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Abstract 

S. Mukono                         PhD 

UNISA        February 2015 

The study constituted an investigation for concept images and mathematical reasoning of 

Grade 11 learners on the concepts of reflection, translation and stretch of functions. The 

aim was to gain awareness of any conceptions that learners have about these 

transformations. The researcherôs experience in high school and university mathematics 

teaching had laid a basis to establish the research problem.  

The subjects of the study were 96 Grade 11 mathematics learners from three conveniently 

sampled South African high schools. The non-return of consent forms by some learners 

and absenteeism during the days of writing by other learners, resulted in the subsequent 

reduction of the amount of respondents below the anticipated 100. The preliminary 

investigation, which had 30 learners, was successful in validating instruments and 

projecting how the main results would be like.  A mixed method exploratory design was 

employed for the study, for it was to give in-depth results after combining two data 

collection methods; a written diagnostic test and recorded follow-up interviews. All the 96 

participants wrote the test and 14 of them were interviewed.  

It was found that learnersô reasoning was more based on their concept images than on 

formal definitions. The most interesting were verbal concept images, some of which were 

very accurate, others incomplete and yet others exhibited misconceptions. There were a lot 

of inconsistencies in the studentsô constructed definitions and incompetency in using 

graphical and symbolical representations of reflection, translation and stretch of functions. 

For example, some learners were misled by negative sign on a horizontal translation to the 

right to think that it was a horizontal translation to the left. Others mistook stretch for 

enlargement both verbally and contextually.  

The research recommends that teachers should use more than one method when teaching 

transformations of functions, e.g., practically-oriented and process-oriented instructions, 

with practical examples, to improve the images of the concepts that learners develop. 
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Within their methodologies, teachers should make concerted effort to be aware of the 

diversity of ways in which their learners think of the actions and processes of reflecting, 

translating and stretching, the terms they use to describe them, and how they compare the 

original objects to images after transformations. They should build upon incomplete 

definitions, misconceptions and other inconsistencies to facilitate development of accurate 

conceptions more schematically connected to the empirical world. There is also a need for 

accurate assessments of successes and shortcomings that learners display in the quest to 

define and master mathematical concepts but taking cognisance of their limitations of 

language proficiency in English, which is not their first language. Teachers need to draw a 

clear line between the properties of stretch and enlargement, and emphasize the need to 

include the invariant line in the definition of stretch. To remove confusion around the effect 

of ñïò sign, more practice and spiral testing of this knowledge could be done to constantly 

remind learners of that property.  Lastly, teachers should find out how to use smartphones, 

i-phones, i-pods, tablets and other technological devices for teaching and learning, and 

utilize them fully to their own and the learnersô advantage in learning these and other 

concepts and skills.  
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CHAPTER ONE 

Introduction 
 

This chapter introduces the research study and the context in which it is engendered. The 

context of the study is described in (1.1), the background is outlined in (1.2 and the central 

problem of the study is described in (1.3)). The purpose of the study, research questions, 

aims, significance and assumptions follow in sections (1.4), (1.5), (1.6), (1.7) and (1.8) 

respectively. An analysis of the key concepts is presented in (1.9) and the chapter concludes 

laying out the structure of the thesis in (1.10). 

 

1.1 THE CONTEXT OF THE STUDY 

 

The new political dispensation in South Africa, after the first democratic elections in 1994, 

and the move from the defeated Apartheid regime to an inclusive constitutional democracy, 

brought in several changes of the curriculum for learners at primary and secondary school 

levels. The most recent of these changes was the introduction, in January 2012, of the 

Curriculum Assessment Policy Statement (CAPS), an amendment to the National 

Curriculum Statement (NCS), which had originally come into effect in 2008 (Department 

of Education (DoE), 2002; 2008). The new policy was intended for the curriculum to be 

more accessible to teachers and it replaced learning outcomes and assessment standards 

with topics, aims, objectives and skills (DoE, 2012b) among other things. In mathematics, 

the topic of linear programming was completely removed from the syllabus and sections 

of analytical geometry and Euclidian geometry previously examined in the third and 

elective of the three examination papers was merged into the two compulsory examination 

papers. This resulted in the topic of circle geometry and some sections of analytical 

geometry, which were formerly elective, becoming compulsorily. The topics of functions 
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and transformation of functions remained unchanged, both in content and organization. 

These two topics are dealt with separately in the Intermediate and Senior phases of the 

General Education and Training (GET)1 band. In the Intermediate phase, the topic of 

functions covers input and output values in function (or flow) diagrams and the topic of 

transformations covers reflection, translation, rotation, enlargement and reduction, while 

salient concepts like line symmetry and tessellations are highlighted. These concepts are 

dealt with in the contexts of triangles and quadrilaterals. During the Senior phase, the study 

of functions involves input and output values in the function diagram, as well as rules for 

patterns and their equivalent forms such as verbal, tables, formulae, number sentences, 

equations and Cartesian plane graphs. The last two equivalent forms are introduced in 

Grades 8 and 9 respectively. The topic of transformations covers line symmetry of 

geometrical shapes, reflection, translation, rotation, enlargement and reduction. Learners 

are required to perform transformations on squared papers. 

During the Further Education and Training (FET)2 band, functions are studied in greater 

depth and their types and characteristics are highlighted. Transformations no longer make 

up a separate topic but are studied as they manifest as transformations of functions. The 

concepts are the same as those dealt with in the previous grades, except for the introduction 

of stretch/compression. The objects that result when transformations of functions are 

mapped differ in the higher grades. It is necessary that learners understand the concept of 

transformation of two-dimensional shapes first before they can apply these transformations 

to functions. In the old NCS syllabus, learners covered the three isometric transformations 

(reflection, translation and rotation), and enlargement in triangles during the GET Senior 

and FET phases, and transformation of functions during the FET phase. The current NCSï

CAPS syllabus for the GET Senior phase still covers transformations such as reflection, 

translation, rotation, enlargement and reduction in two-dimensional shapes. These 

transformations are more comprehensive and prepare learners more thoroughly for 

                                                             

1 The GET band covers the first 10 grades of school education and consists of the Foundation phase 

(Grades R to 3), the Intermediate phase (Grades 4 to 6), and the senior phase (Grades 7 to 9). 

2 The FET band is the second level of education. It consists of Grades 10, 11 and 12. 
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functions during the FET phase. It no longer has transformations as a separate topic for the 

FET phase. However, a shortcoming of the current NCSïCAPS syllabus is that it does not 

cover the concept of stretch before it is applied to functions. Teachers need to introduce 

stretch to learners before they can move on to deal with mapping of functions. Not all 

teachers do so competently.  

1.1.1  GET - NCS ς CAPS Syllabi Relative Objectives 
 

During the GET Senior phase, learners are introduced to transformations of plane shapes. 

This topic lays the foundation for transformations of functions because, logically, one 

cannot transform something without understanding what transformation is. The NCSï

CAPS syllabus objectives for transformations for the 3 grades of the GET Senior phase, 

are outlined below:   

 

Grade 7  

For a learner to be considered adequately competent, he/she must be able to:  

Å recognize, describe and perform reflection, translations and rotations with 

geometric figures and shapes on squared paper; 

Å identify and draw lines of symmetry in geometric figures; 

Å draw enlargements and reductions of geometric figures on squared paper and 

compare them in terms of shape and size.  

  (DoE, 2012a (NCS-CAPS-Senior), pages 57-8).   

Grade 8  

For a learner to be considered adequately competent, he/she must be able to:  

Å recognize, describe and perform transformations with points on a co-ordinate 

plane, focusing on: 

Á reflecting a point about the x-axis or y-axis; 

Á translating a point within and across quadrants; 
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Å recognize, describe and perform transformations with triangles on a co-ordinate 

plane, focusing on the co-ordinates of the vertices when: 

Á reflecting a triangle about the x-axis or y-axis; 

Á translating a triangle within and across quadrants; 

Á rotating a triangle around the origin; 

Å use proportion to describe the effect of enlargement or reduction on the area and 

perimeter of geometric figures. 

  (DoE, 2012a (NCS-CAPS-Senior), 2012 page 105-6).    

Grade 9  

For a learner to be considered adequately competent, he/she must be able to:  

Å recognize, describe and perform transformations with points, line segments and 

simple geometric figures on a co-ordinate plane, focusing on: 

Á reflection about the x-axis or y-axis; 

Á translation within and across quadrants; 

Á reflection about the line  y = x; 

Å identify what the transformation of a point is, if given the co-ordinates of its 

image; 

Å use proportion to describe the effect of enlargement or reduction on the area and 

perimeter of geometric figures; 

Å investigate the co-ordinates of the vertices of figures that have been enlarged or 

reduced by a given scale factor. 

  (DoE, 2012a (NCS-CAPS-Senior), pages 120-1; 132; 137-8).  

 

 



5 

 

1.1.2  FET - NCS ς CAPS Syllabi Related Objectives 
 

During the FET phase, some aspects of transformation geometry are no longer studied as 

a separate topic, but the ideas or concepts are explicitly applied when mappings functions, 

i.e. in transformations of functions. The topic of transformation of functions is approached 

with verbal descriptions, graphical representations on the Cartesian plane and symbolical 

representations using algebraic formulae or coordinate mapping.3 As mentioned above, a 

learner does not come across the concept of stretch, or the component of dilation and 

compression, in the GET Senior phase before it is applied to functions in the FET phase. 

This is a gap that needs to be bridged by future curriculum developers. 

The NCSïCAPS syllabus objectives for the 3 grades of the FET phase, are outlined below: 

Grade 10 

At the end of the topic, a competent Grade 10 learner should be able to state the effects of 

different values of a, and q on the function equations of: 

¶ a straight line ; 

¶ a hyperbola 
;
 

¶ a parabola ; 

¶ an exponential function ; 

¶ and trigonometric functions ,  and 

. 

  (DoE, 2012b (NCS-CAPS-FET), 2012 page 25). 

 

                                                             

3 Neither syllabus specifically prohibits the use of matrix operators and computer programmes. Some 

teachers might use them as expanded opportunities. 
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Grade 11 

At the end of the topic, a competent Grade 11 learner should be able to:  

¶ state the effects of the parameters k and p on graphs of y = f (kx) and y = f(x + 

p) for various functions y = f(x); 

¶ identify the characteristics of various functions and draw sketch graphs; 

¶ identify the equations of graphs from given information; 

¶ interpret sketch graphs.  

 (DoE, 2012b (NCS-CAPS-FET), 2012page 33).  

Grade 12 

The Grade 12 content does not include transformations of functions, but they are 

continually assessed as learners head for the summative examinations. 

1.1.3  Aggregating the NCS ς CAPS Syllabi Objectives for 
Transformations of Functions and the Aims of the Mathematics in 
the FET Phase. 
 

In the process of conceptualizing and developing skills for the process of transformation 

of functions, learners are expected to demonstrate knowledge and skills:   

¶ Adding a constant to any function to get  translates its graph vertically 

upward by  units with no change in shape. 

¶ Subtracting a constant from any function  to get  translates its graph 

vertically downward by  units with no change in shape.  

¶ Multiplying any function  by a constant  to get stretches its graph 

vertically by a factor a (  is a positive integer).  

)(xf cxf +)(

c

)(xf cxf -)(

c

)(xf a )(xaf

a
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¶ Multiplying any function  by a constant  to get 
 
compresses its graph 

vertically by a factor .  

¶ Multiplying the independent variable, x, in a function  by  to get  

compresses its graph horizontally by a factor .  

¶ Multiplying the independent variable, x, in a function  by  to get  

stretches its graph horizontally by a factor a (  is a positive integer). 

¶ In general the effect of multiplying by  in any equation  to get 

 stretches (or compresses)  vertically with x-axis invariant. 

The above-mentioned skills are exemplified in the following statements: 

¶ If  is positive, then the resultant graph is just stretched. For example multiplying y = 

2-x in f(x) by 4 to give y = g(x) = 4[2-x]  has the effect of stretching the graph of y = f(x) 

vertically, with the x-axis invariant, by the factor 4. This is true for all x = n, g (n) = 4 

f (n). 

¶ If  is negative, then the resultant graph is first stretched and then reflected about the 

x-axis before stretching. For example, multiplying y = x2 by -2, the graph y = -2 x2 + 

1 is the graph y = x2 stretched vertically by a factor 2, moved upwards by 1 and then 

reflected about y = 1 (in other words, stretched by a factor 2, reflected about y = 0 and 

moved up by 1 unit) (Laridon, Barnes, Jawurek, Kitto, Pike, Myburgh, Rhodes-

Houghton, Scheiber, Sigabi, & Wilson, 2006, pages 95ï128; Pike, Barnes, Jawurek, 

Kitto, Laridon, Myburgh, Rhodes-Houghton, Sasman, Scheiber, Sigabi, & Wilson., 

2011a, pages 157ï19; Pike et al, 2011b). 

¶ A special case is multiplying  by  to get  which has the effect 

of stretching  vertically, with y = 0 (the x-axis) invariant, by factor a. For 

example multiplying x by 2 to get  has the effect of stretching 

)(xf
a
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(compressing) the graph of  horizontally by factor  (factor 2), and 

multiplying x by  to get y =  cos x has the effect of stretching (compressing) the 

graph of y = cos x horizontally by 2 (factor ).  

¶ The effect of a in the equation y = f (ax) is to stretch (to compress) y = f(x) horizontally 

by factor  (by factor a). If  is negative, then the resultant graph is reflected about 

the y-axis. For example the statements hold for the graphs y = sin x, y = 2 sin x and y 

= sin 2x.  

¶ The graphs of y = a f(x) and y = - a f(x) are mirror images (reflections) of each other 

about the x-axis and y = f (ax) and y = f (- ax) are mirror images of each other about 

the y-axis. 

¶ The combined effect of a, b and q in y = a f(bx) + q is a vertical stretch of y = f(x), with 

the x-axis invariant, by the factor a, then a horizontal stretch, with the y-axis invariant, 

by a factor b, followed by a vertical translation of q units (Laridon et al, 2006, pages 

95ï128; Pike et al, 2011a, pages 157ï194). 

The teaching of transformations of functions is in line with the aims of the NCSïCAPSï

FET curriculum document which stresses that learners should be exposed to mathematical 

experiences that give them the opportunity to develop mathematical reasoning and 

creative skills in preparation for the abstract mathematics they will encounter in university 

courses. It is imperative, therefore, that teachers and educators: 

¶ include the description of graphical relationships and representation of mathematical 

objects; 

¶ help learners to develop mental processes that enhance logical reasoning, critical 

thinking, accuracy and problem solving that will contribute to decision-making; 

xy cos=
2
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¶ teach learners the óhowô, ówhenô and ówhyô to support learning procedures and proofs 

with a good understanding of why they are important, and leave learners well 

equipped to use their knowledge in later life; 

¶ develop mathematical language skills and terminologies for analysis, evaluation and 

critiquing of conclusions; 

¶ develop mathematical process skills like identifying, investigating, problem solving, 

creativity and critical thinking; 

¶ teach learners to use spatial skills and properties of shapes and objects to identify, 

pose and solve problems creatively and critically; 

¶ teach learners to communicate appropriately by using descriptions in words, graphs, 

symbols, tables and diagrams.  

All these aims should be taken into consideration when developing the topic of 

transformations of functions for the FET phase. 

According to the constructivist theory, when leaning a concept, learners reconstruct the 

knowledge about that concept to their level of understanding and the resultant knowledge 

structure is not always the exact replica of concept definition stated in the books but is 

something related to it. This new structure may be correct, incorrect or somewhere in-

between, but it forms the learnerôs concept image.  The learnerôs cognitive system now 

uses that concept image to work out the cognitive tasks without consulting the original 

concept definition. An incorrect concept image may give rise to an undesirable solution to 

the problem, while a correct concept image could be expected to give a desirable solution. 

It is necessary, therefore, that educators investigate what learners may have as concept 

images, in order to facilitate the formation of appropriate concept images. An example of 

this type of facilitation would be to give learners many correct examples of solutions to a 

problem, with the expectation that one of the examples will be picked up as the learnerôs 

concept image. This could lessen the likelihood of misconceptions about the concept being 

formed. When learning about transformations of functions, for example, understanding 

could be improved if a teacher works through many correct examples of reflection, 
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translation and stretch with the learners, to facilitate the formation of appropriate images 

of these concepts in learnersô minds. 

1.2  THE BACKGROUND OF THE STUDY  
 

This research study looks at how Grade 11 learners interpret the effects of parameters in 

the transformation of function  into the function , in a step-by-

step, simple-to-complex manner. It focuses on how learners understand the 

transformation concepts of reflection, translation and stretch that are covered in the FET 

mathematics curriculum, and attempts to determine what concept images learners have 

about these concepts as they manifest on functions. The act of transforming (mapping) a 

function and identifying a transformation responsible for mapping a function are some of 

the most crucial skills that learners should acquire in mathematics during the FET phase 

of the South Africa school system and at equivalent levels of education elsewhere in the 

world. These skills are, in most instances, not easy to master. In the South African context, 

the acquisition of such skills should begin in Grade 10, the beginning of FET syllabus, 

which is where learners are first introduced to functions and their transformations. 

Transformation of functions is one of the topics where concepts and skills are continuous 

in three successive grades. The skills taught in Grade 10 are developed and reinforced in 

Grade 11 and Grade 12, in preparation for the national terminal/summative examination 

for matriculation. As the Grade 12 examinations are both a basis for skilled and semi-

skilled employment and a springboard to tertiary education, successful learners are 

expected to have mastered basic concepts and skills like that of transformations of 

functions in order to be able to master the more advanced concepts they will then 

encounter in further education and training.  

It is worrying that the Department of Education examiners report during roadshow4 

presentations, year after year, that examination candidates performed poorly in 

                                                             

4 Report-back sessions where Grade 12 teachers are given feedback on how learners performed in the 

ǇǊŜŎŜŘƛƴƎ ȅŜŀǊΩǎ ǎǳƳƳŀǘƛǾŜ ŜȄŀƳƛƴŀǘƛƻƴǎΦ  

)(xfy= qpxafy ++= )(



11 

 

transformation-related topics in the national summative examinations (DoE, 2011; 2012; 

2013; 2014). The Analysis of Candidatesô Responses published by the Department of 

Education cites the inability to interpret graphical representations, inability to do 

graphical representations (DoE, 2013; 2014), inability to identify functions, incomplete 

description of transformations, incorrect verbal statement of rules, and an inability to 

differentiate between various transformations (DoE, 2013) as some of the main problem 

areas where skills are lacking, as observed from exam scripts. Learners rewrote words 

from the question as reasons (confused), used brackets improperly, and made mistakes 

with directions (left, right, up or down) or units (DoE, 2014). The reasons suggested for 

these shortcomings were language barriers, lack of theoretical understanding of basic 

concepts involved, and a lack of courage to attempt higher order questions (DoE, 2013; 

2014). Several recommendations were made, such as educators stressing the rules of 

transformation, doing practical examples of transformations, emphasizing the notation, 

linking transformations to graphs, exposing learners to all aspects of this section 

(including sketching, interpreting equations and graphs, emphasizing shifted functions 

etc.), testing theory through questioning, repeated testing, and emphasis on teaching the 

ówhy, what, if, how and whenô (DoE, 2013; 2014). Frustrated with poor performance, the 

examiners suggested the re-training of current mathematics teachers in this topic as a 

necessary intervention. They foresee that re-training would enable teachers to improve 

their learnersô acquisition of competence skills in mathematical processes, logical 

reasoning and creative thinking, as elaborated in the Mathematics Learning Area 

Statement (DoE, 2002; 2012b). This poor performance is of great concern to educators 

since mathematical proficiency among their learners is a compelling necessity. The 

purpose of this study is to investigate the barriers to mastery of the concepts and skills 

involved in transformations of functions faced by Grade 11 mathematics learners.  

As a mathematics educator in one of the South African high schools, this researcher has 

noticed the challenges some learners encounter with transformations of functions. Apart 

from some learners showing attributes of having short concentration spans, many of them 

seem to concentrate in learning procedures to be followed before understanding concepts 

behind those procedures. It has proved extremely difficult, in my experience, to enable 
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many of the learners at FET band to understand concepts relationally and acquire the 

problem - solving skills required for transformations of functions. This study stems from 

our concern with the difficulties experienced by learners, and we hope that it will make a 

meaningful contribution to the debate around how students grapple with understanding 

concepts of transformations of functions, and how the resultant thinking and reasoning 

influences their use of those concepts, given that transformations of functions occupy a 

significant space in both continuous assessment (CASS)5 and summative assessment of 

FET mathematics in South Africa.  

 

1.2.1  Weighting of transformation of functions 
 

The process of transformation of a function entails the mapping of the whole function or 

certain points of the function from their original positions onto new positions or images, 

using some well-defined rule. Transformation-related topics contribute significantly to 

both the FET continuous assessment (CASS) and the summative National Senior 

Certificate (NSC)(Matriculation) examination for the FET band. The assessment 

guidelines and examination projection for the old NCS (DoE, 2008; 2009a) listed 

contributions of about 0.23 for Paper 1 and about 0.2 for Paper 2. The current NCSï

CAPSïFET syllabus examines transformations of functions in Paper 1 (Functions and 

Graphs) and in Paper 2 (Trigonometry). The first NCSïCAPS examinations were due to 

be written in 2014. The image on Figure 1.1 below shows a screenshot, extracted from 

the CAPS document (DoE, 2012b p 55), of the weighting of topics in the current CAPS 

assessment guideline and examination projection: 

                                                             

5 Continuously planned assessment through a process of identifying, gathering and 

interpreting information about the performance of learners, using various forms. It involves 

four steps: generating and collecting evidence of achievement; evaluating this evidence; 

recording the findings and using this informatƛƻƴ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ŀƴŘ ŀǎǎƛǎǘ ƛƴ ǘƘŜ ƭŜŀǊƴŜǊΩǎ 

development to improve the process of learning and teaching (DoE, 2012b p 51). 
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Figure 1.1: The weighting of topics in the NCS-CAPS syllabus.  

 

[Extracted from the CAPS document (DoE, 2012b p 55)] 

 

It can be seen that transformations of functions forms part of the topics Functions and 

Graphs and Trigonometry. The weightings are 35% %3°  and 40% %3°  in Papers 1 and 

2 respectively.  
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The NCS curriculum had some minor variations of the calculated contributions for the 

period 2008 to 2013. The calculated contributions of functions, graphs and 

transformations (excluding differential calculus and cubic functions) are shown in the 

table below:  

TABLE 1.1: The calculated weighting of functions, graphs and transformations in 

some National Senior Certificate (NSC) examinations papers in South Africa  

 

Year Examination Paper 1 Paper 2 Combined 

2008 November 0.31 0.22 0.27 

2009 November 0.32 0.25 0.28 

2010 November 0.37 0.25 0.31 

2011 November 0.35 0.28 0.31 

2012 November 0.38 0.17 0.28 

2013 November 0.27 0.26 0.26 

2014 November 0.39 0.12 0.25 

 

Table 1.1 shows the significant contribution of functions, graphs and transformations (of 

between 25% and 31% overall) to the national school certificate examinations in South 

Africa. It is important to observe that in 2014, the first assessment under the NCSïCAPS 

syllabus, the major contribution is found in Paper 1, and the contribution to Paper 2 has 

decreased. It is against this background that this study values the topics and intends to 

investigate how learners interpret the transformation concepts of reflection, translation 

and stretch, and how they use these forms of transformation to map functions. This 

examination is intended to reveal different learnersô mathematical thinking and reasoning, 

and deduce how such thinking and reasoning influences their understanding of the 

concepts in question.  
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1.3   THE PURPOSE STATEMENT   
 

The purpose of this study is to investigate how learners develop their understanding of 

transformations of functions and to analyse their understanding of the concepts involved. 

In particular, the study investigates how Grade 11 learners understand reflection, 

translation and stretch as isolated concepts, and how they understand these concepts as 

they manifest in the transformation of functions through their representations. Researches 

done about problems of understanding and conceptualisation in mathematics mostly 

focused on university students (see section 3.2). From this juncture, the fact that students 

at university have such problems with understanding, conceptualisation and mathematical 

reasoning highlights the need for interventions to begin at an earlier stage in their 

education, thus the reason why this research study focuses on secondary school learners 

is that the necessary strategies can be implemented before students enter university. Grade 

11 was preferred against Grade 10 for their longer period of exposure to transformations, 

functional graphs and effects of parameters on transforming functions and against Grade 

12 the latter were perceived to be busy due to preparation for matriculation through school 

based assessments and later the terminal / summative examinations. We intend to identify 

various concept images and to highlight misconceptions about the targeted concepts of 

transformation and mathematical reasoning within the learnersô conceptual frameworks 

about transformation of functions. It is necessary to extend the understanding of 

knowledge structures that are created in learnersô minds as they learn, interpret and 

represent concepts so as to develop appropriate intervention strategies to effectively 

correct learner misconceptions. Interventions should assist learners in arriving at the 

correct conceptual understanding (Mathematics Learning Study Committee, 2001) of the 

transformation concepts. Transformations of functions and their symbolical and graphical 

representations play an important part in mathematics and its applied disciplines, so a 

correct understanding of the concepts is important to learnersô success while at school 

and later in tertiary education.  
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1.4 THE PROBLEM STATEMENT   
 

As discussed in section 1.2, mathematics learners encounter many challenges in 

interpreting the effects of parameters that bring about transformations of functions from

 to . Cognitive conflict could be a factor in learnersô memories 

where the concept images of the mappings reflect differently from what is implied by the 

formal concept definitions (Tall & Vinner, 1981). This research aims to uncover what 

types of concept images learners have. There is some doubt as to whether academically 

challenged learners, particularly those whose home language is different from the 

language of education, interpret and use the concepts involved (reflection, translation and 

stretch) as they are meant to, whether they think and reason proficiently in mathematics, 

and whether, in the end, they construct a coherent and correct view of these mathematical 

concepts or just take them as separate pieces of abstract knowledge. Basing on personal 

constructivism or cognitive constructivism theory (Piaget, 1963), children develop 

personal cognitive structures and capabilities as they learn, which help them construct 

their own understanding of concepts in different ways such as through exploring, 

observing, listening, touching etc.  This guarantees the existence of concept images when 

learning such concept as reflection, translation and stretch (including compression) of 

function for they have examples in the empirical world, e.g. your image as you look at 

yourself in the mirror and flipping pages when reading a book for a reflection, sliding 

objects on a conveyor belt for translation and stretching stockings as you fit your feet and 

sheen, just to mention a few. Textbooks and teachers very often present these and other 

mathematical concepts abstractly and without connections with other previously learnt 

concepts or to the empirical world in which we live. Learners frequently try to simplify 

the concepts, to their level of understanding, in their own language. The possibility of 

misconceptions arising in this process is great. The unfamiliar abstractness and subject 

specific rigor possibly lead learners to think that mathematics is a difficult learning area/ 

subject.  The learnersô concept images are the main constitution of this study. The 

magnitudes of their variations from formal definitions may determine the presence of 

cognitive conflict factors. Learners who have such potential cognitive conflict factors in 

)(xfy= qpxafy ++= )(
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their concept images may be challenged by the formal theory and may find it difficult to 

operate correctly with the theory.  Very often Mathematics knowledge is presented in 

books abstractly and rigorously and as without connections with other concepts and the 

empirical world we live in. It is prudent for mathematics learners to have their own 

interpretations and use their own language to explain and reason out the concepts other 

than just try to stick to the abstract and rigorous ways of presentations used in textbooks. 

The abstractness and rigor may produce challenges for learners and make them think that 

Mathematics is a difficult subject.  

The identification and analysis of learnersô concept images is the major component of 

this study. The magnitude of their possible variations from formal definitions may 

indicate the presence of cognitive conflict factors. Learners who have potential cognitive 

conflict factors in their concept images may be challenged by the formal theory and may 

find it difficult to apply the theory correctly. It is important for mathematics learners to 

develop their own interpretations and use their own language to explain and reason out 

the concepts being studied rather than just trying to stick to the abstract and rigorous 

method of presentation used in textbooks. Although some research has been done on 

learnersô concept images and informal reasoning related to mathematical concepts (Tall 

& Vinner, 1981; Viholainen, 2008), research has not been carried out on the concept 

images of high school learners and in the field of transformation concepts applied to 

functions (See section 3.2). Tall & Vinner, and Viholainenôs studies focused on university 

students in terms of limits and continuity, and derivation and differentiability, 

respectively. The literature review revealed, for example, a similar study done in the 

Netherlands, but this focused on a single learner as he used pencil and paper visualisations 

and the analysis of concepts and computer aided displays (Borba and Confrey, 1996). 

The summative examiners for South African NSC Matriculation examinations, during 

road show report-back sessions, drew attention to poor performance by learners in South 

Africa generally, and in Gauteng Province in particular, with respect to transformation 

geometry and related topics. They recommended in-service training in the topics for 

current mathematics teachers as a possible way to improve results in future (DoE, 2011). 

Teacher training could facilitate learner acquisition of competence skills in mathematical 
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processes, reasoning and creative thinking (DoE, 2008).   Tall (1991) argues that learners 

must develop their own approaches to mathematics learning that facilitate their 

intellectual growth and formation of knowledge structures and that take account of the 

thinking process they have. According to Pinto and Tall (2002), concept images can help 

learners compress information into single tables, which they can invoke later when 

recalling concept definitions. This scholarship highlights the need to tap into learnersô 

concept images and mathematical reasoning with regards to the process of translating, 

reflecting and stretching functions.  

 

1.5   THE RESEARCH QUESTIONS 
 

This research study addressed the following research question:  

What are Grade 11 mathematics learnersô concept images and what is their 

mathematical reasoning on transformations of functions? 

 

The main research question was examined by means of exploratory and descriptive 

research directions, each containing a number of sub-questions: 

The exploratory direction addressed the following: 

¶ What are the mathematics learnersô verbal, graphical and symbolical images of 

reflection, translation and stretch of functions? 

¶ What are the reasons given by learners to justify their concept images? 

These exploratory sub-questions attempted to answer the following specific mini-

questions: 

o What are the concept images of reflection of functions? 

o What are the concept images of translation of functions? 

o What are the concept images of the stretch of functions? 
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An exploration of the variables of the category type was conducted to address these 

questions. The objective was to identify images (verbal, graphical or symbolical) of each 

of the three transformations and assess how competent the learners were in dealing with 

the transformations. 

The descriptive direction addressed the following:  

¶ Are the learnersô concept images and mathematical reasons coherent and 

representative of formal definitions?  

This sub-question also attempted to answer the following mini-questions: 

Á To what extent are the learnersô concept images competently representative of 

the formally defined concepts? 

Á How are the learnersô concept images related to formal definitions of these 

three concepts? (Are there contradictions or not?) 

Á Does the learnersô reasoning about concept images relate to the formal concept 

definitions? 

To answer these questions, learnersô competences to use representations were addressed, 

as was their ability to argue or reason formally or informally, explain, interpret formal 

definitions, and use their interpretation successfully in reasoning. Did they have problem 

solving abilities, were the arguments precise or more explicit, and were the conceptions 

of transformations clear? Did learners have the ability to use interpretations successfully 

in their reasoning? Did they use formal or informal definitions or use both 

simultaneously? Did they make the correct use of visuals?  

 

1.6  THE AIMS OF THE STUDY   
 

The aims of this research study were to:  

¶ investigate and assess learnersô competencies in defining, identifying and 

representing reflection, translation and stretch of functions; 
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¶ investigate the concept images that students have built after learning, interpreting and 

representing concepts of reflection, translation and stretch of functions; 

¶ assess how coherent learnersô concept images are with reference to the formal 

definitions of reflection, translation and stretch of functions; 

¶ assess how learners use their concept images to explain, justify, argue and reason in 

the processes of reflecting, translation and stretching functions; 

¶ assess the link between learnersô explanations, justifications, arguments and 

reasoning using their concept images and those given by formal definitions in the 

processes of reflecting, translation and stretching functions. 

The study was aimed at establishing what concept images learners form as a result of 

learning transformations of functions, and what mathematical skills, abilities and reasoning 

learners acquired when dealing with representations or illustrations of those concepts. It 

needed to compare learnersô understanding and reasoning of transformation concepts with 

those implied by the formal definitions of the concepts, and then suggest how classroom 

activities around learning such concepts could be improved.  

 

1.7  THE SIGNIFICANCE OF THE STUDY  
 

This research study is intended to benefit mathematics educators, mathematics student 

teachers, mathematics teacher educators and, to some extent, educationists and 

mathematicians. Kilpatrick (1993) states that an educational research study may belong 

to one or more of the following three categories: those studies that attempt to have a direct 

influence on teaching practices by providing ideas and material for teachers to use and 

suggesting activities teachers might conduct; those that suggest new ways to understand 

studentsô thinking and events in the classroom (indirect influence); and those that attempt 

to develop the terms and the framework in which mathematics education is portrayed in 

publications (also indirect influence). This study fits best into the second category, as 

highlighted by its aims, but it also fits into the first category, as will be outlined by the 
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recommendations. The results of this study were expected to contribute to the theory of 

learning transformations of functions, as well as to the theory of teaching more generally, 

by highlighting how learners interpret translation, reflection and stretch in transforming 

functions, and also by identifying the misconceptions some learners might have when 

working with the concepts. Like all good educational research, it has both a practical and 

a theoretical relevance, vis-à-vis the practice of teaching the concepts of reflection, 

translation and stretch of functions by broadening or deepening the understanding of how 

learners learn (Sierpinska, 1993). The research outcomes could contribute to relational 

mathematics learning and realistic mathematics education. Results from the study may 

also provide insight for mathematics teacher educators designing programmes to enable 

student teachers to improve their knowledge of, and ability to teach, transformations of 

functions. The researcher also anticipated building new knowledge about concept images 

of reflection, translation and stretching of functions.  

1.8 ASSUMPTIONS OF THE STUDY 
 

The study is based on the assumption that correct mathematical statements are partly 

determined by identifying them with formal axioms, as in accordance with the ideals of 

Hilbert (1862 - 1943) which value objectivity, abstractness and independence of 

empirical reality in mathematical concepts.  On the other hand, construction of knowledge 

by learners is not independent of empirical reality, as in accordance with the paradigms 

of relativism and socio-constructivism. In this study, formal definitions would be taken 

as the standard against which learnersô views about concepts and their associated 

reasoning would be evaluated. Any concept definition or concept image that is different 

from the formal definition and formal representation will be considered to be a 

misconception. 
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1.9   DESCRIPTIONS OF KEY TERMS AND CONCEPTS 
 

The following are the key terms used in this study: concept image; mathematical 

reasoning; coherence of concept images; functions; functional representations; 

transformation of functions; reflection; translation and stretch.  

1.9.1  Concept Image 
 

A concept image is ñall the cognitive structure in the individualôs mind that is associated 

with a given conceptò (Tall & Vinner, 1981:151). It may be a collection of vague 

conceptions about that concept, with or without connections to the formal concept 

definition. The concept image may also be in the form of mental images or interpretations 

based on representations or other properties or processes involved in the manifestations 

of the concept (Viholainen, 2008). The concept images of transformation of functions 

(reflection, translation and stretch) are the prime focus of this study (see sections 2.1 and 

2.2). 

1.9.2 Mathematical Reasoning 
 

Mathematical reasoning is the individually created meaning or interpretation of a concept 

by extrapolation from an existing knowledge structure (Viholainen, 2008). This creation 

or interpretation of a concept is dependent on the context in which the concept is used. 

Mathematical reasoning is a specialized informal reasoning focused on mathematical 

concepts for mathematically-orientated scholars. It may consist of illusions of 

mathematical concepts or an attempt to represent mathematical concepts by other real life 

concepts. Viholainen (2008) views informal reasoning as resulting from visual or 

physical interpretations of mathematical concepts, and formal reasoning as exact 

reasoning based on axioms, definitions and theorems. This view is under examination in 

this study. 
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1.9.3 Coherence of Concept Image 
 

Coherence of concept image is the way a concept image is organized and linked to formal 

definitions. According to Viholainen (2008), highly coherent concept images have the 

following attributes:  

¶ There is a clear personal conception about the concept. 

¶ There are well-connected conceptions, representations and mental images about the 

concept. 

¶ There are no internal contradictions within the concept image. 

¶ There are no conceptions that contradict formal mathematical axioms. 

One of the objectives of this study to assess the coherence of learnersô concept images of 

the transformation of functions.  

1.9.4 A Function 
 

A function6 is a mapping that involves either a one-to-one correspondence or a many-to-

one correspondence (Tapson, 2006 p.10), between two sets of numerical values. The 

symbols  indicate a function involving a single variable x that produces a 

mapping from x-values to y-values. Examples of functions are ; 

 and .  Functions are the objects on which the concepts 

of reflection, translation and stretch will be tested during the course of this study to 

determine learnersô concept images.  

 

                                                             

6 Sometimes defined sets are used for the domain and co-domain of functions. 
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1.9.5  A Functional Representation  
 

Functions can be expressed by means of various visual functional representations 

including symbolic or algebraic formulae, plotted Cartesian graphs, input-output tables, 

flow diagrams or set diagrams. Markmann (1999) considers the term representation to 

include the represented world of elements to the representing world, and to be a process 

that uses the information in the representing world. Visual representations play an 

important role in communicating mathematical concepts in the teaching and learning of 

mathematics (Elia, Gagatsis, & Deliyianni, 2005). It is necessary for learners to be able 

to recognize concepts in various types of representation and to be able to manipulate them 

within these representations and translate them across systems. 

 

1.9.6  A transformation 
 

A transformation is a mapping of a set of points onto a second set of points using a well-

defined operation (Lewis, 2002). It involves the mapping of a point, a function, a 

geometrical shape or their representations (objects) from their original positions or forms 

into new positions or images using a well-defined rule. The simplest transformations are 

isometric transformations (also called congruencies or rigid motions), which change the 

position of an object while preserving the dimensions (size and shape). These consist 

mainly of reflections (flips), translations (slides) and rotations (turns). Glide reflections 

(flip -slide-flip or footprints) combine translation and reflection. Another group is the non-

isometric transformations (non-congruencies or non-rigid motions). Non-rigid motions 

change the dimensions, either size, or shape, or both. With similar transformations the 

size is not preserved, but the shape and proportionality of the corresponding lengths are. 

Similar transformations may be enlargement (dilation) or reduction. With affine 

transformations the object only preserves parallelism. Shear (where area is preserved) 

and stretch (where area is not preserved) are examples of affine transformations. With 

projective transformations collinearity of points and the concurrency of line are 
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preserved. Enlargement is an example for this type of transformation, but this is a special 

case where corresponding sides are parallel. In general, the corresponding sides in a 

projective transformation are not parallel. A topological transformation of a plane figure 

occurs if the closure (or non-closure), orientability, and relative position of corresponding 

points are preserved. The South African FET mathematics syllabus focuses on the four 

isometric transformations, with the inclusion of enlargement and stretch. It is important 

to note that isometrics are a subset of similarities, which are a subset of affinities, etc. 

This approach to teaching transformations is known as Kleinôs Erlangen Approach (de 

Villiers, 1993).  

1.9.7   Transformation of a Function 
 

A transformation of a function consists of mapping (almost all) the points of a function 

onto new positions using a well-defined rule or operation (Lewis, 2002). With reflection 

and stretch there may be one or more (but still very few) points that have remained 

stationary after the transformation. In the CAPS syllabus, only translation, reflection, and 

stretch are covered, and so these will form the focus of this study: 

Reflection  

Reflection7 (sometimes referred to as flip) is a transformation or mapping which produces 

a mirror image of the same function and is sized as the original (Laridon et al, 2006). The 

axis of reflection is halfway between every point and its corresponding image point and 

is also called the line of symmetry or the mirror line. If a point is its own reflection, then 

it is on the axis of reflection. In the reflection, any two corresponding points in the original 

function and the image function are both the same distance from the line of symmetry, 

                                                             

7 The reflection is described by giving the position of the fixed line. Translation and reflection, together 

with rotation, are isometric transformations (that preserve all the geometrical properties of a figure). For 

example, translating a parabola changes the positions of all its points by moving them the same distance 

in the same direction, and reflecting a parabola about a line other than its axis of reflection changes the 

positions of all its points except those on that axis. 
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and a line drawn between those points would be perpendicular to that mirror line (Tapson, 

2006).  

 

Translation 

Translation8 (sometimes referred to as slide) is a transformation or mapping that changes 

the position of points by sliding them to other positions (Laridon et al, 2006). Every point 

of the original function can be joined to its corresponding point in the image function by 

a set of straight lines which are all parallel and equal in length (Tapson, 2006).  

 

Stretch 

Stretch9 is a transformation or mapping that increases the distance between parallel lines, 

by the same factor, in one direction. In real life, stretchable objects have elasticity like 

those made of rubber.  

 

1.10   STRUCTURE OF THE THESIS  
 

This research thesis is organized into the following chapters: 

Chapter 1 ï Introduction 

This chapter introduces the reader to the study problem and describes its context. It also 

includes the background to the study, the problem statement, the purpose statement, the 

                                                             

8 Translation is described by the direction and length of the sliding movement (a vector). 

9 Stretch is one of the affine transformations (only the parallelism of corresponding lines is preserved). In 

polygons, stretch does not preserve area. A one-way stretch multiplies the original distance from the fixed 

line by the stretch factor. A two-way stretch of identical stretch factors in different directions results in an 

enlargement. 
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research question, the aims and significance of the study, assumptions, and key terms and 

concepts.  

Chapter 2 ï Conceptualising Concept Images 

This chapter provides a platform for defining the term concept image and outlines its 

characteristics. It also provides models, sourced from the literature, which illustrate 

conceptual development in learners, and adapts these facts to design a model applicable to 

this study.  

Chapter 3 ï Theoretical Framework and Literature Review 

.The chapter looks at the theories related to concept images and mathematical reasoning 

that underpin this study. The second part of the chapter reviews other research that deals 

with issues of conceptualizing in mathematics and science and how learners understand the 

concepts involved.  

Chapter 4 ï Methodology 

This chapter describes the empirical process of the study. It outlines the research design 

adopted, population, sampling procedure, data collecting instruments, as well as data 

processing and analysis procedures.  

Chapter 5 ï The Data and its Analysis 

This chapter presents the raw data and analyses it using a variety of methods: description, 

frequency tables and bar charts. 

 

Chapter 6 ï Relating Results to Research Questions 

This chapter is designed to provide empirical answers to the research questions. This is 

done by matching the findings to the research questions, and evaluating how successful the 

data is in providing answers. 

Chapter 7 ï Summary of the Study, Conclusion and Recommendations 

The chapter summarises the purpose of the study, the methodology used for the study, and 

presents the main findings, the conclusion and recommendations.  
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CHAPTER TWO 
 

Conceptualising Concept Image 
 

This chapter deals with how concept images are conceptualized in this study. The first 

section extracts the meaning of the term concept image and what it constitutes. It looks at 

models formulated by other researchers about concept image definition, formation and 

development. The models focus on conceptual understanding, visualization, mathematical 

thinking and reasoning, formal and informal deductions from concept definition, as well 

as the formation of concept images. A model is then developed for this study, which will 

illustrate the possible stages of conceptual understanding of the transformation of 

functions. The last section of this chapter attempts to stimulate debate on the logical 

process of mapping functions. Discussion from a number of different perspectives aims at 

strengthening the understanding of the idea of concept images.  

 

2.1 WHAT CONCEPT IMAGES ARE AND WHAT THEY CONSTITUTE  
 

Tall and Vinner define a concept image as ñall the cognitive structure in the individualôs 

mind that is associated with a given conceptò (1981:152). While Davis (1984) uses the 

phrase concept frame, referring to much the same idea, this study will use the phrase 

concept image in preference to the alternative. Concept images are central to studies on 

advanced mathematical thinking (Tall & Vinner, 1981; Tall, 1991; 1995). A 

mathematical concept image may not necessarily be an isometric duplication of the 

formal concept definition per se, but may take the form of vague conceptions, mental 

images or interpretations about that concept, based on abstract imagination or attempts to 
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make representations, reveal properties, or explain processes involved in that concept, 

with or without connections to its formal definition (Viholainen, 2008).  

The concept image reveals the way an individual learner thinks about a concept, and this 

may be different from both how other learners think about the concept and from how the 

concept is formally defined. Depending on whether learners understand the concepts 

fully, have misconceptions about them, or harbour internal conflicting views within their 

own minds, the concept images may or may not be coherent across a group of learners 

(Viholainen, 2008). 

In the process of reflecting on why many people have difficulty or are even incapable of 

understanding mathematical concepts, Rosken and Rolka (2007) formulated two types of 

mathematical conceptions as determinant factors of how people understand mathematics: 

the objective and subjective mathematical conceptions. The former conceptions are based 

on unique characteristics that every mathematical concept has. The concepts may provide 

different possibilities for the cognitive architecture offered to an individual and the 

restrictions they entail. The latter conceptions are based on the individualôs habits, which 

may or may not adequately accommodate the formation of mathematical concepts. 

This analysis is helpful but it overlooks how the concepts are defined in textbooks, the 

language used, the rigor involved and how learners interpret all this. Mathematicians and 

scientists frequently use terms that are unfamiliar to learners and that may make it difficult 

for learners to redefine concepts in their own terms comfortably. The following questions 

are pertinent and point to gaps in my knowledge about how learners understand the 

information available to them in textbooks: 

¶ Are the definitions uniform? 

¶ Do learners understand the language the same way? 

¶ Can learners simplify the terms to explainable forms that are comfortable to use and 

recall? 

¶ Do they relate the concepts defined in the same contexts (intra or extra-

mathematical)? 
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For learners to understand concepts, they need to be able to define them using their own, 

possibly simpler, terms, and make representations understandable to themselves. The 

model of conceptualization provided by Tall and Vinner (1981) gives a good picture of 

the interplay between subjectivity (the concept images) and objectivity (the formal 

definition). The model by Vinner (1983), which is a schematic version of the Tall and 

Vinner (1981) model, is provided in section 2.8 below.  

Tall (2005) points out that a concept image may contain traces of the concept definitions 

or maybe be contained in the concept definitions. This indicates that concept images may 

take the form of mini-definitions, alternative definitions, vague conceptions, naïve 

definitions, queer meanings or explanations, visual images, or interpretations based on 

representations, properties or the processes involved in transformation concepts applied 

to functions. They may be correct, partially correct or incorrect, but as they are the 

concept images held by learnersô, we must accept them as given. 

Presmeg (1986) identifies pictorial, pattern, memory, kinaesthetic and dynamic as five 

kinds of concept imagery. Pictorial imagery is described as the mind pictures that are 

dependent on thoughts and language, and pattern imagery as the spatial relationships 

between concepts, while memory imagery refers to mental images resulting from 

experiences that are not necessarily pictorial. Kinaesthetic and dynamic images as those 

involving physical activities and movement (see also Love, 1995). Presmegôs 

formulations are compatible with the definition of concept images in this study since they 

all deal with the conceptions, accurate or inaccurate, that individual learners have of 

concepts. The concept images may also be alternative definitions, mini-definitions, 

visuals or physical meanings of the concepts, or the relationship between that particular 

concept and other mathematical concepts. It is a common understanding that concept 

imagery is influenced by how learners understand mathematical concepts in relation to 

the empirical world.  
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2.2  FORMATION OF CONCEPT IMAGES AND MATHEMATICAL 
REASONING 

 

The question of how concept images are formed is debatable. As memory structures, 

concept images do not just come passively into the mind, they form through mental activity 

and internal arguments within the learnersô minds, and they may be a result of the thinking 

processes and the logical deductions we refer to as mathematical reasoning. Concept 

images can be created through learnersô reflection on previously seen physical or mental 

objects that are related somehow to the concept. Learners may create meanings or 

interpretations of concepts by extrapolating from their existing knowledge structures. 

Viholainen (2008) refers to this as personal interpretations of formal concept definitions. 

These interpretations of concepts may depend upon the contexts used before or the apparent 

context in which they are currently in use. As Viholainen puts it, learners grapple with 

imagistic ideas of concepts to translate formal definitions into informal representations 

(2008). Some learners construct concept images through thought experiments that respond 

to the syntax of the definitions and give imaginative meaning to the formal definitions. 

Bodner (1986) states that sense perceived information and cognitive structures exist 

almost permanently within the minds of learners and, to promote this, learners should be 

persuaded to relate new knowledge to other relevant concepts and propositions they 

already know, and should desist from rote learning.10 Shumba, Ndofirepi and Gwirayi 

(2012) also emphasize this by referring to Ausubelôs (1963; 1978) meaningful learning 

idea and highlighting the fact that the most important influencing factor in the process of 

learning is what the learner already knows ï well-performing learners learn by building 

new knowledge on their pre-existing cognitive structures. 

Ogunniyi (2000) states that concept (image) formation is a reflective, creativity-a-

complex physiological/logico-metalogical process, similar to natural selection or the 

                                                             

10 Rote learning refers to the process where new knowledge is acquired by verbatim memorization or 

rehearsing. 
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dominantïrecessive phenomenon articulated by Charles Darwin and Gregory Mendel, 

respectively, where knowledge that survives decay supersedes the rest and becomes the 

pillar of the concept (imagery). This process uses conscious and subconscious 

intelligences of exploring formal and informal experiences to derive meanings, 

understandings and appreciations. Learners have to ñnegotiate and navigate a complex 

array of conflicting statesò to achieve clarity of learnt ideas (Ogunniyi, 2000).  

Duval (1998) links concept image formation to mathematical reasoning. Mathematical 

reasoning develops from three epistemological components of cognitive processes: 

construction, visualization, and reasoning. These three components may be connected and 

interrelated. Construction is where tools are used, for example, to make models and this 

leads to visualization. Visualization is not only of objects, but also refers to visual 

representations of mathematical statements. The clarity of a constructed image depends on 

connections between relevant mathematical properties and the constraints of the tools being 

used. Visualization may enhance reasoning although it may not for some specific 

visualized images. Although reasoning is enhanced by visualization, reasoning can also 

develop independently of construction or visualization. Duvalôs idea that understanding 

and mathematical reasoning enhance the formation of concept images only provides one 

aspect of the dialectical relationship between concept images and mathematical reasoning 

and suggests that teaching should emphasize mathematical reasoning (1998). 

Some authors espouse the opposite idea, that concept images enhance conceptual 

understanding and mathematical thinking/reasoning (Usiskin, 1987; Vinner, 1983; 

Fischbein, 1987; Tall, 1988; Vinner and Dreyfus, 1989). However, both viewpoints 

indicate a probable dialectical relationship between concept images and mathematical 

reasoning. 

Although concept images and visuals have value for teachers in illustrating concepts to 

learners, they have even more value for learners in enhancing the understanding of 

various mathematical concepts (Usiskin, 1987). Therefore concept images are like butter 

spread in-between two slices of bread ï they are used by teachers to facilitate conceptual 

understanding during instruction and are also used by learners to support conceptual 
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understanding. Vinner (1983) is of the opinion that concept images are more important 

than concept definitions when it comes to handling concepts realistically. Fischbein 

(1987) singles out visual images as being very important for organizing data into 

meaningful structures in that they act as a guiding factor for analytical development of 

solutions in problem solving. This seems likely because formal definitions are often not 

very clear or explanatory, and hence they may not enhance understanding for learners. If 

correctly linked to a concept, concept images facilitate a meaningful engagement with 

learning activities. The formal concept definitions may remain passive or forgotten, 

whereas concept images are always evoked in the process of reflective thinking (Tall & 

Vinner, 1981).  

Holistic and concrete translations of mathematical concepts into concept images are very 

important in creative mathematical thinking and conceptual understanding. Tall states that 

when learners encounter old concepts in new contexts, it is the concept images, with all the 

abstractions made from earlier contexts, which respond to the task at hand (1988). He 

continues by pointing out that if learners do not have concept images, then a structured 

approach to learning a topic is unlikely to be successful (1988). Integrating the concept 

imagery gives learners a richer experience, which can facilitate the formation of more 

coherent concepts. Lack of conceptual understanding of, for example, transformations of 

functions, can lead to misinterpretations and misrepresentations of some aspects of the 

concepts involved in the topic, and this can result in the formation of incorrect images. 

 

2.3 HOW THE APOS MODEL EXPLAINS LEARNING CONCEPTS 
THROUGH MATHEMATICAL THINKING AND REASONING 

 

APOS model (Dubinsky, 1991) helps to explain how learners construct their understanding 

of concepts. It main features are mental Actions, Processes, Objects and Schemas.  The 

model is connected with Piagetôs idea of reflective abstractions that have to happen during 

learning. The model is explained more detailed, component to component, in section 2.9 

below. Mathematical thinking entails making appropriate connections, in the mind, 
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between the definitions of various mathematical concepts and their visual or other 

representations, which may be either formal or informal. Vinner and Dreyfus (1989) stress 

that learners might not understand a concept in depth if they do not match the concept 

image and the concept definition appropriately. Mathematical reasoning may come as 

antecedent, on one hand, or as a follow-up, on the other hand, of what has been conclusively 

thought and /or understood about a mathematical action. Mathematical reasoning based on 

concept images may be entirely separate from mathematical reasoning based on formal 

concept definitions (Vinner, 1991). The former is a dialectical process between figural 

(graphical or symbolic) and conceptual aspects of concepts and involves the 

interdependence of concept images and concepts themselves (Mariotti, 1995). Concept 

imagery, according to Mariotti (1995), helps to build mental schemas for learners and helps 

them to develop mature ideas of concepts and explore and verify how these concepts work. 

Concept images combine mental actions with mental objects and continue refining the 

images to allow learners to arrive at the concept more exactly. According to Pinto & Tall, 

learners can use concept images for reasoning, for interpreting definitions of terms, for 

exploring the concepts through thought experiments, and also for reconstructing their own 

understandings of concept definitions. A concept image can be information compressed 

into a single diagram, which learners evoke later when recalling definitions (2002). 

Graphical or symbolical images of concepts, like those in transformations of functions, can 

support the reconstruction of a learnerôs understanding of formal definitions.  

Visuals or physical representations can be classified as analogical (Eysenck & Keane, 

1987) or active (Pinto & Tall, 1999). They are analogical if they reflect properties of 

concepts and active if they show how concepts work. For example, to fully understand the 

algebra of transformations, learners should concentrate on symbols (formulae) as well as 

other forms of concept images, e.g. picture and action. This duality of process and concept 

is formulated by Gray and Tall as the notion of óproceptô (1994). Concept imagery can be 

translated into formal linguistic terms and can facilitate the interplay between thought 

experiment and formal definition (Pinto & Tall, 2002). 

Mathematical reasoning is, at times, informal, where it does not entirely depend on formal 

definitions of the concepts in question, although it may be influenced to a certain extent by 
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them. It may be exogenic (reality-centred) or endogenic (mind-centred). It is exogenic if it 

results from visual interpretations of the concept, and endogenic if it results from mental 

thoughts or interpretations of a concept. A learner might not necessarily reason 

mathematically about a concept using the mathematical language of the formal definitions, 

but might instead create his or her own words or ideas to explain the concepts. The words 

and the precision of mathematical reasoning depend on the individualôs understanding of 

the concepts in use and also on his or her meta-linguistic competence, which is the ability 

to reflect on the structural and functional features of concepts.  Sound mathematical 

reasoning allows for a lifelong retention of mathematical concepts and their applications 

(Pinto & Tall, 2002).  Understanding concepts like reflection, translation and stretch, and 

their application to functions, requires not only instrumental understanding, but also the 

relational understanding of their meanings, and connections to other mathematical 

concepts and ideas (Skemp, 1976; 1989). Visual or mental interpretations and 

representations lead to the formation of concept images in individual learnersô minds.  

 

2.4  CONCEPTUAL UNDERSTANDING 
 

Conceptual understanding is essential for learning, but what exactly the term 

understanding means, how it is achieved, and how it is measured, is not self-evident. 

Some scholars in the field of the psychology of learning mathematics, such as Skemp and 

Dreyfus, agree that conceptual understanding is the restating and redefining process that 

occurs in the learners mind about the concepts being learnt. Skemp differentiates between 

two types of understanding, namely instrumental and relational understanding. 

Instrumental understanding is ñknowing rules without reasonsò, while relational 

understanding is ñknowing both what to do and whyò (Skemp, 1976 p16). Dreyfus is of 

the opinion that the mental processes that occur and interact in learner understanding may 

be derivatives of the sequencing of learning activities that teachers use during instruction 

(1991) and learnersô experiences thereafter in trying to follow-up, may contribute as well. 
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Kilpatrick, Swafford and Findell (2001) rate conceptual understanding as the most 

important of the five strands of mathematical proficiency.11  

Conceptual understanding is critically important for the effective learning of 

mathematics, and developing conceptual understanding in learners is every mathematics 

educatorôs goal. The Mathematics Learning Study Committee (2001) defines conceptual 

understanding as the comprehension of mathematics concepts, operations and relations, 

that is, the integrated and functional grasp of mathematical ideas. Learners who achieve 

conceptual understanding should have sufficient understanding of the concepts to work 

intelligently and productively with them. Learners are then able to identify and adopt the 

common features of the examples and this reinforces their understanding of the abstract 

concepts. If they adopt features that are not part of the abstract concept, then there will 

be interference which gives rise to some misconceptions.  

 

 

2.5 MATHEMATICAL REASONING AND ITS IMPORTANCE 
 

Mathematical knowledge (concepts) presented in its formal form is usually abstractly but 

not broadly explanatory thus it may not promote immediate conceptual understanding. 

Mathematical reasoning is a means of constructing meaning using what is presented 

formally. Formal mathematical reasoning is based on direct mapping from definitions, 

axioms or previously proven theorems.  Informal mathematical reasoning is based on an 

individualôs own visual or physical interpretations of mathematical concepts. 

Visualization is considered a key component of reasoning (Arcavi, 2003). The formal 

reasoning around certain concepts is a direct mapping from the definition of the concept 

in question. Informal mathematical reasoning and concrete interpretations using visuals 

                                                             

11 Their other four strands are procedural fluency, strategic competence, adaptive reasoning and 

productive disposition. 
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on paper or mental images, about a particular concept, are forms of concept images. 

Visual representations thus play an important role in communicating mathematical ideas 

(Elia, Gagatsis & Deliyianni, 2005). Learners do not only need to visualize and interpret 

concepts but also to manipulate them within the framework of their representations and 

even mix them with elements of the formal system.  

Learners form concept images of concepts in their minds that they use when doing 

investigations and thought provoking activities, using mathematical reasoning whenever 

that is needed. Transformations of functions are one of the mathematics learning areas 

that stimulate the development of concept images for mathematical reasoning. This is 

because transformation procedures require spatial visualization skills in the quest to 

understand relationships between original and image functions, whether formally or 

informally constructed. Transformations of functions are a rich source of material for the 

development of mathematical reasoning skills. Geometrical representations and 

investigations add excitement and insight to the learning of these transformations through 

inductive and deductive reasoning and spatial visualization in one or more dimensions. 

Algebraic approaches, with or without coordinates, if done before geometric 

representations and investigations have been studied, result in learners resorting to 

memorizing rather than exploring and discovering the underlying properties (Strutchens, 

Harris & Martin, 2001).   

The starting point for thinking and reasoning mathematically is the interpretation of 

definitions and properties of the mathematical concepts involved. A learner keeps these 

relevant facts in mind and tries to use them by making appropriate connections between 

the definitions and properties and visual and other representations, as well as other 

concepts, for example. Vinner and Dreyfus (1989) point out that learners might not 

understand a concept in depth if they do not tie the concept image and concept definition 

appropriately. Lack of conceptual understanding of transformations of functions can lead 

to misinterpretations and misrepresentations of some of the ideas about the concepts in 

the topic. The potential for imagery and visualization (concept images) to enhance the 

understanding of various areas of mathematics has been noted by Usiskin (1987), among 

others. Fischbein (1987) states that visual images are able to organize data into 
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meaningful structures, and they are also an important factor in guiding analytical problem 

solving. Holistic and concrete interpretations are very important in creative mathematical 

thinking and conceptual understanding because mathematical knowledge presented in a 

formal form may not be broadly explanatory and thus may not promote understanding.  

Viholainen, (2008) describes informal reasoning as being based on visuals or physical 

interpretations of mathematical concepts, and formal reasoning as exact reasoning based 

on axioms, definitions and previously proven theorems. Learners grapple with imagistic 

ideas to translate ideas into formal definitions and informal representations (concept 

imagery). Some learners construct the concepts through thought experiments that may 

respond to the syntax of the definition, but which may also give an imagined meaning for 

the definition. 

 

  

2.6  AQUISITION OF CONCEPT IMAGES AND MATHEMATICAL 
REASONING 

 

Working through appropriate examples has a positive effect on the formation of concept 

images. Vinner (2011) highlights the importance of examples in learning mathematical 

concepts saying that it is by their use that concepts and conjecture are formed and verified.  

According to Pinto, a good learner has his/her own strategies of learning mathematics 

(1998). For example, some learners extract meaning12 and others build from their own 

imagery and give meaning to definitions by producing highly refined images that support 

their formal arguments (Pinto & Tall, 2002). The latter learners do not force cognitive 

                                                             

12 Learners extract meaning by beginning with formal definitions and constructing properties by logical 

deductions. This goes hand-in-ƘŀƴŘ ǿƛǘƘ 5ǳōƛƴǎƪȅΩǎ !th{ ǘƘŜƻǊȅ όмффмύ ƛƴ ǿƘƛŎƘ Ƴulti-quantified 

ǎǘŀǘŜƳŜƴǘǎ ŀǊŜ ƎǊŀǎǇŜŘ ōȅ ǿƻǊƪƛƴƎ ŦǊƻƳ ǘƘŜ ƛƴƴŜǊ ǉǳŀƴǘƛŦƛŜǊ ƻǳǘǿŀǊŘǎΣ ŀƴŘ tƛƴǘƻ ŀƴŘ ¢ŀƭƭΩǎ ŘƛǎŎǳǎǎƛƻƴ ƻŦ 

the conversion of the predicate (as a process) into a statement (as a mental object) (2002). 
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processes but progress by refining and reconstructing existing imagery in a form that they 

can use to reconstruct the formal theory. These are the learners who are successful at 

mathematical reasoning and problem solving. This scenario bears comparison with how 

learners in mathematics interpret the concepts of transformation geometry and also how 

they engaged in learning its content. Computers can also assist learners to develop 

appropriate concept images. Comparing learnerôs interpretations and the formal 

definitions of transformation concepts to judge the accuracy of learnerôs concept images, 

forms an important part of this research study. 

 

2.7 REVISITING THE FACTS ABOUT CONCEPT IMAGE AND ITS 
COHERENCE  

 

We have already discussed Tall and Vinnerôs definition of a concept image as an 

individual cognitive structure associated with a given concept (1981). They also consider 

concept images to be a collection of vague conceptions about the concept, with or without 

connections to its definition. Viholainen is of the opinion that concept images are mental 

images or interpretations of the concept based on different kinds of representations about 

the properties or processes that involve it, and considers concept images to be connected 

to an individual learnerôs personal way of understanding the concept (2008). Concept 

images may contain concept definitions or may be contained in a concept definition (Tall, 

2005). Vinner (1991) points out that mathematical reasoning based on concept images 

may be entirely separate from reasoning based on concept definitions. Individuals create 

meaning or interpretations of a concept by means of their existing knowledge structure 

and this can be referred to as a personal interpretation of a formal concept definition 

(Viholainen, 2008). This interpretation of a concept may be dependent upon the apparent 

context or the context in which it is in use. Concept images include all the conceptions, 

whether accurate or inaccurate, that an individual has about a concept. They may be 

definitions, visual or physical meanings, or the relationship between a concept and other 

mathematical concepts, for example. Concept images influence how learners understand 
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mathematical concepts because learners cannot understand any concept in isolation to the 

concrete world.  Learnersô misconceptions around concepts relating to transformations of 

functions may derive from the learnersô incorrect images of the concepts. In order for 

learners to understand the concepts involved in transformations of functions, they should 

possess both theoretical and practical understanding of the concepts of reflection, 

translation and stretch. They should be able to represent the transformation concepts in 

multiple ways ï practically, diagrammatically and symbolically. For example, reflection 

about the x-axis can be presented by using a mirror (practically), counting squares 

(diagrammatically), changing the sign of the x-coordinates (theoretically), using matrices 

(symbolically) or by using a computer programme. 

Boas van Emde (1981) suggests that all concepts should be introduced in a fashion that 

facilitates understanding, beginning with several examples and then generalizing to end 

with some form of an abstraction. This statement assumes that learners will be able to 

identify and adopt the common features of the examples and will be able to then 

understand the abstract concepts implied. They may, however adopt features that are not 

part of the abstract concept, in which case misconceptions are likely to arise. It is not 

always easy for learners to achieve conceptual understanding from the outset. Some 

learners understand concepts only after acquiring procedural skills in using the concepts, 

i.e. by first learning to follow symbolic rules, then arriving at a fuller understanding later. 

For example in advanced parts of mathematics learners need functional understanding or 

procedural fluency at first, with the possibility of future refinement or revision of the 

concepts as and when they progress further. Some learners use concept representations 

for formal definitions, forming generic pictures covering many possible cases of their 

imaginations. These learners could be said to see the general within the specific (Mason 

& Pimm, 1984) as they experiment in their thoughts. Some learners combine mental 

imagery, its verbal equivalent, and its ensuing properties to make a cognitive unit 

(Barnard & Tall, 1997; Pinto & Tall, 1999). 

Translation from visual to verbal forms suggests a possible method of moving from visual 

mathematics to formal mathematics. Seeing the general in a particular image (Mason & 
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Pimm, 1984) gives meaning to the corresponding formal definition and uses links 

between imagery and formalism to formulate and prove theorems. 

Visualization (via sensations or the imagination) and spatial skills are essential to 

conceptual understanding, particularly in transformations of functions. In mathematical 

thinking, learners need to make appropriate connections between the definitions of 

concepts and their visual representations. Vinner and Dreyfus (1989) point out that 

learners might not understand a concept in depth if they do not tie the concept image to 

concept definition appropriately. Good teachers help learners to make such connections. 

Lack of conceptual understanding of transformations of functions, in particular, and 

mathematics in general, leads to misinterpretations and misrepresentations of some ideas 

about the concepts. For example, in the report by University of Cambridge Local 

examination Syndicate (UCLES) (1989), an international examination board for some 

Common Wealth countries13, candidates confused reflection with rotation, and stretch 

with enlargement. Therefore, it is best that learners understand these transformation 

concepts through the images they create of them, be they pictorial or concrete 

representations, regardless of the definitions. It is necessary to ensure, however, that 

learners do not misconstrue or over generalize those representations and build 

misinterpretations and misconceptions.  

Visualisation and spatial skills have a lot of value. They can enhance a global and intuitive 

view and understanding of various areas of mathematics (Bishop, 1989; Fischbein, 1987; 

Usiskin, 1987). Fischbein (1987) points out that visual images can be organized into a 

meaningful structure and they can also play an important role in analytically developing 

a problem solution. Bishop (1989) reiterates that it is valuable to emphasize visual 

representation in all aspects of teaching in the mathematics classroom. Hershkowitz 

(1989) claims that good visualization is a necessary tool for concept formation. While 

many mathematics educators recommend the use of visuals in classroom (Bishop, 1983; 

Usiskin, 1987), it should be noted that traditional methods of having learners copy 

                                                             

13 Common Wealth countries are predominantly former British colonies. 
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diagrams and properties from chalk or white boards, and making them do repetitive 

exercises, are potentially frustrating for many learners because of poor conceptual 

understanding.  

As mathematics needs precise concept definition and accurate interpretation of concepts, 

it is imperative to establish how mathematics learners interpret the concepts of 

transformation of functions, how they engage in the learning of its content, and how they 

see the relationship between their concept images, their practical use of the images, and 

the implied meanings of the formal definitions of the concepts. A teacher needs a 

thorough knowledge of the various possible mental images learners form in their minds, 

whether they are simple complex, pictorial or symbolic, or in tabular or diagrammatic 

form, for example. Even if the concepts are formally defined in textbooks, each learner 

may use these concepts in their own particular form or interpretation. There may be gaps 

between formally defined concepts and cognitively processed and conceived concepts in 

the way they are stored in the learnersô memory structures. The form in which learners 

use their concept images may be modified to suit their own experiences. They may have 

refined the meanings and interpretations to match their own levels of manipulation and 

communication. When concepts are manipulated, there may be some associated processes 

that affect their meaning and usage. As Tall and Vinner state, we need to know the 

resultant cognitive structure, or the concept image. It may be a mental picture and 

associated properties and processes, which are ñbuilt up over the years through 

experiences of all kinds, changing as the individual meets new stimuli and maturesò 

(1981:152). They may be evoked concept images that are in the process of formation. 

Different learners may have their own personal concept definitions (Tall & Vinner, 1981) 

and reconstructions which may relate, to a greater or lesser extent, to the formal concept 

definition. Personal concept definitions may form when learners put their own words and 

explanations to the evoked concept image. The personal concept definitions may 

sometimes be in conflict with the formal concept definition, and this could lead to 

misconceptions that impede meaningful learning. Learners who have misconceptions 

may develop negative attitudes towards the topic and the subject in general. Some learners 

believe that transformations of functions is a difficult topic, but this notion could be 
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dispelled if the teacher is knowledgeable about the types of concept images that promote 

understanding and is able to assist learners in forming appropriate imagery.  

Various models have been developed to explain the ways in which learners construct their 

understanding of concepts: Vinnerôs model (1983), Dubinskyôs APOS model (1991), 

Sfardôs theory (1991), and Harel and Kaputôs model (1991). Only the first three are 

relevant to this research study, and these will be dealt with in the sections that follow. 

 

2.8  ±Lbb9wΩ{ ah59[ Chw /hb/9t¢ 59CLbL¢Lhb{ !b5 /hb/9t¢ 
IMAGES FRAMEWORK   

 

Vinnerôs model (1983) is the schematic version of the model first described by Tall and 

Vinner (1981). The model attempts to explain concept definition and the concept image 

relationship or framework. It assumes the existence of two different cognitive substructures 

in the learnerôs mind: one for concept definition and the other for concept image formation. 

These are considered void as long as no meaning is associated with the concept name. 

There can be some interaction between the substructures although they are formed 

independently. If, for example, a teacher introduces the concept of reflection as a mirror 

image, then a learner might have a concept image of a reflection as any object and its 

inverted (reflected) image. According to this concept image, an object and its reflected 

image are always on opposite sides of the axis of reflection (mirror line). The learner may 

not take the time to explore all the possible different positions of the axis of reflection, 

some of which cannot be modelled by a mirror. This concept image may need to be adjusted 

or changed to include the situation where the axis of reflection passes through the original 

object, in which case the image is found on both sides of the axis of reflection. For example, 

a mirror with only one reflecting surface, which is positioned somewhere on a plane shape, 

cannot reflect the whole plane shape as part of what is facing the dull surface of the mirror. 

Furthermore, a mirror cannot pass through a solid object so this scenario would be less than 

meaningful to the learner. Because the model of a reflection as a mirror image has its 
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limitations, for some learners the formal definition of reflection would not have been fully 

assimilated, thus the concept definition substructure would remain incomplete. 

When a concept is first introduced by its formal definition, the concept image substructure 

is void initially, and begins to fill in as examples are given and explained. One model 

example may not be enough to explain a concept, so, to facilitate a more complete 

understanding, a teacher would have to give enough examples to reflect important aspects 

of the concept definition. If learners have too few examples to relate, misconceptions 

maybe arise from the limitations of the model. 

A two-way interplay or interaction of the concept definition and the concept image 

substructures results in long-term concept image formation. This model could be used to 

explain how learners either acquire or fail to acquire mathematical skills like creative 

thinking and logical reasoning. These skills are very pertinent to transformations of 

functions as they influence understanding and use of the concepts involved. The illustration 

in figure 2.1 shows the interplay or interaction between a concept definition and a concept 

image. 

 

Figure 2.1: A model for long-term concept image formation 

 

 

 

 

 

 

This interaction between concept definition and concept image is relevant to those 

activities in which learners contextualize the concepts of translation, reflection and stretch, 

interpreting them in terms of his or her world of understanding, be it empirical (real life) 

Concept Definition Concept Image 
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or imaginary. It can take more than one attempt for a learner to form a comprehensive 

concept image. The amount of time and effort necessary depends on the complexity of the 

concept. The concept images for translation and reflection of functions are likely to take 

less time to form than that of stretching a function because translation and reflection are 

less complex and correlate more readily with real life examples.  

Behaviourist-oriented teachers may think that concept images form easily through 

rehearsal of the concept definitions (diagrammatically, this would be a single direction 

process, where the arrow points from concept definition to concept image). This forces 

learners to mechanically memorize the concept definitions. Both the concept definition and 

the concept image substructures may remain void, thus making the learner likely to forget 

quickly or to suffer information decay, which could result in a negative attitude towards 

learning. Some learners who experience only this type of learning may struggle in 

mathematics and other sciences.  

When faced with a cognitive task in problem solving, both the concept definition and the 

concept image substructures must be activated in the learnersô minds. That is why there is 

an introduction of the input and output arrows to the diagram of the model (see below). 

The inputs refer to any of the causes that evoke cognitive processes, for example, the 

mention of the concept, identification of it from various others, or cognitive tasks involving 

the concept. In the context of this study, the inputs may be questions asking learners to 

identify transformations of functions that have taken place, to identify the images that 

correspond to specific transforming functions, to find the pre-images of given functions, or 

to illustrate verbal transformations of functions through various representations 

(symbolical, graphical, tabular or in the form of flow diagrams). The outputs might be 

achievements, intellectual behaviours or attitudes, solutions to the problems posed, or 

illustrations, among others. In general, they are the answers to the questions posed. The 

intellectual process involved in the solution of a task is illustrated schematically by the 

models in figure 2.2.  
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Figure 2.2: A model for expected intellectual processes in problem solving. 

(a) Input, concept image ï concept definition interplay then output. 

  OUTPUT  

 

 

 

 

    Input  Cognitive task 

      (Identification/construction) 

      INPUT 

(b) Formal deduction from concept definition. 

 

 

 

 

 

 

(c) Deduction from intuitive thought. 

 

 

 

 

 

 

[Source: Tall (1991); Diagram adapted from Vinner (1983).] 

Concept Definition Concept Image 

Concept Definition Concept Image 

Concept Definition Concept Image 



47 

 

 

In model (a), the process is started by an input (e.g. cognitive task) in which the concept is 

identified. The concept image is then evoked causing interplay between concept image and 

concept definition, then a deduction is made directly from the formal definition to an 

output. In model (b) the input evokes the concept definition directly, which produces the 

solution without even consulting the concept image. Model (c) is like model (a) but without 

the interplay between concept definition and concept image. Here the concept image 

informs the concept definition which, in turn, produces a solution. 

Common to all these three models is that when the system reacts to a posed problem, the 

solution develops after consulting with the concept definition. This is the desired situation 

but, unfortunately, it does not always happen in reality. The cognitive system does not act 

against its nature (the empirical world) by forcing itself to consult concept definitions 

instead of concept images, or by working out a solution to a cognitive task from the concept 

definitions. Once concept images are formed, they are the ones to be consulted in problem 

solving. This demonstrates how important correct concept images are. A learner with 

misconceptions will always make the same mistakes unless his or her concept image is 

corrected convincingly.The more realistic model for how the process occurs in reality is 

the one given in figure 2.3 below:  

Figure 2.3 : A model for the realistic intuitive response.   

OUTPUT 

 

 

 

 

 

INPUT 

[Diagram adapted from Vinner (1983). Source: Tall (1991).] 

Concept Definition Concept Image 
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This may not be the model of choice, but it is what happens in practice. Once concept 

images are formed, they are the ones that are consulted to solve problems. The cognitive 

system acts on the concept images and works out the cognitive tasks without consulting 

the concept definition, even if that substructure is non-void. The everyday thought habit, 

the concept image, takes over and the respondent is unaware of the need to consult the 

formal definition. The important issue is whether or not the reference to the concept image 

substructure is successful and correct. An incorrect concept image can be expected to give 

rise to an undesirable solution to the problem, if any, while a correct concept image can be 

expected to give a desirable solution. It is imperative, therefore, that mathematics teachers 

facilitate learnersô formation of appropriate concept images. Working through as many 

examples as possible could do this, as any one of the examples could be picked up and 

form the learnerôs concept image. Numerous examples to illustrate reflection, translation 

and stretch will facilitate the formation of correct concept images for these concepts in the 

minds of learners. 

 

2.9  5¦.Lb{Y¸Ω{ !ΦtΦhΦ{Φ ah59[ hC /hb/9t¢¦![ Chwa!¢LhbΦ  
  

Dubinskyôs APOS model (1991) is one of the theories in mathematics education that helps 

to explain how learners construct their understanding of mathematical concepts. It provides 

a model for how learners construct mental Actions, Processes and Objects and organize 

these into Schemas to make sense of mathematical concepts and solve problems. The 

theory is also used, when analysing data, to organize the learnersô responses to tasks and 

provide the language to communicate ideas about learning results. This model connects 

strongly with the reflective abstractions involved in learning, which were theorised by 

Piaget. It has been extended into advanced mathematical thinking about how students 

understand basic mathematics concepts (Asiala, Brown, Kleiman & Mathews, 1998). This 

model provides objective explanations for student difficulties across a broad range of 

mathematics concepts and suggests ways of overcoming them (Trigueros & Ursini, 1997), 
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thereby providing pedagogical strategies that lead to marked improvements in studentsô 

learning of abstract concepts (Artigue, 1998). 

The APOS model can be applied to the language of communication of ideas about teaching 

(Dubinsky, 1995) and it has been successfully applied to the teaching of transformations 

of functions (Breidenbach, Dubinsky, Hawly & Nichols, 1992; Carson, 1998; Dubinsky & 

Harel, 1992). 

2.9.1  How the APOS model explains learning and understanding 
concepts in mathematics in relation to reflection, translation and 
stretch of functions 
 

Actions are manoeuvres by learners to soften abstract concepts explicitly or mentally to 

perform operations, e.g. the term ómirrorô make it easy to visualize reflection mentally, the 

term óslideô simplifies the action of translating an object and the simile of ópulling an elastic 

bandô or ócompressing a spiral springô concretizes stretch in its two orientations. 

Processes are repeated actions and reflective thoughts upon actions, to the extent of having 

internal constructions, which learners can perform mentally with minimal thinking. They 

can reverse or combine performances with other processes. 

Objects are constructed from processes. Learners become aware of them as part a group, 

e.g. the term reflection encompasses reflections about the x-axis, y-axis, y = x, y = -x, or 

any other line. Similarly, translation can be horizontal (left or right), vertical (up or down) 

or oblique, and stretch has pull (vertical or horizontal) or compression (vertical or 

horizontal). 

Schemas are collections of actions, processes and objects and other schemas that are linked 

by the same principles to form a framework in the individualôs mind. Once a learner has a 

schema of transformations, he or she can identify a reflection, a translation or a stretch and 

can work with them out, given a problem situation. The framework of a schema must be 

coherent both explicitly and implicitly. With schemas in place, learners are less likely to 
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fear mathematics, in general, and any question that applies knowledge about 

transformations of functions, polygons or solids, in particular.  

These four components are presented as having a hierarchy, but in reality the 

implementation of the elements may be in any order. 

The APOS model makes provision for the analysis of data. The presence or absence of 

specific mental constructions can be connected to learnersô successes and failures when 

doing mathematical tasks. The difference between complete and incomplete performances 

can be assessed by reference to mental constructions of actions, processes, objects and/or 

schemas to explain why some learners do better than others on a specific task. The APOS 

model enables us to make predictions about learnersô likely success or failure when faced 

with mathematical concepts and problem situations.  The decompositions of schemas in 

terms of mental constructs are ways of organising hypotheses about how the learning of 

mathematical concepts takes place. These descriptions also provide a language for talking 

about such hypotheses.  

 

2.10    {C!w5Ω{ ah59[ hC /hb/9t¢ Chwa!¢Lhb 
 

Sfardôs (1991) model of concept formation has three stages: interiorization, condensation 

and reification: 

¶ Interiorization occurs when a learner acquaints herself or himself with a mathematical 

concept and the processes concerning it. 

¶ Condensation occurs when the learner sees the concept in relation to other concepts 

and is able to see the connections between these concepts. 

The first and second stages are operational or process-oriented. 

¶ Reification occurs when the learner has built up a comprehensive picture of the 

mathematical concept. At this stage, the development achieves a structural level and 
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the concept is understood as an object, a structure or a product, which can be subject to 

new operations (Sfard, 1991).  

Sfardôs model of concept formation is comparable to that of Harel and Kaput (1991), 

although they refer to the reification stage as the learner having developed a conceptual 

entity. Dubinsky uses the term encapsulation in preference to reification (1991). 

Dubinskyôs and Sfardôs models are related to and appear to be simpler than Piagetôs model 

of cognitive constructivism (See section 3.1.1 below). 

 

2.11   A NEW MODEL  
 

This section presents a new ideal model of the process of understanding the concepts of 

transformations of functions developed by this research study. It has four developmental 

stages, which are linked to Dubinskyôs APOS model (1991) and Sfardôs model (1991) and 

it may be considered a direct application of the Tall and Vinner (1981) model. The model 

promotes the formation of correct concept images.  

STAGE 1: Verbal definition  

Learners first receive the information about transformations of functions verbally via the 

teachersô introductory lesson, demonstrations and/or simulations. This stage lays the 

foundation for conceptual understanding. It would be almost impossible for learners to 

enter the next stage of graphical representation if they have not understood what they are 

to represent. Understanding the verbal definitions equates to Sfardôs stage of interiorization 

(1991) and opens the way for actions as per Dubinskyôs APOS model (1991).  

STAGE 2: Graphical representation 

In order to reinforce the verbal definitions, learners need to identify and represent the 

transformations by means of Cartesian graphs. This stage equates to the action stage in the 

APOS model. Learners have to learn every action involved in the transformations, be they 

counting squares or using mathematical instruments to reflect or translate each point of the 
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original function. The three transformations dealt with in this study, reflection, translation 

and stretch, become actions physically and mentally when mapping functions to other 

functions. At lower levels of understanding, learners engage with every action involved in 

isolation from the previous action and the following action. For example, the learner acts 

on one point of the transformation at a time, until the whole function has been transformed.  

STAGE 3: Algebraic representation 

The third stage occurs when learners identify and represent transformations algebraically 

with a formula. The formulae take two possible forms: showing effects of parameters on 

the original function, or showing how the two coordinates of a generic point in the original 

function transform to the image function. This stage corresponds to the process stage in 

Dubinskyôs model (1991) or condensation, according to Sfard (1991). The early phase of 

this stage may be characterized by computing and manipulating points without reasoning 

about processes, but just by uncoiling the given algorithms for the synthesizing of 

transformations. After a learner has repeated the actions and reflected upon them, he or she 

may begin to internalize the actions and connect them to form a process. The learner is 

then able to transform the whole object at once. If a learner has a process level 

understanding of transformation concepts he or she can also imagine the image of a 

transformation without actually performing the action and can reverse the steps of the 

transformation to get a reverse process/transformation.  

STEP 4: Coherent understanding  

At this stage the learner understands transformations of functions fully and coherently, i.e. 

verbally, graphically and algebraically and without confusing one with another. This is a 

generalized process of understanding transformations at object and schema levels 

(Dubinsky, 1991) or the reification stage (Sfard, 1991). Objects represent linkages or 

connections between processes. If a learner has an objective understanding of 

transformations of functions, he or she can operate two or more transformations 

successively or simultaneously, and can also do the reverse easily. The learner can also 

compare and contrast them correctly. A schema is a more advanced stage of relational 

conceptualization where a learner is able to understand and perform two or more 
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transformations that have taken place. Schematization, in this context, refers to the ability 

to do something with little or no thinking at all, i.e. some of the links between concepts and 

their manifestations are established automatically. Figure 2.4 below summarizes the steps 

of understanding of transformations of functions. 

 

Figure 2.4: A model for developmental understanding of transformations of 

functions. 
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Of Transformation within-context-of-Functions   by learners 

__________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

Generalized 
process of 
understanding 
transformations 

Algebraic 
representation of 
transformations 

Representating   
transformations 
by a Cartesian 
graph. 

Verbally 
representating 
transformations 

Coherent 
understanding 

Graphical Images 

Algebraic Images 

Definitions of 
Transformation 

Concepts 

Full relational understanding of 
translation, reflection and 
stretch of functions: verbal, 
graphical and algebraically. 

Learners can identify and 
represent transformations 
algebraically. 

Learners can identify and 
represent transformations by a 
Cartesian graph. 

Learners have verbal 
understanding of the 
transformations. 



54 

 

 

 

2.12 CONCLUDING REMARK  
 

The analysis of concept images and the presentation of various models serve as a basis for 

this study because they provide a platform from which to explore images of the 

mathematical concepts of transformations of functions and related reasoning in that section 

of mathematics.  The following chapter is a literature review about scholarship relevant to 

this research study.  
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CHAPTER THREE 

Theoretical Framework and Literature Review 
 

The theoretical framework of this study is influenced by the dual cocktail of constructivist 

theory of learning and the cognitive process of conceptual development. As such, this 

chapter focuses on the reviews of the proponents and supporters of the two theoretical 

frameworks. The section for literature review looks at what other researchers worked on 

similar studies relating to conceptualisation. 

 

 3.1 THEORETICAL FRAMEWORK   
 

Learning has been explained from different theoretical perspectives, such as behaviourist, 

cognitivist or constructivist. A learning theory can function as a lens through which facts 

about how learning takes place are viewed and it normally influences what is seen and not 

seen about the facts. Learning theories help us to interpret facts, for example, good learning 

processes are likely to result in appropriate concept image formation within the learnerôs 

mind. Concept images can be interpreted using learning theories.  

Contemporary psychology of mathematics education is centred on the constructivist and 

cognitivist philosophies. The formation of concept images by learners can be explained 

through these philosophies. Constructivist theories of thinking and reasoning can be traced 

back as far as Giambattista Vico in the 1700s (Glasersfeld, 1984), but Piaget and Vygotsky, 

writing in the 1970s, are considered the first true constructivist scholars with regards to 

education. Constructivism is now considered to have two major streams: personal 

constructivism, of which the major proponents are Piaget and Von Glasersfeld 

(Glasersfeldôs views of learner independence in learning being more radical than Piagetôs), 
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and social-cultural constructivism, of which the major proponent is Vygotsky. Piaget tends 

to associate learning with mental development (see section 3.1.1). Constructivismôs basic 

premise is that learners are constructors or creators of their own knowledge under the 

teacherôs guidance (Glasersfeld, 1984). Concept images develop as learners construct 

knowledge, mentally or socially, about a particular formally defined concept. A discussion 

of the two subdivisions of cognitive constructivism, personal constructivism (Piaget and 

Von Glasersfeld) and social-cultural constructivism (Vygotsky), follows. 

 

 

3.1.1 Cognitive constructivism and concept images 
 

Piagetôs (1963) formulation of personal constructivism, i.e. cognitive constructivism, 

postulates that children develop personal cognitive structures and capabilities as they 

learn, that help them to construct their own understanding of reality (concepts) in various 

ways through exploring, observing, listening, touching etc. These sensory activities, 

referred to as active learning or learning by doing, link new knowledge to previously 

learnt knowledge. Piaget did not use the term concept images, but he referred to such 

ideas in other words. According to Piaget (1985), under the umbrella of equilibration, 

learners are empowered to transform and reorganize their cognitive constructs (schemas) 

constantly through assimilation,14 accommodation15 and disequilibration.16 Piaget refers 

to the permanency of results that derive from an individualôs coordination of experienced 

data and the subsequent co-ordination with the world that lies between the senses. 

 

                                                             

14 Organization of new experiences with current understanding or logical structure. 

15 Reflection and organization of current understanding to integrate new experiences. 

16 New experiences that contradict current understanding leading to accommodation of such knowledge. 
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3.1.2   Radical Constructivism and Concept Images  
 

Von Glasersfeld refers to concept images as conceptual structures. His version of 

constructivism is regarded as being more radical than Piagetôs because he maintains that 

knowledge is individually created and adjudicated and that experience is what brings forth 

knowledge claims. According to Von Glasersfeld (1984), knowledge consists of 

conceptual structures (concept images) that act as epistemic (knowledge) agents and it is 

actively built by the thinking individual through the senses or any other communication 

forms experienced within the individual learnerôs minds. The emphasis is on active 

involvement of learners in the process of learning. Von Glasersfeld did not rate social 

interactions among learners as being important to knowledge building. He focused on the 

learnersô individuality and said that knowledge is functional and adaptive such that learners 

need to assimilate and accommodate new knowledge into pre-existing schemas for easy 

and meaningful learning. Von Glasersfeld reasoned that even if new knowledge does not 

fit into the pre-existing schemas, equilibrium can still occur, but this requires some 

adjustment of concepts to enable sensory insights for accommodation. This would lead to 

conceptual structures (concept image) forming. 

 

3.1.3  Social-cultural constructivism and concept images 
 

Vygotsky refers to concept images using the term knowledge structure. His primary notion 

of socialïcultural constructivism insists that knowledge construction does not happen in 

the mind of a learner. It stresses that knowledge acquisition and construction happen as a 

learner interacts with his or her surroundings (1986). This points to the importance of 

interaction with other people in the school context for learning concepts, both dialogue 

with other learners and assistance from teachers and fellow learners. Dialogue aids 

understanding of concepts, and assistance from others strengthens the learning process 
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within a learnerôs zone of proximal development (ZPD) 17 . Readiness-to-learn and 

scaffolding18 are two of the factors that influence learning within the ZPD (Vygotsky, 

1978). Scaffolding is built through the learner-support materials or tools that are used. 

These could be in the form of hints or advice that prompts reflection, coaching, articulation 

of different ideas, or making links between every day and formal concepts. All these 

pathways facilitate concept image formation. 

3.1.4  Social-cultural Constructivism as viewed by Ernest 
 

Ernest (1991) is concerned with the nature of mathematics and how it is taught and learnt 

within the society of learning. He emphasizes the role of teachers in communicating 

mathematical concepts to learners and checking conception by means of testing and 

assessment. He is of the opinion that personal mathematical knowledge (i.e. concepts, 

theorems, algorithms, objectives and other mathematical truths) and explicit mathematical 

knowledge representations are products of educational research and cultural products 

created by humans. He was widely criticised, especially for the claim that mathematical 

theorems are truths and that these truths cannot be corrigible or revisable but are naturally 

infallible.  His other controversial position was that mathematics is socially constructed 

and accepted, where the acceptance is purely on the basis of group agreement. Ernest 

argues that mathematical knowledge creation, communication and justification happened 

in historical communities that lived with traditions of mathematical practice that were 

based on certain criteria for acceptability. The traditions included acceptable forms of 

presentation, reasoning and consistency. But these ignored the dynamics of development 

of mathematical concepts, theories and rules of acceptance. New views come and are 

debated critically and new consensus reached.   

 

                                                             

17 The ZPD is the ŎƻƴŎŜǇǘǳŀƭ ƪƴƻǿƭŜŘƎŜ ƎŀǇ ōŜǘǿŜŜƴ ǘƘŜ ƭŜŀǊƴŜǊΩǎ ƭŜǾŜƭ ƻŦ ŎƻƳǇŜǘŜƴŎŜ ŀƴŘ ǘƘŜ level 

expected by teachers or the syllabus. 

18 Scaffolding refers to the cognitive ΨapprenticeshipΩΦ 
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3.1.5   Models of human memory structures  
 

Concept image formation is a salient product of information processing within the 

memory structures. The study of memory structures and the explanation of the memory 

process date back to the fourth century BCE when the Greek philosopher Aristotle used 

a simile of wax impressions to describe memory structures, as he considered them to be 

copies of reality that individuals store and retrieve later (Tulvin, 1983). The assumption 

he made was that whatever is remembered is a simple copy of what was originally 

experienced in reality. This view was soon superseded since people normally remember 

part, but not all, of what they experience so, in most cases, remembering is an attempt to 

reconstruct what was experienced (Atkinson & Shifrin, 1968 as cited in Khateeb, 2008).  

According to Tulvin, Atkinson and Shifrin described a model for human memory that 

consists of three sub-memories, namely, sensory memory, short-term memory and long-

term memory, in their research into how learnt information is processed (1983). The 

linkage between the sub-memories is illustrated in figure 3.1. In this model, the sensory 

memory buffers sensory stimuli (information) from the iconic (visual), echoic (auditory) 

and hepatic (touch) channels. The important information filters from sensory memory to 

short-term memory. This happens only if the content is interesting to the learner; 

otherwise it quickly decays and is lost. The short-term memory is for temporary-recall 

information and, because of its limited capacity, it is characterized by rapid information 

decay. Within the short-term memory is the working memory, which determines what to 

pay attention to and process. Working memory holds on to speech and sound information 

temporarily through the phonological loop. It creates mental (concept) images or solves 

visual and spatial problems through the visuo-spatial sketchpad and controls attention 

systems through the central executive (Tulvin, 1983; Khateeb, 2008).  
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Figure 3.1: The Atkinson and Shifrin  (1968) model for  human memory  

 

 

[Source: Tulvin (1983)] 

 

According to Atkinson and Shifrin (1968, cited in Khateeb, 2008), the long-term memory 

is characterised by prolonged storage of important information that has travelled through 

the working memory, therefore there is little information decay. In Tulvinôs (1983) model 

of long-term memory there are semantic, episodic and procedural memory structures, 

which this research study correlates with concept images, for they store information and 

allow it to be recalled explicitly or implicitly. It is important, therefore that learners use 

proper learning styles and strategies that take information directly to the long-term 
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memory. Effective teaching facilitates such styles and strategies of learning. This 

structure is summarized in Figure 3.2 below. 

Figure 3.2: Tulvin model for  long-term memory structure. 

 

 [Adapted from Tulvin (1983)] 

 

According to Tulvin (1983), semantic memory structures consist of acquired facts, 

concepts and skills from learning, episodic memory consists of events and experiences, 

and procedural memory is a form of step-by-step procedures, psychomotor skills and 

algorithms. It is therefore logical that a combination of these memories influences the 

formation of concept images. Khateeb (2008) indirectly warned against rehearsal19 as it 

cannot store information in the long-term memory. It is unfortunate, therefore, that most 

learners learn in this less than effective way (DoE, 2013; 2014). Better ways of storage 

should be encouraged, for example, those that involve continuous use and schematic 

learning or process-oriented learning. Tulvin (1983, in Khateeb, 2008) states that decay, 

                                                             

19 Repeated exposure to information or singing jingles. 
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interference and some emotional factors negatively affect long-term memory, while 

prompting may retrieve information stored in the long-term memory by recall20 or 

recognition.21 In mathematics education today prompting can be done by testing or posing 

problems. 

The visuo-spatial sketchpad is important in creating mental images and in the solution of 

visual and spatial problems. The information that is remembered is highly dependent upon 

the way in which it was processed (Tulvin, 1983). The processing of new information 

depends heavily upon memory of past experience. Schemas develop that link often-

encountered familiar situations to guide in the understanding and memory of the new 

events.  

 

3.2 LITERATURE REVIEW 
 

Documented research on mathematical conceptualization has been done since the second 

half of the 20th century, as it is an ever topical issue. Conceptualisation studies in 

education focus mainly on mathematical reasoning, concept images, cognitive conflicts 

and learning catastrophes. Significant research in the study of conceptualisation was done 

by Tall in the 1970s and by Vinner and Hershkowitz ,Tall and Vinner,  Presmeg, Usiskin, 

Fischbein and others in the 1980s,and the bulk of the information now available about 

conceptualisation was published in the 1990s (Dreyfus, 1991;Gray & Tall, 1994; Sfard, 

1994; Eysenck & Keane, 1997; Duval, 1998; Markmann, 1999 ) and the first decade of 

the 21st century (Thompson, 2000; Akkock & Tall, 2002; Pinto & Tall, 2002; Elia, 

Gagatsis & Deliyianni, 2005; Tall, 2005; Viholainen, 2008; Gagatsis, Panaoura, Elia, 

Stamboulidis and Spyrou ,2010; and  Tsamir, Tirosh, Levenson, Barkai and Tabach, 

2014).   

                                                             

20 Reproducing as it is found in the source. 

21 By means of cues. 
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The paragraphs below outline similar researches to this one, in methodology and 

objectives, which were done about conceptualising mathematical concepts.  

 

Tall investigated studentsô understanding of the meaning of terms such as complex 

number, real number, limit, continuous, infinity, and proof (1977a). The study was carried 

out using questionnaires and follow-up interviews. The students gave conflicting 

explanations of the terms, as Skemp (1976) also found when researching relational and 

instrumental understanding. The study identified difficulties, cognitive conflicts and 

catastrophes (misconceptions) in learning mathematical concepts and obtaining the 

necessary skills in the process of restructuring schemas for logical understanding of ideas. 

Tall (1977a) hypothesizes that such problems in understanding develop during the 

process of instruction, but stops short of blaming teachers. The understanding of 

mathematics seems to occur in spurts, alternating sense and confusion, thereby tasking 

the brain to restructure already existing schemas and work with dynamic flow. 

Establishing clarity and ensuring permanent understanding of mathematical ideas is a 

demanding task for teachers. Cognitive conflicts and learning catastrophes occur for 

many learners, which is why this study is researching the state of learnersô concept images 

and mathematical reasoning. Tall (1977a) advises not to underestimate the role of the 

teacher, for he or she facilitates schematic restructuring for learners. The teacherôs use of 

programmed learning, work cards, and other tools, together with the voice, helps unblock 

lines of thought that could potentially lead to conflicts and catastrophes.  Competent 

teachers immediately identify these at the moment of occurrence. The current study deals 

with Grade 11 learners, who are the year before the end-of-high-schooling examinations 

so the teachers get informed about such experiences in the mathematics teaching 

profession. 

Tall (1977b) explains reports on the investigation done with Warwick University students 

doing mathematical proofs on limits of sequences. He presents a qualitative description 

of the mental activity that happens when new concepts are formed. He uses a rather 

complex model that focuses on attractors, which link flows between concepts and 
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schemas, and repellers, which hold concepts and schemas apart, but that are involved in 

the same topic. The data used to illustrate the investigated experience was collected from 

students by means of a test task with follow-up questionnaires. The study by Tall revealed 

some difficulties, cognitive conflicts and catastrophes in learning the mathematical 

concepts and skills used by learners to build up schemas for understanding ideas logically. 

In this study, Tall discusses how teachers are tasked with identifying conflicts and 

smoothing them out suitably. Learners may not be able to identify their own learning 

problems, so a teacher has to use the óart and science of teachingô (investigation and 

observation skills) to identify learnersô individual difficulties and assist in removing 

possible conflicts, giving a clear exposition of the major mathematical ideas (1977b).  

Tall and Vinner were the first scholars to emphasize concept image and concept definition 

after the terms were first introduced by Vinner and Hershkowitz (1980). They distinguish 

concept images from concept definitions in the context of limits of sequences, series and 

functions, and continuity in functions. They define concept images as ñthe total cognitive 

structure in the individualôs mind that is associated with a given conceptò (1981:152). 

Tall and Vinner regard concept definitions as words that are used, in books or scientific 

articles, to specify a particular concept. A concept definition may be learnt by an 

individual in rote fashion. In order to investigate studentsô concept images for limits and 

continuity, Tall and Vinner (1981) used questionnaires, casual observations, and follow-

up questionnaires and interviews. The students were asked to explain and work through 

some examples that had missing intermediate working stages, and were asked to define 

ólimitô. The researchers found that even though most students could not define limit 

correctly, they had their own concept image of a limit, which was enough for them to 

attempt examples. Students used words like óapproachesô, ógets close toô and ótends to cô, 

for instance.  The concept image for continuity of a function given by some students was 

the idea of a graph without gaps or one drawn freely without lifting the pencil from the 

paper. The research study that forms the basis of this thesis uses the term concept image 

with the same meaning as Tall and Vinner (1981) do. It uses a diagnostic test and follow-

up interviews to determine learnersô concept images and mathematical reasoning with 

respect to transformations of functions. 
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In another study conducted in 1986, Tall analysed, from a single activity task, the 

relationship between the definition of a tangent and studentsô concept images of a tangent 

to a piecewise function graph of 

 

Only a third of the students in the study had correct tangent images, and Tall emphasized 

that individuals build up their mental imagery of concepts in ways that may not always 

be coherent and consistent (1988). The difficulties that arise, when students learn 

mathematics, do not necessarily stem from a lack of aptitude on the part of students, as 

was shown by Tallôs study, they are a widespread human phenomenon. This research 

study is being performed against this backdrop. 

Borba and Confrey (1996) examined studentsô construction of transformations of 

functions (translation, reflection, and stretch) in what they called a multiple 

representational environment. They started with visualization exercises investigating the 

implications of visual changes of points up to algebraic symbolism. The researchers gave 

instructions, asked questions, and described and interpreted the studentsô actions as they 

did tasks with paper and pencil and using an Apple Macintosh computer with Function 

Probe software. The researchers concluded that visual reasoning, i.e. seeing graphical 

transformations on the plane, is a powerful form of cognition and that it is essential that 

teachers give students adequate time, opportunity, and resources to make constructions, 

investigations, conjectures and modifications. The researchers also emphasized that 

students develop effective strategies of enquiry when presented with an environment 

supporting the use of multiple representations. It is for this reason that the current study 

focuses on concept images, mathematical reasoning and transformation in graphs. 

Weber (2002) analysed how students arrive at an understanding of exponential and 

logarithmic functions. He interviewed students three weeks after they had first learnt the 

concepts, asked them how they went about computing the concepts, and questioned them 

about the functionsô properties. His findings were that, while students could compute 

exponents and logarithms, only a few of them could reason about the processes involved, 
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e.g. exponentiation. Guided by the first two aspects (action and process) of Dubinskyôs 

APOS theory (1991), Weber proposed a set of theoretical constructions that students 

could use in future to understand these concepts,  

Pinto and Tall (2002) used longitudinal observation and follow-up interviews to assess how 

students construct formalisms from their own visuo-spatial imagery in the context of limits 

of sequences. The premise was that students use reflective abstractions as mental processes 

to construct meaning from quantified statements through visuo-spatial imagery, i.e. using 

strategies consonant with Dubinskyôs APOS theory. The two researchers observed students 

at work and tape-recorded, transcribed and analysed in depth interviews they conducted 

with the students. They found that students refined their own understanding of objects to 

represent and translate convergence of sequences into images and actions. They connected 

the studentsô learning strategies to the theory of natural learning (Duffin & Simpson, 1993, 

1994) and Dubinskyôs APOS theory (1991). 

Nyikahadzoyi (2006) assessed student teachersô knowledge and concepts of functions 

using open-ended, task-based and reflective interviews in a case study of six final-year 

Zimbabwean student teachers studying for a certificate in teaching secondary school level 

mathematics. The study was done over a period of three months and it ranged over subject-

matter knowledge and pedagogical-content knowledge for the concept of a function, as 

well as the underlining pedagogical reasons for the student teachersô choices of the contexts 

used to teach the concept. The majority of the student teachers were found to have a 

process-conception of a function and a few of them gave set-theoretic definitions. The 

studentsô notion of a function was mostly confined to real number sets and they did not 

think of considering other mathematical objects (for example, the differential operator and 

the determinant function) as functions. 

Viholainen (2008) conducted a study at six Finnish universities using mathematics 

education student teachers between the middle and the final phase of their university 

studies as subjects. The study was conducted using a written practical task and interviews 

to investigate informal and formal understanding of concepts of derivatives and 

differentiability and how the students used informal and/or formal reasoning in problem 
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solving situations where these concepts were needed. It showed that connecting formal 

and informal reasoning was a challenge for the students, the majority of whom tended to 

avoid using definitions when solving problems. This tendency hindered reasoning in the 

problem solving processes and sometimes led to conclusion errors. However, some 

students were able to use definitions when asked to do so. As a result of the study, 

Viholainen recommends teaching mathematics in a way that supports the studentsô 

development of coherent knowledge structures, which is perceived to strengthen the 

understanding of connections between informal and formal representations. The fact that 

students at university have such difficulty with mathematical reasoning highlights the 

need for interventions to begin at an earlier stage in their education, which is why this 

research study focuses on secondary school learners so that the necessary strategies can 

be implemented before students enter university  

Gagatsis, Panaoura, Elia, Stamboulidis and Spyrou (2010) explored studentsô constructed 

definitions for the concept of axis of reflection for a function. They used a test with nine 

tasks involving various forms, representations and problem-solving activities, to collect 

data. The students had difficulty giving clear definitions as well as resolving the algebraic, 

graphical and tabular tasks. The researchers cited lack of flexibility in the use of a variety 

of approaches to conceptualize the axis of reflection. 

Using open-ended, written, test questions and semi-structured interviews, Bayazit (2011) 

investigated how student teachers understood connections between algebraic and graphical 

representations of functions, how they developed the function concept, and how they used 

it thereafter. The researcher explored flexibility in switching between algebraic and 

graphical representations of functions, and the vertical development of the process-object 

conception of functions in various contexts. The results indicated that teachers depended 

more upon algebraic expressions in their thinking and reasoning than graphical (Cartesian) 

representations. Bayazit (2011) recommends the process-object conception as being useful 

in promoting more successful mathematical reasoning. 

Tsamir, Tirosh, Levenson, Barkai and Tabach (2014) conducted a research study that 

involved teachers practicing concept images and concept definitions of triangles, circles 
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and cycles. They asked teachers to define these concepts in their own words and identify 

the associated geometric representations. The teachers were also required to identify 

examples and non-examples of the concepts. The teachers were able to use correct and 

precise mathematical language in defining the concepts, and were also able to identify 

examples and non-examples of triangles and circles but some had difficulty when dealing 

with cylinders. 

Sepeng (2014) carried out a study in urban townships in South Africa, where learners are 

from an array of multi-cultural backgrounds, using tests and focus groups discussions to 

investigate learnersô tendencies when solving real-world problems in mathematics. The 

study revealed that learners draw on their cultural knowledge when constructing 

justifications and solutions to problems. Sepeng concluded that teachers need to 

incorporate out-of-school real-world knowledge in formal classroom mathematics to boost 

learnersô mathematical reasoning skills and use of common sense when solving problems. 

Our research study has similar characteristics to most of the reviewed studies as well as 

some significant differences. All focus on students/learnersô mathematical thinking and 

reasoning in the construction of knowledge. They assess visual reasoning and cognition, 

and identify challenges, difficulties, cognitive conflicts and catastrophes in the process of 

learning mathematical concepts, developing skills, and building schemas for understanding 

ideas logically. This research study will explore Grade 11 earnersô understanding of the 

concepts of translation, reflection, and stretch in relation to functions, by mapping at least 

one point of a function from its original position onto new position(s) (or images) using a 

well -defined rule and multiple verbal, graphical and symbolical representations. As 

explained earlier in section 1.4, Grade 11 learners were preferred for the study against the 

younger Grade 10 with shorter period of exposure to transformations, functional graphs 

and effects of parameters on transforming functions and against older Grade 12 for the 

syllabus section is not part of content to be dealt with as new and that they are perceived 

to be busy due to preparation for matriculation. It has just been mentioned above that 

researches done about mathematical problems of understanding and conceptualisation 

were mostly focused on university students so it a fair deal to do with secondary school 

learners. The term concepts images will be used to refer to learnersô representations and 
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other forms of interpretation. Their explanations and justifications, or attempts at such, will 

be referred to as mathematical reasoning. Various concept images result when learning 

transformations of functions, and mathematical skills and abilities to think and reason 

mathematically, develop.  

What sets this study, apart from the others reviewed above, is its geographical focus, the 

stage of educational development of the subjects, the specific context of the topic, some 

methodologies, and the extensiveness of its scope. This study has practical and theoretical 

relevance and it is intended not only to promote debate around how students understand 

and think, but also to improve classroom learning activities and have a positive impact on 

the practice of teaching the concepts in focus and to broaden and deepen the understanding 

of mathematical teaching and learning   
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CHAPTER FOUR 
 

Methodology 
 

The main goal of this study is to explore and describe how Grade 11 learners interpret and 

represent three concepts involved in transforming functions. The empirical component of 

the study was a diagnostic test taken by 96 Grade 11 mathematics learners from three 

schools in Johannesburg East district, South Africa. The diagnostic test was triangulated 

with follow-up interviews with the 14 learners who achieved a higher than 30% 

achievement score for the test. Although the number of Grade 11 pupils at the schools 

totalled more than 96, the number of participants was limited because of absenteeism and 

non-consent. This chapter covers the design of the study, the description of instruments 

used for testing and interviews, and the methodology followed in collecting, recording, 

summarizing, analysing and presenting the data. It also gives a description of the 

participants, sampling procedures, and strategies used to ensure reliability and validity of 

the research process.  

 

4.1 THE RESEARCH DESIGN 
 

An exploratory mixed method design (Creswell & Plano Clark, 2011) was the model used 

in this research study to collect both quantitative and qualitative data. This design was 

considered the most likely to provide the opportunity for open-mindedness on the part of 

both the researcher and the prospective readers of this thesis, through insights and 

questioning. Although an exploratory mixed method design facilitates the collection and 

analysis of quantitative data so that salient interesting results or cases can be selected to 

form the basis of a more profound qualitative study, slight adjustments and modifications 
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were made to that design in this case. In this study, a diagnostic test collected both 

quantitative and qualitative data simultaneously, and the results then lead to the selection 

of participants for a further qualitative study through interviews.  

The research design adopted and adapted for this study was influenced, in many ways, by 

similar studies focusing on mathematical reasoning, concept images, cognitive conflicts 

and learning catastrophes (Tall, 1977a; 1977b; Tall and Vinner, 1981; Tall, 1988; Pinto 

and Tall, 2002; Nyikahadzoyi, 2006; Viholainen, 2008) reviewed in Chapter 2 above. 

They were mainly practical tasks, structured or open-ended questionnaires, structured or 

open-ended interviews, or casual or longitudinal observations. This study adopted and 

adapted some of those methodologies as its goals were similar to those of the studies 

reviewed, but applied them to a study of high school learners. 

Both the quantitative and the qualitative data were collected from the same respondents 

and the same problem situation, so that a clearer understanding of the problem could be 

gained than from just one data type. The main methodology of the study is qualitative 

analysis, but quantitative justifications are used in places to support the qualitative results. 

A large group of 96 learners wrote the diagnostic test from which quantitative and 

qualitative data were converted into achievement scores, and then learners whose 

achievement score was greater than 30% were interviewed. The interviews produced 

qualitative data for triangulation purposes.  

The exploratory mixed method design facilitated an in-depth study of words, phrases, 

statements and spatial diagrams (visual images) communicated by the participating 

learners. These were taken as artefacts of concept images as learners reasoned and 

demonstrated their understanding of translating, reflecting and stretching functions. This 

grounded theory approach facilitated making comparisons of learned experiences from 

three sample schools. In addition, it was hoped to collect a wide variety of information 

pertaining to learnersô understanding of transformations of functions, thereby opening 

debate for generalizing the findings from the three samples and constructing relevant new 

knowledge.  



72 

 

The data collection was done between April 2012 and October 2013 during, and soon 

after school hours, in such a way that it did not jeopardize learnersô schoolwork. 

Participating learners had been taught transformation geometry, functional graphs and the 

effects of parameters on functional graphs during formal school lessons before they 

participated in the study. 

 

 

4.2 SAMPLING PROCEDURE 
 

Initially, the study plan was to sample more than 100 respondents out of a total of 110 

Grade 11 Mathematics learners from three high schools. Since no artificial sampling 

strategy was used to select participants for the diagnostic test, only 96 learners ended up 

participating. These were those Grade 11 mathematics learners present on the day the 

diagnostic test was conducted, and who had returned the consent forms signed by their 

parents or guardians. The three high schools were purposively sampled, because of 

proximity to the researcher, out of 10 high schools cluster of Sandton in Johannesburg 

East District (D9). Johannesburg East District (D9) is one of the 15 Gauteng education 

districts and has 37 high schools out of 114 schools in Johannesburg metropolitan city. 

The metropolitan city of Johannesburg has the bulk of the 196 high schools in South 

Africaôs Gauteng Province. The Johannesburg East District (D9) was chosen for 

convenience and accessibility during the research study because one of the schools was 

where the researcher worked and the other two were neighbouring schools to the first one. 

The first school (Sample A) contributed 30 out of 36 mathematics learners it had. The 

second and third schools (Samples B and C) had 42 out of 48 and 24 out of 26 

mathematics learners respectively. Ninety-six learners were a manageable number of 

study subjects for an in-depth study to provide meaningful conclusions. The study tested 

learners in Grade 11 because they had a longer period of experience with transformation 

geometry, functional graphs and the effects of parameters on transforming functions, 

compared to Grade 10 learners, and this meant that they were likely to have well-formed 
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concept images and mathematical reasoning. Grade 12 learners were not tested because 

that grade is the final year of secondary schools in South Africa and a research study 

could have disrupted matriculation examination preparations. The 14 interviewees were 

selected on the basis of having scored over 30% in the diagnostic test and being present 

on the days that interviews took place. The 30% threshold was used based on the fact that 

30% is the promotion mark for mathematics learners to proceed to the next grade. 

Basically a learner is perceived to have acquired some minimum mathematical skills 

when he or she achieved above 30% mark.   

4.3 THE PARTICIPANTS 
 

The participants in the diagnostic test activities were 96 Grade 11 learners taking the 

subject mathematics (not the subject mathematical literacy, which is an alternative option 

for South African high school learners, who do not have transformations nor functions in 

their syllabus). Of the 96 learners who participated in the diagnostic test, 58 were girls 

and 38 were boys. The sample size was appropriate for the purpose of the study because 

it could give enough data to draw some conclusions.   

The participantsô ages ranged from 15 to 19 years, and the majority of them were aged 

16 to 18. The detailed age distribution is given in table 4.1 below:  

TABLE 4.1: Age distribution of the participants, in their  samples. 

Sample Gender 15 years 16 years 17 years 18 years 19 years Total 

A Female 0 4 15 2 0 21 

A Male 0 0 5 3 1 9 

B Female 1 8 16 1 1 27 

B Male 1 4 8 1 0 14 

C Female 0 1 5 4 0 10 

C Male 1 5 5 4 0 15 

Total  3 22 54 15 2 96 
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The mean age for the combination was 16.9 years, whereas the median and modal ages 

were both 17 years. 

In terms of race (which is not relevant for the results of this study), the majority of 

learners, 93%, were African, 5% were mixed race (or ócolouredô in the official 

terminology of the former apartheid regime) and 2% were of Asian descent. The Africans 

were of different ethnic cultures, namely, Ndebele, Sepedi, Sotho, Swati, Tswana, Venda, 

Xhosa, and Zulu, and there were a few learners from African countries other than South 

Africa. The medium of instruction used for mathematics in the sampled schools is English 

(see 4.3). Although the South African constitution states that all learners have the right to 

receive education in the official language(s) of their choice in a public education 

institution (National Education Policy Act, 1996; South African Schools Act, 1996), in 

practice it is difficult for schools, particularly those that are under-resourced, to 

accommodate learnersô diversity of home languages and so in urban areas English is the 

medium of instruction in many South African secondary schools. In the three schools 

under discussion, there was no chance of a learner switching teaching language because 

two of the mathematics teachers were South Africans of Indian descent and one was a 

Zimbabwean national, and none of the three is able to teach mathematics in any official 

South African language other than English. 

The schools were former model C schools (in the terms of the former Apartheid regimeôs 

hierarchy of school types) and they charged fees of between R14 000 and R16 000 per 

year. The schoolsô administrative officers informed the researcher that fees were paid 

either by learnersô parents, foster parents or the biological parentsô employers. The three 

schools were relatively well resourced and had perceived better standards than those in 

run-down inner city or poor township areas. 

 

4.4 DATA COLLECTION INSTRUMENTS  
 

The two data collecting instruments used were a diagnostic test (see Appendix A) and a 

follow-up face-to-face interview (see Appendix B). The model for the instruments and 
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methods was adopted and adapted from previous similar studies as outlined in section 

4.1, above. A full description of the instruments is provided in the sub-sections that 

follow. 

4.4.1. The diagnostic test 
 

The document used for the written diagnostic test is presented in Appendix A below. This 

diagnostic test was prepared by this researcher as the main instrument and was used to 

measure learnersô concept images and mathematical reasoning about the transformation 

of functions. The test had to be subjected to validity and reliability tests (see section 4.5 

below). The test was to be completed within an hour, using only a pen or pencil. The 

answers were written in the space provided on the test sheet.  

 

At the top of the first page of the test sheet, learners were required to fill in their names, 

gender and ages. Names were needed for possible later interview call-ups, and gender 

and age were required for demographic analysis. The learners were told that if they were 

not comfortable giving their real names, they could use pseudonyms. A summary of 

learnersô demographic information is presented in section 4.2 and Table 4.1, above. 

Immediately below this information on the test sheet were instructions to learners about 

filling in the required demographic information, and the need to answer all questions or 

provide a reason when unable to answer .The instructions were followed by 10 questions, 

some with at most three sub-questions. Learners were to think critically, explain, 

illustrate, evaluate and justify the mathematical concepts and relationships they built. 

The first objective of the study was to investigate concept images built by learners as they 

learn, interpret and represent the concepts of translation, reflection and stretch of 

functions, and Question 1 required learners to define those concepts in their own words. 

The objective of obtaining concept definitions continued to be addressed by other 

questions, in other ways. Question 2 used drawn graphs of quadratic, exponential and 

cubic functions, and learners were required to illustrate a translation, a reflection, and a 

stretch of these three graphs respectively. This question was an alternative way of asking 
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Question 1. Learners were expected to show consistent knowledge of the three 

transformations of functions by demonstrating the skills necessary to represent them as 

they had defined them in their answer to the first question. 

Questions 3 and 4 showed drawn graphs of hyperbolas, exponential functions and cubic 

functions, and, on the basis of the definitions, learners were required to interpret 

transformations from algebraic representation, then describe fully and illustrate them. 

They were to interpret, algebraically or symbolically, the translation, reflection, and 

stretch, and then perform graphical representations. The two requirements were 

alternatives, asking for the same transformation but applied to a different function. This 

pairing continued for the rest of the test where each odd-numbered question was paired 

with an even-numbered question, which facilitated split-half and alternative form 

reliabilities (the results for the reliability tests are shown in Appendix 3). 

Questions 5 and 6 focused on stretching of trigonometric functions, given by both 

algebraic representations and algebraic formulae, in pursuing the same purpose as 

Questions 3 and 4. Questions 7 and 8 had verbal descriptions of transformations and 

learners were required to write the corresponding algebraic formulae for each 

transformation. Questions 9 and 10 showed functional graphs with illustrations of their 

image graphs after transformation and learners were required to identify the 

transformations that had taken place and describe them fully. Questions 3 to 10 mainly 

addressed the descriptive research question and its sub-questions. From the learnersô 

answers, the relationship between their concept images and the formal definitions of the 

three transformations was evident. The precision in learnersô explanations, arguments and 

reasoning, could then be measured against the formal definitions.  

4.4.2 The follow-up clinical interview 
 

The follow-up clinical interview was intended to further scrutinize learnersô conceptions 

and interpretations of the central concept images and mathematical thinking, and clarify 

gaps uncovered in the test responses.  
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Appendix B shows the interview guide used in this research study. The same definitions 

asked for in the test were asked for in the interview. The design of the guide was semi-

closed or semi-structured, because, despite the presence of specific themes, the interviews 

would inevitably deviate slightly from the plan in practice, depending on the 

intervieweesô views and progress, so some degree of openness was allowed in changing 

the sequence of themes and the depth covered (Kvale, 1996). The interview questions 

were partly predetermined, as per the interview schedule and partly generated during 

interviews in response to the learnersô answers. 

The interviews were conducted in English, and the language used was as simple as 

possible to be easily understood by the learners. A voice recorder was used so that 

interviews could be replayed if necessary to ensure accurate transcription. The verbatim 

transcript of the interviews appears in Appendix C. 

Learners were instructed to ask for a question to be repeated or asked in an alternative 

form if they had not understood it well. The learners were sometimes asked to repeat their 

responses for clarity and sometimes to illustrate what they said. This measure was taken 

to assure reliability of the information exchanged. Each interview took about 15 to 20 

minutes depending on the precision of the learnersô explanations and the levels of 

competence. The interviewees were asked to explain, sometimes with graphical 

illustrations, the concepts of translation, reflection and stretch of functions (see Question 

1 in Appendix B. The same issues were addressed by the questions in the test (see 

Question 1 in Appendix A) and this research studyôs exploratory question and first 

research sub-question. The interviewees were also given transformations in the form of 

algebraic representations and asked to describe them fully. This replicated what was 

asked in Questions 3, 4, 5, and 6 of the test, except without Cartesian graphs. These 

activities mainly addressed the descriptive research question and its mini-questions. 

Finally, learners were asked to describe fully the transformations shown by the positions 

of the original and the image Cartesian graphs. The discussions in the last two tasks were 

strongly connected to the descriptive sub-question and its mini-questions. A detailed 

analysis of the interviews was done from the verbatim transcription of the recordings (see 

Chapter 5). 
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4.5 VALIDITY AND RELIABILITY CHECKS 
 

4.5.1 Psychometric validity for the study 
 

The exploratory mixed method design (Creswell & Plano Clark, 2011) was deemed 

suitable for providing both quantitative and qualitative data. The procedure used in this 

research study was influenced by, and adopted and adapted from, previous studies with 

similar goals (see section 4.1). The original procedureôs success in several other studies 

made it psychometrically valid for this study because the chances of it being successful in 

these circumstances were high. Quantitative and qualitative data were drawn from the same 

problem situation and the same respondents, to achieve a clearer understanding of the 

problem. A slight variation from the original procedure was that no quantitative data 

analysis was done first to select respondents for a more profound qualitative study. Instead, 

the diagnostic test collected quantitative and qualitative data simultaneously, and then the 

resultant scores were used to select participants for a further qualitative study done by 

means of interviews. 

4.5.2 Content and construct validity for the diagnostic test and 
follow-up interview 
 

The following measures were taken to construct the most appropriate diagnostic test and 

interview schedule which would achieve the objectives of the study and test within the 

scope of the NCSïCAPS syllabus for Grade 11. Some copies of the test form and the 

section of the Grade 11 syllabus that deals with transformations of functions were given to 

two university educators and two other high school teachers to comment on whether the 

questions were suitably clear and accessible to Grade 11 learners and were addressing the 

syllabus objectives sufficiently. They were requested to make suggestions for improvement 
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and also to assess according to the Likert scale, how thoroughly the test examined the full 

scope of syllabus content for transformations of functions to the required depth. One 

educator from each of the two categories responded. Appendix D contains the reviewersô 

comments. By counting the óyesô answers and ónoô answers and calculating percentage 

compliance, the high school teacher indicated a 77.5% compliance with syllabus objectives 

while the university educator indicated 86.6% compliance. The components ratings were 

correlated. The Spearman rank order correlation (r ranks or Spearmanôs rho) was calculated 

and found to be 0.99 (see Appendix D) showing very strong positive monotonous 

correlation between the educatorsô rating of how the test (the main instrument) examines 

the scope of the syllabus for transformations of functions. This gave the instrument the 

necessary content and construct/factual validities. The interview design satisfied the same 

objectives as the test, therefore the validity of the test implied that of the interview. The 

pilot study (see section 4.6) had the purpose of validating these instruments.  

4.5.3 Reliability of the diagnostic test  
 

In order to check the reliability of the written test form and the interview schedule before 

the main data was collected, a small-scale preliminary study was done with 30 learners (see 

the pilot study in sub-section 4.5.6). The items in the test, as stated before, were designed 

in the following way so that internal consistence could be testable. Each even-numbered 

question asked the same thing as the odd-numbered question that preceded it but in a 

different form to allow split-half correlation. Outlier questions were removed and the 

resulting scatter plot for success rates showed a strongly positive correlation with the 

coefficient 0.9 (for ) using the FATHOM computer program (see Figure 4.1 

below). A retest was done with 10 learners, and their scores were processed through the 

Spearman-Brown prophecy formula. The smaller sample of 10 gave a psychometric 

reliability or r-value of 0.86. The internal consistency with the bigger sample of 30, after 

the removal of outliers, was estimated to be r = 0.79 using the Kuder-Richardson Formula 

21. 

81.02 =r
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A follow-up interview was done with two learners and the verbatim transcript was 

subjected to credibility and dependability checks (see section 4.5.5). The research 

instruments were then deemed ready for the main study. 

 

4.5.4 Acceptability of the instrument 
 

After the pilot test, oral feedback was invited from learners. There were mixed opinions 

about the fairness of the test. Some learners confessed that the content had been covered in 

class but their memory of it had faded. Others said the activity reminded then to study 

more. Generally learners felt the test was challenging as they lacked an in-depth 

understanding of the concepts covered. 

 

4.5.5 Credibility and dependability of the prepared interview 
questions 
 

This was done through reflection of learnersô responses to the pilot diagnostic test and then 

inviting comments from colleagues about the prepared interview schedule questions. Two 

voice records of preliminary interviews were given to colleagues to transcribe and then 

compared with those done by the researcher to check on the consistency or reliability of 

data obtained. The colleagues approved the method  

 

4.5.6 The pilot study 
 

The pilot study (referred to in sub-section 4.5.3), involved a class of 30 Grade 11 

mathematics learners (21 girls and 9 boys). It was done at one of the high schools in the 

sample the year that preceded the one when the main study was contacted. The learners 

who participated in the pilot study did not participate in the main study because they were 
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now in Grade 12 meaning that they would not qualify. The consent forms for these learners 

had been signed by parents/guardians and returned.  The learners were found to be aged 

between 16 and 19 years, and their medium of instruction in the school was English. The 

learnersô proficiency in spoken English was generally good although not always fluent 

enough for academic communication. The aim of the pilot study was to improve and refine 

the research instruments, and to make sure that they were valid and consistent in capturing 

learnersô understanding of the concepts of reflection, translation and stretch, in relation to 

functions and their verbal, graphical and symbolical representations.  

Learners were given a question paper that they answered within an hour. The responses on 

each of the answer scripts were then assessed. Marking for the pilot diagnostic test was 

done with codes, not ticks or crosses, so that if learners saw their scripts later during follow-

up interviews, they had no idea of whether their answers had been correct or incorrect. The 

codes were also used in the pilot data analysis. Questions posed during the clinical face-to-

face interviews were generated in response to some of the learnersô answers and were to 

solicit further clarification about gaps found in those answers. Not all learners were 

interviewed, the interviewees were selected if their answers to the test were interesting and 

the scores they had obtained were equal to or more than 30%, which is the promotion mark 

if learners have to proceed to grade 12. The codes used to mark learnersô scripts in the pilot 

study are given below in section 4.6.1.1.   

.     

4.5.7   Data analysis and interpretation 
 

The data from the both pilot and main study were to be examined qualitatively and 

quantitatively. The data were detailed descriptions and evidence (words, graphs and 

formulae) from the learnersô reflections on how they understood reflection, translation 

and stretch concepts and their manifestations in functions. The frequencies of similar 

responses from both the diagnostic test and the verbatim transcripts of the voice records 

from the interview informed the qualitative descriptions. The words extracted from the 
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test would evidences to authenticate the claims. Thereafter, interpretations was based on 

the expressions and evidences for concept images and mathematical reasoning. 

Quantitative data analysis was done with the assistance of a computer program:  

Statistical Package for Social Sciences (SPSS) or FATHOM. The data cleaning process 

was effected to ensure accurate data to facilitate better comparisons of tendencies, 

similarities and differences and also the formation of ultimate conclusions.  

 

4.6.1.1 Assessment criteria for responses to the written pilot test 

 

Task responses were classified using the following assessment criteria: 

¶ Verbal or word descriptions of the concept were coded with the letter V. 

¶ Graphic representations of the concept were coded with the letter G. 

¶ Symbolical representations of the concept were coded with the letter S. 

In this classification, an answer was placed into a class if at least one criterion of the class 

in question was fulfilled. 

Class 0: Unclassified 

¶ No verbal description of the concept (V0). 

¶ No graphic representation of the concept (G0).  

¶ No symbolical (algebraic) representation of the concept or answer (S0). 

¶ A failure to answer the question with or without explanation (V0/G0/S0). 

Class 1: Misconception 

¶ Verbal description that does not resemble the concept (V1). 

¶ Graphic representation that does not resemble the concept (G1).  

¶ Symbolical (algebraic) representation that does not resemble the concept or the 

expected answer (S1). 

Class 2: Partial or ambiguous conception 
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¶ Verbal description with some aspects of the concept but lacking accuracy (V2). 

¶ Graphic or visual representations with little understanding but some correct aspects 

of the concept (G2). 

¶ Symbolical (algebraic) representation with little understanding but some correct 

aspects of the concept or the answer (S2). 

Class 3: Correct conception or interpretation of concept 

¶ Verbal description that reflects the correct formal or informal meaning of the 

concept (V3). 

¶ Graphic or visual representation showing complete understanding of the concept 

(G3). 

¶ Symbolical (algebraic) representation showing full conceptual understanding (S3). 

 

The values V0, V1, V2, V3; G0, G1, G2, G3; S0, S1, S2, S3, depending on assessment 

criteria, were counted, and their frequencies, were recorded as success rates in Appendix 

F. Altogether they were 90 pieces of data. The success rates for the odd-numbered 

questions and those for the even-numbered questions were paired, item-to-item, and are 

presented in Table 4.2 below. 

 

 

 

TABLE 4.2: Success rates of similar pilot question items to check for consistency. 

Question

/item 
a b c a b c a b a c 

Q1 0 1 1 4 4 3 13 22 13 4 

Q2 1 0 4 2 4 5 17 18 10 3 
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Question

/item 
a b a b a b a b a a a b a b b 

Q3 4 10 5 16 12 9 6 6 10 9 10 10 7 1 1 

Q4 8 7 7 12 9 14 4 6 4 1 9 8 12 1 0 

 

Question/ 

item 
    

 Question/ 

item 
      

Q5 5 15 9 1  Q7 17 6 4 3 13 2 

Q6 5 15 5 5  Q8 20 5 5 0 15 0 

 

Question

/item 
a b c a b a b c a a b c a b c a b c 

Q9 10 24 8 15 2 5 1 2 0 3 25 24 1 6 0 0 4 0 

Q10 10 21 10 15 4 4 0 0 1 5 20 23 4 7 0 0 6 0 

 

Quest

/item 
a b c d a b c d a b c d a b c d a c d 

Q11 9 12 13 15 21 23 28 19 8 4 0 4 7 4 2 7 10 7 9 

Q12 
1

3 
11 11 12 23 21 28 22 8 6 4 7 2 6 2 3 6 9 8 

 

Question/ 

item 
a b c d a b c d a b c d 

Q11(cont) 1 1 0 2 3 2 10 2 1 2 0 2 

Q12(cont) 5 1 0 0 3 9 6 3 0 2 0 5 
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The two sets of pilot data were then correlated, the scatter plot drawn, and the correlation 

coefficient stated. Figure 4.1 below shows that information.  

 

4.6.1.2 Summary of results 

 

The graph in Figure 4.1 shows the FATHOM produced scatter plot and the óleast squareô 

regression line with equation for split ï half correlation of success rates 

for the pilot results of the diagnostic test. 

There is a strong positive correlation with coefficient  ( ). 

 

 

Figure 4.1: Scatter plot showing split-half correlation of success rates of 30 

participant learners in the pilot diagnostic test. 

 

 

97.0877.0 += xy

9.0=r 81.02 =r
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Figure 4.1 and the correlation coefficient of 0.9, show that the odd and even-numbered 

questions were consistently reliable, therefore the diagnostic test questions were suitable 

for determining learnersô abilities to define, identify and represent transformation concepts 

on functions, consistently. Sections 4.6.1.3 to 4.6.1.12 go on to look at how learners in the 

pilot study performed in the activities cited in the study objectives.  

4.6.1.3 Verbal definition of reflection, translation and stretch 

 

The tabulated information (see Table 4.2 above) indicates that the majority of the learners 

could attempt a definition of translation, reflection, and stretch, which is an indication that 

they understood what Question 1 required. Those who failed to define the concepts 

correctly, failed due to a lack of knowledge and not due to misconstruing the question. 

¶ Of the 30 learners, 13 (43.3%) accurately defined reflection, 13 (43.3%) gave 

incomplete definitions of reflection, and 4 (13.3%) gave definitions showing 

misconceptions about reflection.  

¶ Of the 30 learners, only 3 (10%) could define translation accurately, 22 (73.3%) 

gave incomplete definitions, and 4 (13.3%) gave definitions showing 

misconceptions about translation.  

¶ Of the 30 learners, 4 (13.3%) gave accurate definitions of stretch, 22 (73.3%) gave 

incomplete definitions, and 3 (10%) gave definitions showing misconceptions 

about stretch.  

All the responses given by learners indicated that their responses could be useful for the 

proposed major study. An example of a learnerôs definition of the concepts translation, 

reflection, and stretch is given in Vignette 4.1. 
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Vignette 4.1: Example of learnerôs verbal images of reflection, translation and stretch 

in the pilot study. 

 

4.6.1.4. Graphical representations of reflection, translation and stretch 

 

Eighteen of the sample (60%) drew the translated image well. A significant number (30%) 

drew queer graphs. Three of the learners (10%) exhibited serious misconceptions. Eighteen 

of them (60%) had slight misconceptions while 5 (16.6%) had serious misconceptions. 

Three learners (10%) answered well whilst 4 learners (13.3%) did not attempt to answer 

the question. 

Seventeen out of 30 learners (56.6%) could carry out a reflection, but did it about the 

incorrect axis. Ten of them (33.3%) did it imperfectly. Eighteen drew the reflected image 

about the y-axis although the question required them to reflect about the x-axis. One learner 

reflected about . Only one left the question unanswered. 

An example of a learnerôs graphical representation of transformation concepts is given in 

Vignette 4.2. 

 

 

6-=y
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Vignette 4.2: Example of a learnerôs misconceived graphical representation of a 

reflection in the pilot study. 

 

 

4.6.1.5 Drawing the graphs 

 

The success ratings for the task indicated that most learners understood that they were to 

make graphical presentations of translation, reflection and stretch. Those who failed to 

represent the function correctly failed due to a lack of knowledge of the correct graph and 

not because they hadnôt understood that the question required a graph. The example in 

Vignette 4.2 also confirms this. Learners seem to find it more difficult to effect stretch 

graphically although they knew that they were to draw an image after a stretch (see 

Vignette 4.3 below). 
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Vignette 4.3: Example of a learnerôs misconceived graphical representation of a 

stretch in the pilot study. 

 

 

4.6.1.6 Verbal descriptions and graphical representations from 

symbolically given functions  

 

Learners gave descriptions of concepts and represented them graphically. Misconceptions 

were evident and some learners left blank spaces (see Appendix F). These were associated 

with a lack of knowledge rather than misunderstanding the question, as a significant 

number of learners indicated on the question paper and during interviews.  

 

4.6.1.7 Drawing the image and stating the transformation involved  

 

The results in the Table 4.2 above indicate that learners were able to draw images and state 

the transformations involved. Very few learners gave correct answers however, and 
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misconceptions and blank spaces were apparent. Again these were associated more with a 

lack of knowledge than misunderstanding the question. This could be seen from the 

inscriptions some learners wrote on the question paper. 

4.6.1.8 Stating and illustrating the transformation involved from verbal 

descriptions 

 

Learners stated the transformations and represented them graphically (see Vignette 4.4). 

The number of misconceptions and blank spaces was higher than for previous questions. 

This was because of the higher level of skills the question required, and a lack of 

knowledge, rather than misunderstanding the question. Some learners stated as such on the 

question paper and during interviews (see Vignette 4.5).  

 

Vignette 4.4: Example of learnerôs represented attempt to identify a transformation  

in the pilot study. 
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Vignette 4.5: Example where a learner expressed having difficulty with a task in the 

pilot  study. 

 

 

4.6.1.9 Writing the formulae from verbal descriptions  

 

The majority of learners left some of the answer spaces blank while a significant number 

gave erroneous formulae. For some questions, such as 9(a), 9(b) verbal, 10(b) verbal and 

10(c), no correct answers were given. Some learners stated on the question paper and 

during interviews that they find algebra difficult. Some of the blank spaces were associated 

with insufficient time to finish the test. Vignette 4.6 shows one learnerôs attempt at writing 

formulae.  
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Vignette 4.6: Example showing a learnerôs represented attempt to write a formulae 

in the pilot. 

 

 

4.6.1.10 Identifying transformation(s) that map a function to an 

illustrated image  

 

Most of the learners left the answer spaces blank for Questions 11 and 12. Some who 

answered the questions had difficulty and revealed misconceptions. The misconceptions in 

these questions were mostly associated with a lack of knowledge and not with 

misunderstanding the questions. Some blank spaces were associated with insufficient time 

to finish the test, as some learners indicated on the question paper and during interviews.  
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4.6.1.11 Projection of main study results based on the pilot study 

 

The pilot study revealed that some learners find it challenging to define reflection 

translation and stretch, and make graphical representations of them. We would expect 

inconsistencies in learnersô constructed definitions and their competency when dealing 

with representations of translation, reflection, and stretch, to reveal the depth of their 

knowledge of the concepts. Whatever they used to demonstrate their knowledge, whether 

correct or incorrect, could be considered their concept image. We appreciate that many 

learners are unable to express exactly what they understand about concepts in words, but 

they did their best with the terms and words at their disposal. It is, therefore, sometimes a 

very difficult task to interpret what learners mean when they attempt to define concepts in 

their own words. Their concept images may differ slightly or significantly from the 

accepted definition. From these preliminary results, we recommend interviews and think-

aloud protocols as a necessary way of spanning the understanding gap from both the 

researcherôs and the learnerôs perspective.  

4.6.1.12 Adjustments of the research instruments 

 

The following adjustments were made to the instruments for the main study, based on the 

findings of the pilot study: 

¶ The number of questions was reduced from 12 to 10. 

¶ Question 7 was merged with Question 9 to become the new Question 7. 

¶ Question 8 was merged with Question 10 to become the new Question 10. 

¶ Questions 11 and 12 were relabelled as Questions 9 and 10. 

¶ Sub-questions were reduced from a maximum of 4 to a maximum of 2 per question, 

by leaving out already-tested aspects. This was done so that more learners would 

be likely to finish the test in the time allotted. 
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4.7 ETHICAL CONSIDERATIONS 
 

The research complied with prescribed ethical considerations, such as informed consent, 

confidentiality and ethical clearance. Participating learnersô parents/guardians gave their 

consent for the method of data collection by signing consent forms provided by the 

researcher.  

4.7.1 Informed consent 
 

The designed consent forms clearly stated that voice recordings, photographs and 

videotapes may be taken as part of the data collection process. The consent forms were 

issued and returned, signed, before the research began.  

4.7.2 Confidentiality  
 

The research process adhered to the highest levels of confidentiality. The data collected 

were confidential and anonymous and were only used for the stated purposes of this study. 

The names of participants and their schools do not appear anywhere in the report. Only 

the names of the district, the province, the city and the country in which the study was 

conducted appear. All the requirements of the ethics committee were met.  

4.7.3 Ethical Clearance 
 

After the validity and reliability checks were done and before the instruments and 

methodologies were applied, the instruments and the data collecting procedures was sent 

to the universityôs ethics committee for clearance. Ethical approval was granted, allowing 

the study to proceed (see Appendix J, below).  
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CHAPTER FIVE 

The Data and its Analysis  
 

This chapter presents learnersô descriptions of how they understand the concepts of 

reflection, translation and stretch and how these are manifest in functions. Evidence in 

the form of learnersô own words from the diagnostic test and the interviews, as well as 

vignettes of the test answer sheets, are provided to authenticate the claims made. In 

addition, this chapter provides another form of visual evidence using frequency 

categories of similar responses from the diagnostic test. Finally, a summary of the 

information gathered from the interview responses is presented. The interviews served a 

triangulation function. Samples of the verbatim transcripts of the voice recordings from 

the interviews appear at the end of this report as Appendix C. Categories of similar 

responses were quantified to enable frequency counting and tables of results were drawn 

up. The coding scheme and data entry method were tested during the pilot study. The 

analysis of resultant frequency data was carried out using the computer program 

Statistical Package for Social Sciences (SPSS). The analysis necessitated a data cleaning 

process. Comparisons of frequency tables enabled identification of tendencies, 

similarities and contrasts and provided the basis from which to draw conclusions. Ages 

or age range and gender comparisons formed part of the demographic analysis, which 

was presented in Chapter 4, section 4.2. 
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5.1 [9!wb9w{Ω w9{thb{9{ ¢h ¢I9 5L!Dbh{¢L/ ¢9{¢Σ !b5 ¢I9 
RELATIVE FREQUENCY ANALYSIS OF CONCEPT IMAGES  

 

A multi-task diagnostic test was the main instrument used for this study. The 96 learners 

in the full sample group were required to answer ten questions, with, at most, three 

constituent parts, in words or by means of visuals, within a one-hour time limit. The 

procedure leading up to writing the test is outlined above in section 4.4.1. An account of 

learner responses, the descriptive analysis of results, and evaluation of concept images 

from learner responses to the diagnostic test, is given below in section 5.1 (subsection 5.1.1 

to subsection 5.1.5). Answers were assessed for correctness and then used as a basis for 

comparing formal definitions and properties of the mappings of functions. The learnersô 

responses in the three sample groups (A, B and C) were analysed separately and 

comparatively in frequency tables and vertical multi-bar charts. The horizontal multi-bar 

chart at the end of each analysis shows a comparative summary of learnersô responses from 

the group as a whole. 

5.1.1 Verbal descriptions of concepts that transform functions  
 

Question 1 read as follows: 

a) Define, in your own words, a reflection. 

b) Define, in your own words, a translation.  

c) Define, in your own words, a stretch. 

This question required learners to write their verbal images (definitions) of the three 

transformations (reflection, translation and stretch) as they manifest on functions. It was 

insufficient for learners to define a concept using just its name. Vignettes 5.1 and 5.2, 

below, provide examples of how learners defined the three transformation concepts.  
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Vignette 5.1: Example of learnerôs definition of reflection, translation and stretch 

concepts 

 

Vignette 5.2: Another example of learnerôs definition of transformation concepts 

 

Some of the terms used by learners to define transformations were appropriate although 

they differed from the formal definitions in some cases (see Vignettes 5.1 and 5.2 above). 

Below is a question-to-question analysis of the learnersô responses.  

рΦмΦмΦм [ŜŀǊƴŜǊǎΩ ǾŜǊōŀƭ ƛƳŀƎŜǎ ƻŦ ǊŜŦƭŜŎǘƛƻƴ όvǳŜǎǘƛƻƴ мŀύ 
 

Reflection is formally defined as ña mapping that produces mirror images of points in lines 

or in polygons about a particular line called an axis of reflectionò22 (Tapson, 2006). 

                                                             

22 Sometimes referred to as mirror line or line of symmetry. 
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Learners in the sample groups also used terms like flipped, inverted image or symmetrical 

image in place of the term mirror image, as could be expected when giving their own 

definitions of reflection. Most of the learners struggled to express their definitions in 

correct English, and some definitions suffered from a lack of precision. However, after 

careful scrutiny of the responses, the following categories of definitions were constructed 

for assessment: 

(a) A correct definition of reflection, which refers to the two aspects of reflection, namely, 

the relative positions of the original object, and its image with respect to the axis of 

reflection.  

(b) A partly correct definition, which refers to only one of the two aspects of reflection 

mentioned in (a), above. 

(c) An incorrect definition, which is either so broad that it applies to transformations in 

general and not reflection specifically, or is not related to reflection at all.  

(d) Did not attempt to answer, where the learner left blank the space provided for the 

answer.  

Some learners were able to give a correct description of what a reflection is. The examples 

below are given using the learnerôs own words: 

¶ It is a transformation of an image about a line where the shape is mirrored on the other 

side of the line. 

¶ The formation flipped or that flips to another place about a certain axis or line. 

¶ It is when a graph is transformed through a line of symmetry. It produces a mirror 

image of that graph. 

¶ It is when a specific shape or line has a mirror like image about the x-axis or y-axis. 

¶ The mirror image of a shape about the y- or x-axis. 

¶ It is a repetition of an object across the y-axis or x-axis not changing the size or shape 

but changing the coordinates. 

¶ A mapping that produces a mirror image of a point, line or polygon about a particular 

line. 



99 

 

¶ A copy of an image that is exactly the same as the original. It is about a certain line e.g. 

x=0.  

Most of the incomplete definitions did not refer to the axis of reflection. The examples 

below are given using the learnersô own words, and the researchers reasons why they are 

considered incomplete are given in brackets: 

¶ It is creating a mirror image of a particular object (No mention of relative position of 

the original and image function in respect to reflection). 

¶ It is when an image is flipped (No mention of axis of reflection). 

¶ It is a mirror image of an object or a shape (No mention of axis of reflection). 

¶ It is the image, which is symmetrical and exactly the same, on the other side (No mirror 

line). 

¶ It is the same graph just on different side depending on where the graph is reflected 

(No mirror line).  

¶ It is an image produced from an original picture (No mention of how is it produced). 

¶ It is an exact replica of the object (No mention of how is it replicated). 

¶ It is repetition of an image across the x-axis or the y-axis not changing the size or shape 

but changing the coordinates (No mention of how the image comes about). 

¶ When a graph makes an image about the line x=0 or y=0 (No source of the image). 

¶ When an image is mirrored in a specific direction (No mirror line). 

¶ An object showing on another set accurately (No mention of how it is showing). 

Some of the definitions given by learners were incorrect. The examples below are given 

using the learnerôs own words, and the reasons why they are considered incorrect are given 

in brackets: 

¶ It is the image that is exactly the same as the ordinary (All transformations have images. 

The term ordinary is ambiguous). 

¶ It is a way of changing the position of diagrams on a graph (Not clear how ï all 

transformations can change position).  

¶ An image of a structure, object or picture (It could be any transformation).  
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¶ An exact replica of the object (No mention of how it is replicated). 

¶ Reflection is an image viewed the same from same distance (Not clear how it is 

different from images of other transformations). 

¶ Transformation in which an image of the original object is shown (No indication of 

what the image is and how it is formed). 

¶ It is an image of a structure, object or picture or shape (No mention of how the image 

is formed). 

¶ It is an object showing on another set accurately (Not clear what the other set is like). 

¶ Plotting points juxtaposed to each other (Meaning not clear). 

¶ A glance of the same picture (No second picture mentioned and what it looks like).  

¶ It is the way of changing the position of diagrams on a graph (No aspect differentiating 

it from other transformations). 

¶ It is an act of casting back an image so it can be reflected (Not clear).  

Of the 96 learners in the full sample group, only 47 (49%) defined reflection correctly, 

mentioning both its two aspects, and 38 (40%) defined reflection incompletely, mentioning 

only one aspect. Of the incorrect definitions, 6 (6%) were too general, and 5 (5%) showed 

misconceptions about reflection. No learners left the answer space blank. The frequency 

count can be seen in Table 5.1, section 5.1.1.2 below. 

5.1.1.2 Frequency analysis of verbal definitions of reflection of a 

function  
 

In order to have a clearer comparative picture of how learners defined reflection, a 

frequency table for the responses (Table 5.1) and a bar graph (Figure 5.1) were created. 
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Table 5.1: Evaluation frequencies of learnersô verbal images of reflection of a function 

(Question 1a) (n=96) 

Assessing the 

Concept Image 

(Reflection) 

Frequency Relative 

Frequen

cy 

Cumul. 

Percentag

e 

Sample 

A 

Sample 

B 

Sample 

C 

Sub-

total 

a Correct image 13 24 10 47 0.49 100.0 

b 
Partly correct 

image 
13 14 11 38 0.40 51.0 

c Incorrect image  4 4 3 11 0.11 11.0 

d Did not attempt 0 0 0 0 0 0 

 TOTAL 30 42 24 96 1.00  

 

Table 5.1 shows that most learners (89%) had valid or partially correct ideas about 

reflection although some found it difficult to define it well or convincingly. This was the 

same in all three samples. The multiple-bar chart for samples A, B and C is shown below, 

in Figure 5.1. 

Figure 5.1: Graph showing frequencies of learnersô verbal images of reflection of 

functions (n=96) 
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Figure 5.1 displays learnersô verbal definitions of reflection within each of the samples. 

The first bar (blue) refers to Sample A, the middle bar (orange) to Sample B, and the last 

bar (grey) to Sample C, in the categories of Correct Image, Partly Correct Image Incorrect 

Image, and Did not Attempt. It can be seen from the graph that all learners attempted to 

define the concept reflection. The highest percentage of learners (49%) had correct 

concepts of reflection, while 40% had partly correct ideas about reflection. The lowest 

number in each case (11%) is of learners who had misconceptions. 

рΦмΦмΦо [ŜŀǊƴŜǊǎΩ ǾŜǊōŀƭ ƛƳŀƎŜǎ ƻŦ ǘǊŀƴǎƭŀǘƛƻƴ όvǳŜǎǘƛƻƴ мōύ 
 

Translation is formally defined as ña mapping that changes position of a point, line or a 

polygon by sliding it in a specific direction through a specific distanceò (Tapson, 2006). 

This description has two aspects, namely that points move the same distance, and 

movement is in a common direction. Both of these aspects need to be stated for the 

definition to be considered complete. The process of evaluating learner definitions was 

complicated due to the varied language used, and the sometimes imprecise descriptions, 

hence careful scrutiny was necessary. The same parameters were used to assess the answers 

as in section 5.1.1.1: 

(a) A correct definition of translation, which refers to both aspects of translation namely 

(i) displacement (distance) and (ii) specific direction (or just óin a straight lineô 

displacement). 

(b) A partly correct definition which refers to only one of the two aspects of translation 

mentioned in (a). 

(c) An incorrect definition which is either so broad that it applies to transformations in 

general and not translation specifically, or is not related to translation at all. 

(d) Did not attempt to answer, where the learner left blank the space provided for the 

answer.  

The learnersô descriptions that were accepted as correct included at least one of the 

following terms: displacement, movement, slide, change of position and shift, for a specific 
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distance, followed by upward, downward, to the left, to the right or in a straight 

line/specific direction.  

Examples of correct definitions given by learners are shown below:  

¶ The movement of all points of a graph in a particular factor either up, down, left or 

right. 

¶ When every point of the body moves the same distance in the same direction. 

¶ When the original object is moved certain units up or down, left or right. 

¶ Transformation that moves points or shapes the same distance in a common direction. 

¶ Is to move or shift an image to certain units up/down or to left/right.  

¶ It is a transformation of an image either going up, or down, left or right by certain units.  

¶ The way of changing the position of diagrams with given units either upwards or 

downwards.  

¶ Translation is when a point (x;y) is moved/shifted by units up, units down, units left or 

units right. 

Examples of partly correct definitions and the reasons why they are considered incomplete 

(in brackets) are given below: 

¶ Movement of a graph upwards, downwards, or to the right or to the left (No emphasis 

on same distance). 

¶ When a graph has been shifted either upward or downward or sideways (No mention 

of distance). 

¶ It is moving a graph through a slide i.e. to the left or right, downwards or upwards (No 

mention of distance). 

¶ It is the transformation of shifting an image to the left, right, up or down (No mention 

of distance). 

¶ A transformation that moves points in a common direction (No indication of same 

distance). 

¶ It moves points or shapes in the same direction (No indication of same distance). 
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¶ It is when an object or shape or graph is moved to the right or left, front or back (No 

indication of same distance). 

¶ It is when a graph moves vertically or horizontally, does not change shape (No 

indication of specific distance). 

Examples of incorrect definitions and the reasons why they are considered incorrect (in 

brackets) are given below: 

¶ Shift of image from its original point/place/coordinates to another (No mention of what 

the shift is and how far). 

¶ Movement of a diagram across the y-axis and the x-axis changing the coordinates but 

not the image (Not different from other transformations). 

¶ Shifting or moving to certain positions (Not different from other transformations). 

¶ Moving an image of a graph to a different position from where it was (Neither direction 

nor distance mentioned). 

¶  Moving the object to the next point, from one position to the other (Neither direction 

nor distance mentioned). 

¶ The repeat of a diagram in a graph (Not specific of where and how). 

¶ Movement of a shape along a Cartesian plane with no change in shape or size (All 

congruencies do that). 

¶ Movement that occurs when you rearrange objects (Not clear or specific). 

¶ When a mirror image moves certain units from its original position (Term mirror image 

inappropriate, no direction, no distance). 

¶ When a figure moves towards point A to B, whether it rotates or moves up down or left 

and right (Ambiguous). 

¶ A type of transformation whereby an object can either be reflected or rotated i.e. the 

object and the image are not of the same distance (Ambiguous). 

¶ When a point is moved around changing in position or size. (Change of size is 

inappropriate). 

¶ When a point is moved around a number of degrees, does not change shape but its 

coordinates, (No degrees involved in translation). 
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¶ When a point is moved, when an image is resized (Word resized is inappropriate). 

¶ When points are flipped for e.g.  (Word flipped is inappropriate and 

the formula is for a 90° anticlockwise rotation). 

¶ Change in position by a point in a plane diagram e.g.  (Formula is for 

a 90° clockwise rotation). 

¶ Change of coordinates  (Formula is for a reflection about the y-

axis). 

¶ Is when you enlarge part of a drawing in which you add (Word enlarge is 

inappropriate). 

¶ It is an image of shape that is reflected upon the x-axis or y-axis (Word reflected is 

inappropriate). 

¶ It is when the graph moves as a whole across throughout the set of axis e.g. );( yx- or  

);( yx--      (Formula for reflection in y-axis). 

¶ It is when you move a shape altogether from the y-axis to the x-axis if necessary on the 

graph either clockwise or anticlockwise (Facts mixed up). 

¶ It is the movement of the image and how it is moved or translated or rotated 

(Ambiguous and use of word rotated inappropriate). 

¶ It is when someone interprets a certain language to others that donôt understand 

(Linguistic instead of mathematical context). 

¶ It is when a figure moves towards a point A from B whether it rotates or moves up, 

down or left or right (Ambiguous). 

¶ Is an object moved around a number of degrees but it does not change its shape.  Only 

its coordinates. (Appropriate for rotation). 

Of the 96 learners in the sample, 76 learners (79%) used at least one of the correct 

descriptive terms. However, of those, only 25 (26%) could define translation completely, 

51 (53%) gave partly correct definitions using accepted terms, 15 (16%) gave incorrect 

definitions and 5 learners (5%) did not attempt to answer. Complete information of 

frequencies is given below in section 5.1.1.4 and Table 5.2. 

);();( xyyx -

);();( xyyx -

);(');(( yxAyxA -
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5.1.1.4   Frequency analysis for verbal definitions of translation of a 

function  

In order to have a clearer comparative picture of how learners defined translation, a 

frequency table for the responses (Table 5.2) and a bar graph (Figure 5.2) were created. 

 

Table 5.2: Evaluation frequencies of learnersô verbal images of translation of a 

function (Question 1b) (n=96) 

Assessing the 

Concept Image 

(Translation) 

Frequency 
Relative 

Frequency 

Cumul. 

Percent 
Sample 

A 

Sample 

B 

Sample 

C 

Sub-

total 

 a Correct image 1 14 10 25 0.26 100.0 

 b 
Partly correct 

image 
24 18 9 51 0.53 74.0 

 c 
Incorrect image 

(misconception) 
4 7 4 15 0.16 

 

21.0 

 d Did not attempt 1 3 1 5 0.05 5.0 

  TOTAL 30 42 24 96 1.00  

 

Table 5.2 shows that most learners (85%) had the correct idea about translation but half of 

those were unable to provide accurate definitions. Learners in sample A were the most 

unable. The multiple bar chart for samples A, B and C is shown in Figure 5.2 below.  
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Figure 5.2: Graph showing frequencies of learnersô verbal images of translation of a 

function (n=96) 

 

Figure 5.2 displays learnersô verbal definitions of translation per sample. In all three 

samples, a few learners did not attempt to define the concept reflection. The numbers of 

learners who had misconceptions was greater than for reflection. A few more learners had 

partly correct ideas about translation than reflection, and the number of learners who had 

the correct idea about translation was less than for reflection. 

рΦмΦмΦр [ŜŀǊƴŜǊǎΩ ǾŜǊōŀƭ ƛƳŀƎŜǎ ƻŦ ǎǘǊŜǘŎƘ όvǳŜǎǘƛƻƴ мŎύ 

 

Stretch is formally described as ña mapping that changes position of all points outside a 

particular line (invariant line) away from that line or towards that line in a specific given 

scaleò (Tapson, 2006). It can be either an outward stretch or an inward stretch 

(compression/contraction) in the x-direction or y-direction (i.e. away or towards the x-axis 

or the y-axis). For the definition to be complete, there are three aspects that have to be 

included, namely, (i) the invariant line, (ii) movement of points which are outside the 

invariant line, away from or towards the invariant line, and (iii) scale (proportion of 

distance of original point from invariant line to that of its image from the invariant line). 

Many learners had difficulty defining stretch and it was also more complex for the 
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researcher to evaluate and categorize learnersô definitions. The same categories as in 

sections 5.1.1.1 and 5.1.1.3 were used to evaluate the definitions given: 

(a) A correct definition of stretch, which refers to all three aspects of the concept. 

(b) A partly correct definition which refers to only one or two of the three aspects of stretch 

mentioned in the definition above. 

(c) An incorrect definition which is either so broad that it applies to transformations in 

general and not stretch specifically, or is not related to stretch at all, or is ambiguous. 

(d) Did not attempt to answer, where the learner left blank the space provided for the 

answer. 

For a learnerôs description to be considered correct it had to include at least one of the 

following terms: expansion/contraction, extension/compression, increase/decrease in size, 

points move apart/closer, making longer/shorter, widening/narrowing, lengthening/ 

shorting, fatten/make slim, pull/squeeze on both ends, enlarge/shrink, spacing/bring points 

closer, all followed by a factor, specific scale factor, certain scale factor.  

Examples of partly correct definitions of stretch are given below: 

¶ Enlargement of the graph or coordinates by a factor. 

¶ Enlargement of the graph by a specific scale factor.  

¶ The type of transformation whereby an object is enlarged by a certain factor depending 

on what is given.  

¶ It is when a graph is expanded in a certain scale. 

¶ A shape is increased by a certain factor vertically or horizontally. 

¶ Enlarging a graph by means of spacing the points by a given ratio.  

¶ An expansion of a graph depending on the factor.  

¶ When a graph is pulled up at the top and down at the bottom end or when a graph is 

pulled horizontally on both ends. 

¶ When the graph increases whether upwards or downwards. 

¶ Dooming of a graph on image. (Not sure of what the learner meant) 
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¶ It is an enlargement of a graph/shape either negative (smaller/reduction) and positive 

(enlargement) of the shape/graph. 

¶ An expansion or compression of a common translation. 

¶ A graph that opens up wide, left and right, it stretches. 

¶ When the graph is lengthened/widened horizontally or vertically. 

¶ To pull a shape from its original to a narrow figure vertically or horizontally. 

¶ When the graph is lengthened/shortened horizontally or vertically. 

¶ When a graph on the Cartesian plane is pulled vertically and horizontally. 

¶ When a graph is widened horizontally or vertically. 

¶ When a graph is made bigger through stretching it either horizontally or vertically. 

¶ When you pull something on both ends. 

¶ It is to extend something vertically or horizontally to another point. 

¶ It is when a graph is expanded on both sides. 

¶ It is when a figure is made bigger horizontally and vertically. 

¶ Making something larger/bigger or smaller. 

¶ Enlarging or shrinking an object. 

¶ When something gets pulled, making it longer. 

¶ Making the graph larger and longer than the original. 

¶ When an image is widened. 

¶ Spacing the points by a given ratio. 

¶ Enlarging the image using factors by multiplying all values by the factor. 

¶ Graph is made to appear longer than its usual length. 

Some examples of definitions considered incorrect are given below: 

¶ A transformation where a graphôs x-axis or y-coordinates are moved. 

¶ It is the drawing of a shape on the Cartesian plane. 

¶ It is when an image moves horizontally or vertically on the axis. 

¶ It is when a trig graph or a functional graph doesnôt change shape or period but its y-

values.  

¶ Is a free hand estimated drawing, an incorrect drawing. Inaccurate drawing.  
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¶ Stretch is a fable semi-conductor (The researcher has no idea what the learnerôs frame 

of reference for this response was). 

¶ Extension of the graph by changing the graph by adding or subtracting. 

¶ Something that is drawn without rules (Not clear). 

¶ It is when a figure has been distorted (Not clear what sort of distortion). 

¶ A straight line that is 180 degrees (Meaningless). 

¶ It is a freehand drawing that involves only the main coordinates (Meaningless).  

Of the 96 learners in the sample, 75 (78%) gave at least one of the aspects of stretch, 26 

(27%) gave largely correct definitions, but 49 (51%) gave only partly correct definitions. 

A total of 13 (14%) learners had incorrect definitions about stretch and 8 (8%) did not 

attempt an answer. It is evident from these results that learners found it more difficult 

dealing with the concept of stretch than with reflection or translation. None of the 

definitions given by learners mentioned an invariant line. The frequencies of these results 

are shown in Table 5.3 in section 5.1.1.6 below. 
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5.1.1.6  Frequency analysis for verbal definitions of a stretch of a 

function  
 

Table 5.3: Evaluation frequencies of learnersô verbal images of a stretch of a function 

(Question 1c) (n=96) 

  Assessing the 

Concept Image 

(Stretch) 

Frequency 
Relative 

Frequency 

Cumul. 

Percent   
Sample 

A 

Sample 

B 

Sample 

C 

Sub-

total 

a Correct image 4 14 8 26 0.27 100.0 

b 
Partly correct 

image 
22 19 8 49 0.51 73.0 

c 
Incorrect image 

(misconception) 
3 6 5 13 0.14 22.0 

d Did not attempt 1 3 4 8 0.08 8.0 

  TOTAL 30 42 24 96 1.00  

        

 

Table 5.3 shows that most learners (78%) had some idea of stretch although the majority 

could not define it completely. The graph below gives a comparative picture.  
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Figure 5.3: Graph showing frequencies of learnersô verbal definitions of a stretch of 

a function (n=96)  

 

Figure 5.3 displays learnersô verbal definitions of stretch. The graph shows that, in all three 

samples, only slightly more than half the learners (51%) had a partly correct idea about 

stretch, and even fewer (27%) could accurately define it.  

The horizontal compound bar chart below (Figure 5.4) correlates and summarizes 

information from the clustered column multi-bar charts, to enable a comparison of the 

information about learnersô concept images of the three transformations.  

 

 

 

 

 

 

 

 

0

5

10

15

20

25

Did not attempt Incorrect Partly correct Correct

SampleA Sample B Sample C



113 

 

Figure 5.4: Graph comparing frequencies of Correct, Partly correct, Incorrect, and Did 

not attempt evaluations about definitions of transformations (n=96) 

 

Figure 5.4 displays a cross comparison of learners responses in each evaluative category. 

The graph is positively skewed23 and suggests that, in all three samples, learners have some 

idea of transformation concepts but have difficulty describing them accurately. Reflection 

is better understood than translation or stretch.  

 

5.1.2 Graphical Interpretations and Representations  
 

Question 2 of the diagnostic test required learners to draw graphical images of the three 

transformations (reflection, translation and stretch) as they manifest on some given 

functions. Graphical images are visuals with mathematical meaning, and in this study, 

learners were required to drawn them on the Cartesian plane. How learners responded to 

questions of interpreting or drawing such images is discussed below. 

                                                             

23 A statistical distribution where most scores are lower 50% on the scale 
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рΦмΦнΦм [ŜŀǊƴŜǊǎΩ ƎǊŀǇƘƛŎŀƭ ƛƳŀƎŜǎ ƻŦ ǊŜŦƭŜŎǘƛƻƴ όvǳŜǎǘƛƻƴ нŀύ 

 

The question read as follows:  

For the following graph, illustrate the image after a reflection in the x-axis.  

 

The correct image is an ónô shaped parabola with maximum point at (0;2) intersecting the 

original óuô shaped parabola at (-2;0) and (2;0). Of the 96 learners, 65 (68%) could reflect 

about the x-axis as required while 19 learners (20%) reflected incorrectly about the y-axis. 

Three learners (3%) reflected about lines other than the axes, 6 learners (6%) drew 

diagrams that were not reflections, and 6 learners (6%) did not attempt to answer the 

question.  

The list below describes some of the partly correct (PC) and incorrect (I) images drawn by 

learners:  

¶ An image of reflection about the y-axis followed by a reflection about the x-axis or vice 

versa (I).  

¶ An image of reflection in the y-axis (I). 

¶ An image of a translation in the direction of x followed by a reflection in the x-axis or 

vice versa (I).  

¶ A reflection in the x-axis followed by a translation 10 units to the right and 6 units 

downward (PC).  
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¶ An image of translation 10 units to the right and 6 units upward followed by a reflection 

in the x-axis (I). 

¶ A rotation of 90° clockwise about (0;-2), also about (0;0) (I). 

¶ A reflection in y=-3 followed by a translation to the right (PC). 

¶ A translation to the right or downwards by 1unit (I). 

¶ A reflection in y=-2 or in y=-6 (PC). 

A comparison of the results is provided in Table 5.4 and Figure 5.5, below. 

Table 5.4: Evaluation frequencies of learnersô graphical images of reflection of a 

function (Question 2a) (n=96) 

  Assessing the 

Concept Image 

(Reflection) 

Frequency 
 Approx. 

Percent 

Cumul. 

Percent   
Sample 

A 

Sample 

B 

Sample 

C 

Sub-

total 

a Correct image 10 35 20 65 68.0 100.0 

b 
Partly correct 

image 
17 1 1 19 20.0 32.0 

c 
Incorrect image 

(misconception) 
2 2 2 6 6.0 12.0 

d Did not attempt 1 4 1 6 6.0 6.0 

  TOTAL 30 42 24 96 100.0  

        

 

Table 5.4, above, shows that the majority of learners (68%) could reflect the graph 

correctly. A number (20%) reflected about a line other than the prescribed line and 6% did 

not reflect the function but drew some other figure. A total of 6% did not draw anything.  
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Figure 5.5: Graph showing frequencies of learnersô graphical images of reflection of 

a function (n=96)  

 

Figure 5.5 displays learnersô graphical representations of reflection across the three 

samples. The graph shows that many learners could do the graphical representation well 

but the difference in abilities between Sample A and Sample B was significant.  

рΦмΦнΦн [ŜŀǊƴŜǊǎΩ ƎǊŀǇƘƛŎŀƭ ƛƳŀƎŜ ƻŦ ǘǊŀƴǎƭŀǘƛƻƴ όvǳŜǎǘƛƻƴ нōύ 

 

The question read as follows:  

For the following graph, illustrate the image after a translation of 2 units to the right and 

3 units upwards.  
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This question required learners to slide the exponential graph two units to the right and 

then three units upwards or vice versa. Most learners (66%) performed the translation fairly 

correct image although some lacked complete accuracy. The remaining 34% had either 

partly correct, incorrect or blank. Examples of learnersô correct and incorrect diagrams are 

given in Vignettes 5.3 and 5.4 respectively. 

Vignette 5.3: Example of learnersô correct image of a translation of a function 

 

The list below indicates some of the partly correct (PC) and incorrect (I) images drawn by 

learners:  

¶ Translated vertically upwards only (six learners)(PC). 

¶ Translated horizontally to the right only (five learners) (PC). 

¶ Translated upwards and to the left (three learners) (PC).  

¶ Reflected about y-axis then upward translation (two learners) (I).  

¶ Translated vertically downwards and to the right (PC). 

¶ Rotated 90° clockwise, centre at the origin (I). 

¶ Stretched in the x-direction with  invariant (I). 

¶ A line y=x-2 (I). 

¶ Upward translation through 4 units (PC). 

5-=x
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Vignette 5.4: Example of learnerôs misconceived graphical images of translation of a 

function 

 

The misconception illustrated in Vignette 5.4 is a reflection about the x-axis. 

Sixty-three learners (66%) performed the translation accurately while 20 (23%) did the 

directions correctly but were not accurate with the units. Five learners (5%) did not attempt 

a drawing, but did not give a reason. Six learners had misconceptions about how to 

illustrate translation graphically. This information is shown in full in Table 5.5 and Figure 

5.6, below. 
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Table 5.5: Evaluation frequencies of learnersô graphical images of translation of a 

function (Question 2b) (n=96) 

 

 

  Assessing the 

Concept Image 

(Reflection) 

Frequency 
 Approx. 

Percent 

Cumul. 

Percent   
Sample 

A 

Sample 

B 

Sample 

C 

Sub-

total 

a Correct image 19 28 16 63 66.0 100.0 

b 
Partly correct 

image 
9 8 5 22 23.0 34.0 

c 
Incorrect image 

(misconception) 
1 2 2 6 6.0 11.0 

d Did not attempt 1 4 1 5 5.0 5.0 

  TOTAL 30 42 24 96 100.0  

 

From this Table 5.5, it can be seen that a fairly high percentage of learners had graphical 

images of translating a function that were correct (66%). Inaccuracies are common (23%) 

and many misconceptions were evident. Learners who did not attempt a drawing amounted 

to 5% of the sample. The graphical representation of these results is shown in Figure 5.6, 

below. 
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Figure 5.6: Graph showing frequencies of learnersô graphical images of translation 

of a function (n=96) 

 

Figure 5.6 displays learnersô graphical representations of translation per sample. The graph 

shows that many learners understood graphical translation. A significant number lacked 

accuracy, however.  

 

рΦмΦнΦо [ŜŀǊƴŜǊǎΩ ƎǊŀǇƘƛŎŀƭ ƛƳŀƎŜǎ ƻŦ ŎƻƳǇǊŜǎǎƛƻƴ όvǳŜǎǘƛƻƴ нŎύ 

 

The question read as follows:  

For the following graph, illustrate the image after a horizontal stretch of factor ½, y-axis 

invariant. 
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The question required the learners to compress a cubic function graph horizontally by 

factor ½ with the y-axis invariant. The equation of the function was not given. Eleven 

learners (11.5%) performed the stretch accurately, while 35 (36.5%) produced images that 

did not show a stretch significantly different from the original. Twenty-three (24%) 

learners did not attempt a drawing, giving reasons such as óI donôt understandô, ócanôt 

figure out what is neededô, ódonôt know the equation, so canôt figure out where image lies 

after stretchô and ócannot interpret the concept referred to in the questionô, although some 

did not give a reason why they had left the answer space blank. Examples of learnersô 

representations are given in Vignettes 5.5 and 5.6, below.  

 

 

 

 

Vignette 5.5: Example of a learnerôs partly conceived graphical image of stretch of a 

function 
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Vignette 5.6: Example of a learnerôs misconceived graphical representation of stretch 

of a function 

 

 

 

 

Learner misconceptions, some partly correct (PC) and others totally incorrect (I),were 

evident from graphs drawn as described below:  

¶ Translating to the left (twelve learners, see Vignette 5.6)(I). 

¶ Translated to the right (two learners)(I). 

¶ Reflecting about the y-axis (three learners)(I). 

¶ Reflecting about the x-axis (one learner)(I). 

¶ Horizontally pulling/outward stretch (eleven learners)(PC). 
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¶ Vertically pulling/outward stretch (two learners)(PC).  

¶ Anticlockwise rotation (one learner)(I). 

¶ Vertical compression/inward stretch (two learners, see Vignette 5.5)(PC). 

¶ One learner who drew two incorrect images stated óI am not sure what the word 

invariant meansô (I).  

¶ Horizontal outward stretch instead of compression (PC).  

¶ Vertical compression instead of horizontal compression (PC). 

Learners seem to find it more difficult to provide stretch images graphically than translation 

or reflection images. This may be due to the fact that the concept of stretch is not as clear 

to them as the other two concepts are, possibly because the concept does not have adequate 

coverage in the NCSïCAPS syllabus (see section 1.1). Table 5.6 and Figure 5.7, below, 

present visual representations of the results obtained. 

Table 5.6: Evaluation frequencies of learnersô graphical images of stretch of a 

function (Question 2c) (n=96). 

  Assessing the 

Concept Image 

(Stretch) 

Frequency 
 Approx. 

Percent 

Cumul. 

Percent   
Sample 

A 

Sample 

B 

Sample 

C 

Sub-

total 

a Correct image 4 3 4 11 11.5 100.0 

b 
Partly correct 

image 
17 15 3 35 36.5 88.5 

c 
Incorrect image 

(misconception) 
3 18 6 27 28.0 52.0 

d Did not attempt 6 6 11 23 24.0 24.0 

  TOTAL 30 42 24 96 100.0  
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The results in Table 5.6 show that very few learners could implement stretch (11.5%). If 

the graphical images for the three mappings are compared, it is clear that stretch is the most 

difficult for learners to represent graphically (see also Figure 5.7).  

 

Figure 5.7: Graph showing frequencies of learnersô graphical images of stretch of a 

function (n=96)  

 

 

Figure 5.7 shows that learnersô graphical representations of a horizontal stretch are 

extremely problematic. Most learners could not represent stretch correctly and more 

learners did not attempt to answer this question than any of the previous questions. Stretch 

is an issue which mathematics teachers need to note and attempt to correct. Figure 5.8, 

below, gives a cross comparison of the transformations. 
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Figure 5.8: Graph comparing frequencies of Correct, Partly correct, Incorrect and 

Did not attempt evaluations about graphical images of stretch of a function (n=96)  

 

 

 

 

 

From Figure 5.8, it can be seen that the comparison of learnersô graphical representations 

across the concepts shows that stretch is the most difficult graphical representation for 

learners to master, and reflection is the easiest. 

5.1.3 Graphical Interpretations from Symbolical Representations  
 

Question 3 in the diagnostic test required learners to recognize transformation concepts 

from symbolical or algebraic images and illustrate them graphically.  
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5.1.3.1 Learner ability to recognize reflection from a symbolical image (Question 3a) 

The question read as follows: 

Illustrate, on the diagram, the image of  when it transforms to . Describe fully 

the transformation involved. 

 

The question required the learners to recognize and describe the concept of reflection about 

the y-axis from a symbolical image. The function involved was a hyperbola but its equation 

was not given. Reflecting this function about the axes is relatively easy because there is no 

difference in the image whether reflected about the x-axis or the y-axis. For that reason it 

was expected that most learners, if not all, would be able to reflect correctly. Fifty-five 

(57%) learners drew the correct image in both the second and fourth quadrants (see 

example in Vignette 5.7) and described it correctly. Twenty-five (26%) drew an incomplete 

correct image in one of the two quadrants. Of these, 11 learners (11%) provided the correct 

description (a reflection about the y-axis) while 7 stated that it is a reflection about the x-

axis. Nine learners (9%) did not draw the image, and some gave only written descriptions, 

which were mostly misconceptions. 

There were very few totally correct responses. Some responses considered correct (C) and 

partly correct (PC) were as follows: 

¶ Correct illustration. Reflection in x-axis; reflection in y-axis; 180 clockwise / 

anticlockwise rotation (PC). 

¶ Correct illustration. Translated through x-axis (PC). 

)(xf )( xf -

f(x) 
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¶ Correct illustration. Points are reflected about the x-axis (PC). 

¶ Reflection about x-axis. Correct illustration (PC). 

¶ Correct illustration. Reflection along y-axis like (x;y)Ÿ(-x;y) (C). 

¶ Incomplete illustration, only in the fourth quadrant (PC). 

¶  Correct illustration, no description (PC). 

¶ Correct illustration, translation along the y-axis (PC). 

¶ Incomplete illustration (second quadrant), óclockwise transformationô (-x;-y)Ÿ(-

x;y) (PC). 

¶ Correct illustration, ñf(x) reflected on y-axis over x-axisò (C).  

¶ Correct illustration, ñThe image of f(x) has been reflectedò (C). 

 

 

Vignette 5.7: Example of learnerôs correct graphical image   

 

Some misconceptions, evident in learnersô answers are listed below: 

)( xf -




































































































































































































































