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Abstract

The study of infinitely long cylinders of constant cross-section floating in an infinite fluid

bath in zero-gravity environments has primarily been focused on bodies whose cross-

sections are strictly convex and sufficiently smooth. In this thesis, our efforts are concen-

trated on the consideration of bodies that are only convex and piecewise smooth. These

types of bodies are seldom considered in current literature. We have worked with a series

expansion of the energy function in order to determine when configurations of a given body

will be in equilibrium, stable or otherwise. We have proven that any convex body with a

straight side cannot float in a stable equilibrium with the fluid interface intersecting the

interior of the straight side in a single point. This fact is then used to prove necessary

and sufficient conditions for stable equilibrium of polygons, bodies whose cross-sections are

comprised of only straight sides. We illustrate these conditions with several examples.

In the latter portion of the thesis, we turn our attention to bodies in three dimensions.

While past research has again been focused on strictly convex bodies, we began to consider

bodies that do not meet these requirements by examining bodies of revolution. A condition

for stability with respect to vertical variations of bodies of revolution is derived. We

conclude with several examples of bodies of revolution, some of which interestingly relate

back to an analogous two-dimensional shape.
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Chapter 1

Introduction

From a very young age many people are fascinated by floating bodies; a rubber ducky

played with in the bathtub was a source of endless entertainment. However, it is not until

much later in life that many realize how ubiquitous floating bodies truly are. From ice

cubes floating in a glass of water, to a buoy anchored in the ocean, to a container ship

sailing around the world, floating bodies surround us and from that fact alone it is no

surprise that the study of floating bodies (and in particular their stability) is a topic that

continues to command the attention of researchers around the globe.

The problem itself is simply stated. Take an interface between two fluids and consider

placing a given solid body1 in the interface so that it is partially submerged in each of

the two fluids. Will the body move completely into one of the two fluids, or will it settle

at some equilibrium position in contact with the fluid interface? Despite this seemingly

simple statement, beneath the surface it turns out to be a fundamentally complex problem

which has been researched for quite some time now.

1.1 Previous Work on the Floating Body Problem

As mentioned above, the study of floating bodies is not a new subject. Researchers have

considered problems in both two and three dimensions, with or without gravity, and with

or without external constraints on the body. One of the most well known contributions to

the study of floating bodies is credited to Thomas Young in 1805 (see reference [1]) who

1There are two main types of bodies that have been considered in past research. First, there are

infinitely long cylinders in which every cross-section orthogonal to the cylinder is identical. This reduces

the problem to one in two dimensions where we only need to consider one cross-section of the infinite

cylinder. Second, there is the more physically intuitive type of body which is three-dimensional and finite

in size.

1



γ

σ1
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solid

fluid 1
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Figure 1.1: The Young diagram. (Reprinted with permission from reference [14].)

used his “Young diagram” as a means to explain the observed contact angle condition

cos γ =
σ1 − σ2
σ

where γ is the angle of contact between the fluid interface and the body as measured in the

lower fluid. (See Figure 1.1.) σ1 and σ2 are the respective surface tensions between the solid

body and the upper fluid for σ1 and the lower fluid for σ2, while σ is the surface tension

at the interface between the two fluids. This contact angle condition (and accompanying

justification using a force balance in a direction tangential to the body at both points of

contact with the fluid interface) was accepted “as is” for many years until Finn indicated

that there might be flaws in Young’s justification. In reference [2], Finn presented what

is now referred to as “The Floating Ball Paradox.” In the construction of the paradox,

Finn considered a spherical ball floating in equilibrium. He then showed that under the

assumptions of Young, there is a net vertical force on the ball pulling it either upward or

downward, so the ball could not be in equilibrium. Further, using an integration argument,

Finn showed that although the surface tensions at the solid-liquid interfaces do result in

forces tangent to the body, they will sum to zero no matter what depth the spherical ball

is placed. Finn asserted that,

“Balance of forces applied on the contact line is consistent with equilibrium, but

cannot be used to characterize equilibrium.”2

With this counterexample, Finn put into question the validity of the Young diagram and

the consequent contact angle condition. However in that same reference Finn then gave

an independent argument using a minimization of energy which verified that the contact

angle condition was in fact true, despite any misgivings about the Young diagram itself.

Naturally, some researchers have been hesitant to condemn the Young diagram, pointing

out potential flaws in Finn’s reasoning found in reference [2] or offering explanations in

attempt to make the issue seem less paradoxical. For example, in reference [3] Lunati

2This quote is taken from page 3 of reference [2].
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rebutted the floating ball paradox by claiming that the tension force perpendicular to the

solid (as introduced by Finn) is balanced by a net force that arises from different stresses

acting on the solid body by the two different fluids. A year later in reference [4], Wente

provided support for the idea that the net vertical force pulling on the body is counteracted

by the rigidity of the solid ball. Around the same time, reference [5] was published by Finn

containing a rebuttal to statements made by Lunati in reference [3]. Specifically, Finn

presented another counterexample in which a sphere made of two hemispheres of different

materials completely submerged in a fluid and constrained in some way so that it will move

only horizontally along a circular path. Finn showed that under Lunati’s reasoning, the

sphere would be forced to move in perpetual motion. Clearly this is a touchy subject, and

there are impassioned arguments for both sides.

Nonetheless, before the introduction of the floating ball paradox, both the force balance

and energy minimization approaches to the floating body problem were able to peacefully

coexist. Reference [6] by Raphaël et al. (published in 1992) took the energy approach show-

ing that a two-dimensional, strictly convex body floating in a stable equilibrium at the fluid

interface would satisfy the contact angle condition at both points of contact with the fluid

interface. In fact, the approach used by Raphaël et al. to derive the contact angle condition

is similar in nature to the approach that will be used in this thesis. Also in reference [6],

the authors established that for every strictly convex body (in two dimensions) there will

exist at least four configurations satisfying the contact angle condition (using The Four

Vertex Theorem). Furthermore a result characterizing stable and unstable equilibria was

developed. Although this result about stability is quite clever, it is of little practical use

since it involves determining an area that is bound between the body and the tangents

to the body at the points of contact with the fluid interface. The authors do, however,

make use of the result to prove that for a strictly convex body, a stable equilibrium con-

figuration will always exist provided |σ1−σ2
σ
| < 1. The existence of a stable equilibrium for

a strictly convex two-dimensional body when |σ1−σ2
σ
| < 1 was re-iterated by Finn in refer-

ence [7] where he showed that there would exist a height and corresponding orientation of

the body which would give an absolute minimum in energy over all possible heights and

orientations of the body. (See Theorem 1.1 in that reference.) Finn also showed that in

such a configuration, the contact angle condition was satisfied at both points of contact

between the fluid interface and the two-dimensional body.

Although there is an ample amount of literature involving two-dimensional bodies, past

work on the study of floating bodies has not been limited to the two-dimensional case. As

mentioned earlier, there are two basic types of bodies that are considered: the infinitely

long cylinder of constant cross-section, and the finite three-dimensional body. The problem

of a floating three-dimensional body is perhaps more physically meaningful, but has been

3



found to be a much more difficult problem for a multitude of reasons. Perhaps the most

significant of these reasons is that in the zero-gravity case, the flatness of the fluid interface

is no longer guaranteed as it is in the two-dimensional scenario. Without strict knowledge

of the shape of the fluid interface, the problem instantly becomes much more complex.

As a way to simplify the problem, in reference [8] Finn introduced the concept of neutral

equilibrium by assuming the fluid interface was planar. By making this assumption it is

possible that Finn had ignored some potential equilibrium configurations in which the fluid

interface is not flat; however, the difficulty in working with such fluid interfaces is great

and the idea of neutral equilibrium was used as a starting point for working with three-

dimensional bodies. Finn continued to work with bodies in three dimensions under the

assumption of neutral equilibrium in a joint work with Vogel in reference [9]. In that paper

Finn and Vogel extended Theorem 1.1 from an earlier work by Finn (see reference [7])

showing that it was also true that there existed a height and corresponding orientation of

a three-dimensional body for which an absolute minimum energy occurred over all heights

and orientations. Of course, this result had the restriction of the neutral equilibrium

assumption.

The list of works discussed in this review of past literature is by no means exhaustive. In

this section, we have examined only resources that relate directly to the topics contained in

the thesis. However, there are many more references on the topic of floating bodies and in

particular, on floating bodies in the presence of gravity. The reader can refer to references

[10], [11], [12] and [13] for additional insight on this area of research.

1.2 Overview

From Section 1.1 it is clear that in the recent past there has been some apprehension

concerning the classical “Young diagram” as a means to explain the contact angle condition.

In this thesis, we will side with Finn and consider floating bodies from the point of view

of energy minimization. We will consider an energy function similar to the one used in

reference [6], and we will use it throughout to re-derive some already well known results

and to prove some previously unknown results.

In Chapter 2, we will begin by presenting another derivation of the well known contact

angle condition using an approach involving a parametric description of the body. In

Chapter 3, we take our approach one step further and use the parametric representation

of the body to examine the stability of the equilibria of an infinite cylinder whose cross-

section is a simple smooth shape, the ellipse. We continue to use our parametric approach

to consider new types of bodies that have been ignored in the past. Previous literature has

been focused on strictly convex smooth bodies; the lack of literature on bodies that do not

4



satisfy the smoothness and convexity requirements could be due to a variety of reasons, but

it is most likely caused by the fact that the most basic result in the theory of floating bodies,

the contact angle condition, does not apply when the body is not smooth. Without the

contact angle condition, it would seem that not much can be said about non-smooth convex

bodies. However, in Chapter 4, we will begin to work with bodies of this type. We will use

our parametric approach to prove that a convex body with a straight edge cannot float in

a stable equilibrium with the fluid interface intersecting the interior of a straight edge in

a single point. We then use this result in Chapter 5 to consider the floating configurations

of bodies with a general polygonal cross-section, deriving a necessary condition for stable

equilibrium of a body with a polygonal cross-section, and later deriving a condition which

is necessary and sufficient for stable equilibrium. We will illustrate these findings in detail

using several polygonal shapes as examples. Our discussion of two-dimensional bodies will

conclude with the proof of several results concerning the existence of stable configurations

for a general regular polygon, including a result stating that for every γ in (0, π) there

will always exist a stable global energy minimum. We will take this one step further and

prove the existence of a stable global energy minimum for a body with a general polygonal

cross-section.

In the latter portion of the thesis, we will begin to consider the more physically intuitive

three-dimensional bodies. In particular, in Chapter 6 we consider vertical variations of

bodies of revolution, recreating a result by Finn and Vogel and then extending it to types

of bodies that are not considered in Finn and Vogel’s work. We will illustrate our results

using several examples, and these examples will allow to us to draw parallels between the

physically unrealistic two-dimensional case and the more natural three-dimensional case.

5



Chapter 2

The Contact Angle Condition and

Stability Definitions

Looking through past research on the topic of floating bodies, it is apparent that the force

approach to these types of problems is less prevalent in the field than it was in the past.

There is still some disagreement on whether the approach using a balance of forces is

valid; in this thesis we will avoid the issue altogether and focus on the alternative energy

approach to floating body problems. When using an energy approach, it is important to

interpret σ1, σ2 and σ appropriately. In the force balance approach, each is interpreted as

a tension force per unit length. However, each surface tension also has an interpretation

as an energy distribution per unit area; it is this energy distribution interpretation of each

surface tension that we will use in this thesis. We begin by deriving Young’s renowned

contact angle condition via minimization of the representative energy function.

2.1 The Contact Angle Condition

We begin by considering an infinitely long cylinder in which every cross-section orthogonal

to the cylinder is identical. This basic assumption will reduce the problem to one in

two dimensions where we consider only the shape of the cross-section orthogonal to the

cylinder. The cross-section’s boundary will be described by the parametric equation ~r(t) =

(x(t), y(t)). It is assumed that the parametrization is oriented counter-clockwise and the

derivative ~r′(t) is never ~0. Since we do not consider the effects of gravity, the interface

between the two fluids will be a straight line. (See reference [2].) When the body is

floating in the fluid interface, it is assumed that the interface is a continuation of the same

The content of Chapter 2 is taken from reference [14]. It is reprinted (with minor alterations) with

permission.
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line on both sides of the body. Similar to reference [6], we will keep the solid body fixed

while varying the fluid interface. The straight line will intersect the body at two points

(x1, y1) and (x2, y2), which for now are assumed to be distinct. We will define parameter

values t∗1 and t∗2 to be such that ~r(t∗1) = (x1, y1) and ~r(t∗2) = (x2, y2). The values t∗1
and t∗2 define where the fluid interface touches the body, and hence will be used as our two

defining parameters of a possible floating configuration, rather than the slope and intercept

of the line as used in reference [6]. We also consider a nearby configuration defined by the

parameter values t1 and t2 (see Figure 2.1) and proceed to find a series expansion of the

energy of a given configuration.

σ1

σ2

σ

~r(t1)

~r(t2)

~r(t∗1)~r(t∗2)

Figure 2.1: Here we see a general convex body and two floating configurations; one defined

by the parameter values (t∗1, t
∗
2) and another nearby configuration defined by the values

(t1, t2).

Since we do not consider the effects of gravity, the only energies present are surface

energies. As such, the energy function E will be defined by

E = l1σ1 + l2σ2 − l3σ

where l1 and l2 are the lengths along the body touching the upper and lower fluids respec-

tively, and l3 is the length removed from the fluid interface by the body. E is an energy

per unit length along the infinite cylinder. From Figure 2.1 we will have that

E(t1, t2)− E(t∗1, t
∗
2)

= (σ1 − σ2)
[∫ t2

t∗2

√
x′(t)2 + y′(t)2dt−

∫ t1

t∗1

√
x′(t)2 + y′(t)2dt

]
+σ
[√

(x(t∗2)− x(t∗1))
2 + (y(t∗2)− y(t∗1))

2 (2.1)

−
√

(x(t2)− x(t1))2 + (y(t2)− y(t1))2
]
.

7



Expanding in series and keeping only linear terms gives

E(t1, t2)− E(t∗1, t
∗
2)

= (σ1 − σ2)
[
‖~r′(t∗2)‖(t2 − t∗2)− ‖~r′(t∗1)‖(t1 − t∗1)

]
+σ

[
~r′(t∗1) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

(t1 − t∗1)−
~r′(t∗2) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

(t2 − t∗2)
]

+O
(
‖(t1, t2)− (t∗1, t

∗
2)‖2

)
.

Details of the series expansion, are included in Appendix A. Then, assuming that (t∗1, t
∗
2)

corresponds to an equilibrium1 configuration of the body, it must be that

∂E

∂t1

∣∣∣∣
(t∗1,t

∗
2)

= 0 and
∂E

∂t2

∣∣∣∣
(t∗1,t

∗
2)

= 0

which leads to the two conditions

~r′(t∗1)

‖~r′(t∗1)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

=
σ1 − σ2
σ

(2.2)

~r′(t∗2)

‖~r′(t∗2)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

=
σ1 − σ2
σ

. (2.3)

If ~r is a sufficiently smooth curve, then the angles between ~r′(t∗1), ~r
′(t∗2) and ~r(t∗2) − ~r(t∗1)

are γ and so conditions (2.2) and (2.3) both imply that

cos γ =
σ1 − σ2
σ

(2.4)

as expected. Of course, we must have that |σ1−σ2
σ
| ≤ 1 in order for γ to be defined.

Remark 2.1. For the remainder of this thesis, we will assume that γ is not equal to 0 or

π. For strictly convex bodies, when γ is 0 or π the contact angle condition implies that the

body will be in contact with the fluid interface at only one point, and the reader can verify

that configurations such as these will always be unstable per Definition 2.2 in Section 2.3;

moving the body vertically downward in the γ = 0 case will leave the energy unchanged,

and similarly moving the body vertically upward in the γ = π case will also leave the

energy unchanged. For bodies that are only convex, when γ is 0 or π, the fluid interface

can be in contact with the body in only one point or it can touch along a straight edge.

If it touches at only one point, it is again verifiable that the configuration is unstable. If

the body touches along a straight side, it can be shown that the configuration will again

be unstable. For details, see Appendix B. In consideration of all this, it is clear why these

two values of γ can be ignored without consequence.

1A body is said to be in an equilibrium configuration when it lacks motion. That is, the external

influences on the body are such that the configuration is unchanging in height and orientation.
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Remark 2.2. It is rarely emphasized why one only considers configurations in which

the body touches the fluid interface and not configurations where the body is completely

immersed in one of the two fluids. In this section we have followed suit and simply assumed

that floating configurations occurred with the fluid interface touching the body, but a formal

reasoning for this assumption can be given. For a strictly convex body, Finn’s Lemma 1.1

in reference [7] can be used to justify the exclusion of configurations not touching the fluid

interface. In the case of a polygonal body, a similar result exists allowing us to consider

only configurations touching the fluid interface. For details, see Appendix C.

2.2 Analysis of Second Order Terms

It is well known that the contact angle condition is only a necessary condition for equilib-

rium. That is, configurations that satisfy the contact angle condition may correspond to

local maxima,2 local minima, or saddle points of the energy function. In order to determine

which configurations correspond to stable and unstable equilibria, it will be necessary to

work with the second order terms in the series expansion of the energy function. Recall-

ing equation (2.1), we expand in series again, only this time we keep both the linear and

quadratic terms. Assuming that the body is in an equilibrium configuration, the contact

angle condition will be satisfied and thus the linear terms will sum to zero, leaving only

the terms of second order. Using the expansion in Appendix A, we obtain

E(t1, t2)− E(t∗1, t
∗
2)

=

[
σ

[
(~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])2

2‖~r(t∗2)− ~r(t∗1)‖3
− ‖

~r′(t∗1)‖2 − ~r′′(t∗1) · [~r(t∗2)− ~r(t∗1)]
2‖~r(t∗2)− ~r(t∗1)‖

]

−(σ1 − σ2)
~r′(t∗1) · ~r′′(t∗1)

2‖~r′(t∗1)‖

]
(t1 − t∗1)2

+σ

[
~r′(t∗1) · ~r′(t∗2)
‖~r(t∗2)− ~r(t∗1)‖

−(~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])(~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])
‖~r(t∗2)− ~r(t∗1)‖3

]
(t1 − t∗1)(t2 − t∗2)

+

[
σ

[
(~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])2

2‖~r(t∗2)− ~r(t∗1)‖3
− ‖

~r′(t∗2)‖2 + ~r′′(t∗2) · [~r(t∗2)− ~r(t∗1)]
2‖~r(t∗2)− ~r(t∗1)‖

]

+(σ1 − σ2)
~r′(t∗2) · ~r′′(t∗2)

2‖~r′(t∗2)‖

]
(t2 − t∗2)2 +O

(
‖(t1, t2)− (t∗1, t

∗
2)‖3

)
.

2It is actually shown in reference [6] that for a strictly convex body in the zero gravity case a local

maximum in energy will not occur; the energy function can only have local minima and saddle points.
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From here, we can determine the second partial derivatives of the energy function E(t1, t2)

evaluated at the equilibrium configuration (t∗1, t
∗
2) and they are

∂2E

∂t21

∣∣∣∣
(t∗1,t

∗
2)

= σ

[
(~r′(t∗1) · [~r(t∗2)− ~r(t∗1])2
‖~r(t∗2)− ~r(t∗1)‖3

− ‖
~r′(t∗1)‖2 − ~r′′(t∗1) · [~r(t∗2)− ~r(t∗1)]

‖~r(t∗2)− ~r(t∗1)‖

]

−(σ1 − σ2)
~r′(t∗1) · ~r′′(t∗1)
‖~r′(t∗1)‖

∂2E

∂t22

∣∣∣∣
(t∗1,t

∗
2)

= σ

[
(~r′(t∗2) · [~r(t∗2)− ~r(t∗1])2
‖~r(t∗2)− ~r(t∗1)‖3

− ‖
~r′(t∗2)‖2 + ~r′′(t∗2) · [~r(t∗2)− ~r(t∗1)]

‖~r(t∗2)− ~r(t∗1)‖

]

+(σ1 − σ2)
~r′(t∗2) · ~r′′(t∗2)
‖~r′(t∗2)‖

∂2E

∂t1∂t2

∣∣∣∣
(t∗1,t

∗
2)

=
σ2~r′(t∗1) · ~r′(t∗2)− (σ1 − σ2)2‖~r′(t∗1)‖‖~r′(t∗2)‖

σ‖~r(t∗2)− ~r(t∗1)‖
.

These partial derivatives will be useful when determining the stability of the equilibria

by analysing the approximating quadratic form at configurations that satisfy the contact

angle condition. We will see an example of this in Chapter 3. However, we must first define

what is meant by stable and unstable configurations.

2.3 Stability Definitions

Once we have found equilibrium configurations, it is desirable to classify them as stable or

unstable, and in this thesis we will make use the following definitions.

Definition 2.1. A configuration is said to be a stable configuration if all sufficiently

small perturbations away from the configuration result in a greater energy.

Definition 2.2. A configuration is said to be an unstable configuration if there exists

a sufficiently small perturbation away from the configuration which results in a lesser or

equal energy.

These two terms are most commonly applied to configurations which satisfy the contact

angle condition and as such the configurations are referred to as stable or unstable equilibria.

However, one will note that the above definitions make no mention of assumed equilibrium

and consequently these definitions can be applied to configurations which do not necessarily

satisfy Young’s contact angle condition. This will be useful in our discussion of bodies

with polygonal cross-sections beginning in Chapter 5. In that section, we will develop

10



a necessary condition for equilibrium of bodies with a polygonal cross-section, one that

is different from Young’s contact angle condition. Nonetheless, when a polygonal body

satisfies the replacement necessary condition (Theorem 5.1), as well as one of the above

definitions, the configuration will again be referred to as a stable or unstable equilibrium

as appropriate.

In addition we will make use of a third term.

Definition 2.3. A configuration is said to be a global energy minimum if it has an

energy that is less than or equal to the energy of all other configurations.

Remark 2.3. In this thesis we will always find that our global energy minima are stable,

but one should take care to note that this will not always be the case. For example, a body

with a circular cross-section in a configuration that satisfies the contact angle condition

will be a global energy minimum, but it is unstable since we can rotate the circle about its

center without changing the energy.
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Chapter 3

A Smooth Example

In this chapter we will use an analysis of the second order terms in the series expansion of

the energy function from Section 2.2 to discuss the stability of equilibrium configurations

for a simple smooth shape, the ellipse.

3.1 The Ellipse

We will choose the parametrization

~r(t) = (g cos t, h sin t)

for t in [0, 2π] and g, h > 0. We will then have that

~r′(t) = (−g sin t, h cos t)

and that
~r′′(t) = (−g cos t,−h sin t) = −~r(t).

For the ellipse, we see that

~r(t) · ~r′(t) = (g cos t, h sin t) · (−g sin t, h cos t)

= (h2 − g2) sin t cos t

and that

~r(t) · ~r′′(t) = (g cos t, h sin t) · (−g cos t,−h sin t)

= −(g2 cos2 t+ h2 sin2 t)

Section 3.1 is reprinted with permission from reference [14].
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and finally that

~r′(t) · ~r′′(t) = (−g sin t, h cos t) · (−g cos t,−h sin t)

= (g2 − h2) sin t cos t

= −~r(t) · ~r′(t).

The necessary condition for equilibrium (as found earlier in Section 2.1) requires that the

contact angle be the same on both sides of the body. This means that we can rule out any

configuration which will not satisfy this requirement. Using Lemma D.1 in Appendix D

we will be left with only configurations that have an even symmetry. That is, equilibrium

configurations must be symmetric across a vertical line passing through the center of the

ellipse. Such configurations are depicted in Figure 3.1.

Figure 3.1: We only consider configurations with an even symmetry as depicted here because

the necessary condition for equilibrium tells us that the contact angle must be the same on

both sides of the body. Lemma D.1 then tells us that the fluid interface must be vertical or

horizontal leaving only configurations of this type.

In these configurations we will always have that{
cos t∗1 = − cos t∗2
sin t∗1 = sin t∗2

or that {
cos t∗1 = cos t∗2
sin t∗1 = − sin t∗2.

Without loss of generality, we will assume that t∗1 is such that −π
2
≤ t∗1 ≤ π

2
and that t∗2 is

such that π
2
≤ t∗2 ≤ 3π

2
so that cos t∗1 = − cos t∗2 and sin t∗1 = sin t∗2. We will then have that

‖~r(t∗2)− ~r(t∗1)‖ = 2g cos t∗1

13



and the necessary condition for equilibrium (equation (2.4)) gives that

σ1 − σ2
σ

=
~r′(t∗1)

‖~r′(t∗1)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

=
(−g sin t∗1, h cos t∗1)√
g2 sin2 t∗1 + h2 cos2 t∗1

· (−1, 0)

=
g sin t∗1√

g2 sin2 t∗1 + h2 cos2 t∗1
(3.1)

and we will make use of equation (3.1) later.

To determine the stability of equilibrium configurations for the ellipse we will need to

consider the second partial derivatives of the energy function. Substituting ~r(t) into the

expressions derived in Section 2.2 and simplifying will give that

∂2E

∂t21

∣∣∣∣
(t∗1,t

∗
2)

=
σ cos t∗1h

2

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

[
g2 + (g2 − h2) cos2 t∗1

]
.

We will define the function f as a function of t∗1 to be

f(t∗1) = g2 + (g2 − h2) cos2(t∗1)

and we note that

f ′(t∗1) = 2(h2 − g2) sin t∗1 cos t∗1

and so the critical points are −π
2
, 0, and π

2
. Evaluating at the critical points we see that

f(−π
2
) = g2,

f(0) = 2g2 − h2, and

f(π
2
) = g2.

From the continuity of the function f we can conclude that if h <
√

2g, then f(t∗1) > 0 for

all t∗1 ∈
[
−π

2
, π
2

]
. Consequently we will have that ∂2E

∂t21

∣∣
(t∗1,t

∗
2)
> 0 for all t∗1.

It can also be shown that the second partial derivative with respect to t∗2 is given by

∂2E

∂t22

∣∣∣∣
(t∗1,t

∗
2)

=
σg(h2 − g2) sin2 t∗1 cos t∗1
g2 sin2 t∗1 + h2 cos2 t∗1

− σ

2g
(h2 − 2g2) cos t∗1

=
σg2h2 sin2 t∗1 cos t∗1 + 2σg2h2 cos3 t∗1 − σh4 cos2 t∗1

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

=
σh2 cos t∗1

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

[
g2 sin2 t∗1 + 2g2 cos2 t∗1 − h2 cos2 t∗1

]
=

σ cos t∗1h
2

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

[
g2 + (g2 − h2) cos2 t∗1

]
=

∂2E

∂t21

∣∣∣∣
(t∗1,t

∗
2)

(3.2)

14



and so these second partial derivatives are equal.

We now consider the case when h <
√

2g. We have already seen that in this case
∂2E
∂t21

∣∣
(t∗1,t

∗
2)
> 0, but more work is required to determine the stability of such configurations.

Since ∂2E
∂t21

∣∣
(t∗1,t

∗
2)

= ∂2E
∂t22

∣∣
(t∗1,t

∗
2)

, we consider∣∣∣∣∣∂2E∂t21
∣∣∣∣
(t∗1,t

∗
2)

∣∣∣∣∣−
∣∣∣∣∣ ∂2E∂t1∂t2

∣∣∣∣
(t∗1,t

∗
2)

∣∣∣∣∣
=

∂2E

∂t21

∣∣∣∣
(t∗1,t

∗
2)

− σ
∣∣∣∣∣~r′(t∗1) · ~r′(t∗2)−

(
σ1−σ2
σ

)2 ‖~r(t∗1)‖ · ‖~r(t∗2)‖
‖~r(t∗2)− ~r(t∗1)‖

∣∣∣∣∣
=

∂2E

∂t21

∣∣∣∣
(t∗1,t

∗
2)

− σ

2g cos t∗1

∣∣∣∣∣g2 sin2 t∗1 − h2 cos2 t∗1 −
g2 sin2 t∗1

(
g2 sin2 t∗1 + h2 cos2 t∗1

)
g2 sin2 t∗1 + h2 cos2 t∗1

∣∣∣∣∣
=

σ cos t∗1h
2

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

(
g2 +

(
g2 − h2

)
cos2 t∗1

)
− σ |−h2 cos2 t∗1|

2g cos t∗1

=
σ cos t∗1h

2

2g

[
g2 + (g2 − h2) cos2 t∗1
g2 sin2 t∗1 + h2 cos2 t∗1

− 1

]
=

σh2 cos t∗1 [g2 + (g2 − h2) cos2 t∗1 − g2 (1− cos2 t∗1)− h2 cos2 t∗1]

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

=
σ cos3 t∗1h

2

g(g2 sin2 t∗1 + h2 cos2 t∗1)

(
g2 − h2

)
(3.3)

where we have used equation (3.1) to express all occurrences of σ1−σ2
σ

in terms of t∗1. From

here we see that if we have h < g then ∂2E
∂t21

> 0 and
∣∣∣∂2E∂t21 ∣∣(t∗1,t∗2)∣∣∣− ∣∣∣ ∂2E

∂t1∂t2

∣∣
(t∗1,t

∗
2)

∣∣∣ > 0. Thus,

we can conclude that (t∗1, t
∗
2) corresponds to a local minimum and so the corresponding

configuration is stable. It can also be seen that when g < h <
√

2g we have ∂2E
∂t21

> 0 and∣∣∣∂2E∂t21 ∣∣(t∗1,t∗2)∣∣∣− ∣∣∣ ∂2E
∂t1∂t2

∣∣
(t∗1,t

∗
2)

∣∣∣ < 0. Hence we can conclude that the configuration would be in

this case unstable.

Now we must consider what happens when h ≥
√

2g. When this is true, ∂
2E
∂t21

can be pos-

itive, negative or zero depending on the particular value of t∗1 that defines the configuration.

We consider the separate possibilities here.

Case 1: ∂2E
∂t21

∣∣
(t∗1,t

∗
2)
> 0

In this case we will still have that
∣∣∣∂2E∂t21 ∣∣(t∗1,t∗2)∣∣∣− ∣∣∣ ∂2E

∂t1∂t2

∣∣
(t∗1,t

∗
2)

∣∣∣ is given by equation (3.3),

but since g <
√

2g ≤ h here we have that the left hand side of equation (3.3) is negative

and thus we have an unstable configuration.
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Case 2: ∂2E
∂t21

∣∣
(t∗1,t

∗
2)
< 0

In this case we will instead have that∣∣∣∣∂2E∂t21 ∣∣(t∗1,t∗2)
∣∣∣∣− ∣∣∣∣ ∂2E∂t1∂t2

∣∣
(t∗1,t

∗
2)

∣∣∣∣
= −∂

2E

∂t21

∣∣∣∣
(t∗1,t

∗
2)

+
∂2E

∂t1∂t2

∣∣∣∣
(t∗1,t

∗
2)

=
σ cos t∗1h

2

2g
(
g2 sin2 t∗1 + h2 cos2 t∗1

) [(h2 − g2) cos2 t∗1 − g2
]
− σh2 cos t∗1

2g

= − σgh2 cos t∗1
g2 sin2 t∗1 + h2 cos2 t∗1

< 0

and this implies that our configuration will be unstable in this case as well.

Case 3: ∂2E
∂t21

∣∣
(t∗1,t

∗
2)

= 0

In this last case, we have that∣∣∣∣∂2E∂t21 ∣∣(t∗1,t∗2)
∣∣∣∣− ∣∣∣∣ ∂2E∂t1∂t2

∣∣
(t∗1,t

∗
2)

∣∣∣∣
= −

∣∣∣∣ ∂2E∂t1∂t2

∣∣
(t∗1,t

∗
2)

∣∣∣∣
< 0

and so the configuration will again be unstable.

Having considered all three cases, we see that no matter the sign of ∂2E
∂t21

∣∣
(t∗1,t

∗
2)

, if we

have that h ≥
√

2g we always get an unstable configuration.

Summary

When h < g, equilibrium configurations of the assumed form are stable. When g < h,

they are unstable. This important example is restated more simply in the following result.

Theorem 3.1. If the major axis of the ellipse is resting parallel to the fluid interface, the

equilibrium configuration will be stable. If the minor axis is resting parallel to the fluid

interface, the equilibrium configuration will be unstable.

Remark 3.1. The reader may notice that Theorem 3.1 cannot be applied to the special

case where the ellipse is a circle. However, for the circle, it is intuitively clear that rotating

the circle about its center does not change the energy. Thus, there will always exist a

small perturbation away from any configuration resulting in the same energy. Hence any

equilibrium configuration of the circle is unstable.
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Remark 3.2. We note that our Theorem 3.1 is in keeping with a result found by Raphaël

et al. in reference [6]. In Section 3 of that paper, the authors construct a region between

the body and the tangents at the two points of contact with the fluid interface. It is shown

that when the area of this region is maximal, the configuration is stable and when the

area is minimal, the configuration is unstable. For the ellipse, the area in question will be

maximal when the fluid interface is parallel to the major axis and minimal when the fluid

interface is parallel to the minor axis, confirming our result.
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Chapter 4

Bodies with Straight Sides

In the example discussed in Chapter 3 we only considered a shape that was strictly convex.

However, in Chapter 2 we never made the assumption that our parametrization ~r(t) defined

a body that was strictly convex. Thus the analysis in that chapter can be utilized to study

bodies which are only convex. In this chapter, we will begin by proving a result for a

general convex body with at least one straight side. We will then discuss the implications

of this result.

4.1 Straight Side Instability

Consider a convex body with at least one straight side. Due to the fact that this type of

body is seldom considered, one might expect that the presence of the straight side could

cause a great deal of complications when searching for stable equilibrium configurations of

the body, but exactly the opposite is true. It turns out that we can unexpectedly eliminate

countless configurations using the following surprising theorem.

Theorem 4.1. A convex body with a straight edge cannot float in a stable equilibrium with

the fluid interface intersecting the interior of the straight edge in a single point.

Proof. Consider a convex body with a linear edge in an equilibrium configuration such

that the fluid interface intersects the interior of the line segment in a single point. Since

the fluid interface and the edge of the body (which are two lines) intersect in only one

point, they cannot be parallel and so the angle between them cannot be 0 or π. Without

loss of generality, we will assume the body is linear surrounding ~r(t∗2). This means that
~r′(t∗2) is constant and ~r′′(t∗2) = 0. Of course, it is possible that the parametrization ~r(t) is

such that we do not have that ~r′(t∗2) is constant and ~r′′(t∗2) = 0, but it is always possible

Section 4.1 is reprinted with permission from reference [14].
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~r(t∗2) ~r(t∗1)

σ1

σ2

σ

Figure 4.1: The convex body with a linear side in consideration.

to choose one such that we do have these two properties. We will use a parametrization

that possesses these two desired properties. Using this, we keep the right point of contact

fixed so that t1 = t∗1 and find the change in energy due to varying t∗2 only. Since the body

is in equilibrium, the linear terms in the series expansion of the energy sum to zero. In

addition, t1 = t∗1 eliminates all terms of O ((t1 − t∗1)2). We thus obtain

E(t∗1, t2)− E(t∗1, t
∗
2)

=
σ

2


(
~r′(t∗2) · [~r(t∗2)− ~r(t∗1)]

)2
‖~r(t∗2)− ~r(t∗1)‖3

− ‖~r′(t∗2)‖2
‖~r(t∗2)− ~r(t∗1)‖

 (t2 − t∗2)2

+O
(
(t2 − t∗2)3

)
=

σ

[(
~r′(t∗2) · [~r(t∗2)− ~r(t∗1)]

)2
− ‖~r′(t∗2)‖2 · ‖~r(t∗2)− ~r(t∗1)‖2

]
2‖~r(t∗2)− ~r(t∗1)‖3

(t2 − t∗2)2

+O
(
(t2 − t∗2)3

)
.

We recall the Cauchy-Schwarz Inequality:

| ~a ·~b |≤ ‖~a‖ · ‖~b‖ ⇐⇒ (~a ·~b)2 − ‖~a‖2‖~b‖2 ≤ 0

with equality holding only when ~a and~b are parallel. If we let ~a = ~r′(t∗2) and~b = ~r(t∗2)−~r(t∗1)
we see that

E(t∗1, t2)− E(t∗1, t
∗
2) =

σ

2‖~b‖3
[
(~a ·~b)2 − ‖~a‖2‖~b‖2

]
(t2 − t∗2)2 +O

(
(t2 − t∗2)3

)
.

We note that ~r′(t∗2) and ~r(t∗2)−~r(t∗1) cannot be parallel since they are vectors in the direction

of the linear side of the body and the fluid interface respectively. The coefficient on (t2−t∗2)2
is thus negative and so there exists a small perturbation from this configuration giving a

lesser energy and hence by definition this equilibrium is unstable.
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Remark 4.1. This is truly a remarkable result. When searching for stable equilibrium

configurations of any body with a straight side, we can automatically ignore any configura-

tion for which the fluid interface intersects the interior of the straight side in a single point

since any equilibrium configuration for which the fluid interface intersects the interior of

a straight side in a single point will be unstable. This will be particularly useful in our

discussion of bodies with polygonal cross-sections in Chapter 5.
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Chapter 5

Bodies with a Polygonal

Cross-section

In this chapter we consider infinitely long cylinders whose cross-sections are convex poly-

gons. This type of body is a subset of convex bodies with the unique property that the

boundary is comprised of only straight lines. Of course, this also means that the boundary

has corners where the various straight edges meet. These types of bodies are not strictly

convex and have corners, and as a result much of the existing literature cannot be applied

in general when attempting to find floating configurations of such bodies. In this chapter,

we will begin to work with these types of bodies by developing a necessary and sufficient

condition for stable equilibrium and then we look at several specific shapes in depth.

5.1 Necessary Condition for Stable Equilibrium of a

Polygonal Body

Recalling Theorem 4.1, any configuration in which the fluid interface intersects the body

on the interior of a straight edge cannot be a stable equilibrium. Also, it is easily verified

using Definition 2.2 that if the fluid interface touches the body at only one point or not

at all, then the configuration will be unstable. Since a polygonal body is comprised of

only straight sides, stable equilibria can consequently only occur when the fluid interface

intersects two corners of the polygon. With this reasoning we can give a necessary condition

for stable equilibrium of polygonal bodies.

Theorem 5.1. A necessary condition for a body with a polygonal cross-section to be in a

stable equilibrium is that the fluid interface must intersect the body at two corners.

Section 5.1 is reprinted with permission from reference [14].
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Remark 5.1. Naturally, this necessary condition is different from the necessary condition

for smooth convex bodies, the contact angle condition. Beyond the types of bodies that

each may be applied to, there is another key difference between the two conditions. We

note that the contact angle condition is a necessary condition for equilibrium, but it does

not specify the stability of the equilibrium. However, Theorem 5.1 is a necessary condition

for stable equilibrium. It is possible that other equilibrium configurations exist; they can

be found using the contact angle condition. However, any equilibrium configuration found

using the contact angle condition will intersect a straight edge and using Theorem 4.1 we

know that these equilibrium configurations are unstable. Thus, we do not bother to search

for them. This key difference between the two necessary conditions is crucial; one must

never forget that for polygonal bodies the necessary condition given is necessary for stable

equilibrium only.

5.2 Stability Condition for a Polygonal Body

Of course, Theorem 5.1 gives only a necessary condition for stable equilibrium of polyg-

onal bodies. It does not give a sufficient condition for stable equilibrium. Nonetheless, a

sufficient condition for stable equilibrium can be found and we will derive it here.

To begin, we consider an infinitely long cylinder with a polygonal cross-section floating

with vertices ~r(t∗1) and ~r(t∗2) on the fluid interface on the right and left, respectively, as

shown in Figure 5.1.

γ+2 γ+1

γ−1γ−2

~r(t∗1)
~r(t∗2)

other sides

other sides

Figure 5.1: Here the general set up of our floating configuration is depicted. Two corners

of the polygonal cross-section are on the fluid interface and the sides that comprise these

corners make four “floating angles” with the fluid interface which we label as shown.

We consider a counter-clockwise parametrization of the body and we consider perturba-

tions away from this configuration. Using our series expansion for the energy from Section

2.1 we can write an expression for E(t1, t2) − E(t∗1, t
∗
2), but before doing so we note that

since we are considering polygonal cross-sections, we are dealing with linear sides and so

Section 5.2 is reprinted with permission from reference [14].
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the parametrization ~r(t) will have zero second derivatives. Thus we have that

E(t1, t2)− E(t∗1, t
∗
2)

= (σ1 − σ2)
[
‖~r′(t∗2)‖(t2 − t∗2)− ‖~r′(t∗1)‖(t1 − t∗1)

]
+σ
[
‖~r′(t∗1)‖ cos θ1(t1 − t∗1)− ‖~r′(t∗2)‖ cos θ2(t2 − t∗2)

]
+O

(
‖(t1, t2)− (t∗1, t

∗
2)‖2

)
= σ

[
‖~r′(t∗1)‖(t1 − t∗1)(cos θ1 − cos γ) + ‖~r′(t∗2)‖(t2 − t∗2)(cos γ − cos θ2)

]
+O

(
‖(t1, t2)− (t∗1, t

∗
2)‖2

)
where θ1 is the angle between ~r′(t∗1) and ~r(t∗2)−~r(t∗1) and θ2 is the angle between ~r′(t∗2) and

~r(t∗2) − ~r(t∗1). We must now consider 4 cases in order to consider all perturbations away

from this configuration.

Case 1

In this case the fluid interface is perturbed upwards on both sides of the body. This implies

that θ1 = π − γ+1 and θ2 = π − γ+2 and that t1 > t∗1 and t2 < t∗2 ⇒ |t1 − t∗1| = t1 − t∗1 and

|t2 − t∗2| = −(t2 − t∗2). This gives us that

E(t1, t2)− E(t∗1, t
∗
2)

= σ
[
‖~r′(t∗1)‖ |t1 − t∗1| (cos θ1 − cos γ) + ‖~r′(t∗2)‖ |t2 − t∗2| (cos θ2 − cos γ)

]
+O

(
‖(t1, t2)− (t∗1, t

∗
2)‖2

)
.

If we have that

cos θ1 > cos γ and cos θ2 > cos γ

⇐⇒ θ1 < γ and θ2 < γ

⇐⇒ π − γ+1 < γ and π − γ+2 < γ

then E(t1, t2) > E(t∗1, t
∗
2) for (t1, t2) sufficiently close to (t∗1, t

∗
2) and we have stability with

respect to perturbations in this case. If γ < π − γ+1 , fixing t2 to be t∗2 and allowing t1

to vary gives the existence of a perturbation to a configuration giving a lower energy and

hence the configuration is unstable. Similarly, if γ < π−γ+2 , fixing t1 to be t∗1 and allowing

t2 to vary gives that the configuration is unstable. If γ = π − γ+1 or γ = π − γ+2 , further

analysis is required and will be dealt with later.

Case 2

In this case the fluid interface is perturbed downwards on both sides of the body. This

implies that θ1 = γ−1 and θ2 = γ−2 and that t1 < t∗1 and t2 > t∗2 ⇒ |t1 − t∗1| = −(t1− t∗1) and
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|t2 − t∗2| = t2 − t∗2. This gives us that

E(t1, t2)− E(t∗1, t
∗
2)

= σ
[
‖~r′(t∗1)‖ |t1 − t∗1| (cos γ − cos θ1) + ‖~r′(t∗2)‖ |t2 − t∗2| (cos γ − cos θ2)

]
+O

(
‖(t1, t2)− (t∗1, t

∗
2)‖2

)
.

If we have that

cos γ > cos θ1 and cos γ > cos θ2

⇐⇒ γ < θ1 and γ < θ2

⇐⇒ γ < γ−1 and γ < γ−2

then E(t1, t2) > E(t∗1, t
∗
2) for (t1, t2) sufficiently close to (t∗1, t

∗
2) and we have stability with

respect to perturbations in this case. If γ > γ−1 , fixing t2 to be t∗2 and allowing t1 to vary

gives the existence of a perturbation to a configuration giving a lower energy and hence

the configuration is unstable. Similarly, if γ > γ−2 , fixing t1 to be t∗1 and allowing t2 to vary

gives that the configuration is unstable. If γ = γ−1 or γ = γ−2 , further analysis is required

and will be dealt with later.

Cases 3 and 4

In case 3 the fluid interface is perturbed upwards on the left and downwards on the right.

In case 4 the fluid interface is perturbed downwards on the left and upwards on the right.

We do not consider these two cases in detail; we do however note that if the four conditions

on γ found in cases 1 and 2 are satisfied, the required conditions for stability with respect

to perturbations in cases 3 and 4 will also be satisfied. Thus, we conclude that if the

configuration is stable with respect to the perturbations in cases 1 and 2, it will also be

stable with respect to those in cases 3 and 4.

Thus in order to have stability with respect to the types of perturbations in all four cases

we must have that each of the following four conditions are satisfied
π − γ+1 < γ

π − γ+2 < γ

γ < γ+1
γ < γ−2

which is equivalent to the requirement that

π −min(γ+1 , γ
+
2 ) < γ < min(γ−1 , γ

−
2 )
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and so if the above condition is met, then the configuration in question will be stable. We

can also say that if γ > min(γ−1 , γ
−
2 ) or γ < π−min(γ+1 , γ

+
2 ) then there exists a perturbation

to a configuration giving a lesser energy and thus the configuration is unstable.

We now consider the endpoints of the interval of γ for which the configuration is stable.

To deal with these two values it will be necessary to work with higher order terms since

the linear terms will be zero for these values of γ. Recalling that the second derivatives of

~r(t) will be zero gives us that

E(t1, t2)− E(t∗1, t
∗
2)

= σ
[
‖~r′(t∗1)‖(t1 − t∗1)(cos θ1 − cos γ) + ‖~r′(t∗2)‖(t2 − t∗2)(cos γ − cos θ2)

]
−σ
[

‖~r′(t∗1)‖2
2‖~r(t∗2)− ~r(t∗1)‖

− (~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])2
2‖~r(t∗2)− ~r(t∗1)‖3

]
(t1 − t∗1)2

−σ
[

‖~r′(t∗2)‖2
2‖~r(t∗2)− ~r(t∗1)‖

− (~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])2
2‖~r(t∗2)− ~r(t∗1)‖3

]
(t2 − t∗2)2

−β(t1 − t∗1)(t2 − t∗2) +O
(
‖(t1, t2)− (t∗1, t

∗
2)‖3

)
where the coefficient of the mixed term will simply be called β as it will not be required

here. We can simplify further by writing

E(t1, t2)− E(t∗1, t
∗
2)

= σ‖~r′(t∗1)‖(cos θ1 − cos γ)(t1 − t∗1) + σ‖~r′(t∗2)‖(cos γ − cos θ2)(t2 − t∗2)

− σ‖~r′(t∗1)‖2
2‖~r(t∗2)− ~r(t∗1)‖

[
1− cos2 θ1

]
(t1 − t∗1)2

− σ‖~r′(t∗2)‖2
2‖~r(t∗2)− ~r(t∗1)‖

[
1− cos2 θ2

]
(t2 − t∗2)2

+β(t1 − t∗1)(t2 − t∗2) +O
(
‖(t1, t2)− (t∗1, t

∗
2)‖3

)
.

We will prove that when γ = π−min(γ+1 , γ
+
2 ) or γ = min(γ−1 , γ

−
2 ) the configuration will be

unstable by showing the existence of a small perturbation to a nearby configuration giving

lesser energy.

First consider when γ = π − min(γ+1 , γ
+
2 ). Clearly, either γ = π − γ+1 or γ = π − γ+2 .

We consider either possibility below.

• When γ = π−γ+1 , consider case 1 and set t2 = t∗2. We then have that θ1 = π−γ+1 = γ

and so

E(t1, t
∗
2)− E(t∗1, t

∗
2)

= −σ
2
· ‖~r′(t∗1)‖2
‖~r(t∗2)− ~r(t∗1)‖

[1− cos2 γ](t1 − t∗1)2 +O
(
(t1 − t∗1)3

)
< 0
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for t1 sufficiently close to t∗1 since γ 6= 0, π. Hence, there exists a small perturbation

away from the configuration giving lesser energy and thus when γ = π − γ+1 the

configuration is unstable.

• When γ = π−γ+2 , consider case 1 and set t1 = t∗1. We then have that θ2 = π−γ+2 = γ

and so

E(t∗1, t2)− E(t∗1, t
∗
2)

= −σ
2
· ‖~r′(t∗2)‖2
‖~r(t∗2)− ~r(t∗1)‖

[1− cos2 γ](t2 − t∗2)2 +O
(
(t2 − t∗2)3

)
< 0

for t2 sufficiently close to t∗2 since γ 6= 0, π. Hence, there exists a small perturbation

away from the configuration giving lesser energy and thus when γ = π − γ+2 the

configuration is unstable.

Now consider when γ = min(γ−1 , γ
−
2 ). Clearly, either γ = γ−1 or γ = γ−2 . We consider either

possibility below.

• When γ = γ−1 , consider case 2 and set t2 = t∗2. We then have that θ1 = γ−1 = γ and

so

E(t1, t
∗
2)− E(t∗1, t

∗
2)

= −σ
2
· ‖~r′(t∗1)‖2
‖~r(t∗2)− ~r(t∗1)‖

[1− cos2 γ](t1 − t∗1)2 +O
(
(t1 − t∗1)3

)
< 0

for t1 sufficiently close to t∗1 since γ 6= 0, π. Hence, there exists a small perturba-

tion away from the configuration giving lesser energy and thus when γ = γ−1 the

configuration is unstable.

• When γ = γ−2 , consider case 2 and set t1 = t∗1. We then have that θ2 = γ−2 = γ and

so

E(t∗1, t2)− E(t∗1, t
∗
2)

= −σ
2
· ‖~r′(t∗2)‖2
‖~r(t∗2)− ~r(t∗1)‖

[1− cos2 γ](t2 − t∗2)2 +O
(
(t2 − t∗2)3

)
< 0

for t2 sufficiently close to t∗2 since γ 6= 0, π. Hence, there exists a small perturba-

tion away from the configuration giving lesser energy and thus when γ = γ−2 the

configuration is unstable.
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Using the above derivation as justification, we can now state the following result.

Theorem 5.2. Consider an infinitely long cylinder with a polygonal cross-section with two

vertices on the fluid interface and whose floating angles γ+1 , γ
+
2 , γ

−
1 and γ−2 are as shown in

Figure 5.1. Let the three materials in consideration be such that we have contact angle γ.

Then the configuration will be stable if we have that

π −min(γ+1 , γ
+
2 ) < γ < min(γ−1 , γ

−
2 )

and unstable otherwise.

Remark 5.2. This necessary and sufficient condition for stable equilibrium of polygonal

bodies is noteworthy. It is unexpected that we can conclude the stability of any configura-

tion of a polygonal body with two corners on the fluid interface as long as we are able to

determine the four relevant angles. Nonetheless, Theorem 5.2 proves that it really is that

straightforward and we will demonstrate the theorem’s simplicity with several examples.

5.3 Examples

We will now use the stability condition from Theorem 5.2 to look at the stability of con-

figurations satisfying the necessary condition for stable equilibrium for several different

polygonal shapes. Additionally, we will determine the global energy minimum for each of

these shapes.

5.3.1 The Triangle

Our first example will be that of a floating infinite cylinder with a constant cross-section

in the shape of a triangle. We will denote the triangle’s three interior angles by α1, α2,

and α3. Clearly each angle is an element of the interval (0, π) and we will assume that

α1 ≤ α2 ≤ α3.

Due to Theorem 5.1 the only possible floating configurations are ones in which the fluid

interface intersects two corners of the triangle. There are six configurations of this type for

a general triangle and they are depicted in Figure 5.2. We wish to determine the stability

of all configurations for this triangle which we will do using our condition for stability of

polygonal cross-sections, Theorem 5.2.
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1a

1b

2a

3b

3a

2b

α1

α1

α1

α1

α1

α1

α3

α3 α3

α3α3

α3

α2

α2

α2

α2

α2

α2

Figure 5.2: The six possible floating configurations for general triangular cross-section.

• Configuration 1a has floating angles γ+1 = π − α2, γ
+
2 = π − α1, γ

−
1 = π and γ−2 = π

and thus the configuration will be stable if we have that

π −min {π − α2, π − α1} < γ < min {π, π}
⇐⇒ π − π −min {−α2,−α1} < γ < π

⇐⇒ max {α2, α1} < γ < π

⇐⇒ α2 < γ < π.

• Configuration 1b has floating angles γ+1 = π, γ+2 = π, γ−1 = π − α2 and γ−2 = π − α1

and thus the configuration will be stable if we have that

π −min {π, π} < γ < min {π − α2, π − α1}
⇐⇒ 0 < γ < π + min {−α2,−α1}
⇐⇒ 0 < γ < π −max {α1, α2}
⇐⇒ 0 < γ < π − α2.

• Configuration 2a has floating angles γ+1 = π − α3, γ
+
2 = π − α1, γ

−
1 = π and γ−2 = π
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and thus the configuration will be stable if we have that

π −min {π − α1, π − α3} < γ < min {π, π}
⇐⇒ π − π −min {−α1,−α3} < γ < π

⇐⇒ max {α1, α3} < γ < π

⇐⇒ α3 < γ < π.

• Configuration 2b has floating angles γ+1 = π, γ+2 = π, γ−1 = π − α3 and γ−2 = π − α1

and thus the configuration will be stable if we have that

π −min {π, π} < γ < min {π − α1, π − α3}
⇐⇒ 0 < γ < π + min {−α1,−α3}
⇐⇒ 0 < γ < π −max {α1, α3}
⇐⇒ 0 < γ < π − α3.

• Configuration 3a has floating angles γ+1 = π − α3, γ
+
2 = π − α2, γ

−
1 = π and γ−2 = π

and thus the configuration will be stable if we have that

π −min {π − α2, π − α3} < γ < min {π, π}
⇐⇒ π − π −min {−α2,−α3} < γ < π

⇐⇒ max {α2, α3} < γ < π

⇐⇒ α3 < γ < π.

• Configuration 3b has floating angles γ+1 = π, γ+2 = π, γ−1 = π − α3 and γ−2 = π − α2

and thus the configuration will be stable if we have that

π −min {π, π} < γ < min {π − α2, π − α3}
⇐⇒ 0 < γ < π + min {−α2,−α3}
⇐⇒ 0 < γ < π −max {α2, α3}
⇐⇒ 0 < γ < π − α3.

The conditions on the angles as found in the above six cases can then be used to prove the

following theorem.

Theorem 5.3. Consider any triangle floating in one of the six possible configurations with

the three materials in consideration giving contact angle γ. Then:

• If the body is above the fluid interface (in the σ1 medium) the configuration will be

stable provided γ is greater than the bigger of the two angles of the triangle’s corners

on the fluid interface but less than π.
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• If the body is below the fluid interface (in the σ2 medium) the configuration will be

stable provided γ is greater than 0 but less than the supplement of the larger of the

two angles of the triangle’s corners on the fluid interface.

• If neither of the above two statements is true, then the configuration is unstable.

We can now extend this result for stability of a general triangular cross-section to one

that also includes information about the global energy minimum by directly comparing

the energies associated with the six possible floating configurations to one another. We

consider the same general triangle with interior angles obeying the same relationship:

0 < α1 ≤ α2 ≤ α3 < π.

We will also label the side lengths as in Figure 5.3.

α1

α3

α2

ab

c

Figure 5.3: The labelling of the angles and side lengths in our general triangle.

By the property of triangles, we will then have that

0 < a ≤ b ≤ c.

We now have that the energies of the six configurations are given by

E1a = (a+ b)σ1 + cσ2 − cσ
E1b = cσ1 + (a+ b)σ2 − cσ
E2a = (a+ c)σ1 + bσ2 − bσ
E2b = bσ1 + (a+ c)σ2 − bσ
E3a = (b+ c)σ1 + aσ2 − aσ
E3b = aσ1 + (b+ c)σ2 − aσ

and now we can compare these energies. The relationship between the energies of the

six configurations will depend on the relationship between the lengths of the sides of the

triangle. There are three cases; the relationships between the six energies in each of the

three cases for each possible value of γ are summarized in Tables 5.1, 5.2, and 5.3, which

are located at the end of this subsection. For details behind the creation of the three tables,

see Section E.1 in Appendix E. In all three cases it is clear from a close examination of

these tables that
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• when γ ∈
(
0, π

2

)
, configuration 1b gives the global energy minimum,

• when γ = π
2
, configurations 1a and 1b give the same energy which is also the global

energy minimum, and

• when γ ∈
(
π
2
, π
)
, configuration 1a gives the global energy minimum.

So, we can extend Theorem 5.3 to give a result concerning the global energy minimum and

stability of configurations of the triangular cross-section as well.

Theorem 5.4. Consider any triangle floating in one of the six possible floating configura-

tions with the three materials giving contact angle γ. Then:

1. If the body is floating in the σ1 medium with the longest side incident with the fluid

interface and γ ∈
[
π
2
, π
)
, the configuration will be a stable global energy minimum.

2. If the body is floating in the σ1 medium without the longest side incident with the fluid

interface and γ is greater than the larger of the two angles of the triangle’s corners

on the fluid interface but less than π, the configuration will be stable, but not a global

energy minimum.

3. If the body is floating in the σ2 medium with the longest side incident with the fluid

interface and γ ∈
(
0, π

2

]
, the configuration will be a stable global energy minimum.

4. If the body is floating in the σ2 medium without the longest side incident with the fluid

interface and γ is greater than 0 but less than the supplement of the larger of the two

angles of the triangle’s corners on the interface, the configuration will be stable, but

not a global energy minimum.

5. If none of the above hold, the configuration is unstable.

Proof.

1. Since the longest side is incident with the fluid interface, it must mean that the two

corners of the triangle that are on the fluid interface are the corners with interior

angles α1 and α2, the larger of which is α2. Applying Theorem 5.3 tells us that

the configuration will be stable when γ ∈ (α2, π). Since α2 <
π
2

and γ ∈
[
π
2
, π
)

we

have that the configuration is stable.1 In addition, using Tables 5.1, 5.2, and 5.3,

γ ∈
[
π
2
, π
)

also implies that the configuration is a global energy minimum.

1We must have that α2 <
π
2 . If not, then α3 is also greater than or equal to π

2 . Then α2 + α3 ≥ π

meaning α1 ≤ 0 which is clearly a contradiction.
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2. The configuration is stable by Theorem 5.3. It will not be a global energy minimum

since a global energy minimum requires that the longest side be incident with the

fluid interface.

3. Since the longest side is incident with the fluid interface, it must mean that the two

corners of the triangle that are on the fluid interface are the corners with interior

angles α1 and α2, the larger of which is α2. Applying Theorem 5.3 tells us that the

configuration will be stable when γ ∈ (0, π − α2). Since α2 <
π
2

and γ ∈
(
0, π

2

]
we

have that the configuration is stable. In addition, using Tables 5.1, 5.2, and 5.3,

γ ∈
(
0, π

2

]
also implies that the configuration is a global energy minimum.

4. Same as proof item 2.

5. Theorem 5.3 applies, giving the desired result.

Table 5.1: Relationships between the energies of the six possible floating configurations of

the triangle for each value of γ ∈ (0, π) in the b < a2+c2

a+c
case.

Values for γ Energy Relationships(
0, arccos

(
c−a
b

))
E1b < E2b < E3b < E1a < E2a < E3a

arccos
(
c−a
b

)
E1b < E2b < E3b = E1a < E2a < E3a(

arccos
(
c−a
b

)
, arccos

(
c−b
a

))
E1b < E2b < E1a < E3b < E2a < E3a

arccos
(
c−b
a

)
E1b < E2b = E1a < E3b < E2a < E3a(

arccos
(
c−b
a

)
, arccos

(
b−a
c

))
E1b < E1a < E2b < E3b < E2a < E3a

arccos
(
b−a
c

)
E1b < E1a < E2b < E3b = E2a < E3a(

arccos
(
b−a
c

)
, π
2

)
E1b < E1a < E2b < E2a < E3b < E3a

π
2

E1b = E1a < E2b = E2a < E3b = E3a(
π
2
, π − arccos

(
b−a
c

))
E1a < E1b < E2a < E2b < E3a < E3b

π − arccos
(
b−a
c

)
E1a < E1b < E2a < E2b = E3a < E3b(

π − arccos
(
b−a
c

)
, π − arccos

(
c−b
a

))
E1a < E1b < E2a < E3a < E2b < E3b

π − arccos
(
c−b
a

)
E1a < E1b = E2a < E3a < E2b < E3b(

π − arccos
(
c−b
a

)
, π − arccos

(
c−a
b

))
E1a < E2a < E1b < E3a < E2b < E3b

π − arccos
(
c−a
b

)
E1a < E2a < E1b = E3a < E2b < E3b(

π − arccos
(
c−a
b

)
, π
)

E1a < E2a < E3a < E1b < E2b < E3b
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Table 5.2: Relationships between the energies of the six possible floating configurations of

the triangle for each value of γ ∈ (0, π) in the b = a2+c2

a+c
case.

Values for γ Energy Relationships(
0, arccos

(
c−a
b

))
E1b < E2b < E3b < E1a < E2a < E3a

arccos
(
c−a
b

)
E1b < E2b < E3b = E1a < E2a < E3a(

arccos
(
c−a
b

)
, arccos

(
c−b
a

))
E1b < E2b < E1a < E3b < E2a < E3a

arccos
(
c−b
a

)
E1b < E2b = E1a < E3b = E2a < E3a(

arccos
(
c−b
a

)
, π
2

)
E1b < E1a < E2b < E2a < E3b < E3a

π
2

E1b = E1a < E2b = E2a < E3b = E3a(
π
2
, π − arccos

(
c−b
a

))
E1a < E1b < E2a < E2b < E3a < E3b

π − arccos
(
c−b
a

)
E1a < E1b = E2a < E2b = E3a < E3b(

π − arccos
(
c−b
a

)
, π − arccos

(
c−a
b

))
E1a < E2a < E1b < E3a < E2b < E3b

π − arccos
(
c−a
b

)
E1a < E2a < E1b = E3a < E2b < E3b(

π − arccos
(
c−a
b

)
, π
)

E1a < E2a < E3a < E1b < E2b < E3b

Table 5.3: Relationships between the energies of the six possible floating configurations of

the triangle for each value of γ ∈ (0, π) in the b > a2+c2

a+c
case.

Values for γ Energy Relationships(
0, arccos

(
c−a
b

))
E1b < E2b < E3b < E1a < E2a < E3a

arccos
(
c−a
b

)
E1b < E2b < E3b = E1a < E2a < E3a(

arccos
(
c−a
b

)
, arccos

(
b−a
c

))
E1b < E2b < E1a < E3b < E2a < E3a

arccos
(
b−a
c

)
E1b < E2b < E1a < E3b = E2a < E3a(

arccos
(
b−a
c

)
, arccos

(
c−b
a

))
E1b < E2b < E1a < E2a < E3b < E3a

arccos
(
c−b
a

)
E1b < E2b = E1a < E2a < E3b < E3a(

arccos
(
c−b
a

)
, π
2

)
E1b < E1a < E2b < E2a < E3b < E3a

π
2

E1b = E1a < E2b = E2a < E3b = E3a(
π
2
, π − arccos

(
c−b
a

))
E1a < E1b < E2a < E2b < E3a < E3b

π − arccos
(
c−b
a

)
E1a < E1b = E2a < E2b < E3a < E3b(

π − arccos
(
c−b
a

)
, π − arccos

(
b−a
c

))
E1a < E2a < E1b < E2b < E3a < E3b

π − arccos
(
b−a
c

)
E1a < E2a < E1b < E2b = E3a < E3b(

π − arccos
(
b−a
c

)
, π − arccos

(
c−a
b

))
E1a < E2a < E1b < E3a < E2b < E3b

π − arccos
(
c−a
b

)
E1a < E2a < E1b = E3a < E2b < E3b(

π − arccos
(
c−a
b

)
, π
)

E1a < E2a < E3a < E1b < E2b < E3b

33



5.3.2 The Square

For our second example we consider an infinitely long cylinder with a square cross-section of

unit side length. Using Theorem 5.1 we know that the only possible floating configurations

are ones in which the fluid interface intersects two corners of the square. There are three

such configurations as shown in Figure 5.4. Using Theorem 5.2 we can classify the stability

of these three configurations.

1 2 3

Figure 5.4: The three possible floating configurations for a square cross-section.

• Configuration 1 has floating angles γ+1 = γ+2 = π
2

and γ−1 = γ−2 = π so it will be

stable when we have that π − π
2
< γ < π ⇔ π

2
< γ < π.

• Configuration 2 has floating angles γ+1 = γ+2 = γ−1 = γ−2 = 3π
4

so it will be stable

when we have that π − 3π
4
< γ < 3π

4
⇔ π

4
< γ < 3π

4
.

• Configuration 3 has floating angles γ+1 = γ+2 = π and γ−1 = γ−2 = π
2

so it will be

stable when we have that π − π < γ < π
2
⇔ 0 < γ < π

2
.

Otherwise, when γ is not within the specified range of values, the configuration will be

unstable.

Now, to determine which configuration is a global energy minimum, we need to directly

compare the energy associated with each of the three configurations. The energies of the

three configurations are given by

E1 = 3σ1 + σ2 − σ
E2 = 2σ1 + 2σ2 −

√
2σ

E3 = σ1 + 3σ2 − σ.
Subsection 5.3.2 is reprinted with permission from reference [14].
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The relationships between the energies change depending on the value of γ. The relation-

ships are summarized in Table 5.4; for the underlying details of the creation of Table 5.4 see

Section E.2 in Appendix E. Using Table 5.4 we are able to determine which configuration

is the global energy minimum for each value of γ and since we already know the stabil-

ity of each of the three configurations for each value of γ we can summarize the stability

behaviour of the square cross-section in Table 5.5.

Table 5.4: Relationships between the energies of the three possible configurations of the

square for each value of γ ∈ (0, π).

Values for γ Energy Relationships

(0, arccos(
√

2− 1)) E3 < E2 < E1

arccos(
√

2− 1) E3 = E2 < E1

(arccos(
√

2− 1), π
2
) E2 < E3 < E1

π
2

E2 < E3 = E1

(π
2
, arccos(1−

√
2)) E2 < E1 < E3

arccos(1−
√

2) E2 = E1 < E3

(arccos(1−
√

2), π) E1 < E2 < E3

Table 5.5: The stability of each of the three possible floating configurations for the square

(as depicted in Figure 5.4)and for each value of γ ∈ (0, π) is shown here. Note that here

we have v = arccos(
√

2− 1). (
0, π

4

] (
π
4
, v
)

v
(
v, π

2

)
π
2

Configuration 1 Unstable

Configuration 2 Unstable Stable Stable Global Energy Minimum

Configuration 3 Stable Global Energy Minimum Stable Unstable

(
π
2
, π − v

)
π − v

(
π − v, 3π

4

) [
3π
4
, π
)

Configuration 1 Stable Stable Global Energy Minimum

Configuration 2 Stable Global Energy Minimum Stable Unstable

Configuration 3 Unstable
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5.3.3 The Rectangle

Our next example will be that of a more general quadrilateral, the rectangle. We consider

an infinitely long cylinder with rectangular cross-section having side lengths 1 and b where

b > 1. Similar to the square cross-section, the only configurations for which floating is

possible are ones in which the fluid interface intersects two corners of the rectangle. There

are six configurations of this type for a rectangular cross-section. However, the fifth and

would-be sixth configurations are symmetric about a vertical line, so we will consider only

the first five configurations, shown in Figure 5.5.

1 2 3 4 5

Figure 5.5: The five possible floating configurations for a rectangular cross-section.

Again, using our stability criterion for equilibrium configurations of polygonal cross-

sections (Theorem 5.2) we can classify the stability of these five configurations.

• Configurations 1 and 3 have floating angles γ+1 = γ+2 = π
2

and γ−1 = γ−2 = π and

hence are stable when we have that π
2
< γ < π.

• Configurations 2 and 4 have floating angles γ+1 = γ+2 = π and γ−1 = γ−2 = π
2

and

hence are stable when we have that 0 < γ < π
2
.

• Configuration 5 has γ+1 = γ−2 = π− arctan(1
b
) and γ−1 = γ+2 = π− arctan b and hence

is stable when arctan(b) < γ < π − arctan(b) since we have that

min

{
π − arctan

(
1

b

)
, π − arctan b

}
= π −max

{
arctan

(
1

b

)
, arctan b

}
= π − arctan

(
max

{
1

b
, b

})
= π − arctan b.
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Now, to determine which configuration is the global energy minimum, we need to directly

compare the energy associated with each of the five configurations. The energies of the five

configurations are given by

E1 = (b+ 2)σ1 + bσ2 − bσ
E2 = bσ1 + (b+ 2)σ2 − bσ
E3 = (2b+ 1)σ1 + σ2 − σ
E4 = σ1 + (2b+ 1)σ2 − σ
E5 = (b+ 1)(σ1 + σ2)−

√
1 + b2σ.

Again, the relationships between the various energies depends on γ, and we will also find

that the relationships between the energies depends on b. There are three cases: 1 < b <√
3, b =

√
3, and b >

√
3; the energy relationships in each of these three cases for each value

of γ are summarized in Tables 5.6, 5.7, and 5.8 and are shown at the end of this subsection.

For a detailed account of the creation of these tables, see Section E.3 in Appendix E.

From Tables 5.6, 5.7 and 5.8 it can be seen that the configuration giving least energy

changes from one configuration to another at the following values of γ:

arccos
(√

1 + b2 − b
)
, and arccos

(
b−
√

1 + b2
)
.

Other values of γ do not result in a change in the configuration giving least energy. Using

this, we can see which configuration gives the global energy minimum for each γ in each

of the three cases. This, together with the stability requirements outlined earlier, allows

us to summarize the floating behaviour for each possible configuration and each γ ∈ (0, π)

for the rectangular cross-section as shown in Table 5.9 on page 41.
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Table 5.6: Relationships between the energies of the five possible floating configurations for

the rectangle for each value of γ ∈ (0, π) in the 1 < b <
√

3 case.

Values for γ Energy Relationships(
0, arccos

(√
1+b2−1
b

))
E2 < E4 < E5 < E1 < E3

arccos
(√

1+b2−1
b

)
E2 < E4 = E5 < E1 < E3(

arccos
(√

1+b2−1
b

)
, arccos

(√
1 + b2 − b

))
E2 < E5 < E4 < E1 < E3

arccos
(√

1 + b2 − b
)

E2 = E5 < E4 < E1 < E3(
arccos

(√
1 + b2 − b

)
, arccos

(
b−1
b+1

))
E5 < E2 < E4 < E1 < E3

arccos
(
b−1
b+1

)
E5 < E2 < E4 = E1 < E3(

arccos
(
b−1
b+1

)
, π
2

)
E5 < E2 < E1 < E4 < E3

π
2

E5 < E2 = E1 < E4 = E3(
π
2
, arccos

(
1−b
b+1

))
E5 < E1 < E2 < E3 < E4

arccos
(
1−b
b+1

)
E5 < E1 < E2 = E3 < E4(

arccos
(
1−b
b+1

)
, arccos

(
b−
√

1 + b2
))

E5 < E1 < E3 < E2 < E4

arccos
(
b−
√

1 + b2
)

E5 = E1 < E3 < E2 < E4(
arccos

(
b−
√

1 + b2
)
, arccos

(
1−
√
1+b2

b

))
E1 < E5 < E3 < E2 < E4

arccos
(

1−
√
1+b2

b

)
E1 < E5 = E3 < E2 < E4(

arccos
(

1−
√
1+b2

b

)
, π
)

E1 < E3 < E5 < E2 < E4
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Table 5.7: Relationships between the energies of the five possible floating configurations for

the rectangle for each value of γ ∈ (0, π) in the b =
√

3 case.

Values for γ Energy Relationships(
0, arccos

(√
1+b2−1
b

))
E2 < E4 < E5 < E1 < E3

arccos
(√

1+b2−1
b

)
E2 < E4 = E5 < E1 < E3(

arccos
(√

1+b2−1
b

)
, arccos

(√
1 + b2 − b

))
E2 < E5 < E4 < E1 < E3

arccos
(√

1 + b2 − b
)

E2 = E5 < E4 < E1 < E3(
arccos

(√
1 + b2 − b

)
, π
2

)
E5 < E2 < E1 < E4 < E3

π
2

E5 < E2 = E1 < E4 = E3(
π
2
, arccos

(
b−
√

1 + b2
))

E5 < E1 < E2 < E3 < E4

arccos
(
b−
√

1 + b2
)

E5 = E1 < E3 < E2 < E4(
arccos

(
b−
√

1 + b2
)
, arccos

(
1−
√
1+b2

b

))
E1 < E5 < E3 < E2 < E4

arccos
(

1−
√
1+b2

b

)
E1 < E5 = E3 < E2 < E4(

arccos
(

1−
√
1+b2

b

)
, π
)

E1 < E3 < E5 < E2 < E4
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Table 5.8: Relationships between the energies of the five possible floating configurations for

the rectangle for each value of γ ∈ (0, π) in the b >
√

3 case.

Values for γ Energy Relationships(
0, arccos

(√
1+b2−1
b

))
E2 < E4 < E5 < E1 < E3

arccos
(√

1+b2−1
b

)
E2 < E4 = E5 < E1 < E3(

arccos
(√

1+b2−1
b

)
, arccos

(
b−1
b+1

))
E2 < E5 < E4 < E1 < E3

arccos
(
b−1
b+1

)
E2 < E5 < E4 = E1 < E3(

arccos
(
b−1
b+1

)
, arccos

(√
1 + b2 − b

))
E2 < E5 < E1 < E4 < E3

arccos
(√

1 + b2 − b
)

E2 = E5 < E1 < E4 < E3(
arccos

(√
1 + b2 − b

)
, π
2

)
E5 < E2 < E1 < E4 < E3

π
2

E5 < E2 = E1 < E4 = E3(
π
2
, arccos

(
b−
√

1 + b2
))

E5 < E1 < E2 < E3 < E4

arccos
(
b−
√

1 + b2
)

E5 = E1 < E2 < E3 < E4(
arccos

(
b−
√

1 + b2
)
, arccos

(
1−b
b+1

))
E1 < E5 < E2 < E3 < E4

arccos
(
1−b
b+1

)
E1 < E5 < E2 = E3 < E4(

arccos
(
1−b
b+1

)
, arccos

(
1−
√
1+b2

b

))
E1 < E5 < E3 < E2 < E4

arccos
(

1−
√
1+b2

b

)
E1 < E5 = E3 < E2 < E4(

arccos
(

1−
√
1+b2

b

)
, π
)

E1 < E3 < E5 < E2 < E4
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5.3.4 The Regular Pentagon

We will now consider an infinitely long cylinder with pentagonal cross-section. For sim-

plicity, the pentagon will be assumed to be regular, with each side length being 1. Using

Theorem 5.1, the only configurations for which floating is possible are ones in which the

fluid interface intersects two corners of the pentagon. There are four distinct configurations

of this type for a pentagonal cross-section and they are depicted in Figure 5.6.

1 2 3 4

Figure 5.6: The four possible floating configurations for the pentagonal cross-section.

Again, using Theorem 5.2 we can classify the stability of these four configurations.

• Configuration 1 has floating angles γ+1 = γ+2 = 2π
5

and γ−1 = γ−2 = π and hence will

be stable when we have that 3π
5
< γ < π.

• Configuration 2 has floating angles γ+1 = γ+2 = 3π
5

and γ−1 = γ−2 = 4π
5

and hence will

be stable when we have that 2π
5
< γ < 4π

5
.

• Configuration 3 has floating angles γ+1 = γ+2 = 4π
5

and γ−1 = γ−2 = 3π
5

and hence will

be stable when we have that π
5
< γ < 3π

5
.

• Configuration 4 has floating angles γ+1 = γ+2 = π and γ−1 = γ−2 = 2π
5

and hence will

be stable when we have that 3π
5
< γ < π.

Otherwise, when γ is outside of these specified ranges, the configurations are unstable.

Now, to determine which configuration gives the global energy minimum we need to

directly compare the energy associated with each of the four configurations. Using Figure
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5.7 we have that the energies of the configurations are given by

E1 = 4σ1 + σ2 − σ
E2 = 3σ1 + 2σ2 − ϕσ
E3 = 2σ1 + 3σ2 − ϕσ
E4 = σ1 + 4σ2 − σ

where ϕ is the golden ratio2 ϕ =
√
5+1
2

. We directly compare the energies in Section E.4

of Appendix E. A comparison of the energies reveals that the relationships between the

energies of the various configurations change depending on the value of γ. The relation-

ships are given in Table 5.10 and we can then summarize the stability of each of the four

configurations for each possible value of γ in Table 5.11.

2π
5

π
10

1

1 aa
b

Figure 5.7: The unknown length b is found using the angles of the indicated triangle. Using

the Sine Law, length a = sin
(
π
10

)
=
√
5−1
4

and then since length b is twice length a plus one,

we have b = 2
(√

5−1
4

)
+ 1 =

√
5+1
2

= ϕ, the golden ratio.

2Recall that ϕ− 1 = 1
ϕ .
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Table 5.10: Relationships between the energies of the four possible floating configurations

for the pentagon for each value of γ ∈ (0, π).

Values for γ Energy Relationships(
0, arccos

(
1
ϕ

))
E4 < E3 < E2 < E1

arccos
(

1
ϕ

)
E4 = E3 < E2 < E1(

arccos
(

1
ϕ

)
, 2π

5

)
E3 < E4 < E2 < E1

2π
5

E3 < E4 = E2 < E1(
2π
5
, π
2

)
E3 < E2 < E4 < E1

π
2

E3 = E2 < E4 = E1(
π
2
, 3π

5

)
E2 < E3 < E1 < E4

3π
5

E2 < E3 = E1 < E4(
3π
5
, π − arccos

(
1
ϕ

))
E2 < E1 < E3 < E4

π − arccos
(

1
ϕ

)
E2 = E1 < E3 < E4(

π − arccos
(

1
ϕ

)
, π
)

E1 < E2 < E3 < E4
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5.3.5 The Regular Hexagon

For our final polygonal example, we consider a regular hexagonal cross-section whose sides

are assumed to be unit length. Again, the only possible floating configurations are ones in

which the fluid interface intersects two corners of the hexagon by Theorem 5.1. There are

five such configurations which are depicted in Figure 5.8.

1 2 3 4 5

Figure 5.8: The five possible floating configurations for the hexagonal cross-section.

Using Theorem 5.2 we can classify the stability of these five configurations.

• Configuration 1 has floating angles γ+1 = γ+2 = π
3

and γ−1 = γ−2 = π and so it will be

stable when we have that 2π
3
< γ < π.

• Configuration 2 has floating angles γ+1 = γ+2 = π
2

and γ−1 = γ−2 = 5π
6

and so it will be

stable when we have that π
2
< γ < 5π

6
.

• Configuration 3 has floating angles γ+1 = γ+2 = γ−1 = γ−2 = 2π
3

and so it will be stable

when we have that π
3
< γ < 2π

3
.

• Configuration 4 has floating angles γ+1 = γ+2 = 5π
6

and γ−1 = γ−2 = π
2

and so it will be

stable when we have that π
6
< γ < π

2
.

• Configuration 5 has floating angles γ+1 = γ+2 = π and γ−1 = γ−2 = π
3

and so it will be

stable when we have that 0 < γ < π
3
.

Otherwise, when γ is not within the specified range of values, the configuration will be

unstable.

Now, to determine which configuration gives the global energy minimum, we need to

directly compare the energies associated with each of the five configurations. Using Figure

5.9 to determine the unknown lengths, we find that the energies of the five configurations
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are given by

E1 = 5σ1 + σ2 − σ
E2 = 4σ1 + 2σ2 −

√
3σ

E3 = 3σ1 + 3σ2 − 2σ

E4 = 2σ1 + 4σ2 −
√

3σ

E5 = σ + 5σ2 − σ.

The relationships between each of the energies for each possible value of γ are given in

Table 5.12. The details behind the creation of this table can be found in Section E.5 of

Appendix E.

1 bb

d

c

π
6

π
6

2π
3

Figure 5.9: The unknown length d is found using the angles of the indicated triangle. Using

the Sine Law, length c =
sin( 2π

3 )
sin(π

6 )
=

√
3

2
1
2

=
√

3. Then using the Pythagorean Theorem, we

find that b = 1
2
. Finally, since length d is twice length b plus one, we have d = 2.

From Table 5.12, it is clear that the global energy minimum changes from one configu-

ration to another at the following values of γ:

arccos
(√

3− 1
)
,

arccos
(
2−
√

3
)
,

π
2
,

π − arccos
(
2−
√

3
)
, and

π − arccos
(√

3− 1
)
.

We also know the stability of certain configurations change when γ is one of 0, π
6
, π

3
, π

2
,

2π
3

, 5π
6

or π. From this, we can then summarize the stability of each of the five configurations

for each possible value of γ in Table 5.13.
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Table 5.12: Relationships between the energies of the five possible floating configurations

for the hexagon for each value of γ ∈ (0, π).

Values for γ Energy Relationships(
0, arccos

(√
3− 1

))
E5 < E4 < E3 < E2 < E1

arccos
(√

3− 1
)

E4 = E5 < E3 < E2 < E1(
arccos

(√
3− 1

)
, π
3

)
E4 < E5 < E3 < E2 < E1

π
3

E4 < E5 = E3 < E2 < E1(
π
3
, arccos

(
2−
√

3
))

E4 < E3 < E5 < E2 < E1

arccos
(
2−
√

3
)

E4 = E3 < E5 < E2 < E1(
arccos

(
2−
√

3
)
, arccos

(√
3−1
3

))
E3 < E4 < E5 < E2 < E1

arccos
(√

3−1
3

)
E3 < E4 < E5 = E2 < E1(

arccos
(√

3−1
3

)
, π
2

)
E3 < E4 < E2 < E5 < E1

π
2

E3 < E4 = E2 < E5 = E1(
π
2
, π − arccos

(√
3−1
3

))
E3 < E2 < E4 < E1 < E5

π − arccos
(√

3−1
3

)
E3 < E2 < E4 = E1 < E5(

π − arccos
(√

3−1
3

)
, π − arccos

(
2−
√

3
))

E3 < E2 < E1 < E4 < E5

π − arccos
(
2−
√

3
)

E3 = E2 < E1 < E4 < E5(
π − arccos

(
2−
√

3
)
, 2π

3

)
E2 < E3 < E1 < E4 < E5

2π
3

E2 < E3 = E1 < E4 < E5(
2π
3
, π − arccos

(√
3− 1

))
E2 < E1 < E3 < E4 < E5

π − arccos
(√

3− 1
)

E2 = E1 < E3 < E4 < E5(
π − arccos

(√
3− 1

)
, π
)

E1 < E2 < E3 < E4 < E5
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5.4 Results Involving Regular Polygons

With a careful observation of the regular polygon examples in Section 5.3, one can begin

to envisage several results concerning the number of stable and unstable configurations

for a given regular polygon, as well as the relationship between stable configurations. We

state several of these results in the following theorem and verify them in the accompanying

proof.

Theorem 5.5. For an n-sided regular polygon (n ≥ 3) we will have that:

1. For each γ ∈ (0, π) there exists a stable global energy minimum.

2. For each γ ∈ (0, π) there are at most two stable configurations.

3. For each γ ∈ (0, π) there are at least n− 3 unstable configurations with two vertices

on the fluid interface.

4. If γ ∈
n−2⋃
i=1

(
iπ
n
, (i+1)π

n

)
there are two stable configurations. Otherwise, there is only

one stable configuration.

5. When there are two stable configurations, the stable configurations will be adjacent.

(We say that two configurations are adjacent if the absolute value of the difference

between the number of vertices in fluid 1 is equal to 1.)

Proof. Lemma F.1 in Appendix F tells us that when there are m vertices above the fluid

interface, the floating angles are

γ+1 = γ+2 = π
(

1− m

n

)
γ−1 = γ−2 =

π

n
(m+ 2)

and so using the stability condition for polygonal bodies we have that the configuration is

stable when

π − π
(

1− m

n

)
< γ < (m+ 2)

(π
n

)
or equivalently (π

n

)
m < γ <

(π
n

)
(m+ 2).

Since m ranges from 0 to n− 2, the family of intervals

Im =

(
πm

n
,
π(m+ 2)

n

)
for m = 0, 1 . . . (n− 2)

Section 5.4 is reprinted with permission from reference [14].
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forms a cover of (0, π). This means that for every γ ∈ (0, π), γ is also contained in Im for at

least one value of m which proves the existence of at least one stable configuration. One of

these stable configurations will have an energy that is less than or equal to the others and

so we also have the existence of a stable global energy minimum. This proves statement 1.

We also note that

Ip ∩ Iq = ∅

when |p − q| > 1, but the intersection is non-empty when |p − q| = 1. This tells us that

intervals Ip and Iq only intersect when p and q are at most one apart. Consequently only

two intervals can intersect each other; that is, given γ ∈ (0, π), γ may be an element

of at most two intervals of the form of the Im. This proves statement 2. It also proves

statement 5 as two stable configurations must occur for a γ such that γ is an element of

the intersection of two intervals of the above form which can only occur when |p− q| = 1

implying that the configurations are adjacent. Since there are n−1 configurations with two

vertices on the fluid interface in total, and at most 2 stable configurations by statement 2,

there must be at least n− 3 unstable configurations, proving statement 3. Finally, if

γ ∈
n−2⋃
i=1

(
iπ

n
,
(i+ 1)π

n

)

then mπ
n
< γ < (m+1)π

n
for some m, 1 ≤ m ≤ (n− 2), which implies that γ ∈ Im−1 ∩ Im but

no other interval Ip. This implies that there are two stable configurations. Otherwise, if

γ 6∈
n−2⋃
i=1

(
iπ

n
,
(i+ 1)π

n

)
then

γ ∈
(

0,
π

n

]⋃{
2π

n
,
3π

n
, . . . ,

(n− 2)π

n

}⋃[
(n− 1)π

n
, π

)
.

Then, if γ ∈
(
0, π

n

]
then γ ∈ I0 but no other Im. If γ ∈

(
(n−1)π

n
, π
)

then γ ∈ In−2 but no

other Im. If γ = mπ
n

for 2 ≤ m ≤ n−2 then γ ∈ Im−1 but no other Im. So, we can conclude

that γ can be an element of one interval Im at a time, and consequently we conclude that

there can be only one stable configuration. This proves statement 4.

5.5 Existence of a Stable Global Energy Minimum for

a General Polygon

In the Section 5.4 we found that for every value of γ ∈ (0, π) and every regular polygonal

cross-section, a global energy minimum would exist and it would be stable. We now extend
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that result (with an independent proof) to one that guarantees the existence of a stable

global energy minimum for all polygonal cross-sections, regular or otherwise.

Theorem 5.6. A global energy minimum exists for every convex polygonal cross-section

and every value of γ ∈ (0, π). Furthermore, the global energy minimum will be stable.

Proof. Using Theorem 4.1 we know that any configuration in which the fluid interface

intersects the interior of a straight edge will be unstable, and hence by definition cannot

be the global energy minimum. Thus, if a global energy minimum were to exist, it must be

a configuration that has two corners on the fluid interface. Since there are finitely many

configurations of this kind, one must be the global energy minimum. Hence, a global energy

minimum exists for every convex polygonal cross-section.

It remains to be shown that the global energy minimum is stable. We assume for the

sake of contradiction that the global energy minimum is not stable. Then, according to

Theorem 5.2 it must be that either

γ ≥ min(γ−1 , γ
−
2 ) or γ ≤ π −min(γ+1 , γ

+
2 ) (5.1)

where γ−1 , γ
−
2 , γ

+
1 and γ+2 are the floating angles (as defined in Section 5.2) associated with

the global energy minimum. It must then be that

γ ≥ γ−1 , γ ≥ γ−2 , γ ≤ π − γ+1 , or γ ≤ π − γ+2 .

We will show the existence of a small perturbation away from the global energy minimum

configuration that decreases energy for each of these four possibilities.

• If γ ≥ γ−1 we perturb the fluid interface downward on the right hand side of the

body, decreasing t∗1. This creates a new floating angle Ψ−1 that is less than γ−1 due to

convexity. Then

Ψ−1 < γ−1

⇐⇒ Ψ−1 < γ

⇐⇒ cos γ < cos Ψ−1

⇐⇒ σ1 − σ2
σ

<
~r′(t∗1)

‖~r′(t∗1)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

⇐⇒ −(σ1 − σ2)‖~r′(t∗1)‖+ σ

(
~r′(t∗1) · (~r(t∗2)− ~r(t∗1))
‖~r(t∗2)− ~r(t∗1)‖

)
> 0

⇐⇒ ∂E

∂t1

∣∣∣∣∣
(t∗1,t

∗
2)

> 0

and since t∗1 decreases, this perturbation decreases energy.
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• If γ ≥ γ−2 we perturb the fluid interface downward on the left hand side of the

body, increasing t∗2. This creates a new floating angle Ψ−2 that is less than γ−2 due to

convexity. Then

Ψ−2 < γ−2

⇐⇒ Ψ−2 < γ

⇐⇒ cos γ < cos Ψ−2

⇐⇒ σ1 − σ2
σ

<
~r′(t∗2)

‖~r′(t∗2)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

⇐⇒ (σ1 − σ2)‖~r′(t∗2)‖ − σ
(
~r′(t∗2) · (~r(t∗2)− ~r(t∗1))
‖~r(t∗2)− ~r(t∗1)‖

)
< 0

⇐⇒ ∂E

∂t2

∣∣∣∣∣
(t∗1,t

∗
2)

< 0

and since t∗2 increases, this perturbation decreases energy.

• If γ ≤ π − γ+1 we perturb the fluid interface upward on the right hand side of the

body, increasing t∗1. This creates a new floating angle Ψ+
1 that is less than γ+1 due to

convexity. Then

Ψ+
1 < γ+1

⇐⇒ π −Ψ+
1 > π − γ+1

⇐⇒ π −Ψ+
1 > γ

⇐⇒ ∂E

∂t1

∣∣∣∣∣
(t∗1,t

∗
2)

< 0

and since t∗1 increases, this perturbation decreases energy.

• If γ ≤ π − γ+2 we perturb the fluid interface upward on the left hand side of the

body, decreasing t∗2. This creates a new floating angle Ψ+
2 that is less than γ+2 due to

convexity. Then

Ψ+
2 < γ+2

⇐⇒ π −Ψ+
2 > π − γ+2

⇐⇒ π −Ψ+
2 > γ

⇐⇒ ∂E

∂t2

∣∣∣∣∣
(t∗1,t

∗
2)

> 0

and since t∗2 decreases, this perturbation decreases energy.
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In all four cases, there exists a small perturbation to a configuration giving lesser energy.

By Definition 2.3 the configuration cannot be a global energy minimum, but this is a

contradiction. Hence the global energy minimum is stable.

Remark 5.3. So far in this thesis, we have only considered bodies that are convex. One

might ask why this is the case, as the energy function introduced in Section 2.1 would

seemingly be applicable to any body of general shape, including those that are not convex.

However, we recall that in Section 2.1 we began with the assumption that the fluid interface

would intersect the body in two distinct points. This assumption was true for any strictly

convex body (and any contact angle different from 0 and π), and we were able to relax

this assumption to consider bodies that were only convex. However, a body that is not

convex will admit configurations in which the fluid interface would intersect the body in

more than two points, and consequently the energy function used in Section 2.1 would no

longer be appropriate.
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Chapter 6

Bodies in Three Dimensions

Until this point, we have discussed only infinitely long cylinders of constant cross-section,

thus reducing our considerations to two dimensions. However, the more physically intuitive

problem of a floating finite three-dimensional body is one of practical importance that many

researchers consider today. In this chapter we will recreate a result by Finn and Vogel from

reference [9] restricting our efforts to a specific type of three-dimensional body, but we will

then extend the logic to derive a similar result concerning a type of body that Finn and

Vogel do not consider.

6.1 Vertical Variations of a Body of Revolution

Consider a body of revolution generated by rotating the curve r(z) ≥ 0 from z = h1 to

z = h2 around the z-axis. (See Figure 6.1.) We note that we allow r(z) to be zero only

at the endpoints of the interval [h1, h2] and nowhere in the interior. When r(h1) 6= 0 or

r(h2) 6= 0 the body formed by rotation will not be closed; in such a case we will close the

body by affixing an appropriately sized circle to each open end of the body.

We will consider vertical variations of the body in terms of a single parameter h. The

exterior fluid surface is represented by the plane1 z = h, for some h ∈ [h1, h2]. The energy

function will be described by

E = S1σ1 + S2σ2 −Aσ (6.1)

where S1 is the area of the body in contact with the upper fluid 1, S2 is the area of the

body in contact with the lower fluid 2, and A is the area that is deleted from the fluid

1We have not made the simplifying assumption of neutral equilibrium as discussed earlier in Section

1.1. Instead, we have used Theorem 2.6 from reference [9] which tells us that since the fluid interface is

rotationally symmetric, it will be flat and hence is representable by a plane.
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r

z

Figure 6.1: A body of revolution generated by revolving the curve r(z) around the z-axis.

The solid pictured does not have the property that r(h1) = r(h2) = 0 and so it is considered

to have a circular disc on either end closing the surface.

interface by the body. Then

S1 =

∫ h2

h

2πr(z)

√
1 +

(
dr

dz

)2

dz + π(r(h2))
2,

S2 =

∫ h

h1

2πr(z)

√
1 +

(
dr

dz

)2

dz + π(r(h1))
2,

and

A = π(r(h))2.

So using equation (6.1) we have

E(h) = σ1

∫ h2

h

2πr(z)

√
1 +

(
dr

dz

)2

dz + π(r(h2))
2


+σ2

∫ h

h1

2πr(z)

√
1 +

(
dr

dz

)2

dz + π(r(h1))
2

− πσ(r(h))2.

The derivative of the energy function will then be

E ′(h) = 2πσ1

[
−r(h)

√
1 + (r′(h))2

]
+ 2πσ2

[
r(h)

√
1 + (r′(h))2

]
− 2πσr(h)r′(h)

= 2πr(h)
[
(σ2 − σ1)

√
1 + (r′(h))2 − σr′(h)

]
. (6.2)
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Since r(h) 6= 0 for h ∈ (h1, h2) we see that

E ′(h) = 0 ⇐⇒ (σ2 − σ1)
√

1 + (r′(h))2 = σr′(h)

⇐⇒ σ1 − σ2
σ

=
−r′(h)√

1 + (r′(h))2
. (6.3)

Next we see that

E ′′(h) = 2πr′(h)
[
(σ2 − σ1)

√
1 + (r′(h))2 − σr′(h)

]
+2πr(h)

[
(σ2 − σ1)r′(h)r′′(h)√

1 + (r′(h))2
− σr′′(h)

]
.

Assuming the body is in equilibrium, it must be that equation (6.3) is satisfied. Making

this assumption will allow us to simplify E ′′(h).

E ′′(h) = 2πr′(h) [σr′(h)− σr′(h)] + 2πr(h)

[
σr′(h)√

1 + (r′(h))2
· r′(h)r′′(h)√

1 + (r′(h))2
− σr′′(h)

]

= 2πr(h)r′′(h)

[
σ(r′(h))2

1 + (r′(h))2
− 1

]
= 2πσr(h)r′′(h)

[
(r′(h))2 − 1− (r′(h))2

1 + (r′(h))2

]
= −2πσr(h)r′′(h)

1 + (r′(h))2
. (6.4)

So, when a body is in an equilibrium configuration, the second derivative of the energy will

have a sign opposite to that of r′′(h).

Now, we consider the function

f(h) =
−r′(h)√

1 + (r′(h))2
.

We note that

f ′(h) =
−r′′(h)

√
1 + (r′(h))2 + r′(h)(1

2
)(1 + (r′(h))2)−

1
2 (2)r′(h)r′′(h)

1 + (r′(h))2

= r′′(h)

[
−(1 + (r′(h))2) + (r′(h))2

(1 + (r′(h))2)
3
2

]

= − r′′(h)

(1 + (r′(h))2)
3
2

.

We will now consider a smooth body which is strictly convex. Strict convexity implies

that r′′(h) < 0 for all h ∈ (h1, h2) and so f ′(h) > 0. Thus, f is increasing. In addition,

57



since the body is smooth, f will be continuous and it must be that r′(h) −→∞ as h −→ h1

and r′(h) −→ −∞ as h −→ h2, with r(h1) = r(h2) = 0. So, we see that

lim
h→h1

f(h) and lim
h→h2

f(h)

= lim
h→h1

−r′(h)√
1 + (r′(h))2

= lim
h→h2

−r′(h)√
1 + (r′(h))2

= lim
x→∞

−x√
1 + x2

= lim
x→−∞

−x√
1 + x2

=− 1 = + 1.

So for h ∈ (h1, h2), f(h) increases monotonically from −1 to 1, provided the body is strictly

convex and sufficiently smooth. So, when |σ1−σ2
σ
| < 1, there will exist a unique value hc

such that

f(hc) =
σ1 − σ2
σ

i.e. there exists a unique height hc at which E ′(hc) = 0. Furthermore, since the body is

strictly convex, we have that r′′(h) < 0 for all h ∈ (h1, h2) and so E ′′(hc) > 0 and thus

the equilibrium configuration is stable. Hence the unique height hc gives the global energy

minimum over the range of vertical positions.

Remark 6.1. So far, this is all in keeping with Finn and Vogel’s Lemma 2.1 in reference [9]

in which it is proved that when |σ1−σ2
σ
| < 1 there is a unique height h at which E ′(h) = 0

and this height gives the absolute minimum over the range of vertical positions. Finn

and Vogel’s lemma is more general than what we have done here thus far; they consider

a general strictly convex body in three dimensions where we have restricted ourselves to

considering only bodies that are rotationally symmetric. However, we will use this same

approach to make some conclusions about bodies that are not necessarily strictly convex,

something that Finn and Vogel have not considered in reference [9].

Now, we relax the requirement that the body be strictly convex. The body is still

rotationally symmetric, as well as sufficiently smooth, but we will allow the curve r(z) to

have any curvature: positive, negative or zero. Due to the smoothness of the body, we

still have that r(h1) = r(h2) = 0 and that r′(h) → ∞, r′(h) → −∞ as h approaches h1

and h2 respectively. Under these new assumptions, the range of f(h) = −r′(h)√
1+(r′(h))2

is still

(−1, 1) but we can no longer conclude that f is monotone. We can say for certain that

when |σ1−σ2
σ
| < 1, equilibrium configurations exist but we can no longer be certain how

many of them exist. In addition, we can also characterize the stability of any equilibrium

configuration defined by the height hc for any configuration in which r′′(hc) 6= 0. We recall

that E ′′(h) has sign opposite to that of r′′(h) and so for an equilibrium configuration where

the body is locally strictly convex, r′′(hc) < 0 and thus E ′′(hc) > 0 and so the equilibrium
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will be stable. On the other hand, if the body is locally strictly concave, r′′(hc) > 0 and

thus E ′′(hc) < 0 and so the equilibrium will be unstable. We highlight this new result in

the following theorem.

Theorem 6.1. Consider a smooth rotationally symmetric body created by rotating the curve

r(z) around the z-axis. When |σ1−σ2
σ
| < 1 there will exist at least one height hc in the range

of heights for which the body is in contact with the fluid interface that will be in equilibrium

with respect to vertical translations. Furthermore, if r′′(hc) < 0 the configuration will be

stable with respect to vertical translations. If r′′(hc) > 0 the configuration will be unstable

with respect to vertical translations.

Remark 6.2. Consider a body where r(h1) and r(h2) are not necessarily zero and we do not

have slopes as required for smoothness at h1 and h2. f(h) will not necessarily approach

−1 as h → h1 nor will it approach 1 as h → h2. So, we cannot guarantee equilibrium

configurations exist for every value of σ1−σ2
σ
∈ (−1, 1). However, if one does exist, it will

still obey the stability criteria as outlined in Theorem 6.1. We will see an example of a

body of this type in Subsection 6.2.1.

Remark 6.3. Defining γ to be the angle of contact between the fluid interface and the

body as measured in the lower fluid, and referring to Figure 6.2 we note that

−r′(h)√
1 + (r′(h))2

=
−r′(h)

‖(−r′(h),−1)‖

=
(−r′(h),−1) · (1, 0)

‖(−r′(h),−1)‖ ‖(1, 0)‖

=
−(r′(h), 1) · (1, 0)

‖(r′(h), 1)‖ ‖(1, 0)‖
= − cos(π − γ)

= cos γ

and so equation (6.3) is equivalent to the contact angle condition (as expected) for a

sufficiently smooth body.

Remark 6.4. In Remark 5.3 we discussed how our assumption that the fluid inter-

face would meet the body in only two points implicitly restricted our consideration of

two-dimensional bodies to those that were convex. However, in the discussion of three-

dimensional bodies in this chapter we did in fact consider bodies that were not convex.

Nonetheless, since we were considering only vertical variations of three-dimensional bodies

of revolution the bodies that were not convex did not create any complications. This is

due to the fact that the intersection between the fluid interface and the boundary of the

body will always be a single circle.
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r

z

r(z)−r(z)

z = h
γ

(r′(h), 1)

(1, 0)

Figure 6.2: The contact angle between the fluid interface and a three-dimensional body of

revolution as measured in the lower fluid.

6.2 Examples

We will now consider three examples of bodies of revolution to illustrate our findings from

the previous section.

6.2.1 A Vase-like Body

Consider the vase-like body created by rotating the curve

r(z) = cos(z) + 2, z ∈
[
−π

2
, 3π

2

]
about the z-axis and affixing a circle of radius 2 to either end. We have that r′(z) = − sin z

Figure 6.3: Our vase-like body of revolution considered in this example.
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and so f(h) = sinh√
1+sin2 h

. We then note that

f ′(h) =
cosh

(1 + sin2 h)
3
2

,

giving a critical point at π
2
. Evaluating f at the critical points and the endpoints of the

interval in consideration shows that for h ∈
(
−π

2
, 3π

2

)
, f(h) ∈

[
−
√
2

2
,
√
2
2

)
. So there will only

exist equilibrium configurations when we have that

−
√

2

2
≤ σ1 − σ2

σ
<

√
2

2
.

Let us take a specific value in this region, say σ1−σ2
σ

= 0, to illustrate the results found in

this chapter. σ1−σ2
σ

= 0 implies that γ = π
2

and it is clear from Figure 6.3 (and it can be

shown analytically) that two equilibria exist, one where the fluid interface meets the vase

at its widest point and another where the interface meets the vase at its thinnest point.

The configuration where the interface meets the vase at its widest point will be stable since

the body is strictly convex there, and the configuration where the interface meets the base

at its thinnest point will be unstable since the body is strictly concave there.

6.2.2 An Ellipsoid

In this subsection we will consider vertical variations of an ellipsoid of the form

r2

a2
+
z2

b2
= 1.

This is clearly a body of revolution since we can rewrite it as

r(z) = a

√
1− z2

b2
.

Differentiating once, we obtain

r′(z) = a

(
1

2

)(
1− z2

b2

)− 1
2

(−2z)

(
1

b2

)
=

−az
b
√
b2 − z2

and differentiating again gives

r′′(z) =
−ab
√
b2 − z2 + azb(1

2
)(b2 − z2)− 1

2 (−2z)

b2(b2 − z2)

=
−ab(b2 − z2)− abz2

b2(b2 − z2) 3
2

=
−ab

(b2 − z2) 3
2

< 0.
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Since r′′(z) < 0, using equation (6.4) gives that E ′′(h) > 0 for any configuration satisfying

the condition for equilibrium with respect to vertical variations, and thus the ellipsoid is

stable with respect to vertical variations, independent of the eccentricity.

We will now compare this result to an analogous two-dimensional problem; the problem

of an infinitely long cylinder with elliptical cross-section. This problem was considered

earlier in Section 3.1 where we found that for an equilibrium configuration of the ellipse

to be stable with respect to all variations, the major axis of the ellipse must be parallel to

the fluid interface. Here, we will restrict ourselves to considering only vertical variations

in order to compare with the ellipsoid.

To consider only vertical variations, we define t2 = π − t1 and restrict t1 so that

t1 ∈
(
−π

2
, π
2

)
. Then, a new energy function Ẽ is defined by

Ẽ = E(t1, π − t1)

and thus we see that

Ẽ ′(t∗1) =

[
∂E

∂t1
+
∂E

∂t2
· d
dt1

(π − t1)
] ∣∣∣∣∣

(t∗1,π−t∗1)

=

[
∂E

∂t1
− ∂E

∂t2

] ∣∣∣∣∣
(t∗1,π−t∗1)

and then that

Ẽ ′′(t∗1) =

[
∂2E

∂t21
+

∂2E

∂t1∂t2
· d
dt1

(π − t1)−
(

∂2E

∂t2∂t1
+
∂2E

∂t22
· d
dt1

(π − t1)
)] ∣∣∣∣∣

(t∗1,π−t∗1)

=

[
∂2E

∂t21
− 2

∂2E

∂t1∂t2
+
∂2E

∂t22

] ∣∣∣∣∣
(t∗1,π−t∗1)

.

We recall that in Section 3.1 (under the same assumption that t∗2 = π − t∗1) we found in

equation (3.2) that the second partial derivatives with respect to t1 and t2 would be equal.

So, we now have that

Ẽ ′′(t∗1) = 2

[
∂2E

∂t21
− ∂2E

∂t1∂t2

] ∣∣∣∣∣
(t∗1,π−t∗1)

.

Recalling our parametrization of the ellipse to be ~r(t) = (g cos t, h sin t) and using the
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derivatives of the energy function from Section 2.2 we see that[
∂2E

∂t21
− ∂2E

∂t1∂t2

] ∣∣∣∣∣
(t∗1,π−t∗1)

=
σ cos t∗1h

2

2g(g2 sin2 t∗1 + h2 cos2 t∗1)

[
g2 + (g2 − h2) cos2 t∗1

]
− σ

2g cos t∗1

[
−h2 cos2 t∗1

]
=

σh2 cos t∗1
2g

[
g2 + (g2 − h2) cos2 t∗1
g2 sin2 t∗1 + h2 cos2 t∗1

+ 1

]
=

σgh2 cos t∗1
g2 sin2 t∗1 + h2 cos2 t∗1

> 0.

Thus, any equilibrium configuration of the infinite elliptical cylinder will be stable with

respect to vertical variations, regardless of the eccentricity of the elliptical cross-section.

Remark 6.5. Since any equilibrium configuration of an infinite elliptical cylinder is stable

with respect to vertical variations, it means that when placed in an unstable equilibrium

the ellipse will move to a new configuration via rotation, not translation. Finn makes note

of this in reference [7].

Remark 6.6. In both the two-dimensional elliptical cylinder and three-dimensional ellip-

soid problems, we found that any equilibrium configuration would be stable with respect

to vertical variations regardless of the orientation of the (generating) ellipse. However,

for stability with respect to all perturbations in the two-dimensional problem, there was a

restriction on the orientation of the ellipse. The relationship between the two-dimensional

and three-dimensional problems suggests that a similar requirement might exist for stabil-

ity with respect to all variations in the three-dimensional case, but we will not investigate

that here.

6.2.3 A Body Comprised of Conical Frustums

Before we get to a body comprised of multiple conical frustums, we consider a single conical

frustum which is a body generated by rotating a line segment r(z) around the z-axis and

affixing two appropriately sized circles to either end. Vertical equilibrium configurations

can only occur on the smooth portion of the body, provided σ1−σ2
σ

is the very specific

value required to make the necessary contact angle with the frustum. However, even if

equilibria of this type exist, they will be unstable since the energy is constant while the

smooth portion of the frustum is in contact with the fluid interface.2 So, vertically stable

2Every configuration in which the frustum touches the fluid interface gives the same contact angle, so

E′(h) = 0 ∀h ∈ (h1, h2) implying that the energy is constant on that interval.
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γ+ γ+

γ− γ−

Figure 6.4: A body comprised of only conical frustums. The floating angles γ+ and γ− are

also depicted here.

equilibrium of a conical frustum must occur with either the base or top of the frustum

incident to the fluid interface.

Now, if we consider a body of revolution that is comprised of a “stack” of conical

frustums (see Figure 6.4) we note that vertically stable equilibrium can occur only at the

top or bottom of the body or where two frustums meet. Of course, this does not necessarily

imply that any configuration where the fluid interface coincides with the top of bottom of

one of the frustums is a vertically stable equilibrium. However, a condition guaranteeing

vertically stable equilibrium for such a configuration can be found and we will derive it

now.

Consider a body comprised of two conical frustums as shown in Figure 6.4. Let γ+ and

γ− be the angles that the body makes with the fluid interface as measured in the upper

and lower fluids respectively. Then recalling equation (6.2) we see that

E ′(h) = 2πr(h)
[
(σ2 − σ1)

√
1 + r′((h))2 − σr′(h)

]
= 2πσr(h)

√
1 + (r′(h))2

[
σ2 − σ1
σ

− r′(h)√
1 + (r′(h))2

]
= 2πσr(h)

√
1 + (r′(h))2 [− cos γ + cos Ψ]

where Ψ is the angle (as measured in the lower fluid) between the body and the fluid

interface. We then see that

Ψ < γ

⇐⇒ cos Ψ > cos γ

⇐⇒ E ′(h) > 0
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and that

Ψ > γ

⇐⇒ cos Ψ < cos γ

⇐⇒ E ′(h) < 0.

Then, starting at the configuration shown in Figure 6.4, if we raise the fluid interface

slightly, h increases and Ψ = π − γ+. For stability with respect to this perturbation we

must have that

π − γ+ < γ. (6.5)

Next, again starting at the configuration shown in Figure 6.4, if we lower the fluid interface

slightly, h decreases and Ψ = γ−. For stability with respect to this perturbation we must

have that

γ− > γ. (6.6)

Overall, for stability with respect to vertical variations we require both equations (6.5) and

(6.6) to be satisfied which is equivalent to the requirement that

π − γ+ < γ < γ−. (6.7)

Outside this interval, the configuration will be unstable.

Remark 6.7. It is interesting to note the similarities between the condition on the floating

angles for vertically stable equilibrium of a body comprised of conical frustums and the

condition on the floating angles for stable equilibrium of an infinitely long cylinder with

a polygonal cross-section (Theorem 5.2). The stability condition for the two-dimensional

polygonal cross-section reduces to condition (6.7) when the two upper floating angles are

equal and two lower angles are equal. This surprising likeness may have been expected

based on the similarities between the two problems: the presence of straight lines in the

body and the corners created when straight portions of the body meet. Nonetheless, it is

still quite remarkable that we obtain almost identical conditions on the floating angles in

both two- and three-dimensional problems.

Remark 6.8. In Section 6.1 we were able to determine the stability of any equilibrium

configuration (with respect to vertical variations only) of a body of revolution provided

that r′′ was not zero at the equilibrium height. The analysis of a single conical frustum

now allows us to make the conclusion that any body of revolution that is linear in some

neighbourhood of the equilibrium height will be unstable. This follows directly from the

fact that the energy E(h) is constant while the fluid interface intersects the linear portion

of the body. We are still unable to determine the vertical stability of an equilibrium where

r′′(hc) = 0 at only a point without looking at higher order derivatives of E(h).
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Chapter 7

Summary and Conclusions

In this thesis, we have looked at a variety of results involving both two- and three-

dimensional bodies which we summarize here.

1. Two-dimensional bodies

(a) We used a parametric representation of the cross-section of an infinitely long

cylinder to re-derive Young’s contact angle condition using a minimization of an

appropriate energy function. (See Section 2.1.)

(b) We continued to use the parametric representation of the cross-section of the

body to look at the second order terms of a series expansion of the energy

function (in Section 2.2) and used these terms to illustrate the stability of equi-

librium configurations of an infinite cylinder with an elliptical cross-section (in

Section 3.1).

(c) We proved that any equilibrium configuration in which the fluid interface in-

tersected the interior of a straight side of the body in a single point would be

unstable, allowing us to immediately ignore any such configuration when search-

ing for stable equilibria of a body. (See Section 4.1.)

(d) The theorem concerning the instability of configurations where the fluid inter-

face intersected the interior of a straight side was applied directly to polygonal

bodies in which all sides are straight, giving that a necessary condition for stable

equilibrium of a cylinder with polygonal cross-section is that the fluid interface

must intersect two corners of the polygon. (See Theorem 5.1.) Furthermore, we

derived a necessary and sufficient condition for stable equilibrium of polygonal

bodies (Theorem 5.2) and illustrated these results with several examples.

(e) We completed our discussion of polygonal bodies with some general results about

the existence and number of stable equilibrium configurations for polygonal
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bodies (Theorem 5.5) and a result proving the existence of a stable global energy

minimum for any convex polygonal cross-section. (See Section 5.5.)

2. Three-dimensional bodies

(a) We considered vertical perturbations of bodies of revolution, proving the ex-

istence of at least one equilibrium height for any sufficiently smooth body of

revolution. (See Theorem 6.1.) In that same theorem we also classified the

stability of any equilibrium height of a body of revolution based on the local

curvature of the body.

(b) We looked at several examples of bodies of revolution, including an ellipsoid

(in Subsection 6.2.2) and a body composed of conical frustums (in Subsection

6.2.3).

Also, in our discussion of three-dimensional bodies we made note in two of our examples

(the body composed of conical frustums and the ellipsoid) that similarities existed between

the three-dimensional bodies and their two-dimensional counterpart. This suggests that

even though problems involving infinitely long cylinders of constant cross-section are es-

sentially unrealistic, they could potentially provide valuable insight into the behaviour of

an analogous body in three dimensions. Due to the fact that three-dimensional bodies are

often difficult to work with, an analysis of a related two-dimensional body could be a good

place to begin when considering a three-dimensional shape.
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Appendix A

Series Expansion of the Energy

Function

In Section 2.1 we found that our energy function E was given by equation (2.1). Then, in

Sections 2.1 and 2.2 we used a series expansion of this energy function. In this appendix

we will derive in detail the series expansion used in those two sections. To expand in series,

we will work with individual terms of the energy function separately.

We begin with
√
x′(t)2 + y′(t)2. Using Taylor series expansions for functions x(t) and y(t)

we have that√
x′(t)2 + y′(t)2

=

√
[x′(t∗1) + x′′(t∗1)(t− t∗1) +O ((t− t∗1)2)]2 + [y′(t∗1) + y′′(t∗1)(t− t∗1) +O ((t− t∗1)2)]2

=
√
x′(t∗1)

2 + 2x′(t∗1)x
′′(t∗1)(t− t∗1) + y′(t∗1)

2 + 2y′(t∗1)y
′′(t∗1)(t− t∗1) +O ((t− t∗1)2)

=
√
x′(t∗1)

2 + y′(t∗1)
2 + 2 [x′(t∗1)x

′′(t∗1) + y′(t∗1)y
′′(t∗1)] (t− t∗1) +O ((t− t∗1)2)

=

√
‖~r′(t∗1)‖2 + 2

[
~r′(t∗1) · ~r′′(t∗1)

]
(t− t∗1) +O ((t− t∗1)2)

= ‖~r′(t∗1)‖

√√√√
1 +

2
[
~r′(t∗1) · ~r′′(t∗1)

]
‖~r′(t∗1)‖2

(t− t∗1) +O ((t− t∗1)2).

Then using the known series
√

1 + u = 1 + u
2

+O(u2) we obtain√
x′(t)2 + y′(t)2

= ‖~r′(t∗1)‖
[

1 +
~r′(t∗1) · ~r′′(t∗1)
‖~r′(t∗1)‖2

(t− t∗1) +O
(
(t− t∗1)2

)]
.
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We now integrate to obtain∫ t1

t∗1

√
x′(t)2 + y′(t)2dt

=

∫ t1

t∗1

‖~r′(t∗1)‖
[

1 +
~r′(t∗1) · ~r′′(t∗1)
‖~r′(t∗1)‖2

(t− t∗1) +O
(
(t− t∗1)2

)]
dt

= ‖~r′(t∗1)‖(t1 − t∗1) +
~r′(t∗1) · ~r′′(t∗1)

2‖~r′(t∗1)‖
(t1 − t∗1)2 +O

(
(t1 − t∗1)3

)
.

In a similar fashion we can obtain that∫ t2

t∗2

√
x′(t)2 + y′(t)2dt

= ‖~r′(t∗2)‖(t2 − t∗2) +
~r′(t∗2) · ~r′′(t∗2)

2‖~r′(t∗2)‖
(t2 − t∗2)2 +O

(
(t2 − t∗2)3

)
.

Next, we define the function g(t1, t2) to be given by

g(t1, t2) =

√
[x(t2)− x(t1)]

2 + [y(t2)− y(t1)]
2

and we need a series expression for g(t∗1, t
∗
2)− g(t1, t2). We note that

g(t∗1, t
∗
2)− g(t1, t2)

= − [g(t1, t2)− g(t∗1, t
∗
2)]

= − ∂g
∂t1

∣∣∣
(t∗1,t

∗
2)

(t1 − t∗1)−
∂g

∂t2

∣∣∣
(t∗1,t

∗
2)

(t2 − t∗2)−
1

2

∂2g

∂t21

∣∣∣
(t∗1,t

∗
2)

(t1 − t∗1)2

− ∂2g

∂t1∂t2

∣∣∣
(t∗1,t

∗
2)

(t1 − t∗1)(t2 − t∗2)−
1

2

∂2g

∂t22

∣∣∣
(t∗1,t

∗
2)

(t2 − t∗2)2 +O
(
‖(t1, t2)− (t∗1, t

∗
2)‖3

)
using a Taylor series expansion in two variables. To determine the series expansion we

need to calculate the necessary derivatives of g.

∂g

∂t1

∣∣∣
(t∗1,t

∗
2)

=
−x′(t∗1)[x(t2)− x(t1)]− y′(t1)[y(t2)− y(t1)]√

(x(t2)− x(t1))2 + (y(t2)− y(t1))2

=
−~r′(t∗1) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

∂g

∂t2

∣∣∣
(t∗1,t

∗
2)

=
x′(t∗2)[x(t2)− x(t1)] + y′(t2)[y(t2)− y(t1)]√

(x(t2)− x(t1))2 + (y(t2)− y(t1))2

=
~r′(t∗2) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖
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∂2g

∂t21

∣∣∣
(t∗1,t

∗
2)

=
−x′′(t∗1)[x(t∗2)− x(t∗1)] + x′(t∗1)

2 − y′′(t∗1)[y(t∗2)− y(t∗1)] + y′(t∗1)
2√

[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]

2

− [x′(t∗1)[x(t∗2)− x(t∗1)] + y′(t∗1)[y(t∗2)− y(t∗1)]]
2

[[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]

2]
3
2

=
−~r′′(t∗1) · [~r(t∗2)− ~r(t∗1)] + ‖~r′(t∗1)‖2

‖~r(t∗2)− ~r(t∗1)‖
− (~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])2

‖~r(t∗2)− ~r(t∗1)‖3

∂2g

∂t22

∣∣∣
(t∗1,t

∗
2)

=
x′′(t∗2)[x(t∗2)− x(t∗1)] + x′(t∗2)

2 + y′′(t∗1)[y(t∗2)− y(t∗1)] + y′(t∗2)
2√

[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]

2

− [x′(t∗2)[x(t∗2)− x(t∗1)] + y′(t∗2)[y(t∗2)− y(t∗1)]]
2

[[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]

2]
3
2

=
~r′′(t∗2) · [~r(t∗2)− ~r(t∗1)] + ‖~r′(t∗2)‖2

‖~r(t∗2)− ~r(t∗1)‖
− (~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])2

‖~r(t∗2)− ~r(t∗1)‖3

∂2g

∂t1∂t2

∣∣∣
(t∗1,t

∗
2)

=
−x′(t∗1)x′(t∗2)− y′(t∗1)y′(t∗2)√

[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]

2

+
[x′(t∗1)(x(t∗2)− x(t∗1)) + y′(t∗1)(y(t∗2)− y(t∗1))] · [x′(t∗2)(x(t∗2)− x(t∗1))]

[[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]]

3
2

+
[x′(t∗1)(x(t∗2)− x(t∗1)) + y′(t∗1)(y(t∗2)− y(t∗1))] · [y′(t∗2)y(t∗2)− y(t∗1))]

[[x(t∗2)− x(t∗1)]
2 + [y(t∗2)− y(t∗1)]]

3
2

=
−~r′(t∗1) · ~r′(t∗2)
‖~r(t∗2)− ~r(t∗1)‖

+
(~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])(~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])

‖~r(t∗2)− ~r(t∗1)‖3
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Using equation (2.1) and putting all of the pieces together gives us our series expansion

for the energy function to be given by

E(t1, t2)− E(t∗1, t
∗
2)

=

[
σ
~r′(t∗1) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

− (σ1 − σ2)‖~r′(t∗1)‖
]

(t1 − t∗1)

+

[
(σ1 − σ2)‖~r′(t∗2)‖ − σ

~r′(t∗2) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

]
(t2 − t∗2)

+

[
σ

[
(~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])2

2‖~r(t∗2)− ~r(t∗1)‖3
− ‖

~r′(t∗1)‖2 − ~r′′(t∗1) · [~r(t∗2)− ~r(t∗1)]
2‖~r(t∗2)− ~r(t∗1)‖

]

−(σ1 − σ2)
~r′(t∗1) · ~r′′(t∗1)

2‖~r′(t∗1)‖

]
(t1 − t∗1)2

+σ

[
~r′(t∗1) · ~r′(t∗2)
‖~r(t∗2)− ~r(t∗1)‖

−(~r′(t∗1) · [~r(t∗2)− ~r(t∗1)])(~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])
‖~r(t∗2)− ~r(t∗1)‖3

]
(t1 − t∗1)(t2 − t∗2)

+

[
σ

[
(~r′(t∗2) · [~r(t∗2)− ~r(t∗1)])2

2‖~r(t∗2)− ~r(t∗1)‖3
− ‖

~r′(t∗2)‖2 − ~r′′(t∗2) · [~r(t∗2)− ~r(t∗1)]
2‖~r(t∗2)− ~r(t∗1)‖

]

+(σ1 − σ2)
~r′(t∗2) · ~r′′(t∗2)

2‖~r′(t∗2)‖

]
(t2 − t∗2)2 +O

(
‖(t1 − t∗1, t2 − t∗2)‖3

)
.

This is the series expansion of the energy function that we use in Sections 2.1 and 2.2.
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Appendix B

Reasons for Excluding γ = 0, π

In Remark 2.1 from Section 2.1 we noted that the cases where γ was equal to 0 or π could

be ignored without consequence. For strictly convex bodies, the reason was clear, but for

bodies which are only convex, the reasoning is not as obvious. When γ is 0 or π, the body

is contained beneath or above the fluid interface, respectively, with either a single point

or a straight side touching the fluid interface. If the body touches only at a single point,

we use the same reasoning as a body that is strictly convex to conclude that the body is

unstable. If the body touches along a straight side and is beneath the fluid interface (see

Figure B.1) we note that since γ = 0 then cos(0) = σ1−σ2
σ
⇒ σ1 − σ2 = σ and thus

E = l1σ1 + l2σ2 − l1σ
= l1(σ1 − σ) + l2σ2

= (l1 + l2)σ2

where l1 and l2 sum to the perimeter of the body. Thus the energy of the body touching

the fluid interface along the straight edge is the same as the energy it would possess if it

were entirely underneath the fluid interface. Pulling the body slightly downward gives the

existence of a small perturbation to a configuration with the same energy and thus the

configuration is unstable. If the body touches the fluid interface along a straight side and

is above the fluid interface, we note that since γ = π, cosπ = σ1−σ2
σ
⇒ σ1 − σ2 = −σ ⇒

σ1 = σ2 − σ and thus

E = l1σ1 + l2σ2 − l2σ
= l1σ1 + l2(σ2 − σ)

= (l1 + l2)σ1.

Appendix B is reprinted with permission from reference [14]. The material presented here has had

some minor additions from what appears in that reference.
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σ1

σ2

σ

Figure B.1: A body beneath the fluid interface, yet touching the fluid interface along a

straight side.

Thus the energy of the body touching the fluid interface along the straight edge is the

same as the energy it would possess if it were entirely above the fluid interface. Pulling the

body slightly upward gives the existence of a small perturbation to a configuration with

the same energy and thus the configuration is unstable.
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Appendix C

Reason for Considering Only Contact

Configurations

In Remark 2.2 it was noted that Finn’s Lemma 1.1 in reference [7] gave proof of why it was

unnecessary to consider configurations of strictly convex bodies that were not in contact

with the fluid interface. In this appendix, we will prove a result similar in character to that

of Finn; our result will prove that a convex polygonal body in any stable configuration will

have less energy than the configurations totally above or totally below the fluid interface.

However before we get to the main result of this appendix, we will first prove a lemma for

later use.

Lemma C.1. Any configuration for which there exists a small perturbation to the “totally

above” configuration will possess an energy less than or equal to the energy of the “totally

above” configuration. Similarly, any configuration for which there exists a small pertur-

bation to the “totally below” configuration will possess an energy less than or equal to the

energy of the “totally below” configuration.

Proof. Any configuration for which there exists a small perturbation to the “totally above”

configuration will be contained primarily in the σ1 medium, touching the fluid interface

either at one point or where one flat side is incident with the interface as shown in Figure

C.1. The energy of the body touching the fluid interface will be given by

E = l1σ1 + l2σ2 − l3σ

where l1, l2 are the lengths touching the σ1 and σ2 media respectively and l3 is the length

removed from the fluid interface by the body. Clearly, l1 + l2 is the perimeter of the body.

The energy of the “totally above” configuration is then given by

Ea = (l1 + l2)σ1

Appendix C is reprinted with permission from reference [14].
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Figure C.1: The figure shows that when there exists a small perturbation to the “totally

above” configuration, the body is contained mostly in the σ1 fluid with either one point or

a straight side touching the fluid interface.

and so we see that

E − Ea = l1σ1 + l2σ2 − l3σ − (l1 + l2)σ1

= l2(σ2 − σ1)− l3σ.

In the case where the body touches the fluid interface in only one point, we have that

l2 = l3 = 0 implying that E = Ea. In the case where the body touches the fluid interface

along a flat side of the body, we have that l2 = l3 6= 0 and so

E − Ea = l2(σ2 − σ1 − σ)

= −σl2(cos γ + 1)

< 0

since γ 6= 0, π, and thus through both cases we see that E ≤ Ea which proves the first half

of the result. The case for configurations near “totally below” can be proved similarly.

We now make use of the prior lemma to prove the main result of this appendix.

Lemma C.2. A convex polygonal body in any stable configuration will have less energy

than the configurations totally above or totally below the fluid interface.

Proof. Since the polygonal body is in a stable configuration, we know that there must

be two corners on the fluid interface (from Theorem 5.1) and the stability condition for

polygonal cross-sections must hold. That is, we must have

π −min(γ+1 , γ
+
2 ) < γ < min(γ−1 , γ

−
2 )

where the four angles γ+1 , γ+2 , γ−1 and γ−2 are as defined earlier in the stability condition

for polygonal cross-sections (Theorem 5.2).

We will consider vertical variations of the body only, in terms of a single parameter

h. We will define h = 0 to be the stable configuration while h > 0 corresponds to the

body being pulled upward and h < 0 corresponds to the body being pulled downward. We
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also define four angles Ψ+
1 , Ψ+

2 , Ψ−1 and Ψ−2 all of which are functions of h and are shown

in Figure C.2. We note that the energy function will be continuous while the body is in

contact with the fluid interface; there may be jumps in energy as the body is raised or

lowered beyond contact with the fluid interface.

Ψ+
2 Ψ+

1

Ψ−
1Ψ−

2

some other sides

some other sides

Figure C.2: The four angles Ψ+
1 , Ψ+

2 , Ψ−1 and Ψ−2 (which are functions of h).

Due to convexity, both Ψ−1 (h) and Ψ−2 (h) are non-decreasing as h increases, and both

Ψ+
1 (h) and Ψ+

2 (h) are non-increasing as h increases. (Due to the non-smooth nature of the

body, these angles may not change continuously.)

We first define the function

f(h) = min{Ψ−1 (h),Ψ−2 (h)}
and we note that

f(0) = min{Ψ−1 (0),Ψ−2 (0)} = min{γ−1 , γ−2 }.
Since Ψ−1 (h) and Ψ−2 (h) are non-decreasing, f(h) is also non-decreasing and thus we have

for all h > 0 that

f(0) ≤ f(h)

=⇒ min{γ−1 , γ−2 } ≤ min{Ψ−1 (h),Ψ−2 (h)}
=⇒ γ < min{Ψ−1 (h),Ψ−2 (h)}
=⇒ γ < Ψ−1 (h),Ψ−2 (h).

Then, since h > 0, this corresponds to pulling the body upward and we note that

∂E

∂t1

∣∣
(t∗1,t

∗
2)
< 0

⇐⇒ (σ1 − σ2)(−‖~r′(t∗1)‖) + σ

(
~r′(t∗1) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

)
< 0

⇐⇒
~r′(t∗1)

‖~r′(t∗1)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

<
σ1 − σ2
σ

⇐⇒ cos Ψ−1 (h) < cos γ

⇐⇒ γ < Ψ−1 (h)
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and that

∂E

∂t2

∣∣
(t∗1,t

∗
2)
> 0

⇐⇒ (σ1 − σ2)(‖~r′(t∗2)‖)− σ
(
~r′(t∗2) · [~r(t∗2)− ~r(t∗1)]
‖~r(t∗2)− ~r(t∗1)‖

)
> 0

⇐⇒
~r′(t∗2)

‖~r′(t∗2)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

<
σ1 − σ2
σ

⇐⇒ cos Ψ−2 (h) < cos γ

⇐⇒ γ < Ψ−2 (h)

and so since γ < Ψ−1 (h) and γ < Ψ−2 (h) for h > 0 we then have that when h > 0 (which

corresponds to pulling the body up) ∂E
∂t1

∣∣
(t∗1,t

∗
2)
< 0 and ∂E

∂t2

∣∣
(t∗1,t

∗
2)
> 0. Then since pulling the

body vertically up decreases t∗1 and increases t∗2, this leads to increasing energy for h > 0.

Next we define the function

g(h) = π −min{Ψ+
1 (h),Ψ+

2 (h)}

and we note that

g(0) = π −min{Ψ+
1 (0),Ψ+

2 (0)} = π −min{γ+1 , γ+2 }.

Since Ψ+
1 (h) and Ψ+

2 (h) are non-increasing, g(h) is non-decreasing and thus we have for all

h < 0 that

g(h) ≤ g(0)

=⇒ π −min{Ψ+
1 (h),Ψ+

2 (h)} ≤ π −min{γ+1 , γ+2 }
=⇒ π −min{Ψ+

1 (h),Ψ+
2 (h)} < γ

=⇒ max{π −Ψ+
1 (h), π −Ψ+

2 (h)} < γ

=⇒ π −Ψ+
1 (h), π −Ψ+

2 (h) < γ.

Then, since h < 0, this corresponds to pulling the body downward and we note that

∂E

∂t1

∣∣
(t∗1,t

∗
2)
> 0

⇐⇒
~r′(t∗1)

‖~r′(t∗1)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

>
σ1 − σ2
σ

⇐⇒ cos(π −Ψ+
1 (h)) > cos γ

⇐⇒ π −Ψ+
1 (h) < γ
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and that

∂E

∂t2

∣∣
(t∗1,t

∗
2)
< 0

⇐⇒
~r′(t∗2)

‖~r′(t∗2)‖
· ~r(t∗2)− ~r(t∗1)
‖~r(t∗2)− ~r(t∗1)‖

>
σ1 − σ2
σ

⇐⇒ cos(π −Ψ−2 (h)) > cos γ

⇐⇒ π −Ψ−2 (h) < γ

and so since γ > π − Ψ+
1 (h) and γ > π − Ψ+

2 (h) for h < 0 we then have that when h < 0

(which corresponds to pulling the body down) ∂E
∂t1

∣∣
(t∗1,t

∗
2)
> 0 and ∂E

∂t2

∣∣
(t∗1,t

∗
2)
< 0. Then since

pulling the body vertically down increases t∗1 and decreases t∗2, this leads to decreasing

energy for h < 0.

Thus, we have concluded that for h < 0 the energy is decreasing and for h > 0 the

energy is increasing. However, this will only be true for h such that the body remains in

contact with the fluid interface. In addition, we note that the energy derivatives will exist

everywhere except at a finite number of h values corresponding to configurations where the

fluid interface intersects a corner of the body. Using the prior lemma, we can now give a

qualitative sketch of the energy as a function of h from which it is clear that the claim is

true. (See Figure C.3.)

This lemma tells us that when we are searching for floating configurations of a polygonal

body, any stable configuration will always have less energy than configurations not in

contact with the fluid interface. This is the reason that we proceed to study configurations

touching the fluid interface while disregarding the configurations not in contact.

E(h)

h
0

Figure C.3: A qualitative sketch of the energy as a function of h. Note that the dotted

sections of the graph indicate that the energy will be constant at a value greater than or

equal to the value indicated.
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Appendix D

Intersection of an Ellipse and a Line

in Equal Contact Angles

Lemma D.1. If a line intersects an ellipse at two distinct points with equal contact angles

different from 0 and π, then the line must be parallel to one of the axes of the ellipse.

Proof. Consider a counter-clockwise parametrization of an ellipse

~r(t) = (g cos t, h sin t)

for t ∈ [0, 2π] with g 6= h. Consider any line intersecting the ellipse in two points. Let

t1 and t2 be the parameter values in [0, 2π] with t1 < t2 such that ~r(t1) and ~r(t2) are the

two points of intersection between the line and the ellipse. Consider the two tangent lines

to the ellipse at the two points of intersection. For now, we will assume that the tangent

lines are not parallel and will therefore intersect at one point P . We consider the triangle

formed between the point P and the two points of intersection. Since the line meets the

ellipse in equal contact angles, the triangle must be isosceles. We let the length of the two

equal sides be λ. (See Figure D.1.) We can then express the point P in two different ways,

P = ~r(t1) + λ ·
~r′(t1)

‖~r′(t1)‖

= (g cos t1, h sin t1) + λ · (−g sin t1, h cos t1)√
g2 sin2 t1 + h2 cos2 t1

Appendix D is reprinted with permission from reference [14].
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P

γ

γ

γ

γ

~r(t1)

~r(t2)

λ

λ

Figure D.1: The ellipse-line intersection in consideration showing the intersection of the

tangents at point P .

and

P = ~r(t2)− λ ·
~r′(t2)

‖~r′(t2)‖

= (g cos t2, h sin t2)− λ ·
(−g sin t2, h cos t2)√
g2 sin2 t2 + h2 cos2 t2

.

Together these give

(g cos t1, h sin t1) +
λ(−g sin t1, h cos t1)√
g2 sin2 t1 + h2 cos2 t1

= (g cos t2, h sin t2)−
λ(−g sin t2, h cos t2)√
g2 sin2 t2 + h2 cos2 t2

.

(D.1)

Then taking the scalar product of equation (D.1) with the vector (h cos t1, g sin t1) gives

gh+ λ · (0) = gh(cos t1 cos t2 + sin t1 sin t2) + λgh
(cos t1 sin t2 − cos t2 sin t1)√

g2 sin2 t2 + h2 cos2 t2

1 = cos(t1 − t2) +
λ sin(t2 − t1)√

g2 sin2 t2 + h2 cos2 t2
. (D.2)

Now, taking the scalar product of equation (D.1) with the vector (h cos t2, g sin t2) gives

gh(cos t1 cos t2 + sin t1 sin t2) + λgh
(cos t1 sin t2 − cos t2 sin t1)√

g2 sin2 t1 + h2 cos2 t1
= gh+ λ · (0)

cos(t1 − t2) +
λ sin(t2 − t1)√

g2 sin2 t1 + h2 cos2 t1
= 1. (D.3)

Then subtracting (D.2) and (D.3) gives that

sin(t2 − t1)√
g2 sin2 t2 + h2 cos2 t2

− sin(t2 − t1)√
g2 sin2 t1 + h2 cos2 t1

= 0

sin(t2 − t1) ·
[

1√
g2 sin2 t2 + h2 cos2 t2

− 1√
g2 sin2 t1 + h2 cos2 t1

]
= 0.
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This implies that either sin(t2 − t1) = 0 or g2 sin2 t1 + h2 cos2 t1 = g2 sin2 t2 + h2 cos2 t2. If

sin(t2 − t1) = 0, then t2 = t1 + π. Substituting t2 = t1 + π into equation (D.1) we have

(g cos t1, h sin t1) = (−g cos t1,−h sin t1)

(g cos t1, h sin t1) = ~0

which is a contradiction. Hence it must be that

g2 sin2 t1 + h2 cos2 t1 = g2 sin2 t2 + h2 cos2 t2

(g2 − h2) sin2 t2 = (g2 − h2) sin2 t1

sin t1 = ± sin t2.

If sin t1 = sin t2 then the y-components of the two points of intersection are the same and

so the intersecting line must be horizontal. If sin t1 = − sin t2 then the y-components of the

two points of intersection are negatives of each other. The corresponding x-components

must also be the same; if not, then t2 = t1 + π which would give the same contradiction as

before. Thus in this case the intersecting line is vertical.

Thus the intersecting line is either vertical or horizontal and so it will be parallel to one

of the axes of the ellipse.

In the case where the tangents are parallel, the angle of contact must be π
2
. The line

will consequently be incident to either the major or minor axis of the ellipse and hence the

result remains true in this special case.
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Appendix E

Miscellaneous Detailed Calculations

from Section 5.3

In this appendix we will show in detail the various calculations used in Section 5.3 which

are not shown in that section for the sake of continuity and clarity.

E.1 The Triangle

In Subsection 5.3.1, Tables 5.1, 5.2, and 5.3 were given comparing the energies of the six

different configurations for the triangular cross-section for each value of γ ∈ (0, π), one

table for each of the three different cases. In this section, we give a detailed account of

how these tables came to be. We first recall that the energies of the six configurations were

given by

E1a = (a+ b)σ1 + cσ2 − cσ
E1b = cσ1 + (a+ b)σ2 − cσ
E2a = (a+ c)σ1 + bσ2 − bσ
E2b = bσ1 + (a+ c)σ2 − bσ
E3a = (b+ c)σ1 + aσ2 − aσ
E3b = aσ1 + (b+ c)σ2 − aσ

and we start by directly comparing each pair of energies.1

1Recall that the lengths of the sides of the triangles are a, b and c and they satisfy the relationship

0 ≤ a ≤ b ≤ c. In addition, due to the triangle inequality, we have that a+ b > c, a+ c > b, and b+ c > a.
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E1a − E1b = (a+ b)σ1 + cσ2 − cσ − cσ1 − (a+ b)σ2 + cσ

= (a+ b− c)σ1 − (a+ b− c)σ2
= σ(a+ b− c) cos γ

• When 0 < γ < π
2

we have that E1a > E1b.

• When γ = π
2

we have that E1a = E1b.

• When π
2
< γ < π we have that E1a < E1b.

E1a − E2a = (a+ b)σ1 + cσ2 − cσ − (a+ c)σ1 − bσ2 + bσ

= (b− c)σ1 + (c− b)σ2 + (b− c)σ
= (b− c)(σ1 − σ2 − σ)

= −(c− b)σ [cos γ + 1]

≤ 0

• Equality is only possible when b = c but we will ignore this case because when b = c

configurations 1a and 2a are the same. Hence we have that E1a < E2a for all γ in

(0, π).

E1a − E2b = (a+ b)σ1 + cσ2 − cσ − bσ1 − (a+ c)σ2 + bσ

= aσ1 − cσ − aσ2 + bσ

= a(σ1 − σ2) + (b− c)σ

= aσ

[
cos γ +

b− c
a

]

• When 0 < γ < arccos
(
c−b
a

)
we have that E1a > E2b.

• When γ = arccos
(
c−b
a

)
we have that E1a = E2b.

• When arccos
(
c−b
a

)
< γ < π we have that E1a < E2b.

E1a − E3a = (a+ b)σ1 + cσ2 − cσ − (b+ c)σ1 − aσ2 + aσ

= (a− c)σ1 + (c− a)σ2 + (a− c)σ
= (a− c) [σ1 − σ2 + σ]

= −σ(c− a) [cos γ + 1]

≤ 0
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• Equality is only possible when a = c but we will ignore this case because when a = c

the triangle becomes equilateral and so 1a and 3a are the same. Hence we have that

E1a < E3a for all γ in (0, π).

E1a − E3b = (a+ b)σ1 + cσ2 − cσ − σ1 − (b+ c)σ2 + aσ

= b(σ1 − σ2) + (a− c)σ

= bσ

[
cos γ +

a− c
b

]
• When 0 < γ < arccos

(
c−a
b

)
we have that E1a > E3b.

• When γ = arccos
(
c−a
b

)
we have that E1a = E3b.

• When arccos
(
c−a
b

)
< γ < π we have that E1a < E3b.

E1b − E2a = cσ1 + (a+ b)σ2 − cσ − (a+ c)σ1 − bσ2 + bσ

= a(σ2 − σ1) + (b− c)σ

= aσ

[
− cos γ +

b− c
a

]
• When 0 < γ < arccos

(
b−c
a

)
we have that E1b < E2a.

• When γ = arccos
(
b−c
a

)
we have that E1b = E2a.

• When arccos
(
b−c
a

)
< γ < π we have that E1b > E2a.

E1b − E2b = cσ1 + (a+ b)σ2 − cσ − bσ1 − (a+ c)σ2 + bσ

= (c− b)σ1 + (b− c)σ2 + (b− c)σ
= σ(c− b) [cos γ − 1]

≤ 0

• Equality is only possible when b = c but we will ignore this case because when b = c

configurations 1b and 2b are the same. Hence we have that E1b < E2b for all γ in

(0, π).

E1b − E3a = cσ1 + (a+ b)σ2 − cσ − (b+ c)σ1 − aσ2 + aσ

= bσ2 − bσ1 + (a− c)σ

= bσ

[
− cos γ +

a− c
b

]
• When 0 < γ < arccos

(
a−c
b

)
we have that E1b < E3a.
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• When γ = arccos
(
a−c
b

)
we have that E1b = E3a.

• When arccos
(
a−c
b

)
< γ < π we have that E1b > E3a.

E1b − E3b = cσ1 + (a+ b)σ2 − cσ − aσ1 − (b+ c)σ2 + aσ

= (c− a)σ1 − (c− a)σ2 − (c− a)σ

= σ(c− a) [cos γ − 1]

≤ 0

• Equality is only possible when a = c but we will ignore this case because when a = c

the triangle becomes equilateral so configurations 1b and 3b are the same. Hence we

have that E1b < E3b for all γ in (0, π).

E2a − E2b = (a+ c)σ1 + bσ2 − bσ − bσ1 − (a+ c)σ2 + bσ

= (a+ c− b)σ1 + (b− a− c)σ2
= (a+ c− b)(σ1 − σ2)
= σ(a− b+ c) cos γ

• When 0 < γ < π
2

we have that E2a > E2b.

• When γ = π
2

we have that E2a = E2b.

• When π
2
< γ < π we have that E2a < E2b.

E2a − E3a = (a+ c)σ1 + bσ2 − bσ − (b+ c)σ1 − aσ2 + aσ

= (a− b)σ1 + (b− a)σ2 + (a− b)σ
= −σ(b− a) [cos γ + 1]

≤ 0

• Equality is only possible when a = b but we will ignore this case because when a = b

configurations 2a and 3a are the same. Hence, E2a < E3a for all γ in (0, π).

E2a − E3b = (a+ c)σ1 + bσ2 − bσ − aσ1 − (b+ c)σ2 + aσ

= cσ1 − cσ2 + (a− b)σ

= cσ

[
cos γ +

a− b
c

]
• When 0 < γ < arccos

(
b−a
c

)
we have that E2a > E3b.

• When γ = arccos
(
b−a
c

)
we have that E2a = E3b.
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• When arccos
(
b−a
c

)
< γ < π we have that E2a < E3b.

E2b − E3a = bσ1 + (a+ c)σ2 − bσ − (b+ c)σ1 − aσ2 + aσ

= c(σ2 − σ1) + (a− b)σ

= cσ

[
− cos γ +

a− b
c

]
• When 0 < γ < arccos

(
a−b
c

)
we have that E2b > E3a.

• When γ = arccos
(
a−b
c

)
we have that E2b = E3a.

• When arccos
(
a−b
c

)
< γ < π we have that E2b < E3a.

E2b − E3b = bσ1 + (a+ c)σ2 − bσ − aσ1 − (b+ c)σ2 + aσ

= (b− a) [σ1 − σ2 − σ]

= σ(b− a) [cos γ − 1]

≤ 0

• Equality is only possible when a = b but we will ignore this case because when a = b

configurations 2b and 3b are the same. Hence, E2b < E3b for all γ in (0, π).

E3a − E3b = (b+ c)σ1 + aσ2 − aσ − aσ1 − (b+ c)σ2 + aσ

= (b+ c− a)(σ1 − σ2)
= σ(b+ c− a) cos γ

• When 0 < γ < π
2

we have that E3a > E3b.

• When γ = π
2

we have that E3a = E3b.

• When π
2
< γ < π we have that E3a < E3b.

Having now compared each of the energies directly it is apparent that there are six “special”

values of γ at which the relationships between various energies change. We need to deduce

the relationships between these special values as well as their relationships to 0, π
2
, and to

π. These special values are

arccos

(
c− b
a

)
arccos

(
b− c
a

)
= π − arccos

(
c− b
a

)
arccos

(
c− a
b

)
arccos

(
a− c
b

)
= π − arccos

(
c− a
b

)
arccos

(
b− a
c

)
arccos

(
a− b
c

)
= π − arccos

(
b− a
c

)
.
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We see that

c− b
a
− c− a

b
=

bc− b2
ab

− ac− a2
ab

=
1

ab

[
−b2 + bc− ac+ a2

]
=

1

ab
[(a+ b)(a− b)− c(a− b)]

=
a− b
ab

[a+ b− c]

=
b− a
ab

[c− (a+ b)]

≤ 0

since b ≥ a and a+ b > c. Thus we have that

c− b
a
≤ c− a

b
.

We also see that

c− a
b
− b− a

c
=

c2 − ac
bc

− b2 − ab
bc

=
1

bc
[(c− b)(c+ b) + a(b− c)]

=
c− b
bc

[c+ b− a]

≥ 0

and so we have that
c− a
b
≥ b− a

c
.

However, comparing c−b
a

and b−a
c

will not be as direct. We start by noting that

c− b
a
− b− a

c
=

c2 − bc
ac

− ab− a2
ac

=
1

ac

[
c2 − bc− ab+ a2

]
=

1

ac

[
a2 − b(a+ c) + c2

]
and so there will be three different cases:

b <
a2 + c2

a+ c
=⇒ c− b

a
>
b− a
c

b =
a2 + c2

a+ c
=⇒ c− b

a
=
b− a
c

b >
a2 + c2

a+ c
=⇒ c− b

a
<
b− a
c
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which implies that

b <
a2 + c2

a+ c
=⇒ b− a

c
<
c− b
a
≤ c− a

b

b =
a2 + c2

a+ c
=⇒ b− a

c
=
c− b
a
≤ c− a

b

b >
a2 + c2

a+ c
=⇒ c− b

a
<
b− a
c
≤ c− a

b

and so finally we have that

b <
a2 + c2

a+ c
=⇒ arccos

(
c− a
b

)
≤ arccos

(
c− b
a

)
< arccos

(
b− a
c

)
b =

a2 + c2

a+ c
=⇒ arccos

(
c− a
b

)
≤ arccos

(
c− b
a

)
< arccos

(
b− a
c

)
b >

a2 + c2

a+ c
=⇒ arccos

(
c− a
b

)
≤ arccos

(
b− a
c

)
< arccos

(
c− b
a

)
and so we can now determine the relationships between the energies of the six configurations

for each of the three cases (which are dependant on the value of b) and for each value of

γ. There are of course three cases, b < a2+c2

a+c
, b = a2+c2

a+c
and b > a2+c2

a+c
. The relationships

between the various energies as determined in this section can now be summarized in Tables

5.1, 5.2, and 5.3 shown earlier in Subsection 5.3.1.

E.2 The Square

In Subsection 5.3.2, Table 5.4 was given comparing the energies of the three different

configurations for the square cross-section for each value of γ ∈ (0, π). In this section, we

give a detailed account of how this table was determined. We first recall that the energies

of the three configurations were given by

E1 = 3σ1 + σ2 − σ
E2 = 2σ1 + 2σ2 −

√
2σ

E3 = σ1 + 3σ2 − σ

and we start by directly comparing each pair of energies.

E1 − E2 = 3σ1 + σ2 − σ − 2σ1 − 2σ2 +
√

2σ

= σ1 − σ2 + (
√

2− 1)σ

= σ[cos γ +
√

2− 1]

Calculations from Section E.2 are reprinted with permission from reference [14].
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• When γ < arccos(1−
√

2) we have that E1 > E2.

• When γ = arccos(1−
√

2) we have that E1 = E2.

• When γ > arccos(1−
√

2) we have that E1 < E2.

E1 − E3 = 3σ1 + σ2 − σ − σ1 − 3σ2 + σ

= 2σ1 − 2σ2

= 2σ cos γ

• When γ < π
2

we have that E1 > E3.

• When γ = π
2

we have that E1 = E3.

• When γ < π
2

we have that E1 < E3.

E2 − E3 = 2σ1 + 2σ2 −
√

2σ − σ1 − 3σ2 + σ

= σ1 − σ2 + (1−
√

2)σ

= σ[cos γ + 1−
√

2]

• When γ < arccos(
√

2− 1) we have that E2 > E3.

• When γ = arccos(
√

2− 1) we have that E2 = E3.

• When γ > arccos(
√

2− 1) we have that E2 < E3.

The relationships between the three energies change depending on the value of γ. The

relationships between the three energies for each value of γ ∈ (0, π) are summarized in

Table 5.4 shown in Subsection 5.3.2.

E.3 The Rectangle

In Subsection 5.3.3, Tables 5.6, 5.7, and 5.8 were given comparing the energies of the five

different configurations for the rectangular cross-section for each value of γ ∈ (0, π) for

three different cases. In this section, we give a detailed account of how these tables came

to be. We first recall that the energies of the five configurations were given by2

E1 = (b+ 2)σ1 + bσ2 − bσ
E2 = bσ1 + (b+ 2)σ2 − bσ
E3 = (2b+ 1)σ1 + σ2 − σ
E4 = σ1 + (2b+ 1)σ2 − σ
E5 = (b+ 1)(σ1 + σ2)−

√
1 + b2σ

2Recall that the rectangle had side lengths 1 and b > 1.

93



and now they can directly compared.

E1 − E2 = (2 + b)σ1 + bσ2 − bσ − bσ1 − (2 + b)σ2 + bσ

= 2σ1 − 2σ2

= 2σ cos γ

• When 0 < γ < π
2

we have that E1 > E2.

• When γ = π
2

we have that E1 = E2.

• When π
2
< γ < π we have that E1 < E2.

E1 − E3 = (2 + b)σ1 + bσ2 − bσ − σ1 − (2b+ 1)σ1 − σ2 + σ

= (1− b)σ1 + (b− 1)σ2 + (1− b)σ
= σ(b− 1)[

σ2 − σ1
σ

− 1]

= σ(b− 1)[− cos γ − 1]

< 0

• So E1 < E3 for all values of γ in (0, π).

E1 − E4 = (2 + b)σ1 + bσ2 − bσ − σ1 − (2b+ 1)σ2 + σ

= (b+ 1)(σ1 − σ2) + (1− b)σ

= σ(b+ 1)[cos γ +
1− b
b+ 1

]

• When 0 < γ < arccos
(
b−1
b+1

)
we have that E1 > E4.

• When γ = arccos
(
b−1
b+1

)
we have that E1 = E4.

• When arccos
(
b−1
b+1

)
< γ < π we have that E1 < E4.

E1 − E5 = (2 + b)σ1 + bσ2 − bσ − (b+ 1)σ1 − (b+ 1)σ2 +
√

1 + b2σ

= σ1 − σ2 + (
√

1 + b2 − b)σ1
= σ[cos γ +

√
1 + b2 − b]

• When 0 < γ < arccos
(
b−
√

1 + b2
)

we have that E1 > E5.

• When γ = arccos
(
b−
√

1 + b2
)

we have that E1 = E5.

• When arccos
(
b−
√

1 + b2
)
< γ < π we have that E1 < E5.
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E2 − E3 = bσ1 + (2 + b)σ2 − bσ − (2b+ 1)σ1 − σ2 + σ

= (−b− 1)σ1 + (1 + b)σ2 + (1− b)σ

= (b+ 1)σ

[
σ2 − σ1
σ

+
1− b
1 + b

]
= (b+ 1)σ

[
− cos γ +

1− b
b+ 1

]
• When 0 < γ < arccos

(
1−b
b+1

)
we have that E2 < E3.

• When γ = arccos
(
b−
√

1 + b2
)

we have that E2 = E3.

• When arccos
(
b−
√

1 + b2
)
< γ < π we have that E2 > E3.

E2 − E4 = bσ1 + (2 + b)σ2 − bσ − σ1 − (2b+ 1)σ2 + σ

= (b− 1)σ1 + (1− b)σ2 + (1− b)σ
= (b− 1)[σ1 − σ2 − σ]

= (b− 1)σ[cos γ − 1]

< 0

• So E2 < E4 for all values of γ in (0, π).

E2 − E5 = bσ1 + (2 + b)σ2 − bσ − (b+ 1)σ1 − (b+ 1)σ2 +
√

1 + b2σ

= −σ1 + σ2 + (
√

1 + b2 − b)σ
= σ[− cos γ +

√
1 + b2 − b]

• When 0 < γ < arccos(
√

1 + b2 − b) we have that E2 < E5.

• When γ = arccos(
√

1 + b2 − b) we have that E2 = E5.

• When arccos(
√

1 + b2 − b) < γ < π we have that E2 > E5.

E3 − E4 = (2b+ 1)σ1 + σ2 − σ − σ1 − (2b+ 1)σ2 + σ

= (2b+ 1)(σ1 − σ2) + (σ2 − σ1)
= (σ1 − σ2)[2b+ 1− 1]

= 2bσ cos γ

• When 0 < γ < π
2

we have that E3 > E4.
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• When γ = π
2

we have that E3 = E4.

• When π
2
< γ < π we have that E3 < E4.

E3 − E5 = (2b+ 1)σ1 + σ2 − σ + (b+ 1)(σ1 + σ2) +
√

1 + b2σ

= bσ1 − bσ2 + (
√

1 + b2 − 1)σ

= bσ

[
cos γ +

√
1 + b2 − 1

b

]

• When 0 < γ < arccos
(

1−
√
1+b2

b

)
we have that E3 > E5.

• When γ = arccos
(

1−
√
1+b2

b

)
we have that E3 = E5.

• When arccos
(

1−
√
1+b2

b

)
< γ < π we have that E3 < E5.

E4 − E5 = σ1 + (2b+ 1)σ2 − σ − (b+ 1)(σ1 + σ2) +
√

1 + b2σ

= b(σ2 − σ1) + (
√

1 + b2 − 1)σ

= σb

[
− cos γ +

√
1 + b2 − 1

b

]

• When 0 < γ < arccos
(√

1+b2−1
b

)
we have that E4 < E5.

• When γ = arccos
(√

1+b2−1
b

)
we have that E4 = E5.

• When arccos
(√

1+b2−1
b

)
< γ < π we have that E4 > E5.

After having compared the energies of the five configurations directly it is clear that the re-

lationships between the various energies change depending on the value of γ. To determine

these relationships, it will be necessary to know the relationships between the following

nine values:

0, −1,
b− 1

b+ 1
,

b−
√
b2 + 1,

1− b
b+ 1

, 1,

√
b2 + 1− b, 1−

√
b2 + 1

b
, and

√
1 + b2 − 1

b
.

Then we will need to compare the inverse cosine of these values to determine the order of

the angles at which the relationships between the energies change.
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We have that
√
b2 + 1 − b, b−1

b+1
, and

√
1+b2−1
b

are all positive and less than 1. We first see

that

√
1 + b2 − b−

√
1 + b2 − 1

b
=

b
√

1 + b2 − b2 −
√

1 + b2 + 1

b

=
(b− 1)

√
1 + b2 + (1− b2)

b

=
(b− 1)

b

[√
1 + b2 − (b+ 1)

]
< 0

and that
√

1 + b2 − 1

b
− b− 1

b+ 1
=

1

(b+ 1)b

[
(
√

1 + b2 − 1)(b+ 1)− (b− 1)b
]

=
1

(b+ 1)b

[
b
√

1 + b2 +
√

1 + b2 − b− 1− b2 + b
]

=
1

(b+ 1)b

[√
1 + b2(b+ 1)− (b2 + 1)

]
=

√
1 + b2

(b+ 1)b

[
b+ 1−

√
b2 + 1

]
> 0

so we have that
√

1 + b2− b <
√
1+b2−1
b

and
√
1+b2−1
b

> b−1
b+1

. However, setting
√

1 + b2− b =
b−1
b+1

we see that we do in fact get a solution:

√
1 + b2 − b =

b− 1

b+ 1

(
√

1 + b2 − b)(b+ 1) = b− 1

b
√

1 + b2 +
√

1 + b2 − b2 − b = b− 1
√

1 + b2(b+ 1) = b2 + 2b− 1

(1 + b2)(b+ 1)2 = (b2 + 2b− 1)2

2b2 + 2b = 2b3 + 2b2 − 4b

2b3 = 6b

b2 = 3 since b 6= 0

b =
√

3 since b > 1.

We can then show that

• when 1 < b <
√

3 we have that
√

1 + b2 − b > b−1
b+1

,

• when b =
√

3 we have that
√

1 + b2 − b = b−1
b+1

, and
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• when b >
√

3 we have that
√

1 + b2 − b < b−1
b+1

.

So, we have that

1 < b <
√

3 ⇒ b− 1

b+ 1
<

√
1 + b2 − b <

√
1 + b2 − 1

b

b =
√

3 ⇒ b− 1

b+ 1
=

√
1 + b2 − b <

√
1 + b2 − 1

b

b >
√

3 ⇒
√

1 + b2 − b <
b− 1

b+ 1
<

√
1 + b2 − 1

b
.

Given these relations, we can now write out the relationships between the energies of the

five configurations for each value of γ and each of the three cases for the value of b in Tables

5.6, 5.7 and 5.8, shown in Subsection 5.3.3.

E.4 The Regular Pentagon

In Subsection 5.3.4, Table 5.10 was given comparing the energies of the four different

configurations for the pentagonal cross-section for each value of γ ∈ (0, π). In this section,

we give a detailed account of how this table was determined. We first recall that the

energies of the four configurations were given by

E1 = 4σ1 + σ2 − σ
E2 = 3σ1 + 2σ2 − ϕσ
E3 = 2σ1 + 3σ2 − ϕσ
E4 = σ1 + 4σ2 − σ

and we start by directly comparing each pair of energies.

E1 − E2 = 4σ1 + σ2 − σ − 3σ1 − 2σ2 + ϕσ

= σ1 − σ2 + (ϕ− 1)σ

= σ

[
cos γ +

1

ϕ

]
• When 0 < γ < π − arccos

(
1
ϕ

)
we have that E1 > E2.

• When γ = π − arccos
(

1
ϕ

)
we have that E1 = E2.

• When π − arccos
(

1
ϕ

)
< γ < π we have that E1 < E2.
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E1 − E3 = 4σ1 + σ2 − σ − 2σ1 − 3σ2 + ϕσ

= 2σ1 − 2σ2 + (ϕ− 1)σ

= 2σ

[
cos γ +

ϕ− 1

2

]
• When 0 < γ < 3π

5
we have that E1 > E3.

• When γ = 3π
5

we have that E1 = E3.

• When 3π
5
< γ < π we have that E1 < E3.

E1 − E4 = 4σ1 + σ2 − σ − σ1 − 4σ2 + σ

= 3(σ1 − σ2)
= 3σ cos γ

• When 0 < γ < π
2

we have that E1 > E4.

• When γ = π
2

we have that E1 = E4.

• When π
2
< γ < π we have that E1 < E4.

E2 − E3 = 3σ1 + 2σ2 − ϕσ − 2σ1 − 3σ2 + ϕσ

= σ1 − σ2
= σ cos γ

• When 0 < γ < π
2

we have that E2 > E3.

• When γ = π
2

we have that E2 = E3.

• When π
2
< γ < π we have that E2 < E3.

E2 − E4 = 3σ1 + 2σ2 − ϕσ − σ1 − 4σ2 + σ

= 2σ1 − 2σ2 + (1− ϕ)σ

= 2σ

[
cos γ − ϕ− 1

2

]
• When 0 < γ < 2π

5
we have that E2 > E4.

• When γ = 2π
5

we have that E2 = E4.

• When 2π
5
< γ < π we have that E2 < E4.
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E3 − E4 = 2σ1 + 3σ2 − ϕσ − σ1 − 4σ2 + σ

= σ1 − σ2 + (1− ϕ)σ

= σ1 − σ2 −
1

ϕ
σ

= σ

[
cos γ − 1

ϕ

]
• When 0 < γ < arccos

(
1
ϕ

)
we have that E3 > E4.

• When γ = arccos
(

1
ϕ

)
we have that E3 = E4.

• When arccos
(

1
ϕ

)
< γ = π we have that E3 < E4.

The relationships between the four energies change depending on the value of γ. The

relationships between the four energies can now be summarized in Table 5.10, shown in

Subsection 5.3.4.

E.5 The Regular Hexagon

In Subsection 5.3.5, Table 5.12 was given comparing the energies of the five different con-

figurations for the hexagonal cross-section for each value of γ ∈ (0, π). In this section, we

give a detailed account of how this table was determined. We first recall that the energies

of the five configurations were given by

E1 = 5σ1 + σ2 − σ
E2 = 4σ1 + 2σ2 −

√
3σ

E3 = 3σ1 + 3σ2 − 2σ

E4 = 2σ1 + 4σ2 −
√

3σ

E5 = σ + 5σ2 − σ

and we start by directly comparing each pair of energies.

E1 − E2 = 5σ1 + σ2 − σ − 4σ1 − 2σ2 +
√

3σ

= σ1 − σ2 + (
√

3− 1)σ

= σ
[
cos γ +

√
3− 1

]

• When 0 < γ < arccos
(
1−
√

3
)

we have that E1 > E2.

• When γ = arccos
(
1−
√

3
)

we have that E1 = E2.
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• When arccos
(
1−
√

3
)
< γ < π we have that E1 < E2.

E1 − E3 = 5σ1 + σ2 − σ − 3σ1 − 3σ2 + 2σ

= 2σ1 − 2σ2 + σ

= 2σ

[
cos γ +

1

2

]
• When 0 < γ < 2π

3
we have that E1 > E3.

• When γ = 2π
3

we have that E1 = E3.

• When 2π
3
< γ < π we have that E1 < E3.

E1 − E4 = 5σ1 + σ2 − σ − 2σ1 − 4σ2 +
√

3σ

= 3σ1 − 3σ2 + (
√

3− 1)σ

= 3σ

[
cos γ +

√
3− 1

3

]

• When 0 < γ < arccos
(

1−
√
3

3

)
we have that E1 > E4.

• When γ = arccos
(

1−
√
3

3

)
we have that E1 = E4.

• When arccos
(

1−
√
3

3

)
< γ < π we have that E1 < E4.

E1 − E5 = 5σ1 + σ2 − σ − σ1 − 5σ2 + σ

= 4(σ1 − σ2)
= 4σ cos γ

• When 0 < γ < π
2

we have that E1 > E5.

• When γ = π
2

we have that E1 = E5.

• When π
2
< γ < π we have that E1 < E5.

E2 − E3 = 4σ1 + 2σ2 −
√

3σ − 3σ1 − 3σ2 + 2σ

= σ1 − σ2 + (2−
√

3)σ

= σ
[
cos γ + 2−

√
3
]

• When 0 < γ < arccos
(√

3− 2
)

we have that E2 > E3.
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• When γ = arccos
(√

3− 2
)

we have that E2 = E3.

• When arccos
(√

3− 2
)
< γ < π we have that E2 < E3.

E2 − E4 = 4σ1 + 2σ2 −
√

3σ − 2σ1 − 4σ2 +
√

3σ

= 2(σ1 − σ2)
= 2σ cos γ

• When 0 < γ < π
2

we have that E2 > E4.

• When γ = π
2

we have that E2 = E4.

• When π
2
< γ < π we have that E2 < E4.

E2 − E5 = 4σ1 + 2σ2 −
√

3σ − σ1 − 5σ2 + σ

= 3σ1 − 3σ2 + (1−
√

3)σ

= 3σ

[
cos γ +

1−
√

3

3

]

• When 0 < γ < arccos
(√

3−1
3

)
we have that E2 > E5.

• When γ = arccos
(√

3−1
3

)
we have that E2 = E5.

• When arccos
(√

3−1
3

)
< γ < π we have that E2 < E5.

E3 − E4 = 3σ1 + 3σ2 − 2σ − 2σ1 − 4σ2 +
√

3σ

= σ1 − σ2 + (
√

3− 2)σ

= σ
[
cos γ +

√
3− 2

]
• When 0 < γ < arccos

(
2−
√

3
)

we have that E3 > E4.

• When γ = arccos
(
2−
√

3
)

we have that E3 = E4.

• When arccos
(
2−
√

3
)
< γ < π we have that E3 < E4.

E3 − E5 = 3σ1 + 3σ2 − 2σ − σ1 − 5σ2 + σ

= 2σ1 − 2σ2 − σ
= 2σ

[
cos γ − 1

2

]
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• When 0 < γ < π
3

we have that E3 > E5.

• When γ = π
3

we have that E3 = E5.

• When π
3
< γ < π we have that E3 < E5.

E4 − E5 = 2σ1 + 4σ2 −
√

3σ − σ1 − 5σ2 + σ

= σ1 − σ2 + (1−
√

3)σ

= σ
[
cos γ + 1−

√
3
]

• When 0 < γ < arccos
(√

3− 1
)

we have that E4 > E5.

• When γ = arccos
(√

3− 1
)

we have that E4 = E5.

• When arccos
(√

3− 1
)
< γ < π we have that E4 < E5.

Again, the relationships between the energies of the various configurations change depend-

ing on the value of γ. The relationships can now be summarized in Table 5.12 shown in

Subsection 5.3.5.
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Appendix F

Proof of Lemma F.1 used in Result

5.5

Consider an n-sided regular polygon. We let the number of vertices interior to fluid 1 be

m. Clearly, to have floating configurations in contact with the fluid interface, we must

have that 0 ≤ m ≤ n − 2. We wish to establish expressions for the four floating angles

γ+1 , γ
+
2 , γ

−
1 and γ−2 as functions of the vertex parameter m, which we will do in the proof

of the following lemma.

Lemma F.1. The floating angles for an n-sided regular polygon in a configuration with

two corners on the fluid interface and m vertices above the fluid interface in fluid 1 will be

γ+1 = γ+2 = π
(

1− m

n

)
and γ−1 = γ−2 =

π

n
(m+ 2)

for integer m, 0 ≤ m ≤ n− 2.

Proof. Due to the symmetry of the regular polygon, it is clear that we will have that

γ+1 = γ+2 and γ−1 = γ−2 . The remainder of the proof will focus on γ+1 and γ−1 and we will

prove the claim by induction using two base cases and an inductive step.

Base Case: m=0

When there are no vertices in fluid 1, the configuration is as depicted in Figure F.1. We

have that

γ+1 = π γ−1 =
2π

n

= π

(
1− 0

n

)
= (0 + 2)

π

n

= π
(

1− m

n

)
= (m+ 2)

π

n

Appendix F is reprinted with permission from reference [14].
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and so the result is true for the first base case.

π

2π
n

Figure F.1: The upper floating angle is clearly π and the lower floating angle is found using

the fact that the n exterior angles (which are all equal) must sum to 2π.

Base Case: m=1

When there is only one vertex in fluid 1, the configuration is as depicted in Figure F.2. We

then have that

γ+1 = π − α γ−1 =
2π

n
+ α

= π − π

n
=

2π

n
+
π

n

= π

(
1− 1

n

)
= (1 + 2)

π

n

= π
(

1− m

n

)
= (m+ 2)

π

n

and so the result is true for the second base case as well.

2π
n

2π
n

α
αα

Figure F.2: Since the polygon is regular, the portion above the fluid interface is an isosceles

triangle, and consequently the two base angles are the same. We call this angle α, which

we find to be equal to π
n

. We can then use it to determine the floating angles γ+1 and γ−1 .

Inductive Step

We will assume that the result is true when there are m vertices in fluid 1, and we wish to

show that it is true when there are m + 2 vertices in fluid 1. Consider the configuration
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β

α

2π
n

Figure F.3: The depiction of a body floating with m+ 2 vertices in fluid 1. The dotted line

represents the placement of the fluid interface when there were m vertices in fluid 1.

with m + 2 vertices in fluid 1, depicted in Figure F.3. By the induction hypothesis, we

have that α = γ−1 (m) and β = γ+1 (m) and thus

α = (m+ 2)
π

n
β = π

(
1− m

n

)
.

Then since we have parallel horizontal lines, it is clear that

γ−1 =
2π

n
+ α

=
2π

n
+ (m+ 2)

π

n

= (m+ 2 + 2)
π

n

and that

γ+1 = α + β − γ−1
= (m+ 2)

π

n
+ π

(
1− m

n

)
− (m+ 4)

π

n

= π

(
1− m

n
− 2

n

)
= π

(
1− m+ 2

n

)
and so the the result is true for m+ 2. By induction, this completes the proof.
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