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Abstract

The capillary surface u(x, y) near a cusp region satisfies the boundary value problem:

∇ · ∇u√
1 + |∇u|2

= κu in {(x, y) : 0 < x, f2(x) < y < f1(x)} , (1)

ν · ∇u√
1 + |∇u|2

= cos γ1 on y = f1(x) , (2)

ν · ∇u√
1 + |∇u|2

= cos γ2 on y = f2(x) , (3)

where limx→0 f1(x), f2(x) = 0, limx→0 f
′
1(x), f ′2(x) = 0.

It is shown that the capillary surface is unbounded at the cusp and satisfies u(x, y) =

O
(

1
f1(x)−f2(x)

)
, even for types of cusp not investigated previously (e.g. exponential

cusps).

By using a tangent cylinder coordinate system, we show that the exact solution

v(x, y) of the boundary value problem:

∇ · ∇v|∇v| = κv in {(x, y) : 0 < x, f2(x) < y < f1(x)} , (4)

ν · ∇v|∇v| = cos γ1 on y = f1(x) , (5)

ν · ∇v|∇v| = cos γ2 on y = f2(x) , (6)

exhibits sixth order asymptotic accuracy to the capillary equations (1)−(3) near a

circular cusp.

Finally, we show that the solution is bounded and can be defined to be continuous at

a symmetric cusp (f1(x) = −f2(x)) with the supplementary contact angles (γ2 = π−γ1).

Also it is shown that the solution surface is of the order O (f1(x)), and moreover, the

formal asymptotic series for a symmetric circular cusp region is derived.
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Chapter 1

Introduction and Background

1.1 Introduction

Even a glass of water can amuse a person with eyes for careful observation. Although

we often assume the liquid surface to be flat, this is rarely the case. The curling up of

the water near the glass is an example of a capillary phenomenon. In fact, wherever

there is a liquid and a solid boundary, we will find an interesting capillary surface. The

capillary problem is one of the many examples of everyday phenomena, which through

careful analysis leads us to very interesting mathematical and physical discoveries.

Initial interest and the origin of word “capillarity” came from a discovery of rise of

water in “capillaris” (hair-like in Latin) tube (see Figure 1.1). Careful observation

of this phenomenon by Laplace and Young led to the second order non-linear elliptic

partial differential boundary value problem. This mathematical model has been shown

to be not only valid as a model of the height of the liquid in capillary tubes, but also

of many other geometrical boundaries. Some people may claim that the experimental

method is sufficient to understand capillary surfaces, however, in the same way as

Finn’s careful mathematical analysis of the capillary surfaces near a corner has lead

to the discovery of a critical angle for the corner region (refer to section 1.4.1), careful

1



Chapter 1: Introduction and Background 2

Figure 1.1: Capillary Tube Experiment (inner radius approximately 0.35mm)

analysis of the mathematical models can suggest discoveries of unknown experimental

phenomena. Also, as our technology evolves, our scale of precision increases from

milli-meter to micro-meter to even nano-meter, for example in the process of metal

plating semiconductor chips. In the same way, extremely precise understanding of the

height of a liquid surface becomes critical in these fields. On a much larger scale,

surface tension forces (the cause of capillary phenomena) are significantly less than

the gravitational force, and as a result we often see very flat liquid surfaces. As the

gravitational force decreases, however, surface tension forces become more significant,

and hence capillary phenomena become more dramatic. As Concus and Finn began

their interests in capillarity in the design of a fuel tank for a spaceship, knowledge in

capillarity has significant importance even in space science.

Capillarity problems are not only of interest to physicists but also to mathemati-

cians. The capillary boundary value problem leads to one of the simplest second order

non-linear elliptic partial differential equations with meaningful physical interpretation.

Simple does not necessary mean easy, especially in the field of mathematics. Indeed,

it has proved very difficult to get an exact solution of a capillarity problem. As a
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matter of a fact “[t]here is only one explicitly known solution”([8], page 480). Only

the one dimensional capillarity problem has a known exact solution, “[it] can be inter-

preted physically as the height of a capillary surface on one side of an infinite vertical

plate”([8], page 480). Hence careful study of this equation especially the development of

new approximation techniques may later become useful to partial differential equations

in the other fields.

As the wedge effect (refer to section 1.4.1) has initiated my interest in capillarity,

my research is focused on the local analysis of capillary surfaces near cusp domains.

Following the path developed by Finn, Miersemann, and Scholz, I was able to make a

modest addition to the field, by extending the results of Scholz, finding a new technique

to acquire the leading order term, and providing some answers to an open problem.

1.2 The Capillary Boundary Value Problem

In this section we will derive the mathematical model for a capillary surface. This

model can be categorized as a boundary value problem for a second order non-linear

elliptic partial differential equation.

1.2.1 Derivation of the Mathematical Model

We derive the mathematical model for a non-parametric capillary surface using the

so called energy method, following from [1] (see pages 4-6). In this derivation, we

consider three different energies associated with a capillary surface in a region bounded

with vertical solid boundary walls. These three energies are “Free Surface Energy”,

“Wetting Energy” and “Gravitational Energy”. The Free Surface Energy is associated

with the interface between the liquid and the air. The Wetting Energy is associated

with the interface between the air and the solid boundary, and the interface between the
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H

x, y

Figure 1.2: Derivation of the Capillary Equation.

liquid and the solid boundary. The Gravitational Energy is associated with the density

difference between the liquid and the air and the height of the liquid. By minimizing the

sum of these energies we aim to find a stable equilibrium capillary surface. Let u(x, y)

be the height of the liquid surface in the domain Ω. Also define the lower reference

height to be h and upper reference height to be H, as labeled in Figure 1.2. Assume

constant density of liquid (ρliq) and air (ρair), and the liquid to have higher density

than the air (ρair < ρliq). Also assume the gravitational acceleration g to act in the

downward direction and to be constant.

The energies associated with this physical configuration are then given by the following

expressions.

Gravitational Energy:

Egrav(u) =

∫ ∫
Ω

(∫ u

h

ρliqgzdz

)
dxdy +

∫ ∫
Ω

(∫ H

u

ρairgzdz

)
dxdy

= ρliqg

∫ ∫
Ω

(
u2 − h2

2

)
dxdy + ρairg

∫ ∫
Ω

(
H2 − u2

2

)
dxdy (1.1)
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Wetting Energy (between air and solid):

Eas(u) = σas

∫
∂Ω

(H − u)ds (1.2)

Wetting Energy (between liquid and solid):

Els(u) = σls

∫
∂Ω

(u− h)ds (1.3)

Free Surface Energy (between air and liquid):

Eal(u) = σal

∫ ∫
Ω

√
1 + |∇u|2dxdy (1.4)

where the σ’s are areal surface energy densities.

The total energy (E) is then given by

E(u) = Egrav + Eas + Els + Eal . (1.5)

We aim to find the height of the liquid surface u(x, y) such that the energy E(u) is a

minimum, i.e. find u(x, y) such that∗

∂

∂ε
E(u(x, y) + εη(x, y))

∣∣∣∣
ε=0

= 0 , (1.6)

∂2

∂ε2
E(u(x, y) + εη(x, y))

∣∣∣∣
ε=0

> 0 , (1.7)

∗Second variation is not required for the derivation of the PDE nor BC. We have kept this condition
to show that we are actually finding local minimum and not maximum.
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where η(x, y) is an arbitrary function. Now take the derivative of each term with respect

to ε and set ε = 0:

∂

∂ε
Egrav(u+ εη) =

∂

∂ε

(
ρliqg

∫ ∫
Ω

(
(u+ εη)2 − h2

2

)
dxdy (1.8)

+ρairg

∫ ∫
Ω

(
H2 − (u+ εη)2

2

)
dxdy

)
= ρliqg

∫ ∫
Ω

((u+ εη) η) dxdy + ρairg

∫ ∫
Ω

(− (u+ εη) η) dxdy

∂

∂ε
Egrav(u+ εη)

∣∣∣∣
ε=0

= (ρliq − ρair)g
∫ ∫

Ω

uηdxdy (1.9)

∂

∂ε
(Eas + Els)

∣∣∣∣
ε=0

=
∂

∂ε

(
σas

∫
∂Ω

(H − u− εη)dS + σls

∫
∂Ω

(u+ εη − h)dS

)∣∣∣∣
ε=0

= (σls − σas)
∫
∂Ω

ηdS (1.10)

∂

∂ε
Eal(u+ εη) =

∂

∂ε

(
σal

∫ ∫
Ω

√
1 + |∇u|2 + 2ε∇u · ∇η + ε2|∇η|2dxdy

)
= σal

∫ ∫
Ω

∇u · ∇η + ε|∇η|2√
1 + |∇u|2 + 2ε∇u · ∇η + ε2|∇η|2dxdy (1.11)

∂

∂ε
Eal(u+ εη)

∣∣∣∣
ε=0

= σal

∫ ∫
Ω

∇u · ∇η√
1 + |∇u|2dxdy (1.12)

= σal

∫ ∫
Ω

Tu · ∇η dxdy (1.13)

where

Tu =
∇u√

1 + |∇u|2 . (1.14)

Consider

∇ · (ηTu) = η∇ · Tu+∇η · Tu (1.15)

∇η · Tu = ∇ · (ηTu)− η∇ · Tu (1.16)
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∂

∂ε
Eal(u+ εη)

∣∣∣∣
ε=0

= σal

∫ ∫
Ω

(∇ · (ηTu)− η∇ · Tu) dxdy (1.17)

= σal

∫
∂Ω

ηTu · νds− σal
∫ ∫

Ω

η∇ · Tudxdy , (1.18)

where ν is the unit outward normal to the boundary of the region Ω.

Hence by equation (1.6),

∂

∂ε
E(u+ εη)

∣∣∣∣
ε=0

= (ρliq − ρair)g
∫ ∫

Ω

uηdxdy + (σls − σas)
∫
∂Ω

ηds

+σal

∫
∂Ω

ηTu · νds− σal
∫ ∫

Ω

η∇ · Tudxdy

= 0 . (1.19)

Also we can verify that u(x, y) is minimum by calculating the second derivative of

E(u+ εη) with respect to ε.

∂2

∂ε2
Egrav(u+ εη) = (ρliq − ρair) g

∫ ∫
Ω

η2dxdy (1.20)

> 0 (1.21)

∂2

∂ε2
Eas(u+ εη) = 0 (1.22)

∂2

∂ε2
Els(u+ εη) = 0 (1.23)

∂2

∂ε2
Eal(u+ εη) = σal

∫ ∫
Ω

|∇η|2√
1 + |∇u|2 + 2ε∇u · ∇η + ε2|∇η|2dxdy

−σal
∫ ∫

Ω

(∇u · ∇η + ε|∇η|2)
2

(1 + |∇u|2 + 2ε∇u · ∇η + ε2|∇η|2)3/2
dxdy

= σal

∫ ∫
Ω

|∇η|2 + |∇η|2 |∇u|2 − |∇u · ∇η|2
(1 + |∇u|2 + 2ε∇u · ∇η + ε2|∇η|2)3/2

dxdy (1.24)

> 0 (1.25)
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Since η(x, y) is an arbitrary function, and equation (1.19) has to be satisfied for any

η(x, y), we can choose η = 0 on ∂Ω, obtaining

∫ ∫
Ω

[(ρliq − ρair)gu− σal∇ · Tu] η dxdy = 0 . (1.26)

Equation (1.26) has to be satisfied for any η, which satisfies the condition η = 0 on ∂Ω.

This implies

(ρliq − ρair)gu− σal∇ · Tu = 0 . (1.27)

We rewrite this equation in the form

∇ · Tu = κu , (1.28)

where

κ =
ρliq − ρair

σal
g , (1.29)

and T is given by

Tu =
∇u√

1 + |∇u|2 . (1.30)

The partial differential equation (1.28) is called the capillary PDE and constant κ is

called the capillary constant.

Now assume equation (1.28) holds, and consider η(x, y) without the restriction on
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∂Ω. By equation (1.19)

(σls − σas)
∫
∂Ω

ηds+ σal

∫
∂Ω

ηTu · νds = 0 (1.31)∫
∂Ω

η ((σls − σas) + σalTu · ν) ds = 0 (1.32)

for any η. This implies

Tu · ν = −(σls − σas)
σal

(1.33)

Define the downward unit normal of the capillary surface u(x, y) (see Figure 1.3) to be

ξ, i.e.

ξ =
(ux, uy,−1)√

1 + |∇u|2 . (1.34)

It follows that

ξ · (ν, 0) =
(∂u
∂x
, ∂u
∂y

)√
1 + |∇u|2 · ν (1.35)

= Tu · ν (1.36)

= −(σls − σas)
σal

. (1.37)

Since both ξ and (ν, 0) are unit vectors, ξ · (ν, 0) = cos γ, where γ is the angle between

two vectors. By equation (1.37)

cos γ = −σls − σas
σal

. (1.38)

We shall refer to γ as the contact angle. Note that γ only depends on the σ’s, which

depend only on the physical characteristics of the solid boundary, the liquid and the
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Figure 1.3: Contact Angle Boundary Condition

air. It follows from equations (1.33) and (1.38) that

Tu · ν = cos γ on ∂Ω , (1.39)

which is called the contact angle boundary condition.

1.2.2 Statement of the Boundary Value Problem

We now summarize the discussion of the previous section.

The height u(x, y) of a non-parametric capillary surface in a region Ω satisfies

∇ · ∇u√
1 + |∇u|2

= κu for (x, y) ∈ Ω , (1.40)

ν · ∇u√
1 + |∇u|2

= cos γ for (x, y) ∈ ∂Ω . (1.41)
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Remarks:

1) for simplicity, we often use the differential operator T , which is defined as

Tu :=
∇u√

1 + |∇u|2
. (1.42)

2) By re-scaling the variables according to u = 1√
κ
ũ, x = 1√

κ
x̃, y = 1√

κ
ỹ we can normal-

ize the capillary constant to be unity. We can now state the final form of the Capillary

BVP, which we will use in the rest of this thesis.

Capillary BVP

The height u(x, y) of a non-parametric capillary surface in a region Ω satisfies

∇ · Tu = u for (x, y) ∈ Ω , (1.43)

ν · Tu = cos γ for (x, y) ∈ ∂Ω , (1.44)

where

Tu =
∇u√

1 + |∇u|2 ,

γ is the contact angle ,

ν is the unit outward normal vector on ∂Ω .
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3) For further use we note that if u is a solution of the capillary BVP (1.43)-(1.44),

then ū(x, y) = −u(x, y) is a solution of the BVP†

∇ · T ū = ū , (1.45)

ν · T ū = − cos γ . (1.46)

1.3 The Comparison Principle

Concus Finn Comparison Principle is one of the most useful tools in capillarity. As

the name suggests this principle can be used to prove one capillary surface is above or

below an another capillary surface.

Theorem 1.1 (The Comparison Principle) Consider a domain Ω ⊂ R2 with bound-

ary ∂Ω. Suppose ∂Ω admits a decomposition

∂Ω = Σ0 ∪ Σα ∪ Σβ , (1.47)

where

Σ0 is an union of finite number of points on the boundary,

Σα is an union of finite number of continuous curves on the boundary,

Σβ is an union of finite number of C1 curves on the boundary.

†Even though T is a nonlinear operator, it satisfies T (−u) = −T (u), as follows immediately from
equation (1.42).
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If u, v ∈ C2(Ω) satisfies

∇ · Tu− κu ≥ ∇ · Tv − κv for (x, y) ∈ Ω , (1.48)

u ≤ v on Σα , (1.49)

ν · Tu ≤ ν · Tv on Σβ , (1.50)

then

u(x, y) ≤ v(x, y) for (x, y) ∈ Ω . (1.51)

Proof: See [1], page 110 for the case where Ω is bounded, and Finn and Hwang [2] for

the proof for the case Ω unbounded.

Remark: It follows immediately from the comparison principle that the capillary BVP

has a unique solution. Since Finn and Hwang have extended the comparison principle

to unbounded domains, uniqueness can be proven even for infinite domains. This result

is surprising, because in order to ensure that a BVP for a second order elliptic PDE in

an infinite domain has a unique solution one usually has to impose a growth condition

at infinity.

We now apply the comparison principle to a domain with a corner or a cusp. This

result can be directly applied to prove that a function is a sub-solution or a super-

solution for the capillary BVP, and will be used many times in the later chapters.

Proposition 1.1 (Application of the Comparison Principle) We consider a re-

gion Ω given by

Ω = {(x, y) : 0 < x, f1(x) < y < f2(x)} , (1.52)

where f1(0) = f2(0) = 0, f1(x), f2(x) ∈ C1. Assume this infinite domain has vertical
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cylindrical walls with contact angle γ on the boundary ∂Ω. Let u(x, y) be the solution

to the capillary BVP in Ω, and v(x, y) be a comparison function. If

∇ · Tv − v ≷ 0 for (x, y) ∈ Ωx0 , (1.53)

(−f ′1(x), 1)√
1 + f ′1(x)2

· Tv(x, f1(x)) ≶ cos γ for 0 < x < x0 , (1.54)

− (−f ′2(x), 1)√
1 + f ′2(x)2

· Tv(x, f2(x)) ≶ cos γ for 0 < x < x0 , (1.55)

v(x0, y) ≶ u(x0, y) for f2(x0) < y < f2(x0) , (1.56)

where

Ωx0 = {(x, y) : 0 < x < x0, f1(x) < y < f2(x)} , (1.57)

then

v(x, y) ≶ u(x, y) in Ωx0. (1.58)

Remark: We shall refer to the comparison function v(x, y) as

 a sub-solution

a super-solution

 of

the capillary BVP.

Proof: We apply the comparison principle with

Σα = {(x0, y)} for f1(x0) < y < f2(x0) , (1.59)

Σβ = {(x, f1(x)) ∪ (x, f2(x))} for 0 < x < x0 , (1.60)

Σ0 = {(0, 0) ∪ (x0, f1(x0)) ∪ (x0, f2(x0))} . (1.61)
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It follows from equations (1.53)-(1.56) that

∇ · Tv − v ≷ 0 = ∇Tu− u (x, y) ∈ Ωx0 , (1.62)

(−f ′1(x), 1)√
1 + f ′1(x)2

· Tv(x, f1(x)) ≶ cos γ = ν · Tu for 0 < x < x0 , (1.63)

− (−f ′2(x), 1)√
1 + f ′2(x)2

· Tv(x, f2(x)) ≶ cos γ = ν · Tu for 0 < x < x0 , (1.64)

v(x0, y) ≶ u(x0, y) for f2(x0) < y < f2(x0) . (1.65)

Hence by the comparison principle,

v(x, y) ≶ u(x, y) for (x, y) ∈ Ωx0 . (1.66)

Theorem 1.2 (Upper-bound Principle) Let u(x, y) be a capillary BVP in Ω. Let

Bδ(x0, y0) be a disk of radius δ and center (x0, y0). If Bδ(x0, y0) ⊂ Ω, then

u(x, y) <
2

δ
+ δ in Bδ. (1.67)

Proof:

Choose δ′, 0 < δ′ < δ, let Bδ′ be a disk of radius δ′, concentric to Bδ, and

let [z = v′(x, y)] denote a lower hemisphere over Bδ′ , whose lowest point

has the height v′0 = 2/δ′ ([1], page 114).

v′(x, y) = −
√
δ′2 − ((x− x0)2 + (y − y0)2) +

2

δ′
+ δ′ . (1.68)

It follows immediately from equation (1.68) that

2

δ′
≤ v′(x, y) ≤ 2

δ′
+ δ′ for (x, y) ∈ B′δ(x0, y0) . (1.69)
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After some calculation we get

∇ · Tv =
2

δ′
for (x, y) ∈ Bδ′(x0, y0) , (1.70)

⇒ ∇ · Tv − κv ≤ 0 = ∇ · Tu , (1.71)

ν · Tv = 1 for (x, y) ∈ ∂Bδ′(x0, y0) , (1.72)

> ν · Tu . (1.73)

We now apply the comparison principle (Theorem 1.1) with

Σ0 = ∅ , (1.74)

Σα = ∅ , (1.75)

Σβ = ∂Ω . (1.76)

Hence

u(x, y) < v′(x, y) ≤ 2

δ′
+ δ′ . (1.77)

By letting δ′ → δ, we obtain

u(x, y) <
2

δ
+ δ . (1.78)

�

Corollary 1.1 Let u(x, y) be the solution of the capillary BVP in Ω. Let Bδ be a disk

of radius δ, with Bδ ⊂ Ω. If δ >
√

2, then

u(x, y) < 2
√

2 (1.79)
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where (x, y) ∈ Bδ.

Proof: Given δ >
√

2, for any point (x0, y0) ∈ Bδ we can construct a disk of radius
√

2 such that

(x0, y0) ∈ B√2 ⊂ Bδ . (1.80)

By Theorem 1.2,

u(x0, y0) < 2
√

2 . (1.81)

�

Note: δ =
√

2 gives the smallest upper-bound for the height, i.e.

min
0<δ

(
2

δ
+ δ

)
= 2

√
2 . (1.82)

Theorem 1.3 (Existence Theorem) Let Ω be a domain with a piecewise smooth

boundary Σ. Let Σ = Σ0 ∪Σ∗, where Σ0 has one dimensional measure zero, Σ∗ is open

in Σ and Σ∗ ∈ C4. Suppose that on Σ∗, the contact angle γ is piecewise smooth and

satisfies 0 < γ < π. Then there exists a solution u(x, y) ∈ C2(Ω) ∩ C1(Ω ∪ Σ∗) to the

capillary BVP. (see[8], page 475)

Note: The domain Ω can be bounded or unbounded.

1.4 Corners and Cusps

In this section I briefly mention previously known results concerning capillary prob-

lems near corners and cusps. Refer to each referenced paper and book for a detailed

discussion and proof.
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1.4.1 Finn’s Critical Angle Condition and Leading Order Be-

haviour at a Corner Singularity

Finn’s analysis of capillary surface near corners were the first attempt at a local anal-

ysis near a corner region (see [1], pages 115-122). It led to a very unexpected result:

“Capillary surfaces in a domain with corner depend discontinuously on the boundary

data” ([1], page 119).

Theorem 1.4 (Critical angle for a wedge problem) Let u(x, y) be a solution to

the capillary BVP with capillary constant κ and contact angle γ in a wedge region Ω

with opening angle α, given by

Ω = {(r, θ) : 0 < r,−α < θ < α} , (1.83)

in polar coordinates.

i) If α + γ ≥ π/2, then

u(r, θ) <
2

κδ
+ δ for (r, θ) ∈ Ω ∩Bδ(δ, 0) . (1.84)

ii) If α + γ < π/2, then there exists constants A and r0 such that

∣∣∣∣∣u(r, θ)− cos θ −
√
k2 − sin2 θ

kr

∣∣∣∣∣ < A (r, θ) ∈ Ωr0 , (1.85)

where k = sinα/ cos γ, Ωr0 = {(r, θ) : 0 < r < r0,−α < θ < α}.

Comments:

i) According to this theorem, the angle α = π/2−γ is a critical angle such that the

behaviour of the capillary surface changes dramatically depending on the opening angle

of the wedge. For α < π/2 − γ capillary surface is unbounded, and for α ≥ π/2 − γ



Chapter 1: Introduction and Background 19

α ≥ π

2
− γ α <

π

2
− γ

Figure 1.4: Wedge Experiment: a bounded capillary surface v.s. an unbounded capil-
lary surface

it is bounded. This phenomenon has been demonstrated with an experiment. See the

photograph in Figure 1.4 for an illustration of the experiment.

ii) The proof of the unboundedness for α + γ < π/2 can be modified and used to

prove the unboundedness of the capillary surface at a cusp (see section 2.1).

1.4.2 Miersemann’s Asymptotic Series at a Corner Singularity

Following from Finn’s leading order approximation of the capillary surface near a corner

with α < π/2−γ, Miersemann has found a complete asymptotic series for this problem

(see [4]).

Theorem 1.5 Let u(r, θ) be the solution to the capillary BVP with constant contact

angle γ, in a wedge region Ω with opening angle α, given by

Ω = {(r, θ) : 0 < r,−α < θ < α} , (1.86)

where α < π/2− γ. Then

for a given non negative integer m there exist positive constants r0, A and
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m + 1 functions h4l−1(θ), l = 0, ...,m, analytic on (−α, α) and bounded on

[−α, α], such that

∣∣∣∣∣u(r, θ)−
m∑
l=0

h4l−1(θ)r4l−1

∣∣∣∣∣ ≤ Ar4m+3 in Ωr0, (1.87)

where Ωr0 = {(r, θ) : 0 < r < r0,−α < θ < α} ([4], page 97).

1.4.3 Scholz’s Asymptotic Series at a Cusp Singularity

Following Miersemann’s work, his student Scholz applied a similar technique to find a

complete asymptotic series solution in a cusp region (see [6] and [7]). The complete

asymptotic series solution was found in a region Ω given by

Ω = {(x, y) : 0 < x, f2(x) < y < f1(x)} , (1.88)

where

f1(x) = a1x
n + b1x

n+1 +O(xn+2) , (1.89)

f2(x) = a2x
n + b2x

n+1 +O(xn+2) . (1.90)

Here n ∈ N, n > 1, ai, bi ∈ R. Also he found the leading order term for a more general

cusp region of the form equation (1.88), where

f1(x) = a1x
α , (1.91)

f2(x) = a2x
α , (1.92)

with α > 1, ai, bi ∈ R, a1 > a2.



Chapter 2

Capillary Surface near a General

Cusp

In this chapter, we consider capillary surfaces in regions with two cylindrical walls,

which form a general shape. We aim to allow these domains to be as general as possible.

However, some results in this chapter require minor restrictions on the shape of the

domain.

We consider an unbounded region Ω with two boundary walls forming a cusp. We

Ω

0 x

y

Γ 1

Γ 2

x 1

y1

− y1

f 1 (x )

f 2 (x )

Figure 2.1: Region Ω

21
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shall refer to each boundary as Γ1 and Γ2 with

∂Ω = Σ0 ∪ Γ1 ∪ Γ2 , (2.1)

where Σ0 is one dimensional measure zero, Γ1,Γ2 ∈ C4. We assume there is a cusp at

the origin opening in the positive x-direction as in Figure 2.1. Consider a rectangle

R = {(x, y) ∈ R2 : 0 < x < x1, −y1 < y < y1} , (2.2)

and let

Ω1 = Ω ∩R . (2.3)

We choose x1 and y1 small enough that the subset of the boundary in Ω1, i.e. Γ1 ∩ R
and Γ2 ∩R are given by

y = f1(x) for 0 < x < x1 , (2.4)

y = f2(x) for 0 < x < x1 , (2.5)

respectively, where f1(x) and f2(x) are smooth functions such that

lim
x→0+

f1(x) = 0 , (2.6)

lim
x→0+

f2(x) = 0 , (2.7)

lim
x→0+

f ′1(x) = 0 , (2.8)

lim
x→0+

f ′2(x) = 0 . (2.9)

We shall refer to Ω1 as a near cusp region. In this thesis we assume homogeneity of

the material constructing each wall. Let the contact angle of the wall Γ1 be γ1 and the
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contact angle of the wall Γ2 be γ2 (0 < γ1, γ2 < π), then the boundary condition of the

capillary BVP assumes the form

ν · Tu|y=f1(x) = cos γ1 for 0 < x < x1 , (2.10)

ν · Tu|y=f2(x) = cos γ2 for 0 < x < x1 . (2.11)

Also in this chapter we assume,

γ1 6= π − γ2 , (2.12)

i.e.

cos γ1 + cos γ2 6= 0 . (2.13)

We will address the case γ1 = π − γ2, i.e. cos γ1 + cos γ2 = 0, in Chapter 4.

Example 2.1 (Cusp) The following regions Ω1 and Ω2 are cusp regions :

Ω1 =
{

(x, y) ∈ R2 \ (B1(0, 1) ∪B2(0,−2))
}
, (2.14)

Ω2 =
{

(x, y) : 0 < x <∞, −be− 1
x2 < y < ae−

1
x2

}
, (2.15)

where a and b are constants.

Note: The capillary surface in region Ω1 can be asymptotically approximated using a

result of Scholz [7]. However, this result cannot be applied to a capillary surface in a

region such as Ω2.
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2.1 Unboundedness at the cusp

Theorem 2.1 (Unboundedness of the capillary surface at a cusp) Let u(x, y) be

the solution to the capillary BVP in region Ω, with boundary conditions (2.10) and

(2.11), subject to γ1 6= π − γ2, then the capillary surface u(x, y) is unbounded at the

cusp, (x, y) = (0, 0).

Ω

Γ

∂ Ω1

∂ Ω2

f 1 (x )

f 2 (x )

x

y

0

Ω

Figure 2.2: Region Near a Cusp

Proof: First consider the case cos γ1 + cos γ2 > 0.

We prove the result by contradiction. Assume there exists a constant M > 0 such

that

u(x, y) < M for (x, y) ∈ Ω . (2.16)

Since u(x, y) is a capillary surface, it satisfies the capillary PDE (1.43),

∇ · Tu = u . (2.17)

Integrate both sides of equation (2.17) in a region Ωε = {(x, y) ∈ R2 : 0 < x < ε ≤
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x1, f2(x) < y < f1(x)}, where ε is a constant, to obtain

∫
Ωε

∇ · Tu dxdy =

∫
Ωε

u dxdy . (2.18)

By the divergence theorem,

∫
∂Ωε

Tu · ν ds =

∫ ε

0

∫ f1(x)

f2(x)

u dydx , (2.19)

where ∂Ωε is the boundary of the region Ωε, and ν is the unit outward normal at the

boundary. The boundary ∂Ω can be divided into three subsets such that

∂Ωε = ∂Ω1 ∪ ∂Ω2 ∪ Γ , (2.20)

where

∂Ω1 = {(x, y) ∈ R2 : 0 < x < ε, y = f1(x)} , (2.21)

∂Ω2 = {(x, y) ∈ R2 : 0 < x < ε, y = f2(x)} , (2.22)

Γ = {(x, y) ∈ R2 : x = ε, f2(ε) < y < f1(ε)} . (2.23)

So the left-hand-side of equation (2.19) can be written

∫
∂Ωε

Tu · ν ds =

∫
∂Ω1

Tu · ν ds+

∫
∂Ω2

Tu · ν ds+

∫
Γ

Tu · ν ds . (2.24)

By the boundary conditions (2.10) and (2.11),

∫
∂Ωε

Tu · ν ds =

∫
∂Ω1

cos γ1 ds+

∫
∂Ω2

cos γ2 ds+

∫
Γ

Tu · ν ds . (2.25)
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Since

|Tu · ν| ≤ |Tu| |ν| = |Tu| , (2.26)

=

√
u2
x + u2

y√
1 + u2

x + u2
y

< 1 , (2.27)

we have

−1 < Tu · ν < 1 . (2.28)

Hence

∫
∂Ωε

Tu · ν ds > cos γ1

∫
∂Ω1

ds+ cos γ2

∫
∂Ω2

ds−
∫

Γ

ds , (2.29)

= cos γ1|∂Ω1|+ cos γ2|∂Ω2| − (f1(ε)− f2(ε)) , (2.30)

where |∂Ω1| and |∂Ω2| are the lengths of the boundaries ∂Ω1 and ∂Ω2, respectively.

These can be calculated using the Cauchy Mean Value Theorem as

|∂Ω1| =

∫ ε

0

√
1 + f

′2
1 (x) dx , (2.31)

=
√

1 + f ′1(c)2 ε 0 < c < ε , (2.32)

|∂Ω2| =

∫ ε

0

√
1 + f

′2
2 (x) dx , (2.33)

=
√

1 + f ′2(d)2 ε 0 < d < ε . (2.34)

Substitute these expressions into equation (2.30) gives

∫
∂Ωε

Tu · ν dS > cos γ1

√
1 + f ′1(c)2 ε+ cos γ2

√
1 + f ′2(d)2 ε− (f1(ε)− f2(ε)) .

(2.35)
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Now consider the right-hand-side of equation (2.19). By the assumption (2.16),

∫ ε

0

∫ f1(x)

f2(x)

u dydx <

∫ ε

0

∫ f1(x)

f2(x)

M dydx , (2.36)

= M

∫ ε

0

∫ f1(x)

f2(x)

dydx , (2.37)

≤ M

∫ ε

0

max
0<x≤ε

(f1(x)− f2(x)) dx , (2.38)

= εM max
0<x≤ε

(f1(x)− f2(x)) (2.39)

Now substitute equations (2.35) and (2.39) into equation (2.19), and rearrange to obtain

cos γ1

√
1 + f ′1(c)2 + cos γ2

√
1 + f ′2(d)2

< M max
0<x≤ε

(f1(x)− f2(x)) +
(f1(ε)− f2(ε))

ε
. (2.40)

Taking the limit as ε→ 0 of both sides, using equation (2.6)-(2.9) gives

cos γ1 + cos γ2 < 0 . (2.41)

Since we are considering the case cos γ1 + cos γ2 > 0 the assumption (2.16) is contra-

dicted. Hence the solution surface u(x, y) is not bounded above.

Next consider the case

cos γ1 + cos γ2 < 0 . (2.42)

Similarly we can deduce a contradiction, by assuming there exists a constant m < 0

such that,

m < u(x, y) . (2.43)
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Thus we have shown that, if cos γ1 + cos γ2 > 0, we cannot bound the solution surface

u(x, y) from above, and if cos γ1 + cos γ2 < 0 we cannot bound the solution surface

u(x, y) from below. Hence the solution surface u(x, y) is unbounded if γ1 6= π − γ2.

�

2.2 Growth Order and Formal Asymptotic Series

We now aim to give an approximation for the capillary surface in a region Ω. We would

like to first prove the growth order of the solution using the comparison principle and

then derive a formal asymptotic series, which satisfies the capillary equation and the

boundary conditions asymptotically.

Motivation

By using the formulae from the proof of Theorem 2.1, we aim to estimate u(x, y). We

base this estimate on the assumption that there is a single variable function v(x) such

that the limit of the ratio between u(x, y) and v(x) equals one, i.e.

u(x, y) ∼ v(x) as x→ 0. (2.44)

From equation (2.19)

∫
∂Ωε

Tu · ν ds ∼
∫ ε

0

∫ f1(x)

f2(x)

v(x) dydx , (2.45)

=

∫ ε

0

(f1(x)− f2(x)) v(x)dx . (2.46)

From equation (2.25)

∫
∂Ωε

Tu · ν ds = cos γ1|∂Ω1|+ cos γ2|∂Ω2|+
∫

Γ

Tu · ν dS . (2.47)
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As in the derivation of equation (2.30)

∣∣∣∣∫
Γ

Tu · ν dS
∣∣∣∣ < f1(ε)− f2(ε) . (2.48)

Assuming that cos γ1 |∂Ω1|+ cos γ2 |∂Ω2| 6= 0 , it follows from equations (2.6)-(2.9)

|f1(ε)− f2(ε)|
cos γ1 |∂Ω1|+ cos γ2 |∂Ω2| → 0 as ε→ 0 , (2.49)

⇒ |cos γ1|∂Ω1|+ cos γ2|∂Ω2|| >>

∣∣∣∣∫
Γ

Tu · ν dS
∣∣∣∣ as ε→ 0 .

Hence it follows from equation (2.47) that

∫
∂Ωε

Tu · ν ds ∼ cos γ1|∂Ω1|+ cos γ2|∂Ω2|. (2.50)

Substituting equations (2.31) and (2.33) into equation (2.50) yields

∫
∂Ωε

Tu · ν ds ∼ cos γ1

∫ ε

0

√
1 + f

′2
1 (x) dx+ cos γ2

∫ ε

0

√
1 + f

′2
2 (x) dx , (2.51)

=

∫ ε

0

[
cos γ1

√
1 + f

′2
1 (x) + cos γ2

√
1 + f

′2
2 (x)

]
dx . (2.52)

Using Taylor series and equations (2.6)-(2.9),

∫
∂Ωε

Tu · ν ds ∼
∫ ε

0

[
cos γ1

(
1 +

1

2
f
′2
1 (x)

)
+ cos γ2

(
1 +

1

2
f
′2
2 (x)

)]
dx , (2.53)

∼
∫ ε

0

(cos γ1 + cos γ2) dx . (2.54)

Substituting this result into equation (2.46) gives

∫ ε

0

cos γ1 + cos γ2 dx ∼
∫ ε

0

(f1(x)− f2(x)) v(x)dx .
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Since ε is an arbitrarily chosen small constant, it follows that

cos γ1 + cos γ2 ∼ (f1(x)− f2(x)) v(x) ,

cos γ1 + cos γ2

f1(x)− f2(x)
∼ v(x) . (2.55)

Hence on recalling equation (2.44), we postulate the leading order of the asymptotic

solution to the capillary BVP in Ω to be

cos γ1 + cos γ2

f1(x)− f2(x)
. (2.56)

Note: The analysis leading to equation (2.56) is heuristic in nature.

We now give a proof using the comparison principle to show that this approximation

does in fact have the correct asymptotic order. We now give a formal statement of the

result.

Theorem 2.2 (Growth Order of a capillary surface near a cusp) Let u(x, y) be

a solution of the capillary BVP in Ω:

∇ · Tu = u in Ω , (2.57)

ν · Tu = cos γ1 on Γ1 , (2.58)

ν · Tu = cos γ2 on Γ2 . (2.59)
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If f1(x) and f2(x) as defined in equations (2.4) and (2.5) satisfy

f1(x)− f2(x) = o(f ′1(x)− f ′2(x)) as x→ 0 , (2.60)

f ′′1 (x)− f ′′2 (x) = o

(
f ′1(x)− f ′2(x)

f1(x)− f2(x)

)
as x→ 0 , (2.61)

f ′′′1 (x)− f ′′′2 (x) = o

(
f ′1(x)− f ′2(x)

(f1(x)− f2(x))2

)
as x→ 0 , (2.62)

then there exist constants A+, A− and x0 < x1 such that

A−
f1(x)− f2(x)

< u(x, y) <
A+

f1(x)− f2(x)
for x < x0, (2.63)

where

A−, A+ > 0 if cos γ1 + cos γ2 > 0 , (2.64)

A−, A+ < 0 if cos γ1 + cos γ2 < 0 . (2.65)

Proof: Introduce new coordinates s and t according to

s := x , (2.66)

t :=
2y − (f1(x) + f2(x))

f1(x)− f2(x)
, (2.67)

then the domain Ω1 as defined in equation (2.3) becomes

Ω1 = {(s, t) : 0 < s < x1 ,−1 < t < 1} . (2.68)

We first assume cos γ1 + cos γ2 > 0. Let

v(s, t;A, g(t), C0) =
A

f1(s)− f2(s)
+ g(t)

f ′1(s)− f ′2(s)

f1(s)− f2(s)
+ C0 , (2.69)
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where A and C0 are constants and g(t) is a C2 function. After lengthy calculations (see

Appendix A.1) we obtain

∇ · Tv − v =

(
4g′′(t)A2

(A2 + 4g′2(t))3/2
− A

)
1

f1(s)− f2(s)
− C0 +R(s, t;A, g(t)) ,

(2.70)

ν · Tv|t=1 =
2g′(1)√

A2 + 4g′2(1)
+ o(1) as s→ 0, (2.71)

ν · Tv|t=−1 = − 2g′(−1)√
A2 + 4g′2(−1)

+ o(1) as s→ 0, (2.72)

where R(s, t) = o
(

1
f1(s)−f2(s)

)
as s → 0. We now aim to construct a super-solution

v+(s, t;A, g(t)) and a sub-solution v−(s, t;A, g(t)) by choosing the constant A and the

function g(t) to satisfy the following conditions:

4g′′(t)A2

(A2 + 4g′2(t))3/2
− A = −KA , (2.73)

2g′(1)√
A2 + 4g′2(1)

= cos γ1 +K , (2.74)

− 2g′(−1)√
A2 + 4g′2(−1)

= cos γ2 +K , (2.75)

where K is an arbitrary constant. Substituting equations (2.73)-(2.75) into equa-

tions (2.70)-(2.72) gives

∇ · Tv − v = − KA

f1(s)− f2(s)
− C0 +R(s, t;A, g(t)) , (2.76)

ν · Tv|t=1 = cos γ1 +K + o(1) as s→ 0, (2.77)

ν · Tv|t=−1 = cos γ2 +K + o(1) as s→ 0. (2.78)
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We can solve equation (2.73) by separation of variables obtaining

4g′(t)

A
√
A2 + 4g′2(t)

= (1−K)t+ k1 , (2.79)

where k1 is an arbitrary constant of integration. Substituting equation (2.79) into

equations (2.74) and (2.75) gives

2g′(1)√
A2 + 4g′2(1)

=
A

2
((1−K)(1) + k1) = cos γ1 +K , (2.80)

2g′(−1)√
A2 + 4g′2(−1)

=
A

2
((1−K)(−1) + k1) = − cos γ2 −K . (2.81)

Solving these two equations for k1 and A gives

A =
cos γ1 + cos γ2 + 2K

1−K , (2.82)

k1 =
(1−K)(cos γ1 − cos γ2)

cos γ1 + cos γ2 + 2K
. (2.83)

In order to have A > 0, we restrict the choice of K by

−cos γ1 + cos γ2

2
< K < 1 . (2.84)

Solving equation (2.79) for g′(s) gives

g′(t) =
A2((1−K)t+ k1)

2
√

4− A2((1−K)t+ k1)2
, (2.85)

g(t) = −
√

4− A2((1−K)t+ k1)2

2(1−K)
+ C1 . (2.86)

Substituting equation (2.82) and (2.83) into equation (2.86) gives

g(t) = −
√

4− ((cos γ1 + cos γ2 + 2K)t+ (cos γ1 − cos γ2))2

2(1−K)
+ C1 (2.87)
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where C1 is an arbitrary constant of integration. Here we choose C1 = 0. In order to

ensure that g(t) is C2 on −1 < t < 1, K must be chosen so that the expression inside

the square root is non-negative, i.e.

((cos γ1 + cos γ2 + 2K)t+ (cos γ1 − cos γ2))2 ≤ 4 , for − 1 ≤ t ≤ 1 . (2.88)

Since (cos γ1 + cos γ2 + 2K)t + (cos γ1 − cos γ2) is linear, if equation (2.88)is satisfied

at both t = −1 and t = 1, then it will be satisfied in the whole domain. Hence the

required restriction on K becomes

|cos γ1 +K| ≤ 1 , (2.89)

|cos γ2 +K| ≤ 1 . (2.90)

Solving these inequalities give

−1− cos γ1 ≤ K ≤ 1− cos γ1 , (2.91)

−1− cos γ2 ≤ K ≤ 1− cos γ2 . (2.92)

Choosing K to satisfy

−min{1− | cos γ1|, 1− | cos γ2|} ≤ K ≤ min{1− | cos γ1|, 1− | cos γ2|} , (2.93)

will satisfy equations (2.91) and (2.92).
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Now define the super-solution as

v+(s, t;C+) =
cos γ1 + cos γ2 + 2K+

1−K+

1

f1(s)− f2(s)

−
√

4− ((cos γ1 + cos γ2 + 2K+)t+ (cos γ1 − cos γ2))2

2(1−K+)

f ′1(s)− f ′2(s)

f1(s)− f2(s)

+C+ , (2.94)

where K+ = min{1− | cos γ1|, 1− | cos γ2|}, and C+ is an unknown positive constant.

It follows from equations (2.76)-(2.78) that

ν · Tv|t=1 = cos γ1 +K+ + o(1) , (2.95)

ν · Tv|t=−1 = cos γ2 +K+ + o(1) , (2.96)

∇ · Tv − v = −K+
cos γ1 + cos γ2 + 2K+

1−K+

1

f1(s)− f2(s)
− C+ +R+(s, t) ,

(2.97)

where R+(s, t) = o
(

1
f1(s)−f2(s)

)
. Note thatR+(s, t) is independent of C+.

Since C+ > 0

∇ · Tv − v < −K+
cos γ1 + cos γ2 + 2K+

1−K+

1

f1(s)− f2(s)
+R+(s, t) .

(2.98)

Since 0 < K+ < 1, there exists a sufficiently small constant s+ such that

ν · Tv|t=1 > cos γ1 = ν · Tu|t=1 for s < s+ , (2.99)

ν · Tv|t=−1 > cos γ2 = ν · Tu|t=−1 for s < s+ , (2.100)

∇ · Tv − v < 0 = ∇ · Tu− u for s < s+ , (2.101)
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where s+ depends on K+ but not on C+. Now, choose C+ sufficiently large so that

v+(s+, t) > u(s+, t) . (2.102)

Thus by the comparison principle (Theorem 1.1),

v+(s, t) > u(s, t) for s < s+. (2.103)

Similarly, we define a sub-solution according to

v−(s, t;C−) =
cos γ1 + cos γ2 + 2K−

1−K−
1

f1(s)− f2(s)

−
√

4− ((cos γ1 + cos γ2 + 2K−)t+ (cos γ1 − cos γ2))2

2(1−K−)

f ′1(s)− f ′2(s)

f1(s)− f2(s)

+C− , (2.104)

where K− = −min{1−| cos γ1|, 1−| cos γ2|, cos γ1+cos γ2
3

}, and C− is an unknown negative

constant. By following a similar argument, we can define s− and C−, and then use the

comparison principle to conclude that

v−(s, t) < u(s, t) for s < s−. (2.105)

Hence

v−(s, t) < u(s, t) < v+(s, t) for s < s0, (2.106)
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where s0 = min{s−, s+}. Since

v−(s, t) ∼ cos γ1 + cos γ2 + 2K−
1−K−

1

f1(s)− f2(s)
as s→ 0 , (2.107)

v+(s, t) ∼ cos γ1 + cos γ2 + 2K+

1−K+

1

f1(s)− f2(s)
as s→ 0 , (2.108)

there exist constants A− and A+ such that

0 <
A−

f1(s)− f2(s)
< v−(s, t) , (2.109)

A+

f1(s)− f2(s)
> v+(s, t) , (2.110)

for sufficiently small s. Thus we conclude there exists a constant x0 such that

0 <
A−

f1(x)− f2(x)
< u(x, y) <

A+

f1(x)− f2(x)
for x < x0. (2.111)

For cos γ1 + cos γ2 < 0, by following a similar procedure, there exist constants Ã− Ã+

and x̃0 such that

− Ã+

f1(x)− f2(x)
< u(x, y) < − Ã−

f1(x)− f2(x)
< 0 for x < x̃0. (2.112)

�

Note: This result strengthens the statement of Scholz, ”The solution rises with the same

order like the order of contact of the two arcs, which form the cusps” ([7], page 234),

since his proof of this statement only applies to the case where f1(x) ∼ xα, f2(x) ∼ xβ,

for α, β > 1, as x→ 0.
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Corollary 2.1 (Formal Asymptotic Expansion) Let

v(x, y) =
cos γ1 + cos γ2

f1(x)− f2(x)

−

√
4−

(
2y−(f1(x)+f2(x))
f1(x)−f2(x)

(cos γ1 + cos γ2) + (cos γ1 − cos γ2)
)2

2

f ′1(x)− f ′2(x)

f1(x)− f2(x)

+C0 , (2.113)

where C0 is an arbitrary constant.

If

f1(x)− f2(x) = o(f ′1(x)− f ′2(x)) as x→ 0 , (2.114)

f ′′1 (x)− f ′′2 (x) = o

(
f ′1(x)− f ′2(x)

f1(x)− f2(x)

)
as x→ 0 , (2.115)

f ′′′1 (x)− f ′′′2 (x) = o

(
f ′1(x)− f ′2(x)

(f1(x)− f2(x))2

)
as x→ 0 , (2.116)

then v(x, y) satisfies the partial differential equation (1.43) in the region Ω1 given by

equation (2.3), and boundary conditions (2.10) (2.11) asymptotically, i.e.

∇ · Tv ∼ v in Ω , (2.117)

ν · Tv ∼ cos γ1 on y = f1(x) , (2.118)

ν · Tv ∼ cos γ2 on y = f2(x) , (2.119)

as x→ 0.

Proof: Immediately follows from the proof of Theorem 2.2, by letting K+ = 0 in

equations (2.95) to (2.97).
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Example 2.2 (Exponential Cusp) Consider a cusp region given by

Ω =
{

(x, y) ∈ R2 : 0 < x <∞, −be− 1
x2 < y < ae−

1
x2

}
. (2.120)

We verify that this type of cusp satisfies conditions (2.60) to (2.62). A straight-forward

calculation with f1(x) = ae−
1
x2 and f2(x) = be−

1
x2 yields

f1(x)− f2(x) = (a+ b)e−
1
x2 , (2.121)

f ′1(x)− f ′2(x) = (a+ b)
2

x3
e−

1
x2 , (2.122)

f ′′1 (x)− f ′′2 (x) = (a+ b)

(
− 6

x4
e−

1
x2 +

4

x6
e−

1
x2

)
, (2.123)

f ′′′1 (x)− f ′′′2 (x) = (a+ b)

(
24

x5
+

36

x8
− 24

x7
+

16

x12

)
e−

1
x2 . (2.124)

It follows that

f ′1(x)− f ′2(x)

f1(x)− f2(x)
=

2

x3
>> 1 , (2.125)

f ′1(x)− f ′2(x)

f1(x)− f2(x)
=

2

x3

>> (a+ b)

(
− 6

x4
+

4

x6

)
e−

1
x2 = f ′′1 (x)− f ′′2 (x) , (2.126)

f ′1(x)− f ′2(x)

(f1(x)− f2(x))2 =
2

(a+ b)x3
e

1
x2

>> (a+ b)

(
24

x5
+

36

x8
− 24

x7
+

16

x12

)
e−

1
x2 = f ′′′1 (x)− f ′′′2 (x) ,

for sufficiently small x. Thus by Theorem 2.2 there exist constants A− and A+ such

that

A− e
1
x2 < u(x, y) < A+ e

1
x2 for x < x0 , (2.127)

for sufficiently small x0. Also by Corollary 2.1, we can find a formal asymptotic expan-
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sion v(x, y) of the form

v(x, y) =
cos γ1 + cos γ2

a+ b
e

1
x2

−

√
4−

(
2y−(a−b)e−

1
x2

(a+b)e
− 1
x2

(cos γ1 + cos γ2) + (cos γ1 − cos γ2)

)2

2

2

x3
.

Note: The leading order is significantly larger than the second order term. Also notice

this type of cusp cannot be approximated using the result of Scholz [7].



Chapter 3

Capillary Surface near a Circular

Cusp

In this chapter we consider a capillary surface near a specific cusp named the “Circular

Cusp”. We define a circular cusp as a domain, which is bounded by two circular

cylindrical walls tangent to each other or one cylindrical wall and one planar wall

tangent to each other. There are three possible types of domain given as

Ω1 =

{
(x, y) ∈ R2 \

(
B 1

2a

(
0,

1

2a

)
∪B− 1

2b

(
0,

1

2b

))}
for b < 0 , (3.1)

Ω2 =

{
(x, y) ∈ (R2 : y > 0

) \B 1
2a

(
0,

1

2a

)}
for b = 0 , (3.2)

Ω3 =

{
(x, y) ∈ B| 1

2b |
(

0,
1

2b

)
\B 1

2a

(
0,

1

2a

)}
for b > 0 , (3.3)

where a > 0, a > b (see Figure 3.1).

Although this is a stronger restriction on the shape of the cusp, circular cusps are likely

to be the most common shape in engineering applications.

41
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Ω1

1
2a

1
2b

0 x

y

1
2a

0 x

y

Ω2

1
2a

1
2b

0

y

x

Ω3

Figure 3.1: A circular cusp Ω
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3.1 Tangent Cylinder Coordinate System

We now introduce the coordinate system that is most “natural” to work with in a

circular cusp region. This coordinate system is the Tangent Cylinder coordinate system

([5], page 56). New coordinates p and q are defined by

p :=
x

x2 + y2
, (3.4)

q :=
y

x2 + y2
. (3.5)

The inverse of these inverse of these equations are

x =
p

p2 + q2
, (3.6)

y =
q

p2 + q2
. (3.7)

The region Ω’s in equations (3.1)-(3.3) is now given by

Ω =
{

(p, q) ∈ R2 : b < q < a, 0 < p <∞} , (3.8)

with a > 0.

Note: The cusp at (x, y) = (0, 0) is mapped to p =∞. Thus in this coordinate system,

we use an asymptotic series as p → ∞ to perform the asymptotic analysis near the

cusp.

The Capillary BVP in Tangent Cylinder Coordinate System

Since the tangent cylinder coordinate system is on orthogonal curvilinear coordinate
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y

x

p = constant > 0

q = constant > 0

p = constant < 0

q = constant < 0

Figure 3.2: Coordinate Curves of Tangent Cylinder Coordinate System

system, we can transform the gradient and divergence operators as follows:

∇f =
1

h1

∂f

∂p
p̂+

1

h2

∂f

∂q
q̂ , (3.9)

∇ · ~F =
1

h1h2

(
∂

∂p
Fph2 +

∂

∂q
Fqh1

)
, (3.10)

where

h1 =
1

|∇p| =
1

p2 + q2
, (3.11)

h2 =
1

|∇q| =
1

p2 + q2
. (3.12)

It follows that

Tu =
∇u√

1 + |∇u|2 , (3.13)

=
(p2 + q2) (upp̂+ uq q̂)√
1 + (p2 + q2)2

(
u2
p + u2

q

) . (3.14)

Hence the partial differential equation (1.43) and the boundary condition (1.44) for the

region (3.8) becomes
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∇ · Tu = (p2 + q2)2 ∂

∂p

up√
1 + (p2 + q2)2

(
u2
p + u2

q

)
+(p2 + q2)2 ∂

∂q

uq√
1 + (p2 + q2)2

(
u2
p + u2

q

) = u in Ω ,

(3.15)

q̂ · Tu|q=a =
(p2 + q2)uq√

1 + (p2 + q2)2
(
u2
p + u2

q

)
∣∣∣∣∣∣
q=a

= cos γ1 , (3.16)

− q̂ · Tu|q=b = − (p2 + q2)uq√
1 + (p2 + q2)2

(
u2
p + u2

q

)
∣∣∣∣∣∣
q=b

= cos γ2 . (3.17)

In the remainder of this chapter we will consider the capillary BVP for a circular cusp, in

terms of tangent cylinder coordinates p and q. The domain Ω is given by equation (3.8),

PDE has the form (3.15), and BCs are given by equations (3.16)-(3.17). We will refer

to equations (3.15)-(3.17) as the capillary BVP in a circular cusp region.

3.2 Upper Bound for a Capillary Surface near a

Circular Cusp

First we obtain an upper bound for a capillary surface in a circular cusp region using

Theorem 1.2.

Theorem 3.1 (Upper Bound for a Capillary Surface near a Circular Cusp)

Let u(x,y) be a solution of the capillary BVP in a circular cusp region.
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If b ≥ 1
2
√

2+ 1
a

, then

u(p, q) < 4
ab+ p2

a− b +
1

2

a− b
ab− p2

. (3.18)

If b < 1
2
√

2+ 1
a

, then

u(p, q) <

 4ab+p
2

a−b + 1
2
a−b
ab−p2 , for p >

√
a−b
2
√

2
− ab ,

2
√

2 , otherwise .
(3.19)

Proof: First consider the case b 6= 0. Use the law of cosines for the triangle described

in Figure 3.3 (refer to Appendix A.2 for the justification of this figure),

(
1

2a
− 1

2b

)2

+

(
δ +

1

2a

)2

− 2

(
1

2a
− 1

2b

)(
δ +

1

2a

)
cos 2φ =

(
δ − 1

2b

)2

,

(3.20)

where

φ = tan−1 a

p
. (3.21)

From trigonometric identities and geometry we obtain

cos 2φ = cos2 φ− sin2 φ , (3.22)

cosφ =
p√

a2 + p2
, (3.23)

sinφ =
a√

p2 + q2
, (3.24)

cos 2φ =
p2 − a2

a2 + p2
. (3.25)
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Ω1

1
2a

1
2b

0

φ
δ

φ

B δ

x1
2p

1
2a

1
2b

0

δ
φ

φ

B δ

x

y

1
2p

Figure 3.3: A Disk of Radius δ in Region Ω: b 6= 0

Substituting equation (3.25) into equation (3.20) and solving for δ gives

δ(p) =
1

2

a− b
ab+ p2

, (3.26)

for

p >


√−ab, for b < 0 ,

0, for b > 0 .

(3.27)

Now consider the case b = 0. Applying the Pythagorean Theorem to the triangle

described in Figure 3.4 gives

(
1

2a
+ δ

)2

=

(
1

2a
− δ
)2

+

(
1

p

)2

, (3.28)

⇒ δ(p) =
a

2p2
. (3.29)
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1
2a

0

δ

B δ

x

y

Ω2

1
2p

Figure 3.4: A Disk of Radius δ in Region Ω: b = 0

Hence we can combine equations (3.26) and (3.27) with equation (3.29) to obtain

δ(p) =
1

2

a− b
ab+ p2

for p >


√−ab, for b < 0 ,

0, for b ≥ 0 .

(3.30)

It follows from Theorem 1.2 that

u(p, q) <
2

δ
+ δ , (3.31)

= 4
ab+ p2

a− b +
1

2

a− b
ab− p2

. (3.32)

By Corollary 1.1 if b ≥ 1
2
√

2+ 1
a

, then

u(p, q) < 4
ab+ p2

a− b +
1

2

a− b
ab− p2

. (3.33)
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If b < 1
2
√

2+ 1
a

, then

u(p, q) <

 4ab+p
2

a−b + 1
2
a−b
ab−p2 , for p >

√
a−b
2
√

2
− ab ,

2
√

2 , otherwise .

�

Note 1: Similarly we can find a lower bound for the capillary BVP in a circular cusp

region.

Note 2: The asymptotic order of this upper bound can be written as

4
ab+ p2

a− b +
1

2

a− b
ab− p2

∼ 4p2

a− b as p→∞ , (3.34)

= O
(
p2
)

= O

(
1

x2

)
. (3.35)

This result is consistent with Theorem 2.2.

Note 3: Unlike Theorem 2.2, this result can be applied globally even in a region away

from the cusp.

3.3 Determining the Possible Leading Order Term

In this section, we will present a new way to find a possible leading order term to the

asymptotic solution to the capillary BVP in a circular cusp region. The argument is

heuristic and serves as motivation. In section 3.5.5 we will prove the validity of this

asymptotic solution. Let u(p, q) be a a solution to the capillary BVP in a circular

cusp region. Without loss of generality, assume cos γ1 + cos γ2 > 0. It follows from

Theorem 2.1 that the solution goes off to infinity at the cusp. Hence we assume that
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|∇u|2 becomes significantly larger than 1 near the cusp, i.e.

(p2 + q2)2
(
u2
p + u2

q

)
>> 1 for sufficiently large p . (3.36)

The idea is to approximate u(p, q) by v(p, q) defined to be a solution of the following

PDE and BCs:

(p2 + q2)2

 ∂

∂p

vp√
(p2 + q2)2

(
v2
p + v2

q

) +
∂

∂q

vq√
(p2 + q2)2

(
v2
p + v2

q

)
 = v(p, q) ,

(3.37)

vq√
v2
p + v2

q

∣∣∣∣∣
q=a

= cos γ1 , (3.38)

− vq√
v2
p + v2

q

∣∣∣∣∣
q=b

= cos γ2 . (3.39)

This PDE and BCs are obtained from equations (3.15), (3.16) and (3.17) by dropping

the additive term 1 in the denominator. We cancel the term p2 + q2 in the numerator

and denominator of the BCs. We shall refer this BVP as the approximated BVP in

a circular cusp region. Based on the assumption (3.36), we expect v(p, q) will satisfy

the partial differential equation (3.15) and the boundary conditions (3.16) and (3.17)

asymptotically in the region Ω.

Note: The uniqueness of this BVP can be proven in a very similar way as the uniqueness

of the capillary BVP (refer to Finn and Hwang [2]).

In order to determine v(p, q) we now make the key assumption that vq√
v2p+v2q

is

independent of p, i.e.

vq√
v2
p + v2

q

= g(q) , (3.40)
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where g(q) ∈ C2, g(a) = cos γ1 and g(b) = − cos γ2. Assuming vp > 0, we solve

equation (3.40) to obtain

√
1− g2(q)

g(q)
vq = vp . (3.41)

By the method of characteristics, we can solve this partial differential equation,

v(p, q) = f

(
p+

∫ q

b

g(r)√
1− g2(r)

dr +K

)
, (3.42)

where f(·) is an arbitrary function of one variable, and K is an arbitrary constant, kept

for convenience. Differentiating equation (3.42) with respect to p and q gives

vp(p, q) = f ′ , (3.43)

vq(p, q) = f ′
g(q)√

1− g2(q)
. (3.44)

Substituting equations (3.43) and (3.44) into equation (3.37), after some simplification

we get

v(p, q) = −2p
√

1− g2(q) + (p2 + q2)g′(q)− 2qg(q) . (3.45)

Differentiate equation (3.45) with respect to p and q:

vp(p, q) = −2
√

1− g2(q) + 2pg′(q) , (3.46)

vq(p, q) =
2pg(q)g′(q)√

1− g2(q)
+ (p2 + q2)g′′(q)− 2g(q) . (3.47)

Equating equations (3.43) and (3.46) gives

f ′ = −2
√

1− g2(q) + 2pg′(q) . (3.48)
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Substitute equation (3.48) into equation (3.44) and equating with equation (3.47) gives

2pg(q)g′(q)√
1− g2(q)

+ (p2 + q2)g′′(q)− 2g(q) =
(
−2
√

1− g2(q) + 2pg′(q)
) g(q)√

1− g2(q)
,

which reduces to

g′′(q) = 0 . (3.49)

By solving equation (3.49) with the boundary conditions g(a) = cos γ1 and g(b) =

− cos γ2, we get

g(q) =
cos γ1 + cos γ2

a− b
(
q − b cos γ1 + a cos γ2

cos γ1 + cos γ2

)
. (3.50)

For simplicity, introduce new constants

A =
cos γ1 + cos γ2

a− b , (3.51)

q0 =
b cos γ1 + a cos γ2

cos γ1 + cos γ2

, (3.52)

so that

g(q) = A(q − q0) . (3.53)

By substituting equation (3.53) into equation (3.45) we get

v(p, q) = Ap2 − 2p
√

1− A2(q − q0)2 − A(q − q0)2 + Aq2
0 . (3.54)

We conjecture that v(p, q) as given by equation (3.54) is the leading order term of the

asymptotic solution as p→∞ of the capillary BVP in a circular cusp region. We will
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prove this conjecture in section 3.5.5.

3.4 Asymptotic Order of the Term After the Lead-

ing Order

In order to construct a comparison function to justify the possible leading order term

equation (3.54) found in section 3.3, we need to find the asymptotic order of the term

after the leading order term. So we let u(p, q) = v(p, q) +w(p, q), where v(p, q) is given

by equation (3.54), and substitute this into the original capillary BVP in a circular

cusp region and aim to find the asymptotic order of w(p, q) as p→∞.

First approximate the differential operator T (equation (3.14)) using a binomial

series expansion,

Tu =
∇u√

1 + |∇u|2 (3.55)

=
(p2 + q2) (upp̂+ uq q̂)√
1 + (p2 + q2)2

(
u2
p + u2

q

) ,
=

upp̂+ uq q̂√
u2
p + u2

q

·
1− 1

2

(
1

(p2 + q2)2
(
u2
p + u2

q

))+
3

4 · 2

(
1

(p2 + q2)2
(
u2
p + u2

q

))2

+ ...

 .

(3.56)

On account of the assumption in equation (3.36), this series will converge for sufficiently

large p.

We can approximate the boundary conditions (3.16) and (3.17) as follows:

q̂ · Tu ∼ uq√
u2
p + u2

q

(
1− 1

2

(
1

(p2 + q2)2
(
u2
p + u2

q

))) . (3.57)
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Now we let

u(p, q) = v(p, q) + w(p, q) , (3.58)

where we assume w(p, q) = o(v(p, q)) as p → ∞. Substituting equation (3.58) into

equation (3.57) gives

q̂ · Tu ∼ vq + wq√
(vp + vp)2 + (vq + wq)2

(
1− 1

2

1

(p2 + q2)2
(
v2
p + v2

q

)) , (3.59)

∼ vq√
v2
p + v2

q

(
1− wpvp + wqvq

v2
p + v2

q

)(
1− 1

2

1

(p2 + q2)2
(
v2
p + v2

q

)) . (3.60)

Substituting equations (3.40) and (3.42) into equation (3.60) gives

q̂ · Tu ∼ g(q)

1−

(
wp + wq

g(q)√
1−g2(q)

)
f ′(ξ)(

1 + g2(q)
1−g2(q)

)
f ′(ξ)2

− 1

2(p2 + q2)2
(

1 + g2(q)
1−g2(q)

)
f ′(ξ)2

 ,

(3.61)

= g(q)

1−

(
wp + wq

g(q)√
1−g2(q)

)
f ′(ξ) + 1

2(p2+q2)2(
1 + g2(q)

1−g2(q)

)
f ′(ξ)2

 . (3.62)
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We now impose the BCs (equations (3.16) and (3.17)) and get

q̂ · Tu|q=a = cos γ1 (3.63)

∼ cos γ1

1−

(
wp + wq

g(a)√
1−g2(a)

)
f ′(ξ) + 1

2(p2+a2)2(
1 + g2(a)

1−g2(a)

)
f ′(ξ)2

 .

−q̂ · Tu|q=b = cos γ2 (3.64)

∼ cos γ2

1−

(
wp + wq

g(b)√
1−g2(b)

)
f ′(ξ) + 1

2(p2+b2)2(
1 + g2(b)

1−g2(b)

)
f ′(ξ)2

 .

(3.65)

In order to ensure that u(p, q) = v(p, q) + w(p, q) to satisfy the BCs, we require

(
wp + wq

g(a)√
1− g2(a)

)
f ′(ξ) ∼ − 1

2(p2 + a2)2
, (3.66)(

wp + wq
g(b)√

1− g2(b)

)
f ′(ξ) ∼ − 1

2(p2 + b2)2
. (3.67)

We now assume w(p, q) is in the form

w(p, q) ∼ Kpα +H(q)pα−1 p→∞ , (3.68)

where K is a constant and H(q) is a function of q, then it is suitable to assume

wp ∼ αKpα−1 (3.69)

wq ∼ H ′(q)pα−1 as p→∞ . (3.70)
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Substituting equations (3.48), (3.69) and (3.70) into equations (3.66) and (3.67)

2g′(q)

(
αK +H ′(q)

g(q)√
1− g2(q)

)
pα ∼ 1

2(p2 + q2)2
, (3.71)

⇒ α = −4 . (3.72)

Hence we postulate that w(p, q) needs to be at least of order O (p−4) in order to satisfy

the BCs.

Similarly we can asymptotically approximate the capillary PDE in a circular cusp region

(equation (3.15)), by assuming the differentiability of each term,

(
∂

∂p

up√
u2
p + u2

q

)
+

(
∂

∂q

uq√
u2
p + u2

q

)

−
((

∂

∂p

up√
u2
p + u2

q

)
+

(
∂

∂q

uq√
u2
p + u2

q

))
1

2

(
1

(p2 + q2)2
(
u2
p + u2

q

))

+
up√
u2
p + u2

q

(
−1

2

∂

∂p

(
1

(p2 + q2)2
(
u2
p + u2

q

)))

+
uq√
u2
p + u2

q

(
−1

2

∂

∂q

(
1

(p2 + q2)2
(
u2
p + u2

q

)))
∼ u

(p2 + q2)2
. (3.73)

Substituting equation (3.58) into equation (3.73), and assuming wp = o (vp) and wq =

o (vq), as p→∞, we obtain

up√
u2
p + u2

q

=
vp√
v2
p + v2

q

(
1− wpvp + wqvq

v2
p + v2

q

+ ...

)
. (3.74)
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Using above and expanding equation (3.58) we get

∂

∂p

(
vp√
v2
p + v2

q

(
1− wpvp + wqvq

v2
p + v2

q

))
+

∂

∂q

(
vq√
v2
p + v2

q

(
1− wpvp + wqvq

v2
p + v2

q

))

−
((

∂

∂p

vp√
v2
p + v2

q

)
+

(
∂

∂q

vq√
v2
p + v2

q

))
1

2

(
1

(p2 + q2)2
(
v2
p + v2

q

))

+
vp√
v2
p + v2

q

(
−1

2

∂

∂p

(
1

(p2 + q2)2
(
v2
p + v2

q

)))

+
vq√
v2
p + v2

q

(
−1

2

∂

∂q

(
1

(p2 + q2)2
(
v2
p + v2

q

)))
∼ v + w

(p2 + q2)2
as p→∞. (3.75)

After some more calculations and using equations (3.37) and (3.54), equation (3.75)

becomes

− ∂

∂p

 2Ap(
4A2

1−A2(q−q0)2
p2
)3/2

(
wp2Ap+ wq

2A2(q − q0)√
1− A2(q − q0)2

p

)
− ∂

∂q

 2A2(q−q0)√
1−A2(q−q0)2

p(
4A2

1−A2(q−q0)2
p2
)3/2

(
wp2Ap+ wq

2A2(q − q0)√
1− A2(q − q0)2

p

)
−
(

Ap2

(p2 + q2)2

)
1

2

 1

(p2 + q2)2
(

4A2

1−A2(q−q0)2
p2
)


+
√

1− A2(q − q0)2

(
−1

2

∂

∂p

(
1− A2(q − q0)2

(p2 + q2)2 4A2

1−A2(q−q0)2
p2

))

+A(q − q0)

(
−1

2

∂

∂q

(
1− A2(q − q0)2

(p2 + q2)2 4A2

1−A2(q−q0)2
p2

))
∼ w

(p2 + q2)2
as p→∞. (3.76)
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Following from equation (3.68), we assume

wpp ∼ α(α− 1)Kpα−2 , (3.77)

wpq ∼ αH ′(q)pα−2 , (3.78)

wqq ∼ H ′′(q)pα−1 as p→∞ . (3.79)

Substituting equations (3.69), (3.70), (3.77)-(3.79) into equation (3.76), we obtain

− ∂

∂q

(
q − q0

4A2

1−A2(q−q0)2

(
2AαK +H ′(q)

2A2(q − q0)√
1− A2(q − q0)2

)
pα−2

)

+A(q − q0)

(
−1

2

∂

∂q

(
1

4A2(p2 + q2)2p2

))
∼ Kpα

(p2 + q2)2
as p→∞. (3.80)

After some simplification of equation (3.80) we obtain α = −4. Hence in order to

ensure u(p, q) = v(p, q) + w(p, q) to be the solution of the capillary BVP in a circular

cusp region, w(p, q) needs to be at least of order

O(w) = O
(
p−4
)
. (3.81)

The preceding heuristic calculations suggest that

u(p, q) ∼ Ap2 − 2p
√

1− A2(q − q0)2 − A(q − q0)2 + Aq2
0 +Kp−4 +H(q)p−5

(3.82)

is the asymptotic solution for the capillary BVP in a circular cusp region. It is of

considerable interest that the coefficients of p−1, p−2 and p−3 are zero. In the next

section, we prove that equation (3.82) is in fact the correct asymptotic solution.
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3.5 The Complete Asymptotic Series

In this section we derive the complete asymptotic series for the capillary BVP in a

circular cusp region.

3.5.1 Statement of the Main Theorem

We consider the capillary BVP in a circular cusp region as given by equations (3.15)-

(3.17). The terms un(p, q) of the asymptotic series for this problem defined as follows:

un(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0

+
n∑
i=1

(
Kip

1−i + fi(q)p
−i) , (3.83)

with

A =
cos γ1 + cos γ2

a− b , (3.84)

q0 =
b cos γ1 + a cos γ2

cos γ1 + cos γ2

. (3.85)

Here Ki and fi(q) are determined recursively according to

Ki =

∫ a
b
gi(s)ds− (hi(a)− hi(b))

a− b , (3.86)

fi(q) = −Ki(1− i)
√

1− A2(q − q0)2

A

−
∫ q

q0

2A
(
hi(b)−

∫ t
b
gi(s) ds+Ki (t− b)

)
(1− A2(t− q0)2)3/2

dt , (3.87)
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where gi(q), hi(a) and hi(b) are defined by

gi(q) = lim
p→∞

∇ · Tui−1 − ui−1

p−i+1
, (3.88)

hi(a) = lim
p→∞

q̂ · Tui−1|q=a − cos γ1

p−i−1
, (3.89)

hi(b) = lim
p→∞

q̂ · Tui−1|q=b + cos γ2

p−i−1
. (3.90)

Theorem 3.2 (The Complete Asymptotic Series) Let u(p, q) be the solution of

the capillary BVP in a circular cusp region in tangent cylinder coordinates p and q.

Then there exist constants Ln+1 and pn+1 such that

∣∣u(p, q)− (un(p, q)− fn(q)p−n
)∣∣ < Ln+1

pn
, for p > pn+1 . (3.91)

3.5.2 The Formal Asymptotic Series

In this section we derive the series un(p, q) as defined in equation (3.83).

Lemma 3.1 (The Formal Asymptotic Series) The function un(p, q) defined in equa-

tion (3.83) constitute a formal asymptotic series of the capillary BVP in a circular cusp

region, i.e.

∇ · Tun = un +O
(
p−n
)
, (3.92)

ν · Tun|q=a = cos γ1 +O
(
p−n−2

)
, (3.93)

ν · Tun|q=b = cos γ2 +O
(
p−n−2

)
, (3.94)

for sufficiently large p, with n ∈ N.
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Proof: Prove this by mathematical induction.

Base case (u0):

u0(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 (3.95)

It is immediately obvious that u0(p, q) is C∞ function in Ω. It follows∗ from the

calculation of Appendix A.3 that

q̂ · Tu0 = A(q − q0)− (q − q0)(1− A2(q − q0)2)

8Ap6
+O(p−7) , (3.96)

∇ · Tu0 = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 −

1− 3A2(q − q0)2

8Ap4

+O(p−5) , (3.97)

for sufficiently large p. Evaluating equation (3.96) at q = a and q = b gives

ν · Tu0|q=a = q̂ · Tu0|q=a = cos γ1 − cos γ1(1− cos2 γ1)

8A2p6
+O(p−7) , (3.98)

ν · Tu0|q=b = − q̂ · Tu0|q=b = cos γ2 − cos γ2(1− cos2 γ2)

8A2p6
+O(p−7) . (3.99)

It follows immediately from equation (3.97)-(3.99) that (3.92)-(3.94) satisfies for n = 0.

Inductive step (um):

We are given that

um−1(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0

+
m−1∑
i=1

(
Kip

1−i + fi(q)p
−i) , (3.100)

∗Note u0(p, q) is equal to v(p, q) (in equation (A.44)) evaluated at L1 = 0 and h(q) = 0.
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with m = 1, 2, 3, 4, ..., and

∇ · Tum−1 = um−1 +O
(
p−m+1

)
, (3.101)

ν · Tum−1|q=a = cos γ1 +O
(
p−m−1

)
, (3.102)

ν · Tum−1|q=b = cos γ2 +O
(
p−m−1

)
, (3.103)

for sufficiently large p. The big O terms of equations (3.101)-(3.103) are power series

in p. It follows from this that the following limits exist:

gm(q) = lim
p→∞

∇ · Tum−1 − um−1

p−m+1
, (3.104)

hm(a) = lim
p→∞

q̂ · Tum−1|q=a − cos γ1

p−m−1
, (3.105)

hm(b) = lim
p→∞

q̂ · Tum−1|q=b + cos γ2

p−m−1
. (3.106)

Also it is given that um−1 is C∞ following from this it can be shown that gm(q) is C∞

function.† Now consider um defined as

um = um−1 +Kmp
1−m + fm(q)p−m . (3.107)

Assume fm(q) to be a C∞ function and Km is a constant.

We now aim to choose a constant Km and a function fm(q) such that to satisfy

lim
p→∞

∇ · Tum − um
p−m+1

= 0 , (3.108)

lim
p→∞

q̂ · Tum|q=a − cos γ1

p−m−1
= 0 , (3.109)

lim
p→∞

q̂ · Tum|q=b + cos γ2

p−m−1
= 0 . (3.110)

†This statement can be justified by expanding ∇ · Tum−1 in series. Then show that with all the
differentiability conditions, we can expand ∇ · Tum−1 in a power series in p.
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Firstly, expand Tum asymptotically. Applying ∇ to equation (3.107) and using the

definition of T (equation (1.42)), gives

Tum =
∇um√

1 + |∇um|2
(3.111)

= Tum−1

√
1 + |∇um−1|2√
1 + |∇um|2

+
∇ (Kmp

1−m + fm(q)p−m)√
1 + |∇um|2

(3.112)

We apply ∇ to equation (3.107) and rearrange to obtain

√
1 + |∇um−1|2√
1 + |∇um|2

=

√
1 + |∇um−1|2

1 + |∇um−1 +∇ (Kmp1−m + fm(q)p−m)|2

=

√√√√ 1
1+|∇um−1|2+2∇(Kmp1−m+fm(q)p−m)·∇um−1+|∇(Kmp1−m+fm(q)p−m)|2

1+|∇um−1|2

=
1√

1 + 2∇(Kmp1−m+fm(q)p−m)·∇um−1+|∇(Kmp1−m+fm(q)p−m)|2

1+|∇um−1|2

. (3.113)

Applying the binomial series expansion‡ to equation (3.113) gives

√
1 + |∇um−1|2√
1 + |∇um|2

= 1− 1

2

(
2∇ (Kmp

1−m + fm(q)p−m) · ∇um−1 + |∇ (Kmp
1−m + fm(q)p−m)|2

1 + |∇um−1|2
)

+O(p−2m−2) . (3.114)

Since

∣∣∣∣∣2∇ (Kmp
1−m + fm(q)p−m) · ∇um−1 + |∇ (Kmp

1−m + fm(q)p−m)|2
1 + |∇um−1|2

∣∣∣∣∣ < 1 (3.115)

‡ 1√
1+ξ

= 1− 1
2ξ +O

(
ξ2
)

for |ξ| < 1.
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for sufficiently large p, this binomial series converges for sufficiently large p. Also we

can show that

∣∣∇ (Kmp
1−m + fm(q)p−m

)∣∣2 << ∣∣2∇ (Kmp
1−m + fm(q)p−m

) · ∇um−1

∣∣ (3.116)

for sufficiently large p. Thus by neglecting |∇ (Kmp
1−m + fm(q)p−m)|2 in equation (3.114)

we obtain

√
1 + |∇um−1|2√
1 + |∇um|2

= 1− 1

2

(
2∇ (Kmp

1−m + fm(q)p−m) · ∇um−1

1 + |∇um−1|2
)

+O(p−2m−2) .

(3.117)

Again using binomial series expansion on 1
1+|∇um|2 , we obtain

√
1 + |∇um−1|2√
1 + |∇um|2

= 1− 1

2

(
2∇ (Kmp

1−m + fm(q)p−m) · ∇um−1

|∇um−1|2
(

1− 1

|∇um−1|2 + ...

))
+O

(
p−2m−2

)
. (3.118)

Since

1

|∇um−1| < 1 (3.119)

for sufficiently large p, this series converges for sufficiently large p. Substitute equa-

tion (3.118) into equation (3.112) gives

Tum = Tum−1

(
1− 1

2

(
2∇ (Kmp

1−m + fm(q)p−m) · ∇um−1

|∇um−1|2
(

1− 1

|∇um−1|2
)))

+
∇ (Kmp

1−m + fm(q)p−m)√
1 + |∇um|2

+O
(
p−2m−2

)
. (3.120)
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Substituting equation (3.100) into equation (3.120) and simplifying it gives

Tum = Tum−1

1−
2AKm(1−m) + 2A2(q−q0)f ′(q)√

1−A2(q−q0)2

4A2

1−A2(q−q0)2

p−m−1


+

(Km(1−m)) p̂+ (f ′m(q)) q̂
2A√

1−A2(q−q0)2

p−m−1 +O
(
p−2m−2

)
. (3.121)

Equation (3.121) is the desired asymptotic expansion for Tum. It follows immediately

from the binomial expansion and definition of um (equation (3.100)) that we can write

Tum as an asymptotic series in a form

Tum =
∞∑
0

~F (q)p−i . (3.122)

Now consider the left hand side of the capillary PDE (3.15), i.e. ∇ · Tum. Given the

differentiability of each term in a binomial series, we can differentiate the binomial

series while maintaining the convergence of the series. As we have extensively used

the idea of binomial series expansion to derive equation (3.121), we can differentiate

it while maintaining the asymptotic relation.§ Hence it follows from equation (3.121)

that

∇ · Tum = ∇ ·

Tum−1

1−
2AKm(1−m) + 2A2(q−q0)f ′(q)√

1−A2(q−q0)2

4A2

1−A2(q−q0)2

p−m−1




+∇ ·
(Km(1−m)) p̂+ (f ′m(q)) q̂

2A√
1−A2(q−q0)2

p−m−1 +O
(
p−2m−2

) . (3.123)

§Because of the differentiability of f(q) and um−1, each term of the binomial series we have used
is differentiable.
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Simplifying equation (3.123) gives

∇ · Tum = ∇ · Tum−1

(
1−Gmp

−m−1
)− (Tum−1 · q̂) ∂

∂q
Gmp

−m+1

+
∂

∂q

f ′m(q)
2A√

1−A2(q−q0)2

p−m+1 +O(p−m) , (3.124)

where

Gm(q) =
Km(1−m) (1− A2(q − q0)2)

2A
+
f ′m(q)(q − q0)

√
1− A2(q − q0)2

2
. (3.125)

It follows from equation (3.96) and (3.121) that

q̂ · Tum−1 = A(q − q0) +O
(
p−6
)
. (3.126)

Substituting equation (3.126) into equation (3.124) gives

∇ · Tum = ∇ · Tum−1

(
1−Gmp

−m−1
)− A(q − q0)

∂

∂q
Gmp

−m+1

+
∂

∂q

f ′m(q)
2A√

1−A2(q−q0)2

p−m+1 +O(p−m) , (3.127)

Imposing equation (3.108) gives an equality

lim
p→∞

∇ · Tum − um
p−m+1

= lim
p→∞

(∇ · Tum−1

p−m+1

(
1−Gmp

−m−1
)− A(q − q0)

∂

∂q
Gm

)

+ lim
p→∞

 ∂

∂q

f ′m(q)
2A√

1−A2(q−q0)2

+O(p−1)− um
p−m+1


= 0 . (3.128)
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Substituting equation (3.104) into equation (3.128) and expanding it gives

lim
p→∞

((
gm(q) +

um−1

p−m+1
− um−1Gmp

−2 − gm(q)Gmp
−m−1

)
− A(q − q0)

∂

∂q
Gm

)

+ lim
p→∞

 ∂

∂q

f ′m(q)
2A√

1−A2(q−q0)2

+O(p−1)− um−1

p−m+1
−Km


= 0 . (3.129)

Following from equation (3.100) we have um−1(p, q) = Ap2 + O(p). Substituting this

into equation (3.129) and evaluating the limit gives

gm(q)−Km − AGm − A(q − q0)
∂

∂q
Gm +

∂

∂q

 f ′m(q)
2A√

1−A2(q−q0)2

 = 0 . (3.130)

We rewrite equation (3.130) in a form

gm(q)−Km − ∂

∂q

(
A(q − q0)Gm − f ′m(q)

√
1− A2(q − q0)2

2A

)
= 0 . (3.131)

Substituting equation (3.125) back into equation (3.131) gives

gm(q)−Km

=
∂

∂q

(
Km(1−m)A(q − q0)(1− A2(q − q0)2)

2A
− f ′m(q)(1− A2(q − q0)2)3/2

2A

)
.

(3.132)

Equation (3.132) is a first order ODE of f ′m(q).

Now consider the boundary conditions, using equation (3.121) we can asymptotically
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expand q̂ · Tum as

q̂ · Tum = q̂ · Tum−1

1−
2AKm(1−m) + 2A2(q−q0)f ′m(q)√

1−A2(q−q0)2

4A2

1−A2(q−q0)2

p−m−1


+

f ′m(q)
2A√

1−A2(q−q0)2

p−m−1 +O
(
p−2m−2

)
. (3.133)

We now impose equation (3.109) and obtain an equality such as

lim
p→∞

q̂ · Tum|q=a − cos γ1

p−m−1

= lim
p→∞

 q̂ · Tum−1|q=a
p−m−1

1−
2AKm(1−m) + 2 cos2 γ1f ′m(a)√

1−cos2 γ1

4A2

1−cos2 γ1

p−m−1




+ lim
p→∞

 f ′m(a)
2A√

1−cos2 γ1

+O
(
p−1
)− cos γ1

p−m−1


= 0 . (3.134)

Substituting equation (3.105) into equation (3.134) we obtain

lim
p→∞

( cos γ1

p−m−1
+ hm(a)

)1−
2AKm(1−m) + 2 cos2 γ1f ′m(a)√

1−cos2 γ1

4A2

1−cos2 γ1

p−m−1




+ lim
p→∞

 f ′m(a)
2A√

1−cos2 γ1

+O
(
p−1
)− cos γ1

p−m−1


= 0 . (3.135)

By evaluating the limit of equation (3.135) we obtain

hm(a)− cos γ1

2AKm(1−m) + 2 cos2 γ1f ′m(a)√
1−cos2 γ1

4A2

1−cos2 γ1

+
f ′m(a)

2A√
1−cos2 γ1

= 0 . (3.136)
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After some simplification of equation (3.136) we get

hm(a)− Km(1−m) cos γ1(1− cos2 γ1)

2A
+
f ′(a) (1− cos2 γ1)

3/2

2A
= 0 . (3.137)

Similarly by imposing equation (3.110) and after some calculation we obtain

hm(b)− Km(1−m) cos γ2(1− cos2 γ2)

2A
+
f ′(b) (1− cos2 γ2)

3/2

2A
= 0 . (3.138)

Solving equations (3.137) and (3.138) for f ′m(a) and f ′m(b) gives

f ′m(a) =
Km(1−m) cos γ1√

1− cos2 γ1

− 2Ahm(a)

(1− cos2 γ1)3/2
, (3.139)

f ′m(b) =
−Km(1−m) cos γ2√

1− cos2 γ2

− 2Ahm(b)

(1− cos2 γ2)3/2
. (3.140)

These become the boundary conditions for the ODE (3.132).

Now we solve for the boundary value problem given by the ODE (3.132), i.e.

gm(q)−Km

=
∂

∂q

(
Km(1−m)A(q − q0)(1− A2(q − q0)2)

2A
− f ′m(q)(1− A2(q − q0)2)3/2

2A

)

and BCs (3.139)-(3.140). We first have to choose Km so that the ODE (3.132) satisfies

the two boundary conditions (3.139)-(3.140). Integrating both sides of the ODE (3.132)

from b to a gives

∫ a

b

gm(s)ds−Km(a− b)

=

(
Km(1−m) cos γ1(1− cos2 γ1)

2A
− f ′m(a)(1− cos2 γ1)3/2

2A

)
−
(−Km(1−m) cos γ2(1− cos2 γ2)

2A
− f ′m(b)(1− cos2 γ2)3/2

2A

)
. (3.141)
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Substituting BCs (3.139)-(3.140) into equation (3.141) gives

Km =

∫ a
b
gm(s)ds− (hm(a)− hm(b))

a− b . (3.142)

We now integrate both sides of ODE (3.132) from b to q and obtain

∫ q

b

gm(s)ds−Km(q − b)

=

(
Km(1−m)A(q − q0)(1− A2(q − q0)2)

2A
− f ′m(q)(1− A2(q − q0)2)3/2

2A

)
−
(−Km(1−m) cos γ2(1− cos2 γ2)

2A
− f ′m(b)(1− cos2 γ2)3/2

2A

)
.

(3.143)

Substituting equation (3.140) into equation (3.143) gives

∫ q

b

gm(s)ds−Km(q − b)

=

(
Km(1−m)A(q − q0)(1− A2(q − q0)2)

2A
− f ′m(q)(1− A2(q − q0)2)3/2

2A

)
− hm(b) .

(3.144)

Solving equation (3.144) for f ′m(q) gives

f ′m(q) = Km(1−m)
A(q − q0)√

1− A2(q − q0)2
− 2A

(
hm(b) +

∫ q
b
gm(s) ds−Km (q − b))

(1− A2(q − q0)2)3/2
.

(3.145)
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Integrating above gives

fm(q) = −Km(1−m)
√

1− A2(q − q0)2

A
+
Km(1−m)

A

−
∫ q

q0

2A
(
hm(b) +

∫ t
b
gm(s) ds−Km (t− b)

)
(1− A2(t− q0)2)3/2

dt+ C2 , (3.146)

where C2 is an arbitrary constant of integration. For simplicity we choose C2 =

−2Km(1−m)
A

, i.e.

fm(q) = −Km(1−m)
√

1− A2(q − q0)2

A

−
∫ q

q0

2A
(
hm(b) +

∫ t
b
gm(s) ds−Km (t− b)

)
(1− A2(t− q0)2)3/2

dt . (3.147)

Choosing fm(q) andKm as equations (3.147) and equation (3.142) gives equations (3.108)-

(3.110), i.e.

lim
p→∞

∇ · Tum − um
p−m+1

= 0 ,

lim
p→∞

q̂ · Tum|q=a − cos γ1

p−m−1
= 0 ,

lim
p→∞

q̂ · Tum|q=b + cos γ2

p−m−1
= 0 .

Since Tum can be written in the form of equation (3.121), we can show that both q̂ ·Tum
and ∇·Tum−um can be written as a power series of p. Hence equations (3.108)-(3.110)

implies

∇ · Tum = um +O
(
p−m

)
, (3.148)

ν · Tum|q=a = cos γ1 +O
(
p−m−2

)
, (3.149)

ν · Tum|q=b = cos γ2 +O
(
p−m−2

)
. (3.150)
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Hence by mathematical induction,

∇ · Tun = un +O
(
p−n
)
, (3.151)

ν · Tun|q=a = cos γ1 +O
(
p−n−2

)
, (3.152)

ν · Tun|q=b = cos γ2 +O
(
p−n−2

)
, (3.153)

for sufficiently large p, for any n ∈ Z+.

�

3.5.3 The Lowest Order Approximation

We now aim to prove that the formal asymptotic series derived at section 3.1 has p0th

order accuracy. Similarly to the proof of Theorem 2.2, we will construct sub-solution

and super-solution using the Comparison Principle (as discussed in section 1.3) to

prove that the error between the real solution and the formal asymptotic series can be

bounded by a constant.

Lemma 3.2 Let u(p, q) be the solution to the capillary BVP in a circular cusp region.

Then there exist constants L0 and p0 such that

∣∣∣u(p, q)−
(
Ap2 − 2

√
1− A2(q − q0)2p− A(q − q0)2 + Aq2

0

)∣∣∣ < L0 , (3.154)

for p > p0.

Proof: Without loss of generality we assume cos γ1, cos γ2 > 0 so that A > 0. Other

cases can be proven similarly. As motivated in Section 3.3 (equation (3.82))¶, we choose

¶We have modified equation (3.82) by letting K = 0. This modification was motivated by the
fact we have an additive constant l0 in equation (3.155), which will serve a similar purpose as K in
equation (3.82).
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a comparison function v(p, q) to be

v(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 + l0 +

h(q)

p5
, (3.155)

where h(q) is a C2 function. After some calculation (refer to Appendix A.3) we get

q̂ · Tv = A(q − q0) +
(

4h′(q)
√

1− A2(q − q0)2 − (q − q0)
) 1− A2(q − q0)2

8Ap6

+R1(p, q;h(q)) , (3.156)

∇ · Tv = Ap2 − 2p
√

1− A2(q − q0)2 − A(q − q0)2 + Aq2
0

+
12
√

1− A2(q − q0)2(−A2(q − q0))h′(q) + 4(1− A2(q − q0)2)3/2h′′(q)

8Ap4

−(1− 3A2(q − q0)2)

8Ap4
+R2(p, q;h(q)) , (3.157)

where R1(p, q;h(q)) = O(p−7), R2(p, q;h(q)) = O(p−5) and are independent of l0. We

now require that h(q) satisfies

4h′(q)
√

1− A2(q − q0)2 − (q − q0) = C1A(q − q0) , (3.158)

where −2 < C1 < 1 is a parameter we later choose to construct sub-solution and

super-solutions. Following from equation (3.158) we obtain

h′(q) =
(C1A+ 1)(q − q0)

4
√

1− A2(q − q0)2
, (3.159)

h′′(q) =
C1A+ 1

4 (1− A2(q − q0)2)3/2
. (3.160)



Chapter 3: Capillary Surface near a Circular Cusp 74

Substituting equations (3.159) and (3.160) into equations (3.156) and (3.157) gives

q̂ · Tv = A(q − q0) + C1A(q − q0)
1− A2(q − q0)2

8Ap6
+R1(p, q;h(q)) , (3.161)

∇ · Tv = Ap2 − 2p
√

1− A2(q − q0)2 − A(q − q0)2 + Aq2
0

+C1
1− 3A2(q − q0)2

8p4
+R2(p, q;h(q)) . (3.162)

Following from equation (3.162) we have

∇ · Tv − v = −l0 + C1
1− 3A2(q − q0)2

8p4
+R3(p, q;C1) , (3.163)

where R3(p, q;C1) = O(p−5) and is independent of l0. Integrating equation (3.159)

gives

h(q) = −(C1A+ 1)
√

1− A2(q − q0)2

4A2
+ C0 , (3.164)

where C0 is an arbitrary constant of integration. We choose C0 = 0 for simplicity.

Substituting equation (3.164) into equation (3.155) gives

v(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 + l0

−(C1A+ 1)
√

1− A2(q − q0)2

4A2p5
. (3.165)

We now aim to choose constants C1 and l0 so that v(p, q) becomes a super-solution.

By re-naming constants C1 and l0 we define a super-solution v+(p, q) as

v+(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 + l+0

−(C+A+ 1)
√

1− A2(q − q0)2

4A2p5
. (3.166)
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We now arbitrary choose a constant C+ that satisfies 0 < C+ < 1. Following from

equation (3.161) and evaluating it at q = a and q = b‖we obtain

q̂ · Tv+|q=a = cos γ1 + C+ cos γ1
1− cos2 γ1

8Ap6
+ R̃1(p, a) , (3.167)

q̂ · Tv+|q=b = − cos γ2 − C+ cos γ2
1− cos2 γ2

8Ap6
+ R̃1(p, b) , (3.168)

where R̃1(p, a), R̃1(p, b) are O(p−7). Since C+ > 0, A > 0, there exists a sufficiently

large p+
0 such that∗∗

q̂ · Tv+|q=a > cos γ1 = q̂ · Tu|q=a , for p > p+
0 , (3.169)

− q̂ · Tv+|q=b > cos γ2 = −q̂ · Tu|q=b , for p > p+
0 . (3.170)

Equations (3.169) and (3.169) reduces to

ν · Tv+ > ν · Tu , for p > p+
0 . (3.171)

It follows from equation (3.163) that

∇ · Tv+ − v+ = −l+0 + C+
1− 3A2(q − q0)2

8p4
+ R̃3(p, q;C+) , (3.172)

where R̃3(p, q;C+) = O(p−5). We now choose l̃+0 such that

l̃+0 ≥ max

[
max
b<q<a

{
C+

1− 3A2(q − q0)2

8p+
0

4 + R̃3(p+
0 , q;C+)

}
, 0

]
. (3.173)

‖It follows from equations (3.51) and (3.52) that A(a− q0) = cos γ1 and A(b− q0) = − cos γ2
∗∗Following from the BCs of the Capillary BVP in a circular cusp region (equations (3.16) and

(3.17)), q̂ · Tu|q=a = cos γ1, −q̂ · Tu|q=b = cos γ2.
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It follows immediately from equation (3.173) that

l̃+0 > C+
1− 3A2(q − q0)2

8p4
+ R̃3(p, q;C+) , for p > p+

0 . (3.174)

Following from the capillary PDE (3.15) and equations (3.172)-(3.174) we obtain††

∇ · Tv+ − v+ < 0 = ∇ · Tu− u , for l+0 ≥ l̃+0 , p > p+
0 . (3.175)

By Theorem 3.1, we know that the solution u(p, q) is bounded above at p = p+
0 . It

follows immediately from equations (3.18) and (3.19) that

if b ≥ 1
2
√

2+ 1
a

, then

u(p+
0 , q) < 4

ab+ p+
0

2

a− b +
1

2

a− b
ab− p+

0
2 ,

if b < 1
2
√

2+ 1
a

, then

u(p+
0 , q) <


4
ab+p+0

2

a−b + 1
2

a−b
ab−p+0

2 , for p+
0 >

√
a−b
2
√

2
− ab ,

2
√

2 , otherwise .

Hence there exists a sufficiently large constant l+0 ≥ l̃+0 such that

v+(p+
0 , q) > u(p+

0 , q) . (3.176)

By the comparison principle (Theorem 1.1) with equations (3.171), (3.175) and (3.176)

we conclude that,

v+(p, q) > u(p, q) for (p, q) ∈ {p+
0 < p, b < q < a} . (3.177)

††Since R̃3(p, q;C+) is independent of l+0 this holds for all l+0 ≥ l̃+0 .



Chapter 3: Capillary Surface near a Circular Cusp 77

Similarly we can define a sub-solution

v−(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 + l−0

−(C−A+ 1)
√

1− A2(q − q0)2

4A2p5
, (3.178)

where −2 < C− < −1 and choose constants l−0 and p−0 as we have done for the super-

solution, and conclude that

v−(p, q) < u(p, q) for (p, q) ∈ {p−0 < p, b < q < a} . (3.179)

We now choose

p0 = max{p+
0 , p

−
0 } (3.180)

L0 = max
{∣∣l−0 ∣∣ , ∣∣l+0 ∣∣} . (3.181)

It follows from equations (3.166), (3.177), (3.178) and (3.179) that

∣∣∣u(p, q)−
(
Ap2 − 2

√
1− A2(q − q0)2p− A(q − q0)2 + Aq2

0

)∣∣∣ < L0 for p > p0.

(3.182)

�

3.5.4 The Error Estimate

We now prove the error estimates for each partial sum of the asymptotic series as

described in Theorem 3.2.

Proof of Theorem 3.2: Without loss of generality we assume cos γ1 + cos γ2 > 0 so

that A > 0, cos γ1 + cos γ2 < 0 case can be proven similarly.
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Base case (u0):

Following from equation (3.83) we have

u0 = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 . (3.183)

It follows immediately from Lemma 3.2 (equation (3.154)) that there exist constants

L0 and p0 such that

|u(p, q)− u0(p, q)| < L0 <
L0

p0

p for p > p0. (3.184)

Hence equation (3.91) is satisfied for n = 0.

Inductive step (um) :

We are given that there exist constants Lm−1, pm−1 such that

|u(p, q)− um−1(p, q)| < Lm−1p
−m+2 for p > pm−1, m = 1, 2, 3, ... . (3.185)

Now we construct a comparison function, vm(p, q) such that

vm(p, q; lm) = um−1 + (lm +Km)p−m+1 + (Um(q; lm) + fm(q)) p−m , (3.186)

= um + lmp
−m+1 + Um(q; lm)p−m , (3.187)

where

Um(q; lm) =
(m− 1) lm

A

√
1− A2(q − q0)2 + A lm

1− A2(q − q0)
(
a+b

2
+ q0

)
A2
√

1− A2(q − q0)2
.

(3.188)

We choose lm to construct a sub-solution and a super-solution.

Here we show how to construct and prove the super-solution. An identical method can
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be applied to the sub-solution.

We now aim to find l+m such that to satisfy

um−1(p̃m, q) + Lm−1p̃m
−m+1 ≤ vm(p̃m, q; l

+
m) , for b < q < a , (3.189)

where p̃m is an arbitrary constant such satisfy p̃m > pm−1. l+m is dependent on p̃m and

is independent of p and q. Substituting equation (3.186) into equation (3.189) gives

Lm−1p̃m
−m+1 ≤ (l+m +Km)p̃m

−m+1 +
(
Um(q; l+m) + fm(q)

)
p̃m
−m , (3.190)

for b < q < a. Simplifying equation (3.190) and substituting equation (3.188) into it

gives

(Lm−1 −Km)p̃m − fm(q)

≤ l+m

(
p̃m +

m− 1

A

√
1− A2(q − q0)2 + A

1− A2(q − q0)
(
a+b

2
+ q0

)
A2
√

1− A2(q − q0)2

)
, (3.191)

for b < q < a. Following from equation (3.191) we obtain

(Lm−1 −Km)p̃m
+1 − fm(q)

p̃m + m−1
A

√
1− A2(q − q0)2 + A

1−A2(q−q0)(a+b2
+q0)

A2
√

1−A2(q−q0)2

≤ l+m for b < q < a.

(3.192)

We now choose l+m(p̃m) such as

l+m(p̃m) = max

max
b<q<a

 (Lm−1 −Km)p̃m − fm(q)

p̃m + m−1
A

√
1− A2(q − q0)2 + A

1−A2(q−q0)(a+b2
+q0)

A2
√

1−A2(q−q0)2

 , 0

 .

(3.193)
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From equations (3.185) and (3.189), we now obtain

u(p̃m, q) < vm(p̃m, q; l
+
m) , (3.194)

where b < q < a <, p̃m > pm−1.

Employing the similar method as in the proof of Lemma 3.1 (as described in equa-

tions (3.112)-(3.121)), we now aim to expand Tvm asymptotically. In order to apply

this method, we require that

∣∣∣∣2∇ ((Km + l+m)p1−m + (Um + fm(q))p−m) · ∇um−1

1 + |∇um−1|2

+
|∇ ((Km + l+m)p1−m + (Um + fm(q))p−m)|2

1 + |∇um−1|2
∣∣∣∣∣ < 1 , (3.195)

∣∣∇ ((Km + l+m)p1−m + (Um + fm(q))p−m
)∣∣2

<<
∣∣2∇ ((Km + l+m)p1−m + (Um + fm(q))p−m

) · ∇um−1

∣∣ , (3.196)

1

|∇um−1| < 1 , (3.197)

satisfy. It follows immediately from equation (3.193) that

l+m = O(p̃m
0) , for sufficiently large p̃m. (3.198)

Hence it follows from equations (3.188) and (3.198) that

Um(q; l+m) = O(p̃m
0) , for sufficiently large p̃m. (3.199)

Equations (3.198) and (3.199) imply that there exists a constant p̃m such that equa-

tions (3.195)-(3.197) holds for any p ≥ p̃m. Hence we can derive the asymptotic ex-
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pansion of Tvm similarly to the way we have derived equation (3.121), as discussed in

detail in equations (3.112)-(3.121). Following these discussions we obtain

Tvm(p, q; l+m) = Tum−1

1−
2A(l+m +Km)(1−m) + 2A2(q−q0)(f ′(q)+U ′m(q;l+m))√

1−A2(q−q0)2

4A2

1−A2(q−q0)2

p−m−1


+

((l+m +Km)(1−m)) p̂+ (f ′m(q) + U ′m(q; lm)) q̂
2A√

1−A2(q−q0)2

p−m−1 +O
(
p−2m−2

)
.

(3.200)

For simplicity of writing, we shall refer to vm(p, q; l+m) as v+
m. We now consider the

left hand side of the capillary PDE, i.e. ∇ · Tvm. Given the differentiability of each

term in a binomial series, we can differentiate the binomial series while maintaining

the convergence of the series. As we have extensively used the idea of binomial series

expansion to derive equation (3.200), we can differentiate it while maintaining the

asymptotic relation.‡‡ Hence it follows from equation (3.200) that

∇ · Tv+
m = ∇ · Tum−1

(
1− G̃mp

−m−1
)
− (Tum−1 · q̂) ∂

∂q
G̃mp

−m+1

+
∂

∂q

f ′m(q) + U ′m(q; lm)
2A√

1−A2(q−q0)2

p−m+1 +O(p−m) , (3.201)

where

G̃m(q) = Gm(q) +
l+m(1−m) (1− A2(q − q0)2)

2A

+
U ′m(q; l+m)(q − q0)

√
1− A2(q − q0)2

2
. (3.202)

‡‡Because of the differentiability of f(q), Um(q; l+m) and um−1, each term of the binomial series we
have used is differentiable.
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It follows from equation (3.188) that

U ′m(q; lm) = −(m− 1) lmA(q − q0)√
1− A2(q − q0)2

+ lmA
q − a+b

2

(1− A2(q − q0)2)3/2
. (3.203)

Substituting equation (3.203) into equation (3.202) gives

G̃m(q) = Gm(q) +
l+m
2A

(
(1−m) +

A
(
q − a+b

2

)
A(q − q0)

1− A2(q − q0)2

)
. (3.204)

As we have chosen fm(q) and Km in section 3.5.2 such that to satisfy ∇ · Tum =

um +O (p−m), following from equation (3.124) we obtain

∇ · Tum = ∇ · Tum−1

(
1−Gmp

−m−1
)− (Tum−1 · q̂) ∂

∂q
Gmp

−m+1

+
∂

∂q

f ′m(q)
2A√

1−A2(q−q0)2

p−m+1 +O(p−m) , (3.205)

= um +O
(
p−m

)
. (3.206)

Substituting equations (3.204) into equation (3.201) and then substituting (3.206) into

it gives

∇ · Tv+
m = um −∇ · Tum−1

(
l+m
2A

(
(1−m) +

A
(
q − a+b

2

)
A(q − q0)

1− A2(q − q0)2

)
p−m−1

)

− (Tum−1 · q̂) ∂

∂q

l+m
2A

(
(1−m) +

A
(
q − a+b

2

)
A(q − q0)

1− A2(q − q0)2

)
p−m+1

+
∂

∂q

U ′m(q; lm)
2A√

1−A2(q−q0)2

p−m+1 +O(p−m) . (3.207)

Following from equation (3.92) we have

∇ · Tum−1 = Ap2 +O(p) . (3.208)
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Substituting equations (3.126) (3.208) into (3.207) and simplifying it gives

∇ · Tv+
m = um − l+m

2A

∂

∂q

(
A(q − q0)

(
(1−m) +

A
(
q − a+b

2

)
A(q − q0)

1− A2(q − q0)2

)
p−m+1

)

+
∂

∂q

U ′m(q; lm)
2A√

1−A2(q−q0)2

p−m+1 +O(p−m) . (3.209)

Substituting equation (3.203) into (3.209) gives

∇ · Tv+
m = um − l+m

2A

∂

∂q

(
A(q − q0)

(
(1−m) +

A
(
q − a+b

2

)
A(q − q0)

1− A2(q − q0)2

))
p−m+1

− l
+
m

2A

∂

∂q

(
(m− 1)A(q − q0)− A q − a+b

2

(1− A2(q − q0)2)

)
p−m+1 +O(p−m) .

(3.210)

Simplifying equation (3.210) by canceling terms inside of the derivatives gives

∇ · Tv+
m = um +

l+m
2

∂

∂q

(
q − a+ b

2

)
p−m+1 +O(p−m) . (3.211)

Evaluating the derivative of equation (3.211) and subtracting v+
m (defined in equa-

tion (3.187)) from both sides gives

∇ · Tv+
m − v+

m =

(
−l+m +

l+m
2

)
p−m+1 +O(p−m) , (3.212)

= − l
+
m

2
p−m+1 +O(p−m) . (3.213)

Thus it follows from equation (3.213) that there exists a sufficiently large p̃m such that

∇ · Tv+
m − v+

m < 0 for p > p̃m . (3.214)
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We now consider boundary conditions q̂ · Tv+
m. Following from equation (3.200) we

obtain

q̂ · Tv+
m = q̂ · Tum−1

1−
2A(l+m +Km)(1−m) + 2A2(q−q0)(f ′(q)+U ′m(q;l+m))√

1−A2(q−q0)2

4A2

1−A2(q−q0)2

p−m−1


+
f ′m(q) + U ′m(q; lm)

2A√
1−A2(q−q0)2

p−m−1 +O
(
p−2m−2

)
. (3.215)

Evaluating equation (3.215) at q = a gives

q̂ · Tv+
m

∣∣
q=a

= q̂ · Tum−1|q=a

1−
2A(l+m +Km)(1−m) + 2A cos γ1(f ′(a)+U ′m(a;l+m))√

1−cos2 γ1

4A2

1−cos2 γ1

p−m−1


+
f ′m(a) + U ′m(a; lm)

2A√
1−cos2 γ1

p−m−1 +O
(
p−2m−2

)
. (3.216)

As we have chosen fm(q) and Km in section 3.5.2 such that to satisfy q̂ · Tum|q=a =

cos γ1 +O (p−m−2), following from equation (3.133) we obtain

q̂ · Tum|q=a = q̂ · Tum−1|q=a

1−
2AKm(1−m) + 2A cos γ1f ′m(a)√

1−cos2 γ1

4A2

1−cos2 γ1

p−m−1


+

f ′m(a)
2A√

1−cos γ1

p−m−1 +O
(
p−2m−2

)
, (3.217)

= cos γ1 +O
(
p−m−2

)
(3.218)
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Substituting equation (3.218) into equation (3.216) gives

q̂ · Tv+
m

∣∣
q=a

= cos γ1 + q̂ · Tum−1|q=a

−2A(l+m)(1−m) + 2A cos γ1(U ′m(a;l+m))√
1−cos2 γ1

4A2

1−cos2 γ1

p−m−1


+
U ′m(a; lm)

2A√
1−cos2 γ1

p−m−1 +O
(
p−m−2

)
. (3.219)

Following from equation (3.203)

U ′m(a; lm) = −(m− 1) lm cos γ1√
1− cos2 γ1

+
lmA

2

a− b
(1− cos2 γ1)3/2

. (3.220)

Substituting equation (3.220) into equation (3.219) gives

q̂ · Tv+
m

∣∣
q=a

= cos γ1 + q̂ · Tum−1|q=a−2A(l+m)(1−m)− 2A cos γ1((m−1)l+m cos γ1)
1−cos2 γ1

+ l+mA
2 cos γ1(a−b)

(1−cos2 γ1)2

4A2

1−cos2 γ1

 p−m−1

−
(

(m− 1) l+m cos γ1

2A
− l+m

a− b
4(1− cos2 γ1)

)
p−m−1 +O

(
p−m−2

)
.

(3.221)

Simplifying equation (3.221) gives

q̂ · Tv+
m

∣∣
q=a

= cos γ1 + q̂ · Tum−1|q=a
(
− l

+
m(1−m)

2A
− l+m

cos γ1(a− b)
4(1− cos2 γ1)

)
p−m−1

−
(

(m− 1) l+m cos γ1

2A
− l+m

a− b
4(1− cos2 γ1)

)
p−m−1 +O

(
p−m−2

)
.

(3.222)

From equation (3.93) we have

q̂ · Tum−1|q=a = cos γ1 +O
(
p−m−1

)
. (3.223)
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Substituting equation (3.223) into equation (3.221) gives

q̂ · Tv+
m

∣∣
q=a

= cos γ1 + cos γ1

(
− l

+
m(1−m)

2A
− l+m

cos γ1(a− b)
4(1− cos2 γ1)

)
p−m−1

−
(

(m− 1) l+m cos γ1

2A
− l+m

a− b
4(1− cos2 γ1)

)
p−m−1 +O

(
p−m−2

)
.

(3.224)

Simplifying equation (3.224) gives

q̂ · Tv+
m

∣∣
q=a

= cos γ1 + l+m
a− b

4
p−m−1 +O

(
p−m−2

)
. (3.225)

Similarly evaluating equation (3.215) at q = b gives

q̂ · Tv+
m

∣∣
q=b

= − cos γ2 + l+m
b− a

4
p−m−1 +O

(
p−m−2

)
. (3.226)

Given a > b, following from equations (3.225) and (3.226) we can show that there exists

a constant p̃m such that

q̂ · Tv+
m

∣∣
q=a

> cos γ1 , for p > p̃m , (3.227)

− q̂ · Tv+
m

∣∣
q=b

> cos γ2 , for p > p̃m . (3.228)

Following from equations (3.194), (3.214), (3.227) and (3.228) there exists a constant

p̃m such satisfies

u(p̃m, q) < vm(p̃m, q; l
+
m) , (3.229)

∇ · Tv+
m − v+

m < 0 = ∇ · Tu− u , for p > p̃m , (3.230)

q̂ · Tv+
m

∣∣
q=a

> cos γ1 = ν · Tu|q=a , for p > p̃m , (3.231)

− q̂ · Tv+
m

∣∣
q=b

> cos γ2 = ν · Tu|q=b , for p > p̃m . (3.232)
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By the comparison principle we obtain

u(p, q) < v+
m(p, q) = um + l+mp

−m+1 + Um(q; l+m)p−m for p > p̃m . (3.233)

Following from equation (3.233) we obtain

u(p, q)− um < l+mp
−m+1 + Um(q; l+m)p−m for p > p̃m . (3.234)

Similarly we can construct a sub-solution v−m and show that there exists a constant p̃m

such satisfies

u(p, q)− um > l−mp
−m+1 + Um(q; l−m)p−m for p > p̃m . (3.235)

Thus we can conclude that there exist constants Lm and pm such satisfy

|u(p, q)− um(p, q)| < Lmp
−m+1 for p > pm . (3.236)

Hence by mathematical induction there exist constants Ln and pn such satisfy

|u(p, q)− un(p, q)| < Lnp
−n+1 for p > pn, n ∈ Z+ . (3.237)

Following from equation (3.83), we can re-write equation (3.237) as

∣∣u(p, q)− (un−2(p, q) +Kn−1p
−n+2 + fn−1p

−n+1 +Knp
−n+1 + fnp

−n)∣∣ < Lnp
−n+1 ,

(3.238)

for p > pn, n = 2, 3, 4... . Following from equation (3.87) we can show that fn−1(q) and

fn(q) is bounded in the domain. This implies that there exist constants Ln and pn such
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that

∣∣u(p, q)− (un−2(p, q) +Kn−1p
−n+2

)∣∣ < Lnp
−n+1 for p > pn, n = 2, 3, 4... .

(3.239)

It follows from equations (3.239) that

∣∣u(p, q)− (un−1(p, q) +Knp
−n+1

)∣∣ < Ln+1p
−n for p > pn+1, n = 1, 2, 3... .

(3.240)

Following from equation (3.83) we have un−1(p, q) +Knp
−n+1 = un(p, q)− fn(q)p−n for

n = 1, 2, 3.... Substituting this into equation (3.240) gives

∣∣u(p, q)− (un(p, q)− fn(q)p−n
)∣∣ < Ln+1

pn
, for p > pn+1, n ∈ N . (3.241)

�

3.5.5 Accuracy of the Approximation of Section 3.3

In this section we will prove the accuracy of the approximate solution, which we have

obtained in section 3.3 (equation (3.54)).

Theorem 3.3 Let u(p, q) be a solution to the capillary BVP in a circular cusp region.

Then there exist constants L6 and p6 such that

∣∣∣u(p, q)−
(
Ap2 − 2

√
1− A2(q − q0)2p− A(q − q0)2 + Aq2

0

)∣∣∣ < L6

p5
, (3.242)

for p > p6.
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Proof:

We will apply Theorem 3.2 to prove this theorem. Let,

u0(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 . (3.243)

Following from equations (3.96) and (3.97) we obtain

∇ · Tu0 − u0 = −1− 3A2(q − q0)2

8Ap4
+O(p−5) , (3.244)

q̂ · Tu0 = A(q − q0)− (q − q0)(1− A2(q − q0)2)

8Ap6
+O(p−7) . (3.245)

Hence we have:

g2(q), g3(q), g4(q) = 0 , (3.246)

g5(q) = −1− 3A2(q − q0)2

8A
, (3.247)

h2(a), h3(a), h4(a) = 0 , (3.248)

h5(a) = −(a− q0)(1− cos2 γ1)

8A
, (3.249)

h2(b), h3(b), h4(b) = 0 , (3.250)

h5(b) = −(b− q0)(1− cos2 γ2)

8A
. (3.251)

Thus by Theorem 3.2 we can calculate K’s. Following from equation (3.86), by inspec-

tion we obtain

K2, K3, K4, = 0 . (3.252)

Also after some calculation we get

K5 = 0 . (3.253)
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Again from Theorem 3.2 we can calculate f ’s. Following from equation (3.87), by

inspection we obtain

f2(q), f3(q), f4(q) = 0 . (3.254)

After some calculation we get

f5(q) = −
√

1− A2(q − q0)2

4A2
. (3.255)

This implies there are four zero-terms in asymptotic solution such that

u5(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− (A(q − q0)2 − Aq2
0

)
+ 0

1

p
+ 0

1

p2
+ 0

1

p3

+0
1

p4
−
√

1− A2(q − q0)2

4A2

1

p5
. (3.256)

Following from equation (3.256) we have

u5(p, q)− f5(q)p−5 = u5(p, q)− (−
√

1− A2(q − q0)2

4A2

1

p5
) , (3.257)

= Ap2 − 2
√

1− A2(q − q0)2p− (A(q − q0)2 − Aq2
0

)
.(3.258)

Thus by Theorem 3.2 we conclude equation (3.242) holds.

�

Theorem 3.5.5 implies that the solution of the approximated BVP (as defined in equa-

tions (3.37)-(3.39)) is in fact first three terms of the asymptotic series solution. Also

this first three terms of the asymptotic solution possesses the accuracy equivalent to the

first seven terms of the asymptotic series solution. This unexpectedly accurate approx-

imation is due to the fact the approximated BVP is solvable exactly. Solvability of the

approximated BVP depends on the choice of coordinate system, and it turns out that
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the circular cylinder coordinate system is a suitable choice for this problem. (So far we

have observed only one other case, which the approximated BVP were exactly solvable.

As we have discussed in Appendix B the approximated BVP for a wedge problem was

exactly solvable in polar coordinate system, and it turns out to be a very accurate solu-

tion to the original problem.) Also the approximated BVP cannot be solved exactly in

the coordinate system Scholz has used in his paper [7]. This approximation technique

and the accurate approximation is our original result.



Chapter 4

Odd Boundary Conditions:

Supplementary Contact Angles

In this chapter we will discuss the case cos γ1 +cos γ2 = 0, which we did not consider in

previous chapters. Not many results for this type of contact angle conditions are known.

It was stated in Scholz’ paper that for a cusp region “[t]he case γ1 = π − γ2 keeps an

open question” ([7], page 234).∗ In this chapter we aim to address some aspects of this

open question. We shall refer such contact angle conditions as supplementary contact

angles.

4.1 Odd Boundary Condition

We consider a region Ω that is symmetric about the x-axis, i.e.

Ω = Ω+ ∪ Ω− , (4.1)

∗cos γ1 + cos γ2 = 0 for 0 < γ2 <
π
2 implies γ1 = π − γ2.

92
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where

Ω+ = Ω ∩ {(x, y) ∈ R2 : y ≥ 0} , (4.2)

Ω− = {(x,−y) : (x, y) ∈ Ω+} . (4.3)

The upper and lower boundaries Γ+ and Γ− are given by

Γ+ = ∂Ω ∩ {(x, y) ∈ R2 : y > 0} , (4.4)

Γ− = ∂Ω ∩ {(x, y) ∈ R2 : y < 0} . (4.5)

We assume there is a cusp/corner at the origin opening in the positive x-direction as

in Figure 4.1. Consider a rectangle

R = {(x, y) :∈ R2 : 0 < x < x1, 0 < y < y1}, (4.6)

and let

Ω+
1 = Ω+ ∩R . (4.7)

We choose x1 and y1 small enough† that the subset of the boundary in Ω+
1 , i.e. Γ+∩R,

is given by

y = f(x) 0 < x < x1 , (4.8)

where f(x) is a piecewise smooth function such that

lim
x→0+

f(x) = 0 . (4.9)

†Note x1 may be finite or infinite.
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Ω

Ω−

Γ +

0

Ω+

f (x )

y0

x

Γ −

y

Ω+
1

x 1

Figure 4.1: Symmetric Region with Boundaries.

The derivative will satisfy

lim
x→0+

f ′(x) =

 0 for a cusp region ,

constant for a corner region .
(4.10)

We shall refer to region Ω+
1 as a near cusp/corner region.

In the present situation with the restriction cos γ1 + cos γ2 = 0, the capillary BVP

assumes the form‡

∇ · Tu = u in Ω , (4.11)

ν · Tu = cos γ on Γ+ , (4.12)

ν · Tu = − cos γ on Γ− . (4.13)

We shall refer to this boundary value problem as the capillary BVP with odd BCs.

In this chapter we assume cos γ > 0. Similar results for cos γ < 0 cases can be

derived using a negative solution (see remark 3 in section 1.2.2).

‡The BCs (4.12) and (4.13) correspond to the BCs (2.10) and (2.11) when the restriction cos γ1 +
cos γ2 = 0 is imposed.
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First we show how we can apply the comparison principle (Theorem 1.1) to the

capillary BVP with odd BCs.

Theorem 4.1 (the Comparison Principle for Odd BCs) Let u(x, y) be a solu-

tion of the capillary BVP with odd BCs.

Case A: If

∇ · Tv − v ≷ 0 in Ω+ , (4.14)

ν · Tv ≶ cos γ on Γ+ , (4.15)

v = 0 on y = 0 , (4.16)

then

v(x, y) ≶ u(x, y) in Ω+ , (4.17)

−v(x,−y) ≷ u(x, y) in Ω− . (4.18)

Case B: In this case we consider a near cusp/corner region. Let Ω+
0 be defined as

Ω+
0 = {(x, y) ∈ R2 : 0 < x < x0, 0 < y < f(x)} , (4.19)

where x0 < x1. If

∇ · Tv − v ≷ 0 in Ω+
0 , (4.20)

ν · Tv ≶ cos γ on {(x, y) : 0 < x < x0, y = f(x)} , (4.21)

v = 0 on y = 0 , (4.22)

v ≶ u on {(x, y) : x = x0, 0 < y < f(x)} , (4.23)
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then

v(x, y) ≶ u(x, y) in Ω+ , (4.24)

−v(x,−y) ≷ u(x, y) in Ω− . (4.25)

In order to prove this theorem, it is necessary to show that the solution surface

u(x, y) is odd with respect to the x-axis.

Lemma 4.1 Let u(x, y) be a solution to the capillarity BVP with odd BCs, then u(x, y)

is an odd function with respect to y, i.e.

u(x, y) = −u(x,−y) . (4.26)

Proof:

Let

ũ(x, y) = −u(x,−y) . (4.27)

It follows from equation (4.27) that

∂ũ

∂x
(x, y) = −∂u

∂x
(x,−y) , (4.28)

∂ũ

∂y
(x, y) =

∂u

∂y
(x,−y) , (4.29)

∂2ũ

∂x2
(x, y) = −∂

2u

∂x2
(x,−y) , (4.30)

∂2ũ

∂2y
(x, y) = −∂

2u

∂y2
(x,−y) , (4.31)

∂2ũ

∂x∂y
(x, y) =

∂2u

∂x∂y
(x,−y) . (4.32)

Expanding the left hand side of the PDE using the definition of T in equation (1.42)
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gives

∇ · T ũ(x, y) =
ũxx(x, y)

(
1 + ũ2

y(x, y)
)

+ ũyy(x, y) (1 + ũ2
x(x, y))(

1 + ũ2
x(x, y) + ũ2

y(x, y)
)3/2

− 2ũx(x, y)ũy(x, y)ũxy(x, y)(
1 + ũ2

x(x, y) + ũ2
y(x, y)

)3/2
.

(4.33)

Substituting equations (4.28)-(4.32) into equation (4.33) gives

∇ · T ũ(x, y) =
−uxx(x,−y)

(
1 + u2

y(x,−y)
)− uyy(x,−y) (1 + u2

x(x,−y))(
1 + u2

x(x,−y) + u2
y(x,−y)

)3/2

+
2ux(x,−y)uy(x,−y)uxy(x,−y)(
1 + u2

x(x,−y) + u2
y(x,−y)

)3/2
. (4.34)

By comparing the right hand side of equation (4.34) to equation (4.33), we observe that

equation (4.34) can be written as

∇ · T ũ(x, y) = −∇ · Tu(x,−y) . (4.35)

Replacing y by −y in equation (4.11) gives

∇ · Tu(x,−y) = u(x,−y) . (4.36)

It now follows from equations (4.27), (4.35) and (4.36) that

∇ · T ũ(x, y) = ũ(x, y) . (4.37)

Hence ũ satisfies the capillary PDE (4.11).

Let ν+ and ν− be the unit outward normal vectors on the boundaries Γ+ and Γ−,

respectively. Also let νx and νy be the x and y components of unit outward normal
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vector ν+. By the symmetry, the unit outward normal vector on Γ− can be written as

ν− = (νx,−νy). Also it follows from equations(4.1)-(4.5) that

(x, y) ∈ Γ+ ⇐⇒ (x,−y) ∈ Γ− , (4.38)

(x,−y) ∈ Γ+ ⇐⇒ (x, y) ∈ Γ− . (4.39)

Following from the definition of T (equation (1.42)), BCs (4.12) and (4.13) can be

expanded as

ν+ · Tu(x, y)|(x,y)∈Γ+
= (νx, νy) · uxx̂+ uyŷ√

1 + u2
x + u2

y

∣∣∣∣∣
(x,y)∈Γ+

= cos γ , (4.40)

⇒ νxux + νyuy√
1 + u2

x + u2
y

∣∣∣∣∣
(x,y)∈Γ+

= cos γ , (4.41)

ν− · Tu(x, y)|(x,y)∈Γ−
= (νx,−νy) · uxx̂+ uyŷ√

1 + u2
x + u2

y

∣∣∣∣∣
(x,y)∈Γ−

= − cos γ , (4.42)

⇒ νxux − νyuy√
1 + u2

x + u2
y

∣∣∣∣∣
(x,y)∈Γ−

= − cos γ . (4.43)

Expanding ν · T ũ gives

ν+ · T ũ(x, y)|(x,y)∈Γ+
=

νxũx(x, y) + νyũy(x, y)√
1 + ũ2

x(x,−y) + ũ2
y(x,−y)

∣∣∣∣∣∣
(x,y)∈Γ+

. (4.44)

Substituting equations (4.28)-(4.32) into equation (4.44) gives

ν+ · T ũ(x, y)|(x,y)∈Γ+
= − νxux(x,−y)− νyuy(x,−y)√

1 + u2
x(x,−y) + u2

y(x,−y)

∣∣∣∣∣∣
(x,y)∈Γ+

. (4.45)
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Using equation (4.38) it follows from equation (4.45) that

ν+ · T ũ(x, y)|(x,y)∈Γ+
= − νxux(x,−y)− νyuy(x,−y)√

1 + u2
x(x,−y) + u2

y(x,−y)

∣∣∣∣∣∣
(x,−y)∈Γ−

. (4.46)

Substituting equation (4.43) into gives

ν+ · T ũ(x, y)|(x,y)∈Γ+
= − (− cos γ) = cos γ . (4.47)

Similarly we can show that

ν− · T ũ(x, y)|(x,y)∈Γ−
= − cos γ . (4.48)

Hence ũ satisfies the boundary conditions (4.12) and (4.13). Following from the unique-

ness of the solution to the capillary BVP we have u = ũ, i.e.

u(x, y) = −u(x,−y) . (4.49)

�

Proof of Theorem 4.1:

Following from Lemma 4.1 we have

u(x, 0) = −u(x,−0) , (4.50)

⇒ u(x, 0) = 0 . (4.51)
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Case A: Substituting equations (4.11)-(4.12) into equations (4.14)-(4.15) gives

∇ · Tv − v ≷ ∇ · Tu− u in Ω+ , (4.52)

ν · Tv ≶ ν · Tu on Γ+ . (4.53)

Also substituting equation (4.51) into equation (4.16) gives

v(x, 0) = u(x, 0) . (4.54)

Apply the comparison principle (Theorem 1.1) to the region Ω+ with the boundary

∂Ω+ = Σα ∪ Σβ ∪ Σ0, where

Σα = {y = 0} , (4.55)

Σβ = Γ+ , (4.56)

Σ0 = {(0, 0)} . (4.57)

By the comparison principle

v(x, y) ≶ u(x, y) , in Ω+. (4.58)

Now we consider the region Ω−. Multiplying −1 to equation (4.58) gives

−v(x, y) ≷ −u(x, y) , in Ω+. (4.59)

Substituting equation (4.49) into equation (4.59) gives

−v(x, y) ≷ u(x,−y) for (x, y) ∈ Ω+ . (4.60)

⇒ −v(x, y) ≷ u(x,−y) for (x,−y) ∈ Ω+ . (4.61)
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Following from equation (4.5) we have (x,−y) ∈ Ω+ ⇐⇒ (x, y) ∈ Ω−. It follows that

−v(x,−y) ≷ u(x, y) for (x, y) ∈ Ω− . (4.62)

Case B: Similarly we are given equations (4.20)-(4.23). It follows that

∇ · Tv − v ≷ 0 = ∇ · Tu− u in Ω+
0 , (4.63)

ν · Tv ≶ cos γ = ν · Tu on f(x) , (4.64)

v = 0 = u on y = 0 , (4.65)

v ≶ u on {(x, y) : x = x0, 0 < y < f(x0)} . (4.66)

We now apply the comparison principle (Theorem 1.1) in the region Ω+
0 with the

boundary ∂Ω+ = Σα ∪ Σβ ∪ Σ0, where

Σα = {(x, y) : 0 < x < x0, y = 0} ∪ {(x, y) : x = x0, 0 < y < f(x0)} , (4.67)

Σβ = {(x, y) : 0 < x < x0, y = f(x)} , (4.68)

Σ0 = {(0, 0)} ∪ {(x0, 0)} ∪ {(x0, f(x0))} . (4.69)

By the comparison principle,

v(x, y) ≶ u(x, y) , for (x, y) ∈ Ω+
0 . (4.70)

Following the same argument as equations (4.59)-(4.62) we obtain

−v(x, y) ≷ −u(x, y) for (x, y) ∈ Ω+
0 , (4.71)

⇒ −v(x, y) ≷ u(x,−y) for (x, y) ∈ Ω+
0 , (4.72)

⇒ −v(x,−y) ≷ u(x, y) for (x, y) ∈ Ω−0 . (4.73)
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�

4.2 Bounded Solution at a Cusp and a Corner

In this section we aim to explain the qualitative behaviour of a solution to the capillary

BVP with odd BCs.

Theorem 4.2 (Bounded Solution at a Cusp and a Corner) Let u(x, y) be a so-

lution to the capillary BVP with odd BCs. If the function f(x), which is defined by

equation (4.8), satisfies the following conditions

sup
0<x<x0

|f ′(x)| < tan γ , where x0 ≤ x1 , (4.74)

f(x) ∈ C1 ∩ piecewise C4 , in 0 < x < x0 , (4.75)

then there exists a constant K such satisfies

0 < u(x, y) < Ky for 0 < y < f(x) , (4.76)

0 > u(x, y) > Ky for − f(x) < y < 0 , (4.77)

with 0 < x < x0. Here x0 may be finite or infinite.

Proof:

Let the comparison function v(x, y) be

v(x, y) = K1y , (4.78)
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where K1 > 0 is a constant. We now compare this function to u(x, y) in the region Ω+
0

given by

Ω+
0 =

{
(x, y) ∈ R2 : 0 < x < x0, 0 < y < f(x)

}
. (4.79)

By inspection we get

v(x, 0) = 0 , for 0 < x < x0 , (4.80)

Tv(x, y) =
K1ŷ√
1 +K2

2

. (4.81)

It follows from equation (4.81) that

∇ · Tv − v = −K1y , for (x, y) ∈ Ω+
0 . (4.82)

Following from equation (4.82) and substituting the capillary PDE (4.11) gives

Tv − v < 0 = ∇ · Tu− u , for (x, y) ∈ Ω+
0 . (4.83)

Unit outward normal vector ν on the boundary y = f(x) is given by

ν =
−f ′(x)x̂+ ŷ√

1 + (f ′(x))2
. (4.84)

It follows from equations (4.81) and (4.84) that

ν · Tv =
1√

1 + (f ′(x))2

K1√
1 +K2

1

. (4.85)
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Since K1√
1+K2

1

is a monotonically increasing function such that

0 <
K1√

1 +K2
1

< 1 , (4.86)

if

1√
1 + (f ′(x))2

> cos γ , (4.87)

then there exists K2 such satisfies

1√
1 + (f ′(x))2

K1√
1 +K2

1

> cos γ , for all K1 ≥ K2. (4.88)

Case A: Suppose that x0 =∞, following from this we have

sup
0<x
|f ′(x)| < tan γ , (4.89)

then

1√
1 + (f ′(x))2

K2√
1 +K2

2

> cos γ . (4.90)

Thus by Theorem 4.1 Case A

u(x, y) < K2y for 0 < y < f(x) , (4.91)

u(x, y) > K2y for − f(x) < y < 0 . (4.92)
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Case B: Suppose that x0 is finite. By Theorem 1.3 u(x, y) ∈ C2, and by Lemma 4.1

u(x, 0) = 0, we can show that there exists a constant K3 sufficiently large such satisfies

K1y > u(x0, y) , for K1 ≥ K3 ≥ K2. (4.93)

By Theorem 4.1 Case B we conclude

u(x, y) < K3y for 0 < y < f(x) , (4.94)

u(x, y) > K3y for − f(x) < y < 0 , (4.95)

with 0 < x < x0. We can also prove the lower bound of u(x, y) in Ω+. By letting

K = 0, i.e. v(x, y) = 0, we obtain

∇ · Tv − v = 0 = ∇ · Tu− u, for (x, y) ∈ Ω+ , (4.96)

ν · Tv = 0 < cos γ = ν · Tu, for (x, y) ∈ Γ+ , (4.97)

v(x, 0) = 0 . (4.98)

By Theorem 4.1 Case A we conclude

0 < u(x, y) for 0 < y < f(x) , (4.99)

0 > u(x, y) for − f(x) < y < 0 . (4.100)

�

Theorem 4.2 gives that

lim
(x,y)→(0,0)

u(x, y) = 0 (4.101)
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in any path from inside of domain Ω. Thus we know that u(x, y) is not only bounded

at (0, 0) but can be defined to be continuous at (0, 0).

Since we have limx→0+ f ′(x) = 0 for a cusp region, there exists a constant x0 such

that to satisfy sup0<x<x0
|f ′(x)| < tan γ. Thus a capillary surface in a cusp region with

odd BCs is bounded at the cusp and also can be defined to be continuous at the cusp.

In a corner region with opening angle less than 2γ, the condition sup0<x<x0
|f ′(x)| <

tan γ satisfies. Thus a capillary surface in a corner region with opening angle less than

2γ with odd BCs is bounded at the corner and also can be defined to be continuous at

the corner. The continuity at the corner with odd BCs is also proved by Lancaster and

Siegel [3]. However for the case of opening angle greater than 2γ is still an open question.

We can write upper and lower bound of the solution function as

−Kf(x) < u(x, y) < Kf(x) , for 0 < x < x0 , −f(x) < y < f(x) . (4.102)

As shown in Chapter 2 in the case of γ2 6= π−γ1, the capillary surface is unbounded at

a cusp. However, as shown in this chapter, the capillary surface at a symmetric cusp

is bounded in the case of γ2 = π − γ1. Hence this is an another example of capillary

surfaces depending discontinuously on the boundary data.

4.3 Circular Cusp Region with Odd Boundary Con-

ditions

In this section we consider a capillary surface in an infinite bath of water with two

equi-radii cylinders with supplementary contact angles tangent to each other. As in

Chapter 3 we make use of the tangent cylindrical coordinate system. Let u(p, q) be a



Chapter 4: Odd Boundary Conditions: Supplementary Contact Angles 107

function for height of a capillary surface in region Ω, then it satisfies

∇ · Tu− u = 0 in Ω , (4.103)

q̂ · Tu = cos γ on q = a , (4.104)

−q̂ · Tu = − cos γ on q = −a . (4.105)

where

Ω = {(p, q) : 0 < p <∞,−a < q < a} . (4.106)

We shall refer to this BVP as the capillary BVP in a circular cusp region with odd BCs.

Theorem 4.3 (Global Bound) Let u(p, q) be a solution to the capillary BVP in a

circular cusp region with odd BCs, then

0 < u(p, q) <
cot γ

a2
q for q > 0 (4.107)

0 > u(p, q) >
cot γ

a2
q for q < 0 (4.108)

in (p, q) ∈ Ω.

Proof:

Let the comparison function v(p, q) be

v(p, q) =
cot γ

a2
q . (4.109)



Chapter 4: Odd Boundary Conditions: Supplementary Contact Angles 108

After some calculation we get

q̂ · Tv = (p2 + q2)
cot γ
a2√

1 + (p2 + q2)2
(

cot γ
a2

)2
, (4.110)

⇒ ν · Tv|q=a =
(p2 + a2) cot γ

a2√
1 + (p2 + a2)2

(
cot γ
a2

)2
. (4.111)

Following from the fact ξ√
1+ξ2

is a monotonically increasing function with respect to ξ

and (p2 + a2)2
(

cot γ
a2

)2
> (a2)2

(
cot γ
a2

)2
, we obtain

ν · Tv|q=a >
(a2) cot γ

a2√
1 + (a2)2

(
cot γ
a2

)2
(4.112)

= cos γ . (4.113)

Also after some calculation we obtain

∇ · Tv−1 − v−1 = −2

(
cot γ
a2

)3
(p2 + q2)3q(

1 + (p2 + q2)2
(

cot γ
a2

)2
)3/2

− cot γ

a2
q , (4.114)

< 0 for q > 0. (4.115)

By Theorem 4.1 Case A, it follows that

u(p, q) <
cot γ

a2
q for q > 0 (4.116)

u(p, q) >
cot γ

a2
q for q < 0 . (4.117)

By inspection, applying Theorem 4.1 Case A to v(p, q) = 0 gives

0 < u(p, q) for q > 0 , (4.118)

0 > u(p, q) for q < 0 . (4.119)
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Thus we conclude

0 < u(p, q) <
cot γ

a2
q for q > 0 , (4.120)

0 > u(p, q) >
cot γ

a2
q for q < 0 , (4.121)

in (p, q) ∈ Ω.

�

Note: This bound is valid in the entire region Ω.

Now we give a formal asymptotic series approximation to a solution of the capillary

BVP in a circular cusp region with odd BCs.

Theorem 4.4 (The Formal Asymptotic Series) Let un(p, q) be

un(p, q) =
n∑
j=0

j∑
i=0

Ajiq
2i+1p−2j−2 , (4.122)

where constants Aji are defined recursively as

A00 = cot γ (4.123)

Aj0 = = −
∑j+1

i=1 bj+1,ia
2i−2 −∑j

i=1
cji
2i
a2i

sin3 γ
, (4.124)

Aji = − cji
sin3 γ(2i+ 1)2i

for i = 1, 2, 3, ..., j , (4.125)

with bji and cji given as

ν · Tuj−1|q=a = cos γ +

(
j+1∑
i=1

bjia
2i−2

)
p−2j +O(p−2(j+1)) , (4.126)

∇ · Tuj−1 − uj−1 =

j∑
i=1

cjiq
2i−1p−2j+2 +O(p−2j) , (4.127)
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then

∇ · Tun = un +O
(
p−2n−2

)
in Ω , (4.128)

q̂ · Tun = cos γ +O
(
p−2n

)
for q = a , (4.129)

−q̂ · Tun = − cos γ +O
(
p−2n

)
for q = b , (4.130)

for all n ∈ Z+ for sufficiently large p.

Proof: Prove this by mathematical induction.

Base case (u0): Following from equation (4.122) we have

u0 =
cot γq

p2
. (4.131)

After some calculation we get

∇ · Tu0 ∼ 6 sin2 γ cos γq , as p→∞ , (4.132)

q̂ · Tu0|q=a ∼ cos γ + a2 cos γ
1− 3 cos2 γ

p2
, as p→∞ . (4.133)

Hence equations (4.128) and (4.129) are satisfied for n = 0.

Inductive Step (um):

We are given that

um−1 =
m−1∑
j=0

j∑
i=0

Ajiq
2i+1p−2j−2 , (4.134)

q̂ · Tum−1|q=a ∼ cos γ + fm(a)p−2m , (4.135)

∇ · Tum−1 − um−1 ∼ gm(q)p−2m+2 , (4.136)
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as p→∞. Given equation (4.134) expand Tum−1

Tum−1

=
(p2 + q2)

(
∂um−1

∂p
p̂+ ∂um−1

∂q
q̂
)

√
1 + (p2 + q2)2

((
∂um−1

∂p

)2

+
(
∂um−1

∂q

)2
) , (4.137)

=
(p2 + q2)

(
∂um−1

∂p
p̂+ ∂um−1

∂q
q̂
)

√
1 + (p4 + 2p2q2 + q4)

((
∂um−1

∂p

)2

+
(
∂u0

∂q

)2

+ 2∂u0

∂q
∂um−1−u0

∂q
+
(
∂um−1−u0

∂q

)2
) ,

=
(p2 + q2)

(
∂um−1

∂p
p̂+ ∂um−1

∂q
q̂
)

√
1 + p4

(
∂u0

∂p

)2

+ F (p,q)

sin2 γ

, (4.138)

where

F (p, q) =

(
(2p2q2 + q4)

(
∂um−1

∂p

2

+
∂u0

∂q

2

+ 2
∂u0

∂q

∂um−1 − u0

∂q
+
∂um−1 − u0

∂q

2)
+ p4

(
∂um−1

∂p

2

+ 2
∂u0

∂q

∂um−1 − u0

∂q
+
∂um−1 − u0

∂q

2))
sin2 γ . (4.139)

Following from equation (4.122) we have 1 + p4
(
∂u0

∂p

)2

= 1
sin2 γ

. Substituting this into

equation (4.138) gives

Tum−1 =
(p2 + q2)

(
∂um−1

∂p
p̂+ ∂um−1

∂q
q̂
)

√
1

sin2 γ
+ F (p,q)

sin2 γ

, (4.140)

= sin γ

(
(p2 + q2)

(
∂um−1

∂p
p̂+

∂um−1

∂q
q̂

))
1√

1 + F (p, q)
. (4.141)
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Expanding 1√
1+F (p,q)

using binomial series gives

Tum−1 = sin γ

(
(p2 + q2)

(
∂um−1

∂p
p̂+

∂um−1

∂q
q̂

))(
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

F k

)
.

(4.142)

By equation (4.134) we can show that

∂um−1

∂p
=

m−1∑
j=0

j∑
i=0

Ajiq
2i+1(−2j − 2)p−2j−3 , (4.143)

∂2um−1

∂p2
=

m−1∑
j=0

j∑
i=0

Ajiq
2i+1(−2j − 2)(−2j − 3)p−2j−4 , (4.144)

∂um−1

∂q
=

m−1∑
j=0

j∑
i=0

Aji(2i+ 1)q2ip−2j−2 , (4.145)

∂2um−1

∂q2
=

m−1∑
j=1

j∑
i=1

Aji(2i+ 1)(2i)q2i−1p−2j−2 , (4.146)

∂2um−1

∂p∂q
=

m−1∑
j=0

j∑
i=0

Aji(2i+ 1)q2i(−2j − 2)p−2j−3 . (4.147)

Following from equations (4.143)-(4.147), we can show that F (p, q) < 1 for sufficiently

large p. Hence equation (4.142) is a convergent series for sufficiently large p.

We now consider the boundary condition. It follows from equation (4.142) that

q̂ · Tum−1 = sin γ

(
(p2 + q2)

(
∂um−1

∂q

))(
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

F k

)
.

(4.148)
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Substituting equations (4.143)-(4.147) into equation (4.139) implies that there exists a

set of constants Kji given by

F (p, q) =
2m+1∑
j=0

j∑
i=0

Kjiq
2jp−2j . (4.149)

Substituting equation (4.149) into equation (4.148) gives

q̂ · Tum−1 = sin γ

(
(p2 + q2)

(
m−1∑
j=0

j∑
i=0

Aji(2i+ 1)q2ip−2j−2

))

·
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

(
2m+1∑
j=0

j∑
i=0

Kjiq
2jp−2j

)k
 . (4.150)

It follows from equation (4.150) that there exists a set of constants bji given by

q̂ · Tum−1 =
∞∑
j=1

j∑
i=1

bjiq
2i−2p−2j+2 . (4.151)

Equating equation (4.135) and (4.151) gives

b11 = cos γ , (4.152)

fm(a) =
m+1∑
i=1

bm+1,ia
2i−2 . (4.153)

Also following from equation (4.153) we obtain

ν · Tum−1 − cos γ −
m+1∑
i=1

bm+1,iq
2i−2p−2m = O

(
p−2m−2

)
. (4.154)

Similarly we aim to expand the left hand side of the capillary PDE, i.e. ∇Tum−1. Since

equation (4.142) is a power series in p and q we can differentiate the series. Thus we
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obtain

∇ · Tum−1 = (p2 + q2)2 ∂

∂p
sin γ

(
∂um−1

∂p

)(
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

F k

)

+(p2 + q2)2 ∂

∂q
sin γ

(
∂um−1

∂q
q̂

)(
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

F k

)

= (p2 + q2)2 sin γ

((
∂2um−1

∂p2

)(
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

F k

)

+

(
∂um−1

∂p

)( ∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

kF k−1∂F

∂p

)

+

(
∂2um−1

∂q2

)(
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

F k

)

+

(
∂um−1

∂q

)( ∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

kF k−1∂F

∂q

))
(4.155)

Following from equation (4.149) we have

∂F

∂p
(p, q) =

2m+1∑
j=0

j∑
i=0

−2jKjiq
2jp−2j−1 (4.156)

∂F

∂q
(p, q) =

2m+1∑
j=0

j∑
i=0

2jKjiq
2j−1p−2j . (4.157)
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Substituting equation (4.156) and (4.157) into equation (4.155) gives

∇ · Tum−1 = (p2 + q2)2 sin γ

((
m−1∑
j=0

j∑
i=0

Ajiq
2i+1(−2j − 2)(−2j − 3)p−2j−4

)

·
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

(
2m+1∑
j=0

j∑
i=0

Kjiq
2jp−2j

)k


+

(
m−1∑
j=0

j∑
i=0

Ajiq
2i+1(−2j − 2)p−2j−3

)

·
 ∞∑

k=1

∏k
l=1

(−2l−1
2

)
k!

k

(
2m+1∑
j=0

j∑
i=0

Kjiq
2jp−2j

)k−1

·
2m+1∑
j=0

j∑
i=0

−2jKjiq
2jp−2j−1

)

+

(
m−1∑
j=1

j∑
i=1

Aji(2i+ 1)(2i)q2i−1p−2j−2

)

·
1 +

∞∑
k=1

∏k
l=1

(−2l−1
2

)
k!

(
2m+1∑
j=0

j∑
i=0

Kjiq
2jp−2j

)k


+

(
m−1∑
j=0

j∑
i=0

Aji(2i+ 1)q2ip−2j−2

)

·
 ∞∑

k=1

∏k
l=1

(−2l−1
2

)
k!

k

(
2m+1∑
j=0

j∑
i=0

Kjiq
2jp−2j

)k−1

·
2m+1∑
j=0

j∑
i=0

2jKjiq
2j−1p−2j

))
(4.158)

Following from equation (4.158) we can show that there exists a set of constants Cji

given by

∇ · Tum−1 =
∞∑
j=1

j∑
i=1

Cjiq
2i−1p−2j+2 . (4.159)
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It follows from equation (4.134) and equation (4.159) that there exists a set of constants

cji given by

∇ · Tum−1 − um−1 =
∞∑
j=1

j∑
i=1

cjiq
2i−1p−2j+2 . (4.160)

Hence by equating equation (4.136) and (4.160) we obtain gm(q) to be in a form

gm(q) =
m∑
i=1

cmiq
2i−1. (4.161)

Also from equation (4.160) we obtain

∇ · Tum−1 − um−1 −
m∑
i=1

cmiq
2i−1p−2m+2 = O

(
p−2m

)
for sufficiently large p.

(4.162)

We now let the next order term um to be

um = um−1 +
m∑
i=0

Amiq
2i+1p−2(m+1) . (4.163)

After some calculation (refer to Appendix A.4) we obtain

∇ · Tum = ∇ · Tum−1 + sin3 γ
m∑
i=1

Ami(2i+ 1)2iq2i−1p−2m+2

+
m+1∑
i=1

Dmiq
2i−1p−2m +O(p−2m−2) . (4.164)
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It follows from equation (4.164) that

∇ · Tum − um = sin3 γ
m∑
i=1

Ami(2i+ 1)2iq2i−1p−2m+2

+
m+1∑
i=1

Dmiq
2i−1p−2m +O(p−2m−2)

+
m∑
i=1

cmiq
2i−1p−2m+2 −

m∑
i=0

Amiq
2i+1p−2(m+1) +O(p−2m) .

(4.165)

Simplifying equation (4.165) gives

∇ · Tum − um =
m∑
i=1

(
sin3 γAmi(2i+ 1)2i+ cmi

)
q2i−1p−2m+2 . (4.166)

Now now choose Ami so that

sin3 γAmi(2i+ 1)2i+ cmi = 0 . (4.167)

Solving equation (4.167) for Ami gives

Ami = − cmi
sin3 γ(2i+ 1)2i

, for i = 1, 2, 3...m . (4.168)

Choosing Ami as in equation (4.168) gives

∇ · Tum − um = O(p−2m) . (4.169)
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After some calculation (refer to Appendix A.4)

q̂ · Tum|q=a ∼ cos γ +

(
m+1∑
i=1

bm+1,ia
2i−2 + sin3 γ

m∑
i=0

Ami(2i+ 1)a2i

)
p−2m

+

(
sin γa2

m∑
i=0

Ami(2i+ 1)a2i − sin2 γ cos γ

2

(
C + 2a2B

)
−2a2sin γ

m∑
i=0

Ami(2i+ 1)a2i +
4a2B sin2 γ cos γ

2

)
p−2(m+1) ,

(4.170)

as p→∞. Following from equation (4.170) we obtain

q̂ · Tum|q=a = cos γ +

(
m+1∑
i=1

bm+1,ia
2i−2 + sin3 γ

m∑
i=0

Ami(2i+ 1)a2i

)
p−2m

+O
(
p−2m−2

)
, for sufficiently large p . (4.171)

Now we choose Am0 such that

m+1∑
i=1

bm+1,ia
2i−2 + sin3 γ

m∑
i=0

Ami(2i+ 1)a2i = 0 . (4.172)

Solving equation (4.172) for Am0 gives

Am0 = −
∑m+1

i=1 bm+1,ia
2i−2 + sin3 γ

∑m
i=1Ami(2i+ 1)a2i

sin3 γ
. (4.173)

Substituting equation (4.168) into equation (4.173) gives

Am0 = −
∑m+1

i=1 bm+1,ia
2i−2 −∑m

i=1
cmi
2i
a2i

sin3 γ
. (4.174)
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Choosing Am0 as in equation (4.174) gives

q̂ · Tum|q=a = cos γ +O(p−2m−2) . (4.175)

Hence we have

um =
m∑
j=0

j∑
i=0

Ajiq
2i+1p−2j−2 , (4.176)

where

Am0 = −
∑m+1

i=1 bm+1,ia
2i−2 −∑m

i=1
cmi
2i
a2i

sin3 γ
, (4.177)

Ami = − cmi
sin3 γ(2i+ 1)2i

, for i = 1, 2, 3...m . (4.178)

q̂ · Tum|q=a ∼ cos γ + fm+1(a)p−2m−2 , as p→∞ , (4.179)

∇ · Tum − um ∼ gm+1(q)p−2m , as p→∞ . (4.180)

Hence equations (4.128) and (4.129) are satisfied for n = m. By Mathematical Induc-

tion, we have proved that

un =
n∑
j=0

j∑
i=0

Ajiq
2i+1p−2j−2 , (4.181)

q̂ · Tun|q=a = cos γ +O
(
p−2n−2

)
, (4.182)

∇ · Tun = un +O
(
p−2n

)
, (4.183)
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for sufficiently large p, for all n ∈ Z+. Following from the fact equation (4.181) is odd

with respect to q we have

− q̂ · Tun|q=−a = − cos γ +O
(
p−2n−2

)
. (4.184)

Hence equations (4.128) and (4.129) are satisfied for all n ∈ Z+.

�



Chapter 5

Future Work

Currently, Theorem 2.2 can only be applied to cusp regions, which satisfy equations (2.60)-

(2.62). However, we suspect these conditions can be reduced because we have been

unable to find any cusps that did not satisfy these equations. We would also like to

prove that the leading order term of the formal asymptotic expansion, equation (2.113),

is actually the leading order of the asymptotic solution. This may be proven by finding

the third order formal asymptotic expansion and by using the comparison principle.

The technique we introduced in Section 3.3 gives an accurate approximation to the

capillary BVP in circular cusp regions. We would like to expand the application of

this technique from the wedge problem (see Appendix B) to other types of cusps as

well. Finally, as in Section 3.5, we would like to use the comparison principle to prove

that the formal asymptotic series found in Theorem 4.4 is also the complete asymptotic

series.

As a course project, I have used an iterative finite difference method to numerically

compute solutions to the capillary BVPs. These numerical simulations were only suc-

cessful for solutions without singularities and not for those with singularities. We would

like to demonstrate that the solutions to the capillary BVPs both with and without

singularities may be obtained by using a least square finite element method.

121



Appendix A

Calculations and Justifications

A.1 Calculation for Theorem 2.2

We are given that

f1(x)− f2(x) = o(f ′1(x)− f ′2(x)) , (A.1)

f ′′1 (x)− f ′′2 (x) = o

(
f ′1(x)− f ′2(x)

f1(x)− f2(x)

)
, (A.2)

f ′′′1 (x)− f ′′′2 (x) = o

(
f ′1(x)− f ′2(x)

(f1(x)− f2(x))2

)
, (A.3)

as x→ 0. We now aim to calculate

ν · Tv|t=1 , (A.4)

ν · Tv|t=−1 , (A.5)

∇ · Tv − v , (A.6)

where

v =
A

f1(s)− f2(s)
+ g(t)

f ′1(s)− f ′2(s)

f1(s)− f2(s)
+ C0 , (A.7)
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with

s := x , (A.8)

t :=
2y − (f1(x) + f2(x))

f1(x)− f2(x)
. (A.9)

Equations (A.4) and (A.5) can be written as

ν · Tv|t=1 =
(−f ′1(s), 1)√

1 + f
′2
1 (s)

· (vx, vy)√
1 + v2

x + v2
y

, (A.10)

ν · Tv|t=−1 =
(f ′2(s),−1)√

1 + f
′2
1 (s)

· (vx, vy)√
1 + v2

x + v2
y

. (A.11)

By the chain rule, we re-write the above formula in terms of new coordinate variables

s and t:

vx =
∂v

∂t

∂t

∂x
+
∂v

∂s

∂s

∂x
, (A.12)

vy =
∂v

∂t

∂t

∂y
+
∂v

∂s

∂s

∂y
. (A.13)

Following from equation (A.7) we have

∂v

∂s
= −A(f ′1(s)− f ′2(s))

(f1(s)− f2(s))2
+ g(t)

f ′′1 (s)− f ′′2 (s)

f1(s)− f2(s)
− g(t)

(f ′1(s)− f ′2(s))2

(f1(s)− f2(s))2
, (A.14)

∼ −A(f ′1(s)− f ′2(s))

(f1(s)− f2(s))2
+ g(t)

f ′′1 (s)− f ′′2 (s)

f1(s)− f2(s)
, (A.15)

∂v

∂t
= g′(t)

f ′1(s)− f ′2(s)

f1(s)− f2(s)
. (A.16)

Following from equation (A.9) we obtain

∂t

∂x
= −t(f

′
1(s)− f ′2(s)) + (f ′1(s) + f ′2(s))

f1(s)− f2(s)
, (A.17)

∂t

∂y
=

2

f1(s)− f2(s)
. (A.18)
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Substituting equations (A.17) and (A.18) into equations (A.12) and (A.13) gives

vx ∼ −g′(t)f
′
1(s)− f ′2(s)

f1(s)− f2(s)

t(f ′1(s)− f ′2(s)) + (f ′1(s) + f ′2(s))

f1(s)− f2(s)

−A(f ′1(s)− f ′2(s))

(f1(s)− f2(s))2
+ g(t)

f ′′1 (s)− f ′′2 (s)

f1(s)− f2(s)
− g(t)

(f ′1(s)− f ′2(s))2

(f1(s)− f2(s))2
, (A.19)

∼ −A(f ′1(s)− f ′2(s))

(f1(s)− f2(s))2
+ g(t)

f ′′1 (s)− f ′′2 (s)

f1(s)− f2(s)
, (A.20)(

Assume:

∣∣∣∣ (f ′1(s)− f ′2(s))

(f1(s)− f2(s))2

∣∣∣∣ >> ∣∣∣∣f ′′1 (s)− f ′′2 (s)

f1(s)− f2(s)

∣∣∣∣)
∼ −A f ′1(s)− f ′2(s)

(f1(s)− f2(s))2
, (A.21)

vy = 2g′(t)
f ′1(s)− f ′2(s)

(f1(s)− f2(s))2
, (A.22)

then substituting equations (A.21) and (A.22) into equations (A.10) and (A.11) gives

ν · Tv|t=1 ∼
(−f ′1(s), 1)√

1 + f
′2
1 (s)

·
(
−A f ′1(s)−f ′2(s)

(f1(s)−f2(s))2
, 2g′(1)

f ′1(s)−f ′2(s)

(f1(s)−f2(s))2

)
√

1 +
(
−A f ′1(s)−f ′2(s)

(f1(s)−f2(s))2

)2

+
(

2g′(1)
f ′1(s)−f ′2(s)

(f1(s)−f2(s))2

)2
,

(A.23)(
Assume:

∣∣∣∣ (f ′1(s)− f ′2(s))

(f1(s)− f2(s))2

∣∣∣∣ >> 1

)
∼ Af ′1(s) + 2g′(1)√

A2 + 4g′2(1)
, (A.24)

ν · Tv|t=−1 ∼
(f ′2(s),−1)√

1 + f
′2
1 (s)

·
(
−A f ′1(s)−f ′2(s)

(f1(s)−f2(s))2
, 2g′(−1)

f ′1(s)−f ′2(s)

(f1(s)−f2(s))2

)
√

1 +
(
−A f ′1(s)−f ′2(s)

(f1(s)−f2(s))2

)2

+
(

2g′(−1)
f ′1(s)−f ′2(s)

(f1(s)−f2(s))2

)2
,

∼ −Af
′
2(s) + 2g′(−1)√
A2 + 4g′2(−1)

. (A.25)
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We now consider the left hand side of the PDE (A.6). By the definition of T we can

expand ∇ · Tv as

∇ · Tv =
∂

∂x

vx√
1 + v2

x + v2
y

+
∂

∂y

vy√
1 + v2

x + v2
y

, (A.26)

=
vxx√

1 + v2
x + v2

y

− vx (vxvxx + vyvxy)(
1 + v2

x + v2
y

)3/2
(A.27)

+
vyy√

1 + v2
x + v2

y

− vy (vxvxy + vyvyy)(
1 + v2

x + v2
y

)3/2
, (A.28)

=
vxx + vxxv

2
x + vxxv

2
y − vx (vxvxx + vyvxy)(

1 + v2
x + v2

y

)3/2
(A.29)

+
vyy + vyyv

2
x + vyyv

2
y − vy (vxvxy + vyvyy)(

1 + v2
x + v2

y

)3/2
, (A.30)

=
vxx
(
1 + v2

y

)
+ vyy (1 + v2

x)− 2vxvyvxy(
1 + v2

x + v2
y

)3/2
. (A.31)
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By the chain rule each second derivative of v becomes:

vxx =
∂

∂s
(vx)

∂s

∂x
+
∂

∂t
(vx)

∂t

∂x
, (A.32)

=
∂

∂s

(
−tg′(t)(f ′1 − f ′2)2

(f1 − f2)2
− g′(t)(f ′1 − f ′2)(f ′1 + f ′2)

(f1 − f2)2

−A(f ′1 − f ′2)

(f1 − f2)2
+ g(t)

f ′′1 + f ′′2
f1 − f2

− g(t)
(f ′1 − f ′2)2

(f1 − f2)2

)
+
∂

∂t

(
−tg′(t)(f ′1 − f ′2)2

(f1 − f2)2
− g′(t)(f ′1 − f ′2)(f ′1 + f ′2)

(f1 − f2)2
− A(f ′1 − f ′2)

(f1 − f2)2

+g(t)
f ′′1 + f ′′2
f1 − f2

−g(t)
(f ′1 − f ′2)2

(f1 − f2)2

)
·
(
−t(f

′
1(s)− f ′2(s)) + (f ′1(s) + f ′2(s))

f1(s)− f2(s)

)
,

= −(tg′(t) + g(t))

(
2(f ′1 − f ′2)(f ′′1 − f ′′2 )

(f1 − f2)2
− 2

(f ′1 − f ′2)3

(f1 − f2)3

)
−g′(t)

(
(f ′′1 − f ′′2 )(f ′1 + f ′2) + (f ′1 − f ′2)(f ′′1 + f ′′2 )

(f1 − f2)2
− 2

(f ′1 − f ′2)2(f ′1 + f ′2)

(f1 − f2)3

)
−A(f ′′1 − f ′′2 )

(f1 − f2)2
+ 2

A(f ′1 − f ′2)2

(f1 − f2)3
+ g(t)

f ′′′1 + f ′′′2

f1 − f2

− g(t)
(f ′′1 + f ′′2 )(f ′1 − f ′2)

(f1 − f2)2(
−2(tg′′(t) + 2g′(t))

(f ′1 − f ′2)2

(f1 − f2)3
− 2g′′(t)

(f ′1 − f ′2)(f ′1 + f ′2)

(f1 − f2)3

+2g′(t)
f ′′1 + f ′′2

(f1 − f2)2

)
(−t(f ′1(s)− f ′2(s)) + (f ′1(s) + f ′2(s))) , (A.33)

∼ −A(f ′′1 (s)− f ′′2 (s))

(f1(s)− f2(s))2
+ 2

A(f ′1(s)− f ′2(s))2

(f1(s)− f2(s))3
+ g(t)

f ′′′1 (s) + f ′′′2 (s)

f1(s)− f2(s)
, (A.34)

vxy =
∂

∂s
(vx)

∂s

∂y
+
∂

∂t
(vx)

∂t

∂y
, (A.35)

∼ −2g′′(t)
(f ′1(s)− f ′2(s)) (t(f ′1(s)− f ′2(s)) + (f ′1(s) + f ′2(s)))

(f1(s)− f2(s))3

−4g′(t)
(f ′1(s)− f ′2(s))2

(f1(s)− f2(s))3
+ 2g′(t)

f ′′1 (s)− f ′′2 (s)

(f1(s)− f2(s))2
, (A.36)

vyy =
∂

∂s
(vy)

∂s

∂y
+
∂

∂t
(vy)

∂t

∂y
, (A.37)

= 4g′′(t)
f ′1(s)− f ′2(s)

(f1(s)− f2(s))3
. (A.38)
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Substituting equations (A.34)-(A.38) into equation (A.31) gives

∇ · Tv ∼
((

2
A(f ′1 − f ′2)2

(f1 − f2)3
− A(f ′′1 − f ′′2 )

(f1 − f2)2
+ g(t)

f ′′′1 − f ′′′2

f1 − f2

)
(

1 +

(
2g′(t)

f ′1 − f ′2
(f1 − f2)2

)2
)

+ 4g′′(t)
f ′1 − f ′2

(f1 − f2)3

+

(
4g′′(t)

f ′1 − f ′2
(f1 − f2)3

)(
−A(f ′1 − f ′2)

(f1 − f2)2

)2

−2

(
−A(f ′1 − f ′2)

(f1 − f2)2

)
2g′(t)

f ′1 − f ′2
(f1 − f2)2

(
2g′(t)

f ′′1 + f ′′2
(f1 − f2)2

− 4g′(t)
(f ′1 − f ′2)2

(f1 − f2)3

2g′′(t)
f ′1 − f ′2

(f1 − f2)2

(
−t(f

′
1(x)− f ′2(x))

f1(x)− f2(x)
− f ′1(x) + f ′2(x)

f1(x)− f2(x)

)))
/(

1 +

(
−A(f ′1 − f ′2)

(f1 − f2)2

)2

+

(
2g′(t)

f ′1 − f ′2
(f1 − f2)2

)2
)3/2

(A.39)

∼
((
−A(f ′′1 − f ′′2 )

(f1 − f2)2
+ g(t)

f ′′′1 − f ′′′2

f1 − f2

)(
2g′(t)

f ′1 − f ′2
(f1 − f2)2

)2

+4g′′(t)
f ′1 − f ′2

(f1 − f2)3

+

(
4g′′(t)

f ′1 − f ′2
(f1 − f2)3

)(
−A(f ′1 − f ′2)

(f1 − f2)2

)2

−2

(
−A(f ′1 − f ′2)

(f1 − f2)2

)
2g′(t)

f ′1 − f ′2
(f1 − f2)2

(
2g′(t)

f ′′1 + f ′′2
(f1 − f2)2

))
/((

−A(f ′1 − f ′2)

(f1 − f2)2

)2

+

(
2g′(t)

f ′1 − f ′2
(f1 − f2)2

)2
)3/2

(A.40)

∼
((

2g′(t)g(t)
(f ′′′1 − f ′′′2 )(f ′1 − f ′2)2

(f1 − f2)5

)
+

(
4g′′(t)

f ′1 − f ′2
(f1 − f2)3

)(
−A(f ′1 − f ′2)

(f1 − f2)2

)2

−2

(
−A(f ′1 − f ′2)2

(f1 − f2)2

)(
4g
′2(t)

f ′′1 + f ′′2
(f1 − f2)4

))
/(

A2 + 4g′2(t)
)3/2 (f ′1 − f ′2)3

(f1 − f2)6
. (A.41)
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We can further simplify equation (A.41) and obtain

∇ · Tv

∼
(

2g′(t)g(t)
(f ′′′1 −f ′′′2 )(f1−f2)

(f ′1−f ′2)

)
+ (4g′′(t))

(
A2

(f1−f2)

)
− 2

(
− A
f ′1−f ′2

) (
4g
′2(t)(f ′′1 + f ′′2 )

)
(A2 + 4g′2(t))3/2(

Assuming :

∣∣∣∣(f ′′′1 − f ′′′2 )(f1 − f2)

f ′1 − f ′2

∣∣∣∣ << ∣∣∣∣ 1

f1 − f2

∣∣∣∣)
∼ 4g′′(t)A2

(A2 + 4g′2(t))3/2

1

(f1 − f2)
. (A.42)

Following from equation (A.7) and (A.42) we obtain

∇ · Tv − v ∼ 4g′′(t)A2

(A2 + 4g′2(t))3/2

1

f1(s)− f2(s)
− A

f1(s)− f2(s)
− C0 as s→ 0 .

(A.43)

A.2 Justification of Figure 3.3

In this section, we justify that there exists a unique triangle for each c such described

in Figure 3.3.

First consider the case for b < 0 (see Figure A.1). In a region Ω, draw a circle of

radius c centered at (c, 0). Name each intersection of the circle with the upper and

lower boundary ”d” and ”f”, respectively. Draw a line between the center of the upper

boundary (D) and d and also draw a line between the center of the lower boundary

(E) and f and extend them and name the intersection of these lines to be F . Since the

line segment c − d and c − 0 are the radii of a circle, they have the same length, also

length of line segments D − O and D − d are the same. Thus 4DOc and 4Ddc are

congruent. Since the point c is on x-axis, ∠DOc is right angle, this implies ∠Ddc is

also right angle. Similarly, ∠Efc is right angle. Hence, line segment D−F , D−E and

F − E are tangential to the circle. That is to say, 4DFE inscribes a circle of radius
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Ω1

c

D

E

d

f

F

O x

Figure A.1: Upper bound Approximation near a Circular Cusp: b < 0 case

c centered at (c, 0). By the property of triangle inscribing a circle, the length of line

segments d − F and f − F are the same. So we can draw a circle centered at F and

pass through points d and f . Since both d− F and f − F are radii of a circle, tangent

line segments of a circle at point d and f are orthogonal to d − F and f − F , hence

c− d and c− f are tangential to the circle.

Thus, the circle tangential to the upper and lower boundaries at points d and f has a

center at the point F .

Similarly for the case b > 0 (see Figure A.2). Since both E −O and E − f are the

radii of a circle, length of E−O and E− f are the same. Similarly length of c−O and

c−f are the same. Hence 4OEc and 4fEc are congruent. Since c is on x-axis, ∠cOE

is right angle, this gives ∠Efc to be right angle. Similarly we can show ∠cfE is right

angle. This gives line segments d−F and f −F to be tangential to the circle centered

at c and this gives the length of line segments d− F and f − F to be the same. Thus

the center of a circle which is tangential to the upper and lower boundary at points f

and d has a center at point F .
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c x

y

D

E F

d
f

O

Figure A.2: Upperbound Approximation near a Circular Cusp: b > 0 case

A.3 Calculation for Lemma 3.2

We would like to expand q̂ · Tv and ∇ · Tv asymptotically as p→∞.

v(p, q) is defined as:

v(p, q) = Ap2 − 2
√

1− A2(q − q0)2p− A(q − q0)2 + Aq2
0 + L1 +

h(q)

p5
. (A.44)

Each derivative can be calculated as

∂v

∂p
= 2Ap− 2

√
1− A2(q − q0)2 − 5

h(q)

p6
, (A.45)

∂v

∂q
=

2A2(q − q0)√
1− A2(q − q0)2

p− 2A(q − q0) +
h′(q)

p5
, (A.46)

∂2v

∂p2
= 2A+

30h(q)

p7
, (A.47)

∂2v

∂q2
=

2A4(q − q0)2

(1− A2(q − q0)2)3/2
p+

2pA2√
1− A2(q − q0)2

− 2A+
h′′(q)

p5
, (A.48)

∂2v

∂p∂q
=

2A2(q − q0)√
1− A2(q − q0)2

− 5h′(q)

p6
. (A.49)
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Following from equations (A.45) and (A.46) we can calculate ∂v
∂p

2
+ ∂v

∂q

2
as

∂v

∂p

2

+
∂v

∂q

2

=

(
2Ap− 2

√
1− A2(q − q0)2 − 5

h(q)

p6

)2

+

(
2A2(q − q0)√

1− A2(q − q0)2
p− 2A(q − q0) +

h′(q)

p5

)2

∼ 4A2p2 + 4
(
1− A2(q − q0)2

)− 8A
√

1− A2(q − q0)2p+
4A4(q − q0)2

1− A2(q − q0)2
p2

+4A2(q − q0)2 − 8A3(q − q0)2√
1− A2(q − q0)2

p+
4A2(q − q0)h′(q)√
1− A2(q − q0)2p4

, (A.50)

= 4 +
4A2

1− A2(q − q0)2
p2 − 8A√

1− A2(q − q0)2
p+

4A2(q − q0)h′(q)√
1− A2(q − q0)2

p−4 ,

= 4
(Ap−√1− A2(q − q0))2

1− A2(q − q0)2
+

4A2(q − q0)h′(q)√
1− A2(q − q0)2

p−4 . (A.51)



Appendix A: Calculations and Justifications 132

First perform an asymptotic expansion to q̂ · Tv,

q̂ · Tv =
(p2 + q2)∂v

∂q√
1 + (p2 + q2)2

(
∂v
∂p

2
+ ∂v

∂q

2
) (A.52)

∼
(p2 + q2)

(
2A2(q−q0)√
1−A2(q−q0)2

p− 2A(q − q0) + h′(q)
p5

)
√

1 + (p2 + q2)2

(
4

(Ap−
√

1−A2(q−q0))2

1−A2(q−q0)2
+ 4A2(q−q0)h′(q)√

1−A2(q−q0)2
p−4

) (A.53)

∼
(p2 + q2)

(
2A2(q−q0)√
1−A2(q−q0)2

p− 2A(q − q0) + h′(q)
p5

)
√

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

+ (p2 + q2)2

(
4

(Ap−
√

1−A2(q−q0))2

1−A2(q−q0)2

) , (A.54)

=

(p2 + q2)

(
2A2(q−q0)√
1−A2(q−q0)2

p− 2A(q − q0) + h′(q)
p5

)
√

(p2 + q2)2

(
4

(Ap−
√

1−A2(q−q0))2

1−A2(q−q0)2

)
1√√√√√1 +

1+
4A2(q−q0)h′(q)√

1−A2(q−q0)2

(p2+q2)2

 
4

(Ap−
√

1−A2(q−q0))2

1−A2(q−q0)2

!
. (A.55)

Apply binomial series expansion to 1vuuuuuuut1+

1+
4A2(q−q0)h′(q)√

1−A2(q−q0)2

(p2+q2)2

0B@4
(Ap−
√

1−A2(q−q0))2

1−A2(q−q0)2

1CA

. Since

∣∣∣∣∣∣∣∣∣∣
1 + 4A2(q−q0)h′(q)√

1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)
∣∣∣∣∣∣∣∣∣∣
< 1 , (A.56)
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for sufficiently large p, the series solution converges. Hence we obtain

q̂ · Tv ∼

(
2A2(q−q0)√
1−A2(q−q0)2

p− 2A(q − q0) + h′(q)
p5

)
2
Ap−
√

1−A2(q−q0)2√
1−A2(q−q0)2

·

1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

) + ...


=

A(q − q0) +
h′(q)

√
1− A2(q − q0)2

2
(
Ap−√1− A2(q − q0)2

)
p5



·

1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

) + ...


∼ A(q − q0) +

h′(q)
√

1− A2(q − q0)2

2
(
Ap−√1− A2(q − q0)2

)
p5

−1

2
A(q − q0)

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)

∼ A(q − q0) +
h′(q)

√
1− A2(q − q0)2

2Ap6

−A(q − q0)

2

(1− A2(q − q0)2) + 4A2(q − q0)h′(q)
√

1− A2(q − q0)2

4A2p6

∼ A(q − q0) +
(1− A2(q − q0)2)3/2h′(q)

2Ap6
− (q − q0)(1− A2(q − q0)2)

8Ap6

as p→∞. This implies that

q̂ · Tv = A(q − q0) +
(1− A2(q − q0)2)3/2h′(q)

2Ap6
− (q − q0)(1− A2(q − q0)2)

8Ap6

+O
(
p−7
)
. (A.57)
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Similarly we calculate the asymptotic expansion of p̂ · Tv as

(p2 + q2)∂v
∂p√

1 + (p2 + q2)2
(
∂v
∂p

2
+ ∂v

∂q

2
)

∼ 2Ap− 2
√

1− A2(q − q0)2 − 5h(q)
p6

2
Ap−
√

1−A2(q−q0)2√
1−A2(q−q0)2

·

1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

) + ...


=

(√
1− A2(q − q0)2 − 5

2

h(q)
√

1− A2(q − q0)2

(Ap−√1− A2(q − q0)2)p6

)

·

1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

) + ...



∼
(√

1− A2(q − q0)2
)
1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

) + ...



Since h(q) is C2 function and
1+

4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2+q2)2

0B@4

„
Ap−
√

1−A2(q−q0)

«2

1−A2(q−q0)2

1CA
is differentiable we can dif-

ferentiate Tv without losing the asymptotic relationship. Hence we can calculate the
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left hand side of the PDE, i.e. ∇ · Tv as

∇ · Tv = (p2 + q2)2

·

 ∂

∂p

∂v
∂p√

1 + (p2 + q2)2
(
∂v
∂p

2
+ ∂v

∂q

2
) +

∂

∂q

∂v
∂q√

1 + (p2 + q2)2
(
∂v
∂p

2
+ ∂v

∂q

2
)


∼ (p2 + q2)2

·

 ∂

∂p


√

1− A2(q − q0)2

(p2 + q2)

1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)



+
∂

∂q

A(q − q0)

(p2 + q2)
+

h′(q)
√

1− A2(q − q0)2

2(p2 + q2)
(
Ap−√1− A2(q − q0)2

)
p5



− ∂

∂q

1

2

A(q − q0)

(
1 + 4A2(q−q0)h′(q)√

1−A2(q−q0)2

)
(p2 + q2)3

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)

 (A.58)

= (p2 + q2)2

·

−2p
√

1− A2(q − q0)2

(p2 + q2)2

1− 1

2

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)


−1

2

√
1− A2(q − q0)2

(p2 + q2)

∂

∂p

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

) +
A

(p2 + q2)

−2A(q − q0)q

(p2 + q2)2
+

∂

∂q

h′(q)
√

1− A2(q − q0)2

2(p2 + q2)
(
Ap−√1− A2(q − q0)2

)
p5

−1

2

∂

∂q

A(q − q0)

(
1 + 4A2(q−q0)h′(q)√

1−A2(q−q0)2

)
(p2 + q2)3

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)
 . (A.59)
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It follows from equation (A.59) that

∇ · Tv ∼ −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

(p2 + q2)2

−1

2

√
1− A2(q − q0)2

(p2 + q2)

∂

∂p

1 + 4A2(q−q0)h′(q)√
1−A2(q−q0)2

(p2 + q2)2

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)

+
∂

∂q

h′(q)
√

1− A2(q − q0)2

2(p2 + q2)
(
Ap−√1− A2(q − q0)2

)
p5

−1

2

∂

∂q

A(q − q0)

(
1 + 4A2(q−q0)h′(q)√

1−A2(q−q0)2

)
(p2 + q2)3

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)


∼ −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+(p2 + q2)2

 ∂

∂q

h′(q)
√

1− A2(q − q0)2

2(p2 + q2)
(
Ap−√1− A2(q − q0)2

)
p5

−1

2

∂

∂q

A(q − q0)

(
1 + 4A2(q−q0)h′(q)√

1−A2(q−q0)2

)
(p2 + q2)3

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)


∼ −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+(p2 + q2)
∂

∂q

h′(q)
√

1− A2(q − q0)2

2
(
Ap−√1− A2(q − q0)2

)
p5

−1

2

∂

∂q

A(q − q0)

(
1 + 4A2(q−q0)h′(q)√

1−A2(q−q0)2

)
(p2 + q2)

(
4

“
Ap−
√

1−A2(q−q0)
”2

1−A2(q−q0)2

)
∼ −2p

√
1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+
∂

∂q

h′(q)

2Ap4
−
A(q − q0)

(√
1− A2(q − q0)2 + 4A2(q − q0)h′(q)

)
8A2p4


·
√

1− A2(q − q0)2 . (A.60)
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Further simplifying equation (A.60) gives

∇ · Tv

∼ −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+
∂

∂q

(
(1− A2(q − q0)2)h′(q)

2
− (q − q0)

√
1− A2(q − q0)2

8

)√
1− A2(q − q0)2

Ap4

= −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+
∂

∂q

(
(1− A2(q − q0)2)

√
1− A2(q − q0)2h′(q)

2

−(q − q0) (1− A2(q − q0)2)

8

)
1

Ap4

= −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+

(
(−2A2(q − q0))

√
1− A2(q − q0)2h′(q)

2

+
(1− A2(q − q0)2)(−2A2(q − q0))h′(q)

4
√

1− A2(q − q0)2

+
(1− A2(q − q0)2)

√
1− A2(q − q0)2h′′(q)

2

−(1− A2(q − q0)2)

8
+
A2(q − c)2

4

)
1

Ap4

= −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+

(
(3− 3A2(q − q0)2)(−2A2(q − q0))h′(q)

4
√

1− A2(q − q0)2

+
(1− A2(q − q0)2)

√
1− A2(q − q0)2h′′(q)

2
− (1− 3A2(q − q0)2)

8

)
1

Ap4

= −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+
12
√

1− A2(q − q0)2(−A2(q − q0))h′(q) + 4 (1− A2(q − q0)2)
3/2
h′′(q)

8Ap4

−(1− 3A2(q − q0)2)

8Ap4
, as p→∞ . (A.61)
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Following from equation (A.61) we obtain

∇ · Tv = −2p
√

1− A2(q − q0)2 + A(p2 + q2)− 2A(q − q0)q

+
12
√

1− A2(q − q0)2(−A2(q − q0))h′(q) + 4 (1− A2(q − q0)2)
3/2
h′′(q)

8Ap4

−(1− 3A2(q − q0)2)

8Ap4
+O

(
p−5
)
, for sufficiently large p. (A.62)

A.4 Calculation for Theorem 4.4

We now aim to perform an asymptotic expansion of the following:

ν · Tum , (A.63)

∇ · Tum , (A.64)

where

um = um−1 +
m∑
i=0

Amiq
2i+1p−2(m+1) , (A.65)

∼ cot γq

p2
+ cot γ

2 a2q
cos2 γ

− q3

p4
. (A.66)

Following from equation (A.65), we can compute each derivative as

∂um
∂p

=
∂um−1

∂p
− 2(m+ 1)

m∑
i=0

Amiq
2i+1p−2(m+1)−1 , (A.67)

∼ −2
cot γq

p3
− 4 cot γ

2 a2q
cos2 γ

− q3

p5
, (A.68)

∂um
∂q

=
∂um−1

∂q
+

m∑
i=0

Ami(2i+ 1)q2ip−2(m+1) , (A.69)

∼ cot γ

p2
+ cot γ

2 a2

cos2 γ
− 3q2

p4
. (A.70)
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It follows from equations (A.67) and (A.69) that

∂um
∂p

2

+
∂um
∂q

2

=

(
∂um−1

∂p
− 2(m+ 1)

m∑
i=0

Amiq
2i+1p−2(m+1)−1

)2

+

(
∂um−1

∂q
+

m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)2

, (A.71)

=
∂um−1

∂p

2

+
∂um−1

∂q

2

+2

(
−2

cot γq

p3
− 4 cot γ

2 a2q
cos2 γ

− q3

p5

)

·
(
−2(m+ 1)

m∑
i=0

Amiq
2i+1p−2(m+1)−1

)

+2

(
cot γ

p2
+ cot γ

2 a2

cos2 γ
− 3q2

p4

)

·
(

m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)
, (A.72)

=
∂um−1

∂p

2

+
∂um−1

∂q

2

+Bp−2(m+2) + Cp−2(m+3) , (A.73)

where

B = 2
m∑
i=0

(
cot γAmi(2i+ 1)q2i

)
, (A.74)

C = 2 cot γ
m∑
i=0

(
4(m+ 1)Amiq

2i+2 +

(
2

a2

cos2 γ
− 3q2

)
Ami(2i+ 1)q2i

)
.

(A.75)

By the definition of T we can expand q̂ · Tum as

q̂ · Tum =
(p2 + q2)∂um

∂q√
1 + (p2 + q2)2

(
∂um
∂p

2
+ ∂um

∂q

2
) . (A.76)
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Substituting equation (A.73) into (A.76) gives

q̂ · Tum =
(p2 + q2)

(
∂um−1

∂q
+
∑m

i=0Ami(2i+ 1)q2ip−2(m+1)
)

√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·

√√√√√ 1 + (p2 + q2)2
(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

1 + (p2 + q2)2
(
∂um−1

∂p

2
+ ∂um−1

∂q

2
+Bp−2(m+2) + Cp−2(m+3)

) ,
=

(p2 + q2)
(
∂um−1

∂q
+
∑m

i=0Ami(2i+ 1)q2ip−2(m+1)
)

√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
√√√√√ 1

1 +
(p2+q2)2(Bp−2(m+2)+Cp−2(m+3))

1+(p2+q2)2
„
∂um−1
∂p

2
+
∂um−1
∂q

2
« . (A.77)

Applying binomial expansion to
√√√√ 1

1+
(p2+q2)2(Bp−2(m+2)+Cp−2(m+3))
1+(p2+q2)2

 
∂um−1
∂p

2
+
∂um−1
∂q

2
! gives

q̂ · Tum =
(p2 + q2)

(
∂um−1

∂q
+
∑m

i=0Ami(2i+ 1)q2ip−2(m+1)
)

√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
1− 1

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

+
3

8

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)
2

− ...
 . (A.78)

It can be shown that∣∣∣∣∣∣(p
2 + q2)2

(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)
∣∣∣∣∣∣ < 1 , for sufficiently large p, for m > 0.

(A.79)
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This implies that the binomial series converges. Also note
(p2+q2)2(Bp−2(m+2)+Cp−2(m+3))

1+(p2+q2)2
„
∂um−1
∂p

2
+
∂um−1
∂q

2
«

is differentiable. It follows from equation (A.78) that

q̂ · Tum ∼
(

cos γ +
m+1∑
i=1

bm+1,iq
2i−2p−2m

)

·
1− 1

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

+
3

8

 (p2 + q2)2
(
Bp−2(m+2)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)
2

− ...
 ,

+
(p2 + q2)

(∑m
i=0Ami(2i+ 1)q2ip−2(m+1)

)√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
1− 1

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

+
3

8

 (p2 + q2)2
(
Bp−2(m+2)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)
2

− ...
 ,

∼
(

cos γ +
m+1∑
i=1

bm+1,iq
2i−2p−2m

)

·
1− 1

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)


+
(p2 + q2)

(∑m
i=0Ami(2i+ 1)q2ip−2(m+1)

)√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
) (A.80)

∼ cos γ − cos γ

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

+
m∑
i=1

bmiq
2i−1p−2m

+
(p2 + q2)

(∑m
i=0Ami(2i+ 1)q2ip−2(m+1)

)√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
) . (A.81)
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Simplifying equation (A.81) further gives

q̂ · Tum
∼ cos γ − cos γ

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
cot2 γ
p4

+
(

4a2

sin2 γ
− 2 cot2 γq2

)
1
p6

)
+

m+1∑
i=1

bm+1,iq
2i−2p−2m

+
(p2 + q2)

(∑m
i=0Ami(2i+ 1)q2ip−2(m+1)

)√
1 + (p2 + q2)2

(
cot2 γ
p4

+
(

4a2

sin2 γ
− 2 cot2 γq2

)
1
p6

)
∼ cos γ

+

m+1∑
i=1

bm+1,iq
2i−2 +

∑m
i=0Ami(2i+ 1)q2i√

1 + cot2 γ + 4a2

sin2 γ
1
p2

− cos γ

2

B

1 + cot2 γ + 4a2

sin2 γ
1
p2

 p−2m

+

(
q2
∑m

i=0Ami(2i+ 1)q2i√
1 + cot2 γ

− cos γ

2

C + 2q2B

1 + cot2 γ

)
p−2(m+1) (A.82)

= cos γ

+

 m∑
i=1

bmiq
2i−1 +

sin γ
∑m

i=0Ami(2i+ 1)q2i√
1 + 4a2

p2

− sin2 γ cos γ

2

B

1 + 4a2

p2

 p−2(m)

+

(
sin γq2

m∑
i=0

Ami(2i+ 1)q2i − sin2 γ cos γ

2

(
C + 2q2B

))
p−2(m+1)

∼ cos γ

+

(
m+1∑
i=1

bm+1,iq
2i−2 + sin γ

m∑
i=0

Ami(2i+ 1)q2i − B sin2 γ cos γ

2

)
p−2(m)

+

(
sin γq2

m∑
i=0

Ami(2i+ 1)q2i − sin2 γ cos γ

2

(
C + 2q2B

)
−2a2sin γ

m∑
i=0

Ami(2i+ 1)q2i +
4a2B sin2 γ cos γ

2

)
p−2(m+1) . (A.83)
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Hence equation (A.83) implies that

q̂ · Tum
∼ cos γ +

(
m+1∑
i=1

bm+1,iq
2i−2 + sin3 γ

m∑
i=0

Ami(2i+ 1)q2i

)
p−2(m)

+

(
sin γq2

m∑
i=0

Ami(2i+ 1)q2i − sin2 γ cos γ

2

(
C + 2q2B

)
−2a2sin γ

m∑
i=0

Ami(2i+ 1)q2i +
4a2B sin2 γ cos γ

2

)
p−2(m+1) , as p→∞.

(A.84)

We now consider the left hand side of the PDE, i.e. ∇ · Tum. By the definition of T

we can expand ∇ · Tum to be

∇ · Tum = (p2 + q2)2 ∂

∂p

∂um
∂p√

1 + (p2 + q2)
(
∂um
∂p

2
+ ∂um

∂q

2
)

+(p2 + q2)2 ∂

∂q

∂um
∂q√

1 + (p2 + q2)
(
∂um
∂p

2
+ ∂um

∂q

2
) . (A.85)
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By applying binomial series expansion we can asymptotically expand equation (A.85)

as

∇ · Tum ∼ (p2 + q2)2 ∂

∂p

 ∂um−1

∂p√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
1− 1

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)


+

∑m
i=0Amiq

2i+1(−2(m+ 1))p−2(m+1)−1√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)


+(p2 + q2)2 ∂

∂q

 ∂um−1

∂q√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
1− 1

2

(p2 + q2)2
(
Bp−2(m+2) + Cp−2(m+3)

)
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)


+

∑m
i=0 Ami(2i+ 1)q2ip−2(m+1)√

1 + (p2 + q2)2
(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)
 . (A.86)
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We can expand and simplify equation (A.86) as follows:

∇ · Tum ∼ (p2 + q2)2 ∂

∂p

 ∂um−1

∂p√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
(

1− 1

2

(p4 + 2p2q2)Bp−2(m+2)

1 + cot2 γ + 4a2

p2

− cos2 γ

2
Cp−2(m+1)

)

+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Amiq
2i+1(−2(m+ 1))p−2(m+1)−1

)

+(p2 + q2)2 ∂

∂q

 ∂um−1

∂q√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
(

1− 1

2

(p4 + 2p2q2)Bp−2(m+2)

1 + cot2 γ + 4a2

p2

− cos2 γ

2
Cp−2(m+1)

)

+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)
, (A.87)

∼ (p2 + q2)2 ∂

∂p

 ∂um−1

∂p√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
(

1− sin2 γ

2
Bp−2(m) +

(
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Amiq
2i+1(−2(m+ 1))p−2(m+1)−1

)

+(p2 + q2)2 ∂

∂q

 ∂um−1

∂q√
1 + (p2 + q2)2

(
∂um−1

∂p

2
+ ∂um−1

∂q

2
)

·
(

1− sin2 γ

2
Bp−2(m) +

(
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)
, (A.88)
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= ∇ · Tum−1

+(p2 + q2)2 ∂

∂p

−2 cot γq
p3
− 4 cot γ

2a2q

cos2 γ
−q3

p5√
1 + cot2 γ + 4a2

p2

·
(
−sin2 γ

2
Bp−2(m) +

(
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Amiq
2i+1(−2(m+ 1))p−2(m+1)−1

)

+(p2 + q2)2 ∂

∂q

 cot γ
p2

+ cot γ
2a2

cos2 γ
−3q2

p4√
1 + cot2 γ + 4a2

p2

·
(
−sin2 γ

2
Bp−2(m) +

(
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)
, (A.89)

∼ ∇ · Tum−1

+(p2 + q2)2 ∂

∂p

(((
−2

cot γq

p3
− 4 cot γ

2a2q
cos2 γ

− q3

p5

)
sin γ + 4a2 sin3 γ

cot γq

p5

)

·
(
−sin2 γ

2
Bp−2(m) +

(
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Amiq
2i+1(−2(m+ 1))p−2(m+1)−1

)

+(p2 + q2)2 ∂

∂q

(((
cot γ

p2
+ cot γ

2a2

cos2 γ
− 3q2

p4

)
sin γ − 2a2 sin3 γ

cot γ

p4

)

·
(
−sin2 γ

2
Bp−2(m) +

(
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)
, (A.90)
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∼ ∇ · Tum−1

+(p2 + q2)2

· ∂
∂p

(
−sin2 γ

2
Bp−2(m)

((
−2

cot γq

p3
− 4 cot γ

2a2q
cos2 γ

− q3

p5

)
sin γ + 4a2 sin3 γ

cot γq

p5

)

−2
cos γq

p3

((
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Amiq
2i+1(−2(m+ 1))p−2(m+1)−1

)
+(p2 + q2)2

· ∂
∂q

(
−sin2 γ

2
Bp−2(m)

((
cot γ

p2
+ cot γ

2a2

cos2 γ
− 3q2

p4

)
sin γ − 2a2 sin3 γ

cot γ

p4

)

+
cos γ

p2

((
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m+1)

)
+sin γ

(
1− 1

2
sin2 γ

4a2

p2

) m∑
i=0

Ami(2i+ 1)q2ip−2(m+1)

)
, (A.91)
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∼ ∇ · Tum−1

+(p2 + q2)2

· ∂
∂p

(
−sin3 γ

2
B

(
−2 cot γqp−2(m)−3 − 4 cot γ

(
2a2q

cos2 γ
+ a2 sin2 γq − q3

)
p−2(m)−5

)
−2 cos γq

((
sin3 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m)−5

)
−2(m+ 1) sin γ

m∑
i=0

Amiq
2i+1p−2m−3 + 2(m+ 1)2a2 sin3 γ

m∑
i=0

Amiq
2i+1p−2m−5

)
+(p2 + q2)2

· ∂
∂q

(
−2
∑m

i=0 (cot γAmi(2i+ 1)q2i) sin2 γ cos γ

2
p−2m−2

−
(
B sin2 γ cos γ

2

(
2a2

cos2 γ
− 3q2

)
− a2 sin5 γ cot γ

)
p−2m−4

+ cos γ

((
sin4 γB2a2 − sin2 γBq2 − cos2 γ

2
C

)
p−2(m)−4

)
+ sin γ

m∑
i=0

Ami(2i+ 1)q2ip−2m−2 − 2a2 sin3 γ
m∑
i=0

Ami(2i+ 1)q2ip−2m−4)

)
,

(A.92)



Appendix A: Calculations and Justifications 149

Since we can take derivative of binomial series we obtain

∼ ∇ · Tum−1

+(p2 + q2)2

·
(
− sin3 γ

m∑
i=0

(
cot γAmi(2i+ 1)q2i

) (−2(−2m− 3) cot γqp−2m−4
)

+ (2m+ 3)2(m+ 1) sin γ
m∑
i=0

Amiq
2i+1p−2m−4

)
+(p2 + q2)2

· ∂
∂q

(
−

m∑
i=0

(
Ami(2i+ 1)q2i

)
sin γ cos2 γp−2m−2

−
(

m∑
i=0

(Ami(2i+ 1)) sin γ cos2 γ

(
2a2

cos2 γ
q2i − 3q2i+2

)
− a2 sin5 γ cot γ

)
p−2m−4

+

((
2 sin3 γ cos2 γa2 − sin γ cos2 γq2

)
2

m∑
i=0

(
Ami(2i+ 1)q2i

))
p−2(m)−4

− sin γ cos2 γ
m∑
i=0

(
4(m+ 1)Amiq

2i+2 +

(
2

a2

cos2 γ
− 3q2

)
Ami(2i+ 1)q2i

)
p−2m−4

+ sin γ
m∑
i=0

Ami(2i+ 1)q2ip−2m−2 − 2a2 sin3 γ
m∑
i=0

Ami(2i+ 1)q2ip−2m−4)

)
, (A.93)
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∼ ∇ · Tum−1

+(p2 + q2)2

·
(
− sin3 γ

m∑
i=0

(
cot γAmi(2i+ 1)q2i

) (−2(−2(m)− 3) cot γqp−2(m)−4
)

+ (2m+ 3)2(m+ 1) sin γ
m∑
i=0

Amiq
2i+1p−2m−4

)
+(p2 + q2)2

·
(
−

m∑
i=1

(
Ami(2i+ 1)2iq2i−1

)
sin γ cos2 γp−2m−2

−
m∑
i=1

(Ami(2i+ 1)) sin γ cos2 γ
4ia2

cos2 γ
q2i−1p−2m−4

−3
m∑
i=0

(Ami(2i+ 1)) sin γ cos2 γ(2i+ 2)q2i+1p−2m−4

+
m∑
i=1

2 sin3 γ cos2 γ2ia2q2i−12 (Ami(2i+ 1)) p−2(m)−4

−
m∑
i=0

sin γ cos2 γ(2i+ 2)q2i+12 (Ami(2i+ 1)) p−2(m)−4

− sin γ cos2 γ
m∑
i=0

(
4(m+ 1)Ami(2i+ 2)q2i+1p−2m−4

+
m∑
i=1

2
a2

cos2 γ
2iq2i−1Ami(2i+ 1)p−2m−4

+
m∑
i=0

−3(2i+ 2)q2i+1Ami(2i+ 1)p−2m−4

+ sin γ
m∑
i=1

Ami(2i+ 1)2iq2i−1p−2m−2

−2a2 sin3 γ
m∑
i=1

Ami(2i+ 1)2iq2i−1p−2m−4)

)
, (A.94)
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= ∇ · Tum−1 −
m∑
i=1

(
Ami(2i+ 1)2iq2i−1

)
sin γ cos2 γp−2m+2

+ sin γ
m∑
i=1

Ami(2i+ 1)2iq2i−1p−2m+2 +
m+1∑
i=1

Dmiq
2i−1p−2m +O(p−2m−2) ,

= ∇ · Tum−1 + sin3 γ
m∑
i=1

Ami(2i+ 1)2iq2i−1p−2m+2 +
m+1∑
i=1

Dmiq
2i−1p−2m

+O(p−2m−2) . (A.95)



Appendix B

Analysis of Jumping of Asymptotic

Orders at Corner Singularity

In this Appendix we will apply the method we have developed in sections 3.3 and 3.4 to

the singular capillary surface near a corner. (i.e. wedge region with opening angle less

than π − 2γ). The leading order of the asymptotic solution was originally motivated

by Finn’s geometrical argument:

We seek a “near solution” in the form of a function whose level curves are

circular arcs that meet [the boundary] in the angle γ (page 116 [1]),

We consider the capillary boundary value problem in polar coordinate system:

1

r

 ∂

∂r

 rur√
1 + u2

r + 1
r2
u2
θ

+
∂

∂θ

 uθ

r
√

1 + u2
r + 1

r2
u2
θ

 = u , (B.1)

uθ

r
√

1 + u2
r + 1

r2
u2
θ

∣∣∣∣∣∣
θ=α

= cos γ , (B.2)

− uθ

r
√

1 + u2
r + 1

r2
u2
θ

∣∣∣∣∣∣
θ=−α

= cos γ . (B.3)
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Assuming u2
r + 1

r2
u2
θ >> 1, now approximate u(r, θ) by v(p, q) defined to be a solution

of the following PDE and BCs:

1

r

 ∂

∂r

 rvr√
v2
r + 1

r2
v2
θ

+
∂

∂θ

 vθ

r
√
v2
r + 1

r2
v2
θ

 = v , (B.4)

vθ

r
√
v2
r + 1

r2
v2
θ

∣∣∣∣∣∣
θ=α

= cos γ , (B.5)

− vθ

r
√
v2
r + 1

r2
v2
θ

∣∣∣∣∣∣
θ=−α

= cos γ . (B.6)

The uniqueness of this BVP can be proven. We make another key assumption such

that vθ

r
q
v2r+ 1

r2
v2θ

only depends in θ,i.e.

vθ

r
√
v2
r + 1

r2
v2
θ

= g(θ) , (B.7)

where g(a) = cos γ1 and g(b) = − cos γ2. We now aim to solve equation (B.7). First

collect θ dependance term to the left of the equation and r dependence term to the

right of the equation such as

v2
θ =

(
r2v2

r + v2
θ

)
g2(θ) , (B.8)

−
√

1− g2(θ)vθ = rg(θ)vr , (B.9)√
1− g2(θ)

g(θ)
vθ = −rvr . (B.10)

With the method of characteristic, we solve equation (B.10) and obtain

v(r, θ) = f

(
− ln r +

∫ θ

0

g(s)√
1− g2(s)

ds+ L

)
, (B.11)
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where f(·) is an arbitrary function of one variable and L is an arbitrary constant of

integration kept for later use. Each derivative can be written in terms of f as

vr = −1

r
f ′ , (B.12)

vθ =
g(θ)√

1− g2(θ)
f ′ . (B.13)

Substituting equations (B.12) and (B.13) into equation (B.4) gives

1

r

 ∂

∂r

−r f ′√
f ′2 1

1−g2(θ)

+
∂

∂θ

 g(θ)√
1−g2(θ)

f ′√
f ′2 1

1−g2(θ)

 = v , (B.14)

⇒ 1

r

(
∂

∂r

(
−r
√

1− g2(θ)
)

+
∂

∂θ
g(θ)

)
= v , (B.15)

⇒ −√1− g2(θ)

r
+
g′(θ)

r
= v . (B.16)

It follows from equation (B.16) each derivative can be calculated as

vr =

√
1− g2(θ)

r2
− g′(θ)

r2
, (B.17)

vθ =
g(θ)g′(θ)

r
√

1− g2(θ)
+
g′′(θ)

r
. (B.18)

Equating equations (B.12)-(B.13) and equations (B.17)-(B.18) gives

√
1− g2(θ)

r2
− g′(θ)

r2
= −1

r
f ′ , (B.19)

g(θ)g′(θ)

r
√

1− g2(θ)
+
g′′(θ)

r
=

g(θ)√
1− g2(θ)

f ′ . (B.20)

Multiplying equation (B.19) by r g(θ)√
1−g2(θ)

and adding it with equation (B.20) gives

g′′(θ) + g(θ)

r
= 0 . (B.21)
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Since r > 0 equation (B.21) implies that

g′′(θ) + g(θ) = 0 . (B.22)

Hence the general solution to this ODE (B.22) can be found by inspection such that

g(θ) = A cos θ +B sin θ . (B.23)

Determine arbitrary constants A and B by the boundary conditions.

g(α) = A cosα +B sinα = cos γ , (B.24)

g(−α) = A cosα−B sinα = − cos γ , (B.25)

g(θ) =
cos γ

sinα
sin θ . (B.26)

For simplicity of writing we let K = sinα
cos γ

. Substituting equation (B.26) into the integral∫ θ
0

g(s)√
1−g2(s)

ds, and evaluating it gives

∫ θ

0

sin s

K
√

1− sin2

K2 s
ds = ln

(
cos θ

K
−
√

1− sin2 θ

K2

)
− ln

(
1

K
− 1

)
. (B.27)

We now choose L = ln
(

1
K
− 1
)

so that v(r, θ) can be written as

v(r, θ) = f

(
− ln r + ln

(
cos θ

K
−
√

1− sin2 θ

K2

))
. (B.28)

Let ξ = − ln r + ln

(
cos θ
K
−
√

1− sin2 θ
K2

)
, we choose f(ξ) = eξ so that

f(x) = v(r, θ) =
cos θ −

√
K2 − sin2 θ

Kr
. (B.29)
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We now aim to determine the asymptotic order of the term after v(r, θ). Let

u(r, θ) = v(r, θ) + w(r, θ) , (B.30)

where w(r, θ) = o (v(r, θ)). Assuming 1 > |∇u|2 for sufficiently small r, expanding

1√
1+|∇u|2

with binomial series gives

1√
1 + |∇u|2

=
1

|∇u|
(

1− 1

2

1

|∇u|2 +
3

4 · 2
1

|∇u|4 + ...

)
. (B.31)

We now require u(r, θ) to satisfy equation (B.2). Asymptotically expanding the left

hand side of equation (B.2) using equation (B.31) and substituting equation (B.30)

into it gives

vθ + wθ

r
√
v2
r + 2vrwr + 1

r2
v2
θ + 2

r2
vθwθ

∣∣∣∣∣∣
θ=α

− 1

2

vθ

r
(
v2
r + 1

r2
v2
θ

)3/2

∣∣∣∣∣
θ=α

∼ cos γ .(B.32)

Expanding the left hand side of equation (B.32) asymptotically gives

vθ

r
√
v2
r + 1

r2
v2
θ

+
wθ

r
√
v2
r + 1

r2
v2
θ

− 1

2

vθ

r
√
v2
r + 1

r2
v2
θ

2wrvr + 2
r2
vθwθ

v2
r + 1

r2
v2
θ

−1

2

vθ

r
(
v2
r + 1

r2
v2
θ

)3/2

∣∣∣∣∣
θ=α

∼ cos γ . (B.33)

Substituting equation (B.7) and subtracting cos γ from both sides gives

wθ

r
√
v2
r + 1

r2
v2
θ

− 1

2
cos γ

2wrvr + 2
r2
vθwθ

v2
r + 1

r2
v2
θ

− 1

2

vθ

r
(
v2
r + 1

r2
v2
θ

)3/2
∼ 0. (B.34)
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Assuming w(r, θ) to be in a form of

w(r, θ) ∼ H(θ)rα , as r → 0 , (B.35)

wr(r, θ) ∼ αH(θ)rα−1 , as r → 0 , (B.36)

wθ(r, θ) ∼ H ′(θ)rα , as r → 0 . (B.37)

Substituting equations (B.12)-(B.13) and (B.36)-(B.37) into equation (B.34) gives

H ′(θ)rα
√

1− g(θ)2

f ′(ξ)
− cos γ

−αH(θ)rαf ′(ξ) + g(θ)√
1−g2(θ)

f ′(ξ)H ′(θ)rα

f ′2(ξ)
(1− g2(θ))

−r
2

2

(1− g2(θ))g(θ)

f ′2(ξ)

∣∣∣∣
θ=α

∼ 0 , as r → 0 . (B.38)

Solving equation (B.38) for α gives α = 3. Similarly we require u(r, θ) to satisfy

equation (B.3) and show that α = 3. Hence to satisfy the boundary condition we

require,

O(w) = O(r3) . (B.39)

We now require u(r, θ) to satisfy equation (B.1). Asymptotically expanding the left

hand side of equation (B.1) using equation (B.31) and substituting equation (B.30)



Appendix B: Analysis of Jumping of Asymptotic Orders at Corner Singularity 158

into it gives

1

r

 ∂

∂r

 rvr√
v2
r + 1

r2
v2
θ

+
rwr√

v2
r + 1

r2
v2
θ

− 1

2

rvr√
v2
r + 1

r2
v2
θ

2wrvr + 2
r2
vθwθ

v2
r + 1

r2
v2
θ

−1

2

rvr(
v2
r + 1

r2
v2
θ

)3/2

)

+
∂

∂θ

 vθ

r
√
v2
r + 1

r2
v2
θ

+
wθ

r
√
v2
r + 1

r2
v2
θ

− 1

2

vθ

r
√
v2
r + 1

r2
v2
θ

2wrvr + 2
r2
vθwθ

v2
r + 1

r2
v2
θ

−1

2

vθ

r
(
v2
r + 1

r2
v2
θ

)3/2

))
∼ v + w . (B.40)

Substituting equation (B.4) into (B.40) and subtracting v from both sides gives

1

r

 ∂

∂r

 rwr√
v2
r + 1

r2
v2
θ

− 1

2

rvr√
v2
r + 1

r2
v2
θ

2wrvr + 2
r2
vθwθ

v2
r + 1

r2
v2
θ

− 1

2

rvr(
v2
r + 1

r2
v2
θ

)3/2


+
∂

∂θ

 wθ

r
√
v2
r + 1

r2
v2
θ

− 1

2

vθ

r
√
v2
r + 1

r2
v2
θ

2wrvr + 2
r2
vθwθ

v2
r + 1

r2
v2
θ

− 1

2

vθ

r
(
v2
r + 1

r2
v2
θ

)3/2


∼ w . (B.41)

Simplifying equation (B.41) gives

∂

∂r
r

(
wr
(
v2
r + 1

r2
v2
θ

)− vr (wrvr + 1
r2
vθwθ

)− 1
2
vr(

v2
r + 1

r2
v2
θ

)3/2

)

+
∂

∂θ

(
wθ
(
v2
r + 1

r2
v2
θ

)− vθ (wrvr + 1
r2
vθwθ

)− 1
2
vθ

r
(
v2
r + 1

r2
v2
θ

)3/2

)
∼ rw . (B.42)
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Substituting equations (B.12)-(B.13) and (B.36)-(B.37) into equation (B.42) gives

∂

∂r
r

αH(θ)rα−3
(

f ′2(ξ)
1−g2(θ)

)
+ f ′(ξ)

r

(
−αH(θ)rα−2f ′(ξ) + g(θ)f ′(ξ)H′(θ)rα−2√

1−g2(θ)

)
+ 1

2
f ′(ξ)
r

1
r2

(
f ′2(ξ)

1−g2(θ)

)3/2



+
∂

∂θ

H
′(θ)rα−2

(
f ′2(ξ)

1−g2(θ)

)
− g(θ)√

1−g2(θ)
f ′(ξ)

(
−αH(θ)rα−1 f

′(ξ)
r

+ g(θ)f ′(ξ)H′(θ)rα−2√
1−g2(θ)

)
1
r2

(
f ′2(ξ)

1−g2(θ)

)3/2


− ∂

∂θ

 1
2

g(θ)√
1−g2(θ)

f ′(ξ)

1
r2

(
f ′2(ξ)

1−g2(θ)

)3/2

 ∼ rw . (B.43)

Solving equation (B.43) for α gives α = 3. Thus the order of w(r, θ) should be at least

of

O(w) = O(r3) . (B.43)

This result is consistent with Miersemann’s result [4].
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