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Abstract

A mathematical model for a Two-Span Web Roller machine is defined in order to facil-
itate motion planning, motion tracking and state observer design for tracking web tension
and web velocity. Differential Flatness is utilized to create reference trajectories that are
tracked with a high convergence rate. Flatness also allows for nominal input torque gen-
eration without integration. Constraints on the inputs are satisfied through the motion
planning phase. A partial state feedback linearization is performed and an exponential
tracking dynamic feedback controller is defined. An exponential Kalman-related tension
observer is also defined with semi-optimal gain formulation. The observer takes advantage
of the bilinearity of the dynamics up to additive output nonlinearity. The closed-loop sys-
tem is simulated in MatLab with comparisons to reference trajectories previously employed
in literature. The importance of proper motion planning is demonstrated by producing ex-
cellent performance compared with existing tracking and tension observing methods.
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Chapter 1

Introduction

A two-span web roller is a simple mechanical device designed to facilitate operations on,
or alterations to a web, which is a thin, elastic material that is wound onto a roller (See
Figure 1). This technology has wide applications in industry. These include printing on
paper, film and textile, alteration of fabric, and making parts for various electronic devices
from metal sheets. Careful control of the web tension is an important aspect of quality
assurance. Large variations in tension can greatly affect product quality. And careful
control of web velocity is important as the operating velocities are increased in order to
increase productivity. This is particularly important during the start-up phase. The control
objective is to guide the system from rest to a desired operating state, or more generally,
from one state to another quickly and smoothly. This is normally solved by designing a
powerful tracking controller to force the system to its operating state through high levels
of convergence. In this thesis, the approach is to properly define the reference trajectories
through the use of motion planning. The desired motions or trajectories are developed by
considering a model with simplified dynamics that are differentially flat. This flat system is
shown to be an ideal platform to generate criteria to define these trajectories. A procedure
for tracking these trajectories is then developed. Tension observing is also an important
issue. Apparatus for measuring web tension is expensive and not readily adaptable for
changing conditions. A tension observer is designed to estimate the tension with sufficient
accuracy so as to preserve the tracking procedure.
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Nip Roller

Idle Roller

Winder Unwinder

Idle Roller

Figure 1.1: Two span web roller with tension observers.

Web roller technology has been extensively analyzed in literature. Various control
and observer methods have been developed. The aim of this thesis is to design a simple
method to achieve the tracking objective with comparable or improved performance of
existing methods. The model for the web roller developed in this thesis does not deal
with the dynamics of the torque actuation nor the tension and velocity measurement. The
model follows the works in [3], [22] and [21] which are reviewed in [19] and are standard
for tension and velocity control.

Controller designs for the web roller have been investigated. An automatically tuning
PID controller for the two-span web roller using a genetic algorithm was employed in [4].
Other control methods involving gain tuning for the web roller include a Sliding-Mode
control [1], Inverse Linear Quadratic (ILQ) optimal control for a Hot-Strip Mill [11], and
an H∞ robust control strategy [15], [14]. The objective of this thesis is to design a tracking
procedure that, as a result of proper motion planning, does not require significant gain
tuning or optimization as those currently employed.

Tension observers are also a popular topic as the continued use of mechanical tension
tensors has become unnecessarily costly [7]. An approximate error linearization method, a
simple tension estimator assuming a rigid web, and a sliding-mode observer are defined in
[19], [18]. A simple observer with observer gain construction is presented in [1]. Low-pass
filter methods for tension observers is presented in [17]. A nonlinear observer design is
needed that does not make inappropriate assumptions on the system variables. By taking
advantage of the form of the web roller dynamics, a simple observer with tunable gains
will be defined that can accurately track the trajectories defined using motion planning
and thus provide a high convergence rate in the presence of disturbances.

This thesis is organized as follows. Part I contains a review of the relevant theory
for motion planning, tracking and observance. In Part II, these concepts are applied to
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the two-span web roller with simulated results in MatLab. Chapter 2 reviews differential
flatness presented in [16] as it applies to motion planning and tracking. Chapter 3 reviews
some concepts and examples of nonlinear observers presented in [5]. Chapter 4 reviews
common modeling practices for web roller machines. A model is developed for use with the
motion planning and observer models discussed in Part I. In Chapter 5 differential flatness
is applied to this mathematical model to define suitable reference trajectories. A review
of the tracking controller developed in [1] is presented in Chapter 6 with application to
the flatness-based motion planning procedure with simulation results for various reference
trajectories. An observer is developed for the web roller in Chapter 7 and simulations are
conducted for the closed loop system with the controller and observer.
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Part I

Theory
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Chapter 2

Flatness

This chapter contains a review of the concept of differential flatness as presented in [16]. A
flat system is one whose integral curves (curves that satisfy the differential equations) can
be mapped in a one-to-one way to ordinary curves (which need not satisfy any differential
equation) in a suitable space, whose dimension is possibly different than that of the original
system state space. With regard to control theory, this presents an excellent platform
for trajectory planning and tracking for dynamical systems. Exploiting this concept of
equivalent systems will provide insight into the nature of the evolution of the dynamical
system and hence provide a simple and effective approach to the motion tracking problem.

2.1 Differentially Flat Systems

Consider a general nonlinear autonomous control system

ẋ(t) = f(x(t), u(t)) = fu(x(t))

y(t) = h(x(t)) (2.1)

with state variables x(t) ∈ X, an n-dimensional manifold, control inputs u(t) ∈ U ⊆ Rm,
outputs y(t) ∈ Rp, vector field:

f : U ×X → TX, (fu : X → TX)

and output map h : X → Rp. Denote χu(t, x0) as the time-dependent solution to (2.1)
with input u(t) and initial condition x(t=0) = x0. The dynamics are differentially flat
if all state and control variables can be expressed in terms of a flat output and a finite
number of its derivatives. This flat output is determined from the system variables and a
finite number of the input derivatives. This is formalized in the following definition.
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Definition 2.1.1 (Differentially Flat System). A system of the form (2.1) is Differentially
Flat (or simply Flat) if and only if there exists a flat output µ ∈ Rm, multi-integers s
= (s1, . . . , sm) and r = (r1, . . . , rm) with

∑m
i=1(ri + 1) ≥ n, an m-dimensional map ψ :

X × (Rm)s+1 → Rm and an (n+m)-dimensional map (ϕ0, ϕ1) : R(m+2)r → Rn × Rm, such
that

µ = (µ1, . . . , µm) = ψ(x, u, u̇, . . . , u(s)) (2.2)

implies that
x = ϕ0(µ, µ̇, . . . , µ

(r)) (2.3)

and
u = ϕ1(µ, µ̇, . . . , µ

(r+1)) (2.4)

satisfying
dϕ0

dt
= f(ϕ0, ϕ1)

where
u(s) = (u

(s1)
1 , . . . , u(sm)

m ), µ(r) = (µ
(r1)
1 , . . . , µ(rm)

m )

For simplicity let µ̄ = (µ, µ̇, . . . , µ(q)) for some q ∈ R (µ and a finite number of its
derivatives). Having the ability to express all system variables as a function of a flat output
and a finite number of its successive derivatives proves very useful in motion planning and
tracking. Another advantage the flat system provides is that the system dynamics can be
put into a useful form.

Theorem 2.1.2 (Theorem 6.2 from [16]). Every flat system is endogenous dynamic feed-
back linearizable and the closed-loop system is diffeomorphic to the linear controllable sys-
tem in canonical form

µ
(r1+1)
1 = ν1

...

µ
(rm+1)
m = νm.

(2.5)

Remark A more formal definition of differential flatness is that a flat system is Lie-
Bäcklund equivalent to a trivial system: a system without differential constraints. Hence
the map (ϕ0, ϕ1) is referred to as the flat system’s Lie-Bäcklund isomorphism and the linear
system (2.5) of Theorem 2.1.2 as its trivial system. A consequence of this equivalence is
that flat outputs can be defined which have no differentiability constraints, but can be
mapped injectively to the integral curves of the flat system.
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2.2 Flatness and Motion Planning

Planning the motion of a reference trajectory is an important part of trajectory tracking.
The goal is to find a trajectory that meets design requirements and that the system will
not have trouble tracking. The concept of Flatness is a valuable tool in motion planning
for differential systems. Using the Lie-Bäcklund isomorphism, trajectories can be designed
a priori for all state variables and constraints on these trajectories can be easily generated
from constraints on the system variables which simplifies the planning procedure. This
section will introduce the basics of the theory that will be employed to perform motion
planning for the web roller.

Consider the system (2.1), with endpoint constraints

x(ti) = xi, x(tf ) = xf

and
u(ti) = ui, u(tf ) = uf .

The problem of motion planning is to find trajectories that satisfy these constraints and the
dynamic equations (2.1). Normally this requires a method of approximation or integration
along the vector field f(x, u), but for dynamically flat systems it can be done quite simply.
The endpoint constraints can be transformed into constraints on the flat output and its
first r+1 time derivatives by equation (2.2).

µ1(ti), . . . , µ
(r1+1)
1 (ti), . . . , µm(ti), . . . , µ

(rm+1)
m (ti) (2.6)

and
µ1(tf ), . . . , µ

(r1+1)
1 (tf ), . . . , µm(tf ), . . . , µ

(rm+1)
m (tf ) (2.7)

These represent 2r + 3 conditions on the reference trajectories for the flat outputs. Poly-
nomials of degree 2r + 3 are chosen because they can easily be constructed to fulfill the
requirements. Let T = tf − ti, the duration, and σ(t) = (t − ti)/T , the normalized time,
then the trajectories have the form

µj(t) =

2rj+3∑
k=0

aj,kσ
k(t), j = 1, . . . ,m.

The coefficients aj,k are determined by evaluating the derivatives of the polynomials at
the endpoints and equating them with the values given by the endpoint constraints. The
derivatives are

µ
(k)
j (t) =

1

T k

2rj+3∑
l=k

l!

(l − k)!
aj,lσ

l−k(t), j = 1, . . . ,m
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and so at the initial time, ti, σ = 0

µ
(k)
j (ti) =

k!

T k
aj,k, k = 0, . . . , r + 1, j = 1, . . . ,m (2.8)

and at the final time, tf , σ = 1

µ
(k)
j (tf ) =

1

T k

2rj+3∑
l=k

l!

(l − k)!
aj,l, k = 0, . . . , r + 1, j = 1, . . . ,m. (2.9)

By equating these values with their constraints (2.6) and (2.7), the required trajectories
can be generated.

2.2.1 Rest-to-Rest Trajectories

For rest-to-rest trajectories, the initial and final positions are equilibrium points of the
system, i.e. ẋ(ti) = u̇(ti) = ẋ(tf ) = u̇(tf ) = 0. It can be shown that the corresponding
points µ(ti) and µ(tf ) are equilibrium points for the trivial system (2.5) (Levine Theorem
5.2 [16]) and that therefore the first r derivatives of the flat output must vanish

x(ti) = ϕ0(µ(ti), 0, . . . , 0), x(tf ) = ϕ0(µ(tf ), 0, . . . , 0)

and
u(ti) = ϕ1(µ(ti), 0, . . . , 0), u(tf ) = ϕ1(µ(tf ), 0, . . . , 0)

By setting equations (2.8) and (2.9) equal to zero for k > 0 and solving for the polynomial
coefficients aj,k, the resulting trajectories are

µj(t) = µj(ti) + (µj(tf )− µj(ti))(σ(t))rj+2

(
rj+1∑
k=0

αj,k(σ(t))k

)
, j = 1, . . . ,m (2.10)

with αj,0, . . . , αj,r+1 given by

1 1 . . . 1
rj + 2 rj + 3 . . . 2rj + 3

(rj + 1)(rj + 2) (rj + 2)(rj + 3) . . . (2rj + 2)(2rj + 3)
...

...

(rj + 2)!
(rj + 3)!

2
. . .

(2rj + 3)!

(rj + 2)!


 αj,0

...
αj,rj+1

 =


1
0
...
0

 (2.11)

This (r+1)th-order polynomial satisfies the given endpoint constraints and the equilibrium
constraints of the system equations. The order of the polynomials may be increased and
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the additional coefficients found by making the higher order derivatives vanish at the
endpoints. The result would provide a more smooth transition between the rest positions
and would therefore have a greater likelihood of being tracked effectively. To demonstrate
this consider the piecewise defined rest-to-rest trajectory

µ(t) =


µ(ti), t < ti

µ(ti) + (µ(tf )− µ(ti))(σ(t))r+2
(∑r+1

k=0 αj,k(σ(t))k
)
, ti ≤ t ≤ tf

µ(tf ), t > tf

with prescribed endpoint positions µ(ti) and µ(tf ), and αj,k as above. This is (r+ 1)-times
continuous differentiable and therefore the corresponding nominal state and control trajec-
tories (x, u) = (ϕ0(µ, µ̇, . . . , µ

(r)), ϕ1(µ, µ̇, . . . , µ
(r+1))) will not contract any discontinuities

from their inputs.

2.2.2 Path Constraints

Often in practice additional constraints on the state and control variables beyond the
fixed initial and final location may need to be satisfied by their reference trajectories.
For instance, the system variables or their derivatives may need to remain bounded. As
with the previous section, the Lie-Bäcklund isomorphism allows these constraints to be
interpreted as additional constraints on the flat outputs. Consider path constraints of the
form

‖g(x, ẋ, . . . , u, u̇, . . .)‖ ≤ Cg

for a continuously differentiable function g. Using the Lie-Bäcklund isomorphism, this can
be expressed as a path constraint on the flat output and its derivatives∥∥G(µ, µ̇, . . . , µ(q))

∥∥ ≤ Cg

where µ(q) = (µ
(q1)
1 , . . . , µ

(qj)
j ). With the polynomial form developed in Section 2.2 this can

be satisfied by choosing an appropriate duration, T . The maximum value of the derivatives
of the flat output is inversely proportional to the duration. Using the normalized time
derivatives

µ(k)(t) =
1

T k
dkµ

dσk
(σ(t)), ∀k ≥ 1 (2.12)

the path constraint becomes∥∥∥∥G(µ, 1

T

dµ

dσ
, . . . ,

1

T q
dqµ

dσq

)∥∥∥∥ ≤ Cg

11



and the supremum of the derivatives can be expressed as

max
t∈[ti,tf ]

∥∥µ(k)(t)
∥∥ =

1

T k
max
σ∈[0,1]

∥∥∥∥dkµdσk (σ)

∥∥∥∥ , ∀k ≥ 1. (2.13)

The supremum of the normalized derivative on the right-hand-side of (2.13) can be cal-
culated explicitly. An upper bound on the norm of the constraint function can now be
established in the form∥∥∥∥G(µ, 1

T

dµ

dσ
, . . . ,

1

T q
dqµ

dσq

)∥∥∥∥ ≤ q∑
k=0

Ck

(
1

T k

)
≤ Cg, Ck ∈ R+ (2.14)

The coefficients Ck are found using norm inequalities ‖a± b‖ ≤ ‖a‖ + ‖b‖ and ‖a · b‖ ≤
‖a‖ ‖b‖, and, if necessary, the Mean Value Theorem (MVT)∥∥∥∥G(µ, 1

T

dµ

dσ
, . . . ,

1

T q
dqµ

dσq

)∥∥∥∥ ≤ ‖G(µ, 0, . . . , 0)‖+
m∑
j=1

q∑
k=1

∥∥∥∥∥ ∂G

∂µ
(k)
j

∥∥∥∥∥
∞

1

T k

∥∥∥∥dkµjdσk

∥∥∥∥
where the value of ∥∥∥∥∥ ∂G

∂µ
(k)
j

∥∥∥∥∥
∞

= max
σ∈[0,1]

∥∥∥∥∥ ∂G

∂µ
(k)
j

(µ̄(σ))

∥∥∥∥∥
can be found by recursive application of MVT, if necessary, until the constraint G is
bounded above by a q-th order polynomial in 1/T . A minimum value for the duration T ∗

is given by the positive real valued root of
q∑

k=0

Ckz
k − Cg.

with z = 1/T . For high values of the integer q, finding the roots may not be practical and
so an alternative approach is proposed. By appropriate choice of upper bounds on the flat
output derivatives

‖µ̇j(t)‖ ≤ Cj,1, . . . ,
∥∥∥µ(q)

j (t)
∥∥∥ ≤ Cj,q, j = 1, . . . ,m

such that the inequality∥∥G(µ, µ̇, . . . , µ(q))
∥∥ =

∥∥∥∥G(µ, 1

T

dµ

dσ
, . . . ,

1

T q
dqµ

dσq

)∥∥∥∥
≤ ‖G(µ, 0, . . . , 0)‖+

m∑
j=1

q∑
k=1

∥∥∥∥∥ ∂G

∂µ
(k)
j

∥∥∥∥∥ 1

T k

∥∥∥∥dkµjdσk

∥∥∥∥
≤ ‖G(µ, 0, . . . , 0)‖+

m∑
j=1

q∑
k=1

Cj,k

∥∥∥∥∥ ∂G

∂µ
(k)
j

∥∥∥∥∥
≤ Cg

12



is satisfied. This is done by choosing a duration that satisfies

T ≥

{
1

Cj,1
max
σ∈[0,1]

∥∥∥∥dµjdσ

∥∥∥∥ , . . . ,( 1

Cj,q
max
σ∈[0,1]

∥∥∥∥dqµjdσq

∥∥∥∥) 1
q

}
j=1,...,m

This is essentially a guess and check method for finding the minimum duration. Choosing
an upper bound Cj,k is equivalent to choosing a lower bound on the duration by

T k ≥
∥∥∥∥dkµjdσk

∥∥∥∥ 1

Cj,k

Additional path constraints can be addressed independently resulting in multiple lower
bounds on the duration. By choosing a duration greater than all of these, the polynomial
reference trajectories will necessarily satisfy all of the path constraints.

2.3 Flatness and Tracking

The problem of developing a reference trajectory for the state and control variables, x and
u, respectively, for system (2.1) was shown to be equivalent to finding a reference trajectory
for the flat output. In the absence of disturbances, measurement and actuation error, and
system instabilities, the open loop control (2.4) given by the Lie-Bäcklund isomorphism
would produce the desired result. These disturbances do however occur in practise, there-
fore a closed loop control scheme is devised so that deviations from the nominal reference
can be corrected in real time. Consider the error between the reference, µ∗, developed
using motion planning, and the actual flat output µ:

ei = µi − µ∗i , i = 1, . . .m.

The trajectory is tracked if this error converges to zero. This is achieved by stabilizing the
error dynamics

e
(r1+1)
1 = µ

(r1+1)
1 − (µ∗1)

(r1+1) + w1
...

e
(rm+1)
m = µ

(rm+1)
m − (µ∗m)(rm+1) + wm

where w1, . . . , wm are unmeasured disturbance terms. By Theorem 2.1.2 there exists a
dynamic feedback so that the system dynamics can be expressed as (µi)

(ri+1) = νi. Denote
the derivatives of the flat output by (µ∗i )

(ri+1) = ν∗i . The error dynamics become

e
(r1+1)
1 = ν1 − ν∗1 + w1

...

e
(rm+1)
m = νm − ν∗m + wm

(2.15)
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A feedback rule for the input ν is needed such that these error dynamics are stable at the
origin. These is achieved by applying the dynamic feedback

νi = ν∗i −
ri∑
j=0

ki,je
(j)
i , i = 1, . . . ,m

The error dynamics become

e
(ri+1)
i = −

ri∑
j=0

ki,je
(j)
i + wi, i = 1, . . . ,m.

If the disturbance terms dissipate over time so that wi → 0 as t → ∞ i = 1, . . . ,m, and
the gains ki,j are chosen so that the polynomials

Pi(s) = s
(ri+1)
i +

ri∑
j=0

ki,js
(j)
i (2.16)

are Hurwitz (which means the roots of Pi(t), and therefore the poles of the error dynamics,
are in the left-half of the complex plane) then the flat output will converge exponentially
to its reference. And by the differentiability of the Lie-Bäcklund isomorphism, the original
state and control variables must converge to their references exponentially.
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Chapter 3

Nonlinear Observers

A closed loop control scheme like the tracking procedure defined in Section 2.3 requires
knowledge of the state variables during operation. Physical, economic and other constraints
may restrict the availability of state measurement. State observers are used to approximate
the unmeasured states and hence preserve the possibility of feedback. If possible, an ob-
server will force the error between the approximate and actual state variables to zero. The
possibility of a convergent observer design is characterized by the observability properties
of the system. Solutions to this problem are well-defined for linear systems. Nonlinear sys-
tems can be linearized or the nonlinearities can be ignored or assumed to be bounded, but
this usually provides only a locally convergent solution. Convergent observers have been
developed in recent years for different classes of nonlinear systems. This chapter presents
a review of observability and observer design for special classes of nonlinear systems as
presented in [5].

3.1 Observability

The basis of observability is that for systems without full-state knowledge, the outputs of
the system under different initial conditions remain distinguishable for varying inputs:

Definition 3.1.1 (Observability). A system of the form (2.1) is observable on [0, t] for an
input u ∈ U if for every pair x0, x

′
0 ∈ X satisfying x0 6= x′0, ∃s ∈ [0, t] such that

h(χu(s, x0)) 6= h(χu(s, x
′
0))

or equivalently ∫ t

0

‖h(χu(τ, x0))− h(χu(τ, x
′
0))‖ dτ > 0.
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For nonlinear systems, observability is often dependent on the choice of inputs. The
inputs of Definition 3.1.1 with which the system is made observable are called Universal
Inputs. If every input for a system is universal, then the system is Uniformly Observable.
For some observer designs, this notion of observability is not always enough to guarantee
that all trajectories can be observed accurately in the presence of disturbances. A stronger
observability condition is achieved through the restriction to inputs that are Regularly
Persistent :

Definition 3.1.2 (Regularly Persistent Input). An input u is regularly persistent for sys-
tem (2.1) if ∃ti, T s.t. ∀xt−T 6= x′t−T , ∀t > ti∫ t

t−T

∥∥h(χu(τ, xt−T ))− h(χu(τ, x
′
t−T ))

∥∥ dτ > β(
∥∥xt−T − x′t−T∥∥)

for some class K function β (monotonic positive definite function):

β(0) = 0

β(x) > 0 ∀x > 0

β is non-decreasing.

Regular persistency is essential to observer design for bilinear and state-affine systems
[2], [10]. For state-affine systems, ẋ(t) = A(u(t))x(t) +B(u(t)), regularly persistent inputs
satisfy

∃t0, T, α : Γ(t− T, t) ≥ αI > 0, ∀t ≥ t0 (3.1)

where the Observability Grammian, Γ(t1, t2), is given by

Γ(t1, t2) =

∫ t2

t1

ΦT
u (s, t1)C

TCΦu(s, t1)ds

with the Transition Matrix, Φu(s, t), satisfying

∂Φu(s, t)

∂s
= A(u(t))Φu(s, t), Φu(t, t) = I

Once the observability properties of a system have been identified, an observer can be
defined.

3.2 Observer Form

The function of an observer is to generate a variable, x̂, that well-approximates the actual
state using the knowledge of the state dynamics. Through feedback, dynamics for the
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approximate state are chosen so that ∀s ≥ ti if x̂(s) = x(s) then x̂(t) = x(t) ∀t > s in
the absence of disturbances. As well, deviations of the approximation from the actual
state should be corrected by monitoring the output error, h(x̂(t)) − y(t), so that the
approximation converges to the actual state. Under observability restrictions, such as
those discussed in the previous section, these dynamics take the following observer form:

˙̂x(t) = f(u(t), x̂(t))− k(t, ŷ(t)− y(t))

ŷ(t) = h(x̂(t))

with the observer gain function k : Rp+1 → Rn chosen such that observer error, ε(t) = x̂(t)−
x(t), converges to zero, meaning ‖x̂(t)− x(t)‖ → 0 as t → ∞. Convergence is typically
achieved by stabilizing the dynamics of the observer error at its origin, ε = 0. Methods
have been derived for choosing an effective gain for different forms of the system equations.
It is usually sufficient to choose gains of the form k(t, ŷ(t)− y(t)) = K(t)(ŷ(t)− y(t)).

3.2.1 Kalman Filter

The observer gains can be derived from the state dynamics to produce optimal convergence
qualities. One example is the Kalman Observer for LTV systems [12]. The following is a
refined version of this observer presented in [5]. Consider an LTV system of the form

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

For A(t) and C(t) bounded the following Kalman-related observer is proposed [12], [2],
[10], [6], [8]

˙̂x(t) = A(t)x̂(t) +B(t)u(t)−K(t)(Cx̂(t)− y(t)).

The observer gain, K(t), is given by

K(t) = P (t)CTW−1

where the n× n matrix P (t) satisfies the Riccati equation

Ṗ (t) = A(t)P (t) + P (t)AT (t)− P (t)CTW−1CP (t) +Q+ δP (t)

P (0) = P T (0) > 0

with symmetric positive definite gain

W = W T > 0

and
δ > 2 ‖A(t)‖ or Q = QT > 0.

To clarify the notation for the positive definiteness of the constant gains in the Riccati
equation:
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Definition 3.2.1 (Definiteness). A matrix M ∈ Rj×j is Positive Definite (resp. Semi-
definite) iff it satisfies:

1. xTMx > 0 (resp. xTMx ≥ 0) ∀x ∈ Rj

2. xTMx = 0⇒ x = 0 (for definiteness only)

and the property is denoted by M > 0 (resp. M ≥ 0). For Negative Definite and Semi-
definite, the inequalities are reversed.

An alternative form for the observer is given

K(t) = S−1(t)CTW−1

where

Ṡ(t) = −AT (t)S(t)− S(t)A(t) + CTW−1C − S(t)QS(t)− δS(t)

S(0) = ST (0) > 0

For the case of δ = 0, this resembles the classic Kalman filter in which the gain is optimal
in the sense of minimizing the cost∫ t

0

[(C(s)z(s)− y(s))TW−1(C(s)z(s)− y(s)) + νT (s)Q−1ν(s)]ds

+(z0 − x̂0)
TP−1

0 (z0 − x̂0)

subject to

ż(t) = A(t)z(t) + ν(t)

y(t) = C(t)z(t).

There exist numerous adaptations of the Kalman observer for nonlinear systems. This
result can readily be extended to state-affine systems by way of substituting A(u(t)) into
the Riccati equation. Additionally this can be extended to apply to dynamics that are
affine in their unmeasured states up to additive output nonlinearity [9] [6]:

ẋ(t) = A(u(t), y(t))x(t) +B(u(t), y(t))

y(t) = Cx(t). (3.2)

These dynamics admit an observer of the form

˙̂x(t) = A(u(t), y(t))x̂(t) +B(u(t), y(t))−K(t)(Cx̂(t)− y(t)).
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With the gain, K(t), given by

Ṗ (t) = A(u(t), y(t))P (t) + P (t)AT (u(t), y(t))− P (t)CTW−1CP (t) +Q+ δP (t)

P (0) = P T (0) > 0

K(t) = P (t)CTW−1

with W = W T > 0 and δ > 2 ‖A(u(t), y(t))‖ or Q = QT > 0. The error between the
approximate and actual state variables will converge exponentially to zero if the extended
inputs v(t) = (u(t), Cχu(t, x0)) are regularly persistant. The observability property can
be shown by the observability grammian method (3.1) with the extended input. Proofs
for the convergence of the Kalman-related filter can be found in [6], [10] for the case of
δ > ‖A(t)‖, and [8] for V = V T > 0.
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Part II

Two-Span Web Roller
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Chapter 4

Mathematical Modelling

The function of web roller technology is to facilitate action along a thin flexible material
called a web that can be wound around cylindrical shafts called rollers. Web material is
transported from an unwinder roller onto a winder roller after passing through two nip
rollers. This is performed by applying torque independently to the unwinder, winder and
one of the nip rollers. As a result, the tension on either side of the nip and the velocity
of the web through the nip may be controlled independently. For many applications,
these three values must be carefully regulated. This is particularly important when using
web material that is highly flexible and when employing high web velocities to provide
a high production rate. As well, deviations in web tension can result in poor product
quality. The purpose of this project is to design the trajectories for the two-span web
roller and the controller and observer to track them, the mathematical model must be both
accurate and functional. Traditionally linear approximations are used since procedures for
stabilizing, controlling and observing linear systems are well-defined. However, using a
linear model for the web roller or applying linear approximations when developing these
procedures does not capture its dynamic behaviour and results in poor performance. Much
advancement has been made in the field of nonlinear control theory so that less drastic
assumptions can be made while still allowing for useful performance methods. In this
chapter a mathematical model will be developed with suitable properties to accommodate
the motion planning, tracking and observer procedures to be addressed in later chapters.
Early works in developing dynamical models for tension controllers were done in [3], [22]
and [21]. These and other sources for elastic web tension models are reviewed in [19] upon
which the following section is accordingly based.
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4.1 Dynamical System Model

A basic two-span web roller or tension controller consists of a web, winding and unwinding
rollers, a nip, and two idle rollers to facilitate tension measurement. In the model shown in
Figure 4.1, the web material is fed from right to left by motors which drive (independently)
the unwinder and winder rollers which release and gather the web respectively and a motor
which drives one of the nip rollers.

Figure 4.1: Free-body diagram of the web roller.

The length of web between the winder and the nip, which is assumed to have a constant
length L1 and uniform tension T1, is denoted Span 1. Likewise, the constant length L2

between the nip and unwinder is denoted Span 2 and has uniform tension T2. The winder
and unwinder rollers have variable radii rw and ru, respectively, with initial conditions:
rw(0) = Rw and ru(0) = Ru. The angular velocity of the winder, unwinder and nip are
denoted ωw, ωu and ω1, respectively.

Assumption 4.1.1. Friction between the web and the rollers is sufficient so that slip or
separation does not occur.

The velocity of the web approaches the peripheral velocity of a roller at the point of
contact. Therefore the velocity of the web entering Span 2 is Vu = ruωu, exiting Span 2
and entering Span 1 it is V1 = R1ω1, and exiting Span 1 it is Vw = rwωw.

Assumption 4.1.2. The motors on the three rollers are able to track torque application
to the roller shafts.
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The dynamics of the torque actuation are ignored such that the torques can be viewed
as inputs to the system belonging to a suitable bounded set.

u = (τ1, τw, τu) (4.1)

Assumption 4.1.3. The angular velocity and radius of each roller are able to be measured
and load cells are able to measure web tension. This is done in real time without affecting
the dynamics of the web roller.

A measurable position of the system consists of the radii and angular velocity of the
winder and unwinder rollers, the angular velocity of the nip roller and the tension of the
web within the two spans. The case of unmeasured tension is addressed in Chapter 7.

x = (T1, T2, ω1, ωw, ωu, rw, ru) (4.2)

Assumption 4.1.4. Average winder and unwinder radii vary linearly with the angular
position of the roller.

If one revolution of a roller corresponds to an increase/decrease in radius by the thick-
ness, H, of the web, then

rw(t) = Rw +
H

2π
θw(t)

ru(t) = Ru −
H

2π
θu(t) (4.3)

where Rw, Ru ∈ R are the initial radii with θw and θu the angular positions of the winding
and unwinding rollers in radians satisfying θw(t0) = 0 and θu(t0) = 0. Therefore

ṙw =
H

2π
ωw

ṙu = −H
2π
ωu

for angular velocities ωw and ωu in radians-per-second.

Definition 4.1.5 (Newton’s Second Law for Rotation Systems). The rate of change in
angular momentum of a rotating body equals the sum of torques applied to the body.

For each roller, the rate of change in angular momentum equals the angular acceleration
multiplied by the angular moment of inertia for the roller: J(r)ω̇. The moment of the roller
as the radius increases or decreases changes according to

J(r) = J(r0) + π%W (r4 − r4
0)

where % is the web density and W the width. The torques applied to each roller are the
control torque input, torque applied by the web tension, and frictional torque at the axis
of rotation.
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Assumption 4.1.6. Frictional torque on the rollers depends linearly on angular velocity.

The torque applied by friction in the opposite direction of rotation for each roller is
therefore

F1 = B1ω1

Fw = Bwωw

Fu = Buωu

for coefficients of viscous friction Bw, Bu and B1 determined experimentally. Newton’s
Law for the three rollers is therefore

Jw(rw)ω̇w = −rwT1 −Bwωw + τw

J1ω̇1 = R1(T1 − T2)−B1ω1 + τ1

Ju(ru)ω̇u = ruT2 −Buωu + τu

Assumption 4.1.7. Web thickness H and width W (and therefore Cross-sectional area,
A) are constant. Strain occurs only along the direction of web transport.

The linear density of the web under tension T1 (resp. T2) is ρ1 (resp. ρ2) corresponding
to strain ε1 (resp. ε2). If the un-stretched linear density of the web is ρ0, then the density
of the web experiencing a strain of εk is

ρk =
ρ0

1 + εk
, k = 1, 2.

Assumption 4.1.8. Strain of the web material is small enough for a first order approxi-
mation 1/(1 + ε) ≈ (1− ε) (usually less than 0.01 [21]).

This gives
ρk = ρ0(1− εk), k = 1, 2. (4.4)

Assumption 4.1.9. The linear density of the web entering Span 2 at the unwinder is equal
to the un-stretched density of the web.

In practice, there is normally a wound-on tension associated with the unwinder, how-
ever, varying this has been shown to have little effect on observer estimates [19].

Definition 4.1.10 (Conservation of Mass). The change of mass in an open system must
equal the difference between the mass entering the system and the mass exiting the system.
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For the web roller this means the rate of change in the mass of web between adjacent
rollers must equal the mass flow rate entering the span minus the exiting flow rate. Mass
flow rate is given by multiplying the linear velocity of the web by its linear density. The
flow rate exiting from Span 1 (onto the winder) is Vwρ1, the flow rate entering Span 1
(through the nip) is V1ρ2. The mass of web in Span 1, at an instant dt, is L1ρ1.

Vw, ρ1 V1, ρ2
L1 ρ1

web

Figure 4.2: Mass flow through Span 1.

The flow rate entering Span 2 (from the unwinder) is Vuρ0 and the exiting flow rate to
the nip is V1ρ2. The mass of web in Span 2 is L2ρ2.

V1, ρ2 Vu, ρ0
L2 ρ2

web

Figure 4.3: Mass flow through Span 2.

Assuming constant span lengths, Conservation of Mass for each span gives the dynamics

L1ρ̇1 = V1ρ2 − Vwρ1

L2ρ̇2 = Vuρ0 − V1ρ2.

Substituting expression (4.4) for the linear densities and canceling out the un-stretched
density ρ0 gives

−L1ε̇1 = V1(1− ε2)− Vw(1− ε1)
−L2ε̇2 = Vu − V1(1− ε2).

Assumption 4.1.11. The web satisfies Hooke’s Law: tension is proportional to strain so
that Tk = EAεk with E, Young’s modulus of the material, and A, the cross-sectional area.
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Applying Hooke’s law, these dynamics can be expressed in term of tension.

−L1Ṫ1 = V1(EA− T2)− Vw(EA− T1)

−L2Ṫ2 = VuEA− V1(EA− T2).

The seventh order dynamical system representation for the web roller is therefore

Ṫ1 = −rw
L1

ωwT1 +
R1

L1

ω1T2 +
EA

L1

(rwωw −R1ω1) (4.5a)

Ṫ2 = − ru
L2

ωuT2 +
EA

L2

(R1ω1 − ruωu) (4.5b)

ω̇1 =
R1

J1

(T1 − T2)−
B1

J1

ω1 +
τ1
J1

(4.5c)

ω̇w = − rw
Jw(rw)

T1 −
Bw

Jw(rw)
ωw +

τw
Jw(rw)

(4.5d)

ω̇u =
ru

Ju(ru)
T2 −

Bu

Ju(ru)
ωu +

τu
Ju(ru)

(4.5e)

ṙw =
H

2π
ωw (4.5f)

ṙu = −H
2π
ωu (4.5g)

where

Jw(rw) = Jw0 +
π

2
%W (r4

w −R4
w)

Ju(ru) = Ju0 +
π

2
%W (r4

u −R4
u)

with initial conditions rw(0) = Rw and ru(0) = Ru.

4.2 Simplified Flat Model

A simplified version of the dynamics (4.5) are used to facilitate the motion planning and
tracking procedure. Consider a model with fixed roller radii, with (4.3) given by

rw(t) = Rw

ru(t) = Ru, ∀t ≥ 0

and, by extension, fixed inertia Jw = Jw0 and Ju = Ju0. In the start-up scenario, the
objective is to guide the states to a desired operating point quickly and efficiently. Therefore
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the average radii of the winder and unwinder should not change significantly. However,
to maintain accuracy for operation at the steady state, the varying radii model must be
adopted for controller design. The simplified model will, however, be useful for developing
reference trajectories. The system dynamics, now of fifth order, are

Ṫ1 = −Rw

L1

ωwT1 +
R1

L1

ω1T2 +
EA

L1

(Rwωw −R1ω1) (4.6a)

Ṫ2 = −Ru

L2

ωuT2 +
EA

L2

(R1ω1 −Ruωu) (4.6b)

ω̇1 =
R1

J1

(T1 − T2)−
B1

J1

ω1 +
τ1
J1

(4.6c)

ω̇w = −Rw

Jw
T1 −

Bw

Jw
ωw +

τw
Jw

(4.6d)

ω̇u =
Ru

Ju
T2 −

Bu

Ju
ωu +

τu
Ju
. (4.6e)

These dynamics have a particular structure which is valuable for motion planning and
tracking: they are differentially flat. Differentially flat systems were introduced in Chapter
2. Under Definition 2.1.1, flatness is shown by defining a suitable flat output. In general
this is not a simple task, however, for the simplified model, there exists a favorable result.

Proposition 4.2.1. The simplified system (4.6) is differentially flat.

Proof. To prove flatness, it is necessary and sufficient to define any flat outputs µ ∈ R3

which satisfy the conditions of Definition 2.1.1. This is equivalent to defining the maps
ψ(x, u, u̇, . . . , u(s)), ϕ0(µ, µ̇, . . . , µ

(r)) and ϕ1(µ, µ̇, . . . , µ
(r+1)). For simplicity of the motion

planning procedure, the trajectories that are to be tracked are chosen as the flat outputs:

µ1 = T1 (4.7)

µ2 = T2 (4.8)

µ3 = ω1. (4.9)

This is a well defined flat output under (2.2). It remains to represent all other system
variables in function of these flat outputs and a finite number of its successive derivatives.
Solving (4.6a) and (4.6b) for ωw and ωu respectively yields:

ωw =
L1µ̇1 +R1µ3(EA− µ2)

Rw(EA− µ1)
. (4.10)

and

ωu =
EAR1µ3 − L2µ̇2

Ru(EA+ µ2)
(4.11)
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Solving (4.6c) for τ1 and substituting the expressions (4.10) and (4.11) into (4.6d) and
(4.6e), respectively, and solving for τw and τu gives:

τ1 = J1µ̇3 +R1(µ2 − µ1) +B1µ3 (4.12)

τu = Ju
(EAR1µ̇3 − L2µ̈2)

Ru(EA+ µ2)
+Ruµ2

+
EAR1µ3 − L2µ̇2

Ru(EA+ µ2)

(
Bu −

Juµ̇2

EA+ µ2

)
(4.13)

τw = Jw
(L1µ̈1 +R1µ̇3(EA− µ2)−R1µ3µ̇2)

Rw(EA− µ1)
+Rwµ1

+
L1µ̇1 +R1µ3(EA− µ2)

Rw(EA− µ1)

(
Jwµ̇1

EA− µ1

+Bw

)
. (4.14)

The Lie-Bäcklund isomorphism for this flat system, by which the state and control
variables are retrieved from the flat output, are of the form

x = ϕ0(µ1, µ2, µ3, µ̇1, µ̇2)

u = ϕ1(µ1, µ2, µ3, µ̇1, µ̇2, µ̇3, µ̈1, µ̈2).

This is a diffeomorphism provided Ru(EA+T2) 6= 0 and Rw(EA−T1) 6= 0 which is satisfied
if T1 6= EA. The multi-integer r of Definition 2.1.1 is therefore given by

r = {r1, r2, r3} = {1, 1, 0}. (4.15)

This flat model will be used to plan and track the motion of the web roller. Flat outputs
are not unique, however, the chosen outputs are the state variables that need to be tracked
and are therefore an ideal choice.
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Chapter 5

Motion Planning

Typically, to improve the convergence of state variables toward a fixed path, controller
design and feedback gains are modified. However, proper motion planning can be used to
define trajectories that will be tracked more reliably and with less energy investment. For
the web roller the control objective is to steer the system from rest to the operating position
T1 = T ∗1 , T2 = T ∗2 and ω1 = ω∗1. In Section 2.2 the concept of developing a well-defined
nominal flat output for a flat system was introduced. Trajectories were formally defined
for a rest-to-rest path, to switch the system smoothly from one state to another. Criteria
were developed to satisfy constraints on the state and input variables. In Section 4.2 the
fixed-radii model was shown to be differentially flat and the states to be tracked, T1, T2

and ω1, are flat outputs. By investigating the flat system, suitable polynomial reference
trajectories can be defined and the Lie-Bäcklund isomorphism will provide nominal inputs:
a point of reference for the torques that will be required to track them.

5.1 Flatness-Based Trajectory Generation

The states T1, T2 and ω1 are given fixed initial and final positions. Each are assumed to
be at rest (constant) at zero prior to time t0 and to remain at rest at the operating posi-
tion. By considering a simplified flat system model, this constitutes a full-state rest-to-rest
trajectory planning problem: guiding the roller between equilibrium positions. With the
varying radii model (2.1), the winder and unwinder radii (and therefore angular velocities)
must continue to increase and decrease, respectively, to maintain the operating position. In
the start-up scenario, in order to reach a desired state from rest, a simple set of trajectories
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to track are the step inputs

T1(t) =

{
0, ti ≤ t < tf

T ∗1 , t ≥ tf
(5.1a)

T2(t) =

{
0, ti ≤ t < tf

T ∗2 , t ≥ tf
(5.1b)

ω1(t) =

{
0, ti ≤ t < tf

ω∗1, t ≥ tf
(5.1c)

This is a common choice of reference for rest-to-rest motions, however, without tuning
feedback gains, tracking these trajectories usually results in large over-shoot, rising time
and settling time. The step input does not constitute a natural motion of the flat system
as defined in Chapter 2. In attempt to solve this, a continuous piecewise-linear objective
function is considered

T1(t) =


0, ti ≤ t < t0

T ∗1
t− t0
tf − t0

, t0 ≤ t < tf

T ∗1 , t ≥ tf

(5.2a)

T2(t) =


0, ti ≤ t < t0

T ∗2
t− t0
tf − t0

, t0 ≤ t < tf

T ∗2 , t ≥ tf

(5.2b)

ω1(t) =


0, ti ≤ t < t0

ω∗1
t− t0
tf − t0

, t0 ≤ t < tf

ω∗1, t ≥ tf

(5.2c)

and there is a notable improvement in the controller’s tracking response [4]. This suggests
a correlation between the differentiability of the reference trajectories and the accuracy of
the system response to tracking them. More specifically, the references should match some
differentiability property of the system dynamics. For differentially flat system, this notion
is revealed by the trivial system. By Theorem 2.1.2 there exists an endogenous dynamic
feedback to transform the flat dynamics (4.6) into the form

µ̈1 = ν1

µ̈2 = ν2

µ̇3 = ν3.
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The initial and final positions are equilibrium positions of the trivial system as well. This
places endpoint constraints on the derivatives of the flat output

µ(0) = µ̇(0) = 0, µ̈1(0) = µ̈2(0) = 0

and at the terminal point

µ(tf ) = (T ∗1 , T
∗
2 , ω

∗
1), µ̇(tf ) = 0, µ̈1(tf ) = µ̈2(tf ) = 0.

The polynomial trajectories developed in Section 2.2.1 for the rest-to-rest case can be
employed. Equation (2.10) for j = 1, 2 and 3 gives

µj(t) = µj(0) + (µj(tf )− µj(0))(σ(t))rj+2

(
rj+1∑
k=0

αj,k(σ(t))k

)
(5.3)

For the nip angular velocity, represented by the flat output µ3, the multi-integer gives
r3 = 0. In this case equation (2.11) reads(

1 1
2 3

)
α =

(
1
0

)
which gives

α =

(
3 −1
−2 1

)(
1
0

)
.

The flatness-based reference for µ3 by (5.3) is therefore

µ∗3(t) = ω∗1

(
t

tf

)2(
3− 2

(
t

tf

))
.

This cubic polynomial is illustrated in Figure 5.1
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Figure 5.1: Flatness based reference (5.4c) for the nip angular velocity.

For the web tensions, represented by the outputs µ1 and µ2, with r1 = r2 = 1, yields1 1 1
3 4 5
6 12 20

α =

(
1
0

)

giving

α =

 10 −4 1/2
−15 7 −1

6 −3 1/2

(1
0

)
and the remaining reference trajectories are therefore

µ∗1(t) = T ∗1

(
t

tf

)3
(

10− 15

(
t

tf

)
+ 6

(
t

tf

)2
)

µ∗2(t) = T ∗2

(
t

tf

)3
(

10− 15

(
t

tf

)
+ 6

(
t

tf

)2
)

This fifth order polynomials are illustrated in Figure 5.2.
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Figure 5.2: Flatness based references (5.4a) and (5.4b) for the web tensions.

The nominal velocity of the nip roller is continuously differentiable and the nominal
tensions are twice continuously differentiable. These trajectories guide the state variables
from an equilibrium position (of the flat dynamics) at t = t0 = 0, to an equilibrium position
at t = tf . The duration time T = tf is tunable and the following section demonstrates the
relationship between this parameter and the control variables.

µ∗1(t) =

T
∗
1

(
t

tf

)3
(

10− 15

(
t

tf

)
+ 6

(
t

tf

)2
)
, 0 ≤ t ≤ tf

T ∗1 , t > tf

(5.4a)

µ∗2(t) =

T
∗
2

(
t

tf

)3
(

10− 15

(
t

tf

)
+ 6

(
t

tf

)2
)
, 0 ≤ t ≤ tf

T ∗2 , t > tf

. (5.4b)

µ∗3(t) =

ω
∗
1

(
t

tf

)2(
3− 2

(
t

tf

))
, 0 ≤ t ≤ tf

ω∗1, t > tf .

. (5.4c)
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5.2 Constraints

One of the advantages that the flatness-based references provide is they can be tracked
more easily, meaning that, in most cases, even for low values of the feedback gains there
will be less tracking error than that resulting from a non flatness based reference for which
careful tuning may be required to guarantee adequate convergence. Even in cases where the
gains can be increased to provide a comparable convergence with that of the flatness based
reference, this may have unpredictable and possibly adverse effects on the state and control
variables. For instance, forcing a higher convergence rate through feedback may result in
an unacceptable increase on the control input. For a flat system this is well-accomodated
by the Lie-Bäcklund isomorphism whereby constraints on the state or control variables or
their derivatives can be transformed directly into constraints on the reference trajectories
during the motion planning stage. Physical (mechanical and electrical) limitations of the
roller would impose a maximum on the derivative of the torque. This can be satisfied
by imposing a minimum for the rising time T . The nominal torque inputs given by the
Lie-Bäcklund isomorphism are shown in Figure
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Figure 5.3: Nominal torque inputs (4.12), (4.13) and (4.14).

The flat outputs are adjusted so that the nominal input satisfies the upper bound
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constraint
‖u̇∗‖ ≤ ‖u̇max‖ = (‖τ̇1,max‖ , ‖τ̇2,max‖ , ‖τ̇3,max‖). (5.5)

Given the Lie-Bäcklund isomorphism, the rate of change of the input torque can be ex-
pressed in terms of the flat output

τ̇1 = J1µ̈3 +R1(µ̇2 − µ̇1) +B1µ̇3

τ̇u = Ju
EAR1µ̈3 − L2µ

(3)
2

Ru(EA+ µ2)
+
EAR1µ̇3 − L2µ̈2

Ru(EA+ µ2)

(
Bu −

2Juµ̇2

EA+ µ2

)
+
EAR1µ3 − L2µ̇2

Ru(EA+ µ2)2

(
2Ju(µ̇2)

2

EA+ µ2

− Juµ̈2 −Buµ̇2

)
+Ruµ̇2

τ̇w = Jw
L1µ

(3)
1 +R1(µ̈3(EA− µ2)− 2µ̇3µ̇2 − µ3µ̈2)

Rw(EA− µ1)
+Rwµ̇1

+
L1µ̈1 +R1(µ̇3(EA− µ2)− µ3µ̇2)

Rw(EA− µ1)

(
Bw +

2Jwµ̇1

EA− µ1

)
+
L1µ̇1 +R1µ3(EA− µ2)

Rw(EA− µ1)2

(
2Jw(µ̇1)

2

EA− µ1

− Jwµ̈1 −Bwµ̇1

)
.

Using the normalized flat output derivative relationship (2.12), this can be expressed in
terms of the normalized flat output

τ̇1 =
J1

T 2

d2µ3

dσ2
+
R1

T

(
dµ2

dσ
− dµ1

dσ

)
+
B1

T

dµ3

dσ

τ̇u =
JuΛu

Ru

(
EAR1

T 2

d2µ3

dσ2
− L2

T 3

d3µ2

dσ3

)
+
Ru

T

dµ2

dσ

+
Λu

Ru

(
EAR1

T

dµ3

dσ
− L2

T 2

d2µ2

dσ2

)(
Bu −

2JuΛu

T

dµ2

dσ

)
+

Λ2
u

Ru

(
EAR1µ3 −

L2

T

dµ2

dσ

)(
2JuΛu

T 2

(
dµ2

dσ

)2

− Ju
T 2

d2µ2

dσ2
− Bu

T

dµ2

dσ

)

τ̇w =
JwΛw,1

Rw

(
L1

T 3

d3µ1

dσ3
+R1

(
Λw,2

T 2

d2µ3

dσ2
− 2

T 2

dµ3

dσ

dµ2

dσ
− µ3

T 2

d2µ2

dσ2

))
+
Rw

T

dµ1

dσ

+
Λw,1

Rw

(
L1

T 2

d2µ1

dσ2
+R1

(
Λw,2

T

dµ3

dσ
− µ3

T

dµ2

dσ

))(
Bw +

2JwΛw,1

T

dµ1

dσ

)
+

Λ2
w,1

Rw

(
L1

T

dµ1

dσ
+R1Λw,2µ3

)(
2JwΛw,1

T 2

(
dµ1

dσ

)2

− Jw
T 2

d2µ1

dσ2
− Bw

T

dµ1

dσ

)
where Λu = 1/(EA+µ2(σ)), Λw,1 = 1/(EA−µ1(σ)) and Λw,2 = EA−µ2(σ). By applying
norm inequalities, a measurable upper bound can be established for the nominal torque
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derivatives. The results are polynomial functions in 1/T

‖τ̇1‖ ≤ a1
1

T 2
+ b1

1

T

‖τ̇u‖ ≤ au
1

T 3
+ bu

1

T 2
+ cu

1

T

‖τ̇w‖ ≤ aw
1

T 3
+ bw

1

T 2
+ cw

1

T
.

with coefficients

a1 = J1

∥∥∥∥d2µ3

dσ2

∥∥∥∥
b1 = R1

(∥∥∥∥dµ2

dσ

∥∥∥∥+

∥∥∥∥dµ1

dσ

∥∥∥∥)+B1

∥∥∥∥dµ3

dσ

∥∥∥∥
for the nip,

au =
JuL2

Ru

(
‖Λu‖

∥∥∥∥d3µ2

dσ3

∥∥∥∥+ 3 ‖Λu‖2
∥∥∥∥d2µ2

dσ2

∥∥∥∥∥∥∥∥dµ2

dσ

∥∥∥∥+ 2 ‖Λu‖3
∥∥∥∥dµ2

dσ

∥∥∥∥3
)

bu =
JuEAR1

Ru

(
‖Λu‖

∥∥∥∥d2µ3

dσ2

∥∥∥∥+ 2 ‖Λu‖2
∥∥∥∥dµ3

dσ

∥∥∥∥∥∥∥∥dµ2

dσ

∥∥∥∥)
+
JuEAR1

Ru

‖µ3‖

(
‖Λu‖2

∥∥∥∥d2µ2

dσ2

∥∥∥∥+ 2 ‖Λu‖3
∥∥∥∥dµ2

dσ

∥∥∥∥2
)

+
BuL2

Ru

(
‖Λu‖

∥∥∥∥d2µ2

dσ2

∥∥∥∥+ ‖Λu‖2
∥∥∥∥dµ2

dσ

∥∥∥∥2
)

cu = Ru

∥∥∥∥dµ2

dσ

∥∥∥∥+
BuEAR1

Ru

(
‖Λu‖

∥∥∥∥dµ3

dσ

∥∥∥∥+ ‖Λu‖2 ‖µ3‖
∥∥∥∥dµ2

dσ

∥∥∥∥)
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for the unwinder and

aw =
JwL1

Rw

(
‖Λw,1‖

∥∥∥∥d3µ1

dσ3

∥∥∥∥+ 3 ‖Λw,1‖2
∥∥∥∥d2µ1

dσ2

∥∥∥∥∥∥∥∥dµ1

dσ

∥∥∥∥+ 2 ‖Λw,1‖3
∥∥∥∥dµ1

dσ

∥∥∥∥3
)

bw =
JwR1 ‖Λw,1‖

Rw

(
‖Λw,2‖

∥∥∥∥d2µ3

dσ2

∥∥∥∥+ 2

∥∥∥∥dµ3

dσ

∥∥∥∥∥∥∥∥dµ2

dσ

∥∥∥∥+ ‖µ3‖
∥∥∥∥d2µ2

dσ2

∥∥∥∥)
+
JwR1 ‖Λw,2‖

Rw

‖µ3‖

(
‖Λw,1‖2

∥∥∥∥d2µ1

dσ2

∥∥∥∥+ 2 ‖Λw,1‖3
∥∥∥∥dµ1

dσ

∥∥∥∥2
)

+
2JwR1 ‖Λw,1‖2

Rw

∥∥∥∥dµ1

dσ

∥∥∥∥(‖Λw,2‖
∥∥∥∥dµ3

dσ

∥∥∥∥+ ‖µ3‖
∥∥∥∥dµ2

dσ

∥∥∥∥)
+
BwL1

Rw

(
‖Λw,1‖

∥∥∥∥d2µ1

dσ2

∥∥∥∥+ ‖Λw,1‖2
∥∥∥∥dµ1

dσ

∥∥∥∥2
)

cw = Rw

∥∥∥∥dµ1

dσ

∥∥∥∥+
BwR1 ‖Λw,1‖

Rw

(
‖Λw,2‖

∥∥∥∥dµ3

dσ

∥∥∥∥+ ‖µ3‖
∥∥∥∥dµ2

dσ

∥∥∥∥)
+
BwR1 ‖Λw,1‖2 ‖Λw,2‖

Rw

‖µ3‖
∥∥∥∥dµ1

dσ

∥∥∥∥
for the winder. Therefore upper bounds are computed for the first three derivatives of µ∗1
and µ∗2 and the first two derivatives of µ∗3. The nominal flat output polynomial (5.4a) for
µ∗1 has derivatives

dµ∗1
dσ

= T ∗1 (30σ2 − 60σ3 + 30σ4),

d2µ∗1
dσ2

= T ∗1 (60σ − 180σ2 + 120σ3),

d3µ∗1
dσ3

= T ∗1 (60− 360σ + 360σ2), 0 ≤ σ ≤ 1.

The upper bounds are found either at the endpoints or by solving for the critical points to
give

max
σ∈[0,1]

‖µ∗1(σ)‖ = T ∗1 at σ = 1

max
σ∈[0,1]

∥∥∥∥dµ∗1dσ

∥∥∥∥ =
15T ∗1

8
at σ = 1/2

max
σ∈[0,1]

∥∥∥∥d2µ∗1
dσ2

∥∥∥∥ =
10T ∗1√

3
at σ = 1/2 +

√
3/6

max
σ∈[0,1]

∥∥∥∥d3µ∗1
dσ3

∥∥∥∥ = 60T ∗1 at σ = 0
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Likewise, the upper bounds for the output µ∗2 are T ∗2 , 15T ∗2 /8, 10T ∗2 /
√

3 and 60T ∗2 , respec-
tively. Repeating this procedure for third flat output µ∗3 yields

dµ∗3
dσ

= ω∗1(6σ − 6σ2),

d2µ∗3
dσ2

= ω∗1(6− 12σ), 0 ≤ σ ≤ 1

with the supremums

max
σ∈[0,1]

∥∥∥∥dµ∗3dσ

∥∥∥∥ =
3ω∗1
2

at σ = 1/2

max
σ∈[0,1]

∥∥∥∥d2µ∗3
dσ2

∥∥∥∥ = 6ω∗1 at σ = 0.

The positivity property µ2 ≥ 0 gives the upper bound ‖Λu‖ ≤ 1/EA. By Assumption
4.1.11 (Hooke’s Law) and given that the strain in the web is typically small (ε < 0.01) the
web tension can be assumed to satisfy T < EA. This yields the upper bounds ‖Λw,1‖ ≤
1/(EA− T ∗1 ) and ‖Λw,2‖ ≤ EA. The coefficients for the nip torque therefore must satisfy

a1 ≤ 6J1ω
∗
1

b1 ≤
15

8
R1(T

∗
1 + T ∗2 ) +

3

2
B1ω

∗
1,

and so the inequality constraint ‖τ̇ ∗1 ‖ ≤ ‖τ̇1,max‖ becomes

6J1ω
∗
1

1

T 2
+

(
R1

2
(T ∗1 + T ∗2 ) +B1ω

∗
1

)
1

T
− ‖τ̇1,max‖ ≤ 0

This is satisfied if the duration is greater than or equal to the nominal duration T ∗n which
is the positive solution to the quadratic equation

a

(
1

T ∗

)2

+ b

(
1

T ∗

)
+ c = 0

where a, b ≥ 0 and c < 0. This has the solution

1

T ∗
=

√
b2 − 4ac− b

2a
.

The nominal duration is therefore

T ∗n =
12J1ω

∗
1√(

15R1

8
(T ∗1 + T ∗2 ) + 3B1

2
ω∗1
)2

+ 24J1ω∗1 ‖τ̇1,max‖ −
(

15R1

8
(T ∗1 + T ∗2 ) + 3B1

2
ω∗1
) .
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For the winder and unwinder torque derivatives, the upper bounds on the coefficients
become

au ≤
JuL2

Ru

(
60

T ∗2
EA

+
225

4
√

3

(
T ∗2
EA

)2

+
3375

256

(
T ∗2
EA

)3
)

bu ≤
JuEAR1ω

∗
1

Ru

(
6

EA
+

45T ∗2
8(EA)2

+
10T ∗2√
3(EA)2

+
225(T ∗2 )2

32(EA)3

)
+
BuL2

Ru

(
10T ∗2√
3EA

+
225(T ∗2 )2

64(EA)2

)
cu ≤

15RuT
∗
2

8
+
BuEAR1

Ru

(
3ω∗1
2EA

+
15T ∗2ω

∗
1

8(EA)2

)
and

aw ≤
JwL1

Rw

(
60

T ∗1
EA− T ∗1

+
225

4
√

3

(
T ∗1

EA− T ∗1

)2

+
3375

256

(
T ∗1

EA− T ∗1

)3
)

bw ≤
JwR1ω

∗
1

Rw(EA− T ∗1 )

(
6EA+

45T ∗2
8

+
10T ∗2√

3

)
+
JwEAR1ω

∗
1

Rw

(
10T ∗1√

3(EA− T ∗1 )2
+

225(T ∗1 )2

32(EA− T ∗1 )3

)
+

15JwR1ω
∗
1T
∗
1

4Rw(EA− T ∗1 )2

(
3EA

2
+

15T ∗1
8

)
+
BwL1

Rw

(
10T ∗1√

3(EA− T ∗1 )
+

225(T ∗1 )2

64(EA− T ∗1 )2

)
cw ≤

15RwT
∗
1

8
+

BwR1ω
∗
1

Rw(EA− T ∗1 )

(
3EA

2
+

15T ∗2
8

+
15EAT ∗1

8(EA− T ∗1 )

)
As with the nip torque, the winder and unwinder constraints are satisfied if the duration is
greater than or equal to a nominal duration that is the positive solution to a cubic equation
of the form

a

(
1

T ∗

)3

+ b

(
1

T ∗

)2

+ c

(
1

T ∗

)
+ d = 0

with a, b, c ≥ 0 and d < 0. This has the solution

1

T ∗
=

1

3a

(
p
3
√

2
−

3
√

2

p
r − b

)
(5.6)

where p and r are given by the expressions

p =
3

√
q +

√
q2 + 4r3, q = 9abc− 2b3 − 27da3, r = 3ac− b2.
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The coefficients a, b and c for the unwinder (resp. winder) are the upper bounds on au, bu
and cu (resp. aw, bw and cw) and the coefficient d is −‖τ̇u,max‖ (resp. −‖τ̇w,max‖). Solving
(5.6) for both cases provides two more lower bounds for the duration T ∗u and T ∗w. All three
path constraints on the torque derivatives are satisfied if the duration is chosen so that

T ≥ max{T ∗n , T ∗u , T ∗w}.

For any duration greater than this nominal value, the path constraint will be satisfied,
assuming a tracking procedure is employed that can adequately track the reference out-
puts in the presence of disturbances. This procedure essentially places upper bounds on
the derivatives of the outputs. Frequently a tracking control law with poor convergence
qualities will result in a ‘delayed reaction’ of the system output resulting in a longer rise
time than prescribed. In this case the upper bound would not be violated.
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Chapter 6

Controller Design

The control inputs for the Two Span Web Roller are the torques on each of the winders.
The control objective is to design the inputs which will achieve the desired system output:
the nominal reference trajectories developed in Chapter 5. In simulation, this can be
achieved by applying the inputs given by the Lie-Bäcklund isomorphism. This open-loop
scheme is rarely applied in practice because modeling error and disturbances will cause the
actual trajectories to deviate from the references. A feedback or closed-loop control law is
needed that can measure deviations from system outputs and correct them automatically.
For this process it is assumed that all state variables are measurable. The alternative case
will be dealt with in Section 7.

In this chapter, the feedback linearization scheme defined in Section 2.3 is applied to
the simplified flat model. This method is then adapted for the general model by a partial
feedback linearization scheme presented in [1]. Results for the tracking procedure applied
to the step (5.1), piecewise linear (5.2), and flatness-based reference trajectories are then
simulated.

6.1 Tracking with the Simplified Model

The simplified flat dynamics for the web roller were used to develop reference trajectories
for the flat outputs. If the system is assumed to be flat, then by Section 2.3 there exists an
exponential tracking procedure. This is achieved by first linearizing the system dynamics
and then stabilizing the linear dynamics of the error between the flat output and its
reference. By Theorem 2.1.2 there exists an endogenous dynamic feedback to transform
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the flat dynamics (4.6) into the form

µ̈1 = ν1

µ̈2 = ν2

µ̇3 = ν3

The states which need to be tracked are chosen as the flat outputs by (4.7) so the dynamics
in terms of the state variable x are

T̈1 = ν1

T̈2 = ν2 (6.1)

ω̇1 = ν3.

It remains to find the feedback in function of the state variables and the intermediate input
ν (i.e. u(x, ν)). The left-hand-side of these dynamics can be expressed in terms of x and
u by differentiating the original dynamical equations.

T̈1 = −Rw

L1

(ω̇wT1 + ωwṪ1) +
R1

L1

(ω̇1T2 + ω1Ṫ2) +
EA

L1

(Rwω̇w −R1ω̇1)

T̈2 = −Ru

L2

(ω̇uT2 + ωuṪ2) +
EA

L2

(R1ω̇1 −Ruω̇u)

ω̇1 =
R1

J1

(T1 − T2)−
B1

J1

ω1 +
τ1
J1

and substituting the expressions for the derivatives to obtain the form T̈1

T̈2

ω̇1

 = A(x) + B(x)u (6.2)
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with the vector A(x) ∈ R3 given component-wise

A1(x) = − Rw(EA− T1)

L1

(
RwT1 +Bwωw

Jw
+
Rwω

2
w

L1

)
+
R1(T2 − EA)

L1

(
R1(T1 − T2)−B1ω1

J1

− Rwωwω1

L1

)
+
R1ω1

L1L2

(EAR1ω1 − (T2 + EA)Ruωu)

A2(x) =
Ru(T2 + EA)

L2

(
−RuT2 +Buωu

Ju
+
Ruω

2
u

L2

)
+
EAR1

L2

(
R1(T1 − T2)−B1ω1

J1

− Ruωuω1

L2

)
A3(x) =

R1

J1

(T1 − T2)−
B1

J1

ω1

and the matrix B(x)

B(x) =


R1

L1J1

(T2 − EA)
Rw

L1Jw
(EA− T1) 0

EAR1/(L2J1) 0 − Ru

L2Ju
(T2 + EA)

1/J1 0 0

 .
The dynamic feedback which transforms the flat dynamics into the trivial dynamics is
found by equating 6.1 with 6.2 which gives

u = B−1(x)(ν −A(x)).

This feedback is defined only if the matrix B is invertible. The inverse matrix

B−1(x) =



0 0 J1

L1Jw
Rw(EA− T1)

0
R1Jw(EA− T2)

Rw(EA− T1)

0
−L2Ju

Ru(T2 + EA)

EAR1Ju
Ru(T2 + EA)


exists if T1 6= EA. The system remains open-loop because of the free control input ν. The
purpose of this feedback is to linearize the system dynamics with respect to the flat output
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and hence linearize the dynamics for the error, e = µ − µ∗, between this output and its
nominal trajectory developed in Chapter 5. The error dynamics with the substitution of
the trivial system are

ë1 = ν1 − µ̈∗1
ë2 = ν2 − µ̈∗2
ė3 = ν3 − µ̇∗3.

This can be made exponentially stable at the origin with the feedback control

ν1 = µ̈∗1 − k1,1(ẋ1 − µ̇∗1)− k1,0(x1 − µ∗1)
ν2 = µ̈∗2 − k2,1(ẋ2 − µ̇∗2)− k2,0(x2 − µ∗2)
ν3 = µ̇∗3 − k3,0(x3 − µ∗3)

if the real valued gains ki,j are chosen such that the polynomials

P1(s) = s2 + k1,1s+ k1,0

P2(s) = s2 + k2,1s+ k2,0

P3(s) = s+ k3,0 (6.3)

are Hurwitz. This is a simple and effective tracking procedure, however, the varying radii
and moments of inertia cannot be ignored if the controller is to be adaptable to different
materials and operating conditions. Therefore this procedure will be reconstructed in the
framework of the general model.

6.2 Tracking with the General System Model

Over the chosen duration time, T , the radii of the unwinder and winder rollers may not
significantly increase and so the constant radii model and therefore the controller defined in
the previous section may prove useful. However, as one of the goals of this paper is to utilize
a non-restrictive model which will widen the application of the controller and observer
design, the controller will be adapted for the system model with varying radii. Multiple
tracking methods have been designed for the web roller [4], [1], [11], [15], [14]. This section
will outline the partial feedback linearization scheme developed for the general system in [1]
with an emphasis on the consequences of the flatness-based approach to reference trajectory
generation. Without a flat output characterization, full state feedback linearization is no
longer guaranteed. However, this is not necessary as it suffices to linearize the states T1,
T2 and ω1. Once this is achieved, the error stabilization method can be employed just as
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in the flat case. In order to linearize the second derivative of the tensions, a change of
variables z = φ(x) is performed

z =



x1

x2

ẋ1

ẋ2

x3

x6

x7


=



T1

T2

(−rwωwT1 +R1ω1T2 + EA(rwωw −R1ω1))/L1

(−ruωuT2 + EA(R1ω1 − ruωu))/L2

ω1

rw
ru


The inverse transform x = φ−1(z) is linear in all state variables except the winder and
unwinder angular velocities

ωw(z) =
R1z5(EA− z2) + L1z3

z6(EA− z1)

ωu(z) =
EAR1z5 − L2z4

z7(EA+ z2)
.

The condition for diffeomorphism is the same as that for the Lie-Bäcklund isomorphism
and for the existence of the endogenous dynamic feedback for the flat system controller:
T1 6= EA. Therefore, the dynamics (4.5) can be expressed in terms of the transform state

ż1 = z3

ż2 = z4

ż3 = α1(z) + βT1 (z)u

ż4 = α2(z) + βT2 (z)u

ż5 = α3(z) + βT3 (z)u

ż6 =
H

2π
ωw(z)

ż7 =
−H
2π

ωu(z)
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with

α1(z) =
EA− z1

L1

(
H(ωu(z))2

2π
− z6

Jw(z6)
(z6z1 +Bwωw(z))

)
+
R1z5z4

L1

+
R1(z2 − EA)

L1J1

(R1(z1 − z2)−B1z5)−
z6z3ωw(z)

L1

α2(z) =
z2 + EA

L2

(
H(ωu(z))2

2π
− z7

Ju(z7)
(z7z2 −Buωu(z))

)
+
EAR1

L2J1

(R1(z1 − z2)−B1z5)−
z7z4ωu(z)

L2

α3(z) = (R1(z1 − z2)−B1z5)/J1

and with β(z) ∈ R3×3 so that βT (z) = [β1(z), β2(z), β3(z)] with

β(z) =


R1

L1J1

(z2 − EA)
z6

L1Jw(z6)
(EA− z1) 0

EAR1/(L2J1) 0 − z7

L2Ju(z7)
(z2 + EA)

1/J1 0 0


and the moments of inertia

Jw(z6) = Jw0 +
π

2
%W (z4

6 −R4
w)

Ju(z7) = Ju0 +
π

2
%W (z4

7 −R4
u).

The states to be tracked are now z1, z2 and z5 for which the reference trajectories are µ∗1,
µ∗2 and µ∗3. By choosing the feedback control

u = β−1(z)(ν − α(z)) (6.4)

the desired partially linearized dynamics are obtained

ż3 = ν1

ż4 = ν2

ż5 = ν3.

As with the flat case, the inverse matrix

β−1(x) =



0 0 J1

L1Jw(z6)

z6(EA− z1)
0

R1Jw(z6)(EA− z2)

z6(EA− z1)

0
−L2Ju(z7)

z7(z2 + EA)

EAR1Ju(z7)

z7(z2 + EA)
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exists when T1 6= EA. This first order system is equivalent to the trivial flat system:
the linearized dynamics (6.1), ignoring the dynamics of z6 and z7, hence the term partial
linearization. The control inputs ν can therefore be chosen as in the case of the flat system

ν1 = µ̈∗1 − k1,1(ẋ1 − µ̇∗1)− k1,0(x1 − µ∗1)
ν2 = µ̈∗2 − k2,1(ẋ2 − µ̇∗2)− k2,0(x2 − µ∗2)
ν3 = µ̇∗3 − k3,0(x3 − µ∗3)

so that the error dynamics become exponentially stable at the origin for appropriately
chosen gains. This controller resembles a Proportional-Derivative (PD) controller. A more
general form of this type of controller for error stabilization is the Proportional-Integral-
Derivative (PID) controller, in which an integrator for the error is added to the feedback
which can improve the convergence quality of the controller. Refer to [20] for information
on PID control. The error dynamics with the integrator become

ν1 = µ̈∗1 − kD,1(ẋ1 − µ̇∗1)− kP,1(x1 − µ∗1)− kI,1
∫ t

0

(x1(s)− µ∗1(s))ds+ w1(t)

ν2 = µ̈∗2 − kD,2(ẋ2 − µ̇∗2)− kP,1(x2 − µ∗2)− kI,2
∫ t

0

(x2(s)− µ∗2(s))ds+ w2(t)

ν3 = µ̇∗3 − kP,3(x3 − µ∗3)− kI,3
∫ t

0

(x3(s)− µ∗3(s))ds+ w3(t) (6.5)

where the noise terms wj(t) have been added to represent disturbances and uncertainty.
For the tracker to converge, the characteristic polynomials (6.3) must be Hurwitz. With
the integral term, the capability of convergence is improved.

Remark Although it will be referred to as such, the controller design presented is not
strictly a PID controller. The control design closely resembles a PID controller applied to
the error dynamics after partial-state feedback linearization.

Various gain-scheduling or gain tuning methods have been derived for designing opti-
mal values for PID gains. The flatness-based reference trajectories, however, are tracked
reliably by the controller (6.5) without such gain selection methods or software tools. The
procedure was simulated to track the step inputs (5.1), piecewise linear inputs (5.2) and
the polynomial inputs designed with flatness (5.4). The following simulation parameters
were provided by Dr. Choi [4]:
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Table 6.1: Simulation Parameters
Parameter Value Units
Nip Roller Radius, R1 0.02535 m
Initial Winder Radius, Rw 0.0483 m
Initial Unwinder Radius, Ru 0.1455 m
Nip Moment of Inertia, J1 1.95× 10−5 kg-m2

Initial Winder Moment of Inertia, Jw0 6.83× 10−4 kg-m2

Initial Unwinder Moment of Inertia, Ju0 5.91× 10−2 kg-m2

Length of Span 1, L1 1.490 m
Length of Span 2, L2 1.335 m
Coefficient of Viscous Friction on Nip, B1 2.533× 10−5 kg-m2/s
Coefficient of Viscous Friction on Winder, Bw 2.533× 10−5 kg-m2/s
Coefficient of Viscous Friction on Unwinder, Bu 2.533× 10−5 kg-m2/s
Thickness, H 1× 10−4 m
Width, W 0.12 m
Cross-Sectional Area, A 1.2× 10−5 m2

Young’s Modulus, E 2.7× 109 N/m2

Density, % 700 kg/m3

The initial choice for the PID gains is: kP,1 = kP,2 = 30, kP,3 = 1, kD,1 = kD,2 = 3,
kI,1 = kI,2 = 6, kI,3 = 0. These were derived by modifying the gains suggested by
the Ziegler-Nichols method [23]. The simulations were run in MatLab using the ode45
differential equation solver, with a random number generator simulating noise in the error
dynamics. The results of the simulation for the three references are shown in Figures 6.1,
6.2 and 6.3.
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Figure 6.1: System response to tracking step input (5.1) without gain tuning.
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Figure 6.2: System response to tracking piecewise linear input (5.2) without gain tuning.
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Figure 6.3: System response to tracking flatness-based input (5.4) without gain tuning.

As expected, the polynomial trajectories are tracked much better than the other tra-
jectories and the desired final state, T ∗1 , T

∗
2 , ω

∗
1, is reached more quickly. It is uncertain

whether the PID controller can be tuned to track the step or piece-wise linear reference
trajectories to result in a comparable rise time and settling time without saturating or ex-
ceeding the input constraints and/or acquiring a heightened energy requirement. However,
by adjusting the feedback gains, the response to the step input can be made to match the
rise time of the flatness-based trajectories. This is shown in Figure 6.4. The response with
these adjusted gains for the other references is also shown in Figures 6.5 and 6.6. This
simulation was run with the PID gains: kP,1 = kP,2 = 48, kP,3 = 5, kD,1 = kD,2 = 15,
kI,1 = kI,2 = 6, kI,3 = 0.
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Figure 6.4: Step input response with adjusted feedback gains.
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Figure 6.5: Linear input response with adjusted feedback gains.
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Figure 6.6: Flat-based input response with adjusted feedback gains.

The corresponding torque inputs for each of these tracking procedures are shown in
Figures 6.7, 6.8 and 6.9, respectively. The reference torques (dashed lines) are computed
with the Lie-Bäcklund isomorphism with the respective references as inputs to (4.12),
(4.14), and (4.13).
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Figure 6.7: Torque response to step input tracking.
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Figure 6.8: Torque response to linear input tracking.
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Figure 6.9: Torque response to flat-based input tracking.

The input response for the linear (ramp) trajectory contains a near discontinuity at
the end of the duration t = tf . This would require a large energy investment and would
most likely violate the input constraints design in Section 5.2. The input response for
the step input reaches the operating position before that of the flatness-based tracking
procedure although it isn’t clear whether the input constraints are violated. The benefit
of the flatness-based design is that the nominal trajectories represent a calculated limit
that the system can and will track with high enough gains. To accentuate this point a
simulation was run with high PID gains: kP,1 = kP,2 = 3000, kP,3 = 10, kD,1 = kD,2 = 150,
kI,1 = kI,2 = 600, kI,3 = 0.
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Figure 6.10: Step input response with high feedback gains.
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Figure 6.11: Torque response to step input tracking with high gains.
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The torque inputs in this scenario most likely violate the constraints and would require
a large energy investment. The jump discontinuity observed in Figure 6.5 for the torque
response to the linear reference worsens with these high gains and the flat-based response
is closer to the reference, as expected.

The partial feedback linearization scheme with a PID controller have proven to be
effective at tracking the the flatness-based reference trajectories. The motion planning
procedure produced references that were tracked without any significant gain tuning as
the continuous nominal torques were easily obtained by the tracker.
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Chapter 7

Observer Design

The controller design implemented to track the web tension and nip velocity assumes
full state knowledge. Current values of the roller radii, velocity and web tension are
used to construct the necessary torque inputs. While the angular velocity and radius
of a roller may be measured with sufficient accuracy and with minor cost, tension in a
material is often difficult to measure efficiently. Load cells and Dancer rollers are two
types of mechanical apparatuses than can be attached to a web roller. Both can provide
accurate measurements, however the cost of installation and maintenance, which includes
adjustments to accommodate different operating conditions, can be significant [7]. State
observers are economic, easy to install and can easily be adjusted for changes in operating
conditions, provided the assumptions made in developing the system model in Chapter 4
remain valid. A state observer approximates the unmeasured states which are transmitted
to the controller in a manner that maintains stability and accurate tracking capability of
the closed-loop system. To this end, a nonlinear observer is designed to approximate the
web tensions. First, this problem’s feasibility is verified by investigating the observability
properties of the system (4.5). Tension observers have been investigated for the web roller
[19], [18], [1], [17], [11]. Typically, however, only constant observer gains are offered with
weak notions of error stability corresponding to pole placement theory for autonomous
system. A variable gain observer is needed with a strong sense of stability.

7.1 Observer Form

For the roller dynamics (4.5), with the observability restriction, the vector field f is both
control-affine and affine in the unmeasured states, and the functional h is linear. The
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dynamics can be written in the form:

ẋ(t) = A(y(t))x(t) +B(y(t))u(t)

y(t) = Cx(t) (7.1)

with

A(y(t)) =



−rwωw
L1

ω1R1

L1

−EAR1

L1

rwEA

L1

0 0 0

0 −ruωu
L2

EAR1

L2

0 −ruEA
L2

0 0

R1

J1

−R1

J1

−B1

J1

0 0 0 0

− rw
Jw(rw)

0 0 − Bw

Jw(rw)
0 0 0

0 ru/Ju(ru) 0 0 − Bu

Ju(ru)
0 0

0 0 0
h

2π
0 0 0

0 0 0 0 − h

2π
0 0



B(y(t)) =



0 0 0
0 0 0

1/J1 0 0
0 1/Jw(rw) 0
0 0 1/Ju(ru)
0 0 0
0 0 0


, C =


0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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Alternatively, the drift matrix A(y(t)) may be defined as

A(y(t)) =



−rwωw
L1

ω1R1

L1

−EAR1

L1

0 0
ωwEA

L1

0

0 −ruωu
L2

EAR1

L2

0 0 0 −ωuEA
L2

R1

J1

−R1

J1

−B1

J1

0 0 0 0

− rw
Jw(rw)

0 0 − Bw

Jw(rw)
0 0 0

0 ru/Ju(ru) 0 0 − Bu

Ju(ru)
0 0

0 0 0
h

2π
0 0 0

0 0 0 0 − h

2π
0 0


while maintaining the the structure (7.1). Under this construction, an observer of the
following form can be implemented

˙̂x(t) = A(y(t))x̂(t) +B(y(t))u(t)−K(t)(Cx̂(t)− y(t)).

The error dynamics for this observer are

ε̇(t) = (A(y(t))−K(t)C)ε(t)

where ε(t) = x̂(t) − x(t). Appropriate choice of the observer gains K(t) would be those
that result in the stability of the equilibrium ε = 0. This is difficult to determine since
the output y(t) = Cx(t) and the error are not independent and therefore the dynamics are
nonlinear and time-varying. Linearization of error dynamics is often used, however this
typically only gives local convergence. Constant gain will normally only be effective if the
system satisfies certain observability restrictions like universal observability. The focus of
this chapter is to define restrictions on the observer gain such the unmeasured states can
be approximated accurately and so that the controller developed in Chapter 6 can still
effectively track the flatness-based trajectories.

7.2 Kalman-Related Observer

Linearization methods and High Gain observers that ignore nonlinearities or force them
to zero often don’t have good convergence qualities for tracking non-periodic reference
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trajectories. An observer is needed that will accurately approximate the web tension as
they are tracked along the flatness-based trajectories. However, to approach this problem,
an open-loop scheme is considered, meaning that the controller will be ignored and the
input torques are assumed free.

In Section 3.2.1 an exponentially convergent Kalman-related observer for nonlinear
systems that are state-affine up to additive output nonlinearity was presented. The web
dynamics fall into a subset of the class of nonlinear systems (3.2) in that they are also
control-affine. The web roller therefore admit the following observer.

˙̂x(t) = A(y(t))x̂(t) +B(y(t))u(t)−K(t)(Cx̂(t)− y(t)).

The gain, K(t) ∈ Rn×n, is given by

K(t) = P (t)CTW−1

where the matrix P (t) ∈ Rn×n satisfies the Riccati equation

Ṗ (t) = P (t)AT (y(t)) + A(y(t))P (t)− P (t)CTW−1CP (t) +Q+ δP (t)

P (0) = P T (0) > 0

with
W = W T > 0

and
δ > 2 ‖A(y(t))‖ or Q = QT > 0.

Alternatively, the gain may be given by

K(t) = S−1(t)CTW−1

where the matrix S(t) ∈ Rn×n satisfies the Riccati equation

Ṡ(t) = −AT (y(t))S(t)− S(t)A(y(t)) + CTW−1C − S(t)QS(t)− δS(t)

S(0) = ST (0) > 0

As mentioned, the error dynamics are non-autonomous and therefore the stability method
of pole placement, which was employed to stabilize the tracker error dynamics and is
also commonly used for tension observers, will not guarantee good convergence. For non-
autonomous systems stability is harder to prove.

Theorem 7.2.1 (Lyapunov Stability [13]). Consider the general nonautonomous system

ẋ(t) = f(t, x(t))
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with equilibrium x = 0. If there exists a continuously differentiable Lyapunov function
V (t, x), and positive integers c1, c2 and c3 such that

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2

and
V̇ (t, x) ≤ −c3 ‖x‖2

then the equilibrium is globally exponentially stable.

With the Lyapunov tool, convergence of the Kalman-related observer can be shown.

Proposition 7.2.2. The Kalman Observer is an exponential observer for system (2.1) if
the outputs are regularly persistent.

Sketch of Proof See [6], [10] and [8] for the detailed elements of the proof.

Choosing a Lyapunov candidate

V (t, ε(t)) = 〈S(t)ε(t), ε(t)〉

the symmetric positive definite property

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2

is derived from the regular persistency of the outputs. For the transition matrix

∂Φ(s, t)

∂s
= A(y(t))Φ(s, t), Φ(t, t) = I

the solution of the Riccati equation yields

S(t) = e−δtΦT (0, t)S(0)Φ(0, t) +

∫ t

0

e−δ(t−s)ΦT (s, t)CTCΦ(s, t)ds.

Applying regular persistency gives the lower bound on the Lyapunov function and the upper
bound can be established using norm inequalities. Secondly, by taking the time derivative

V̇ (t, ε(t)) = 〈Ṡ(t)ε(t), ε(t)〉+ 〈S(t)ε̇(t), ε(t)〉+ 〈S(t)ε(t), ε̇(t)〉
= 〈(−AT (y(t))S(t)− S(t)A(y(t)) + CTW−1C

− S(t)QS(t)− δS(t))ε(t), ε(t)〉
+ 〈S(t)(A(y(t))− S−1(t)CTW−1C)ε(t), ε(t)〉
+ 〈S(t)ε(t), (A(y(t))− S−1(t)CTW−1C)ε(t)〉

= − 〈S(t)QS(t)ε(t), ε(t)〉 − 〈δS(t)ε(t), ε(t)〉 − 〈CTW−1Cε(t), ε(t)〉
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the property
V̇ (t, x) ≤ −c3 ‖x‖2

is given by the symmetry and positive definiteness of Q, W and S(t). The exponential
convergence of the observer is tunable by the constant δ or the minimum eigenvalues of the
gain matrices.

Using the Lie-Bäcklund isomorphism with the flat-based references, a base-line value
for the gain δ is established.

δ > 2 ‖A(Cϕ0(µ, µ̇), Rw, Ru)‖

The remainder the gains P (0), Q and W are chosen as diagonal matrices with positive en-
tries, with heavier weighting on the T1 and T2 terms. Without changing the PID controller
gains, the closed loop system maintains accurate tracking capabilities for the flat-based
reference as observed in Figure 7.2. The gains used are kP,1 = kP,2 = 48, kP,3 = 5,
kD,1 = kD,2 = 15, kI,1 = kI,2 = 6, kI,3 = 0.
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Figure 7.1: Flat-based input response to observer without altering PID gains.

The convergence of the observer error in Figures 7.2 is much faster than that of the
tracker. This is resolved by increasing the PID gains as shown in Figure 7.2 to the high
gain selection kP,1 = kP,2 = 3000, kP,3 = 10, kD,1 = kD,2 = 150, kI,1 = kI,2 = 600, kI,3 = 0.
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Figure 7.2: Flat-based input response to observer with high PID gains.

Similar to a high gain approach, little tuning is needed beyond providing gains that
are high enough to ensure the necessary convergence rate for any application. For the step
input, as with the full-state observance case, careful tuning of the PID gains is needed to
produce the result in Figure 7.3
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Figure 7.3: Step input response with tuned PID and observer gains.

The Kalman observer connected with the controller exhibits a high convergence rate
toward the actual state variable, although it seams to weaken the convergence of the actual
state toward the reference. This is solved by increasing the controller gains. Therefore with
sufficiently high observer and tracker gains, the closed-loop system should be effective in
regulating the web tension and speed for the two-span web roller with varying applications.
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Chapter 8

Conclusions

A dynamical model for the two-span web roller was derived. Under a fixed radii assumption
for the winder and unwinder, the system dynamics were shown to be flat. Reference
trajectories for the tensions of the two spans of the web and the angular velocity of the nip
were developed using flatness to guide the system to a prescribed operating position. The
rise time of these polynomial trajectories was related explicitly to the maximum derivative
of the nominal torque input by the Lie-Bäcklund isomorphism so that input constraints
could be satisfied. Trajectories were successfully tracked by the non-flat system with
varying radii using a partial feedback linearization scheme and a constant gain PID-related
controller which produced exponential convergence of the web tension and nip velocity to
their reference trajectories. The flatness-based trajectories were tracked more reliably than
the step and linear inputs without gain tuning. Using the bilinear form of the dynamics,
up to additive output nonlinearity, a Kalman-related observer was designed to estimate
the web tension. This produced exponential convergence of the estimated state variables
to their actual values. The time-dependent observer gains, like the controller gains were
given sufficiently high values, without requiring gain scheduling methods, and the resulting
closed-loop controller-observer system performed well with fast convergence toward the
reference trajectory. The steady-state values for the web tension and velocity were reached
reliably within the prescribed rise-time.

Without an appropriate platform for comparison, it is difficult to assess the perfor-
mance of the control design developed in this thesis compared with other previously tested
designed. However, both the tracker and observer designs can easily be implemented, and
if the dynamical model employed is an accurate representation of the web roller system,
then the proposed design should produce a high convergence rate and should not exhibit
the characteristic oscillatory behaviour of conventional controller and observer methods.
Motion planning has been shown to improve over current designs. Simple gain selection for
the feedback constructions facilitates accurate tracking along a path which, because of its
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level of differentiability, results in less over shoot, and settling time, and input constraints
in the system are not saturated.

8.1 Future Work

Exponential stability of the controller was proven and references were given for the proof
of exponential stability of the observer. It would be reasonable to hypothesize that the
stability of the closed-loop system is exponential, but it has yet to be proven.

Polynomial trajectories were chosen for the flatness-based references because they could
easily forced to follow the endpoint and input constraints. Other types of trajectories could
be investigated which may be tracked more effectively, or to possibly reduce the maximum
rise time needed to satisfy the input constraints.

The Lie-Bäcklund isomorphism could be used for optimization of the reference trajec-
tories. Increasing the dimension of the flat outputs would provide extra degrees of freedom.
An optimization procedure could then be carried out with respect to the extra coefficients
in the polynomials by expressing the cost function in terms of the flat output via the
isomorphism.

Applying gain tuning methods, such as those referenced in the literature, for selecting
optimal PID controller gains may further improve the convergence quality and further
reduce the amount of manual tuning.
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