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Abstract

The capillary surface formed within a symmetric annular tube is analyzed. Assuming

identical contact angles γ along each boundary, we consider surfaces u(x, y) that satisfy




∇ · Tu = κu, in Ω

ν̂ · Tu = cos γ, on ∂Ω

where κ is a positive constant, Ω is an open annular region in R2 and ν̂ is the exterior

unit normal on ∂Ω. Tu is defined as the operator

Tu =
∇u√

1 + |∇u|2 .

Several qualitative properties of u are determined and in particular, the behaviour of

u is examined in the limiting cases of Ω approaching a disk as well as a thin ring.

The iterative method of Siegel is also applied to the boundary value problem and

convergence is demonstrated under conditions which include γ = 0. Moreover, some

geometries still yield interleaving iterates, allowing for upper and lower bounds to be

placed on the boundary values of u. However, the interleaving properties no longer hold

universally and for other geometries, another more complex behaviour is described.

Finally, a numercial method is designed to approximate the iterative scheme.
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Chapter 1

Background

1.1 Introduction to Capillarity: History and

Definitions

Examples of capillary surfaces permeate the natural world. Often they can be observed

in the most familiar of occurances like the beading of raindrops on a window pane or the

uptake of water by a sponge. Such interfaces are frequently generated whenever solid,

liquid and gas come into contact with one another. For a more complete definition of

the capillary surface, we turn to Finn:

[A] capillary surface...describe[s] the free interface that occurs when one of

the materials is a liquid and the other is a liquid or gas. In physical configu-

rations...interfaces occur also between these materials and rigid solids; these

latter interfaces yield in many cases the dominant influence for determining

the configuration [5].

The capillary tube presents the most well known capillary phenomenon–surely we have

all dipped a narrow tube in liquid and noted the rise in fluid level within, as Fig. 1.1

illustrates. This geometry can be made precise by considering a cylindrical tube of

1
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Figure 1.1: Cross section of the capillary tube.

horizontal section Ω immersed vertically in fluid. It was this simple configuration that

prompted the first formal mathematical treatment of capillary surfaces to be made by

Laplace in 1805 [11]. With contributions by Thomas Young1, Laplace formalized the

idea of mean curvature H(x, y) of a surface u(x, y):

H =
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy

2(1 + u2
x + u2

y)
3/2

. (1.1)

He then reasoned that H is proportional to the pressure change across a capillary

surface and, using the laws of hydrostatics, this led to

2H = κu, in Ω (1.2)

where u is the height of the surface above the level of atmospheric pressure and κ is

a physical constant. In the same year, Young examined the surface tensions arising at

capillary interfaces. From this, he devised a force-balancing argument and concluded

that, in the absence of frictional forces along a bounding wall, the fluid must meet the

wall at a prescribed angle γ, known as the contact angle (Fig. 1.2). Young reasoned

that γ was dependent on the materials only; the shape of the surface or the boundary

1Young is perhaps best known for his work in optics. At the time, he was also a noted Egyptologist.
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Figure 1.2: Illustration of contact angle.

was not a factor. Consequently, for a cylinder made of a uniform material, Young’s

requirement leads to the boundary condition

ν̂ · Tu = cos γ, on ∂Ω; Tu =
∇u√

1 + |∇u|2 (1.3)

where ν̂ is the exterior unit normal on the boundary ∂Ω. However, some experts

within the field do not view Young’s argument as convincing. Very recently, in fact,

Finn has created an interesting counterexample [6] and the force-balancing explanation

of contact angle remains a disputatious point.

In 1830, Gauss provided an alternate method of describing capillary surfaces by

considering the various energies associated with the mechanical system. He postulated

that the configured surface must minimize this energy when compared with surfaces

that differed by small perturbations. Using a variational argument, Gauss was able to

derive both (1.2) and (1.3). Apart from some recent modifications [7], these results

have enjoyed wide acceptance, and they found the modern formulation of the capillary

surface. It is instructive in our context to present this formulation in terms of the

capillary tube; however, Gauss’s findings apply to capillary surfaces in general.

Definition 1.1.1 (Capillary Tube) Consider a cylinder of uniform material and of
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horizontal section Ω that is immersed vertically in an infinite reservoir of incompressible

fluid. Ω is defined in the XY–plane and we take the reference level Z = 0 to be the

height of the fluid at a large distance from the cylinder, where perturbations of the liquid

within the boundary do not affect the surface height. The capillary surface Z = U(X, Y )

thus formed over Ω can be described by the elliptic boundary value problem





NU = κU, in Ω

ν̂ · TU = cos γ, on ∂Ω
(1.4)

where κ = ρg
σ
, ρ is the difference in density between the liquid and gas (ρ = constant

for an incompressible fluid), g is the acceleration due to gravity and σ is the surface

tension. The operator N is defined as NU := 2H, with γ ∈ [0, π] as the contact angle.

N.B. NU can also be written as ∇ · TU .

1.2 An Overview of Annular Capillary Surfaces

Over the past two hundred years, much progress has been made in describing the

nature of the capillary tube. It might seem reasonable that the closely related problem

of the annular tube (i.e. Ω is now an annulus) would be the next geometry of study.

Amazingly, however, this research is still in its fledgling stage. We begin with a formal

exposition of the annular problem. Consider two concentric cylindrical walls possibly

made of different materials and having radii R1 and R2 (R1 < R2). These are immersed

vertically in an infinite reservoir of fluid. Define Ω̂ in the XY–plane as the cross section

between cylinders with ∂Ω̂1 and ∂Ω̂2 as the inner and outer boundaries respectively. Ω̂

shall be centred at the origin:

Ω̂ =
{
(X, Y ) ∈ R2 : 0 < R1 < ‖(X, Y )‖ < R2 < ∞}

. (1.5)
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Extending the results of the previous section, the height of the fluid U(X,Y ) between

the tubes will satisfy the boundary value problem




NU = κU, in Ω̂

ν̂ · TU = cos γ1, on ∂Ω̂1

ν̂ · TU = cos γ2, on ∂Ω̂2

(1.6)

where 0 ≤ γ1, γ2 ≤ π. Note that we have maintained generality by assuming the contact

angle is distinct on each boundary. As will be shown, U can be taken as axisymmetric

and hence, the solution can be described in terms of the radial variable only, U(R).

(1.6) can now be reduced to a boundary value problem for an ordinary differential

equation: 



1
R

(
RUR√
1+U2

R

)

R

= κU, R1 < R < R2

UR(R+
1 ) = − cot γ1, UR(R−

2 ) = cot γ2

(1.7)

where (−)R denotes differentiation with respect to R. (1.7) is then non-dimensionalized

by introducing the change of variables

u =
U

R2

and r =
R

R2

(1.8)

which gives 



1
r

(
rur√
1+u2

r

)

r

= Bu, a < r < 1

ur(a
+) = − cot γ1, ur(1

−) = cot γ2

(1.9)

where B = κR2
2 > 0 is known as the Bond number. The outer radius of the region is

now fixed at 1 with the inner radius a = R1

R2
such that 0 < a < 1 (Fig. 1.3). From now

on, Ω will be defined as this region:

Ω =
{
(x, y) ∈ R2 : a < ‖(x, y)‖ < 1

}
. (1.10)

As a final step, we define the inclination angle ψ(r) of u(r) as

sin ψ(r) =
ur(r)√

1 + (ur(r))2
. (1.11)
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Figure 1.3: Annular region Ω.

Geometrically, ψ(r) is the angle subtended by the tangent of u(r) and the horizontal

(see Fig. 1.4). The boundary value problem now attains the form




Nu = 1
r
(r sin ψ)r = Bu, a < r < 1

sin ψ(a) = − cos γ1, sin ψ(1) = cos γ2

(1.12)

For such axisymmetric surfaces, we also note:

Nu =
1

r
(r sin ψ)r (1.13)

= (sin ψ)r +
sin ψ

r
(1.14)

= km + kl (1.15)

where km = (sin ψ)r is the meridional curvature and kl = sin ψ
r

is the longitudinal

curvature of the surface. Recalling that Nu := 2H, (1.15) takes the more familiar form

H =
1

2
(km + kl). (1.16)

To date, the author is aware of only two papers that examine solutions to (1.12).

Elcrat et al. [4] provided an introductory survey that included existence theorems as well
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Figure 1.4: Radial cross section of annular capillary surface.

as comparisons of solutions to circular arcs. Siegel [13] then considered the specific case

of γ1 = π
2
, γ2 ∈ [0, π] and developed an iterative procedure that generated increasingly

accurate approximate solutions. Certainly, further research is warranted and this paper

aims to build upon these existing results.

1.3 Existence and Uniqueness

As mentioned, existence of solutions to (1.12) is provided2 by [4].

Theorem 1.3.1 (Existence of Annular Surfaces) There exists a solution to (1.12)

for any selection of parameters a, γ1, γ2 and B.

Proof. See [4]. ¨

To demonstrate uniqueness of solutions, we will require the following key result first

introduced by Concus and Finn [9].

2In actuality, Elcrat et al. demonstrated this result for (1.7); however, the extension to (1.12) is

immediate.
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Theorem 1.3.2 (Comparison Principle) Let u, v ∈ C2(Ω) and Σ = ∂Ω. Suppose

Nu−Bu ≥ Nv−Bv in Ω and that Σ admits a decomposition Σ = Σα ∪Σβ ∪Σ0, such

that 



v ≥ u, on Σα

ν̂ · Tv ≥ ν̂ · Tu, on Σβ

Additionally, Σ0 can be covered, for any ε > 0, by a countable number of disks Bδi

of radius δi, such that
∑

δi < ε. It is assumed that Σβ ∈ C1, however, no regularity

hypotheses are needed on Σα or Σ0. We conclude:

1. if B > 0 or if Σα 6= ∅, then v ≥ u in Ω; equality holds at any point if and only if

v ≡ u.

2. if B = 0, Σα = ∅, then v(x) ≡ u(x) + const. in Ω.

N.B. Only case (1) will be considered here.

Proof. See [8]. ¨

The Comparison Principle has proven to be one of the most useful tools in capillarity

and it will feature prominently in the next chapter.

Theorem 1.3.3 (Uniqueness of Annular Surfaces) For any selection of parame-

ters a, γ1, γ2 and B, the solution to (1.12) is unique.

Proof. The proof is taken from [8]; however, its elegance necessitated its inclusion

here. Assume there exist two functions u(r) and v(r) that, under the same choice of

parameters, are both solutions to (1.12). We have




Nu−Bu = Nv −Bv = 0, in Ω

ν̂ · Tu = ν̂ · Tv = cos γ1, on ∂Ω1

ν̂ · Tu = ν̂ · Tv = cos γ2, on ∂Ω2

(1.17)

Using the Comparison Principle, it can be simultaneously argued that

v ≥ u and u ≥ v in Ω. (1.18)
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Hence, u = v in Ω. Continuity of u and v implies equality also exists along the boundary

so that

u(r) = v(r), a ≤ r ≤ 1. ¨ (1.19)

Existence and uniqueness of solutions to (1.12) ensures that all annular surfaces with

constant contact angle along each boundary are axisymmetric, and we were justified in

restricting our analysis to functions of this form.

1.4 Annular Surfaces Studied

We will narrow our study to surfaces with identical contact angles at either boundary;

that is we investigate solutions to





Nu = 1
r
(r sin ψ)r = Bu, a < r < 1

sin ψ(a) = − cos γ, sin ψ(1) = cos γ
(1.20)

Fig. 1.4 illustrates the surface described in (1.20). This case is of particular significance

as it arises when both bounding cylinders are made of the same material. Without loss

of generality, we need only consider γ ∈ [0, π
2
). The other possibilities are accounted

for as follows:

• if γ = π
2
, then u = 0 is the unique solution.

• for a solution u with γ ∈ (π
2
, π], let ū = −u. We therefore have Nū = Bū with

γ̄ = π − γ or γ̄ ∈ [0, π
2
).

1.4.1 Volume Condition

Under these conditions, the volume of fluid lifted above Ω can be written as follows:
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Theorem 1.4.1 (Volume Condition) Let u be a solution to (1.20). The volume of

u above Ω can be determined by

∫ 1

a

ru(r) dr =
cos γ(1 + a)

B
. (1.21)

Proof. We begin by integrating both sides of (1.20a):

∫∫

Ω

Nu dA =

∫∫

Ω

Bu dA. (1.22)

The divergence theorem can be applied to the left side of (1.22) so that

∫∫

Ω

NudA =

∫∫

Ω

∇ · Tu dA (1.23)

=

∫

∂Ω1

ν̂ · Tu ds +

∫

∂Ω2

ν̂ · Tu ds (1.24)

and using the boundary condition ν̂ · Tu = cos γ on ∂Ω1 ∪ ∂Ω2,

∫∫

Ω

Nu dA = 2π cos γ(1 + a). (1.25)

Symmetry simplifies the right side of (1.22):

∫∫

Ω

Bu dA = 2πB

∫ 1

a

ru(r) dr. (1.26)

Equating both sides yields

∫ 1

a

ru(r) dr =
cos γ(1 + a)

B
. ¨ (1.27)

N.B. We may refer to an arbitrary integrable function f(r) as “satisfying the volume

condition” or “having the correct volume.” This implies

∫ 1

a

rf(r) dr =
cos γ(1 + a)

B
. (1.28)

1.4.2 Integral Equations

The boundary value problem (1.20) may also be expressed in integral form. Multiplying

(1.20a) by r,

(r sin ψ)r = Bru, (1.29)
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we integrate both sides from a to r,

r sin ψ(r)− a sin ψ(a) = B

∫ r

a

su(s) ds. (1.30)

By requiring sin ψ(a) = − cos γ, the inclination angle ψ(r) can be expressed as

sin ψ(r) =
B

r

∫ r

a

su(s) ds− a

r
cos γ. (1.31)

Note the volume condition provides the correct boundary condition at r = 1:

sin ψ(1) = B

∫ 1

a

su(s) ds− a cos γ (1.32)

= cos γ(1 + a)− a cos γ (1.33)

= cos γ (1.34)

We then use ur(r) = sin ψ(r)√
1−sin2 ψ(r)

to write

u(r) = u(a) +

∫ r

a

us(s) ds (1.35)

= u(a) +

∫ r

a

sin ψ(s)√
1− sin2 ψ(s)

ds (1.36)

and, finally, u(a) can be derived from the volume condition:

cos γ (1 + a)

B
=

∫ 1

a

ru(r) dr (1.37)

=

∫ 1

a

r

[
u(a) +

∫ r

a

sin ψ(s)√
1− sin2 ψ(s)

ds

]
dr (1.38)

=
1− a2

2
u(a) +

∫ 1

a

∫ r

a

r
sin ψ(s)√

1− sin2 ψ(s)
ds dr (1.39)

The order of integration in (1.39) can be changed so that

cos γ (1 + a)

B
=

1− a2

2
u(a) +

∫ 1

a

∫ 1

s

r
sin ψ(s)√

1− sin2 ψ(s)
dr ds (1.40)

=⇒ u(a) =
2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
sin ψ(s)√

1− sin2 ψ(s)
ds (1.41)

The integral equations (1.31), (1.36) and (1.41) provide a useful formulation of the

annular problem that will be called upon frequently.
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1.5 Outline of Research

This paper is divided into two main sections. The first is contained entirely in Chapter 2

and presents several qualitative properties of solutions to (1.20). The second section

spans Chapters 3–5 and extends the iterative procedure introduced by Siegel to the

problem considered here. Specifically, Chapter 3 provides conditions under which the

approximate functions generated by the procedure converge to the solution of (1.20).

Similar to the analysis of Siegel, the behaviour between iterates is examined in Chap-

ter 4, and parallels are drawn with [13]. Finally, Chapter 5 proposes a numerical method

as a means of approximating (and visualizing) the iterative procedure.



Chapter 2

Qualitative Properties

2.1 Introduction

As is the case with other boundary value problems, it is possible to comment on the

behaviour of capillary surfaces using comparisons with known surfaces. For our pur-

poses, a useful tool will be the Comparison Principle (Theorem 1.3.2). As one of the

most important results in capillarity, the Comparison Principle allows for numerous

deductions to be made of a qualitative nature, and will be central to the findings of

this chapter. We begin in Section 2.2 by illustrating some general properties of the

annular surfaces studied; namely, if u is a solution to (1.20), then:

1. u > 0 for r ∈ [a, 1].

2. u ≤ (
1−a
2

)
sec γ(1− sin γ) + cos γ(3−a)

B(1−a)
for r ∈ [a, 1].

3. there exists a unique radius r = m at which u achieves its minimum value.

4. u(a) < u(1).

5. m ∈ (a, 1+a
2

).

6. m is monotone increasing with respect to a.

13
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Subsequently, Section 2.3 examines the behaviour of these surfaces in the limiting cases

of a → 0 and a → 1.

2.2 General Properties

Theorem 2.2.1 Let u be a solution to the boundary value problem (1.20). Here, u > 0

on Ω̄.

Proof. Let ũ = 0, which is the unique solution to (1.20) with γ = π
2
, and compare

this to the solutions u considered here, that is with γ ∈ [0, π
2
):





Nu−Bu = Nũ−Bũ , in Ω

ν̂ · Tu = cos γ > 0 = ν̂ · T ũ , on ∂Ω
(2.1)

This is a simple application of the Comparison Principle, and we conclude that

u > ũ = 0 , in Ω (2.2)

(since the inclination angles of u and ũ are not equal at r = a, the functions must be

distinct, leading to the strict inequality in (2.2)). We can also discount the possibility of

equality on ∂Ω: if u = 0 at r = a, the contact angle condition would require u < 0 on a

neighbourhood immediately inside Ω. This is in contradiction to (2.2) and consequently

u > 0 , on Ω̄. ¨ (2.3)

A noteworthy consequence of Elcrat’s existence theorem [4] requires all solution surfaces

to be continuous on Ω̄; hence, u will be bounded on Ω̄. To further this claim, the

following theorem presents an explicit upper bound on u.

Theorem 2.2.2 u is bounded from above on Ω̄ as

u ≤
(

1− a

2

)
sec γ(1− sin γ) +

cos γ(3− a)

B(1− a)
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Proof. We use the family of functions {wc} defined on [a, 1] by

wc(r) = c−
√(

1− a

2

)2

sec2 γ −
(

r − 1 + a

2

)2

(2.4)

with c ∈ R. Here, each function describes the lower surface of a torus. Furthermore,

denote ω(r) as the inclination angle of wc(r). Using sin ω(r) = wcr(r)√
1+wcr

2(r)
, it can be

shown that

sin ω(r) =
cos γ

1− a
(2r − 1− a) . (2.5)

Equation (2.5) indicates that wc will have a contact angle γ at each endpoint, and its

minimum (corresponding to ω(r) = 0) will occur at r = 1+a
2

. Each function will also

have mean curvature:

H =
1

2
(km + kl) (2.6)

=
1

2

(
(sin ω)r +

sin ω

r

)
(2.7)

=
cos γ

1− a

(
2− 1 + a

2r

)
(2.8)

Clearly, H achieves its maximum at r = 1, with

H ≤ Hmax =
cos γ(3− a)

2(1− a)
(2.9)

and thus for all wc,

Nwc = 2H ≤ cos γ(3− a)

1− a
. (2.10)

Next, select w̄ ∈ {wc} as the function having

min
r∈[a,1]

{w̄(r)} = w̄

(
1 + a

2

)
=

cos γ(3− a)

B(1− a)
=

2Hmax

B
(2.11)

so that Nw̄ ≤ cos γ(3−a)
1−a

= Bw̄
(

1+a
2

) ≤ Bw̄. Hence,





Nu−Bu ≥ Nw̄ −Bw̄ , in Ω

ν̂ · Tw̄ = ν̂ · Tu = cos γ , on ∂Ω
(2.12)
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Figure 2.1: Relationship between u and the comparison surface w̄.

and the Comparison Principle requires

w̄ > u , in Ω (2.13)

as Fig. 2.1 illustrates. (2.13) can be extended to the boundary using continuity, and

we have

w̄ ≥ u , on Ω̄. (2.14)

A simple geometric argument shows the maximum height of w̄ is given by

max
r∈[a,1]

{w̄(r)} = w̄(a) (2.15)

=

(
w̄(a)− w̄

(
1 + a

2

))
+

2Hmax

B
(2.16)

=

(
1− a

2

)
sec γ(1− sin γ) +

2Hmax

B
(2.17)

and thus u is bounded from above as

u ≤
(

1− a

2

)
sec γ(1− sin γ) +

cos γ(3− a)

B(1− a)
, on Ω̄. ¨ (2.18)
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Figure 2.2: Potential configuration of sin ψ, assuming more than one zero for the func-

tion.

The boundedness of annular surfaces is a result of ∂Ω being smooth. Certainly, solutions

may be unbounded for domains with non–smooth boundaries, which includes regions

containing corners and cusps.

Theorem 2.2.3 There exists a unique radius r = m at which u achieves its minimum

value.

Proof. Recall that ψ(r) describes the inclination angle of u(r). Since sin ψ is

continuous with 



sin ψ(a) = − cos γ < 0

sin ψ(1) = cos γ > 0
(2.19)

there exists at least one point in (a, 1) where sin ψ = 0, which corresponds to an

extremum of u. Define r = m as the first zero of sin ψ. Using (1.29) and Theorem

2.2.1, we note

(sin ψ)r = Bu− sin ψ

r
(2.20)
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> 0 , for sin ψ ≤ 0 (2.21)

and specifically, sin ψ is increasing at r = m. Suppose for the moment there exists more

than one point where sin ψ = 0 and let m′ be the next zero immediately following m

as in Fig. 2.2. Because sin ψ is increasing at m, it must be nonincreasing as it touches

the r–axis at m′:

(sin ψ)r

∣∣∣
r=m′

≤ 0. (2.22)

However, this is in contradiction to (2.21), and m must be the unique extremum point

of u. (2.21) also implies this is a minimum. ¨

The next theorem will make use of the following lemma.

Lemma 2.2.4 sin ψ is monotone increasing on [a, 1].

Proof. Given that the zero of sin ψ is unique, we consider sin ψ on two subintervals:

• on [a,m], sin ψ ≤ 0. (2.20), along with Theorem 2.2.1, ensures that (sin ψ)r > 0.

• on (m, 1], sin ψ > 0 and thus u is increasing. We integrate (1.29) from m to r:

r sin ψ(r)−m sin ψ(m) = B

∫ r

m

su(s) ds (2.23)

which gives

sin ψ(r) =
B

r

∫ r

m

su(s) ds (2.24)

<
Bu(r)

r

(
r2 −m2

2

)
(2.25)

<
Bru(r)

2
(2.26)

and therefore, Bu− sin ψ
r

> 0. (2.20) confirms that (sin ψ)r > 0.

Note this lemma implies that u is convex.

Theorem 2.2.5 u(a) < u(1).
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Figure 2.3: Configuration of reflected region Γ′ superimposed onto Ω.

Proof. The construction of this proof follows the ideas presented by Serrin [12].

Starting with the annular region Ω, we place a line T that separates from Ω a cap Γ

(see Fig. 2.3). Let Γ′ be the reflection of Γ with respect to T , and observe that T is

positioned so that Γ′ is internally tangent to ∂Ω at p. Finally, let n̂ be the exterior unit

normal on ∂Γ′.

With the coordinate system (x, y) re–oriented so that the y–axis is aligned with T ,

we define a function ū on Γ′ as

ū(x, y) = u(x̄, ȳ) = u(−x, y), for (x, y) ∈ Γ′. (2.27)

In other words, ū is the reflection in T of u(Γ). If we let N̄ be the operator with respect

to the coordinate system (x̄, ȳ), it is evident that

N̄ ū = Bū. (2.28)
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Figure 2.4: Γ′ with bounary components labelled.

However, N is invariant under reflections. To see this, we note that

∂

∂x
= − ∂

∂x̄
and

∂

∂y
=

∂

∂ȳ
(2.29)

and therefore

Nū =

(
1 + ū2

y

)
ūxx − 2ūxūyūxy + (1 + ū2

x) ūyy(
1 + ū2

x + ū2
y

)3/2
(2.30)

=

(
1 + ū2

ȳ

)
(−(−ūx̄)x̄)− 2(−ūx̄)ūȳ(−ūx̄ȳ) + (1 + (−ūx̄)

2) ūȳȳ(
1 + (−ūx̄)2 + ū2

ȳ

)3/2
(2.31)

=

(
1 + ū2

ȳ

)
ūx̄x̄ − 2ūx̄ūȳūx̄ȳ + (1 + ū2

x̄) ūȳȳ(
1 + ū2

x̄ + ū2
ȳ

)3/2
(2.32)

= N̄ ū (2.33)

Thus, Nū = N̄ ū = Bū and ū also satisfies the capillary equation in Γ′. The boundary

of Γ′ is now decomposed into two pieces, as in Fig. 2.4:

• Σα lies along the line of reflection.

• Σβ will be the remaining curved portion.



CHAPTER 2. QUALITATIVE PROPERTIES 21

We subsequently examine how u and ū compare on each boundary component. It is

immediately clear that

u = ū , on Σα. (2.34)

On Σβ, we first note

n̂ · Tu =
ur√

1 + u2
r

n̂ · r̂ = sin ψ n̂ · r̂ , (2.35)

and thus

−| sin ψ| ≤ n̂ · Tu ≤ | sin ψ|. (2.36)

Since sin ψ is increasing, we have − cos γ ≤ sin ψ ≤ cos γ so that

− cos γ ≤ n̂ · Tu ≤ cos γ. (2.37)

Of course, n̂ · T ū = cos γ and hence

n̂ · T ū ≥ n̂ · Tu , on Σβ. (2.38)

As a result, the Comparison Principle requires

ū ≥ u , in Γ′ (2.39)

and extending this to the boundary point p,

u(p) ≤ ū(p) ⇐⇒ u(a) ≤ u(1). (2.40)

The possibility of u(p) = ū(p) can be excluded by contradiction. In this case, we restrict

our attention to the dashed line S (Fig. 2.3) and describe both functions in terms of the

radial variable only. We begin by assuming u(a) = u(1), which allows the meridional

curvature of u at r = a and r = 1 to be compared:

(sin ψ)r

∣∣∣
r=a

= Bu(a) +
cos γ

a

> Bu(1)− cos γ (2.41)

= (sin ψ)r

∣∣∣
r=1
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As a result of (2.41), there exists a δ > 0 such that

min
r∈[a,a+δ]

{(sin ψ)r} > max
r∈[1−δ,1]

{(sin ψ)r} . (2.42)

(sin ψ)r can then be integrated over these regions, giving

∫ a+r

a

(sin ψ)s ds >

∫ 1

1−r

(sin ψ)s ds, for all r ∈ (0, δ] (2.43)

=⇒ sin ψ(a + r) > − sin ψ(1− r) (2.44)

and since the function p√
1−p2

is increasing on (−1, 1), we have

sin ψ(a + r)√
1− sin2 ψ(a + r)

> − sin ψ(1− r)√
1− sin2 ψ(1− r)

. (2.45)

Thus,

u(a + δ) = u(a) +

∫ a+δ

a

us(s) ds (2.46)

= u(a) +

∫ a+δ

a

sin ψ(s)√
1− sin2 ψ(s)

ds (2.47)

> u(1)−
∫ 1

1−δ

sin ψ(s)√
1− sin2 ψ(s)

ds (2.48)

= u(1− δ) (2.49)

The above implies that u(a + δ) > ū(a + δ), which is in contradiction to (2.39) and the

inequality of (2.40) must be strict. ¨

Theorem 2.2.6 u achieves its minimum on (a, 1+a
2

).

Proof. We refer to Fig. 2.3 and again consider u and ū along S. The proof will be

by contradiction, and it is assumed that the minimum occurs on (1+a
2

, 1) as in Fig. 2.5.

Consider m along with m̄, the minimum point of ū. Here, m̄ ∈ (a, 1+a
2

). Since u is

convex, it will be monotonically decreasing on [a,m), and thus

u(m) < u(m̄) ⇐⇒ ū(m̄) < u(m̄) (2.50)
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Figure 2.5: Hypothetical configuration of u and ū along S, assuming m ∈ (1+a
2

, 1).

with m̄ ∈ Γ′. However, (2.50) is in contradiction to (2.39), making m ∈ (a, 1+a
2

]. Next,

we assume m = 1+a
2

. Differentiating (2.20) with respect to r produces

(sin ψ)rr = ur − (sin ψ)r

r
+

sin ψ

r2
(2.51)

which, in conjuction with Lemma 2.2.4, gives (sin ψ)rr

∣∣∣
r=m

< 0. By continuity, there

exists a δ > 0 such that

(sin ψ)rr < 0 , on [m− δ,m + δ]. (2.52)

With (sin ψ)r decreasing on the interval, we claim

∫ m

m−r

(sin ψ)s ds >

∫ m+r

m

(sin ψ)s ds , for all r ∈ (0, δ] (2.53)

=⇒ − sin ψ(m− r) > sin ψ(m + r) (2.54)

Finally, an argument similar to the proof of Theorem 2.2.5 yields

u(m− δ) = u(m)−
∫ m

m−δ

sin ψ(s)√
1− sin2 ψ(s)

ds (2.55)
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Figure 2.6: Hypothetical configuration assuming m is decreasing with respect to two

values of a.

> u(m) +

∫ m+δ

m

sin ψ(s)√
1− sin2 ψ(s)

ds (2.56)

= u(m + δ) (2.57)

and we conclude u(m − δ) > ū(m − δ). This is again in contradiction with (2.39);

therefore the minimum occurs on (a, 1+a
2

). ¨

Theorem 2.2.7 m is monotone increasing with respect to a.

Proof. We proceed by contradiction. First, suppose there exist two inner radii ā and

â where m decreases with respect to a. This gives rise to the following configuration:

1. ū is the unique solution over [ā, 1] with its minimum at r = m̄.

2. û is the unique solution over [â, 1] with its minimum at r = m̂.

3. ā < â.
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4. m̂ < m̄.

See Fig. 2.6. Consider ū and û on the region [â, 1]: here, the contact angle of ū at r = â

will be α > γ, and it is clear that





ν̂ · T ū = cos α < cos γ = ν̂ · T û , at r = â

ν̂ · T ū = cos γ = ν̂ · T û , at r = 1
(2.58)

The Comparison Principle therefore implies

ū < û , in (â, 1). (2.59)

We now examine the solutions over [m̄, 1], in which the contact angle of û at r = m̄

will be β > π
2
. Hence,





ν̂ · T ū = 0 > cos β = ν̂ · T û , at r = m̄

ν̂ · T ū = cos γ = ν̂ · T û , at r = 1
(2.60)

and the Comparison Principle would require

ū > û , in (m̄, 1) (2.61)

which is in disagreement with (2.59). Consequently,

m̄ ≤ m̂ , for ā < â. (2.62)

Now suppose that m is constant for two increasing values of a. Again, for ā < â, ū and

û would be configured as before, only with (4) altered as

4. ū and û share the same minimum at r = m.

Fig. 2.7 depicts this possibility. In like manner, the Comparison Principle can be applied

over [â, 1] to reason

ū < û , in (â, 1). (2.63)
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Figure 2.7: Hypothetical configuration assuming m is constant with respect to two

values of a.

However, on [m, 1], both ū and û have identical contact angles and uniqueness (Theorem

1.3.3) requires ū ≡ û. This is in contradiction to (2.63) and we conclude that

m̄ < m̂ , for ā < â , (2.64)

thus proving the theorem. ¨

2.3 Solutions In Limiting Cases

We wish to explore the behaviour of solutions to (1.20) in two specific cases: as a → 0

and as a → 1. In preparation, the results of this section will make use of the following

lemmas.

2.3.1 Preliminary Lemmas

Lemma 2.3.1 sin ψ
r

is monotone increasing on [a, 1].
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Proof. We begin by differentiating

(
sin ψ

r

)

r

=
(sin ψ)r

r
− sin ψ

r2
(2.65)

=
2

r

(
Bu

2
− sin ψ

r

)
(2.66)

with (2.20) used for the last line. Similar to Lemma 2.2.4,
(

sin ψ
r

)
r

can be examined

over two subintervals:

• on [a,m], sin ψ ≤ 0 and
(

sin ψ
r

)
r
> 0 by (2.66) and Theorem 2.2.1.

• on (m, 1], sin ψ > 0 and u is monotone increasing. Hence, (2.26) can be used to

claim that Bu
2
− sin ψ

r
> 0, and thus

(
sin ψ

r

)

r

> 0 , for r ∈ [a, 1]. ¨ (2.67)

Lemma 2.3.2 −a cos γ
r

≤ sin ψ ≤ r cos γ on [a, 1]. Equality occurs exclusively at r = a

for the lower bound and at r = 1 for the upper bound.

Proof. For the lower bound, we observe that (1.29), along with Theorem 2.2.1,

provides the differential inequality

(r sin ψ)r = Bru > 0 (2.68)

and thus r sin ψ is monotone increasing:

r sin ψ(r) ≥ a sin ψ(a) (2.69)

= −a cos γ (2.70)

with equality only at r = a. For the upper bound, Lemma 2.3.1 may be used to show

sin ψ(r)

r
≤ sin ψ(1) (2.71)

= cos γ (2.72)

with equality exclusively at r = 1. ¨
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2.3.2 Main Results

The next theorem will investigate the behaviour of u as a → 0 (i.e. as Ω approaches

the disk of radius 1). Here, we will make reference to the interior solution uint, which

is the capillary tube surface bounded by a circular wall of radius 1. More precisely, it

is the solution to the boundary value problem




(r sin ψ)r = Bruint, r ∈ (0, 1)

sin ψ(0) = 0, sin ψ(1) = cos γ
(2.73)

The boundary value problem (2.73), along with the annular problem




(r sin ψ)r = Bru, r ∈ (a, 1)

sin ψ(a) = 0, sin ψ(1) = cos γ
(2.74)

was examined by Siegel [13].

First, it will be shown that the solution of (2.74) approaches that of (2.73) as a → 0.

For a given γ ∈ [0, π
2
), let {vn}n≥2 be the sequence of functions such that vn is the unique

solution to (2.74) on the interval [ 1
n
, 1]. {vn} is thus defined on an increasing domain;

however, it is desirable to define a sequence of extended functions {ṽn}n≥2 on [0, 1] by

continuing each vn to r = 0 as:

ṽn(r) =





vn

(
1
n

)
, r ∈ [0, 1

n
)

vn(r), r ∈ [ 1
n
, 1]

(2.75)

See Fig. 2.8. Here, ṽn ∈ C[0, 1] for all n ≥ 2. It can be shown from [13] that each

function ṽn, along with the interior solution uint, is increasing and bounded. As well,

Siegel demonstrated that each vn and uint will satisfy the same volume condition:

∫ 1

1
n

svn(s) ds =

∫ 1

0

suint(s) ds =
cos γ

B
. (2.76)

Therefore,

∫ 1

1
n

sṽn(s) ds−
∫ 1

0

suint(s) ds = 0 (2.77)
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Figure 2.8: Illustration of {vn} and {ṽn} compared to uint.

=⇒
∫ 1

0

s (ṽn(s)− uint(s)) ds−
∫ 1

n

0

sṽn(s) ds = 0 (2.78)

Additionally, the Comparison Principle provides

vn+1 ≤ vn ⇐⇒ ṽn+1 ≤ ṽn, for n ≥ 2 (2.79)

as well as

0 ≤ uint ≤ vn ⇐⇒ 0 ≤ uint ≤ ṽn, for n ≥ 2. (2.80)

Consequently, we are assured that ṽn → v pointwise on [0, 1] with

v ≥ uint , on [0, 1]. (2.81)

Each integral in (2.78) thus defines a positive, monotone decreasing sequence with a

defined limit as n →∞:

lim
n→∞

∫ 1

0

s (ṽn(s)− uint(s)) ds− lim
n→∞

∫ 1
n

0

sṽn(s) ds = 0. (2.82)
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The second limit can be bounded as

0 ≤ lim
n→∞

∫ 1
n

0

sṽn(s) ds (2.83)

≤ ṽ2(1) · lim
n→∞

∫ 1
n

0

s ds (2.84)

= 0 (2.85)

and we conclude limn→∞
∫ 1

n

0
sṽn(s) ds = 0. The first limit in (2.82) must now be zero

and Lebesgue’s Dominated Convergence Theorem [1] can be used to claim

0 = lim
n→∞

∫ 1

0

s (ṽn(s)− uint(s)) ds (2.86)

=

∫ 1

0

s (v(s)− uint(s)) ds (2.87)

In conjuction with (2.81), this requires

v = uint, a.e. (2.88)

We further comment that v must be nondecreasing since

ṽn(s1) ≤ ṽn(s2), for s1 < s2 (2.89)

=⇒ v(s1) = lim
n→∞

ṽn(s1) ≤ lim
n→∞

ṽn(s2) = v(s2) (2.90)

For this reason, inequalities that occur in (2.88) are restricted to jump discontinuities

in v. Suppose such a discontinuity of height δ > 0 occurs at a point c ∈ [0, 1]. The

following two cases will eliminate such a configuration.

1. Suppose c ∈ [0, 1). Here, there will exist a d > c such that uint is continuous on

[c, d] with

v − uint ≥ δ

2
. (2.91)

See Fig. 2.9. This is at odds with (2.87) being 0 and v ≡ uint on [0, 1).
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Figure 2.9: Configuration for a jump discontinuity in v at c ∈ [0, 1).

2. Suppose c = 1. For n ≥ 2, we shift uint upward to the position of ūint so that

ūint

(
1
n

)
= vn

(
1
n

)
as in Fig. 2.10. In other words,

ūint = uint + vn

(
1

n

)
− uint

(
1

n

)
. (2.92)

The Comparison Principle now requires

uint ≤ vn ≤ ūint, for r ∈
[

1

n
, 1

]
(2.93)

and in particular,

uint(1) ≤ vn(1) ≤ ūint(1). (2.94)

With Case (1) providing that limn→∞ vn

(
1
n

)
= uint(0), (2.92) gives

lim
n→∞

ūint(1) = uint(1), (2.95)

and by (2.94),

v(1) = uint(1). (2.96)

Thus, v ≡ uint as required1. Theorem 2.3.3 will rely heavily upon this result.

1Dini’s Theorem [2] can also be applied at this point to strengthen the convergence claim on {ṽn}
from pointwise to uniform convergence.
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Figure 2.10: Configuration for a jump discontinuity in v at c = 1.

Theorem 2.3.3 For γ ∈ [0, π
2
), consider the interior solution uint defined on [0, 1]

together with ua, the solution to (1.20) on [a, 1]. We have

lim
a→0

max
r∈[a,1]

|ua(r)− uint(r)| = 0

Proof. On [a, 1], we compare contact angles of ua and uint and note that the

Comparison Principle compels

uint ≤ ua , on [a, 1] (2.97)

(Fig. 2.11). Additionally, uint may be shifted upward to the position of ūint such that

ūint(a) = ua(a). Since the mean curvature remains unchanged, we write Nūint =

Buint < Būint giving





Nua −Bua > Nūint −Būint , in (a, 1)

ūint = ua , at r = a

ν̂ · T ūint = cos γ = ν̂ · Tua , at r = 1

(2.98)
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Figure 2.11: Cross section of comparison surfaces for a → 0.

Here again, we use the Comparison Principle to claim that

ua ≤ ūint, on [a, 1]. (2.99)

Consequently, ua is bounded from above and below with

max
r∈[a,1]

|ua(r)− uint(r)| ≤ ūint(a)− uint(a) (2.100)

= (ua(a)− ua(m)) + (ua(m)− uint(a)) (2.101)

< (ua(a)− ua(m)) + (ua(m)− uint(0)) (2.102)

Each bracketed term of (2.102) can be bounded. For the first term,

ua(a)− ua(m) = −
∫ m

a

sin ψ√
1− sin2 ψ

ds (2.103)

and using Lemma (2.3.2), we have

ua(a)− ua(m) < a

∫ m

a

1√
r2 − a2

ds (2.104)

= a log
(
m +

√
m2 − a2

)
− a log a (2.105)

< a log
(
1 +

√
1− a2

)
− a log a (2.106)
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Regardless of m, (2.106) approaches 0 as a → 0. With respect to the second term

in (2.102), it is clear that ua satisifes the boundary value problem (2.74) on [m, 1].

Considering m as a function of a, it is thus sufficient to show that lima→0 m(a) = 0, as

our earlier discussion would then require lima→0 (ua(m)− uint(0)) = 0. This point is

developed in the following lemma:

Lemma 2.3.4 Define ua and uint identically to the previous theorem and consider m

as a function of a. If lima→0 m(a) = 0, then

lim
a→0

ua(m) = uint(0).

Proof. For a given m(a), select the maximum n ∈ N such that m(a) ≤ 1
n
, which will

give

1

n + 1
< m(a) ≤ 1

n
. (2.107)

Recalling the sequence of functions {vn}, the Comparison Principle produces the fol-

lowing arrangement shown in Fig. 2.12:

vn+1

(
1

n + 1

)
< ua(m) ≤ vn

(
1

n

)
(2.108)

with

lim
n→∞

vn+1

(
1

n + 1

)
= lim

n→∞
vn

(
1

n

)
= uint(0). (2.109)

For lima→0 m(a) = 0, we have lima→0 n = ∞ and (2.108) requires

lim
a→0

ua(m) = uint(0). ¨ (2.110)

To show that lima→0 m(a) = 0, we proceed by contradiction and assume m does not

approach 0. Since m is increasing with respect to a, there must exist a σ > 0 such that

m ≥ σ, for all a ∈ (0, 1). (2.111)
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Figure 2.12: n chosen so that vn+1

(
1

n+1

)
< ua(m) ≤ vn

(
1
n

)

Suppose that a < σ. By integrating (1.29) from a to m, we have

∫ m

a

sua(s) ds =
a cos γ

B
(2.112)

=⇒ lim
a→0

∫ m

a

sua(s) ds = 0 (2.113)

Using (2.111) and that ua is decreasing on [a,m), the integral could also be bounded

as

∫ m

a

sua(s) ds ≥ ua(σ)

∫ σ

a

s ds (2.114)

= ua(σ)

(
σ2 − a2

2

)
(2.115)

and (2.115) implies that

lim
a→0

∫ m

a

sua(s) ds ≥ ua(σ)
σ2

2
> 0. (2.116)

This is an impossible situation and m must approach 0 as a → 0. As a result,

max
r∈[a,1]

|ua(r)− uint(r)| → 0 as a → 0. ¨ (2.117)
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It may also be of interest to examine how u behaves as a → 1 (i.e. as Ω approaches

a thin ring with approximate radius 1). For this, we let u0 = 2 cos γ
B(1−a)

and define the

function u1 as:

u1(r) = u1(a) +

∫ r

a

sin ψ1(s)√
1− sin2 ψ1(s)

ds (2.118)

with

sin ψ1(r) =
B

r

∫ r

a

su0 ds− a

r
cos γ (2.119)

=
cos γ

1− a

(
r − a

r

)
(2.120)

and

u1(a) =
2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
sin ψ1(s)√

1− sin2 ψ1(s)
(2.121)

Here, ψ1 denotes the inclination angle of u1. The reader is referred ahead to Chapter 3

where Theorem 3.1.1 ensures that u1 is defined, continuous and has the correct volume.

Addtionally, u1 is a Delaunay surface2 satisfying the differential equation

Nu1 = Bu0 ⇐⇒ (r sin ψ1(r))r = Bru0. (2.122)

For γ 6= 0, it so happens that u1 will act as a limiting surface as a → 1.

Theorem 2.3.5 Define ua identically to the previous theorem and consider the func-

tion u1 described above. For γ 6= 0,

|ua − u1| = O
(
(1− a)3

)
, as a → 1.

Proof. We first bound |ua − u0| by referring ahead to equations (3.27)–(3.29) where

u0 is similarly defined:

|ua − u0| < C(γ, m) :=

√
1−m2 cos2 γ − sin γ

cos γ
(2.123)

2This is a surface of constant mean curvature.
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and since a < m,

|ua − u0| < C(γ, a). (2.124)

Let ψa be the inclination angle of ua. Using (1.31) and (2.119), we write

| sin ψa − sin ψ1| =

∣∣∣∣
B

r

∫ r

a

s(ua − u0) ds

∣∣∣∣ (2.125)

≤ B

r

∫ r

a

s|ua − u0| ds (2.126)

≤ B

2r
C(γ, a)(r2 − a2) (2.127)

Alternatively, (1.29) and (2.122) can be integrated from r to 1 to generate a second

bound:

| sin ψa − sin ψ1| =

∣∣∣∣−
B

r

∫ 1

r

s(ua − u0) ds

∣∣∣∣ (2.128)

≤ B

r

∫ 1

r

s|ua − u0| ds (2.129)

≤ B

2r
C(γ, a)(1− r2) (2.130)

Taken together, (2.127) and (2.130) yield

| sin ψa − sin ψ1| ≤ B

2r
C(γ, a) min{r2 − a2, 1− r2}, (2.131)

and given that min{r2 − a2, 1− r2} ≤ 2(r2−a2)(1−r2)
1−a2 (see Appendix, Theorem A.0.5),

| sin ψa − sin ψ1| ≤ B

r
C(γ, a)

(r2 − a2)(1− r2)

1− a2
. (2.132)

Continuing, we bound |ua − u1| by first noting that both ua and u1 have the correct

volume; therefore they must intersect at least once in (a, 1). Theorem A.0.7 then gives

|ua − u1| ≤
∫ 1

a

|(ua)r − (u1)r| dr. (2.133)

Using an identical argument to (3.55)–(3.57), the Mean Value Theorem is applied to

the integrand so that

|ua − u1| ≤
∫ 1

a

| sin ψa − sin ψ1|
(1− ξ2)3/2

dr (2.134)
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where ξ lies between sin ψa and sin ψ1. By Lemma 2.2.4, we have sin ψa increasing on

[a, 1], and (2.120) will lead to a similar conclusion for sin ψ1. Hence, ξ is bounded as

− cos γ < ξ < cos γ which implies

1− ξ2 > sin2 γ (2.135)

> 0, for γ 6= 0 (2.136)

Using (2.132) and (2.135), |ua − u1| is bounded further:

|ua − u1| <

∫ 1

a

BC(γ,a)
r

(r2−a2)(1−r2)
1−a2

sin3 γ
dr (2.137)

<
B

a(1− a2) sin3 γ
C(γ, a)

∫ 1

a

(r2 − a2)(1− r2) dr (2.138)

<
B

a(1− a2) sin3 γ
C(γ, a)

∫ 1

a

(1− a2)2 dr (2.139)

=
B

a sin3 γ
C(γ, a)(1− a2)(1− a) (2.140)

Finally, C(γ, a) is rewritten as

C(γ, a) =
cos γ(1− a2)√

1− a2 cos2 γ + sin γ
(2.141)

<
cos γ(1− a2)

2 sin γ
(2.142)

and thus

|ua − u1| <
B cos γ

2a sin4 γ
(1− a2)2(1− a) (2.143)

= O
(
(1− a)3

)
, as a → 1. ¨ (2.144)

For γ = 0, the term (1− ξ2) can no longer be assigned a positive lower bound, and

the above argument does not yield the asymptotic behaviour of ua as a → 1. Further

work is needed to understand this special case.

Finally, we add to Theorem 2.3.5 by showing that for γ 6= 0, the limiting surface u1

will in turn approach the lower portion of a torus as a → 1.
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Theorem 2.3.6 Consider the function

t(r) = −
√(

1− a

2

)2

sec2 γ −
(

r − 1 + a

2

)2

+ b(a, γ, B)

where

b(a, γ, B) =
2 cos γ

B(1− a)
+

1− a

8
sec2 γ(π − 2γ − sin 2γ) +

(
1− a

2

)
tan γ.

On [a, 1], t(r) describes the lower portion of a torus that satisfies the boundary condi-

tions (1.20b) and the volume condition (Theorem 1.4.1). For γ 6= 0, we have

|u1 − t| = O
(
(1− a)2

)
, as a → 1.

Proof. From (2.5), the inclination angle of t(r) is given as

sin ω(r) =
cos γ

1− a
(2r − 1− a) , (2.145)

and since sin ω ≤ sin ψ1 (see the proof of Theorem A.0.13) we write

| sin ψ1 − sin ω| = sin ψ1 − sin ω (2.146)

=
cos γ

1− a

(
1 + a− r − a

r

)
(2.147)

It is easily shown that | sin ψ1 − sin ω| is maximized on [a, 1] at r =
√

a such that

| sin ψ1 − sin ω| ≤ cos γ

(1 +
√

a)
2 (1− a). (2.148)

Again, Theorem A.0.7 and the Mean Value Theorem may be employed to give

|u1 − t| ≤
∫ 1

a

| sin ψ1 − sin ω|
(1− ξ2)3/2

dr (2.149)

where

− cos γ ≤ sin ω < ξ < sin ψ1 ≤ cos γ. (2.150)

For γ 6= 0, |u1 − t| is then bounded as

|u1 − t| <

∫ 1

a

cos γ

(1+
√

a)
2 (1− a)

sin3 γ
(2.151)

=
cos γ

(1 +
√

a)
2
sin3 γ

(1− a)2 (2.152)

= O
(
(1− a)2

)
, as a → 1 ¨ (2.153)
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When considered together, Theorems 2.3.5 and 2.3.6 allow us to conclude that for

γ 6= 0, the solution surface ua approaches the torus portion t(r) as O ((1− a)2):

|ua − t| ≤ |ua − u1|+ |u1 − t| (2.154)

= O
(
(1− a)2

)
, as a → 1 (2.155)



Chapter 3

Iterative Procedure

3.1 Introduction

In many cases, it may be desirable to obtain approximate solutions to the boundary

value problem (1.20). As such, we examine the iterative procedure first introduced by

Siegel [13]. This scheme was used successfully in [13] to approximate annular surfaces

of the related problem (2.74), and it is easily applied here. An outline of the procedure

is as follows: consider a function u1 that satisfies the volume condition (Theorem 1.4.1),

and suppose there exists a function u2 such that Nu2 = Bu1 or equivalently,

(r sin ψ2)r = Bru1 (3.1)

where ψ2 is the inclination angle of u2. Requiring sin ψ2(a) = − cos γ, we use the same

techniques found in Section 1.4.2 to arrive at an expression for the inclination angle of

u2:

sin ψ2(r) =
B

r

∫ r

a

su1(s) ds− a

r
cos γ. (3.2)

Furthermore, since u1 satisfies the volume requirement, u2 will also have the boundary

condition:

sin ψ2(1) = cos γ. (3.3)

41
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We can continue to follow Section 1.4.2 to derive

u2(r) = u2(a) +

∫ r

a

sin ψ2(s)√
1− sin2 ψ2(s)

ds (3.4)

and finally, u2(a) can be selected so that u2 has the correct volume:

cos γ (1 + a)

B
=

∫ 1

a

ru2(r) dr (3.5)

=

∫ 1

a

r

[
u2(a) +

∫ r

a

sin ψ2(s)√
1− sin2 ψ2(s)

ds

]
dr (3.6)

=⇒ u2(a) =
2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
sin ψ2(s)√

1− sin2 ψ2(s)
ds (3.7)

The following theorem solidifies the ideas presented.

Theorem 3.1.1 Let u1 be a continuous, positive function defined on [a, 1] which sat-

isfies the volume condition. Define

sin ψ2(r) =
B

r

∫ r

a

su1(s) ds− a

r
cos γ (3.8)

and assume sin ψ2 ≤ r cos γ. Then:

1. −a cos γ
r

≤ sin ψ2 on [a, 1] with equality exclusively at r = a.

2. There exists a function u2 defined and continuous on [a, 1] given as:

u2(r) = u2(a) +

∫ r

a

sin ψ2(s)√
1− sin2 ψ2(s)

ds (3.9)

with

u2(a) =
2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
sin ψ2(s)√

1− sin2 ψ2(s)
ds (3.10)

As a result, Nu2 = Bu1.

3. u2 satisfies both the volume condition and the boundary conditions listed in (1.20).

4. There exists a unique point r = m2 at which u2 achieves its minimum value.
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5. For

B <
2

(1− a)
(

1
3

√
1− a2 + a log

(
1 +

√
1− a2

)− a log a
) ,

u2 will also be positive.

Proof.

1. Using that u1 is positive, we note

(r sin ψ2)r = Bru1 > 0 (3.11)

and the function r sin ψ2 is monotone increasing. The remainder of the proof

mirrors Lemma 2.3.2:

a sin ψ2(a) ≤ r sin ψ(r) (3.12)

=⇒ −a cos γ

r
≤ sin ψ2 (3.13)

Result 3.13 is a technical point not found in Siegel [13] but will be needed for the

proof in Section 3.2.

2. To show u2 is defined and continuous, it is sufficient to show that u2 is bounded.

With −a cos γ
r

≤ sin ψ2 ≤ r cos γ, (3.9) and (3.10) provide that

u2(r) =
2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
sin ψ2√

1− sin2 ψ2

ds

+

∫ r

a

sin ψ2√
1− sin2 ψ2

ds (3.14)

≥ 2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
s cos γ√

1− s2 cos2 γ
ds

−
∫ r

a

a cos γ√
s2 − a2 cos2 γ

ds (3.15)

≥ 2 cos γ

B(1− a)
− cos γ

1− a2

∫ 1

a

(1− s2)
s√

1− s2
ds

−a cos γ

∫ 1

a

1√
s2 − a2

ds (3.16)
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= cos γ

[
2

B(1− a)
− 1

3

√
1− a2 − a log(1 +

√
1− a2)

+a log a

]
(3.17)

Given that a log a ≥ −1
e

on (0, 1], u2 can be bounded below as

u2(r) > cos γ

[
2

B
− 1

3
− log 2− 1

e

]
(3.18)

> −∞ (3.19)

u2 can be similarly bounded above:

u2(r) ≤ 2 cos γ

B(1− a)
+

1

1− a2

∫ 1

a

(1− s2)
a cos γ√

s2 − a2 cos2 γ
ds

+

∫ r

a

s cos γ√
1− s2 cos2 γ

ds (3.20)

<
2 cos γ

B(1− a)
+

a cos γ

1− a2
(1− a2)

∫ 1

a

1√
s2 − a2

ds

+ cos γ

∫ 1

a

s√
1− s2

ds (3.21)

= cos γ

[
2

B(1− a)
+ a log

(
1 +

√
1− a2

)
− a log a

+
√

1− a2

]
(3.22)

< cos γ

[
2

B(1− a)
+ log 2 +

1

e
+ 1

]
(3.23)

< ∞ (3.24)

Finally, the introductory discussion to the chapter confirms that Nu2 = Bu1.

3. This was also shown in the introductory remarks.

4. This argument progresses indentically to Theorem 2.2.3.

5. The lower bound given in (3.17) is required to be positive:

u2(r) ≥ cos γ

[
2

B(1− a)
− 1

3

√
1− a2 − a log(1 +

√
1− a2)+
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+a log a

]

> 0

Solving for B produces the desired result. Earlier in Chapter 2, it was examined

how solutions to the boundary value problem (1.20) approach those considered

by Siegel [13] in the limit of a → 0. It may be of interest to note that in this

limit, u2 is positive for B < 6. This matches Siegel’s result for u2 analagously

defined in his paper. ¨

Theorem 3.1.1 creates the framework needed to generate a sequence of iterates {un}
defined recursively as

Nun+1 = Bun, n ≥ 0. (3.25)

We take the initial function u0 to be the constant function that satisfies the volume

condition:

u0 =
2 cos γ

B(1− a)
. (3.26)

It can be shown that for suitable restrictions on B, {un} constitutes a sequence where:

• (1) through (5) of Theorem 3.1.1 are satisfied for all n ≥ 1.

• {un} converges to the solution of the boundary value problem (1.20).

The remainder of the chapter will examine these results.

3.2 The Iterate Convergence Theorem (ICT)

Considering the sequence of iterates {un} defined by (3.25) and (3.26), it is possible

to demonstrate convergence of {un} to the solution of the boundary value problem

(1.20). A benefit of the proof to be developed in Subsection 3.2.1 is its inclusion of the

case γ = 0. Additionally, Subsection 3.2.2 provides motivation for this proof from a

geometric context.
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3.2.1 Convergence Theorem

Theorem 3.2.1 (Iterate Convergence) For

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ, m) + aπ cos γ
,

the sequence of iterates {un} generated via (3.25) and (3.26) will be continuous and

positive. Furthermore, B π
2(1−a2)

< 1 and {un} converges to u, the solution of (1.20),

with

|u− un| < C(γ,m)

(
B

π

2(1− a2)

)n

where C(γ, m) =

√
1−m2 cos2 γ−sin γ

cos γ
and r = m defines the location of the minimum of u.

Proof1. We first prove the case for n = 0 and proceed inductively. It is clear that

u0 is continuous, positive and satisfies the volume condition. Using that u is convex

and u(a) < u(1), we have maxr∈[a,1]{u(r)} = u(1), and since both u0 and u satisfy the

volume condition, they must intersect at least once in (a, 1) with u(m) < u0 < u(1).

|u− u0| is thus bounded as

|u− u0| ≤ max{u(1)− u0, u0 − u(m)} < u(1)− u(m) =

∫ 1

m

sin ψ√
1− sin2 ψ

dr (3.27)

Additionally, Lemma 2.3.2 provides that

sin ψ√
1− sin2 ψ

≤ r cos γ√
1− r2 cos2 γ

(3.28)

and consequently

|u− u0| <
∫ 1

m

r cos γ√
1− r2 cos2 γ

dr =

√
1−m2 cos2 γ − sin γ

cos γ
:= C(γ,m) (3.29)

1The appendix contains some additional results that are omitted from this proof for the sake of

brevity.
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The case n = 0 is thus proved. Next, assume un is continuous, positive, and satisfies

the volume condition. Also, let |u− un| < βn := C(γ, m)
(
B π

2(1−a2)

)n

. We write

| sin ψ − sin ψn+1| =

∣∣∣∣
B

r

∫ r

a

s (u− un) ds

∣∣∣∣ (3.30)

≤ B

r

∫ r

a

s |u− un| ds (3.31)

≤ B

2r
βn (r2 − a2) (3.32)

or alternatively, (1.29) and (3.1) can be integrated from r to 1 to yield

| sin ψ − sin ψn+1| =

∣∣∣∣−
B

r

∫ 1

r

s (u− un) ds

∣∣∣∣ (3.33)

≤ B

r

∫ 1

r

s |u− un| ds (3.34)

≤ B

2r
βn (1− r2) (3.35)

When used in tandem, (3.32) and (3.35) imply

| sin ψ − sin ψn+1| ≤ B

2r
βn min{r2 − a2, 1− r2}, (3.36)

and given that min{r2 − a2, 1− r2} ≤ 2(r2−a2)(1−r2)
1−a2 (Theorem A.0.5),

| sin ψ − sin ψn+1| ≤ βnB

r

(r2 − a2)(1− r2)

1− a2
. (3.37)

We can now bound sin ψn+1. For n = 0, sin ψ1 can be written exactly:

sin ψ1 =
B

r

∫ r

a

su0 ds− a

r
cos γ (3.38)

=
cos γ

1− a

(
r − a

r

)
(3.39)

and it is easily checked that −a cos γ
r

≤ sin ψ1 ≤ r cos γ. For n ≥ 1, we do not have the

luxury of an explicit function and we proceed as follows: to show sin ψn+1 ≤ r cos γ,

consider the distance between sin ψ1 and sin ψn+1:

| sin ψ1 − sin ψn+1| = | sin ψ1 − sin ψ + sin ψ − sin ψn+1| (3.40)

≤ | sin ψ − sin ψ1|+ | sin ψ − sin ψn+1| (3.41)

≤ B

r
C(γ,m)

(r2 − a2)(1− r2)

1− a2

[
1 +

(
B

π

2(1− a2)

)n]
(3.42)
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The bracketed term in (3.42) can be bounded by the geometric series

1 +

(
B

π

2(1− a2)

)n

<

∞∑

k=0

(
B

π

2(1− a2)

)k

(3.43)

and since

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ, m) + aπ cos γ
<

2(1− a2)

π
(3.44)

(see Appendix, Theorem A.0.9) the sum is convergent. (3.43) can then be used in (3.42)

to give

| sin ψ1 − sin ψn+1| ≤ B

r
C(γ, m)

(r2 − a2)(1− r2)

1− a2

1

1−B π
2(1−a2)

(3.45)

=
B

r
C(γ, m)

2(r2 − a2)(1− r2)

2(1− a2)−Bπ
(3.46)

The condition on B can be substituted into (3.46) to obtain

| sin ψ1 − sin ψn+1| ≤ a cos γ(r2 − a2)(1− r2)

r(1 + a)(1− a)2
(3.47)

≤ a cos γ(1− a2)(1− r2)

r(1 + a)(1− a)2
(3.48)

=
a cos γ

1− a

(
1

r
− r

)
(3.49)

With this in hand, we are able to show that sin ψn+1 ≤ r cos γ:

r cos γ − sin ψn+1 = (r cos γ − sin ψ1) + (sin ψ1 − sin ψn+1) (3.50)

≥ (r cos γ − sin ψ1)− | sin ψ1 − sin ψn+1| (3.51)

≥
[
r cos γ − cos γ

1− a

(
r − a

r

)]
−

[
a cos γ

1− a

(
1

r
− r

)]
(3.52)

= 0 (3.53)

and properties (1)–(4) of Theorem 3.1.1 apply to un+1. In addition, the bound on B

required here is more restrictive than that in Theorem 3.1.1 (5):

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ,m) + aπ cos γ

<
2

(1− a)
(

1
3

√
1− a2 + a log

(
1 +

√
1− a2

)− a log a
)
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(see the Appendix, Theorem A.0.10) and consequently, un+1 also exhibits property (5)

of Theorem 3.1.1. In summary, un+1 will be continuous, positive and will satisfy the

volume condition.

Next, we bound |u− un+1|. Noting that both u and un+1 have the correct volume,

they must intersect at least once in (a, 1). This allows us to employ Theorem A.0.7:

|u− un+1| ≤
∫ 1

a

|ur − (un+1)r | dr. (3.54)

In order to estimate the integrand of (3.54), we use the Mean Value Theorem on the

function f(p) = p√
1−p2

so that

f(sin ψ)− f(sin ψn+1)

sin ψ − sin ψn+1

= f ′(ξ), (3.55)

where ξ lies between sin ψ and sin ψn+1. This can be rewritten as

sin ψ√
1− sin2 ψ

− sin ψn+1√
1− sin2 ψn+1

=
sin ψ − sin ψn+1

(1− ξ2)3/2
(3.56)

=⇒ |ur − (un+1)r | =
| sin ψ − sin ψn+1|

(1− ξ2)3/2
(3.57)

The numerator of (3.57) has an upper bound given in (3.37). For the denominator,

Lemma 2.3.2 provides bounds on sin ψ that are identical to those derived above for

sin ψn+1:

−a cos γ

r
≤ sin ψ , sin ψn+1 ≤ r cos γ (3.58)

and ξ is bounded as

−a

r
≤ −a cos γ

r
< ξ < r cos γ ≤ r, (3.59)

with ξ2 < max
{

a2

r2 , r
2
}

. The denominator of (3.57) can thus be estimated using

1− ξ2 > 1−max

{
a2

r2
, r2

}
(3.60)

= min

{
1− a2

r2
, 1− r2

}
(3.61)

≥
(

1− a2

r2

)
(1− r2) (3.62)
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See the Appendix, Theorem A.0.6 for an explanation of the last line. Returning to

(3.54), an upper bound on |u− un+1| is now possible,

|u− un+1| ≤
∫ 1

a

| sin ψ − sin ψn+1|
(1− ξ2)3/2

dr (3.63)

<

∫ 1

a

βnB
r

(r2−a2)(1−r2)
1−a2

[(
1− a2

r2

)
(1− r2)

]3/2
dr (3.64)

=
βnB

1− a2

∫ 1

a

r2

√
r2 − a2

√
1− r2

dr (3.65)

This integral is no greater than π
2

(Appendix, Theorem A.0.8). Hence,

|u− un+1| <
βnB

1− a2

π

2
(3.66)

= βn+1 (3.67)

and the inductive step is complete. ¨

Fig. 3.1 illustrates a numerical approximation of the iterates {un}, allowing us

to visualize the procedure as well as the predicted convergence. Although the first

four iterates are plotted, the convergence is rapid enough that the second and third

iterates are already barely discernable. Fig. 3.2 plots {sin ψn} for the same parameters

and, in addition, Table 3.1 lists the maximum difference between adjacent pairs of

iterates {un} and {sin ψn}, up to n = 5. Note that |u5 − u4| ≤ 3.0 × 10−8 and

| sin ψ5− sin ψ4| ≤ 4.0× 10−8. The numerical method used here will be examined more

fully in Chapter 5.

3.2.2 Geometric Interpretation

The derivation of the bound

−a cos γ

r
≤ sin ψn+1 ≤ r cos γ

was crucial to the proof of the ICT. In order to clarify this point, it may be instructive

to provide a geometric explanation of how the result was arrived at. This will speak to
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n max |un − un−1| max | sin ψn − sin ψn−1|
1 3.6× 10−1 9.5× 10−1

2 3.2× 10−3 7.0× 10−3

3 8.8× 10−5 1.6× 10−4

4 1.5× 10−6 2.3× 10−6

5 3.0× 10−8 4.0× 10−8

Table 3.1: Maximum distance between adjacent iterates with parameters a, γ and B

selected as in Figs. 3.1 and 3.2.

the author’s original motivation and ideas, made precise (albeit more abstract) in the

above theorem.

With the intent of bounding sin ψn+1 as

−a cos γ

r
≤ sin ψn+1 ≤ r cos γ,

it may seem reasonable to compare sin ψn+1 directly with sin ψ, since the latter is known

to have these bounds. Indeed, (3.37) provides the estimate

| sin ψ − sin ψn+1| < βnB

r

(r2 − a2)(1− r2)

1− a2
.

It is clear that as B → 0, the distance between sin ψ and sin ψn+1 can be made arbi-

trarily small for all r ∈ [a, 1]. However, sin ψ is not known exactly, and it is therefore

difficult to determine any condition on B so that sin ψn+1 will satisfy the required

bounds. We thus turn our attention to sin ψ1 which has the explicit form given in

(3.39). Using (3.37), we derive the estimate between sin ψ1 and sin ψn+1 as noted in

(3.46):

| sin ψ1 − sin ψn+1| < B

r
C(γ, m)

2(r2 − a2)(1− r2)

2(1− a2)−Bπ
.

Here again, the distance can be made arbitrarily small as B → 0. See Figs. 3.3 and 3.4.

With sin ψ1 known (solid black curve), (3.46) allows for the creation of an envelope
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(curves drawn with crosses) that restricts the (n + 1)th iterate within. Reducing B

narrows the width of this envelope. As in Fig. 3.4, the goal was to first select a

threshold for B so that the envelope’s upper portion lay within the bound of r cos γ

(top curve drawn with circles). Consequently, B was solved using

B

r
C(γ, m)

2(r2 − a2)(1− r2)

2(1− a2)−Bπ
≤ r cos γ − sin ψ1 (3.68)

=
a cos γ

1− a

(
1

r
− r

)
(3.69)

With B restricted, Theorem 3.1.1 then ensured the envelope’s lower portion lay above

−a cos γ
r

(bottom curve drawn in circles). Of course, in the proof of the ICT, the more

systematic approach was to state the restriction on B and work backwards.
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13.9

14

14.1

14.2

14.3

14.4

0.2 0.4 0.6 0.8 1
r

Figure 3.1: Numerical approximation of un vs. r for n = 0, . . . , 3 with a = 0.1, γ = π
10

,

B = 0.15. Iterates are drawn as {solid line, cross, circle, solid curve}.
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Figure 3.2: Numerical approximation of sin ψn vs. r for n = 0, . . . , 3 with a = 0.1,

γ = π
10

, B = 0.15. Iterates are drawn as {solid line, cross, circle, solid curve}.
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Figure 3.3: Envelope of sin ψ1 with a = 0.3, γ = π
4
, B = 0.5. The envelope exceeds both

upper and lower bounds.
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Figure 3.4: Envelope of sin ψ1 with a = 0.3, γ = π
4
, B = 0.33. B was selected to satisfy

(3.68), and the envelope now lies within the required bounds.



Chapter 4

Iterate Behaviour

4.1 Single Intersection Case: Interleaving

Properties

In [13], the iterates of Siegel were shown to exhibit a highly organized interplay:

1. ψ0 < ψ2 < · · · < ψ < · · · < ψ3 < ψ1, for r ∈ (a, 1)

2. u1(a) < u3(a) < · · · < u(a) < · · · < u2(a) < u0

3. u0 < u2(1) < · · · < u(1) < · · · < u3(1) < u1(1)

(1) to (3) were defined collectively by Siegel as the interleaving properties of the iterates,

with (2) and (3) providing guaranteed under– and over–estimates for the boundary

values of u. In the case considered here, the behaviour between iterates is slightly more

complex, being sensitive to the values of the parameters a, γ and B selected. However,

we are able to recover these interleaving properties under certain conditions. It so

happens that it will be necessary to find selections of a, γ and B such that u, u2 and

u0 will be configured as noted in Fig. 4.1. In other words, there exist unique points b0

55
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Figure 4.1: Configuration required for interleaving properties. u and u2 must be ori-

ented as noted with respect to u0. The orientation between u and u2 is not important.

and c0 in (a, 1) such that 



u < u0 , r ∈ [a, b0)

u > u0 , r ∈ (b0, 1]
(4.1)

and 



u2 < u0 , r ∈ [a, c0)

u2 > u0 , r ∈ (c0, 1]
(4.2)

The numerical experiment in Fig. 3.1 suggests this may be possible, but we can take

a more analytical approach. Should (4.1) and (4.2) occur, it turns out that the inter-

leaving properties are a consequence. We examine the conditions necessary for each

configuration below.
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4.1.1 Single Intersection of u with u0

It will be shown that the configuration of (4.1) is a result of

u(a) < u0, (4.3)

and it is indeed possible to find conditions under which (4.3) is true through a compar-

ison with u1(a). We thus begin by investigating the conditions necessary for u1(a) < u0

(recall that since sin ψ1 ≤ r cos γ, u1 is defined and continuous without an a priori

condition on B). Looking at the difference,

u0 − u1(a) =
1

1− a2

∫ 1

a

(1− s2)
sin ψ1√

1− sin2 ψ1

ds, (4.4)

the integrand of (4.4) can be bounded from below by first estimating sin ψ1√
1−sin2 ψ1

, treating

the domains in which it is positive and negative separately. From (3.39), it is clear that

sin ψ1 changes sign at r =
√

a, and hence, sin ψ1√
1−sin2 ψ1

will do the same. For a ≤ r ≤ √
a,

we use that sin ψ1 is concave to create a linear lower bound,

cos γ√
a− a

(r −√a) ≤ sin ψ1, (4.5)

(see Fig. 4.2) which then gives

sin ψ1√
1− sin2 ψ1

≥
cos γ√
a−a

(r −√a)
√

1−
[

cos γ√
a−a

(r −√a)
]2

=
r −√a√

(
√

a−a)
2

cos2 γ
− (r −√a)

2

. (4.6)

For
√

a ≤ r < 1, it is easily seen that1

sin ψ1√
1− sin2 ψ1

≥ sin ψ1 =
cos γ

1− a

(
r − a

r

)
. (4.7)

Using these bounds in (4.4),

u0 − u1(a) >
1

1− a2




∫ √
a

a

(1− s2)
s−√a√

(
√

a−a)
2

cos2 γ
− (s−√a)

2

ds

1Here, it was initially attempted to use a linear bound similar to above. This, however, proved

difficult to integrate later on.
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Figure 4.2: Linear lower bound on sin ψ1 over its negative regime.

+

∫ 1

√
a

(1− s2)
cos γ

1− a

(
s− a

s

)
ds

]
(4.8)

>
1

1− a2


(1− a2)

∫ √
a

a

s−√a√
(
√

a−a)
2

cos2 γ
− (s−√a)

2

ds

+

∫ 1

√
a

(1− s2)
cos γ

1− a

(
s− a

s

)
ds

]
(4.9)

=

√
(
√

a− a)
2

cos2 γ
− (√

a− a
)2 −

√
a− a

cos γ

+
cos γ (1− a2 + 2a log a)

4(1− a)(1− a2)
(4.10)

and since a log a > (a− 1) + 1
2
(a− 1)2 − 1

6
(a− 1)3 on (0, 1),

u0 − u1(a) >

√
a− a

cos γ
(sin γ − 1) +

cos γ(1− a)

12(1 + a)
(4.11)

≥
√

a− a

cos γ

(
sin2 γ − 1

)
+

cos γ(1− a)

12(1 + a)
(4.12)

= cos γ

[
1− a

12(1 + a)
− (√

a− a
)]

(4.13)
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To ensure that u0 > u1(a), the expression in square brackets must be nonnegative:

1− a

12(1 + a)
− (√

a− a
) ≥ 0 (4.14)

=⇒ −12
(√

a− a + a3/2 − a2
)

+ 1− a ≥ 0 (4.15)

Let x =
√

a, making (4.15)

(x− 1)(12x3 + 11x− 1) ≥ 0. (4.16)

The above polynomial has two real roots: one at x = 1 and the other at

Λ :=
1

6

(
9 + 2

√
353

)1/3

− 11

6
(
9 + 2

√
353

)1/3

.
= 0.09. (4.17)

It is also nonnegative for x ∈ (0, Λ]. Consequently, for a ∈ (0, Λ2], the polynomial in

(4.15) will be nonnegative and u0 > u1(a).

To compare u(a) with u0, we employ the same technique used in the proof of the

Iterate Convergence Theorem: find B so that u(a) lies close enough to u1(a) making

u(a) < u0 as well.

Theorem 4.1.1 For any γ ∈ [0, π
2
), select a ≤ Λ2 and

B ≤ 2(1− a2) cos γ

π

(
1− a

12(1 + a)
− (√

a− a
))

.

Under these conditions, there exists a unique b0 ∈ (a, 1) such that u(b0) = u0 with





u < u0 , r ∈ [a, b0)

u > u0 , r ∈ (b0, 1]

Proof. We begin by noting

u0 − u(a) = (u0 − u1(a)) + (u1(a)− u(a)) (4.18)

≥ (u0 − u1(a))− |u(a)− u1(a)| (4.19)
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Since sin ψ1 ≤ r cos γ (see page 42), (1)–(4) of Theorem 3.1.1 applies to u1. As well, it

can be shown that

B ≤ 2(1− a2) cos γ

π

(
1− a

12(1 + a)
− (√

a− a
))

< 1 (4.20)

(A.0.11) and u1 also exhibits property (5) of Theorem 3.1.1. The selection of a ensures

that the first term of (4.19) has a positive lower bound. For the second term, we go

through the proof of the ICT for the specific case of u1 to argue

|u− u1| < C(γ, m)B
π

2(1− a2)
. (4.21)

(4.19) can now be bounded using (4.13) and (4.21):

u0 − u(a) > cos γ

(
1− a

12(1 + a)
− (√

a− a
))− C(γ,m)B

π

2(1− a2)
, (4.22)

and since C(γ, m) < 1,

u0 − u(a) > cos γ

(
1− a

12(1 + a)
− (√

a− a
))−B

π

2(1− a2)
. (4.23)

Finally, substituting the condition on B produces the desired result,

u(a) < u0. (4.24)

With both u and u0 having the correct volume, at least one intersection occurs between

these functions. The convexity of u, in conjuction with (4.24), limits this to a unique

intersection occuring at a point b0 ∈ (a, 1). The functions thus behave as noted in the

theorem. ¨

The configuration of u with u0 in Fig. 4.1 is now possible.

4.1.2 Single Intersection of u2 with u0

In like manner, we are able to find conditions for u2(a) < u0 which will result in (4.2).

Before turning to this, it should be verifed that under the hypotheses of the previous
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theorem, u2 is defined and continuous. This will require a lemma also employed in [13].

It is stated here without proof.

Lemma 4.1.2 Consider two functions v and w defined on [a, 1] with inclination angles

given by ψv and ψw respectively. If ψv < ψw on (a, 1) and
∫ 1

a
rv dr =

∫ 1

a
rw dr, then

there exists a unique b ∈ (a, 1) where v(b) = w(b) and





w < v , r ∈ [a, b)

w > v , r ∈ (b, 1] ¨

To show u2 is defined and continuous, we first write the difference function

r sin ψ − r sin ψ1 = B

∫ r

a

s(u− u0) ds (4.25)

which has its derivative given by

(r sin ψ − r sin ψ1)r = Br(u− u0). (4.26)

Clearly, the function (4.25) is zero at r = a and r = 1, and has a unique extremum at

r = b0. Thus, r sin ψ − r sin ψ1 must be either positive or negative on (a, 1). The fact

that u(a) < u0 implies

r sin ψ − r sin ψ1 < 0 (4.27)

=⇒ ψ < ψ1, for r ∈ (a, 1) (4.28)

and Lemma 4.1.2 ensures that there exists a unique b1 ∈ (a, 1) where u1(b1) = u(b1)

and 



u1 < u , r ∈ [a, b1)

u1 > u , r ∈ (b1, 1]
(4.29)

With this in hand, we can verify that u2 is defined and continuous by considering the

difference

r sin ψ − r sin ψ2 = B

∫ r

a

s(u− u1) ds (4.30)
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and reason accordingly that

sin ψ2 < sin ψ < r cos γ, for r ∈ (a, 1). (4.31)

With B bounded as in Theorem 4.1.1, u2 will exhibit all properties of Theorem 3.1.1.

Conditions can now be stated so that u2(a) < u0. Here, B will be restricted further

than Theorem 4.1.1.

Theorem 4.1.3 For any γ ∈ [0, π
2
), select a ≤ Λ2 and

B ≤ (1− a2) cos γ

π

(
1− a

12(1 + a)
− (√

a− a
))

.

Under these conditions, there exists a unique c0 ∈ (a, 1) such that u2(c0) = u0 with




u2 < u0 , r ∈ [a, c0)

u2 > u0 , r ∈ (c0, 1]

Proof. Similarly, we write

u0 − u2(a) = (u0 − u(a)) + (u(a)− u2(a)) (4.32)

≥ (u0 − u(a))− |u(a)− u2(a)| (4.33)

The first term can be bounded as in (4.22), and an identical argument to the proof of

the ICT specifically for u2 estimates the second term. We thus have

u0 − u2(a) > cos γ

(
1− a

12(1 + a)
− (√

a− a
))− C(γ, m)B

π

2(1− a2)

−C(γ, m)

(
B

π

2(1− a2)

)2

(4.34)

> cos γ

(
1− a

12(1 + a)
− (√

a− a
))

−B
π

2(1− a2)

(
1 + B

π

2(1− a2)

)
(4.35)

Substituting for B gives

u2(a) < u0. (4.36)
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As before, the volume condition guarantees an intersection between the two functions.

Theorem 3.1.1 (4) implies that u2 is monotone decreasing on [a, m2) and monotone

increasing on (m2, 1]. Hence, the intersection is unique and the theorem’s result easily

follows. ¨

Physically, the single intersection case defined by configurations (4.1) and (4.2)

will occur for any fluid/solid combination provided that the boundaries are positioned

appropriately. To demonstrate this, let us return to the physical geometry where the

annular tube has inner and outer radii R1 and R2 respectively. For any γ ∈ [0, π
2
), we

select a configuration where

R1 = Λ2R2. (4.37)

Consequently, a = R1

R2
= Λ2 and the term

(1− a2) cos γ

π

(
1− a

12(1 + a)
− (√

a− a
))

(4.38)

is constant. R2 can now be chosen sufficiently small so that

B = κR2
2 ≤ (1− a2) cos γ

π

(
1− a

12(1 + a)
− (√

a− a
))

. (4.39)

In this regime, Theorems 4.1.1 and 4.1.3 apply thus producing the single intersection

case.

4.1.3 Interleaving Properties

We are now in a position to prove the interleaving properties for {un}. Here, B is

restricted so that the single intersection case is guaranteed to occur.

Theorem 4.1.4 For any γ ∈ [0, π
2
), select a ≤ Λ2 and

B ≤ (1− a2) cos γ

π

(
1− a

12(1 + a)
− (√

a− a
))

.

Under these conditions, the sequence of iterates {un} defined by (3.25) and (3.26) satisfy

(1) through (5) of Theorem 3.1.1. Furthermore, they exhibit the following properties:
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1. ψ2 < ψ4 < · · · < ψ < · · · < ψ3 < ψ1, for r ∈ (a, 1)

2. u1(a) < u3(a) < · · · < u(a) < · · · < u4(a) < u2(a)

3. u2(1) < u4(1) < · · · < u(1) < · · · < u3(1) < u1(1)

Proof.

1. We first go through a cycle of recursive arguments and proceed to show that the

base case, which is known to be true, sets the cycle in motion. To start, assume

that for a certain k ≥ 0:

(a) u2k, u2k+1, and u2k+2 satisfy (1) through (5) of Theorem 3.1.12

(b) ψ < ψ2k+1 with sin ψ2k+1 ≤ r cos γ, for r ∈ (a, 1)

(c) there exists a unique c2k ∈ (a, 1) such that





u2k+2 < u2k , r ∈ [a, c2k)

u2k+2 > u2k , r ∈ (c2k, 1]
(4.40)

From (b), Lemma 4.1.2 requires there to exist a unique b2k+1 ∈ (a, 1) with





u > u2k+1 , r ∈ [a, b2k+1)

u < u2k+1 , r ∈ (b2k+1, 1]
(4.41)

Using the difference function

r sin ψ − r sin ψ2k+2 = B

∫ r

a

s(u− u2k+1) ds (4.42)

it can be shown

sin ψ2k+2 < sin ψ < r cos γ, for r ∈ (a, 1). (4.43)

2u2k does not have to satisfy the boundary conditions.
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(4.43) implies ψ2k+2 < ψ on (a, 1). Lemma 4.1.2 can be used again:




u < u2k+2 , r ∈ [a, b2k+2)

u > u2k+2 , r ∈ (b2k+2, 1]
(4.44)

and a new difference function

r sin ψ − r sin ψ2k+3 = B

∫ r

a

s(u− u2k+2) ds (4.45)

produces ψ < ψ2k+3 on (a, 1). It must now be verified that u2k+3 is defined. For

this, we use

r sin ψ2k+1 − r sin ψ2k+3 = B

∫ r

a

s(u2k − u2k+2) ds (4.46)

along with (c) to reason that

sin ψ2k+3 < sin ψ2k+1 < r cos γ, for r ∈ (a, 1), (4.47)

and with B restricted as hypothesized, u2k+3 now obeys (1) through (5) of The-

orem 3.1.1. Lemma 4.1.2 ensures




u2k+3 > u2k+1 , r ∈ [a, c2k+1)

u2k+3 < u2k+1 , r ∈ (c2k+1, 1]
(4.48)

As a final step, we can similarly argue that u2k+4 satisfies Theorem 3.1.1 since

sin ψ2k+2 < sin ψ2k+4 < sin ψ < r cos γ (4.49)

with 



u2k+4 < u2k+2 , r ∈ [a, c2k+2)

u2k+4 > u2k+2 , r ∈ (c2k+2, 1]
(4.50)

The cycle is now complete as (a), (b) and (c) are proved for the next increment

of k. In addition, the above discussion provides the following summary:

ψ2k+2 < ψ2k+4 < · · · < ψ < · · · < ψ2k+3 < ψ2k+1, for r ∈ (a, 1). (4.51)
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It remains to verify that (a), (b) and (c) are true for the base case k = 0. However,

these were shown as a result of Theorems 4.1.1 and 4.1.3, making (4.51) true for

all k ≥ 0:

ψ2 < ψ4 < · · · < ψ < · · · < ψ3 < ψ1, for r ∈ (a, 1) (4.52)

2. Apply Lemma 4.1.2 to each adjacent pair of angles in (4.52) to arrive at

u1(a) < u3(a) < · · · < u(a) < · · · < u4(a) < u2(a) (4.53)

3. The same analysis in (2) will produce

u2(1) < u4(1) < · · · < u(1) < · · · < u3(1) < u1(1). ¨ (4.54)

Using the numerical procedure, Figs. 4.3 and 4.4 demonstrate the interleaving properties

for a specific choice of parameters. Because Theorem 4.1.4 requires values of a, γ and

B that cause rapid convergence, it is difficult to identify individual iterates in a plot.

Instead, a selection of parameters is used where the configuration of Fig. 4.1 still holds

numerically and the resulting interleaving nature is more apparent.

4.2 Double Intersection Case

In contrast to the iterates of Siegel (they consistently intersect once with u0, resulting

in interleaving properties throughout), here it is also possible to find selections of a,

γ and B where u and u2 intersect twice with u0. In this case, there exist exactly two

points b01 and b02 in (a, 1) such that u(b01) = u(b02) = u0 with





u > u0 , r ∈ [a, b01)

u < u0 , r ∈ (b01, b02)

u > u0 , r ∈ (b02, 1]

(4.55)
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Figure 4.3: Numerical approximation of un vs. r (n = 0, . . . , 3), showing interleaving

properties. Here, a = 0.1, γ = π
10

and B = 3. Iterates are drawn as {solid line, cross,

circle, solid curve}
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Figure 4.4: Numerical approximation of sin ψn vs. r (n = 0, . . . , 3), showing interleav-

ing properties. Iterates are drawn as {solid line, cross, circle, solid curve} and the

parameters are identical to Fig. 4.3.
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Figure 4.5: Configuration considered for double intersection case. u and u2 must be

arranged as noted with respect to u0. The orientation between u and u2 is not impor-

tant.

As well, there exist exactly two points c01 and c02 in (a, 1) such that u2(c01) = u2(c02) =

u0 and 



u2 > u0 , r ∈ [a, c01)

u2 < u0 , r ∈ (c01, c02)

u2 > u0 , r ∈ (c02, 1]

(4.56)

Fig. 4.5 demonstrates these configurations. The effect of (4.55) and (4.56) on subse-

quent iterates is far more varied and less understood. As before, we begin by examining

the conditions necessary for (4.55) and (4.56) to occur.

4.2.1 Double Intersection of u with u0

To show the arrangement in (4.55) is indeed possible, we look for conditions in which

u(a) > u0. (4.57)
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(4.55) will then be shown as a consequence of (4.57). As before, we need to compare

u(a) with u1(a) and we first consider the conditions required for u1(a) > u0. Using

(4.4),

u0 − u1(a) =
1

1− a2

∫ 1

a

(1− s2)
sin ψ1√

1− sin2 ψ1

ds,

the integrand can now be bounded from above. For a ≤ r ≤ √
a, where sin ψ1√

1−sin2 ψ1

≤ 0,

note that

sin ψ1√
1− sin2 ψ1

≤ sin ψ1 =
cos γ

1− a

(
r − a

r

)
. (4.58)

On
√

a ≤ r ≤ 1, sin ψ1 is increasing, and for γ 6= 0:

sin ψ1√
1− sin2 ψ1

≤ sin ψ1√
1− sin2 ψ1(1)

=
sin ψ1√

1− cos2 γ
=

sin ψ1

sin γ
. (4.59)

Substituting these bounds into (4.4) gives

u0 − u1(a) <
1

1− a2

[∫ √
a

a

(1− s2)
cos γ

1− a

(
s− a

s

)
ds

+

∫ 1

√
a

(1− s2)
cos γ

(1− a) sin γ

(
s− a

s

)
ds

]
(4.60)

=
1

1− a2

[
a cos γ(a3 − 2a2 − a + 2 + 2 log a)

4(1− a)

+
cos γ(1− a2 + 2a log a)

4 sin γ(1− a)

]
(4.61)

and since log a < (a− 1)− 1
2
(a− 1)2 + 1

3
(a− 1)3 on (0, 1),

u0 − u1(a) <
cos γ

4(1− a)(1− a2)

[
−5

3
a(1− a)3 +

1

3 sin γ
(3− 2a)(1− a)3

]
(4.62)

=
cos γ(1− a)

12(1 + a)

[
3− 2a

sin γ
− 5a

]
(4.63)

To ensure u1(a) > u0, the term in square brackets must be nonpositive:

3− 2a

sin γ
− 5a ≤ 0 (4.64)

=⇒ a ≥ 3

5 sin γ + 2
(4.65)
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Figure 4.6: Regions of the parameter space (a, γ) where u1(a) has been shown to lie

above and below u0. A numerical approximation of the actual boundary is also included.

and physically, a < 1 which restricts γ to

γ > arcsin

(
1

5

)
.
= 0.2. (4.66)

We now have u1(a) > u0 for γ > arcsin
(

1
5

)
and a ≥ 3

5 sin γ+2
.

Fig. 4.6 illustrates the regions of the parameter space (a, γ) where u1(a) has been

shown in this chapter to lie below and above u0. As well, Fig. 4.7 plots (u0 − u1(a))

over the parameter space using the same numerical integration technique employed for

the iterative procedure. The zero contour of this graph has also been superimposed

onto Fig. 4.6, showing the approximate boundary curve between regions. Although

existence of the two regions was demonstrated above, it may be possible to enlarge

these sets by improving the bounds on (4.4). This provides an opportunity for further

investigation.

Similar to the previous section, we are now able to find B so that u(a) is forced to

lie above u0.
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Figure 4.7: Numerical plot of (u0 − u1(a)) over the parameter space (a, γ).

Theorem 4.2.1 For a given γ ∈ (
arcsin

(
1
5

)
, π

2

)
, select a ≥ 3

5 sin γ+2
and

B ≤ cos γ(1− a)2

6π

(
5a− 3− 2a

sin γ

)
.

Under these conditions, there exist exactly two points b01, b02 ∈ (a, 1) such that u(b01) =

u(b02) = u0 with 



u > u0 , r ∈ [a, b01)

u < u0 , r ∈ (b01, b02)

u > u0 , r ∈ (b02, 1]

Proof. Since

B ≤ cos γ(1− a)2

6π

(
5a− 3− 2a

sin γ

)
< 1 (4.67)

(see the Appendix, Theorem A.0.12), u1 is again defined according to Theorem 3.1.1.

An analagous proof to Theorem 4.1.1 yields

u0 − u(a) ≤ (u0 − u1(a)) + |u1(a)− u(a)| (4.68)

<
cos γ(1− a)

12(1 + a)

(
3− 2a

sin γ
− 5a

)
+ C(γ,m)B

π

2(1− a2)
(4.69)
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<
cos γ(1− a)

12(1 + a)

(
3− 2a

sin γ
− 5a

)
+ B

π

2(1− a2)
(4.70)

and inserting the condition on B produces

u(a) > u0. (4.71)

Finally, the volume condition ensures that u and u0 intersect, and the convexity of u,

along with u(a) < u(1) and (4.71) implies there exist exactly two intersection points.

The configuration of (4.55) follows. ¨

4.2.2 Double Intersection of u2 with u0

We now aim to find conditions so that (4.56) exists. Unlike the previous section, we are

unable to prove that sin ψ2 < r cos γ on (a, 1). Numerical experiments, however, seem

to validate this bound for positive iterates. It is thus assumed that sin ψ2 < r cos γ for

the following theorem.

Theorem 4.2.2 For a given γ ∈ (arcsin
(

1
5

)
, π

2
), select a ≥ 3

5 sin γ+2
and

B ≤ cos γ(1− a)2

12π

(
5a− 3− 2a

sin γ

)
.

Furthermore, assume sin ψ2 < r cos γ on (a, 1). Here, there exist exactly two points

c01, c02 ∈ (a, 1) such that u2(c01) = u2(c02) = u0 and




u2 > u0 , r ∈ [a, c01)

u2 < u0 , r ∈ (c01, c02)

u2 > u0 , r ∈ (c02, 1]

Proof. We use a similar proof to Theorem 4.1.3:

u0 − u2(a) ≤ (u0 − u(a)) + |u(a)− u2(a)| (4.72)

<
cos γ(1− a)

12(1 + a)

(
3− 2a

sin γ
− 5a

)

+B
π

2(1− a2)

(
1 + B

π

2(1− a2)

)
(4.73)
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Substituting for B gives

u2(a) > u0. (4.74)

As well, we show that u2(1) > u0:

u0 − u2(1) ≤ (u0 − u1(1)) + |u1(1)− u(1)|+ |u(1)− u2(1)| (4.75)

and since u1(a) < u1(1) (see Appendix, Theorem A.0.13),

u0 − u2(1) < (u0 − u1(a)) + B
π

2(1− a2)
+

(
B

π

2(1− a2)

)2

(4.76)

<
cos γ(1− a)

12(1 + a)

(
3− 2a

sin γ
− 5a

)

+B
π

2(1− a2)

(
1 + B

π

2(1− a2)

)
(4.77)

Considering the restriction on B, this results in

u2(1) > u0. (4.78)

As before, u2 is monotone decreasing on [a,m2) and montone increasing on (m2, 1]. We

use this fact along with the volume condition, (4.74) and (4.78) to reason there exist

exactly two intersections between the functions, with u0 and u2 positioned as in (4.56).

¨

Using the theorems developed here, the double intersection case given by config-

urations (4.55) and (4.56) does not necessarily apply to all fluid/solid combinations.

However, for those surfaces where γ ∈ (arcsin
(

1
5

)
, π

2
), we may select

R1 =
3

5 sin γ + 2
R2 (4.79)

with R2 satisfying

B = κR2
2 ≤ cos γ(1− a)2

12π

(
5a− 3− 2a

sin γ

)
. (4.80)

and, provided3 that sin ψ2 < r cos γ on (a, 1), Theorems 4.2.1 and 4.2.2 ensure the

double intersection case takes place.

3The inclination angle is considered in the non–dimensionalized variables.
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Figure 4.8: Configuration of r sin ψ − r sin ψ1.

4.2.3 Resultant Behaviours of Double Intersections

Unlike the single intersection case which led to the iterates being organized as de-

scribed in Theorem 4.1.4, the double intersection case produces a number of possible

configurations. These are outlined below.

Given the arrangement of (4.55), we first examine how u1 might behave with respect

to u by considering the difference function

r sin ψ − r sin ψ1 = B

∫ r

a

s(u− u0) ds (4.81)

and its derivative

(r sin ψ − r sin ψ1)r = Br(u− u0). (4.82)

In addition to (4.81) being zero at r = a and r = 1, there exist extrema at r = b01

and r = b02. Since u(a) > u0, (4.81) must take the form of Fig. 4.8, where there exists
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Figure 4.9: Potential configurations of u with u1, assuming (4.55) holds.

a unique ξ0 ∈ (b01, b02) such that ψ(ξ0) = ψ1(ξ0) with





ψ > ψ1 , r ∈ (a, ξ0)

ψ < ψ1 , r ∈ (ξ0, 1)
(4.83)

When (4.83) is considered in conjunction with the volume condition, three configura-

tions of u with u1 are possible as illustrated in Fig. 4.94. Using a similar analysis to the

previous section, we see that if configuration A or C is attained, subsequent iterates

will intersect only once with u. Specifically, for configuration A,





u2n+1(a) < u(a) < u2n+2(a)

u2n+2(1) < u(1) < u2n+1(1)
(4.84)

or for configuration C, 



u2n+2(a) < u(a) < u2n+1(a)

u2n+1(1) < u(1) < u2n+2(1)
(4.85)

4Before progressing further, it should be noted that we are unable to claim sin ψn < r cos γ for n ≥ 2

without providing additional restrictions. Hence, Theorem 3.1.1 cannot be automatically applied to

{un} in the double intersection case, and existence of the iterates is not proven. However, numerical

experiments suggest the iterates do exist in this scenario and we shall assume {un} exhibits the

properties of Theorem 3.1.1.
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Figure 4.10: Potential configurations of u with u2, originating from Fig. 4.9, B.

for n ≥ 0. In configuration B, there are two points of intersection (which can be defined

as b11 and b12 ) and we use

r sin ψ − r sin ψ2 = B

∫ r

a

s(u− u1) ds (4.86)

to show there exists a unique ξ1 ∈ (b11, b12) such that ψ(ξ1) = ψ2(ξ1) with




ψ < ψ2 , r ∈ (a, ξ1)

ψ > ψ2 , r ∈ (ξ1, 1)
(4.87)

At the next iterate level, configuration B thus produces three potential arrangements

of u2 with u (Fig. 4.10). A similar analysis as performed on A, B and C can be applied

here.

Considering the arrangement of (4.56) separately, we can similarly comment on the

behaviour of u3 versus u1. Again, the difference function

r sin ψ1 − r sin ψ3 = B

∫ r

a

s(u0 − u2) ds (4.88)

implies there exists a unique λ0 ∈ (c01, c02) such that ψ1(λ0) = ψ3(λ0) with




ψ1 < ψ3 , r ∈ (a, λ0)

ψ1 > ψ3 , r ∈ (λ0, 1)
(4.89)
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Figure 4.11: Potential configurations of u1 with u3, assuming (4.56) holds.

and three arrangements of u1 with u3 are possible, as in Fig. 4.11. Configuration D

leads to the predictable behaviour




{u2n+2(a)} and {u2n+1(1)} are decreasing for n ≥ 0.

{u2n+1(a)} and {u2n+2(1)} are increasing for n ≥ 0.
(4.90)

and likewise configuration F produces:




{u2n+1(a)} and {u2n+2(1)} are decreasing for n ≥ 0.

{u2n+2(a)} and {u2n+1(1)} are increasing for n ≥ 0.
(4.91)

Configuration E will again split into three possible arrangements between u2 and

u4. As one might expect, the configurations of Fig. 4.9 could concievably occur with

any arrangement from Fig. 4.11, leading to a far more complex behaviour than in the

single intersection case. Nevertheless, some pairings will again lead to interleaving

iterates. This occurs, for example, when configuration A is paired with configuration

D. Indeed, when properties (4.84) and (4.90) are matched, the interleaving properties

are recovered for subsequent iterates. The same can be said of pairing configuration

C with configuration F. However, if these couples were cross–matched (i.e. A–F or C–

D), the combined properties would result in diverging iterates, yet this has never been
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observed during any numerical experiment involving positive iterates. Further research

is needed to fully understand the properties of {un} over the complete parameter space.



Chapter 5

Numerical Method

5.1 Introduction

In this chapter, we propose a numerical method to estimate the iterates {un} generated

by the procedure introduced in Chapter 3:

sin ψn+1(r) =
B

r

∫ r

a

sun(s) ds− a

r
cos γ (5.1)

un+1(r) = un+1(a) +

∫ r

a

sin ψn+1(s)√
1− sin2 ψn+1(s)

ds (5.2)

with

un+1(a) =
2 cos γ

B(1− a)
− 1

1− a2

∫ 1

a

(1− s2)
sin ψn+1(s)√

1− sin2 ψn+1(s)
ds (5.3)

and u0 = 2 cos γ
B(1−a)

. Equations (5.1)–(5.3) suggest an iterative scheme using successive

applications of numerical integration. For instance, we envisage subdividing [a, 1] using

N grid points labelled xN
j , 1 ≤ j ≤ N (with xN

1 = a and xN
N = 1). Starting with

sin ψ1(r) =
cos γ

1− a

(
r − a

r

)
(5.4)

(this is the highest iterate explicitly known), u1(a) could be computed using an appro-

priate integration technique. Following this, the integral in (5.2) would be evaluated

79
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at each r = xN
j , thus estimating u1 over all grid points. These values could then be

used in (5.1) to approximate sin ψ2 on xN
j , and the process continues until the desired

number of iterates are calculated.

Below, we suggest numerical techniques to evaluate the integrals in (5.1)–(5.3) which

will include the possibility that γ = 0. Note that our investigation will be mostly

concerned with

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ, m) + aπ cos γ
(5.5)

so that the iterates are guaranteed to be defined and continuous on [a, 1]. Section 5.4,

however, considers some numerical experiments where B is extended beyond restriction

(5.5).

5.2 IMT Method

As an additional consequence of (5.5), recall that the inclination angle of un will satisfy

−a cos γ

s
< sin ψn < s cos γ, for s ∈ (a, 1) (5.6)

with sin ψn(a) = − cos γ and sin ψn(1) = cos γ. Consequently, the integrands of (5.2)

and (5.3) are continuous on [a, 1] for γ 6= 0. However for γ = 0, we use that

− a√
s2 − a2

<
sin ψn(s)√

1− sin2 ψn(s)
<

s√
1− s2

, for s ∈ (a, 1) (5.7)

to claim:

• the integrand in (5.2) exhibits singularities of the form (s − a)α and (1 − s)β,

where α = β = −1
2
.

• the integrand in (5.3) possesses a singularity of the form (s− a)α (the additional

factor of (1− s2) bounds the integrand at s = 1).
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In either case, both (5.2) and (5.3) are integrable and we employ a numerical integration

technique known as the IMT method1 [10] which is designed to handle integrands with

potential end point singularities. An outline of the procedure follows. Consider the

integral

I(a, b) :=

∫ b

a

h(x) dx (5.8)

where −∞ < a < b < ∞, and let

η(t) = exp

(
− c

1− t2

)
(5.9)

with c > 0. Introduce the change of variables





φ(t) = a + b−a
λ

∫ t

−1
η(u) du, for t ∈ [−1, 1]

λ =
∫ 1

−1
η(u) du

(5.10)

so that (5.8) can be rewritten as

I(a, b) =

∫ 1

−1

h(φ(t))φ′(t) dt. (5.11)

Assume that h is infinitely differentiable on (a, b) and is either:

1. continuous at the end points of [a, b]; or

2. exhibits an algebraic singularity of the form (x − a)µ or (x − b)ν where µ and ν

are constants greater than −1.

Given that

φ′(t) =
b− a

λ
exp

(
− c

1− t2

)
, (5.12)

the integrand of (5.11), along with all its derivatives, will vanish at the end points of

integration ([10] and [3]). The trapezoidal rule can thus be used to approximate (5.11).

1This is also referred to as the IMT-rule.
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Specifically, if we divide the interval [−1, 1] using N equally spaced grid points, (5.11)

is evaluated as 



I(a, b)
.
= 2

N−1

∑N−1
k=2 wN

k h(xN
k )

xN
k = φ

(
2(k−1)
N−1

− 1
)

, wN
k = φ′

(
2(k−1)
N−1

− 1
) (5.13)

This algorithm has the advantage of using a single transformation to deal with end

point singularities of the form contained in (5.2) and (5.3). Testing by Iri et al. [10]

and de Doncker and Piessens [3] also demonstrates this procedure to be of “remarkable

reliability, efficiency and accuracy” [3]. As a result, the IMT method should lend itself

well to computing the integrals within (5.2) and (5.3).

To accomplish this, define fn(xN
j ) and gn(xN

j ), n ≥ 1 as the numerical approxima-

tions of sin ψn and un respectively (in the case of n = 1, f1(x
N
j ) = sin ψ1(x

N
j )). If

fn(xN
j ) is known, gn(xN

1 )
.
= un(a) can be computed according to (5.13):

gn(xN
1 ) =

2

N − 1

N−1∑

k=2

wN
k

(
1− [xN

k ]2
)
f̃n(xN

k ) (5.14)

where

f̃n(xN
k ) =

fn(xN
k )√

1− [fn(xN
k )]2

. (5.15)

We are then able to calculate gn(xN
j ) using the appropriate partial sum of (5.13):

gn(xN
j ) (5.16)

= gn(xN
1 ) (5.17)

+





0, j = 1

1
N−1

wN
2 f(xN

2 ), j = 2

1
N−1

[wN
2 f(xN

2 ) +
∑j

k=3

(
wN

k−1f(xN
k−1) + wN

k f(xN
k )

)
], 3 ≤ j ≤ N − 1

1
N−1

[wN
2 f(xN

2 ) +
∑N−1

k=3

(
wN

k−1f(xN
k−1) + wN

k f(xN
k )

)

+wN
N−1f(xN

N−1)], j = N

(5.18)

The constant c in (5.9) was selected to be 0.5 for all computations. One criticism [3] of

the IMT method emphasizes that some abscissae xN
j are clustered very close to the end
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points of integration, and care must be taken to avoid interval lengths (xN
j −xN

j−1) being

rounded to zero. Smaller values of c lessen this clustering but simultaeously increase

the error associated with the method. Using a precision of 20 digits2, c = 0.5 was found

experimentally to be the largest value so that rounding problems did not occur.

5.3 Undershot Trapezoidal Rule

The remaining integral found in (5.1) presents a different challenge for numerical ap-

proximation, as typified in the following example. With gn(xN
j ) now known, fn+1(x

N
j )

must be computed for 1 ≤ j ≤ N . Suppose that for values xN
l sufficiently close to 1, the

numerical algorithm employed overshoots the actual value of the integral. Depending

on the severity of the overestsimation, this could result in

fn+1(x
N
l ) > 1 (5.19)

and gn+1(x
N
j ) would become undefined. Indeed, by employing the standard trapezoidal

rule, this was found to occur for small γ, where fn+1(x
N
N)

.
= 1 and there is an increased

sensitivity to any overshooting. To avoid such problems, we present an altered version

of the trapezoidal rule which should consistently undershoot the integral in (5.1). This

will require that the integrand sun(s) is convex on [a, 1] or, more precisely, that the set

of approximate values xN
j ·gn(xN

j ) will lie along a convex curve. This has yet to be shown

and is only conjectured to be true. Still, preliminary tests cannot find an occurance of

this method overshooting 1. We begin by dividing the abscissae xN
j , 2 ≤ j ≤ N , into

two groups and label them as

XA = {xN
j : 2 ≤ j ≤

⌈
N

2

⌉
} (5.20)

2Increasing the precision greatly affected the execution time. For an evaluation of six iterates,

it was convenient to keep the calculation under one minute. All computations were performed on a

Pentium 4 2.00 GHz processor.
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Figure 5.1: Proposed configuration of undershot trapezoid for xN
j ∈ XA.

Figure 5.2: Proposed configuration of undershot trapezoid for xN
j ∈ XB.

XB = {xN
j :

⌈
N

2

⌉
+ 1 ≤ j ≤ N} (5.21)

Trapezoids are now generated as follows: for xN
j ∈ XA, we approximate slope3 of

the integrand at xN
j and extend the computed tangent backward from xN

j to xN
j−1 as

Fig. 5.1 suggests. Provided that the associated errors are not too severe, we expect

the trapezoid thus formed on the interval [xN
j−1, x

N
j ] to lie below the approximated

integrand (displayed as a dotted line in the figure). For xN
j ∈ XB, similar trapezoids

3The slope of sun(s) is given as s sin ψn(s)√
1−sin2 ψn(s)

+ un(s); thus, at xN
j it is approximated as

xN
j · f̃n(xN

j ) + gn(xN
j ).
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can be generated on [xN
j−1, x

N
j ] by extending the computed tangent at xN

j−1 forward to

xN
j (Fig. 5.2). For each r = xN

j , the integral in (5.1) should be underestimated by

summing the areas of the trapezoids to this point. Hence,

gn(xN
j ) =





− cos γ, j = 1

B
xN

j

∑j
k=2

xN
k −xN

k−1

2

(
ḡn(xN

k−1) + xN
k gn(xN

k )
)− a cos γ

xN
j

, 2 ≤ j ≤ ⌈
N
2

⌉

B
xN

j

(∑dN
2 e

k+2

xN
k −xN

k−1

2

(
ḡn(xN

k−1) + xN
k gn(xN

k )
)

+
∑j

k=dN
2 e+1

xN
k −xN

k−1

2

(
xN

k−1gn(xN
k−1) + ĝn(xN

k )
) )

− a cos γ
xN

j
,

⌈
N
2

⌉
+ 1 ≤ j ≤ N

where

ḡn(xN
k−1) = xN

k gn(xN
k )−

(
xN

k f̃n(xN
k ) + gn(xN

k )
)

(xN
k − xN

k−1) (5.22)

ĝn(xN
k ) = xN

k−1gn(xN
k−1) +

(
xN

k−1f̃n(xN
k−1) + gn(xN

k−1)
)

(xN
k − xN

k−1) (5.23)

Also, by defining the trapezoids differently in XA and XB, we avoid computing the

slope of the integrand at the end points which will be undefined for γ = 0.

5.4 Preliminary Results

The above scheme was implemented using Maple, with a number of examples included

below. Setting N = 151, each figure includes the first four iterates labelled as in

Fig. 3.1. We first note Figs. 3.1 and 3.2 in Chapter 3 which are a result of this scheme

under condition (5.5). Here, we have strong convergence such that the third and fourth

iterates of {un} differ at most by 8.8× 10−5. Figs. 5.3 and 5.4, as well as Figs. 5.5 and

5.6 provide further examples of this convergent behaviour using two extreme cases of

contact angle: γ = 0 and γ = π
2.1

. For γ = 0, the difference between third and fourth

iterates is 2.3× 10−4, while for γ = π
2.1

it is 2.7× 10−6.

It also appears promising that the method can be applied beyond restriction (5.5).

In Figs. 5.7 and 5.8, all parameters are held the same as in Figs. 5.3 and 5.4 except B is
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increased to 6, far exceeding condition (5.5). Figs. 5.9 and 5.10 also have B increased

to 6 from the corresponding example. In both cases, the iterates converge, albeit more

slowly, with the difference between third and fourth iterates of {un} recorded as 6.9×
10−2 and 1.2× 10−3 respectively. In fact, we are presently unable to observe diverging

iterates for un > 0, but much testing is needed before the method can be deemed

reliable. For instance, Iri et al. [10] provides error analysis for a single application of

the IMT method, yet it is unknown how this error propagates through an indefinite

number of iterations of this procedure. The same could also be said for the error

associated with the undershot trapezoidal rule.

As an addendum, all figures depicting annular capillary surfaces use the sixth iterate

generated by the numerical method. At this stage, subsequent iterates are visually

indiscernable from one another.
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14.1

14.2

14.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r

Figure 5.3: Numerical approximation of un vs. r for n = 0, . . . , 3 with a = 0.2, γ = 0,

B = 0.18. Iterates are drawn as {solid line, cross, circle, solid curve}.
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–1
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0
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1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r

Figure 5.4: Numerical approximation of sin ψn vs. r for n = 0, . . . , 3 with a = 0.2,

γ = 0, B = 0.18. Iterates are drawn as {solid line, cross, circle, solid curve}.
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Figure 5.5: Numerical approximation of un vs. r for n = 0, . . . , 3 with a = 0.2, γ = π
2.1

,

B = 0.28.
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Figure 5.6: Numerical approximation of sin ψn vs. r for n = 0, . . . , 3 with a = 0.2,

γ = π
2.1

, B = 0.28.
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Figure 5.7: Numerical approximation of un vs. r for n = 0, . . . , 3 with a = 0.2, γ = 0,

B = 6.
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Figure 5.8: Numerical approximation of sin ψn vs. r for n = 0, . . . , 3 with a = 0.2,

γ = 0, B = 6.
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Figure 5.9: Numerical approximation of un vs. r for n = 0, . . . , 3 with a = 0.2, γ = π
2.1

,

B = 6.
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Figure 5.10: Numerical approximation of sin ψn vs. r for n = 0, . . . , 3 with a = 0.2,

γ = π
2.1

, B = 6.
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5.5 Maple Code
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Chapter 6

Future Work

As mentioned, capillarity research has only begun to focus on annular surfaces, and

numerous (seemingly?) simple geometries have yet to be studied. Indeed, this paper

touches on many subjects where extensions are clearly possible. A sample of future

work is provided.

Extension 6.0.1 (Continuation of Equal Contact Angle Case) Several opportu-

nities exist for continued research of the annular surfaces studied here (i.e. equal contact

angles). Some were mentioned throughout the text and are summarized below.

1. In Chapter 2, attempts were made to determine the behaviour of u as a → 1 for

the case γ = 0. However, no conclusions on the asymptotics have been reached.

Determining this behaviour would help to complete the qualitative properites of

u.

2. Chapter 4 involved determining selections of a, γ and B where the iterates {un}
exhibited single or double intersection behaviour. The current bounds still appear

overly restrictive and possibly could be improved.

3. Further investigation is needed to fully understand the double intersection be-

haviour noted in Chapter 4.

95
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Figure 6.1: Offset annular region Ω with proposed positions of boundary extrema.

4. A formal analysis of the numerical method proposed in Chapter 5 is needed.

Extension 6.0.2 (Generalization of Contact Angles) It is expected that many

of the results derived here could be generalized to solutions of the boundary value

problem (1.12), where the contact angles γ1 and γ2 are not assumed to be equal. These

generalizations may include:

1. determining conditions under which the iterative procedure of Chapter 3 (modi-

fied to accommodate arbitrary contact angles) converges to solutions of (1.12).

2. verifying that the numerical method of Chapter 5 (appropriately modified) can

be applied to this case.

3. investigating if the minimum position r = m maintains its monotonicity with

respect to a, and whether conditions can be found so that m ∈ (
1+a
2

, 1
)
.
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Figure 6.2: Elliptic annular region Ω with proposed positions of boundary extrema.

4. examining the conditions necessary for u(a) < u(1); is it possible to have u(a) >

u(1)?

Extension 6.0.3 (Offset Annulus) A more complex geometry is offered by the “an-

nular” domain in which the inner boundary is off-centre from the outer boundary

(Fig. 6.1). Symmetry can no longer be exploited1, and we must return to analyzing

the boundary value problem (1.6). Here, one could start by investigating the postitions

of boundary extrema for the case of equal contact angles. It is conjectured that the

maximum height on the inner and outer boundary will occur at the points M1 and

M2 respectively, where the boundaries are closest and the fluid rise is likely greatest.

Similary, the minimum heights are likely to occur at m1 and m2, where the boundaries

are furthest apart.

Extension 6.0.4 (Elliptic Annulus) In this geometry, the inner and outer bound-

aries of the region are concentric ellipses (Fig. 6.2). Similar to Extension 6.0.3, the

positions of boundary extrema can be considered. Here, symmetry requires there to

1Although a clever choice of coordinates may recover a form of symmetry.
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exist two minimum and two maximum surface heights on each boundary. These ex-

trema are conjectured to occur at the vertices, with the maxima M1 and M2 positioned

at the thinnest portion of the domain and the minima m1 and m2 found at the widest

section.



Appendix A

Additional Theorems

In the following theorems, the variables are defined as they were in the text; specifically,

0 < a < 1, 0 ≤ γ < π
2

and C(γ, m) =

√
1−m2 cos2 γ−sin γ

cos γ
.

Theorem A.0.5 For a ≤ r ≤ 1,

min{r2 − a2, 1− r2} ≤ 2(r2 − a2)(1− r2)

1− a2
.

Proof. On [a, 1], the functions r2 − a2 and 1 − r2 intersect once at r =
√

1+a2

2
.

Consider the following two cases:

1. min{r2 − a2, 1− r2} = r2 − a2. Here, r ≤
√

1+a2

2
and thus

2(1− r2)

1− a2
≥ 1 (A.1)

=⇒ 2(r2 − a2)(1− r2)

1− a2
≥ r2 − a2 (A.2)

= min{r2 − a2, 1− r2} (A.3)

2. min{r2 − a2, 1− r2} = 1− r2. Here, r ≥
√

1+a2

2
. Consequently,

2(r2 − a2)

1− a2
≥ 1 (A.4)

=⇒ 2(r2 − a2)(1− r2)

1− a2
≥ 1− r2 (A.5)

= min{r2 − a2, 1− r2} ¨ (A.6)
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Theorem A.0.6 For a ≤ r ≤ 1,

min

{
1− a2

r2
, 1− r2

}
≥

(
1− a2

r2

)
(1− r2).

Proof. This is straightforward when one considers that

0 ≤ 1− a2

r2
< 1 and 0 ≤ 1− r2 < 1, for a ≤ r ≤ 1. (A.7)

Hence, the product of both terms will never be greater than each term taken separately.

¨

Theorem A.0.7 Let f ∈ C1[a, 1] and suppose there exists a c ∈ (a, 1) such that f(c) =

0. Then

|f(r)| ≤
∫ 1

a

|f ′(s)| ds, for a ≤ r ≤ 1.

Proof. We may write

|f(r)| = |f(r)− f(c)| (A.8)

=

∣∣∣∣
∫ r

c

f ′(s) ds

∣∣∣∣ (A.9)

≤
∫ r

c

|f ′(s)| ds (A.10)

≤
∫ 1

a

|f ′(s)| ds ¨ (A.11)

Theorem A.0.8

1 <

∫ 1

a

r2

√
r2 − a2

√
1− r2

dr <
π

2

Proof. Introduce the change of variables t =
√

r2−1
a2−1

so that

∫ 1

a

r2

√
r2 − a2

√
1− r2

dr =

∫ 1

0

√
1− (1− a2)t2 (1− a2)t√

(1− a2)(1− t2)
√

(1− a2)t2
dt (A.12)

=

∫ 1

0

√
1− (1− a2)t2√

1− t2
dt (A.13)
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(A.13) is the complete elliptic integral of the second kind with modulus k =
√

1− a2.

For 0 ≤ t < 1,

√
1− t2 <

√
1− (1− a2)t2 < 1 (A.14)

=⇒ 1 <

√
1−(1−a2)t2√

1−t2
<

1√
1− t2

(A.15)

Integrating (A.15) from 0 to 1 and using (A.13) gives

1 <

∫ 1

a

r2

√
r2 − a2

√
1− r2

dr <
π

2
. ¨ (A.16)

Theorem A.0.9 The condition on B in Theorem 3.2.1,

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ,m) + aπ cos γ
,

implies that

B <
2(1− a2)

π
.

Proof. Since 2(1 + a)(1− a)2 C(γ, m) > 0, clearly

aπ cos γ

2(1 + a)(1− a)2 C(γ, m) + aπ cos γ
< 1. (A.17)

Multiplying both sides by 2(1−a2)
π

produces the desired result. ¨

Theorem A.0.10 The condition on B in Theorem 3.2.1,

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ,m) + aπ cos γ
,

implies that

B <
2

(1− a)
(

1
3

√
1− a2 + a log

(
1 +

√
1− a2

)− a log a
)

which simlutaneously satisfies the hypothesis of Theorem 3.1.1 (5).

Proof. From above, we have

B <
2a(1− a2) cos γ

2(1 + a)(1− a)2 C(γ,m) + aπ cos γ
<

2(1− a2)

π
< 1 (A.18)
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For 0 < a < 1, use the following bounds:

1

3

√
1− a2 <

1

3
; a log

(
1 +

√
1− a2

)
< log 2 < 1 ; a log a ≥ −1

e
> −1

2
(A.19)

to arrive at

2

(1− a)
(

1
3

√
1− a2 + a log

(
1 +

√
1− a2

)− a log a
) >

12

11
> B (A.20)

as required by Theorem 3.1.1 (5). ¨

Theorem A.0.11 The condition on B in Theorem 4.1.1,

B ≤ 2(1− a2) cos γ

π

(
1− a

12(1 + a)
− (
√

a− a)

)
,

implies that

B <
2

(1− a)
(

1
3

√
1− a2 + a log

(
1 +

√
1− a2

)− a log a
)

which simlutaneously satisfies the requirement of Theorem 3.1.1 (5).

Proof. This bound can be written as

B ≤
(

2

π

)
(1− a2)(cos γ)

(
1− a

12(1 + a)
− (
√

a− a)

)
. (A.21)

The first three terms are clearly less than 1. For the fourth:

1− a

12(1 + a)
< 1 (A.22)

=⇒ 1− a

12(1 + a)
− (
√

a− a) < 1, for 0 < a < 1 (A.23)

Thus, B < 1 and we can arrive at the same result as (A.20). ¨

Theorem A.0.12 The condition on B in Theorem 4.2.1,

B ≤ cos γ(1− a)2

6π

(
5a− 3− 2a

sin γ

)
,

implies that

B <
2

(1− a)
(

1
3

√
1− a2 + a log

(
1 +

√
1− a2

)− a log a
)

which simlutaneously satisfies the requirement of Theorem 3.1.1 (5).
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Figure A.1: Lower bound (dotted line) of sin ψ1.

Proof. We rewrite the bound as

(cos γ)(1− a)2

(
5a

6π
− 3− 2a

6π sin γ

)
(A.24)

The first two terms are less than 1. In the third term:

5a

6π
< 1 (A.25)

=⇒ 5a

6π
− 3− 2a

6π sin γ
< 1 (A.26)

Again, B < 1 and (A.20) follows. ¨

Theorem A.0.13 Consider the sequence of iterates {un} generated by (3.25) and

(3.26). For the iterate u1, we have u1(a) < u1(1).

Proof. Recall that the inclination angle of u1 is given by

sin ψ1 =
cos γ

1− a

(
r − a

r

)
. (A.27)
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Since sin ψ1 is concave, it can be bounded from below by the linear function that

connects its endpoints (see Fig. A.1):

sin ψ1 >
cos γ

1− a
(2r − 1− a), for r ∈ (a, 1). (A.28)

This can be used to claim

u1(1)− u1(a) =

∫ 1

a

sin ψ1√
1− sin2 ψ1

ds (A.29)

>

∫ 1

a

2s− 1− a√
(1−a)2

cos2 γ
− (2s− 1− a)2

ds (A.30)

= 0 ¨ (A.31)
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