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ABSTRACT 

Florida Department of Transportation (FDOT) has been using Open Graded Friction 

Course (OGFC) mixture to improve skid resistance of asphalt pavements under wet weather. The 

OGFC mixture design strongly depends on the Optimum Binder Content (OBC) which represents 

if the mixture has sufficient bonding between the aggregate and asphalt binder. At present, the 

FDOT designs OGFC mixtures using a pie plate visual draindown method (FM 5-588). In this 

method, the OBC is determined based on visual inspection of the asphalt binder draindown (ABD) 

configuration of three OGFC samples placed on pie plates with pre-determined trial asphalt binder 

contents (AC). The inspection of the ABD configuration is performed by trained and experienced 

technicians who determine the OBC using perceptive interpolation or extrapolation based on the 

known AC of the above samples. In order to eliminate the human subjectivity involved in the 

current visual method, an automated method for quantifying the OBC of OGFC mixtures was 

developed using digital images of the pie plates and concepts of perceptual image coding and 

neural network (NN). Phase I of the project involved the FM-5-588 based OBC testing of OGFC 

mixture designs consisting of a large set of samples prepared from a variety of granitic and oolitic 

limestone aggregate sources used by FDOT. Then the digital images of the pie plates containing 

samples of the above mixtures were acquired using an imaging setup customized by FDOT. The 

correlation between relevant digital imaging parameters and the corresponding AC was 

investigated initially using conventional regression analysis. Phase II of the project involved the 

development of a perceptual image model using human perception metrics considered to be used 

in the OBC estimation. A General Regression Neural Network (GRNN) was used to uncover the 
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nonlinear correlation between the selected parameters of pie plate images, the corresponding AC 

and the visually estimated OBC. GRNN was found to be the most viable method to deal with the 

multi-dimensional nature of the input test data set originating from each individual OGFC sample 

that contains AC and imaging parameter information from a set of three pie plates. GRNN was 

trained by 70% and tested by 30% of the database completed in Phase I. Phase III of the project 

involved the configuration of a quality control tool (QCT) for the aforementioned automated 

method to enhance its robustness and the likelihood of implementation by other agencies and 

contractors. QCT is developed using three quality control imaging parameters (QCIP), orientation, 

spatial distribution, and segregation of ABD configuration of pie plate specimens (PPS) images. 

Then, the above QCIP were evaluated from PPS images of a variety of independent mixture 

designs produced using the FDOT visual method. In general, this study found that the newly 

developed software (GRNN-based) provides satisfactory and reliable estimations of OBC. 

Furthermore, the statistical and computer-generated results indicated that the selected QCIP are 

adequate for the formulation of quality control criteria for PPS production. It is believed that the 

developed QCT will enhance the reliability of the automated OBC estimation image processing-

based methodology. 
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CHAPTER 1:  INTRODUCTION 

1.1. Background 

In the US, there are several methods employed for designing open-graded friction course 

(OGFC) mixtures based on the estimation of optimum binder content (OBC). There are (i) 

compacted specimens method, (ii) absorption calculation method, and (iii) visual determination 

method [1]. The methods currently use by several Department of transportation (DOT) agencies 

(Alabama, Arizona, Florida, Georgia, Kansas, Kentucky, Mississippi, Missouri, Nebraska, 

Nevada, New Jersey, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, 

and Wyoming) and four national organizations (American Society for Testing and Materials 

(ASTM), the Federal Highway Administration (FHWA), the National Asphalt Pavement 

Association (NAPA), and the National Center for Asphalt Technology (NCAT)).  

The visual OBC determination procedures of the above agencies involve more or less 

similar general steps. In this process, uncompacted asphalt mixtures are prepared at varying trial 

asphalt binder contents (AC) specific to the aggregate and binder types and placed in clear pie 

plates for visual inspection of the bottom of the pie plates for the asphalt binder draindown (ABD) 

configuration [2]. The preparation of pie plate samples requires heating of the mixture at a 

specified temperature for a specified period of time. The binder grades, time and temperature at 

which the mixture is prepared, varies by procedure [1]. The inspection of the ABD for each 

procedure, however is always performed by trained and experienced technicians who determine 

the OBC based on perceptive interpolation or extrapolation from the prescribed AC. The need to 
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resolve the constantly encountered inconsistency issues in predicted OBC results is essential to 

assure the accuracy of the OGFC mixture design.  

The Florida Department of Transportation (FDOT) has been using OGFC mixtures on 

Florida’s high speed asphalt pavement facilities since the early 1970’s [3].  OGFC is a porous 

pavement surface type consisting primarily of coarse aggregate with few fines, thereby permitting 

water to pass freely through it, in contrast to more traditional dense graded asphalt pavement 

surfaces. The increased permeability of OGFC mixtures reduces the hydroplaning potential of the 

pavement under wet weather conditions. In addition, OGFC surfaces also reduce the splash and 

spray behind vehicles and improve the surface reflectivity during wet-weather conditions [4].  

In Florida, all asphalt mixtures are designed by the contractors and submitted to FDOT for 

review and verification, with the exception of OGFC mixtures. OGFC mixtures are designed by 

the FDOT’s State Materials Office using Florida design Specification in Section 337 [5] and the 

Florida Method FM 5-588 - Determining the Optimum Asphalt Binder Content of an Open-Graded 

Friction Course Mixture Using the Pie Plate Method [2]. FM 5-588 is based on the 1974 Federal 

Highway Administration (FHWA) OGFC Design Procedure [6]. In the FM 5-588, the OBC is 

determined based on visual assessment of ABD on three pie plates with three pre-determined trial 

asphalt binder content AC. The OBC is adjudged to be the binder content at which the sample 

displays sufficient bonding between the mixture and the bottom of the pie plate without evidence 

of excessive ABD [2]. This method allows the OBC to be interpolated between the three trial AC 

presented on the pie plates. 

While FM 5-588 has proven to be an effective method of designing OGFC mixtures, the 

OBC estimates of even similarly qualified technicians have proven to be highly variable at times 

since human subjectivity is introduced into the visual inspection of the ABD on the pie plates. In 
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order to eliminate this inherent subjectivity and make the OBC determination more repeatable and 

accurate, an automated procedure is needed to determine the OBC of OGFC mixtures. While 

previous research has involved in-depth analysis of a design method to determine the ACs from 

images of asphalt mixtures in general [7], only limited information is available on imaging which 

determine accurate OBC values. Hence, the objective of this research was to use a digital imaging 

process in conjunction with concepts of perceptual image coding and NN to estimate the OBC of 

OGFC mixtures in an automated manner.  

The investigation was divided into three phases. Phase I involved the use of the 

conventional FM 5-588 to test nineteen OGFC mixtures designs which generated an extensive set 

of samples from granitic and oolitic limestone aggregate sources and the subsequent imaging of 

the corresponding pie plates using FDOT’s customized imaging setup. In addition, statistical 

analysis was performed to correlate a set of relevant and basic image parameters derived from the 

pie plate images to the AC of the pie plates. Phase II of the investigation involved further analysis 

of image parameter and visual OBC estimates from Phase I to develop a perceptual image model 

based on applicable metrics of the human vision system (HVS) and neural networks (NN) to 

predict the OBC values in an automated manner. Phase III involved the configuration of a quality 

control tool (QCT) for the aforementioned automated method to enhance its robustness and the 

likelihood of implementation by other agencies and contractors. QCT is developed using three 

quality control imaging parameters (QCIP), orientation, spatial distribution, and segregation of 

ABD configuration of pie plate specimens (PPS) images. 

1.2. Problem Statement and Research Objectives 

In the US, twenty-percent of the Department of Transportation (DOT) agencies have 

standard procedures for designing open-graded friction course (OGFC) mixtures based on the 
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estimation of optimum binder content (OBC).  Approximately ten percent of the aforementioned 

agencies currently use the visual determination procedure for estimating the OBC of OGFC 

mixtures. They are Florida (FM 5-588), Georgia (GDT 114), Nevada (Nev. T760C), New Jersey 

(NJDOT B-7) and South Carolina (SC-T-90) [1]. 

Currently, however, FDOT use a pie-plate Visual Determination method (FM 5-588) based 

on a FHWA method to design OGFC mixtures. In this method, the OBC is determined solely based 

on visual assessment of binder draindown on three pie plates with trial binder contents. The OBC 

is selected at the binder content where the sample displays sufficient bonding between the mixture 

and the bottom of the pie plate without evidence of excessive asphalt binder draindown [2]. While 

previous research has involved in-depth analysis of a design method to determine the percent 

asphalt content from images [7] there is limited information comparing the results of different 

mixtures design methods determining an accurate OBC. 

The goal of this research was to provide FDOT with guidance in terms of refining the 

existing imaging process for FM 5-588 by developing an automated visual standard test methods 

for directly and quantifying the OBC for OGFC mixtures. To achieve the above goal, the following 

objectives are identified for this work: 

 Identify all of the significant image parameters that impact the prediction of the binder content 

of pie-plates.  

 Develop a correlation between the relevant image parameters and the OBC of OGFC mixtures 

in an accurate manner.  

 Develop a software package to execute the OBC estimation of OGFC mixtures using digital 

images of the pie plates.  
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 Develop a software package to execute the quality control process for digital images based 

OBC determination.  

1.3. Contributions of the Research 

An automatic digital test methods for directly quantifying the OBC for OGFC mixtures 

using parallel processing, Perceptual image coding and neural networks is developed. It avoids the 

disadvantages of traditional method (FM 5-588) which predicts OBC subjectively. The research 

has the following impacts: 

 Evaluation of the OBC asphalt mixture using the automated method will save a lot testing time. 

 Investigation of the possibility of applying innovative concepts of machine vision to simulate 

the technicians’ perception of the asphalt binder drain-down.  

 Development of a methodology for complete automation of the FM 5-588 process thereby 

minimizing the subjectivity involved in its current version and rendering it to be more reliable.  

 Developing a quality control parameters based on image processing which would be a viable 

tool for future design of OGFC mixtures. 

1.4. Dissertation Outline 

This dissertation is organized into nine chapters with the following specific contents:  

 Introduction – This chapter includes a background of OGFC mixture design. The background 

is followed by the problem statement, research objectives, contributions of the research and 

the dissertation outline.  

 Literature Review – This chapter is divided into five distinct sections. The first section details 

the various concepts useful for understanding the flexible pavement design principles and best 

practices associated with OGFC pavement technology. The second discusses the proposed 

benefits of OGFC mixtures. The third section addresses the design of OGFC mixtures. The 
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fourth section presents the imaging techniques, perceptual image coding and human vision 

system using 2D image analysis as well as their application in many areas of visual information 

processing. The fifth section describes the use of neural network analysis in prediction models 

in a variety of fields.  

 Experimental Methodology – This chapter presents a description of the research methodology. 

 Development of the Perceptual-Based Image Model – This chapter identifies the human vision 

systems (HVS) parameters relevant to the asphalt binder draindown (ABD) characterization of 

the OGFC samples in pie plates.  

 Neural Network-based Prediction Model – This chapter presents the results of the neural 

network- based prediction model that relates the HVS parameters to the OBC values.  

 Quality Control Model – This chapter presents the image analysis procedures that provide 

quantification relevant to the image-based quality control imaging parameters (QCIP) of the 

ABD of the pie plate specimen. 

 Summary of Findings – Presents a summary of findings in this study.  

 Conclusions – Deductions gathered from the most relevant analysis of results are presented in 

this section.  

 Recommendations for Future Work –Directions for future work are provided in this section 

based on conclusions and analysis completed in this dissertation. 
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CHAPTER 2:  LITERATURE REVIEW 

This chapter is divided into five distinct sections. The first section details OGFC pavement 

technology. The second section illustrated the design of OGFC mixtures. The third section present 

a brief description of the imaging technics and their application in asphalt mixture analysis. The 

fourth section discusses the human vision system and the fifth section shows a brief description of 

the neural network. 

2.1. OGFC Pavement Technology 

These section details the various concepts useful for understanding the flexible pavement 

design principles and best practices associated with OGFC pavement technology.  Although the 

primary focus of this research is on the determination of the OBC of the OGFC pavement types, 

flexible pavements technologies in general have also been explored.  

2.1.1. Flexible Pavements 

A flexible pavement is a relatively thin surface of asphalt constructed with a bituminous 

treated surface or a relatively thin surface of hot-mix asphalt (HMA) over one or more unbound 

base courses resting on a subgrade. FHWA defines a flexible pavement as a “pavement structure 

composed of asphalt concrete layers constructed on unbound aggregates or stabilized bases” [8]. 

The flexible pavement is called “flexible” since the total pavement structure bends (flexes) to 

accommodate traffic loads. The components of a traditional flexible pavement typically requires 

asphalt binder (3-8%), mineral aggregate (85-95%), air voids (2-20%), and sometimes (optional) 

modifiers/additives [9]. There are various types of asphalt concrete mixtures that combine asphalt 

cement binder with coarse and fine aggregates. Figure 1 shows the types of flexible pavements.  
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Figure 1 Types of flexible pavements. 

2.1.1.1. Dense-Graded Friction Course (DGA) 

Dense graded asphalt (DGA) is a mixture of evenly distributed aggregate from smallest to 

largest size and the binder. It is a well graded mixture typically used for all traffic conditions [9].  

2.1.1.2. Open-Graded Friction Course (OGFC) 

Open graded friction courses are a type of asphalt mixtures containing only a small portion 

of fine aggregate, creating a pavement with a relatively large percentage of air voids. They are 

primarily composed of single size coarse aggregate, and generally have a high asphalt content [9]. 

In Florida, OGFC mixtures are designed and constructed following Section 337 of the 

FDOT specification manual and OGFC mixtures are being used in multi-lanes with a design speed 

greater or equal to 50 mph using two sources of aggregates; granite and Oolitic limestone.  The 

OBC percentages used in common practice are 5.5 to 7.0 percent for granite sources and 6.5 to 7.5 

percent for Oolite sources. This range of OBC together with 15 to 25 percent voids allows surface 

water to enter the pavement structure and then quickly drain through and out of it [5].  

2.1.1.3. Gap-Graded Friction Course (SMA) 

Stone Mastic (Matrix) Asphalt (SMA) is a mixture of mid-size aggregate and the binder. It 

is considered to be a gap graded HMA and is typically used for surface courses on high volume 

highways to improve rut resistance and durability [9]. 
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2.1.2. History of OGFC Mixtures 

In 1944, California was the first state in the United States to begin using OGFC on its 

pavement network after making experimental variations to a maintenance practice called chip seals 

[10]. Subsequently, in the 1970’s, the use of OGFC mixtures gained popularity across the country 

in response to the FHWA’s program to improve skid resistance on roadways [11]. The first OGFC 

mix design method was published in 1974 by the FHWA [10], then modified in 1980 and further 

modified in 1990 [11]. The previously mentioned modified design method was based primarily on 

the surface capacity and absorption properties of the aggregate.  

Florida has been using open-graded mixes since the early 1970’s to improve skid resistance 

of asphalt pavements under wet weather [12]. On high-speed multi-lane road designs, OGFC 

mixtures are specified to allow the runoff water to be drained away from the tire pavement contact 

area [3 and 12]. For highways with a design speed of 35 mph or greater, three friction course 

mixtures are specified in FDOT’s design manual: FC-5, FC-9.5, and FC-12.5 [13]. Of these, FC-

12.5 and FC-9.5 are dense graded mixtures that are placed at approximate thicknesses of 1 1/2" 

and 1.0", respectively. FC-5, which is an open-graded mixture, is placed at an approximate 

thickness of 3/4" [13]. FC-5 mixture requires aggregates to be 100 percent polish-resistant crushed 

granite or crushed Oolitic limestone. If granite is used as the aggregate, hydrated lime in terms of 

one percent by weight of the total dry aggregate is added to the mixture. Fiber stabilizer additives, 

either mineral or cellulose, are also needed in the FC-5 mixture regardless of the aggregate type. 

Mineral fibers are added at a dosage rate of 0.4 percent by total mixture weight, and cellulose 

fibers are added at a dosage rate of 0.3 percent by total mixture weight.  

In Europe, the aggregate standards are higher than in the United States [10] and OGFC 

mixtures are called Porous European Mixtures (PEM). European countries have started using 
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PEMs in the early 1960’s. For example, the United Kingdom uses PEM in military airfield runways 

[14]; France uses PEM only on roadways with relatively high design speeds (50 mph) [15], and 

the Netherlands now uses PEM in the entire highway network [15]. There is a primary difference 

between OGFC mixtures and PEM: PEM air void content is 18-22% whereas it is 15% for OGFC, 

which in turn makes PEM more permeable than OGFC mixtures [16]. 

2.1.3. Proposed Benefits of OGFC Mixtures 

The proposed benefits of OGFC pavements range from key environmental benefits to 

safety benefits. Some of the benefits associated with OGFC pavements include but are not limited 

to: utilization of technology to provide additional storm-water management measures, reduction 

in noise levels, increased visibility and improved safety for drivers and pedestrians due to reduced 

tire splash/spray in wet weather.  

2.1.3.1. Safety 

A major benefit of OGFC mixtures is that they can provide improvement in road safety for 

both drivers and pedestrians due to the potential for increased skid resistance especially when there 

is heavy precipitation and excess runoff conditions [4]. The surface course of OGFC mixtures 

exhibits properties that may prevent hydroplaning on roadway surfaces because water is allowed 

to percolate through the pavement surface. In addition, spray and splash are controlled thus 

improving driver visibility with the reduction of glare on the road surfaces, specifically during wet 

and dark conditions [4]. For the above reasons, over a period of five years (from 2007 to 2012), 

FDOT has placed over 195,000 tons of open-graded surface mixtures [17].  

2.1.3.2. Noise Attenuation 

The high air-voids trap road noise and because of the trapping of the noise, the tire-road 

noise is reduced by up to 50-percent [18]. Several studies in Europe and North America have found 
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that OGFC mixtures can help in reducing the noise generated by the tire and road interaction. A 

2004 study by the Colorado DOT found that air voids and noise had a linear indirect relationship. 

The test concluded that, after testing 19 sites, OGFC pavement were the quietest pavements [19]. 

Furthermore, a study conducted by the University of Florida concluded that when a porous surface 

course were placed in sections of the US-27 in Florida, a noise level between 97 and 99 decibels 

(dB) which corresponds to that of a power mower was observed [20].  

2.1.3.3. Performance of OGFC Mixtures 

Although OGFC mixtures can provide numerous benefits to the highway industry, in a 

survey by [11] of OGFC use and performance in the United States a number of drawbacks were 

found. The most common problems with OGFC mixtures were raveling, stripping of existing 

underlying pavement, and winter maintenance issues. Raveling is the most common distress 

identified in OGFC mixtures [21] and it occurs in pavements when particles of aggregate still 

coated with the binder lose adherence to the pavement mixture. Loss of adherence to the pavement 

occurs due to excessive aging of the asphalt binder or inadequate asphalt binder contents [11]. 

Table 1 shows problems encountered with OGFC mixtures as reported in [1 and 11]. 

There are two types of raveling; short term, and long term. Short-term raveling can be 

intensified by placing the OGFC mixture at too low of a temperature, incomplete seating of 

aggregates during compaction, and in areas having low asphalt binder content as a result of asphalt 

binder drainage [22]. Long-term raveling is the result of segregation of the binder from the 

aggregate due to gradual asphalt binder drainage over time. The nature of OGFC mixtures can lead 

to the asphalt binder draining down and out of the mixture. This could result due to gravity, 

transportation of the mixture, or construction practices. The above conditions result in a low binder 

content of the OGFC mixture closest to the wearing surface, causing dislodging of the aggregate 
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under the action of traffic [22]. To prevent drainage from occurring in OGFC mixtures, fibers are 

recommended. The fibers aid in stabilizing the asphalt binder during production and placement 

[21]. 

Stripping occurs in pavements when the aggregate and binder become separated due to the 

presence of water that compromises the bond between the aggregate and binder as a consequence 

of inadequate drainage [1 and 11]. 

Table 1 Problems encountered with OGFC mixtures [1 and 11].  

 

2.2. Design of OGFC Mixtures  

The OGFC mixture design was developed by the Federal Highway Administration 

(FHWA) [6] and later modified twice by FHWA through research at the National Center for 

Asphalt Technology (NCAT) [4 and 8]. Consequently, the new NCAT drain-down test method 

Agency Typical Problems Encountered

Austria Raveling

Germany Raveling

France Raveling

The Netherlands Raveling & Rapid Aging

Spain Raveling & Pore Clogging

United Kingdom Pore Clogging & Rapid Aging

Alaska Ice Removal

Colorado Stripping

Hawaii Raveling

Idaho Pore Clogging

Iowa Ice Removal

Kansas Ice Removal

Louisiana Raveling

Maine Ice Removal

Maryland Raveling

Minnesota Raveling & Pore Clogging

Rhode Island Raveling

South Dakota Pore Clogging

Tennessee Stripping & Ice Removal

Virginia Stripping
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was created [4]. The above method was used to calculate the degree of drain-down according to 

FHWA procedures [6]. 

FDOT uses Florida method FM 5-588 [2] to select the OBC by the visual inspection 

approach. However, other State DOTs and agencies use different approaches such as (1) 

compacted specimens and (2) absorption calculation to determine the OBC of OGFC mixtures.  

Table 2 shows the agencies that use this design procedure and the respective tests adopted by them 

for the determination of OBC [1, 7 and 23].  

In the compacted specimens’ procedure, OBC is determined by evaluating compacted 

specimens having a range of asphalt binder contents, similar to a typical asphalt mixture design 

procedure [23]. In the Absorption calculation procedure, the binder content is calculated based on 

the oil absorption value of the aggregate [23]. Finally, in the visual determination procedure, as 

described in the Introduction, OBC is determined by evaluating the asphalt binder drainage at the 

bottom of the pie plate by means of visual inspection (Figure 2) [2]. 

Table 2 Categorization of OGFC mix designs based on the OBC determination method [1, 

7 and 23]. 

 

 

Compacted Specimens Absorption Calculation Visual determination

ASTM FHWA FLORIDA DOT

NAPA ALABAMA DOT GEORGIA DOT *

NCAT ARIZONA DOT NEVADA DOT

GEORGIA DOT* GEORGIA DOT * NEW JERSEY DOT

KANSAS DOT KENTUCKY TC SOUTH CAROLINA DOT

NEW MEXICO DOT WYOMING DOT

NORTH CAROLINA DOT

MISSISSIPPI DOT

MISSOURI DOT

NEBRASCA DOT

TENNESSE DOT

TEXAS DOT

VIRGINIA DOT

* USE A COMBINATION OF MIX DESIGNS PROCEDURES
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Figure 2 FDOT mix design image references [2]. 

2.3. Imaging Methods and Application in Asphalt Mixture Analysis 

A pavement Mean Profile Depth (MPD) measuring technique was developed [24] with a 

photometric stereo technique for image capturing with four light sources in a controlled 

environment. Gray scale intensity distribution of the pavement surface image was used to recover 

the surface in three dimensions using an iterative global integration technique. MPD measured by 

a manual dial gauge was correlated with the MPD evaluated from the recovered surface. In this 

method [24], the color variation of the asphalt surface was not considered during image processing. 

Since the same gray scale intensity can be obtained from different texture conditions with color, 

the applicability of the above method in MPD determination is questionable.  

A digital Sand Patch Test (SPT) was developed [25] using digital image analysis. In the 

image analysis, the application of "lacunarity analysis" is used to determine the particle sizes from 

a digital image of a pavement surface. The SPT investigation also concluded that the 

reproducibility of SPT is very low but it is still adequate for use in correlations between the average 

particle size obtained from image processing and the mean texture depth measured by the SPT 

method.  
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Another image based macrotexture measuring method was developed in the research 

documented in [26]. In this method, the Canny edge detection technique of digital image 

processing was considered for measuring the macrotexture of asphalt pavements. Pavement 

surface texture coarseness distributions were estimated from the edge profiles of the digital images. 

Aggregate size was measured by the chord length of edge boundaries using an edge detection pixel 

count method. During image data collection, the illumination condition was not controlled and 

image acquisition time varied from morning to afternoon at various times of the year in spite of 

the general knowledge that image quality varies with illumination. Mean aggregate size obtained 

from image analysis was statistically correlated with the sensor measured texture readings from a 

laser profilometer. 

A macrotexture (MPD) measuring technique was developed [27] using Aggregate Image 

Measurement System (AIMS). AIMS was used in the laboratory to measure the macrotexture of 

aggregate surfaces by analyzing the images of cores from the actual pavements collected from five 

locations in Texas. The Circular Texture Meter (CTM) was used for measuring macrotexture in 

the field. Statistical analysis was performed for establishing a correlation with different segment 

lengths in the MPD calculation. It was suggested that AIMS could be used instead of a CTM for 

macrotexture measurement. 

Recently, a Digital Imaging System (DIS) which is capable of generating the surface 

texture in three dimensions to identify pavement distresses using high definition images was 

developed [28]. Although DIS can capture high definition images, it does not provide any friction 

information about the pavement surface. Considering all these factors, emerging imaging 

technologies have been introduced for friction measurement by researchers during the last decade 
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to assure safety and easy operation without requiring lane closure during friction evaluation 

operations. 

A new method was developed by Amarasiri et al, 2012 [29] to measure concrete pavement 

macrotexture on wheel paths using the reflection properties of the concrete pavement surface. In 

this method, a concrete pavement image was digitally formed for a given light source and camera 

position using the Bidirectional Reflection Distribution Function (BRDF). BRDF indicates the 

reflectance property of any surface. Digital images generated from a BRDF model of a concrete 

surface were compared with the images of concrete samples under identical optical and camera 

settings. The comparison showed a close resemblance between two images thereby validating the 

method.  

Pavement wearing due to traffic was induced by gradual polishing of the artificial surface 

in different stages with digital images generated at every stage. On the other hand, concrete 

samples were also gradually polished in the laboratory and images were captured for analysis.  

The above research [29] has established that friction on concrete pavement surfaces can be 

monitored based on quantifying the brightness of pavement images assuming that the color of 

concrete pavements remains unchanged. However, when extending this technology to asphalt 

pavements, the color variation of asphalt pavement needs to be addressed since color changes in 

asphalt pavements are significant even in the short-term as the aggregates get exposed due to traffic 

induced wear. In order to use the surface image brightness to quantify frictional variation in asphalt 

pavements, new filtering approaches have been introduced [30].  

A novel method was developed by Peterson et al, 2009 [31] for threshold optimization for 

images collected from contrast enhanced concrete surfaces for air void characterization. In this 

method, the characterization of the air-voids of hardened concrete relies on "contrast 
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enhancement" step to make air-voids appear white and aggregate and paste appear black. A Visual 

Basic script program was developed and employed to analyze contrast enhanced surfaces and 

perform air void content calculations. 

A new method has also been developed for crack detection from pavement images, called 

the “Crack-Tree” method [32]. This method consists of three steps in which the first step is the 

geodesic shadow-removal with an algorithm developed to remove the pavement shadows while 

preserving the cracks. The second step is the development of the crack probability map using tensor 

voting, which enhances the connection of the crack fragments with good proximity and curve 

continuity. Finally, the last step is the construction of a graphic model by sampling crack seeds 

from the crack probability map. In practice, different cracks or crack fragments may show different 

widths. In the above work [32], the researchers focus on detecting the location and shape of the 

crack curves, but not the crack width. 

Another automated pavement distress detection using advanced image processing 

techniques has been developed in [33]. In the above work, a self-adaptive image processing 

method is proposed for the extraction and connection of break points of cracks in pavement images. 

The algorithm first finds the initial point of the crack and then determines the crack’s classification 

into transverse, longitudinal and alligator types. Different search algorithms are employed for 

different types of cracks. Then the algorithm traces along the crack pixels to find a break point and 

subsequently connects the identified crack point to the nearest break point in a particular search 

area. The nearest point then becomes the new initial point and the algorithm continues the process 

until reaching the end of the crack. The experimental results show that this connection algorithm 

is very efficient in maximizing the accuracy of crack identification. 



18 

 

Finite element modeling of geomaterials using digital image processing has been 

developed in [34]. “The above research presents a digital image processing method based finite 

element method for the two-dimensional mechanical analysis of geomaterials by taking into 

consideration their material non-homogeneities and microstructures. The method includes theories 

and techniques of digital image processing, the principles of geometry vectorization, and the 

techniques of automatic finite element mesh generation in the conventional finite element method. 

Digital imaging techniques are used to acquire the non-homogeneous distributions of geomaterials 

(soils, rocks, asphalt concrete and cement concrete) in the digital format. Digital image processing 

algorithms are developed to identify and classify the main homogeneous material types and their 

distribution structures that form the non-homogeneity of a geomaterial in the image. The interfaces 

of the main homogeneous material types are vectorized to form the internal material geometric 

structure and sub-regions. The vectorized digital images are used as inputs for finite element mesh 

generations using automatic mesh generation techniques. Lastly, the conventional finite element 

methods are employed to carry out the computation and analysis of geomechanical problems by 

taking into account the actual internal non-homogeneity of the geomaterial. Using asphalt concrete 

as an example, this research provides a detailed demonstration of the proposed digital image 

processing based finite element method. The research also applies the new method to the 

mechanical analysis of the Brazilian indirect tensile test in rock mechanics and pavement 

engineering. The numerical results show that this new digital image process based finite element 

method can take into account the material non-homogeneities in the geomechanical analysis.”  

A digital planar image analysis based method for detecting aggregate gradation in asphalt 

mixtures from planar images has been developed in [35]. The purpose of this study was to finalize 

an effective analysis of asphalt road section images for automatically extracting aggregate 
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gradation without the need for physically separating the binder from the aggregate. The proposed 

methodology allows the user to estimate the aggregate gradation that otherwise would need to be 

established via specially equipped laboratory and time-consuming tests that also bring about health 

risks for the operators due to the use of solvents and other hazardous materials. 

2.4. Human Visual System 

Perceptual approaches have been widely used in many areas of visual information 

processing. Pylyshyn [36] explain how humans see and visualize and that seeing is different from 

thinking. It is emphasized that to see is not to create an inner replica of the world one is observing 

or thinking about or visualizing [36]. In other words, it is emphasized that both seeing and 

visualizing are different from thinking (and from each other), and that humans’ intuitive views 

about seeing and visualizing rest largely on uncertainties [36]. Specifically, Pylyshyn [36] explains 

the visual system, the connection between vision and cognition, symbolic representations of 

percepts, and focuses on problems within one of the most highly developed areas in cognitive 

science, i.e. visual perception.  Pylyshyn [36] traces the relation between the study of vision, the 

study of mental imagery, and the study of thinking more generally. Specially, the message in the 

last chapters of Pylyshyn [36] is that, apart from what it feels like to visualize or to examine a 

mental image in one’s mind’s eye, imagining and visualizing are a form of reasoning [36].  

Numerous other studies have shown that the use of Human Vision System (HVS) 

techniques have been used to develop design quantification of values, perceptual based image 

codes, efficacy of human vision code and the use of vision human model and neural networks to 

reverse engineer networks fields [37-41]. Albanesi and Guerrini [37] adopted a human visual 

system (HVS) - based model on wavelet technique for tuning the target visual quality to define 

arbitrarily shaped regions of interest.  Wang, Lee, and Chang [38] propose a systematic procedure 
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to design a quantization table based on the human visual system model for the baseline JPEG 

coder. Höntsch, and Karam [39] have focused on developing methods to minimize mathematically 

tractable, easy to measure, distortion metrics. Watson [40] considered the schemes for neural 

representation of visual information to express explicit image codes. In Thorpe et al, 2000 [41] 

show that the speed of image processing achieved by the human visual system is incompatible 

with conventional neural network approaches that use standard coding schemes based on firing 

rate of biological neurons. In the Thorpe et al, 2000 [41] results are summaries that demonstrate a 

number of advantages of such coding schemes. 

2.5. Neural Networks 

Artificial neural networks (ANN) have emerged as a result of simulation of biological 

nervous system, such as the brain, on a computer [42]. ANNs have been used intensively for 

solving regression and classification problems in many fields. In short, neural networks (NN) are 

nonlinear processes that perform learning and classification and their ability to learn by example 

makes ANN very flexible and powerful [42]. 

Recently NN have been used in many areas that require computational techniques such as 

pattern recognition, optical character recognition, outcome prediction, problem classification, 

including system modelling, fault diagnosis and control, financial forecasting, weather forecasting, 

indoor environment and hydrology [43-48]. In materials science and engineering fields, 

researchers have used neural network techniques to develop prediction models for mechanical 

properties of materials [43], road crack condition [44] etc. For instance, Haque and Sudhakar [43], 

have used ANN for the prediction of fracture toughness in microalloy steel, corrosion fatigue 

behavior and fatigue crack growth in dual-phase (DP) steel. The above mentioned authors report 

that the ANN back-propagation model with Gaussian activation function exhibited excellent 
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agreement with the experimental results. Yang [44] performed road crack condition modeling 

using recurrent Markov chains and ANN where ANN provided a more appropriate and applicable 

methodology for modeling the pavement deterioration process with respect to cracks [44]. 

In medical science fields, Generalized Regression Neural Network (GRNN) and Radial 

Basis Function (RBF) have been used for heart disease diagnosis [45].  In the Hannan et al, 2010 

[45] research, neural network have been used to prescribe the medicine for heart disease. The 

results of the above evaluation showed that GRNN and RBF can be applied successfully for 

prescription of medicine for the patients with heart disease. 

Numerous other studies have shown that the use of neural network techniques provide 

comparable or improved prediction accuracies compared to existing methods in application in 

weather forecasting, indoor environment and hydrology fields [46-48]. Lee and He [46] adopted 

the GRNN to predict wind speeds with more accuracy than the traditional one-year linear step-

series-based model.  Popescu et al, 2004 [47], shows that the results of their studies regarding the 

applications of the NN to the propagation path loss prediction in indoor environment showed good 

agreement with the measurements [47]. Furthermore, Kişi investigated the GRNN technique in 

model of reference evapotranspiration (ET0) obtained using the FAO Penman-Monteith equation 

[48]. 
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CHAPTER 3:  EXPERIMENTAL METHODOLOGY 

This section describes how the study was conducted. The steps that are involved in this 

process are identified in the flowchart in Figure 3. Experimental Test Plan is found in Appendix 

A and Tracking of the Experimental Process are found in Appendix B. Phase I and II were 

previously documented in Gunaratne and Mejias de Pernia, 2014 [49],  Gunaratne and Mejias de 

Pernia, 2015 [50]  and Mejias de Pernia et al, 2015 [51]. Phase I1 involves the selection of material 

and preparation of the specimen following FM 5-588 (Appendix C). Phase II involves the 

development of the image-based OBC prediction method and Phase III involves the QCT 

development process as shown in Figure 3(a), (b) and (c) respectively. 

A description of the steps involved in this study is presented in this section in three sub-

sections. (i) Phase I (Determination of OBC of OGFC Mixtures Using FM 5-588 Imaging Process), 

(ii) Phase II (Development of OBC Image-Based Prediction Method) and (iii) Phase III 

(Development of QCT). 

3.1. Phase I (Determination of OBC of OGFC Mixtures Using FM 5-588 Imaging 

Process) 

Phase I is described by sections (i) Material selection, (ii) Determination of OBC of OGFC 

mixtures using FM 5-588, (iii) FDOT imaging technology, and (iv) Validation of FDOT imaging 

technology as shown in Figure 3(a). 

 

                                                 
1Portions of this chapter were previously published in [49-51]. Permission is included in Appendix J.  
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Figure 3 Flowchart of the study overview. 
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3.1.1. Material Selection 

The aggregate gradation and the porosity of OGFC mixtures are critical to producing a 

mixture that will have the necessary structural (strength) and functional (permeability) 

performance characteristics required for satisfactory field performance [52]. The aggregate 

gradation should allow for a large percentage of coarse aggregate for control of the porosity of the 

asphalt mixtures, and an adequate fine aggregate content to prevent the void structure from closing 

[52]. In this investigation, two different granitic aggregate sources and two different oolitic 

limestone aggregate sources were used to create the tested OGFC mixtures. The granitic mixtures 

were identified as mixtures A-J and the oolitic limestone mixtures identified as mixtures K-S. 

More specifically, the aggregate sources for Nova Scotia Granite, Georgia Granite, White Rock 

Quarries limestone and Titan American limestone were labeled as A-E, F-J, K-P, and Q-S, 

respectively [49-51].  

In total, nineteen different OGFC gradations were generated and tested using the PG 67-

22 asphalt binder which comprised a total of 228 samples prepared from 120 granitic and 108 

oolitic limestone aggregate sources [49-51]. Hydrated lime was added at a rate of 1.0% by weight 

of aggregate for each granitic mixture, and mineral fiber at a rate of 0.4% by total mixture weight 

for all mixtures, as defined in the FDOT specifications [5]. Table 3 shows the aggregate gradations 

used for the study. Figure 4 to Figure 7 includes the gradation curves for each mixture. 

3.1.2. Determination of OBC of OGFC Mixtures Using FM 5-588 

The 1974 FHWA design procedure [6] established the OBC of OGFC mixtures based on 

the surface capacity (Kc) of the aggregate and optimized the gradation to established standards. 

Then, the mixing temperature was set based on samples placed in Pyrex glass pie plates, which 

were subsequently placed in an oven at varying temperatures to assess the ABD.  With time and 
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experience, FDOT modified the FHWA procedure to design OGFC mixtures based on 

standardized aggregate types and gradations, and determined the OBC based on pie plate samples.  

Table 3 OGFC gradations used for the study.  

 

 

Figure 4 Gradation curves for Nova-Scotia source aggregate (A-E). 

MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX MIX

A B C D E F G H I J K L M N O P Q R S

3/4"      19.0mm 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

1/2"      12.5mm 95 96 96 96 85 100 97 94 97 96 88 92 86 87 92 90 86 91 89

3/8"        9.5mm 74 70 71 71 67 74 75 68 66 67 64 69 68 66 71 70 64 68 66

No. 4    4.75mm 20 23 15 15 23 23 23 19 20 23 20 24 24 25 25 23 18 20 25

No. 8    2.36mm 8 10 8 8 10 9 9 8 9 9 6 8 10 10 10 7 7 8 10

No. 16  1.18mm 6 5 6 6 6 6 6 6 7 5 3 6 7 7 8 3 5 6 7

No. 30    600µm 4 4 5 5 4 4 5 4 4 4 2 5 6 5 6 3 4 5 5

No. 50    300µm 4 3 4 4 3 3 5 3 3 3 2 4 5 4 5 2 3 4 4

No. 100  150µm 4 3 3 3 3 3 4 3 3 3 2 3 4 3 3 2 2 3 2

No. 200    75µm 3.40 2.50 2.30 2.30 2.50 2.70 2.50 2.40 2.90 2.60 2.00 2.60 2.50 3.00 2.30 2.00 2.00 2.60 2.00

GSB 2.624 2.677 2.626 2.627 2.630 2.767 2.769 2.766 2.768 2.769 2.415 2.415 2.409 2.410 2.416 2.409 2.388 2.354 2.355

2 - 4

55 - 75

15 - 25

5 -10

Sieve Size

Nova Scotia Granite Georgia Granite White Rock Quarries Limestone

Percent Pasing (%)

Titan America Limestone

CONTROL 

POINTS

100

85 - 100
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Figure 5 Gradation curves for Georgia source aggregate (F-J). 

 

Figure 6 Gradation curves for Florida source aggregate (K-P). 



27 

 

 

Figure 7 Gradation curves for Florida source aggregate (Q-S). 

The complete material aggregate, binder and gradation for all the mixes are shown in 

Appendix D.  

Currently, FM 5-588 requires the preparation of OGFC samples placed in pie plates at three 

pre-determined trial AC chosen based on the aggregate type: 5.3%, 5.8% and 6.3% for granitic 

aggregate, and 5.8%, 6.3% and 6.8% for oolitic limestone aggregate. The next step requires visual 

inspection of the bottom of the pie plates for the ABD distribution [2 and 6]. This inspection is 

performed by trained and experienced technicians who determine the OBC based on perceptive 

interpolation or extrapolation from the above specified AC, guided by documented references 

shown in Figure 2.  

For this research, each OGFC mixture was tested in triplicates to account for the random 

distribution of the aggregate and interstices within each aggregate mixture and random sample 

preparation errors.  The appropriate amount of materials was acquired in order to prepare triplicates 

with each mixture and additional triplicate mixtures corresponding to the visually determined OBC 
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as shown in Figure 8(a). AASHTO Method T2 [53] and FM 1-T 248 [54] were used to sample and 

prepare the materials for testing. Upon sampling, the aggregates were dried overnight at 110°C 

and then sieved in Gilson TS-1 bulk sieve shakers.  

Laboratory aggregate “batches” were produced at the three predefined trial AC 

corresponding to the aggregate type as shown in Figure 8(b). Next, the uncompacted mixtures were 

placed in nine-inch clear glass circular pie plates and conditioned in an oven at 320oF (160oC) for 

one hour. Figure 8(c) shows the steps followed for the pie plate preparation according to FM 5-

588. Once the pie plates cooled down to the room temperature, they were inverted for the 

subsequent visual determination of the OBC as shown in Figure 8(d).  

 

Figure 8 Steps followed for the pie plate preparation according to FM 5-588 including: (a) 

material preparation, (b) batch preparation, (c) mixture/pie plate’s preparation, and (d) 

visual inspection to estimate OBC. 
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Finally, the three additional OGFC samples were also prepared at the visually determined 

OBC’s.  A sample batch sheet is shown in Figure 9. 

3.1.3. FDOT Imaging Technology 

FDOT’s customized imaging system developed to automate the FM 5-588 method consists 

of a standard digital camera attached to a custom made aluminum bracket (Figure 10) oriented at 

35° to the horizontal to minimize glare on the surface during the image acquisition. A preliminary 

computer program developed by FDOT was used to calibrate the pie plate image [7]. A “dot 

matrix” calibration unit with a fixed spacing was used in the above setup to calibrate the specific 

software for the camera angle and simulate an image perspective of a 90° bird’s eye view. The 

known dimensions of the bracket leg are used to convert pixel values into actual distances during 

image processing [7].  

A “dot matrix” calibration unit with a fixed spacing was used in the above setup to calibrate 

the specific software for the camera angle and simulate an image perspective of a 90° bird’s eye 

view of a given pattern on 2D images (Figure 11) [55].  

The preliminary program developed by FDOT was used to perform the initial image 

analysis tasks [7]. FDOT’s image analysis program is based on Labview software. This software 

extracted the circular (9” diameter) section from the image of a pie plate for analysis of the binder 

area. A color threshold which reduces a grayscale image to a binary image was used to identify 

the image pixels corresponding to the binder in the pie plate image. Based on the selected 

threshold, a pixel analysis was conducted to calculate the total area of the binder. Thresholding is 

the simplest segmentation method for images and is used to separate out regions of an image 

corresponding to objects which one wishes to analyze [7]. This separation is based on the variation 

of intensity between the object pixels and the background pixels [56]. 
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Figure 9 Sample aggregate batching sheet (for mix K). 
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Figure 10 Pie plate and custom bracket (courtesy of FDOT [6]). 

 

Figure 11 Typical calibration dot matrix unit [52]. 

It must be noted that image analysis was accomplished using two different methods; (1) 

the Labview program provided by FDOT State Material Office (SMO), and (2) the Matlab 

software developed by the author. As seen in Figure 12, the estimates of the binder area in each 

pie plate image obtained from the above two sources are in perfect agreement. Moreover, 

Appendix E (Figures E1 to E19) provides test results from the above two methods (i.e. Labview 

versus Matlab) obtained in this module for all of the mixtures tested in this research. 

3.1.4. Validation of FDOT Imaging Process 

Statistical analysis to validate the preliminary Florida pie plate test image processing 

method.  Many statistical analyses attempt to find a pattern in a data series, based on an assumption 

about the nature of the data.   
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For the database, two image processing parameters (percent black pixel area and 

connectivity of black pixels), generated during the statistical analyses in Phase I were completed 

following the next steps:  a) clean database, b) check data for outliers, c) estimate correlation 

coefficients, d) develop a regression analysis, e) interpreted the regressions statistical tables and f) 

gathered the finding of the validation section. 

 

Figure 12 Comparison of digital imaging results for mix A - Labview versus Matlab.  
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 3.1.4.1. Clean Database  

'Cleaning' is the process of removing those data points which are either (a) obviously 

disconnected with the effect or the assumption that defines the pattern or (b) obviously erroneous 

by virtue of sub-standard measurement.  The cleaning of the database was performed by checking 

the data against the original data to generate a reliable database, when the data was checked against 

the original data to verify that they had been entered correctly, it was observed that no errors were 

found in the database.  

3.1.4.2. Check Data for Outliers  

To avoid biased results, the data set was checked for both univariate outliers (outliers with 

respect to one variable alone) and multivariate outliers (outliers with respect to a combination of 

variables). Outlier detection in a Microsoft Excel worksheet is demonstrated on the sample set of 

mixture J (24 numeric values), completed in a several steps outlined below [51].  

The first step in identifying outliers is to pinpoint the statistical center of the range. To 

perform pinpointing, one starts by finding the 1st and 3rd quartiles. A quartile is a statistical 

division of a data set into four equal groups, with each group making up 25 percent of the data. 

The top 25 percent of a collection is considered to be the 1st quartile, whereas the bottom 25 

percent is considered the 4th quartile. 

In Excel, one can easily obtain quartile values by using the QUARTILE function. This 

function requires two arguments: a range of data and the quartile number one wants. 

The next step is taking these two quartiles, calculating the statistical 50 percent of the data 

set by subtracting the 3rd quartile from the 1st quartile. This statistical 50 percent is called the 

interquartile range (IQR). Statisticians generally agree that IQR*1.5 can be used to establish a 

reasonable upper and lower fence:  
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The lower fence is equal to the 1st quartile – IQR*1.5. 

The upper fence is equal to the 3rd quartile + IQR*1.5. 

The final results of final upper and lower fences for all of the mixtures was “normal” 

indicating "no outliers"  

3.1.4.3. Estimate Correlation Coefficients 

The correlation coefficient (Multiple R) is defined as the measurement of how strong a 

linear relationship exists between two numeric variables x and y. The correlation coefficient is 

always a number between -1.0 and +1.0. If the correlation coefficient is close to +1.0, then there 

is a strong positive linear relationship between x and y. If the correlation coefficient is close to -

1.0, then there is a strong negative linear relationship between x and y. The closer to zero the 

correlation coefficient is the less of a linear relationship between x and y exists [51].  

The correlation coefficient (multiple R) for all the mixtures was a number between 0.38 

and +0.97 (Table 4) indicating the existence of a strong positive linear relationship between x 

(asphalt binder content) and y (image processing parameter).  

Table 4 Coefficients of correlation for all the mixtures used for the study. 
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3.1.4.4. Regression Analysis  

Regression analysis was used to generate mathematical expressions for the relationships 

between the classification parameters and asphalt binder content. The regression tool was used to 

estimate the model parameters [51]. The regression tool determined the coefficients (βi) that yield 

the smallest residual sum of squares of errors, which is equivalent to the greatest correlation 

coefficient squared, R2, in Equation (1) or (2).     

 Regression analysis of percent black pixel area versus asphalt binder content and connectivity 

of black pixels versus asphalt binder content 

 �̂� = β1 + β2 x + u   (1)  

where: �̂� = Predicted asphalt binder content percentages; β1, β2 = Regression coefficients 

corresponding to the independent variables; x = Percent black pixel area or connectivity of black 

pixels; and u = Error. 

As seen in the Table 5, when all the mixtures are considered, there is only a marginal 

improvement in R2 values in the correlations with the asphalt binder contents when percent black 

pixel area is replaced by the connectivity of black pixels. Hence the author sought to use a 

combined model of both the above variables to predict the asphalt binder content of mixtures. 

 Regression analysis of predicted asphalt binder content versus combination of percent black 

pixels area and connectivity of black pixels  

 �̂� = β1 + β2 x2 + β3 x3 + u   (2) 

where: �̂� = Predicted asphalt binder content; β1, β2, β3 = Regression coefficients; x2 = Percent 

black pixel area; x3 = Connectivity of black pixels; and u = Error. 

Table 5 also shows the results of the combined regression analysis using Equation (2) for 

all the considered mixtures. 
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Table 5 Results of the combined regression analysis. 

 

 
 

Table 6 provides a summary of the results from combined regression analysis for mix A.  

Table 6 Summary output of the combined regressions for mix A. 

 
 

The results of the multiple regression analysis depicted by Equation (2) in terms of the 

predicted asphalt binder content against the actual asphalt binder content in mix A are shown in 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.893022419

R Square 0.79748904

Adjusted R Square 0.778202282

Standard Error 0.181427856

Observations 24

ANOVA

df SS MS F Significance F

Regression 2 2.722095924 1.361047962 41.34904568 5.22047E-08

Residual 21 0.691237409 0.032916067

Total 23 3.413333333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 3.571419302 0.911845774 3.916692279 0.000792717 1.675132206 5.467706398

% Area Black Pixels 0.029265431 0.003746481 7.811444548 1.20452E-07 0.021474197 0.037056666

Connectivity of black pixels 0.840392025 1.126587506 0.745962494 0.463959205 -1.502474949 3.183258999
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Figure 13 and Figure 14 indicates that a multiple regression model that uses both percent black 

pixel area and the connectivity of black pixels on the pie plates shows an increase in the R2 value. 

 

Figure 13 Percent of asphalt binder prediction using simple regression for mix A. 

 

Figure 14 Percent of asphalt binder prediction using combined regression for mix A. 

The simple regression models for percent black pixel area and connectivity of  black pixels 

in Figure 13 account for 76.84% and 79.21% of the variance, while the combined regression model 

in Figure 14 accounts for 79.26% of the variance. The more variance that is accounted for by the 
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regression model the closer the data points will fall to the fitted regression line. Theoretically, if a 

model could explain 100% of the variance, the fitted values would always equal the observed 

values and, therefore, all the data points would fall on the fitted regression line.  Therefore, the 

more parameters that one can add to the model the closer to the variance the values will be, 

providing more accurate asphalt binder percent predictions. 

A summary of the improvement of the predictive models based on the use of combined 

regression for all mixtures is shown in Table 7.  

Table 7 Comparison of results of simple regression versus multiple regression for all the 

mixtures used for the study. 

 

 

3.1.4.5. Interpretation of the Regression Statistics Table  

Sample regression statistics for mix J are shown in Table 8 in which R Square (R2) is of 

the greatest interest. Table 8 gives the overall goodness-of-fit measures, R2 = 0.781.  

Adjusted R2 is defined as follows: 

 R2 = R2 - (1-R2)*(k-1)/(n-k) = 0.781 – 0.219*2/21 =0.78 (3) 

R2 = 0.781 means that 78.1% of the variation of yi around �̂� (its mean) is explained by the 

repressors’ x2i and x3i. 

The standard error in Table 8 refers to the estimated standard deviation of the error term u 

in Equation (3). It is sometimes called the standard error of the regression and it equals 
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to √𝑆𝑆𝐸
(𝑛 − 𝑘)⁄ , where SSE is sum of squared errors of prediction, n is number of observations 

used in the regression and k is the number of repressors including the intercept. 

Table 8 Regression statistic table for mix J. 

 

3.1.4.6. Findings of the Validation Section 

The above described statistical techniques have been implemented in Excel and Matlab to 

derive the required correlations for all the mixes. For example, Figures 15(a) and (b) shows the 

statistics for two correlations that have been developed by the author for the Trial 1.1 of mix J [49 

and 51]. 

It can be seen that the correlation is very satisfactory with respect to the connected black 

area versus percent AC (%AC) plots. For example, the overall goodness-of-fit measurement, R2, 

increases from 0.65 to 0.755 between the percent black-area parameter versus percent AC to the 

black pixel connectivity parameter versus percent AC. The complete results of this analysis for all 

the mixes are shown in Appendix F (Figures F1 to F47 and Table F1). However, it can be seen 

from the plots in Appendix F that R2 values did not improve markedly for all the mixes when 

percent black pixels parameter was replaced by the black pixel connectivity parameter. Hence the 

author sought to use both variables to predict the asphalt content of the mixes using combined 

regression seen in Equation (2).  
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Figure 15 Mix J trial 1.1 at 5.8%AC (a) %AC versus %black area, (b) %AC versus 

%Connected black area.  

 

Table 9 demonstrates the comparison summary of the results from both types of regression 

for a number of mixes.  
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Table 9 Comparison of results of individual regression versus combined regression. 

 

3.2. Phase II (Development of OBC Image-Based Prediction Method) 

Phase II is described by sections (i) Digital image acquisition and processing, (ii) 

Development of a model to automate the process to predict OBC, and (iii) General regression 

neural network (GRNN)-based prediction model to estimate OBC.    

3.2.1. Digital Image Acquisition and Processing 

In these next step, digital images of all pie plate samples were acquired using the setup 

described in the previous section. Then, Plaster of Paris was added to each pie plate to enhance the 

contrast, as shown in Figure 16(a) for the subsequent visual inspection and a new (post-

enhancement) set of digital images of the pie plates were also acquired. A sample set of such digital 

images is shown in Figure 16(b). In order to enrich the database with more extensive data that 

could be used in modeling the random errors possibly committed in image capturing, a second set 

of the post-plastered digital images (immediate after the first set was taken without moving the pie 

plate from the custom bracket) was also acquired from the pie plates, yielding a total of 456 digital 

images for all the mixtures [50].  

A research study by Zelelew, Papagiannakis, and Masad, 2008 [57] introduced an 

automated digital image processing technique for analyzing the internal structure of asphalt 

mixtures from CT images. Such innovations for easing the complexity of processing and analysis 
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of the captured images have become acceptable techniques for basic image processing. MatlabTM 

was used to implement the different stages of this technique in the current research based on (i) 

removing the random noise in the image; (ii) converting the grayscale image into a binary image 

using an appropriate threshold value; (iii) finding the connected components (groups of black 

pixels) in each image, denoted as “regions”; (iv) assigning a unique label to each identified region; 

and (v) computing geometric properties of each labeled region [50]. 

In the next step, the digital images were preprocessed for quality enhancement to facilitate 

precise analysis and more accurate interpretation of results at the analysis stage. Important tasks 

in preprocessing include filtering for removal of noise introduced during image acquisition, 

emphasizing of specific features relevant to the analysis, and converting the original grayscale 

images into binary images for analytical convenience. Digital images are often corrupted with 

noise or undesired features originating from various sources depending on the ambient conditions 

at the time of digital image acquisition. In this investigation, the only likely sources of noise were 

non-uniform lighting and scratches or other marks on the bottom of the glass pie plates. To remove 

the random noise in the image the median filter (medfilt2) was applied. 

 

Figure 16 Sequences of steps followed for the enhancement procedure. 
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The final step of pre-processing involved image enhancement using a thresholding 

technique to convert the grayscale images with gradually varying intensities from black to white 

into binary images consisting of only black and white pixels. Thresholding is the simplest 

segmentation method for digital images and it is used to separate out regions of an image 

corresponding to objects which one wishes to analyze. This separation is based on the variation of 

intensity between the object pixels and the background pixels [55]. A color threshold which 

reduces a grayscale image to a binary image is used to identify the image pixels corresponding to 

the asphalt binder. In this study, the im2bw function outputs a binary image for an input grayscale 

image by replacing all the pixels in the input image with intensities greater than the selected 

thresholding level with the value of 1 (white) and all the other pixels with the value of 0 (black) 

[56]. After filters are applied, the connected black pixels are grouped into regions.  

The grouping of connected black pixels into regions was accomplished using the 

Adjacency Searching Method [58], allowing the connected black pixel regions which are 

considered to represent the ABD, to be evaluated further. A brief discussion of the Adjacency 

Searching Method is found next. 

A pixel p at coordinates of (i, y) has four horizontal and vertical neighbors whose 

coordinates are given by (i+1, j), (i-1, j), (i, j+1), (i, j-1). This set of pixels, called the 4-connected 

next neighbors of p, is denoted by Figure 17(a) and each pixel is a unit distance from (i, j). The 4-

connected diagonal neighbors of p have coordinates (i+1, j+1), (i+1, j-1), (i-1, j+1), (i-1, j-1) and 

are denoted by Figure 17(b). These points, together with the 4-neighbors, are called the 8-

connected of p, denoted by Figure 17(c). The location of 8-connected for each applicable pixel is 

carried out as follows.   
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Figure 17 Pixel connectivity schemes (a) 4-neighbor connectivity next pixels, (b) 4-neighbor 

connectivity corner pixels and (c) 8-neighbor connectivity. 

 

First, the searching algorithm finds the initial black pixel of an image and starts the search 

within the previously defined search area and the prioritized (next or diagonal) directions. The 

basic rule for the searching algorithm is to follow the adjoining black pixels until there is no other 

black pixel in the prioritized directions. The algorithm will finally count and label the number of 

pixels next and diagonal to the pixel p.  The search algorithm is summarized below: 

 From the binary image, find the initial black pixel p [49 to 51]. 

 Start counting from p the pixels with the same color (black) next to p to the right, left, top and 

bottom to find 4-connected next neighbors 

 Follow the black pixels in the four directions until no other black pixel is found next to p 

 Label the pixel p with the number of the pixel visited last 

 Return to the initial black pixel p again and now start counting from p the pixels with the same 

color (black) next to it to the top right corner, top left corner, bottom right corner and bottom 

left corner to find  4-connected diagonal neighbors  

 Follow the black pixels in the four diagonal directions until no other black pixel is found 

diagonal to p 
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 Add the count of the 4- connected next neighbors and the 4-connected diagonal neighbors to 

find  8-connected neighbors  

 Determine the presence of a break point (where no more black pixel is found) 

 Repeat the process for the each image. 

Then, a labelling operation is performed to change the pixel intensities of regions of black 

pixels to unique integers (bwlabel) as shown in Figure 18(a) and, subsequently, a color map 

function is implemented to apply RGB color visualizing label of the regions (label2rgb) as shown 

in Figure 18(b).  

The geometric properties of each labeled region are then calculated (regionprops). These 

include the area, equivalent diameter and centroid. Once the processing of the images is completed, 

the algorithm proceeds to the analysis for the determination of orientation, spatial distribution and 

segregation [50]. Figure 19 shows the steps used in this study for pre-processing the pie plate 

digital images. 

 

Figure 18 Representation of (a) tracing of regions of black pixels connected and (b) 

labelling of regions of black pixel connected by color and numbers. 
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Figure 19 Sequences of steps followed for the pre-processing the pie plate digital images. 

3.2.2. Development of a Model to Automate the FM 5-588 Method to Predict OBC 

To accomplish the automation of the FM 5-588 procedure to accomplish the main objective 

of the research (OBC prediction), the author analytically modeled the perceptual transfer process 

which involves the two modes of information processing i.e. visual processing and neural 

processing. Creation of this perceptual process consist on two task: (i) visual processing using the 

human vision system, and (ii) neural processing using general regression neural network.  The 

above process is described in detail in the forthcoming Chapter 4.  

3.3. Phase III (Development of Image–based Quality Control Tool (QCT)) 

This section gives a detailed discussion of the QCT development process as shown in 

Figure 3(c).  This section is intended to provide (i) “How to develop” and (ii) “How to evaluate” 

the image-based quality control imaging parameters (QCIP) to be used in the QCT [50].  

The (i) “How to develop” section describes the procedure of producing pie plates of OGFC 

mixtures currently followed by FDOT using FM 5-588. Meanwhile, the (ii) “How to evaluate” 

section describes methods of identifying and analyzing the ABD characterization by means of the 

previously identified QCIP. The above analysis is based on the findings of past research studies 

on aggregate characterization. This section also describes the statistical validation of the QCIP 

including setting up of the target value and acceptable tolerance for each QC parameter following 
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the measure evaluation criteria [59] that provide a scientific basis for the selection of target values 

and acceptable tolerances.  

3.3.1.  “How to Develop” the Image-Based Quality Control Imaging Parameters (QCIP) 

In FDOT, QC check standards are currently unavailable for the production of pie plates 

using FM 5-588. Consequently, in this study, guidelines for checking the production quality of the 

pie plates were set up by inspecting more than 228 production PPS and consulting with the FDOT 

Materials office collaborators consisting of the project managers, laboratory technicians, and 

engineers [60]. The algorithm used for formulating the QCT redefines connected black pixel 

regions as ellipses with clearly demarcated major and minor axes. An example of an acceptable 

pie plate image where each of the black pixels regions are modified as ellipses is shown in Figure 

20(a) [51, 59 and 60]. 

Based on the FDOT Materials Office collaborators’ judgment, a pie plate would become 

unacceptable due to the following three reasons [60]: 

 If the PPS has been “slid,” “moved,” or “glided” during the placing of the mixture from the 

mixing bowl into the pie plate or during the removal of the pie plate from the oven, the ABD’s 

will show a definitive alignment at a specific angle. An example of an image of a pie plate with 

such a “slide” is shown on the right side of Figure 20(c), while an image of a pie plate with 

“no slide” is shown on the left side of Figure 20(b).  

 If the PPS has been “dropped,” “dumped,” or “forced into place” during the placing of the 

mixture from the mixing bowl into the pie plate, the ABD will be displayed as an uneven 

distribution over the bottom surface of the pie plate.  An example of an “unevenly distributed” 

ABD is shown on the right side of Figure 20(e), while an ‘evenly distributed” ABD is shown 

on the left side of Figure 20(d). 
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 If the PPS has been left with “aggregate particles not thoroughly coated” or with “large 

conglomerates of fines particles” during the mixing of the aggregate batch and free-standing 

asphalt binder in the mixing bowl, then when the mixture is transferred from the mixing bowl 

into the pie plate, ABD will exhibit an irregular distribution causing segregation on the outside 

or the inside of the pie plate. An example of an image of an “incorrectly mixed and segregated” 

pie plate is shown on the right side of Figure 20(g), while a ‘non-segregated” pie plate image 

is shown on the left side of Figure 20(f). Following constant communication with FDOT 

collaborators regarding the PPS production, the current lightly adopted visual QC checks were 

reviewed and a set of three relevant, definitive and measurable QCIP that would represent the 

technician’s visual QC checks in a more systematic and objective manner, were selected from 

the broad set of imaging parameters described in the forthcoming sub-section 3.3.2.  These 

three parameters address the following specific properties of ABD of PPS; (i) orientation, (ii) 

spatial distribution, and (iii) segregation [60]. 

3.3.2. “How to Evaluate” The Image-Based Quality Control Imaging Parameters (QCIP)  

To accomplish the measurement of the relevant QC parameters, the author analytically 

modeled the ABD characterization by means of past aggregate characterization researchers studies 

[61 to 69]. The quality control ABD characterization provides quantifying parameters of the 

surface appearance of pie plates highly relevant to QC of the ABD configuration of a pie plate 

specimen. The measurement task is divided into three different group of QC parameters relevant 

to the design of the QC tool; (i) orientation, (ii) spatial distribution, and (iii) segregation of ABD 

in pie plate specimen. The above process is explained in detail in the forthcoming Chapter 5. 
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Figure 20 Synthetic computer-generated images of (a) steps to create ellipses representing 

the connected black pixel regions of a PPS (b) uniformly distributed PPS, (c) slid (unevenly 

distributed) PPS, (d) properly placed PPS, (e) incorrectly placed PPS, (f) appropriately 

mixed PPS, and (g) inappropriately mixed PPS.  
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CHAPTER 4: DEVELOPMENT OF A PERCEPTUAL-BASED IMAGE MODEL 

To accomplish the automation of the FM 5-588 procedure, the authors analytically modeled 

the perceptual transfer process which involves the two modes of information processing i.e. visual 

processing and neural processing, performed by the technicians in executing the existing FM 5-

588 methodology. In general, a perceptual transfer function consists of an optical transfer function 

and a neural transfer function [36]. In this investigation, the above functions will be referred to as 

processes since mathematical functions are not employed to represent them. To develop a 

quantifiable optical transfer process in this investigation, the human (technician) visual system 

(HVS) properties involved in the OBC determination were examined first and an exhaustive set of 

relevant imaging parameters associated with the digital images of pie plates was derived. The 

above imaging parameters were then used in designing a neural transfer process that would 

determine the corresponding OBC, with minimum human intervention. This is achieved by 

training an appropriate neural network based on the extensive experimental results available from 

the visually executed FM 5-588. The neural network specifically trained for the types of aggregate 

and binder used in the training dataset is expected to transfer the imaging parameters extracted 

from pie plate images of any other mixtures having similar constituents to the corresponding OBC 

estimates in an automated manner [49 and 50].2 Hence such a neural network would minimize the 

need for human involvement which introduces subjectivity. 

 

                                                 
2Portions of this chapter were previously published in [49, and 50]. Permission is included in Appendix J. 
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4.1. Image Analysis Procedures for Characterization of the Human Visual System  

Modeling of the HVS as performed in computer vision and image processing is based on 

specific parameters derived from psycho-physical experiments [36]. The image analysis 

procedures presented in this section describe the particular set of image-based parameters that were 

presumed to represent the optical transfer process undergone by technicians who evaluate the ABD 

in pie plates, based on the surface appearance of pie plates. Consultation with the FDOT 

technicians and the authors’ subsequent comparative study of the pie plate samples corresponding 

to trial ACs and those of the additional samples prepared at the visually adjudged OBC, led to the 

identification of several applicable imaging parameters. Based on their respective roles in the 

visual transfer process and the relevant applications in image enhancement, these parameters can 

be categorized into five distinct aspects of visual perception that are involved in identification of 

image targets by humans: (i) image contrast (ii) visibility (iii) contrast sensitivity (iv) frequency 

and orientation selectivity and (v) other imaging parameters involved in information processing.  

4.1.1. Image Contrast 

Contrast is the ability of the HVS to detect the difference in luminance between two or 

more stimuli. The relevant stimuli in the pie plate images are (i) the black pixel areas representing 

asphalt and (ii) the white pixels representing plaster of Paris. Hence the percent black pixels area 

of the entire pie plate (PBA) (Equation (4)) would be the most appropriate basic parameter to 

represent the contrast in pie plates as observed by the evaluator.  

 𝑃𝐵𝐴 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 
∗  100   (4) 

4.1.2. Visibility 

Based on the study of visual masking concepts [36], the visibility of the target (asphalt 

regions in the images represented by black pixels) in contrast to the mask (rest of the image) can 



52 

 

be represented by the following parameters: connectivity of black pixels, number of connected 

black pixels and orientation of the connected black pixels regions. 

4.1.2.1. Connectivity of Black Pixels 

Connectivity of black pixels (CC) indicates the number of other black pixels connected to 

each black pixel in a pie plate image. This parameter is calculated by the adjacency searching 

method (subsection 3.2.1) [58]. The basic rule for the searching algorithm is to follow the adjoining 

black pixels until there is no other black pixel in the prioritized directions (lateral, longitudinal and 

diagonal). The above algorithm will finally count and label the number of black pixels next and 

diagonal to any given black pixel [ij], as illustrated in Figure 17. 

4.1.2.2. Number of Connected Black Pixels Regions 

In order to estimate the above parameter, specific color labels were assigned to the 

connected black pixels regions using the BWlabel syntax [56]. Figure 21(a) shows the 

representation of each connected black pixel region by a different color label. 

4.1.2.3. Orientation of Connected Black Pixels Regions 

This parameter can be computed by determining the orientation between a designated x-

axis of the pie plate image and the major axis of the individual connected black pixel region [61]. 

Figure 21(b) shows the orientations of connected black pixel regions relative to the center of the 

pie plate image expressed in terms of an angle ranging from -90 to +90 degrees. For the ensuing 

analysis, the individual orientation values were averaged for each pie plate. The orientation 

parameter could be used in the future as a quality control indicator. 

4.1.3. Contrast Sensitivity 

The contrast sensitivity of HVS depends not only on the relative luminance between the 

background and the stimulus (black pixel regions) as expressed by the above contrast and visibility 
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factors but also on many other secondary factors, such as the size distribution and spatial frequency 

of stimuli objects [36]. In order to account for effects of the above factors in the evaluation of ABD 

which is presumed to be executed based on observation of the black pixel regions of the pie plates, 

the following additional factors were considered. 

4.1.3.1. Size Distribution of the Target 

4.1.3.1.1. Sizes (Areas) of Connected Black Pixels Regions 

The sizes of connected black pixels regions were obtained as shown in Figure 21(c) and 

labeled with individual numbers as shown in Figure 21(e). The individual areas values were 

averaged for each pie plate. 

4.1.3.1.2. Perimeter per Connected Black Pixels Regions 

To determine the perimeter per connected black pixels region, the contour length of each 

black pixel region (Figure 21(d)) in the pie plate image was traced first and the average perimeter 

of the black pixel regions in the pie plate calculated. 

4.1.3.2. Spatial Frequency of the Target 

4.1.3.2.1. Uniformity Radial 

Uniformity radial (𝑈𝑅) parameter indicates the uniformity of the distribution of the target 

(connected black pixel regions) in the radial direction of the pie plate. It is calculated by separating 

the specimen into two sections (outer and inner) in the radial direction and estimating the 

distribution of the target in each section, as illustrated in Figure 21(f) [59 and 62]. UR is calculated 

using Equation (5):  

 𝑈𝑅 = [ 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑛𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
− 1] ∗ 100 (5) 

A UR value of zero indicates that no segregation occurs in the radial direction, while a 

positive value indicates that segregation occurs in the outer section of the pie plate image. 
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Conversely, a negative UR indicates that segregation occurs in the inner section of the pie plate 

image [62]. This is one parameter (UR ) that could also be used as a quality control indicator. 

4.1.3.2.2. Uniformity Angular 

Uniformity angular (UA) parameter indicates the uniformity of the distribution of the target 

(connected black pixel regions) in the tangential direction of the pie plate. It is calculated by 

dividing the pie plate image into an angular grid at 30° intervals from 0° to 360° and estimating 

the distribution of the target in each segment using Equation (6) [59 and 62] as illustrated in Figure 

21(f)):  

 𝑈𝐴 = [ 
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑎𝑟𝑒𝑎𝑠 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 30° 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑎𝑟𝑒𝑎𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑒 
] ∗ 100  (6) 

For the ensuing analysis, the individual uniformity angular values by section were averaged 

for each pie plate. This parameter (UA ) could be used in the future as a quality control indicator. 

4.1.4. Frequency and Orientation Selectivity 

Studies on the frequency and orientation selectivity of the HVS reveal the existence of 

neurons that are sensitive to orientation, size, form, and spatial frequency, or in other words, how 

dissimilar the target area. The dissimilarity is measured by the parameters of Inconsistency 

Coefficient, centroidal distance, form factor and other imaging parameters involved in information 

processing in the HVS [59].  

4.1.4.1. Inconsistency Coefficient 

The inconsistency coefficient (I) characterizes each connected black pixels region in a pie 

plate image by comparing its minor and major axis with the average major axis/minor axis of other 

connected black pixels regions of the same pie plate. It is expressed by Equation (7) [56 and 63]: 

 𝐼 =  
𝐴𝑥𝑚𝑖𝑛

𝐴𝑥𝑚𝑎𝑥
 =

(𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛)

 (𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 )
 (7) 
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The individual inconsistency coefficient values were averaged for each pie plate. The 

higher the value of average I, the less similar the connected black pixel regions are.  

4.1.4.2. Centroidal Distances 

Centroidal distances of each connected black pixel region are determined by measuring the 

distance from the centroid of each connected regions to the center of the pie plate image as shown 

in Figure 21(c) [50 and 63]. The individual centroidal distance values were averaged for each pie 

plate. 

4.1.4.3. Form Factor 

Form factor (FF) describes the geometrical irregularity of target areas (e.g., connected 

black pixels region) with respect to a circle, for which FF=1. It is expressed by the following 

equation [64 and 65]: 

 𝐹𝐹 =  
4𝜋𝐴

𝑃2   = 
4𝜋(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛)

(𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛) 2
 (8) 

For the ensuing analysis, the individual form factor values were averaged for each pie plate. 

4.1.5. Other Imaging Parameters Involved in Information Processing in the HVS 

Perceptive estimates made based on visual observation are primarily driven by past 

experiences of observers such as the technicians involved in the visual OBC determination. While 

visually processing the characteristics of the trial pie plates of known ACs, the technicians would 

interpolate the binder content of the most favorable sample, i.e., OBC, using their past experience 

with an additional set of pie plate image characteristics not included in the above categories. The 

authors have identified the following three parameters to be in this category.
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Figure 21 Representation of black pixels on a pie plate image for connected black pixels (a) color label, (b) orientation relative 

to the center of the pie plate image, (c) individual areas, (d) traced perimeters, (e) label with numbers, (f) illustration of 

sections of radial segregation and angular mesh.  
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4.1.5.1. Compactness per Connected Black Pixels Regions 

Compactness (C) is a measure of the ruggedness of the connected black pixel regions as 

expressed by Equation (9) [35]. This parameter represents a lesser or higher level of complexity 

of the contour of each black pixel area region.  

 𝐶 =
(𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛) 

(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛)
 (9) 

Authors’ scrutiny of the additional samples prepared at the OBC after the OBC of each 

mixture was determined by the technicians revealed that, in judging how close the AC of a given 

pie plate is to OBC, the evaluators would also look for the presence of  black pixel regions that are 

not rugged. For the ensuing analysis, the individual compactness values were averaged for each 

pie plate. 

4.1.5.2. Solidity 

Solidity (SLD) is the measure of the density of any connected black pixel region which 

specifies the proportion of the pixels in the convex hull (Figure 22) circumscribing a connected 

black pixel region [56] and computed as: 

 𝑆𝐿𝐷 =
(𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛) 

(𝐶𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑔𝑖𝑜𝑛)
 (10) 

 

Figure 22 Example of convex hull of a connected black pixels area. 

In judging how close the AC of a given pie plate is to OBC, the evaluators would look for 

black pixel regions to have solid appearances. A solidity value of 1 implies that the given 
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connected black pixel region is entirely solid. The individual solidity values were averaged for 

each pie plate. 

4.1.5.3. Eccentricity 

This parameter specifies the eccentricity of the ellipse bearing the same second moment of 

area as the considered connected black pixel region. The eccentricity has the usual definition of 

ratio of the distance between the foci of the above ellipse and its major axis length [56]. For the 

ensuing analysis, the individual eccentricity values were averaged for each pie plate. 

Finally, an information vector X containing the averages of each of the above imaging 

parameters (Table 10) that are assumed to constitute the visual transfer function was set up for 

each pie plate sample (Figure 21) [66 and 67]. Then X, the corresponding asphalt binder contents 

and the estimated OBC values were used to develop the neural transfer function as described in 

Chapter 6. The GRNN prediction model are found in Appendix G. 

Table 10 Imaging parameters that represent the visual transfer process used for the study. 
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CHAPTER 5:  QUALITY CONTROL MODEL 

The author’s research developments in digital imaging processing to quantify the ABD on 

pie plates has resulted in the possibility of increased contractor involvement in the design and 

acceptance of OGFC mixtures designs. As a result, questions have arisen as to whether the results 

of QC tests of PPS production carried out by contractors should be incorporated into the acceptance 

criteria currently used by FDOT in addition to the proposed imaging processing algorithm 

presented in Chapter 4. In order to address these questions, the primary objective of this chapter is 

to develop the QCT to be implemented through the database generated during the Phases I and II 

of this study and accomplish the evaluation of the relevant QC parameters that would indicate the 

quality of the pie plate specimens3.  

The development of QCT is divided in three sections; (i) Evaluate and analyze ABD 

characterization by means of past aggregate characterization researchers studies [61 to 69] to 

provide bases for quantifying the image-based quality control imaging parameters (QCIP) of the 

surface appearance of pie plates highly relevant to QC of the ABD configuration of the pie plate 

specimen;  (ii) statistical verification of QCIP, and (iii) assess scientific acceptability of measure 

criteria (reliability and validity) of the QC results. 

5.1. Measure and Analyze ABD Characterization to Provide Quantifying QCIP 

Findings from one of the most complete studies [68] on defining internal aggregate 

parameters derived from images were used to analyze the ABD regions of the PPS digital images. 

                                                 
3Portions of this chapter were previously published in [50]. Permission is included in Appendix J. 
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The steps of redefining the ABD regions into ellipses is shown in Figure 20(a). Major and minor 

axes of ABD regions are essential for quantifying the QCIP. The major axis of a given ABD region 

is the line joining two pixels on the boundary contour that are the farthest apart and the length of 

that line is defined as the major axis length. On the other hand, the minor axis is the longest line 

perpendicular to the major axis that can be inscribed within that ABD region and its length is the 

minor axis length. For each ABD region, the aforementioned QCIP are calculated. 

5.1.1.  Orientation 

The set of orientation parameters of each ABD region can be defined using two criteria; (i) 

the orientation angle of the major axis with respect to the horizontal axis (𝜃𝑓) and (ii) the 

orientation angle of the major axis relative to the line joining the centroid of the region to the pie 

plate center (𝜃𝑜) [61-62, 68-69]. Figure 23 shows the orientation of connected black pixel (ABD) 

regions of the PPS image expressed using both the above criteria and calculated using equations 

(11) and (12) respectively. 

 
𝜃𝑓 = 𝑡𝑎𝑛−1

(𝑦𝑖 − 𝑦𝑗
𝑐)

(𝑥𝑖 − 𝑥𝑗
𝑐)

 (11) 

 
𝜃𝑜 =  𝑐𝑜𝑠−1

(𝑥𝑗
𝑐−𝑥𝑝) + tan 𝜃𝑓 ∗ (𝑦𝑗

𝑐−𝑦𝑝)

√1 +  (tan 𝜃𝑓)2 + √(𝑥𝑗
𝑐−𝑥𝑝)2 +  (𝑦𝑗

𝑐−𝑦𝑝)2 

 
(12) 

where 𝑥𝑗
𝑐  and 𝑦𝑗

𝑐 are the coordinates of the centroid of the labeled region j; 𝑥𝑝 and 𝑦𝑝 are the 

coordinates of the center of the pie plate; 𝑥𝑖  and 𝑦𝑖  are the coordinates of the surface pixel at the 

outer intersection of a given ABD ellipse and its major principal axis. It must be noted that 

 when 𝜃𝑓 = 90°, 𝜃𝑜 must to be calculated using 𝜃𝑜 =  𝑐𝑜𝑠−1(𝑦𝑗
𝑐−𝑦𝑝). 

The next step is the determination of the directional distribution of ABD by calculating the 

vector magnitude (∆𝑓), which quantifies the average anisotropy of orientation parameter 𝜃𝑓  [66, 

68-69]. The aforesaid directional distribution of the ABD vector magnitude is calculated using 
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Equation (13) [65 and 68].  The results of directional distribution of the ABD indices (∆𝑓) for all 

PPS tested in Phase I are presented in the forthcoming Summary of Findings chapter (Chapter 7). 

 
∆𝑓 =  

1

𝑀
∗ √(∑ cos 2𝜃𝑓

𝑀
𝑖=1 )2 + (∑ sin 2𝜃𝑓 

𝑀
𝑖=1 )2  

(13) 

where ∆𝑓 is the directional distribution of the ABD vector magnitude for the orientation, and M 

is the number of 𝜃𝑓 values in a given pie plate.  

 

Figure 23 Representation of connected black pixels on a pie plate image for SABD 

identification of the orientation relative to the center of the pie plate image. 

 

5.1.2. Spatial Distribution 

 

The spatial distribution (SD) is calculated by first dividing the PPS image into wedge 

sections as illustrated in Figure 24. Thirty degree sections were considered to be the optimum in 

this study and thus 12 wedge shaped sections covered the entire cross section of each PPS. Then, 

an algorithm was developed to evaluate the percentage of ABD with centroids within each 

section (𝑆𝐷𝑠𝑒𝑐𝑡𝑖𝑜𝑛), using Equation (14) [50, 62, 63, 66 and 67].  The presumption underlying the 

eventual analysis is that, if the ABD regions are evenly distributed in the PPS, then different 

sections should have more or less identical ABD areas. The pie plate spatial distribution (𝑆𝐷) 

parameter was calculated as the standard deviation of the 𝑆𝐷𝑠𝑒𝑐𝑡𝑖𝑜𝑛 in the twelve sections 
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computed using Equation (15). The results of the 𝑆𝐷𝑠𝑒𝑐𝑡𝑖𝑜𝑛 parameter by section and by pie plate 

for all PPS tested in Phase I are presented in the forthcoming Summary of Findings chapter 

(Chapter 7). 

 𝑆𝐷𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = [ 
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐵𝐷 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝜃=30° 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐵𝐷 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑒 𝑝𝑙𝑎𝑡𝑒 
] ∗ 100   (14) 

  

𝑆𝐷 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ( 𝑆𝐷𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1−12) 
 

 

(15) 

 

 

Figure 24 Representation of connected black pixels on a pie plate image for SABD 

identification for the location in the angular mesh. 

 

 5.1.3. Segregation 

Segregation (S) is calculated by first dividing each PPS into two sections in the radial 

direction; the outer section (𝑆𝑜 ) and the inner section (𝑆𝑖) of the PPS image which are of equal 

areas as illustrated in Figure 25 [61-63 and 69].   

The parameter S is evaluated by determining the percent of ABD regions with centroids 

within each of the two sections, using Equation (16) and the ratio of the ABD regions (inner/outer) 

is evaluated using Equation (17).  

 𝑆𝑜 𝑜𝑟 𝑖 = [ 
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐵𝐷 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑜𝑟 𝑖𝑛𝑛𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐵𝐷 𝑟𝑒𝑔𝑖𝑜𝑛𝑠  𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑒 𝑝𝑙𝑎𝑡𝑒  
] ∗ 100 (16) 
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𝑆 = [ 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐵𝐷 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑛𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐵𝐷 𝑟𝑒𝑔𝑖𝑜𝑛𝑠  𝑖𝑛 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛   
] 

(17) 

The algorithm then plots (in the form of column chart) the percentage of SABD regions in 

each section [69]. The tabulated results are presented in the forthcoming Summary of Findings 

chapter (Chapter 7). 

 

Figure 25 Representation of connected black pixels on a pie plate image for SABD 

identification illustrating sections of segregation. 

 

5.2. Statistical Verification of QCIP 

The quality of the output consists of two key components; target value and variability [70]. 

Target value is the goal set for a certain characteristic and variability describes how much a process 

varies from item-to-item [70]. For example, on a particular pie plate, the orientation of the ABD 

should be well distributed instead of being in the same direction. Quality control actions and 

considerations should be based on objective evidence and not subjective opinion. This does not 

mean that experience and expertise are not valuable but rather that they should be used to determine 

what measurements to consider and how to improve the process. Furthermore, all the pie plate 

samples (PPS) used in this study had satisfied the visual quality checks routinely performed by the 

FDOT technicians. Thus, the above PPS provided a basis for verifying the applicability of the QCIP 
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selected by the authors. Consequently, a statistical study was performed on the QCIP computed for 

all the PPS tested in Phase I of the study.  

The three imaging parameters (measures) defined above which are considered as potential 

QC parameters for the QCT were evaluated by the authors against the two scientific acceptability 

of measure criteria; reliability and validity. Reliability demonstrates that the measure data elements 

are repeatable, producing the same results a high proportion of the time when assessed in the same 

population in the same time period and/or that the measure score is precise and validity 

demonstrates that the measure data elements are correct and/or the measure score correctly reflects 

the quality of care provided, adequately identifying differences in quality [71].  

5.2.1. Orientation  

Theoretically, the values of the orientation parameter ∆𝑓 (equation (13)) range from 0 to 1 

with 0 representing a completely random distribution of ABD regions and 1 representing ABD 

regions that are perfectly aligned in one direction. Table 11(a) shows the statistical t-test results 

for ∆𝑓 parameter obtained from the PPS samples tested in Phase I. Statistical tables used for the 

evaluation of the results are found in Appendix I. Based on the t-test, it was found that the mean 

difference of the ∆𝑓 parameters within all PPS is 0.119 at a significant level of 99.9%. 

5.2.2. Spatial Distribution  

Theoretically, the value of 𝑆𝐷𝑠𝑒𝑐𝑡𝑖𝑜𝑛 for each section should be 8.33 for a perfectly 

uniform distribution of ABD in the 12 sections of the pie plate. Table 11(b) shows the statistical t-

test results for the pie plate spatial distribution (𝑆𝐷𝑝𝑖𝑒 𝑝𝑙𝑎𝑡𝑒) parameter for PPS produced in Phase 

I. Based on the results, it can be seen at a confidence level of 95% that the standard deviation of 

the spatial distribution (equation (5)) is within 0 and 1.52 for acceptable pie plates. Appendix I 

shows the completed generated results of the SPSS for the spatial distribution parameter.  
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Table 11 Statistical “t-test” for the QC parameters. 
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5.2.3. Segregation  

Theoretically, both the outer and inner segregation parameters ( 𝑆𝑜 and 𝑆𝑖) must be equal 

to 50 for an even distribution with no segregation in either the outer section or the inner section. 

In other words, the ratio (𝑆𝑟𝑎𝑡𝑖𝑜) of the ABD area (inner/outer) (Equation (17)) must be equal to 

1.0 for an evenly distributed ABD in a pie plate. Table 11(c) shows the statistical t-test results of 

the segregation parameters for the pie plates used in Phase I. It was found at a confidence level of 

99% that for the pie plates produced in Phase I, the 𝑆𝑟𝑎𝑡𝑖𝑜 has a mean value of 0.97. 

5.3. Assess Scientific Acceptability of Measure Criteria of the QC Results 

To ratify the QC results (target and ranges values), the data set was evaluated for scientific 

acceptability of measure properties (reliability and validity) [71] following the “Evaluation of 

Scientific Acceptability of Measure Properties” based on reliability and validity ratings as shown 

in Table 12.  

Table 12 Evaluation of scientific acceptability of measure properties based on reliability 

and validity ratings [71]. 

 

 
 

The first step in evaluating reliability and validity is to recognize the type of validity and 

the forms of reliability and how to measure them. The two main types of validity are Internal and 

External validity. Internal Validity is concerned with the degree of certainty that observed effects 
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in an experiment are actually the result of the experimental test. Internal validity is enhanced by 

increasing the control of these other variables. External Validity, in the other hand is concerned 

with the degree to which research findings can be applied to the real world, beyond the controlled 

setting of the research.  

The four forms of reliability are Inter-Observer, Test-Retest, Parallel-Forms or Alternate-

Forms, and Tests for Homogeneity or Internal Consistency. “Inter-Observer Reliability is used to 

assess the degree to which different observers agree when measuring the same phenomenon 

simultaneously. Test-Retest Reliability compares results from an initial test with repeated 

measures later on, the assumption being that the if the measurement is reliable there will be close 

agreement over repeated tests if the variables being measured remain unchanged.  

Parallel-Forms or Alternate-Forms Reliability is used to assess the consistency of the results of 

two similar types of test used to measure the same variable at the same time. Tests for Homogeneity 

or Internal Consistency, in the other hand is concerned with the measurement which would reflect 

the homogeneity of the results. This can be tested using several methods, the split-half form, 

Chronbach’s alpha, or Cohen’s kappa.” For this study the Chronbach’s alpha was used to obtain 

the lower bound on reliability using equation (18). Commonly-accepted rule of thumb is that 

Cronbach’s alpha of 0.7 (some say 0.6) indicates acceptable reliability and 0.8 or higher indicates 

good reliability. 

One can easily obtain Chronbach’s alpha values by using the following function provided 

in the Real Statistics Resource Pack in Excel: 

CRONALPHA(R1, k) = Cronbach’s alpha for the data in range R1 if k = 0 (default) and 

Cronbach’s alpha with kth item (i.e. column) removed if k > 0. 
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Figure 26 Calculation of Cronbach’s alpha for all the mixtures considered in this study. 
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Thus for the data (all the mixtures considered in this study), we can obtain the results shown 

in Figure 26 using CRONALPHA(B4:F118) for the QCIP gives the following: 

CRONALPHA(B4:F118) ∆𝑓  =.8777, CRONALPHA(B4:F118)SD =.0.9085, and 

CRONALPHA(B4:F118)S = .991. As you can see from Figure 26, Cronbach’s alpha values 

indicates acceptable reliability for all of the QCIP.  

 
𝛼 =  

𝐾

𝐾 − 1
 (1 −

∑ 𝜎𝑌𝑖

2𝐾
𝑖=1

𝜎𝑋
2 ) 

(18) 

where    K    is a sum of components (observed test scores), 𝜎𝑋
2  is the variance of the observed 

total test scores, and 𝜎𝑌𝑖

2   is the variance of component i for the current sample.  

Statistical analysis would also play a major role in the examination of statistical results that 

would be used to establish target values and acceptable tolerances of the QCIP. Using the statistical 

results derived from a supplementary simulation study developed by the authors, target values and 

acceptable tolerances were found for each QC parameter and based on them, guidelines for the use 

of QCIP were formulated. Table 13 shows the internal consistency values. 

Table 13 Internal consistency values [71]. 

 

In the expanded study, a sample set of computer-generated defective pie plates were 

produced using a computer algorithm to supplement a limited number of defective pie plates 

prepared by FDOT staff. In both sets of defective pie plates; computer-generated and those 
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prepared by FDOT staff, the SABD areas were represented by ellipses. Then, QCIP of both sets 

were evaluated. The statistical results of this set of defective pie plates and all PPS tested in Phase 

I are presented in the forthcoming Summary of Findings chapter (Chapter 7). 

5.3.1.   Orientation 

Based on the results presented in the forthcoming Summary of Findings chapter (Chapter 

7) and the scientific acceptability of measure criteria [71], the authors propose that the range of 

∆𝑓 of 0 to 0.25  be considered as the range for acceptable orientation of ABD in a pie plate sample. 

5.3.2.   Spatial Distribution 

Based on the results presented in the forthcoming Summary of Findings chapter (Chapter 

7) and the scientific acceptability of measure criteria [71], the authors propose that if the standard 

deviation of the SD values of the 12 sections of the pie plate is less than 1.52, the spatial distribution 

will be considered acceptable for a pie plate. 

5.3.3.   Segregation 

Based on the results presented in the forthcoming Summary of Findings chapter (Chapter 

7) and the scientific acceptability of measure criteria [71], the authors propose that the Sratio 

(inner/outer) range of 0.51 to 1.34 be considered acceptable for a pie plate. 
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CHAPTER 6:  NEURAL NETWORK-BASED PREDICTION MODEL 

FM 5-588 procedure is executed for each mixture with three pie plates and their trial AC’s 

known to the technicians. Then, the technicians use the above values and their visual perception 

of ABD in pie plates to estimate the OBC based on the ABD. Therefore, the input to the envisioned 

OBC prediction mechanism would consist of three parallel sets of information vectors (Xk, k=1, 

3) corresponding to each mixture. Each vector contains the imaging parameters described in 

Chapter 4, which are presumed to model the visual transfer process, and the corresponding three 

AC. Due to the vast extent of the input information and the complex relationship between the input 

data and the output y (OBC), a trained neural network was determined to be the most viable method 

of achieving the automated OBC prediction.  

The function of the neural network is to discover the nonlinear perceptive control function 

that relates the parameters included in the above three vectors (Xk) to a single OBC value y. This 

is facilitated by training an appropriate neural network with the information presented in the 

training input vectors (Xk) assembled using the experimental data gathered from the majority of 

mixtures tested in Phase I. The authors determined that this process can be successfully 

accomplished by a General Regression Neural Network (GRNN). GRNN approximates any 

arbitrary function between input and output vectors by executing the function estimation directly 

from training data [42]. GRNN is based on nonlinear regression theory for function estimation. 

The training set comprises m values of an input vector Xk with a single output value y. It must be 

noted that in the current investigation, each Xk is a set xj (j=1,n) values containing imaging 
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parameters and asphalt binder contents while y is the OBC corresponding to each Xk. Therefore, 

the GRNN must have n number of input nodes (neurons) and one output node (Figure 27(a)). 

The estimation of the expected value of y is based on the following generalized conditional 

probability [42]: 

 
𝐸(𝑦|𝑋) =  

∫ 𝑦 𝑓(𝑋, 𝑦)𝑑𝑦
∞

−∞

∫ 𝑓(𝑋, 𝑦)𝑑𝑦
∞

−∞

 
 (19) 

where f(X, y) is the joint probability density function of X and y. For problems involving numerical 

data such as the current one, Equation (19) can be simplified to the following form:  

 
�̂�(X) =  

∑ 𝑌𝑖ℎ𝑖 𝑛
𝑖=1

∑ ℎ𝑖
𝑛
𝑖=1

 
(20) 

 
ℎ𝑖 =  𝑒

[−
𝐷𝑖

2

2𝜎2]
 

(21) 

 𝐷𝑖
2 =  (𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖) (22) 

where: Xi and Yi are input and output values of the ith training sample (i=1,m) and Di, which is the 

squared distance between the point of prediction (particular X) and the ith training sample Xi.  

It can be seen that Equation (21) specifies a normally distributed weight, around the 

assumed mean of Xi and a standard deviation of σ, that can be attached to the output of the ith 

training sample. One realizes that the above weight decreases with Di. Typically, hi can be the 

output of a hidden layer neuron. Thus, instead of employing training weights like in other neural 

networks, (e.g. backpropagation neural network (BPNN)), the GRNN assigns the target value (Yi) 

directly to the weights from the training set. This regression method yields the estimated value of 

y, which minimizes the squared error [42].  GRNN incorporates a one-pass learning algorithm with 

a parallel structure, which is commonly described as a memory-based algorithm that provides 

estimates of continuous variables and converges to the underlying nonlinear regression surface 
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between y and X. Even with sparse data, the algorithm provides smooth transitions from one 

observed value (xj)i to another [42].  

 

Figure 27 Neural network flowchart for (a) multi-dimensional, (b) one dimension. 

A GRNN, like other probabilistic neural networks, needs only a fraction of the training 

samples a BPNN would need, to converge to the underlying function that would constitute the 

input and output data [42]. The additional knowledge needed to obtain a satisfactory fit is relatively 

small and can be done without additional input by the user. The above characteristics makes GRNN 

an ideal tool to implement estimates of systems that involve a complex relationship between a 

relatively large vector of input data such as Xk and the output y, as in the current OBC 

determination problem. The architecture of the GRNN used in this research consists of three layers; 

input layer, hidden layer and output layer. Two case studies are presented to illustrate the 

effectiveness of GRNN in this investigation. The first case study illustrates the exploration of the 

relationship between the relevant HVS parameters and the AC of pie plate mixtures using a one 

dimensional GRNN (Figure 27(b)). On the other hand, the second case study demonstrates the 

prediction of the OBC based on the relevant HVS parameters of pie plate mixtures by using a 

multi-dimensional GRNN (Figure 27(a).  The values of imaging parameters discussed in Chapter 

4 and the ACs are posed in 3 parallel vectors (Xk, k=1,3) containing elements xkj (k=1,3 and j=1,n) 
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each corresponding to one of a trial set of three pie plates with one common OBC estimate  y . 

This exercise is performed m times (i=1,m) during training of the GRNN. 

The analysis/output for the training, testing and predicting neural network model generates 

a results file where the data was tabulated in the forthcoming summary of findings chapter (Chapter 

7). 

  



75 

 

 

 

 

 

 

CHAPTER 7:  SUMMARY OF FINDINGS 

7.1.      Phase I- Preliminary Assessment of the Asphalt Binder Content Determination  

This phase of the study was performed to verify the accuracy of the existing FDOT method4 

by repeating the measurements using Matlab and Labview [51]. 

The results indicate the following: (1) The correlation between the percent black pixel area 

of the pie plate images and the asphalt binder content is not adequately defined for the former 

parameter to be used as a stand-alone parameter for accurate estimation of the asphalt binder 

content, (2) A regression analysis that employs both percent black pixel area and connectivity of 

black pixels seems to predict the asphalt binder content more accurately for all the mixtures 

considered in this study. The improved accuracy of the combined regression analysis involving 

both parameters identified above suggests that such estimation could be further improved by 

combining other relevant digital image based classification parameters. Based on these results the 

objective of the next phase was identified. Consequently, the author envision the possibility of 

using innovative imaging concepts and tools employed in machine vision and other cognitive 

sciences which would be more relevant to modeling the uncertainty arising from human judgment.   

7.2.  Phase II- Prediction of Optimum Asphalt Binder Content 

This phase of this study was performed to investigate the accuracy of the GRNN method 

by repeating two predictions previously made using two different regression models [51]. First, 

the asphalt binder contents of pie plates were predicted using one imaging parameter (PBA) using 

                                                 
4 Portions of this chapter were previously published in [51]. Permission is included in Appendix J.  
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a one dimensional GRNN prediction model (Figure 27(b)). Table 14 shows the sample set of input 

and output data used for one dimensional training.  In the second case, asphalt binder contents of 

pie plates were predicted from the entire set of imaging parameters using a multi-dimensional 

GRNN prediction model (Figure 27(a)). The information from the pie plate imaging parameters 

from 228 samples and the corresponding OBC data is posed to the GRNN in three parallel vectors 

as discussed in chapter 6. Table 15 shows the sample set of input and output data used for multi-

dimensional sample set of training and testing input data and predicted output data. 

For both cases, the data sample consisted of three trials each of nineteen mixture designs. 

Seventy percent of the data was used to train the GRNN by feeding the imaging parameters and 

the known asphalt binder contents. The remaining data was used for testing the GRNN. Figure 28 

shows the results of (a) predicted and actual asphalt binder contents of training data, and (b) 

predicted and actual asphalt binder contents of testing data, for the one dimensional GRNN 

prediction model. Similarly, Figure 28(c) and (d) show the corresponding results for the multi-

dimensional case. Figure 29 shows the results of OBC prediction using the multi-dimensional 

GRNN prediction model [51]. It is noted that multi-dimensional GRNN model has an improved 

correlation (R2 = 0.99) compared to its one dimensional counterpart (R2 = 0.96). Furthermore, it 

was observed that both GRNN prediction models of asphalt binder content are significantly better 

than the corresponding versions obtained by the author using simple linear regression analysis 

where the R2 values were 0.78 and 0.84 respectively [51].  
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Table 14 One-dimensional sample set of training and testing input data and predicted output data. 
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Figure 28 Neural network estimated AC for predicted versus actual for (a) one dimension training data, (b) one dimension 

testing data (c) multi-dimension training data, (d) multi-dimension testing data. 
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Table 15 Multi-dimensional sample set of training and testing input data and predicted output data. 
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Figure 29 Optimum binder content prediction for multi dimension GRNN validation 

prediction model. 

 

Steps for using the automated OBC prediction model are listed in Appendix H. 

7.3.      Phase III- QC Test Results and Analysis 

On evaluating each of the QCIP for PPS in the database created in Phase I, the favorable 

conclusions drawn from the results in Tables 16 and 17 regarding the acceptability of the 

corresponding PPS were also compared to the conclusions reached from the general observation 

of PPS of each mixture. Complete agreement of the conclusions seen in this exercise verified the 

applicability of the derived QCIP. In addition, it also verified the accuracy of the algorithm 

developed by the author in detecting the orientation, spatial distribution and segregation of the 

ABD regions of the PPS. 
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Table 16 Quality control parameter results for (a) orientation (∆𝒇), (b) spatial distribution (SD), and (c) segregation (S) results 

for sample sets for mixtures “A” to “S.” 

 

 
 

 

 

 



82 

 

Table 17 Results of parameters for defective pies sets. 
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Since all of the PPS generated in Phase I were acceptable, the above mentioned 

supplementary set of PPS consisting of computer-generated defective PPS and poor quality PPS 

created by FDOT were used to demonstrate that the author’s algorithm can also identify the inferior 

quality of those PPS images. The graphical comparisons of all three QCIP obtained from both 

types of PPS are shown in Figures 30-32.  

Based on the results of the above comparisons, the following conclusions can be drawn. 

The directional distribution (∆𝑓) representing each ABD region of a correctly placed PPS 

and a computer-generated defective PPS are shown in Table 16(a) and 17 (a) respectively. 

Therefore, the first QC parameter, orientation, which is based on ∆𝑓 indicate uniformity of ABD 

orientation within the PPS in acceptable pie plates. A sample of the results for the QC parameter, 

orientation, is shown in Figure 30.  Furthermore, based on Table 17, the values of ∆𝑓 for correctly 

placed PPS range from 0 to 0.25 and it can be concluded that orientations of all ABD regions in 

PPS tested in Phase I are randomly distributed, and not aligned along any one particular direction. 

The above observations agree with the observation-based acceptable quality of the pie plates with 

respect to orientation. On the other hand, the defective PPS where the ABD regions were clearly 

aligned in one direction indicated values of ∆𝑓 greater than 0.25. The above results seem to justify 

the consideration of the acceptable range of ∆𝑓 to be 0-0.25 [71]. 

The results for the second QC parameter, the spatial distribution (SD), are plotted in the 

form of a column chart. An example of such a plot for the images of mix “A” tested in Phase I and 

a defective computer-generated pie plate image are shown in Figure 31. Based on Tables 16(b) 

and 17(b), all standard deviations values of the SD parameter for the sample mixture “A” lie 

between 0 and 1.52. Meanwhile, for the defective pie plate image, the above value is 2.69.   The 
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above result seems to justify the consideration of the acceptable range of the standard deviation of 

the SD parameter to be 0-1.52 [71]. 

A sample of the results for the third QC parameter, segregation, is shown in Figure 32. 

Based on Tables 16(c) and 17(c),  𝑆𝑖 and 𝑆𝑜 values of 50% would indicate that the distribution of 

ABD within each section (inner and outer) is precisely the same and therefore no segregation had 

occurred in the PPS tested in Phase I. Based on the range of acceptability of 𝑆 values for inner and 

outer sections and that of the Sratio to be between 0.73 and 1.34 [62], the results show no evidence 

of segregation in some of the PPS images analyzed in this study. On the other hand, the defective 

PPS consistently produced values of Sratio of less than 0.73 and greater than 1.34. Hence it can be 

concluded that the above specified acceptability range for the Sratio seems to be reasonable [71]. 

 
Figure 30 Distribution orientation parameter (𝜽𝒇) for (a) an acceptable quality of a real pie 

plate image and (b) a slide synthetic pie plate image.  
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Figure 31 Bar chart representing spatial distribution (SD) of connected black pixel areas of a sample set (Mixture A) and a 

computer-generated set of pie plate.  
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Figure 32 Segregation results for predetermined AC contents for all of the samples testing in this research. 



87 

 

7.4. Implementation of the Neural Network-Based OBC Estimation 

The input data vector Xk contains three trial asphalt binder contents values specific to the 

aggregate and binder types that are predetermined by the agency. Therefore, when any given 

GRNN is trained by an adequate number of samples of each aggregate type, the GRNN would 

automatically recognize the aggregate type of any new mixture design based on the specific asphalt 

binder contents values in the input vector Xk. As an example, for this research the nominal 

maximum aggregate size was 12.5 mm. If this aggregate size blend is to be substituted by 9.5 mm 

nominal maximum aggregate size, then before the automated OBC determination process is 

executed, three phases of in-house testing must be carried out by FDOT. The first phase of testing 

consisting of an adequate number of pie plates tests must be performed following the FM5-588 to 

create a new database for the new size blend study as in Phase I of the current study.  Then, in the 

second phase, a comprehensive database of visual OBC estimates and the corresponding imaging 

parameters for pie plates prepared using the new aggregate must be compiled as in Phase I of the 

current study. In the final phase of testing, the neural network developed in Phase II of the current 

study must be re-trained with the modified dataset that also incorporates the trial asphalt binder 

contents, OBC estimates and the imaging parameters from the newly compiled database.       

The above logic can also be extended to include different binder types as well by assuming 

that an appropriately trained GRNN would also recognize the binder type based on the specific 

trial asphalt binder content values that are predefined by the agency and previously exposed to the 

GRNN.  

Hence the extension of the proposed neural network model to include a variety of 

additional types of aggregate and binders requires the building of a database that must be trained 

with an adequate number of mixture designs containing all possible types of aggregates and 
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binders and the corresponding specific trial asphalt binder contents values. Such a database can be 

set up conveniently by using the FM 5-588 to test all types of desired aggregate and binder types 

at pre-determined trial asphalt binder contents values relevant to those aggregate and binder types.  

Appendix C shows the steps that must be followed to use the software generated by the author that 

can automatically predict the OBC of OGFC mixtures using a multi-dimensional GRNN.
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CHAPTER 8:  CONCLUSIONS 

In order to eliminate the human subjectivity involved in the current FM 5-588 (pie plate) 

method, an automated test method for the direct estimation of the optimum asphalt binder content 

(OBC) of OGFC mixtures was developed using the analysis of pie plate images and concepts of 

perceptual image coding and NN. The investigation consisted of three distinct phases where Phase 

I involved the testing of a large set of OGFC samples prepared from granitic and oolitic limestone 

aggregate sources using FM-5-588 and the subsequent imaging of the corresponding pie plates. 

Phase II of the investigation was focused on the formulation of (i) a perceptual image model based 

on specific imaging parameters which utilize a combination of human visual metrics that model 

human perceptive effects involved in estimating the OBC, and (ii) a Generalized Regression 

Neural Network (GRNN) that would discover the nonlinear relationship among the above imaging 

parameters, the corresponding trial ACs and the OBC. The designed neural network was trained 

using a major part of the data collected from the tested OGFC mixtures that consisted of the ACs 

and the relevant imaging parameters and the visual OBC estimates. Then the GRNN-based OBC 

predictions performed on an independent part of the same database showed that the model provides 

satisfactory estimation of OBC values not previously presented to the GRNN. The research also 

demonstrated that, even with respect to predicting ACs using imaging parameters, a higher 

accuracy can be obtained from a trained GRNN compared to regression models. An added 

attractive feature of the neural network method is that it can conveniently incorporate parameters 

which are difficult to be included in analytical equations. Phase III of the investigation involved 

the development of an image-based tool for quality control of pie plate samples for FM5-588 
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procedure for OBC determination of OGFC mixtures. This algorithm evaluates the selected QCIP 

of pie plate images prior to executing image-based OBC prediction method developed in Phase II 

and ensures high reliability of results. The results of Phase III prove that QCT could be used in OGFC 

pie plate specimen production method for more effective selection of good quality specimens. The 

experimental results show that this algorithm is very efficient in maximizing the accuracy of OBC 

estimation.  
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CHAPTER 9: RECOMMENDATIONS FOR FUTURE WORK 

After accomplishing the envisioned objectives of the current research study, the 

investigators recommend the future research directions listed below: 

 The GRNN based OBC estimations can be compared with the corresponding visual estimations 

of the FDOT technicians, for a number of independent OGFC mixtures, to verify the automated 

method.  

 Future efforts can be focused on testing different OGFC mixtures to verify that this automation 

can be extended to other types of aggregates, binders (polymer modifiers and rubber) used by 

FDOT.   

 



92 

 

 

 

 

 

 

REFERENCES 

[1]  B. J. Putman, "Evaluation Of Open-Graded Friction Courses: Construction, 

Maintenance, and Performance," Report No. FHWA-SC-12-04. South Carolina 

Department of Transportation In Cooperation with: US Department of 

Transportation, South Carolina, 2012. 

 

[2]  Florida Department of Transportation, "Determining the Optimum Asphalt Binder 

Content of an Open-Graded Friction Course Using the Pie," FDOT, 2009. [Online]. 

[Accessed 10 10 2012]. 

 

[3]  N. M. Jackson, Choubane B., and Musselman, J. A. "A preliminary Evaluation of FC-

5 and FC-6 Friction Courses in Florida," Pavement Evaluation Conference, Roanoke, 

VA, 2002. 

 

[4]  National Center for Asphalt Technology (NCAT), "Design, Construction and 

Performance of New Generation of Open-Graded Friction Course Mixes," Research 

Synopsis-NCAT, Report No. 00-01, 2001. 

 

[5]  Florida Department of Transportation, "Florida Department of Transportation 

Specifications-Section 337," FDOT, 2010. [Online]. Available: http://www.dot. 

state.fl.us/specificationsoffice/implemented/specbooks/2010bk.shtm. [Accessed 9 10 

2013]. 

 

[6]  R. W. Smith, Rice, J. M., and Spelman, S. R. "Design of Open-Graded Asphalt 

Friction Courses," Federal Highway Administration Offices of Research and 

Development, Washington, D.C., 20590, January 1974 Interim Report. 

 

[7]  Florida Department of Transportation, "Test method for Image-based determination 

of Optimum Asphalt Content of FC-5 mixtures," FDOT State Material Office, 2012. 

 

[8]  Federal Highway Administration, "Asphalt mix design," U.S. Department of 

Transportation, 16 February 1998. [Online]. Available: 

http://isddc.dot.gov/OLPFiles/FHWA/010475.pdf. [Accessed 2 22 2013]. 

 

[9]  Pavia Services, "Pavement Interactive," Pavement Interactive.org, 2012. [Online]. 

Available: http://www.pavementinteractive.org. [Accessed 7 11 2012]. 

 



93 

 

[10]  G. Huber, "Performance Survey on Open-Graded Friction Course Mixes, NCHRP 

Synthesis of Highway Practice 284," Washington, D.C, 2000.  

 

[11]  P. Kandhal, "Design, Construction, and Maintenance of Open-Graded Asphalt 

Friction Courses," National Asphalt Pavement Association. Information Series 115, 

2002. 

 

[12]  Florida Department of Transportation, Standard Specification for Road and Bridge 

Construction, Tallahassee, Fla, 2004.  

 

[13]  Florida Department of Transportation, "Flexible Pavement Design Manual," 

Pavement Management Office. Document No. 625-010-002-G, 2008. 

 

[14]  L. Hwee and Guwe, W. "Performance Related Evaluation of Porous Asphalt Mix 

Design," Kuala Lumpur, Malaysia, 2004.  

 

[15]  C. Nielsen, "Durability of Porous Asphalt - International Experience," Danish Road 

Directorate, vol. 41, no. ISBS 8791177901, 9788791177903, pp. 27, 2006.  

  

[16]  D. Watson, Johnson, A., and Jared, D. "Georgia Department of Transportation's 

Progress in Open-Graded Friction Course Development," vol. Transportation 

Research Record No. 1616, 1998.  

 

[17]  V. Hafeli, "Open Graded Friction Courses (OFGC)," Ajax Paving Industries of 

Florida, 2012. [Online]. Available: http://www.worldofasphalt.com/Education/ 

General/Handouts/Files/W23%20Open%20Graded%20Mixes%20for%20Friction%

20Courses%20and%20Porous%20Pavements%20-%20Vince%20Hafeli. 

pdf. [Accessed 4 9 2014]. 

 

[18]  National Asphalt Pavement Association (NAPA), "Thin Hot Mix Asphalt Surfacing," 

National Asphalt Pavement Association, Lanham, MD, 1995. 

 

[19]  D. Hanson, and James, R. "Colorado DOT Tire/Pavement Noise Study," Colorado 

Department of Transportation, Colorado, 2004. 

 

[20]  B. Birgisson, Roque, R., Varadhan, A., Thai, T., and Jaiswal, L. "Evaluation of Thick 

Open-graded and Bonded Friction Course for Florida," University of South Florida- 

FDOT Report 4504-968-12, 3 2006. [Online]. Available: 

http://www.dot.state.fl.us/research-center/Completed_Proj/Summary_SMO/ 

FDOT_BC354_81_rpt.pdf. [Accessed 4 24 2014]. 

 



94 

 

[21]  Transportation Research Board, "Performance Survey on Open-Graded Friction 

Course Mixes, NCHRP Synthesis of Highway Practice 284," National Research 

Council, Washington, D.C, 2000. 

 

[22]  J.M.M. Molenaar, and Molenaar, A.A.A. "An Investigation into the Contribution of 

the Bituminous Binder to the Resistance to Raveling of Porous Asphalt," Barcelona, 

Spain, 2000.  

 

[23]  L.C. Kline, and Putman, B.J. "Comparison of Open Graded Friction Course (OGFC) 

Mix Design Procedures in the United States," vol. 90th Annual Meeting, no. CD-

ROM, 2011.  

 

[24]  A. Gendy, and Shalaby, A. “Mean Profile Depth of Pavement Surface Macrotexture 

Using Photometric Stereo Techniques," Journal of Transportation Engineering, vol. 

133, no. 7, pp. 433-440, 2007.  

 

[25]  S N. Goodman, Hassan, Y., and Abd El Halim, O. "Digital Sand Patch Test: Use of 

Digital Image Analysis for Measurement of Pavement Macrotexture," in TRB, 

Washington, DC, 2010.  

 

[26]  R. Elunai, Chandran, V., and Gallagher E. "Asphalt Concrete Surface Macrotexture 

Determination From Still Image," Vols. 12, no 3, pp. 857-869., 2011.  

 

[27]  A. Razaei, Hoyt, D., and Martin, A. "Simple Laboratory Method for Measuring 

Pavement Macrotexture," Transportation Research Board, no. 2227, pp. 146-152, 

2011.  

 

[28]  International Cybernetics Corporation (ICC), "Digital Imaging Systems," 

International Cybernetics Corporation, 2012. [Online]. [Accessed 11 1 2012]. 

 

[29]  S. Amarasiri, Gunaratne, M., and Sarkar, S. "Use of digital image modeling for 

evaluation of concrete pavement Macrotexture and wear." ASCE, vol. 138, no. 5, pp. 

589-602, 2012.  

 

[30]  R. Ravi, and Gunaratne, M. "Application of Digital Image Analysis for Friction 

Evaluation of Asphalt Pavements," 2011. 

 

[31]  K. Peterson, Carlson, J., Sutter, L., and Van Dam, T. "Methods for Threshold 

optimization for images collected from contrast enhanced concrete surfaces for air-

void system characterization.," Material Characterization, vol. 60, no. 7, pp. 710-715, 

2009.  

 



95 

 

[32]  Q. Zou, Cao, Y., Li, Q., Mao, Q., and Wang, S. "CrackTree: Automatic crack 

detection from pavement images," Pattern Recognition Letters, vol. 33, no. 3, pp. 

227-238, 2012.  

 

[33]  Y. Sun., Salari E., and Chou, E. "Automated Pavement Distress Detection Using 

Advanced Image Processing Techniques," Department of Civil Engineering and 

Electrical Engineering of the University of Toledo, Toledo, Ohio, 2009. 

 

[34]  Z.Q.Yue, Chen S., and Tham, L.G., "Finite element modeling of geomaterials using 

digital image processing," Computers and Geotechnics, vol. 30, no. 5, pp. 375-397, 

2003.  

 

[35]  L. Bruno, Parla, G., and Celauro, C. "Image analysis for detecting aggregate gradation 

in asphalt mixture from planar images," Construction and Building Materials, vol. 28, 

no. 1, pp. 21-30, 2012.  

 

[36]  Z. Pylyshyn, "Seeing and visualizing: It's not what you think," 2003. Massachusetts 

Institute of Technology., Chap 1 pp. 22-27, Chap 2 pp. 15-22, Chap 4 pp. 12-22, 

Chap 5 pp. 13-21, and 24-33, Chap 6 pp. 7-36, Chap 7 pp. 22-33, and Chap 8 pp. 1-

24. 

 

[37]  M. G. Albanesi and Guerrini, F. "An HVS-based adaptive coder for perceptually lossy 

image compression," Pattern Recognition, no. 36, pp. 997 – 1007, 2003.  

 

[38]  C.-Y. Wang, Lee, S.-M., and Chang, L.-W. "Short communication Designing JPEG 

quantization tables based on human visual system," Signal Processing: Image 

Communication, no. 16, pp. 501-506, 2001.  

 

[39]  I. Höntsch and Karam, L. J. "Locally Adaptive Perceptual Image Coding," IEEE 

Transactions on Image Processing, vol. 9, no. 9, 2000.  

 

[40]  A. B. Watson, "Efficiency of a model human image code," US National library of 

Medicine. National Institutes of Health, vol. 4, no. 12, pp. 2401-17, 1987.  

 

[41]  S. J. Thorpe, Delorme, A., Van Rullen, R., and Paquier, W. "Reverse Engineering of 

the Visual System using Networks of Spiking Neurons," IEEE International 

Symposium on Circuits and System, no. 4, pp. 405-408, 2000.  

 

[42]  D. F. Specht, "A General Regression Neural Network," IEEE transactions on neural 

Networks, vol. 2, no. 6, pp. 1045-9227, 1991.  

 

[43]  M. E. Haque and Sudhakar, K. V. "ANN based prediction model for fatigue crack 

growth in DP steel," Fatigue and Fracture of Engineering Materials and Structures, 

no. 23, pp. 63-68, 2001.  



96 

 

[44]  J. Yang, Road crack condition performance modeling using recurrent Markov chains 

and artificial neural networks, Graduate Theses and Dissertations. 

http://scholarcommons.usf.edu/etd/1310, 2004.  

 

[45]  S. A. Hannan, Manza, R. R., and Ramteke, R. J. "Generalized Regression Neural 

Network and Radial Basis Function for Heart Disease Diagnosis," International 

Journal of Computer Applications , vol. 7, no. 13, pp. 0975 – 8887, 2010.  

 

[46]  C.-Y. Lee and He, Y.-L. "Wind Prediction Based on General Regression Neural 

Network," in Second International Conference on Intelligent System Design and 

Engineering Application, IEEE DOI 10.1109/ISdea.2011.143617, 2012.  

 

[47]  I. Popescu, Constantinou, P., Nafornita M., and Nafornita, I. "Generalized regression 

neural network prediction model for indoor environment," in Computers and 

Communications: Ninth International Symposium on Mobile Radio communications 

Laboratory, Greece, Proceedings. ISCC 2004, 2004. 

  

[48]  Ö. Kişi, "Generalized regression neural networks for evapotranspiration modelling," 

Hydrological Sciences Journal, vol. 51, no. 6, pp. 1092-1105, 2006.  

  

[49]  M. Gunaratne and Mejias de Pernia, Y. "Final Report BDV25 - TWO 820-1," FDOT, 

Gainesville, 2014. 

 

[50]  M. Gunaratne and Mejias de Pernia, Y. "Final Report BDV25 - TWO 820-2," FDOT, 

Gainesville, June 2015. 

 

[51]  Y. Mejias de Pernia, Gunaratne, M., Nash, T., and Musselman, J. "Preliminary 

assessment of Asphalt binder content of open-graded friction course (OGFC) 

mixtures using digital image processing," presented at the Annual TRB meeting, 

Washington, D.C, Jan. 2015.  

 

[52]  Florida Department of Transportation, "Florida Department of Transportation 

Specifications-Section 901 and 902," FDOT, 9 10 2013. [Online]. Available: 

http://www.dot.state.fl.us/specificationsoffice/implemented/specbooks/2010bk.shtm. 

[Accessed 4 15 2013]. 

 

[53]  American Association of State Highway and Transportation Officials (AASHTO), 

"AASHTO Method T2: Sampling of Aggregates," [Online] Available at: 

ftp://ftp.odot.state.or.us/techserv/cons, 1991. [Accessed 4 15 2013]. 

 

[54]  Florida Department of Transportation, "FM 1T-248: Florida Method test for reducing 

samples of aggregate to testing size," 1 September 2000. [Online]. Available: 

http://www2.dot.state.fl.us/procurement/ProfessionalServices/ 

advertise/pdf/14433.pdf. [Accessed 15 April 2013]. 



97 

 

[55]  Z. Zhang, "Camera Calibration," Photogrammetric, 1971. [Online]. Available: 

http://cronos.rutgers.edu/~meer/TEACHTOO/PAPERS/zhang.pdf. [Accessed 4 26 

2014]. 

 

[56]  The MathWorks Inc., Image Processing Toolbox User's Guide, Natick, MA: The 

MathWorks, Inc., 1997.  

 

[57]  H. M. Zelelew, Papagiannakis, A. T.; Masad, E., "Application of Digital image 

processing techniques for asphalt concrete mixture images," in 12th International 

Conference on Computer Methods and Advances in Geomechanics, 2008.  

 

[58]  R.C. Gonzalez and Woods, R. E. "Some Basic Relationships Between Pixels," in 

Digital Image Processing, Third Edition, Saddle River, NJ, Pearson, 2007, pp. 68-71. 

 

[59]  J.-S. Chen, Shiah, M.-S., and Chen, H.-J. "Quantification of Coarse Aggregate Shape 

and Its Effect on Engineering Properties of Hot-Mix Asphalt Mixtures," Journal of 

Testing and Evaluation, JTEVA, Vol. 29, No. 6, pp. 513–519, 2001.  

 

[60]  FDOT Materials office collaborators consisting of the project managers, Personal 

Communication. State Materials FDOT, 2014-2015.  

 

[61]  L. Bessa, Castelo Branco, V., and Soares, J. "Evaluation of different digital images 

processing software for aggregates and hot mix asphalt characterizations," 

Construction and building materials, no. 37, pp. 370-378, 2012.  

 

[62]  N.A. Hassan, Airey, G.D., Khan R., and Collop, A.C. Nondestructive 

Characterization of the Effect of Asphalt Mixture Compaction on Aggregate 

Orientation and Segregation Using X-ray Computed Tomography," International 

Journal of Pavement Research and Technology, vol. 5, no. 2, pp. 84-92, 2012.  

 

[63]  M. Vadood, Johari, M.S. and Rahaei, A. R. "Introducing a simple method to 

determine aggregate gradation of hot mix asphalt using image processing," 

International Journal of Pavement Engineering, vol. 15, no. 2 DOI: 

10.1080/10298436.2013.786076, 2014, pp. 142-150, 2014.  

 

[64]  E. Masad, "Review of imaging techniques for characterizing the shape of aggregates 

used in asphalt mixes," in Symposium, 2001.  

 

[65]  E. Masad, "The Development of a Computer Controlled lmage Analysis System for 

Measuring Aggregate Shape Properties," Transportation research Board: Final 

Report for Highway-IDEA Project 77, Vols. Washington State university, Pullman, 

WA., 2003.  

 



98 

 

[66]  C.F. Mora, Kwan, A.K.H., and Chan, H.C. "Particle Size Distribution Analysis of 

Coarse Aggregate," Cement and Concrete Research, Vol. 28, No. 6, pp. 921–932, 

1998.  

 

[67]  A.K.H. Kwan, Mora, C.F., and Chan, H. C. "Particle shape analysis of coarse 

aggregate using digital image processing," Cement and Concrete research, vol. 

Elsevier Science Ltd, PII: S0008-8846(99)00105-2, pp. 1403-1410, 1999.  

 

[68]  Z. Q. Yue, Bekking, W., and Morin, I, "Characterization of Aggregates and 

Quantitatively Study of Asphalt Concrete Microstructure," in Transportation 

Research Record 1492, Washington, D.C, National Research Council, 1995, pp. 53-

60. 

 

[69]  A. R. Coenen, Kutay, M. E., Sefidmazgi, N. R., and Bahia, H. U. "Aggregate 

structure characterization of asphalt mixtures using two-dimensional image analysis," 

Road Materials and Pavement Design, pp. 13:3, 433-454, DOI: 

10.1080/14680629.2012.711923, 2012.  

 

[70]  C. J. LaVassar, Mahoney, J. P., and Willoughby, K. A. "Statistical Assessment of 

Quality Assurance-Quality Control Data for Hot Mix Asphalt," Washington State 

Department of Transportation, Seattle, Washington, 2009. 

 

[71]  National Quality Forum, "Measure testing and Scientific Acceptability of Measure 

Properties," 2011. [Online]. Available: http://www.qualityforum. 

org/docs/measure_evaluation_criteria.aspx. [Accessed 6 22 2015]. 



99 

 

 

 

 

 

 

APPENDIX A: TABLE OF EXPERIMENTAL TEST PLAN 

Table A1 Experimental test plan. 
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Table A1 (Continued) 

 

 
 

 



101 

 

Table A1 (Continued) 
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Table A1 (Continued) 
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APPENDIX B: TRACKING OF THE EXPERIMENTAL PROCESS 

Table B1 Tracking of experimental process for granite NS315 mix designs. 
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Table B2 Tracking of experimental process for granite GA553 mix designs. 
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Table B3 Tracking of experimental process for oolitic 87339 mix designs. 
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Table B4 Tracking of experimental process for oolitic 87145 mix designs. 
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APPENDIX C: DETERMINATION OF OBC TEST FOR OGFC MIXTURES  
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APPENDIX D: GENERAL INFORMATION BY MIX 

D.1  General Information of Mix A  

Table D1 Aggregate and binder type for mix A. 

Mix ID Mix A 

Aggregate Type Granite 

Quarry Location Nova Scotia 

Supplier Martin Marietta 

FDOT designation No. 9165A 

FDOT code NS315 

Binder Grade PG 67-22 

 

Table D2 FDOT OGFC gradation specifications for mix A. 

 

GRANITIC

NS315

9165A

MIX

A

3/4"      19.0mm 100 100

1/2"      12.5mm 95 85 _ 100

3/8"        9.5mm 74 55 _ 75

No. 4    4.75mm 20 15 _ 25

No. 8    2.36mm 8 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 4   

No. 50    300µm 4   

No. 100  150µm 4   

No. 200    75µm 3.40 2 _ 4

GSB 2.624

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D1 Gradation curves for mix A.
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D.2  General Information of Mix B 

Table D3 Aggregate and binder type for mix B. 

Mix ID Mix B 

Aggregate Type Granite 

Quarry Location Nova Scotia 

Supplier Martin Marietta 

FDOT designation No. 9476A 

FDOT code NS315 

Binder Grade PG 67-22 

 

Table D4 FDOT OGFC gradation specifications for mix B. 

GRANITIC

NS315

9476A

MIX

B

3/4"      19.0mm 100 100

1/2"      12.5mm 96 85 _ 100

3/8"        9.5mm 70 55 _ 75

No. 4    4.75mm 23 15 _ 25

No. 8    2.36mm 10 5 _ 10

No. 16  1.18mm 5   

No. 30    600µm 4   

No. 50    300µm 3   

No. 100  150µm 3   

No. 200    75µm 2.50 2 _ 4

GSB 2.677

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D2 Gradation curves for mix B.
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D.3  General Information of Mix C 

Table D5 Aggregate and binder type for mix C. 

Mix ID Mix C 

Aggregate Type Granite 

Quarry Location Nova Scotia 

Supplier Martin Marietta 

FDOT designation No. 9642A 

FDOT code NS315 

Binder Grade PG 67-22 

 

Table D6 FDOT OGFC gradation specifications for mix C. 

 

GRANITIC

NS315

9642A

MIX

C

3/4"      19.0mm 100 100

1/2"      12.5mm 96 85 _ 100

3/8"        9.5mm 71 55 _ 75

No. 4    4.75mm 15 15 _ 25

No. 8    2.36mm 8 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 5   

No. 50    300µm 4   

No. 100  150µm 3   

No. 200    75µm 2.30 2 _ 4

GSB 2.626

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D3 Gradation curves for mix C.
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D.4  General Information of Mix D 

Table D7 Aggregate and binder type for mix D. 

Mix ID Mix D 

Aggregate Type Granite 

Quarry Location Nova Scotia 

Supplier Martin Marietta 

FDOT designation No. 9646A 

FDOT code NS315 

Binder Grade PG 67-22 

 

Table D8 FDOT OGFC gradation specifications for mix D. 
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Figure D4 Gradation curves for mix D.
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D.5  General Information of Mix E 

Table D9 Aggregate and binder type for mix E. 

Mix ID Mix E 

Aggregate Type Granite 

Quarry Location Nova Scotia 

Supplier Martin Marietta 

FDOT designation No. 9657A 

FDOT code NS315 

Binder Grade PG 67-22 

 

Table D10 FDOT OGFC gradation specifications for mix E. 

 

GRANITIC

NS315

9657A

MIX

E

3/4"      19.0mm 100 100

1/2"      12.5mm 85 85 _ 100

3/8"        9.5mm 67 55 _ 75

No. 4    4.75mm 23 15 _ 25

No. 8    2.36mm 10 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 4   

No. 50    300µm 3   

No. 100  150µm 3   

No. 200    75µm 2.50 2 _ 4

GSB 2.630

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D5 Gradation curves for mix E.
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D.6  General Information of Mix F 

Table D11 Aggregate and binder type for mix F. 

Mix ID Mix F 

Aggregate Type Granite 

Quarry Location Georgia 

Supplier Junction City 

FDOT designation No. 9160A 

FDOT code GA553 

Binder Grade PG 67-22 

 

Table D12 FDOT OGFC gradation specifications for mix F. 
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Figure D6 Gradation curves for mix F.
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D.7  General Information of Mix G 

Table D13 Aggregate and binder type for mix G. 

Mix ID Mix G 

Aggregate Type Granite 

Quarry Location Georgia 

Supplier Junction City 

FDOT designation No. 9184A 

FDOT code GA553 

Binder Grade PG 67-22 

 

Table D14 FDOT OGFC gradation specifications for mix G. 

 

GRANITIC

GA553

9184A

MIX

G

3/4"      19.0mm 100 100

1/2"      12.5mm 97 85 _ 100

3/8"        9.5mm 75 55 _ 75

No. 4    4.75mm 23 15 _ 25

No. 8    2.36mm 9 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 5   

No. 50    300µm 5   

No. 100  150µm 4   

No. 200    75µm 2.50 2 _ 4

GSB 2.769

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)



127 

 

 

Figure D7 Gradation curves for mix G.
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D.8  General Information of Mix H 

Table D15 Aggregate and binder type for mix H. 

Mix ID Mix H 

Aggregate Type Granite 

Quarry Location Georgia 

Supplier Junction City 

FDOT designation No. 9250A 

FDOT code GA553 

Binder Grade PG 67-22 

 

Table D16 FDOT OGFC gradation specifications for mix H. 

 

GRANITIC

GA553

9250A

MIX

H

3/4"      19.0mm 100 100

1/2"      12.5mm 94 85 _ 100

3/8"        9.5mm 68 55 _ 75

No. 4    4.75mm 19 15 _ 25

No. 8    2.36mm 8 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 4   

No. 50    300µm 3   

No. 100  150µm 3   

No. 200    75µm 2.40 2 _ 4

GSB 2.766

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D8 Gradation curves for mix H.
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D.9  General Information of Mix I 

Table D17 Aggregate and binder type for mix I. 

Mix ID Mix I 

Aggregate Type Granite 

Quarry Location Georgia 

Supplier Junction City 

FDOT designation No. 9824A 

FDOT code GA553 

Binder Grade PG 67-22 

 

Table D18 FDOT OGFC gradation specifications for mix I. 
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Figure D9 Gradation curves for mix I.
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D.10  General Information of Mix J 

Table D19 Aggregate and binder type for mix J. 

Mix ID Mix J 

Aggregate Type Granite 

Quarry Location Georgia 

Supplier Junction City 

FDOT designation No. 9773A 

FDOT code GA553 

Binder Grade PG 67-22 

 

Table D20 FDOT OGFC gradation specifications for mix J. 

 

GRANITIC

GA553

9773A

MIX

J

3/4"      19.0mm 100 100

1/2"      12.5mm 96 85 _ 100

3/8"        9.5mm 67 55 _ 75

No. 4    4.75mm 23 15 _ 25

No. 8    2.36mm 9 5 _ 10

No. 16  1.18mm 5   

No. 30    600µm 4   

No. 50    300µm 3   

No. 100  150µm 3   

No. 200    75µm 2.60 2 _ 4

GSB 2.769

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D10 Gradation curves for mix J.
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D.11  General Information of Mix K 

Table D21 Aggregate and binder type for mix K. 

Mix ID Mix K 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier White Rock 

FDOT designation No. 9126A 

FDOT code 87339 

Binder Grade PG 67-22 

 

Table D22 FDOT OGFC gradation specifications for mix K. 
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Figure D11 Gradation curves for mix K.
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D.12  General Information of Mix L 

Table D23 Aggregate and binder type for mix L. 

Mix ID Mix L 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier White Rock 

FDOT designation No. 9400A 

FDOT code 87339 

Binder Grade PG 67-22 

 

Table D24 FDOT OGFC gradation specifications for mix L. 

 

OOLITIC

87339

9400A

MIX

L

3/4"      19.0mm 100 100

1/2"      12.5mm 92 85 _ 100

3/8"        9.5mm 69 55 _ 75

No. 4    4.75mm 24 15 _ 25

No. 8    2.36mm 8 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 5   

No. 50    300µm 4   

No. 100  150µm 3   

No. 200    75µm 2.60 2 _ 4

GSB 2.415

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D12 Gradation curves for mix L. 
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D.13  General Information of Mix M 

Table D25 Aggregate and binder type for mix M. 

Mix ID Mix M 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier White Rock 

FDOT designation No. 9138A 

FDOT code 87339 

Binder Grade PG 67-22 

 

Table D26 FDOT OGFC gradation specifications for mix M. 
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Figure D13 Gradation curves for mix M.
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D.14  General Information of Mix N 

Table D27 Aggregate and binder type for mix N. 

Mix ID Mix N 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier White Rock 

FDOT designation No. 9139A 

FDOT code 87339 

Binder Grade PG 67-22 

 

Table D28 FDOT OGFC gradation specifications for mix N. 

 

OOLITIC

87339

9139A

MIX

N

3/4"      19.0mm 100 100

1/2"      12.5mm 87 85 _ 100

3/8"        9.5mm 66 55 _ 75

No. 4    4.75mm 25 15 _ 25

No. 8    2.36mm 10 5 _ 10

No. 16  1.18mm 7   

No. 30    600µm 5   

No. 50    300µm 4   

No. 100  150µm 3   

No. 200    75µm 3.00 2 _ 4

GSB 2.410

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D14 Gradation curves for mix N. 
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D.15  General Information of Mix O 

Table D29 Aggregate and binder type for mix O. 

Mix ID Mix O 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier White Rock 

FDOT designation No. 9469A 

FDOT code 87339 

Binder Grade PG 67-22 

 

Table D30 FDOT OGFC gradation specifications for mix O. 
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Figure D15 Gradation curves for mix O.
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D.16  General Information of Mix P 

Table D31 Aggregate and binder type for mix P. 

Mix ID Mix P 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier White Rock 

FDOT designation No. 10134A 

FDOT code 87339 

Binder Grade PG 67-22 

 

Table D32 FDOT OGFC gradation specifications for mix P. 

 

OOLITIC

87339

10134A

MIX

P

3/4"      19.0mm 100 100

1/2"      12.5mm 90 85 _ 100

3/8"        9.5mm 70 55 _ 75

No. 4    4.75mm 23 15 _ 25

No. 8    2.36mm 7 5 _ 10

No. 16  1.18mm 3   

No. 30    600µm 3   

No. 50    300µm 2   

No. 100  150µm 2   

No. 200    75µm 2.00 2 _ 4

GSB 2.409

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D16 Gradation curves for mix P. 
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D.17  General Information of Mix Q 

Table D33 Aggregate and binder type for mix Q. 

Mix ID Mix Q 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier Titan America 

FDOT designation No. 6954A 

FDOT code 87145 

Binder Grade PG 67-22 

 

Table D34 FDOT OGFC gradation specifications for mix Q. 
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Figure D17 Gradation curves for mix Q. 
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D.18  General Information of Mix R 

Table D35 Aggregate and binder type for mix R. 

Mix ID Mix R 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier Titan America 

FDOT designation No. 7806A 

FDOT code 87145 

Binder Grade PG 67-22 

 

Table D36 FDOT OGFC gradation specifications for mix R. 

 

OOLITIC

87145

7806A

MIX

R

3/4"      19.0mm 100 100

1/2"      12.5mm 91 85 _ 100

3/8"        9.5mm 68 55 _ 75

No. 4    4.75mm 20 15 _ 25

No. 8    2.36mm 8 5 _ 10

No. 16  1.18mm 6   

No. 30    600µm 5   

No. 50    300µm 4   

No. 100  150µm 3   

No. 200    75µm 2.60 2 _ 4

GSB 2.354

Sieve Size
CONTROL 

POINTS

FDOT mix design number

Percent Pasing (%)
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Figure D18 Gradation curves for mix R.
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D.19  General Information of Mix S 

Table D37 Aggregate and binder type for mix S. 

Mix ID Mix S 

Aggregate Type Oolite 

Quarry Location Miami/Dade 

Supplier Titan America 

FDOT designation No. 9932A 

FDOT code 87145 

Binder Grade PG 67-22 

 

Table D38 FDOT OGFC gradation specifications for mix S. 

 



151 

 

 

Figure D19 Gradation curves for mix S. 
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APPENDIX E: COMPARISON OF LABVIEW AND MATLAB RESULTS 

 
 

Figure E1 Labview versus Matlab digital image results -mix A. 
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Figure E2 Labview versus Matlab digital image results -mix B. 
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Figure E3 Labview versus Matlab digital image results -mix C. 
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Figure E4 Labview versus Matlab digital image results -mix D. 
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Figure E5 Labview versus Matlab digital image results -mix E. 
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Figure E6 Labview versus Matlab digital image results -mix F. 
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Figure E7 Labview versus Matlab digital image results -mix G. 
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Figure E8 Labview versus Matlab digital image results -mix H. 
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Figure E9 Labview versus Matlab digital image results -mix I. 
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Figure E10 Labview versus Matlab digital image results -mix J. 
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Figure E11 Labview versus Matlab digital image results -mix K. 
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Figure E12 Labview versus Matlab digital image results -mix L. 
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Figure E13 Labview versus Matlab digital image results -mix M. 
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Figure E14 Labview versus Matlab digital image results -mix N. 
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Figure E15 Labview versus Matlab digital image results -mix O. 
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Figure E16 Labview versus Matlab digital image results -mix P. 
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Figure E17 Labview versus Matlab digital image results -mix Q. 
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Figure E18 Labview versus Matlab digital image results -mix R. 
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Figure E19 Labview versus Matlab digital image results -mix S. 
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APPENDIX F: RESULTS OF ASPHALT CONTENT CORRELATIONS 
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Figure F1 Mix A %black area versus %binder contents. 

 

 
 

Figure F2 Mix A %connected black area versus %binder contents. 
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y = 22.625x - 77.05
R² = 0.7296
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Figure F3 Mix B %black area versus %binder contents. 
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Figure F4 Mix B %connected black area versus %binder contents. 
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Figure F5 Mix C %black area versus %binder contents. 

 

 
 

Figure F6 Mix C %connected black area versus %binder contents. 
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Figure F7 Mix D %black area versus %binder contents. 

 

 
 

Figure F8 Mix D %connected black area versus %binder contents.  
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Figure F9 Mix E %black area versus %binder contents. 

 

 
 

Figure F10 Mix E %connected black area versus %binder contents.  
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Figure F11 Mixtures NS315 %black area versus %binder contents. 

 

 
 

Figure F12 Mixtures NS315 %connected black area versus %binder contents. 
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Figure F13 Mix F %black area versus %binder contents. 

 

 
 

Figure F14 Mix F %connected black area versus %binder contents. 
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Figure F15 Mix G %black area versus %binder contents. 

 

 
 

Figure F16 Mix G %connected black area versus %binder contents. 
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Figure F17 Mix H %black area versus %binder contents. 

 

 
 

Figure F18 Mix H %connected black area versus %binder contents. 
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Figure F19 Mix I %black area versus %binder contents. 

 

 
 

Figure F20 Mix I %connected black area versus %binder contents. 
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Figure F21 Mix J %black area versus %binder contents. 

 

 
 

Figure F22 Mix J %connected black area versus %binder contents. 
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Figure F23 Mixtures GA553 %black area versus %binder contents. 

 

 
 

Figure F24 Mixtures GA553 %connected black area versus %binder contents.  
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Figure F25 Mix K %black area versus %binder contents. 

 

 
 

Figure F26 Mix K %connected black area versus %binder contents. 
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Figure F27 Mix L %black area versus %binder contents. 

 

 
 

Figure F28 Mix L %connected black area versus %binder contents. 
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Figure F29 Mix M %black area versus %binder contents. 

 

 
 

Figure F30 Mix M %connected black area versus %binder contents. 
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Figure F31 Mix N %black area versus %binder contents. 

 

 
 

Figure F32 Mix N %connected black area versus %binder contents. 
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Figure F33 Mix O %black area versus %binder contents. 

 

 
 

Figure F34 Mix O %connected black area versus %binder contents. 
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Figure F35 Mix P %black area versus %binder contents. 

 

 
 

Figure F36 Mix P %connected black area versus %binder contents.    
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Figure F37 Mixtures 87339 %black area versus %binder contents. 

 

 
 

Figure F38 Mixtures 87399 %connected black area versus %binder contents. 
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Figure F39 Mix Q %black area versus %binder contents. 

 

 
 

Figure F40 Mix Q %connected black area versus %binder contents.  
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Figure F41 Mix R %black area versus %binder contents. 

 

 
 

Figure F42 Mix R %connected black area versus %binder contents. 
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Figure F43 Mix S %black area versus %binder contents. 

 

 
 

Figure F44 Mix S %connected black area versus %binder contents. 
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Figure F45 Mixtures 87145 %black area versus %binder contents. 

 

 
 

Figure F46 Mixtures 87145 %connected black area versus %binder contents.
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APPENDIX G: GRNN PREDICTION MODEL TABLES 

Table G1 Data base for the granitic and oolitic materials using GRNN model. 
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Table G1 (Continued) 
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Table G2 Training, testing and predicting data base for the granitic and oolitic materials using GRNN model. 

 

         
 

 

 

 

 

 

 

 

Estimated 

Binder Tag Used Prediction Good/Bad Residual Tag Used Prediction Good/Bad Residual Tag Used Prediction

5.40 test 5.56 Good -0.16 train predict 5.60

5.50 test 5.55 Good -0.05 train predict 5.60

5.70 train test 5.41 Good 0.29 predict 5.70

5.40 train train predict 5.70

5.70 train train predict 5.70

5.50 train train predict 5.50

5.10 test 5.10 Good 0.00 train predict 5.10

5.10 train train predict 5.10

5.20 train test 5.20 Good 0.00 predict 5.20

5.20 train train predict 5.20

5.70 test 5.60 Good 0.10 train predict 5.70

5.70 test 5.60 Good 0.10 train predict 5.70

5.20 train test 5.21 Good -0.01 predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.60 train train predict 5.61

5.60 train test 5.60 Good 0.00 predict 5.60

5.20 test 5.20 Good 0.00 train predict 5.20

5.20 train train predict 5.20

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 test 5.40 Good 0.00 test 5.39 Good 0.01 predict 5.40

5.40 train train predict 5.40

5.50 train train predict 5.50

5.50 test 5.53 Good -0.03 train predict 5.50

5.60 train train predict 5.60

5.60 train train predict 5.60

5.60 train test 5.60 Good 0.00 predict 5.60

5.60 train test 5.67 Good -0.07 predict 5.60

5.30 train test 5.30 Good 0.00 predict 5.30

5.30 train train predict 5.30

5.50 train train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train test 5.70 Good 0.00 predict 5.70

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 test 5.51 Good -0.01 train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.80 train train predict 5.80

5.80 train train predict 5.80

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 train test 5.40 Good 0.00 predict 5.40

5.40 train train predict 5.40

5.60 test 5.59 Good 0.01 train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 test 5.70 Good 0.00 train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 train train predict 5.80

5.80 test 5.80 Good 0.00 train predict 5.80

5.08 train train predict 5.27

5.80 train test 5.08 Good 0.72 predict 5.61

5.90 train train predict 5.90

5.90 train test 5.90 Good 0.00 predict 5.90

5.80 train train predict 5.80

5.80 train train predict 5.80

6.00 train test 5.99 Good 0.01 predict 6.00

6.00 train train predict 6.00

6.10 train train predict 6.10

6.10 train train predict 6.10

5.60 train train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 test 5.80 Good 0.00 train predict 5.80

5.80 train test 5.80 Good 0.00 predict 5.80

6.00 train test 6.00 Good 0.00 predict 6.00

6.00 train train predict 6.00

6.10 test 5.54 Good 0.56 train predict 6.09

6.10 test 5.56 Good 0.54 train predict 6.09

6.00 train train predict 6.00

6.00 train train predict 6.00

5.80 train train predict 5.80

5.80 train train predict 5.80

5.90 train test 5.80 Good 0.10 predict 5.86

5.80 train train predict 5.84

5.80 test 5.91 Good -0.11 train predict 5.82

5.90 train train predict 5.88

5.80 train test 5.80 Good 0.00 predict 5.81

5.80 train train predict 5.82

6.00 train train predict 6.10

6.10 test 6.00 Good 0.10 train predict 6.10

6.10 test 6.01 Good 0.09 train predict 6.00

6.00 test 6.08 Good -0.08 test 6.10 Good -0.10 predict 6.00

6.70 train train predict 6.70

6.70 train train predict 6.70

6.80 train train predict 6.59

6.80 train train predict 6.59

6.70 train train predict 6.70

6.70 train train predict 6.70

6.70 test 6.62 Good 0.08 train predict 6.75

6.90 test 6.21 Good 0.69 train predict 6.85

7.00 train train predict 7.00

7.00 train test 6.99 Good 0.01 predict 7.00

6.90 test 6.70 Good 0.20 test 6.70 Good 0.20 predict 6.84

6.70 train train predict 6.74

Train-Test Report for Net Trained on Data Set #1 Train-Test Report for Net Trained on Data Set #1 Prediction Report: "Net Trained on Data Set #1
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Table G2 (Continued) 

 

  

 
 

 

 

 

 

 

Estimated 

Binder Tag Used Prediction Good/Bad Residual Tag Used Prediction Good/Bad Residual Tag Used Prediction

5.40 test 5.56 Good -0.16 train predict 5.60

5.50 test 5.55 Good -0.05 train predict 5.60

5.70 train test 5.41 Good 0.29 predict 5.70

5.40 train train predict 5.70

5.70 train train predict 5.70

5.50 train train predict 5.50

5.10 test 5.10 Good 0.00 train predict 5.10

5.10 train train predict 5.10

5.20 train test 5.20 Good 0.00 predict 5.20

5.20 train train predict 5.20

5.70 test 5.60 Good 0.10 train predict 5.70

5.70 test 5.60 Good 0.10 train predict 5.70

5.20 train test 5.21 Good -0.01 predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.60 train train predict 5.61

5.60 train test 5.60 Good 0.00 predict 5.60

5.20 test 5.20 Good 0.00 train predict 5.20

5.20 train train predict 5.20

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 test 5.40 Good 0.00 test 5.39 Good 0.01 predict 5.40

5.40 train train predict 5.40

5.50 train train predict 5.50

5.50 test 5.53 Good -0.03 train predict 5.50

5.60 train train predict 5.60

5.60 train train predict 5.60

5.60 train test 5.60 Good 0.00 predict 5.60

5.60 train test 5.67 Good -0.07 predict 5.60

5.30 train test 5.30 Good 0.00 predict 5.30

5.30 train train predict 5.30

5.50 train train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train test 5.70 Good 0.00 predict 5.70

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 test 5.51 Good -0.01 train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.80 train train predict 5.80

5.80 train train predict 5.80

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 train test 5.40 Good 0.00 predict 5.40

5.40 train train predict 5.40

5.60 test 5.59 Good 0.01 train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 test 5.70 Good 0.00 train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 train train predict 5.80

5.80 test 5.80 Good 0.00 train predict 5.80

5.08 train train predict 5.27

5.80 train test 5.08 Good 0.72 predict 5.61

5.90 train train predict 5.90

5.90 train test 5.90 Good 0.00 predict 5.90

5.80 train train predict 5.80

5.80 train train predict 5.80

6.00 train test 5.99 Good 0.01 predict 6.00

6.00 train train predict 6.00

6.10 train train predict 6.10

6.10 train train predict 6.10

5.60 train train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 test 5.80 Good 0.00 train predict 5.80

5.80 train test 5.80 Good 0.00 predict 5.80

6.00 train test 6.00 Good 0.00 predict 6.00

6.00 train train predict 6.00

6.10 test 5.54 Good 0.56 train predict 6.09

6.10 test 5.56 Good 0.54 train predict 6.09

6.00 train train predict 6.00

6.00 train train predict 6.00

5.80 train train predict 5.80

5.80 train train predict 5.80

5.90 train test 5.80 Good 0.10 predict 5.86

5.80 train train predict 5.84

5.80 test 5.91 Good -0.11 train predict 5.82

5.90 train train predict 5.88

5.80 train test 5.80 Good 0.00 predict 5.81

5.80 train train predict 5.82

6.00 train train predict 6.10

6.10 test 6.00 Good 0.10 train predict 6.10

6.10 test 6.01 Good 0.09 train predict 6.00

6.00 test 6.08 Good -0.08 test 6.10 Good -0.10 predict 6.00

6.70 train train predict 6.70

6.70 train train predict 6.70

6.80 train train predict 6.59

6.80 train train predict 6.59

6.70 train train predict 6.70

6.70 train train predict 6.70

6.70 test 6.62 Good 0.08 train predict 6.75

6.90 test 6.21 Good 0.69 train predict 6.85

7.00 train train predict 7.00

7.00 train test 6.99 Good 0.01 predict 7.00

6.90 test 6.70 Good 0.20 test 6.70 Good 0.20 predict 6.84

6.70 train train predict 6.74

Train-Test Report for Net Trained on Data Set #1 Train-Test Report for Net Trained on Data Set #1 Prediction Report: "Net Trained on Data Set #1

Estimated 

Binder Tag Used Prediction Good/Bad Residual Tag Used Prediction Good/Bad Residual Tag Used Prediction

5.40 test 5.56 Good -0.16 train predict 5.60

5.50 test 5.55 Good -0.05 train predict 5.60

5.70 train test 5.41 Good 0.29 predict 5.70

5.40 train train predict 5.70

5.70 train train predict 5.70

5.50 train train predict 5.50

5.10 test 5.10 Good 0.00 train predict 5.10

5.10 train train predict 5.10

5.20 train test 5.20 Good 0.00 predict 5.20

5.20 train train predict 5.20

5.70 test 5.60 Good 0.10 train predict 5.70

5.70 test 5.60 Good 0.10 train predict 5.70

5.20 train test 5.21 Good -0.01 predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.60 train train predict 5.61

5.60 train test 5.60 Good 0.00 predict 5.60

5.20 test 5.20 Good 0.00 train predict 5.20

5.20 train train predict 5.20

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 test 5.40 Good 0.00 test 5.39 Good 0.01 predict 5.40

5.40 train train predict 5.40

5.50 train train predict 5.50

5.50 test 5.53 Good -0.03 train predict 5.50

5.60 train train predict 5.60

5.60 train train predict 5.60

5.60 train test 5.60 Good 0.00 predict 5.60

5.60 train test 5.67 Good -0.07 predict 5.60

5.30 train test 5.30 Good 0.00 predict 5.30

5.30 train train predict 5.30

5.50 train train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train test 5.70 Good 0.00 predict 5.70

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 test 5.51 Good -0.01 train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.80 train train predict 5.80

5.80 train train predict 5.80

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 train test 5.40 Good 0.00 predict 5.40

5.40 train train predict 5.40

5.60 test 5.59 Good 0.01 train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 test 5.70 Good 0.00 train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 train train predict 5.80

5.80 test 5.80 Good 0.00 train predict 5.80

5.08 train train predict 5.27

5.80 train test 5.08 Good 0.72 predict 5.61

5.90 train train predict 5.90

5.90 train test 5.90 Good 0.00 predict 5.90

5.80 train train predict 5.80

5.80 train train predict 5.80

6.00 train test 5.99 Good 0.01 predict 6.00

6.00 train train predict 6.00

6.10 train train predict 6.10

6.10 train train predict 6.10

5.60 train train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 test 5.80 Good 0.00 train predict 5.80

5.80 train test 5.80 Good 0.00 predict 5.80

6.00 train test 6.00 Good 0.00 predict 6.00

6.00 train train predict 6.00

6.10 test 5.54 Good 0.56 train predict 6.09

6.10 test 5.56 Good 0.54 train predict 6.09

6.00 train train predict 6.00

6.00 train train predict 6.00

5.80 train train predict 5.80

5.80 train train predict 5.80

5.90 train test 5.80 Good 0.10 predict 5.86

5.80 train train predict 5.84

5.80 test 5.91 Good -0.11 train predict 5.82

5.90 train train predict 5.88

5.80 train test 5.80 Good 0.00 predict 5.81

5.80 train train predict 5.82

6.00 train train predict 6.10

6.10 test 6.00 Good 0.10 train predict 6.10

6.10 test 6.01 Good 0.09 train predict 6.00

6.00 test 6.08 Good -0.08 test 6.10 Good -0.10 predict 6.00

6.70 train train predict 6.70

6.70 train train predict 6.70

6.80 train train predict 6.59

6.80 train train predict 6.59

6.70 train train predict 6.70

6.70 train train predict 6.70

6.70 test 6.62 Good 0.08 train predict 6.75

6.90 test 6.21 Good 0.69 train predict 6.85

7.00 train train predict 7.00

7.00 train test 6.99 Good 0.01 predict 7.00

6.90 test 6.70 Good 0.20 test 6.70 Good 0.20 predict 6.84

6.70 train train predict 6.74

Train-Test Report for Net Trained on Data Set #1 Train-Test Report for Net Trained on Data Set #1 Prediction Report: "Net Trained on Data Set #1
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Table G2 (Continued) 

 

           

 

Estimated 

Binder Tag Used Prediction Good/Bad Residual Tag Used Prediction Good/Bad Residual Tag Used Prediction

5.40 test 5.56 Good -0.16 train predict 5.60

5.50 test 5.55 Good -0.05 train predict 5.60

5.70 train test 5.41 Good 0.29 predict 5.70

5.40 train train predict 5.70

5.70 train train predict 5.70

5.50 train train predict 5.50

5.10 test 5.10 Good 0.00 train predict 5.10

5.10 train train predict 5.10

5.20 train test 5.20 Good 0.00 predict 5.20

5.20 train train predict 5.20

5.70 test 5.60 Good 0.10 train predict 5.70

5.70 test 5.60 Good 0.10 train predict 5.70

5.20 train test 5.21 Good -0.01 predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.60 train train predict 5.61

5.60 train test 5.60 Good 0.00 predict 5.60

5.20 test 5.20 Good 0.00 train predict 5.20

5.20 train train predict 5.20

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 test 5.40 Good 0.00 test 5.39 Good 0.01 predict 5.40

5.40 train train predict 5.40

5.50 train train predict 5.50

5.50 test 5.53 Good -0.03 train predict 5.50

5.60 train train predict 5.60

5.60 train train predict 5.60

5.60 train test 5.60 Good 0.00 predict 5.60

5.60 train test 5.67 Good -0.07 predict 5.60

5.30 train test 5.30 Good 0.00 predict 5.30

5.30 train train predict 5.30

5.50 train train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train test 5.70 Good 0.00 predict 5.70

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 test 5.51 Good -0.01 train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.80 train train predict 5.80

5.80 train train predict 5.80

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 train test 5.40 Good 0.00 predict 5.40

5.40 train train predict 5.40

5.60 test 5.59 Good 0.01 train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 test 5.70 Good 0.00 train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 train train predict 5.80

5.80 test 5.80 Good 0.00 train predict 5.80

5.08 train train predict 5.27

5.80 train test 5.08 Good 0.72 predict 5.61

5.90 train train predict 5.90

5.90 train test 5.90 Good 0.00 predict 5.90

5.80 train train predict 5.80

5.80 train train predict 5.80

6.00 train test 5.99 Good 0.01 predict 6.00

6.00 train train predict 6.00

6.10 train train predict 6.10

6.10 train train predict 6.10

5.60 train train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 test 5.80 Good 0.00 train predict 5.80

5.80 train test 5.80 Good 0.00 predict 5.80

6.00 train test 6.00 Good 0.00 predict 6.00

6.00 train train predict 6.00

6.10 test 5.54 Good 0.56 train predict 6.09

6.10 test 5.56 Good 0.54 train predict 6.09

6.00 train train predict 6.00

6.00 train train predict 6.00

5.80 train train predict 5.80

5.80 train train predict 5.80

5.90 train test 5.80 Good 0.10 predict 5.86

5.80 train train predict 5.84

5.80 test 5.91 Good -0.11 train predict 5.82

5.90 train train predict 5.88

5.80 train test 5.80 Good 0.00 predict 5.81

5.80 train train predict 5.82

6.00 train train predict 6.10

6.10 test 6.00 Good 0.10 train predict 6.10

6.10 test 6.01 Good 0.09 train predict 6.00

6.00 test 6.08 Good -0.08 test 6.10 Good -0.10 predict 6.00

6.70 train train predict 6.70

6.70 train train predict 6.70

6.80 train train predict 6.59

6.80 train train predict 6.59

6.70 train train predict 6.70

6.70 train train predict 6.70

6.70 test 6.62 Good 0.08 train predict 6.75

6.90 test 6.21 Good 0.69 train predict 6.85

7.00 train train predict 7.00

7.00 train test 6.99 Good 0.01 predict 7.00

6.90 test 6.70 Good 0.20 test 6.70 Good 0.20 predict 6.84

6.70 train train predict 6.74
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Estimated 

Binder Tag Used Prediction Good/Bad Residual Tag Used Prediction Good/Bad Residual Tag Used Prediction

5.40 test 5.56 Good -0.16 train predict 5.60

5.50 test 5.55 Good -0.05 train predict 5.60

5.70 train test 5.41 Good 0.29 predict 5.70

5.40 train train predict 5.70

5.70 train train predict 5.70

5.50 train train predict 5.50

5.10 test 5.10 Good 0.00 train predict 5.10

5.10 train train predict 5.10

5.20 train test 5.20 Good 0.00 predict 5.20

5.20 train train predict 5.20

5.70 test 5.60 Good 0.10 train predict 5.70

5.70 test 5.60 Good 0.10 train predict 5.70

5.20 train test 5.21 Good -0.01 predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.20 train train predict 5.20

5.60 train train predict 5.61

5.60 train test 5.60 Good 0.00 predict 5.60

5.20 test 5.20 Good 0.00 train predict 5.20

5.20 train train predict 5.20

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 test 5.40 Good 0.00 test 5.39 Good 0.01 predict 5.40

5.40 train train predict 5.40

5.50 train train predict 5.50

5.50 test 5.53 Good -0.03 train predict 5.50

5.60 train train predict 5.60

5.60 train train predict 5.60

5.60 train test 5.60 Good 0.00 predict 5.60

5.60 train test 5.67 Good -0.07 predict 5.60

5.30 train test 5.30 Good 0.00 predict 5.30

5.30 train train predict 5.30

5.50 train train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train test 5.70 Good 0.00 predict 5.70

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 train train predict 5.50

5.50 test 5.51 Good -0.01 train predict 5.50

5.50 train train predict 5.50

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.70 train test 5.80 Good -0.10 predict 5.70

5.80 train train predict 5.80

5.80 train train predict 5.80

5.30 train train predict 5.30

5.30 train train predict 5.30

5.40 train test 5.40 Good 0.00 predict 5.40

5.40 train train predict 5.40

5.60 test 5.59 Good 0.01 train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.70 test 5.70 Good 0.00 train predict 5.70

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 train train predict 5.80

5.80 test 5.80 Good 0.00 train predict 5.80

5.08 train train predict 5.27

5.80 train test 5.08 Good 0.72 predict 5.61

5.90 train train predict 5.90

5.90 train test 5.90 Good 0.00 predict 5.90

5.80 train train predict 5.80

5.80 train train predict 5.80

6.00 train test 5.99 Good 0.01 predict 6.00

6.00 train train predict 6.00

6.10 train train predict 6.10

6.10 train train predict 6.10

5.60 train train predict 5.60

5.60 train train predict 5.60

5.70 train train predict 5.70

5.70 train train predict 5.70

5.80 test 5.80 Good 0.00 train predict 5.80

5.80 train test 5.80 Good 0.00 predict 5.80

6.00 train test 6.00 Good 0.00 predict 6.00

6.00 train train predict 6.00

6.10 test 5.54 Good 0.56 train predict 6.09

6.10 test 5.56 Good 0.54 train predict 6.09

6.00 train train predict 6.00

6.00 train train predict 6.00

5.80 train train predict 5.80

5.80 train train predict 5.80

5.90 train test 5.80 Good 0.10 predict 5.86

5.80 train train predict 5.84

5.80 test 5.91 Good -0.11 train predict 5.82

5.90 train train predict 5.88

5.80 train test 5.80 Good 0.00 predict 5.81

5.80 train train predict 5.82

6.00 train train predict 6.10

6.10 test 6.00 Good 0.10 train predict 6.10

6.10 test 6.01 Good 0.09 train predict 6.00

6.00 test 6.08 Good -0.08 test 6.10 Good -0.10 predict 6.00

6.70 train train predict 6.70

6.70 train train predict 6.70

6.80 train train predict 6.59

6.80 train train predict 6.59

6.70 train train predict 6.70

6.70 train train predict 6.70

6.70 test 6.62 Good 0.08 train predict 6.75

6.90 test 6.21 Good 0.69 train predict 6.85

7.00 train train predict 7.00

7.00 train test 6.99 Good 0.01 predict 7.00

6.90 test 6.70 Good 0.20 test 6.70 Good 0.20 predict 6.84

6.70 train train predict 6.74
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APPENDIX H: STEPS FOR USING THE AUTOMATED OBC PREDICTION MODEL   
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APPENDIX I: STATISTIC TABLES 

Table I1 t-values for various values of df confidence intervals. 
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Table I2 T-test values for various spatial distribution values of df confidence intervals. 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var001 12 8.3333 .78479 .22655 

var002 12 8.3333 .92387 .26670 

var003 12 8.3333 .69288 .20002 

var004 12 8.3342 .77651 .22416 

var005 12 8.3317 .92012 .26561 

var006 12 8.3342 .69543 .20075 

var007 12 8.3333 1.31646 .38003 

var008 12 8.3350 .87515 .25263 

var009 12 8.3333 .82490 .23813 

var010 12 8.3325 1.30143 .37569 

var011 12 8.3342 .90645 .26167 

var012 12 8.3333 .80316 .23185 

var013 12 8.3350 1.22799 .35449 

var014 12 8.3317 1.18665 .34256 

var015 12 8.3333 .89989 .25978 

var016 12 8.3333 1.23038 .35518 

var017 12 8.3342 1.17440 .33902 

var018 12 8.3317 .90323 .26074 

var019 12 8.3333 .74026 .21370 

var020 12 8.3325 1.07336 .30985 

var021 12 8.3333 1.12457 .32464 

var022 12 8.3333 .73632 .21256 

var023 12 8.3333 1.07828 .31127 

var024 12 8.3333 1.12191 .32387 

var025 12 8.3333 1.08718 .31384 

var026 12 8.3350 1.14911 .33172 

var027 12 8.3333 1.06444 .30728 

var028 12 8.3342 1.10176 .31805 

var029 12 8.3342 1.16601 .33660 

var030 12 8.3333 1.07070 .30909 

var031 12 8.3342 1.15220 .33261 

var032 12 8.3342 1.68768 .48719 

var033 12 8.3317 .72892 .21042 

var034 12 8.3333 1.16613 .33663 

var035 12 8.3342 1.67824 .48447 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var036 12 8.3342 .73071 .21094 

var037 12 8.3342 1.18374 .34172 

var038 12 8.3342 1.14393 .33022 

var039 12 8.3325 .89879 .25946 

var040 12 8.3342 1.14864 .33158 

var041 12 8.3325 1.13913 .32884 

var042 12 8.3333 .89828 .25931 

var043 12 8.3325 .56120 .16201 

var044 12 8.3325 1.49756 .43231 

var045 12 8.3317 .79097 .22833 

var046 12 8.3342 .56413 .16285 

var047 12 8.3325 1.48781 .42949 

var048 12 8.3333 .77919 .22493 

var049 12 8.3342 .56413 .16285 

var050 12 8.3325 1.48781 .42949 

var051 12 8.3333 .77919 .22493 

var052 12 8.3342 .56413 .16285 

var053 12 8.3325 1.48781 .42949 

var054 12 8.3333 .77919 .22493 

var055 12 8.3342 1.00275 .28947 

var056 12 8.3342 1.01268 .29234 

var057 12 8.3342 .98650 .28478 

var058 12 8.3325 .98665 .28482 

var059 12 8.3325 .98790 .28518 

var060 12 8.3333 .99225 .28644 

var061 12 8.3333 1.19343 .34451 

var062 12 8.3333 1.28597 .37123 

var063 12 8.3342 .45077 .13012 

var064 12 8.3342 1.16489 .33628 

var065 12 8.3333 1.28119 .36985 

var066 12 8.3333 .44945 .12975 

var067 12 8.3333 1.14052 .32924 

var068 12 8.3317 1.22246 .35289 

var069 12 8.3333 .64456 .18607 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var070 12 8.3333 1.12797 .32562 

var071 12 8.3342 1.22194 .35274 

var072 12 8.3342 .63948 .18460 

var073 12 8.3325 .95706 .27628 

var074 12 8.3342 .65974 .19045 

var075 12 8.3317 .69398 .20034 

var076 12 8.3333 .92962 .26836 

var077 12 8.3333 .66967 .19332 

var078 12 8.3342 .68743 .19844 

var079 12 8.3333 1.34522 .38833 

var080 12 8.3333 .93922 .27113 

var081 12 8.3350 .82410 .23790 

var082 12 8.3333 1.35947 .39245 

var083 12 8.3342 .93136 .26886 

var084 12 8.3333 .83209 .24020 

var085 12 8.3325 .93236 .26915 

var086 12 8.3333 1.36820 .39497 

var087 12 8.3333 .69803 .20150 

var088 12 8.3350 .93499 .26991 

var089 12 8.3325 1.35544 .39128 

var090 12 8.3325 .70029 .20216 

var091 12 8.3333 .96276 .27793 

var092 12 8.3333 .85714 .24744 

var093 12 8.3325 .91391 .26382 

var094 12 8.3325 .95385 .27535 

var095 12 8.3325 .86989 .25112 

var096 12 8.3333 .91690 .26468 

var097 12 8.3325 1.13063 .32639 

var098 12 8.3333 1.12350 .32433 

var099 12 8.3342 .87725 .25324 

var100 12 8.3325 1.14462 .33042 

var101 12 8.3325 1.07932 .31157 

var102 12 8.3342 .88359 .25507 

var103 12 8.3325 1.14462 .33042 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var104 12 8.3325 1.07932 .31157 

var105 12 8.3342 .88359 .25507 

var106 12 8.3342 1.08746 .31392 

var107 12 8.3325 1.26949 .36647 

var108 12 8.3342 .77575 .22394 

var109 12 8.3325 1.89190 .54615 

var110 12 8.3325 .85677 .24733 

var111 12 8.3342 .73175 .21124 

var112 12 8.3333 1.89763 .54780 

var113 12 8.3342 .86013 .24830 

var114 12 8.3342 .72884 .21040 

var115 12 8.3350 1.16219 .33549 

var116 12 8.3333 1.03522 .29884 

var117 12 8.3350 .82589 .23841 

var118 12 8.3342 1.17532 .33929 

var119 12 8.3325 1.03497 .29877 

var120 12 8.3325 .82317 .23763 

var121 12 8.3342 1.02265 .29521 

var122 12 8.3333 1.01783 .29382 

var123 12 8.3325 1.32103 .38135 

var124 12 8.3325 1.03966 .30012 

var125 12 8.3333 1.02390 .29557 

var126 12 8.3333 1.33151 .38437 

var127 12 8.3342 1.10880 .32008 

var128 12 8.3333 1.15120 .33232 

var129 12 8.3342 .92066 .26577 

var130 12 8.3325 1.10314 .31845 

var131 12 8.3333 1.15035 .33208 

var132 12 8.3333 .92135 .26597 

var133 12 8.3333 .66591 .19223 

var134 12 8.3333 1.47506 .42581 

var135 12 8.3325 .90880 .26235 

var136 12 8.3333 .71197 .20553 

var137 12 8.3333 1.46294 .42232 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var138 12 8.3333 .91598 .26442 

var139 12 8.3333 .97859 .28250 

var140 12 8.3333 1.04522 .30173 

var141 12 8.3342 .77336 .22325 

var142 12 8.3342 .98783 .28516 

var143 12 8.3325 1.06624 .30780 

var144 12 8.3333 .78349 .22617 

var145 12 8.3333 .89111 .25724 

var146 12 8.3317 .88745 .25618 

var147 12 8.3333 .90482 .26120 

var148 12 8.3325 .89885 .25948 

var149 12 8.3342 .84608 .24424 

var150 12 8.3333 .93958 .27123 

var151 12 8.3342 1.07146 .30930 

var152 12 8.3333 .96863 .27962 

var153 12 8.3325 .91392 .26383 

var154 12 8.3325 1.07648 .31075 

var155 12 8.3333 .97497 .28145 

var156 12 8.3333 .91964 .26548 

var157 12 8.3342 .73748 .21289 

var158 12 8.3317 1.34703 .38885 

var159 12 8.3317 1.41034 .40713 

var160 12 8.3325 .72995 .21072 

var161 12 8.3342 1.33525 .38545 

var162 12 8.3333 1.40598 .40587 

var163 12 8.3342 1.29308 .37328 

var164 12 8.3325 .96181 .27765 

var165 12 8.3333 1.26854 .36620 

var166 12 8.3325 1.28895 .37209 

var167 12 8.3342 .97246 .28073 

var168 12 8.3333 1.25610 .36260 

var169 12 8.3325 1.33652 .38582 

var170 12 8.3342 1.29558 .37400 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var171 12 8.3333 1.36656 .39449 

var172 12 8.3325 1.32851 .38351 

var173 12 8.3333 1.29975 .37521 

var174 12 8.3342 1.36714 .39466 

var175 12 8.3333 1.07923 .31155 

var176 12 8.3317 1.15801 .33429 

var177 12 8.3342 1.50534 .43455 

var178 12 8.3342 1.10237 .31823 

var179 12 8.3333 1.15700 .33400 

var180 12 8.3333 1.50669 .43494 

var181 12 8.3342 .75278 .21731 

var182 12 8.3325 .89535 .25847 

var183 12 8.3350 .55757 .16096 

var184 12 8.3325 .75341 .21749 

var185 12 8.3317 .89097 .25720 

var186 12 8.3325 .56073 .16187 

var187 12 8.3342 1.54379 .44565 

var188 12 8.3333 .85558 .24699 

var189 12 8.3325 .71131 .20534 

var190 12 8.3333 1.51280 .43671 

var191 12 8.3333 .85558 .24699 

var192 12 8.3325 .71328 .20591 

var193 12 8.3325 1.04354 .30124 

var194 12 8.3342 1.07585 .31057 

var195 12 8.3333 .74798 .21592 

var196 12 8.3342 1.07618 .31067 

var197 12 8.3350 1.12589 .32502 

var198 12 8.3333 .74798 .21592 

var199 12 8.3342 1.14282 .32990 

var200 12 8.3333 1.69616 .48964 

var201 12 8.3342 1.28653 .37139 

var202 12 8.3333 1.13304 .32708 

var203 12 8.3333 1.69017 .48791 

var204 12 8.3350 1.27827 .36900 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var205 12 8.3333 .75295 .21736 

var206 12 8.3333 1.11177 .32094 

var207 12 8.3333 .55610 .16053 

var208 12 8.3325 .74711 .21567 

var209 12 8.3333 1.11159 .32089 

var210 12 8.3333 .56542 .16322 

var211 12 8.3333 .80528 .23246 

var212 12 8.3333 1.03497 .29877 

var213 12 8.3317 .61207 .17669 

var214 12 8.3342 .77420 .22349 

var215 12 8.3317 1.05189 .30365 

var216 12 8.3333 .61732 .17820 

var217 12 8.3333 .94572 .27301 

var218 12 8.3342 1.21557 .35090 

var219 12 8.3325 1.26231 .36440 

var220 12 8.3317 .93584 .27015 

var221 12 8.3350 1.21932 .35199 

var222 12 8.3333 1.26147 .36416 

var223 12 8.3325 .70595 .20379 

var224 12 8.3350 .74772 .21585 

var225 12 8.3333 1.15134 .33236 

var226 12 8.3333 .71567 .20660 

var227 12 8.3333 .73351 .21175 

var228 12 8.3342 1.15516 .33347 

var229 12 8.3333 .70711 .20413 

var230 12 8.3333 .86090 .24852 

var231 12 8.3342 .80728 .23304 

var232 12 8.3342 .72046 .20798 

var233 12 8.3342 .88380 .25513 

var234 12 8.3342 .79394 .22919 

var235 12 8.3333 1.19240 .34421 

var236 12 8.3333 1.30213 .37589 

var237 12 8.3325 1.06108 .30631 

var238 12 8.3333 1.17070 .33795 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var239 12 8.3342 1.30972 .37808 

var240 12 8.3342 1.09475 .31603 

var241 12 8.3333 1.37916 .39813 

var242 12 8.3325 .71582 .20664 

var243 12 8.3325 .68873 .19882 

var244 12 8.3325 1.40262 .40490 

var245 12 8.3342 .71985 .20780 

var246 12 8.3342 .70526 .20359 

var247 12 8.3317 1.13102 .32650 

var248 12 8.3333 .96795 .27942 

var249 12 8.3342 1.23513 .35655 

var250 12 8.3317 1.13102 .32650 

var251 12 8.3342 .99747 .28795 

var252 12 8.3333 1.22284 .35300 

var253 12 8.3333 1.29082 .37263 

var254 12 8.3333 1.17796 .34005 

var255 12 8.3342 .80223 .23158 

var256 12 8.3350 1.28526 .37102 

var257 12 8.3325 1.17695 .33976 

var258 12 8.3308 .80293 .23179 

var259 12 8.3333 1.33268 .38471 

var260 12 8.3333 1.25518 .36234 

var261 12 8.3325 .83028 .23968 

var262 12 8.3325 1.31334 .37913 

var263 12 8.3333 1.28428 .37074 

var264 12 8.3333 .83164 .24007 

var265 12 8.3325 1.34135 .38721 

var266 12 8.3325 .86827 .25065 

var267 12 8.3325 .84515 .24397 

var268 12 8.3333 1.33141 .38434 

var269 12 8.3350 .86696 .25027 

var270 12 8.3333 .83697 .24161 

var271 12 8.3317 1.19998 .34640 

var272 12 8.3342 .67291 .19425 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var273 12 8.3333 .69243 .19989 

var274 12 8.3325 1.19713 .34558 

var275 12 8.3325 .66095 .19080 

var276 12 8.3325 .70039 .20219 

var277 12 8.3333 1.29529 .37392 

var278 12 8.3333 .96008 .27715 

var279 12 8.3325 .82864 .23921 

var280 12 8.3325 1.30696 .37729 

var281 12 8.3342 .96051 .27727 

var282 12 8.3325 .82620 .23850 

var283 12 8.3325 1.20462 .34774 

var284 12 8.3342 1.69372 .48893 

var285 12 8.3342 .90453 .26111 

var286 12 8.3333 1.20581 .34809 

var287 12 8.3333 1.70152 .49119 

var288 12 8.3333 .91117 .26303 

var289 12 8.3325 .72621 .20964 

var290 12 8.3333 1.04956 .30298 

var291 12 8.3333 1.00817 .29103 

var292 12 8.3325 .72367 .20890 

var293 12 8.3325 1.03804 .29966 

var294 12 8.3325 1.00367 .28973 

var295 12 8.3342 1.25859 .36332 

var296 12 8.3342 1.29970 .37519 

var297 12 8.3317 1.47551 .42594 

var298 12 8.3342 1.27350 .36763 

var299 12 8.3342 1.29479 .37377 

var300 12 8.3333 1.47175 .42486 

var301 12 8.3350 1.11038 .32054 

var302 12 8.3325 1.85195 .53461 

var303 12 8.3333 .77475 .22365 

var304 12 8.3342 1.10929 .32022 

var305 12 8.3325 1.89887 .54816 

var306 12 8.3342 .77829 .22467 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var307 12 8.3325 1.03795 .29963 

var308 12 8.3342 1.12847 .32576 

var309 12 8.3342 1.61186 .46530 

var310 12 8.3325 1.05583 .30479 

var311 12 8.3333 1.12316 .32423 

var312 12 8.3325 1.61205 .46536 

var313 12 8.3325 1.32703 .38308 

var314 12 8.3325 .83117 .23994 

var315 12 8.3342 1.49705 .43216 

var316 12 8.3333 1.32029 .38114 

var317 12 8.3350 .82773 .23894 

var318 12 8.3325 1.52778 .44103 

var319 12 8.3325 1.20241 .34711 

var320 12 8.3325 1.24885 .36051 

var321 12 8.3325 1.16176 .33537 

var322 12 8.3342 1.19562 .34514 

var323 12 8.3317 1.24379 .35905 

var324 12 8.3342 1.13414 .32740 

var325 12 8.3333 1.24355 .35898 

var326 12 8.3333 1.12625 .32512 

var327 12 8.3325 .79930 .23074 

var328 12 8.3350 1.19547 .34510 

var329 12 8.3333 1.08688 .31376 

var330 12 8.3333 .80683 .23291 

var331 12 8.3333 1.72471 .49788 

var332 12 8.3333 1.10985 .32039 

var333 12 8.3325 1.06964 .30878 

var334 12 8.3342 1.72956 .49928 

var335 12 8.3342 1.10013 .31758 

var336 12 8.3317 1.05381 .30421 

var337 12 8.3342 1.03978 .30016 

var338 12 8.3333 1.41369 .40810 

var339 12 8.3325 1.10833 .31995 
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Table I2 (Continued) 

 

One-sample statistics 

 N Mean Std. Deviation Std. Error Mean 

var340 12 8.3317 1.02424 .29567 

var341 12 8.3325 1.41938 .40974 

var342 12 8.3325 1.10122 .31789 
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Table I3: One-sample test for various values of df confidence intervals. 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var001 36.784 11 .000 8.33333 7.8347 8.8320 

var002 31.246 11 .000 8.33333 7.7463 8.9203 

var003 41.663 11 .000 8.33333 7.8931 8.7736 

var004 37.180 11 .000 8.33417 7.8408 8.8275 

var005 31.367 11 .000 8.33167 7.7471 8.9163 

var006 41.514 11 .000 8.33417 7.8923 8.7760 

var007 21.928 11 .000 8.33333 7.4969 9.1698 

var008 32.993 11 .000 8.33500 7.7790 8.8910 

var009 34.995 11 .000 8.33333 7.8092 8.8575 

var010 22.179 11 .000 8.33250 7.5056 9.1594 

var011 31.850 11 .000 8.33417 7.7582 8.9101 

var012 35.943 11 .000 8.33333 7.8230 8.8436 

var013 23.513 11 .000 8.33500 7.5548 9.1152 

var014 24.322 11 .000 8.33167 7.5777 9.0856 

var015 32.079 11 .000 8.33333 7.7616 8.9051 

var016 23.462 11 .000 8.33333 7.5516 9.1151 

var017 24.583 11 .000 8.33417 7.5880 9.0803 

var018 31.954 11 .000 8.33167 7.7578 8.9056 

var019 38.996 11 .000 8.33333 7.8630 8.8037 

var020 26.892 11 .000 8.33250 7.6505 9.0145 

var021 25.670 11 .000 8.33333 7.6188 9.0479 

var022 39.205 11 .000 8.33333 7.8655 8.8012 

var023 26.772 11 .000 8.33333 7.6482 9.0184 

var024 25.731 11 .000 8.33333 7.6205 9.0462 

var025 26.553 11 .000 8.33333 7.6426 9.0241 

var026 25.127 11 .000 8.33500 7.6049 9.0651 

var027 27.120 11 .000 8.33333 7.6570 9.0096 

var028 26.204 11 .000 8.33417 7.6341 9.0342 

var029 24.760 11 .000 8.33417 7.5933 9.0750 

var030 26.961 11 .000 8.33333 7.6530 9.0136 

var031 25.057 11 .000 8.33417 7.6021 9.0662 

var032 17.107 11 .000 8.33417 7.2619 9.4065 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var033 39.595 11 .000 8.33167 7.8685 8.7948 

var034 24.755 11 .000 8.33333 7.5924 9.0743 

var035 17.203 11 .000 8.33417 7.2679 9.4005 

var036 39.510 11 .000 8.33417 7.8699 8.7984 

var037 24.389 11 .000 8.33417 7.5821 9.0863 

var038 25.238 11 .000 8.33417 7.6073 9.0610 

var039 32.115 11 .000 8.33250 7.7614 8.9036 

var040 25.134 11 .000 8.33417 7.6044 9.0640 

var041 25.339 11 .000 8.33250 7.6087 9.0563 

var042 32.136 11 .000 8.33333 7.7626 8.9041 

var043 51.434 11 .000 8.33250 7.9759 8.6891 

var044 19.274 11 .000 8.33250 7.3810 9.2840 

var045 36.489 11 .000 8.33167 7.8291 8.8342 

var046 51.177 11 .000 8.33417 7.9757 8.6926 

var047 19.401 11 .000 8.33250 7.3872 9.2778 

var048 37.048 11 .000 8.33333 7.8383 8.8284 

var049 51.177 11 .000 8.33417 7.9757 8.6926 

var050 19.401 11 .000 8.33250 7.3872 9.2778 

var051 37.048 11 .000 8.33333 7.8383 8.8284 

var052 51.177 11 .000 8.33417 7.9757 8.6926 

var053 19.401 11 .000 8.33250 7.3872 9.2778 

var054 37.048 11 .000 8.33333 7.8383 8.8284 

var055 28.791 11 .000 8.33417 7.6971 8.9713 

var056 28.509 11 .000 8.33417 7.6907 8.9776 

var057 29.265 11 .000 8.33417 7.7074 8.9610 

var058 29.255 11 .000 8.33250 7.7056 8.9594 

var059 29.218 11 .000 8.33250 7.7048 8.9602 

var060 29.093 11 .000 8.33333 7.7029 8.9638 

var061 24.189 11 .000 8.33333 7.5751 9.0916 

var062 22.448 11 .000 8.33333 7.5163 9.1504 

var063 64.047 11 .000 8.33417 8.0478 8.6206 

var064 24.784 11 .000 8.33417 7.5940 9.0743 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var065 22.532 11 .000 8.33333 7.5193 9.1474 

var066 64.228 11 .000 8.33333 8.0478 8.6189 

var067 25.311 11 .000 8.33333 7.6087 9.0580 

var068 23.610 11 .000 8.33167 7.5550 9.1084 

var069 44.786 11 .000 8.33333 7.9238 8.7429 

var070 25.592 11 .000 8.33333 7.6167 9.0500 

var071 23.627 11 .000 8.33417 7.5578 9.1105 

var072 45.147 11 .000 8.33417 7.9279 8.7405 

var073 30.160 11 .000 8.33250 7.7244 8.9406 

var074 43.760 11 .000 8.33417 7.9150 8.7533 

var075 41.588 11 .000 8.33167 7.8907 8.7726 

var076 31.053 11 .000 8.33333 7.7427 8.9240 

var077 43.107 11 .000 8.33333 7.9078 8.7588 

var078 41.998 11 .000 8.33417 7.8974 8.7709 

var079 21.459 11 .000 8.33333 7.4786 9.1880 

var080 30.736 11 .000 8.33333 7.7366 8.9301 

var081 35.036 11 .000 8.33500 7.8114 8.8586 

var082 21.234 11 .000 8.33333 7.4696 9.1971 

var083 30.998 11 .000 8.33417 7.7424 8.9259 

var084 34.693 11 .000 8.33333 7.8047 8.8620 

var085 30.959 11 .000 8.33250 7.7401 8.9249 

var086 21.099 11 .000 8.33333 7.4640 9.2026 

var087 41.356 11 .000 8.33333 7.8898 8.7768 

var088 30.881 11 .000 8.33500 7.7409 8.9291 

var089 21.295 11 .000 8.33250 7.4713 9.1937 

var090 41.218 11 .000 8.33250 7.8876 8.7774 

var091 29.984 11 .000 8.33333 7.7216 8.9450 

var092 33.679 11 .000 8.33333 7.7887 8.8779 

var093 31.584 11 .000 8.33250 7.7518 8.9132 

var094 30.261 11 .000 8.33250 7.7265 8.9385 

var095 33.182 11 .000 8.33250 7.7798 8.8852 

var096 31.484 11 .000 8.33333 7.7508 8.9159 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var097 25.530 11 .000 8.33250 7.6141 9.0509 

var098 25.694 11 .000 8.33333 7.6195 9.0472 

var099 32.910 11 .000 8.33417 7.7768 8.8915 

var100 25.218 11 .000 8.33250 7.6052 9.0598 

var101 26.743 11 .000 8.33250 7.6467 9.0183 

var102 32.674 11 .000 8.33417 7.7728 8.8956 

var103 25.218 11 .000 8.33250 7.6052 9.0598 

var104 26.743 11 .000 8.33250 7.6467 9.0183 

var105 32.674 11 .000 8.33417 7.7728 8.8956 

var106 26.548 11 .000 8.33417 7.6432 9.0251 

var107 22.737 11 .000 8.33250 7.5259 9.1391 

var108 37.216 11 .000 8.33417 7.8413 8.8271 

var109 15.257 11 .000 8.33250 7.1304 9.5346 

var110 33.690 11 .000 8.33250 7.7881 8.8769 

var111 39.454 11 .000 8.33417 7.8692 8.7991 

var112 15.212 11 .000 8.33333 7.1276 9.5390 

var113 33.565 11 .000 8.33417 7.7877 8.8807 

var114 39.611 11 .000 8.33417 7.8711 8.7972 

var115 24.844 11 .000 8.33500 7.5966 9.0734 

var116 27.885 11 .000 8.33333 7.6756 8.9911 

var117 34.960 11 .000 8.33500 7.8103 8.8597 

var118 24.564 11 .000 8.33417 7.5874 9.0809 

var119 27.889 11 .000 8.33250 7.6749 8.9901 

var120 35.065 11 .000 8.33250 7.8095 8.8555 

var121 28.231 11 .000 8.33417 7.6844 8.9839 

var122 28.362 11 .000 8.33333 7.6866 8.9800 

var123 21.850 11 .000 8.33250 7.4932 9.1718 

var124 27.764 11 .000 8.33250 7.6719 8.9931 

var125 28.194 11 .000 8.33333 7.6828 8.9839 

var126 21.680 11 .000 8.33333 7.4873 9.1793 

var127 26.037 11 .000 8.33417 7.6297 9.0387 

var128 25.076 11 .000 8.33333 7.6019 9.0648 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var129 31.358 11 .000 8.33417 7.7492 8.9191 

var130 26.166 11 .000 8.33250 7.6316 9.0334 

var131 25.094 11 .000 8.33333 7.6024 9.0642 

var132 31.332 11 .000 8.33333 7.7479 8.9187 

var133 43.350 11 .000 8.33333 7.9102 8.7564 

var134 19.570 11 .000 8.33333 7.3961 9.2705 

var135 31.761 11 .000 8.33250 7.7551 8.9099 

var136 40.546 11 .000 8.33333 7.8810 8.7857 

var137 19.732 11 .000 8.33333 7.4038 9.2628 

var138 31.515 11 .000 8.33333 7.7513 8.9153 

var139 29.499 11 .000 8.33333 7.7116 8.9551 

var140 27.619 11 .000 8.33333 7.6692 8.9974 

var141 37.331 11 .000 8.33417 7.8428 8.8255 

var142 29.226 11 .000 8.33417 7.7065 8.9618 

var143 27.071 11 .000 8.33250 7.6550 9.0100 

var144 36.845 11 .000 8.33333 7.8355 8.8311 

var145 32.395 11 .000 8.33333 7.7671 8.8995 

var146 32.522 11 .000 8.33167 7.7678 8.8955 

var147 31.904 11 .000 8.33333 7.7584 8.9082 

var148 32.113 11 .000 8.33250 7.7614 8.9036 

var149 34.123 11 .000 8.33417 7.7966 8.8717 

var150 30.724 11 .000 8.33333 7.7364 8.9303 

var151 26.945 11 .000 8.33417 7.6534 9.0149 

var152 29.802 11 .000 8.33333 7.7179 8.9488 

var153 31.583 11 .000 8.33250 7.7518 8.9132 

var154 26.814 11 .000 8.33250 7.6485 9.0165 

var155 29.609 11 .000 8.33333 7.7139 8.9528 

var156 31.390 11 .000 8.33333 7.7490 8.9176 

var157 39.147 11 .000 8.33417 7.8656 8.8027 

var158 21.426 11 .000 8.33167 7.4758 9.1875 

var159 20.464 11 .000 8.33167 7.4356 9.2278 

var160 39.544 11 .000 8.33250 7.8687 8.7963 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var161 21.622 11 .000 8.33417 7.4858 9.1825 

var162 20.532 11 .000 8.33333 7.4400 9.2267 

var163 22.327 11 .000 8.33417 7.5126 9.1557 

var164 30.011 11 .000 8.33250 7.7214 8.9436 

var165 22.756 11 .000 8.33333 7.5273 9.1393 

var166 22.394 11 .000 8.33250 7.5135 9.1515 

var167 29.688 11 .000 8.33417 7.7163 8.9520 

var168 22.982 11 .000 8.33333 7.5352 9.1314 

var169 21.597 11 .000 8.33250 7.4833 9.1817 

var170 22.284 11 .000 8.33417 7.5110 9.1573 

var171 21.124 11 .000 8.33333 7.4651 9.2016 

var172 21.727 11 .000 8.33250 7.4884 9.1766 

var173 22.210 11 .000 8.33333 7.5075 9.1592 

var174 21.117 11 .000 8.33417 7.4655 9.2028 

var175 26.748 11 .000 8.33333 7.6476 9.0190 

var176 24.923 11 .000 8.33167 7.5959 9.0674 

var177 19.179 11 .000 8.33417 7.3777 9.2906 

var178 26.189 11 .000 8.33417 7.6338 9.0346 

var179 24.950 11 .000 8.33333 7.5982 9.0685 

var180 19.160 11 .000 8.33333 7.3760 9.2906 

var181 38.352 11 .000 8.33417 7.8559 8.8125 

var182 32.238 11 .000 8.33250 7.7636 8.9014 

var183 51.784 11 .000 8.33500 7.9807 8.6893 

var184 38.312 11 .000 8.33250 7.8538 8.8112 

var185 32.393 11 .000 8.33167 7.7656 8.8978 

var186 51.477 11 .000 8.33250 7.9762 8.6888 

var187 18.701 11 .000 8.33417 7.3533 9.3150 

var188 33.740 11 .000 8.33333 7.7897 8.8769 

var189 40.579 11 .000 8.33250 7.8806 8.7844 

var190 19.082 11 .000 8.33333 7.3721 9.2945 

var191 33.740 11 .000 8.33333 7.7897 8.8769 

var192 40.468 11 .000 8.33250 7.8793 8.7857 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var193 27.660 11 .000 8.33250 7.6695 8.9955 

var194 26.835 11 .000 8.33417 7.6506 9.0177 

var195 38.594 11 .000 8.33333 7.8581 8.8086 

var196 26.827 11 .000 8.33417 7.6504 9.0179 

var197 25.645 11 .000 8.33500 7.6196 9.0504 

var198 38.594 11 .000 8.33333 7.8581 8.8086 

var199 25.262 11 .000 8.33417 7.6081 9.0603 

var200 17.019 11 .000 8.33333 7.2556 9.4110 

var201 22.440 11 .000 8.33417 7.5167 9.1516 

var202 25.478 11 .000 8.33333 7.6134 9.0532 

var203 17.080 11 .000 8.33333 7.2594 9.4072 

var204 22.588 11 .000 8.33500 7.5228 9.1472 

var205 38.339 11 .000 8.33333 7.8549 8.8117 

var206 25.965 11 .000 8.33333 7.6270 9.0397 

var207 51.911 11 .000 8.33333 7.9800 8.6867 

var208 38.635 11 .000 8.33250 7.8578 8.8072 

var209 25.969 11 .000 8.33333 7.6271 9.0396 

var210 51.055 11 .000 8.33333 7.9741 8.6926 

var211 35.848 11 .000 8.33333 7.8217 8.8450 

var212 27.892 11 .000 8.33333 7.6757 8.9909 

var213 47.154 11 .000 8.33167 7.9428 8.7206 

var214 37.290 11 .000 8.33417 7.8423 8.8261 

var215 27.438 11 .000 8.33167 7.6633 9.0000 

var216 46.763 11 .000 8.33333 7.9411 8.7256 

var217 30.524 11 .000 8.33333 7.7325 8.9342 

var218 23.751 11 .000 8.33417 7.5618 9.1065 

var219 22.867 11 .000 8.33250 7.5305 9.1345 

var220 30.840 11 .000 8.33167 7.7371 8.9263 

var221 23.680 11 .000 8.33500 7.5603 9.1097 

var222 22.884 11 .000 8.33333 7.5318 9.1348 

var223 40.888 11 .000 8.33250 7.8840 8.7810 

var224 38.615 11 .000 8.33500 7.8599 8.8101 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var225 25.073 11 .000 8.33333 7.6018 9.0649 

var226 40.336 11 .000 8.33333 7.8786 8.7881 

var227 39.355 11 .000 8.33333 7.8673 8.7994 

var228 24.993 11 .000 8.33417 7.6002 9.0681 

var229 40.825 11 .000 8.33333 7.8841 8.7826 

var230 33.532 11 .000 8.33333 7.7863 8.8803 

var231 35.763 11 .000 8.33417 7.8212 8.8471 

var232 40.072 11 .000 8.33417 7.8764 8.7919 

var233 32.666 11 .000 8.33417 7.7726 8.8957 

var234 36.364 11 .000 8.33417 7.8297 8.8386 

var235 24.210 11 .000 8.33333 7.5757 9.0909 

var236 22.169 11 .000 8.33333 7.5060 9.1607 

var237 27.203 11 .000 8.33250 7.6583 9.0067 

var238 24.658 11 .000 8.33333 7.5895 9.0772 

var239 22.043 11 .000 8.33417 7.5020 9.1663 

var240 26.372 11 .000 8.33417 7.6386 9.0297 

var241 20.931 11 .000 8.33333 7.4571 9.2096 

var242 40.324 11 .000 8.33250 7.8777 8.7873 

var243 41.910 11 .000 8.33250 7.8949 8.7701 

var244 20.579 11 .000 8.33250 7.4413 9.2237 

var245 40.106 11 .000 8.33417 7.8768 8.7915 

var246 40.936 11 .000 8.33417 7.8861 8.7823 

var247 25.518 11 .000 8.33167 7.6130 9.0503 

var248 29.823 11 .000 8.33333 7.7183 8.9483 

var249 23.374 11 .000 8.33417 7.5494 9.1189 

var250 25.518 11 .000 8.33167 7.6130 9.0503 

var251 28.944 11 .000 8.33417 7.7004 8.9679 

var252 23.607 11 .000 8.33333 7.5564 9.1103 

var253 22.364 11 .000 8.33333 7.5132 9.1535 

var254 24.506 11 .000 8.33333 7.5849 9.0818 

var255 35.988 11 .000 8.33417 7.8245 8.8439 

var256 22.465 11 .000 8.33500 7.5184 9.1516 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var257 24.525 11 .000 8.33250 7.5847 9.0803 

var258 35.942 11 .000 8.33083 7.8207 8.8410 

var259 21.661 11 .000 8.33333 7.4866 9.1801 

var260 22.999 11 .000 8.33333 7.5358 9.1308 

var261 34.765 11 .000 8.33250 7.8050 8.8600 

var262 21.978 11 .000 8.33250 7.4980 9.1670 

var263 22.478 11 .000 8.33333 7.5173 9.1493 

var264 34.712 11 .000 8.33333 7.8049 8.8617 

var265 21.519 11 .000 8.33250 7.4802 9.1848 

var266 33.244 11 .000 8.33250 7.7808 8.8842 

var267 34.153 11 .000 8.33250 7.7955 8.8695 

var268 21.682 11 .000 8.33333 7.4874 9.1793 

var269 33.304 11 .000 8.33500 7.7842 8.8858 

var270 34.491 11 .000 8.33333 7.8015 8.8651 

var271 24.052 11 .000 8.33167 7.5692 9.0941 

var272 42.904 11 .000 8.33417 7.9066 8.7617 

var273 41.690 11 .000 8.33333 7.8934 8.7733 

var274 24.111 11 .000 8.33250 7.5719 9.0931 

var275 43.671 11 .000 8.33250 7.9126 8.7524 

var276 41.212 11 .000 8.33250 7.8875 8.7775 

var277 22.287 11 .000 8.33333 7.5103 9.1563 

var278 30.068 11 .000 8.33333 7.7233 8.9433 

var279 34.834 11 .000 8.33250 7.8060 8.8590 

var280 22.085 11 .000 8.33250 7.5021 9.1629 

var281 30.057 11 .000 8.33417 7.7239 8.9444 

var282 34.937 11 .000 8.33250 7.8076 8.8574 

var283 23.962 11 .000 8.33250 7.5671 9.0979 

var284 17.046 11 .000 8.33417 7.2580 9.4103 

var285 31.918 11 .000 8.33417 7.7595 8.9089 

var286 23.940 11 .000 8.33333 7.5672 9.0995 

var287 16.966 11 .000 8.33333 7.2522 9.4144 

var288 31.682 11 .000 8.33333 7.7544 8.9123 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var289 39.747 11 .000 8.33250 7.8711 8.7939 

var290 27.504 11 .000 8.33333 7.6665 9.0002 

var291 28.634 11 .000 8.33333 7.6928 8.9739 

var292 39.887 11 .000 8.33250 7.8727 8.7923 

var293 27.807 11 .000 8.33250 7.6730 8.9920 

var294 28.759 11 .000 8.33250 7.6948 8.9702 

var295 22.939 11 .000 8.33417 7.5345 9.1338 

var296 22.213 11 .000 8.33417 7.5084 9.1600 

var297 19.560 11 .000 8.33167 7.3942 9.2692 

var298 22.670 11 .000 8.33417 7.5250 9.1433 

var299 22.297 11 .000 8.33417 7.5115 9.1568 

var300 19.614 11 .000 8.33333 7.3982 9.2684 

var301 26.003 11 .000 8.33500 7.6295 9.0405 

var302 15.586 11 .000 8.33250 7.1558 9.5092 

var303 37.260 11 .000 8.33333 7.8411 8.8256 

var304 26.026 11 .000 8.33417 7.6294 9.0390 

var305 15.201 11 .000 8.33250 7.1260 9.5390 

var306 37.095 11 .000 8.33417 7.8397 8.8287 

var307 27.809 11 .000 8.33250 7.6730 8.9920 

var308 25.584 11 .000 8.33417 7.6172 9.0512 

var309 17.911 11 .000 8.33417 7.3100 9.3583 

var310 27.338 11 .000 8.33250 7.6617 9.0033 

var311 25.702 11 .000 8.33333 7.6197 9.0470 

var312 17.906 11 .000 8.33250 7.3083 9.3567 

var313 21.751 11 .000 8.33250 7.4893 9.1757 

var314 34.728 11 .000 8.33250 7.8044 8.8606 

var315 19.285 11 .000 8.33417 7.3830 9.2853 

var316 21.864 11 .000 8.33333 7.4945 9.1722 

var317 34.883 11 .000 8.33500 7.8091 8.8609 

var318 18.893 11 .000 8.33250 7.3618 9.3032 

var319 24.006 11 .000 8.33250 7.5685 9.0965 

var320 23.113 11 .000 8.33250 7.5390 9.1260 
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Table I3 (Continued) 

One-Sample Test 

 

Test Value = 0 

t df Sig. (2-tailed) Mean Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

var321 24.846 11 .000 8.33250 7.5944 9.0706 

var322 24.147 11 .000 8.33417 7.5745 9.0938 

var323 23.205 11 .000 8.33167 7.5414 9.1219 

var324 25.456 11 .000 8.33417 7.6136 9.0548 

var325 23.214 11 .000 8.33333 7.5432 9.1234 

var326 25.631 11 .000 8.33333 7.6177 9.0489 

var327 36.113 11 .000 8.33250 7.8247 8.8403 

var328 24.152 11 .000 8.33500 7.5754 9.0946 

var329 26.560 11 .000 8.33333 7.6428 9.0239 

var330 35.779 11 .000 8.33333 7.8207 8.8460 

var331 16.738 11 .000 8.33333 7.2375 9.4292 

var332 26.010 11 .000 8.33333 7.6282 9.0385 

var333 26.985 11 .000 8.33250 7.6529 9.0121 

var334 16.692 11 .000 8.33417 7.2353 9.4331 

var335 26.243 11 .000 8.33417 7.6352 9.0332 

var336 27.388 11 .000 8.33167 7.6621 9.0012 

var337 27.766 11 .000 8.33417 7.6735 8.9948 

var338 20.420 11 .000 8.33333 7.4351 9.2316 

var339 26.043 11 .000 8.33250 7.6283 9.0367 

var340 28.179 11 .000 8.33167 7.6809 8.9824 

var341 20.336 11 .000 8.33250 7.4307 9.2343 

var342 26.212 11 .000 8.33250 7.6328 9.0322 
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APPENDIX J: COPYRIGHT PERMISSIONS 

Below is the permission for the use of materials in Chapter 7. 
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Below is the permission for the use of materials in Chapter 3, 4, and 5. 
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