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ABSTRACT

Florida Department of Transportation (FDOT) has been using Open Graded Friction
Course (OGFC) mixture to improve skid resistance of asphalt pavements under wet weather. The
OGFC mixture design strongly depends on the Optimum Binder Content (OBC) which represents
if the mixture has sufficient bonding between the aggregate and asphalt binder. At present, the
FDOT designs OGFC mixtures using a pie plate visual draindown method (FM 5-588). In this
method, the OBC is determined based on visual inspection of the asphalt binder draindown (ABD)
configuration of three OGFC samples placed on pie plates with pre-determined trial asphalt binder
contents (AC). The inspection of the ABD configuration is performed by trained and experienced
technicians who determine the OBC using perceptive interpolation or extrapolation based on the
known AC of the above samples. In order to eliminate the human subjectivity involved in the
current visual method, an automated method for quantifying the OBC of OGFC mixtures was
developed using digital images of the pie plates and concepts of perceptual image coding and
neural network (NN). Phase | of the project involved the FM-5-588 based OBC testing of OGFC
mixture designs consisting of a large set of samples prepared from a variety of granitic and oolitic
limestone aggregate sources used by FDOT. Then the digital images of the pie plates containing
samples of the above mixtures were acquired using an imaging setup customized by FDOT. The
correlation between relevant digital imaging parameters and the corresponding AC was
investigated initially using conventional regression analysis. Phase Il of the project involved the
development of a perceptual image model using human perception metrics considered to be used

in the OBC estimation. A General Regression Neural Network (GRNN) was used to uncover the
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nonlinear correlation between the selected parameters of pie plate images, the corresponding AC
and the visually estimated OBC. GRNN was found to be the most viable method to deal with the
multi-dimensional nature of the input test data set originating from each individual OGFC sample
that contains AC and imaging parameter information from a set of three pie plates. GRNN was
trained by 70% and tested by 30% of the database completed in Phase I. Phase Il of the project
involved the configuration of a quality control tool (QCT) for the aforementioned automated
method to enhance its robustness and the likelihood of implementation by other agencies and
contractors. QCT is developed using three quality control imaging parameters (QCIP), orientation,
spatial distribution, and segregation of ABD configuration of pie plate specimens (PPS) images.
Then, the above QCIP were evaluated from PPS images of a variety of independent mixture
designs produced using the FDOT visual method. In general, this study found that the newly
developed software (GRNN-based) provides satisfactory and reliable estimations of OBC.
Furthermore, the statistical and computer-generated results indicated that the selected QCIP are
adequate for the formulation of quality control criteria for PPS production. It is believed that the
developed QCT will enhance the reliability of the automated OBC estimation image processing-

based methodology.
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CHAPTER 1: INTRODUCTION
1.1. Background

In the US, there are several methods employed for designing open-graded friction course
(OGFC) mixtures based on the estimation of optimum binder content (OBC). There are (i)
compacted specimens method, (ii) absorption calculation method, and (iii) visual determination
method [1]. The methods currently use by several Department of transportation (DOT) agencies
(Alabama, Arizona, Florida, Georgia, Kansas, Kentucky, Mississippi, Missouri, Nebraska,
Nevada, New Jersey, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia,
and Wyoming) and four national organizations (American Society for Testing and Materials
(ASTM), the Federal Highway Administration (FHWA), the National Asphalt Pavement
Association (NAPA), and the National Center for Asphalt Technology (NCAT)).

The visual OBC determination procedures of the above agencies involve more or less
similar general steps. In this process, uncompacted asphalt mixtures are prepared at varying trial
asphalt binder contents (AC) specific to the aggregate and binder types and placed in clear pie
plates for visual inspection of the bottom of the pie plates for the asphalt binder draindown (ABD)
configuration [2]. The preparation of pie plate samples requires heating of the mixture at a
specified temperature for a specified period of time. The binder grades, time and temperature at
which the mixture is prepared, varies by procedure [1]. The inspection of the ABD for each
procedure, however is always performed by trained and experienced technicians who determine

the OBC based on perceptive interpolation or extrapolation from the prescribed AC. The need to



resolve the constantly encountered inconsistency issues in predicted OBC results is essential to
assure the accuracy of the OGFC mixture design.

The Florida Department of Transportation (FDOT) has been using OGFC mixtures on
Florida’s high speed asphalt pavement facilities since the early 1970°s [3]. OGFC is a porous
pavement surface type consisting primarily of coarse aggregate with few fines, thereby permitting
water to pass freely through it, in contrast to more traditional dense graded asphalt pavement
surfaces. The increased permeability of OGFC mixtures reduces the hydroplaning potential of the
pavement under wet weather conditions. In addition, OGFC surfaces also reduce the splash and
spray behind vehicles and improve the surface reflectivity during wet-weather conditions [4].

In Florida, all asphalt mixtures are designed by the contractors and submitted to FDOT for
review and verification, with the exception of OGFC mixtures. OGFC mixtures are designed by
the FDOT’s State Materials Office using Florida design Specification in Section 337 [5] and the
Florida Method FM 5-588 - Determining the Optimum Asphalt Binder Content of an Open-Graded
Friction Course Mixture Using the Pie Plate Method [2]. FM 5-588 is based on the 1974 Federal
Highway Administration (FHWA) OGFC Design Procedure [6]. In the FM 5-588, the OBC is
determined based on visual assessment of ABD on three pie plates with three pre-determined trial
asphalt binder content AC. The OBC is adjudged to be the binder content at which the sample
displays sufficient bonding between the mixture and the bottom of the pie plate without evidence
of excessive ABD [2]. This method allows the OBC to be interpolated between the three trial AC
presented on the pie plates.

While FM 5-588 has proven to be an effective method of designing OGFC mixtures, the
OBC estimates of even similarly qualified technicians have proven to be highly variable at times

since human subjectivity is introduced into the visual inspection of the ABD on the pie plates. In



order to eliminate this inherent subjectivity and make the OBC determination more repeatable and
accurate, an automated procedure is needed to determine the OBC of OGFC mixtures. While
previous research has involved in-depth analysis of a design method to determine the ACs from
images of asphalt mixtures in general [7], only limited information is available on imaging which
determine accurate OBC values. Hence, the objective of this research was to use a digital imaging
process in conjunction with concepts of perceptual image coding and NN to estimate the OBC of
OGFC mixtures in an automated manner.

The investigation was divided into three phases. Phase | involved the use of the
conventional FM 5-588 to test nineteen OGFC mixtures designs which generated an extensive set
of samples from granitic and oolitic limestone aggregate sources and the subsequent imaging of
the corresponding pie plates using FDOT’s customized imaging setup. In addition, statistical
analysis was performed to correlate a set of relevant and basic image parameters derived from the
pie plate images to the AC of the pie plates. Phase Il of the investigation involved further analysis
of image parameter and visual OBC estimates from Phase | to develop a perceptual image model
based on applicable metrics of the human vision system (HVS) and neural networks (NN) to
predict the OBC values in an automated manner. Phase 111 involved the configuration of a quality
control tool (QCT) for the aforementioned automated method to enhance its robustness and the
likelihood of implementation by other agencies and contractors. QCT is developed using three
quality control imaging parameters (QCIP), orientation, spatial distribution, and segregation of
ABD configuration of pie plate specimens (PPS) images.

1.2.  Problem Statement and Research Objectives
In the US, twenty-percent of the Department of Transportation (DOT) agencies have

standard procedures for designing open-graded friction course (OGFC) mixtures based on the



estimation of optimum binder content (OBC). Approximately ten percent of the aforementioned
agencies currently use the visual determination procedure for estimating the OBC of OGFC
mixtures. They are Florida (FM 5-588), Georgia (GDT 114), Nevada (Nev. T760C), New Jersey
(NJDOT B-7) and South Carolina (SC-T-90) [1].

Currently, however, FDOT use a pie-plate Visual Determination method (FM 5-588) based
on a FHWA method to design OGFC mixtures. In this method, the OBC is determined solely based
on visual assessment of binder draindown on three pie plates with trial binder contents. The OBC
is selected at the binder content where the sample displays sufficient bonding between the mixture
and the bottom of the pie plate without evidence of excessive asphalt binder draindown [2]. While
previous research has involved in-depth analysis of a design method to determine the percent
asphalt content from images [7] there is limited information comparing the results of different
mixtures design methods determining an accurate OBC.

The goal of this research was to provide FDOT with guidance in terms of refining the
existing imaging process for FM 5-588 by developing an automated visual standard test methods
for directly and quantifying the OBC for OGFC mixtures. To achieve the above goal, the following
objectives are identified for this work:

e Identify all of the significant image parameters that impact the prediction of the binder content
of pie-plates.

e Develop a correlation between the relevant image parameters and the OBC of OGFC mixtures
in an accurate manner.

e Develop a software package to execute the OBC estimation of OGFC mixtures using digital

images of the pie plates.



1.3.

Develop a software package to execute the quality control process for digital images based
OBC determination.
Contributions of the Research

An automatic digital test methods for directly quantifying the OBC for OGFC mixtures

using parallel processing, Perceptual image coding and neural networks is developed. It avoids the

disadvantages of traditional method (FM 5-588) which predicts OBC subjectively. The research

has the following impacts:

14.

Evaluation of the OBC asphalt mixture using the automated method will save a lot testing time.
Investigation of the possibility of applying innovative concepts of machine vision to simulate
the technicians’ perception of the asphalt binder drain-down.
Development of a methodology for complete automation of the FM 5-588 process thereby
minimizing the subjectivity involved in its current version and rendering it to be more reliable.
Developing a quality control parameters based on image processing which would be a viable
tool for future design of OGFC mixtures.

Dissertation Outline

This dissertation is organized into nine chapters with the following specific contents:
Introduction — This chapter includes a background of OGFC mixture design. The background
is followed by the problem statement, research objectives, contributions of the research and
the dissertation outline.
Literature Review — This chapter is divided into five distinct sections. The first section details
the various concepts useful for understanding the flexible pavement design principles and best
practices associated with OGFC pavement technology. The second discusses the proposed

benefits of OGFC mixtures. The third section addresses the design of OGFC mixtures. The



fourth section presents the imaging techniques, perceptual image coding and human vision
system using 2D image analysis as well as their application in many areas of visual information
processing. The fifth section describes the use of neural network analysis in prediction models
in a variety of fields.

Experimental Methodology — This chapter presents a description of the research methodology.
Development of the Perceptual-Based Image Model — This chapter identifies the human vision
systems (HVS) parameters relevant to the asphalt binder draindown (ABD) characterization of
the OGFC samples in pie plates.

Neural Network-based Prediction Model — This chapter presents the results of the neural
network- based prediction model that relates the HVS parameters to the OBC values.

Quality Control Model — This chapter presents the image analysis procedures that provide
quantification relevant to the image-based quality control imaging parameters (QCIP) of the
ABD of the pie plate specimen.

Summary of Findings — Presents a summary of findings in this study.

Conclusions — Deductions gathered from the most relevant analysis of results are presented in
this section.

Recommendations for Future Work —Directions for future work are provided in this section

based on conclusions and analysis completed in this dissertation.



CHAPTER 2: LITERATURE REVIEW

This chapter is divided into five distinct sections. The first section details OGFC pavement
technology. The second section illustrated the design of OGFC mixtures. The third section present
a brief description of the imaging technics and their application in asphalt mixture analysis. The
fourth section discusses the human vision system and the fifth section shows a brief description of
the neural network.
2.1. OGFC Pavement Technology

These section details the various concepts useful for understanding the flexible pavement
design principles and best practices associated with OGFC pavement technology. Although the
primary focus of this research is on the determination of the OBC of the OGFC pavement types,
flexible pavements technologies in general have also been explored.
2.1.1. Flexible Pavements

A flexible pavement is a relatively thin surface of asphalt constructed with a bituminous
treated surface or a relatively thin surface of hot-mix asphalt (HMA) over one or more unbound
base courses resting on a subgrade. FHWA defines a flexible pavement as a “pavement structure
composed of asphalt concrete layers constructed on unbound aggregates or stabilized bases” [8].
The flexible pavement is called “flexible” since the total pavement structure bends (flexes) to
accommodate traffic loads. The components of a traditional flexible pavement typically requires
asphalt binder (3-8%), mineral aggregate (85-95%), air voids (2-20%), and sometimes (optional)
modifiers/additives [9]. There are various types of asphalt concrete mixtures that combine asphalt

cement binder with coarse and fine aggregates. Figure 1 shows the types of flexible pavements.



Dense-graded Open-graded Gap-graded

Figure 1 Types of flexible pavements.
2.1.1.1. Dense-Graded Friction Course (DGA)

Dense graded asphalt (DGA) is a mixture of evenly distributed aggregate from smallest to
largest size and the binder. It is a well graded mixture typically used for all traffic conditions [9].
2.1.1.2. Open-Graded Friction Course (OGFC)

Open graded friction courses are a type of asphalt mixtures containing only a small portion
of fine aggregate, creating a pavement with a relatively large percentage of air voids. They are
primarily composed of single size coarse aggregate, and generally have a high asphalt content [9].

In Florida, OGFC mixtures are designed and constructed following Section 337 of the
FDOT specification manual and OGFC mixtures are being used in multi-lanes with a design speed
greater or equal to 50 mph using two sources of aggregates; granite and Oolitic limestone. The
OBC percentages used in common practice are 5.5 to 7.0 percent for granite sources and 6.5t0 7.5
percent for Oolite sources. This range of OBC together with 15 to 25 percent voids allows surface
water to enter the pavement structure and then quickly drain through and out of it [5].
2.1.1.3. Gap-Graded Friction Course (SMA)

Stone Mastic (Matrix) Asphalt (SMA) is a mixture of mid-size aggregate and the binder. It
is considered to be a gap graded HMA and is typically used for surface courses on high volume

highways to improve rut resistance and durability [9].



2.1.2. History of OGFC Mixtures

In 1944, California was the first state in the United States to begin using OGFC on its
pavement network after making experimental variations to a maintenance practice called chip seals
[10]. Subsequently, in the 1970’s, the use of OGFC mixtures gained popularity across the country
in response to the FHWA’s program to improve skid resistance on roadways [11]. The first OGFC
mix design method was published in 1974 by the FHWA [10], then modified in 1980 and further
modified in 1990 [11]. The previously mentioned modified design method was based primarily on
the surface capacity and absorption properties of the aggregate.

Florida has been using open-graded mixes since the early 1970’s to improve skid resistance
of asphalt pavements under wet weather [12]. On high-speed multi-lane road designs, OGFC
mixtures are specified to allow the runoff water to be drained away from the tire pavement contact
area [3 and 12]. For highways with a design speed of 35 mph or greater, three friction course
mixtures are specified in FDOT’s design manual: FC-5, FC-9.5, and FC-12.5 [13]. Of these, FC-
12.5 and FC-9.5 are dense graded mixtures that are placed at approximate thicknesses of 1 1/2"
and 1.0", respectively. FC-5, which is an open-graded mixture, is placed at an approximate
thickness of 3/4" [13]. FC-5 mixture requires aggregates to be 100 percent polish-resistant crushed
granite or crushed Oolitic limestone. If granite is used as the aggregate, hydrated lime in terms of
one percent by weight of the total dry aggregate is added to the mixture. Fiber stabilizer additives,
either mineral or cellulose, are also needed in the FC-5 mixture regardless of the aggregate type.
Mineral fibers are added at a dosage rate of 0.4 percent by total mixture weight, and cellulose
fibers are added at a dosage rate of 0.3 percent by total mixture weight.

In Europe, the aggregate standards are higher than in the United States [10] and OGFC

mixtures are called Porous European Mixtures (PEM). European countries have started using



PEMs in the early 1960’s. For example, the United Kingdom uses PEM in military airfield runways
[14]; France uses PEM only on roadways with relatively high design speeds (50 mph) [15], and
the Netherlands now uses PEM in the entire highway network [15]. There is a primary difference
between OGFC mixtures and PEM: PEM air void content is 18-22% whereas it is 15% for OGFC,
which in turn makes PEM more permeable than OGFC mixtures [16].
2.1.3. Proposed Benefits of OGFC Mixtures

The proposed benefits of OGFC pavements range from key environmental benefits to
safety benefits. Some of the benefits associated with OGFC pavements include but are not limited
to: utilization of technology to provide additional storm-water management measures, reduction
in noise levels, increased visibility and improved safety for drivers and pedestrians due to reduced
tire splash/spray in wet weather.
2.1.3.1. Safety

A major benefit of OGFC mixtures is that they can provide improvement in road safety for
both drivers and pedestrians due to the potential for increased skid resistance especially when there
is heavy precipitation and excess runoff conditions [4]. The surface course of OGFC mixtures
exhibits properties that may prevent hydroplaning on roadway surfaces because water is allowed
to percolate through the pavement surface. In addition, spray and splash are controlled thus
improving driver visibility with the reduction of glare on the road surfaces, specifically during wet
and dark conditions [4]. For the above reasons, over a period of five years (from 2007 to 2012),
FDOT has placed over 195,000 tons of open-graded surface mixtures [17].
2.1.3.2. Noise Attenuation

The high air-voids trap road noise and because of the trapping of the noise, the tire-road

noise is reduced by up to 50-percent [18]. Several studies in Europe and North America have found

10



that OGFC mixtures can help in reducing the noise generated by the tire and road interaction. A
2004 study by the Colorado DOT found that air voids and noise had a linear indirect relationship.
The test concluded that, after testing 19 sites, OGFC pavement were the quietest pavements [19].
Furthermore, a study conducted by the University of Florida concluded that when a porous surface
course were placed in sections of the US-27 in Florida, a noise level between 97 and 99 decibels
(dB) which corresponds to that of a power mower was observed [20].

2.1.3.3. Performance of OGFC Mixtures

Although OGFC mixtures can provide numerous benefits to the highway industry, in a
survey by [11] of OGFC use and performance in the United States a number of drawbacks were
found. The most common problems with OGFC mixtures were raveling, stripping of existing
underlying pavement, and winter maintenance issues. Raveling is the most common distress
identified in OGFC mixtures [21] and it occurs in pavements when particles of aggregate still
coated with the binder lose adherence to the pavement mixture. Loss of adherence to the pavement
occurs due to excessive aging of the asphalt binder or inadequate asphalt binder contents [11].
Table 1 shows problems encountered with OGFC mixtures as reported in [1 and 11].

There are two types of raveling; short term, and long term. Short-term raveling can be
intensified by placing the OGFC mixture at too low of a temperature, incomplete seating of
aggregates during compaction, and in areas having low asphalt binder content as a result of asphalt
binder drainage [22]. Long-term raveling is the result of segregation of the binder from the
aggregate due to gradual asphalt binder drainage over time. The nature of OGFC mixtures can lead
to the asphalt binder draining down and out of the mixture. This could result due to gravity,
transportation of the mixture, or construction practices. The above conditions result in a low binder

content of the OGFC mixture closest to the wearing surface, causing dislodging of the aggregate
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under the action of traffic [22]. To prevent drainage from occurring in OGFC mixtures, fibers are
recommended. The fibers aid in stabilizing the asphalt binder during production and placement
[21].

Stripping occurs in pavements when the aggregate and binder become separated due to the
presence of water that compromises the bond between the aggregate and binder as a consequence
of inadequate drainage [1 and 11].

Table 1 Problems encountered with OGFC mixtures [1 and 11].

Agency Typical Problems Encountered
Austria Raveling

Tg" Germany Raveling

b= France Raveling

.,E, The Netherlands [Raveling & Rapid Aging

= Spain Raveling & Pore Clogging
United Kingdom (Pore Clogging & Rapid Aging
Alaska Ice Removal
Colorado Stripping
Hawaii Raveling
Idaho Pore Clogging

" lowa Ice Removal

% Kansas Ice Removal

& Louisiana Raveling

E Maine Ice Removal

g Maryland Raveling
Minnesota Raveling & Pore Clogging
Rhode Island Raveling
South Dakota Pore Clogging
Tennessee Stripping & Ice Removal
Virginia Stripping

2.2.  Design of OGFC Mixtures
The OGFC mixture design was developed by the Federal Highway Administration
(FHWA) [6] and later modified twice by FHWA through research at the National Center for

Asphalt Technology (NCAT) [4 and 8]. Consequently, the new NCAT drain-down test method

12



was created [4]. The above method was used to calculate the degree of drain-down according to
FHWA procedures [6].

FDOT uses Florida method FM 5-588 [2] to select the OBC by the visual inspection
approach. However, other State DOTs and agencies use different approaches such as (1)
compacted specimens and (2) absorption calculation to determine the OBC of OGFC mixtures.
Table 2 shows the agencies that use this design procedure and the respective tests adopted by them
for the determination of OBC [1, 7 and 23].

In the compacted specimens’ procedure, OBC is determined by evaluating compacted
specimens having a range of asphalt binder contents, similar to a typical asphalt mixture design
procedure [23]. In the Absorption calculation procedure, the binder content is calculated based on
the oil absorption value of the aggregate [23]. Finally, in the visual determination procedure, as
described in the Introduction, OBC is determined by evaluating the asphalt binder drainage at the
bottom of the pie plate by means of visual inspection (Figure 2) [2].

Table 2 Categorization of OGFC mix designs based on the OBC determination method [1,
7 and 23].

Compacted Specimens

Absorption Calculation

Visual determination

ASTM

NAPA

NCAT

GEORGIA DOT*
KANSAS DOT
NEW MEXICO DOT
NORTH CAROLINA DOT
MISSISSIPPI DOT
MISSOURI DOT
NEBRASCA DOT
TENNESSE DOT
TEXAS DOT
VIRGINIA DOT

FHWA
ALABAMA DOT
ARIZONA DOT
GEORGIA DOT *
KENTUCKY TC
WYOMING DOT

FLORIDA DOT
GEORGIA DOT *
NEVADA DOT

NEW JERSEY DOT
SOUTH CAROLINA DOT

* USE A COMBINATION OF MIX DESIGNS PROCEDURES
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(a) Asphalt binder (b) Optimum asphalt  (c) Asphalt binder
content too low binder content content too high

Figure 2 FDOT mix design image references [2].
2.3. Imaging Methods and Application in Asphalt Mixture Analysis

A pavement Mean Profile Depth (MPD) measuring technique was developed [24] with a
photometric stereo technique for image capturing with four light sources in a controlled
environment. Gray scale intensity distribution of the pavement surface image was used to recover
the surface in three dimensions using an iterative global integration technique. MPD measured by
a manual dial gauge was correlated with the MPD evaluated from the recovered surface. In this
method [24], the color variation of the asphalt surface was not considered during image processing.
Since the same gray scale intensity can be obtained from different texture conditions with color,
the applicability of the above method in MPD determination is questionable.

A digital Sand Patch Test (SPT) was developed [25] using digital image analysis. In the
image analysis, the application of "lacunarity analysis" is used to determine the particle sizes from
a digital image of a pavement surface. The SPT investigation also concluded that the
reproducibility of SPT is very low but it is still adequate for use in correlations between the average
particle size obtained from image processing and the mean texture depth measured by the SPT

method.
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Another image based macrotexture measuring method was developed in the research
documented in [26]. In this method, the Canny edge detection technique of digital image
processing was considered for measuring the macrotexture of asphalt pavements. Pavement
surface texture coarseness distributions were estimated from the edge profiles of the digital images.
Aggregate size was measured by the chord length of edge boundaries using an edge detection pixel
count method. During image data collection, the illumination condition was not controlled and
image acquisition time varied from morning to afternoon at various times of the year in spite of
the general knowledge that image quality varies with illumination. Mean aggregate size obtained
from image analysis was statistically correlated with the sensor measured texture readings from a
laser profilometer.

A macrotexture (MPD) measuring technique was developed [27] using Aggregate Image
Measurement System (AIMS). AIMS was used in the laboratory to measure the macrotexture of
aggregate surfaces by analyzing the images of cores from the actual pavements collected from five
locations in Texas. The Circular Texture Meter (CTM) was used for measuring macrotexture in
the field. Statistical analysis was performed for establishing a correlation with different segment
lengths in the MPD calculation. It was suggested that AIMS could be used instead of a CTM for
macrotexture measurement.

Recently, a Digital Imaging System (DIS) which is capable of generating the surface
texture in three dimensions to identify pavement distresses using high definition images was
developed [28]. Although DIS can capture high definition images, it does not provide any friction
information about the pavement surface. Considering all these factors, emerging imaging

technologies have been introduced for friction measurement by researchers during the last decade
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to assure safety and easy operation without requiring lane closure during friction evaluation
operations.

A new method was developed by Amarasiri et al, 2012 [29] to measure concrete pavement
macrotexture on wheel paths using the reflection properties of the concrete pavement surface. In
this method, a concrete pavement image was digitally formed for a given light source and camera
position using the Bidirectional Reflection Distribution Function (BRDF). BRDF indicates the
reflectance property of any surface. Digital images generated from a BRDF model of a concrete
surface were compared with the images of concrete samples under identical optical and camera
settings. The comparison showed a close resemblance between two images thereby validating the
method.

Pavement wearing due to traffic was induced by gradual polishing of the artificial surface
in different stages with digital images generated at every stage. On the other hand, concrete
samples were also gradually polished in the laboratory and images were captured for analysis.

The above research [29] has established that friction on concrete pavement surfaces can be
monitored based on quantifying the brightness of pavement images assuming that the color of
concrete pavements remains unchanged. However, when extending this technology to asphalt
pavements, the color variation of asphalt pavement needs to be addressed since color changes in
asphalt pavements are significant even in the short-term as the aggregates get exposed due to traffic
induced wear. In order to use the surface image brightness to quantify frictional variation in asphalt
pavements, new filtering approaches have been introduced [30].

A novel method was developed by Peterson et al, 2009 [31] for threshold optimization for
images collected from contrast enhanced concrete surfaces for air void characterization. In this

method, the characterization of the air-voids of hardened concrete relies on "contrast
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enhancement” step to make air-voids appear white and aggregate and paste appear black. A Visual
Basic script program was developed and employed to analyze contrast enhanced surfaces and
perform air void content calculations.

A new method has also been developed for crack detection from pavement images, called
the “Crack-Tree” method [32]. This method consists of three steps in which the first step is the
geodesic shadow-removal with an algorithm developed to remove the pavement shadows while
preserving the cracks. The second step is the development of the crack probability map using tensor
voting, which enhances the connection of the crack fragments with good proximity and curve
continuity. Finally, the last step is the construction of a graphic model by sampling crack seeds
from the crack probability map. In practice, different cracks or crack fragments may show different
widths. In the above work [32], the researchers focus on detecting the location and shape of the
crack curves, but not the crack width.

Another automated pavement distress detection using advanced image processing
techniques has been developed in [33]. In the above work, a self-adaptive image processing
method is proposed for the extraction and connection of break points of cracks in pavement images.
The algorithm first finds the initial point of the crack and then determines the crack’s classification
into transverse, longitudinal and alligator types. Different search algorithms are employed for
different types of cracks. Then the algorithm traces along the crack pixels to find a break point and
subsequently connects the identified crack point to the nearest break point in a particular search
area. The nearest point then becomes the new initial point and the algorithm continues the process
until reaching the end of the crack. The experimental results show that this connection algorithm

is very efficient in maximizing the accuracy of crack identification.
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Finite element modeling of geomaterials using digital image processing has been
developed in [34]. “The above research presents a digital image processing method based finite
element method for the two-dimensional mechanical analysis of geomaterials by taking into
consideration their material non-homogeneities and microstructures. The method includes theories
and techniques of digital image processing, the principles of geometry vectorization, and the
techniques of automatic finite element mesh generation in the conventional finite element method.
Digital imaging techniques are used to acquire the non-homogeneous distributions of geomaterials
(soils, rocks, asphalt concrete and cement concrete) in the digital format. Digital image processing
algorithms are developed to identify and classify the main homogeneous material types and their
distribution structures that form the non-homogeneity of a geomaterial in the image. The interfaces
of the main homogeneous material types are vectorized to form the internal material geometric
structure and sub-regions. The vectorized digital images are used as inputs for finite element mesh
generations using automatic mesh generation techniques. Lastly, the conventional finite element
methods are employed to carry out the computation and analysis of geomechanical problems by
taking into account the actual internal non-homogeneity of the geomaterial. Using asphalt concrete
as an example, this research provides a detailed demonstration of the proposed digital image
processing based finite element method. The research also applies the new method to the
mechanical analysis of the Brazilian indirect tensile test in rock mechanics and pavement
engineering. The numerical results show that this new digital image process based finite element
method can take into account the material non-homogeneities in the geomechanical analysis.”

A digital planar image analysis based method for detecting aggregate gradation in asphalt
mixtures from planar images has been developed in [35]. The purpose of this study was to finalize

an effective analysis of asphalt road section images for automatically extracting aggregate
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gradation without the need for physically separating the binder from the aggregate. The proposed
methodology allows the user to estimate the aggregate gradation that otherwise would need to be
established via specially equipped laboratory and time-consuming tests that also bring about health
risks for the operators due to the use of solvents and other hazardous materials.
2.4. Human Visual System

Perceptual approaches have been widely used in many areas of visual information
processing. Pylyshyn [36] explain how humans see and visualize and that seeing is different from
thinking. It is emphasized that to see is not to create an inner replica of the world one is observing
or thinking about or visualizing [36]. In other words, it is emphasized that both seeing and
visualizing are different from thinking (and from each other), and that humans’ intuitive views
about seeing and visualizing rest largely on uncertainties [36]. Specifically, Pylyshyn [36] explains
the visual system, the connection between vision and cognition, symbolic representations of
percepts, and focuses on problems within one of the most highly developed areas in cognitive
science, i.e. visual perception. Pylyshyn [36] traces the relation between the study of vision, the
study of mental imagery, and the study of thinking more generally. Specially, the message in the
last chapters of Pylyshyn [36] is that, apart from what it feels like to visualize or to examine a
mental image in one’s mind’s eye, imagining and visualizing are a form of reasoning [36].

Numerous other studies have shown that the use of Human Vision System (HVS)
techniques have been used to develop design quantification of values, perceptual based image
codes, efficacy of human vision code and the use of vision human model and neural networks to
reverse engineer networks fields [37-41]. Albanesi and Guerrini [37] adopted a human visual
system (HVS) - based model on wavelet technique for tuning the target visual quality to define

arbitrarily shaped regions of interest. Wang, Lee, and Chang [38] propose a systematic procedure
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to design a quantization table based on the human visual system model for the baseline JPEG
coder. Hontsch, and Karam [39] have focused on developing methods to minimize mathematically
tractable, easy to measure, distortion metrics. Watson [40] considered the schemes for neural
representation of visual information to express explicit image codes. In Thorpe et al, 2000 [41]
show that the speed of image processing achieved by the human visual system is incompatible
with conventional neural network approaches that use standard coding schemes based on firing
rate of biological neurons. In the Thorpe et al, 2000 [41] results are summaries that demonstrate a
number of advantages of such coding schemes.

2.5.  Neural Networks

Artificial neural networks (ANN) have emerged as a result of simulation of biological
nervous system, such as the brain, on a computer [42]. ANNs have been used intensively for
solving regression and classification problems in many fields. In short, neural networks (NN) are
nonlinear processes that perform learning and classification and their ability to learn by example
makes ANN very flexible and powerful [42].

Recently NN have been used in many areas that require computational techniques such as
pattern recognition, optical character recognition, outcome prediction, problem classification,
including system modelling, fault diagnosis and control, financial forecasting, weather forecasting,
indoor environment and hydrology [43-48]. In materials science and engineering fields,
researchers have used neural network techniques to develop prediction models for mechanical
properties of materials [43], road crack condition [44] etc. For instance, Haque and Sudhakar [43],
have used ANN for the prediction of fracture toughness in microalloy steel, corrosion fatigue
behavior and fatigue crack growth in dual-phase (DP) steel. The above mentioned authors report

that the ANN back-propagation model with Gaussian activation function exhibited excellent
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agreement with the experimental results. Yang [44] performed road crack condition modeling
using recurrent Markov chains and ANN where ANN provided a more appropriate and applicable
methodology for modeling the pavement deterioration process with respect to cracks [44].

In medical science fields, Generalized Regression Neural Network (GRNN) and Radial
Basis Function (RBF) have been used for heart disease diagnosis [45]. In the Hannan et al, 2010
[45] research, neural network have been used to prescribe the medicine for heart disease. The
results of the above evaluation showed that GRNN and RBF can be applied successfully for
prescription of medicine for the patients with heart disease.

Numerous other studies have shown that the use of neural network techniques provide
comparable or improved prediction accuracies compared to existing methods in application in
weather forecasting, indoor environment and hydrology fields [46-48]. Lee and He [46] adopted
the GRNN to predict wind speeds with more accuracy than the traditional one-year linear step-
series-based model. Popescu et al, 2004 [47], shows that the results of their studies regarding the
applications of the NN to the propagation path loss prediction in indoor environment showed good
agreement with the measurements [47]. Furthermore, Kisi investigated the GRNN technique in
model of reference evapotranspiration (ETO) obtained using the FAO Penman-Monteith equation

[48].
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CHAPTER 3: EXPERIMENTAL METHODOLOGY

This section describes how the study was conducted. The steps that are involved in this
process are identified in the flowchart in Figure 3. Experimental Test Plan is found in Appendix
A and Tracking of the Experimental Process are found in Appendix B. Phase | and Il were
previously documented in Gunaratne and Mejias de Pernia, 2014 [49], Gunaratne and Mejias de
Pernia, 2015 [50] and Mejias de Pernia et al, 2015 [51]. Phase I! involves the selection of material
and preparation of the specimen following FM 5-588 (Appendix C). Phase Il involves the
development of the image-based OBC prediction method and Phase Ill involves the QCT
development process as shown in Figure 3(a), (b) and (c) respectively.

A description of the steps involved in this study is presented in this section in three sub-
sections. (i) Phase | (Determination of OBC of OGFC Mixtures Using FM 5-588 Imaging Process),
(ii) Phase Il (Development of OBC Image-Based Prediction Method) and (iii) Phase IlI
(Development of QCT).

3.1. Phase I (Determination of OBC of OGFC Mixtures Using FM 5-588 Imaging
Process)

Phase | is described by sections (i) Material selection, (ii) Determination of OBC of OGFC

mixtures using FM 5-588, (iii) FDOT imaging technology, and (iv) Validation of FDOT imaging

technology as shown in Figure 3(a).

Portions of this chapter were previously published in [49-51]. Permission is included in Appendix J.
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Figure 3 Flowchart of the study overview.

23




3.1.1. Material Selection

The aggregate gradation and the porosity of OGFC mixtures are critical to producing a
mixture that will have the necessary structural (strength) and functional (permeability)
performance characteristics required for satisfactory field performance [52]. The aggregate
gradation should allow for a large percentage of coarse aggregate for control of the porosity of the
asphalt mixtures, and an adequate fine aggregate content to prevent the void structure from closing
[52]. In this investigation, two different granitic aggregate sources and two different oolitic
limestone aggregate sources were used to create the tested OGFC mixtures. The granitic mixtures
were identified as mixtures A-J and the oolitic limestone mixtures identified as mixtures K-S.
More specifically, the aggregate sources for Nova Scotia Granite, Georgia Granite, White Rock
Quarries limestone and Titan American limestone were labeled as A-E, F-J, K-P, and Q-S,
respectively [49-51].

In total, nineteen different OGFC gradations were generated and tested using the PG 67-
22 asphalt binder which comprised a total of 228 samples prepared from 120 granitic and 108
oolitic limestone aggregate sources [49-51]. Hydrated lime was added at a rate of 1.0% by weight
of aggregate for each granitic mixture, and mineral fiber at a rate of 0.4% by total mixture weight
for all mixtures, as defined in the FDOT specifications [5]. Table 3 shows the aggregate gradations
used for the study. Figure 4 to Figure 7 includes the gradation curves for each mixture.
3.1.2. Determination of OBC of OGFC Mixtures Using FM 5-588

The 1974 FHWA design procedure [6] established the OBC of OGFC mixtures based on
the surface capacity (Kc) of the aggregate and optimized the gradation to established standards.
Then, the mixing temperature was set based on samples placed in Pyrex glass pie plates, which

were subsequently placed in an oven at varying temperatures to assess the ABD. With time and
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experience, FDOT modified the FHWA procedure to design OGFC mixtures based on
standardized aggregate types and gradations, and determined the OBC based on pie plate samples.

Table 3 OGFC gradations used for the study.

Nova Scotia Granite | Georgia Granite | White Rock Quarries Limestone | Titan America Limestone
Seve i Percent Pasing (%) CONTROL
MIX ] MIX | MK ] MK | M| VX | M VK] MK M) X MIC ] MIX | M) MIX | MK [ MIXC [ MIX [ MIX | POINTS
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Figure 4 Gradation curves for Nova-Scotia source aggregate (A-E).
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Figure 5 Gradation curves for Georgia source aggregate (F-J).
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Figure 6 Gradation curves for Florida source aggregate (K-P).
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Figure 7 Gradation curves for Florida source aggregate (Q-S).

The complete material aggregate, binder and gradation for all the mixes are shown in
Appendix D.

Currently, FM 5-588 requires the preparation of OGFC samples placed in pie plates at three
pre-determined trial AC chosen based on the aggregate type: 5.3%, 5.8% and 6.3% for granitic
aggregate, and 5.8%, 6.3% and 6.8% for oolitic limestone aggregate. The next step requires visual
inspection of the bottom of the pie plates for the ABD distribution [2 and 6]. This inspection is
performed by trained and experienced technicians who determine the OBC based on perceptive
interpolation or extrapolation from the above specified AC, guided by documented references
shown in Figure 2.

For this research, each OGFC mixture was tested in triplicates to account for the random
distribution of the aggregate and interstices within each aggregate mixture and random sample
preparation errors. The appropriate amount of materials was acquired in order to prepare triplicates

with each mixture and additional triplicate mixtures corresponding to the visually determined OBC
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as shown in Figure 8(a). AASHTO Method T2 [53] and FM 1-T 248 [54] were used to sample and
prepare the materials for testing. Upon sampling, the aggregates were dried overnight at 110°C
and then sieved in Gilson TS-1 bulk sieve shakers.

Laboratory aggregate “batches” were produced at the three predefined trial AC
corresponding to the aggregate type as shown in Figure 8(b). Next, the uncompacted mixtures were
placed in nine-inch clear glass circular pie plates and conditioned in an oven at 320°F (160°C) for
one hour. Figure 8(c) shows the steps followed for the pie plate preparation according to FM 5-
588. Once the pie plates cooled down to the room temperature, they were inverted for the

subsequent visual determination of the OBC as shown in Figure 8(d).

Figure 8 Steps followed for the pie plate preparation according to FM 5-588 including: (a)
material preparation, (b) batch preparation, (c) mixture/pie plate’s preparation, and (d)
visual inspection to estimate OBC.
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Finally, the three additional OGFC samples were also prepared at the visually determined
OBC'’s. A sample batch sheet is shown in Figure 9.

3.1.3. FDOT Imaging Technology

FDOT’s customized imaging system developed to automate the FM 5-588 method consists
of a standard digital camera attached to a custom made aluminum bracket (Figure 10) oriented at
35° to the horizontal to minimize glare on the surface during the image acquisition. A preliminary
computer program developed by FDOT was used to calibrate the pie plate image [7]. A “dot
matrix” calibration unit with a fixed spacing was used in the above setup to calibrate the specific
software for the camera angle and simulate an image perspective of a 90° bird’s eye view. The
known dimensions of the bracket leg are used to convert pixel values into actual distances during
image processing [7].

A “dot matrix” calibration unit with a fixed spacing was used in the above setup to calibrate
the specific software for the camera angle and simulate an image perspective of a 90° bird’s eye
view of a given pattern on 2D images (Figure 11) [55].

The preliminary program developed by FDOT was used to perform the initial image
analysis tasks [7]. FDOT’s image analysis program is based on Labview software. This software
extracted the circular (9” diameter) section from the image of a pie plate for analysis of the binder
area. A color threshold which reduces a grayscale image to a binary image was used to identify
the image pixels corresponding to the binder in the pie plate image. Based on the selected
threshold, a pixel analysis was conducted to calculate the total area of the binder. Thresholding is
the simplest segmentation method for images and is used to separate out regions of an image
corresponding to objects which one wishes to analyze [7]. This separation is based on the variation

of intensity between the object pixels and the background pixels [56].
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Figure 10 Pie plate and custom bracket (courtesy of FDOT [6]).
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Figure 11 Typical calibration dot matrix unit [52].

It must be noted that image analysis was accomplished using two different methods; (1)
the Labview program provided by FDOT State Material Office (SMO), and (2) the Matlab
software developed by the author. As seen in Figure 12, the estimates of the binder area in each
pie plate image obtained from the above two sources are in perfect agreement. Moreover,
Appendix E (Figures E1 to E19) provides test results from the above two methods (i.e. Labview
versus Matlab) obtained in this module for all of the mixtures tested in this research.

3.1.4. Validation of FDOT Imaging Process
Statistical analysis to validate the preliminary Florida pie plate test image processing

method. Many statistical analyses attempt to find a pattern in a data series, based on an assumption

about the nature of the data.
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For the database, two image processing parameters (percent black pixel area and
connectivity of black pixels), generated during the statistical analyses in Phase | were completed
following the next steps: a) clean database, b) check data for outliers, c) estimate correlation
coefficients, d) develop a regression analysis, e) interpreted the regressions statistical tables and f)

gathered the finding of the validation section.
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3.1.4.1. Clean Database

‘Cleaning' is the process of removing those data points which are either (a) obviously
disconnected with the effect or the assumption that defines the pattern or (b) obviously erroneous
by virtue of sub-standard measurement. The cleaning of the database was performed by checking
the data against the original data to generate a reliable database, when the data was checked against
the original data to verify that they had been entered correctly, it was observed that no errors were
found in the database.
3.1.4.2. Check Data for QOutliers

To avoid biased results, the data set was checked for both univariate outliers (outliers with
respect to one variable alone) and multivariate outliers (outliers with respect to a combination of
variables). Outlier detection in a Microsoft Excel worksheet is demonstrated on the sample set of
mixture J (24 numeric values), completed in a several steps outlined below [51].

The first step in identifying outliers is to pinpoint the statistical center of the range. To
perform pinpointing, one starts by finding the 1st and 3rd quartiles. A quartile is a statistical
division of a data set into four equal groups, with each group making up 25 percent of the data.
The top 25 percent of a collection is considered to be the 1st quartile, whereas the bottom 25
percent is considered the 4th quartile.

In Excel, one can easily obtain quartile values by using the QUARTILE function. This
function requires two arguments: a range of data and the quartile number one wants.

The next step is taking these two quartiles, calculating the statistical 50 percent of the data
set by subtracting the 3rd quartile from the 1st quartile. This statistical 50 percent is called the
interquartile range (IQR). Statisticians generally agree that IQR*1.5 can be used to establish a

reasonable upper and lower fence:
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The lower fence is equal to the 1st quartile — IQR*1.5.

The upper fence is equal to the 3rd quartile + IQR*1.5.

The final results of final upper and lower fences for all of the mixtures was “normal”
indicating "no outliers”
3.1.4.3. Estimate Correlation Coefficients

The correlation coefficient (Multiple R) is defined as the measurement of how strong a
linear relationship exists between two numeric variables x and y. The correlation coefficient is
always a number between -1.0 and +1.0. If the correlation coefficient is close to +1.0, then there
IS a strong positive linear relationship between x and y. If the correlation coefficient is close to -
1.0, then there is a strong negative linear relationship between x and y. The closer to zero the
correlation coefficient is the less of a linear relationship between x and y exists [51].

The correlation coefficient (multiple R) for all the mixtures was a number between 0.38
and +0.97 (Table 4) indicating the existence of a strong positive linear relationship between x
(asphalt binder content) and y (image processing parameter).

Table 4 Coefficients of correlation for all the mixtures used for the study.

GRANITE OOLITE
Mix Multiple Mix Multiple
R R

NS315 A 0.95

B 0.91 87339 K 0.89

(& 0.95 L 0.98

D 0.97 M 0.94

E 0.97 N 0.79
GASS3 F 0.90 O 0.38

G 0.84 P 0.88

H 0.92 87145 Q 0.95

I 0.92 R 0.95

J 0.86 S 0.82
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3.1.4.4. Regression Analysis

Regression analysis was used to generate mathematical expressions for the relationships
between the classification parameters and asphalt binder content. The regression tool was used to
estimate the model parameters [51]. The regression tool determined the coefficients (Bi) that yield
the smallest residual sum of squares of errors, which is equivalent to the greatest correlation
coefficient squared, R?, in Equation (1) or (2).

e Regression analysis of percent black pixel area versus asphalt binder content and connectivity
of black pixels versus asphalt binder content
y=Bl+P2x+u 1)
where: ¥ = Predicted asphalt binder content percentages; B1, p2 = Regression coefficients
corresponding to the independent variables; x = Percent black pixel area or connectivity of black
pixels; and u = Error.

As seen in the Table 5, when all the mixtures are considered, there is only a marginal
improvement in R? values in the correlations with the asphalt binder contents when percent black
pixel area is replaced by the connectivity of black pixels. Hence the author sought to use a
combined model of both the above variables to predict the asphalt binder content of mixtures.

e Regression analysis of predicted asphalt binder content versus combination of percent black
pixels area and connectivity of black pixels
Yy=pl+P2x2+P3x3+U (2
where: y = Predicted asphalt_binder content; 1, B2, B3 = Regression coefficients; x> = Percent
black pixel area; x3 = Connectivity of black pixels; and u = Error.
Table 5 also shows the results of the combined regression analysis using Equation (2) for

all the considered mixtures.
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Table 5 Results of the combined regression analysis.

Single regression Multiple regression
R? results for R? results for
Mix Black area Connectivity  Black area percent
percent of black and Connected
pixels black pixels
NS315 0.76 0.73 0.76
GASS3 0.61 0.66 0.80
87339 0.70 0.70 0.70
87145 0.74 0.80 0.81

Table 6 provides a summary of the results from combined regression analysis for mix A.
Table 6 Summary output of the combined regressions for mix A.

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.893022419
R Square 0.79748904
Adjusted R Square 0.778202282
Standard Error 0.181427856
Observations 24
ANOVA

df SS MS F Significance F
Regression 2 2.722095924 1.361047962 41.34904568  5.22047E-08
Residual 21 0.691237409 0.032916067
Total 23 3.413333333

Coefficients Standard Error t Stat P-value Lower95%  Upper 95%

Intercept 3.571419302 0.911845774 3.916692279 0.000792717 1.675132206 5.467706398
% Area Black Pixels 0.029265431 0.003746481 7.811444548 1.20452E-07 0.021474197 0.037056666

Connectivity of black pixel 0.840392025 1.126587506 0.745962494 0.463959205 -1.502474949 3.183258999

The results of the multiple regression analysis depicted by Equation (2) in terms of the

predicted asphalt binder content against the actual asphalt binder content in mix A are shown in
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Figure 13 and Figure 14 indicates that a multiple regression model that uses both percent black

pixel area and the connectivity of black pixels on the pie plates shows an increase in the R2 value.
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Figure 13 Percent of asphalt binder prediction using simple regression for mix A.
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Figure 14 Percent of asphalt binder prediction using combined regression for mix A.
The simple regression models for percent black pixel area and connectivity of black pixels
in Figure 13 account for 76.84% and 79.21% of the variance, while the combined regression model

in Figure 14 accounts for 79.26% of the variance. The more variance that is accounted for by the
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regression model the closer the data points will fall to the fitted regression line. Theoretically, if a
model could explain 100% of the variance, the fitted values would always equal the observed
values and, therefore, all the data points would fall on the fitted regression line. Therefore, the
more parameters that one can add to the model the closer to the variance the values will be,
providing more accurate asphalt binder percent predictions.

A summary of the improvement of the predictive models based on the use of combined
regression for all mixtures is shown in Table 7.

Table 7 Comparison of results of simple regression versus multiple regression for all the
mixtures used for the study.

Single regression R’ results | Multiple regressionR’

for results for Sl ares nerentve Backare Connected black pixels percent

£ vs. Black area percent and

) percent and Connectivity of SRR

MIX Black area | Connectivity |Black area percentand black pixels difference onn Vl y pix
percent | of black pixels [Connected black pixels difference

NS315 0.76 073 0.76 NO CHANGE - | % [INCREASED BY 20| %
GA553 0.61 066 0.80 INCREASED BY| 13.5|% |INCREASED BY 96 | %
87339 0.70 0.70 0.70 NO CHANGE - | % [NO CHANGE - %
87145 0.74 0.80 0.81 INCREASED BY| 45|% (INCREASED BY 06| %

3.1.4.5. Interpretation of the Regression Statistics Table

Sample regression statistics for mix J are shown in Table 8 in which R Square (R?) is of
the greatest interest. Table 8 gives the overall goodness-of-fit measures, R? = 0.781.

Adjusted R? is defined as follows:

R2 = R? - (1-R?)*(k-1)/(n-K) = 0.781 — 0.219*2/21 =0.78 (3)

R? = 0.781 means that 78.1% of the variation of yi around § (its mean) is explained by the
repressors’ Xzi and Xai.

The standard error in Table 8 refers to the estimated standard deviation of the error term u

in Equation (3). It is sometimes called the standard error of the regression and it equals
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to /SSE/(n — k)’ where SSE is sum of squared errors of prediction, n is number of observations

used in the regression and k is the number of repressors including the intercept.

Table 8 Regression statistic table for mix J.

Explanation
Multiple R 0.884 R = square root of R2
R Square 0.781 R?
Adjusted R Square 0.760 Adjusted R? used if more than one x variable
Standard Error 0.178 | This is the sample estimate of the standard deviation of the error u
Observations 24 Number of observations used in the regression (n)

3.1.4.6. Findings of the Validation Section

The above described statistical techniques have been implemented in Excel and Matlab to
derive the required correlations for all the mixes. For example, Figures 15(a) and (b) shows the
statistics for two correlations that have been developed by the author for the Trial 1.1 of mix J [49
and 51].

It can be seen that the correlation is very satisfactory with respect to the connected black
area versus percent AC (%AC) plots. For example, the overall goodness-of-fit measurement, R?,
increases from 0.65 to 0.755 between the percent black-area parameter versus percent AC to the
black pixel connectivity parameter versus percent AC. The complete results of this analysis for all
the mixes are shown in Appendix F (Figures F1 to F47 and Table F1). However, it can be seen
from the plots in Appendix F that R? values did not improve markedly for all the mixes when
percent black pixels parameter was replaced by the black pixel connectivity parameter. Hence the
author sought to use both variables to predict the asphalt content of the mixes using combined

regression seen in Equation (2).
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Figure 15 Mix J trial 1.1 at 5.8%AC (a) %AC versus %black area, (b) %AC versus
%Connected black area.

Table 9 demonstrates the comparison summary of the results from both types of regression

for a number of mixes.
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Table 9 Comparison of results of individual regression versus combined regression.

[ [ ——
CHANGE FROM
CHANGE FROM INDIVIDUAL
COMBINED INDIVIDUAL VARIABLES TO
MIXES |%AREA |% CONNECTED |DIFFERENCE |REGRESION VARIABLES COMBINED
MIXJ 0.65 0.73 8% 0.78 [INCREASED BY 8% |INCREASED BY 13%
87339 0.70 0.70 0% 0.70 |N/A 0% |N/A -
GAS553 0.61 0.66 5% 0.80 |INCREASED BY 5% |INCREASED BY 19%
87145 0.74 0.80 6% 0.81 |INCREASED BY 6% [INCREASED BY 7%
NS315 0.76 0.73 -3% 0.76 |DECREASED BY -3% |DECREASED BY

3.2.  Phase Il (Development of OBC Image-Based Prediction Method)

Phase Il is described by sections (i) Digital image acquisition and processing, (ii)
Development of a model to automate the process to predict OBC, and (iii) General regression
neural network (GRNN)-based prediction model to estimate OBC.

3.2.1. Digital Image Acquisition and Processing

In these next step, digital images of all pie plate samples were acquired using the setup
described in the previous section. Then, Plaster of Paris was added to each pie plate to enhance the
contrast, as shown in Figure 16(a) for the subsequent visual inspection and a new (post-
enhancement) set of digital images of the pie plates were also acquired. A sample set of such digital
images is shown in Figure 16(b). In order to enrich the database with more extensive data that
could be used in modeling the random errors possibly committed in image capturing, a second set
of the post-plastered digital images (immediate after the first set was taken without moving the pie
plate from the custom bracket) was also acquired from the pie plates, yielding a total of 456 digital
images for all the mixtures [50].

A research study by Zelelew, Papagiannakis, and Masad, 2008 [57] introduced an
automated digital image processing technique for analyzing the internal structure of asphalt

mixtures from CT images. Such innovations for easing the complexity of processing and analysis
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of the captured images have become acceptable techniques for basic image processing. Matlab™
was used to implement the different stages of this technique in the current research based on (i)
removing the random noise in the image; (ii) converting the grayscale image into a binary image
using an appropriate threshold value; (iii) finding the connected components (groups of black
pixels) in each image, denoted as “regions”; (iv) assigning a unique label to each identified region;
and (v) computing geometric properties of each labeled region [50].

In the next step, the digital images were preprocessed for quality enhancement to facilitate
precise analysis and more accurate interpretation of results at the analysis stage. Important tasks
in preprocessing include filtering for removal of noise introduced during image acquisition,
emphasizing of specific features relevant to the analysis, and converting the original grayscale
images into binary images for analytical convenience. Digital images are often corrupted with
noise or undesired features originating from various sources depending on the ambient conditions
at the time of digital image acquisition. In this investigation, the only likely sources of noise were
non-uniform lighting and scratches or other marks on the bottom of the glass pie plates. To remove

the random noise in the image the median filter (medfilt2) was applied.

Figure 16 Sequences of steps followed for the enhancement procedure.
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The final step of pre-processing involved image enhancement using a thresholding
technique to convert the grayscale images with gradually varying intensities from black to white
into binary images consisting of only black and white pixels. Thresholding is the simplest
segmentation method for digital images and it is used to separate out regions of an image
corresponding to objects which one wishes to analyze. This separation is based on the variation of
intensity between the object pixels and the background pixels [55]. A color threshold which
reduces a grayscale image to a binary image is used to identify the image pixels corresponding to
the asphalt binder. In this study, the im2bw function outputs a binary image for an input grayscale
image by replacing all the pixels in the input image with intensities greater than the selected
thresholding level with the value of 1 (white) and all the other pixels with the value of 0 (black)
[56]. After filters are applied, the connected black pixels are grouped into regions.

The grouping of connected black pixels into regions was accomplished using the
Adjacency Searching Method [58], allowing the connected black pixel regions which are
considered to represent the ABD, to be evaluated further. A brief discussion of the Adjacency
Searching Method is found next.

A pixel p at coordinates of (i, y) has four horizontal and vertical neighbors whose
coordinates are given by (i+1, j), (i-1, ), (i, j+1), (i, j-1). This set of pixels, called the 4-connected
next neighbors of p, is denoted by Figure 17(a) and each pixel is a unit distance from (i, j). The 4-
connected diagonal neighbors of p have coordinates (i+1, j+1), (i+1, j-1), (i-1, j+1), (i-1, j-1) and
are denoted by Figure 17(b). These points, together with the 4-neighbors, are called the 8-
connected of p, denoted by Figure 17(c). The location of 8-connected for each applicable pixel is

carried out as follows.
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Figure 17 Pixel connectivity schemes (a) 4-neighbor connectivity next pixels, (b) 4-neighbor
connectivity corner pixels and (c) 8-neighbor connectivity.

First, the searching algorithm finds the initial black pixel of an image and starts the search
within the previously defined search area and the prioritized (next or diagonal) directions. The
basic rule for the searching algorithm is to follow the adjoining black pixels until there is no other
black pixel in the prioritized directions. The algorithm will finally count and label the number of
pixels next and diagonal to the pixel p. The search algorithm is summarized below:

e From the binary image, find the initial black pixel p [49 to 51].

e Start counting from p the pixels with the same color (black) next to p to the right, left, top and
bottom to find 4-connected next neighbors

e Follow the black pixels in the four directions until no other black pixel is found next to p

e Label the pixel p with the number of the pixel visited last

e Return to the initial black pixel p again and now start counting from p the pixels with the same
color (black) next to it to the top right corner, top left corner, bottom right corner and bottom
left corner to find 4-connected diagonal neighbors

e Follow the black pixels in the four diagonal directions until no other black pixel is found

diagonal to p
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e Add the count of the 4- connected next neighbors and the 4-connected diagonal neighbors to
find 8-connected neighbors

e Determine the presence of a break point (where no more black pixel is found)

e Repeat the process for the each image.

Then, a labelling operation is performed to change the pixel intensities of regions of black
pixels to unique integers (bwlabel) as shown in Figure 18(a) and, subsequently, a color map
function is implemented to apply RGB color visualizing label of the regions (label2rgb) as shown
in Figure 18(b).

The geometric properties of each labeled region are then calculated (regionprops). These
include the area, equivalent diameter and centroid. Once the processing of the images is completed,
the algorithm proceeds to the analysis for the determination of orientation, spatial distribution and
segregation [50]. Figure 19 shows the steps used in this study for pre-processing the pie plate

digital images.

o @,

(a) (b)

Figure 18 Representation of (a) tracing of regions of black pixels connected and (b)
labelling of regions of black pixel connected by color and numbers.
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Figure 19 Sequences of steps followed for the pre-processing the pie plate digital images.
3.2.2. Development of a Model to Automate the FM 5-588 Method to Predict OBC

To accomplish the automation of the FM 5-588 procedure to accomplish the main objective
of the research (OBC prediction), the author analytically modeled the perceptual transfer process
which involves the two modes of information processing i.e. visual processing and neural
processing. Creation of this perceptual process consist on two task: (i) visual processing using the
human vision system, and (ii) neural processing using general regression neural network. The
above process is described in detail in the forthcoming Chapter 4.

3.3.  Phase Il (Development of Image-based Quality Control Tool (QCT))

This section gives a detailed discussion of the QCT development process as shown in
Figure 3(c). This section is intended to provide (i) “How to develop” and (ii) “How to evaluate”
the image-based quality control imaging parameters (QCIP) to be used in the QCT [50].

The (i) “How to develop” section describes the procedure of producing pie plates of OGFC
mixtures currently followed by FDOT using FM 5-588. Meanwhile, the (ii) “How to evaluate”
section describes methods of identifying and analyzing the ABD characterization by means of the
previously identified QCIP. The above analysis is based on the findings of past research studies
on aggregate characterization. This section also describes the statistical validation of the QCIP

including setting up of the target value and acceptable tolerance for each QC parameter following
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the measure evaluation criteria [59] that provide a scientific basis for the selection of target values

and acceptable tolerances.

3.3.1. “How to Develop” the Image-Based Quality Control Imaging Parameters (QCIP)

In FDOT, QC check standards are currently unavailable for the production of pie plates
using FM 5-588. Consequently, in this study, guidelines for checking the production quality of the
pie plates were set up by inspecting more than 228 production PPS and consulting with the FDOT
Materials office collaborators consisting of the project managers, laboratory technicians, and
engineers [60]. The algorithm used for formulating the QCT redefines connected black pixel
regions as ellipses with clearly demarcated major and minor axes. An example of an acceptable
pie plate image where each of the black pixels regions are modified as ellipses is shown in Figure
20(a) [51, 59 and 60].

Based on the FDOT Materials Office collaborators’ judgment, a pie plate would become
unacceptable due to the following three reasons [60]:

e |f the PPS has been “slid,” “moved,” or “glided” during the placing of the mixture from the
mixing bowl into the pie plate or during the removal of the pie plate from the oven, the ABD’s
will show a definitive alignment at a specific angle. An example of an image of a pie plate with
such a “slide” is shown on the right side of Figure 20(c), while an image of a pie plate with
“no slide” is shown on the left side of Figure 20(b).

e If the PPS has been “dropped,” “dumped,” or “forced into place” during the placing of the
mixture from the mixing bowl into the pie plate, the ABD will be displayed as an uneven
distribution over the bottom surface of the pie plate. An example of an “unevenly distributed”
ABD is shown on the right side of Figure 20(e), while an ‘evenly distributed” ABD is shown

on the left side of Figure 20(d).
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e If the PPS has been left with “aggregate particles not thoroughly coated” or with “large
conglomerates of fines particles” during the mixing of the aggregate batch and free-standing
asphalt binder in the mixing bowl, then when the mixture is transferred from the mixing bowl
into the pie plate, ABD will exhibit an irregular distribution causing segregation on the outside
or the inside of the pie plate. An example of an image of an “incorrectly mixed and segregated”
pie plate is shown on the right side of Figure 20(g), while a ‘non-segregated” pie plate image
is shown on the left side of Figure 20(f). Following constant communication with FDOT
collaborators regarding the PPS production, the current lightly adopted visual QC checks were
reviewed and a set of three relevant, definitive and measurable QCIP that would represent the
technician’s visual QC checks in a more systematic and objective manner, were selected from
the broad set of imaging parameters described in the forthcoming sub-section 3.3.2. These
three parameters address the following specific properties of ABD of PPS; (i) orientation, (ii)
spatial distribution, and (iii) segregation [60].

3.3.2. “How to Evaluate” The Image-Based Quality Control Imaging Parameters (QCIP)

To accomplish the measurement of the relevant QC parameters, the author analytically
modeled the ABD characterization by means of past aggregate characterization researchers studies

[61 to 69]. The quality control ABD characterization provides quantifying parameters of the

surface appearance of pie plates highly relevant to QC of the ABD configuration of a pie plate

specimen. The measurement task is divided into three different group of QC parameters relevant
to the design of the QC tool; (i) orientation, (ii) spatial distribution, and (iii) segregation of ABD

in pie plate specimen. The above process is explained in detail in the forthcoming Chapter 5.
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Figure 20 Synthetic computer-generated images of (a) steps to create ellipses representing
the connected black pixel regions of a PPS (b) uniformly distributed PPS, (c) slid (unevenly
distributed) PPS, (d) properly placed PPS, (e) incorrectly placed PPS, (f) appropriately
mixed PPS, and (g) inappropriately mixed PPS.

49



CHAPTER 4: DEVELOPMENT OF A PERCEPTUAL-BASED IMAGE MODEL

To accomplish the automation of the FM 5-588 procedure, the authors analytically modeled
the perceptual transfer process which involves the two modes of information processing i.e. visual
processing and neural processing, performed by the technicians in executing the existing FM 5-
588 methodology. In general, a perceptual transfer function consists of an optical transfer function
and a neural transfer function [36]. In this investigation, the above functions will be referred to as
processes since mathematical functions are not employed to represent them. To develop a
quantifiable optical transfer process in this investigation, the human (technician) visual system
(HVS) properties involved in the OBC determination were examined first and an exhaustive set of
relevant imaging parameters associated with the digital images of pie plates was derived. The
above imaging parameters were then used in designing a neural transfer process that would
determine the corresponding OBC, with minimum human intervention. This is achieved by
training an appropriate neural network based on the extensive experimental results available from
the visually executed FM 5-588. The neural network specifically trained for the types of aggregate
and binder used in the training dataset is expected to transfer the imaging parameters extracted
from pie plate images of any other mixtures having similar constituents to the corresponding OBC
estimates in an automated manner [49 and 50].2 Hence such a neural network would minimize the

need for human involvement which introduces subjectivity.

2Portions of this chapter were previously published in [49, and 50]. Permission is included in Appendix J.
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4.1.  Image Analysis Procedures for Characterization of the Human Visual System

Modeling of the HVS as performed in computer vision and image processing is based on
specific parameters derived from psycho-physical experiments [36]. The image analysis
procedures presented in this section describe the particular set of image-based parameters that were
presumed to represent the optical transfer process undergone by technicians who evaluate the ABD
in pie plates, based on the surface appearance of pie plates. Consultation with the FDOT
technicians and the authors’ subsequent comparative study of the pie plate samples corresponding
to trial ACs and those of the additional samples prepared at the visually adjudged OBC, led to the
identification of several applicable imaging parameters. Based on their respective roles in the
visual transfer process and the relevant applications in image enhancement, these parameters can
be categorized into five distinct aspects of visual perception that are involved in identification of
image targets by humans: (i) image contrast (ii) visibility (iii) contrast sensitivity (iv) frequency
and orientation selectivity and (v) other imaging parameters involved in information processing.
4.1.1. Image Contrast

Contrast is the ability of the HVS to detect the difference in luminance between two or
more stimuli. The relevant stimuli in the pie plate images are (i) the black pixel areas representing
asphalt and (i) the white pixels representing plaster of Paris. Hence the percent black pixels area
of the entire pie plate (PBA) (Equation (4)) would be the most appropriate basic parameter to

represent the contrast in pie plates as observed by the evaluator.

PBA = number of black pixels + 100 (4)

total number of pixels
4.1.2. Visibility
Based on the study of visual masking concepts [36], the visibility of the target (asphalt

regions in the images represented by black pixels) in contrast to the mask (rest of the image) can
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be represented by the following parameters: connectivity of black pixels, number of connected
black pixels and orientation of the connected black pixels regions.
4.1.2.1. Connectivity of Black Pixels

Connectivity of black pixels (CC) indicates the number of other black pixels connected to
each black pixel in a pie plate image. This parameter is calculated by the adjacency searching
method (subsection 3.2.1) [58]. The basic rule for the searching algorithm is to follow the adjoining
black pixels until there is no other black pixel in the prioritized directions (lateral, longitudinal and
diagonal). The above algorithm will finally count and label the number of black pixels next and
diagonal to any given black pixel [ij], as illustrated in Figure 17.
4.1.2.2. Number of Connected Black Pixels Regions

In order to estimate the above parameter, specific color labels were assigned to the
connected black pixels regions using the BWlabel syntax [56]. Figure 21(a) shows the
representation of each connected black pixel region by a different color label.
4.1.2.3. Orientation of Connected Black Pixels Regions

This parameter can be computed by determining the orientation between a designated x-
axis of the pie plate image and the major axis of the individual connected black pixel region [61].
Figure 21(b) shows the orientations of connected black pixel regions relative to the center of the
pie plate image expressed in terms of an angle ranging from -90 to +90 degrees. For the ensuing
analysis, the individual orientation values were averaged for each pie plate. The orientation
parameter could be used in the future as a quality control indicator.
4.1.3. Contrast Sensitivity

The contrast sensitivity of HVS depends not only on the relative luminance between the

background and the stimulus (black pixel regions) as expressed by the above contrast and visibility
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factors but also on many other secondary factors, such as the size distribution and spatial frequency
of stimuli objects [36]. In order to account for effects of the above factors in the evaluation of ABD
which is presumed to be executed based on observation of the black pixel regions of the pie plates,
the following additional factors were considered.
4.1.3.1. Size Distribution of the Target
4.1.3.1.1. Sizes (Areas) of Connected Black Pixels Regions

The sizes of connected black pixels regions were obtained as shown in Figure 21(c) and
labeled with individual numbers as shown in Figure 21(e). The individual areas values were
averaged for each pie plate.
4.1.3.1.2. Perimeter per Connected Black Pixels Regions

To determine the perimeter per connected black pixels region, the contour length of each
black pixel region (Figure 21(d)) in the pie plate image was traced first and the average perimeter
of the black pixel regions in the pie plate calculated.
4.1.3.2. Spatial Frequency of the Target
4.1.3.2.1. Uniformity Radial

Uniformity radial (Ug) parameter indicates the uniformity of the distribution of the target
(connected black pixel regions) in the radial direction of the pie plate. It is calculated by separating
the specimen into two sections (outer and inner) in the radial direction and estimating the
distribution of the target in each section, as illustrated in Figure 21(f) [59 and 62]. Ur is calculated

using Equation (5):

Average Connected black pixel regions in the outer section
Ug = [ g P g - 1] * 100 ®)

Average Connected black pixel regions in the inner section

A Ur value of zero indicates that no segregation occurs in the radial direction, while a

positive value indicates that segregation occurs in the outer section of the pie plate image.
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Conversely, a negative Ur indicates that segregation occurs in the inner section of the pie plate
image [62]. This is one parameter (Ur ) that could also be used as a quality control indicator.
4.1.3.2.2. Uniformity Angular

Uniformity angular (Ua) parameter indicates the uniformity of the distribution of the target
(connected black pixel regions) in the tangential direction of the pie plate. It is calculated by
dividing the pie plate image into an angular grid at 30° intervals from 0° to 360° and estimating
the distribution of the target in each segment using Equation (6) [59 and 62] as illustrated in Figure

21(f)):

connected black pixel areas of regions in the considered 30° section] 100 (6)
= *
A total connected black pixel areas in the pie

For the ensuing analysis, the individual uniformity angular values by section were averaged
for each pie plate. This parameter (Ua) could be used in the future as a quality control indicator.
4.1.4. Frequency and Orientation Selectivity

Studies on the frequency and orientation selectivity of the HVS reveal the existence of
neurons that are sensitive to orientation, size, form, and spatial frequency, or in other words, how
dissimilar the target area. The dissimilarity is measured by the parameters of Inconsistency
Coefficient, centroidal distance, form factor and other imaging parameters involved in information
processing in the HVS [59].
4.1.4.1. Inconsistency Coefficient

The inconsistency coefficient (1) characterizes each connected black pixels region in a pie
plate image by comparing its minor and major axis with the average major axis/minor axis of other

connected black pixels regions of the same pie plate. It is expressed by Equation (7) [56 and 63]:

__ AXxpin _ (minor axis of individual connected black pixel region) (7)

Axmax (major axis of individual connected black pixel region)
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The individual inconsistency coefficient values were averaged for each pie plate. The
higher the value of average I, the less similar the connected black pixel regions are.
4.1.4.2. Centroidal Distances

Centroidal distances of each connected black pixel region are determined by measuring the
distance from the centroid of each connected regions to the center of the pie plate image as shown
in Figure 21(c) [50 and 63]. The individual centroidal distance values were averaged for each pie
plate.
4.1.4.3. Form Factor

Form factor (FF) describes the geometrical irregularity of target areas (e.g., connected
black pixels region) with respect to a circle, for which FF=1. It is expressed by the following

equation [64 and 65]:

4mA _  4m(area of individual connected black pixel region) (8)
P2 (perimeter of individual connected black pixel region) 2

FF =

For the ensuing analysis, the individual form factor values were averaged for each pie plate.
4.1.5. Other Imaging Parameters Involved in Information Processing in the HVS

Perceptive estimates made based on visual observation are primarily driven by past
experiences of observers such as the technicians involved in the visual OBC determination. While
visually processing the characteristics of the trial pie plates of known ACs, the technicians would
interpolate the binder content of the most favorable sample, i.e., OBC, using their past experience
with an additional set of pie plate image characteristics not included in the above categories. The

authors have identified the following three parameters to be in this category.
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Figure 21 Representation of black pixels on a pie plate image for connected black pixels (a) color label, (b) orientation relative
to the center of the pie plate image, (c) individual areas, (d) traced perimeters, (e) label with numbers, (f) illustration of
sections of radial segregation and angular mesh.
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4.1.5.1. Compactness per Connected Black Pixels Regions
Compactness (C) is a measure of the ruggedness of the connected black pixel regions as
expressed by Equation (9) [35]. This parameter represents a lesser or higher level of complexity

of the contour of each black pixel area region.

_ (square of the perimeter of an individual connected black pixel region) (9)

(area of the individual connected black pixel region)

Authors’ scrutiny of the additional samples prepared at the OBC after the OBC of each
mixture was determined by the technicians revealed that, in judging how close the AC of a given
pie plate is to OBC, the evaluators would also look for the presence of black pixel regions that are
not rugged. For the ensuing analysis, the individual compactness values were averaged for each
pie plate.
4.1.5.2. Solidity

Solidity (SLD) is the measure of the density of any connected black pixel region which
specifies the proportion of the pixels in the convex hull (Figure 22) circumscribing a connected

black pixel region [56] and computed as:

SLD = (Actual connected black pixel region) (10)
" (Convex hull area of each connected black pixel region)

Figure 22 Example of convex hull of a connected black pixels area.
In judging how close the AC of a given pie plate is to OBC, the evaluators would look for

black pixel regions to have solid appearances. A solidity value of 1 implies that the given
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connected black pixel region is entirely solid. The individual solidity values were averaged for
each pie plate.
4.1.5.3. Eccentricity

This parameter specifies the eccentricity of the ellipse bearing the same second moment of
area as the considered connected black pixel region. The eccentricity has the usual definition of
ratio of the distance between the foci of the above ellipse and its major axis length [56]. For the
ensuing analysis, the individual eccentricity values were averaged for each pie plate.

Finally, an information vector X containing the averages of each of the above imaging
parameters (Table 10) that are assumed to constitute the visual transfer function was set up for
each pie plate sample (Figure 21) [66 and 67]. Then X, the corresponding asphalt binder contents
and the estimated OBC values were used to develop the neural transfer function as described in
Chapter 6. The GRNN prediction model are found in Appendix G.

Table 10 Imaging parameters that represent the visual transfer process used for the study.

Parameters HVS category
1 | PERCENT OF BLACK PIXELS OF Contrast
PIE PLATE
2 | CONNECTIVITY OF BLACK
PIXELS Visibility
3 | NUMBER OF REGIONS OF PIE
PLATE
AVERAGE ORIENTATION
AVERAGE AREA OF REGIONS
AVERAGE PERIMETER Contrast Sensitivity
UNIFORMITY RADIAL
AVERAGE
UNIFORMITY ANGULAR

9 | AVERAGE INCONSISTENCY Frequency and
COEFFICIENT Orientation Selectivity

10 | AVERAGE CENTROID DISTANCE
11 | AVERAGE FORM FACTOR
12 | AVERAGE COMPACTNESS Information Processing in
13 | AVERAGE SOLIDITY the HVS
14 | AVERAGE ECCENTRICITY

£

Co ~ O W

58



CHAPTER 5: QUALITY CONTROL MODEL

The author’s research developments in digital imaging processing to quantify the ABD on
pie plates has resulted in the possibility of increased contractor involvement in the design and
acceptance of OGFC mixtures designs. As a result, questions have arisen as to whether the results
of QC tests of PPS production carried out by contractors should be incorporated into the acceptance
criteria currently used by FDOT in addition to the proposed imaging processing algorithm
presented in Chapter 4. In order to address these questions, the primary objective of this chapter is
to develop the QCT to be implemented through the database generated during the Phases I and 11
of this study and accomplish the evaluation of the relevant QC parameters that would indicate the
quality of the pie plate specimens®.

The development of QCT is divided in three sections; (i) Evaluate and analyze ABD
characterization by means of past aggregate characterization researchers studies [61 to 69] to
provide bases for quantifying the image-based quality control imaging parameters (QCIP) of the
surface appearance of pie plates highly relevant to QC of the ABD configuration of the pie plate
specimen; (ii) statistical verification of QCIP, and (iii) assess scientific acceptability of measure
criteria (reliability and validity) of the QC results.

5.1. Measure and Analyze ABD Characterization to Provide Quantifying QCIP
Findings from one of the most complete studies [68] on defining internal aggregate

parameters derived from images were used to analyze the ABD regions of the PPS digital images.

3Portions of this chapter were previously published in [50]. Permission is included in Appendix J.
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The steps of redefining the ABD regions into ellipses is shown in Figure 20(a). Major and minor
axes of ABD regions are essential for quantifying the QCIP. The major axis of a given ABD region
is the line joining two pixels on the boundary contour that are the farthest apart and the length of
that line is defined as the major axis length. On the other hand, the minor axis is the longest line
perpendicular to the major axis that can be inscribed within that ABD region and its length is the
minor axis length. For each ABD region, the aforementioned QCIP are calculated.
5.1.1. Orientation

The set of orientation parameters of each ABD region can be defined using two criteria; (i)
the orientation angle of the major axis with respect to the horizontal axis (6;) and (ii) the
orientation angle of the major axis relative to the line joining the centroid of the region to the pie
plate center (6,) [61-62, 68-69]. Figure 23 shows the orientation of connected black pixel (ABD)
regions of the PPS image expressed using both the above criteria and calculated using equations

(11) and (12) respectively.

Oy (11)
Gf = tan 1 m
L (xjc—xp) + tan 6 * (yf —y?P) (12)

6, = cos™

\/1 + (tan6f)? + \/(xf—xp)z + Of—yP)?
where x; and y; are the coordinates of the centroid of the labeled region j; x? and y” are the
coordinates of the center of the pie plate; x; and y; are the coordinates of the surface pixel at the
outer intersection of a given ABD ellipse and its major principal axis. It must be noted that
when 6; = 90", 8, must to be calculated using 6, = cos~*(yf —y?).
The next step is the determination of the directional distribution of ABD by calculating the
vector magnitude (Ar), which quantifies the average anisotropy of orientation parameter 6, [66,

68-69]. The aforesaid directional distribution of the ABD vector magnitude is calculated using
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Equation (13) [65 and 68]. The results of directional distribution of the ABD indices (As) for all

PPS tested in Phase | are presented in the forthcoming Summary of Findings chapter (Chapter 7).

i (13)
A= % * \/(Z{"il cos 260¢)? + (M, sin 265 )2

where Ay is the directional distribution of the ABD vector magnitude for the orientation, and M

is the number of 6 values in a given pie plate.

Pie
= Center

Black Pixels
Connected

Figure 23 Representation of connected black pixels on a pie plate image for SABD
identification of the orientation relative to the center of the pie plate image.

5.1.2. Spatial Distribution

The spatial distribution (SD) is calculated by first dividing the PPS image into wedge
sections as illustrated in Figure 24. Thirty degree sections were considered to be the optimum in
this study and thus 12 wedge shaped sections covered the entire cross section of each PPS. Then,
an algorithm was developed to evaluate the percentage of ABD with centroids within each
section (SDsection), USING Equation (14) [50, 62, 63, 66 and 67]. The presumption underlying the
eventual analysis is that, if the ABD regions are evenly distributed in the PPS, then different
sections should have more or less identical ABD areas. The pie plate spatial distribution (SD)

parameter was calculated as the standard deviation of the SDg..+i0n In the twelve sections
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computed using Equation (15). The results of the SD..:ion Parameter by section and by pie plate

for all PPS tested in Phase | are presented in the forthcoming Summary of Findings chapter

(Chapter 7).
sD _ [ connected SABD regions in the =30" section ] « 100 (14)
section ™ | ¢otql connected SABD regions in the pie plate
SD = Standard Deviation ( SDgection 1-12) (15)

Figure 24 Representation of connected black pixels on a pie plate image for SABD
identification for the location in the angular mesh.

5.1.3. Segregation

Segregation (S) is calculated by first dividing each PPS into two sections in the radial
direction; the outer section (S, ) and the inner section (S;) of the PPS image which are of equal
areas as illustrated in Figure 25 [61-63 and 69].

The parameter S is evaluated by determining the percent of ABD regions with centroids
within each of the two sections, using Equation (16) and the ratio of the ABD regions (inner/outer)

is evaluated using Equation (17).

Connected SABD regions in the outer or inner section

* 100 (16)

S . =
oort [ Connected SABD regions in the pie plate
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_ Connected SABD regions in the inner section ] 17)
| Connected SABD regions in the outer section

The algorithm then plots (in the form of column chart) the percentage of SABD regions in

each section [69]. The tabulated results are presented in the forthcoming Summary of Findings

chapter (Chapter 7).
B P . B Inner
L ~
4% o ! :‘ N : Section
% ) e e #a > ’f,’—',‘~\
Vi JiL.> ~ \ '.f_“‘,.\ S
/ // Outer \\ ‘)\ ,/ - ,,\z\

A / Section N l’ TN t ey,
- \ N I' @; rIg» \
I o7 A y ™ S ‘v
b o"'// ' \ . Tr-aly layp o ™)
s ) RIS v R T
=5l ,l I T A Ix"#" " ., 1

v 4 v,

L ot 1] o Dpy S0 ‘e
\“ ) 5” / y -~ g W v
’ / - v ‘m /,

\S \\ pr s R / & “l‘j Y.

. <& , ) ,

\‘\ ’/ ‘\ = = a0 v ~ 5 ! 4" > .
‘ <4 B B . 7 ~ I

g \0 - .‘ ” - 7
2 *\ b'. o) b

Figure 25 Representation of connected black pixels on a pie plate image for SABD
identification illustrating sections of segregation.

5.2.  Statistical Verification of QCIP

The quality of the output consists of two key components; target value and variability [70].
Target value is the goal set for a certain characteristic and variability describes how much a process
varies from item-to-item [70]. For example, on a particular pie plate, the orientation of the ABD
should be well distributed instead of being in the same direction. Quality control actions and
considerations should be based on objective evidence and not subjective opinion. This does not
mean that experience and expertise are not valuable but rather that they should be used to determine
what measurements to consider and how to improve the process. Furthermore, all the pie plate
samples (PPS) used in this study had satisfied the visual quality checks routinely performed by the

FDOT technicians. Thus, the above PPS provided a basis for verifying the applicability of the QCIP
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selected by the authors. Consequently, a statistical study was performed on the QCIP computed for
all the PPS tested in Phase | of the study.

The three imaging parameters (measures) defined above which are considered as potential
QC parameters for the QCT were evaluated by the authors against the two scientific acceptability
of measure criteria; reliability and validity. Reliability demonstrates that the measure data elements
are repeatable, producing the same results a high proportion of the time when assessed in the same
population in the same time period and/or that the measure score is precise and validity
demonstrates that the measure data elements are correct and/or the measure score correctly reflects
the quality of care provided, adequately identifying differences in quality [71].
5.2.1. Orientation

Theoretically, the values of the orientation parameter A (equation (13)) range from 0 to 1
with O representing a completely random distribution of ABD regions and 1 representing ABD
regions that are perfectly aligned in one direction. Table 11(a) shows the statistical t-test results
for Ar parameter obtained from the PPS samples tested in Phase I. Statistical tables used for the
evaluation of the results are found in Appendix I. Based on the t-test, it was found that the mean

difference of the A; parameters within all PPS is 0.119 at a significant level of 99.9%.
5.2.2. Spatial Distribution

Theoretically, the value of SDg..ion for each section should be 8.33 for a perfectly
uniform distribution of ABD in the 12 sections of the pie plate. Table 11(b) shows the statistical t-
test results for the pie plate spatial distribution (SDy;e piate) Parameter for PPS produced in Phase
I. Based on the results, it can be seen at a confidence level of 95% that the standard deviation of
the spatial distribution (equation (5)) is within 0 and 1.52 for acceptable pie plates. Appendix I

shows the completed generated results of the SPSS for the spatial distribution parameter.
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Table 11 Statistical “t-test” for the QC parameters.

(a) One-Sample Statistics Statistical t-test for the orientation (Af ) parameters

N Mean Std. Deviation Std. Error Mean
Ag 342 1191 05243 .002584
Test Value =0
95% Confidence Interval of the
Mean Difference
T ds Sig. (2-tailed) Difference Lower Upper
A 42.018 341 .000 11912 1135 1247

(b) One-Sample Statistics Statistical t-test for the spatial distribution (5D, 514:¢) Parameter

Std. Error

N Mean Std. Deviation Mean

SDpie piace 342| 1.0514 27431 01483
Test Value =0
95% Confidence Interval of the
Mean Difference

T df Sig. (2-tailed) Difference Lower Upper

SDpie prate 70.885 341 .000 1.05143 1.0223 1.0806

((c) One-Sample Statistics Statistical t-test for the segregation (S,..,;,) parameters.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean
Inner 342 | 48.3616 7.00167 37861
Outer 342 | 516334 7.00167 37861
Ratio 342 9703 25737 01392
One-Sample Test
TestValue =0
95% Confidence Interval of the
Mean Difference
T df Sig. (2-tailed) Difference Lower Upper
Inner 127.736 341 .000 43.36161 47.6169 49.1063
Outer 136.390 341 .000 51.63839 50.8937 52.3831
Ratio 69.720 341 .000 97028 19429 9977
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5.2.3. Segregation

Theoretically, both the outer and inner segregation parameters ( S, and S;) must be equal
to 50 for an even distribution with no segregation in either the outer section or the inner section.
In other words, the ratio (S,4:i,) Of the ABD area (inner/outer) (Equation (17)) must be equal to
1.0 for an evenly distributed ABD in a pie plate. Table 11(c) shows the statistical t-test results of
the segregation parameters for the pie plates used in Phase 1. It was found at a confidence level of
99% that for the pie plates produced in Phase I, the S,.,;;, has a mean value of 0.97.
5.3.  Assess Scientific Acceptability of Measure Criteria of the QC Results

To ratify the QC results (target and ranges values), the data set was evaluated for scientific
acceptability of measure properties (reliability and validity) [71] following the “Evaluation of
Scientific Acceptability of Measure Properties” based on reliability and validity ratings as shown
in Table 12.

Table 12 Evaluation of scientific acceptability of measure properties based on reliability
and validity ratings [71].

Validity |Reliability Pass Scientific Acceptability of Measure Properties
Rating Rating for initial Endorsement™
High Moderate-High |Yes |Evidence of reliability and validity
Low Represents inconsistent evidence--reliability is usually

No |[considered necessary for validity

Moderatg Moderate-High |Yes |Evidence of reliability and validity

Low No |Represents inconsistent evidence--reliability is usually
considered necessary for validity

Low Any rating No |Validity of conclusions about quality is the primary concern.
If evidence of validity is rated low, the reliability rating will
usually also be low. Low validity and moderate-high
reliability represents inconsistent evidence.

* Ameasure that does not pass the criterion of Scientific Acceptatbility of Mesure Properties would not be recommended
for endorsement.

The first step in evaluating reliability and validity is to recognize the type of validity and
the forms of reliability and how to measure them. The two main types of validity are Internal and

External validity. Internal Validity is concerned with the degree of certainty that observed effects
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in an experiment are actually the result of the experimental test. Internal validity is enhanced by
increasing the control of these other variables. External Validity, in the other hand is concerned
with the degree to which research findings can be applied to the real world, beyond the controlled
setting of the research.

The four forms of reliability are Inter-Observer, Test-Retest, Parallel-Forms or Alternate-
Forms, and Tests for Homogeneity or Internal Consistency. “Inter-Observer Reliability is used to
assess the degree to which different observers agree when measuring the same phenomenon
simultaneously. Test-Retest Reliability compares results from an initial test with repeated
measures later on, the assumption being that the if the measurement is reliable there will be close
agreement over repeated tests if the wvariables being measured remain unchanged.
Parallel-Forms or Alternate-Forms Reliability is used to assess the consistency of the results of
two similar types of test used to measure the same variable at the same time. Tests for Homogeneity
or Internal Consistency, in the other hand is concerned with the measurement which would reflect
the homogeneity of the results. This can be tested using several methods, the split-half form,
Chronbach’s alpha, or Cohen’s kappa.” For this study the Chronbach’s alpha was used to obtain
the lower bound on reliability using equation (18). Commonly-accepted rule of thumb is that
Cronbach’s alpha of 0.7 (some say 0.6) indicates acceptable reliability and 0.8 or higher indicates
good reliability.

One can easily obtain Chronbach’s alpha values by using the following function provided
in the Real Statistics Resource Pack in Excel:

CRONALPHA(RL, k) = Cronbach’s alpha for the data in range R1 if k = 0 (default) and

Cronbach’s alpha with kth item (i.e. column) removed if k > 0.
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total
var

Cronbach's Alpha for the range of Af Cronbach's &lphafor SD Cronbach's Alphafor S
53 538 63 6.8[total K 4 53 58] 63 6.8 total K [ 53 58 63 5.8[total K [
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0.07¢| 01353 onos| ouss| 0477 07403 10737] 11247 1,233?| 42253 11296 06235) 0.9744| 11298] 39173
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0.1005] o268 02541 01694 os385 1147 11389) 09003 12614] 44478 10918| 10213 0.8276 2| 49405
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00909 01787 01308] o0107] 0507 05639) 14867 07798 1154| 39844 05195 06957 07341 10345| 33438
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00903 01787 01305 01827 05827 05639 14867| 07798 0795 36255 08195 06957) 07941 08519) 21612
01563) 0431 00247] 0178 o438 10015 10129] 09956 1.0613] 4.0813 09237| 0s261| os088| 02727 25313
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Figure 26 Calculation of Cronbach’s alpha for all the mixtures considered in this study.
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Thus for the data (all the mixtures considered in this study), we can obtain the results shown
in Figure 26 using CRONALPHA(B4:F118) for the QCIP gives the following:
CRONALPHA(B4:F118) A =87T17, CRONALPHA(B4:F118)sp =.0.9085, and
CRONALPHA(B4:F118)s = .991. As you can see from Figure 26, Cronbach’s alpha values
indicates acceptable reliability for all of the QCIP.

o= (1- lea}%i) o
K-1 0%

where K is a sum of components (observed test scores), a2 is the variance of the observed
total test scores, and a,?i is the variance of component i for the current sample.

Statistical analysis would also play a major role in the examination of statistical results that
would be used to establish target values and acceptable tolerances of the QCIP. Using the statistical
results derived from a supplementary simulation study developed by the authors, target values and
acceptable tolerances were found for each QC parameter and based on them, guidelines for the use
of QCIP were formulated. Table 13 shows the internal consistency values.

Table 13 Internal consistency values [71].

Cronbach's alpha Internal consistency
a>0.9 Excellent
09>0>0328 Good

0.8>a=>0.7 Acceptable
0.7>0>0.6 Questionable
0.6>0=>0.5 Poor

05>a Unacceptable

In the expanded study, a sample set of computer-generated defective pie plates were
produced using a computer algorithm to supplement a limited number of defective pie plates
prepared by FDOT staff. In both sets of defective pie plates; computer-generated and those
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prepared by FDOT staff, the SABD areas were represented by ellipses. Then, QCIP of both sets
were evaluated. The statistical results of this set of defective pie plates and all PPS tested in Phase
| are presented in the forthcoming Summary of Findings chapter (Chapter 7).
5.3.1. Orientation

Based on the results presented in the forthcoming Summary of Findings chapter (Chapter
7) and the scientific acceptability of measure criteria [71], the authors propose that the range of
Ar of 010 0.25 be considered as the range for acceptable orientation of ABD in a pie plate sample.
5.3.2. Spatial Distribution

Based on the results presented in the forthcoming Summary of Findings chapter (Chapter
7) and the scientific acceptability of measure criteria [71], the authors propose that if the standard
deviation of the SD values of the 12 sections of the pie plate is less than 1.52, the spatial distribution
will be considered acceptable for a pie plate.
5.3.3. Segregation

Based on the results presented in the forthcoming Summary of Findings chapter (Chapter
7) and the scientific acceptability of measure criteria [71], the authors propose that the Sratio

(inner/outer) range of 0.51 to 1.34 be considered acceptable for a pie plate.
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CHAPTER 6: NEURAL NETWORK-BASED PREDICTION MODEL

FM 5-588 procedure is executed for each mixture with three pie plates and their trial AC’s
known to the technicians. Then, the technicians use the above values and their visual perception
of ABD in pie plates to estimate the OBC based on the ABD. Therefore, the input to the envisioned
OBC prediction mechanism would consist of three parallel sets of information vectors (X, k=1,
3) corresponding to each mixture. Each vector contains the imaging parameters described in
Chapter 4, which are presumed to model the visual transfer process, and the corresponding three
AC. Due to the vast extent of the input information and the complex relationship between the input
data and the output y (OBC), a trained neural network was determined to be the most viable method
of achieving the automated OBC prediction.

The function of the neural network is to discover the nonlinear perceptive control function
that relates the parameters included in the above three vectors (Xx) to a single OBC value y. This
is facilitated by training an appropriate neural network with the information presented in the
training input vectors (Xk) assembled using the experimental data gathered from the majority of
mixtures tested in Phase |. The authors determined that this process can be successfully
accomplished by a General Regression Neural Network (GRNN). GRNN approximates any
arbitrary function between input and output vectors by executing the function estimation directly
from training data [42]. GRNN is based on nonlinear regression theory for function estimation.
The training set comprises m values of an input vector Xk with a single output value y. It must be

noted that in the current investigation, each Xk is a set x; (j=1,n) values containing imaging
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parameters and asphalt binder contents while y is the OBC corresponding to each Xk. Therefore,
the GRNN must have n number of input nodes (neurons) and one output node (Figure 27(a)).

The estimation of the expected value of y is based on the following generalized conditional
probability [42]:

[Z v fX,y)dy (19)

FOR0 = e oy

where f(X, y) is the joint probability density function of X and y. For problems involving numerical

data such as the current one, Equation (19) can be simplified to the following form:

) n v, 20)
_ =11l
S
0 (21)
hi = e' 202
D# = (X-X)T(X - X)) (22)

where: Xiand Y; are input and output values of the i*" training sample (i=1,m) and Di, which is the
squared distance between the point of prediction (particular X) and the i training sample Xi.

It can be seen that Equation (21) specifies a normally distributed weight, around the
assumed mean of X; and a standard deviation of ¢, that can be attached to the output of the it"
training sample. One realizes that the above weight decreases with Di. Typically, hi can be the
output of a hidden layer neuron. Thus, instead of employing training weights like in other neural
networks, (e.g. backpropagation neural network (BPNN)), the GRNN assigns the target value (Yi)
directly to the weights from the training set. This regression method yields the estimated value of
y, which minimizes the squared error [42]. GRNN incorporates a one-pass learning algorithm with
a parallel structure, which is commonly described as a memory-based algorithm that provides

estimates of continuous variables and converges to the underlying nonlinear regression surface
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between y and X. Even with sparse data, the algorithm provides smooth transitions from one

observed value (xj)i to another [42].
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Figure 27 Neural network flowchart for (a) multi-dimensional, (b) one dimension.

A GRNN, like other probabilistic neural networks, needs only a fraction of the training
samples a BPNN would need, to converge to the underlying function that would constitute the
input and output data [42]. The additional knowledge needed to obtain a satisfactory fit is relatively
small and can be done without additional input by the user. The above characteristics makes GRNN
an ideal tool to implement estimates of systems that involve a complex relationship between a
relatively large vector of input data such as Xk and the output y, as in the current OBC
determination problem. The architecture of the GRNN used in this research consists of three layers;
input layer, hidden layer and output layer. Two case studies are presented to illustrate the
effectiveness of GRNN in this investigation. The first case study illustrates the exploration of the
relationship between the relevant HVS parameters and the AC of pie plate mixtures using a one
dimensional GRNN (Figure 27(b)). On the other hand, the second case study demonstrates the
prediction of the OBC based on the relevant HVS parameters of pie plate mixtures by using a
multi-dimensional GRNN (Figure 27(a). The values of imaging parameters discussed in Chapter

4 and the ACs are posed in 3 parallel vectors (Xk, k=1,3) containing elements Xxxj (k=1,3 and j=1,n)
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each corresponding to one of a trial set of three pie plates with one common OBC estimate vy .
This exercise is performed m times (i=1,m) during training of the GRNN.

The analysis/output for the training, testing and predicting neural network model generates
aresults file where the data was tabulated in the forthcoming summary of findings chapter (Chapter

7).
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CHAPTER 7: SUMMARY OF FINDINGS
7.1.  Phase I- Preliminary Assessment of the Asphalt Binder Content Determination

This phase of the study was performed to verify the accuracy of the existing FDOT method*
by repeating the measurements using Matlab and Labview [51].

The results indicate the following: (1) The correlation between the percent black pixel area
of the pie plate images and the asphalt binder content is not adequately defined for the former
parameter to be used as a stand-alone parameter for accurate estimation of the asphalt binder
content, (2) A regression analysis that employs both percent black pixel area and connectivity of
black pixels seems to predict the asphalt binder content more accurately for all the mixtures
considered in this study. The improved accuracy of the combined regression analysis involving
both parameters identified above suggests that such estimation could be further improved by
combining other relevant digital image based classification parameters. Based on these results the
objective of the next phase was identified. Consequently, the author envision the possibility of
using innovative imaging concepts and tools employed in machine vision and other cognitive
sciences which would be more relevant to modeling the uncertainty arising from human judgment.
7.2.  Phase Il- Prediction of Optimum Asphalt Binder Content

This phase of this study was performed to investigate the accuracy of the GRNN method
by repeating two predictions previously made using two different regression models [51]. First,

the asphalt binder contents of pie plates were predicted using one imaging parameter (PBA) using

* Portions of this chapter were previously published in [51]. Permission is included in Appendix J.
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a one dimensional GRNN prediction model (Figure 27(b)). Table 14 shows the sample set of input
and output data used for one dimensional training. In the second case, asphalt binder contents of
pie plates were predicted from the entire set of imaging parameters using a multi-dimensional
GRNN prediction model (Figure 27(a)). The information from the pie plate imaging parameters
from 228 samples and the corresponding OBC data is posed to the GRNN in three parallel vectors
as discussed in chapter 6. Table 15 shows the sample set of input and output data used for multi-
dimensional sample set of training and testing input data and predicted output data.

For both cases, the data sample consisted of three trials each of nineteen mixture designs.
Seventy percent of the data was used to train the GRNN by feeding the imaging parameters and
the known asphalt binder contents. The remaining data was used for testing the GRNN. Figure 28
shows the results of (a) predicted and actual asphalt binder contents of training data, and (b)
predicted and actual asphalt binder contents of testing data, for the one dimensional GRNN
prediction model. Similarly, Figure 28(c) and (d) show the corresponding results for the multi-
dimensional case. Figure 29 shows the results of OBC prediction using the multi-dimensional
GRNN prediction model [51]. It is noted that multi-dimensional GRNN model has an improved
correlation (R? = 0.99) compared to its one dimensional counterpart (R = 0.96). Furthermore, it
was observed that both GRNN prediction models of asphalt binder content are significantly better
than the corresponding versions obtained by the author using simple linear regression analysis

where the R? values were 0.78 and 0.84 respectively [51].
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Table 14 One-dimensional sample set of training and testing input data and predicted output data.

n HOME  INSIRT  PAGELAYOUT  FORMULAS  DATA  REVIEN  VIEW  ADDINS  Newolohtoms  ACROBAT  AblebtsOsts  NewalTook Mepas Oe Perrva, Yolbeth
W PR
DataSet  Tiem Test Predet
Manager
Oata Newr sl Nets. MHelp
A2 - X ﬁ IMAGE
L A LS 3 ° t ’ 3 " 1 ) « [ . " ° » Q
1 rasavmie 1 2 3 4 s 0 7 0 D 30 1 12 1y 1 Y
2 ] 3 .
3 11 nm 036 4500 wasse w ey (T8 on 1 0% ) 00k 530
‘. nu ©s? s wses “u» uy o on 1t on 1% “wss 5%
3 uy wo »aco 53423 ———— NetT, TR [T Y] ons 1 0% 1 230 330
. un un meo 5% rmf& : 'N“lT s in T o 34 s 5%
7 »o 5% #100 “a Used Prediction Good/Bad Residual ‘esting Report: "Net Trained on TRAI on 0 “wn 530
8 Joxa »s 0 3600 ara 5!"‘-"—~!'—-——-———m‘-——-'- U 0w m w2 530
9 fws 11 w2 B 4500 e o e W oM an 3%
10 Jwe | ws 0 34600 e krain [TagUsed P Good/Bad 0% on a0 s
e 3586 " 100 195328 Lroin test 5.30iGood 0.00] o» T} 509 5%
12 e | s " 100 1087 o an “w 5%
1 fuxe nu Be 34600 “ea J [reie test 5.30iGood 0.00f om m wRr %
4 fwxs »a Bn me o on 0 0% 5%
38 e 11 an wa o0 wsse |/ ::: tass 5.301Good 0.00} o o 518 s%
16 e wos %o 20400 o0y test 5.30!Good 0. on o @y 530
1 e o “we w0 usy krain on YagUsed Prediction 1 “n 5%
1 fwae o an wa 400 100/ krsin test 5.30{Good 0. om Lol B 24 w1 5%
1 fwxc ou " 00 une on ipredict S0 “n 5%
2 fwaxc ou P 00 ny'n ferain test 5.30|Geod 0.00f oms P saof| wy 530
n o 11 “n wn we Wi on ) ¥ 16 2 5%
22w wa “wn 3900 Soom o est 5.30{Good 0. on predict S04 1w 5196 3%
] verd ot un Mo | inn e /- i fane 0001 ta | florede e (I wa | 3w
" 4 train 4
2 fwao wss us mwo 4 mn osia Lt |frest 5.30:Good 0. on predict : | ase an 5%
» fwao an "y mw | mw . on sredict | ew aa 3%
e faa 4% un neco 0 nen Rest $.51iGood 031 test 5.30;Good 0 om SI ol 12 um 5%
» e fi: e “n 30097 24674 eain L’ test 5.30!Good 0.00} o= i < () w1 %
» e Qs “un m 0 b o7 |lpredict 5.3 10 “rs 530
2 e @ "y 33fo0 033 rest $.30iGeed . ° test 5.30iGood 0.00} 2w seediot saoll @ 9516 3%
3 e @0 % 0 01N ftrain A2 B o F " 160 e 5%
52 fe “i " e 0 e P est 5.30iGood _3--" 000} op predict Sl im 0N 3%
» fwar f11 was s 1000 wr - ol on ] " | 2n 5%
34 s “n sy L e e [erain 7 biid 5,93| o0 hon BT e . .' 3 e 5%
3 s no ne | i “as0 kesin  J-* test . 5.30{Good 0. om predic S. o1s 5200 530
» s e ©n w00 “n 4 o’ on predict ; o 2y 5%
32 e |2 nos w0 ’:' @100 “027 :’:“’ test .- 5.30{Good 0. on 55 on 2n 5%
» fuoe | na o6, a0 w6 6s B S on precic y It 834 5%
»|oe “w 5 2700 w561 *kron B b $30}Go0d 000} oy ipredict S. 3 “us 5%
“ n: ::’, ::: x; AT e o test 5.30:Good 0 :: seedict 5.3 ::’ :: ::
“ a . Lo { 3
“ wn 3. meo *wou krain oL ¢ test 5.31iGood 001} on predict S. 0 s 530
o aw s EE T L7 fwoe X i on . : % “a %
wa e iz “wn a8 moe  Lr e forein e tast 5.37{Good 007} on edict 5. I un 530
whon |2 an S/ ua e | o o il i = oast S Gend 0001 52 | Beeacr on an | 3%
Pvixw e
a fwan 3593 ," 17 Lo 407 SoP 653184 123 test 5.30iGood 0.00} ow e on “n %
@ fvoc | %05 / un L-” meo %106 " rain on predict os “n 530
o Jun Py : b e rest 5.32{Good 002} o p w s 3%
o DATA | Brramane DATA | | TESTING DATA Imoxmamu I ® rain test 5.33{Good ©.03 )
ftrain test 5.30}Geod 0.00 p
Rest §.30}Good o00) test 5.30!Good 0.00| predict
:‘f“ test 5.71iGood 0.41 predict
2in predict
Lesia test 6.53iBad -1.23] reds
est § 56iGood 2126] test 5.30:1Good 0. peedic
test 5.30iGood 0. predict
test 5.30{Good 0. predict
test 5.30{Good 0. P

77



Predicted vs. Actual (Training) Predicted vs. Actual (Testing)
7 - 7 2 _
R*=0.9988 R*=0.9661
65 - 6.5 4
g 5 g 5
3 S
& 55 - g 55
5 4 5 -
45 4 . : ‘ : - a5 4 . ;
uw Tyl wy w w -~ w wy uwy w w ~
T [Tal o L= ["a] O
Actual Actual
(a) (b)
Predicted vs. Actual (Training) Predicted vs. Actual (Testing)
7.5 75
2
7 - R? = 0.9947 5 | R*=0.9517
65 - 6.5 |
g g
g ° g °]
55 - 55 + T+
5 | 5 |
45 4 T T T T T 45 4 T T T T
A “ - © o = < < “ o “ - = ~
Actual Actual
(c) (d)

Figure 28 Neural network estimated AC for predicted versus actual for (a) one dimension training data, (b) one dimension

testing data (c) multi-dimension training data, (d) multi-dimension testing data.
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Table 15 Multi-dimensional sample set of training and testing input data and predicted output data.
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Predicted Report: GRNN Model
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Figure 29 Optimum binder content prediction for multi dimension GRNN validation
prediction model.

Steps for using the automated OBC prediction model are listed in Appendix H.
7.3.  Phase Il1- QC Test Results and Analysis

On evaluating each of the QCIP for PPS in the database created in Phase I, the favorable
conclusions drawn from the results in Tables 16 and 17 regarding the acceptability of the
corresponding PPS were also compared to the conclusions reached from the general observation
of PPS of each mixture. Complete agreement of the conclusions seen in this exercise verified the
applicability of the derived QCIP. In addition, it also verified the accuracy of the algorithm
developed by the author in detecting the orientation, spatial distribution and segregation of the

ABD regions of the PPS.
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Table 16 Quality control parameter results for (a) orientation (Ay), (b) spatial distribution (SD), and (c) segregation (S) results
for sample sets for mixtures “A” to “S.”

Spatiol Distribution
IMAGE NAME PERCENT AC |Directional Distribution { a0 Spatial Distribution (5D) by sections of 30 degrees WESD) sfarfdc-'?d INNER | OUTER |5 ion (5} |Ratio (innery vl
deviation
MIX ATRIAL 2.1 5.3 % 83 0.16 10.54( 9.56 | 8.11 7796 | 8.25 | 9.43 2.31 8.01 611 608 | 8.48 | 8.36 132 50.54 | 49.46 97.86 102
MIXATRIALZ1 5.8 % 58 0.07 £92 |1021| 7.39 | 846 | 893 | 940 | 777 | 786 | 7.58 | 7.59 | 828 | 7.63 0.88 48321 | 51.69 107.02 0.93
MIX ATRIAL 2.1 6.3 % 6.3 0.10 7.86 | 7.37 8.83 | 839 | 9.63 | 9.25 888 | 7.97 .83 672 | 8.42 | B.85 0.82 5556 | 44.44 80.00 1.25
MIX B TRIAL 1.1 5.3 % 53 0.07 878 | 880 | 7.84 | 794 | 861 | 876 | 7.52 | 7.14 | 966 | 815 | 7.67 | 9.13 0.74 53.04 | 46.96 8852 113
MIX B TRIAL 1.1 5.8 % 58 0.14 806 | 7.32 | 7.95 | 7.64 | 673 | 7.70 | 7.56 | 8.84 | 10.01| 10.18| 8.06 | 8.94 1.07 40.60 | 59.40 146.32 0.68
MIX B TRIAL 1.1 6.3 % €3 0.11 €99 | 818 | 7.19 | 905 | €95 | 729 | 796 | 803 | 925 | 10.17| 9.13 | 9.81 112 49.35 | 50.65 102.63 0.97
MIX C TRIAL 1.1 5.3 % 53 o.10 793 | 650 | 797 | 927 | 745 | 9.13 | 983 | 935 | 5.0Z | 9.41 | 791 | 6.24 1.18 5229 | 47.71 91.24 1.10
MIX C TRIAL 1.1 5.8 % 88 0.21 7.73 | 6.06 | 7.04 7.13 | 9.25 | 8.18 .28 | 532 | 877 992 | 890 | 8.49 114 54.74 | 45.26 8269 121
MIX C TRIAL 1.1 6.3 % 63 0.21 814 | 892 | 792 | 815 | 799 | 7.73 | 7.72 | 9.05 | 10.50| 893 | 7.91 | 7.03 0.90 4490 | 5510 12273 0.81
MIX D TRIAL 1.1 5.3 % 83 0.16 .81 2.07 8.42 | 880 | 9.28 | 8.88 870 | 691 202 | 633 | 9.80 | 8.28 1.00 48.02 | 51.98 108.26 092
MIX D TRIAL 1.1 5.8 % 58 0.13 7.52 | 799 | 703 | 813 | 794 | 687 | 984 | 985 | 925 | 854 | 7.84 | 921 1.01 4524 | 5476 121.05 0.83
MIX D TRIAL 1.1 6.3 % 6.3 0.0z 772 | 8.16 | 7.66 | 9.33 | 10.03| 9.41 B7Y8 | V.96 | 7.31 7.18 | 9.31 7.25 0.99 3372 | 66.28 196.58 0.51
MIX ETRIAL 1.2 5.3 % 53 0.15 7.55 | 7.62 | 962 | 920 | 7.89 | 7.47 | 7.16 | 935 | 922 | 796 | 7.57 | 9.39 0.93 47.17 | 5283 11200 0.89
MIX ETRIAL 1.2 5.8 % 5.8 0.18 ¥.99 | 820 | 831 7.07 | 8.05 | B.27 B.47 | 522 | 579 | 52 | 8.06 | 83.05 0.67 51.19 | 48.81 29535 1.05
MIX ETRIAL 1.2 6.3 % €3 0.07 862 | 860 | 803 | 822 | 747 | 7.77 | 885 | 501 | 974 | 834 | 7.28 | 808 0.69 4z 22 | 57.78 136.84 0.73
MIX I TRIAL 3.2 6.3 % 6.3 0.14 601 | 642 | 8.04 | 817 | 858 | 9.82 | 10.63| 10.26| 879 | 804 | 7.58 | 7.66 1.40 3516 | 64.84 184.44 0.54
MIX LTRIAL 3.2 5.8 % 58 0.11 808 | 825 | 816 | 781 | 737 | 7.24 | 868 | 898 | 837 | 950 | 973 | 7.84 0.77 49.19 | 50.81 103.30 0.97
MIX LTRIAL 3.2 6.3 % 6.3 o.10 BG4 | 792 | 7.58 | 733 | 792 | 8.49 | 636 | 7.86 | 889 | 9.81 | 10.02| 9.16 1.05 47.09 | sz91 11238 0.89
MIXLTRIAL 2.2 6.8 % 6.8 0.06 211 7.73 | 2,08 7.92 | 8.80 | 7.57 7.8 | 873 | 7.89 | 8526 | 897 | 8545 0.62 54.44 | 45.56 8370 119
MIX M TRIAL 3.2 5.8 % 58 0.1z B47 | 774 | 7.33 | 986 | 729 | 832 | 854 | 873 | 820 | 814 | 9.14 | 825 0.72 4690 | 53.10 113.21 0.88
MIX M TRIAL 2.2 6.3 % €3 0.07 938 | 7.06 | 7.40 | 8.20 | .22 | 7.77 £83 | 7.92 | 280 | 2.29 | 9.01 2.56 088 51.23 | 48.67 9481 1.05
MIX M TRIAL 3.2 6.8 % %] 0.18 873 | 937 | 752 | 701 | 746 | 795 | 808 | 9.56 | 858 | 857 | 806 | 9.12 0.80 4600 | 54.00 117.39 0.85
MIX N TRIAL 3.2 5.8 % 88 0.12 269 | 862 | 1099 | 853 | 8.56 | 7.78 727 | 7.58 | 7.40 | 548 | 8.19 | 6.89 113 851.80 | 48.20 23.08 107
MIX NTRIAL 3.2 6.3 % €3 o.09 789 | 7.17 | 7.72 | 832 | 780 | 868 | 748 | 833 | 819 | 894 | 842 | 1107 1.00 5507 | 4493 81.59 123
MIX NTRIAL 3.2 6.8 % 6.8 0.15 269 | 621 238 | 929 | 693 | 7.03 924 | B71 920 | 9299 | 829 | 7.04 122 53.53 | 46.47 B6.82 115
MIX O TRIAL 3.2 5.8 % 58 o.09 909 | 834 | 895 | 636 | 721 | 972 | 744 | 779 | 858 | 11.10| 868 | 674 133 51.19 | 48.81 9534 1.05
MIX O TRIAL 3.2 6.3 % 6.3 o.09 7.14 | 816 | 7.95 | 9.15 | 677 | 882 | 7.51 | 9.23 | 8.40 | 932 | 9.26 | 8.31 0.87 5268 | 47.32 89.82 111
MIX O TRIAL 2.2 6.8 % &8 0.08 827 | 886 | 835 | 005 | 879 | 965 | 889 | 7.84 | €56 | 7.70 | 860 | 7.44 0.84 5320 | 46.80 87.96 114
MIX S TRIAL 3.2 5.8 % 58 0.11 B8Z | 682 | B23 | 7.47 | 7.43 | 9.86 | 10.47| 778 | 817 | 860 | 837 | 7.96 1.02 5603 | 43.97 78.46 127
MIX S TRIAL 3.2 6.3 % 6.3 0.13 11.07| 9.60 | 9.01 29.18 | 7.01 8.18 821 561 2032 512 | 691 2.09 142 47.97 | 5223 109.34 091
MIX S TRIAL 3.2 6.8 % &8 0.15 934 | 977 | 734 | 870 | 816 | 662 | 888 | 964 | 7.11 | 7.53 | 7.45 | 9.45 110 4983 | 50.17 100.67 0.99

(2) (b) (c)
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Table 17 Results of parameters for defective pies sets.

| Standard
frace Nane [mmcenT AC| A, Section by 30 degrees Deviation | INNER Ratio (inner outer)
MIX 13497 TRIAL 1.1 38 % 580 o1 720|823 | 003|747 |04z | 772|931 | 831|580 | 828 |1044]| 804 123 5829 45.71] 84210472 119
MIX 13497 TRIAL 11 63 % a3 017 P31 | 706|636 | 702|782 | 707|788 ]| 077 |1003] 030 | 068 | 648 132 s19] 481] 926594004 108
UX 13497 TRIAL 1.} 68 % 680 013 Jrze |1zas|1ae7| 767 | sen | st |Gcas|eas | s | 721|777 | s | 269 4598| S4.02] 11747565 085
MIX 13497 TRIAL 21 S8 % s80 004 780|031 |802|TA0 | 727 78a|Baz|o0q 1143|882 Ga 812 126 5338]| 4662| 87341716 114
MIX 13407 TRIAL 21 62 % 030 o0 reslast|s22] 719|010 701 | nee |1009]1262] 857 | a8 | ass 185 5196 4804] 92463708 108
MIX 13497 TRIAL 21 68 % ¢80 017 hood|sso |sra|eqz]|7sa]|s12] 856 | cer |1036] 840 ]| 706 | nas 117 4842 s1s8] 10652167 094
JMIX 13560 TRIAL 1.1 53 % 530 00D sse|rsz|7or|ryalrrz| vy 121 1160) 6o |12 | o2 | a0 188 S185| 48.15] 92857083 108
MIX 13560 TRIAL 1.1 58 % 580 on 824|931 | 871|822 700|854 |865]| 700 743 | 743 |1008] 867 o086 87, 047
MIX 13860 TRIAL 1.1 63 % 630 o011 foos|est|ves|7a1 |62 |sov|eso|Tos|ses|oTi o080 117 A 062
B UxX 13560 TRIAL 21 53 % LR 02s 8153265 10381076007 B0 702|712 e e ]B812 ] 67T 159 4415] 5585] 12649564 078
MIX 13560 TRIAL 21 38 % 580 o2 741|710 | 746 | 884 | 747 | 0067 | 028 | 845 |1027| 080 | 787 | Gao 1.32 4563| 5437] 11914886 084
MIX 13560 TRIAL 21 63 % 630 016 |v24|sso|vve|7eo|s2r|e2a]70e]| 781|802 | 046|817 ]| 082 110 4259] s7.41] 13478252 074
UX 13000 TRIAL A1 B5a N 52 o1 T7a oz o702 e |16 |7 |78 |z 1320|776 700 177 S0.74| 49.26] 97.071067 103
MIX 13560 TRIAL 31 S8 % aso 000 727|788 |ssc| 760 |esa|vas|e2s|s0r|oee |28 s8] 0se o007 27 126521722 038
MIX 13560 TRIAL 31 63 % 630 o110 sroleso|s1s]eco|ecra|7o7|ove|1rva]vea]ors|vta| 712 158 4667| 53.33] 11428564 088
JMIX 13561 TRIAL 1.} 53 % 530 o1 vos | 873 | 788 ) 807 22| 7oz |o7a|ass o |80z 30| ces one 4366| s634] 12903217 078
MIX 13361 TRIAL 1.1 38 % a8 007 764|637 J1ozv|osz | s s | rs0o|voz |7 ve | sas |1027] BAY 124 s478| 45.22] 825471186 121
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Since all of the PPS generated in Phase | were acceptable, the above mentioned
supplementary set of PPS consisting of computer-generated defective PPS and poor quality PPS
created by FDOT were used to demonstrate that the author’s algorithm can also identify the inferior
quality of those PPS images. The graphical comparisons of all three QCIP obtained from both
types of PPS are shown in Figures 30-32.

Based on the results of the above comparisons, the following conclusions can be drawn.

The directional distribution (A) representing each ABD region of a correctly placed PPS
and a computer-generated defective PPS are shown in Table 16(a) and 17 (a) respectively.
Therefore, the first QC parameter, orientation, which is based on Ar indicate uniformity of ABD
orientation within the PPS in acceptable pie plates. A sample of the results for the QC parameter,
orientation, is shown in Figure 30. Furthermore, based on Table 17, the values of A for correctly
placed PPS range from 0 to 0.25 and it can be concluded that orientations of all ABD regions in
PPS tested in Phase | are randomly distributed, and not aligned along any one particular direction.
The above observations agree with the observation-based acceptable quality of the pie plates with
respect to orientation. On the other hand, the defective PPS where the ABD regions were clearly
aligned in one direction indicated values of A, greater than 0.25. The above results seem to justify
the consideration of the acceptable range of A to be 0-0.25 [71].

The results for the second QC parameter, the spatial distribution (SD), are plotted in the
form of a column chart. An example of such a plot for the images of mix “A” tested in Phase I and
a defective computer-generated pie plate image are shown in Figure 31. Based on Tables 16(b)
and 17(b), all standard deviations values of the SD parameter for the sample mixture “A” lie

between 0 and 1.52. Meanwhile, for the defective pie plate image, the above value is 2.69. The
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above result seems to justify the consideration of the acceptable range of the standard deviation of

the SD parameter to be 0-1.52 [71].

A sample of the results for the third QC parameter, segregation, is shown in Figure 32.

Based on Tables 16(c) and 17(c), S; and S, values of 50% would indicate that the distribution of

ABD within each section (inner and outer) is precisely the same and therefore no segregation had

occurred in the PPS tested in Phase |. Based on the range of acceptability of S values for inner and

outer sections

and that of the Sratio to be between 0.73 and 1.34 [62], the results show no evidence

of segregation in some of the PPS images analyzed in this study. On the other hand, the defective

PPS consistently produced values of Sratio Of less than 0.73 and greater than 1.34. Hence it can be

concluded that the above specified acceptability range for the Sraio Seems to be reasonable [71].

Porcent SABD by angles(%)

el
Parcent SABD by angles(%)
8
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Figure 30 Distribution orientation parameter (8y) for (a) an acceptable quality of a real pie
plate image and (b) a slide synthetic pie plate image.
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sults for predetermined AC contents for all of the samples testing in this research.
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7.4.  Implementation of the Neural Network-Based OBC Estimation

The input data vector Xk contains three trial asphalt binder contents values specific to the
aggregate and binder types that are predetermined by the agency. Therefore, when any given
GRNN is trained by an adequate number of samples of each aggregate type, the GRNN would
automatically recognize the aggregate type of any new mixture design based on the specific asphalt
binder contents values in the input vector Xk. As an example, for this research the nominal
maximum aggregate size was 12.5 mm. If this aggregate size blend is to be substituted by 9.5 mm
nominal maximum aggregate size, then before the automated OBC determination process is
executed, three phases of in-house testing must be carried out by FDOT. The first phase of testing
consisting of an adequate number of pie plates tests must be performed following the FM5-588 to
create a new database for the new size blend study as in Phase | of the current study. Then, in the
second phase, a comprehensive database of visual OBC estimates and the corresponding imaging
parameters for pie plates prepared using the new aggregate must be compiled as in Phase I of the
current study. In the final phase of testing, the neural network developed in Phase Il of the current
study must be re-trained with the modified dataset that also incorporates the trial asphalt binder
contents, OBC estimates and the imaging parameters from the newly compiled database.

The above logic can also be extended to include different binder types as well by assuming
that an appropriately trained GRNN would also recognize the binder type based on the specific
trial asphalt binder content values that are predefined by the agency and previously exposed to the
GRNN.

Hence the extension of the proposed neural network model to include a variety of
additional types of aggregate and binders requires the building of a database that must be trained

with an adequate number of mixture designs containing all possible types of aggregates and
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binders and the corresponding specific trial asphalt binder contents values. Such a database can be
set up conveniently by using the FM 5-588 to test all types of desired aggregate and binder types
at pre-determined trial asphalt binder contents values relevant to those aggregate and binder types.
Appendix C shows the steps that must be followed to use the software generated by the author that

can automatically predict the OBC of OGFC mixtures using a multi-dimensional GRNN.
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CHAPTER 8: CONCLUSIONS

In order to eliminate the human subjectivity involved in the current FM 5-588 (pie plate)
method, an automated test method for the direct estimation of the optimum asphalt binder content
(OBC) of OGFC mixtures was developed using the analysis of pie plate images and concepts of
perceptual image coding and NN. The investigation consisted of three distinct phases where Phase
| involved the testing of a large set of OGFC samples prepared from granitic and oolitic limestone
aggregate sources using FM-5-588 and the subsequent imaging of the corresponding pie plates.
Phase 11 of the investigation was focused on the formulation of (i) a perceptual image model based
on specific imaging parameters which utilize a combination of human visual metrics that model
human perceptive effects involved in estimating the OBC, and (ii) a Generalized Regression
Neural Network (GRNN) that would discover the nonlinear relationship among the above imaging
parameters, the corresponding trial ACs and the OBC. The designed neural network was trained
using a major part of the data collected from the tested OGFC mixtures that consisted of the ACs
and the relevant imaging parameters and the visual OBC estimates. Then the GRNN-based OBC
predictions performed on an independent part of the same database showed that the model provides
satisfactory estimation of OBC values not previously presented to the GRNN. The research also
demonstrated that, even with respect to predicting ACs using imaging parameters, a higher
accuracy can be obtained from a trained GRNN compared to regression models. An added
attractive feature of the neural network method is that it can conveniently incorporate parameters
which are difficult to be included in analytical equations. Phase Il of the investigation involved

the development of an image-based tool for quality control of pie plate samples for FM5-588
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procedure for OBC determination of OGFC mixtures. This algorithm evaluates the selected QCIP
of pie plate images prior to executing image-based OBC prediction method developed in Phase Il
and ensures high reliability of results. The results of Phase 111 prove that QCT could be used in OGFC
pie plate specimen production method for more effective selection of good quality specimens. The
experimental results show that this algorithm is very efficient in maximizing the accuracy of OBC

estimation.
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CHAPTER 9: RECOMMENDATIONS FOR FUTURE WORK
After accomplishing the envisioned objectives of the current research study, the
investigators recommend the future research directions listed below:

e The GRNN based OBC estimations can be compared with the corresponding visual estimations
of the FDOT technicians, for a number of independent OGFC mixtures, to verify the automated
method.

e Future efforts can be focused on testing different OGFC mixtures to verify that this automation
can be extended to other types of aggregates, binders (polymer modifiers and rubber) used by

FDOT.
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APPENDIX A: TABLE OF EXPERIMENTAL TEST PLAN

Table A1 Experimental test plan.
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E] 5.2 3 =:00:00 At | 5:00:00 A | =:00:00Am | 5:00:00 A | 5:00:00 At | = = =:00:00 Ar =:00:00 AR
1 5.3 1 5:00:00 AW | 5:00:00 AM | 5:00:00 A | £:00:00 AW | 5:00:00 A0 | & ) 2:00:00 AR 5:00:00 AR
HE315 ECLES El 2 s6 1 2:00:00 ar | 2:00:00 A0a | 2:00:00 AW | S:00:00am [ s00i00 A | s:00:00 AM | S:00:00 A [ S:00:00 A | S:00:00 A | e =t 2:00:00 AR =:00:00 AR
E) 5.2 3 =:00:00 AM | 5:00:00 AM | =:00:00 A | £:00:00 AM | =:00:00 ama | = = =:00:00 Ara =:00:00 AR
1 5.3 3 5:00:00 AW | 5:00:00 A | 5:00:00 A | 5:00:00 AW | 5:00:00 404 | & ) =:00:00 AR 5:00:00 AR
EEEEYS a 2 55 3 2:00:00 a0 | 2:00:00 A0 | 2:00:00 A | S:00:00am [ 200:00 A | 5:00:00 A | S:00:00 AN [ ©:00:00 A | S:00:00 AM | & =: 2:00:00 AM =:00:00 AR
] 6.3 1 2:00:00 AW | 2:00:00 AM | S:00:00 A0 | 2:00:00 A | e:00:00 Ama | = =: 2:00:00 Ar =:00:00 AR
1 53 1 2:00:00 AW [ 2:00:00 AM | S:00:00 A0 | 2:00:00 A | 2:00:00 A | =t =: 2:00:00 Ar =:00:00 AR
2557 s 2 5. 1 5:00:00 40 | 5:00:00 48 | 5:00:00 40 | 5:00:0040 [ 50000 Am | S:00:00 Ara | S:00:00 A [ 5:00:00 A | =:00:00 A | = = =:00:00 Ar =:00:00 AR
GRANITIC = 5.2 2 5:00:00 AW | 5:00:00 Am | 5:00:00 A | 5:00:00 AW | 5:00:00 284 | & ) E:00:00 AR 5:00:00 AR
1 5.3 1 2:00:00 AW | 5:00:00 AM | S:00:00 AR | 2:00:00 AW | 2:00:00 Aa | =: =: 2:00:00 AM =:00:00 AR
a1s0a 5 2 ) 3 2:00:00 a0 | 2:00:00 2ra | 2:00:00 A | s:00:00am [T s00:00 sk | S0 AM | S:00:00 A [[5:00:00 Ak | S:00:00 A | S =: =:00:00 Ara S:00:00 Ara
= 5.2 3 5:00:00 At | 5:00:00 AM | 5:00:00 A4 | 5:00:00 At | 5:00:00 ara | & ) S:00:00 Am S:00:00 Am
1 5.3 1 5:00:00 AW | 5:00:00 AM | 5:00:00 A | 8:00:00 AW | 5:00:00 404 | & ) =:00:00 AR 5:00:00 AR
s124s 7 2 55 1 2:00:00 ar | 2:00:00 A0a | 2:00:00 AW | S:00:00am [ s00:00 A | S:00:00 A | S:00:00 A [ S:00:00 A | S:00:00 A | e =: 2:00:00 Ar =:00:00 AR
E] 5.2 1 5:00:00 AW | 5:00:00 AN | 5:00:00 A | £:00:00 Am | =:00:00 Ama | = = =:00:00 Ar =:00:00 AR
1 5.z 2 5:00:00 AW | 5:00:00 Am | 5:00:00 A | 5:00:00 AW | 5:00:00 284 | & ) E:00:00 AR 5:00:00 AR
aAs52 sz2504 e 2 55 3 2:00:00 a0 | 2:00:00 A0 | 2:00:00 A | S:00:00am [ 200:00 A | 5:00:00 A | S:00:00 AN [ ©:00:00 A | S:00:00 AM | & =: 2:00:00 AM =:00:00 AR
E) 5.2 1 ©:00:00 AW | 5.00:.00 Al | ©:00:00 A | =:00:00 Ar | 2:00:00 ama | = =: =:00:00 Ara S:00:00 Ara
1 ) 3 5:00:00 Ata | 5:00:00 AM | 5:00:00 A4 | 5:00:00 At | 5:00:00 2ra | & ) S:00:00 Am S:00:00 Am
s224s E 2 55 3 2:00:00 A0 | 2:00:00 A6 | 8:00:00 AM | S:00:00 A0 [ 5:00:00 AW | 5:00:00 A | S:00:00 AW [ 5:00:00 A | &:00:00 AM | & ) =:00:00 AR 5:00:00 AR
3 5.3 1 2:00:00 AW | 8:00:00 AM | S:00:00 Am | 2:00:00 AW | 2:00:00 Ara | =: =: 2:00:00 Ar =:00:00 AR
- 1 5.2 1 5:00:00 AW | 5:00:00 AN | 5:00:00 A | £:00:00 Am | =:00:00 Ama | = = =:00:00 Ar =:00:00 AR
E 57738 10 2 ss 3 5:00:00 a0 | 5:00:00 a8 | &:00:00 A | s:00:00am [ 5:00:00 A6 | =:00:00 Ana | S:00:00 AN [ 5:00:00 A | &:00:00 A | & ) E:00:00 AR 5:00:00 AR
> 3 5.3 1 5:00:00 Al S:00:00 AR S:00:00 AR [ 5:00:00 AR | 5:00:00 48 | S =) £:00:00 AN 2:00:00 Afd
1 s& 1 ©:00:00 AW | 5:00:00 AM | S:00:00 A0 | 2:00:00 AW | 2:00:00 Ara | =: =: 2:00:00 AR S:00:00 AR
FEPTYS 11 2 5.3 3 =:00:00 ara | =:00:00 A% | =:00:00 A || S:00:00am |7 500004k | S:00:00 A | S:00:00 AN [ 5:00:00 Ana | S:00:00 A | = = =:00:00 Ara =:00:00 Ana
= 5.5 3 5:00:00 AW | 5:00:00 Ara | 5:00:00 A | 5:00:00 AW | 5:00:00 2ra | & 5 E:00:00 AR 5:00:00 AR
1 5.8 1 5:00:00 AW | 5:00:00 AM | S:00:00 A | 5:00:00 AW | 5:00:00 404 | & ) 2:00:00 AR 5:00:00 AR
EELLYS 12 2 5.3 1 2:00:00 Ar | 2:00:00 A% | 2:00:00 AW | S:00:00Am [T s00:00AM | S:00:00 A | S:00:00 A [ S:00:00 Aba | S:00:00 AM | S =: 2:00:00 AR S:00:00 AR
3 ) 1 =:00:00 AM | 9:00:00 AN | 5:00:00 A | =:00:00 Am | =:00:00 ama | = = =:00:00 Ara =:00:00 Am
1 5. 2 5:00:00 AW | 5:00:00 A | 5:00:00 A | 5:00:00 AW | 5:00:00 204 | & 5 S:00:00 AR 5:00:00 AR
EEEEYS 13 2 5.3 2 2:00:00 A0 | 2:00:00 A | 2:00:00 AM | S:00:00Am [T 2:00:00 AW | 5:00:00 A | S:00:00 AW [ ©:00:00 A | 2:00:00 AM | & =: 2:00:00 AR S:00:00 AR
E ) 1 5:00:00 AW | 9:00:00 A | =:00:00 A | =:00:00 Am | =:00:00 ama | = = =:00:00 Ara =:00:00 Ana
=7==s a 5.8 1 5:00:00 AR 2:00:00 AR S:00:00AM [ 5:00:00 Ak | 5:00:00 4M | S =) 5:00:00 AN S:00:00 Al
EEEETS 14 2 5.3 2 2:00:00 AN | 2:00:00 A6 | 8:00:00 AM | 8:00:00Am [ 5:00:00 AW | 5:00:00 A | S:00:00 AW [ B:00:00 A | 8:00:00 AM | & ) 2:00:00 AR 5:00:00 AR
3 6.8 1 ©:00:00 AW | 8:00:00 AM | S:00:00 A0 | 2:00:00 AW | e:00:00 A | =: =: 2:00:00 AR S:00:00 AR
1 5. 1 =:00:00 AM | 9:00:00 AN | 5:00:00 A | =:00:00 AM | =:00:00 ama | = = =:00:00 Ara =:00:00 Am
oouTie EPLEYS 15 2 5= 2 5:00:00 a0 | 5:00:00 a8 | &:00:00 AM | S:00:00am [ 5:00:00 A6 | =:00:00 Ana | 5:00:00 AN [ 5:00:00 A | &:00:00 AM | & 5 S:00:00 AR 5:00:00 AR
3 6.5 1 ©:00:00 AW | 5:00:00 AM | 2:00:00AK | 2:00:00 AW | 2:00:00 Aa | =: =: 2:00:00 AR S:00:00 AR
1 s.& 1 5:00:00 AW | 9:00:00 A | =:00:00 A | =:00:00 Am | =:00:00 ama | = = =:00:00 Ara =:00:00 Ana
101398 15 = CE) 3 5:00:00 ara | 5:00:00 ara | s:00:00 A | S:00:00am [ S0 A | =:00:00 A | S:00:00 A [ 5:00:00 A | s:00:00 A | & ) S:00:00 Am S:00:00 Am
3 6.8 1 5:00:00 AW | 5:00:00 AM | 5:00:00 A | 2:00:00 AW | 5:00:00 404 | & ) 2:00:00 AR 5:00:00 AR
1 5.8 1 2:00:00 AW [ 5:00:00 AM | 2:00:00.A0 | 2:00:00 Al | 2:00:00 Ama | =: =: 2:00:00 Ar =:00:00 AR
sasan 17 2 6.2 3 =:00:00 ara | =:00:00 ara | s:00:00 4w | s:00:00am [ s0000 4 | Si00:00 A | S:00:00 A [ 5:00:00 Ak | 50000 A | S = =:00:00 Ar =:00:00 AR
= 5.2 2 5:00:00 AW | 5:00:00 Am | 5:00:00 A | 5:00:00 AW | 5:00:00 284 | & ) E:00:00 AR 5:00:00 AR
1 .5 1 2:00:00 AW | 5:00:00 AM | S:00:00 AR | 2:00:00 AW | 2:00:00 Aa | =: =: 2:00:00 AM =:00:00 AR
=71as 7206 18 2 ] 3 2:00:00 a0 | 2:00:00 2ra | 2:00:00 A | s:00:00am [T s00:00 sk | S0 AM | S:00:00 A [[5:00:00 Ak | S:00:00 A | S =: =:00:00 Ara S:00:00 Ara
= 5.2 3 5:00:00 At | 5:00:00 AM | 5:00:00 A4 | 5:00:00 At | 5:00:00 ara | & ) S:00:00 Am S:00:00 Am
1 .5 1 5:00:00 AW | 5:00:00 AM | 5:00:00 A | 8:00:00 AW | 5:00:00 404 | & ) =:00:00 AR 5:00:00 AR
EEEEYS 19 2 5.3 1 2:00:00 ar | 2:00:00 A0a | 2:00:00 AW | S:00:00am [ s00:00 A | S:00:00 A | S:00:00 A [ S:00:00 A | S:00:00 A | e =: 2:00:00 Ar =:00:00 AR
3 6.& 1 S:00:00 AN | 5:00:00 AN | 5:00:00 A [ £:00:00 Ar | =:00:00 ara | = = =:00:00 Ara =00:00 AR
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A B & o F 3 H 1 2 q R s T u v w ® W z A 2B
DETERM I MATIONOF OFTIMUIM ASPHALT BINDER COMTENT
SECTION 5.4 SECTIONG.S SECTIONG.6 SECTIONG.7 SECTIONGS SECTION 5.9
5.4 Preparethree 1200z | 5.5 Heat the ageregate S6 misthe ageregate tatch | 5.7 tmrsferthe misture | 5.8 remove the pie plate | 5.9 irert the pie plates
ageregate batches, batchezand the aspralt ardasphalt birderinthe  |fromthe mising bowd into & | fromthe cuenard allowit | and irspect the bottam imagsflabicur
IIX TYPE DESIGH # I # FMI5-5&8 PIEFPLATESAMPLES birder fora minimumof mixing bowd pie plate AMD place inan | to cool undisturbed until it suraces.
o hours ovenforone hour reashes oom

pie 2 6.5 1 5:00:00 AW | =:00:00 AN | S:00:00 A6 [ 3:00:00 40 | 3:00:00 &M 5:00:00 &M [2:00:00 AW 2:00:00 Al
piel 5.2 1 2:00:00 AW [ £:00:00 AN | S:00:00 AM | 2:00:00 AM | 8:00:00 &M 9:00:00 &M [2:00:00 AW 2:00:00 A
91654 1 pie 2 ) 1 £:00:00 AN | 5:00:00 AW | 5:00:00 AW | 5:00:0088 [ 5:00:00AM | =:00:00 A | 5:00:00 AW [ 5:00:00 88 | 8:00:00 A0 [ & 5:00:00 AW [E:00:00 AR 5:00:00 Al
pie 3 5.3 1 2:00:00 AW | 2:00:00 AN | S:00:00 AN [ 5:00:00 AM | 8:00:00 88 | & 5:00:00 AM [S:00:00 AK 2:00:00 Al
pie 1 5.2 1 5:00:00 AW | £:00:00 AN | S:00:00 AW | 3:00:00 AM | 3:00:00 86 | 8: 5:00:00 AM [2:00:00 AW 2:00:00 A
24754 2 pie 2 ) 1 7:00:00 AW | 7:00:00 &K1 | 7:00:00 AN | 7:00:00 A0 [ 5:00:00 AW | so00:00 A | £:00:00 AW [ 5:00:00 AW | 5:00:00 AM | &: 5:00:00 AM [2:00:00 AW 9:00:00 A
pie 3 5.3 1 2:00:00 AW | g:00:00 A | =:00:00 Al [5:00:00 A [ S:00:00 AM | & 5:00:00 AM [S:00:00 AR 2:00:00 Al
pie 1 5.3 1 5:00:00 A [ £:00:00 AN | S:00:00 AM | 3:00:00 AM | 3:00:00 58 | 8: 5:00:00 AM [2:00:00 AR 2:00:00 A
NS315 95424 3 pie 2 ) 1 2:00:00 AM | 8:00:00 A6 | 2:00:00 AM | 2:00:00 A [ 2:00:00 AW | £:00:00 AN | S:00:00 AM | 3:00:00 AM | 8:00:00 86 | 8: 2:00:00 AW [2:00:00 &M 2:00:00 Al
pie 3 6.3 1 5:00:00 AW | =:00:00 Ar | 5:00:00 A [&:00:00 AW [ 5:00:00 A | & 5:00:00 AW [E:00:00 AR 5:00:00 A
piel 5.3 1 2:00:00 AW | :00:00 Ana | =:00:00 Al [5:00:00 AR [ 5:00:00 AM | & 5:00:00 AM [S:00:00 AR 2:00:00 Al
95464 ) pie 2 ) 1 7.00:00 4K | 7:00:00 AN | 7:00:00 40 | 7:00:0040 [ 3:00:00AM | :00:00 M | 2:00:00 &M ['2:00.00 M | 8:00:00 AW | &: 2:00:00 AW [S:00:00 AW 2:00:00 A
pie 2 6.2 1 2:00:00 AW | £:00:00 AM | S:00:00 AW | 2:00:00 AM | 8:00:00 &M | & 9:00:00 &M [2:00:00 AW 2:00:00 A
piel 5.3 1 5:00:00 AW [ =co0:00 ana | 5:00:00 A [&:00:00 AW [ 5:00:00 AM | & 5:00:00 AW [E:00:00 AR 5:00:00 Al
aE57A 3 pie 2 ) 1 £:00:00 AR | 9:00:00 4K | £:00:00 AR | 5:00:00 48 [ 5:00:00AM | 5:00:00 A | £:00:00 A0 [ 5000048 | 8000086 [ & 5:00:00 AM [S:00:00 AK 2:00:00 Al
pie 2 5.2 1 5:00:00 AW | £:00:00 AN | S:00:00 AW | 3:00:00 AM | 3:00:00 86 | 8: 5:00:00 AM [2:00:00 AW 2:00:00 A
GRANTIC pie 1 5.3 1 5:00:00 AW | S:00:00 AM | S:00:00 AM | 3:00:00AM | 3:00:00 58 | 8: 5:00:00 AM |2:00:00 AW 2:00:00 A
91604 5 pie 2 ) 1 7:00:00 &M | 7:00:00 &4 | 7:00:00 AN | 7:00:00 A0 [ S:00:00 AW | S:00:00 A6 | sc00:00 A6 [ s:00.00 20 [ s:00:00 80 | & £:00:00 AN [£:00:00 Ak £:00:00 AR
pie 3 6.3 1 2:00:00 AR | S:00:00 AM | S:00:00 AN [ £:00:00AM | 8:00:00 584 | & 5:00:00 AM |S:00:00 AR 2:00:00 Al
piel 5.3 1 5:00:00 A [ 5:00:00 AM | S:00:00 AW [ 5:00:00 AM | 8:00:00 58 | & 8:00:00 AW |E:00:00 AR 8:00:00 Al
91844 7 pie 2 ] 1 2:00:00 AM | 3:00:00 AN | 2:00:00 AM | S:00:00 AR | 5:00:00 AW | 5:00:00 AN | 5:00:00 AN [ £:00:00 A | 5:00:00 AN | & £:00:00 AW |2:00:00 AW 2:00:00 A
pie 2 6.2 1 2:00:00 A | £:00:00 AM | S:00:00 AM | 2:00:00 AM | 8:00:00 86 | 8: 9:00:00 &AM |2:00:00 AW 2:00:00 A
piel 5.3 1 5:00:00 AW | =:00:00 A | 5:00:00 A [&:00:00 AW [ 5:00:00 A | & 5:00:00 AW [E:00:00 AR 5:00:00 A
GASSZ a3504 ] pie 2 ) 1 7.00:00 AR | 7:00:00 88 | F:00:00 46 | 0000 A0 [ 8:00:00 86 | gco0:00 A | 5:00:00 46 [5:00.00 A0 | 5:00:00 40 | & 5:00:00 AM [S:00:00 AR 2:00:00 AR
pie 2 5.2 1 5:00:00 AW | £:00:00 AN | S:00:00 AW | 3:00:00 AM | 3:00:00 86 | 8: 5:00:00 AM [2:00:00 AW 2:00:00 A
piel 5.2 1 2:00:00 AW [ £:00:00 AN | S:00:00 AM | 2:00:00 AM | 8:00:00 &M 9:00:00 &M [2:00:00 AW 2:00:00 A
953248 £l pie 2 ) 1 £:00:00 AN | 5:00:00 AW | 5:00:00 AW | 5:00:0088 [ 5:00:00AM | =:00:00 A | 5:00:00 AW [ 5:00:00 88 | 8:00:00 A0 [ & 5:00:00 AW [E:00:00 AR 5:00:00 Al
pie 3 6.3 1 2:00:00 AW | £:00:00 A | S:00:00 AM | 3:00:00 AM | 3:00:00 AW | 8: 2:00:00 AN [2:00:00 AW 2:00:00 AN
o pie 1 5.2 1 5:00:00 AW | £:00:00 AN | S:00:00 AW | 3:00:00 AM | 3:00:00 86 | 8: 5:00:00 AM [2:00:00 AW 2:00:00 A
£ 9773A 10 pie 2 ) 1 7:00:00 AW | 7:00:00 &K1 | 7:00:00 AN | 7:00:00 A0 [ 5:00:00 AW | so00:00 A | £:00:00 AW [ 5:00:00 AW | 5:00:00 AM | &: 5:00:00 AM [2:00:00 AW 9:00:00 A
. pie 3 5.3 1 5:00:00 AW | g:00:00 A | =:00:00 Al [s:00:00 A [ S:00:00 AM | & 5:00:00 AM [S:00:00 AR =:00:00 Al
piel 53 1 5:00:00 A0 [ =:00:00 AW | S:00:00 AK [ &:00:00 AM | 5:00:00 58 | & 5:00:00 A0 [8:00:00 AR 5:00:00 AM
91364 11 pie 2 5.3 1 2:00:00 AM | 2:00:00 A8 | =:00:00 AW | 5:00:00 48 [ 2:00:00 AW | g:00:00 A | 5:00:00 &M [2.00:00 A8 | 5:00:00 80 | = 2:00:00 A0 [8:00:00 AR 2:00:00 A1
pie 2 53 1 5:00:00AM | 2:00:00 AW | S:00:00 AWM [ 3:00:00 4 | 2:00:008M | 8: 5:00:00 A0 [2:00:00 AR 5:00:00 AM
piel 53 1 5:00:00 A0 | =:00:00 AW | S:00:00 AM | 5:00:00 AM | &:00:00.80 | & 2:00:00 A0 [9:00:00 AR 2:00:00 A0
34004 12 pie2 5.3 1 F:00:00 AN | 7:00:0080 [ F:00:00 AW | F:00:00 A0 [ 2:00:00 AWM | gco0:00 Ak | S:00:00 AW [5:00:00 AR [ 5:00:00 A | 51 2:00:00 A0 [2:00:00 AR 2:00:00 A0
pie 3 58 1 2:00:00 AWM | =:00:00 AN | S:00:00 AM [ 3:00:00AK | 5:00:00 50 | 5: 2:00:00 AN [2:00:00 AR 2:00:00 AM
piel c3 1 5:00:004M  [=:00:00 AW | S:00:00 AM [[3:00:004M | 2:00:008M | 8: 5:00:00 A0 [2:00:00 AR 5:00:00 AM
EREETS 13 pie2 5.3 1 £:00:00 AM | 8:00:00 A0 | 5:00:00 AW | &:00:00 A6 [ 5:00:00 AWM | 5:00:00 A1 | 5:00:00 AW [ 5:00:00 AW | 5:00:00 AW | 5: 8:00:00 A0 [8:00:00 AR 8:00:00 AM
CREED pie 3 59 1 2:00:00 AWM | 2:00:00 AW | S:00:00 AR [ & 00:00 AR | &:00:00 80 [ & 2:00:00 A0 [2:00:00 AR 2:00:00 A0
piel 5.8 1 5:00:00AM | :00:00 AW | S:00:00 AM [ 3:00:00AM | 2:00:005M | S: 2:00:00 A [2:00:00 AR 5:00:00 AM
91394 14 pic 2 53 1 7:00:00 &K 7:00:00 &K1 | 7:00:00 &6 | 2:00:00 80 | 2:00:00 AW | 2:00:00 AM [ 2:00:00 AW | 8:00:00 M | &: 2:00:00 &M [8:00:00 &M 2:00:00 A0
pie 3 53 1 5:00:00 AWM | =:00:00 AW | S:00:00 AK | &:00:00 AM | &:00:00.80 | & 8:00:00 A0 [8:00:00 AR 8:00:00 AM
piel 5.8 1 2:00:00 A0 [ =:00:00 A | S:00:00 Ak [ & 00:00 AM | s:00:0080 [ & 2:00:00 A0 [8:00:00 AR 2:00:00 A1
oouTIC 94634 15 pic2 53 1 2:00:00 AM [ 2:00:00AM | :00:00 AK | 2:00:00 46 | 2:00:008M | 2:00:00 AM | S:00:00 AM [(2:00:00 A0 | 3:00:00amM | & 5:00:00 AN [3:00:00 &M 5:00:00 AM
pie 3 53 1 5:00:00 A0 | =:00:00 AW | S:00:00 AM | 5:00:00 AM | &:00:00.80 | & 2:00:00 A0 [9:00:00 AR 2:00:00 A0
piel 58 1 2:00:00 AWM | 2:00:00 AW | S:00:00 AR [ &00:00 AR | :00:00 50 [ & 2:00:00 A0 [2:00:00 AR 2:00:00 A0
101345 15 pie 2 53 1 7:00:00 AN | 7:00:00AM | 7:00:00 AK | 7:00:00 A0 | $:00:00AM | 5:00:00 A | S:00:00 AW [[2:00:00 AM | 5:00:00 A8 | 5: 5:00:00 AR [3:00:00 AW 5:00:00 AN
pie 2 53 1 5:00:00AM | 2:00:00 AW | S:00:00 AWM [ 3:00:004M | 5:00:008M | 8: 2:00:00 A0 [2:00:00 AR 5:00:00 AM
piel 5.3 1 5:00:00 A0 [ =00:00 AW | S:00:00 AK [ 5:00:00 AM | 5:00:0088 | & 5:00:00 A0 [8:00:00 A 5:00:00 AM
ELETS 17 pie2 5.3 1 £:00:00 AM | 2:00:00 80 | 5:00:00 A | 5:00:00 a6 [ 2:00:00 80 | g:00:00 Ak | 5:00:00 A [ 5:00:00 4K | 5:00:00 A0 | 5 2:00:00 A0 [5:00:00 AR 2:00:00 A0
pie3 58 1 5:00:00AM | £:00:00 AW | S:00:00 AM [ 3:00:00AM | 2:00:005M | 5: 2:00:00 AM [2:00:00 AR 2:00:00 AM
piel c3 1 2:00:00 AWM | £:00:00 AW | S:00:00 AM | 2:00:00 4K | 2:00:008M | 8¢ 2:00:00 A0 [9:00:00 AR 2:00:00 A0
87145 7o06A 15 pie2 5.3 1 7:00:00 AN | 7:00:00 88 | 7:00:00 Ak | 7:00:00 a6 [ 8:00:00 AWM | so00:00 Ak | 5:00:00 AW [5:00:00 AW | 5:00:00 AN | 51 5:00:00 A0 [8:00:00 AR 5:00:00 AM
pie3 5.9 1 2:00:00 A0 | =:00:00 AW | S:00:00 AR [ s00:00 4K | s:00:0080 [ & 2:00:00 A0 [5:00:00 AW 2:00:00 A1
piel c3 1 5:00:00 40 [=:00:00 AW | S:00:00 AW [ 3:00:00 40 | 2:00:008M | 5 2:00:00 A0 [2:00:00 AR 2:00:00 41
EEEETS 18 pie2 5.3 1 £:00:00 AM | 5:00:00 80 | £:00:00 AW | £:00:00 A0 [ 5:00:00 AWM | =:00:00 A1 | £:00:00 AW [5:00:00 AW | 5:00:00 AN | =: B:00:00 A0 [9:00:00 AR 5:00:00 A0
pie3 59 1 2:00:00 A0 | 2:00:00 AW | S:00:00 AR [ &:00:00 AR | &:00:00 504 [ &: 2:00:00 A0 [2:00:00 AR 2:00:00 A0
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A E c o F g H 1 F a [ 2 T u ¥ w b ¥ z AR 2B
DETERMI NATION OF OFTIM LI ASPHALT BINDER COMTENT
SECTIONE.4 SECTIONE. S SECTIONE.6 SECTIONE.? SECTIONE.S SECTIOWE.3
Ed Prepare three 1200 g | 5.5 Heat the aggregate E& min the aggregate batsh | 5.7 trarsferthe misture | 5.8 remove the pis plate [ 53 imvert the pie plates
agsregats batches. batchezard the asphalt ard azphalt birderinthe framthe mixirg bowd intoa | fromthe cvenardallowit | ard irepect the bottomn image labuviewr
WX TYPE DESIGHN # R # FMS-522 PIE PLATESAMPLES birderfora minimumof mizing bowd pie plate AMD place inan | tocool urdisturbed urril it surfaces,
tuo hours ovenforone hour reaches oom

pie 3 5.2 1 7:00:00 &K 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 AM 7.00:00 A1
piel 5.2 1 7:00:00 AR 7:00:00 A1 [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M | 7:00:00 4K 7:00:00 A0
94764 2 pie 2 5.3 1 7:00:00 AW | Z:00:00AK | 7:00:00 40 | 7:00:00 40 [ 7:00:00 AW FO00:00AM [ Z:00:00 AW | Z:00:00 AW | Z:00:00 AW | 7:00:00 A0 | 7:00:00 Ana 7:00:00 A1
pie 3 5.2 1 7:00:00 AN 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM [ 7:00:00 AM | 7.00:00 AM 7.00:00 A1
piel 5.2 1 7:00:00 AR 7:00:00 A1 [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M | 7:00:00 4K 7:00:00 A0
NS315 96424 2 pie 2 5.3 1 7:00:00 AW | 7:00:00 AR | 7:00:00 AN | :00:00AK [ 7:00:00 AN 7:00:00AM [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AR 7:00:00 A1
pie 3 5.2 1 7:00:00 AN 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM [ 7:00:00 AM | 7.00:00 AM 7.00:00 A1
piel 5.2 1 7:00:00 AR 7:00:00 A1 [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M | 7:00:00 4K 7:00:00 A0
96964 4 pie 2 5.3 1 7:00:00 AW | 7:00:00 AR | 7:00:00 AN | :00:00AK [ 7:00:00 AN 7:00:00 40 [ 7.00:00 A0 | 7:00:00 AW | 7:00:00 AR | 7:00:00 A | 7:00:00 A0 7:00:00 A1
pie 3 5.2 1 7:00:00 AN 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM [ 7:00:00 AM | 7.00:00 AM 7.00:00 A1
piel 5.2 1 7:00:00 AR 7:00:00 A1 [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M | 7:00:00 4K 7:00:00 A0
9657A 13 pie 2 5.3 1 7:00:00 AW | 7:00:00 AR | 7:00:00 AN | :00:00AK [ 7:00:00 AN 7:00:00 40 [ 7.00:00 A0 | 7:00:00 AW | 7:00:00 AR | 7:00:00 A | 7:00:00 A0 7:00:00 A1
pie 3 5.2 1 7:00:00 AN 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM [ 7:00:00 AM | 7.00:00 AM 7.00:00 A1
GRANITIC piel 5.2 1 7:00:00 AW 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 AM 7:00:00 A0
91604 3 pie 2 5.8 1 7:00:00 AW | 7:00:00 AR | 7:00:00 AN | :00:00 A8 [ 7:00:00 AW 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 AM 7:00:00 A0
pie 3 5.2 1 7:00:00 AW 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 AM 7:00:00 A0
piel 5.2 1 7:00:00 AW 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 AM 7:00:00 A0
91944 7 pie 2 oz 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | :00:00 40 [ 7:00.00 Ak 7:00:00 A0 [ 7.00:00 AK | 7:00:00 AW | 7:00:00 &M [ 7:00:00 AW | 7.00:00 A1 7:00:00 A1
pie 3 5.3 1 7:00:00 A Z:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 AM 7.00:00 AM
piel 5.2 1 7:00:00 &K 7:00:00 A1 [ 7:00:00 &M | 7:00:00 4K | 7:00:00 AM | 7:00:00 AM | 7:00:00 A0 7:00:00 40
GASS3 43504 2 pis 2 5.8 1 7:00:00 AR | F:00:00 AR | F:00:00 AN | F:00:00 A8 [ 7:00:00 Al 7:00:00 A0 [ 7:00:00AK | 7:00:00 A | 7:00:00 AR | 7:00:00 ara | 7.00:00 801 7:00:00 A0
pie 3 5.2 1 7:00:00 AN 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM [ 7:00:00 AM | 7.00:00 AM 7.00:00 A1
piel 5.2 1 7:00:00 &K 7:00:00 A1 [ 7:00:00 &M | 7:00:00 4K | 7:00:00 AM | 7:00:00 AM | 7:00:00 A0 7:00:00 40
92345 L] pis 2 5.8 1 7:00:00 AR | F:00:00 AR | F:00:00 AN | F:00:00 A8 [ 7:00:00 Al 7:00:00 A0 [ 7:00:00AK | 7:00:00 A | 7:00:00 AR | 7:00:00 ara | 7.00:00 801 7:00:00 A0
pie 3 5.2 1 7:00:00 AN 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM [ 7:00:00 AM | 7.00:00 AM 7.00:00 A1
= piel 5.2 1 7:00:00 &K 7:00:00 A1 [ 7:00:00 &M | 7:00:00 4K | 7:00:00 AM | 7:00:00 AM | 7:00:00 A0 7:00:00 40
'TE" EFFETS 10 pis 2 5.8 1 7:00:00 AR | F:00:00 AR | F:00:00 AN | F:00:00 A8 [ 7:00:00 Al 7:00:00 A0 [ 7:00:00AK | 7:00:00 A | 7:00:00 AR | 7:00:00 ara | 7.00:00 801 7:00:00 A0
pie 3 5.2 1 7:00:00 AR 7:00:00AM [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7:00:00 AM | 7.00:00 &M 7.00:00 A1
piel 55 1 7:00:00 AW [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 &K :00 AW :00 AW
91264 11 pie 2 5.3 1 7:00:00 AM [ 7:00:00 AW | 7:00:00 AM | T:00:00 AR [ F:00:00 AW | 7.00:00 48 | 7:00:00 AW [ 7:00:00 A1 | 7:00:00 AW | 7:00:00 AM | F:00:00 AR :00 AR :00 AR
pie 2 55 1 7:00:00 M [ 7oo:00am | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 &K | 7:00:00 &M :00 AW :00 AW
piel 55 1 7:00:00 A0 [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &K :00 AW :00 AW
24004 12z pie 2 5.3 1 F:00:00 AW | 70000 AM | 7:00:00 A | 7:00:00 A0 | 7:00:00AM | 7.00:00am | 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AR :00 AK 100 AM
pie 2 55 1 7:00:00 M [ 7oo:00am | 7:00:00 AW [ 7:00:00 4K | 7:00:00 AM | 7:00:00 &K | 7:00:00 &AM :00 AW :00 AW
piel 55 1 7:00:00 AW [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 &K :00 AW :00 AW
a133A 12 pie 2 5.3 1 7:00:00 AM | 7:00:00 AW | 7:00:00 AM | 7:00:00 AK [ 7:00:00 AW | 7.00:00.80 | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 AR | 7:00:00 &AM :00 AK 100 AM
R pie 2 55 1 7:00:00 M [ 7oo:00am | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 &K | 7:00:00 &M :00 AW :00 AW
piel 55 1 7:00:00 A0 [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &K :00 AW :00 AW
a133A 14 pie 2 5.3 1 7:00:00 AM | 7:00:00 AW | 7:00:00 AM | 7:00:00 AK [ 7:00:00 AW | 7.00:00.80 | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 AR | 7:00:00 &AM :00 AK 100 AM
pie2 55 1 7:00:00 80 [ 7oo:00am | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 &K | 7:00:00 &AM :00 AW :00 AW
piel 55 1 7:00:00 AW [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 &K :00 AW :00 AW
QouTIC 24695 15 pie 2 5.3 1 7:00:00 AM | 7:00:00 AW | 7:00:00 AM | 7:00:00 AK [ 7:00:00 AW | 7.00:00.80 | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 AR | 7:00:00 &AM :00 AK :00 AK
pie2 55 1 7:00:00 M [ 7oo:00am | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 &K | 7:00:00 &M :00 AW :00 AW
piel 55 1 7:00:00 A0 [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AM | 7:00:00 AM | 7:00:00 AW | 7:00:00 &K :00 AW :00 AW
101245 16 pie 2 5.3 1 7:00:00 AM | 7:00:00 AW | 7:00:00 AM | 7:00:00 AK [ 7:00:00 AW | 7.00:00.80 | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 AR | 7:00:00 &AM :00 AK 100 AM
pie2 55 1 7:00:00 M [ 7o0:00AM | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AM | 7:00:00 &K | 7:00:00 &M :00 AW :00 AW
piel 55 1 7:00:00 A0 [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M :00 AW :00 AW
Ga54A 17 pie 2 5.3 1 7:00:00 AM | 7:00:00 AW | 7:00:00 AM | 7:00:00 AK [ 7:00:00 AW | 7:00:00.80 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 AN :00 AK 100 AM
pie3 55 1 7:00:00 M [ 7oo:00an | 7:00:00 AW [ 7:00:00 4K | 7:00:00 AM | 7:00:00 AR | 7:00:00 &M :00 A0 :00 A0
piel 55 1 7:00:00 A0 [ 7.00:004M | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M :00 AW :00 AW
37145 73064 13 pie2 5.3 1 7:00:00 AM | 7:00:00 AW | 7:00:00 AM | 7:00:00 AK [ 7:00:00 AW | 7:00:00.80 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 AN :00 AK :00 AK
pie3 55 1 7:00:00 80 [ 7.o0:00 AW | 7:00:00 AW [ 7:00:00 4K | 7:00:00 AM | 7:00:00 AR | 7:00:00 &M :00 A0 :00 A0
piel 55 1 7:00:00 A0 [ 7.00:0040 | 7:00:00 AW [ 7:00:00 AW | 7:00:00 AM | 7:00:00 AW | 7:00:00 &M :00 AW :00 AW
39324 it ] pie2 5.3 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 A6 [ 7:00:00 AWM | 7:00:00Ar | 7:00:00 AW [ 7:00:00 AM | 7:00:00 AW | 7:00:00 AK | 7:00:00 AR [ 7:00:00 AN 7:00:00 AM
pie3 55 1 7:00:00 80 | 7.00:00AM | 7:00:00 AW [ 7:00:00 AK | 7:00:00 AW | 7:00:00 AK | 7:00:00 AR | 7:00:00 &M 7:00:00 &M
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DETERM I MATION OF OFTIM UM ASPHALT BINDER COMTENT

SECTION G4

SECTIONG.S

SECTION S.6

SECTION 5.7

SECTIONS.8

SECTION .3

5.4 Prepare three 1200
aggregate batches,

5.5 Heat the ageregate
batchesand the asphalt

5.6 mis the aggregate batch
ardaspralt binder inthe

57 trarsfer the misture
fromthe misirg bowd into a

5.8 rermoue the pie plate
fromthe owenand allowrit

5.3 irmert the pie plates
and inspect the bottam

irmage labuicwr

M TYFE DESIGHN # A # FIIS-CEE FIEFLATESAMPLES binder fora minimumof i g bowd pie plate AND place inan | tocool urdisturbed until it surfaces.
e hours cweniorons hour reaches room

SI65A B 1 OBC | wISUAL 1 F00:00ARM | 7:00:00 Al | 7:00:00AM [ 7:00:00AM | 7:00:00 AM | 7:00:00 AR | 7:00:00 AF1 [ 7:00:00 A 7:00:00 AR
G476 B 2 OEC | WISUAL 1 7:00:00 AM | 7:00:00 4K | 7:00:00 AR | 7:00:0040 [ 70000 AW | 7:00:00 A1 | 7:00:00 A8 [ 7:00:00 AR | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
Ns215 95424 c 3 OBC | vISUAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
96464 o 4 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
95574 E s oBC | wisuaL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW [ 7:00:00 48 [ 7:00:00 40 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
GRANITIC 91604 F 5 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
91844 G 7 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
" GAESE G250 H = OBC | wISUAL 1 F:00:00 AR | 7:00:00 AW | 7:00:00 AR | 7:00:00404 [ 7:00:00 AN | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
2 85245 [ E] OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
E aFFIA [ 10 OEC | WISUAL 1 7:00:00 A | 7:00:00 AW 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
E 91364 K 11 OBC [ WISUAL 1 7:00:00 AR | 7:00:00 AR | 7:00:00 AR | 7:00:00 404 [ #00:00 AR | 7:00:00 Al 7:00:00 A | 7:00:00 A | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
= G400 L 12 OBC [ WISUAL El 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
21384 [ 13 OBC | wIsUAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 A1 | 7:00:00 AW | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
araza 91384 1] 14 oBC | wisuAL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AM | 7:00:00 48 [ 7:00:00 20 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 &M | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
oouTIC 99694 o 1s oBC | wisuAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 &M | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
101345 [ 15 OBC | wisuAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 &M | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
59544 a 17 oBC | wisuaL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW [ 7:00:00 48 [ 7:00:00 4 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AW 7:00:00 AN
a7145 FE0EA R 13 OBC | wISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
EEEEY) B 13 OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
S165A B 1 OEC | WISUAL 1 F:00:00 AR | 7:00:00 AW | 7:00:00 AR | 7:00:00804 [ 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
G476 B 2 OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
[HERES aE42A c E] OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
95464 o 4 OBC | vISUAL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 48 [ 7:00:00 8 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
657A E s 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
GRANITIC 91604 F 5 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
91244 [ 7 oBC | wisuaL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW [ 7:00:00 48 [ 7:00:00 40 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
n GASE3 92504 H = oBC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
2 95248 [ ] OBC | wISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
g aFFIA [ 10 OEC | WISUAL 1 F:00:00 AR | 7:00:00 AW | 7:00:00 AR | 7:00:00804 [ 7:00:00 AN | 7:00:00 A 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
E 91364 K 11 OBC [ WISUAL El 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 A | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
= EETTE) L 12 OBC | wISUAL 1 F:00:00AM | 7:00:00 AR 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
91384 2] 13 OBC | wisuaL 1 7:00:00 Ar | 7:00:00 Ara | 7:00:00 Ara | 7:00:00 80 [ 700:00 AR | 7:00:00 AW [ 7:00:00 a0 | #:00:00 A | 7:00:00 Ara | 7:00:00 AR | F:00:00 A8 F:00:00 AR
grees 91334 1] 14 OBC | wIsUAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 A1 | 7:00:00 AW | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
oouTIC 99694 o 1s oBC | wisuAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 &M | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
101344 P 16 OBC | wisuAL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 48 [ Z:00:00 80 | 700:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 &M | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
53544 a 17 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AW 7:00:00 AN
87145 7o06A [ 1z oBC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
EEEEFY) B 18 OBC | wISUAL 1 F:00:00 AR | 7:00:00 AW | 7:00:00 AR | 7:00:00404 [ 7:00:00 AN | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
S165A B 1 OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
G476 B 2 OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
[HERES aE42A c E] OEC | WISUAL 1 F:00:00 AR | 7:00:00 AW | 7:00:00 AR | 7:00:00804 [ 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
GE4EA o 4 OEC | WISUAL 1 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
SE57A E s OEC | wisSuAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
GRANITIC 91604 F 5 oBC | wisuaL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW [ 7:00:00 48 [ 7:00:00 40 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
91844 G 7 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
n GASE3 92504 H = oBC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
7 95248 | 3 oBC | wisuaL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW [ 7:00:00 48 [ 7:00:00 40 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
2 a9FFIA 1 10 OEC | WISUAL 1 7:00:00 AN | 7:00:00 AW 7:00:00 A | 7:00:00 AR | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
E 91364 K 11 OBC [ WISUAL El 7:00:00AM | 7:00:00 A 7:00:00 A | 7:00:00 A | 7:00:00 AN | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
= G400 L 12 OBC [ WISUAL 1 F:00:00 AR | 7:00:00 AR | 7:00:00 AR | 7:00:00 401 [ 7:00:00 AN | 7:00:00 AW 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
9138 [ 12 OBC [ WISUAL El 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
#ras 91394 N 14 OBC [ WISUAL El 7:00:00AM | 7:00:00 AW 7:00:00 A | 7:00:00 A | 7:00:00 AW | 7:00:00 AR | 7:00:00 AR 7:00:00 AR
oouTIC 99694 o 15 OBC | wIsUAL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AM | 7:00:00 4K [ 7:00:00 AW | 7.00:00 A 7:00:00 AW | 7:00:00 A1 | 7:00:00 AW | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
101345 [ 15 OBC | wisuAL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 &M | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
53544 a 17 0EC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AW 7:00:00 AN
87145 7o06A [ 1z oBC | wisuaL 1 7:00:00 AW | 7:00:00 AW | 7:00:00 AW [ 7:00:00 48 [ 7:00:00 40 | 7.00:00 A 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 Al
EEEEL) E 135 oBC | wisuaL 1 7:00:00 AW | 7:00:00 AR 7:00:00 AW | 7:00:00 AW | 7:00:00 AN | 7:00:00 AR | 7:00:00 AW 7:00:00 AN
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APPENDIX B: TRACKING OF THE EXPERIMENTAL PROCESS
Table B1 Tracking of experimental process for granite NS315 mix designs.

(€)
(d)
(e)

FESTA



Table B2 Tracking of experimental process for granite GA553 mix designs.

(a)

(®)

(c)

(d)

(e)

[Eateh | | | | | | |
TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
M= &

INAME |53% | 58%| 63| 53% |5 8% | 6.3 | 53| 58| 6.3% |TRIAL 1|TRIAL 2|TRIAL 3
FE0A, F K x ] ¥ (] x ] L] ¥ L] L] L]
FE4A| & B 14 N b 1 X L Ll b Ll Ll Ll
F2h0al H ¥ x X # % x 3 [l i 3 3 [
Arvial J % z [ [ % E 3 i i 3 3 i
Frzeal | H z i % % £ 2 F] b % E El

Fie I | [ | | [ |
MIX TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
MNA
ME |53% |5 8% | 6.3 | 53| 58% | 6.3% | 5.3 | 5.8% | 6.3% |TRIAL 1|TRIAL 2|TRIAL 3
SEDA| F % I 3 R % x S i b i i i
FlE4A & ] T ] ] K x L ] ] o ] ]
a2e0a H K x b i ¥ X | E ¥ kS b El
Fzdnl | % z 3 # % x F 3 p 3 [ [
$7T3Al J % H % % H x 2 £l % E: b bl
Irrisge without plaster] | | | |
M TRIAL 1 TRIAL 2 THIAL DOFT GRADE
MNA |5.3% | 5.8%  6.3%| 5.3x | 5.8x | 6.3% | 5.3% | 5.8 | 6.3 [TRIAL 1|TRIAL 2| TRIAL 3
FE0A | F % - % % % X 2 £l % E: % bl
FE4a| G % I 3 % k X E 3 b 3 i 3
annal H ) z [ [ # x % [ i i [ [l
aH24A | ¥ x ] L] (] ] ] L] H L] L] L]
VAl J ¥ } ] bl ¥ ¥ x L i H kS Ll "
Flaster | | | | |
MK TRIAL 1 TRIAL 2 TRIAL OPT GRADE
MA |53 | 5B B.3%| 5.3 | 5.8x | 6,32 | 5.3 | 5.8% | E.3% |TRIAL 1|TRIAL 2|TRIAL 3
FE0E, F ] 4 o ] ¥ X L ] o | L] ]
F4al G ¥ H X p # x E [ b 3 3 [
F2h0al H % z [ [ % E 3 A % 3 3 i
Al | % z i % % £ 2 ] % % b %
arvial J % z [ [ # x [ [ # i i [l
Image with plaster | [ | | | |
L 1ES TRIAL 1 TRIAL 2 TRIAL OPT GRADE
MA |5 3% | 58| 6.3 53| 5 8% |6.3% | 53| 58| 6.3% |TRIAL 1|/TRIAL 2|TRIAL 3
gEnal F % z i [ % x % [ # i i [
FlEAA G ¥ T o ] K X o ] ] o o o
el H ] z ¥ ¥ ¥ x E i b 3 3 i
Fhasnl | % z 3 i E [ 3 3 K 3 3 3
$TT3Al J % H % % % £ 2 £l % b b bl

104



(a)

(b)

(€)

(d)

(e)

Table B3 Tracking of experimental process for oolitic 87339 mix designs.

[ Batch I [
TRIAL 1 TRIAL 2 THIAL 3 OFT GRADE
MIX & INAME | 583 | 6.3 | 6.8% | 5.8% | 6.3% | 68X | 583 | 6.3 | 6.8% | TRIAL 1| TRIAL 2 | TRIAL 3
358 Il B " K ] & H ¥ # # & k] k]
13498, ] T [l ] ] K ] K ] K [l T T
34008 L ¥ [l ¥ [ ] [ ¥ [ [ [l [ [
EER ] T i T ] x ] X ] X 1 3 !
Wiz A P T ] ] ] K ] K ] K ] | |
268 K T ¥ ¥ 4 x 3 x L] x L] L L
Fie
MK FIAL 1 THIAL RIAL 3 OFT GRADE pies |
MAME |58x | & B8 | 58x | 63x | 68x|5.8x | E.dx| 68% |TRIAL1| TRIAL 2 | TRIAL 3
FIEET) [ x [ £ A x 2 x ¥ E [ 2 1
R R ] 1 " i " - i E i i & k] ]
4004 L ] ] K ] E ] K ] K ] | |
G459 (] X ] 3 u E £ E o ¥ ] T T
'_'IJB"F- F B H E i1 ¥ H ¥ H H L} 2 3
F2EA K, T El ] ] K ] K ] K A | |
Plasier
MY THRIAL 1 TRIAL 2 THIAL 3 OFT GRADE
MAME |58 | 6 3x |68 5 8x|6ix|68x|58% |6 3x| 68 | TRIAL 1| TRIAL 2 | TRIAL 3
388 ¥l x b x 4 x ] x % % ] 3 3
FaRE Y hl 1] ] E ] E ] K ] K A | |
4004 L ] [ ] ] ] ] ] ] ¥ ¥ ¥ ¥
J4844 8] x ] x 4 z [ x i % S 3 3
| D344 F 1] ] E ] E ] E ] K ] | |
268 K ] L] ] ] E ] K ] ] L] X X
Image before plaster _ _
MK TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
MAME |58 |6.3% ) 6.85 ) 5.8 | 6.3% | 68% | 583 | B.3¥ | 6.8% | TRIAL 1| TRIAL 2 | TRIAL 3
13848 il i ] X
1388, ] [ X X
34004 L
| 34634 o ] i [ b 3 X
I A F ] | X
FIFEY K ] 2 2
Image with plaster
BALE TRIAL 1 TRIAL TRIAL 3 OPT GRADE
MAME | 5.8 | B35 | B.8% ) 5.8% ) 6.3% | B.8% ) 5.8% | B.3x | 6.8% | TRIAL 1| TRIAL 2 | TRIAL 3
3848 IVl T W 1] ] K ] K ] K ] | |
388 N T ¥ ¥ ¥ x L x L E L] L L
34008 L B " K ] i # ¥ # ® & k] k]
| 34E3A o T [l ] ] K [ K [ K l X X
R F ] [l ¥ [ ] [ ¥ [ [ [l [ ¥
FI26A K x [] £ 4 £ 1 £ i % [ 3 3
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Table B4 Tracking of experimental process for oolitic 87145 mix designs.

| Batch [ [ | ] | |
M & | TRIAL 1 _ TRIAL 2 TRIAL 3 _ OPT GRADE
INAME | 583 | 6.3% | 6.8 [ 5.8% [ 6.3 | 6.83 | 5.8 | 6.33 | 6.8 | TRIAL 1) TRIAL 2 | TRIAL 3
B3544| 0 H # i H i H # i i # % i
TOOEA| H H i b i # # i # hi i i #
39324 5 H ) ] ] Y ] ) H ¥ ) ¥ Y
Pie [ [ | [ ] | I
[ [
HAM TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
E | 5.8x 6.3 | 6.8 | 5.8 | 6.3% | 6.8 | 5.8 | 6.3 | 6.8 | TRIAL 1| TRIAL 2 | TRIAL 3
EA544 H E H H " " " H H " H H H
E|"‘$I:IE.¢I. R " H H u H " H " " ¥ H
J3328| 5 H ) ] % 3 5 % ] % % % #
Imae without plaster | | | | | | | |
Ml TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
MAM | 5.3+ | 5.8% | 6.3% [ 5.3% | 5.8 | 6.3 | 5.3% | 5.8: | 6.3 | TRIAL 1| TRIAL 2 | TRIAL 3
E3544) 0O ] ¥ H % X u ¥ S % ¥ ] o
TEOEA| H H i H K H H i H K i H H
9328 5 H ¥ X ® 3 H ¥ H I ¥ % "
[Plaste [ [ | [ | I
M TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
NAM | 5.8% 6.3 | 6.8 | 5.8 | 6.3% | 6.8 | 5.8% | 6.3 | 6.8 | TRIAL 1| TRIAL 2| TRIAL 3
E3544| O H i i u 3 H i 4 B i % 3
TEOEA, R i " H [ H [ " H " H i H
S9324) 5 H ¥ ¥ ¥ I s-e X ¥ " ¥ ¥ H
Image wihplaster | | [ | ] | |
Ml TRIAL 1 TRIAL 2 TRIAL 3 OPT GRADE
NAM | 5.3 | 5.8% | 6.3% [ 5.3% | 5.8% | 6.3% | 5.3% | 5,82 | 6.3 | TRIAL 1| TRIAL 2 | TRIAL 3
E3544) 0O H % H % H E ¥ E % ¥ ] #
TEOEA| H ] i H K H H i H K i H H
9328 5 H ¥ X u 3 H ¥ H I ¥ % "
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APPENDIX C: DETERMINATION OF OBC TEST FOR OGFC MIXTURES

April 2, 2009

Florida Method of Test
for
DETERMINING THE OPTIMUM ASPHALT BINDER CONTENT OF AN OPEN-
GRADED FRICTION COURSE MIXTURE USING THE PIE PLATE METHOD

Designation: FM 5-588

1. SCOPE
1.1 This method covers the determination of the optimum asphalt binder
content in open-graded friction course mixtures using the pie plate
method.
2. REFERENCED DOCUMENTS
2.1  Florida Department of Transportation Specifications:
Section 901
Section 902
Section 916
22 AASHTO Specification:
M 231, Weighing Devices Used in the Testing of Materials
2.3 Florida Methods of Test:

FM 5-563, Quantitative Determination of Asphalt Content from Asphait
Paving Mixtures by the Ignition Method

3. APPARATUS

3.1 Oven - An oven of sufficient size capable of maintaining the required
temperature up to 320 + 5°F (160 £ 3°C).

3.2 Balance - A balance conforming to the requirements of AASHTO M 231,
Class G2. Balances with a greater degree of accuracy may be used.

3.3 No.4 Sieve — An 8 or 12 in. diameter sieve used to break up fiber
conglomerates.

FM 5-588 1

107




April 2, 2009

34 Mixing Bowl — A “buttered” metal bowl of sufficient capacity to allow hand
mixing the aggregate, asphalt binder, and fibers.

35 Spatula - A clean spatula capable of hand mixing the aggregate, asphalt
binder, and fibers.

3.6 Pie Plate — A clear, 9 in., flat-bottomed heat resistant pie plate, in which
the mixture will be placed, to determine optimum asphalt binder content.
Pyrex brand pie plates have been found to meet these requirements.

3.7 Digital Camera — A camera with suitable resolution to photograph the
bottom of the pie plate after the mixture has cooled. The photographs will
be used to record the appearance of the bottom of the pie plate at each
asphalt binder content.

4. MATERIALS

41  Aggregates, Hydrated Lime, and Fiber Stabilizing Additive — As defined in
Section 337 of the Department’s Specifications.

4.2  Asphalt Binder — Use PG 67-22 asphalt binder as defined in Section 916
of the Department’'s Specifications to determine the optimum asphait
binder content. Use the asphalt binder type specified on the mix design to
determine the asphailt binder calibration factor in accordance with FM 5-
563.

5. DETERMINATION OF OPTIMUM ASPHALT BINDER CONTENT

5.1 Develop an aggregate blend meeting the gradation and component
requirements of Section 337 of the Department's Specifications.

52 Determine the amount of fiber material using the following calculations:
Percent Mineral Fibers = (A = 0.996) - A
Percent Cellulose Fibers = (A = 0.997) - A
Where:

A = Total weight of aggregate and binder

FM 5-588 2
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53

54

55

56

5.7

5.8

59

Break up any large conglomerates of fibers using the No. 4 sieve.

Prepare three 1200 g aggregate batches. Add the hydrated lime additive
(if required) and the fiber material into the aggregate batches. Ensure that
the fiber material is distributed evenly throughout the aggregate batch.
Place each batch in @ mixing bowl.

Heat the aggregate batches and the asphalt binder for a minimum of two
hours in an oven at 320 + 5°F (160 £ 3°C).

Using the spatula, gently mix the aggregate batch and asphalt binder in
the mixing bow! at the following three prescribed asphalt binder contents
(by weight of total mix): 5.3%, 5.8%, and 6.3% for granite aggregate or
5.8%, 6.3%, and 6.8% for limestone aggregate. Continue mixing until all
of the aggregate particles are thoroughly coated, ensuring that there are
no large conglomerates of fine particles.

Immediately after mixing, carefully transfer the mixture from the mixing
bowl into a pie plate using a method that will evenly distribute the mixture
over the entire bottom surface of the pie plate without causing
segregation. Care should be taken to ensure that the mixture is not
disturbed once it has contacted the pie plate. After placing the mixture in
the pie plate, place the pie plate on a level surface in an oven and heat for
one hour at 320 + 5°F (160 + 3°C). Repeat this step for each of the
remaining samples.

After the one hour heating period, carefully remove the pie plate from the
oven, place it on a heat resistant surface and allow it to cool undisturbed
until it reaches room temperature.

After all of the mixtures have cooled to room temperature, invert the pie
plates and inspect the bottom surfaces. Determine the optimum asphait
binder content based on the sample which displays sufficient bonding
between the mixture and the bottom of the pie plate without evidence of
excessive asphalt binder drainage (see Figures 1,2, and 3). The
optimum asphalt binder content may be one of the three trial asphalt
binder contents or may be estimated to be higher or lower than one of the
three trial asphalt binder contents. Additional samples may be prepared,
at different asphalt binder contents, if necessary.

NOTE: The optimum asphalt binder content should exhibit slight drainage of

FM 5-588
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asphalt binder at points of contact between the coated aggregate
particles and the glass plate.

FIGURE 1

FC-5 @ 5.3% asphalt binder
Insufficient bonding/drainage — asphalt binder content too low

FM 5-588 =
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FIGURE 2
FC-5 @ 5.8% asphalt binder
Sufficient bonding/drainage — optimum asphalt binder content

FM 5-588 5
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FIGURE 3
FC-5 @ 6.3% asphalt binder
Excessive bonding/drainage — asphalt binder content too high

5.10 Photograph the bottom of each pie plate for documentation.

NOTE: If PG 76-22 asphalt binder is required, the total asphalt binder content will
be the same as the original asphalt binder content determined using PG
67-22 asphalt binder. If ARB-12 asphalt rubber binder is required, the
total asphalt binder content must be increased to include the percent of
rubber by weight of optimum asphalt binder using the following
calculation:

Total ARB-12 content = PG 67-22 optimum asphalt binder content x 1.12

FM 5-588 6
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6. DETERMINATION OF ASPHALT BINDER CALIBRATION FACTOR

6.1 Prepare two 1500 g aggregate batches. Include the hydrated lime
additive (if required) and the fiber material into the aggregate batches.
Place each batch in a mixing bowl.

6.2 Heat the aggregate batches and the required asphalt binder (PG 76-22 or
ARB-12) for a minimum of two hours in an oven at 320 + 5°F (160 £ 3°C).

6.3  Using a spatula, gently mix the aggregate batch and asphalt binder in the
mixing bowl. Continue mixing until all of the aggregate particles are

thoroughly coated.
6.4 Determine the asphalt binder calibration factor in accordance with
FM 5-563.
FM 5-588 7
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APPENDIX D: GENERAL INFORMATION BY MIX
D.1  General Information of Mix A

Table D1 Aggregate and binder type for mix A.

Mix ID Mix A
Aggregate Type Granite
Quarry Location Nova Scotia

Supplier Martin Marietta
FDOT designation No. 9165A
FDOT code NS315
Binder Grade PG 67-22

Table D2 FDOT OGFC gradation specifications for mix A.

GRANITIC
NS315
FDOT mix design number
Sieve Size 9165A CONTROL
POINTS
Percent Pasing (%)
MIX
A
3/4" 19.0mm 100 100
1/2" 12.5mm 95 8| _ [100
3/8" 9.5mm 74 5| _ |75
No. 4 4.75mm 20 151 _ | 25
No. 8 2.36mm 8 5 _ 1|10
No. 16 1.18mm 6
No. 30 600um 4
No. 50 300pm 4
No. 100 150um 4
No. 200 75pm 3.40 2 _ 4
GSB 2.624
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Figure D1 Gradation curves for mix A.
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D.2 General Information of Mix B

Table D3 Aggregate and binder type for mix B.

Mix ID Mix B
Aggregate Type Granite

Quarry Location Nova Scotia
Supplier Martin Marietta
FDOT designation No. | 9476A

FDOT code NS315

Binder Grade PG 67-22

Table D4 FDOT OGFC gradation specifications for mix B.

GRANITIC
NS315
‘ ‘ FDOT mix design number CONTROL
Sieve Size 9476A
POINTS
Percent Pasing (%)
MIX
B
3/4"  19.0mm 100 100
1/2"  12.5mm 96 85| _ [100
3/8" 9.5mm 70 5| _ |75
No. 4 4.75mm 23 15 |25
No. 8 2.36mm 10 51 _110
No. 16 1.18mm 5
No. 30 600um 4
No. 50 300um 3
No. 100 150pm 3
No. 200 75um 2.50 2 _ | 4
GSB 2.677
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D.3  General Information of Mix C

Table D5 Aggregate and binder type for mix C.

Mix ID Mix C
Aggregate Type Granite

Quarry Location Nova Scotia
Supplier Martin Marietta
FDOT designation No. | 9642A

FDOT code NS315

Binder Grade PG 67-22

Table D6 FDOT OGFC gradation specifications for mix C.

GRANITIC
NS315
‘ . FDOT mix design number CONTROL
Sieve Size 9642A
POINTS
Percent Pasing (%)
MIX
C
3/4"  19.0mm 100 100
1/2"  12.5mm 96 85| _ [100
3/8" 9.5mm 71 5| _ |75
No. 4 4.75mm 15 15( | 25
No. 8 2.36mm 8 51 _ 110
No. 16 1.18mm 6
No. 30 600um 5
No. 50 300um 4
No. 100 150pm 3
No. 200 75um 2.30 2| _ | 4
GSB 2.626
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D.4  General Information of Mix D

Table D7 Aggregate and binder type for mix D.

Mix ID Mix D
Aggregate Type Granite

Quarry Location Nova Scotia
Supplier Martin Marietta
FDOT designation No. | 9646A

FDOT code NS315

Binder Grade PG 67-22

Table D8 FDOT OGFC gradation specifications for mix D.

GRANITIC
NS315
FDOT mix design number| CONTROL
Sieve Size 9646A
POINTS
Percent Pasing (%)
MIX
D
3/4" 19.0mm 100 100
172" 12.5mm 96 8 | _ |100
3/8" 9.5mm 71 551 |75
No.4 4.75mm 15 15| |25
No. 8 2.36mm 8 5| |10
No. 16 1.18mm 6
No. 30 600um 5
No. 50 300um 4
No. 100 150pum 3
No. 200  75um 2.30 2| _ | 4
GSB 2.627
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D.5 General Information of Mix E

Table D9 Aggregate and binder type for mix E.

Mix ID Mix E
Aggregate Type Granite

Quarry Location Nova Scotia
Supplier Martin Marietta
FDOT designation No. | 9657A

FDOT code NS315

Binder Grade PG 67-22

Table D10 FDOT OGFC gradation specifications for mix E.

GRANITIC
NS315
. ' FDOT mix design number CONTROL
Sieve Size 9657A
POINTS
Percent Pasing (%)
MIX
E
3/4"  19.0mm 100 100
1/2*  12.5mm 85 8 | _ [100
3/8" 9.5mm 67 5| _ |75
No. 4 4.75mm 23 151 | 25
No. 8 2.36mm 10 51 _ 110
No. 16 1.18mm 6
No. 30 600um 4
No. 50 300pm 3
No. 100 150um 3
No. 200 75um 2.50 2 _ | 4
GSB 2.630

122



Percent Passing

-
o
o

©
[=]

@
(=]

-~
o

Q)
(=}

50

40

30

20

10

7

Sieve size

Figure D5 Gradation curves for mix E.
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D.6  General Information of Mix F

Table D11 Aggregate and binder type for mix F.

Mix ID Mix F
Aggregate Type Granite
Quarry Location Georgia
Supplier Junction City
FDOT designation No. | 9160A

FDOT code GA553
Binder Grade PG 67-22

Table D12 FDOT OGFC gradation specifications for mix F.

GRANITIC
GAS553
FDOT mix desigh number CONTROL
Sieve Size 9160A
POINTS
Percent Pasing (%)
MIX
F
3/4" 19.0mm 100 100
172" 12.5mm 100 85| _ |100
3/8" 9.5mm 74 55| _ |75
No.4 4.75mm 23 15| _ | 25
No. 8 2.36mm 9 5| _1]10
No. 16 1.18mm 6
No. 30 600um 4
No. 50 300um 3
No. 100 150pum 3
No. 200 75um 2.70 2| _ | 4
GSB 2.767
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D.7  General Information of Mix G

Table D13 Aggregate and binder type for mix G.

Mix ID Mix G
Aggregate Type Granite
Quarry Location Georgia
Supplier Junction City
FDOT designation No. | 9184A

FDOT code GA553
Binder Grade PG 67-22

Table D14 FDOT OGFC gradation specifications for mix G.

GRANITIC
GA553
‘ . FDOT mix design number CONTROL
Sieve Size 9184A
POINTS
Percent Pasing (%)
MIX
G
3/4"  19.0mm 100 100
1/2" 12.5mm 97 8 | _ (100
3/8" 9.5mm 75 5| _ |75
No. 4 4.75mm 23 15( | 25
No. 8 2.36mm 9 5| _ 110
No. 16 1.18mm 6
No. 30 600um 5
No. 50 300um 5
No. 100 150um 4
No. 200 75um 2.50 2 _ | 4
GSB 2.769
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D.8 General Information of Mix H

Table D15 Aggregate and binder type for mix H.

Mix ID Mix H
Aggregate Type Granite
Quarry Location Georgia
Supplier Junction City
FDOT designation No. | 9250A

FDOT code GA553
Binder Grade PG 67-22

Table D16 FDOT OGFC gradation specifications for mix H.

GRANITIC
GA553
‘ . FDOT mix design number CONTROL
Sieve Size 9250A
POINTS
Percent Pasing (%)
MIX
H
3/4"  19.0mm 100 100
1/2"  12.5mm 94 85| _ [100
3/8" 9.5mm 68 5| _ |75
No. 4 4.75mm 19 15| _ [ 25
No. 8 2.36mm 8 5| _ 110
No. 16 1.18mm 6
No. 30 600um 4
No. 50 300um 3
No. 100 150pm 3
No. 200 75um 2.40 2 _ | 4
GSB 2.766
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D.9 General Information of Mix |

Table D17 Aggregate and binder type for mix 1.

Mix ID Mix |
Aggregate Type Granite
Quarry Location Georgia
Supplier Junction City
FDOT designation No. | 9824A

FDOT code GA553
Binder Grade PG 67-22

Table D18 FDOT OGFC gradation specifications for mix I.

GRANITIC
GA553
FDOT mix design number CONTROL
Sieve Size 9824A
POINTS
Percent Pasing (%)
MIX
|
3/4" 19.0mm 100 100
172" 12.5mm 97 85| _ |100
3/8" 9.5mm 66 55| |75
No.4 4.75mm 20 15| | 25
No. 8 2.36mm 9 5| |10
No. 16 1.18mm 7
No. 30 600um 4
No. 50 300um 3
No. 100 150pum 3
No. 200 75um 2.90 2| _ | 4
GSB 2.768
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D.10 General Information of Mix J

Table D19 Aggregate and binder type for mix J.

Mix ID Mix J
Aggregate Type Granite
Quarry Location Georgia
Supplier Junction City
FDOT designation No. | 9773A

FDOT code GA553
Binder Grade PG 67-22

Table D20 FDOT OGFC gradation specifications for mix J.

GRANITIC
GA553
. ' FDOT mix design number CONTROL
Sieve Size 9773A
POINTS
Percent Pasing (%)
MIX
J
3/4"  19.0mm 100 100
1/2*  12.5mm 96 8 | _ [100
3/8" 9.5mm 67 5| _ |75
No. 4 4.75mm 23 151 | 25
No. 8 2.36mm 9 51 _ 110
No. 16 1.18mm 5
No. 30 600um 4
No. 50 300pm 3
No. 100 150um 3
No. 200 75um 2.60 2 _ | 4
GSB 2.769
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D.11 General Information of Mix K

Table D21 Aggregate and binder type for mix K.

Mix ID Mix K
Aggregate Type Oolite
Quarry Location Miami/Dade
Supplier White Rock
FDOT designation No. | 9126A
FDOT code 87339
Binder Grade PG 67-22

Table D22 FDOT OGFC gradation specifications for mix K.

OOLITIC
87339
FDOT mix desigh number CONTROL
Sieve Size 9126A
POINTS
Percent Pasing (%)
MIX
K
3/4" 19.0mm 100 100
172" 12.5mm 88 85| _ |100
3/8" 9.5mm 64 55| |75
No.4 4.75mm 20 15| | 25
No. 8 2.36mm 6 5| |10
No. 16 1.18mm 3
No. 30 600um 2
No. 50 300um 2
No. 100 150pum 2
No. 200 75um 2.00 2| _ | 4
GSB 2.415
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D.12 General Information of Mix L

Table D23 Aggregate and binder type for mix L.

Mix ID Mix L
Aggregate Type Oolite
Quarry Location Miami/Dade
Supplier White Rock
FDOT designation No. | 9400A
FDOT code 87339
Binder Grade PG 67-22

Table D24 FDOT OGFC gradation specifications for mix L.

OOLITIC
87339
‘ ' FDOT mix design number CONTROL
Sieve Size 9400A
POINTS
Percent Pasing (%)
MIX
L
3/4"  19.0mm 100 100
/2" 12.5mm 92 8 | _ [100
3/8" 9.5mm 69 5| _ |75
No. 4 4.75mm 24 15 |25
No. 8 2.36mm 8 51 _110
No. 16 1.18mm 6
No. 30 600um 5
No. 50 300um 4
No. 100 150um 3
No. 200 75um 2.60 2 _ | 4
GSB 2.415
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D.13 General Information of Mix M

Table D25 Aggregate and binder type for mix M.

Mix ID Mix M
Aggregate Type Oolite
Quarry Location Miami/Dade
Supplier White Rock
FDOT designation No. | 9138A
FDOT code 87339
Binder Grade PG 67-22

Table D26 FDOT OGFC gradation specifications for mix M.

QOLITIC
87339
FDOT mix design number CONTROL
Sieve Size 9138A
POINTS
Percent Pasing (%)
MIX
M
3/4" 19.0mm 100 100
172" 12.5mm 86 85| _ |100
3/8" 9.5mm 68 55| _ |75
No.4 4.75mm 24 15| _ | 25
No. 8 2.36mm 10 5| _1]10
No. 16 1.18mm 7
No. 30 600um 6
No. 50 300um 5
No. 100 150pum 4
No. 200 75um 2.50 2| _ | 4
GSB 2.409
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D.14 General Information of Mix N

Table D27 Aggregate and binder type for mix N.

Mix ID Mix N
Aggregate Type Oolite
Quarry Location Miami/Dade
Supplier White Rock
FDOT designation No. | 9139A
FDOT code 87339
Binder Grade PG 67-22

Table D28 FDOT OGFC gradation specifications for mix N.

OOLITIC
87339
' ‘ FDOT mix design number CONTROL
Sieve Size 9139A
POINTS
Percent Pasing (%)
MIX
N
3/4" 19.0mm 100 100
1/2" 12.5mm 87 8 | _ (100
3/8" 9.5mm 66 5| _ |75
No. 4 4.75mm 25 15( | 25
No. 8 2.36mm 10 5| _ 110
No. 16 1.18mm 7
No. 30 600um 5
No. 50 300um 4
No. 100 150um 3
No. 200 75um 3.00 2 _ | 4
GSB 2.410
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D.15 General Information of Mix O

Table D29 Aggregate and binder type for mix O.

Mix ID Mix O
Aggregate Type Oolite
Quarry Location Miami/Dade
Supplier White Rock
FDOT designation No. | 9469A
FDOT code 87339
Binder Grade PG 67-22

Table D30 FDOT OGFC gradation specifications for mix O.

QOLTIC
87339
FDOT mix design number CONTROL
Sieve Size 9469A
POINTS
Percent Pasing (%)
MIX
0]
3/4" 19.0mm 100 100
172" 12.5mm 92 85| _ |100
3/8" 9.5mm 71 55| _ |75
No.4 4.75mm 25 15| _ | 25
No. 8 2.36mm 10 5| _1]10
No. 16 1.18mm 8
No. 30 600um 6
No. 50 300um 5
No. 100 150pum 3
No. 200 75um 2.30 2| _ | 4
GSB 2.416
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D.16 General Information of Mix P

Table D31 Aggregate and binder type for mix P.

Mix ID Mix P
Aggregate Type Oolite
Quarry Location Miami/Dade
Supplier White Rock
FDOT designation No. | 10134A
FDOT code 87339
Binder Grade PG 67-22

Table D32 FDOT OGFC gradation specifications for mix P.

OOLITIC
87339
' ‘ FDOT mix design number CONTROL
Sieve Size 10134A
POINTS
Percent Pasing (%)
MIX
P
3/4" 19.0mm 100 100
1/2" 12.5mm 90 85| _ |100
3/8" 9.5mm 70 5| _ |75
No. 4 4.75mm 23 15( | 25
No. 8 2.36mm 7 51 _ 110
No. 16 1.18mm 3
No. 30 600um 3
No. 50 300um 2
No. 100 150um 2
No. 200 75um 2.00 2| _ | 4
GSB 2.409
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Figure D16 Gradation curves for mix P.
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D.17 General Information of Mix Q

Table D33 Aggregate and binder type for mix Q.

Mix ID Mix Q
Aggregate Type Oolite

Quarry Location Miami/Dade
Supplier Titan America
FDOT designation No. | 6954A

FDOT code 87145

Binder Grade PG 67-22

Table D34 FDOT OGFC gradation specifications for mix Q.

OOLITIC
87145
FDOT mix design number CONTROL
Sieve Size 6954A
POINTS
Percent Pasing (%)
MIX
Q
3/4" 19.0mm 100 100
172" 12.5mm 86 85| _ |100
3/8" 9.5mm 64 55| |75
No.4 4.75mm 18 15| | 25
No. 8 2.36mm 7 5| |10
No. 16 1.18mm 5
No. 30 600um 4
No. 50 300um 3
No. 100 150pum 2
No. 200 75um 2.00 2| _ | 4
GSB 2.388
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D.18 General Information of Mix R

Table D35 Aggregate and binder type for mix R.

Mix ID Mix R
Aggregate Type Oolite

Quarry Location Miami/Dade
Supplier Titan America
FDOT designation No. | 7806A

FDOT code 87145

Binder Grade PG 67-22

Table D36 FDOT OGFC gradation specifications for mix R.

OOLITIC
87145
FDOT mix design number]
Sieve Size 7806A CONTROL
POINTS
Percent Pasing (%)
MIX
R
3/4"  19.0mm 100 100
1/2"  12.5mm 91 85| _ [100
3/8" 9.5mm 68 5| _ |75
No. 4 4.75mm 20 151 _ |25
No. 8 2.36mm 8 5 _ 110
No. 16 1.18mm 6
No. 30 600um 5
No. 50 300um 4
No. 100 150um 3
No. 200  75um 2.60 2| _| 4
GSB 2.354
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D.19 General Information of Mix S

Table D37 Aggregate and binder type for mix S.

Mix ID Mix S
Aggregate Type Oolite

Quarry Location Miami/Dade
Supplier Titan America
FDOT designation No. | 9932A

FDOT code 87145

Binder Grade PG 67-22

Table D38 FDOT OGFC gradation specifications for mix S.

OOLITIC
87145
FDOT mix design number| CONTROL
Sieve Size 9932A
POINTS
Percent Pasing (%)
MIX
S
3/4" 19.0mm 100 100
172" 12.5mm 89 8 | _ |100
3/8" 9.5mm 66 551 |75
No.4 4.75mm 25 15| |25
No. 8 2.36mm 10 5| |10
No. 16 1.18mm 7
No. 30 600um 5
No. 50 300um 4
No. 100 150pum 2
No. 200  75um 2.00 2| _ | 4
GSB 2.355
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APPENDIX E: COMPARISON OF LABVIEW AND MATLAB RESULTS
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Figure E1 Labview versus Matlab digital image results -mix A.
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Figure E2 Labview versus Matlab digital image results -mix B.
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Figure E3 Labview versus Matlab digital image results -mix C.
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Figure E4 Labview versus Matlab digital image results -mix D.
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Figure E5 Labview versus Matlab digital image results -mix E.
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Figure E6 Labview versus Matlab digital image results -mix F.
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Figure E7 Labview versus Matlab digital image results -mix G.
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Figure E8 Labview versus Matlab digital image results -mix H.
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Figure E9 Labview versus Matlab digital image results -mix I.

160




Pie AC(%) | PBA (%)
GRANITE GAS553: LABVIEW | MIATLAB GRANITE GAS53: MIX ) {97734)
MIX J (9772A)
Tl J OPT. M J OPT | MK JOPTA TRIALS AND OPT. OBC (%)
57 2aids] 31 45.243 45.1 2 s
57| 29148 130, 44.803 446
57| 29148 139, 47.921 480
LABYIEW WIATLAB @ i
Tl J OF T2 M OPT.2 | MIKJOPT.2
57| waldn| Talen| 45.235 45.1043 & LaBIEW IX IOPT.2
57 29148 130.43 44.769 44 6456 &2 ) & A LABVIEW MIX I OPTL
57| zat4s| 104z 48176 48.0609 . L BB 1% I TRIALL 1
LABVIEW MATLABR F s s @ LABVIEW MIXITRIALL 2
Tl J TRIAL 11 Pl J TRIAL 11 | MK J TRIAL = P B LABYIEW WX I TRIAL 2.1
5.3 zal4s| 1066 37.363 37.8239 a o
55| zdi4g| 16767 54.053 53,9314 = . a % = LABWIEW ML ITRIAL 2.2
6.3 29148 159.26 54.638 5456177 = L " o~ LABWIEW MIXITRIAL 5.1
1) ]
LABWIEWY MATLAB = - N E 4 LaBVIEW MIXITRIALS.2
MlH J TRIAL 1.2 MIF J TRIAL 1.2 | WIS J TRISLZ g™ P B[ MATLAE MIXJOPTL
5.3 29laB| 1057 37933 37.8069 = =
T 53.929 53.7955 & I rMATEMBIORT2
6.3 29148 1m8M 54,346 542267 = a7 ‘ e 2 CIMATLAE MIXITRIALLL
LARYIEW WMATLAR TMATLAE MIXJTRIALL.Z
Ml J TRIAL 2. Ml J TRIAL 2.1 | WIS J TRISL 2.1 20 0 MATLAE M X I TRIAL 2.1
g' g - g ;;; 5228? 550253503321 m MATLAE M IX ITRIAL 2.2
6. a148] 1696 58,26 56,1433 2 21 MATLAR MK ITRIAL 3.1
LABYIEW MATLAR i MATLAE WX JTRIAL 3.2
Ml J TRIAL 2. Pl TRIAL 2.2 | MIX J TRIAL 2.2
53] 29148] 1861 50.9 50,5411 g0 T T T g0
5. 9148 163.88 527 52 6627 b 2 i &3 e
6.3 29148 170 68.3 632010 PIE AL %
LABVIEW WATLAR
Ml J TRIAL 3.1 Pl J TRIAL 3.1 | MK J TRIAL 3.1
5.3 o148 97.641 33.498 33.3707
55| ralds| 130.85| 44.89 44.7627
6.3 29148 187.36 £4.279 E4.1631
LABWIEW WIATLAB
MM J TRIAL 3.2 Pl J TRIAL 3.2 | MIX J TRIAL 3.2 r
5.3 29148 87689 3348 333475 g T
5.8 29148 130.58 443 44.681 L
63| 2stss| tgrev G424z E41427 5.3_original

X

A3 o

5.8_processed

-

5.8_original

-
5.8_corrected 5.8_original

ML< ) TRIAL 11

6.3_original 6.3_processed

-

6.3_corrected 6.3_original

Figure E10 Labview versus Matlab digital image results -mix J.

161



Pie AC{%]) | PBA[%)
OOLITE 87339: MIX K VIEW MAT OOLITE B7339: MIX K {(91264)
(9126A) LAE LAB
Tl K OF T MR OF T | MR K OFTd TRIALS AMD OPT. OBC (%)
58] zoi4s| g=ste 31844 7288 e w3
55 zoide| 11495 39435 39,3075
55 zoid8] 07 SEEOT 364752
LAPVIEW MATLAR @ i
Tl K OFT.2 MK OFT.2  [MEKEOFTZ :
3 4+ 3
54| zaids| 52446 1716 FEL e LABVIEWM MIX EEPT 2
5 FEIEE] ) 39363 39,2309 s &2 A LSBT EWY R KOFTL
55 eot4s| toris 56755 366279 Loy BT EVAF R K TRIALL
LABVIEW MATLABE - . so @ LABVIEW MIX KTRIALL.Z
Tl K TRIAL 1 P K TEIAL 11 | Fl K TRISL 1 = - B LABVIEW MIX KTRIALZ.1
58] zoi4g| fBwos 455954 465126 a =1
6.3 29148 WE6T 51.005 50,5734 e s Z TLABVIEW MIXKTRIALZZ
68 zo1d8] MeTe 51.041 50.52 = o LABVIEWS MIX KTRIAL 3.1
=
LABVIEWW MATLAE S ) £ S LABVIEW MIXKTRIAL 3.2
Tl K TRIAL L PR K TRIAL 1.2 | M K TRIAL 1.2 g > M CMATLAE MIX KGPT.
58] zodg| 1s4dz 46014 45,5652 = 2
53] 29148 1574 5103 50.9013 ] T I MATHAEMEKORT2
G5 20148 4863 51,008 B0, SHET — as a3 CIMATLAE MK K TRIALL.
LABVIEW MATLAER MATLAE MIX KTRIALL.2
Tl K TRIAL 2. PR K TRIAL 2.1 | I K TRIAL 24 . E a RAATLAE RIX K TRIAL 2.1
58] zoi4s| firie 40189 40,0505
63| 2o148| 15Eed 52711 525922 L MATLAB MK KTRLAL 2.2
6.3 2m4s] 19557 £7.095 EE.9753 2n 23 FAATLAR R X KTRIAL 3.1
LAPVIEW MATLAR TAATLAE MIX K TRIAL 3.2
Tl K TRIAL 2.2 PR K TRIAL 2.2 | M K TRIAL 22 &
58] zaidg] 1ivez 40351 402119 =0 T T T 20
B3] 29148| 15Eed 52711 Z5az2 e 2 e 52 e
65| za148| 19581 BF.212 R PIEAC %
LABVIEW MATLAB
Tl K TRIAL 5. PR K TRIAL 5.0 | I K TRIAL 34
58] zsi4g| fEIE F9.54 F9.712
63| zo1dg|  MEdl 50125 439,955
6.8 zo148] Trees 53623 59508
LABVIEW MATLAR
Tl K TRIAL 3.2 PR K TRIAL 3.2 | M K TRIAL 3.2
5a] 2a4s[ 1esE 40,127 39,9382 [ T | I
B3] 2o148| MEOS 50118 49,5552 - -
6.8 zal48| 17579 Fa.623 3508 5.8_original 5.8_original

) 4

[ [
6.3_original 6.3_ariginal
MWD K TRIAL 1.1
O — Do o—
6.8_corrected 6.8_original 6.8_processed 6.8_corrected 6.8_ariginal 6.8_processed

Figure E11 Labview versus Matlab digital image results -mix K.
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Figure E12 Labview versus Matlab digital image results -mix L.
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Figure E13 Labview versus Matlab digital image results -mix M.
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Figure E14 Labview versus Matlab digital image results -mix N.
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Figure E15 Labview versus Matlab digital image results -mix O.
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Figure E16 Labview versus Matlab digital image results -mix P.

167




Pie ACI%) | PRA[S
OOLITE 27145: MIX Q ) ) OOLITE 87145: MIX Q (6954A)
(69548 LABVIEW MATLAE

Tl & OF T3 TR @ OPT] | MR G OPT.1 TRIALS AND OPT. OBC (3)
67| eatas| Ts2s 40,561 40,4321 a1 )
63| ealas| 168 40.07 33.3451
67| ealas| 10956 37586 374676 *

LABVIEWA MATLAE a1 e

MK QOPT.2 MK QOPT.2 MK QOPT.2 & LABVIEW WX 0 OFT.2
67| ealas| 1835 40502 40.4563 . M
63| zatas| 1671 40.04 39,9184 w & LABVIEW MIXCLORTL
67| eatas| 10963 37.603 37.4345] LABWIEWS MIX 0 TRIALL A

LABVIEW MATLAE = o @ LABVIEWY MIXG TRIALL 2

T O TRIAL 11 Tl @ TRISL 1.1 | % & TRIAL 11 & E + LABVIEW MIXE TRISL 21
53] ealas| 77.00% 26.521 264033 g o
63| ealas| 95277 32687 325685 = Py LABVIEMA MIXQ TRIAL 2.2
63| ealas| 122z 32,618 42,4544 3 . & LAEVIEW MIXG TRIAL S

LABMIEWF MATLAE = E 4 LABWIEW MIXQ TRIALS.2

Tl O TRIAL 1. Tl @ TRIBL 1.2 | 1% & TRIAL 12 = ¥ O WMATLAE MIXEOPTL

o =
;;- g 2 25§3 :32;;2119; E 2 B < MATLAEMIXEOPT2
511 12505 35 4505| = 33T WMATLAB MIX O TRIALL A
MATLAE MIXO TRIALL.Z
LABVIEW | MATLAB e -

Tl O TRIAL 2.1 1Al @ TRISL 21| 1A G TRIAL 2.1 ) ¥ o PAATLAE MIX 0 TRIAL 21
53] ealas| 7627 26117 26,0046 IMATLAE MIX G TRIAL 2.2
63| 2olan| 86.451| 23,653 23,551 ¥
65 zaid4s| 1w 33245 381321 = 22 MATLAE MIXOTRIAL 31

LABVIEW MATLAE “ MATLAE MIXO TRIAL 3.2

T O TRIAL 2.2 Tl @ TRISL 2.2] M G TRIAL 2.2 - oy o
53] eolas| 76242 26.157 26.043 i i
53] 25148 feslE 25,651 235706 2 &e & e
63| eatss| ms23 39.187 39.0736 PIE AC 3%

LABVIEWA MATLAE
Tl O TRIAL 3.1 1Al @ TRISL 31| T & TRIAL 3.
53] eolas| 85818 2344 23,3135
63| ealas| a0.251| 30.96 30,5555
63| eatss| el 40.384 40,2572
LABVIEWA MATLAE
Tl O TRIAL 3.2 Tl @ TRIGL 3.2 1% G TRIAL 5.2
26,243 73,452 233273 e
0101 30.91 30.810 -
747 403 40176 3.8_original
6.3_original

ML Q TRIAL 1.1

6.8_corrected 6.8_original 6.8_processed 6.8 _corrected 6.8_original 6.8 _processed

Figure E17 Labview versus Matlab digital image results -mix Q.
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Figure E18 Labview versus Matlab digital image results -mix R.
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Figure E19 Labview versus Matlab digital image results -mix S.
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APPENDIX F: RESULTS OF ASPHALT CONTENT CORRELATIONS
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Figure F2 Mix A %connected black area versus %binder contents.
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Figure F4 Mix B %connected black area versus %binder contents.
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Figure F6 Mix C %connected black area versus %binder contents.
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Figure F7 Mix D %black area versus %obinder contents.
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Figure F8 Mix D %connected black area versus %binder contents.
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Figure F9 Mix E %black area versus %binder contents.
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Figure F10 Mix E %connected black area versus %obinder contents.
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Figure F11 Mixtures NS315 %black area versus %binder contents.
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Figure F12 Mixtures NS315 %connected black area versus %obinder contents.
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Figure F13 Mix F %black area versus %binder contents.
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Figure F14 Mix F %connected black area versus %binder contents.
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Figure F16 Mix G %connected black area versus %obinder contents.
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Figure F17 Mix H %black area versus %binder contents.
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Figure F18 Mix H %connected black area versus %binder contents.
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Figure F19 Mix | %black area versus %obinder contents.
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Figure F23 Mixtures GA553 %black area versus %binder contents.
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Figure F28 Mix L %connected black area versus %binder contents.
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Figure F34 Mix O %connected black area versus %binder contents.
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Figure F36 Mix P %connected black area versus %binder contents.
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Figure F38 Mixtures 87399 %connected black area versus %obinder contents.
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Figure F40 Mix Q %connected black area versus %binder contents.
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Figure F42 Mix R %connected black area versus %binder contents.
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Figure F45 Mixtures 87145 %black area versus %binder contents.
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APPENDIX G: GRNN PREDICTION MODEL TABLES

Table G1 Data base for the granitic and oolitic materials using GRNN model.
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Table G1 (Continued)
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Table G2 Training, testing and predicting data base for the granitic and oolitic materials using GRNN model.

Train-Test Report for Net Trained on Data Set #1

Train-Test Report for Net Trained on Data Set #1

Prediction Report: "Net Trained on Data Set #1

Estimated
Binder Tag Used Prediction Good/Bad Residual Tag Used Prediction  Good/Bad Residual Tag Used Prediction
5.40 test 5.56{Good -0.16|train predict 5.60]
5.50 test 5.55{Good -0.05|[train predict 5.60)
5.70 train test 5.41i{Good 0.29|[predict 5.70
5.40 train train predict 5.70
5.70 train train predict 5.70
5.50 train train predict 5.50
5.10 test 5.10!Good 0.00fftrain predict 5.10
5.10 train train predict 5.10
5.20 train test 5.20{Good 0.00|[predict 5.20
5.20 train train predict 5.20
5.70 test 5.60{Good 0.10ftrain predict 5.70
5.70 test 5.60i{Good 0.10fftrain predict 5.70
5.20 train test 5.21i{Good -0.01fpredict 5.20
5.20 train train predict 5.20
5.20 train train predict 5.20
5.20 train train predict 5.20
5.60 train train predict 5.61]
5.60 train test 5.60i{Good 0.00fpredict 5.60
5.20 test 5.20!Good 0.00fftrain predict 5.20
5.20 train train predict 5.20]
5.30 train train predict 5.30
5.30 train train predict 5.30
5.40 test 5.40{Good 0.00(test 5.39{Good 0.01f|predict 5.40
5.40 train train predict 5.40
5.50 train train predict 5.50
5.50 test 5.53{Good -0.03(train predict 5.50
5.60 train train predict 5.60]
5.60 train train predict 5.60
5.60 train test 5.60{Good 0.00fpredict 5.60
5.60 train test 5.67{Good -0.07||predict 5.60
5.30 train test 5.30i{Good 0.00|[predict 5.30
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5.30
5.30
5.50
5.50
5.70
5.70
5.50
5.50
5.50
5.50
5.50
5.50
5.70
5.70
5.70
5.70
5.80
5.80
5.30
5.30
5.40
5.40
5.60
5.60
5.70
5.70
5.70
5.70
5.70
5.70
5.80
5.80
5.08
5.80
5.90

Train-Test Report for Net Trained on Data Set #1

Table G2 (Continued)

Train-Test Report for Net Trained on Data Set #1

Prediction Report: "Net Trained on Data Set #1

Tag Used Prediction Good/Bad Residual Tag Used Prediction  Good/Bad Residual Tag Used Prediction

train test 5.30{Good 0.00fpredict 5.30
train train predict 5.30
train train predict 5.50]
train train predict 5.50
train train predict 5.70]
train test 5.70{Good 0.00fpredict 5.70
train train predict 5.50
train train predict 5.50]
train train predict 5.50]
train train predict 5.50
test 5.51{Good -0.01fftrain predict 5.50]
train train predict 5.50
train train predict 5.70]
train train predict 5.70
train test 5.80{Good -0.10fpredict 5.70
train test 5.80{Good -0.10||predict 5.70
train train predict 5.80
train train predict 5.80
train train predict 5.30
train train predict 5.30
train test 5.40{Good 0.00fpredict 5.40
train train predict 5.40
test 5.59{Good 0.01fltrain predict 5.60
train train predict 5.60)
train train predict 5.70]
train train predict 5.70
train train predict 5.70
test 5.70{Good 0.00(|train predict 5.70
train train predict 5.70]
train train predict 5.70
train train predict 5.80
test 5.80!Good 0.00[train predict 5.80
train train predict 5.27|
train test 5.08{Good 0.72fpredict 5.61]
train train predict 5.90
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7.00
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Table G2 (Continued)

Train-Test Report for Net Trained on Data Set #1

Train-Test Report for Net Trained on Data Set #1

Prediction Report: "Net Trained on Data Set #1

Tag Used Prediction Good/Bad Residual Tag Used Prediction  Good/Bad Residual Tag Used Prediction

train test 5.90{Good 0.00[predict 5.90
train train predict 5.80
train train predict 5.80
train test 5.99i{Good 0.01ffpredict 6.00
train train predict 6.00
train train predict 6.10
train train predict 6.10]
train train predict 5.60)
train train predict 5.60)
train train predict 5.70
train train predict 5.70]
test 5.80{Good 0.00fftrain predict 5.80]
train test 5.80{Good 0.00[predict 5.80
train test 6.00{Good 0.00fpredict 6.00]
train train predict 6.00
test 5.54:Good 0.56ftrain predict 6.09
test 5.56!Good 0.54(train predict 6.09
train train predict 6.00]
train train predict 6.00]
train train predict 5.80
train train predict 5.80
train test 5.80{Good 0.10|fpredict 5.86)
train train predict 5.84
test 5.91:Good -0.11fftrain predict 5.82
train train predict 5.88|
train test 5.80{Good 0.00|[predict 5.81
train train predict 5.82
train train predict 6.10]
test 6.00;{Good 0.10ftrain predict 6.10]
test 6.01:Good 0.09(|train predict 6.00]
test 6.08{Good -0.08|ftest 6.10{Good -0.10||predict 6.00]
train train predict 6.70
train train predict 6.70
train train predict 6.59
train train predict 6.59
train train predict 6.70]
train train predict 6.70
test 6.62{Good 0.08|ftrain predict 6.75
test 6.21{Good 0.69(|train predict 6.85]
train train predict 7.00
train test 6.99{Good 0.01f|predict 7.00]
test 6.70{Good 0.20(/test 6.70{Good 0.20[predict 6.84]
train train predict 6.74
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Chapter 1: Getting Started

Introduction

The purpose of this guide 1s to illustrate the steps required in using the automated software package
developed by the University of South Florida to predict the optimum binder content (OBC) of open
graded friction course (OGFC) mixtures. The software package has been created using Matlab and

NeuralTools. The general steps of the software package are shown in the following Figure C-1.
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Figure C-1 Steps of the automatic OBC prediction of OGFC mixture software.

MATLAB was used to development an algorithm that measures and analyzes the digital

images of the samples and acquire the human perception metrics considered to predict the OBC of

a set of samples. The MATLAB algonithm can be run on your digital data, the charts from your

analyses are created i MATLAB and the results report 1t 1s send automatically to a Microsoft

Excel file.
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NeuralTools was used to development of a general regression neural network (GRNN) to
uncover the nonlinear correlation between the selected parameters of pie plate mmages. the
corresponding asphalt binder contents and the visually esttimated OBC. NeuralTools provides you
with powerful neural network capabilities 1n an environment that you are familiar with - Microsoft
Excel NeuralTools procedures - such as defining data sets, tramning and testing neural networks
and predicting values using trained networks- can be run on your data in Excel and the reports and

charts from vour analyses are created in Excel.

Checking your NeuralTools package

Your NeuralTools package should contain:

The NeuralTools or DecisionTools Suite CD-ROM including:
* NeuralTools Program

* NeuralTools Tutorial

+ The NeuralTools Users Guide in PDF format

The NeuralTools Licensing Agreement

If your package 1s not complete, please call vour NeuralTools dealer or supplier or contact

Palisade Corporation directly at (607) 277-8000.

NeuralTools Svstem reqguirements
System requirements for NeuralTools 5.0 for Microsoft Excel for Windows include:
+ Microsoft Windows 2000 SP4, Windows XP or higher.

+ Microsaoft Excel 2000 or higher.
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NeuralTools Installation and Activation Instructions
Download DecisionTools Suite 6.3 Industrial Student Edition:

http://download.palisade.com/D6/631/DTS63-Setup.exe (Figure C-2)

§ Palisade License Activation

| ~Product
@RISK Industrial For Excel parchoss |
Serial Number: _—_J

Ratus:  Trial, 17 days remaining : |

Actroake Software
ActhvabonTD  [{3ap<7ct-15eF-1be0-4d7F <l ©_Aulonaic via ntenet |
Manual via Email
Deactivate Software

Fuffment D A

Figure C-2 Palisade license Activation.

Product ID: 1400-I-6004-EN
Serial Number: 6070370

Activation ID: DNE-6070370-C16D6B-ACB
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Chapter 2: MATLAB

Data Sets and Data Set Manager

1. From the FDOT /abview software you will get the following in a file (Figure C-3):

Figure C-3 Output files from FDOT Labview software.

2. Rename file and images with the following name convention:
EXAMPLE
a. File name : MIX name TRIAL number MIX ATRIAL1.1
b. For each Image name: AC%_original jpg 5.3 _omnginal jpg
c. For each Image name: AC%_corrected jpg 5.3_corrected.jpg
d. For each Image name: AC%_processed jpg 5.3_processed.jpg

3 Open Matlab file: NN.m

4. Write the following:
a. name of the mixture A
b. trial number 1.1
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c. percent AC 53

3. Run the software
7 Esitor - ClsersimejiacdelDesktopthmmiNN
PUBLEH
{Eﬁ%@mm msert B fx b v g
e s 1_.';.(‘.1111&(&' &llﬂﬂj:_"g_“ﬁm; GTa v -
L | murtaﬂd I“Fﬂlv| - .

EMT NANGATE | BREAKFOINTS RN _

FILE
B
1 % function [x]=NN(mix, trial, percent,locl,loc2,xlloc) % comment this line
2 § to run one (run mult run first)
3 % clear all; close all; clc;
| % % CODE FOR TRIALS
5— |mix = "a';
f— |trial =1.1; [ | steps

17— |percent = 5.3;

6. cel ﬁle:@er.x]sx e parameters will be written automatically from Matlab in a
tab call DAT. e

ortant data to master excel

file = ¥lsread(xlloc):
nextRow = num2shy(size(file,1)+3);
nextcell = streatN'a', nextRow) ;

" othemim T TE UTRIALY, {0 Thtrdal, 0 ) [ T e

img = streat ('MIX',

percent, ' %');
data entry = [img,percept, PBF, PBPC,n, ORIENTATION, Areacomp, PERIMETER, ...
1ty angular, INCONSISTENCY, CENTROIDS, FORMFACTOR, ...

RICITY];

uniformity radial,unifor
COMPACTENESS, SOLIDITY, ECC

zlswrite(xlloc,data entry nextRow) ;
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Chapter 3: NeuralTools

Data Sets and Data Set Manager
7. Open the excel file: master

8. Open tab NeuralTools

WES ¢ DwEd:
_ HONE INSERT PAGE LAYOUT FORMULAS DATA REVIEW 'li’h Migix; De Pesria, Yolleth * n o
> ,‘.:E £ Utitien
Duta Set En Test M«I! i
Mansges
oun | eminat o
a. First you must define a data set using the Data Set Manager.
FILE HOME INSERT PAGE LAYOUT
> PN >3 A Utilities~
=te 3= @ Help~
Train  Test Predict
Neural Nets Help

T Senne:

Click on the Data Set Manager icon.

The data is on a specific mixture set of
3 pie plates

I Data Set For Predctonl I

Neme

Excel Range [paTala2:a03

W Apply Cel Formatting

5] Muifile. .. |

47 varisbles, 1 Data Cels Per Vanable

~Vanables
Excel Data Range Varisble Name ]Varhb(e Typs
A e pmped . After defining the data
53 PERCENT_BINDER _CONT... [rdeperdent Nureric
c3 PERCENT_AREA_CF BLA.. Indeperdent Numeric set, user is ready for
D3 CONNECTTVITY_CF BLA.. [rdeperd=ni Nurerr: predicting the OBC
£3 MUMEER_OF_REGIONS_.. [rceperdmnt Nurmeric
3 ORTENTATION_5.3 Ircleperdent Numeric
63 AREA_OF REGIONS_5.3 [rdeperdmnt Numeric
H3 AVERAGE_FERIVETER P.. [rdeperdsnt Numeric
& LNIFOAMITY_RADIAL _5.. Indeperdmnt Nureric
1 LNIFORMITY_ANGULAR _.. Inceperdsnt Nureric

K
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b. Next the user can use the Neural Tool to train the data. This must be done 1n the

Train dialog.

FILE HOME INSERT PAGE LAYOUT

o A Utilities =
= PRz

@ Help ~

DataSet | Train |Test Predict ©
Manager

Data Meural N Help

Click on the Train Manager icon.

Train Imtc:anfq.ra'don | K
__H--—_

3w

Data Set | DaTABASE \
= " i »
Save Net As | et Trained on DATABASE" (To: Active Workbook) Browse.... Click “Net Configuration

to set up the type of net

[ ‘automatically Test on Randomly Selected Cases:

% Selected Cases
[~ Select Same Cases as Long as This Number Is the Same

[V Automatically Predict Missing Dependent Values

=
-

v Enable Live Prediction
[~ Place Predicted Values Directly in Data Set

¥ Calaulate Variable Impacts

Click the “Automatically Test on Randomly
Selected Cases,” “Automatically Predict
Missing Dependent Values,” and “Calculate

Variables Impacts.” Live prediction
automatically updates predictions when input

data changes.
ol

il-"_ﬂ | Mext == I Cancel |
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- Train mk_unthe |
SpESSiaE I'I_Iwm \ELIX

Options:

Description:

[ Perform Linear Regression (Mumeric Prediction Only) | Click the “PN/GRN Net"”

With & category dependent variable, a Probabilistic Meural Net will be trained. If the dependent
variable is numeric, 8 Generalized Regression Neural Net will be trained,

PN and GRN nets operate in a similar way. Every training case is represented by an element of
the net (a "node”). A prediction for a case with an unknown dependent value is obtained by
interpolation from training cases, with neighboring cases given more weight. Optimal
interpolation paramaters are found during training.

The main advantage of PN/GRN nets is that, unlike MLF nets, they do not require any
configuration. At the same time their prediction accuracy is generally comparable to that of MLF
nets.

Click “Next” to see a
preview of the training

1] I Mext == I Cancel
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oo T

Training Settings

Automatically Predict: YES
Enable Live Prediction: YES
Place Predictions Directly in Data Set: NO
Reports: Summary - YES, Detailed - YES
Net Config.: GRNN
Max. Training Time: 2 Hours

Variables

NUM: PERCENT BINDER CONTENT 5.3

NUM: NUMBER_OF _REGIONS_5.3
NUM: ORIENTATION_S. 3
NUM: AREA_OF_REGIONS_5.3

Data Set Information
Net Location: Active Workbook Name: DATABASE
Automatically Test: YES Manual Case Tags: NO

NUM: PERCENT_AREA_OF _BLACK_PIXELS_5.3
NUM: CONNECTIVITY_OF _BLACK_PIXELS_5.3

Number of Rows: 114

Numbers of Valid Cases
Training: 1
Testing: 23
Prediction: 0

Independent numeric variable.

..then click “Train” to proceed.

1
|

Errors and Warnings

selecting
testing results.)

Would you like to view the Testing Sensitivity dialog? (This analysis trains multiple nets,
ing different cases for testing each time. The objective is to evaluate the stability of the

™ Do Not Show this Warning for this Workbook Again

User can make sensitivity testing for the data variables. But
this step is not necessary for running the model.
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Next the user can use the Neural Tool to test the data. This must be done 1n the

[
Testing dialog.
FILE HOME INSERT PAGE LAYOUT
ol A 7R |— Utilities =
& PR o
elp =
DataSet  Train]] Test Predict .
Manager
Data

Meural Mets ‘% Help

Click on the “Test” icon.

Data Set
Met to Use

Variable Matching

| DaTABASE

Click “Next” to see a

preview of the testing...

c|10
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NeuralTools - Testing Pr

Net and Settings

Data Set Information

Net Location: Active Workbook
Name: Net Trained on Data Set #1
Type: GRNN Numeric Predictor
Indep. Category Variables: 0

Reports: Summary - YES, Detailed - YES

Indep. Numeric Variables: 45 (PERCENT_BINDER_CONTENT_S. | Indep. Cat. Vars: 0

Name: DATABASE

Manual Case Tags: NO
Number of Rows: 114

Num, Valid Testing Cases: 114

Indep. Num, Vars: 45 (PERCENT_BINC
Dep. Var.: Estimated_Binder

r— Independent Variable Matching
Variable Matching is Automatic.

..then click “Test” to proceed.

_

Detailed Report named Train-Test Report for Net Trained
Detailed Report placement option is changed in Applicath

ASE (2) will be deleted, unless
. Columns to be deleted: AW:AZ.

d. Next the user can use the Neural Tool to make predictions from new. incomplete

data. This must be done n the Predic

FILE HOME  INSERT PAGE LAYOUT
= PNy o Utilities ~
-T¢ -
(€ Help ~

DataSet  Train Test JPredict
Manager

tion dialog.

Data Neural Nets M

Click on the “Predict” icon.

cl11
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DataSet
Hame

Evized Ranpe

1z
1z

L]

The prediction dialog shows the user which data set will be
used, allowing to specify the neural network and giving the
user the capacity to choose a variable matching method.

7 Vierisbles, 1Dats Call Per Varisble

[Dzta set fen i

| DATAIA LA

¥ Aoply Cell Formatting

Ivanstle

MAGE

PERCENT_R i,
PEACENT _AREA_OF_FLA. . Indapentent Mument
CONNECTIVITY_OF_BLA.. Indzpentent Numesic
HUMBER:_OF REGIONS .. Incepencent Numesic
DAENTATION_5.3 Ind=pentent Humen:
AREA_DF_REGICNS 5.3  Irdepencent Numesc
AYERAGE_PERIMETER _P.. Indzpentent Numesic
LNIFORMITY_RADIAL _5.. Irdepencent Numeric
UNIFORMITY_ANGULAR, . Indepencent Hument s

@ —— -

5 Socoretry Ranges v vt amas I Pt e

] _Jox | o |

Select the range.
=DATASASL: SALSY

c|12
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Data Set | Data Set New mix

Net to Use . Ii MT!M%D.GS‘QI!’MKM@

| Variable Matching | Automate

| Predct for

| @ Cases with Mssing Dependent Values User can make predictions for data where a dependent

"W variable is missing. In this case the predicted AC which will be
R = U e considered as the OBC. Click the “Cases with Missing

Dependent Values” icon.

-~ Optons L <

I_Place Predicted Vakues Directly in Data Set ! Click the “Enable Live Prediction” icon. Live prediction

™ Enable ve Prediction automatically updates predictions when input data changes.

| Exchude Live Prediction for Cases with Missing or Invalid Vakues

Net Location: Active Workbook Name: Data Set New mix Click “Next” to see a
Tm::g;sdr mna:'kedcf:t i Number of R;:S:lm preview of the
Indep, Category Variables: 0 Num, Prediction Cases: 1 prediction...
Indep. Numeric Variables: 45 (PERCENT_BINDER_CONTENT_S. | Indep. Cat. Vars: 0
Predct: mssing dependent values Indep. Num. Vars: 45 (PERCENT_BIRC
Reports: Summary - YES, Detaled - YES
Place Predicted Values Drectly n Data Set: NO
Enable Live Predction: YES
Exclude Cases with Missing Indep. Values: NC
Independent Variable Matching

2 ..then click “Predict” to proceed.
Vadiebhﬂ-qsm

WARNING: Row will be inserted sbove data sat

A row wil be inserted above the data set to place the tiie of the

ccpak | comce

cli3
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BEHS D=8,

master.isx - bxcel

m MOME  INSERT  PAGELAYOUT  FORMULAS  DATA  REVIEW  VIEW I' WOT  Ablbits Dta
= g» ~ 4-_] P ’
....j -le . 9 Help - l
DetaSet  Train  Test Precict . 4
Managet (
Data Mewral Nets Help N
A
AM20 . ﬁ

1

2
3
'

Al

p AQ AR
I,
871.9677073 | 0.502574232 27.1123582

NeuralTook

In this case, we have chosen to place the prediction next to
the USF input data set. One can see the prediction of OBC
here and next to it is the confidence level of the prediction.

c|1a
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APPENDIX I: STATISTIC TABLES

Table 11 t-values for various values of df confidence intervals.

Table A2, t values for various values of df

confidence interval

B80% 90%  95% 98% 9%  99.8%  99.9%

o level two-tailed test
0.2 0.1 0.05 0.02 0.01 0.002 0.001

a level one-tailed test

df 01 005 0025 001 0005 0001  0.0005
1 3.078 6314 12706 31.821 63.657 318313 636.589
2 1.886 2920 4.303 6.965 0925 22327  31.598
3 1.638 2353 3.182 4541 5841 10215 122924
4 1.533 2132 277 3747 4604 7173 8.610
5 1476 2.015 2,57 3.365  4.032  5.893 6.869
G 14400 1.943 2447 3143 3707 5.208 5.959
7 1.415 1.895 2365 2,998 3499 4T85 5.408
8 1.397 1.860 2306 2896 3355  4.501 5.041
9 1.383 1.833 2262 2821 3250  4.297 4.781
10 1.372 1812 2228 2764 3169 4144 4.587
11 1.363 1.796 2201 2.718 3106  4.025 4.437
12 1356 1782 2179 2,681  3.055  3.830 4.318
13 1350 1.771 2160 2,650 3.012  3.852 4221
14 1.345 1.761 2145 2,624 2977  3.T87 4.140
15 1.341 1.753 2131 2,602 2047 3.733 4.073
16 1.337 1746 2120 2583 2921  3.686 4.015
T 1.333 1.740 2110 2,567 2.898  3.646 3.965
18 1.330 1.734 2101 2,552 2878 3.610 3.022
19 1.328 1.729 2003 2,539 2861  3.579 3.883
20 1.325 1.725 2,086 2,528 2845  3.552 3.549
21 1.323 1.721 2.080 2,518 2831  3.527 3.819
22 1.321 1.717 2074 2508 2819 3.505 3.792
23 1.319 1.714 2069 2,500 2.807  3.485 3.768
24 1.318 1.711 2064 2492 2797 3467 745
25 1.316 1.708 2.060 2485 2787  3.450 3.725
26 1.315 L1706 2056 2479 2779 3435 3.707
T 1.314 1.703 2052 2473 2771 3421 3.690
28 1.313 1701 2.048 2467 2763  3.408 3.674
20 1.311 1.699  2.045 2,462  2.75 3.396 3.659
30 13100 1.697 2.042 2457 2.75 3.385 3.646
40 1.303 1.684 2,021 2423 2704 3.307 3.551
G0 1.296 1.671 2.000 2390 2660  3.232 3.460

120 1.289 1.658 1.980 2.358 2617 3.160 3.373
oo (o known) L1282 1.645 1.960 2327 2576  3.091 3.201
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Table 12 T-test values for various spatial distribution values of df confidence intervals.

One-sample statistics

N Mean Std. Deviation | Std. Error Mean
var001 12 8.3333 78479 .22655
var002 12 8.3333 .92387 .26670
var003 12 8.3333 .69288 .20002
var004 12 8.3342 77651 22416
var005 12 8.3317 .92012 .26561
var006 12 8.3342 .69543 .20075
var007 12 8.3333 1.31646 .38003
var008 12 8.3350 .87515 .25263
var009 12 8.3333 .82490 .23813
var010 12 8.3325 1.30143 .37569
var011 12 8.3342 .90645 .26167
var012 12 8.3333 .80316 .23185
var013 12 8.3350 1.22799 .35449
var014 12 8.3317 1.18665 .34256
var015 12 8.3333 .89989 .25978
var016 12 8.3333 1.23038 .35518
var017 12 8.3342 1.17440 .33902
var018 12 8.3317 .90323 .26074
var019 12 8.3333 .74026 .21370
var020 12 8.3325 1.07336 .30985
var021 12 8.3333 1.12457 .32464
var022 12 8.3333 .73632 21256
var023 12 8.3333 1.07828 31127
var024 12 8.3333 1.12191 .32387
var025 12 8.3333 1.08718 .31384
var026 12 8.3350 1.14911 33172
var027 12 8.3333 1.06444 .30728
var028 12 8.3342 1.10176 .31805
var029 12 8.3342 1.16601 .33660
var030 12 8.3333 1.07070 .30909
var031 12 8.3342 1.15220 .33261
var032 12 8.3342 1.68768 48719
var033 12 8.3317 712892 .21042
var034 12 8.3333 1.16613 .33663
var035 12 8.3342 1.67824 48447
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var036 12 8.3342 73071 .21094
var037 12 8.3342 1.18374 34172
var038 12 8.3342 1.14393 .33022
var039 12 8.3325 .89879 .25946
var040 12 8.3342 1.14864 .33158
var041 12 8.3325 1.13913 .32884
var042 12 8.3333 .89828 .25931
var043 12 8.3325 .56120 .16201
var044 12 8.3325 1.49756 43231
var045 12 8.3317 .79097 .22833
var046 12 8.3342 .56413 .16285
var047 12 8.3325 1.48781 42949
var048 12 8.3333 77919 .22493
var049 12 8.3342 .56413 .16285
var050 12 8.3325 1.48781 42949
var051 12 8.3333 77919 .22493
var052 12 8.3342 .56413 .16285
var053 12 8.3325 1.48781 42949
var054 12 8.3333 77919 .22493
var055 12 8.3342 1.00275 .28947
var056 12 8.3342 1.01268 .29234
varQ057 12 8.3342 .98650 .28478
var058 12 8.3325 .98665 .28482
var059 12 8.3325 .98790 .28518
var060 12 8.3333 .99225 .28644
var061 12 8.3333 1.19343 .34451
var062 12 8.3333 1.28597 37123
var063 12 8.3342 45077 13012
var064 12 8.3342 1.16489 .33628
var065 12 8.3333 1.28119 .36985
var066 12 8.3333 44945 12975
var067 12 8.3333 1.14052 .32924
var068 12 8.3317 1.22246 .35289
var069 12 8.3333 .64456 .18607
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var070 12 8.3333 1.12797 .32562
var071 12 8.3342 1.22194 .35274
varQ72 12 8.3342 .63948 .18460
var073 12 8.3325 .95706 .27628
var074 12 8.3342 .65974 .19045
varQ75 12 8.3317 .69398 .20034
var076 12 8.3333 .92962 .26836
var077 12 8.3333 .66967 .19332
var078 12 8.3342 .68743 .19844
var079 12 8.3333 1.34522 .38833
var080 12 8.3333 .93922 27113
var081 12 8.3350 .82410 .23790
var082 12 8.3333 1.35947 .39245
var083 12 8.3342 .93136 .26886
var084 12 8.3333 .83209 .24020
var085 12 8.3325 .93236 .26915
var086 12 8.3333 1.36820 .39497
var087 12 8.3333 .69803 .20150
var088 12 8.3350 .93499 .26991
var089 12 8.3325 1.35544 .39128
var090 12 8.3325 .70029 .20216
var091 12 8.3333 .96276 27793
var092 12 8.3333 .85714 24744
var093 12 8.3325 .91391 .26382
var094 12 8.3325 .95385 .27535
var095 12 8.3325 .86989 .25112
var096 12 8.3333 .91690 .26468
varQ97 12 8.3325 1.13063 .32639
var098 12 8.3333 1.12350 .32433
var099 12 8.3342 87725 .25324
var100 12 8.3325 1.14462 .33042
varl01l 12 8.3325 1.07932 31157
varl02 12 8.3342 .88359 .25507
varl103 12 8.3325 1.14462 .33042
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
varl04 12 8.3325 1.07932 31157
var105 12 8.3342 .88359 .25507
var106 12 8.3342 1.08746 31392
varl07 12 8.3325 1.26949 .36647
var108 12 8.3342 77575 .22394
var109 12 8.3325 1.89190 .54615
var110 12 8.3325 .85677 24733
varlll 12 8.3342 13175 21124
varl12 12 8.3333 1.89763 .54780
varll3 12 8.3342 .86013 .24830
varll4 12 8.3342 .72884 .21040
varlls 12 8.3350 1.16219 .33549
varll6 12 8.3333 1.03522 .29884
varll7 12 8.3350 .82589 .23841
varll8 12 8.3342 1.17532 .33929
varll9 12 8.3325 1.03497 .29877
varl20 12 8.3325 .82317 .23763
varl2l 12 8.3342 1.02265 .29521
varl22 12 8.3333 1.01783 .29382
varl23 12 8.3325 1.32103 .38135
varl24 12 8.3325 1.03966 .30012
varl25 12 8.3333 1.02390 .29557
varl26 12 8.3333 1.33151 .38437
varl27 12 8.3342 1.10880 .32008
varl28 12 8.3333 1.15120 .33232
varl29 12 8.3342 .92066 .26577
varl30 12 8.3325 1.10314 .31845
varl3l 12 8.3333 1.15035 .33208
varl32 12 8.3333 .92135 .26597
varl33 12 8.3333 .66591 .19223
varl34 12 8.3333 1.47506 42581
varl35 12 8.3325 .90880 .26235
varl36 12 8.3333 71197 .20553
varl37 12 8.3333 1.46294 42232
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
varl38 12 8.3333 .91598 .26442
varl39 12 8.3333 .97859 .28250
varl40 12 8.3333 1.04522 .30173
varl4l 12 8.3342 77336 .22325
varl42 12 8.3342 .98783 .28516
varl43 12 8.3325 1.06624 .30780
varl44 12 8.3333 .78349 22617
varl45 12 8.3333 .89111 25724
varl46 12 8.3317 .88745 .25618
varl47 12 8.3333 .90482 .26120
varl48 12 8.3325 .89885 .25948
varl49 12 8.3342 .84608 24424
varl50 12 8.3333 .93958 27123
varl51l 12 8.3342 1.07146 .30930
varl52 12 8.3333 .96863 .27962
varl53 12 8.3325 .91392 .26383
varl54 12 8.3325 1.07648 .31075
varl55 12 8.3333 97497 .28145
varl56 12 8.3333 .91964 .26548
varl57 12 8.3342 73748 .21289
varl58 12 8.3317 1.34703 .38885
varl59 12 8.3317 1.41034 40713
varl60 12 8.3325 72995 .21072
varl6l 12 8.3342 1.33525 .38545
varl62 12 8.3333 1.40598 .40587
varl63 12 8.3342 1.29308 .37328
varl64 12 8.3325 .96181 27765
varl65 12 8.3333 1.26854 .36620
varl66 12 8.3325 1.28895 .37209
varl67 12 8.3342 .97246 .28073
varl68 12 8.3333 1.25610 .36260
varl169 12 8.3325 1.33652 .38582
varl70 12 8.3342 1.29558 .37400
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
varl7l 12 8.3333 1.36656 .39449
varl72 12 8.3325 1.32851 .38351
varl73 12 8.3333 1.29975 37521
varl74 12 8.3342 1.36714 .39466
varl75 12 8.3333 1.07923 31155
varl76 12 8.3317 1.15801 .33429
varl77 12 8.3342 1.50534 43455
varl78 12 8.3342 1.10237 .31823
varl79 12 8.3333 1.15700 .33400
varl80 12 8.3333 1.50669 43494
varl81l 12 8.3342 75278 21731
var182 12 8.3325 .89535 .25847
varl83 12 8.3350 55757 .16096
varlgd4 12 8.3325 75341 21749
varl85 12 8.3317 .89097 .25720
varl86 12 8.3325 .56073 .16187
varl87 12 8.3342 1.54379 44565
var188 12 8.3333 .85558 .24699
varl89 12 8.3325 71131 .20534
var190 12 8.3333 1.51280 43671
var191l 12 8.3333 .85558 .24699
varl92 12 8.3325 71328 .20591
varl93 12 8.3325 1.04354 .30124
varl94 12 8.3342 1.07585 .31057
varl95 12 8.3333 14798 .21592
var196 12 8.3342 1.07618 .31067
var197 12 8.3350 1.12589 .32502
varl98 12 8.3333 14798 .21592
var199 12 8.3342 1.14282 .32990
var200 12 8.3333 1.69616 48964
var201 12 8.3342 1.28653 37139
var202 12 8.3333 1.13304 .32708
var203 12 8.3333 1.69017 48791
var204 12 8.3350 1.27827 .36900
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var205 12 8.3333 .75295 21736
var206 12 8.3333 1.11177 .32094
var207 12 8.3333 .55610 .16053
var208 12 8.3325 74711 21567
var209 12 8.3333 1.11159 .32089
var210 12 8.3333 .56542 16322
var211 12 8.3333 .80528 .23246
var212 12 8.3333 1.03497 .29877
var213 12 8.3317 .61207 .17669
var214 12 8.3342 77420 .22349
var215 12 8.3317 1.05189 .30365
var216 12 8.3333 .61732 .17820
var217 12 8.3333 .94572 .27301
var218 12 8.3342 1.21557 .35090
var219 12 8.3325 1.26231 .36440
var220 12 8.3317 .93584 .27015
var221 12 8.3350 1.21932 .35199
var222 12 8.3333 1.26147 .36416
var223 12 8.3325 .70595 .20379
var224 12 8.3350 4772 .21585
var225 12 8.3333 1.15134 .33236
var226 12 8.3333 .71567 .20660
var227 12 8.3333 73351 21175
var228 12 8.3342 1.15516 .33347
var229 12 8.3333 70711 .20413
var230 12 8.3333 .86090 .24852
var231 12 8.3342 .80728 .23304
var232 12 8.3342 712046 .20798
var233 12 8.3342 .88380 .25513
var234 12 8.3342 79394 22919
var235 12 8.3333 1.19240 34421
var236 12 8.3333 1.30213 .37589
var237 12 8.3325 1.06108 .30631
var238 12 8.3333 1.17070 .33795
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var239 12 8.3342 1.30972 .37808
var240 12 8.3342 1.09475 .31603
var241 12 8.3333 1.37916 .39813
var242 12 8.3325 71582 .20664
var243 12 8.3325 .68873 .19882
var244 12 8.3325 1.40262 40490
var245 12 8.3342 .71985 .20780
var246 12 8.3342 .70526 .20359
var247 12 8.3317 1.13102 .32650
var248 12 8.3333 .96795 .27942
var249 12 8.3342 1.23513 .35655
var250 12 8.3317 1.13102 .32650
var251 12 8.3342 .99747 .28795
var252 12 8.3333 1.22284 .35300
var253 12 8.3333 1.29082 .37263
var254 12 8.3333 1.17796 .34005
var255 12 8.3342 .80223 .23158
var256 12 8.3350 1.28526 .37102
var257 12 8.3325 1.17695 .33976
var258 12 8.3308 .80293 23179
var259 12 8.3333 1.33268 .38471
var260 12 8.3333 1.25518 .36234
var261 12 8.3325 .83028 .23968
var262 12 8.3325 1.31334 37913
var263 12 8.3333 1.28428 37074
var264 12 8.3333 .83164 .24007
var265 12 8.3325 1.34135 .38721
var266 12 8.3325 .86827 .25065
var267 12 8.3325 .84515 .24397
var268 12 8.3333 1.33141 .38434
var269 12 8.3350 .86696 .25027
var270 12 8.3333 .83697 24161
var271 12 8.3317 1.19998 .34640
var272 12 8.3342 .67291 .19425
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var273 12 8.3333 .69243 .19989
var274 12 8.3325 1.19713 .34558
var275 12 8.3325 .66095 .19080
var276 12 8.3325 .70039 .20219
var277 12 8.3333 1.29529 .37392
var278 12 8.3333 .96008 27715
var279 12 8.3325 .82864 23921
var280 12 8.3325 1.30696 37729
var281 12 8.3342 .96051 27727
var282 12 8.3325 .82620 .23850
var283 12 8.3325 1.20462 34774
var284 12 8.3342 1.69372 .48893
var285 12 8.3342 .90453 26111
var286 12 8.3333 1.20581 .34809
var287 12 8.3333 1.70152 149119
var288 12 8.3333 91117 .26303
var289 12 8.3325 712621 .20964
var290 12 8.3333 1.04956 .30298
var291 12 8.3333 1.00817 .29103
var292 12 8.3325 72367 .20890
var293 12 8.3325 1.03804 .29966
var294 12 8.3325 1.00367 .28973
var295 12 8.3342 1.25859 .36332
var296 12 8.3342 1.29970 37519
var297 12 8.3317 1.47551 42594
var298 12 8.3342 1.27350 .36763
var299 12 8.3342 1.29479 37377
var300 12 8.3333 1.47175 42486
var301 12 8.3350 1.11038 .32054
var302 12 8.3325 1.85195 53461
var303 12 8.3333 17475 .22365
var304 12 8.3342 1.10929 .32022
var305 12 8.3325 1.89887 .54816
var306 12 8.3342 77829 .22467
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var307 12 8.3325 1.03795 .29963
var308 12 8.3342 1.12847 .32576
var309 12 8.3342 1.61186 46530
var310 12 8.3325 1.05583 .30479
var3ll 12 8.3333 1.12316 .32423
var312 12 8.3325 1.61205 46536
var313 12 8.3325 1.32703 .38308
var314 12 8.3325 .83117 .23994
var315 12 8.3342 1.49705 43216
var316 12 8.3333 1.32029 .38114
var317 12 8.3350 .82773 .23894
var318 12 8.3325 1.52778 44103
var319 12 8.3325 1.20241 34711
var320 12 8.3325 1.24885 .36051
var321 12 8.3325 1.16176 .33537
var322 12 8.3342 1.19562 34514
var323 12 8.3317 1.24379 .35905
var324 12 8.3342 1.13414 .32740
var325 12 8.3333 1.24355 .35898
var326 12 8.3333 1.12625 32512
var327 12 8.3325 .79930 .23074
var328 12 8.3350 1.19547 .34510
var329 12 8.3333 1.08688 .31376
var330 12 8.3333 .80683 23291
var331 12 8.3333 1.72471 49788
var332 12 8.3333 1.10985 .32039
var333 12 8.3325 1.06964 .30878
var334 12 8.3342 1.72956 .49928
var335 12 8.3342 1.10013 31758
var336 12 8.3317 1.05381 30421
var337 12 8.3342 1.03978 .30016
var338 12 8.3333 1.41369 .40810
var339 12 8.3325 1.10833 .31995
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Table 12 (Continued)

One-sample statistics

Mean Std. Deviation | Std. Error Mean
var340 12 8.3317 1.02424 .29567
var34l 12 8.3325 1.41938 40974
var342 12 8.3325 1.10122 .31789
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Table 13: One-sample test for various values of df confidence intervals.

One-Sample Test

Test Value =0
95% Confidence Interval of the
Difference
t df Sig. (2-tailed) | Mean Difference Lower Upper
var001 36.784 11 .000 8.33333 7.8347 8.8320
var002 31.246 11 .000 8.33333 7.7463 8.9203
var003 41.663 11 .000 8.33333 7.8931 8.7736
var004 37.180 11 .000 8.33417 7.8408 8.8275
var005 31.367 11 .000 8.33167 7.7471 8.9163
var006 41514 11 .000 8.33417 7.8923 8.7760
var007 21.928 11 .000 8.33333 7.4969 9.1698
var008 32.993 11 .000 8.33500 7.7790 8.8910
var009 34.995 11 .000 8.33333 7.8092 8.8575
var010 22.179 11 .000 8.33250 7.5056 9.1594
var011 31.850 11 .000 8.33417 7.7582 8.9101
var012 35.943 11 .000 8.33333 7.8230 8.8436
var013 23,513 11 .000 8.33500 7.5548 9.1152
var014 24.322 11 .000 8.33167 7.5777 9.0856
var015 32.079 11 .000 8.33333 7.7616 8.9051
var016 23.462 11 .000 8.33333 7.5516 9.1151
var017 24.583 11 .000 8.33417 7.5880 9.0803
var018 31.954 11 .000 8.33167 7.7578 8.9056
var019 38.996 11 .000 8.33333 7.8630 8.8037
var020 26.892 11 .000 8.33250 7.6505 9.0145
var021 25.670 11 .000 8.33333 7.6188 9.0479
var022 39.205 11 .000 8.33333 7.8655 8.8012
var023 26.772 11 .000 8.33333 7.6482 9.0184
var024 25.731 11 .000 8.33333 7.6205 9.0462
var025 26.553 11 .000 8.33333 7.6426 9.0241
var026 25.127 11 .000 8.33500 7.6049 9.0651
var027 27.120 11 .000 8.33333 7.6570 9.0096
var028 26.204 11 .000 8.33417 7.6341 9.0342
var029 24.760 11 .000 8.33417 7.5933 9.0750
var030 26.961 11 .000 8.33333 7.6530 9.0136
var031 25.057 11 .000 8.33417 7.6021 9.0662
var032 17.107 11 .000 8.33417 7.2619 9.4065
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Table 13 (Continued)

One-Sample Test

var033
var034
var035
var036
var037
var038
var039
var040
var041
var042
var043
var044
var045
var046
var047
var048
var049
var050
var051
var052
var053
var054
var055
var056
var057
var058
var059
var060
var061
var062
var063
var064

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

39.595 11 .000 8.33167 7.8685 8.7948
24.755 11 .000 8.33333 7.5924 9.0743
17.203 11 .000 8.33417 7.2679 9.4005
39.510 11 .000 8.33417 7.8699 8.7984
24.389 11 .000 8.33417 7.5821 9.0863
25.238 11 .000 8.33417 7.6073 9.0610
32.115 11 .000 8.33250 7.7614 8.9036
25.134 11 .000 8.33417 7.6044 9.0640
25.339 11 .000 8.33250 7.6087 9.0563
32.136 11 .000 8.33333 7.7626 8.9041
51.434 11 .000 8.33250 7.9759 8.6891
19.274 11 .000 8.33250 7.3810 9.2840
36.489 11 .000 8.33167 7.8291 8.8342
51.177 11 .000 8.33417 7.9757 8.6926
19.401 11 .000 8.33250 7.3872 9.2778
37.048 11 .000 8.33333 7.8383 8.8284
51.177 11 .000 8.33417 7.9757 8.6926
19.401 11 .000 8.33250 7.3872 9.2778
37.048 11 .000 8.33333 7.8383 8.8284
51.177 11 .000 8.33417 7.9757 8.6926
19.401 11 .000 8.33250 7.3872 9.2778
37.048 11 .000 8.33333 7.8383 8.8284
28.791 11 .000 8.33417 7.6971 8.9713
28.509 11 .000 8.33417 7.6907 8.9776
29.265 11 .000 8.33417 7.7074 8.9610
29.255 11 .000 8.33250 7.7056 8.9594
29.218 11 .000 8.33250 7.7048 8.9602
29.093 11 .000 8.33333 7.7029 8.9638
24.189 11 .000 8.33333 7.5751 9.0916
22.448 11 .000 8.33333 7.5163 9.1504
64.047 11 .000 8.33417 8.0478 8.6206
24,784 11 .000 8.33417 7.5940 9.0743
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Table 13 (Continued)

One-Sample Test

var065
var066
var067
var068
var069
varQ070
var071
var072
varQ073
var074
var075
varQ76
var077
var078
varQ079
var080
var081
var082
var083
var084
var085
var086
var087
var088
var089
var090
var091
var092
var093
var094
var095
var096

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

22.532 11 .000 8.33333 7.5193 9.1474
64.228 11 .000 8.33333 8.0478 8.6189
25.311 11 .000 8.33333 7.6087 9.0580
23.610 11 .000 8.33167 7.5550 9.1084
44.786 11 .000 8.33333 7.9238 8.7429
25.592 11 .000 8.33333 7.6167 9.0500
23.627 11 .000 8.33417 7.5578 9.1105
45.147 11 .000 8.33417 7.9279 8.7405
30.160 11 .000 8.33250 7.7244 8.9406
43.760 11 .000 8.33417 7.9150 8.7533
41.588 11 .000 8.33167 7.8907 8.7726
31.053 11 .000 8.33333 7.7427 8.9240
43.107 11 .000 8.33333 7.9078 8.7588
41.998 11 .000 8.33417 7.8974 8.7709
21.459 11 .000 8.33333 7.4786 9.1880
30.736 11 .000 8.33333 7.7366 8.9301
35.036 11 .000 8.33500 7.8114 8.8586
21.234 11 .000 8.33333 7.4696 9.1971
30.998 11 .000 8.33417 7.7424 8.9259
34.693 11 .000 8.33333 7.8047 8.8620
30.959 11 .000 8.33250 7.7401 8.9249
21.099 11 .000 8.33333 7.4640 9.2026
41.356 11 .000 8.33333 7.8898 8.7768
30.881 11 .000 8.33500 7.7409 8.9291
21.295 11 .000 8.33250 7.4713 9.1937
41.218 11 .000 8.33250 7.8876 8.7774
29.984 11 .000 8.33333 7.7216 8.9450
33.679 11 .000 8.33333 7.7887 8.8779
31.584 11 .000 8.33250 7.7518 8.9132
30.261 11 .000 8.33250 7.7265 8.9385
33.182 11 .000 8.33250 7.7798 8.8852
31.484 11 .000 8.33333 7.7508 8.9159
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Table 13 (Continued)

One-Sample Test

var097
var098
var099
varl00
varl0l
varl102
varl03
varl04
varl105
varl06
varl07
var108
varl09
varll0
varlll
varll2
varll3
varll4
varlls
varllé
varll7
varll8
varll9
varl20
varl2l
varl22
varl23
varl24
varl25
varl26
varl27
varl28

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

25.530 11 .000 8.33250 7.6141 9.0509
25.694 11 .000 8.33333 7.6195 9.0472
32.910 11 .000 8.33417 7.7768 8.8915
25.218 11 .000 8.33250 7.6052 9.0598
26.743 11 .000 8.33250 7.6467 9.0183
32.674 11 .000 8.33417 7.7728 8.8956
25.218 11 .000 8.33250 7.6052 9.0598
26.743 11 .000 8.33250 7.6467 9.0183
32.674 11 .000 8.33417 7.7728 8.8956
26.548 11 .000 8.33417 7.6432 9.0251
22.737 11 .000 8.33250 7.5259 9.1391
37.216 11 .000 8.33417 7.8413 8.8271
15.257 11 .000 8.33250 7.1304 9.5346
33.690 11 .000 8.33250 7.7881 8.8769
39.454 11 .000 8.33417 7.8692 8.7991
15.212 11 .000 8.33333 7.1276 9.5390
33.565 11 .000 8.33417 7.7877 8.8807
39.611 11 .000 8.33417 7.8711 8.7972
24.844 11 .000 8.33500 7.5966 9.0734
27.885 11 .000 8.33333 7.6756 8.9911
34.960 11 .000 8.33500 7.8103 8.8597
24.564 11 .000 8.33417 7.5874 9.0809
27.889 11 .000 8.33250 7.6749 8.9901
35.065 11 .000 8.33250 7.8095 8.8555
28.231 11 .000 8.33417 7.6844 8.9839
28.362 11 .000 8.33333 7.6866 8.9800
21.850 11 .000 8.33250 7.4932 9.1718
27.764 11 .000 8.33250 7.6719 8.9931
28.194 11 .000 8.33333 7.6828 8.9839
21.680 11 .000 8.33333 7.4873 9.1793
26.037 11 .000 8.33417 7.6297 9.0387
25.076 11 .000 8.33333 7.6019 9.0648
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Table 13 (Continued)

One-Sample Test

varl29
varl30
varl3l
varl32
varl33
varl34
varl35
varl36
varl37
varl38
varl39
varl40
varl4l
varl42
varl43
varl44
varl45
varl46
varl47
varl48
varl49
varl50
varl5l
varl52
varl53
varl54
varls5
varl56
varl57
varls8
varl59
varl60

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

31.358 11 .000 8.33417 7.7492 8.9191
26.166 11 .000 8.33250 7.6316 9.0334
25.094 11 .000 8.33333 7.6024 9.0642
31.332 11 .000 8.33333 7.7479 8.9187
43.350 11 .000 8.33333 7.9102 8.7564
19.570 11 .000 8.33333 7.3961 9.2705
31.761 11 .000 8.33250 7.7551 8.9099
40.546 11 .000 8.33333 7.8810 8.7857
19.732 11 .000 8.33333 7.4038 9.2628
31515 11 .000 8.33333 7.7513 8.9153
29.499 11 .000 8.33333 7.7116 8.9551
27.619 11 .000 8.33333 7.6692 8.9974
37.331 11 .000 8.33417 7.8428 8.8255
29.226 11 .000 8.33417 7.7065 8.9618
27.071 11 .000 8.33250 7.6550 9.0100
36.845 11 .000 8.33333 7.8355 8.8311
32.395 11 .000 8.33333 7.7671 8.8995
32.522 11 .000 8.33167 7.7678 8.8955
31.904 11 .000 8.33333 7.7584 8.9082
32.113 11 .000 8.33250 7.7614 8.9036
34.123 11 .000 8.33417 7.7966 8.8717
30.724 11 .000 8.33333 7.7364 8.9303
26.945 11 .000 8.33417 7.6534 9.0149
29.802 11 .000 8.33333 7.7179 8.9488
31.583 11 .000 8.33250 7.7518 8.9132
26.814 11 .000 8.33250 7.6485 9.0165
29.609 11 .000 8.33333 7.7139 8.9528
31.390 11 .000 8.33333 7.7490 8.9176
39.147 11 .000 8.33417 7.8656 8.8027
21.426 11 .000 8.33167 7.4758 9.1875
20.464 11 .000 8.33167 7.4356 9.2278
39.544 11 .000 8.33250 7.8687 8.7963
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Table 13 (Continued)

One-Sample Test

varl6l
varl62
varl63
varle4
varle5
varl66
varle7
varl68
varl69
varl70
varl7l
varl72
varl73
varl74
varl75
varl76
varl77
varl78
varl79
varl80
varlgl
varl82
varl83
varlg4
varl85
varl86
varl87
varl88
varl89
varl90
varl9l
varl92

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

21.622 11 .000 8.33417 7.4858 9.1825
20.532 11 .000 8.33333 7.4400 9.2267
22.327 11 .000 8.33417 7.5126 9.1557
30.011 11 .000 8.33250 7.7214 8.9436
22.756 11 .000 8.33333 7.5273 9.1393
22.394 11 .000 8.33250 7.5135 9.1515
29.688 11 .000 8.33417 7.7163 8.9520
22.982 11 .000 8.33333 7.5352 9.1314
21.597 11 .000 8.33250 7.4833 9.1817
22.284 11 .000 8.33417 7.5110 9.1573
21.124 11 .000 8.33333 7.4651 9.2016
21.727 11 .000 8.33250 7.4884 9.1766
22.210 11 .000 8.33333 7.5075 9.1592
21.117 11 .000 8.33417 7.4655 9.2028
26.748 11 .000 8.33333 7.6476 9.0190
24.923 11 .000 8.33167 7.5959 9.0674
19.179 11 .000 8.33417 7.3777 9.2906
26.189 11 .000 8.33417 7.6338 9.0346
24.950 11 .000 8.33333 7.5982 9.0685
19.160 11 .000 8.33333 7.3760 9.2906
38.352 11 .000 8.33417 7.8559 8.8125
32.238 11 .000 8.33250 7.7636 8.9014
51.784 11 .000 8.33500 7.9807 8.6893
38.312 11 .000 8.33250 7.8538 8.8112
32.393 11 .000 8.33167 7.7656 8.8978
51.477 11 .000 8.33250 7.9762 8.6888
18.701 11 .000 8.33417 7.3533 9.3150
33.740 11 .000 8.33333 7.7897 8.8769
40.579 11 .000 8.33250 7.8806 8.7844
19.082 11 .000 8.33333 7.3721 9.2945
33.740 11 .000 8.33333 7.7897 8.8769
40.468 11 .000 8.33250 7.8793 8.7857
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Table 13 (Continued)

One-Sample Test

varl93
varlo4
varl95
varl96
varl97
var198
varl99
var200
var201
var202
var203
var204
var205
var206
var207
var208
var209
var210
var2ll
var212
var213
var214
var215
var216
var217
var218
var219
var220
var221
var222
var223
var224

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

27.660 11 .000 8.33250 7.6695 8.9955
26.835 11 .000 8.33417 7.6506 9.0177
38.594 11 .000 8.33333 7.8581 8.8086
26.827 11 .000 8.33417 7.6504 9.0179
25.645 11 .000 8.33500 7.6196 9.0504
38.594 11 .000 8.33333 7.8581 8.8086
25.262 11 .000 8.33417 7.6081 9.0603
17.019 11 .000 8.33333 7.2556 9.4110
22.440 11 .000 8.33417 7.5167 9.1516
25.478 11 .000 8.33333 7.6134 9.0532
17.080 11 .000 8.33333 7.2594 9.4072
22.588 11 .000 8.33500 7.5228 9.1472
38.339 11 .000 8.33333 7.8549 8.8117
25.965 11 .000 8.33333 7.6270 9.0397
51.911 11 .000 8.33333 7.9800 8.6867
38.635 11 .000 8.33250 7.8578 8.8072
25.969 11 .000 8.33333 7.6271 9.0396
51.055 11 .000 8.33333 7.9741 8.6926
35.848 11 .000 8.33333 7.8217 8.8450
27.892 11 .000 8.33333 7.6757 8.9909
47.154 11 .000 8.33167 7.9428 8.7206
37.290 11 .000 8.33417 7.8423 8.8261
27.438 11 .000 8.33167 7.6633 9.0000
46.763 11 .000 8.33333 7.9411 8.7256
30.524 11 .000 8.33333 7.7325 8.9342
23.751 11 .000 8.33417 7.5618 9.1065
22.867 11 .000 8.33250 7.5305 9.1345
30.840 11 .000 8.33167 7.7371 8.9263
23.680 11 .000 8.33500 7.5603 9.1097
22.884 11 .000 8.33333 7.5318 9.1348
40.888 11 .000 8.33250 7.8840 8.7810
38.615 11 .000 8.33500 7.8599 8.8101
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Table 13 (Continued)

One-Sample Test

var225
var226
var227
var228
var229
var230
var231l
var232
var233
var234
var235
var236
var237
var238
var239
var240
var241
var242
var243
var244
var245
var246
var247
var248
var249
var250
var251
var252
var253
var254
var255
var256

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

25.073 11 .000 8.33333 7.6018 9.0649
40.336 11 .000 8.33333 7.8786 8.7881
39.355 11 .000 8.33333 7.8673 8.7994
24.993 11 .000 8.33417 7.6002 9.0681
40.825 11 .000 8.33333 7.8841 8.7826
33.532 11 .000 8.33333 7.7863 8.8803
35.763 11 .000 8.33417 7.8212 8.8471
40.072 11 .000 8.33417 7.8764 8.7919
32.666 11 .000 8.33417 7.7726 8.8957
36.364 11 .000 8.33417 7.8297 8.8386
24.210 11 .000 8.33333 7.5757 9.0909
22.169 11 .000 8.33333 7.5060 9.1607
27.203 11 .000 8.33250 7.6583 9.0067
24.658 11 .000 8.33333 7.5895 9.0772
22.043 11 .000 8.33417 7.5020 9.1663
26.372 11 .000 8.33417 7.6386 9.0297
20.931 11 .000 8.33333 7.4571 9.2096
40.324 11 .000 8.33250 7.8777 8.7873
41.910 11 .000 8.33250 7.8949 8.7701
20.579 11 .000 8.33250 7.4413 9.2237
40.106 11 .000 8.33417 7.8768 8.7915
40.936 11 .000 8.33417 7.8861 8.7823
25.518 11 .000 8.33167 7.6130 9.0503
29.823 11 .000 8.33333 7.7183 8.9483
23.374 11 .000 8.33417 7.5494 9.1189
25.518 11 .000 8.33167 7.6130 9.0503
28.944 11 .000 8.33417 7.7004 8.9679
23.607 11 .000 8.33333 7.5564 9.1103
22.364 11 .000 8.33333 7.5132 9.1535
24.506 11 .000 8.33333 7.5849 9.0818
35.988 11 .000 8.33417 7.8245 8.8439
22.465 11 .000 8.33500 7.5184 9.1516
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Table 13 (Continued)

One-Sample Test

var257
var258
var259
var260
var261l
var262
var263
var264
var265
var266
var267
var268
var269
var270
var271
var272
var273
var274
var275
var276
var277
var278
var279
var280
var281
var282
var283
var284
var285
var286
var287
var288

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

24.525 11 .000 8.33250 7.5847 9.0803
35.942 11 .000 8.33083 7.8207 8.8410
21.661 11 .000 8.33333 7.4866 9.1801
22.999 11 .000 8.33333 7.5358 9.1308
34.765 11 .000 8.33250 7.8050 8.8600
21.978 11 .000 8.33250 7.4980 9.1670
22.478 11 .000 8.33333 7.5173 9.1493
34.712 11 .000 8.33333 7.8049 8.8617
21.519 11 .000 8.33250 7.4802 9.1848
33.244 11 .000 8.33250 7.7808 8.8842
34.153 11 .000 8.33250 7.7955 8.8695
21.682 11 .000 8.33333 7.4874 9.1793
33.304 11 .000 8.33500 7.7842 8.8858
34.491 11 .000 8.33333 7.8015 8.8651
24.052 11 .000 8.33167 7.5692 9.0941
42.904 11 .000 8.33417 7.9066 8.7617
41.690 11 .000 8.33333 7.8934 8.7733
24111 11 .000 8.33250 7.5719 9.0931
43.671 11 .000 8.33250 7.9126 8.7524
41.212 11 .000 8.33250 7.8875 8.7775
22.287 11 .000 8.33333 7.5103 9.1563
30.068 11 .000 8.33333 7.7233 8.9433
34.834 11 .000 8.33250 7.8060 8.8590
22.085 11 .000 8.33250 7.5021 9.1629
30.057 11 .000 8.33417 7.7239 8.9444
34.937 11 .000 8.33250 7.8076 8.8574
23.962 11 .000 8.33250 7.5671 9.0979
17.046 11 .000 8.33417 7.2580 9.4103
31.918 11 .000 8.33417 7.7595 8.9089
23.940 11 .000 8.33333 7.5672 9.0995
16.966 11 .000 8.33333 7.2522 9.4144
31.682 11 .000 8.33333 7.7544 8.9123
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Table 13 (Continued)

One-Sample Test

var289
var290
var291
var292
var293
var294
var295
var296
var297
var298
var299
var300
var301
var302
var303
var304
var305
var306
var307
var308
var309
var310
var31ll
var312
var313
var314
var315
var316
var317
var318
var319
var320

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

39.747 11 .000 8.33250 7.8711 8.7939
27.504 11 .000 8.33333 7.6665 9.0002
28.634 11 .000 8.33333 7.6928 8.9739
39.887 11 .000 8.33250 7.8727 8.7923
27.807 11 .000 8.33250 7.6730 8.9920
28.759 11 .000 8.33250 7.6948 8.9702
22.939 11 .000 8.33417 7.5345 9.1338
22.213 11 .000 8.33417 7.5084 9.1600
19.560 11 .000 8.33167 7.3942 9.2692
22.670 11 .000 8.33417 7.5250 9.1433
22.297 11 .000 8.33417 7.5115 9.1568
19.614 11 .000 8.33333 7.3982 9.2684
26.003 11 .000 8.33500 7.6295 9.0405
15.586 11 .000 8.33250 7.1558 9.5092
37.260 11 .000 8.33333 7.8411 8.8256
26.026 11 .000 8.33417 7.6294 9.0390
15.201 11 .000 8.33250 7.1260 9.5390
37.095 11 .000 8.33417 7.8397 8.8287
27.809 11 .000 8.33250 7.6730 8.9920
25.584 11 .000 8.33417 7.6172 9.0512
17.911 11 .000 8.33417 7.3100 9.3583
27.338 11 .000 8.33250 7.6617 9.0033
25.702 11 .000 8.33333 7.6197 9.0470
17.906 11 .000 8.33250 7.3083 9.3567
21.751 11 .000 8.33250 7.4893 9.1757
34.728 11 .000 8.33250 7.8044 8.8606
19.285 11 .000 8.33417 7.3830 9.2853
21.864 11 .000 8.33333 7.4945 9.1722
34.883 11 .000 8.33500 7.8091 8.8609
18.893 11 .000 8.33250 7.3618 9.3032
24.006 11 .000 8.33250 7.5685 9.0965
23.113 11 .000 8.33250 7.5390 9.1260
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Table 13 (Continued)

One-Sample Test

var32l
var322
var323
var324
var325
var326
var327
var328
var329
var330
var33l
var332
var333
var334
var335
var336
var337
var338
var339
var340
var34l
var342

Test Value =0
95% Confidence Interval of the
Difference

t df Sig. (2-tailed) | Mean Difference Lower Upper

24.846 11 .000 8.33250 7.5944 9.0706
24.147 11 .000 8.33417 7.5745 9.0938
23.205 11 .000 8.33167 7.5414 9.1219
25.456 11 .000 8.33417 7.6136 9.0548
23.214 11 .000 8.33333 7.5432 9.1234
25.631 11 .000 8.33333 7.6177 9.0489
36.113 11 .000 8.33250 7.8247 8.8403
24.152 11 .000 8.33500 7.5754 9.0946
26.560 11 .000 8.33333 7.6428 9.0239
35.779 11 .000 8.33333 7.8207 8.8460
16.738 11 .000 8.33333 7.2375 9.4292
26.010 11 .000 8.33333 7.6282 9.0385
26.985 11 .000 8.33250 7.6529 9.0121
16.692 11 .000 8.33417 7.2353 9.4331
26.243 11 .000 8.33417 7.6352 9.0332
27.388 11 .000 8.33167 7.6621 9.0012
27.766 11 .000 8.33417 7.6735 8.9948
20.420 11 .000 8.33333 7.4351 9.2316
26.043 11 .000 8.33250 7.6283 9.0367
28.179 11 .000 8.33167 7.6809 8.9824
20.336 11 .000 8.33250 7.4307 9.2343
26.212 11 .000 8.33250 7.6328 9.0322
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APPENDIX J: COPYRIGHT PERMISSIONS

Below is the permission for the use of materials in Chapter 7.

Barber, Phyllis <PBARBER@nas edu= Jun 3

to me |+

Dear Mr. de Pernia,
Since this paper was not accepted for publication in the Transportation Research Record series, copyright belongs to the authors.

However, because the authors may have incorporated comments from the TRB peer review into this paper, we ask that as a professional courtesy you
acknowledge that the paper was peer-reviewed by TRB and presented at the TRB Annual Meeting, Washington, D.C., January 2015.

Thank vou for yvour request. Please let me know if vou have any questions.
Sincerely,

Phyllis Barber-Gray
Publishing Services Manager
Transportation Research Board

Phyllis Barber

Transportation Research Board
Publications Office

202 3342572 phone

202 3343495 fax

pharber@nas.edu
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Below is the permission for the use of materials in Chapter 3, 4, and 5.

Musselman, Jim 1:03 PM (25 minutes ago)
to me, Tanya, Gunaratne [+

Yolibeth,
Yes, you have our permission to use any of the sections in our report in your Dissertation.
Good luck!

James A. Musselman, P.E.

State Bituminous Materials Engineer
Florida Department of Transportation
Office: (352) 955-2905

Cell: (352) 317-5989

FDOT

From: Yolibeth Mejias De pernia [mailto:mejiasde @mail.usf.edu
Sent: Thursday, May 28, 2015 11:39 AM

To: Nash, Tanya; Musselman, Jim

Cc: Gunaratne

Subject: Copyright permission

Hi,

T am including parts of the final reports for the BDV25, TWO # 820-1 and TWO # 820-2 in my PhD dissertation and I will like to have a copyright permission from FDOT as the sections on the Dissertation are
identical as the report.

Thanks,
Yolibeth

Yolibeth Mejias de Pernia., M5c. Eng., P.Eng
Civil Engineering PhD. Candidate

University of South Florida

Yolibeth Mejias de Pernia., M5c. Eng., P.Eng
Civil Engineering PhD. Candidate

University of South Florida
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