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ABSTRACT 

 

Once a structure comes into service, the most important concern is its ability to keep 

providing steady and safe service. Assessment of structural health is a tool that can be used to 

ensure such. However, most of the available evaluation strategies in structural health 

monitoring are labor intensive such as visual inspection, which is highly economically 

inefficient, especially for large scale structures. As a result, structural health monitoring 

(SHM) and smart sensor techniques are of great interest that have brought the attention of 

scientists recently. 

As an economic surface sensor for large scale structural surface, a soft elastomeric 

capacitor (SEC) was proposed in previous studies. However, the previous application of the 

SEC network was only able to monitor uniaxial strain filed due to the implicit directional 

strain measurement. To extend the applicability of the SEC sensor network into real-time 

biaxial strain field monitoring, an algorithm has been developed in this thesis based on a 

strain mapping approach using least square estimator. With the algorithm formulation based 

upon the classical plate theory, the biaxial sensing ability of the SEC sensor network with the 

proposed algorithm has been verified on both a rectangular cantilever plate under three types 

of load cases and an irregular laminated cantilever plate under simulated wind pressure. The 

proposed algorithm showed a computing speed around 0.1 s in a specific application which 

enables real-time monitoring and illustrated stability under noise level up to 5%. It can be 

concluded that the proposed algorithm possess the potential to be applied for wind turbine 

monitoring. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The deterioration status of structures in service has been always one of the most 

important information for stability, serviceability and safety concern for civil, mechanical 

and aerospace systems. Particularly for large-scale civil infrastructures, traditional labor-

intensive actions, such as visual inspection, are economically inefficient and ineffective when 

the damage is subtle. Also, they can only obtain structural degradation condition at a low 

frequency. Therefore, the attention on studying and applying structural health monitoring 

(SHM) techniques for damage detection becomes important [1]. 

A fundamental challenge in SHM is to capture local damage in spite of the wide 

range of geometries and time scales [2]. In the past three decades, most SHM systems 

focused on identifying the existence of structural defects on a more global scale through 

structural dynamic characteristics, while localizing damages and assessing the severity 

through non-destructive evaluation (NDE) [1, 2]. However, NDE methods are generally 

uneconomical and, therefore, can only be applied locally and temporarily. Although some 

other SHM techniques have achieved adequate precision in localizing damage based on static 

monitoring systems, their application on large-scale surfaces is still costly due to the increase 

in the number of sensors [3].  

 

1.2 Sensing Technology in Static SHM system 

Static-based sensing methods have a wide range of applications in SHM systems for 

damage detection and localization. Various types of sensor have been developed and applied. 
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They are generally embedded into the monitored object or installed onto the surface. Those 

sensors are discussed following as embedded sensors, surface-bonded sensors and soft 

elastomeric capacitors. 

 

1.2.1 Embedded sensors 

As one of the most popular embedded sensors, fiber optic sensor (FOS) possesses 

more advantages including flexibility, suitability for embedment and immunity to 

electromagnetic interference [4] than traditional sensors, such as resistive strain gauges. 

Piezoelectric polymers are also commonly used for embedded sensors including 

piezoceramic (PZT) and polyvinylidene fluoride (PVDF) which are beneficial for their 

electromechanical coupling mechanism [5], as well as for their low cost material and simple 

fabrication [6]. Unfortunately, the embedment of these sensors is an inevitable expensive 

process and that is accompanied with a decrease in constructability and difficulties in the 

repair and replacement of the sensor after installation. In addition, problems would occur on 

the functional aspect. On one hand, the embedment brings a big challenge for the mechanical 

and chemical durability of the sensor itself. For instance, Habel et al. looked into the 

chemical threats to three polymer coatings for FOSs in the high-alkaline environment in 

concrete and found that the softening of the coating still occurred after 15 days of 

embedment in concrete despite the fact that the fluorine-thermoplastic showed better 

durability than acrylate and polyimide [7, 8]. On the other hand, the embedment introduces 

discontinuity in the geometry and material properties of the monitored element which could 

possibly lead to a loss in the capacity of the structure. 
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1.2.2 Surface-bonded sensors 

Sensors mounted onto the surface of the structure may avoid possible material defects 

caused by embedment. Both FOSs and PZT sensors can also be bonded on structural surface. 

However, bonding reliability tends to be a common challenge for surface-mounted sensors. 

Li et al. stated the strain transmission loss from substrate through bonding layer to the fiber 

bragg grating (FBG) becomes considerable when the substrate is thin or its material has low 

modulus [9]. They have also proposed a correction formula for this phenomenon. Similarly, 

Lin et al. pointed out the weakness of the bonding layer in durability and acoustic impedance 

matching of piezoelectric wafer active sensors (PWAS) which potentially can lead to a loss 

in accuracy of damage detection [10]. They solved the problem by developing an in-situ 

fabrication method to remove the need for a bonding layer. 

Sensors installed on structural surface can only provide localized information at the 

monitored point. To capture enough information for damage detection and localization of 

large structural surface, the amount of sensors needed could rapidly grow and be followed by 

economic concerns. Low-cost piezoelectric polymers material has also been widely used for 

surface bonded sensing devices. 

 

1.2.3 Soft elastomeric capacitors 

To reduce the cost and improve the applicability of a sensing system on large-scale 

structures, the attempt could be to either increase the efficiency of the sensor network or 

lower the price and to improve the applicability of the applied sensors. As a promising 

solution, a soft capacitive sensor (Fig. 1.1) made from soft-stretchable dielectric polymer and 

based on the direct capacitance-strain relationship has been proposed as a strain gauge with 

advantages including economic efficiency, easiness for installation on various surface 
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conditions, customizable shape to fit any surface, simplicity in data processing and high 

durability [3, 11, 12]. This capacitance-based sensor, termed soft elastomeric capacitor or 

sensing patch, was assembled in a matrix form to build a bio-inspired sensing system termed 

sensing skin [12]. The SEC demonstrated its capability to detect and localize cracks on both 

large-scale concrete and steel beams [12]. 

 

Figure 1.1: Soft Elastomeric Capacitor [12] 

Although the SEC and sensing skin exhibited promising damage detection and 

localization abilities, unlike other strain sensor such as FBG and traditional resistance train 

gauge, it measures the strain with implicit information on its direction due to its sensing 

mechanism. A schematic representation is presented in Fig. 1.2. The sensing principle of 

SEC can be expressed by Eq. 1.1 (where   is the capacitance value,       is the sensor 

area,  is the thickness of the dielectric of SEC,               is the vacuum permittivity 

and    is the polymer relative permittivity) [3, 11, 12]: 
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Figure 1.2: Schematic representation of the SEC [13] 

By representing the small change of capacitance in a differential form with respect to 

the SEC geometry, the following equation can be obtained: 

   (
  

 
 

  

 
 

  

 
)                                                            

Further, Eq. 1.2 can be rewritten with three directional strains (  ,    and   ) involved: 

  

 
                                                                           

Based on the Hook’s Law and the assumption that the SEC subjected to no external 

force in the vertical   direction, the equation of plane stress is (where   is the Poisson’s ratio 

of the polymer): 

    
 

   
                                                                    

 

Therefore, by substituting Eq. 1.4 into Eq. 1.3, the following equation can be gained: 

  

 
                                                                            

Where   denoted as the gauge factor (    for the current SEC [13]): 
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When measuring the change in the capacitance corresponding to the local 

deformation of the monitored surface, the SEC collects implicit directional strain data in 

terms of the addition of the two biaxial strains.  

 

1.3 Problem Statement 

In previous research, the SEC has performed well on both static and dynamic 

monitoring of beam structures under pure bending condition without explicit directional 

information. It was, however, able to only measure strain values to adequate accuracy with 

the assumption for unidirectional strain field [13, 14]. The information of the direction of the 

local strain is indispensable to determine multidirectional strain-stress states, local and global 

deformation and material state, etc., for structural condition assessment and health prognosis. 

For example, Liu et al. used real time directional strain information from strain gauges and 

strain gauge rosettes to assess the damage state and estimate the residual useful life of 

composite specimens in uniaxial and biaxial loading fatigue test with a proposed condition-

based prognosis model [15]. In general, the directional strain data is commonly used for 

structural analysis involved with multi-axial strain fields. Therefore, to expand the 

application of the SEC from structural surface in uniaxial strain field to structural surface 

subjected to more complex deformation state, an algorithm to decompose the implicit strain 

measurement from the SEC into biaxial strain values is needed. Such algorithm is expected 

to perform in real-time considering the economic benefits related to operation and 

maintenance that can be achieved with a timely damage detection [16, 17]. 
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1.4 Objective 

The primary objective of this thesis is to develop an algorithm to extract the 

bidirectional strain data from the implicit strain measurement of the SEC in order to improve 

the applicability of the SEC.  

 

1.5 Methodology 

To decompose the biaxial strain measurements from the SEC signal for plate and 

shell structures, such as a wind turbine blade, strain functions are developed and fitted using 

a least square estimator (LSE) based on the Kirchhoff plate theory for a thin plate structure. 

The method requires the enforcement of the strain boundary condition for the biaxial strain 

decomposition and the displacement and rotation boundary condition for the deflection shape 

reconstruction. 

 

1.6 Scope 

Multiple mathematical formulations for bidirectional strain decomposition are 

developed and simulated. Initial investigations are conducted on cantilever plate structures 

under different loading conditions. The performance of the developed algorithms with 

different formulation are assessed and compared. 

Further, several variables including the order of the mathematical formulation, 

number of applied SECs, load cases, geometry and noise that may influence the performance 

of the proposed algorithms are studied to determine the optimal formulation for the algorithm. 

All the algorithm tests and evaluations are based on numerical simulation for the 

convenience of large sensor amount selection and the constraints in experimental resource.  
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1.7 Organization of Thesis 

The thesis is organized as follows. Chapter 2 reviews signal processing algorithms for 

strain state and deformation monitoring with sensor networks and strain map related 

formulations for plate and shell structures. In addition, the problem of decomposing the 

implicit strain measurement of the SEC is discussed, and two potential formulations for a 

cantilever test plate are developed and verified. 

Chapter 3 evaluates the two formulations by investigating the estimation accuracy of 

both formulations under the effect of different influencing factors, including the accuracy of 

boundary conditions, the level of order or expansion of the functions and the noise level in 

the SEC signal, in order to determine an optimal algorithm for thin plate structural surface. 

Chapter 4 further looks into the application of the developed algorithm under more 

realistic and complex loading conditions, on more irregular geometry and with orthotropic 

materials and laminated plate section for a preliminary study on the applicability on wind 

turbine blades. A dual wind pressure time series is simulated on the laminated cantilever 

plate with irregular surface. 

Chapter 5 summarizes the research work, draws conclusions, and indicates limitations. 

Future investigations improving the strain decomposition algorithm of the SEC are discussed. 
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CHAPTER 2 

ALGORITHM DEVELOPMENT AND VERIFICATION 

 

2.1 Algorithm for Strain and Deformation Monitoring with Sensor Network 

The purpose of the SEC sensor network is to provide a real-time strain state and 

deformation monitoring for large-scale structural surface. However, unlike the widely used 

strain gauge technique for local points measurement and the full-field optical methods [18], 

the SEC does not provide explicit strain state directly. Therefore, a real-time algorithm to 

extract the explicit strain state is necessary for the strain state and deformation monitoring. 

A large amount of research has been conducted for strain state and deformation 

monitoring through the development of sensor network algorithm. Some of them focused on 

two-dimensional digital image correlation (2D DIC) to measure the deformation and then 

estimate the full-field strain based on the directly provided full-field displacements [19].  

Others looked at the strain-deformation mapping with grid method [20, 21]. Those 

monitoring was performed for the cases under experimental conditions and with mature 

sensing techniques that provide explicit information of the direction of the measurements. 

However, the mapping technique used between the in-plane displacements and the in-plane 

strains can be still be of interest for developing a suitable mapping algorithm that may draw 

the direction information out of the SEC signal in a network configuration. 

The wind turbine blade that the SEC sensor network is expected to be applied can be 

categorized as plate and shell structure. For such structural type, Tessler and Spangler 

developed an inverse finite element method (iFEM) based on the first-order shear-

deformation plate theory and a least-squares variational principle to reconstruct three-
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dimensional deformation from measured surface strains [22-24]. The iFEM contains a 

mapping between the measured surface strain state and the 3-D displacements which could 

be a potential base for the extraction of the biaxial strain hidden in the SEC signal. Initial 

attempt in this study tried the iFEM approach with classical plate theory by ignoring the 

transverse shear deformation for thin plate and shell structures. Although the continuity of 

displacements on element boundaries was enforced to provide a compensation for the loss of 

the directional information, such loss is still not able to be recovered. Thus, the resulting loss 

in the rank of the strain-displacement relation matrix disables the inverse process in iFEM. 

However, the least-squares estimation they used still could be a feasible option for fitting the 

strain map into the SEC signals. 

 

2.2 Strain Map Formulation for Plate and Shell Structures 

For the construction of the strain map of plate and shell structures, a typical way is to 

develop the shape function and then derive the strain map function based on plate theory. 

This requires assumptions on the shape functions. From a mathematical point of view, 

Lancaster and Salkauskas developed a symmetric polynomial form for the least-squares 

surface-fitting algorithm [25] and Jones et al. used the polynomial form for the shape 

function bonded with classical plate theory and the least-squares surface-fitting algorithm for 

the strain-fitting and shape determination of cantilever plate [26]. Bay et al. also used a 

polynomial shape function for the strain mapping with an extended 3D DIC from 2D DIC 

technique [27]. 

Other researchers developed the shape function with a more mechanical base. 

Rajalingham et al. developed the shape function for a rectangular plate based on the plate 

characteristic functions by minimizing the energy integral for the plate vibration equation and 
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used this shape function to find the plate frequencies using the Rayleigh-Ritz method [28]. 

Their formula, however, is highly nonlinear and contains complex number inside which 

makes it unusable for a least-squares surface fitting. Instead of deriving the shape function 

based on energy minimizing, Tian et al. and Zhong et al. developed the shape function based 

on the governing equation for the bending of a rectangular plate using the double finite 

integral transform method [29, 30]. Their method avoided using any predetermined 

deformation functions which makes it a more rational model for plate bending problems and 

could be extended to different loading and boundary conditions. Also, the derived shape 

function has a suitable structure for least-squares estimation (will be explained in details in 

section 2.3.2). 

Based on previous literatures, both the polynomial formulation and the double finite 

integral transform (denoted as a biharmonic formulation) were selected as the shape function 

(displacement function) for decomposing the biaxial strain from the SEC signal in the strain 

mapping process with least-squares surface fitting technique. The detailed method will be 

introduced in the following section. 

 

2.3 Biaxial Strain Decomposition Algorithm based on LSE 

Based on the sensing mechanism of the SEC (Eq. 1.5), the measured signal can be 

processed using the following equation (where      is the output signal of the SEC): 

     
  

  
                                                                    

Thus, the desired algorithm needs to be able to decompose the two biaxial strains    

and    based on the sensing signal      of the SEC. To achieve this objective, a strain map 

can be fitted from the signals using LSE. Since the type of structure considered here is thin 
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plate and shell structures, such as wind turbine blade, the classic Kirchhoff plate theory was 

considered. In order to involve the dependence of the two biaxial strains according to the 

Kirchhoff plate theory, the equations of    and    for LSE based surface fitting algorithm can 

be derived from an assumed displacement function        based on the following 

relationship (where   represents the transverse distance from the surface to the centroid of the 

thin plate section): 

     
   

   
                                                                     

     
   

   
                                                                     

The displacement function        needs to be assumed for the LSE surface fitting 

algorithm and two types of assumptions will be discussed in the following sections. In 

general,        will be a function of   and   coordinates which stands for the sensor 

locations which can be represented in a matrix form for the full sensor network as Eq. 2.4 

(where   is a constant matrix determined by the locations of the SECs in the sensor network 

and   represents the parameter vector that needs to be solved with the LSE). 

                                                                             

From Eq. 2.1 – 2.4 (  stands for the SEC signals at all the sensor nodes in the sensor 

network): 
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Note that:   [     ] ;    [     ] ;      ,      ,    ∩   ≠ ∅;       

     ,      ,    ∩   ≠ ∅.  

Based on Eq. 2.7, since    matrix is a constant matrix determined by the sensor 

locations of the sensor network, the parameter matrix    which covers all the parameters in 

   and    can be solved using a least-square estimator: 

  ̂     
    

    
                                                                  

Because of the dependence of the vectors in the    matrix due to    ∩   ≠ ∅,   is 

multi-collinear and thus   
    is singular matrix which is not invertible unless the boundary 

conditions is introduced into it. Therefore, the strain boundary condition can be enforced to 

the    matrix by altering rows with the boundary sensor nodes based the strain boundary 

conditions before applying Eq. 2.8. The strain boundary conditions may be different from 

case to case. In this thesis, the boundary condition of a cantilever plate will be considered for 

the purpose to study the potential of the proposed algorithm to work on a wind turbine blade. 

Based on the direct strain boundary condition and the strain-stress relationship of thin plate 

showing below: 

   
 

    
(      )                                                             

   
 

    
(      )                                                           

Take a rectangular cantilever rectangular thin plate in the Cartesian coordinate system 

with one edge (   ) fixed as an example. The strain boundary conditions can be listed as 

follows: (1) for the fixed edge,      ; (2) for the two edges with one end on the fixed side 

and the other end on the free side,          because of     ; (3) for the totally free edge, 

         because of     ; (4) consider the bending stress singularity [31, 32], the 
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boundary condition for the fixed corners is taken as an average of the boundary conditions of 

the two adjacent edges in terms of     
 

 
  ; (5) similarly, the boundary condition for the 

free corners is implemented in the form of     
     

 
  . 

The biaxial strain can be estimated as follows: 

  ̂      ̂                                                                        

  ̂      ̂                                                                        

Afterward,    can be solved with the displacement boundary conditions, such that the 

resulting  ̂  [  ̂   ̂] can be used to reconstruct the displacement of the structural surface 

with the following equation (note that the sensor location related matrix   can be replaced 

with that determined by any arbitrary locations for solving the displacement at any interested 

locations): 

 ̂    ̂                                                                          

 Detailed process will be discussed in the following section for two different assumed 

formulas for the displacement function       . 

 

2.3.1 Polynomial formulation 

As a potential choice for the displacement function, a polynomial formula can be 

assumed for the least-squares strain-fitting algorithm [26]. A polynomial to the order of   can 

be assumed for the transverse deflection of the cantilever plate: 

       ∑      
   

 

       

                                                          

 Where             are parameters that need to be solved, such that they constitute 

the parameter vector   in Eq. 2.4: 
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  [                  ]
                                                                 

Similarly, the   matrix is in the following form for the assumed polynomial 

displacement function and for a sensor network with the number of SECs to be  : 

  [

     
   
     

    
  
       

 

   
  
       

 
    
   

     
     

   
   

   
   

     
     

   
   

     
  
     

   
   

 

  
  
     

   
   

 
]        

 The formula of biaxial strain (   and   ) and the corresponding matrices   ,    and 

vectors   ,    can then be obtained as discussed in the previous section using Eqs. 2.2 and 

2.3, which are then combined to form the matrix    and the vector   . After enforcing the 

strain boundary conditions in   , the biaxial strain can be extracted from the SEC signal 

using Eqs. 2.8, 2.11 – 2.12. Finally, the displacement can be solved with displacement and 

rotation boundary conditions as described in the previous section using Eq. 2.13. 

 

2.3.2 Biharmonic formulation 

Another equation based on integral transform method was also investigated as a 

potential function for the LSE based biaxial strain decomposition algorithm. For a cantilever 

rectangular thin plate, the transverse deflection can be defined as a double finite integral 

transform (Eq. 2.5) and then be represented as its inverse transform in Eq. 2.6, where 

       ,        , a and b is the length and width of the rectangular plate [29].  

    ∫ ∫          
  

 
           

 

 

 

 

                                    

       
 

  
∑       

  

 
 

 

       

 
 

  
∑ ∑       

  

 
       

 

        

 

         

            

In this case, the parameters                         constitute the 

parameter vector   in Eq. 2.4: 
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  [                ]
                                                

And the   matrix is in a different form from the polynomial formula for a sensor 

network with p SECs                     : 

  

[
 
 
 
    

  

 
   

  

   
  

 
   

    

   
  

 
     

  

 
          

   

   
  

 
     

  

 
          

    

   
  

 
         

 

   
  

 
         ]

 
 
 
 

          

With Eq. 2.19 and Eq. 2.20, the biaxial strain can be extracted from the SEC signal 

and the deflection shape can be reconstructed using the LSE process with Eqs. 2.2 – 2.13. For 

the boundary condition enforcement, it can be seen that Eq. 2.18 satisfies the boundary 

condition for transverse deflection of the cantilever plate, but not the rotation and strain 

boundary condition at the fixed support. Tian et al. enforced those boundary conditions by 

involving the governing equation for different behaviors including plate bending and free 

vibration [29, 30]; however, such approach requires changes in final formulation under 

different targeted behaviors and involves loading information in the formula which limits the 

applicability and provokes longer computation time. Since the objective of this research only 

focused on the strain and it is possible to apply boundary condition by altering the rows in 

the    matrix as discussed in the previous section, the strain boundary condition can be 

enforced separately in the LSE algorithm instead of the shape function itself. 

Further, this biharmonic function consisting of periodic equations represents   and   

mode shapes in   and   directions. Although Tian et al. used up to 100 terms for the 

expansion of Eq. 22 to achieve adequate accuracy for the analytical solution of a bending 

plate, fewer terms were used in this research. 
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2.4 Design of the Test Plate and Numerical Simulation for Algorithm 

Verification 

To verify the capability of the LSE based algorithm to extract biaxial strain from the 

SEC signal, both algorithms were simulated on a structural surface. Since a biaxial strain 

field is needed and the algorithm is expected to be applied on large structural surface such as 

the surface of a wind turbine blade, a thin cantilever plate was used for the first simulation. 

 

Figure 2.1: Test plate and matrix SEC (7 × 7 cm each) configuration 

Based on the SEC fabrication dimension available for application (7 × 7 cm) [33] and 

the thin plate theory, the cantilever plate geometry (80.5 × 70 × 2 cm) and SEC arrangement 

(a matrix form) was created in a Cartesian coordinate (Fig. 2.1). Since a proper strain 

boundary condition (BC) is necessary for the algorithm as discussed previously, the outer 

SECs were located with sides on the boundary to make the outer sensor nodes as close to the 

boundary as possible, which are showed as red nodes in Fig.2.1. The center of each SEC is 

taken as sensor node marked as solid nodes (blue and red nodes). However, the strain BC 
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would be more accurate if sensors were directly locates on the boundaries. The SEC signal at 

the exact boundary nodes (black nodes in Fig. 2.1) was used to provide ideal strain 

boundaries for the initial algorithm verification. 

Table 2.1: Load case information 

Load 

case  

Load 

type 

Applied 

Location 

Magnitude 

(KN) 

(a) Pressure 
Full plate 

top surface 
       

 

 
   

(b) Force Center-tip       
 

 
   

(c) Force Corner         
 

 
   

 Where t stands for time in seconds. 

 
Figure 2.2: Load cases on the cantilever test plate 

The numerical simulations of the test plate and SEC arrangement under different load 

cases were performed with ANSYS 14.5. Isotropic material (aluminum) was chosen for the 

initial verification of the proposed algorithm. Four-nodes shell element with both bending 
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and membrane behavior was used for the finite element analysis. One of the shorter side of 

the plate is fixed and three types of time dependent load case was applied on the cantilever 

plate to consider both pure bending condition and the effect of stress concentration and 

torsion as shown in Table 2.1 and Fig. 2.2, including a pressure on full plate (load case (a)), a 

concentrated load at the center of the free side (center-tip) of the cantilever plate (load case 

(b)) and a concentrated load at one corner of the free side of the cantilever plate load case (c)). 

The time duration of the load was 10 s and the load was ramped with time step 0.2s to ensure 

adequate smoothness. The maximum deflection of the cantilever plate under each load case is 

as follows: (a) 1.0361cm; (b) 1.0226cm; (c) 0.9928 cm. The biaxial surface strain at each 

sensor node under the three load cases was simulated and used to construct the SEC time 

series signal for each load case based on the SEC signal to strain equation (Eq. 2.1) 

mentioned previously. For the initial algorithm test, there is no noise added to the constructed 

analytical signal. Noise will be introduced to the analytical signal in Chapter 3 to investigate 

the influence of noise in the proposed algorithm. 

 

2.5 Verification of Algorithm 

Using the three sets of time series of the SEC signal constructed in the test plate 

simulation as the input to the algorithm, verification tests under three types of loading 

condition were conducted for the LSE algorithm with both polynomial and biharmonic 

formulation. To initially simulate the algorithm with more accurate BCs, the proposed 

algorithm with the strain BC applied on the ideal boundary sensor nodes (black nodes in Fig. 

2.1) were tested for both the polynomial and the biharmonic formulation. For the reason that 

the results of the boundary sensor nodes were obtained by the BC instead of the algorithm, 

only the estimation error of the inner sensor nodes (blue nodes in Fig. 2.1) was assessed. 
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2.5.1 Verification of the LSE algorithm with polynomial formulation 

The verification test was conducted for the LSE algorithm with polynomial 

formulation under pure bending, concentrated load and bending-torsion combined loading 

condition, with the ideal BC. The performances of the algorithm were compared between 

load cases through the comparison between the estimated and analytical biaxial strain. To 

rule out the cancelation between positive and negative errors which may lead to inaccurate 

error evaluation, the errors were considered in a root mean squared error (RMSE) as well as a 

mean absolute percentage error (MAPE). 

With the enforcement of the strain BC on the ideal boundary sensor nodes, the biaxial 

strain data was decomposed by the LSE-polynomial algorithm from the constructed SEC 

signal under the three simulated load cases. The results from the algorithm estimation were 

compared with the analytical biaxial strain value from the simulation in Fig 2.3 to Fig 2.10.  

By looking at the RMSE of all the non-boundary sensor nodes together with the load 

magnitude versus time (Figs. 2.3 – 2.4), it can be seen that the residual error grows as the 

load increases. However, the MAPE (Figs. 2.5 – 2.6) seems to be approximately consistent in 

all three load cases in spite of the magnitude of the applied load, except for the time point 

with load close to zero. It is probably because of the low value in analytical strain leading to 

a jump in the percentage error between estimated and analytical strain. Nonetheless, for the 

increasing jump in error, the maximum is under 5% for the biaxial strain in all three load 

cases (Figs. 2.5 – 2.6) which is acceptable for a very low strain field without the chance of 

damage. 

Overall, the MAPE time series appears to suggest that the performance of the 

proposed LSE-polynomial algorithm is stable under conditions including bending, stress 
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concentration and torsion. Moreover, based on Figs. 2.3 – 2.6, both the RMSE and MAPE 

turn to be relatively higher in load case 2 compared with the other load cases, which may due 

to the effect of stress concentration. Within the three load cases, the LSE-polynomial 

exhibited the highest accuracy under pure bending loading condition (load case (a)). 

Although the accuracy of the estimation is relatively lower when there are influence from 

stress concentration and torsion, the maximum MAPE in all load cases (around 9.25% for 

strain   and 22.5% for strain  ) is still small (Fig. 2.3 – 2.6) as a global error on all the non-

boundary sensor nodes. 
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Figure 2.3: Time series of RMSE of strain x at all the non-boundary sensor nodes estimated 

with LSE-polynomial algorithm (ideal BC enforcement) under load case (a) (top), (b) 

(middle) and (c) (bottom) 
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Figure 2.4: Time series of RMSE of strain y at all the non-boundary sensor nodes estimated 

with LSE-polynomial algorithm (ideal BC enforcement) under load case (a) (top), (b) 

(middle) and (c) (bottom) 
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Figure 2.5: Time series of MAPE of strain x at all the non-boundary sensor nodes estimated 

with LSE-polynomial algorithm (ideal BC enforcement) under load case (a) (top), (b) 

(middle) and (c) (bottom) 
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Figure 2.6: Time series of MAPE of strain y at all the non-boundary sensor nodes estimated 

with LSE-polynomial algorithm (ideal BC enforcement) under load case (a) (top), (b) 

(middle) and (c) (bottom) 
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The local error also needs to be evaluated. By considering the percentage error for 

each non-boundary sensor nodes on an average base over the full time duration of the applied 

load (10 s), the MAPE contour plots of the estimation of strain   and strain   within the plate 

boundary are given in Fig. 2.7 and Fig. 2.8. Based on the MAPE contour plots for load cases 

(a) – (c), it is clear that the highest error is concentrated on the free corners and the relatively 

higher error is distributed around where the stress concentration generated by the point load 

(Fig. 2.7 – 2.8). The reason for the highest error at free corners is probably because of the 

loss of accuracy of the assumption due to corner singularities. Since the BC is not continuous 

at the plate corners as mentioned before, the averaged corner BC is possibly less accurate. 

Especially for the free corner, the BC varies much more from the fix-free side to the free side; 

such conflict may be sharper and influenced more by other factors such as the length and 

width ratio. Thus, tough the free corner BC was not applied in the algorithm process; the 

afterward enforced-back BC may still be inaccurate. However, most of the plate surface has a 

MAPE around 5% for strain   estimation and around 10% for strain   estimation for all three 

load cases. Such result showed that the LSE-polynomial algorithm performed well on the 

major surface (even including the area near fixed side where is in relatively higher strain 

field and damage is more likely to occur at) of the cantilever plate under bending, stress 

concentration and torsion condition. Moreover, the less accurate estimation area focuses on 

the free corners where has less chance of damage because of much lower strain values 

compare to the other parts of the cantilever plate. 
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Figure 2.7: MAPE contour plot of strain x within plate boundary estimated with LSE-

polynomial algorithm (ideal BC enforcement) under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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Figure 2.8: MAPE contour plot of strain y within plate boundary estimated with LSE-

polynomial algorithm (ideal BC enforcement) under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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Overall, a direct comparison between the estimation results and the analytical strain 

values was performed at the time point (6 s) with the highest load magnitude on the full plate 

including the boundary sensor nodes. The biaxial strain extracted by the LSE-polynomial 

algorithm from the SEC signal compared with the analytical biaxial strain from the 

simulation are plotted in Figs. 2.9 – 2.10 for each load case in terms of 3-D maps. Figs. 2.9 – 

2.10 also confirm that the LSE-polynomial algorithm performs well for the biaxial strain 

extraction from SEC signals on the cantilever plate under all three load cases and the bad 

performance only occurs at corners where are less important for damage detection. 
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Figure 2.9: 3-D map (analytical and estimated) of strain x estimated with LSE-polynomial 

algorithm (ideal BC enforcement) at 6 s under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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Figure 2.10: 3-D map (analytical and estimated) of strain y estimated with LSE-polynomial 

algorithm (ideal BC enforcement) at 6 s under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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2.5.2 Verification of the LSE algorithm with biharmonic formulation 

Similarly, the LSE algorithm with biharmonic formulation was verified under the 

three simulated load cases with the ideal BC. Results under the three load cases were 

discussed for each BC enforcement condition. For simplicity, only the global and local 

MAPE versus time and sensor node coordinate respectively were evaluated. With the strain 

BC on the ideal boundary sensor nodes, the error of the biaxial strain extraction by the LSE-

biharmonic algorithm is given in terms of MAPE over time and over the surface within the 

plate boundary in Figs. 2.11 – 2.16. 

By comparing the MAPE at all the non-boundary sensor nodes from LSE-biharmonic 

formulation with that from LSE-polynomial formulation over time (Figs. 2.11 – 2.12 and 

Figs. 2.5 – 2.6), it can be seen that the LSE-biharmonic formulation exhibites similar 

behavior as the LSE-polynomial formulation at the zero load time point and performed stably 

elsewhere. But the global MAPE over time of the LSE-biharmonic formulation is overall 

higher than the LSE-polynomial formulation, especially for the strain with relatively smaller 

value (strain y) and when torsion comes in.  

Likewise, the local MAPE of the LSE-biharmonic formulation over the plate surface 

inside the plate boundary also turns out to be higher than the LSE-polynomial formulation in 

general based on Fig. 2.13 – 2.14 and Fig. 2.7 – 2.8, especially under bending-torsion 

combined loading condition (load case (c)). In addition, the distribution of the highest local 

MAPE of the LSE-biharmonic formulation on the plate surface looks less concentrated than 

that of the LSE-polynomial formulation (Fig. 2.13 – 2.14 compared with Fig. 2.7 – 2.8): 

Instead of focusing on the free corners, the highest MAPE of the LSE-biharmonic 

formulation concentrates on the area with strain values close to zero (the free side for strain   
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and the fixed side for strain  ); although the MAPE seems to be higher at the location with 

stress concentration for both formulations, the negative effect of stress concentration on the 

distribution of MAPE seems to be bigger for the biharmonic formulation. The reason for 

such difference is probably the insufficient mode shapes considered in the biharmonic 

formulation to adequately represent the total deflection shape. 

To summarize, although the performance of the LSE-biharmonic formulation is 

slightly worse than the LSE- polynomial formulation overall, it can still provide good 

accuracy on biaxial strain estimation for a major part of the plate surface with current mode 

shapes considered, especially under symmetric loading cases (load case (a) and (b)) (Figs. 

2.13 – 2.16), and may perform better when raise the number of the mode shapes included in 

the formulation. Further potential improvement of the LSE-biharmonic formulation will be 

discussed in the following chapter 3. 
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Figure 2.11: Time series of MAPE of strain x at all the non-boundary sensor nodes estimated 

with LSE-biharmonic algorithm (ideal BC enforcement) under load case (a) (top), (b) 

(middle) and (c) (bottom) 
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Figure 2.12: Time series of MAPE of strain y at all the non-boundary sensor nodes estimated 

with LSE-biharmonic algorithm (ideal BC enforcement) under load case (a) (top), (b) 

(middle) and (c) (bottom) 
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Figure 2.13: MAPE contour plot of strain x within plate boundary estimated with LSE-

biharmonic algorithm (ideal BC enforcement) under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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Figure 2.14: MAPE contour plot of strain y within plate boundary estimated with LSE-

biharmonic algorithm (ideal BC enforcement) under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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Figure 2.15: 3-D map (analytical and estimated) of strain x estimated with LSE-biharmonic 

algorithm (ideal BC enforcement) at 6 s under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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Figure 2.16: 3-D map (analytical and estimated) of strain y estimated with LSE-biharmonic 

algorithm (ideal BC enforcement) at 6 s under load case (a) (top), (b) (middle) and (c) 

(bottom) 
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CHAPTER 3 

EVALUATION OF ALGORITHM FORMULAS UNDER DIFFERENT 

INFLUENCING FACTORS 

 

3.1 Evaluation of Algorithm Formulations under the Influence of Boundary Condition 

Enforcement 

The proposed LSE algorithm with both polynomial and biharmonic formulations have 

been verified under three load cases in Chapter 2 with ideal BC enforcement. However, the 

ideal BC enforcement is not able to be fulfilled in practice. The SECs can only be installed 

with their sides touching the boundary to locate the boundary sensor nodes as close as 

possible to the boundary. Therefore, the boundary conditions can only be applied on the outer 

sensor nodes (red nodes in Fig. 2.1) as a modeled BC enforcement instead. The effect of such 

shift in the location of the BC enforcement is investigated for both the LSE-polynomial and 

LSE-biharmonic formulation.  

 

3.1.1 Effect of the modeled BC enforcement on the LSE-polynomial algorithm 

The influence on the performance of the algorithm from the compromise on BC 

enforcement is evaluated with analytical and estimated strain contour plots qualitatively and 

overall MAPE and standard deviation (SD) of percentage error (PE) quantitatively for 

simpler and clearer comparison. The biaxial strain extraction results with ideal and modeled 

BC enforcement are compared for the LSE-polynomial algorithm under the simulated three 

load cases in Figs. 3.1 – 3.6 (the strain contour plot is smaller for the modeled BC 

enforcement because of the loss of information on the exact boundary sensor nodes (black 

nodes in Fig. 2.1)). The results are evaluated between analytical strain contour plot from 
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simulation and the estimated strain contour plot from algorithm at the time with the largest 

applied load for all load cases (6 s). There are only slight changes in the estimated strain 

contour plots when the BC enforcement changes from ideal to modeled and they all match 

the analytical strain contour plot well (except for the corner result under load case (c) which 

is the bending-torsion combined loading condition). 

Table 3.1: Performance of the LSE-polynomial algorithm under differente BC enforcements 

Load 

case 

Evaluation 

item 

Strain 

estimation 

direction 

Ideal BC 

enforcement 

Modeled BC 

enforcement 

(a) 

MAPE (%) 
x 5.17 5.72 

y 9.39 31.07 

SD of PE (%) 
x 11.47 4.53 

y 14.78 26.65 

(b) 

MAPE (%) 
x 9.13 5.84 

y 21.54 18.36 

SD of PE (%) 
x 11.64 8.62 

y 18.82 22.08 

(c) 

MAPE (%) 
x 2.30 5.45 

y 16.48 56.83 

SD of PE (%) 
x 5.14 6.32 

y 31.20 53.69 

 

Further, Table 3.1 compares the MAPE and SD of PE of all the estimation results of 

all the non-boundary sensor nodes over the test time duration. In all the three load cases, the 

MAPE of the estimation of strain   did not vary much from the estimation under ideal BC 

enforcement and that under modeled BC enforcement. On the contrary, the change of the 

MAPE of the estimation of strain   is relatively higher; especially for load case (c) (the 

growth of MAPE is about 40%). On one hand, the cause may be the higher sensitivity in 

percentage error for smaller values (strain  ) compared to larger values (strain  ). On the 
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other hand, this maybe caused by the rapidly varying strain field versus location due to the 

unsymmetrical loading in load case (c), which makes the imperfection of the BC enforcement 

becomes more noticeable. Such trend is also shown in the SD of PE. As a result, although the 

MAPE of strain y estimation is much higher when the BC enforcement is imperfect, the 

corresponding higher SD for PE and similar strain field estimation shows in Fig. 3.1 – 3.6 

indicate that the higher MAPE is probably raised by the relatively worse estimation for the 

area close to the free corners, which is the less important part in damage detection and leave 

the performance of the estimation of a major part of the plate surface to be with much higher 

accuracy. Therefore, it can be drawn that the LSE-polynomial algorithm is able to work with 

adequate accuracy with imperfection in the BC enforcement (the modeled BC enforcement). 
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Figure 3.1: Contour plot of strain x estimated with LSE-polynomial algorithm under load 

case (a) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.2: Contour plot of strain y estimated with LSE-polynomial algorithm under load 

case (a) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.3: Contour plot of strain x estimated with LSE-polynomial algorithm under load 

case (b) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.4: Contour plot of strain y estimated with LSE-polynomial algorithm under load 

case (b) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.5: Contour plot of strain x estimated with LSE-polynomial algorithm under load 

case (c) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.6: Contour plot of strain y estimated with LSE-polynomial algorithm under load 

case (c) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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3.1.2 Effect of the modeled BC enforcement on the LSE-biharmonic algorithm 

The LSE-biharmonic formulation already showed the capability to decompose the 

SEC signal into biaxial strain with the ideal BC enforcement in the previous chapter by 

investigating its global MAPE over time and local MAPE on the plate surface within the 

plate boundary. This section will look into how the defect introduced to the algorithm by the 

shift from the ideal BC enforcement to the modeled BC enforcement will affect the 

performance of the LSE-biharmonic formulation through direct comparison on strain field 

contour plot when the load reaches the largest magnitude and the total MAPE and SD of PE 

of the results for different BC enforcement condition under all load cases. Figs. 3.7 – 3.12 

clearly suggests that the performance of the LSE-biharmonic algorithm becomes obviously 

poorer with modeled BC enforcement instead of ideal BC enforcement, but it is still able to 

capture the variation of biaxial strain field on the plate surface. The biharmonic formula is 

based on the superposition of periodic mode shape functions. As a result, the improper shift 

in BC may lead to difficulties in matching period and phase angle after superposition with 

limited expansion of the finite integral transform representing limited mode shapes. This 

explains the severe decline in estimation accuracy of the LSE-biharmonic formulation 

compared when the BC is not applied on the exact location, which is not the case for LSE-

polynomial formulation (Figs. 3.1 – 3.6). The possibility to resolve this problem with the 

LSE-biharmonic formulation by extend the expansion of the finite integral transform to 

include more mode shapes will be investigated in the following section. 

Additionally, the estimation quality turns to drop more for strain y than for strain x 

and under load case (c) than under the other two load cases when the BC enforcement shifts 

from ideal to modeled condition. This can also be explained by the higher sensitivity in 
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percentage error for smaller values and the abrupt change in strain field on the geometry base 

respectively as discussed before. By comparing Table 3.2 with Table 3.1, it is also confirmed 

that the LSE-biharmonic formulation with current expansion is more sensitive to the 

imperfection in BC enforcement compared with the LSE-polynomial formulation with 

current order. 

Table 3.2: Performance of the LSE-biharmonic algorithm under differente BC enforcements 

Load 

case 

Evaluation 

item 

Strain 

estimation 

direction 

Ideal BC 

enforcement 

Modeled BC 

enforcement 

(a) 

MAPE (%) 
x 6.39 66.38 

y 30.74 214.92 

SD of PE (%) 
x 8.10 80.70 

y 40.54 136.14 

(b) 

MAPE (%) 
x 10.41 22.47 

y 27.51 87.54 

SD of PE (%) 
x 15.43 24.18 

y 33.55 82.79 

(c) 

MAPE (%) 
x 23.94 49.25 

y 207.19 433.43 

SD of PE (%) 
x 31.32 53.18 

y 294.30 555.14 
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Figure 3.7: Contour plot of strain x estimated with LSE-biharmonic algorithm under load 

case (a) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.8: Contour plot of strain y estimated with LSE-biharmonic algorithm under load 

case (a) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.9: Contour plot of strain x estimated with LSE-biharmonic algorithm under load 

case (b) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.10: Contour plot of strain y estimated with LSE-biharmonic algorithm under load 

case (b) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.11: Contour plot of strain x estimated with LSE-biharmonic algorithm under load 

case (c) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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Figure 3.12: Contour plot of strain y estimated with LSE-biharmonic algorithm under load 

case (c) at 6 s (top: analytical, middle: estimation with ideal BC enforcement, bottom: 

estimation with modeled BC enforcement) 
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3.2 Evaluation of Algorithm Formulations under the Influence of Order/Expansion of 

Function 

The previous section talked about the performance of both algorithm formulas with 

the modeled BC enforcement and proposed the possibility to improve the estimation 

accuracy with modeled boundary sensor nodes by increasing the order for the polynomial 

formulation and extending the expansion for the biharmonic formulation. Such possibility 

will be studied in this section. In chapter 2, Both the polynomial and the biharmonic 

formulation are in their highest possible order or longest possible expansion with the SEC 

amount shown in Fig. 2.1. Since the SEC is highly customizable in size and geometry, the 

number of the sensor nodes are increased and rearranged in a finer mesh by changing the 

current available SEC size (7 × 7 cm each) into a smaller size (5 × 5 cm each) (Fig. 3.13).  

 
Figure 3.13: Test plate and finer matrix SEC configuration 
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The comparison was conducted between lower and higher order functions for the 

polynomial formulation and shorter and longer expansion for the biharmonic formulation, all 

under the same sensor amount shown in Fig. 3.13. The LSE-polynomial formula was 

investigated from quadratic to the highest possible order. Likewise, the expansion of the 

LSE-biharmonic formula was tested from 3 terms for both direction (considering the first 

three mode shapes in each direction) to the most reachable number of terms. The results can 

be compared with Figs. 3.14 – 16 and Table 3.3 – 3.4. With the increased sensor amount 

shown in Fig. 3.13, the LSE-biharmonic formulation was able to be expanded to 11 terms for 

  and   (Eq. 2.6) while the LSE-polynomial formulation was still only able to have the order 

of 6 as that with the less sensor amount before (Fig. 2.1). It is probably because of the 

geometry related    and    in the biharmonic formula (Eq. 2.6) reduce the dependence of 

the vectors in the    matrix (Eq. 2.5) due to repeated x and y values from the matrix SEC 

arrangement. However, the performance of polynomial formulation is much better than the 

biharmonic one based on the overall MAPE of all non-boundary sensor nodes at all the time 

points under all three load cases shown in Fig. 3.14. The accuracy of the polynomial 

formulation is increased sharply from quadratic to the 4
th

 order and relatively constant 

afterward, but it is still showing the higher accuracy with the higher order. Conversely, the 

biharmonic formulation did not show a clear decrease in the overall MAPE when the 

expansion has become longer but had a sudden jump of overall MAPE in the y direction of 

all load cases when expanded to 10 terms in both direction. Therefore, the polynomial 

formulation showed a more stable behavior. 



59 

 

 

Figure 3.14: MAPE variation in biaxial directions versus order of LSE-polynomial and 

expansion of LSE-biharmonic formulation 

For the biharmonic formulation, although the MAPE actually reduced obviously in 

the symmetric load cases (a) and (b) when the expansion became longer (Table 3.4, where 

expansion i means expand both m and n in Eq. 2.18 – 19 to i items), the jump of MAPE in 

the asymmetric load case (c) brought the overall MAPE to a much higher value in Fig. 3.14. 

Such jump in MAPE is probably suggesting an overfitting has occurred under the 

asymmetric load case (c). On the other hand, the decrease of MAPE under the two symmetric 

load cases demonstrated that the performance of the LSE-biharmonic formulation did 

become better with longer expansion of formula. However, the limitation of expansion length 

of the inverse finite integral transform (Eq. 2.6) to sufficiently represent the real integral 

transform due to the limited amount of sensor nodes and the overfitting problem under 

asymmetric loading condition (more realistic for practice) stopped the LSE-biharmonic 

formulation from achieving higher accuracy. Based on Fig. 3.14, the biharmonic formulation 

has a relatively better accuracy when expanded to 6 terms in both directions under the setup 

condition in Fig. 3.13.  
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Figure 3.15: SD of PE variation in biaxial directions versus order of LSE-polynomial and 

expansion of LSE-biharmonic formulation 

In addition, Figure 3.15 appears to suggest that both formulations behave relatively 

more stable with even instead of odd order/expansion for the given symmetric cantilever 

plate. Such pattern also can be seen when looking at each load case separately (Table 3.3 and 

3.4) and it is more obvious for the biharmonic formulation. The reason of such phenomenon 

may be that the displacement variation over the symmetric plate surface fits the shape of the 

formulas with even order/expansion. Although the polynomial formulation with 5
th

 order 

showed the best accuracy under load case (b) (Table 3.3), 6
th

 order which is the highest order 

still showed the best estimation by considering all the load cases for the polynomial 

formulation. 
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Table 3.3: Performance of the LSE-polynomial algorithm with different orders of function 

Load 

case 

Evaluation 

item 

Strain 

estimation 

direction 

Order 2 Order 3 Order 4 Order 5 Order 6 

(a) 

MAPE 

(%) 

x 264.61 69.42 4.72 6.86 6.39 

y 323.77 242.64 23.96 22.72 22.45 

SD of PE 

(%) 

x 433.93 71.46 8.25 10.38 10.20 

y 435.22 217.88 40.50 21.26 34.13 

(b) 

MAPE 

(%) 

x 56.56 11.89 5.36 3.66 6.03 

y 144.79 42.85 14.43 12.19 15.55 

SD of PE 

(%) 

x 100.36 18.04 9.12 6.74 9.18 

y 197.84 52.78 21.15 14.84 21.16 

(c) 

MAPE 

(%) 

x 103.33 18.84 8.47 5.61 6.93 

y 606.59 399.69 127.15 207.94 60.62 

SD of PE 

(%) 

x 214.34 30.09 16.29 9.21 14.79 

y 5210.40 8225.00 2191.40 5212.30 586.86 

 

 

 

Figure 3.16: Computation time of LSE-polynomial and LSE-biharmonic formulation with 

different order/expansion 

The computation time of both algorithm formulations is also of interest. Under the 

SEC configuration showing in Fig. 3.13, the computation time was investigated using 
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MATLAB R2012b on a computer with 2.50 GHz CPU. As it shows in Fig. 3.16, the LSE 

algorithm with the polynomial formulation is over 1.5 times faster than that with biharmonic 

formulation under the same order/expansion. The cause of such result could be the 

complexity of the inverse finite integral transform.  Also, the execution time of the LSE-

biharmonic formulation grows more rapidly when the formula becomes much more complex 

compared to that of the LSE-polynomial formulation. Overall, the LSE-polynomial requires 

around 0.13 s to process the data from the amount of SECs (168 SECs) set in Fig. 3.13 at the 

highest achievable accuracy.  Therefore, the proposed algorithm is sufficient for real-time 

SHM, especially considering the amount of SEC could be less in practice by having a more 

efficient sensor placement strategy for specific geometry and expected loading condition. 
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Table 3.4: Performance of the LSE-biharmonic algorithm with different lengths of expansion of function 

Load 

case 

Evaluation 

item 

Strain 

estimation 

direction 

Expension 

3 

Expension 

4 

Expension 

5 

Expension 

6 

Expension 

7 

Expension 

8 

Expension 

9 

Expension 

10 

Expension 

11 

(a) 

MAPE 

(%) 

x 61.81 37.91 62.13 36.99 55.24 33.37 47.61 35.04 38.85 

y 116.37 111.87 124.09 107.56 119.10 94.93 108.25 86.35 63.17 

SD of PE 

(%) 

x 68.57 47.49 82.89 49.28 89.90 49.59 89.29 52.58 72.29 

y 47.60 110.63 129.65 136.81 139.09 165.55 157.29 93.30 86.83 

(b) 

MAPE 

(%) 

x 40.68 27.23 36.85 25.89 34.63 23.06 29.78 15.03 19.12 

y 108.98 104.57 109.74 97.34 102.53 78.48 83.76 41.39 38.01 

SD of PE 

(%) 

x 34.76 22.51 35.32 23.15 35.93 24.11 35.32 21.30 29.18 

y 31.09 48.84 63.35 68.54 68.60 81.67 78.94 52.85 49.18 

(c) 

MAPE 

(%) 

x 29.80 23.32 23.04 26.00 20.71 32.56 24.16 49.07 39.81 

y 458.44 279.26 399.32 187.61 238.36 367.80 440.39 1532.60 1211.40 

SD of PE 

(%) 

x 32.22 29.06 31.38 40.60 33.59 61.31 42.44 92.72 68.26 

y 9164.20 3296.30 6325.60 557.65 1423.30 6669.50 8175.50 3898.30 2974.20 

 

 

 

 

6
3
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3.3 Evaluation of Algorithm Formulations under the Influence of Noise 

In previous sections, the proposed algorithm was only tested with the input from 

analytical signals without any noise. This section will look into the influence of the noise in 

signal. To consider a realistic noise condition of signal in practice, 2%, 5% and 10% random 

noises were introduced to the analytical SEC signals under different load cases respectively. 

The order of the polynomial formulation was 6 and the biharmonic formulation was 

expanded to 6 items in each direction for investigation.  

Table 3.5: Performance of the LSE-polynomial algorithm with different noise condition 

Load 

case 

Evaluation 

item 

Strain 

estimation 

direction 

Noise (0%) Noise (2%) Noise (5%) Noise (10%) 

(a) 

MAPE 

(%) 

x 6.39 6.72 7.34 10.54 

y 22.45 23.23 23.78 31.11 

SD of PE 

(%) 

x 10.20 10.96 12.18 17.52 

y 34.13 36.80 42.06 57.22 

(b) 

MAPE 

(%) 

x 6.03 6.17 7.03 8.82 

y 15.55 15.69 17.41 21.44 

SD of PE 

(%) 

x 9.18 9.22 9.91 11.97 

y 21.16 21.66 25.30 32.22 

(c) 

MAPE 

(%) 

x 6.93 6.89 7.68 10.03 

y 60.62 68.43 81.51 104.11 

SD of PE 

(%) 

x 14.79 14.61 15.41 18.14 

y 586.86 756.68 780.34 991.68 

 

The results of the LSE algorithm with both polynomial and biharmonic formulation 

are summarized in Table 3.5 and 3.6. It can be seen that the existence of noise affect the 

accuracy in the minor direction y and in load case (c) relatively more than in x direction and 

in other two load cases. It is probably because imperfection of BC enforcement is the largest 

in load case (c) due to the combination of corner singularity and stress concentration at the 
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corner where the load locates and the noise amplified such imperfection. Overall, except for 

the level of 10% noise, there is only a small influence on the performance of both 

formulations, which demonstrated the ability of the proposed algorithm to maintain a 

relatively stable performance under noisy condition up to 5 % noise. 

Table 3.6: Performance of the LSE-biharmonic algorithm with different noise condition 

Load 

case 

Evaluation 

item 

Strain 

estimation 

direction 

Noise (0%) Noise (2%) Noise (5%) Noise (10%) 

(a) 

MAPE 

(%) 

x 36.99 37.06 37.25 38.10 

y 107.56 107.73 108.08 111.61 

SD of PE 

(%) 

x 49.28 49.34 49.41 50.34 

y 136.81 137.21 139.30 154.72 

(b) 

MAPE 

(%) 

x 25.89 25.90 25.95 26.18 

y 97.34 97.34 97.88 99.22 

SD of PE 

(%) 

x 23.15 23.16 23.26 23.54 

y 68.54 68.80 70.14 76.60 

(c) 

MAPE 

(%) 

x 26.00 26.01 26.24 26.85 

y 187.61 192.60 197.98 240.67 

SD of PE 

(%) 

x 40.60 40.67 40.85 41.50 

y 557.65 732.52 807.81 1913.80 

 

3.4 Conclusion 

This section discussed the influence of the modeled BC enforcement, formula 

constitution and noise in SEC signal for the proposed LSE algorithm with polynomial and 

biharmonic formulation by looking at their MAPE, SD of PE and execution time. The LSE-

polynomial formulation showed lower sensitivity to the imperfection of BC enforcement, 

higher accuracy with highest reachable order in formula and faster data process speed than 

the LSE-biharmonic. The conclusion can be drawn that the polynomial formulation is the 

better option for the proposed LSE algorithm. 
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CHAPTER 4 

INVESTIGATION ON POTENTIAL APLICATION OF LSE-POLYNOMIAL 

ALGORITHM ON WIND TURBINE BLADE 

 

It has been determined in Chapter 3 that the polynomial formulation performs best for 

the proposed LSE algorithm. In this chapter, the potential for wind turbine blade monitoring 

of the LSE-polynomial algorithm will be studied by simulating the algorithm on a cantilever 

plate with an irregular geometry and laminated sections with orthotropic materials 

resembling a wind turbine blade. 

 

4.1 Simulation of Laminated Plate with Asymmetric Geometry 

 
Figure 4.1: Blade resembling plate and SEC arranged in a network configuration 

Based on the geometry and material of a 9-meter carbon-fiberglass prototype blade 

[34], a simplified blade resembling laminated plate with asymmetric geometry was designed 

with the root side fixed and the SEC arrangement (a network configuration) is shown in Fig. 



67 

 

4.1. The red nodes denoted as the modeled boundary sensor nodes were used for a practical 

BC enforcement and the blue nodes represents the inner sensor. Because of the limitation of 

geometry, only 3 and 1 SECs can be placed for the fixed root and free tip. Based on the 9-

meter carbon-fiberglass prototype blade, the section of the plate was laminated and consisted 

of 11 layers of 7 different orthortropic materials stacked in various angles shown in Table 

4.1. All the orthotropic materials were assumed to be transversely isotropic. For the finite 

element analysis, a four node shell element was used for the consideration of the bending 

dominated behavior of a real wind turbine blade and shear deformation ignored. The SEC 

signals were constructed using the finite element model and with 2% noise. To evaluate the 

performance of the LSE-polynomial algorithm under more realistic condition for a wind 

turbine blade, two sets of time varying wind pressure were simulated and applied on two 

different sections of the blade surface as shown in Fig. 4.1. The simulation of the wind 

pressure will be introduced in the following section. 
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Table 4.1: Materials and layers of the plate with asymmetric shape [34] 

Layer 

No. 

(from 1 

(bottom) 

to 11 

(top)) 

Material 
Ex 

(GPa) 

Ey 

(GPa) 

Ez 

(GPa) 

Gxy 

(GPa) 

Gyz 

(GPa) 

Gxz 

(GPa) 
νxy νyz νxz 

Density 

(kg/m3) 

Ply 

thickness 

(mm) 

11 Gel coat 3.44 3.44 3.44 1.38 1.32 1.38 0.30 0.30 0.30 1230 0.26 

10 Random mat 7.58 7.58 7.58 4.00 2.92 4.00 0.30 0.30 0.30 1687 0.76 

9 End-grain balsa 0.12 0.12 0.12 0.02 0.05 0.02 0.30 0.30 0.30 230 12.80 

7, 8 
DBM1708(±45-

deg fiberglass) 
9.58 9.58 9.58 6.89 3.45 6.89 0.39 0.39 0.39 1814 

0.89, 

0.89 

5, 6 
DBM1208(±45-

deg fiberglass) 
9.58 9.58 9.58 6.89 3.45 6.89 0.39 0.39 0.39 1814 

0.56, 

0.56 

4 
C520      (0-deg 

fiberglass) 
37.30 7.60 7.60 6.89 2.90 6.89 0.31 0.31 0.31 1874 9.20 

3, 2, 1 

Carbon-

fiberglass 

triaxial fabric 

84.10 8.76 8.76 4.38 

3.62, 

3.50, 

3.62 

4.38 

0.21, 

0.25, 

0.21 

0.21, 

0.25, 

0.21 

0.21, 

0.25, 

0.21 

3469 

2.8,     

3.2,     

2.8 

6
8
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4.2 Wind Pressure Simulation [35] 

A dual approach was selected for the wind load simulation. The simulated wind 

pressure was based on an input of real wind speed data sampled every 6 min at Station 

FTPC1 – 9414290 – San Francisco, CA. 18 hours of raw wind speed data were converted 

into one direction (northwest) and used as the input of the simulation (Fig. 4.2). The dual 

wind speed simulation can be divided into two major steps: (1) capturing the statistical 

characteristics of the real wind speed by smoothing the low frequency sampled raw wind 

speed time history data; (2) generating a high frequency turbulence spectrum to superimpose 

with the smoothed wind speed time history. 

 

Figure 4.2: Real wind data sampled every 6 min [36] 

For step (1): the hourly mean and variance were first taken from the raw wind speed 

data to extract its time varying statistical characteristics. Following, the hourly mean was 

resampled to the output frequency (10 Hz) based on the hourly mean value within each hour 

and a best fit line was fitted to the resampled data (Fig. 4.4). Based on the sampling theorem, 

only half of the input frequency can be resolved as the maximum frequency signal, which is 
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known as the Nyquist frequency [37]. Therefore, the resampling brought a set of frequencies 

higher than the Nyquist frequency which added noise to the wind time series. To rule out 

such high frequency noise introduced to the resampled wind speed time series, a third-order 

low-pass Butterworth filter was applied to the Fourier transform of the resampled wind time 

series in the frequency domain with a cutoff frequency of the Nyquist frequency. The wind 

time series was de-trended using the best fit line to avoid the wrap-around effects of the 

Fourier transform before transfer to the frequency domain. After the high frequency noise 

was filtered and filtered data was return from the frequency domain to the time domain using 

the inverse Fourier transform, the subtracted best fit line was added back to the filtered time 

series to produce a smoothed wind speed time series as shown in Fig 4.5.  

 

Figure 4.3: Hourly mean and variance of raw wind speed data 
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Figure 4.4: Resampled wind speed (10 Hz) and its best fit line 

 

Figure 4.5: Resampled and Smoothed wind speed time series 

For step (2): a zero-mean turbulence time series need to be introduced to the 

smoothed wind speed time series to reconstruct the non-stationary properties of real wind. A 

two-sided Kaimal spectrum at the height of 80 m was generated from the input of the hourly 

variance of the raw wind data following the IEC 61400-1 standard [38, 39] and based on the 

Shinozuka/Veers method [40, 41]. First, a one-side spectrum was defined as Eq. 4.1 (where 
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  is the hourly variance of the raw wind speed data,    is the hourly mean of the raw wind 

speed data,    was taken as 340.2 for the turbulence at 80 m [35], f is the frequency input to 

the spectrum model) and then discretized to the output frequency         (10 Hz) for the 

whole duration        of the desired time series using Eq. 4.2 (where the discrete frequency 

is       ,         and                 , note that M is an odd integer by 

definition so that N is an even integer,    was taken as one percent of the input frequency). 

By scaling and applying random phase angles to the discretized spectrum, a non-stationary 

one-sided spectrum was obtained with Eq. 4.3 (where the random phase angle was 

implemented by    [ ] which is complex numbers,  [ ] was created by a uniform random 

distribution over the range [0, 2π] and the scaling factor   can be computed with Eq. 4.4 to 

compensate the loss of variance in the simulation). Then the two-sided spectrum can be 

generated using Eq. 4.5 (where    [   ]     [ ]  are the complex conjugate of 

 [ ]  [ ]    [   ] to represent the negative frequencies and       [ ] is enforced to be 

zero to create a zero mean turbulence). At last, the turbulence time series can be obtained by 

applying the fast Fourier transform (FFT) to the two-sided spectrum (Eq. 4.6). 
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Figure 4.6: Simulated wind speed time series at 10 Hz 

 

Figure 4.7: Simulated wind pressure time series at 10 Hz 
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[36], the wind speed is relatively low. To obtain a general working wind speed for wind 

turbine between cut-in (typically between 3 – 4 m/s) and cut-out (usually around 25 m/s) 

wind speed, the generated wind speed was convert to that at a higher height (h = 80 m) using 

Eq. 4.7 (where     stands for the wind speed at 10 m,     is 10 m and a is the Hellman 

exponent which depends on the coastal location, shape of the terrain on ground and the 

stability of the air; a was taken as 0.6 for the assumption of stable air above human inhabited 

areas). 

           
 

   
                                                                 

           
                                                                    

The resulting dual wind speed is given in Fig 4.6. According to Eq. 4.8, the wind 

pressure (in Pa) can then be constructed with the dual wind speed as shown in Fig. 4.8. The 

two sets of wind pressure time series (Fig. 4.8) of a duration of 10 s that are applied on the 

asymmetric plate (Fig. 4.1) were taken from two random parts of the simulated dual wind 

pressure and reduced from 10 Hz to 5 Hz for less load steps and computing time in the finite 

element analysis. 
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Figure 4.8: Two applied wind pressure sets at 5 Hz (top: set (1), bottom: set (2)) 
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4.3 Evaluation of the LSE-polynomial Algorithm on Asymmetric Laminated Plate 

Surface 

 

The performance of the LSE-polynomial algorithm is assessed. Results are shown in 

Figs. 4.9 – 4.12. Note that the BCs were not enforced for the two corner boundary sensor 

nodes close to the fixed root and the one sensor node close to the free tip considering the 

bending stress singularity effect at corner (the two free corners of the blade resembling plate 

are very close to each other geometrically so that the BC at the free side may be significantly 

disturbed by the corner bending stress singularities). 

It can be seen from the time varying MAPE (Fig. 4.9) that the algorithm worked well 

for the majority of the time during the excitation of the two sets of wind pressure. The MAPE 

only becomes relatively larger when the wind load is close to zero which is similar to that of 

the symmetric rectangular plate. This could be explained by the same reason as mentioned in 

Chapter 2. For most part of the time series, the MAPE of the estimation is relatively constant 

at the value around 3% for strain   and 12% for strain  . A possible explanation could be that 

the estimation of strain   is more dependent on the BC assumptions, which contains 

imperfection for the enforcement on the modeled boundary sensor nodes. 
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Figure 4.9: MAPE of the estimation for strain x (top) and strain y (bottom) versus time and 

load 
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Figure 4.10: Contour plot of Strain x (top: analytical, middle: estimated) and MAPE contour 

of strain x estimation (bottom) at 5s 
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Figure 4.11: Contour plot of strain y (top: analytical, middle: estimated) and MAPE contour 

of strain y estimation (bottom) at 5s 
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In addition, the estimation results were compared with the analytical solution for a 

specific time point. Here, the result at 5 s when the MAPE is relatively constant was selected 

for the comparison. For the estimation of strain  , Fig. 4.10 shows a good agreement with the 

analytical solution in the strain contour plot and the MAPE remained under 10% on most of 

the plate surface. The area with relatively higher value in the MAPE contour is probably due 

to the imperfection of the BC enforcement of the adjacent boundary sensor nodes. Fig. 4.11 

also suggests a good agreement in the strain contour plot between estimated and analytical 

strain in   direction, though the performance is not as good as that for the strain in   

direction, which could also be explained by relatively higher sensitivity of the estimation for 

strain   to the imperfection of BC enforcement. The MAPE contour of strain   also tend to 

have higher values at the locations similar to that of strain   which reveals the location of 

boundary sensor nodes with less accurate BC is close to the top corner. This is probably 

because of bending stress singularity [31, 32] reducing the accuracy of the BC. 

 

Figure 4.12: Deflection shape estimation at 5s compared with analytical result 
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After extracting the biaxial strain, the deflection shape can also be reconstructed with 

the proposed the algorithm. The estimated result compared with the analytical deflection 

shape is plotted in Fig. 4.12 showing a satisfactory agreement, which manifested the 

capability of the proposed algorithm to monitor the deformed shape of a thin plate structure. 

Overall, the MAPE contour plots reveal that the performance of the proposed 

algorithm is relatively better on the rectangular plate which can be explained with the 

following reasons: (1) The irregular geometry of the asymmetric plate determined that only 

considerably small amount of SEC can be placed at the root (3 SECs) and the free tip (1 

SEC), which lead to a loss in BC enforcement; (2) Although the BCs for corners and the free 

side were not applied in the algorithm for the asymmetric plate due to the concern on bending 

stress singularities, the accuracy of the rest of the BCs for the modeled boundary sensor 

nodes that are close to the corners and the free side may also be affected by it; (3) The 

amount of sensor versus the area of the surface is much smaller for the asymmetric plate 

compared to the rectangular plate. As a result, the resolution of the sensor mesh for mapping 

is probably less accurate for the asymmetric plate than the rectangular plate. 

 

 

 

 



82 

 

CHAPTER 5 

CONCLUSION 

 

5.1 Summary 

This study is focused on extending the applicability of the SEC from structural 

surface with uniaxial strain field to that with biaxial strain fields. The limitations of the 

previous applications of the SEC were discussed and an algorithm was proposed as a 

potential solution. The algorithm was developed based on least-squares surface fitting 

technique and the classical plate theory to extract the biaxial strain from the SEC signal for 

the SEC sensor network installed on the surface of thin plate and shell structures. The 

potential application of the SEC sensor network for the strain state and deformation 

monitoring for wind turbine blades was also investigated. Two algorithm formulations 

(polynomial and biharmonic) were introduced and their capability of biaxial strain 

decomposition was verified on a symmetric rectangular cantilever thin plate. 

Afterwards, the two algorithm formulations were evaluated on the same rectangular 

plate with two types of accuracy of BC enforcement (ideal and modeled BC enforcement), 

for various levels of order or expansion of the functions and under different noise levels. By 

accessing the accuracy, execution time and sensitivity to loss of accuracy of the BC, the 

polynomial formulation (LSE-polynomial) was shown to perform better than the biharmonic 

formulation. 

At last, an application of the LSE-polynomial algorithm was conducted on a 

simplified asymmetric laminated cantilever plate resembling a wind turbine blade. To 

achieve a more realistic loading condition in the simulation, a dual wind pressure time series 
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was simulated based on real wind speed data sampled with a very low frequency. Although 

the algorithm performance is not as good as that on the symmetric rectangular cantilever 

plate due to the loss of accuracy in the BC introduced by the bending stress singularities at 

the corners with skewed angles, the algorithm still showed satisfactory accuracy on biaxial 

strain extraction and deflection shape reconstruction. 

 

5.2 Discussion 

Based upon the work summarized in this thesis, the following conclusions can be 

drawn: 

1. The proposed algorithm based on least-squares surface fitting technique and the 

classic plate theory is capable of extracting biaxial strain from the SEC signals of 

an SEC sensor network and reconstructing deflection shape of thin plate and shell 

structures with sufficient accuracy. 

2. The proposed algorithm with polynomial formulation (LSE-polynomial) 

performed better than that with biharmonic formulation in terms of higher 

accuracy, faster computing speed and lower sensitivity to the imperfection of BC 

enforcement. 

3. The accuracy of the estimation of LSE-polynomial algorithm increases when the 

order of the polynomial formula grows, though the degree of the order is limited 

by the amount of the SECs in the sensor network. 

4. The LSE-polynomial algorithm showed a fast computing speed which enables a 

real-time SHM. 

5. The LSE-polynomial algorithm exhibited a relatively stable performance in 

estimation accuracy under noise level below 5%. 
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6. The LSE-polynomial algorithm achieved a satisfactory accuracy on the surface of 

an irregular laminated thin plate consisted of orthotropic materials which 

displayed the potential for the application on wind turbine blade, though there is a 

loss in accuracy compared with the algorithm performance on the rectangular 

plate due to the bending stress singularities at the corners with skewed angles. 

7. The LSE-polynomial algorithm maintained a relatively stable accuracy during the 

excitation of varies loading condition, including non-stationary wind loads. 

 

5.3 Limitations and Future work 

The limitations of the proposed LSE-polynomial algorithm focused on the BC issues: 

1. The performance of the algorithm depends considerably on the accuracy of the 

BC enforcement. 

2. Since it is not feasible to install the SEC exactly on the boundaries, the BC cannot 

be applied on ideal boundary locations, which lowers the algorithm accuracy by 

bringing inaccurate information to the algorithm through the BC enforcement. 

3. The BC can be disturbed by bending stress singularity due to irregular geometry 

at corners. This also makes the algorithm accuracy depending on the plate 

geometry. 

Accordingly, future work can be conducted on two aspects: 

1. The BC enforcement need to be strengthened. Possible solution could be using 

other matured sensor, such as strain gauges, for the boundary sensor nodes to 

provide a precise BC. 
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2. Another possible effort could be finding other mechanical based strain relations 

that are independent from the plate geometry and introducing that to the algorithm 

instead of the BC. 
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