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ABSTRACT 

 

  Traffic safety during winter seasons has been a serious concern in Iowa as hundreds of 

people are injured on Iowa’s highways each winter. As the goal of the state transportation agency 

is to ensure the mobility of road users without compromising the safety during winter periods, it 

is important to understand the factors affecting winter-weather crash frequency and occupant 

injury risk through quantitative prediction models. It is of utmost importance to identify locations 

prone to winter-weather crashes to utilize the limited resources efficiently for improving safety 

during winter conditions. This research intended to develop a systematic prioritization technique 

to identify winter-weather crash hotspots by using Empirical Bayes technique that addresses the 

serious limitations of the traditional methods to screen road networks for identifying high crash 

locations. This research also addresses the issue of hierarchical structure in the crash data by 

developing quantitative models to predict occupant injury risk for crashes occurring during 

winter seasons to obtain unbiased and accurate estimation of the parameters for better 

management of road safety during winter seasons.  

 Along with developing site prioritization techniques for identifying roadway segments 

with potential for safety improvement through traditional statistical methods using raw crash 

data, Empirical Bayes technique is used to screen roadway segment through developing safety 

performance functions for winter-weather crashes. A novel approach is adopted to extract 

weather data from information reported by winter maintenance crew members to incorporate 

weather related factors in developing safety performance functions at network level for three 

roadway types in Iowa. Weather factors such as visibility, wind velocity, air temperature are 

found to have statistically significant effects on winter-weather crash frequency. The ranking of 
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roadway segments based on Potential for Safety Improvement (PSI) by employing Empirical 

Bayes technique differs from the ranking produced by simple crash frequency. Safety 

Performance Functions developed in this research can be used to produce ranking based on PSI 

by using crash observations made over a specific number of years for winter-weather crashes. 

Models predicting occupant injury risk with binomial logit formulation are developed 

considering the hierarchical structure of the crash data in a Bayesian framework in this research 

for weather-related crashes, non-weather related crashes, and all crashes occurring during the 

four winter seasons (2008/09 to 2011/12) in Iowa. These models are developed using 

disaggregate crash data with occupants nested within crashes. High values of between-crash 

variance for the three models underscore the justification of considering the hierarchical nature 

of the crash data due to the natural crash data collection process. Factors related to occupants 

(gender, seating position, trap status, ejection status, airbag deployment, safety equipment used) 

had statistically significant effects on occupant injury risk for all the models. Weather-related 

variables such as visibility and air temperature were found significant predictors of all crashes 

and weather-related crashes during the winter seasons. The variable representing road surface 

condition is also found to be a significant factor in all three models developed to predict 

occupant injury risk during the winter seasons.



1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

Winter weather safety has been a serious concern for transportation agencies and road 

users in countries with severe winters such as the United States (U.S.), Canada, and Northern 

European countries. Transportation agencies spend significant amount of resources every year to 

keep highways and local roads clear of snow and ice to ensure the mobility of the road users 

without compromising on safety during the winter weather periods.  

Literature (Nilsson and Obrenovic, 1998) shows that drivers are twice more likely to be 

involved in a crash in winter than summer for a given distance of travel. In the United Kingdom 

and the United States of America, weather related crashes account for 30% and 35% of total 

reported crashes (Andrew and Bared, 1998). According to Federal Highway Administration 

(FHWA) (2010), weather related crashes accounts for an average of 24% of total crashes 

resulting in about 7,400 fatalities and over 673,000 injuries annually. Thus it is important to 

implement effective winter weather road maintenance operations, such as plowing, salting, and 

sanding.  

It has been estimated that the U.S. spends around $2 billion annually for winter weather 

maintenance and operations. This estimate does not include indirect costs such as damage 

occurring to environment especially in the form of salinization of land, ground and surface water, 

roadway infrastructure and vehicles due to salt use (Environment Canada, 2002). Given the 

limited resources available to agencies for winter weather operations, it is imperative to establish 

a prioritization methodology in terms of frequency (or occurrence) and severity of winter 
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weather crashes to rank high risk road segments for improving safety to ensure an efficient 

allocation of resources. On the other hand, it is also critical to identify the causes for traffic 

crashes that occur during winter weather, and in particular, understand the factors affecting 

traffic crash frequency/severity during winter weather conditions. Identifying and quantifying the 

relationship between winter road safety and contributing factors can be achieved with the use of 

advanced statistical modeling for predicting the frequency of winter weather crashes or crash 

severity as a function of various significant factors (vehicles, roadway, environment, weather, 

occupants, maintenance and operations). 

 

1.2 Research Motivation 

The motivation of the current research derives from the fact that there are hundreds of 

people injured in winter-weather crashes on Iowa’s highways each winter. In this research, 

winter weather-related crashes were defined as weather-related crashes occurring during the 

winter seasons with any of the followings reported for the crash event: 

 Weather conditions: Sleet/hail/freezing rain or Snow or Blowing 

sand/soil/dirt/snow 

 Surface conditions: Ice or Snow or Slush 

 Vision obscurement: Blowing sand/soil/dirt/snow 

 About one-third of the total crashes and half of the rural interstate crashes were weather-

related during the winter seasons of 2004/05 to 2011/12 in Iowa. Figure 1.1 shows the 

percentage of weather-related crashes during the four winter seasons (2008/09 to 2011/12) with 

respect to the total number of crashes during the same time period in Iowa. Though 

transportation agencies spend millions of dollars on proactive and reactive maintenance for 
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ensuring the best possible pavement condition and visibility for traveling motorists, there is no 

systematic method to identify high risk winter weather-related crash locations in Iowa. Previous 

efforts to identify potentially problematic winter-related crash locations were based on using 

historical crash data during winter weather conditions. Traditional naïve statistical methods using 

raw crash data to identify crash hotspots have serious limitations, including the so called 

regression-to-mean (RTM) problem in highway safety. RTM refers to the tendency of the 

unusually high or low crashes in one time period to regress or return to the mean in subsequent 

time periods. For example, if an agency selects a location with an unusually high number of 

winter weather-related crashes over a short time period for targeted winter maintenance, it 

doesn’t necessarily mean that site has a higher than normal crash frequency. This will result in 

inefficient allocation of resources without the expected improvement in winter road safety with 

respect to the winter maintenance. Traditional methods to identify hotspots for improving winter 

road safety also do not consider incorporating weather information while selecting locations for 

targeted winter maintenance. At the same time, it is important to understand the factors 

contributing to or causing severe injuries to travelers during winter weather season to mitigate 

the causes of severe injury outcomes.  
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Figure 1.1 Percentage of weather-related crashes during four winter seasons (2008/09 to 

2011/12) 

 

1.2.2 Research Objectives 

In recent years, techniques for screening road networks to identify high crash locations 

have become more sophisticated and require more data as inputs. Instead of relying on the 

traditional methods (crash frequency, rate, or severity) to identify candidate locations for safety 

improvements, this study aimed to utilize an Empirical-Bayes adjusted crash frequency to 

identify crash locations that have a potential for crash reduction during winter weather 

conditions. The Empirical-Bayes approach combines the expected number of crashes with the 

observed crash counts at a location to produce an improved estimate of the expected number of 

crashes. As crashes are random in nature, the Empirical-Bayes method takes into account the 

phenomenon of RTM. Extensive research has shown that the Empirical-Bayes approach is the 

most consistent and reliable method for identifying sites with promise (Cheng and Washington, 

2005; Cheng and Washington, 2008; Hauer, 1996; Hauer et al., 2002).   
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Safety Performance Functions (SPF) need to be developed for applying Empirical-Bayes 

technique to screen road segments. SPFs are statistical models used to estimate the average crash 

frequency for a specific site type, based on traffic volume and roadway segment length. Typical 

safety performance functions (SPFs) have been developed to estimate crash frequency using site 

or roadway characteristics such as lane width and traffic volume expressed as annual average 

daily traffic (AADT). These SPFs did not incorporate additional independent variables as this 

process would be more complex and labor intensive. The proposed research will develop crash 

frequency models for three roadway types in Iowa to predict winter weather crashes with the 

crash frequency being a function of several factors related to winter weather conditions such as 

visibility, pavement temperature, air temperature, and wind speed.  

The second objective of the proposed research was to develop statistical models to 

predict severity of winter weather crashes using crash data information along with winter 

weather related attributes such as wind speed, pavement temperature, and winter storm type. 

Traditional crash prediction models such as generalized linear regression models are not able to 

capture the multilevel structure of the traffic crash data. The underlying assumption for these 

types of traditional models is that the observations are sampled from a single homogenous 

population and each crash observation is an independent situation leading to independent 

residuals. However, this “independence” assumption may often not hold true since multilevel 

data structures exist extensively because of the crash data collection process. As traffic crash 

data are hierarchical in nature with possible correlation at the occupant or vehicle level, ignoring 

such within-class correlation might lead to the development of prediction models with biased 

parameter estimates and variables to be falsely significant. Because of the hierarchical nature of 

traffic crash data, it is reasonable to assume that the characteristics of the vehicle in which 
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occupants are traveling affect the probability of casualties of occupants. In this case, casualties 

within the same vehicle would tend to be similar compared to casualties in different vehicles.  

 Similarly, vehicles/drivers involved in a multi-vehicle crash event might sustain 

damages/injuries with similar severity or vice versa. Whether positive or negative, ignoring such 

intra-class correlation in crash data is equivalent to ignoring the clustering nature of the data. 

When this correlation in the hierarchical crash data is ignored, the “independence” assumption 

which was mentioned previously fails to hold true. With crash prediction model being one of the 

most important techniques to investigate the relationship between crash occurrence/crash 

severity and risk factors associated with the various traffic entities, it is very important to obtain 

an unbiased and accurate estimation of parameter estimates to predict crash occurrence/crash 

severity for better management of road/winter weather safety. The use of hierarchical/multilevel 

models is one way of addressing the multilevel structure or the clustered nature of the crash data. 

Multilevel models have the ability to represent datasets with hierarchical or clustered nature. 

Multilevel models are likely to involve random effects defined over the clusters and possible 

correlation between different types of cluster groups. This research dedicates effort to develop a 

hierarchical discrete choice model in a Bayesian framework to consider the multilevel structure 

of the data.  
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1.3 Research Contribution 

Although the effect of winter weather on road safety has been studied extensively by 

many researcher, studies related to development of a systematic prioritization technique for 

screening road segments for winter weather crashes are scarce in the literature. At the same time, 

studies addressing the hierarchical/clustered nature of the crash data in a Bayesian framework are 

also limited in the transportation literature. The contribution of this dissertation are as follows: 

1. Development of statistical models relating winter crash frequency to weather-

related information, roadway characteristics, and traffic volumes for three types 

of roadways 

2. Development a systematic prioritization technique for screening road segments 

for winter weather crashes in an Empirical-Bayes framework using the crash 

frequency models. 

3. Understanding the factors affecting winter weather crash-injury severity by 

developing severity models in a hierarchical Bayesian framework so as to 

consider the multilevel structure of the crash data on a micro scale (crash – 

vehicle/driver – occupant) 

The following schematic shows the research framework.  
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Figure 1.2 Research framework for the study 

 

Literature Review Data Collection Data Analysis

Developing SPF 
by incorporating 

winter weather 
infromation

Address the 
hierarchical 

nature of crash 
data at a micro 

level

Crash
Vehcile

Occupant

Weather dataGaps to be addressed Crash-level

Vehicle- level
Data

Occupant-level
Data

Quantitative model
(Crash-frequency)

Quantitative model 
(Crash -injury severity)

1. How do the winter 

weather related factors
affect the crash frequency?

2. How do the SPFs 
perform in terms of 
explaining the variance in 

the crash frequency after 
incorportaing winter 

weather-related factros?
3. How does the 
Empirical-Bayes adjusted 

crash frequency compare 
with the actual crash 

frequency on road 
segments for 
prioritization?

1. Is there any siginifcant 
withn-crash correlation in 

the crash data considring 
the hierarchy in the crash 

data?
2. What are the siginifcant 
factors at crash level, 

vehicle level, and 
occupant level affecting 

injury crash severity 
during winter condtions?
3. How does the 

hierarchical Bayesin 
model perform compared 

to non-hierarhical model 
in terms of ftiing the crash  
data?

Research Questions

8
  



9 

 

 

1.4 Organization of the Dissertation 

 This dissertation consists of seven chapters. Chapter 1 was the introduction to the 

problem. The remaining portion of the dissertation is organized as follows: 

 In Chapter 2, a literature review is presented in the area of factors affecting winter 

weather safety, crash frequency models, and multilevel modeling techniques affecting crash-

injury severity. 

 Chapter 3 describes the data used for the analysis and data processing. 

 Chapter 4 describes the proposed methods used for achieving the research objectives. 

 Chapter 5 describes the development and calibration of safety performance functions 

used in the Empirical-Bayes analysis and the corresponding estimation results. 

 Chapter 6 describes the development of multilevel models for crash-injury severity 

analysis and the corresponding model estimation results. 

 Chapter 7 highlights the conclusions and main contributions of this research. A 

discussion of the research limitations and ideas for future research is also presented in this 

chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter provides a thorough literature review of the factors affecting winter weather 

safety and methodologies that were used in previous studies to analyze crashes related to winter 

weather. This chapter also discusses the studies related to multilevel modeling techniques for 

crash injury severity analysis. 

 

2.1 Factors Affecting Winter Weather Safety 

 

2.1.1 Effect of Weather on Safety 

From the literature, it has been found that some of the weather related factors affecting 

safety on the roadway include snow, rain, freezing rain, severe and major storms, temperature, 

visibility, and wind speed (Edwards 1998; Feng 2001; US Department of Commerce 2002; 

Strong et al 2010).  

Andreescu and Frost (1998) conducted correlation and regression analysis of daily 

accidents with weather related variables (temperature, rain fall, and snowfall) using three years 

of crash data (1990-1992) from Montreal, Quebec. Differences in daily number of crashes and 

mean number of crashes over a week was used as the number of daily crashes for the three years 

of study period to reduce the variation in the number of crahses per day. The study results found 

that the number of crashes increased with increase in snowfall or rainfall intensity but no 

significant relationship with respect to temperature was found. 
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Aggregated data by intervals of six hours was used by Andrey et al. (2003) to analyze 

crash and precipitation data of six Canadian cities from 1995 to 1998 employing matching pair 

technique. Using this technique, the researchers compared crashes on periods of days under 

adverse weather conditions with crashes on periods of similar days under normal weather 

conditions. The results indicated 75% and 45% increase in frequency of overall collisions and 

injury severity collisions respectively due to precipitation. Although snowfall effects were more 

pronounced than rainfall for collisions, severity of the crashes were less in nature. Andrey and 

Knapper (2003) found that the crash risk associated with rainfalls is mainly due to visibility with 

crash rates dropping quickly near to normal once the rain stopped. The study results also 

revealed that high winds and fog are responsible for a small proportion of crashes. More 

recently, Andrey (2010) investigated the effects of weather on crash severities using data from 

1984 to 2002 for 10 Canadian cities. Using a match paired technique, Andrey (2010) showed that 

the risk of minor injury crash increased by 74% and 89%, respectively due to rain fall and 

snowfall whereas the increase in major/fatal injury crash risk was 46% and 52%, respectively 

due to rainfall and snowfall. 

Using 25 years of weather, traffic and crash data for the 48 US continental states, 

Eisenberg (2004) developed a set of state-level daily and monthly collision models that followed 

a negative binomial distribution. The estimated monthly models showed a reduction in fatalities 

and an increase in non-fatal crashes with snow precipitation. The estimated daily models showed 

a positive relationship between snow precipitation and the total number of crashes, and also 

revealed that fatalities increased with heavy precipitation. Eisenberg and Warner (2005) 

conducted an analysis using the same dataset to investigate the relationship between snowfall 

and crash rate and calibrated negative binomial models with number of crashes as the dependent 
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variable and precipitation, traffic exposure and other factors as independent variables. The 

findings revealed that the number of non-fatal injury crashes and property damage crashes 

increased during the snowfall but the number of fatal crashes decreased.  

Sherif (2005) attempted to establish a link between road surface temperature, surface 

moisture, and road safety using data for one winter season from the city of Ottawa, Ontario, 

Canada. A Pavement Moisture Risk Factor (PMRF) was developed using the ratio of crash rate 

on wet surface to that of on dry surface. The results from the study indicated that wet surfaces 

are found more hazardous when temperature ranges from +1 to -2 C. However, some of the 

major limitations of the study was large aggregation of crash and weather data at a high level, 

masking the variations within different types of highways, consideration of wet and icy surfaces 

to be equal in terms of their effect on safety. 

Hermans et al. (2006a) investigated the effect of weather factors on road safety by using 

data collected in Netherlands in 2002 and considering a number of factors related to wind, 

temperature, precipitation, and visibility. The collected data included hourly data on cloudiness, 

precipitation duration, precipitation amount, relative humidity, presence of precipitation, 

presence of fog, snow, thunderstorm, black ice, hail, and visibility. The researchers estimated 

negative binomial models and found that duration of precipitation and wind gust speed were 

associated with higher crash frequency while the presence of light were associated with lower 

number of crashes. Hermans et al. (2006b) also analyzed frequency and severity of crashes based 

on monthly data collected from 1974 to 1999 in Belgium using a state space approach 

considering several weather variables. A state space approach is based on describing a time-

varying process by a vector of quantities. Percent days with thunderstorm and precipitation were 

found to be positively associated with minor injury risk with statistical significance.  Both minor 
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and major fatal injury risk were found to be higher in days with precipitation and with increased 

sun light hours. On the other hand, risk for both types of injuries was found to be lower in days 

with freezing temperature.   

Qiu and Nixon (2008) conducted a meta-analysis of past studies from 1967 to 2008 to 

illustrate weather related factors affecting road safety. According to that review, it was found that 

snow precipitation was likely to increase the total number of crashes by 73%, 85%, and 100% on 

average in USA, Canada, and UK, respectively. Rain was likely to increase the total number of 

crashes by 58%, 73%, and 24%. Injury crashes also followed same pattern. It is to be noted that 

the estimates considered in this meta-analysis from different studies were the gross averages in 

different countries in different time span. Many factors such as driving behavior, exposures, and 

maintenance operations attributed to the variations in the percentages mentioned above and thus 

the findings from this study cannot be generalized without considering specific traffic, 

maintenance, weather characteristics of a specific region. 

 

2.1.2 Effect of Traffic Related Factors on Safety 

Knapp and Smithson (2000) investigated the impact of winter storm events on traffic 

volumes. Sixty four winter storm events occurring between 1995 and 1997 on interstates in Iowa 

were considered that met certain traffic volume, storm duration and snowfall intensity criteria set 

by the researchers. Road Weather Information System (RWIS) data from seven sites near the 

interstates were used to collect roadway and weather condition data. Automatic Traffic 

Recorders (ATR) located near the RWIS were used to collect the hourly traffic volumes to 

approximate storm and non-storm event traffic volumes. In that study, multiple regression 

analysis was conducted to investigate the relationship between reduction in the percentage of 
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traffic volumes during winter storm events, snowfall intensity, total snow fall, and other weather 

related variables. The percent reduction in traffic volume during a winter storm event was 

derived by calculating the percent reduction in volume from average traffic volume during a non-

storm event. The analyses indicated that the percent reduction in traffic volume during winter 

storm events had a statistically significant and positive relationship with total snowfall and the 

square of maximum gust wind speed. Knapp et el. (2000) also studied the impact of winter 

storms on crash frequency and reduction in traffic volume using a standard Poisson regression 

count model as there was no evidence of presence of overdispersion in the crash data. Hourly 

data were collected for crashes, traffic volume and weather variables in Iowa for a 48 km long 

segment of the Interstate highway from 1995 to 1998 and identified 54 winter storm events based 

on freezing temperature, precipitation and non-dry pavement surface. The model results showed 

an increase in crash frequency with the increase in exposure (vehicles millions kilometers), snow 

storm duration, and snowfall intensity.   

Knapp and Smithson (2001) investigated the change in vehicle speed during winter 

weather events involving the use of mobile video data collection equipment to collect traffic flow 

data (i.e., speed and volume), weather and road surface conditions during seven 1998-1999 

winter weather events at an Interstate location in Iowa. The researchers discussed the 

effectiveness and some concerns related to using mobile video data collection equipment during 

winter weather. Exploratory data analysis revealed a 16 percent reduction in the average winter 

weather vehicle speed compared to the typical average speed at the same location during non-

winter conditions. A 307 percent increase in the variability of vehicle speed during winter 

weather events was also found when compared to the typical speed variability. The multiple 

regression model developed as part of the study revealed that off-peak average winter weather 
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vehicle speed would increase with the square of traffic volume, decrease with the decrease in 

visibility below 0.4 km and decrease when snow began to affect or cover the roadway lanes. That 

study assumed that traffic volume was a surrogate for the weather characteristics affecting 

variable speed and as such weather data were not collected during the winter weather events.  

Padget et al. (2001) conducted a study to investigate winter weather speed variability in 

Sport Utility Vehicle (SUV), pick-up trucks and passenger cars. They collected and analyzed the 

speeds of SUVs, pickup trucks, and passenger cars on five different winter weather pavement 

surface conditions in Ames, Iowa. The analysis results revealed that all three types of vehicles 

had similar average speeds during the normal conditions with passenger cars having the highest 

average speed but this pattern reversed during the winter weather conditions with SUVs having 

the highest average speed and passenger cars having the lowest average speed. It was concluded 

that passenger cars generally traveled slower than SUVs during winter weather conditions but 

faster during normal conditions. It was found that there was a difference between the normal and 

the winter weather speed choice of SUV, passenger car and pickup truck drivers. However, the 

variability in the speed of SUV, pickup trucks and passenger cars increased during winter 

weather periods compared to those during normal conditions regardless of the time of day. 

Nighttime speeds for all three types of vehicles were found to be significantly less than daylight 

speeds. The analysis result also revealed that the average vehicle speed for all three types of 

vehicles decreased with poorer roadway surface conditions during the winter weather periods.  

Lee and Ran (2004) developed a winter maintenance performance measure based on 

speed recovery durations during snow events using speed data collected from Automatic Traffic 

Recorders (ATR) and winter storm report data in Wisconsin. The authors defined speed recovery 

duration as the time between the stopping of the snow event and recovery of vehicle speed to 
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normal. The speed recovery duration was proposed as a measure of winter maintenance 

performance measure in lieu of the total operational costs or salt usage. A regression model 

developed in the study showed that vehicle speed recovery duration to the normal condition was 

significantly associated with snow duration and maximum speed reduction during the snow 

storm. Lee et al. (2008) conducted a follow-up study involving a larger sample size to validate 

the findings of the Lee and Bran (2004) study. The follow-up study involved the investigation of 

vehicle speed changes during winter weather events with data extracted from Wisconsin winter 

maintenance logs.  The study conducted a regression tree analysis with Speed Recovery Duration 

(SRD), which is the time required to regain the normal average speed from minimum speed 

during a winter storm event, as the dependent variable. SRD was found to be a promising factor 

to evaluate winter maintenance activities using vehicle speed data.  According to the developed 

models, it was found that SRD would increase with the quick reduction of vehicle speed to the 

minimum speed during the winter storm events. A longer SRD would also be expected for 

increase in the percent of Maximum Speed Reduction (MSR). The study confirmed that vehicle 

speeds could be a good measure for indicating driving conditions during a winter weather event. 

 

2.1.3 Effect of Winter Maintenance on Safety 

Adams et al. (2006) developed regression tree models for estimating labor, equipment 

and material resources, cleanup cost and percent overtime cost associated with winter weather 

maintenance activities during storm events in Wisconsin. The researchers focused on estimating 

the required resources using regression tree models, which are independent from unit costs of 

labor, maintenance and equipment that change over time and vary from county to county. 

Models were developed for 72 counties in Wisconsin divided in 4 service groups depending on 
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the percent highway coverage received by those counties during winter weather events. The 

regression models captured the effect of precipitation depth, storm duration, air and pavement 

temperature at the start of the storm, time of the day, and service level on resource requirements 

for winter maintenance. The analysis showed that temperature influenced labor and equipment 

requirements as well as materials usage for winter maintenance. This type of model is used by 

the state of Wisconsin for estimating resource requirements in case of an impending storm. 

These models are also applicable to different counties for estimating the resource requirements 

with varying unit labor, material and equipment costs.  

In another study, Ye et al. (2009) investigated and evaluated the effect of weather 

information on winter weather maintenance cost. For this purpose, a general winter maintenance 

cost model was presented and neural networks and sensitivity analysis were used to identify key 

variables that had significant effect on cost. The analysis revealed that enhanced accuracy and 

frequent use of weather information could reduce winter maintenance cost significantly. The 

cost-benefit analysis conducted as part of the study revealed that weather information can be a 

promising way to improve winter maintenance and reduce agency costs. 

Russ et al. (2008) conducted a study focused on addressing pretreatment protocol for 

winter maintenance of roadways in Ohio. The study was conducted in four parts consisting of 

conducting surveys of personnel in state departments of transportation and county manager in 

Ohio, conducting field durability studies of various applications of brine on Portland Cement 

Concrete and asphalt concrete pavements in Ohio, inspections of pretreatment during three 

winter seasons, and performing laboratory tests on Portland Cement Concrete (PCC) and Asphalt 

Concrete (AC) cores. Integration of the findings from these tasks resulted in a decision tree to aid 

in operational planning and pretreatment.   
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Blomqvist et al. (2011) combined an empirical model developed in Sweden with data on 

residual salt, road surface wetness, and traffic from 18 Danish field case studies to predict salt 

usage on road surface during winter weather.  Results showed that the decay of residual salt 

could be modeled with traffic as an independent variable with a fair to quite good fit (with R2 

value ranging from 0.64 to 0.99). Road surface wetness was positively related to the rate of 

residual salt loss from the wheel tracks meaning wetter surface would expedite the salt leaving 

process from the wheel tracks. While passing only a couple of hundred vehicles on a wet road 

surface would result in almost no salt in the wheel track, it would take a couple thousand 

vehicles to pass on a moist road to achieve the same result. 

 

2.2 Review of Past Methodologies for Modeling Winter Weather Crash Frequency 

 

2.2.1 Winter Weather Crash Frequency Models 

Usman et al. (2010) conducted a study to quantify the safety benefits of winter weather 

maintenance and operations employing event-based crash frequency models. Using crash and 

weather data from different sources in the province of Ontario, they developed event base 

models for predicting winter crashes controlling for visibility, Road Surface Condition index 

(RSI), traffic exposure, site specificity, and precipitation under snow storm events. The novelty 

of this research lied in introducing a Road Surface condition Index (RSI) which was assumed to 

reflect the maintenance operations during snow storm events. RSI was defined for major classes 

of road surface conditions having ordered categories in terms of the severity. RSI was introduced 

as a surrogate measure of the commonly used friction level and RSI was assumed to be similar to 

road surface friction values and varied from 0.1 (poorest, e. g., ice covered) to 1.0 (best, e. g., 
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bare and dry). RSI was defined as a range of surface friction values assigned to different major 

classes of road surface conditions having based on the literature. Three types of modeling 

techniques were used to investigate the association of crash frequency during a snowstorm event 

with road surface conditions and the other controlling factors mentioned above. Results showed 

that the generalized negative binomial model offered the best fit for the data over the negative 

binomial and the zero inflated negative binomial models. The Road surface condition (RSI) 

index was found statistically related to influence a crash occurrence during a snow event.  

Using disaggregate hourly data from the same winter snow storm events as in  Usman et 

al. (2010) , Usman et al. (2011) developed a generalized negative binomial model for predicting 

winter crash frequency. This model was compared to the model calibrated from using aggregate 

event-based data to examine the impact of data aggregation (from event based data to hourly 

data) on modeling results. Results showed that data aggregation ignoring data correlation could 

result in loss of information and models with biased parameters. Some important factors turned 

out to be significant in the disaggregate model while it was insignificant in the event-based 

aggregate model. The same study also developed two Poisson-Lognormal (PLN) models using 

hourly winter crash data set with multi-level (event-hour structure) and single level data 

structure. The Multilevel data structure accounted for the within-event correlation of the 

observations at different hours. The single level and multilevel PLN models based on hourly data 

were very similar indicating that event-level correlation in the specific dataset used in this study 

was weak. 

After establishing the effectiveness of calibrating a model with disaggregate dataset over 

aggregated data for predicting winter crash frequency, Usman et al. (2012) developed winter 

crash frequency models using disaggregated hourly dataset in a bid to investigate the link 
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between winter road collision occurrence, weather, road surface conditions, traffic exposure, 

temporal trends, and site specific effects. Results showed that both the Generalized Negative 

Binomial (GNB) model and the Poisson-lognormal (PLN) model had a better fit when 

considering site-specific effects than without considering these effects. The PLN model 

considered the multi-level (event-hour level) structure of the data, while the GNB model was 

developed using the hourly data for winter crashes and the other factors mentioned above. The 

GNB model also has the ability to account for data heterogeneity through varying the 

overdispersion parameter. It was found that GNB provided a better goodness of fit compared to 

the PNL model suggesting that a single level model would be adequate without considering the 

multilevel structure of the data (event-hour hierarchy in this case). A multilevel model would not 

affect the significance of the variables considered in the single level model in this study.  

Using the same dataset, Usman et al. (2012) developed crash-injury severity models to 

take into consideration the multilevel or hierarchical nature of crash data. They developed three 

types of models using the occupant-based data, vehicle based data, and collision or crash based 

data. The purpose was to consider the possible intra-class correlation at occupant or vehicle level 

observations. Multilevel multinomial logit, multilevel binary logit and multilevel ordered 

modeling structures were adopted to develop models using the winter crash data having 

occupant-vehicle-crash level hierarchy. The study compared these three alternative logistic 

models in a multilevel modelling framework. It was found that multilevel multinomial logit 

model had better fit to the occupant level and vehicle level data, while binary logit and ordered 

logit performed better for collision level data. Overall, multilevel multinomial logit models 

offered better predictions. It was found that aggregation of crash data at the collision level 

affected the parameters estimates significantly. 
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Qin et al. (2006) developed a negative binomial model for predicting crashes during 

winter storm events from 2000 to 2002 relating to winter storm severity in regard to duration and 

intensity, wind speed, deicing units used per lane mile, salt used per lane mile. The analysis was 

conducted for the Wisconsin State Trunk highway system. Results revealed that early 

deployment of winter maintenance operations could significantly reduce crash occurrence with 

the model showing a negative relationship between crash frequency and the time the crew spent 

out before the beginning of a storm. An inverse relationship between crash occurrence and the 

amount of deicing material used indicated a reduction in the number of crashes associated with 

the deployment of more deicing material. However, a positive relationship between salt units 

used and crash occurrence was also found; this was explained by the fact that there is a time lag 

between salting and snowplowing that can result in a slurry period during which the bare 

pavement might be slippery and more crashes could occur. Strom duration and wind speed were 

found to be positively associated with the crash frequency. Temporal distribution of the crashes 

during a snowstorm revealed that a large percentage of the crashes occurred during the initial 

stages of snowstorms. Though the temporal patterns for the percentage of crashes during 

snowstorms were similar for both state and local roads, a higher percentage of crashes occurred 

on local roads during the later stage of the snowstorm reflecting the different level of 

maintenance activities and usage of deicing materials. 

 

2.2.2 Development of a Winter Severity Index 

Nixon and Qiu (2005) developed a storm severity index using 252 winter storm events in 

Iowa. The storm severity index was proposed to provide a measure of the severity of any given 

storm based solely on a meteorological description of that storm. Storms were classified by six 
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factors (storm type, in-storm road surface temperature, in-storm wind condition, early storm 

behavior, post storm temperature and post storm wind condition). A multiple regression model 

was estimated to produce a storm severity index between 0 and 1 with 0 indicating a very mild 

storm and 1 indicating a very severe storm. Winter maintenance personnel (maintenance garage 

supervisors) from Iowa DOT were asked to rank the severity of 10 representative storms (out of 

the 252 storm events considered for developing the multiple regression model) according to the 

level of difficulty that these events would pose to their maintenance activities. It was found that 

although there was general agreement between the supervisors’ ranking and the initial severity 

index, there were areas of disagreement. The scores for the different factors considered in the 

regression model were adjusted according to the supervisors’ ranking. This type of severity index 

for winter storm events can be helpful in assessing the performance of maintenance agencies as 

the severity of the storms they face can be quantified. 

 

2.2.3 Comparison of Crash Injuries during Winter and Non-Winter Events 

Khattak and Knapp (2001) conducted a study to compare the winter snow event crash 

injury and non-injury crash rates with comparable winter non-snow event crash rates on selected 

Interstate highway locations in Iowa. Winter snow events were defined based on the definition in 

Knapp et al. (2000) and the same dataset and location was used for this study. They also 

compared the crash injury occurrence during winter snow event periods and comparable winter 

non-snow events along with the assessment of the impact of snow event elements on snow event 

crashes using binary logit models. Comparable non-snow periods were identified and extracted 

for the same hours on the same weekdays within the same month of the winter snow events. 

Results revealed significant increase in injury and non-injury crash rates during winter snow 
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events than those rates during comparable winter non-snow events. However, the modeling 

results indicated that crashes during snow events involved fewer injuries than crashes during 

comparable non-snow periods. It was also revealed that snow event elements such as higher 

wind gust speed tended to result in more injury crashes during snow events, while higher 

snowfall intensity resulted in crashes involving fewer injuries during snow events. 

 

2.3 Multilevel Modeling Techniques for Crash Severity Analysis 

Multilevel techniques for modeling injury severity of individual occupants take into 

account crash hierarchy (crash-vehicle-occupant). The hierarchy can be expanded to include 

geographical elements such as road segments or sites, regions, and so on.  

Jones and Jorgensen (2003) and Lenguerrand et al. (2006) were among the first studies to 

recognize the need to account for the crash level hierarchy (crash-vehicle-occupant) in crash data 

when modeling crash severity. Jones and Jorgensen (2003) first attempted to consider the natural 

crash hierarchy in disaggregate crash data using a crash dataset in Norway. A total of 16,332 

crashes along Norwegian roads spanning from 1985 to 1996 were obtained. The probability of 

injury (fatal or serious) severity of occupants was modeled with a binomial model. The hierarchy 

specified for this study was occupants nested within crashes and crashes nested within 

municipalities. The predictor variables included variables related to crash characteristics (light 

condition, road type etc.) and occupant characteristics (gender, age etc.). The random variations 

at the crash level and municipal level were significant. The Intra-class Correlation Coefficient 

(ICC) revealed that the largest proportion of variation in the injury severity outcomes was 

attributed to the lowest level of the crash hierarchy (occupants with 83%), while 16% of the 

variation was attributed to the crash level and 1% was attributed to the municipal level. 
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However, this study did not provide any comparison between single-level and multilevel models 

in terms of parameter significance and model fit as a single-level model was not computed. Jones 

and Jorgensen (2003) ignored the intermediate “vehicle” level as majority of the vehicles in the 

crash data considered for the analysis included only a single occupant sustaining serious or fatal 

injury leaving little information to differentiate between vehicles and occupants. This can be 

attributed to a fundamental characteristic of crash data but not to the particularity of the data 

analyzed by Jones and Jorgensen. While the number of crashes can be large, the number of cars 

per crash and of individuals or occupants is typically very low. 

Valnar (2005) illustrated the advantage of multilevel modeling compared to statistical 

techniques that ignore hierarchies, based on two empirical traffic safety examples. The study 

showed two important consequences of ignoring the hierarchical structure in the data. The first 

consequence is the underestimation of standard errors, which was illustrated with data from an 

observational study on seatbelt behavior. It was found that two factors (passenger: a dummy 

variable indicating whether the observed subject was a front seat passenger or a driver, and 

weekend night: a dummy variable to indicate the time span of a crash) were significant at five 

percent level in a single-level model while those were insignificant in a two-level model. The 

second consequence, related to contextual information, was illustrated with data from a roadside 

survey on drink driving. The second consequence relating to contextual information is illustrated 

with the frog pond theory in Hox, 2002. For example, in traffic safety, this theory is applied in 

the form of the effect an explanatory variable (for example, willingness to take risk) might have 

on the dependent variable (for example, choice of speed by drivers). Speed choice may depend 

on the average speed of other drivers at a particular location. Of particular interest for 

investigating the second consequence was the relationship between gender, traffic counts (total 
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number of vehicles driving by the road site during police check) and the odds of drivers 

exceeding the legal limit of Blood Alcohol Concentration (BAC). The drivers were nested within 

road sites and a multilevel model was fitted. A significant relationship between gender and the 

outcome variable was a nice illustration of the frog pond theory in this case. Although an 

insignificant cross-level interaction was found, a significant cross-level interaction would mean a 

varying influence of individuals’ gender on odds for drunk driving with different values of traffic 

counts at different sites. 

Lenguerrand et al. (2006) proposed a binomial model to model the probability of vehicle 

occupants accounting for the hierarchical structure of the crash data with three levels: crash, 

car/vehicle, and occupant. They used crash data from French road injury crash census for a four 

year period from 1996 to 2000 and tested three different modeling techniques with logistic 

models, generalized estimating equations (GEE), and multilevel logistic models. It was revealed 

that multilevel models yielded better results compared to the other two modeling techniques 

reinforcing the importance of accounting for the hierarchical nature of the crash data. One 

important observation from this study was that the variance of vehicle random effect was falsely 

estimated to be zero for 36% of the cases. These incorrect estimates were attributed to the small 

number of observations per vehicle and per crash. 

Kim et al. (2007) used a sample of 548 crashes collected from 91 two-lane intersections 

to model the probability of occurrence of five types of crashes using binomial multilevel models 

with crashes clustered into intersections. For each crash type, a separate model was developed. It 

was found that the random variation of the intercept across intersections was significant except 

for one crash type (head-on). It meant that the average probability for these types of crashes to 

occur varied significantly from intersection to intersection. The modeling results showed that 
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multilevel models provide similar results compared to the traditional models except for one crash 

type (sideswipe opposite direction).  

Helai et al. (2008) used a binomial multilevel model to predict the severity level of driver 

injury and vehicle damage in traffic crashes based on a total of 4,095 crashes occurring at 

signalized intersections that involved 7,084 driver-vehicle units. A driver-vehicle unit was 

defined by both the vehicle and the driving person involved. A binary dependent variable was 

defined by combining the driver injury severity and vehicle damage severity for the vehicle-

driver units involved in crashes. The authors compared the results of a traditional binomial 

regression model with the multilevel binomial model and found that the ICC (Intra-class 

Correlation Coefficient) was 28.9%. It meant that 28.9% of the variation in the probability for 

driver-vehicles units to have experienced severe damage resulted from between crash variance or 

within crash correlation. The comparison with the classical model also revealed a better model fit 

for the multilevel model formulation. 

Yannis et al. (2010) modeled the probability for each individual occupant in a vehicle to 

sustain different levels of injuries using injury severity levels as a multinomial response. They 

used a dataset containing 1,300 crashes that involved 3,500 occupants. The results revealed no 

random variation at the vehicle or crash level for the probability of injuries sustained by the 

occupants. 

Dupont et al. (2010) modeled the probability of a fatality for each individual occupant 

using a set of fatal car-car crashes. They considered the country, crash, and vehicle hierarchy for 

the multilevel modeling. The results indicated no significant random variation at the higher level. 

Comparison with a single-level model formulation revealed similar values and significance for 

the coefficients of the variables considered for that modeling purpose.  
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2.4 Summary 

This chapter provided a comprehensive review of the literature on the impact of weather, 

traffic, and maintenance related attributes on winter weather safety. Past studies related to 

modeling winter weather crash frequencies using both aggregate and disaggregate level crash 

data were described in this chapter. Though most of those studies investigated the effect of 

weather, traffic and maintenance parameters on road safety, the development of a site 

prioritization technique for improving winter weather safety using available crash data and 

maintenance crew reported weather data was scarce in the literature. 

This chapter also reviewed studies that employed a multilevel modeling technique for 

analyzing crash data at a disaggregate level. It was evident that when the size of the crash sample 

was small, previous researchers (Lenguerrand et al., 2006; Jones and Jorgensen, 2003) ignored 

the vehicle level when analyzing disaggregate crash data and directly modeled the nesting of 

individuals within crashes. Alternatively, Helai et al. (2008) considered vehicle-driver entity as 

the unit of observation and ignored the nesting of occupants within vehicles. 

The next chapter presents the data sources, description of the data used for the analysis, 

and data processing steps. 
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CHAPTER 3 

DATA 

 

This chapter describes the various data sources, data processing steps, and description of 

the data used for the development of the SPFs for winter weather crashes and crash injury 

severity models. The data collection spanned from the 2008-2009 winter season to the 2011-

2012 winter season. The Iowa DOT defines the winter season as the period from October 15th to 

April 15th. Crash data, roadway information for different types of roadways, and weather related 

information were collected for these four winter seasons using a variety of data sources. 

 

3. 1 Data Sources 

Three types of data were used in this study: crash data, roadway information and traffic 

data, and weather related data. These data were gathered from different sources and integrated to 

compile a suitable dataset for achieving the research objectives. 

 

3.1.1 Crash Data 

The Iowa DOT maintains a database of all crashes that have occurred along Iowa’s 

roadways. Information on weather related crashes occurring on Iowa’s roadways for the winter 

seasons from 2008-2009 to 2011-2012 were collected. For developing safety performance 

functions, it was important to obtain crashes occurring on specific segments of roadway within a 

certain period. Weather related crashes occurring on one-mile road segments for three types of 

roadways during the four winter seasons were collected. The crash database contains detailed 

information related to individuals as well as vehicles involved in the crashes. Each crash was 
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already assigned to a unique crash key.  Data on the crash occurrence time and space were also 

collected for data aggregation over time and space.  Crash data were spatially joined with the 

roadway and traffic volume data based on the spatial location of the crashes occurred along 

different types of roadways. Information on date and time of crash occurrences was necessary to 

integrate the crash data and weather data to represent the weather conditions during the crash 

occurrences. 

 

3.1.2 Weather Data 

A novel approach was taken in this research to obtain the weather related information for 

the weather related crashes considered during the four winter seasons in this research. Weather 

related information for the crashes on one-mile road segments were collected from the nearest 

cost center maintained by the Iowa DOT. Cost centers are maintenance garages maintained by 

Iowa DOT containing maintenance materials, equipment and dispatch maintenance crews for 

winter weather maintenance performance. A cost center is represented by an accounting code for 

a specific place of work. So in this context, each cost center represents a field maintenance 

garage. Each maintenance garage belongs to a district (there are six DOT districts in Iowa). Each 

cost center has its own jurisdiction of roadways on which the maintenance crews associated with 

that particular cost center perform the maintenance activities during winter weather. There are 

several cost centers associated with each district. The size of a cost center varies and the area of 

the cost center is determined by the resources at the cost center and the operational needs of the 

roads in the area. The boundaries of the cost centers do not have any association with political 

boundaries of county lines or city limits. Figure 3.1 shows the cost centers (orange triangles) and 

the roads they are responsible for (colored lines)  Maintenance crew report the weather related 
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information such as air temperature, pavement temperature, wind speed, visibility, precipitation 

type, and precipitation amount while performing the maintenance activities according to 

information provided by Iowa DOT. The cost center information was used instead of the Road 

Weather Information System (RWIS) because of the authenticity and the consistency of the crew 

reported weather information. A Road Weather Information System (RWIS) consists of sensor 

stations in the field, a communication system for data transfer, and central system to collect data 

from the sensors. RWIS data in Iowa contain information about air temperature, pavement 

temperature, and wind speed recorded by the RWIS stations near roadways. RWIS stations 

record data every 10 minutes. An example of sample data from RWIS is given in Appendix A. 

The Iowa DOT officials confirmed that the crew reported weather information is representative 

to that of the RWIS information. As shown in the figure 3.2, the colored lines represent the 

segments covered by each cost center and the green circles represent the RWIS sites.   

 

3.1.3 Roadway and Traffic Volume Data 

Roadway geometry data and traffic volume data for each road segment to be considered 

for developing safety performance functions for the three types of roadways were collected from 

the Iowa DOT Office of Transportation Data, Division of Planning and Programming maintained 

through Geographic Information Management System (GIMS). Several roadway geometry 

related attributes such as surface width, lane width, number of lanes, shoulder width, shoulder 

type and others are reported in the GIMS database along with the Annual Average Daily Traffic 

(AADT) for specific segment of roadways. Roadway geometry and traffic volume data were 

collected for one-mile road segments for the four winter seasons. Each one-mile road segment 

was assigned to a unique identification named as ROWID in the GIMS data.  It is to be noted 
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that real time traffic volume collected from the Automatic Traffic recorder (ATR) could have 

been used to incorporate in the SPFs. It is natural that traffic volumes differ from seasons to 

seasons and considering the real time traffic volume would represent the exact traffic conditions 

during crash occurrences for the winter seasons. The problem associated with collecting ATR 

reported traffic volume was related to the format in which volume data are stored by Iowa DOT. 

Iowa DOT used to utilize a different format for collecting and storing ATR reported traffic data 

prior to 2011. Iowa DOT introduced a more efficient format to collect and store the volume data 

starting from 2011. Thus, it was difficult to integrate the ATR reported volume data from the two 

different format. A seasonal factor could have been applied to the AADT to represent the traffic 

volume during the winter seasons. This is discussed as a limitations at the end of the dissertation. 

The same problem was also faced for developing the severity models.
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Figure 3.1 Location of cost centers and associated roads 
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Figure 3.2 Locations of RWIS sites and roadway jurisdictions associated with cost centers
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3.2 Data Processing for Developing Safety Performance Functions 

SPFs have been typically developed to estimate crash frequency using site or roadway 

characteristics such as lane width and traffic volume expressed as annual average daily traffic 

(AADT). Incorporating weather related attributes that correspond to the specific crash situations 

in SPFs is more complex and labor intensive. Integrating weather data with the crash data is 

herein critical as the proposed research aims to develop safety performance functions for three 

types of roadways in Iowa to predict winter weather crashes as a function of variables related to 

winter weather conditions such as visibility, pavement temperature, air temperature, and wind 

speed.  

Figure 3.5 shows the steps involved for data processing and integration of the different 

data sources collected. The challenge for processing the data was to integrate the crew reported 

weather information with the crashes occurring on the one-mile road segments for different 

roadway types. The crashes on different types of roadways were assigned to appropriate one-

mile road segments matching their spatial locations in ArcGIS. Each crash was spatially joined 

with the nearest cost center through ArcGIS. Crew reported weather information for each crash 

was integrated with each crash based on the date and time of the crashes. Multiple crew reports 

were obtained for quite a few crashes as there were multiple crews reporting weather information 

on the same day those crashes occurred. One crew report was kept for each crash based on two 

criteria. Initially, precipitation intensity was considered to screen out crew reports. The crew 

reported precipitation intensity having higher priority was kept from multiple reports having 

other types of precipitation intensities. Table 3.1 shows the priorities for precipitation intensities 

according to Iowa DOT. If precipitation intensity was the same for a crash, precipitation duration 
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was considered. The crew reported precipitation duration having the highest value was kept in 

this case.  

Once all these steps were completed, 13,859 winter weather crashes that occurred during 

the four winter seasons were found to be associated with crew reported weather information out 

of the 15,096 winter weather crashes on the three types of roadways. It was also important to 

consider the difference in time of crash occurrence and time the crew members departed 

roadways. The weather condition during crashes would not be representative if the time 

difference between crew departure and time of crash occurrence is large. It was found that more 

than 80% of the 13, 859 crashes occurred before the crew departed. For the rest of the crashes, 

more than 50% occurred within 4 hours of crew departure and 19% within 4-6 hours. Not a large 

number of crashes occurred after crew departure with a time interval of 6 hours or more. Those 

crashes were still included in the analysis by assuming that the weather conditions were the same 

during the crashes as reported by crew members. Figure 3.3 and 3.4 shows distribution of crash 

percentage based on crew departure and time difference for crashes occurred after crew 

departure. These crashes were assigned to the one mile road segments according to the roadway 

types of interstate/freeway, multilane, and two-lane roadway. The last step involved the 

integration of this dataset with the GIMS to assign the geometric characteristics on each one-mile 

road segment. 
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Table 3.1 Priority ranking of precipitation intensity 

Precipitation 

Intensity  

Rank According to 

Priority 

Freezing rain 1 

Sleet 2 

Snow 3 

Blowing snow 4 

Refreeze 5 

Road frost 6 

Rain 7 

Fog 8 

Bridge frost 9 

 

     

Figure 3.3 Distribution of crash percentage based on crew departure
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Figure 3.4 Distribution of crashes occurring after crew departure
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Figure 3.5 Crash data, weather data, and roadway data integration steps 
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3.3 Description of the Data Used to Develop Safety Performance Functions 

A total of 13,859 weather related crashes during the winter seasons from 2008-2009 to 

2011-2012 were considered for developing SPFs for different roadway types. Of the total 13,859 

weather-related crashes during the winter seasons, 6,210 crashes occurred on interstate/freeway 

facilities, while 3,898 crashes occurred on multilane/ divided/undivided roadways and 3,751 

crashes occurred on two-lane roadways. Descriptive statistics for the weather related factors 

considered in the development process of SPFs for each class of roadway are presented in the 

following tables. 

 

Table 3.2 Descriptive statistics of weather attributes for crashes on Interstate/freeway 

 

 

  

 

 

 

 

Table 3.3 Descriptive statistics of weather attributes for crashes on multilane divided/undivided 

roadways 

 

 

 

 

 

 

 

 

 Total number of crashes N = 6,210 

Variable 
Interstate/Freeway 

Min Max Mean SD 

Air temperature (F) -25 51 20.46 10.4 

Pavement temperature (F) -21 54 22.46 8.9 

Wind Velocity (mph) 0 117 14.96 8.7 

Visibility (in mile) 1 5 3.65 1.31 

Snow Amount (in inch) 0 12.5 2.01 2.13 

 Total number of crashes N = 3,898 

Variable 
Multilane divided/undivided 

Min Max Mean SD 

Air temperature (F) -29 42 19.6 10.9 

Pavement temperature (F) -31 54 21.32 10.05 

Wind Velocity (mph) 0 117 14.13 8.6 

Visibility (in mile) 1 5 3.77 1.31 

Snow Amount (in inch) 0 16 1.94 2.2 
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Table 3.4 Descriptive statistics of weather attributes for crashes on two-lane roadways 

 

 Total number of crashes N = 3,751 

Variable 
Two-lane roadway 

Min Max Mean SD 

Air temperature (F) -29 50 22.01 9.86 

Pavement temperature (F) -26 56 23 9.24 

Wind Velocity (mph) 0 57 15.24 9.07 

Visibility (in mile) 1 5 3.79 1.3 

Snow Amount (in inch) 0 16 1.83 2.1 

 

Once all the crashes and factors to be considered for modeling was ready, average 

number of crashes was computed for each one mile road segment for the three classes of 

roadway for the four winter seasons. Average values for each segment for the weather related 

variables were considered for developing the safety performance functions. The total numbers of 

one-mile road segments generated along which at least one weather-related crash occurred 

during the four winter seasons in Iowa for interstate/freeway, multilane divided/undivided, and 

two-lane roadways were 995, 887, and 2,325 respectively. Tables 3.4-3.6 show the descriptive 

statistics for the average values of the factors considered for final analysis. It is to be noted that 

there were some outliers in the data representing roadway geometry characteristics and traffic 

volumes. For example, the minimum posted speed limit for Interstate/freeway facilities was 

found to 35 miles per hour. This might be a segment located along ramps. 
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Table 3.5 Descriptive statistics of factors for SPF development (Interstate/freeway) 

 

Number of roadway segment N = 995 

Variable 
Interstate/Freeway 

Min Max Mean SD 

Segmental Crash frequency 1 54 6.24 6.6 

Segmental Air temperature (F) -25 37 21.67 6.54 

Segmental Pavement temperature (F) -9 38.8 22.28 7.21 

Segmental Wind Velocity (mph) 0 37.57 14.03 5.9 

Segmental Visibility (in mile) 0 5 3.35 1.36 

Segmental Snow Amount (in inch) 0 10 1.97 1.36 

Segmental AADT 90 113600 23958 17056 

Segmental Surface Width 16 90 30 10 

Segmental Posted Speed Limit 35 70 67 4.68 

 

Table 3.6 Descriptive statistics of factors for SPF development (Multilane divided/undivided) 

 

Number of roadway segment N = 887 

Variable 
Multilane divided/undivided 

Min Max Mean SD 

Segmental Crash frequency 1 27 4.4 4.36 

Segmental Air temperature (F) -18 38 20.5 7.43 

Segmental Pavement temperature 

(F) 
-8 54 21.28 7.82 

Segmental Wind Velocity (mph) 0 50 13.64 6.67 

Segmental Visibility (in mile) 0 5 3.22 1.63 

Segmental Snow Amount (in inch) 0 12.5 1.9 1.52 

Segmental AADT 50 34225 11023 5891.44 

Segmental Surface Width 12 72 32 11 

Segmental Posted Speed Limit 20 65 52 13 
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Table 3.7 Descriptive statistics of factors for SPF development (Two-lane roadway) 

 

Number of roadway segment N = 2,325 

Variable 
Two-lane roadway 

Min Max Mean SD 

Segmental Crash frequency 1 12 1.61 1.26 

Segmental Air temperature (F) -15 50 21.85 9.43 

Segmental Pavement temperature 

(F) 
-12 56 22.23 9.54 

Segmental Wind Velocity (mph) 0 50 14.18 8.81 

Segmental Visibility (in mile) 0 5 3.1 1.81 

Segmental Snow Amount (in inch) 0 14.5 1.84 1.92 

Segmental AADT 50 52700 3345 2652 

Segmental Surface Width 14 76 26.3 6.56 

Segmental Posted Speed Limit 20 70 52.71 6.75 

 

 

3.4 Additional Data Collection Effort for Crash Injury Severity Analysis 

Data used in the analysis of injury severities of occupants involved in crashes during 

winter weather were obtained from the Iowa DOT maintained crash database. For the purpose of 

this research, a data set containing all crashes occurring over four winter seasons (2008 – 2012 

with each winter season covering six months from October 15th to April 15th). Crash level, 

vehicle level, and occupant level attributes were obtained from the crash database for the four 

winter seasons. It was important to select a study corridor for analyzing injury severities of the 

crashes occurring during these winter seasons as it was not feasible to retrieve weather 

information for all crashes (both weather and non-weather related) occurred statewide along 

every type of roadways in Iowa. Considering different types of roadways, interstate roadways 

were ranked as the most important with respect to mobility and safety. As such, an interstate 

corridor was selected as the study corridor as described in the following section.   
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3.4.1 Study Corridor 

The study corridor considered for the crash injury severity analysis in this study included 

the entire length of Interstate 80 (I-80) crossing the state of Iowa from the Missouri River in the 

Mississippi River. The total length of the corridor is 318 miles. 5,242 crashes occurred on this 

corridor during the four winter seasons from 2008 to 2012. Key factors considered while 

selecting this corridor were the availability of the Road Weather Information System (RWIS) 

stations located in near proximity to the study corridors, frequency and severity of crashes 

occurring on the roadway. Figure 3.6 shows the study corridor with green dots.  

 

3.4.2 Data Processing for Crash Injury Severity Models  

As mentioned in the previous section, all the crash level, vehicle level, and occupant level 

information were extracted from the Iowa DOT maintained crash database for the I-80 corridor 

for the specified period. The crash data set contained both weather and non-weather related 

crashes with 7,829 injured occupants. This data set is referred to as All Crash Data (ACD) in this 

dissertation. The ACD dataset contained 2,493 weather related crashes with 3,717 injured 

occupants. As this corridor-based analysis involved both weather and non-weather related 

crashes (ACD), RWIS data was considered as the preferable source of weather information 

rather than the cost center data considered in developing the frequency models previously. 

Weather related information for both weather and non-weather related crashes were obtained 

from the RWIS stations located nearest to the crash sites.   

Visibility information was extracted from the Automated Weather Observing System 

(AWOS) consisting of weather stations located in airports. AWOS weather stations report 

visibility information at a ten minute interval. Weather data from these two sources were merged 
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with the crash data based on the date, time, and location for 5,242 crashes that occurred along the 

I-80 corridor during the four winter seasons. There were instances with missing weather 

information from the nearest RWIS/AWOS station for crashes. In these cases, weather 

information from the second nearest RWIS/AWOS station from crash sites was obtained. Table 

3.8 and 3.9 lists the RWIS and AWOS stations considered for extracting weather related 

information and the corresponding second nearest RWIS and AWOS stations used to fill in the 

missing data. This data set was then disaggregated at the vehicle level and then at the occupant 

level resulting in three level of aggregation and three data sets:  

i) crash based data set - one level including details on crashes but aggregated 

information about vehicles and occupants; 

ii) vehicle based data set – two levels including details on both crashes and vehicles 

involved but aggregate information about occupants, and 

iii) occupant based data set – including details on crashes, vehicles, and occupants.  

 These data sets were used to develop crash severity models. The advantage of using this 

disaggregate data set is in making full use of the information available in the crash data while at 

the same time accounting for possible correlations in the severity levels of occupants (similar to 

this research) or vehicles involved in a given crash. Figure 3.7 shows the locations of the RWIS 

stations and airports with AWOS stations along the study corridor in the I-80 study corridor. The 

green circles indicate RWIS stations and the red planes indicate airports with AWOS stations. 
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Figure 3.6 The study corridor considered for crash injury severity models 
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Table 3.8 RWIS stations and next nearest RWIS stations considered for weather data 

RWIS Stations Second Nearest RWIS stations 

Adair Avoca 

Altoona Des Moines I-235 

Avoca Adair 

Colfax Altoona 

Council Bluffs Avoca 

Davenport Quad Cities 

De Soto De Moines I-235 

Des Moines I-235 Altoona/De Soto 

Grinnell Colfax 

Iowa City US 218 Iowa City I-80/Tipton 

Iowa City I-80 Iowa City US 218/Tipton 

Quad Cities Davenport 

Tipton Iowa City US 218 

Williamsburg Iowa City US 218 

 

Table 3.9 Airports with AWOS stations and next nearest airports for visibility data 

Airports with AWOS stations Second nearest Airport with AWOS stations 

Ankeny Newton 

Atlantic Harlan/Audobon 

Audobon Harlan 

Council Bluffs Harlan/Audobon 

Grinnell Newton/Perry 

Harlan Atlantic 

Muscatine Washington 

Newton Grinnell 

Perry Ankeny/Audobon 

Washington Muscatine 
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Figure 3.7 Locations of the RWIS stations and AWOS stations near to the I-80 study corridor 
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3.4.3 Exploratory Data Analysis 

Crashes were categorized into six injury severity levels according to Iowa DOT as fatal, 

incapacitating, non-incapacitating, possible, uninjured, and unknown. The percentage of fatal, 

incapacitating, non-incapacitating, possible, and unknown injuries resulting from the crashes 

considered is merely 20% of the total. A large number of factors can influence the severity of 

crashes under winter conditions. Therefore, it was important to consider all the factors available 

from the prepared crash data sets for the multi-level analysis of occupant injury severity. Most of 

the variables considered to be used in the severity analysis were categorical. Table 3.10 provides 

a list of the variables considered in the crash severity analysis. It is to be noted that not all the 

variables were included in the severity models developed in this study. Some variables were 

derived from the variables presented in Table 3.10 for developing the models. Details about these 

variables are presented in table 3.11 – 3.13 for the three models developed using weather-related 

crashes, all crashes, and non-weather related crashes for the winter seasons from 2008-09 to 

2011-12. Figure 3.8 shows the distribution of injury severity for these three types of crashes 

during these winter seasons. 

Distribution of injury severity by weather related variables such as air temperature, 

pavement temperature, and visibility are provided in Appendix H.
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Table 3.10 Variables considered for developing the multilevel crash severity models

Variable Definition 

Gender of the occupant Male = 1, Female = 0 

Seating position of the occupant Driver/Motorcycle driver = 1, otherwise = 0 

Occupant protection used None = 1, safety protection used = 2, unknown/not reported = 3 

Ejection status Not ejected = 1, ejected = 2, N/A, unknown, not reported = 3 

Air bag deployment Deployed = 1, not deployed = 2, unknown, not reported = 3 

Trap status Not trapped = 1, trapped = 2, unknown, not reported = 3 

First harmful event Non-collision event = 1, collision w/ other vehicle = 2, collision with other objects (non-vehicle) = 3 

Manner of crash/collision 

non-collision = 1, rear end = 2, sideswipe = 3, others (head-on, angle, broadside, unknown, not reported) 

= 4 

Contributing circumstances -

Environment Environment as a contributing circumstances = 1, otherwise = 0 

Weather conditions Clear = 1, cloudy/partly cloudy = 2, others (including rain/sleet/hail, freezing rain)=3 

Light conditions Daylight+dawn = 1, dusk+dark = 2 

Surface conditions Dry = 1, wet/ice, snow/slush = 2, other, not reported = 3 

Time of day 8 am to 6 pm = 1, midnight to 8 am = 2, 6pm to 12 am = 3 

Location of first harmful event On roadway = 1, shoulder = 2, median = 3, roadside and others = 4 

Location of the crash (urban) In urban area = 1, otherwise = 0 

Location of crash (ramp) On ramp = 1, otherwise = 0 

Contributing circumstances -

Roadway Road surface condition as the contributing circumstances = 1, otherwise = 0 

Type of roadway junction Intersection = 1, otherwise = 0 

Total number of vehicles in a 

crash More than one  = 1, otherwise = 0 

Total number of occupants in a 

crash Two or more = 1, otherwise = 0 

Air temperature In degree Fahrenheit 

Pavement temperature In degree Fahrenheit 

Visibility  In mile  

4
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Figure 3.8 Distribution of occupant injury severities for crashes during 2008/09 to 2011/12 winters 
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Table 3.11 Descriptive statistics of the variables used in the model with weather-related crashes 

Parameters Descriptive Statistics 

  Mean SD 

Gender (if male = 1, otherwise = 0) 0.661 0.473 

Seating position (if driver = 1, otherwise =0) 0.926 0.26 

Occupant Protection 

None Used (If none used = 1, otherwise = 0) 0.022 0.148 

Used (if used = 1, otherwise = 0) 0.875 0.331 

unknown/not reported (if unknown or not reported = 1, 

otherwise = 0) 0.103 0.304 

Airbag deployment 

Airbag deployed (if yes = 1, otherwise = 0) 0.1 0.3 

Not deployed (If yes = 1, otherwise = 0) 0.734 0.441 

Unknown/not reported (if yes = 1, otherwise = 0) 0.165 0.371 

First harmful event 

Non-collision including overturn, rollover, jackknife) (If yes 

= 1, otherwise = 0) 0.232 0.422 

Collision with vehicles 0.512 0.499 

Collision with non-vehicles 0.255 0.436 

Roadway condition as contributing circumstances (if yes = 1, 

otherwise = 0) 0.746 0.434 

Trapped (if an occupant is trapped = 1, otherwise = 0) 0.036 0.188 

Ejection status (if an occupant is ejected = 1, otherwise = 1) 0.05 0.073 

Age of the occupant (if age of the injured is > 24 = 1, 

otherwise = 0) 0.77 0.42 

Road type (if intersection = 1, otherwise = 0) 0.12 0.325 

Road surface condition and air temperature (if surface icy and 

temperature below zero = 1, otherwise = 0) 0.426 0.494 
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Table 3.12 Descriptive statistics of the variables used in the model with all crashes 

 

 

 

Parameters Descriptive Statistics 

  Mean SD 

Gender (if male = 1, otherwise = 0) 0.645 0.478 

Seating position (if driver = 1, otherwise =0) 0.935 0.246 

Visibility 

Visibility 1 to 3 mile (If yes = 1, otherwise = 0) 0.136 0.343 

Visibility 3 to 6 mile (If yes = 1, otherwise = 0) 0.122 0.327 

Visibility 6 mile and above (If yes = 1, otherwise = 0) 0.74 0.438 

Occupant Protection 

None Used (If none used = 1, otherwise = 0) 0.022 0.146 

Used (if used = 1, otherwise = 0) 0.863 0.343 

Unknown/not reported (if unknown or not reported = 1, 

otherwise = 0) 0.114 0.318 

Airbag deployment 

Airbag deployed (if yes = 1, otherwise = 0) 0.102 0.302 

Not deployed (If yes = 1, otherwise = 0) 0.749 0.433 

Unknown/not reported (if yes = 1, otherwise = 0) 0.148 0.356 

First harmful event 

Non-collision including overturn, rollover, jackknife) (If yes = 

1, otherwise = 0) 0.162 0.368 

Collision with vehicles (If yes = 1, otherwise = 0) 0.641 0.479 

Collision with non-vehicles (If yes = 1, otherwise = 0) 0.196 0.397 

Surface Condition     

Surface condition dry (If yes = 1, otherwise = 0) 0.346 0.475 

Surface condition icy, wet, snowy, or slushy (If yes = 1, 

otherwise = 0)  0.576 0.494 

Surface condition others (water, debris, sand, dirt) and not 

reported (If yes = 1, otherwise = 0) 0.077 0.267 

Trap Status     

Not trapped (If yes = 1, otherwise = 0) 0.93 0.251 

Trapped (If yes = 1, otherwise = 0) 0.033 0.179 

unknown/not reported (if yes = 1, otherwise = 0) 0.034 0.182 

Ejection status (If an occupant is ejected = 1, otherwise = 1) 0.04 0.063 

Air temperature (If below zero = 1, otherwise = 0) 0.577 0.494 
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Table 3.13 Descriptive statistics of the variables used in the model with non-weather crashes 

 

 

 

 

 

Parameters Descriptive Statistics 

  Mean SD 

Gender (if male = 1, otherwise = 0) 0.63 0.482 

Seating position (if driver = 1, otherwise =0) 0.943 0.231 

Occupant Protection 

Occupant protection not used, unknown or not reported (If yes = 

1, otherwise = 0) 0.146 0.353 

Occupant protection used (If yes = 1, otherwise = 0) 0.853 0.353 

Airbag deployment 

Airbag not deployed (If yes = 1, otherwise = 0) 0.762 0.425 

Airbag deployed (if yes = 1, otherwise = 0) 0.103 0.304 

First harmful event 

Non-collision (overturn, rollover, jackknife) (reference) 0.098 0.298 

Collision with vehicles 0.757 0.428 

Collision with non-vehicles 0.144 0.351 

Surface Condition     

If surface has water (moving or standing) (If yes = 1, otherwise = 

0) 0.145 0.352 

Trap Status     

Not trapped (If yes = 1, otherwise = 0) 0.929 0.256 

Trapped (If yes = 1, otherwise = 0) 0.03 0.171 

Unknown/not reported (If yes = 1, otherwise = 0) 0.04 0.196 

Ejection status      

Not ejected (If yes = 1, otherwise = 0) 0.956 0.204 

Ejected (If yes = 1, otherwise = 0) 0.002 0.053 

Unknown/not reported (If yes = 1, otherwise = 0) 0.041 0.198 

Age of the occupant      

Occupants aged up to 24 years (If yes = 1, otherwise = 0) 0.201 0.401 

Occupants aged 24 years or higher (If yes = 1, otherwise = 0) 0.798 0.401 

Major cause (if run-off-road = 1, otherwise = 0) 0.119 0.323 
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CHAPTER 4 

METHODS 

 

As described in Chapter 1, the primary objective of this research is to develop 

quantitative models to understand the factors affecting winter weather crash frequency and crash 

injury severity. This chapter presents the methods that were developed to accomplish the 

research objective. In specific, count data models were used to estimate crash frequency relating 

to winter weather related factors to understand those affecting crash frequency and apply 

Empirical-Bayes technique to prioritize road segments with potential for safety improvement 

during winter weather. Crash injury severity models were also developed to account for the 

hierarchical nature in the crash data using multilevel modeling techniques in a Bayesian 

framework. 

   

4.1 Prediction Models for Crash Frequency 

 A Poisson distribution is normally assumed for modeling the probability of crash 

frequency on road segments. However, when the crash counts are overdispersed (with variance 

greater than mean of crashes), the assumption that crash counts are Poisson distributed is no 

longer valid. Thus, negative binomial distribution is used to represent the distribution of crash 

counts. As both Poisson and negative binomial distribution was used to model winter weather 

related crash frequency for three different types of roadways in this research, the next section 

discusses the functional formulation of Poisson and negative binomial regression model. 
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4.1.1 Poisson Regression Model 

Generalized linear models, also known as GLM techniques, are the most commonly 

employed models for predicting collision/crash frequency. GLM could be applied to model both 

continuous and discrete dependent variables. For the purpose of this research, it is assumed that 

crashes over a period of time follow a count process such as Poisson distribution. 

Mathematically, if the number of crashes (Y) is assumed to follow a Poisson distribution, the 

probability of crash frequency can be expressed as shown in the equation below 

 𝑃(𝑌 = 𝐾) =
𝑒−𝜇𝜇𝑘

𝑘!
 , K =0, 1, 2, 3 ……      (4.1)                                    

where P (Y = K) = probability of having K crashes over a period of time 

 Y = number of crashes over a period of time 

 μ = expected number of crashes over a period of time, known as the Poisson parameter. 

Poisson regression models are estimated by specifying the Poisson parameter as a 

function of explanatory variables (geometric conditions of roadways, traffic exposure, pavement 

conditions, visibility, etc.) potentially having significant impact on the occurrence of crashes 

over a period. The model parameter μ in Equation 4.1 is commonly assumed to be a function of 

different factors using a non-linear link function g (.), as shown in the following equation 

𝑔(𝜇) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘      (4.2) 

where, β0 = intercept, 

 βk = coefficient of explanatory variable Xk, 

Xk = kth explanatory variable which could be related to road, traffic, or weather 

characteristics. 
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The most commonly used non-linear link function in road safety modeling is the log link 

function ensuring positive estimates for the mean. It can be expressed mathematically as follows 

 ln(𝜇) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘      (4.3)  

which can also be expressed as 

𝜇 = exp (𝛽0 + ∑ 𝛽𝑘
𝑛
𝑘=1 𝑋𝑘)        (4.4) 

Coefficients of the explanatory variables can be estimated using the maximum likelihood method 

(ML) by using the following equation 

𝐿𝐿(𝛽) =  ∑ [𝑦𝑖 ln(𝜇𝑖) − 𝜇𝑖 − ln (𝑦𝑖!)]𝑛
𝑖=1       (4.5) 

where LL(β) is the log of  the likelihood function. Exposure is one of the most important factors 

affecting crash frequency, which can be represented by traffic volume, segment length or the 

cross product of them. The exposure can be included in a crash frequency model either as a 

variable or as an offset. For the latter case, equation (4.5) can be written as 

ln(𝜇) =  𝛽0 + ∑ 𝛽𝑘
𝑛
𝑘=1 𝑋𝑘 + 𝛾ln (𝐸𝑋𝑃)      (4.6) 

where, EXP is the exposure and γ is the exponent of the exposure. 

 

4.1.2 Negative Binomial Regression Model 

One limitation of the Poisson model is that the mean of the crash frequency is assumed to 

be equal to the variance. However, in practice, the variance of crash frequency is normally greater 

than its mean, which is known as the overdispersion problem. Overdispersion affects the standard 

error estimates of the parameters (Cameron and Trivedi, 1998) making some insignificant 

variables significant and drawing incorrect inferences from the model estimation. The Negative 

binomial distribution can address the phenomenon of overdispersion. The negative binomial model 
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can be derived from the Poisson model by adding a Gamma distributed error term to the Equation 

(4.3).  

ln(𝜇) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜀     (4.7) 

where exp (ε) is assumed to follow a Gamma distribution with both of its parameters equal to φ. 

The resulting crash frequency (Y) should have a variance which is a function of the mean and φ 

as given by the following equation 

𝑉𝑎𝑟(𝑌) = 𝜇 + 𝜑𝜇2 = 𝜇 +
𝜇2

𝛼
        (4.8) 

where α = 1/φ is known as the over dispersion factor 

 

4.1.3 Empirical Bayes Method 

Hot spot identification or prioritizing sites for safety improvement of road networks is an 

essential task for engineers in state agencies in order to ensure efficient allocation of limited 

resources for mitigating the safety problems in the identified sites or spots. There are various 

methods mostly relying on historic traffic crash records to obtain an estimate for safety for 

various traffic entities. The majority of these traditional methods use raw crash data such as the 

crash frequency method, the crash rate method, the rate quality control method, the crash 

severity method, and the safety index method. The most prominent problem associated with 

these naïve statistical methods to identify hot spots for safety improvements is the Regression to 

the Mean (RTM) problem. Analysts or engineers must take into account this phenomenon when 

identifying potential safety issues for a single site/spot or a group of sites/spots. RTM reflects the 

tendency of the observed crashes to regress or return to the mean in the year following an 

unusually high or low crash counts. The effect of RTM can arise when sites with high-short-term 
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crash counts are selected as candidate sites for safety improvements or treatments.  In this case, 

the counts of the crashes at these sites would decrease due to the RTM and regress towards their 

long-term mean irrespective of the implementation of the treatment. So, one can overestimate the 

safety effectiveness of the implemented treatment if the RTM is not taken into account. Because 

of the random variation in crash occurrences, the sites with highest number of crashes in one 

period are very likely to experience lower crash frequencies in the next period, and vice versa. 

So, relying solely on crash records and using one of these traditional methods does not warrant to 

account for the RTM and evaluate the effectiveness of a particular treatment aimed at improving 

safety at particular sites. So despite their simplicities, naïve statistical methods using raw crash 

records have serious limitations for screening road networks for safety improvement or 

evaluating the effectiveness of a treatment to trigger safety improvement at particular sites. 

In recent years, techniques for screening road networks to identify crash locations have 

become more sophisticated and require more data as inputs. SPFs are frequently used in the 

network screening and evaluation process and can be used to reduce the effects of RTM. SPFs 

can used to estimate the expected safety of a roadway segment or location based on similar 

facilities. Typical SPFs have been developed to estimate crash frequency using site or roadway 

characteristics such as lane width and traffic exposure expressed as AADT. These typical SPFs 

normally do not incorporate weather related variables, as this would be more complex and labor 

intensive. This study develops SPFs for three function classes of roadways in Iowa to predict 

winter weather related crashes as a function of several factors related to winter weather 

conditions such as visibility, pavement temperature, air temperature, and wind speed. The 

Empirical-Bayes approach is used to combine the predicted number of crashes from the SPFs 

with the observed crash counts at a location to produce an improved estimate of the expected 
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number of crashes. As crashes are random in nature, the Empirical-Bayes method takes into 

account the phenomenon of RTM. Extensive research has also shown that the Empirical-Bayes 

approach is the most consistent and reliable method for identifying sites with potential for safety 

improvement (Cheng and Washington, 2008). 

The implementation of the Empirical-Bayes method is connected with the results from 

the modeling performed during the development of SPFs. Using the overdispersion parameter 

found during modeling (crashes fitting negative binomial model), a weight can be determined as 

follows: 

𝑤 =
1

1+𝛼(𝑛∗𝐸(𝜇))
         (4.9) 

 

where α is the overdispersion parameter derived from the SPFs modeled with negative binomial 

distribution and E(μ) is the predicted number of crashes for a given roadway with n being the 

number of years for crash observation.  

The weight factor is then applied to the predicted number of crashes (calculated from 

SPFs) and actual observed number of crashes to determine the estimated number of crashes as 

follows: 

𝜆 = 𝑤. 𝐸(𝜇) + (1 − 𝑤)𝑘        (4.10) 

where λ is the improved estimated number of crashes and k is the total number of crashes 

observed in n years.  

The difference between the EB adjusted crash frequency and the predicted crash 

frequency from a SPF is referred to as the Potential for Safety Improvement of PSI. The higher 

the PSI value for a road segment, the higher the potential for improving safety along that road 
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segment. Considering the PSI, the roadway segments are ranked or prioritized for investing 

resources at those locations so that highest possible safety improvement can be achieved. The 

following figure represents the graphical definition of the PSI.  

 

Figure 4.1 Calculation of PSI using Empirical-Bayes method (Source: Illinois DOT) 

 

4.2 Multilevel Modeling Approach for Severity Analysis 

Most of the crash data used for road safety research are of hierarchical nature and belong 

to structures with several hierarchically ordered levels. These hierarchical structures could be 

attributed to the spatial (and temporal) spread of the data or the hierarchical nature of the crash 

data where individuals or occupants are nested within vehicles and vehicles are nested within 

crashes. Information regarding vehicles, drivers or occupants is clustered within the crashes as 

each vehicle, driver, or occupant observation pertains to one crash only. These two types of 

hierarchies are associated with aggregated and disaggregated crash data respectively and can be 

distinguished as geographical and crash hierarchies.  The analysis of aggregate crash data mainly 
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focuses on the geographical part of the hierarchy, which can be characterized by accounting for 

the spatial dependence through spatial analyses. The analysis of disaggregate crash data focuses 

mainly on the individual occupants or vehicles involved in a crash requiring the crash hierarchy 

to be taken into consideration. The following figure illustrates the two hierarchies which are 

actually complementary and have been incorporated into a single framework by Huang and 

Abdel-Aty (2010) and Dupont et al. (2013) to represent the prevailing data structure in road 

safety. The current research focuses on addressing the crash hierarchy of disaggregated crash 

data by nesting occupants within crashes. 

 

 

Figure 4.2 Multilevel structure of crash data (Adapted from Huang and Abdel-Aty, 2010 

and Dupont et al., 2013) 

 

 

 



62 

 

 

4.2.1 Multilevel/hierarchical Models 

Multilevel/hierarchical (ML/HL) models are regression models (linear or generalized 

linear models) with parameters that have been assigned a probability distribution. 

Hyperparameter is a term used in the ML/HL models to describe the parameters of the 

probability models. In this context, hierarchical models can be described in a Bayesian paradigm. 

For most of the multilevel models, conventional estimation methods can be used such as 

maximum likelihood or quasi-likelihood, which are based on Generalized Least Square (GLS) 

estimation (Browne et al., 2001; Dupont & Martensen, 2007). However, an important problem 

associated with these methods is that the likelihood estimation ratio is very approximate and 

cannot be used for assessing model fit. Applying these methods to complex data structure often 

result in numerical and convergence difficulties. Thus hierarchical/multilevel models can be 

grounded on Bayesian paradigm. Bayesian inference is the process of fitting a probability model 

to a set of data and summarizing the result by a probability distribution on the parameters of the 

model and on unobserved quantities such as predictions for new observations. Model parameters 

are assigned a probability distribution representing the knowledge the researcher possesses about 

each parameter prior to making any observation of data. These prior distributions may be 

informative or non-informative. Informative prior distributions about the parameters may be 

derived from the assumptions made by researchers from existing knowledge. To compensate for 

the lack of knowledge about the prior distributions of parameters, it is common to assign a 

typical distribution to these parameters with relatively large variance. Specifically, in Bayesian 

models, given model assumptions and parameters, the likelihood of the observed data is used to 

modify the prior knowledge of the unknowns, resulting in the updated knowledge summarized in 
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posterior densities. Inference about the parameters is based on the posterior distribution, which is 

a combination of the prior information with information derived from the observations.  

 Although a wide range of literature on clustered/hierarchical data analysis with full and 

empirical Bayes application exists in health service research, econometrics and other fields, the 

application of full Bayesian treatment is still limited in the transportation research for addressing 

clustered/hierarchical nature of the crash data. With the significant computational advances 

enabling the estimation of formerly complex models, the Bayesian framework combined with 

Markov Chain Monte Carlo estimation enable the estimation of unordered discrete choice 

models. As this estimation method is based on interval estimates, it allows for the calculation of 

accurate likelihood values (Dupont & Martensen, 2007). This simulation-based Bayesian method 

is more powerful in dealing with complex hierarchical datasets along with missing data or few 

data. This method also incorporates all sources of uncertainty in estimating the random effects 

accounting for the variation in the hierarchical data. 

 

4.2.2 General Model Formulation 

 

To define the principles of multilevel models, a simplified two-level model can be used. 

Occupants nested within crashes are considered as the hierarchical form in this model 

formulation. For example, let the response variable be the probability of injury for occupant i 

involved in crash j. The response yij can only takes one of the two values: 1 in case of injury 

while 0 in case of no injury. The probability of yij = 1 is denoted by πij = Pr (yij = 1) following a 

binomial distribution. 

The expected average probability for each crash can be defined as a non-linear function 

of the predictor or combination of predictors in linear form 
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𝜋𝑖𝑗 = 𝑓(𝑋𝛽𝑖𝑗)          (4.11) 

If f(x) represents a link function, the logit link chosen in this case can be represented by 

the following equation 

𝐿𝑜𝑔𝑖𝑡(𝜋𝑖𝑗) = 𝛾0 + ∑ 𝛾ℎ𝑥ℎ𝑖𝑗 + 𝑢0𝑗
𝑟
ℎ=1       (4.12) 

The expected probability for driver i to be injured in crash j is now defined as being a 

logit function of the linear combination of an average value holding for the crash population (γ0), 

of the effect of driver level and crash level predictors (∑ 𝛾ℎ𝑥ℎ𝑖𝑗
𝑟
ℎ=1 ), and of crash-related random 

effect uoj which is assumed to be normally distributed with mean 0 and variance 𝜎𝑢0𝑗

2 . 

The model defined in equation 4.12 allows the intercept to vary across the crashes. Thus, 

this allows the expected probability of occupants’ injury to be higher for some crashes than 

others. This random variation is intended to capture the unobserved characteristics of the crash-

level units on the observations made of the of individual driver-level units.  

Intra-class correlation (ICC) coefficients can be employed to calculate the proportion of 

variance in the outcome probability that is associated with each of the two levels (crash and 

driver) considered in this model formulation. This coefficient establishes the ratio of crash-level 

variance to the total variance in the outcome 

𝜌 =
𝜎𝑢0

2

𝜎𝑢0
2 +𝜎2

          (4.13) 

 

The logistic distribution for the driver-level residual implies a variance of π2/3 = 3.29. So, 

for a two-level logistic random intercept model with an intercept variance of 𝜎𝑢0
2 , the ICC for 

between-crash residuals is  

𝜌 =
𝜎𝑢0

2

𝜎𝑢0
2 +

𝜋2

3

          (4.14) 
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The ρ is an indicator of the magnitude of the within-crash correlation. A ρ value close to 

0 indicates a lack of variation among the crash observations indicating that multilevel modeling 

is not warranted. On the other hand, a relatively large value of ρ implies an inclination for 

estimating the multilevel or hierarchical model to fit to the data having hierarchical structure. 

Literature shows (Huang et al., 2008; Dupont et al., 2013) that ICC values ranging from 0.25 and 

above are considered high in terms of explaining the variance at the higher level (crash level 

considered herein).   

 

4.2.2.1 Hierarchical Binary Logit Model in Bayesian Framework 

 A hierarchical binary logit model with two-level specification was considered for the 

current research. In equation 4.11, if the response variable 𝑦𝑖𝑗 only takes one of two values: 𝑦𝑖𝑗 = 

1 in case of the occupant i sustaining injury in crash j and 𝑦𝑖𝑗 = 0 in case of not sustaining injury, 

then equation 4.13 can be re-written with 𝜋𝑖𝑗 following a binomial distribution 

𝐿𝑜𝑔𝑖𝑡 (
𝜋𝑖𝑗

1− 𝜋𝑖𝑗
) = 𝛾0 + ∑ 𝛾ℎ𝑥ℎ𝑖𝑗 + 𝑢0𝑗

𝑟
ℎ=1       (4.15) 

 Full Bayesian inference was employed in this research. A Bayesian framework requires a 

researcher to think about prior information available on the parameters being estimated and to 

formally include that information in the model. If no prior information is available for the 

parameters of interest, one must specify an uninformative prior. The posterior distribution for a 

parameter θ given that observed data is y is subjected to the following rule according to Bayesian 

statistics 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)        (4.16) 
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where p (θ|y) is the posterior distribution for θ given observed y, p (y|θ) is the likelihood of 

observing y given θ, and p (θ) is the probability distribution arising from some statement of prior 

belief for the parameter.   

 The key hierarchical part of the model mentioned in equation 4.16 is the random effect 

𝑢0𝑗 which can be specified at the individual crash level by allowing its variance (τ0
2) to follow a 

certain distribution varying across the crashes. For the current model specification, the crash 

level random effect was assumed to have a normal distribution with the variance of the normally 

distributed random effect having an inverse Gamma distribution (0.001, 0.001) as shown below 

 𝑢0𝑗 ~ N (0, τ0
2) and τ0

2 ~ Inverse-Gamma (0.001, 0.001) 

Based on the full Bayesian inference, the joint prior distribution for the parameters (θ) 

and the random effects (represented by φ) is  

𝑝(𝜑, 𝜃) = 𝑝(𝜑)𝑝(𝜃|𝜑)        (4.17) 

and the joint posterior distribution can be defined as  

 𝑝(𝜑, 𝜃|𝑦) ∝ 𝑝(𝑦|𝜑, 𝜃)𝑝(𝜑, 𝜃) = 𝑝(𝜑, 𝜃)𝑝(𝑦|𝜃)     (4.18) 

 In the absence of strong prior information for the model unknowns, uninformative priors 

were assumed for all regression coefficients (𝛾0,𝛾ℎ) with normal distributions (0, 1000). Based 

on the above formulation, the model was computed via Metropolis-Hastings sampler, a Markov 

Chain Monte Carlo (MCMC) technique, which was implemented by using MLwiN software 

package (Rasbah et al., 2000). In MLwiN, the user does not have to choose between Gibbs 

sampling and Metropolis Hastings sampling directly, the software has the capability to choose 

the default and the most appropriate technique for the given model. In case of normal response 

models, Gibbs sampling is used for all parameters. For non-normal responses, MLwiN does not 
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allow Gibbs sampling. For logistic regression models, Metroplis-Hastings algorithm is usually 

quicker than the Gibbs sampler approach usually used in the software WinBUGS. 5,000 

iterations were used as the burn-in step for each model. This is the number of initial iterations 

that were not allowed to be used to describe the final parameter distributions. The monitoring 

chain length was decided from the Raftery-Lewis diagnostic. The Raftery-Lewis diagnostic 

(Raftery & Lewis, 1992) is a diagnostic based on a particular quantile of the distribution of a 

parameter. This diagnostic is used to estimate the length of the Markov chain required to 

estimate a particular quantile to a given accuracy. In MLwiN, the diagnostic is calculated for the 

two quantiles with the defaults being the 2.5% and 97.5% quantiles. More iterations would be 

required if the quantile values are greater than the number of iterations used for a parameter. A 

thinning to retain every tenth sample was used to reduce the autocorrelation. Thinning is the 

frequency with which successive values in the Markov chain are stored. Convergences of the 

models can be checked by monitoring the Markov Chain Monte Carlo (MCMC) dynamic plot 

traces for all the parameters considered in the models. The conclusion on the model convergence 

can be made once all the values of the parameters lies within a zone without strong periodicities. 

Plots of autocorrelation known as Auto Correlation Function (ACF) for all the parameters were 

also observed to make sure that the chain for each parameter was adequately close to 

independently and identically distributed (IID) data. A diagnostic known as the Deviance 

Information Criteria (DIC) is used to measure how well a model fits the data. It is derived by 

using the deviance with MCMC sampling. The DIC diagnostic can be used to compare models as 

it consists of the measure of fit and complexity of a particular model. 
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CHAPTER 5 

DEVELOPMENT OF SITE PRIORITIZATION TECHNIQUES FOR WINTER WEATHER 

CRASHES IN IOWA 

 

 This chapter describes the development of a comprehensive site prioritization technique 

for identifying road segments with winter weather related crash problems using traditional naïve 

statistical methods. This chapter also discusses the development and results of SPFs used to 

develop a site prioritization technique using the Empirical-Bayes method to overcome the serious 

limitations possessed by the traditional methods as discussed before.  

 

5.1 Development of Site Prioritization Techniques Using Naïve Statistical Methods 

This section describes the development of a comprehensive site prioritization technique 

for identifying sites with winter weather related crash problems using crash data from 2002 to 

2009. System-wide screening approaches were developed to identify and prioritize sites for 

further in-depth winter safety analysis. Combined metric analysis, standard deviation based 

analysis, and moving average analysis were employed to identify and analyze sites for winter-

safety analysis.  

 

5.1.1 Combined Metric Analysis 

Winter weather-related crash density, crash proportion (the proportion of winter-weather 

related crashes to all winter crashes), and personal-level injury severity (injuries on each 

roadway segment by frequency and severity) were considered in the evaluation of one-mile 

roadway segments with respect to winter weather safety. Crash density was represented by crash 
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frequency on a particular road segment by summing up the total winter-weather related crashes 

occurring during the winter seasons of 2002 to 2009 and dividing the total by the length of the 

road segment and the number of years in the analysis period. A Crash proportion metric was 

computed by summing the total winter-weather related crashes and dividing by the total winter 

crashes over a road segment for the analysis period. A Severity metric was computed from a total 

score assigned to each road segment based on the total frequency of injury severities experienced 

in winter weather-related crashes. The following equations show the three different metrics used 

for deriving the combined metric. 

𝐶𝑟𝑎𝑠ℎ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = (𝑐𝑟𝑎𝑠ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑛 𝑎 𝑟𝑜𝑎𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡) ÷ (𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ×

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠)        

𝐶𝑟𝑎𝑠ℎ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑤𝑖𝑛𝑡𝑒𝑟 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 ÷ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑤𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛  

𝐶𝑟𝑎𝑠ℎ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = ∑ 𝐶𝑟𝑎𝑠ℎ𝑖 × 𝑃𝑜𝑖𝑛𝑡𝑖

𝑖

 

where i = fatal, major, minor, and possible injury crash. 

 The combined metric was created by computing the total frequency of injuries by 

severity over an analysis period and assigning each injury severity a certain number of points, 

based on the standard Iowa DOT scale shown in Table 5.1. It is to be noted that all three metrics 

for a specific one-mile road segment were normalized in order to index the metrics against a 

maximum value of 1.0. In order to do that, the crash density and crash severity metrics were 

divided by the maximum value of the metrics for a common type of roadway and an analysis 

period from 2002 to 2009. The crash proportion metric was already normalized against a 

maximum value of 1.0 as it was expressed as a percentage of total winter crashes during the 

analysis period. The resulting values were aggregated into a combined score  
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Table 5.1 Standard Iowa DOT scale for assigning points by injury severity 

 

 

 

 

for each roadway segment. The combined score for each road segment was computed by putting 

equal weight to the normalized score of each of the three metrics. In this process, a one-third 

(1/3) weighting was assigned to each of the three metric for computing the combined score. 

While equal weight was put on the three metrics in this research to consider all three metrics 

equally important, it may be preferred to weight the three metrics differently. Combined road 

segment scores based on alternate weighting can be recomputed in the future at the discretion of 

concerned officials from Iowa DOT. The following equation shows the calculation of the 

combined score by putting equal weight on the three metrics. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑐 = (
1

3
) × 𝐶𝑟𝑎𝑠ℎ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + (

1

3
) × 𝐶𝑟𝑎𝑠ℎ𝑝𝑟𝑜𝑝𝑝𝑜𝑟𝑡𝑖𝑜𝑛 + (

1

3
) × 𝐶𝑟𝑎𝑠ℎ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (5.1) 

This combined score was categorized based on their relative magnitude within the appropriate 

road type and analysis period. The total mileage of a common road type (i.e. interstate/freeway 

and tow-lane roads) was computed and categories were created based on the combined score 

being among a certain percentage of the system mileage. Following the United States Road 

Assessment Program (usRAP) risk-mapping protocol, the five categories included five derived 

ranges for the combined metric. Table 5.2 shows the categories with the subsequent percentage 

of system mileage.  Category 1 indicates the values of the combined score within the lowest 40 

percent of the total mileage of a road type while category 5 indicates the values within highest 5 

Injury severity Points each occurrence 

Fatality 200, with the first fatality at a  

site treated as a major injury 

Major 100 

Minor 10 

  

Possible/Unknown 1 
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percent of the total system mileage. Road segments which were assigned to category 5 indicated 

maximum safety problems in term of winter weather safety when crash density, crash proportion 

and crash severity are considered while road segments belonging to category 1 were considered 

to be least prone to winter weather crashes. Figure 5.1 and 5.2 shows the map of interstate and 

tow-lane roadway systems categories based on the combined score considering crash density, 

crash proportion, and crash severity. 

 

 Table 5.2 Mileage category ranges (for each road type) by relative magnitude 

 

Category 

Metric value is among  

percentage of system mileage 

1 Lowest 40 percent  

2 Next 25 percent 

3 Next 20 percent 

4 Next 10 percent 

5 Highest 5 percent 

 

Figure 5.1 shows that Interstate 35 north has quite a few segments with higher categories 

compared to the Interstate 35 south. In fact, there is a continuous stretch of roadway belonging to 

categories equal or greater than 4. On the other hand, Interstate 80 has road segments with high 

category values scattered from east to west with the east portion having quite a few black and red 

colored segments. Interstate 80 has less clustered high category road segments unlike Interstate 

35. The map for two-lane roadways also shows the segments or the cluster of segments to 

identify sites prone to winter weather crashes. Although it is difficult to derive any pattern from 

the two-lane roadway map, segments belonging to higher categories are more prominent in the 

upper region of the map compared to the lower region. 
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Figure 5.1 Combined metric categorization for Interstate/freeway road segments 

 

Figure 5.2 Combined metric categorization for two-lane road segments 



73 

 

 

5.1.2 Standard Deviation Based Analysis 

A standard deviation based analysis on one-mile road segments for different functional 

types of roadway was conducted using the winter weather-related crashes from 2002 to 2009. 

The combined score (putting equal weight on crash frequency, crash proportion, and crash 

severity) was used to examine if the metric on one-mile road segments was within a certain range 

of the standard deviation for the crashes. This accounted for the wide variation in the 

combination of the three metrics on the road segments for a common road type. The metrics for 

crash density, crash proportion, and crash severity were also considered for the standard 

deviation based analysis. For this purpose, the metrics of all winter weather-related crashes (from 

2002 to 2009) for each one-mile road segment were divided by the standard deviation of each 

metric for each type of roadway. The road segments were ranked based on this value with roads 

having higher values ranked higher to prioritize the segments for a common type of roadway. 

The following figures (Figure 5.3-5.5) show the standard deviation based analysis for the three 

individual metrics for interstate roadways along with the combined metric for the interstate and 

two-lane roadways (Figure 5.6-5.10) 

Notable differences can be observed for prioritized road segments using the standard 

deviation based analysis of the three metrics. The analysis based on crash density shows a 

considerable number of roadway segments having yellow, black and red colors along the 

Interstate 80 corridor while a region with the potential for safety improvements (sites with 

promises) is shown in the north portion of Interstate 35. Similar results were obtained for the 

standard deviation based analysis of crash proportion metric. Interstate 35 shows road segments 

having the potential to be considered for safety improvements along the whole length from north 
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to south with north portion having significant road segments with yellow, black, and red colors 

and south portion having mostly yellow colored segments with a very few red colored segments.  

 

 

Figure 5.3 Standard deviation based analysis of crash density for Interstate/freeway 

 

 It is to note that Iowa DOT can utilize the three metrics (crash density, crash proportion, 

and crash severity metric) instead of the standard deviation based crash density, crash proportion, 

and crash severity metrics. The standard deviation based analysis was conducted to observe the 

sensitivity of the three different metrics with respect to the standard deviation. Caution also 

needs to be exercised for using any of these three metrics independently as using a single metric 

without considering the others might result in roadway segment to be wrongly prioritized. This is 

one reason to devise a combined metric by considering all three metrics. 
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 Figure 5.4 Standard deviation based analysis of crash proportion for Interstate/freeway 

 

Figure 5.5 Standard deviation based analysis of crash severity for Interstate/freeway 
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Figure 5.6 Standard deviation based analysis of combined metric for Interstate/freeway 

 
 

Figure 5.7 Standard deviation based analysis of combined metric for I-35 N 
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Figure 5.5 shows a continuous stretch along Interstate 35 north having red segments. This 

color indicates occurrence of severe winter weather-related crashes along this stretch. Similar but 

shorter stretches were also noticeable along the east portion of Interstate 80. 

 

Figure 5.8 Standard deviation based analysis of combined metric for I-80 E 

 

 The standard deviation based analysis of the combined metric shows highly prioritized 

road segments along Interstate 80 east and Interstate 35 north with some hot spots along US 20. 

Figure 5.7 and 5.8 show high-resolution images of the I-35 north, US 20, and I-80 east. Results 

show that the curved portion of the I-35 north has road segments with consistent black and red 

colors. The I-80 east section also has some hot spot clusters near Williamsburg and Iowa City 

with the road segments near Iowa City having a curved section. The standard deviation based 

analysis for two-lane road segments can be used to identify crash hotspots with segments having 
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higher values indicated by black and red colors. Figure 5.10 shows only the highly prioritized 

road segments based on the standard deviation based analysis of the combined metric. 

 
Figure 5.9 Standard deviation based analysis of combined metric for two-lane roadways 

 
Figure 5.10 Crash hotspots for two-lane roadways (STD based analysis of combined metric) 
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5.1.3 Moving Average Analysis 

To incorporate the spatial proximity, a moving average analysis was performed on all the 

Interstate/Freeway roads in Iowa to identify potential sites for safety improvements during winter 

weather. Three-mile road segments were considered for this purpose. The combined metric was 

used for each road segment to calculate the moving averages for 3-mile road segments. This 

moving average analysis was performed for I-29, I-35, I-80, I-680, I-380 and US-20 roadways. 

Figure 5.11 shows the road segments with moving average values of the combined metric and 

screened road segments having higher moving average values for considering those as high 

priority roadway section for improving winter weather safety. Results show two sections along I-

35 north and three sections along I-80 east having a considerable number of road segments with 

black and red color. 

 

 
 

Figure 5.11 Moving average analysis of combined metric for interstates  
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Figure 5.12 Crash hotspots based on moving average values of the combined metric 

 

 The ranking results of these methods (standard deviation based analysis of crash density, 

crash proportion, crash severity, combined metric, and moving average analysis) for 25 road 

segments are presented in the Table 5.3 for interstate/freeway roadway system. 

 A visual inspection of the Table 5.3 reveals that these rankings based on different 

methods identify different road segments. There are no segments identified by all the methods. 

Rankings based on moving average analysis and standard deviation based combined metric 

analysis have the most numbers of common road segments with eleven segments. Ranking based 

on standard deviation analysis of crash proportion has nine road segments in common with the 

combined metric based rankings, while rankings produced using crash density and crash severity 

based analysis have only two and one road segments respectively in common with the ranked 

segments based on combined metric. One reason for this discrepancy might be attributed to  



81 

 

 

Table 5.3 Results of Interstate/freeway network screening and ranking 

  

Crash 

density 

Crash 

proportion 

Crash 

severity 

Combined 

metric 

Moving 

Average 

Ranking 

Segment 

ID  Segment ID  Segment ID  Segment ID  Segment ID 

1 4150 6792 6504 2676 4162 

2 6779 3281 4119 2746 6713 

3 9354 4151 6517 3281 6897 

4 6664 6818 6665 3293 4150 

5 6676 4122 6541 3342 4166 

6 9347 4162 6731 4122 4167 

7 6792 4163 6605 4150 4168 

8 6820 4271 6714 4151 6664 

9 3847 4130 6746 4162 6729 

10 6884 6729 4157 4163 4151 

11 3281 3252 6723 4164 4161 

12 4215 3342 6581 4166 4163 

13 6850 4164 6713 4168 4164 

14 4213 4217 4045 4202 4259 

15 4160 6731 4194 4204 4260 

16 6693 4167 4128 4217 4271 

17 4151 4273 6542 4260 4274 

18 4068 4259 6761 4268 6665 

19 6699 6639 3270 4271 6666 

20 6713 3318 4150 4276 6714 

21 4202 3331 6614 6618 6715 

22 4198 4166 6572 6628 6717 

23 6751 6688 4019 6664 6788 

24 4197 2664 6538 6665 6792 

25 4240 3321 9088 6668 6793 

  

the non-consideration of traffic volume in developing these two metrics. Roads with high 

volumes typically experience more crashes and therefore, have a higher crash density. The 

severity metric also does not account for the changes in total injuries resulting from different 
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traffic volumes. Rate based metrics considering traffic volume were not derived for this study as 

availability of traffic volume data during winter weather conditions was limited.  

 

5.2 Development of Safety Performance Functions for Empirical-Bayes Analysis 

 This section discusses the development and results of the crash frequency models, SPFs 

to associate crashes with a variety of variables related to weather factors, traffic, and roadway 

related factors for three types of roadways. These SPFs are used to calculate the potential for 

safety improvement along road segments during winter seasons. The modeling techniques used 

for developing the SPFs are based on the methodology describe in the Chapter 4. Development 

of SPFs is based on the integrated dataset already described in the Chapter 3. After the 

integration of the crash data for the 2008 to 2012 winter periods, crash frequency was modeled 

as a function of geometric and traffic characteristics of different roadway classes, and weather 

related variables derived from crew reported weather information. Frequency models were 

developed for interstate/freeway, multilane divided/undivided, and two lane roadways. 

Overdispersion was present in the crash frequencies for interstate/freeway and multilane 

divided/undivided roadway segments. As such, a negative binomial modeling (with variance 

greater than mean of crashes) approach was taken to estimate the frequency of crashes on these 

two types of roadway segments. Although the value of overdispersion parameter was not very 

high, it was statistically significant for both classes of roadways. For two-lane roadway 

segments, a Poisson regression model was developed to estimate the probability of the number of 

crashes on this type of roadway as the variance and mean of crash frequencies along the road 

segments were same showing no overdispersion. The following section presents the model 

results for different types of roadways followed by a section describing the model results 
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5.2.1 Model Results 

Tables 5.4 to 5.5 show the negative binomial regression estimation results for 

Interstate/freeway and multilane divided/undivided roadway segments. Table 5.6 shows the 

Poisson regression model estimation results along two-lane roadway segments. It is to be noted 

that the “snow amount” variable was not found to be significant in any of the SPFs developed for 

the three roadway types. Measures of model fit are represented by pseudo R2 (1- residual 

deviance/null deviance) proposed by Cameron and Trivedi (1998) for negative binomial and 

Poisson models. 

 

Table 5.4 Negative binomial model for Interstate/freeway road segments 

 

 

 

 

 

 

 

 

 

 

 

 

Variables Estimates Std. Errors Pr 

Intercept -4.72 0.48 <0.001 

Log of AADT 0.65 0.038 <0.001 

Air temperature (Fahrenheit) -0.02 0.005 <0.001 

Pavement temperature 0.017 0.005 <0.001 

Surface Width  (in feet) 0.02 0.003 <0.001 

Visibility (in mile) 0.03 0.016 0.053 

Posted Speed Limit (in mph) -0.01 0.005 0.091 

Null deviance 1915.33 

Residual Deviance 961.79 

Overdispersion factor 0.2343 

Pseudo R2 0.5 
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Table 5.5 Negative binomial model for multilane road segments 

 

 

 

 

 

Table 5.6 Poisson model for two-lane road segments 

 

 

 

 

 

 

 

5.2.2 Model Interpretation 

The Poisson and negative-binomial models are of an exponential functional form, a 

measure of sensitivity of crash frequency to the corresponding variable can be attributed to the 

exponent in the model. Thus, elasticity estimates for the variables in the models were computed 

to measure the sensitivity of crash frequency to the corresponding variables. Elasticity is defined 

as the percentage change in the dependent variable resulting from a 1% change in an explanatory 

variable. Table 5.7 shows the elasticity values for the variables considered in the models for the 

Variables Estimates Std. Errors Pr 

Intercept -5.42 0.41 <0.001 

Log of AADT 0.73 0.041 <0.001 

Visibility (in mile) 0.04 0.015 0.004 

Air temperature (Fahrenheit) -0.006 0.003 0.0853 

Posted Speed Limit (in mph) -0.011 0.002 <0.001 

Surface Width  (in feet) 0.02 0.002 <0.001 

Null deviance 1622.93 

Residual Deviance 797.63 

Overdispersion factor 0.16 

Pseudo R2 0.51 

Variables Estimates Std. Errors Pr 

Intercept -3.04 0.22 <0.001 

Log of AADT 0.37 0.03 <0.001 

Wind Speed (in mph) 0.005 0.002 0.0156 

Visibility (in mile) 0.023 0.009 0.0109 

Surface Width (in feet) 0.0162 0.002 <0.001 

Null deviance 1493.6 

Residual Deviance 1143 

Pseudo R2 0.24 
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three different types of roadways. The following specific observations can be made from the 

modeling outcomes for the three types of roadways. The results for the Interstate/freeway class 

and multilane divided/undivided classes are discussed together as the findings from the models 

were similar. 

Table 5.7 Estimated elasticities 

Variable 

Elasticties (for 

Interstate/freeway) 

Elasticties 

(Multilane) 

Elasticities 

(two-lane) 

Log of AADT 6.4 6.74 2.93 

Air temperature -0.43 -0.12   

Pavement temperature 0.38     

Road surface width 0.58 0.71 0.43 

Visibility 0.06 0.13 0.07 

Posted speed limit 0.66 0.53   

Wind speed     0.07 

 

5.2.2.1 Interstate/Freeway and Multilane Divided/Undivided Roadways 

 

Traffic volume 

As expected, traffic volume, AADT for each specific road segment, was found to be 

significant with a positive sign, suggesting that an increase in traffic volume would result in an 

increase in the mean number of weather-related crashes expected to occur on the road segment 

during the winter season. The value of the coefficient associated with the traffic volume is 0.65, 

which is less than one and suggests the moderating effect of traffic volume is non-linear with a 

decreasing trend. A Similar value was found for road segments belonging to multilane 

divided/undivided roadways. Previous literature also reports similar effects of traffic volume on 
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speed and weather-related crash frequency (Monsere et al., 2008). Traffic volume represented by 

AADT in the current study has a considerable impact on safety, as an increase in traffic volume 

(ranging from 90 to 113,600 during the winter seasons) by 1% would cause the mean number of 

crashes to increase by 6.4% on interstate/freeways. The elasticity value for volume reveals that a 

1% increase in AADT (ranging from 50 to 34,225 during the winter seasons) will result in 6.74% 

increase in the mean crash frequency on multilane divided/undivided roadway segments. 

 

Air temperature 

Air temperature was found to be significant with a negative sign suggesting that the mean 

number of weather-related crashes will increase with the decrease in the air temperature. The 

elasticity value for the air temperature reveals that a 1% increase in air temperature during the 

winter season would decrease the mean number of crashes by 0.43% on interstate/freeway roads 

for air temperature ranging from -25 to 37 degree Fahrenheit. This result is in agreement with 

some of the previous findings (Fu et al. 2006). The elasticity value for multilane 

divided/undivided roadway indicates a 0.12% decrease in the mean number of crashes with a 1% 

increase in air temperature (from -18 to 38 degree Fahrenheit) during the winter season.   

 

Pavement temperature 

Modeling results reveal a significant relationship between average pavement temperature 

and mean number of crashes during the winter season on interstate/freeway road segments. The 

elasticity value for the pavement temperature shows that a 1% increase in pavement temperature 

would cause the mean number of weather-related crashes to increase by 0.38% when pavement 

temperature ranges from -9 to 38.8 degree Fahrenheit. Though the finding seem counterintuitive, 
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it is possible that the increase in pavement temperature might result in different level of variation 

in road surface condition affecting crash frequency. Pavement temperature was not found 

statistically significant with crash frequency occurring on multilane divided/undivided roadway 

segments. 

 

Road surface width (in feet) 

 Road surface width (measured from edge line to edge line) was found to be statistically 

significant and the positive sign indicates that roadway segments with wider surface were 

associated with a higher number of weather-related crashes during the winter seasons. Results 

revealed that a 1% increase in the roadway surface (from 16 to 90 feet) width would result in 

0.58% increase in the mean number of crashes on interstate/freeway and 0.71% on multilane 

divided/undivided road segments (from 12 to 72 feet) during the winter seasons. On 

interstate/freeway roadways, wider roadways might make drivers feel safer and the number of 

crashes might increase due to the risk compensating behaviors of drivers during winter seasons. 

It might also suggest that drivers slow down during winter weather on narrower roadways. 

Drivers are also prone to changing lanes on a multilane roadway segment and this might have 

increased potential for greater number of crashes on road segments having larger surface width. 

Previous studies have also found similar results while developing crash frequency models for 

speed and winter-weather related crashes (Monsere et al. 2006). 

 

Visibility (in mile) 

 Visibility was found to be significant with a positive relationship suggesting that the  
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mean number of weather-related crashes during winter seasons will increase with better 

visibility. Although, this finding might seem counterintuitive, the increase in the frequency of 

crashes during winter seasons might be attributed to the risk compensating behaviors of the 

drivers due to increased visibility. Previous research findings showed a decrease in average 

vehicle speeds during winter weather with a decrease in visibility below 0.4 kilometer (Knapp 

and Smithson, 2001). The elasticity value for visibility indicates that a 1% increase in visibility 

(ranging from 0 to 5 mile) during winter seasons will increase the mean number of weater-

related crashes expected along interstate/freeway road segments by 0.06%. The elasticity value 

for visibility (ranging from 0 to 5 mile) was found to be 0.13 for multilane divided/undivided 

roadway segments. Note that these results are similar with that of a past study Hermans et al. 

(2006a) using data from 37 sites. However, our results are different from the study conducted by 

Usman (2011) that found a negative relationship between visibility and crash frequency during a 

storm event. Note that the models developed in this research are not winter-storm event based 

models but rather consider all the weather-related crashes that occurred during the winter 

seasons. Large aggregation of data at the temporal level may have masked the effect of visibility 

in the current model.  

 

Posted speed limit 

Posted speed limit was found to be significant with a negative sign suggesting that the 

mean number of weather-related crashes would increase with a decrease in posted speed limits 

along roadway segment during winter weather seasons. This finding is in agreement with a 

previous study (Monsere et al., 2006). The elasticity value for the posted speed limit variable 

reveals that a 1% increase in posted speed limit will (35-70 mph for interstate and 20-65 mph for 
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multilane roadways) result in a 0.66% and 0.53% decrease in the mean number of winter 

weather-related crashes on interstate/freeway road segments and multilane divided/undivided 

roadways segments, respectively. The greater variability of vehicle speeds during winter weather 

conditions compared to non-winter conditions (Knapp and Smithson, 2001) might contribute to 

this finding. Literature also shows evidence of decrease in the average winter weather speed 

compared to the typical average speed at the same location during non-winter weather conditions 

(Knapp and Smithson, 2001). 

 

5.2.2.2 Two-lane roadways 

 

Traffic volume 

Traffic volume represented by AADT was found to have a statistically significant relation 

with the mean number of crashes. The sign of the value of the coefficient was positive 

suggesting an increase in the mean weather-related crash frequency with the increase in the 

traffic volume. The elasticity value for the AADT suggests that a 1% increase in the traffic 

volume will result in a 2.93% increase in mean crash frequency for AADT ranging from 50 to 

52,700 on two-lane roadways. 

 

Road surface width (in feet) 

 Road surface width was also found to have a significant effect with a positive sign on 

winter weather crash frequency for two-lane roadway segment. A similar effect was also found 

for weather-related crashes occurring on interstate/freeway and multilane divided/undivided 
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roadway segment during the winter season. Α 1% increase in road surface width (ranging from 

14 to 76 feet) would result in a 0.43% increase in weather related mean crash frequency. 

 

Visibility (in mile) 

Visibility was found to have an effect on mean winter weather crash frequency for two-

lane roadway segments similar to that of interstate/freeway and multilane divided/undivided 

roadway segments. Results reveal that a 1% increase in visibility (0-5 mile) would result in a 

0.07% increase in the mean number of weather-related crashes on two-lane of roadway 

segments. 

 

Wind speed 

While wind speed was not found to be significant for the frequency models developed for 

interstate/freeway and multilane divided/undivided roadway segments, it was found to be 

statistically significant for two-lane roadways. The positive sign indicates that higher wind 

speeds were associated with a higher number of crashes. The elasticity value for wind speed (0-

50 mph) shows that a 1% increase in wind speed would result in a 0.07% increase in mean 

number of weather-related crash frequency along two-lane roadway segments. The results make 

intuitive sense as higher wind speeds could cause blowing snow effects, which might impair 

driver performance during winter seasons. This result is in agreement with previous research 

findings (Knapp et al., 2000; Usman, 2011).  
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5.2.3 Ranking Results of Roadway Segments Using Empirical-Bayes  

 The results showing the ranking of the top 25 road segments based on the value of PSI are 

presented in Table 5.8 and 5.9 for Interstate/freeway and multilane divided/undivided roadways 

respectively. Sample ranking of roadway segments for these two classes of roadways are presented 

in Appendix C.  

 Table 5.8 and 5.9 show only two road segments in common for the ranking produced using 

the PSI and the previously discussed combined metric for intestate/freeway roadway (Table 5.3). 

The EB adjusted frequency and observed frequency produced similar ranking. This is expected as 

crash counts are included in the EB adjustment. Four years of crash counts were incorporated into 

the EB adjustment and as a result more weight was put on observed crash counts compared to the 

expected number of crash counts predicted from the SPFs. A similar result was also reported in 

the literature (Monsere et al., 2008). If less years of crash data would have been considered, more 

weight would be assigned to the predicted number of crash frequency from the SPFs. The tables 

show that the ranking based on the PSI is different from the ranking produced by EB adjusted 

crash frequency or the observed crash frequency. For example, segment 4186 of Interstate/freeway 

system had thirty eight observed crashes during the four years compared to twenty four crashes 

experienced by the segment 3342. But segment 3342 ranked ahead of segment 4186 when PSI was 

considered for the ranking purpose. The predicted crash frequency from the SPF was low for the 

segment 3342 compared to the observed number of crashes while the predicted crashes for the 

segment 4186 were close to the observed number of crashes. More weight was put on the predicted 

crashes for the segment 3342 to in comparison with the weight put on predicted crashes for the 

segment 4286. 
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Table 5.8 Top 25 roadway segments for potential for safety improvements (Interstate/freeway) 

 

Interstate/freeway road segments 

Segment ID Observed Predicted Weight Adjusted PSI 

3393 50 8.65 0.03 48.93 40.28 

9078 35 10.93 0.02 34.50 23.57 

4187 48 26.56 0.01 47.82 21.26 

9364 36 16.30 0.01 35.73 19.42 

3342 24 3.21 0.07 22.61 19.40 

3219 29 9.74 0.02 28.56 18.82 

4198 26 8.93 0.03 25.57 16.65 

6818 24 7.11 0.03 23.47 16.36 

3394 30 13.98 0.02 29.74 15.76 

4163 20 3.84 0.06 19.09 15.24 

4154 21 5.11 0.04 20.31 15.21 

6429 27 11.57 0.02 26.70 15.13 

6714 22 6.45 0.03 21.46 15.02 

4199 23 7.69 0.03 22.56 14.86 

6430 30 15.12 0.01 29.78 14.66 

4157 21 5.87 0.04 20.43 14.56 

6792 22 7.13 0.03 21.53 14.41 

6915 24 9.62 0.02 23.66 14.05 

9161 50 36.19 0.01 49.91 13.73 

9084 25 11.01 0.02 24.71 13.70 

4150 20 5.98 0.04 19.48 13.50 

6875 20 6.70 0.03 19.56 12.86 

4178 44 31.26 0.01 43.91 12.65 

3387 17 4.24 0.05 16.34 12.10 

4186 38 26.81 0.01 37.90 11.10 
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Table 5.9 Top 25 roadway segments for potential for safety improvements (multilane 

divided/undivided) 

 

Multilane divided/undivided roadway segments 

Segment ID Observed Predicted Weight Adjusted PSI 

1092 27 9.78 0.02 26.73 16.94 

6039 26 11.76 0.01 25.81 14.05 

6074 26 12.25 0.01 25.82 13.58 

2633 27 13.68 0.01 26.85 13.17 

1096 23 10.60 0.01 22.82 12.22 

1091 24 11.76 0.01 23.84 12.08 

6075 25 13.08 0.01 24.86 11.78 

9077 26 14.47 0.01 25.88 11.41 

9330 17 5.41 0.03 16.67 11.26 

9481 19 7.55 0.02 18.77 11.21 

2293 18 6.67 0.02 17.74 11.07 

8209 21 9.76 0.02 20.82 11.06 

1960 21 10.05 0.02 20.83 10.78 

5267 17 6.83 0.02 16.77 9.94 

9472 14 3.79 0.04 13.59 9.81 

5659 16 5.98 0.03 15.74 9.77 

6051 19 9.09 0.02 18.83 9.75 

1053 19 9.70 0.02 18.85 9.15 

3230 19 9.72 0.02 18.85 9.13 

5455 13 3.72 0.04 12.62 8.91 

9095 14 4.82 0.03 13.71 8.88 

646 16 6.98 0.02 15.80 8.82 

5316 16 7.01 0.02 15.80 8.79 

6042 16 7.56 0.02 15.83 8.27 

1089 16 7.73 0.02 15.83 8.11 

 

 

 

5.3 Summary 

 Site prioritization techniques for identifying roadway segments with the potential for 

safety improvements related to winter weather crashes were developed through traditional naïve 

statistical methods by using raw crash data. Crash frequency models were developed using 
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integrated crash data for four winter seasons (2008 to 2012) with the objective to identify factors 

affecting crash frequency during winter seasons and screen roadway segments using the 

Empirical Bayes (EB) technique. EB accounts for RTM phenomenon by overcoming the 

limitations caused by traditional methods. Weather factors such as visibility, wind speed, air 

temperature were found to have statistically significant effects on crash frequency along different 

types of roadways. The ranking of roadway segments for PSI also differed from the ranking 

produced by simple crash frequency which does not take into account the RTM. This type of 

ranking produced by employing Empirical-Bayes technique can be useful to identify roadway 

segments for consideration of potential safety improvement and allocate agency resources in an 

effective manner to mitigate winter weather-related crashes. SPFs developed in this research can 

be used to produce ranking based on PSI by using crash observations made over a specific 

number of years for winter weather crashes.  
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CHAPTER 6 

MULTILEVEL MODELS FOR OCCUPANT INJURY SEVERITY ANALYSIS 

 

Chapter 5 describes the identifying factors linked to winter weather crash frequency. This 

chapter describes the factors identified by models that predict occupant injury severity for 

weather-related crashes, all crashes (weather and non-weather-related), and non-weather related 

crashes during the winter seasons along the whole length of I-80 in Iowa. To account for the 

hierarchical nature of the crash data, models with a two-level specification (occupants nested 

within crashes) were developed to estimate the effects of several covariates on occupant injury 

risk.  

 

6.1 Estimation Results 

A binomial logistic distribution was used in a Bayesian framework for this modeling 

purpose. The response variable takes one of two values: 1 if the occupant was injured or 0 if the 

occupant was not injured. In the absence of strong prior information for the predictors, 

uninformative priors were assumed for all regression coefficients with normal distributions 

(0,1000) and the variance of the normally distributed random effect with inverse Gamma 

distribution (0.001. 0.001). The models were computed via the Metropolis Hastings sampler, a 

Markov Chain Monte Carlo (MCMC) technique which was implemented using MLwiN software 

(Rasbah et al., 2012). A ninety five percent Bayesian Credible Interval (BCI) was used to 

examine the significance of the covariates. Deviation Information Criteria (DIC) was used as the 

model diagnostic. Details about the modeling method were described in Chapter 4.  
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6.1.1 Modeling Results of Weather-Related Crashes  

 To develop this model, 2,493 weather-related crashes during the four winter seasons 

(2008-09 to 2011-12) were used with 3,717  vehicle occupants. This resulted in an average 

involvement rate of 1.49 individuals per crash. Table 6.1 shows the estimation results of the 

model predicting occupant injury severity for weather-related crashes. 

 

6.1.1.1 Gender of the Occupant 

 The estimation results showed that the likelihood of sustaining an injury by a male 

occupant is higher compared to female occupants. Male occupants have 63% lower odds to be 

injured than female occupants when involved in crashes. Several past studies (Dissanayake, 

2004; Duncan et al., 1998; Jung et al., 2010; Khattak et al., 1998) suggested that the level of 

injury severity in a crash was lower for male drivers compared to female drivers. 

 

6.1.1.2 Seating Position of the Occupant 

 The model results revealed a decrease in the odds of an occupant being injured if he/she 

is in the driver seating position. The driver has 99% less likelihood of being injured in coparison 

to the other occupants involved in a crash. This might be a reflection of the improved protection 

offered to car occupant in the case of a frontal impact compared to side or rare impacts. Previous 

research (Lenguerrand et al., 2006) shows increased likelihood of occupant injury with crash 

impact from the side compared to front.  
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Table 6.1 Posterior summaries of parameter estimates for model with weather-related crashes

Parameters Effect Estimate 

Odds 

ratio 

95% Bayesian 

Credible 

Interval (BCI) 
  Mean SD  2.50% 97.50% 

Gender (if male = 1, otherwise = 0) -1.017 0.154 0.362 -1.322 -0.725 

Seating position (if driver = 1, otherwise =0) -5.306 0.417 0.005 -6.235 -4.551 

Occupant Protection 

None used (reference) 0 0 1.000 0 0 

Used -1.674 0.486 0.187 -2.661 -0.78 

Unknown/not reported -1.745 0.537 0.175 -2.861 -0.725 

Airbag deployment 

Airbag deployed (reference) 0 0 1.000 0 0 

Not deployed  -2.117 0.011 0.120 -2.565 -1.726 

Unknown/Not reported -2.234 0.285 0.107 -2.825 -1.693 

First harmful event 

Non-collision (overturn, rollover, jackknife) (reference) 0 0 1.000 0 0 

Collision with vehicles -1.598 0.197 0.202 -1.998 -1.231 

Collision with non-vehicles (animal, debris, work zone equipment, etc.) -1.432 0.214 0.239 -1.869 -1.041 

Roadway condition as contributing circumstance (if yes = 1, otherwise = 0) -0.387 0.179 0.679 -0.732 -0.037 

Trapped (if an occupant is trapped = 1, otherwise = 0) 1.143 0.35 3.136 0.467 1.829 

Ejection status (if an occupant is ejected = 1, otherwise = 1) 2.105 1.159 8.207 -0.096 4.412 

Age of the occupant (if age of the occupant is greater than 24 years old = 1, otherwise = 

0) 0.373 0.179 1.452 0.028 0.73 

Road type (if intersection = 1, otherwise = 0) -0.682 0.263 0.506 -1.2 -0.181 

Road surface condition and air temperature (if surface icy and temperature below zero = 

1, otherwise = 0) 0.366 0.157 1.442 0.066 0.679 

Random effects 

Between crash variance 3.708 0.851  2.322 5.732 

Within-crash variance 3.29     

Intra- Class correlation 0.53     

9
7
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6.1.1.3 Occupant Protection 

 The types of occupant protection used by occupants at the time of a crash occurrence 

included shoulder and lap belt, helmet, and child safety seat. The effect of occupant protection 

was investigated by means of three variables. These variables were available for each occupant 

involved in the crashes and were coded to include an “unknown/not reported” value for the cases 

without any available information. With respect to no occupant protection used, it was found that 

occupants using some type of protection have 81% less likelihood of being injured. This finding 

confirms previous results from several studies (Khattak et al., 2002; Dissanayake, 2004; 

Hermans et al., 2006b) reported in the literature. One interesting finding was that the occupants 

are less likely to be injured when no information about the type of protection used by them is 

available. These occupants are 83% less likely to be injured compared to occupants using no 

protection. This could be due to the fact that these occupants may have used some type of 

occupant protection, even though no such information was reported in the crash database. 

 

6.1.1.4 Airbag Deployment 

 The variable indicating the deployment of airbag was classified as a categorical variable 

in this study with three categories: airbag deployed (reference category), not deployed, and 

unknown/not reported. It was found that occupants have 87% lower likelihood of being injured 

when airbags were not deployed during the crashes compared to the instances when airbag was 

deployed.  It might be possible that deployment of airbag increases the likelihood of injuries 

because of the impact sustained by the occupants but reduces the likelihood of occupants being 

fatally or seriously injured. A similar result was obtained for occupants involved in weather-

related crashes with no information available related to the deployment of airbag in the crash 



99 

 

 

database. It might be possible that airbag was deployed in those crashes involving the occupants 

yielding similar results. 

 

6.1.1.5 First Harmful Event 

 This variable indicates the type of first harmful event in relation to the chain of crash 

events.  The “first harmful event” variable was categorized in three categories: non-collision 

(overturn, rollover, jack knife), collision with vehicles, and collision with non-vehicle objects 

(e.g. fixed object, animal, debris, work zone equipment).  It was found that occupant injury risk 

decreases by 80% and 77% respectively for crashes with first harmful event of “collision with 

vehicles” and “collision with non-vehicle objects” compared to crashes with first harmful event 

of “non-collision” events. As the first harmful event of “non-collision” is not an actual collision 

but a loss of vehicle control or other inappropriate maneuver recorded, it is possible that 

following events resulted in more harmful events (including one or more collisions) with higher 

probability of sustaining injury by occupants involved in the crashes 

 

6.1.1.6 Roadway Surface Condition as the Contributing Circumstance 

 The variable indicating whether roadway surface condition was a contributing 

circumstance for weather-related crashes was found to be a significant factor affecting the 

likelihood of occupant injury risk. The odds ratio value indicates a 33% decrease in the risk of 

occupant injury for crashes with the roadway surface condition reported as the contributing 

circumstance. This might likely be an effect of reduced speed levels of the vehicles on poor road 

surface conditions in adverse weather conditions during the winter seasons. However, it is 

difficult to represent the roadway condition at the time of the crash by taking into account the 
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pavement friction.  Findings reported in past studies (Cheng and Mannering, 1999; Khattak et al., 

1998; Quddus et al., 2002; Quddus et al., 2010) indicated that poor road surface conditions were 

associated with reduced level of injury severity. 

 

6.1.1.7 Trap Status 

 It was found that trapped occupants are more likely to be injured compared to those who 

were not trapped as a result of a crash. Results indicated that trapped occupants have 213% 

increased odds of being injured when involved in crashes. Trapped occupants in vehicles might 

remain in critical position before they are rescued. If the rescue efforts take time, the likelihood 

of an occupant being injured might increase. On the other hand, occupants able to get out of the 

vehicle after the crash occurrence can be attended quickly reducing the likelihood of injury or 

severe injury. 

 

6.1.1.8 Ejection Status 

 The indicator variable for ejection status was found to significantly affect the probability 

of injury for the occupants. Ejected occupants are eight times more likely to be injured compared 

to those not ejected. This finding is intuitive as occupants are more likely to be injured once they 

are ejected from the vehicles and experience an impact. No findings related to ejection status and 

occupant injury was found in previous studies reported in the literature.   

 

6.1.1.9 Age of the Occupant 

 The demographic variable indicating the age of the occupant was found to significantly 

affect the occupant injury risk. Occupants older than 24 years were identified to be more likely to 
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be injured. Results revealed a 45% increase in the odds of injury for occupants older than 24 

years. Aged occupants included in this group might have relatively weak risk detecting and 

reacting abilities along with deteriorating muscle strength and visual power. Thus, they are more 

susceptible to sustain injuries compared to younger occupants when involved in a crash. 

 

6.1.1.10 Type of Roadway Junction 

 The indicator variable for type of roadway junction revealed that the probability of 

sustaining injury by occupants is low when crashes occurred at intersections in comparison to 

crashes occurred at non-intersections locations. This might be attributed to the caution exercised 

by the drivers when reached at intersections. This finding is in agreement with a previous study 

(Lenguerrand et al., 2006) considering the hierarchical nature of the crash data. 

 

6.1.1.11 Road Surface Condition and Air Temperature 

 This indicator variable was used to represent whether the road surface was icy and the 

temperature was below zero degrees Fahrenheit during the crashes. Results indicated a 44% 

increase in the odds of occupant injury when both conditions related to road surface and air 

temperature existed.  Icy road surfaces with extremely low temperature might result in poor road 

surface condition with reduced pavement friction. This might lead to difficulty for the drivers to 

maneuver safely and could result in crashes. Similar findings were reported in past studies 

(Donnell and Mason, 2004; Deng et al., 2006; Mergia, 2010). 
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6.1.2 Modeling Results of Non-Weather Related Crashes 

 Table 6.2 shows the estimation results for the model considering non-weather crashes 

only. 2,749 non-weather related crashes occurring along Interstate 80 during the four winter 

seasons spanning from 2008-09 to 2011-12 were considered. There were 4,112 occupants 

involved in these crashes resulting in an average involvement of 1.5 individuals per crash. 

 

6.1.2.1 Gender of the Occupant 

 This indicator variable was found to an effect similar to the model results for weather-

related crashes. Male occupants have 50% less odds of being injured compared to the female 

occupants when involved in a crash not related to weather during winter seasons. 

 

6.1.2.2 Seating Position of the Occupant 

 It was found that occupants seated in the driver position are 99% less likely to be injured 

compared to occupants seated in other positions. This result is similar to those of the models 

predicting occupant injury risk for weather-related crashes and all crashes. Both models showed 

99% lower probability for driver occupants to be injured compared to occupants in other seating 

positions when involved in a crash.  

 

 6.1.2.3 Occupant Protection 

 Occupants using some type of protection were found to have 38% less odds of being 

injured when compared to occupants not using any protection. This finding makes intuitive sense 

and is also in agreement with findings from previous studies reported in the literature (Khattak et 

al., 2002; Dissanayake, 2004; Hermans et al., 2006b). 
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6.1.2.4 Airbag Deployment 

 Deployment of airbag affects occupant injury risk significantly in this model also. 

Occupants have 243% increased risk of being injured when an airbag was deployed in 

comparison to occupants not experiencing airbag deployment during crash occurrences. As 

already discussed in the models results for weather-related crashes, airbags might have prevented 

the occupants from being fatally or seriously injured but might have increased the probability of 

occupants being injured because of the airbag impact.  

 

6.1.2.5 First Harmful Event 

 This categorical variable was found to have identical effect on occupant injury risk when 

compared to the effect for all crashes during the four winter seasons. Occupants have 82% less 

odds of being injured in crashes with a first harmful event of “collision with vehicles” compared 

to crashes with a first harmful event of “non-collision”. It was also found that occupants have 

60% less odds of sustaining injury when involved in crashes with a first harmful event of 

“collision with non-vehicle object”. This reduction in likelihood odds for crashes having the first 

harmful event as “collision with non-vehicle objects” might be due to the fact that fixed objects 

(such as tree, poles, guardrail, sign post) are less likely to absorb energy when experiencing a 

collision and result in increased occupant injury risk.
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Table 6.2 Posterior summaries of parameter estimates for model with non-weather crashes 

Parameters Effect Estimate 

Odds 

ratio 

95% Bayesian Credible 

Interval (BCI) 

  Mean SD  2.50% 97.50% 

Gender (if male = 1, otherwise = 0) -0.702 0.14 0.496 -0.984 -0.439 

Seating position (if driver = 1, otherwise =0) -5.575 0.461 0.004 -6.614 -4.819 

Occupant Protection 

Occupant protection not used (reference) 0 0 1.000 1 1 

Occupant protection used  -0.476 0.213 0.621 -0.901 -0.069 

Airbag deployment 

Airbag not deployed (reference) 0 0 1.000 1 1 

Airbag deployed 1.235 0.157 3.438 0.936 1.547 

First harmful event 

Non-collision (overturn, rollover, jackknife) (reference) 0 0 1.000 1 1 

Collision with vehicles -1.695 0.232 0.184 -2.187 -1.267 

Collision with non-vehicles (animal, debris, work zone equipment, etc.) -0.915 0.244 0.401 -1.418 -0.469 

Surface Condition      

If surface has water (moving or standing) = 1, otherwise = 0 -2.213 0.479 0.109 -3.209 -1.309 

Trap Status      

Occupant not trapped (reference) 0 0 1.000 1 1 

Occupant trapped  4.583 0.481 97.807 3.706 5.567 

Unknown/not reported -3.088 0.925 0.046 -4.992 -1.355 

Ejection status       

Occupant not ejected (reference) 0 0 1.000 1 1 

Occupant ejected 4.869 1.738 130.191 1.923 8.902 

Unknown/not reported 1.101 0.862 3.007 -0.505 2.91 

Age of the occupant       

Occupants aged up to 24 years (reference) 0 0 1.000 1 1 

Occupants aged 24 years or higher 0.371 0.17 1.449 0.051 0.714 

Weather condition (if rain, mist, snow, fog, wind = 1, otherwise = 0) -0.488 0.218 0.614 -0.923 -0.067 

Major cause (if run-off-road = 1, otherwise = 0) 0.858 0.206 2.358 0.454 1.27 

Random effects 

Between crash variance 2.951 0.656  1.926 4.431 

Within-crash variance 3.29     

Intra- Class correlation 0.47     

1
0
4
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6.1.2.6 Trap Status 

 Trap status of the occupants was defined as a categorical variable in this model with three 

categories: “not trapped”, “trapped”, and “unknown/not reported”. Compared to occupants not 

trapped, trapped occupants are almost hundred times more likely to be injured when involved in 

a non-weather-related crash. On the other hand, occupants with unavailable information on their 

trap status have 96% less odds of being injured with respect to the reference category.  

 

6.1.2.7 Ejection Status 

 Ejection status was defined as a categorical variable for this model with the categories: 

“not ejected”, “ejected”, and “unknown/not reported”. It was found that ejected occupants are 

hundred and thirty times more likely to be injured compared to the occupants not ejected. With 

respect to the occupants not ejected, occupants having “unknown/not reported” status related to 

their ejection status are three times more likely to be injured. Occupants falling into 

“unknown/not reported” category might have been ejected and sustained injury because of the 

ejection. However, “unknown/not reported” category was not statistically significant in the 

current model 

 

6.1.2.8 Age of the Occupant 

 This variable was defined as categorical in this model. The two categories are “occupants 

aged up to 24 years” and “occupants aged 24 years and higher”. Considering “occupants up to 24 

years” as the reference category, it was found that occupants aged 24 years or higher have 45% 

increased risk of being injured when involved in a non-weather related crash. 
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This finding is similar to the results of the weather-related crash model except a reference 

category was used in the current model. 

  

6.1.2.9 Surface Condition 

 Surface condition affects the risk of injury severity significantly in the current model. 

Occupants involved in crashes occurred on a surface with water (standing or moving) have 89% 

less odds to be injured. This might be attributed to the capability of porous asphalt to drain water 

away quickly. Risk of hydroplaning reduces with the drainage of water and visibility of road 

marking might become better reducing the risk of an injury. Also, drivers might be more 

cautious while driving on wet road surface reducing the risk of injury. 

 

6.1.2.10 Weather Condition 

 This variable indicates bad weather conditions (fog/smoke, mist, rain, sleet, hail, freezing 

rain, snow, severe winds, blowing snow) during the crash. Bad weather conditions result in 39% 

less odds of occupants being injured. It might be possible that driver experience enable the 

involved drivers to adjust to the type of bad weather conditions occurring frequently during 

winter seasons in Iowa and lower the probability of injury risk for the occupants. It is reasonable 

to speculate that drivers adapt to adverse weather conditions by adjusting their speeds, and 

driving behaviors that could result in a lower probability of a crash. 

 

6.1.2.11 Major Cause: Run-Off-Road 

 This indicator variable was found significant in this model unlike the models considering 

weather-related crashes during the winter seasons. Occupants involved in crashes with the major 
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cause being “run-off-road” have increased odds of being injured by 135%. Run-off-road crashes 

might follow events (such as collision with oncoming vehicles, collision with fixed objects) that 

are responsible for the occupants being injured.  

 

6.1.3 Modeling Results of All (Weather and non-weather related) Crashes 

 Table 6.3 shows the estimation results for the model considering all the crashes (weather 

and non-weather-related) that occurred during the winter seasons from 2008/09 to 2011/12. 

5,242 crashes (both weather and non-weather) were considered in the development of this model. 

7,829 occupants resulted in an average involvement rate of 1.5 per crash.  

 

6.1.3.1 Gender of the Occupant 

 According to the estimation results, male occupants are 49% less likely to be injured 

compared to the female occupants involved in crashes occurred during the seasons. A previous 

study (Morgan and Mannering, 2011) confirmed that drivers’ adaptation to weather-induced 

changes is a complex process that might potentially be influenced by gender. 

 

6.1.3.2 Seating Position of the Occupant 

 The model results revealed that there is 99% less odds of being injured when an occupant 

is in the driver position. This finding is similar to that of the model results that consider weather-

related and non-weather related crashes. Considering all crashes (weather- and non-weather-

related) did not impact type of effect this indicator variable had on the likelihood of occupant 

injury. 
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6.1.3.3 Visibility 

 The visibility variable was categorized as “1 to 3 miles”, “3 to 6 miles”, and “6 miles and 

above” when the model was developed for all crashes during the winter seasons. It was found 

that visibility affects the risk of occupant injury significantly. Compared with visibility of “1 to 3 

miles”, visibility ranging from “3 to 6 miles” and “6 miles and beyond” increase the odds of 

occupant injury by 60% and 36% respectively. The reason for increased likelihood of occupant 

injury with increased visibility might be attributed to the increase in vehicle speed with improved 

visibility. Previous research (Knapp and Smithson, 2001) showed that vehicle speed decreased 

with decrease in visibility below 0.4 km. Risk compensating behavior of drivers with increased 

visibility might also be responsible for increased possibility of crash occurrence and injury for 

occupants. It is to be noted that this variable was not found to be significant in the model that 

considered weather-related crashes only. Incorporating non-weather related crashes in the current 

model might have induced additional variability in visibility with respect to occupant injury.  

 

6.1.3.4 Occupant Protection 

 This variable was classified in a manner similar to the model that considered weather-

related crashes only. With respect to the occupants not using any occupant protections, it was 

found that occupants using some type of protection are at 82% less odds of being injured. 

Occupants have 79% less likelihood of being injured when no information is available for the 

type of occupant protection used by them in the crash database.  The findings are similar to that 

of the model results considering weather-related crashes only. No information is available on the 

use of occupant protection by some occupants. It might be possible that the use of some of type 
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of protection by these occupants might have decreased the likelihood of them being injured 

compared to those who used no occupant protection. 

 

6.1.3.5 Airbag Deployment 

 According to the model results, occupants have 85% lower odds of being injured when an 

airbag was not deployed in their vehicles compared to crash occurrences when it was deployed.   

Occupants in the category “unknown/not reported” have 82% lower odds of being injured with 

respect to occupants experiencing airbag deployment.  These findings are also similar to those 

reported from the model results that considered weather-related crashes only. 

 

6.1.3.6 First Harmful Event 

 The variable indicating first harmful event is a significant factor affecting occupant injury 

in this model. This variable was classified according to the same categorization used in the 

model for weather-related crashes only. Results revealed an 80% reduction in the likelihood of 

occupant injury for crashes with first harmful event of “collision with vehicles” compared to 

crashes with first harmful event of “non-collision”. However, it was found that risk of occupant 

injury was reduced by 62% for crashes with a first harmful event of “collision with non-vehicle 

objects” compared to crashes with a first harmful event of “non-collision”. Non-vehicle objects 

include fixed objects, debris, animals, and work zone equipment. The same effect of this variable 

was discussed in the model results for non-weather-related crashes.   
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   Table 6.3 Posterior summaries of parameter estimates for model with all (weather-related and non-weather) crashes 

Parameters Effect Estimate 

Odds 

ratio 

95% Bayesian Credible 

Interval (BCI) 

  Mean SD  2.50% 97.50% 

Gender (if male = 1, otherwise = 0) -0.661 0.096 0.516 0.096 -0.654 

Seating position (if driver = 1, otherwise =0) -4.886 0.052 0.008 -5.387 -4.429 

Visibility 

Visibility 1 to 3 mile (reference) 0 0 1.000 0 0 

Visibility (3 to 6 mile)  0.468 0.172 1.597 0.132 0.796 

Visibility (6 mile and above) 0.306 0.132 1.358 0.051 0.556 

Occupant Protection 

None used (reference) 0 0 1.000 0 0 

Used -1.708 0.298 0.181 -2.344 -1.203 

Unknown/not reported -1.562 0.321 0.210 -2.218 -0.92 

Airbag deployment 

Airbag deployed (reference) 0 0 1.000 0 0 

Not deployed  -1.903 0.143 0.149 -2.207 -1.634 

Unknown/not reported -1.758 0.198 0.172 -2.147 -1.394 

First harmful event 

Non-collision (overturn, rollover, jackknife) (reference) 0 0 1.000 0 0 

Collision with vehicles -1.619 0.012 0.198 -1.905 -1.361 

Collision with non-vehicles (animal, debris, work zone equipment, etc.) -0.976 0.008 0.377 -1.263 -0.707 

Surface Condition      

Surface condition dry (reference) 0 0 1.000 0 0 

Surface condition icy, wet, snow or slush -0.266 0.101 0.766 -0.46 -0.067 

Surface condition (others and not reported) -2.27 0.358 0.103 -3.03 -1.646 

Trap Status      

Occupant not trapped (reference) 0 0 1.000 0 0 

Occupant trapped  3.336 0.275 28.106 2.84 3.907 

Unknown/not reported -0.808 0.332 0.446 -1.464 -0.155 

Ejection status (if an occupant is ejected = 1, otherwise = 1) 1.755 0.667 5.783 0.441 3.037 

Air temperature (if below zero = 1, otherwise = 0) -0.186 0.095 0.830 -0.369 -0.002 

Random effects 

Between crash variance 2.391 0.457  1.706 3.349 

Within-crash variance 3.29     

Intra- Class correlation 0.42     

1
1
0
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 6.1.3.7 Surface Condition 

 Surface condition was classified as a categorical variable with three categories: “dry”, 

“icy, wet, snow or slush”, and “others and not reported”. The category “others and not reported” 

includes road surface with sand, mud, dirt, oil, gravel, and water. With respect to the reference 

category of dry surface, it was found that risk of occupant injury reduced by 23% for crashes 

occurring on icy, wet, snowy or slushy road conditions. This might be attributed to the reduced 

speed of the vehicles on road surface with these conditions. As all crashes are considered in this 

model, effect of icy or wet road conditions on occupant injury risk might have been superseded 

by the effect of dry road condition on occupant injury risk. Compared to “dry” road surface 

condition, occupants have 90% less likelihood to be injured when involved in crashes occurring 

on road surface with “others and not reported” condition. It is possible that drivers use extra 

caution while driving on this type of road condition and reduce the probability of injury. Again, 

reduced speed of the vehicles might also have played a role in reducing the occupant injury risk 

for crashes on this type of road surface condition. 

 

6.1.3.8 Trap Status 

 Trap status of the occupants was defined as a categorical variable in this analysis with 

three categories: “not trapped”, “trapped”, and “unknown/not reported”. Results from the model 

showed that trapped occupants have twenty eight times higher odds of being injured compared to 

occupants not trapped. Similar results were found for the model that considered non- weather-

related crashes but with smaller effects. With respect to non-trapped occupants, occupants with 

unavailable information (unknown/not reported) on their trap status have 55% lower odds of 
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being injured. Occupants belonging to the “unknown/not reported” category might not be 

trapped reducing the likelihood of being injured.        

 

6.1.3.9 Ejection Status 

 Ejected occupants are almost eight times more likely to be injured compared to those not 

ejected involved in crashes during the winter seasons. This finding is similar to that of the model 

that considered weather-related crashes only. The higher injury risk for the ejected occupants 

might be attributed to the impact experienced by the occupants due to the ejection from vehicles. 

 

6.1.3.10 Air Temperature 

 Air temperature was found to be a significant factor affecting the risk of occupant injury 

in the model that considered all crashes. An indicator variable was used to represent whether air 

temperature was below zero degree Fahrenheit during the crash. Occupants involved in crashes 

with air temperature below zero degrees Fahrenheit were found to have 17% less odds of being 

injured. Information about the physical effect of air temperature on injury risk is sparse in the 

literature. However, according to a German study (DVR, 2000), emotions rise with temperature 

and as a result, people get tired and lose concentration with an increase in reaction time. This 

might be attributed to the decreased injury risk with decrease in air temperature.    

 

6.2 Measure of Between-Crash Variance and Model Diagnostic 

 As shown in Tables 6.1 to 6.3, the variance of random effect indicating the magnitude of 

the between-crash variance or within-crash correlation for the three models are 3.708, 2.391, and 

2.95, respectively. The Intra-Class Correlation (ICC) is calculated according to Equation 4.15. 
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Results indicate ICC values of 0.53, 0.42, and 0.47 for the models considering weather-related 

crashes, all crashes, and non-weather-related crashes. These values mean that 53%, 42%, and 

47% of unexplained variations in occupant injury risk resulted from between-crash variance 

suggesting the usefulness of this model that considers the hierarchical structure of the crash data.  

 A diagnostic known as Deviance Information Criteria (DIC) (described in Chapter 4) is 

used to assess the models with a DIC. A small DIC value indicates for a better model. The 

comparison results of different models on the basis of DIC values are presented in the following 

table. Ordinary logistic models were developed without considering the hierarchical structure of 

the crash data. The model diagnostics show that the models considering hierarchical crash data 

have higher DIC value even after penalizing the mean deviance (Dbar) by the effective number 

of parameters (pD). This further strengthens the notion of considering the hierarchical structure 

of crash data to develop crash inury severity prediction models. 

 

Table 6.4 Model diagnostic for the models 

  Dbar D(thetabar) pD DIC 

Model with weather-related crashes 

Ordinary logistic model 2831.06 2816.05 15.01 2846.07 

Hierarchical logistic model 1918.3 1265.5 652.81 2571.1 

Model with non-weather-related crashes 

Ordinary logistic model 2033.3 1502.69 530.63 2563.9 

Hierarchical logistic model 2765.14 2750.19 14.95 2780.09 

Model with all crashes 

Ordinary logistic model 5626.25 5611.17 15.08 5641.32 

Hierarchical logistic model 4231.9 3203.36 1028.6 5260.5 
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6.3 Summary 

 Three models of occupant injury crash severity with binomial logit formulation were 

developed considering the hierarchical structure of the crash data in a Bayesian framework. 

These models were developed using disaggregate crash data with occupants nested within 

crashes. The vehicle level was ignored as majority of the vehicles in the sample included only a 

single occupant. This did not allow a differentiation between vehicle level and occupant level. 

Based on the modeling results, it was found that the model developed with weather-related 

crashes had the highest ICC value with crash-level variance accounting for 53% of the occupant 

injury risk. It was found that factors related to occupants (gender, seating position, trap status, 

ejection status, airbag deployment, safety equipment used) had statistically significant effects on 

occupant injury risk for all the models. Weather-related variables such as visibility and air 

temperature were found significant predictors of all crashes occurring during the winter seasons. 
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CHAPTER 7 

CONCLUSIONS, LIMITATIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

 The primary objectives of this dissertation were to develop a systematic prioritization 

technique for screening road segments while incorporating winter weather related factors, and 

gain insights on the factors affecting injury crash severity during winter seasons. This chapter 

summarizes the major contributions and conclusions of this study followed by the limitations of 

this study and recommendations for future research. 

 

7.1 Major Contributions and Conclusions 

 

7.1.1 Data Processing 

Integrating weather data with crash data is a major concern for conducting winter weather 

road safety research. This research effort has resulted in a comprehensive crash database 

covering four winter seasons (2008-09 to 2011-12) in Iowa for three types of roadways as 

Interstate/freeway, multilane divided/undivided, and two-lane roadways. The compiled dataset 

contains variables representing roadway and traffic information, and most importantly weather 

related information. The novelty of this research lies in integrating the weather related 

information reported by Iowa DOT maintenance and operational crew members during winter 

seasons with the crass data. It would be a cumbersome effort to collect weather data from 

different sources (RWIS and AWOS) for all the crashes considered during the four winter 

periods representing weather conditions during the time of crash occurrences. Instead, this 

research devoted effort to collect weather information for each crash from the nearest 
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maintenance garage where maintenance crew members report important weather related 

information (such as air temperature, pavement temperature, wind speed, visibility, and 

precipitation type) while performing maintenance activities. This research is the first to create a 

process for extracting weather data from crew reported information. A comprehensive code in 

the C programming platform was developed to integrate the crew reported weather data with the 

crash information based on time and date of crash occurrences. This code can be used for 

extracting weather data in an efficient and comparably quicker way than extracting weather 

information from RWIS and AWOS stations for winter crash data analysis at network level. 

Extracting weather data from RWIS and AWOS stations at network level is a time consuming 

and resource intensive process at network level. Agencies can modify this code to integrate 

weather data and crash data for conducting winter crash data analysis at network level. The 

resulting database in this research includes 13,859 winter weather-related crashes with assigned 

roadway geometry, traffic volume, and weather information for the three types of roadways, 

which represents a rich dataset for developing crash frequency models. 

 Furthermore, as part of this research effort, a comprehensive database for all the crashes 

that occurred on the full stretch of Interstate 80 covering the state of Iowa spanning the winter 

seasons from 2008-09 to 2011-12 was developed. As both weather-related and non-weather 

related crashes during the winter seasons were considered for developing crash-injury severity 

models, weather data were collected and integrated from RWIS and AWOS stations nearest to 

the crash sites. An efficient code was developed in C programming platform to integrate weather 

data with crash data based on the time and date of crash occurrence by considering nearest RWIS 

and AWOS stations assigned to each crash. The resulting database contains detailed crash level, 
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vehicle level, and occupant level information along with weather information for 5,242 weather 

and non-weather related crashes.  

 

7.1.2 Development of a Systematic Prioritization Technique for Winter Crashes 

 As there is no systematic method to identify potentially problematic winter weather-

related crash locations in Iowa, initially this research effort identified candidate locations for 

safety improvements during winter weather conditions on the basis of traditional metrics such as 

crash proportion, crash density, crash severity and a combined metric considering these three 

metrics. Using historic raw crash data from 2002 to 2009 winter seasons, combined metric 

analysis, standard deviation based analysis, and moving average analysis were employed to 

identify and analyze sites for winter-safety analysis. The rankings of the road segments produced 

from these different analyses are useful for identifying high crash locations during winter 

weather conditions. However, these naïve statistical methods suffer from serious limitations 

including the regression-to-mean problem.  

 To overcome this problem, this study employed a systematic prioritization technique in 

Empirical-Bayes framework for screening road segments with high potential for safety 

improvements during the winter seasons. The crash frequency models or PSFs developed for 

Interstate/freeway and multilane divided/undivided roadways accounted for the overdispersion of 

the crash data after incorporating the weather related factors in the models. Typical SPFs 

developed to estimate crash frequency use roadway geometry characteristics such as lane width, 

surface width and traffic volume expressed as average annual daily traffic (AADT). These SPFs 

normally do not consider weather variables as weather data collection and incorporation of 

weather information in SPF are complex processes. This research is the first to develop safety 
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performance functions for winter weather-related crashes incorporating weather information 

extracted from crew reported data at network level. However, the distribution of crash frequency 

for the two-lane roadways did not exhibit overdispersion as most of the two-lane road segments 

experience a single crash during the study period. Quite a few weather related factors as air 

temperature, pavement temperature, wind speed, and velocity were statistically significant in the 

developed models. Goodness-of-fit of the developed models showed promising results in terms 

of explaining the variance in winter weather crash frequency after incorporating the weather 

related factors. Models for Interstate/freeway and multilane divide/undivided road facilities 

performed well with 50% and 51% of the variance in crash frequency explained by these two 

models respectively. The ranking of road segments based on Potential for Safety Improvement 

(PSI) derived from Empirical-Bayes method using the developed SPFs differed from the ranking 

based on crash frequency which ignores the regression-to-mean phenomenon. The crash 

frequency based models developed in this research can be used to predict the occurrence of 

winter weather crashes on road segments based on information from crew reported winter 

weather information and characteristics of roadway segments of different roadway types to 

evaluate the crash risk. Iowa DOT can use the developed SPFs to apply the Empirical Bayes 

technique for screening road networks for improving winter weather safety. Greater weight can 

be put on the predicted crash frequency from the developed SPFs along similar roadway 

segments if crash observations are made over a small period and vice versa when observations 

are made over a considerable number of years. However, the safety performance functions 

developed in this research should be applied to different types of roadway networks in different 

regions during winter seasons to test the robustness and reliability of the developed SPFs for 

using outside Iowa. Availability of detail geometric features of the roadway segments and 
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weather information during winter seasons in different regions should improve the transferability 

of the models substantially. State transportation agencies can also screen the road networks to 

identify potential high risk sites or locations for safety improvement and introduce 

countermeasures in an effective way. The developed crash frequency models or the SPFs can be 

used to make data driven decision to prioritize road segments for improving winter weather 

safety in Iowa.  

 

7.1.3 Development of Multilevel Models for Crash-injury Severity during Winter Seasons 

 This dissertation developed three statistical models to predict occupant crash injury risk 

for weather, non-weather, and all crashes during the four winter seasons (2008/09-2011/12) 

considering the hierarchical nature of the crash data. The comparison of the model estimation 

results helps to identify the differences in the injury risk of occupants involved in weather-related 

crashes versus all crashes. Binary logit models in a Bayesian framework were developed to 

predict the injury risk of occupants relating to several covariates at the occupant and the crash 

level. These models were developed using crash data at disaggregate levels with occupants 

nested within crashes. Most previous studies on crash-injury severity were conducted at the crash 

level ignoring the potential correlation of the severity levels for the vehicles involved in the same 

crashes or individuals involved in the same vehicles. This research applied a multilevel approach 

to take into account the hierarchical nature of the crash data by nesting the occupants within 

crashes. Results from the developed models revealed significant within-crash correlation in the 

dataset analyzed for the study. More than 40% of unexplained variation in individual occupant 

injury risk resulted from between-crash variance for all three models developed in this research. 

Most of the person level attributes were found to have statistically significant relationship with 
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the occupant injury risks. Interestingly, no weather-related factors were directly related to 

occupant injury risk in the model considering weather-related crashes only. This might be 

attributed to the lack of variability in the weather-related factors during the winter conditions. 

However, two weather-related factors were found to be statistically significant in the model 

considering all crashes (weather and non-weather related). It was found that icy road surface 

condition has a positive effect on increasing the occupant injury risk for weather-related crashes.  

 The developed crash-injury risk models revealed several factors affecting occupant injury 

risk during winter weather conditions. This would be helpful to understand the factors 

contributing to increased injury risk for the occupants involved in crashes during winter weather 

seasons. Findings from the model results might have practical implications when considered 

from the perspective of the “4E’s” (e.g. engineering, enforcement, education, emergency 

response) of road safety. Results from the models can be helpful for educating road users to use 

some of type of occupant protection at all times to reduce the risk of sustaining injuries during 

winter seasons. Model results also revealed increased injury risk for aged occupants involved in 

weather-related crashes. Thus, the research finding can be useful to increase the awareness 

among aged populations while travelling during winter weather and decrease the potential injury 

risk. Interesting findings from the model results revealed increased injury risk for occupants 

involved in weather-related crashes on icy surface conditions. This finding strengthens the need 

to incorporate road surface condition by considering pavement friction or a friction surrogate 

accounting for road surface conditions in severity modeling to understand the effect of road 

surface condition on crash-injury risk. This finding can also have significant implications in 

highway and pavement design and operations. Occupant injury risk was found higher for all 

types of crashes (weather, all, non-weather related crashes) when the occupants are involved in 
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non-collision crashes resulting overturn, rollover, and jackknife. Innovative and effective 

engineering countermeasures can be introduced for reducing injury risk during winter weather in 

this regard. For example, variable speed sign with dynamic display on roadway with icy 

conditions can be introduced during winter weather conditions. As the trapped occupants are 

found to be more susceptible to sustain injury risk, effort can be invested to make the emergency 

response more efficient to reach the crash site as soon as possible.   

 Finally, the findings of this modeling effort underscore the importance of accounting for 

the hierarchical structure of the crash data when developing crash severity models. The 

development of the multilevel logit models in a Bayesian framework revealed the unexplained 

variations in the individual occupant injury risk. Such information can be used to justify the use 

of multilevel model specification for addressing the hierarchy of the crash data over traditional 

econometric models that do not consider the within-crash correlation. The development of 

models ignoring the hierarchy of the crash data might result in biased parameter estimates and 

variables to be found incorrectly significant. Thus, the strong Intra-Class Correlations derived 

from the hierarchical models in this research reinforce the idea of considering the hierarchical 

nature of the crash data.  

   

7.2 Limitations 

 There are some limitations in viewing the results of this dissertation, mainly pertaining to 

the data and methodology applied:  

 A small percentage of weather-related crashes considered for developing SPFs 

occurred after the crew departed the sites. As crew reported weather information was 

used for developing crash frequency models at network level in this research, weather 
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conditions during crash occurrences were assumed to be similar to that reported by 

the crew members in these cases.  

  The crash frequency models did not consider the one-mile road segments that did not 

experience crashes during the four-year study period (zero-crash segments). SPFs are 

normally developed by considering the zero crash segments. Caution needs to be 

exercised for using the crash frequency models developed in this study. The 

frequency models developed in this research are capable to predict only winter 

weather-related crashes. The winter weather crash frequency is modeled as a function 

of weather related factors, roadway geometry characteristics, and traffic volume for 

similar type of roadway facilities. 

 While use of event based or hourly based data at disaggregate level has been argued 

as more representative for weather related variables, aggregated weather data over 

four years for road segments were used to develop the crash frequency models. This 

level of aggregation was selected as frequency models were developed at network 

level for one-mile road segments rather than considering sites or group of sites.  

 Road surface condition could not be included in the crash frequency models due to 

the unavailability of quantitative information on surface condition (e.g. pavement 

friction, road surface index). 

 Real time traffic volume collected ATR could have been used in the crash frequency 

models instead of AADT. Estimate about the AADT during the winter season can be 

derived by factoring AADT. The factored AADT can be used in the models to 

represent traffic volume during the winter seasons. Real time traffic volumes were not 

used and the AADT was not corrected for the seasonality. 
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 As the multilevel severity models were developed by nesting occupants within 

crashes, a few vehicle-related variables (such as vehicle type, vehicle action) could be 

included in the models. Vehicle types might have significant effect on crash injury 

severity during the winter seasons. 

 

7.3 Recommendations for Future Research 

 While this dissertation offered valuable insights on incorporating weather information to 

develop safety performance functions along with considering the importance of hierarchical 

structure in crash dataset for developing severity models, the following areas for future research 

efforts are recommended: 

 Assess the stability of the models developed in this study over time via additional 

data collection (additional winter seasons). 

 Develop hierarchical crash frequency models by considering spatial and temporal 

effects. Spatial models are particularly useful for quantifying the unmeasured effect 

of weather varying over space. Hierarchical frequency models by nesting the crashes 

within region or county can be useful in that regard. 

 Examine the estimation of random effects of the slopes with respect to varying 

regions for the crashes considered instead of random effects over the constant terms 

only (considered herein). 

 Compile broader datasets with large number of observations at crash level, vehicle 

level, and person level in a bid to consider the crash-vehicle-person hierarchy when 

developing multilevel severity models. However, considering large datasets do not 
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guarantee that number of vehicles nested within crashes would be large enough to 

consider the all three levels of hierarchy in the crash data. 

 Incorporate winter maintenance information (such as salt consumption, manpower, 

cost of labor and equipment) in quantitative models for predicting crash frequency 

and severity. This would be beneficial from a policy perspective. 

 Investigate the impact of salt and deicing materials on roadway infrastructure during 

winter seasons. 
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APPENDIX A  

COLLECTED DATA SAMPLES 

A.1 RWIS DATA SAMPLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiteID DATE TIME Air temperature Pave temp (sensor 0) Pave temp (sensor 1) (Sensor Pave temp (sensor 2) Pave temp (sensor 3)

RDAI4 10/15/2008 0:01 47.7 49.28 49.1 51.08 49.28

RDAI4 10/15/2008 0:11 47.7 49.28 M 50.9 49.28

RDAI4 10/15/2008 0:21 47.3 49.28 M 50.72 49.28

RDAI4 10/15/2008 0:31 47.1 49.1 M 50.54 49.1

RDAI4 10/15/2008 0:41 47.1 48.92 48.74 50.54 48.92

RDAI4 10/15/2008 0:51 47.1 48.92 48.56 50.36 48.92

RDAI4 10/15/2008 1:01 46.9 48.74 48.56 50.36 48.74

RDAI4 10/15/2008 1:11 46.9 48.74 48.38 50.36 48.74

RDAI4 10/15/2008 1:21 47.1 48.74 48.56 50.36 48.74

RDAI4 10/15/2008 1:31 47.1 48.56 M 50.18 48.56

RDAI4 10/15/2008 1:41 46.6 48.38 48.2 50.18 48.38

RDAI4 10/15/2008 1:51 46.2 48.2 48.2 50 48.2

RDAI4 10/15/2008 2:02 45.7 47.84 47.84 49.64 47.84

RDAI4 10/15/2008 2:11 45.3 47.66 47.48 49.46 47.66

RDAI4 10/15/2008 2:21 45.3 47.48 47.48 49.28 47.48

RDAI4 10/15/2008 2:31 45.5 47.3 M 49.1 47.3

RDAI4 10/15/2008 2:42 45.7 47.3 M 49.28 47.3

RDAI4 10/15/2008 2:51 45.9 47.48 47.48 49.1 47.48
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A.2 AWOS DATA SAMPLE 

FAACODE Airport DATE TIME Air temperature Wind speed Wind gust Visibility

IKV ANKENY 10/15/2008 0:00 53 0 0 10

IKV ANKENY 10/15/2008 0:10 52 0 0 10

IKV ANKENY 10/15/2008 0:20 52 0 0 10

IKV ANKENY 10/15/2008 0:30 52 0 0 10

IKV ANKENY 10/15/2008 0:40 52 0 0 10

IKV ANKENY 10/15/2008 0:50 53 0 0 10

IKV ANKENY 10/15/2008 1:00 53 0 0 10

IKV ANKENY 10/15/2008 1:10 52 0 0 10

IKV ANKENY 10/15/2008 1:20 53 3 0 10

IKV ANKENY 10/15/2008 1:30 53 0 0 10

IKV ANKENY 10/15/2008 1:40 53 3 0 10

IKV ANKENY 10/15/2008 1:50 53 0 0 10

IKV ANKENY 10/15/2008 2:00 53 0 0 10

IKV ANKENY 10/15/2008 2:10 53 0 0 10

IKV ANKENY 10/15/2008 2:20 53 3 0 10

IKV ANKENY 10/15/2008 2:30 52 0 0 10

IKV ANKENY 10/15/2008 2:40 52 0 0 10

IKV ANKENY 10/15/2008 2:50 52 0 0 10
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A.3 COST CENTER DATA SAMPLE 

 

 

 

 

COST CENTER EVENT_DATE PRECIP_START_TIME PRECIP_END_TIME PRECIP_TYPE AIR_TEMP PAVEMENT_TEMP WIND_DIRECTION VELOCITY VISIBILITY

551602 15-Oct-06 15-Oct-06 15-Oct-06 2 48 48 4 2 5

551602 16-Oct-06 16-Oct-06 16-Oct-06 2 51 51 2 12 5

551602 21-Oct-06 21-Oct-06 21-Oct-06 2 39 38 4 10 5

551602 10-Nov-06 10-Nov-06 10-Nov-06 2 37 37 4 15 5

551602 10-Nov-06 10-Nov-06 10-Nov-06 6 32 32 4 15 4

551602 28-Nov-06 28-Nov-06 28-Nov-06 2 40 40 6 10 5

551602 29-Nov-06 29-Nov-06 29-Nov-06 2 34 35 4 12 5

551602 06-Dec-06 06-Dec-06 06-Dec-06 6 32 30 4 15 5

551602 20-Dec-06 20-Dec-06 20-Dec-06 2 36 36 7 3 5

551602 21-Dec-06 21-Dec-06 21-Dec-06 2 36 36 7 3 4

551602 22-Dec-06 22-Dec-06 22-Dec-06 2 37 37 7 5 5

551602 22-Dec-06 22-Dec-06 22-Dec-06 2 35 36 8 9 5

551602 30-Dec-06 30-Dec-06 30-Dec-06 2 50 50 6 5

551602 31-Dec-06 31-Dec-06 31-Dec-06 5 36 40 4 18 2

551602 31-Dec-06 31-Dec-06 31-Dec-06 6 31 30 4 22 1

551602 01-Jan-07 01-Jan-07 01-Jan-07 8 25 24 4 15 5

551602 05-Jan-07 05-Jan-07 05-Jan-07 2 35 35 4 5 4

551602 05-Jan-07 05-Jan-07 05-Jan-07 6 35 35 4 5 3

1
3
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A.4 CREW ACTIVITY INFORMATION SAMPLE 

 

COST CENTER CREW_ON_ROAD CREW_OFF_ROAD PRECIP_TYPE SERVICE_LEVEL OPERATION

551602 10-Nov-06 10-Nov-06 2 1 2

551602 10-Nov-06 10-Nov-06 6 1 2

551602 10-Nov-06 10-Nov-06 2 2 2

551602 10-Nov-06 10-Nov-06 6 2 2

551602 10-Nov-06 10-Nov-06 2 3 2

551602 10-Nov-06 10-Nov-06 6 3 2

551602 29-Nov-06 29-Nov-06 2 1 1

551602 29-Nov-06 29-Nov-06 2 2 1

551602 29-Nov-06 29-Nov-06 2 3 1

551602 22-Dec-06 22-Dec-06 2 2 1

551602 22-Dec-06 22-Dec-06 2 2 1

551602 22-Dec-06 22-Dec-06 2 3 1

551602 22-Dec-06 22-Dec-06 2 3 1

551602 31-Dec-06 31-Dec-06 5 1 2

551602 31-Dec-06 31-Dec-06 6 1 2

551602 31-Dec-06 31-Dec-06 5 2 2

551602 31-Dec-06 31-Dec-06 6 2 2
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APPENDIX  B 

PREPARED DATA SAMPLES FOR DEVELOPING SPFs 

B.1 SAMPLE PREPARED DATA FOR DEVELOPING SPF (INTERSTATE/FREEWAY) 

 
 

 

 

 

 

 

 

 

 

 

ROWID/SEGMENT CRASH FREQUENCY AIR TEMPERATURE PAVEMENT TEMPERATURE WIND SPEED VISIBILITY SNOW AMOUNT SURFACE WIDTH SPEED LIMIT AADT

3393 50 15.17 18.12 10.63 2.56 1.23 34 65 36400

9078 35 15.57 15.17 12.55 4.03 0.94 56 55 23400

4187 48 20.5 23.58 22.77 3.1 2.63 64 65 79900

9364 36 14.25 17.89 11.19 0 4 49 60 62600

3342 24 17.29 15.96 29.4 1.57 0.88 24 70 13700

3219 29 11.52 13.93 11.43 3.85 1.67 51 55 21100

4198 26 24.46 25.68 18.23 3.08 3 34 70 42600

6818 24 15.96 20.59 15.63 4.46 1.58 24 70 34400

3394 30 14.04 14.31 13.46 3 2.08 51 55 41300

4163 20 25 26 18.14 4.21 0.75 24 70 14900

4154 21 18.52 24.19 15.9 4.29 1.63 24 70 20000

6429 27 23.78 29.17 13.3 3.74 2.01 32 55 45800

6714 22 26.05 25.27 21 3.23 1.64 34 70 27100

4199 23 25.39 28.39 15.39 3.61 3.52 24 70 42600

6430 30 16.57 23.78 13.3 3.4 2.21 40 55 52000

4157 21 22.76 25.1 12.86 4.52 1.17 34 70 20000

6792 22 24.32 27.09 14.45 4.5 2.45 24 70 36500

6915 24 23.21 25.28 10.79 2.54 3.04 34 65 44200

1
3
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B.2 SAMPLE PREPARED DATA FOR DEVELOPING SPF (MULTILANE DIVIDED/UNDIVIDED) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROWID/SEGMENT CRASH FREQUENCY AIR TEMPERATURE PAVEMENT TEMPERATURE WIND SPEED VISIBILITY SNOW AMOUNT SURFACE WIDTH SPEED LIMIT AADT

1092 27 16.74 22.32 18.68 3.74 1.68 48 35 22000

6039 26 21.31 21.5 13.31 4.12 2.23 48 40 30900

6074 26 18.96 19.92 14.42 3.92 1.98 64 45 25200

2633 27 9.12 13.26 9.07 3.77 2.24 43 35 36400

1096 23 14.26 18.73 23.23 3.87 1.72 60 35 18700

1091 24 10.92 17.89 19.39 3.79 1.38 58 35 22000

6075 25 18.32 19.8 12.72 3.84 2.01 63 35 24200

9077 26 15.5 16.92 15.08 3.58 1.49 68 55 33700

9330 17 16.42 18.12 12.91 3.86 2.32 30 65 22000

9481 19 17.79 17.58 15.11 3.53 1.95 48 45 18300

2293 18 14.06 16.83 17.61 2.94 2.33 52 35 12300

8209 21 23.38 26.24 17.71 3.24 2.62 42 35 26800

1960 21 20.71 21.45 11.1 4.88 1.39 62 35 16500

5267 17 26.31 26.56 9.92 4.77 1.97 48 55 18400

9472 14 24.71 24.29 7.43 0 1.43 24 45 15000

5659 16 13.51 15.69 15.81 3.63 2.49 48 35 11000

6051 19 20.26 22.05 21.95 3.74 2.01 48 35 20400

1053 19 19.95 23.06 10.74 4.37 2.13 42 40 26200

3230 19 19.42 23.51 16.67 3.42 2.45 40 40 28800

1
3
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B.3 SAMPLE PREPARED DATA FOR DEVELOPING SPF (TWO-LANE) 

 
 

 

ROWID/SEGMENT CRASH FREQUENCY AIR TEMPERATURE PAVEMENT TEMPERATURE WIND SPEED VISIBILITY SNOW AMOUNT SURFACE WIDTH SPEED LIMIT AADT

5338 1 31 30 16 3 3.5 24 55 240

5551 1 0 0 0 0 0 24 55 240

6002 2 9.5 12 20 2 3.25 16 65 320

8375 1 0 37 0 5 0.75 24 55 360

7366 1 2 9 10 3 4 16 45 380

1465 1 26 31 14 4 3 16 55 390

8843 1 34 36 6 4 1.5 22 55 400

8881 1 22 40 25 5 0 24 55 420

8882 1 22 22 15 5 0 24 55 420

2046 1 0 0 20 0 2 22 55 450

4314 1 18 20 13 4 0 22 55 480

8822 1 31 30 9 4 4 22 55 480

1983 1 25 0 40 0 2.5 24 55 530

7444 1 -7 -1 7 5 0 22 55 530

7448 1 31 32.5 13 3 1 22 55 530

1614 1 24 27 5 5 0.5 24 55 540

4781 1 30 31 6 4 1.75 22 55 560

4783 1 30 29 10 4 2 22 55 560

7371 1 23 19 15 2 2 24 55 560

1
3
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APPENDIX  C 

SAMPLE RANKING OF ROADWAY SEGMENTS  

 

C.1 SAMPLE RANKING OF ROADWAY SEGMENTS (INTERSTATE/FREEWAY) BASED ON PSI 

 

 
 

Segment ID Observed Predicted Crash Frequency Weight Empirical-Bayes Adjusted Crash Frequecny PSI

9164 54 43.41924071 0.005269278 53.94424703 10.525006

6783 25 14.32131115 0.015806136 24.83121119 10.5099

2705 14 2.634370856 0.080296865 13.08737561 10.453005

4271 15 3.958977459 0.054906001 14.39378161 10.434804

3388 16 5.243966574 0.042017063 15.54806306 10.304096

6665 18 7.602777982 0.029363784 17.69469822 10.09192

9354 19 8.645464001 0.025914138 18.73167112 10.086207

9082 16 5.533481353 0.039906436 15.58231854 10.048837

3392 17 6.64780945 0.03344088 16.65381364 10.006004

4156 16 5.814367639 0.038051954 15.61241678 9.7980491

6852 15 4.781309356 0.045896189 14.53100105 9.7496917

6693 16 5.872159675 0.037691574 15.61826576 9.7461061

6850 16 5.982355776 0.037022992 15.62911684 9.6467611

6811 24 14.22013301 0.015916809 23.84433573 9.6242027

4162 14 3.904518823 0.055629206 13.4383964 9.5338776

3689 16 6.241350487 0.035541268 15.65316523 9.4118147

6721 15 5.260209569 0.041892754 14.59197335 9.3317638

4266 14 4.156078421 0.052438643 13.48379811 9.3277197

3281 13 3.352231995 0.06420578 12.38055753 9.0283255

6820 16 6.717523634 0.033105321 15.69270064 8.975177

9171 23 13.89407483 0.016284252 22.85171682 8.957642

4160 15 5.687848366 0.038865477 14.63807878 8.9502304

6874 16 6.915943819 0.032186091 15.70761974 8.7916759

9079 23 14.0911036 0.016060215 22.85692121 8.7658176

4196 18 9.545272322 0.023528756 17.80107077 8.2557985

4215 15 6.847142093 0.032498994 14.73504032 7.8878982

4213 17 8.930320963 0.025108291 16.79738415 7.8670632

4130 12 3.72917032 0.058092979 11.51952286 7.7903525

6853 13 4.890482656 0.044917641 12.63573961 7.745257

4153 13 4.921591893 0.044646394 12.63932821 7.7177363

5762 15 7.072392328 0.031496527 14.75030789 7.6779156

4124 12 3.912664165 0.055519828 11.55099251 7.6383283

1
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C.1 SAMPLE RANKING OF ROADWAY SEGMENTS (INTERSTATE/FREEWAY) BASED ON PSI (CONTIN’D) 

 
 

Segment ID Observed Predicted Crash Frequency Weight Empirical-Bayes Adjusted Crash Frequecny PSI

2680 11 2.871275563 0.074163032 10.39714915 7.5258736

6922 14 6.378560351 0.034803344 13.73474841 7.3561881

6884 14 6.408258183 0.034647643 13.73696404 7.3287059

4217 13 5.403797676 0.040825037 12.68988476 7.2860871

4122 11 3.802727279 0.057033363 10.58951533 6.7867881

9081 16 9.06080292 0.024755664 15.82821557 6.7674126

6821 15 8.132103147 0.027505042 14.81109821 6.6789951

4152 12 5.037107626 0.04366723 11.69594978 6.6588422

4067 12 5.100235883 0.04315006 11.70227476 6.6020389

6662 10 2.889929287 0.07371962 9.475848292 6.585919

3396 13 6.212027886 0.035703043 12.75764874 6.5456209

6796 21 14.34953561 0.015775537 20.89508535 6.5455497

6784 19 12.34101132 0.018296062 18.87816673 6.5371554

4066 11 4.268312004 0.051130291 10.65580684 6.3874948

6719 13 6.41602632 0.034607146 12.77214746 6.3561211

2810 14 7.602245378 0.029365781 13.81212494 6.2098796

6871 11 4.511525324 0.048507597 10.68525968 6.1737344

6791 13 6.900840566 0.032254262 12.80327611 5.9024355

6684 12 5.866606648 0.037725904 11.76861219 5.9020055

6738 13 7.000192358 0.031811049 12.80913983 5.8089475

4148 11 4.931957189 0.044556743 10.72962778 5.7976706

3648 9 2.77039557 0.076656559 8.52245996 5.7520644

9165 35 29.2669362 0.00779742 34.95529689 5.6883607

6761 13 7.300150275 0.030543879 12.82590448 5.5257542

6431 22 16.40469124 0.013826527 21.92263631 5.5179451

6715 11 5.279328823 0.041747372 10.76117701 5.4818482

9223 12 6.321365884 0.035107183 11.80063915 5.4792733

2245 9 3.145722342 0.068133566 8.601127188 5.4554048

3691 13 7.37925841 0.030226336 12.83010558 5.4508472

4170 17 11.44088762 0.019707156 16.89044571 5.4495581

4184 22 16.49289542 0.013753599 21.92425749 5.4313621

6917 15 9.518594902 0.023593144 14.87067642 5.3520815

6701 11 5.4413705 0.040554571 10.77457216 5.3332017

6816 18 12.62708646 0.017888967 17.90388413 5.2767977

1
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C.2 SAMPLE RANKING OF ROADWAY SEGMENTS (MULTILANE DIVIDE/UNDIVIDED) BASED ON PSI 

 
 

 

Segment ID Observed Predicted Crash Frequency Weight Empirical-Bayes Adjuested Crash Frequency PSI

1709 15 6.868870355 0.022482 14.81719562 7.948325

1959 16 8.007330401 0.019347 15.84536223 7.838032

1050 26 18.13298094 0.008637 25.93205304 7.799072

3227 19 11.18284012 0.01393 18.89110676 7.708267

4681 13 5.265561984 0.029128 12.77470984 7.509148

5214 10 1.984371417 0.07374 9.408923636 7.424552

6038 19 11.71180571 0.013309 18.90299962 7.191194

5220 10 2.963702845 0.050607 9.643916394 6.680214

1097 14 7.182695547 0.021521 13.85328549 6.67059

1086 17 10.24666073 0.015183 16.89746129 6.650801

5660 12 5.212291848 0.029417 11.80032516 6.588033

5905 15 8.37332221 0.018517 14.87729086 6.503969

3216 14 7.460418064 0.020736 13.8643928 6.403975

7359 13 6.442560225 0.023934 12.84305364 6.400493

9480 14 7.891861099 0.019625 13.88012793 5.988267

5295 13 7.06525288 0.021871 12.87020229 5.804949

7358 14 8.184246666 0.018937 13.88986626 5.70562

3487 10 4.073206577 0.037337 9.778713907 5.705507

1958 15 9.397478628 0.016533 14.90737497 5.509896

9489 13 7.417923211 0.020853 12.88359871 5.465675

5218 8 2.203300054 0.066904 7.612180179 5.40888

7820 11 5.443083819 0.028205 10.84326724 5.400183

1054 13 7.591025795 0.020387 12.88972798 5.298702

1772 8 2.438870842 0.060834 7.661691725 5.222821

4040 8 2.459061269 0.060365 7.665520567 5.206459

6077 13 7.766631711 0.019935 12.89567228 5.129041

3217 11 5.75804181 0.026703 10.86002186 5.10198

2373 9 3.691821239 0.041035 8.782176987 5.090356

9488 13 7.811379073 0.019823 12.89714511 5.085766

9471 9 3.72146053 0.040722 8.785048143 5.063588

177 8 2.854050708 0.052449 7.730100113 4.876049

2796 7 1.670843053 0.086382 6.539654803 4.868812

7650 8 2.880667732 0.05199 7.73384811 4.85318

3474 8 2.89171478 0.051801 7.735384455 4.84367

6052 11 6.096309907 0.025259 10.87613704 4.779827

5219 8 2.981270189 0.050323 7.747440058 4.76617

5289 10 5.090462088 0.0301 9.852223059 4.761761

1
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C.2 SAMPLE RANKING OF ROADWAY SEGMENTS (MULTILANE DIVIDE/UNDIVIDED) BASED ON PSI (CONTIN’D) 

 
 

Segment ID Observed Predicted Crash Frequency Weight Empirical-Bayes Adjuested Crash Frequency PSI

9338 8 3.172656241 0.047432 7.771030525 4.598374

6045 13 8.314257723 0.018647 12.91262712 4.598369

1961 13 8.31664087 0.018641 12.91269611 4.596055

8210 16 11.38017822 0.013692 15.93674642 4.556568

9337 10 5.36212118 0.028619 9.867270085 4.505149

2449 9 4.333803549 0.03517 8.835887866 4.502084

2625 9 4.44628628 0.034311 8.843756564 4.39747

8170 8 3.42474421 0.044094 7.798256966 4.373513

6040 14 9.636621331 0.016129 13.92962271 4.293001

960 9 4.858161196 0.031494 8.86955726 4.011396

67 7 2.775214012 0.053859 6.772458547 3.997245

1099 11 6.912077912 0.022345 10.90865683 3.996579

2617 7 2.936925642 0.051045 6.792602296 3.855677

2485 11 7.061761292 0.021881 10.91382589 3.852065

2615 7 2.99301528 0.050136 6.799106208 3.806091

1782 6 1.885434991 0.077311 5.681899689 3.796465

8140 7 3.016518724 0.049765 6.801763234 3.785245

5885 9 5.163990602 0.029684 8.886131486 3.722141

8452 7 3.169826282 0.047472 6.818173575 3.648347

6459 7 3.170824341 0.047458 6.818275456 3.647451

5818 14 10.35885736 0.015021 13.94530484 3.586447

3639 6 2.180139679 0.067566 5.741906285 3.561767

1052 18 14.429197 0.01083 17.9613285 3.532131

2822 6 2.261556217 0.065293 5.75590696 3.494351

2384 10 6.438778097 0.023948 9.914716521 3.475938

6464 7 3.363542752 0.044861 6.83686598 3.473323

9476 17 13.5166279 0.011553 16.95975783 3.44313

1708 10 6.52492689 0.023639 9.917852384 3.392925

5124 6 2.470141151 0.060111 5.787817971 3.317677

2363 6 2.48489366 0.059775 5.789884204 3.304991

3779 7 3.559919263 0.042491 6.853826867 3.293908

3680 7 3.580341917 0.042259 6.855488462 3.275147

5535 5 1.390872616 0.101997 4.63188035 3.241008

2376 6 2.572653604 0.057854 5.801714391 3.229061

1322 6 2.586672127 0.057558 5.803534035 3.216862

3477 6 2.590315481 0.057482 5.804003914 3.213688

1
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APPENDIX  D 

PLOTS OF DYNAMIC TRACE, KERNEL DENSITY AND ACF FOR THE PARAMETERS IN SEVERITY MODEL (WEATHER-

RELATED CRASHES ONLY) 

 GENDER 

 
 

 

 SEATING POSIITON 

 

1
4
2
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         OCCUPANT PRTECTION (USED) 

 
 

 

 

        OCCUPANT PROTECTION (UNKNOWN/NOT REPORTED) 

 
 

 

 

1
4
3
 

 



144 

 

 

 

        AIRBAG DEPLOYMENT (NOT DEPLOYED) 

 
 

 

      AIRBAG DEPLOYMENT (UNKNOWN/NOT REPORTED) 

 
 

 

1
4
4
 

 



145 

 

 

      FIRST HARMFUL EVENT (COLLISION WITH VEHICLES) 

 
 

 

 

    FIRST HARMFUL EVENT (COLLISION WITH NON-VEHICLES) 

 
 

 

 

1
4
5
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        ROADWAY CONDITION AS THE CONTRIBUTIING CIRCURNTANCE 

 
 

 

        TRAPPED 

 
 

 

 

 

1
4
6
 

 



147 

 

 

 EJECTION  

 
 

 

           AGE OF THE OCCUPANT 

 

1
4
7
 

 



148 

 

 

 

       ROADTYPE 

 
 

 

      ROAD SURFACE CONDITION AND PAVEMENT TEMPERATURE 

 
 

1
4
8
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APPENDIX  E 

PLOTS OF DYNAMIC TRACE, KERNEL DENSITY AND ACF FOR THE PARAMETERS IN SEVERITY MODEL (NON-

WEATHER-RELATED CRASHES ONLY) 

 GENDER 

 
 

        SEATING POSITION 

 

1
4
9
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 OCCUPANT PROTECTION (USED) 

 
 

          AIRBAG DEPLOYMENT (DEPLOYED) 

 

1
5
0
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 FIRST HARMFUL EVENT (COLLISION WITH VEHICLES) 

 
 

 

             FIRST HARMFUL EVENT (COLLISION WITH NON-VEHICLES) 

 

1
5
1
 

 



152 

 

 

             SURFACE CONDITION  

 
 

             

            TRAP STATUS (OCCUPANT TRAPPED) 

 
 

1
5
2
 

 



153 

 

 

TRAP STATUS (NOT REPORTED/UNKNOWN) 

 
 

             EJECTION STATUS (EJECTED) 

 
 

1
5
3
 

 



154 

 

 

EJECTION STATUS (UNKNOWN/NOT REPORTED) 

 
 

          AGE OF THE OCCUPANT (24 YEARS OR HIGHER) 

 
 

 

1
5
4
 

 



155 

 

 

 WEATHER CONDITION  

 
 

 

 

           MAJOR CAUSE (RUN-OFF-ROAD) 

 

1
5
5
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APPENDIX  F 

PLOTS OF DYNAMIC TRACE, KERNEL DENSITY AND ACF FOR THE PARAMETERS IN SEVERITY MODEL (ALL 

CRASHES) 

 GENDER 

 
 

 

          SEATING POSITION 

 

1
5
6
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 VISIBILITY (3 TO 6 MILE)  

 
 

 

                VISIBILITY (6 MILE AND ABOVE) 

 

1
5
7
 

 



158 

 

 

 OCCUPANT PROTECTION (USED)  

 
 

 

        OCCUPANT PROTECTION (UNKNOWN/NOT REPORTED) 

 
 

 

 

1
5
8
 

 



159 

 

 

 AIRBAG DEPLOYMENT (DEPLOYED) 

 
 

 AIRBAG DEPLOYMENT (UNKNOWN/NOT REPORTED) 

 

1
5
9
 

 



160 

 

 

 FIRST HARMFUL EVENT (COLLISION WITH VEHICLES) 

 
 

               FIRST HARMFUL EVENT (COLLISION WITH VEHICLES) 

 
 

  

1
6
0
 

 



161 

 

 

 SURFACE CONDTION (ICY, WET, SNOW, SLUSH) 

 
 

 

               SURAFACE CONDITION (OTHERS AND NOT REPORTED) 

 
 

1
6
1
 

 



162 

 

 

 TRAP STATUS (TRAPPED) 

 
 

 TRAP STATUS (UNKNOWN/NOT REPORTED) 

 

1
6
2
 

 



163 

 

 

 EJECTION STATUS (EJECTED) 

 
 

 

                AIR REMPERATURE ( BELOW ZERO DEGREE FAHRENHEIT) 

 

1
6
3
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APPENDIX  G 

PLOTS OF DYNAMIC TRACE, KERNEL DENSITY AND ACF FOR THE RANDOM EFFECTS IN THE SEVERITY MODELS 

 

 WEATHER-RLEATED CRASH MODEL 

 
 

 NON-WEATHER RELATED CRASH MODEL 

 

1
6
4
 

 



165 

 

 

  ALL CRASH MODEL (WEATHER AND NON-WEATHER RELATED) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
6
5
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APPENDIX  H 

DISTRIBUTION OF INJURY SEVERITY BY WEATHER RELATED VARIABLES FOR ALL CRASHES 

 

  

 
 

 

 

 

 

1
6
6
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DISTRIBUTION OF INJURY SEVERITY BY WEATHER RELATED VARIABLES FOR ALL CRASHES (CONTIN’D) 

 

 

 
 

 

 

 

 

 

 

1
6
7
 

 



168 

 

 

DISTRIBUTION OF INJURY SEVERITY BY WEATHER RELATED VARIABLES FOR ALL CRASHES (CONTIN’D) 

 

 

1
6
8
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