.

Figure 4.10: Implementable two period modified repetitive controller.

U1: Find K(s), b1(s) and q1(s) using the procedure in the last section.

U2: Find q2(s).

U2a: If q22(s) is of first order

q22(s) =
1

a1s+ 1
, (4.31)

then equation (4.29) becomes[
ω2a21 + 1

]
N2(jω)− 1 > 0 ∀ω ≥ 0. (4.32)

U2b: If q22(s) is of second order

q22(s) =
a2

s2 + a3s+ a2
, (4.33)

then equation (4.29) becomes[
N2(jω)− 1

]
a22 +

[
ω2N2(jω)

]
a23 +

[
−2ω2N2(jω)

]
a2 + ω4N2(jω) ≥ 0 ∀ω > 0.

(4.34)
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U3b: We choose τq2 , which is much less than τd, so that eτq2 cancels the negative phase of
q22(s) up to its cutoff frequency.

If a1 satisfies the inequality (4.32) for all frequencies ω ≥ 0, or if a2, a3 satisfies the
inequality (4.34) for all frequencies ω ≥ 0, then condition C2b is satisfied. There is a
possibility for certain transfer functions b1(s), q1(s), or K(s) that no solutions of a1 or
a2, a3 in q22(s) exist. The nonexistence of a solution may be due to the restrictiveness of
the transfer functions. For example, if we designed b1(s), q1(s), and K(s) so that R(ω) is
slightly less than 1 for some ω, then the condition M(ω) < 1 will likely not be satisfied,
since M(ω) is essentially R(ω) plus other terms. In this case, the user must then redesign
K(s) by choosing different gains G and L or choose different parameters in b1(s) and q1(s).
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Chapter 5

Application

In this chapter, the internal model principle and the repetitive control strategy are applied
to reduce the effect of disturbances on the lateral motion of the five-roller web system.

We take the Laplace transform of the state-space equations (2.35) with w(t) = y0(t):

X(s) = (sI − A)−1BU(s) + (sI − A)−1FY0(s)

Y (s) = C(sI − A)−1BU(s) + C(sI − A)−1FY0(s), (5.1)

where U(s), Y0(s) are respectively the Laplace transform of u(t), y0(t). Using equation
(5.1), we get the closed-loop system in Figure 5.1. The plant transfer function P (s) is

P (s) = C(sI − A)−1B =
1

s2
, (5.2)

and the disturbance Gd(s)Y0(s) is

Gd(s)Y0(s) = C(sI − A)−1FY0(s)

=
1.1s2 − 1.2s+ 45.7

s4 + 7.5s3 + 27.7s2 + 50.6s+ 45.7
Y0(s).

Three simulations studies are conducted on this system. In Section 5.1, an internal model
controller is synthesized for a sinusoidal disturbance y0(t). In Section 5.2, a modified
repetitive controller is synthesized for a general periodic disturbance. In Section 5.3, a two
period modified repetitive controller is synthesized for a disturbance that is the sum of two
periodic functions.

39



Figure 5.1: Closed-loop of the five-roller web system.

5.1 Simulation Results for Internal Model Principle

Consider the closed-loop system shown in Figure 5.2. Our objective is to synthesize B(s),
A(s), and φ(s) so that the closed-loop system asymptotically rejects a sinusoidal dis-
turbance. The procedure in Section 4.1 is used here. The disturbance has amplitude
α = 3.81mm and known period 2π

0.2
s:

y0(t) = α sin(0.2t),

L[y0(t)] = Y0(s) =
α

s2 + 0.04
.

The internal model contains the unstable poles of the disturbance Gd(s)Y0(s), so φ(s) =
s2 + 0.04, because all the poles of Gd(s) are stable.

Next, we carry out the pole placement problem for F (s). Since D̃(s) = Dp(s)φ(s) is
degree 4, choose B(s) and A(s) to be of degree 3. As a result, F (s) is at most degree 7:

F (s) = A(s)D̃(s) +B(s)Np(s)

=
(
A0 + A1s+ A2s

2 + A3s
3
) (
s2 + 0.04

)
s2 +B0 +B1s+B2s

2 +B3s
3. (5.3)

If the desired roots of the polynomial F (s) is

F (s) = (s+ 2)
(
s2 + 4s+ 5

) (
s2 + 2s+ 5

) (
s2 + 6s+ 10

)
, (5.4)

then the coefficients Ai and Bi, i = 1, 2, 3 can be solved using procedure S2 from Section
4.1. The controller is

K(s) =
B(s)

A(s)
=

778s3 + 1207s2 + 1150s+ 500

s3 + 14s2 + 88s+ 325
.
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Figure 5.2: Closed-loop system with internal model.
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Figure 5.3: Internal model: output y2(t).

The simulation result for some nonzero initial condition is shown in Figure 5.3. We
see that asymptotic disturbance rejection is achieved; that is, the output y2(t), lateral
displacement of the web at roller R2, converges to zero even in the presence of a sinusoidal
disturbance y0(t).

5.2 Simulation Results for Modified Repetitive Con-

trol

Consider the closed-loop system shown in Figure 5.4. Our objective is to synthesize a
modified repetitive controller H(s), and a stabilizing controller K(s), so that the closed-
loop system rejects a periodic disturbance y0(t). In the simulation study, we use triangular
and sinusoidal disturbances with procedure in Section 4.3.
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Figure 5.4: Closed-loop system with a modified repetitive controller.

5.2.1 Sinusoidal Disturbances

The disturbance y0(t) is a sinusoidal function with amplitude α = 3.81mm and period 10π:

y0(t) = α sin(0.2t).

We start the procedure by synthesizing K(s) in C1a of Theorem 2. The values of R,
V2, Q, and V1 are chosen in a way that (Q,A) is detectable and (A, V1) is stabilizable:
R = V2 = 1,

Q = diag
[

0 0 1000 400 1000 400 1000 400 0 0
]
,

V1 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 5000 0 0 0 0 0 5000
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 5000 0 0 0 0 0 5000


.

The AREs are solved for P and S and then we use the gain equations (4.22) and (4.23) to
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Figure 5.5: R(ω) in Condition C2a.

compute G and L:

G =
[

6.2 −4.7 106.8 15.3 30.8 9.3 24.5 13.0 8.5 9.8
]
,

L =
[

0 0 11.9 70.7 0.1 3.2 0.1 2.3 11.9 70.7
]T
.

The stabilizing controller K(s) can be computed using equation (4.24):

K(s) =
3211s5 + 24000s4 + 79800s3 + 147000s2 + 146500s+ 72100

s6 + 41.7s5 + 669.5s4 + 2686s3 + 5579s2 + 5875s+ 2939
. (5.5)

Next, we find the transfer functions b1(s) and q1(s) to satisfy C2a of Theorem 2.

Choose b11(s) = 1 since KP (jω)
1+KP (jω)

has a magnitude close to 0 from ω = 0 to ω = 2.5.

Pick τb = 0.07, because the phase of e0.07s approximately cancels the phase of KP (jω)
1+KP (jω)

in

the same frequency range. Choose q11(s) that satisfies condition C2a (i.e., the inequality
R(ω) < 1 in equation (4.15)):

q11(s) =
1

0.4s+ 1
;

see Figure 5.5 for a plot of R(ω) from ω = 0 to ω = 103. Pick τq1 = 0.4 since the phase of
e0.4s approximately cancels the phase of q11(s) below its cut-off frequency.

A comparison of the disturbance rejection performance with and without the modified
repetitive controller is demonstrated by turning on repetitive control at t = 120s. The
simulation result for some nonzero initial condition is shown in Figure 5.6. We see that
the steady-state lateral displacement at roller R2 is reduced from 6.5 µm to 0.02 µm, a
reduction of 99.7% in the presence of a modified repetitive controller. We see that the

43



0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

Figure 5.6: Simulation study: output, y2(t).

choice of filters b1(s) and q1(s) are not necessarily optimal for performance, but serves as
a good demonstration of the effectiveness of the repetitive control strategy in rejecting the
periodic disturbance.

5.2.2 Triangular Disturbance

The disturbance y0(t) is a triangular wave with amplitude α = 3.81mm and period τd =
10π; see Figure 5.7 for the disturbance. The Fourier series expansion of y0(t) is given by

y0(t) =
−8α

π2

∞∑
n=0

1

(2n+ 1)2
cos

[
(2n+ 1)

2π

τd
t

]
,

and the spectrum of this series is shown in Figure 5.8.

Using the same transfer functions K(s), b1(s), and q1(s) in the previous subsection,
a comparison of the disturbance rejection performance with and without the modified
repetitive controller is demonstrated by turning on repetitive control at t = 120s. The
simulation result for some nonzero initial condition is shown in Figure 5.9. The steady-
state lateral displacement at roller R2 is reduced from 36 µm to 5.5 µm, a reduction of
85% in the presence of a modified repetitive controller. We see that even in the case of a
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Figure 5.7: Triangle wave disturbance.
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Figure 5.8: Spectrum of the triangular wave.

triangular disturbance, which is more problematic than a sinusoidal type, the disturbance
rejection performance is still impressive.
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Figure 5.9: Simulation study: output, y2(t).

5.3 Simulation Results for Two Period Modified Repet-

itive Control

Consider the closed-loop system shown in Figure 5.10. Our objective is to synthesize a
two period modified repetitive controller H(s) and a stabilizing controller K(s) so that the
closed-loop system rejects a disturbance containing two periodic functions with irrationally
related periods. In the simulation study, we use triangular and sinusoidal disturbances with
procedure in Section 4.4.

5.3.1 Two Sinusoidal Disturbances

The disturbance y0(t) is the sum of two sinusoidal functions with amplitudes α1 = 3.81mm,
α2 = 3.81mm and periods τd1 = 2π√

0.1
s, τd2 = 2π√

0.2
s; the disturbance is shown in Figure 5.11

and the spectrum is shown in Figure 5.12.

y0(t) = α1 sin(
√

0.1t) + α2 sin(
√

0.2t)

The stabilizing controller K(s) in equation (5.5) satisfies C1b of Theorem 3.
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Figure 5.10: Closed-loop system with a two period modified repetitive controller.

Next, we find transfer functions b1(s), q1(s), and q2(s) to satisfy C2b of Theorem 3.
The transfer functions b1(s) and q1(s) from Section 5.2 is used here:

b1(s) = e0.07, q1(s) =
1

0.4s+ 1
e0.4s.

The design of q2(s) involves finding q22(s) and τq2 . If q22(s) is of first order as in equation
(4.31), then we compute the condition on a1 for frequencies from ω = 0 to ω = 103. The
choice of a1 = 0.4 yields

q22(s) =
1

0.4s+ 1
,

which satisfies M(ω) < 1; see Figure 5.13. If q22(s) is of second order as in equation (4.33),
then we compute the condition on a2 and a3 for frequencies from ω = 0 to ω = 103. The
choice of a2 = 3 and a3 = 1 yields

q22(s) =
3

s2 + s+ 3
,

which satisfies M(ω) < 1; see Figure 5.13. Pick τq2 = 0.4, because the phase of e0.4s

approximately cancels the phase of q22(s) below its cut-off frequency.

A comparison of the disturbance rejection performance with and without the two period
modified repetitive controller is demonstrated by turning on repetitive control at t = 120s.
The simulation result with the first-order filter q22(s) is shown Figure 5.14, and the result
for the second-order filter q22(s) is shown Figure 5.15. In the case of the first-order q22(s),
we see that the steady-state lateral displacement is reduced from 48.8 µm to 1.2 µm, a
reduction of 97.5%. In the case of the second-order q22(s), we observe that the steady-
state lateral displacement is reduced from 48.8 µm to 4.0 µm, a reduction of 91.8%. The
disturbance rejection performance of the first-order filter is superior to that of second-order
filter, which is consistent with the simulation study for an optical disk drive [11].
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Figure 5.11: Sum of two sinusoidal waves
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Figure 5.12: Spectrum of disturbance
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Figure 5.13: M(ω) in Condition C2b.

5.3.2 Two Triangular Disturbances

The disturbance y0(t) is the sum of two triangular waves with amplitudes α1 = 3.81mm,
α2 = 3.81mm, and periods τd1 = 2π√

0.1
s, τd2 = 2π√

0.2
s; see Figure 5.16 for the disturbance.

The Fourier series expansion of y0(t) is given by

y0(t) =
−8α1

π2

∞∑
n=0

1

(2n+ 1)2
cos

[
(2n+ 1)

2π

τd1
t

]
+
−8α2

π2

∞∑
n=0

1

(2n+ 1)2
cos

[
(2n+ 1)

2π

τd2
t

]
,

and the spectrum of the series is shown in Figure 5.17.

Using the same transfer functions K(s), b1(s), q1(s), and q2(s) from the previous sub-
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section, a comparison of the disturbance rejection performance with and without the two
period modified repetitive controller is demonstrated by turning on repetitive control at
t = 120s. The simulation result with the first-order filter q22(s) is shown Figure 5.18.
We see that the steady-state lateral displacement is reduced from 82.6 µm to 13.3 µm, a
reduction of 84%.
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Figure 5.14: First-order low pass filter q22(s): output y2(t).
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Figure 5.15: Second-order low pass filter q22(s): output y2(t).
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Figure 5.16: Sum of two triangular waves.
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Figure 5.17: Spectrum of the disturbance.
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Figure 5.18: First-order low pass filter q22(s): output, y2(t).
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Chapter 6

Conclusions

In this thesis, we have provided synthesis procedures for the control strategies of the internal
model principle and repetitive control. By using these procedures, we have successfully
synthesized an internal model controller, a modified repetitive controller, and a two period
modified repetitive controller to reject disturbances from the lateral displacement in a
roll-to-roll web system. The effectiveness of the controllers are demonstrated by several
simulation studies on a five-roller web system. The results show that: 1) if the system
contains an internal model controller and is under the influence of a sinusoidal disturbance,
then the system achieves asymptotic disturbance rejection; 2) if the system contains a
modified repetitive controller and is under the influence of a periodic disturbance, either
sinusoidal or triangular, then we see a significant improvement in disturbance rejection
compared with observer-based feedback control; 3) if the system contains a two period
modified repetitive controller and is under the influence of a disturbance that is the sum
of two periodic functions, then we see a significant improvement in disturbance rejection
compared with observer-based feedback control.

We cannot achieve the goal of completely eliminating the disturbances that cause lateral
motion in a web system. However, by using the strategies of repetitive control and internal
model principle, we can significantly reduce the lateral motion.
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Appendices

A.1 Derivation of Web PDE

The PDE that governs the lateral displacement of a web can be derived by an application
of Hamilton’s principle. The details on how to apply the principle is on pages 132–135 of
[21]; we follow the same procedure here.

Consider the web between two rollers as in Figure 2.3 under constant tension T along
the x axis and moving at a velocity v. The kinematic energy of the web is

K =
1

2

∫ L

0

m

[
v2 +

(
∂y

∂t
+ v

∂y

∂x

)2
]2
dx+

1

2

∫ L

0

J

(
∂θ

∂t
+ v

∂θ

∂x

)2

dx, (1)

where m is the mass, J is the rotary inertia, y(x, t) is the lateral displacement at position x
and time t, and θ(x, t) is the angle of face rotation at position x and time t. The potential
energy of the web is

V =
1

2

∫ L

0

EI

(
∂θ

∂x

)2

dx+
1

2

∫ L

0

GA

n

(
∂y

∂x
− θ
)2

dx+
1

2

∫ L

0

T

(
∂y

∂x

)2

dx, (2)

where EI is the bending stiffness, GA is the shear stiffness, and n is a constant. With
equations (1) and (2) we apply Hamilton’s principle. In other words, the PDE governing
the lateral displacement of the web is one that renders

I =

∫ t2

t1

(K − V )dt

an extremum with respect to y(x, t) and θ(x, t), where t2 > t1. As a result, we obtain two
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equations:

−m
(
∂2y

∂t2
+ 4v

∂2y

∂x∂t
+ v2

∂2y

∂x2

)
+

(
T +

GA

n

)
∂2y

∂x2
− GA

n

∂θ

∂x
= 0 (3)

−J
(
∂2θ

∂t2
+ 4v

∂2θ

∂x∂t
+ v2

∂2θ

∂x2

)
+ EI

∂2θ

∂x2
+
GA

n

(
∂y

∂x
− θ
)

= 0. (4)

We now simplify equations (3) and (4) to a PDE of y(x, t). This is achieved in the following
way. First, we differentiate (4) with respect to x:

− J
(

∂3θ

∂x∂t2
+ 4v

∂3θ

∂x2∂t
+ v2

∂3θ

∂x3

)
+ EI

∂3θ

∂x3
+
GA

n

(
∂2y

∂x2
− ∂θ

∂x

)
= 0. (5)

Second, we solve equation (3) for ∂θ
∂x

:

∂θ

∂x
=

n

GA

[
−m

(
∂2y

∂t2
+ 4v

∂2y

∂x∂t
+ v2

∂2y

∂x2

)
+

(
T +

GA

n

)
∂2y

∂x2

]
, (6)

and then differentiate (6)with respect to x or t or both to get ∂3θ
∂x∂t2

, ∂3θ
∂x2∂t

, and ∂3θ
∂x3

:

∂3θ

∂x∂t2
=

n

GA

[
−m

(
∂4y

∂t4
+ 4v

∂4y

∂x∂t3
+ v2

∂4y

∂x2∂t2

)
+

(
T +

GA

n

)
∂4y

∂x2∂t2

]
(7)

∂3θ

∂x2∂t
=

n

GA

[
−m

(
∂4

∂x∂t3
+ 4v

∂4y

∂x2∂t2
+ v2

∂4y

∂x3∂t

)
+

(
T +

GA

n

)
∂4y

∂x3∂t

]
(8)

∂3θ

∂x3
=

n

GA

[
−m

(
∂4y

∂x2∂t2
+ 4v

∂4y

∂x3∂t
+ v2

∂4y

∂x4

)
+

(
T +

GA

n

)
∂4y

∂x4

]
. (9)

We substitute the equations for ∂θ
∂x

(6), ∂3θ
∂x∂t2

(7), ∂3θ
∂x2∂t

(8), and ∂3θ
∂x3

(9) into equation (5) to
obtain terms only in y and its derivatives:

0 = (Jv2 − EI)

(
nmv2

GA
− nT

GA
− 1

)
∂4y

∂x4
+ (mv2 − T )

∂2y

∂x2
+ 4mv

∂2y

∂x∂t
+m

∂2y

∂t2

+

(
18Jnmv2

GA
− EInm

GA
− JnT

GA
− J

)
∂4y

∂x2∂t2
+
Jnm

GA

∂4y

∂t4
+

8Jnmv

GA

∂4y

∂x∂t3

+

(
8Jnmv3

GA
− 4EInmv

GA
− 4JnTv

GA
− 4Jv

)
∂4y

∂x3∂t
.
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The expression for the boundary condition θ can be derived as follows. First, we
differentiate equation (6) to get ∂2θ

∂x2
:

∂2θ

∂x2
=

n

GA

[
−m

(
∂3y

∂x∂t2
+ 4v

∂3y

∂x2∂t
+ v2

∂3y

∂x3

)
+

(
T +

GA

n

)
∂3y

∂x3

]
. (10)

Second, we substitute the equation for ∂2θ
∂x2

(10) into equation (4) and then use the two
assumptions: 1) T � mv2; 2) EI � Jv2 to get an expression for θ in terms of y and its
derivatives:

θ =
∂y

∂x
+ EI

n

GA

(
1 +

nT

GA

)
∂3y

∂x3
.

A.2 Derivation of State-Space Form

The derivation of the state-space form from the system dynamics can be found on pages
102–111 of [4]. We offer a slightly different derivation using notation from Chapter 2.

The lateral displacement of the web is

y(x, t) = yi−1(t)X1(x) + θi−1(t)X2(x) + yi(t)X3(x) + θi(t)X4(x), i = 1, . . . , 4, (11)

where Xi(x) are defined in equations (2.16) in Chapter 2. The web slope and curvature of
roller Ri are respectively

∂yi
∂x

= yi−1X
′
1(Li) + θi−1X

′
2(Li) + yiX

′
3(Li) + θiX

′
4(Li) (12)

∂2yi
∂x2

= yi−1X
′′
1 (Li) + θi−1X

′′
2 (Li) + yiX

′′
3 (Li) + θiX

′′
4 (Li). (13)

We solve for θi in the web slope equation (12):

θi =
1

X ′4(Li)

(
∂yi
∂x
− yi−1X ′1(Li) + θi−1X

′
2(Li) + yiX

′
3(Li)

)
, (14)
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and then substitute it into the web curvature equation (13):

∂2yi
∂x2

= yi−1X
′′
1 (Li) + θi−1X

′′
2 (Li) + yiX

′′
3 (Li)

+
X ′′4 (Li)

X ′4(Li)

(
∂yi
∂x
− yi−1X ′1(Li) + θi−1X

′
2(Li) + yiX

′
3(Li)

)
= yi−1

(
X ′′1 (Li)−

X ′1(Li)X
′′
4 (Li)

X ′4(Li)

)
+ θi−1

(
X ′′2 (Li)−

X ′2(Li)X
′′
4 (Li)

X ′4(Li)

)
+ yi

(
X ′′3 (Li)−

X ′3(Li)X
′′
4 (Li)

X ′4(Li)

)
+
∂yi
∂x

(
X ′′4 (Li)

X ′4(Li)

)
= yi−1W1(Li) + θi−1W2(Li) + yiW3(Li) +

∂yi
∂x

W4(Li), (15)

where W1, W2, W3, and W4 are defined by

W1(Li) = X ′′1 (Li)−
X ′1(Li)X

′′
4 (Li)

X ′4(Li)
, W2(Li) = X ′′2 (Li)−

X ′2(Li)X
′′
4 (Li)

X ′4(Li)
,

W3(Li) = X ′′3 (Li)−
X ′3(Li)X

′′
4 (Li)

X ′4(Li)
, W4(Li) =

X ′′4 (Li)

X ′4(Li)
.

We can use the web slope and web curvature expressions in (12) and (15) in the dynamics.

The system dynamics are

dy1
dt

= −v∂y1
∂x

, (16)

d2y1
dt2

= v2
∂2y1
∂x2

, (17)

dy2
dt

= v

(
z2
L2

− ∂y2
∂x

)
+
dz2
dt
, (18)

d2y2
dt2

= v2
∂2y2
∂x2

+
d2z2
dt2

, (19)

dy3
dt

= −v∂y3
∂x

, (20)

d2y3
dt2

= v2
∂2y3
∂x2

, (21)

dy4
dt

= −v∂y4
∂x

, (22)

d2y4
dt2

= v2
∂2y4
∂x2

. (23)
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If we choose the state x, output y, control input u, and disturbance w as

x =
[
y1

dy1
dt

y2
dy2
dt

y3
dy3
dt

y4
dy4
dt

z2
dz2
dt

]T
,

y(t) = y2(t), u(t) =
d2z2(t)

dt2
, w(t) =

[
y0(t) θ0(t)

]T
,

then the state-space form can be derived as follows. The remainder of the derivation uses
the interchangeable notation ẋ and dx

dt
to represent the time derivative.

x1 : x1 = y1 ⇒ ẋ1 = dy1
dt

= x2.

x2 : x2 = dy1
dt
⇒ ẋ2 = d2y1

dt
= v2 ∂

2y1
∂x2

ẋ2 = v2
(
y0W1(L1) + θ0W2(L1) + y1W3(L1) +

∂y1
∂x

W4(L1)

)
(24)

where web curvature equation (15) with i = 1 is used to get equation (24). We then
solve the velocity equation (16) for ∂y1

∂x
:

∂y1
∂x

= −1

v

dy1
dt
,

so that ẋ2 can be simplified to state-space variables:

ẋ2 = v2W3(L1)y1 − vW4(L1)
dy1
dt

+ v2W1(L1)y0 + v2W2(L1)θ0

= v2W3(L1)x1 − vW4(L1)x2 + v2W1(L1)y0 + v2W2(L1)θ0.

x3 : x3 = y2 ⇒ ẋ3 = dy2
dt

= x4.

x4 : x4 = dy2
dt
⇒ ẋ4 = d2y2

dt2
= v2 ∂

2y2
∂x2

+ d2z2
dt2

ẋ4 = v2
(
y1W1(L2) + θ1W2(L2) + y2W3(L2) +

∂y2
∂x

W4(L2)

)
, (25)

where web curvature equation (15) with i = 2 is used to get equation (25). We then
use equation (14) with i = 1 for θ1:

θ1 =
1

X ′4(L1)

(
∂y1
∂x
− y0X ′1(L1)− θ0X ′2(L1)− y1X ′3(L1)

)
,

59



and solve the velocity equation (18) for ∂y2
∂x

:

∂y2
∂x

= −1

v

(
dy2
dt
− dz2

dt

)
+
z2
L2

,

so that ẋ4 can be simplified to state-space variables:

ẋ4 =

(
v2W1(L2)− v2W2(L2)

X ′3(L1)

X ′4(L1)

)
y1 + v2W3(L2)y2

+ v2W4(L2)

[
z2
L2

− 1

v

(
dy2
dt
− dz2

dt

)]
+ v2

W2(L2)

X ′4(L1)

(
−1

v

dy1
dt
−X ′1(L1)y0 −X ′2(L1)θ0

)
+
d2z2
dt2

=

(
v2W1(L2)− v2W2(L2)

X ′3(L1)

X ′4(L1)

)
x1 − v

W2(L2)

X ′4(L1)
x2 + v2W3(L2)x3

− vW4(L2)x4 +
v2W4(L2)

L2

x9 + vW4(L2)x10

− v2W2(L2)

X ′4(L1)
(X ′1(L1)y0 +X ′2(L1)θ0) + u.

x5 : x5 = y3 ⇒ ẋ5 = dy3
dt

= x6.

x6 : x6 = dy3
dt
⇒ ẋ6 = d2y3

dt2
= v2 ∂

2y3
∂x2

ẋ6 = v2
(
y2W1(L3) + θ2W2(L3) + y3W3(L3) +

∂y3
∂x

W4(L3)

)
, (26)

where web curvature equation (15) with i = 3 is used to get equation (26). We then
use equation (14) with i = 2 and back-solve for θ2:

θ2 =
1

X ′4(L2)

(
∂y2
∂x
− y1X ′1(L2)− θ1X ′2(L2)− y2X ′3(L2)

)
θ2 =

1

X ′4(L2)

[
∂y2
∂x

+

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
y1 −X ′3(L2)y2

]
− X ′2(L2)

X ′4(L2)X ′4(L1)

(
∂y1
∂x
−X ′1(L1)y0 −X ′2(L1)θ0

)
,
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and solve the velocity equation (20) for ∂y3
∂x

:

∂y3
∂x

= −1

v

dy3
dt
,

so that ẋ6 can be simplified to state-space variables:

ẋ6 =

(
v2W1(L3)− v2

W2(L3)X
′
3(L2)

X ′4(L2)

)
y2 + v2W3(L3)y3 − vW4(L3)

dy3
dt

+ v2
W2(L3)

X ′4(L2)

[
−1

v

(
dy2
dt
− dz2

dt

)
+
z2
L2

+

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
y1

]
+ v2

W2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)

(
1

v

dy1
dt

+X ′1(L1)y0 +X ′2(L1)θ0

)
= v2

W2(L3)

X ′4(L2)

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
x1 + v

W2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)
x2

+

(
v2W1(L3)− v2

W2(L3)X
′
3(L2)

X ′4(L2)

)
x3 − v

W2(L3)

X ′4(L2)
x4 + v2W3(L3)x5 − vW4(L3)x6

+ v2
W2(L3)

X ′4(L2)

1

L2

x9 + v
W2(L3)

X ′4(L2)
x10.

x7 : x7 = y4 ⇒ ẋ7 = dy4
dt

= x8.

x8 : x8 = dy4
dt
⇒ ẋ8 = d2y4

dt2
= v2 ∂

2y4
∂x2

ẋ8 = v2
(
y3W1(L4) + θ3W2(L4) + y4W3(L4) +

∂y4
∂x

W4(L4)

)
, (27)

where web curvature equation (15) with i = 4 is used to get equation (27). We then
use equation (14) with i = 3 and back-solve for θ3:

θ3 =
1

X ′4(L3)

(
∂y3
∂x
− y2X ′1(L3)− θ2X ′2(L3)− y3X ′3(L3)

)
=

1

X ′4(L3)

(
∂y3
∂x
− y2X ′1(L3)− y3X ′3(L3)

)
− 1

X ′4(L3)

X ′2(L3)

X ′4(L2)

[
∂y2
∂x

+

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
y1 −X ′3(L2)y2

]
− 1

X ′4(L3)

X ′2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)

(
∂y1
∂x
−X ′1(L1)y0 −X ′2(L1)θ0

)
,
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and solve the velocity equation (22) for ∂y4
∂x

:

∂y4
∂x

= −1

v

dy4
dt
,

so that ẋ8 can be simplified to state-space variables:

ẋ8 = v2W1(L4)y3 + v2W3(L4)y4 − vW4(L4)
dy4
dt

+ v2
W2(L4)

X ′4(L3)

[
−1

v

dy3
dt

+

(
X ′2(L3)

X ′4(L2)
−X ′1(L3)

)
y2 −X ′3(L3)y3

]
− v2W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

[
−1

v

(
dy2
dt
− dz2

dt

)
+
z2
L2

+

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
y1

]
+ v2

W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)

(
−1

v

dy1
dt
−X ′1(L1)y0 −X ′2(L1)θ0

)
= −v2W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
x1 − v

W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)
x2

+ v2
W2(L4)

X ′4(L3)

(
X ′2(L3)

X ′4(L2)
−X ′1(L3)

)
x3 + v

W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)
x4

+

(
v2W1(L4)− v2

W2(L4)X
′
3(L3)

X ′4(L3)

)
x5 − v

W2(L4)

X ′4(L3)
x6 + v2W3(L4)x7 − vW4(L4)x8

− v2W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

1

L2

x9 − v
W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)
x10.

x9 : x9 = z2 ⇒ ẋ9 = dz2
dt

= x10.

x10 : x10 = dz2
dt
⇒ ˙x10 = d2z2

dt2
= u.

Hence, the state-space form is given by

ẋ(t) = Ax(t) +Bu(t) + Fw(t)

y(t) = Cx(t),
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where A ∈ R10×10, B ∈ R10×1, F ∈ R10×2, C ∈ R1×10 are

A =



0 1 0 0 0 0 0 0 0 0
a21 a22 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
a41 a42 a43 a44 0 0 0 0 a49 a4,10
0 0 0 0 0 1 0 0 0 0
a61 a62 a63 a64 a65 a66 0 0 a69 a6,10
0 0 0 0 0 0 0 1 0 0
a81 a82 a83 a84 a85 a86 a87 a88 a89 a8,10
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0


B =

[
0 0 1 0 0 0 0 0 0 1

]T
C =

[
0 0 1 0 0 0 0 0 0 0

]
F =

[
0 f21 0 f41 0 f61 0 f81 0 0
0 f22 0 f42 0 f62 0 f82 0 0

]T
,

with

a21 = v2W3(L1)

a22 = −vW4(L1)

a41 = v2W1(L2)− v2W2(L2)
X ′3(L1)

X ′4(L1)

a42 = −vW2(L2)

X ′4(L1)

a43 = v2W3(L2)

a44 = −vW4(L2)

a49 =
v2

L2

W4(L2)

a4,10 = vW4(L2)
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a61 = v2
W2(L3)

X ′4(L2)

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
a62 = v

W2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)

a63 = v2W1(L3)− v2
W2(L3)X

′
3(L2)

X ′4(L2)

a64 = −vW2(L3)

X ′4(L2)

a65 = v2W3(L3)

a66 = −vW4(L3)

a69 =
v2

L2

W2(L3)

X ′4(L2)

a6,10 = v
W2(L3)

X ′4(L2)

a81 = −v2W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

(
X ′2(L2)X

′
3(L1)

X ′4(L1)
−X ′1(L2)

)
a82 = −vW2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

X ′2(L2)

X ′4(L1)

a83 = v2
W2(L4)

X ′4(L3)

(
X ′2(L3)

X ′4(L2)
−X ′1(L3)

)
a84 = v

W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

a85 = v2W1(L4)− v2
W2(L4)X

′
3(L3)

X ′4(L3)

a86 = −vW2(L4)

X ′4(L3)

a87 = v2W3(L4)

a88 = −vW4(L4)

a89 = − v
2

L2

W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

a8,10 = −vW2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)
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f21 = v2W1(L1)

f22 = v2W2(L1)

f41 = −v2W2(L2)X
′
1(L1)

X ′4(L1)

f42 = −v2W2(L2)X
′
2(L1)

X ′4(L1)

f61 = v2
W2(L3)

X ′4(L2)

X ′2(L2)X
′
1(L1)

X ′4(L1)

f62 = v2
W2(L3)

X ′4(L2)

X ′2(L2)X
′
2(L1)

X ′4(L1)

f81 = −v2W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

X ′2(L2)X
′
1(L1)

X ′4(L1)

f82 = −v2W2(L4)

X ′4(L3)

X ′2(L3)

X ′4(L2)

X ′2(L2)X
′
2(L1)

X ′4(L1)
.
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A.3 Nomenclature and Simulation Values

Table 1: Nomenclature

Variable Description

T tension in the web

EI Young’s modulus times moment of inertia (bending stiffness)

GA shear modulus times cross sectional area (shear stiffness)

v velocity of the web

n constant in beam model

m mass of the web
∂y
∂x

web slope
∂2y
∂x2

web curvature

γ pivot angle of the displacement guide

z lateral displacement of the guide
dz
dt

lateral velocity of the guide
d2z
dt2

lateral acceleration of the guide

J rotary inertia

L1 distance between rollers R0 and R1

L2 distance between rollers R1 and R2

L3 distance between rollers R2 and R3

L4 distance between rollers R3 and R4
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Table 2: Simulation Values

Variable Imperial units SI units

T 20 lbf 89 N

EI 1.76× 108 lbf ·in2 5.05× 105 N·m2

GA 3.42× 105 lbf 1.52× 106 N

v 40 in/s 1.02 m/s

n 1 1

L1 29 in 0.74 m

L2 22 in 0.56 m

L3 40 in 1.02 m

L4 61 in 1.55 m
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Figure 1: System in block form.

A.4 Stability of Repetitive Controller

Consider the system

E(s) = e−τds (1 +G(s))−1 (1− b1(s)G(s))E(s) + (1 +G(s))−1De(s), (28)

where
De(s) =

(
1− e−τds

) (
−D(s)− Ȳ (s)

)
−G(s)W̄ (s).

System (28) can be represented by Figure 1. We use the small gain theorem to show BIBO
stability; that is, if we can show that (1 + G)−1De is an L2 function, and the loop gain is
less than one, then we can conclude that the system is BIBO stable [9]. Here we define an
L2 function to be one that satisfies

∫∞
0
e(t)e(t)dt <∞.

Proposition 1 (Proposition 1 of [9]). Given the system shown in Figure 1, where G(s)
is a strictly proper transfer function, b1(s) is a stable proper transfer function, and d(t) is
bounded continuous periodic with period τd. If

1) (1 +G(s))−1G(s) is asymptotically stable,

2) ‖(1 +G(s))−1(1− b1(s)G(s))‖∞ < 1,

then e(t) ∈ L2.

Proof. First, we show that (1+G)−1De is an L2 under the assumption of condition 1. The
function

L−1
[
(1− e−τds)D(s)

]
= L−1

[∫ L

0

e−std(t)dt

]
=

{
d(t), 0 ≤ t ≤ L

0, t > L,
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is L2. Observe that (1+G)−1 is stable in view of (1+G)−1G being stable since (1+G)−1 =
1− (1 +G)−1G. Thus, the functions

L−1
[
(1 +G)−1(1− e−τds)Ȳ

]
L−1

[
(1 +G)−1GW̄

]
are also L2, meaning that the input (1 + G)−1De is an L2 function. Also, we see that
(1 +G)−1(1− b1G) is stable as well. Since the induced L2 norm is [22]

‖(1 +G)−1(1− b1G)‖2 = sup
ω
|(1 +G)−1(1− b1G)|

= ‖1 +G)−1(1− b1G)‖∞,

and |e−jωτd | = 1, the result follows from the small gain theorem [22].

A.5 Stability Theorem

Theorem 4 (Theorem on p. 176 in [23]). Assume the poles of the closed-loop system are
given in the form:

X(s) +
m∑
i=1

Zi(s)e
−τis,

where

X(s) = sn +
n−1∑
k=0

aks
k, Zi(s) =

n∑
k=0

bkis
n

with
∑m

i=1 |bni| < 1. If

1. all roots of X(s) have negative real parts,

2. for any ω ≥ 0, the following inequality is satisfied:

m∑
i=1

|Zi(jω)| < |X(jω)| ,

then the system is asymptotically stable.
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