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Abstract

S. Mukono PhD
UNISA February 2015

The studyconstituted an investigatidor concept images and mathematical reasoning of
Grade 11 learnersn the concepts of reflection, translation anettn of functionsThe

aim was to gain awareness of any conceptions that learners have about these
transformationsTher e s e a expdriencedirshigh school and university mathematics

teachinghadlaid a basido establisitheresearch problem

The subgcts of the study wer@ Grade 11 mathematics learn&@m threeconveniently
sampledSouth African high schoold.he nonreturn of consent formgy some learners
and absenteeisualuringthe days of writindoy other learnersesuledin the subsequent
reduction of theamountof respondents belowhe anticipated 100 The preliminary
investigation which had 30 learnerswas successful in validating instruments and
projecing how the main results would be lik& mixed method exploratory design was
employa for the study for it was to give irdepth results aftecombiring two data
collectionmethodsa written diagnostic testndrecordedollow-up interviews All the 96
participantsnrote the test antl4 of them were interviewed.

It was foundthat learnesd reasoningwas more basedon their concept imagethanon

formal definitions The most interesting wekerbalconceptimages some of whiclwere
veryaccuratepthersincomplete angetothers exhibited misconceptiori$ierewerea lot

of inconsisten@s i n the student s 6 incompetengrnuusinged def i
graphical and symbolicaépresentations of reflection, translation and strefd¢hnctions

For examplesomelearneraveremisled by negative sigon ahorizontal translation to the

right to think that it was a horizontafanslation to the leftOthersmistook stretch for

enlargemenbothverballyandcontextually

The research recommends thedchers should use more than one method when teaching
transformations of function®.qg.,practically-oriented and proceswiented instructions,

with practical examplego improve the images of theowecepts that learners develop.
\'



Within their methodologies,echersshould make concertedeffort to be aware of the
diversity of ways in whichheir learners think of the actisnand processex reflecting,
translating and stretching, the terms they use to describe @neltnow they compare the
original objects to images after transformatiofibey should build uponncomplete
definitions, misconeptions and other inconsistendiegacilitate development of accurate
conceptions more schematically connectetthéempirical world Thereis alsoa needfor
accurate assessments of successes and shortcahanigsarners display in the quest to
define andmaster mathematical concepisat taking cognisance of thelimitations of
language proficiencin English, which ishottheirfirst languageTeachers need to draw a
clear line between the properties of stretch and enlargement, and emphasizadtte ne
include the invariant line in the definitiaf stretch To remove confusioaround the effect
o fio A s maenpracticand piral testing of this knowledge could be donedostantly
remind learners of that properti,astly, eachers shoulfind outhow to usesmartphones,

i-phones, 4pods, tablets and other technological devitesteaching and learning, and

utilize them fully to their othese anthahert he

concepts and skills.
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CHAPTEBGNE

Introduction

This chapteintroducesthe research studgnd the context in which it is engender&tde
context of the study is descrtbim (1.1), the backgrounds outlinedin (1.2 and the central
problem of the study is described in (].3)he purpose of the study, research questions,
aims, significance and assumptions followsettions(1.4), (15), (16), (1.7) and (18)
respective}l. Ananalysis of the key concegresenteth (1.9) and thechapterconcludes
laying outthe structure of the thesis in {D).

1.1 THECONTEXT OF THE STUDY

Thenew political dispensatiom South Africa after the first democratic elections in 1994
and the movérom thedefeaed Apartheidregimeto aninclusiveconstitutionademocracy
brought inseveral changesf the curriculum for learners at primary and secondary school
levels The most recentf thesechangs was the introductiorin January2012 of the
Curriculum Assessment Policy Statement (CAPS), an amendment tdNatienal
Curriculum Statement (NCSyvhich had originally come into effect in 20(Bepartment

of Education(DoE), 2002; 2008) The new policy was intendddr the curriculumto be
more accessible to teachers amdeplacedlearning outcomes and assessment standards
with topics, aimsobjectivesand skills(DoE, 2012b)among other thingdn mathematics,

the topic of linear programmingvas completely removeflom the syllabusnd sections

of analytical geometry and Euclidian geomepmeviously examined irthe third and
electiveof the three examination papevas merged intthetwo compulsory examination
papers.This resulted in the topic of circle geometry and some sectibraalytical

geometry, which were formerly elective, becoming compulsorily. The topics of functions



and transformation of functions remained unchanged, both in content and organization.
These two topics are dealt with separately in the Intermediate amnat aases of the
General Education and Training (GEBand. In the Intermediate phase, the topic of
functions covers input and output values in function (or flow) diagrams and the topic of
transformations coven®flection,translation, rotation, enlargeent and reduction, while
salient concepts like line symmetry and tessellations are highlighted. These concepts are
dealt with in the contexts of triangles and quadrilaterals. During the Senior phase, the study
of functions involves input and output valueghe function diagram, as well as rules for
patterns and their equivalent forms such as verbal, tables, formulae, number sentences,
equations and Cartesian plane graphs. The last two equivalent forms are introduced in
Grades 8 and 9 respectively. Theito of transformations covers line symmetry of
geometrical shapeseflection,translation, rotation, enlargement and reduction. Learners

are required to perform transformations on squared papers.

During the Further Education and Training (FEBand, funtions are studied in greater
depth and their types and characteristics are highlighted. Transformations no longer make
up a separate topic but are studied as they manifest as transformations of functions. The
concepts are the same as those dealt witteipitevious grades, except for the introduction

of stretch/compression. The objects that result when transformations of functions are
mapped differ in the higher grades. It is necessary that learners understand the concept of
transformation of twalimensioml shapes first before they can apply these transformations

to functions. In the old NCS syllabus, learners covered the three isometric transformations
(reflection, translatiomnd rotation), and enlargement in triangles during the GET Senior
and FET phase and transformation of functions during the FET phase. The currefit NCS
CAPS syllabus for the GET Senior phase still covers transformations such as reflection,
translation, rotation, enlargement and reduction in-dimeensional shapesThese

transformatios are morecomprehensive and prepare learners more thoroughly for

1 The GET band covers the first 10 grades of school education and consists of the Foundation phase
(Grades R to 3}he Intermediate phase (Grades 4 to 6), and the senior phase (Grades 7 to 9).

2The FET band is the second level of education. It consists of Grades 10, 11 and 12.



functions during the FET phase. It no longer has transformations as a separate topic for the
FET phase. However, a shortcoming of the currentiNE2®S syllabus is that it does not
cover theconcept of stretch before it is applied to functions. Teachers need to introduce
stretch to learners before they can move on to deal mathping of functions. bt all

teacherslo so competently.

1.1.1GET NC&; CAPS Syllabi Relative Objectives

During the GET Senior phase, learners are introduced to transformations of plane shapes.
This topic lays the foundation for transformations of functions because, logically, one
cannot transform something without understanding what transformation is. The NCS
CAPS syllabus obijectives for transformations for the 3 grades of the GET Senior phase,

are outlined below:

Grade 7

For a learner to be considered adequately competent, he/she must be able to:

A recognize, d ersfleatian,iransladionsdnd mtatiorfs ovithm

geometric figures and shapes on squared paper;
A identify and draw |ines of symmetry in

A draw enlargements and reductions of ge

compare them in terms of shape and size.
(DoE, 2012dNCS CAPS Senio), pages 58).

Grade 8

For a learner to be considered adequately competent, he/she must be able to:

A recognize, describe and perfrdmam@m tr ansf

plane, focusing on:

A reflecting a point about theaxisor y-axis;

A translating a point within and across quadrants;



A recogni ze, describe and per foodmate t r ansf ¢
plane, focusing on the eardinates of the vertices when:

A reflecting a triangle about theaxis or yaxis;
A transhting a triangle within and across quadrants;
A rotating a triangle around the origin;

A use proportion to describe the effect ¢

perimeter of geometric figures.
(DoE, 2012aNCSCAPSSenior),2012 page 10%).

Grade 9

For a learner to be considered adequately competent, he/she must be able to:

A recognize, describe and perforamd tr ansf ¢

simplegeometric figures on a eardinate plane, focusing on:

A reflection about th&-axisor y-axis;
A translation within and across quadrants;

A reflection about the ling/ = x;

A identify what the transf odnatesaofisn of a

image;

A use proportion to describe thendeffect c
perimeter of geometric figures;

A i nv e s t-ordirmteseof thelvartices of figures that have been enlarged or

reduced by a given scale factor.

(DoE, 2012dNCS-CAPS Senior),pages 1241; 132; 1378).



1.1.2FET NC&;, CAPS Syllabi ReldObjectives

During the FET phase, some aspects of transformation geometry are no longer studied as
a separate topic, but the ideas or concepts are explicitly applied when mappings functions,
i.e. in transformations of functions. The topic of transfornmatibfunctions is approached
with verbal descriptions, graphical representations on the Cartesian plane and symbolical
representations using algebraic formulae or coordinate mappisignentioned above, a
learner does not come across the concept of Btretcthe component of dilation and
compression, in the GET Senior phase before it is applied to functions in the FET phase.

This is a gap that needs to be bridged by future curriculum developers.

The NCS CAPS syllabus objectives for the 3 grades of thé pRase, are outlined below:

Grade 10

At the end of the topic, a competent Grade 10 learner should be able to state the effects of

different values o&, andg on the function equatiord:

1 astraight linef (x) =ax+q.
k

1 ahyperbolag(x) =a—+q
X .

1 aparabolah(x) =ax’ +q.
{1 an exponential fuction i(x) =ab* +q(b>0).

1 and trigonometric functionsj(x) =asinx+q , k(x)=acosx+q and
[(X) =atanx + Q.

(DOE, 2012h(NCS-CAPSFET), 2012 page5).

3 Neithersyllatus specifically prohibitshe useof matrix operatorsand computer prograrmes.Some
teachers might use them as expanded opportunities.



Grade 11
At the end of the topic, a competent Grade 11 learner should be able to:

1 state the effects of the parameteendp on graphs oy = f (kx)andy = f(x +

p) for various functiony = f(x);
1 identify the characteristics of various functions and draw sketch graphs;
1 identify the equations of graphs from given information;
1 interpret sketch graphs.

(DOE, 2012b NICS-CAPSFET), 2012pags3).

Grade 12

The Grale 12 content does not include transformations of functions, but they are

continually assessed as learners head for the summative examinations.

1.1.3Aggregating the NGSCAPS Syllabi Objectives
Transformations of Functions and the Aims of the Mattersa in
the FET Phase.

In the processof conceptuaking and developing skills for the process of transformation

of functions,learners are expected to demonstkai@wledge and skills

1 Adding a constant to any functiofi(x) to get f (x) +c translates its graphevtically

upward byc units with no change in shape.

1 Subtracting a constant from any functidr{x) to get f (x) - c translates its graph

vertically downward byc units with no change in shape.

1 Multiplying any function f (x) by a constanta to get af(x) stretches its graph

vertically by a factora (@ is a positive integer).



Multiplying any function f (x) by a constantt to get% f(X) compresses its graph
a

vertically by a facto& .
a

Multiplying the independent variables, in a function f (x) by a to get f(ax

compresses its graph horizontalb);/zh)factor1 .
a

Multiplying the independent variable, in a functionf (x) by T get f(% X)
a
stretches its graph horizontally by a facdra is a positive integer).

In general the effect of multiplying bg(a, 1) in any equationy = f (x) to get

y=af(x) stretches (or compresseg) f (x) vertically with xaxis invariant.

The abovementioned skills are exemplified in the following statements:

l

If a is positive, then the resultant graph is just stretched. For example multiplying
2in f(x) by 4 to givey = g(x) = 4[2”] has the effect dftretching the graph gf= f(x)
vertically, with thex-axisinvariant, by the factor 4. This is true foralkn, g (n) =4

f ().

If a is negative, then the resultant graph is first stretched and then reflected about the
x-axis before stretching. Fagxample, multiplyingy = x? by -2, the grapty = -2 ¥ +

1is the graply = x? stretched vertically by a factor 2, moved upwards by 1 and then
reflected abouy = 1 (in other words, stretched by a factor 2, reflected apeud and

moved up by 1 unit) L@aridon, Barnes, Jawurek, Kitto, Pike, Myburgh, Rhodes
Houghton, Scheiber, Sigabi, & WilsoRQ06, pages 95128; Pike, Barnes, Jawurek,

Kitto, Laridon, Myburgh, Rhodekloughton, Sasmargcheiber,Sigabi, & Wilson,

2011a, pages 1579; Pikeet al 20111.

A special case is multiplyingy =cosx by a to gety =acosx which has the effect
of stretchingy =cosx vertically, withy = 0 (the xaxis) invariant, by factoa. For

example multiplyingx by 2 to get y=2cosx has the effect of stretching

7



(compressing) the graph of =cosx horizontally by #ctor % (factor 2), and
multiplying x by % to gety :% cos xhas the effect of stretching (compressing) the

graph ofy = cos xhorizontally by2 (factor% ).

The effect ofain the equatioly = f (ax)is to stretch (to compresg)= f(x) horizontally

by fador 1 (by factora). If a is negative, then the resultant graph is reflected about
a

they-axis For example the statements hold for the grgphsin x y = 2 sin xandy

=sin 2x

The graphs of = a f(x)andy = - a f(x) are mirror images (reflectionsf each other
about thex-axisandy = f (ax)andy = f (- ax) are mirror images of each other about

they-axis

The combined effect @&, bandqiny = a f(bx) + gis a vertical stretch of = f(x), with
thex-axisinvariant, by the factaa, then a hodontal stretch, with thg-axisinvariant,
by a factorb, followed by a vertical translation gfunits (Laridon et al, 2006, pages
95/ 128; Pike et al, 20H] pages 157194).

The teaching of transformations of functions is in line with the aims of thé Q8BS

FET curriculum document which stresses that learners should be exposed to mathematical

experiences that give them the opportunity to develop mathematical reasoning and

creative skills in preparation for the abstract mathematics they will encountevénsity

courses. It is imperative, therefore, that teachers and educators:

include the description of graphical relationships and representation of mathematical

objects;

1 help learners to develop mental processes that enhance logical reasoning, critical

thinking, accuracy and problem solving that will contribute to decisaking;



T teach I earners the 6howé, dédwhend and bédwhyo
with a good understanding of why they are important, and leave learners well

equipped to wstheir knowledge in later life;

1 develop mathematical language skills and terminologies for analysis, evaluation and

critiquing of conclusions;

1 develop mathematical process skills like identifying, investigating, problem solving,

creativity and critical timking;

9 teach learners to use spatial skills and properties of shapes and objects to identify,

pose and solve problems creatively and critically;

1 teach learners to communicate appropriately by using descriptions in words, graphs,
symbols, tables and diagna.

All these aims should be taken into consideration when developing the topic of
transformations of functions for the FET phase.

According to the constructivist theoryhen leaning a concept, learners reconstruct the
knowledgeabout that concepo ther level of understanding and the resultant knowledge
structure is not always the exact replicacohcept definitiorstated in the books big
something related to ifThis new structure may be correct, incorrect or somewhere in
between, but it formstheear ner s concept | mage. The | ec
uses that concept image to work out the cognitive tasks without consulting the original
concept definition. An incorrect concept image may give rise to an undesirable solution to
the problem, wihe a correct concept image could be expected to give a desirable solution.
It is necessary, therefore, that educators investigate what learners may have as concept
images, in order to facilitate the formation of appropriate concept images. An example of
this type of facilitation would be to give learners many correct examples of solutions to a
probl em, with the expectation that one of ¢t
concept image. This could lessen the likelihood of misconceptions abaonitept being
formed. When learning about transformations of functions, for example, understanding
could be improved if a teacher works through many correct examplesflection,

9



translationand stretch with the learners, to facilitate the formatioapgropriate images

of these concepts in |l earners6é minds.

1.2 THE BACKGROUND OF THE STUDY

This research study looks at how Grade 11 learners interpret the effects of parameters in

the transformation of functioy = f (x) into the functiory = af (x + p) + q, in a stegby-

step, gmpleto-complex manner. It focuses on how learners understand the
transformation concepts of reflection, translation and stretch that are covered in the FET
mathematics curriculum, and attempts to determine what concept images learners have
about these caepts as they manifest on functions. The act of transforming (mapping) a
function and identifying a transformation responsible for mapping a function are some of
the most crucial skills that learners should acquire in mathematics during the FET phase
of the South Africa school system and at equivalent levels of education elsewhere in the
world. These skills are, in most instances, not easy to master. In the South African context,
the acquisition of such skills should begin in Grade 10, the beginning os¥EDus,

which is where learners are first introduced to functions and their transformations.
Transformation of functions is one of the topics where concepts and skills are continuous
in three successive grades. The skills taught in Grade 10 are devahabezinforced in

Grade 11 and Grade 12, in preparation for the national terminal/summative examination
for matriculation. As the Grade 12 examinations are both a basis for skilled and semi
skilled employment and a springboard to tertiary education, ssitdelearners are
expected to have mastered basic concepts and skills like that of transformations of
functions in order to be able to master the more advanced concepts they will then

encounter in further education and training.

It is worrying that the @partment ofEducation examiners report during roadshow
presentations, year after year, that examination candidates performed poorly in

4Reportback sessions where Grade 12 teachers are given feedback on how learners performed in the
LINBOSRAYy3 &SI NR& adzyYlI GA@S SEFYAYlLGAZ2Yy&ao
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transformatiorrelated topics in the national summative examinat{bd, 2011; 2012;

2013; 2014 The Analysisof Cathi dat es 0 Responses puwblished
Education cites the inability to interpret graphical representations, inability to do
graphical representatiofPoE, 2013; 2014), inability to identify functions, incomplete
description of transformation#correct verbal statement of rules, and an inability to
differentiate between variowsansformationsoE, 2013) as some of the main problem
areas where skills are lacking, as observed from exam scripts. Learners rewrote words
from the question as reaso(confused), used brackets improperly, and made mistakes
with directions (left right, up or down) or unitdDOE, 2014). The reasons suggested for
these shortcomings were language barriers, lack of theoretical understanding of basic
concepts involved, @ha lack of courage to attempt higloeder questionsloE, 2013;

2014). Several recommendations were made, such as educators stressing the rules of
transformation, doing practical examples of transformations, emphasizing the notation,
linking transformatns to graphs, exposing learners to all aspects of this section
(including sketching, interpreting equations and graphs, emphasizing shifted functions
etc.), testing theory through questioning, repeated testing, and emphasis on teaching the
owhy, Wbwat an dDof, 238 2014). Frustrated with poor performance, the
examiners suggested thetraining of current mathematics teachers in this topic as a
necessary intervention. They foresee thataming would enable teachers to improve
their leaner s6 acqui sition of competence skills
reasoning and creative thinking, as elaborated in the Mathematics Learning Area
Statemen{DoE, 2002 2012). This poor performance is of great concern to educators
since mathematitgproficiency among their learners is a compelling necessity. The
purpose of this study is to investigate the barriers to mastery of the concepts and skills

involved in transformations of functions faced by Grade 11 mathematics learners.

As a mathematiceducator in one of the South African high schools, this researcher has
noticed the challenges some learners encounter with transformations of functions. Apart
from some learneishowing attributes diavingshort concentration spgmimany of them
seem taoncentrate in learning procedutese followedbefore understanding concepts
behindthose procedurest hasproved extremely difficult, in my experience® enable

11



many of the learners at FET baniw understanadoncepts relationally andcquire the
probdem - solvingskills required fotransformations of function3 his studystems from

our concern with the difficulties experienced by learners, and we hope that it will make a
meaningful contribution to the debate around how students grapple with undergta
concepts of transformations of functions, and how the resultant thinking and reasoning
influences their use of those concepts, given that transformations of functions occupy a
significant space iboth continuous assessment (CAS8)d summative assement of

FET mathematics in South Africa.

1.2.1 Weighting of transformation of functions

The process of transformation of a function entails the mapping of the whole function or
certain points of the function from their original positions onto nevitipas or images,
using some weltlefined rule. Transformatierelated topics contribute significantly to
both the FET continuous assessment (CASS) and the sumnhidivenal Senior
Certificate (NSC)Matriculation) examination for the FET band. The assestm
guidelines and examination projection for the old NC®E, 2008; 2009) listed
contributions of about 0.23 for Paper 1 and about 0.2 for Paper 2. The curreint NCS
CAPS FET syllabus examines transformations of functions in PapEBuicfions and
Graphg and in Paper ZIfigonometry. The first NC$CAPS examinations were due to

be written in 2014. The imagm Figure 1.lbelow shows acreeshot extracted from

the CAPS document (DoE, 201pIb5), of the weighting of topics in the current CAPS

assessmemjuideline and examination projection:

5 Continuously planned assessment through a processenttifying, gathering and

interpreting information about the performance of learners, using various forms. It involves

four steps: generating and collecting evidence of achievement; evaluating this evidence;

recording the findings and using this informa2 y (2 dzyRSNREGFYR YR | daia
development to improve the process of learning and teaching (DoE, 2012b p 51).

12



Figure 1.1: The weighting of topics in theNCS-CAPS syllabus.
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The NCS curriculum had some minor variations of the calculated contributions for the

period 2008 to 2013. The -calculated contribudionf functions, graphs and

transformations (excluding differential calculus and cubic functions) are shown in the

table below:

TABLE 1.1: The calculated weighting of functions, graphs and transformations in

some National Senior Certificatg NSC) examinations papers in South Africa

Year
2008
2009
2010
2011
2012
2013
2014

Examination

November
November
November
November
November
November

November

Paper 1
0.31
0.32
0.37
0.35
0.38
0.27
0.39

Paper 2

0.22
0.25
0.25
0.28
0.17
0.26
0.12

Combined
0.27
0.28
0.31
0.31
0.28
0.26
0.25

Table 1.1 shows the significant contribution of functions, graphs and transformations (of

between 25% and 31% overall) to the national school certificate examinations in South

Africa. It is important to observe that in 2014, tist assessment under the NC\PS

syllabus, the major contribution is found in Paper 1, and the contribution to Paper 2 has

decreased. It is against this background that this study values the topics and intends to

investigate how learners interpret tmansformation concepts oéflection, translation

and stretch, and how they use these forms of transformation to map functions. This

exami

nati on

S

i ntended

t o

reveal

di

fferent

and deduce how such thinking anelsoning influences their understanding of the

concepts in question.
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13 THE PURPOSE STATEMENT

The purpose of this study is to investigate how learners develop their understanding of
transformations of functions and to analyse their understandlihg concepts involved.

In particular, the study investigates how Grade 11 learners understand reflection,
translation and stretch as isolated concepts, and how they understand these concepts as
theymanifest in the transformation of functions througgit representationResearches

done about problems of understanding and conceptualisation in mathematics mostly

focused on university students (see section 3.2). From this junitteifact that students

at university have such problems with understagdionceptualisation and mathematical

reasoning highlights the need for interventions to begin at an earlier stage in their
education, thus the reason why this research study focuses on secondary school learners

is that the necessary strategies can béemented before students enter universiade

11 was preferred against Grade 10 for their longer period of exposure to transformations,
functional graphs and effects of parameters on transforming functions and against Grade

12 the latter were perceivealbe busy due to preparation for matriculation through school

based assessments and later the terminal / summative examindfedngend to identify

various concept images and to highlight misconceptions about the targeted concepts of
transformation andnat hemat i c al reasoning within the | e
about transformation of functions. It is necessary to extend the understanding of
knowl edge structures that are created in | €
represent concepts s to develop appropriate intervention strategies to effectively

correct learner misconceptions. Interventions should assist learners in arriving at the

correct conceptual understandidgathematicd_earning Study Committee, 2001) of the
transformatiorconcepts.Transformations of functions and their symbolical and graphical
representations play an important part in mathematics and its applied disciplines, so a
correct understanding of the concepts is im

and laer in tertiary education.
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14 THE PROBLEM STATEMENT

As discussed in section 1.2, mathematics learners encounter many challenges in
interpreting the effects of parameters that bring about transformations of functions from

y = f(x) toy=af(x+ p) +g. Cognitive conflictcoulb e a f actor i n | earnei

where the concept images of the mappings reflect differently from what is implied by the
formal concept definitions (Tall & Vinner, 1981). This research aims to uncover what
types of concept images learners have. Thesense doubt as to whethetademically
challengd learners, particularly those whose home language is different from the
language of education, interpret and use the concepts invoéfitijon, translatioand
stretch) as they are meant to, whether théyk and reason proficiently in mathematics,
and whether, in the end, they construct a coherent and correct view of these mathematical
concepts or just take them as separate pieces of abstract knovBlasigg. onpersonal
constructivismor cognitive costructivism theory (Piaget, 199, children develop
personal cognitive structures and capabiliiesthey learnwhich help them construct
their own understanding of concepts in different ways such as through exploring,
observing, listening, touching et®his guaranteethe existence of concept images when
learning such concept asflection,translation andtretch (including compression) of
function for they havexamples in the empirical wotlé.g. your image as you look at
yourself in the mirror andlipping pages when reading a book for a reflectliting
objects on a conveyor belt for translation atrétching stockings as you fit your feet and
sheen, just to mention a feWextbooks and teachers very often presees¢hand other
mathematicatonceps abstractly andvithout connectionsvith otherpreviouslylearnt
concepts oto the empirical worldn which we live. Learnerdrequentlytry to simplify
the conceptsto their level of understanding, in their own language. The posgibflit
miscanceptionsarisingin this processs great The unfamiliar abstractness arslibject
specificrigor possiblylead learnerso think thatmathematics is a difficult learning area/
subject. Th e | ecencepeimagdmre the main constitution of this studyhe
magnitudes of the variations from formal definitionsnay determine the presencd
cognitive conflict factorsLearners who have such potential cognitive conflict factors in
16



their concept images may be challenged by the formal theory and maydiffatult to

operate correctly with the theory. Very often Mathematics knowledge is presented in
books abstractly and rigorously and as without connections with other concepts and the
empirical world we live in. It is prudent for mathematics learnerlawe their own
interpretations and use their own language to explain and reason out the concepts other
than just try to stick to the abstract and rigorous ways of presentations used in textbooks.
The abstractness and rigor may produce challenges foetsamnd make them think that
Mathematics is a difficulsubject

The identification and analysis of | earners
this study. The magnitude of their possible variations from formal definitions may

indicate the presenad cognitiveconflict factors. Learners who have potential cognitive

conflict factors in their concept images may be challenged by the formal theory and may

find it difficult to apply the theory correctly. It is important for mathematics learners to

devebp their own interpretations and use their own language to explain and reason out

the concepts being studied rather than just trying to stick to the abstract and rigorous

method of presentation used in textbookkhough some research sfibeendoneon

ler ner s concept i ma grelated tomthematicdl concepssi(Talk e as oni |
& Vinner, 1981; Viholainen, 2008)esearch hasot been carried out on the concept

imagesof high school learnerandin the field of transformationconceptsapplied to

functions(See section3.2Jal | & Vi nner, and Vi holainenbés s
students in terms of limits and continuity, and derivation and differentiability,
respectively. The literature review revealéor example,a similar study done in ta

Netherlands, but this focused on a single learner as he used pencil and paper visualisations

and theanalysis of concepts and computer aided displays (Borba and Confrey, 1996).

The summative examiners for South Afric®&C Matriculation examinations, dung
road show repoiback sessions, drew attention to poor performance by learners in South
Africa generally, and in Gauteng Province in particular, with respect to transformation
geometry and related topics. They recommendeskeidice training in the tops for
current mathematics teachers as a possibleavemyprove results in futurddpE, 2011).

Teacher training could facilitate learner acquisition of competence skills in mathematical
17



processes, reasoning and creative thinking (20B9. Tall (199]) argues that learners

must develop their own approaches to mathematics learning that facilitate their
intellectual growth and formation of knowledge structures and that take account of the

thinking process they have. According to Pinto and Tall (2002gequ images can help

learners compress information into single tables, which they can invoke later when
recalling concept definitions. This schol ar
concept images and mathematical reasoning with regards fowdbess of translating,

reflecting and stretching functions.

1.5 THE RESEARCH QUESTIONS

This research study addressed the following research question:

Wh at are Grade 11 mat hemati cs |l earner so

mathematical reasoning otransformations of functions?

The main research question was examined by meaespbbratory and descriptive

research directions, each containing a number cfjsiestions:
Theexploratorydirection addressed the following:

1 What are the mathematics leeer sd ver bal, graphical and
reflection translation andstretch of functions?
1 What are the reasons given by learners to justify their concept images?
These explmtory subquestionsattempedto answer the following specific mini
guestons:
o What are the concept imagesrefledion of functions?
o What are the concept imagesti@nslationof functions?

o What are the concept images of the stretch of functions?
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An exploration of the variables dhe categorytype was conducted to addressette

guestions. The objectiweasto identify images (verbal, graphical or symbolical) of each

of the thredransformatios and assess how competent the learmers in dealing with

the transformations.

Thedescriptivedirection addresgsithe following:

T Are the | earnerso6 concept i mages and ma

representative of formal definitions?

This subqguestion also attengdito answer the following minjuestions:

To what extent are the | earner 0 concept
the formally defined concepts?
How are the | earnersdé concept i mages r €

three concepts? (Are there contradictions or not?)

Does the | earnersd reasoning about conce
definitions?
Toanswer these questions, | earweeeaddréssed,o mpet en

aswastheir ability to argue or reason formally or informally, explain, interpret formal

definitions, and use their interpretation successfully in reasoniddhBy hae problem

solving abilities,were the arguments precise or more explicit, amere the conceptions

of transformations clear?i®learners have the ability to use interpretations successfully

in their reasoning? id they use formal or informal definition®r use both

simultaneously? [@ they make the correct use of visuals?

1.6 THE AIMS OF THE STUDY

The aims of this research stuggre to:

T

nvestigate and assess | earner so compet e

representing reflection, translatiand stretch of functions;
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1 investigate the concept images that students have built after learning, interpreting and

representing concepts of reflectjgranslatiorand stretch of functions;

T assess how coherent | ear ner s 0thecfmmat e p t I ma

definitions of reflection, translation and stretch of functions;

1 assess how learners use their concept images to explain, justify, argue and reason in

the processes of reflectinganslatiorand stretching functions;

1 assess the link betweenale ner s 0 explanations, justi fi
reasoning using their concept images and those given by formal definitions in the

processes of reflectingranslatiorand stretching functions.

The studywas aimed at establishing what concept imagesnies form as a result of
learning transformations of functions, and what mathematical skills, abilities and reasoning
learners acquickwhen dealing with representations or illustrations of those concepts. It
neededt@e o mpar e | ear ner saéasoninga teansfotmatiordconcepts with d
those implied by the formal definitions of the concepts, thed suggest how classroom

activities around learning such concepts could be improved.

1.7 THE SIGNIFICANCE OF THE STUDY

This research study is imded to benefit mathematics educators, mathematics student
teachers, mathematics teacher educators and, to some extent, educationists and
mathematicians. Kilpatrick (1993) states that an educational research study may belong
to one or more of the followintyree categories: those studies that attempt to have a direct
influence on teaching practices by providing ideas and material for teachers to use and
suggesting activities teachers might conduct; those that suggest new ways to understand
st ud e nt gaadevehts imtkeiclassroom (indirect influence); and those that attempt
to develop the terms and the framework in which mathematics education is portrayed in
publications (also indirect influence). This study fits best into the second category, as

highlighted by its aims, but it also fits into the first category, as will be outlined by the
20



recommendations. The results of this stusyreexpected to contribute to the theory of
learning transformations of functions, as well as to the theory of teachirggmoerally,

by highlighting how learners interpret translation, reflection and stretch in transforming
functions, and also by identifying the misconceptions some learners might have when
working with the concepts. Like all good educational researchs ibbth a practical and

a theoretical relevance, viasvis the practice of teaching the concepts of reflegtion
translatiorand stretch of functions by broadening or deepening the understanding of how
learners learn (Sierpinska, 1993). The research outcoo#d contribute to relational
mathematics learning and realistic mathematics education. Results from the study may
also provide insight for mathematics teacher educators designing programmes to enable
student teachers to improve their knowledge of, dnlityato teach, transformations of
functions. The researcher also anticigdieilding new knowledge about concept images

of reflection translationand stretching of functions.

1.8 ASSUMPTIONS OF THE STUDY

The study is based on the assumption thateconrmathematical statements are partly
determined by identifying them with formal axioms, as in accordance with the ideals of
Hilbert (1862 - 1943) which value objectivity, abstractness and independence of
empirical reality in mathematical concep®n the other hand, construction of knowledge

by learners is not independent of empirical reality, as in accordance with the paradigms
of relativism and sockgonstructivism. In this study, formal definitions would be taken

as the standard against which learbersvi ews about concepts
reasoningvould be evaluated. Any concept definition or concept image that is different
from the formal definition and formal representation will be considered to be a

misconception.
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1.9 DESCRIPTIONB KEYERMS AND CONCEPTS

The following are the key terms used in this study: concept image; mathematical
reasoning; coherence of concept images; functions; functional representations;

transformation of functiongeflection;translation and stretch.

1.9.1Cortept Image

Aconceptimage s fall the cognitive structure in th
with a given concepto (Tal/l & Vinner, 1981
conceptions about that concept, with or without connections to thealfazomcept

definition. The concept image may also be in the form of mental images or interpretations

based on representations or other properties or processes involved in the manifestations

of the concept (Viholainen, 2008). The concept images of tranafammof functions
(reflection,translation and stretch) are the prime focus of this study (see sections 2.1 and

2.2).

1.9.2Mathematical Reasoning

Mathematical reasoninig the individually created meaning or interpretation of a concept

by extrapolatiorfrom an existing knowledge structure (Viholainen, 2008). This creation

or interpretation of a concept is dependent on the context in which the concept is used.
Mathematical reasoning is a specialized informal reasoning focused on mathematical
concepts for mathematicallyorientated scholars. It may consist of illusions of
mathematical concepts or an attempt to represent mathematical concepts by other real life
concepts. Viholainen (2008) views informal reasoning as resulting from visual or
physical interprettions of mathematical concepts, and formal reasoning as exact
reasoning based on axioms, definitions and theor€éhms viewis under examination in

this study.
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1.9.3Coherence of Concept Image

Coherence of concept imaigehe way a concept image is amzed and linked to formal
definitions. According to Viholainen (2008), highly coherent concept images have the

following attributes:
1 There is a clear personal conception about the concept.

1 There are weltonnected conceptions, representations and miemgles about the

concept.
1 There are no internal contradictions within the concept image.
1 There are no conceptions that contradict formal mathematical axioms.

One of the objectives of this study to asses

the tansformation of functions.

1.9.4A Function

A functiorf is a mapping that involves either a eeone correspondence or a meoy
one correspondence (Tapson, 2@060, between two sets of numerical values. The

symbols y = f(x) indicate a function involving &ingle variablex that produces a

mapping from x-values to y-values. Examples of functions aré(x)=3x+1 ;

f(X) =2x* +5x+3 andf (X) =cosx. Functions are the objects on which the concepts

of reflection, translation and stretch will be tested during the course of this study to

determineé ar ner sd concept i mages.

6 Sometimes defined sets are used for the domain anda@main of functions.
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1.9.5A Functional Representation

Functions can be expressed by means of various vismational representations
including symbolic or algebraic formulae, plotted Cartesian graphs-ouytptit tables,

flow diagrams or setidgrams. Markmann (1999) considers the teepresentatiorto

include the represented world of elements to the representing world, and to be a process
that uses the information in the representing world. Visual representations play an
important role in comunicating mathematical concepts in the teaching and learning of
mathematics (Elia, Gagatsis, & Deliyianni, 2005). It is necessary for learners to be able
to recognize concepts in various types of representation and to be able to manipulate them

within these representations and translate them across systems.

1.9.6A transformation

A transformationis a mapping of a set of points onto a second set of points using a well
defined operation (Lewis, 2002). It involves the mapping of a point, a function, a
geametrical shape or their representations (objects) from their original positions or forms
into new positions or images using a wadifined rule. The simplest transformations are
isometric transformation&lso called congruencies or rigid motions), whibhrge the
position of an object while preserving the dimensions (size and shape). These consist
mainly of reflections (flips) translations (slides) and rotations (turns). Glide reflections
(flip-slideflip or footprints) combine translation and reflectidmother group is theon
isometric transformationgnon-congruencies or nerigid motions). Norrigid motions
change the dimensions, either size, or shape, or both.sWhilar transformationghe
size is not preserved, but the shape and proportiomdlite corresponding lengths are.
Similar transformations may be enlargement (dilation) or reduction. \Affihe
transformationgthe object only preserves parallelism. Shear (where area is preserved)
and stretch (where area is not preserved) are exampbdtine transformations. With
projective transformationscollinearity of points and the concurrency of line are
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preserved. Enlargement is an example for this type of transformation, but this is a special
case where corresponding sides are parallel.elei@l, the corresponding sides in a
projective transformation are not paralleltojpological transformatiof a plane figure

occurs if the closure (or neslosure), orientability, and relative position of corresponding
points are preserved. The Southriédn FET mathematics syllabus focuses on the four
isometric transformations, with the inclusion of enlargement and stretch. It is important

to note that isometrics are a subset of similarities, which are a subset of affinities, etc.
This approachtoteachn g transf or mati ons i s known as
Villiers, 1993).

1.9.7 Transformation of a Function

A transformation of a functiononsists of mapping (almost all) the points of a function
onto new positions using a welefined rule or peration (Lewis, 2002). With reflection

and stretch there may be one or more (but still very few) points that have remained
stationary after the transformation. In the CAPS syllabus, only translation, reflection, and

stretch are covered, and so these foilin the focus of this study:
Reflection

Reflectiort (sometimes referred to #ip) is a transformation or mapping which produces

a mirror image of the same function andized as the original (Laridaat al,2006). The

axis of reflection is halfway leeen every point and its corresponding image point and
is also called the line of symmetry or the mirror line. If a point is its own reflection, then
it is on the axis of reflection. In the reflection, any two corresponding points in the original

functionand the image function are both the same distance from the line of symmetry,

" The reflection is described by giving the positidihe fixed line Translationand reflection,together

with rotation, are isometric transformations (that preserve all the geometrical properties of a figure). For
example, translating a parabola changes the positions of all its points by moving theantkedsstance

in the same directionand reflecting a parabolabouta line other than its axis of reflection changes the
positions of all its points except those on that axis.
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and a line drawn between those points would be perpendicular to that mirror line (Tapson,
2006).

Translation

Translatior? (sometimes referred to akde) is a transformationranapping that changes

the position of points by sliding them to other positions (Laretcad 2006). Every point

of the original function can be joined to its corresponding point in the image function by
a set of straight lines which are all parallefl &gual in length (Tapson, 2006).

Stretch

StretcH is a transformation or mapping that increases the distance between parallel lines,
by the same factor, in one direction. In real life, stretchable objects have elasticity like

those made of rubber.

1.10 STRUCTURE OF THE THESIS

This research thesis is organized into the following chapters:

Chapter 1i Introduction
This chapter introduces the reader to the study problem and describes its context. It also

includes the background to the study, the mobktatement, the purpose statement, the

8 Translation is described by the direction and length of the sliding moveraergdtor).

9 Stretch is one of the affine transformations (only the parallelism of corresponding lines is preserved). In
polygons, stretch does not preserve area. A-vay stretch multiplies the original distance from the fixed
line by the stretch factorA two-way stretch of identical stretch factors in different directions results in an
enlargement.

26



research question, the aims and significance of the study, assumptions, and key terms and

concepts

Chapter 2Zi Conceptualising Concept Images

This chapter provides a platform for defining the texomcept imageard outlines its
characteristics. It also provides models, sourced from the literature, which illustrate
conceptual development in learners, and adapts these facts to design a model applicable to

this study.

Chapter 3i Theoretical Framework and LiteratuiReview

.The chapter looks at the theories related to concept images and mathematical reasoning
that underpin this study. The second part of the chapter reviews other research that deals
with issues of conceptualizing in mathematics and science and howrieanderstand the

concepts involved.

Chapter 41 Methodology
This chapter describes the empirical process of the study. It outlines the research design
adopted, population, sampling procedure, data collecting instruments, as well as data

processing andnalysis procedures.

Chapter 51 The Data and its Analysis
This chapter presents the raw data and analyses it using a variety of methods: description,

frequency tables and bar charts.

Chapter 6/ Relating Results to Research Questions

This chapter is dégned to provide empirical answers to the research questions. This is
done by matching the findings to the research questions, and evaluating how successful the
data is in providing answers.

Chapter 71 Summary of the Study, Conclusion and Recommendations

The chapter summarises the purpose of the study, the methodology used for the study, and

presents the main findings, the conclusion and recommendations.
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CHAPTERWNO

Conceptualisin@oncept Image

This chapter deals with how concept images are conceptdain this study. The first
section extracts the meaning of the term concept image and what it constitutes. It looks at
models formulated by other researchers about concept image definition, formation and
development. The models focus on conceptual stadeting, visualization, mathematical
thinking and reasoning, formal and informal deductions from concept definition, as well
as the formation of concept images. A model is then developed for this study, which will
illustrate the possible stages of conaggt understanding of the transformation of
functions. The last section of this chapter attempts to stimulate debate on the logical
process of mapping functions. Discussion from a number of different perspectives aims at

strengthening the understanding bétidea of concept images.

2.1 WHAT CONCEPT IMAGES ARE AND WHAT THEY CONSTITUTE

Tall and Vinner define aonceptimagas fall the cognitive struct
mi nd that i s associated with a givte concep:
phraseconcept framereferring to much the same idea, this study will use the phrase
concept image in preference to the alternative. Concept images are central to studies on
advanced mathematical thinking (Tall & Vinner, 1981; Tall, 1991; 1995). A
mahematical concept image may not necessarily be an isometric duplication of the
formal concept definitiorper se but may take the form of vague conceptions, mental
images or interpretations about that concept, based on abstract imagination or attempts to
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make representations, reveal properties, or explain processes involved in that concept,

with or without connections to its formal definition (Viholainen, 2008).

The concept image reveals the way an individual learner thinks about a concept, and this
may ke different from both how other learners think about the concept and from how the
concept is formally defined. Depending on whether learners understand the concepts
fully, have misconceptions about them, or harbour internal conflicting views within their
own minds, the concept images may or may not be coherent across a group of learners
(Viholainen, 2008).

In the process of reflecting on why many people have difficulty or are even incapable of
understanding mathematical concepts, Rosken and Rolka (200ijdioed two types of
mathematical conceptions as determinant factors of how people understand mathematics:
the objective and subjective mathematical conceptions. The former conceptions are based
on unique characteristics that every mathematical conceprih@soncepts mgyovide

different possibilities for the cognitive architecture offered to an individual and the

restrictions they entail. The | atter concept

may or may not adequately accommodate the foomaif mathematical concepts.

This analysis is helpful but it overlooks how the concepts are defined in textbooks, the
language used, the rigor involved and how learners interpret all this. Mathematicians and
scientists frequently use terms that are unlianto learners and that may make it difficult

for learners to redefine concepts in their own terms comfortably. The following questions

are pertinent and point to gaps nmy knowledge about how learners understand the

information available to them in tdooks:

Are the definitions uniform?

Do learners understand the language the same way?

Can learners simplify the terms to explainable forms that are comfortable to use and
recall?

1 Do they relate the concepts defined in the same contexts (intra or extra

mathematical)?
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For learners to understand concepts, they need to be able to define them using their own,
possibly simpler, terms, and make representations understandable to themselves. The
model of conceptualization provided by Tall and Vinner (1981) givgsoa picture of

the interplay between subijectivity (the concept images) and objectivity (the formal
definition). The model by Vinner (1983), which is a schematic version of the Tall and

Vinner (1981) model, is provided in secti2® below.

Tall (2005) pdnts out that a concept image may contain traces of the concept definitions

or maybe be contained in thencept definitions. This indicates that concept images may

take the form of mindefinitions, alternative definitions, vague conceptions, naive

definitions, queer meanings or explanations, visomges, or interpretations based on
representations, properties or the processes involved in transformation concepts applied

to functions. They may be correct, partially correct or incorrect, but as theyeare th
concept i mages held by | earnersod, we must ac

Presmeg (1986) identifies pictorial, pattern, meméiyaestheticand dynamic as five

kinds of concept imagery. Pictorial imagery is described as the mind pictures that are
dependent on thmhts and language, and pattern imagery as the spatial relationships
between concepts, while memory imagery refers to mental images resulting from
experiences that are not necessarily pictokadaestheticand dynamic images as those
involving physical ati vi ti es and movement (see al so
formulations are compatible with the definition of concept images in this study since they
all deal with the conceptions, accurate or inaccurate, that individual learners have of
concepts. The concepinages may also be alternative definitions, rdefinitions,

visuals or physical meanings of the concepts, or the relationship between that particular
concept and other mathematical concepts. It is a common understanding that concept
imagery is influencg by how learners understand mathematical concepts in relation to

the empirical world.

30



2.2 FORMATIONFCONCEPT IMAGES AND MATHEMATICAL
REASONING

The question of how concept images are formed is debatable. As memory structures,
concept images do natgt come passively into the mind, they form through mental activity

and internal arguments within the | earnerso
processes and the logical deductions we refer to as mathematical reasoning. Concept
imagescan® created through I earnersodo reflection
objects that are related somehow to the concept. Learners may create meanings or
interpretations of concepts by extrapolating from their existing knowledge structures.
Viholainen (2008) refers to this as personal interpretations of formal concept definitions.

These interpretations of concepts may depend upon the contexts used before or the apparent
context in which they are currently in use. As Viholainen puts it, learners gnafiple

imagistic ideas of concepts to translate formal definitions into informal representations
(2008). Some learners construct concept images through thought experiments that respond

to the syntax of the definitions and give imaginative meaning to theafa®finitions.

Bodner (1986) states that sense perceived information and cognitive structures exist

almost permanently within the minds of learners and, to promote this, learners should be
persuaded to relate new knowledge to other relevant conceptsr@mubkigons they

already know, and should desist from rote learAfrfghaumba, Ndofirepi and Gwirayi

(2012) also emphasize this by referring to .
idea and highlighting the fact that the most important influencirigifac the process of

learning is what the learner already kndwsell-performing learners learn by building

new knowledge on their prxisting cognitive structures.

Ogunniyi (2000) states that concept (image) formation iefeective creativity-a-
compex physiological/logio-metalogical processsimilar to natural selection or the

10 Rote learning refers to the proces$here new knowledge is acquired by verbatim memorization
rehearsing
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dominantrecessive phenomenon articulated by Charles Darwin and Gregory Mendel,
respectively, where knowledge that survives decay supersedes the rest and becomes the
pillar of the concept (imagery). This process uses conscious and subconscious

intelligences of exploring formal and informal experiences to derive meanings,

understandings and appreciations. Learners

array of conflictings at es 0 t o achieve clarity of | earnt

Duval (1998) links concept image formation to mathematical reasoning. Mathematical
reasoning develops from three epistemological components of cognitive processes:
construction, visualizatiorgnd reasoning.These three components may be connected and
interrelated Constructionis where tools are used, for example, to make models and this
leads to visualizationVisualizationis not only of objects, but also refers to visual
representations of ntagmatical statements. The clarity of a constructed image depends on
connections between relevant mathematical properties and the constraints of the tools being
used. Visualization may enhanceasoning although it may not for some specific
visualized image. Although reasoning is enhanced by visualization, reasoning can also
devel op independently of construction or
and mathematical reasoning enhance the formation of concept images only provides one
aspect of th dialectical relationship between concept images and mathematical reasoning

and suggests that teaching should emphasize mathematical reasoning (1998).

Some authors espouse the opposite idea, that concept images enhance conceptual
understanding and mathetcal thinking/reasoning (Usiskin, 1987; Vinner, 1983;
Fischbein, 1987; Tall, 1988; Vinner and Dreyfus, 1989). However, both viewpoints
indicate a probable dialectical relationship between concept images and mathematical

reasoning.

Although concept imageand visuals have value for teachers in illustrating concepts to

learners, they have even more value for learners in enhancing the understanding of

various mathematical concepts (Usiskin, 1987). Therefore concept images are like butter

spread irbetween twalices of bread they are used by teachers to facilitate conceptual

understanding during instruction and are also used by learners to support conceptual
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understanding. Vinner (1983) is of the opinion that concept images are more important
than concept dmitions when it comes to handling concepts realistically. Fischbein
(1987) singles out visual images as being very important for organizing data into
meaningful structures in that they act as a guiding factor for analytical development of
solutions in poblem solving. This seems likely because formal definitions are often not
very clear or explanatory, and hence they may not enhance understanding for learners. If
correctly linked to a concept, concept images facilitate a meaningful engagement with
learnirg activities. The formal concept definitions may rempassive or forgotten,
whereas concept images are always evoked in the process of reflective tfiliatirgy

Vinner, 1981).

Holistic and concrete translations of mathematical concepts into conceggsmre very
important in creative mathematical thinking and conceptual understanding. Tall states that
when learners encounter old concepts in new contexts, it is the concept images, with all the
abstractions made from earlier contexts, which resportiegdask at hand (1988). He
continues by pointing out that if learners do not have concept images, then a structured
approach to learning a topic is unlikely to be successful (1988). Integrating the concept
imagery gives learners a richer experience, witigh facilitate the formation of more
coherent concepts. Lack of conceptual understanding of, for example, transformations of
functions, can lead to misinterpretations and misrepresentations of some aspects of the

concepts involved in the topic, and thamaesult in the formation of incorrect images.

2.3 HOW THE APOS MODEL EXPLAINS LEERNICEFST
THROUGMATHEMATICAIHINKING AND REASONING

APOS modelDubinsky,1991) helps to explain how learners construct their understanding

of concepts. Imain fedaures aremental Actions ProcessesObjectsand Schemas The

modelis conneckdwith P i a g e t oOrefleciivel abstractiofhat have to happen during

learning The model is explained more detail@dmponent to componeni, section 2.9

below. Mathemaical thinking entails making appropriate connections, in the mind,
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between the definitions of various mathematical concepts and their visual or other
representations, which may be either formal or informal. Vinner and Dreyfus (1989) stress
that learners mght not understand a concept in depth if they do not match the concept
image and the concept definition appropriatdathematical reasoninghay come as
antecedent, on one hand, oadsllow-up, on the other hand, afhat has been conclusively
thoughtand /or understooabouta mathematical actioMathematical reasoning based on
concept images may be entirely separate from mathematical reasoning based on formal
concept definitions (Vinner, 1991). The former is a dialectical process between figural
(grgphical or symbolic) and conceptual aspects of concepts and involves the
interdependence of concept images andcepts themselves (Mariotti, 199 Concept
imagery, according to Mariotti (1%, helps to build mental schemas for learners and helps
them todevelop mature ideas of concepts and explore and verify how these concepts work.
Concept images combine mental actions with mental objects and continue refining the
images to allow learners to arrive at the concept more exactly. According to Pinto & Tall,
learners can use concept images for reasoning, for interpreting definitions of terms, for
exploring the concepts through thought experiments, and also for reconstructing their own
understandings of concept definitions. A concept image can be informatippressed

into a single diagram, which learners evoke later when recalling definitions (2002).
Graphical or symbolical images of concepts, like those in transformations of functions, can

support the reconstruction orftons. | earner 6s un

Visuals or physical representations can be classifiegnatogical (Eysenck & Keane,

1987) or active (Pinto & Tall, 1999). They are analogical if they reflect properties of

concepts and active if they show how concepts work. For example ytaiflerstand the

algebra of transformations, learners should concentrate on symbols (formulae) as well as

other forms of concept images, e.g. picture and action. This duatitp oéss and carept

is formul ated by Gr gy oax@ddo4)daohceptimagerytchnedbe not i on
translated into formal linguistic terms and can facilitate the interplay between thought

experiment and formal definition (Pinto & Tall, 2002).

Mathematical reasoning is, at times, informal, where it does not entirely depdéoanal

definitions of the concepts in question, although it may be influenced to a certain extent by
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them. It may be exogenic (realitgntred) or endogenic (miraentred). It is exogenic if it

results from visual interpretations of the concept, anad@gewic if it results from mental

thoughts or interpretations of a concept. A learner might not necessarily reason
mathematically about a concept using the mathematical language of the formal definitions,

but might instead create his or her own words casde explain the concepts. The words

and the precision of mathemati cal reasoning
the concepts in use and also on his or her 4lirggaistic competence, which is the ability

to reflect on the structural and furmtal features of concepts. Sound mathematical
reasoning allows for a lifelong retention of mathematical concepts and their applications

(Pinto & Tall, 2002). Understanding concepts likeflection,translation and stretch, and

their application to funabns, requires not only instrumental understanding, but also the
relational understanding of their meanings, and connections to other mathematical
concepts and ideas (Skemp, 1976; 1989). Visual or mental interpretations and
representations leadtothefam i on of concept i mages in indi

2.4 CONCEPTUAL UNDERSTANDING

Conceptual understanding is essential for learning, but what exactly the term

understandingmeans, how it is achieved, and how it is measured, is ne¢wdint.

Somescholars in the field of the psychology of learning mathematics, such as Skemp and

Dreyfus, agree that conceptual understanding is the restating and redefining process that

occurs in the learners mind about the concepts being learnt. Skemp differdetiatssn

two types of understanding, namelgstrumental and relational understanding.

Il nstrument al understanding i S Aknowing rul

under stanwimg baet i kwloa tSkempl9thpl6).Dreyus is bfy 0 (

the opnion that the mental processes that occur and interact in learner understanding may

be derivatives of the sequencing of learning activities that teachers use during instruction

(1991) and | earner sd expe-upjnmancorgtwite ashvelr eaf t er
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Kilpatrick, Swafford and Findél(2001) rate conceptual understanding as the most

important of the five strands of mathematical proficieHcy.

Conceptual understanding is critically important for the effective learning of
mathematics, and deloping conceptual understanding in learners is every mathematics
educatoro6s goal. The Mathematics Learning St
understanding as the comprehension of mathematics concepts, operations and relations,

that is, the integtad and functional grasp of mathematical ideas. Learners who achieve
conceptual understanding should have sufficient understanding of the concepts to work
intelligently and productively with them. Learners are then able to identify and adopt the

common fetures of the examples and this reinforces their understanding of the abstract
conceptslf they adopt features that are not part of the abstract concept, then there will

be interference which gives rise to some misconceptions.

25 MATHEMATICAL REASOMND ITS IMPORTANCE

Mathematical knowledge (concepts) presented in its formal form is usually abstractly but
not broadly explanatory thus it may not promote immediate conceptual understanding.
Mathematical reasoning is a means of constructing meaning ugiat is presented
formally. Formal mathematical reasoning is based on direct mapping from definitions,
axioms or previously proven theoremsaformal mathematical reasoning is based on an

individual 6s own visual or alpdnoess. c al i nterpre

Visualization is considered a key component of reasoning (Arcavi, 2003). The formal
reasoning around certain concepts is a direct mapping from the definition of the concept

in question. Informal mathematical reasoning and concrete interpretatsing visuals

1 Their other four strands are procedural flugn strategic competence, adaptive reasoning and
productive disposition.
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on paper or mental images, about a particular concept, are forms of concept images.
Visual representations thus play an important role in communicating mathematical ideas
(Elia, Gagatsis & Deliyianni, 2005). Learners do not only needstealize and interpret

concepts but also to manipulate them within the framework of their representations and

even mix them with elements of the formal system.

Learners form concept images of concepts in their minds that they use when doing
investigationsand thought provoking activities, using mathematical reasoning whenever
that is needed. Transformations of functions are one of the mathematics learning areas
that stimulate the development of concept images for mathematical reasoning. This is
because trsformation procedures require spatial visualization skills in the quest to
understand relationships between original and image functions, whether formally or
informally constructed. Transformations of functions are a rich source of material for the
develpment of mathematical reasoning skills. Geometrical representations and
investigations add excitement and insight to the learning of these transformations through
inductive and deductive reasoning and spatial visualization in one or more dimensions.
Algebraic approaches, with or without coordinates, if done before geometric
representations and investigations have been studied, result in learners resorting to
memorizing rather than exploring and discovering the underlying properties (Strutchens,
Harris & Mattin, 2001).

The starting point for thinking and reasoning mathematically is the interpretation of
definitions and properties of the mathematical concepts involved. A learner keeps these
relevant facts in mind and tries to use them by making appropdatections between

the definitions and properties and visual and other representations, as well as other
concepts, for example. Vinner and Dreyfus (1989) point out that learners might not
understand a concept in depth if they do not tie the concept imdgmacept definition
appropriately. Lack of conceptual understanding of transformations of functions can lead
to misinterpretations and misrepresentations of some of the ideas about the concepts in
the topic. The potential for imagery and visualizatioon@ept images) to enhance the
understanding of various areas of mathematics has been noted by Usiskin (1987), among

others. Fischbein (1987) states that visual images are able to organize data into
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meaningful structures, and they are also an importamrfeccguiding analytical problem
solving. Holistic and concrete interpretations are very important in creative mathematical
thinking and conceptual understanding because mathematical knowledge presented in a
formal form may not be broadly explanatory ands may not promote understanding.

Viholainen, (2008)describes informal reasoning as being based on visuals or physical
interpretations of mathematical concepts, and formal reasoning as exact reasoning based
on axioms, definitions and previously provéedrems. Learners grapple with imagistic
ideas to translate ideas into formal definitions and informal representations (concept
imagery). Some learners construct the concepts through thought experiments that may
respond to the syntax of the definition, ladtich may also give an imagined meaning for

the definition.

2.6 AQUISITION OF CONCEPT IMAGES AND MATHEMATICAL
REASONING

Working through appropriate examples has a positive effect on the formation of concept
images. Vinner (2011) highlights the impamte of examples in learning mathematical
concepts saying that it is by their use that concepts and conjecture are formed and verified.

According to Pinto, a good learner has his/her own strategies of learning mathematics
(1998). For rample, some learneextractmeaning? and others build from their own
imagery and give meaning to definitions by producing highly refined images that support

their formal arguments (Pinto & Tall, 2002). The latter learners do not force cognitive

2 _earners extract meaning by beginning with formal definitions and constructing properties by logical

deductions. Thisgoes hasikK Y R gA K 5dzo Ay aleQa !utilgdantified S2NE o mMdppMU
a0 adSYSydGa IINBE 3INIALISR 68 2Nl Ay3a FTNRY GKS AYyYySNJI |jdz y
the conversion of the predicate (as a process) into a statement (as a mental dBjg@®).
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processes but progress byimefg and reconstructing existing imagery in a form that they

can use to reconstruct the formal theory. These are the learners who are successful at
mathematical reasonirand problem solving. This scenario bears comparison with how

learners in mathemati@sterpret the concepts of transformation geometry and also how

they engaged in learning its conte@omputers can also assist learners to develop

appropriate concept image€ o mpar i ng | earner 0s interpreta
definitions of transformaton oncept s t o judge the accuracy o

forms an important part of this research study.

2.7 REVISITING THECTS ABOCONCEPT IMAGE AND ITS
COHERENCE

We have already discussed Talll and Vinner 0!
individual cognitive structure associated with a given concept (1981). They also consider
concept images to be a collection of vague conceptions about the concept, with or without
connections to its definition. Viholainen is of the opinion that conceptemate mental
images or interpretations of the concept based on different kinds of representations about
the properties or processes that involve it, and considers concept images to be connected
to an individual | ear ner 0 soncppe RGO&).MCarlceptway of
images may contain concept definitions or may be contained in a concept definition (Tall,
2005). Vinner (1991) points out that mathematical reasoning based on concept images
may be entirely separate from reasoning based on corefamtidns. Individuals create
meaning or interpretations of a concept by means of their existing knowledge structure
and this can be referred to as a personal interpretation of a formal concept definition
(Viholainen, 2008). This interpretation of a coptmay be dependent upon the apparent
context or the context in which it is in use. Concept images include all the conceptions,
whether accurate or inaccurate, that an individual has about a concept. They may be
definitions, visual or physical meanings,tbe relationship between a concept and other
mathematical concepts, for example. Concept images influence how learners understand
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mathematical concepts because learners cannot understand any concept in isolation to the
concrete wor | d. tiondamand corcepts telatmg ts tamsiormatipns of
functions may derive from the | earnersd inc
learners to understand the concepts involved in transformations of functions, they should

possess both theoreticahda practical understanding of the conceptsreftection,

translation and stretch. They should be able to represent the transformation concepts in
multiple waysi practically, diagrammatically and symbolically. For example, reflection

about the xaxis canbe presented by using a mirror (practically), counting squares
(diagrammatically), changing the sign of theoordinates (theoretically), using matrices

(symbolically) or by using a computer programme.

Boasvan Emdg(1981) suggests that all concepts sddug introduced in a fashion that
facilitates understanding, beginning with several examples and then generalizing to end
with some form of an abstraction. This statement assumes that learners will be able to
identify and adopt the common features of txareples and will be able to then
understand the abstract concepts implied. They may, however adopt features that are not
part of the abstract concept, in which case misconceptions are likely to arise. It is not
always easy for learners to achieve concdpimaerstanding from the outset. Some
learners understand concepts only after acquiring procedural skills in using the concepts,
i.e. by first learning to follow symbolic rules, then arriving at a fuller understanding later.
For example in advanced parfswsathematics learners need functional understanding or
procedural fluency at first, with the possibility of future refinement or revision of the
concepts as and when they progress further. Some learners use concept representations
for formal definitions,forming generic pictures covering many possible cases of their
imaginations. These learners could be said to see the general within the specific (Mason
& Pimm, 1984) as they experiment in their thoughts. Some learners combine mental
imagery, its verbal edualent, and its ensuing properties to make a cognitive unit
(Barnard & Tall, 1997; Pinto & Tall, 1999).

Translation from visual to verbal forms suggests a possible method of moving from visual
mathematics to formal mathematics. Seeing the general irtieupsarimage (Mason &
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Pimm, 1984) gives meaning to the corresponding formal definition and uses links

between imagery and formalism to formulate and prove theorems.

Visualization (via sensations or the imagination) and spatial skills are essential to
coneptual understanding, particularly in transformations of functions. In mathematical
thinking, learners need to make appropriate connections between the definitions of
concepts and their visual representations. Vinner and Dreyfus (1989) point out that
learrers might not understand a concept in depth if they do not tieotieept imagéo
concept definitiormppropriately. Good teachers help learners to make such connections.
Lack of conceptual understanding of transformations of functions, in particular, and
mathematics in general, leads to misinterpretations and misrepresentations of some ideas
about the concepts. For example, in the reportUnyversity of Cambridge Local
examination SyndicatdJCLES) (1989),an international examination board for some
Comnon Wealth countriéd, candidates confused reflection with rotation, and stretch
with enlargement. Therefore, it is best that learners understand these transformation
concepts through the images they create of them, be they pictorial or concrete
representabns, regardless of the definitions. It is necessary to ensure, however, that
learners do not misconstrue or over generalize those representations and build

misinterpretations and misconceptions.

Visualisation and spatial skills have a lot of value. T¢teyenhance a global and intuitive

view and understanding of various areas of mathematics (Bishop, 1989; Fischbein, 1987,
Usiskin, 1987). Fischbein (1987) points out that visual images can be organized into a
meaningful structure and they can also playngportant role in analytically developing

a problem solution. Bishop (1989) reiterates that it is valuable to emphasize visual
representation in all aspects of teaching in the mathematics classroom. Hershkowitz
(1989) claims that good visualization is acessary tool for concept formation. While
many mathematics educators recommend the use of visuals in classroom (Bishop, 1983;

Usiskin, 1987), it should be noted that traditional methods of having learners copy

13 Common Wealth countries are predominantly former British colonies.
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diagrams and properties from chalk or whiteafts, and making them do repetitive
exercises, are potentially frustrating for many learners because of poor conceptual
understanding.

As mathematics needs precise concept definition and accurate interpretation of concepts,
it is imperative to establishow mathematics learners interpret the concepts of
transformation of functions, how they engage in the learning of its content, and how they
see the relationship between their concept images, their practical use of the images, and
the implied meanings of ¢hformal definitions of the concepts. A teacher needs a
thorough knowledge of the various possible mental images learners form in their minds,
whether they are simple complex, pictorial or symbolic, or in tabular or diagrammatic
form, for example. Even the concepts are formally defined in textbooks, each learner
may use these concepts in their own particular form or interpretation. There may be gaps
between formally defined concepts and cognitively processed and conceived concepts in
the way theyarestoed i n the | earnersd memory structu
use their concept images may be modified to suit their own experiences. They may have
refined the meanings and interpretations to match their own levels of manipulation and
communication. Wen concepts are manipulated, there may be some associated processes
that affect their meaning and usage. As Tall and Vinner state, we need to know the
resultant cognitive structure, or the concept image. It may be a mental picture and
associated properse a n d processes, which are Abui |t
experiences oéll kinds, changing asthendi vi dual meets new sti mu
(1981:152). They may be evoked concept images that are in the process of formation.
Different learners may havkeir own personal concept definitions (Tall & Vinner, 1981)
and reconstructions which may relate, to a greater or lesser extent, to the formal concept
definition. Personal concept definitions may form when learners put their own words and
explanations tothe evoked concept image. The personal concept definitions may
sometimes be in conflict with the formal concept definition, and this could lead to
misconceptions that impede meaningful learning. Learners who have misconceptions
may develop negative attited towards the topic and the subject in general. Some learners
believe that transformations of functions is a difficult topic, but this notion could be
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dispelled if the teacher is knowledgeable about the types of concept images that promote

understandingrad is able to assist learners in forming appropriate imagery.

Various models have been developed to explain the ways in which learners construct their
understanding of concept s: Vinner s model (
Sfardbés theorWWa(éealPoOapnd &Haputds model (1991)
relevant to this research study, and these will be dealt with in the sections that follow.

28 xLbb9wQ{ ah59[ Chw [/ hb/ 9t ¢ 59ClI
IMAGES FRAMEWORK

Vinner 6 s mo d schemétit @&i8n)of theanodelHirst described by Tall and
Vinner (1981). The model attempts to explain concept definition and the concept image
relationship or framework. It assumes the existence of two different cognitive substructures
i n t he mineg ane foreandepst definition and the other for concept image formation.
These are considered void as long as no meaning is associated with the concept name
There can be some interaction between the substructures although they are formed
independentlylf, for example, a teacher introduces the concept of reflectiomasar
image then a learner might have a concept image of a reflection as any object and its
inverted (reflected) image. According to this concept image, an object and its reflected
image are always on opposite sides of the axis of reflection (mirror line). The learner may
not take the time to explore all the possible different positions of the axis of reflection,
some of which cannot be modelled by a mirror. This concept image matorteeddjusted
or changed to include the situation where the axis of reflection passes through the original
object, in which case the image is found on both sides of the axis of reflection. For example,
a mirror with only one reflecting surface, which @sgioned somewhere on a plane shape,
cannot reflect the whole plane shape as part of what is facing the dull surface of the mirror.
Furthermore, a mirror cannot pass through a solid object so this scenario would be less than
meaningful to the learner. Bagse the model of a reflection as a mirror image has its
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limitations, for some learners the formal definition of reflection would not have been fully

assimilated, thus the concept definition substructure would remain incomplete.

When a concept is first irdduced by its formal definition, the concept image substructure

is void initially, and begins to fill in as examples are given and explained. One model

example may not be enough to explain a concept, so, to facilitate a more complete
understanding, a telaer would have to give enough examples to reflect important aspects

of the concept definition. If learners have too few examples to relate, misconceptions

maybe arise from the limitations of the model.

A two-way interplay or interaction of the concept défon and the concept image
substructures results in lotgrm concept image formation. This model could be used to
explain how learners either acquire or fail to acquire mathematical skills like creative
thinking and logical reasoning. These skills aeryvpertinent to transformations of
functions as they influence understanding and use of the concepts involved. The illustration
in figure 2.1 shows the interplay or interaction between a concept definition and a concept

image.

Figure 2.1: A model for long-term concept image formation

Concept Definition > Concept Image

This interaction between concept definition and concept image is relevant to those
activities in which learners contextualize the concepts of translation, reflection and stretch,
interpreting them in terms of his orm&orld of understanding, be it empirical (real life)
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or imaginary. It can take more than one attempt for a learner to form a comprehensive
concept image. The amount of time and effort necessary depends on the complexity of the
concept. The concept imagks translation and reflection of functions are likely to take

less time to form than that of stretching a function because translation and reflection are

less complex and correlate more readily with real life examples.

Behaviouristoriented teachers mathink that concept images form easily through
rehearsal of the concept definitions (diagrammatically, this would be a single direction
process, where the arrow points from concept definition to concept image). This forces
learners to mechanically memoribe concept definition®oth the concept definition and

the concept image substructureayremain voidthus making the learner likely to forget
quickly or to suffer information decay, which could result in a negative attitude towards
learning. Some leaers who experience only this type of learning may struggle in

mathematics and other sciences.

When faced with a cognitive task in problem solving, both the concept definition and the
concept 1image substructures nmhatsstwhyaleresct i vat e
anintrodudion of the input and output arrows to the diagram of the model (see below).
The inputs refer to any of the causes that evoke cognitive processes, for example, the
mention of the concept, identification of it from variousas#) or cognitive tasks involving

the concept. In the context of this study, the inputs may be questions asking learners to
identify transformations of functions that have taken place, to identify the images that
correspond to specific transforming funcisy to find the prémages of given functions, or

to illustrate verbal transformations of functions through various representations
(symbolical, graphical, tabular or in the form of flow diagrams). The outputs might be
achievements, intellectual behaviows attitudes, solutions to the problems posed, or
illustrations, among others. In general, they are the answers to the questions posed. The
intellectual process involved in the solution of a task is illustrated schematically by the

models in figure2.2.
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Figure 2.2 A model for expected intellectual processes in problem solving.

(a) Input, concept image concept definition interplay then output

OUTP

Input Cognitive task
(Identification/construction)
INPUT

(b) Formal deductiorfrom concept definition

(c) Deduction from intuitive thought

[SourceTall (1991); Diagram adapted from Vinner (1983).]
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In model (a), the process is started by an input (e.g. cognitive task) in which the concept is
identified. The concepmage is then evoked causing interplay between concept image and
concept definition, then a deduction is made directly from the formal definition to an
output. In model (b) the input evokes the concept definition directly, which produces the
solution without even consulting the concept image. Model (c) is like model (a) but without
the interplay between concept definition and concept image. Here the concept image

informs the concept definition which, in turn, produces a solution.

Common to all these thremsodels is that when the system reacts to a posed problem, the
solution develops after consulting with the concept definition. This is the desired situation
but, unfortunately, it does not always happen in reality. The cognitive system does not act
againstits nature (the empirical world) by forcing itself to consult concept definitions
instead of concept images, or by working out a solution to a cognitive task from the concept
definitions. Once concept images are formed, they are the ones to be congaribddieim
solving. This demonstrates how important correct concept images are. A learner with
misconceptions will always make the same mistakes unless his or her concept image is
corrected convincingly.The more realistic model for how the process occreslity is

the one given in figur2.3 below:

Figure 2.3  : A model for the realistic intuitive response.

OUTPUT

Concept Definition Concept Image

A

INPUT

[Diagram adapted from Vinner (1983). Source: Tall (1991).]
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This may not be the model of choice, but it is what happens in gga€ince concept
images are formed, they are the ones that are consulted to solve problems. The cognitive
system acts on the concept images and works out the cognitive tasks without consulting
the concept definition, even if that substructure is-waid. The everyday thought habit,

the concept image, takes over and the respondent is unaware of the need to consult the
formal definition. The important issue is whether or not the reference to the concept image
substructure is successful and correct. An iredrconcept image can be expected to give

rise to an undesirable solution to the problem, if any, while a correct concept image can be
expected to give a desirable solution. It is imperative, therefore, that mathematics teachers
facilitat e iohefapprogriates dconcdpoimages.tWorking through as many
examples as possible could do this, as any one of the examples could be picked up and
form the | earnerds concept ireffestpretransiiormer ous
and stretch will faditate the formation of correct concept images for these concepts in the

minds of learners.

20 5! .Lb{Y,Q{ ! ot ®h®{d ah59[ hC |/

Dubinskydéds APOS model (1991) is one of the t
to explain howearners construct their understanding of mathematical concepts. It provides
a model for how learners construct memtations Processesnd Objectsand organize
these intoSchemado make sense of mathematical concepts and solve problems. The
theoryisad o used, when analysing data, to organi
provide the language to communicate ideas about learning results. This model connects
strongly with the reflective abstractions involved in learning, which were theorised by
Piaget. It has been extended into advanced mathematical thinking about how students
understand basic mathematics concepts (Asiala, Brown, Kleiman & Mathews, 1998). This
model provides objective explanations for student difficulties across a broad range of
matematics concepts and suggests ways of overcoming them (Trigueros & Ursini, 1997),
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thereby providing pedagogi cal strategies th

learning of abstract concepts (Artigue, 1998).

The APOS model can be applied to theglaage of communication of ideas about teaching
(Dubinsky, 1995) and it has been successfully applied to the teaching of transformations
of functions (Breidenbach, Dubinsky, Hawly & Nichols, 1992; Carson, 1998; Dubinsky &
Harel, 1992).

2.9.1 How the APO®odel explains learning and understanding
concepts in mathematics in relation to reflection, translation and
stretch of functions

Actionsare manoeuvres by learners to soften abstract concepts explicitly or mentally to
perform operatiiomrso,r 6e.nga.k et hhet teearsny &no vi sual i
term 6slided simplifies the action of transl

bandd or &écompressing a spiral spring6 concr

Processesre rpeated actions and reflective thoughts ugactiors, to the extent of having
internal constructions, which learners can perform mentally with minimal thinking. They

can reverse or combine performances with other processes.

Objectsare constructed from presses. Learners become aware of them as part a group,
e.g. the term reflection encompasses reflections aboutdles xyaxis, y = X, y =X, or

any other line. Similarly, translation can be horizontal (left or right), vertical (up or down)
or oblique, ad stretch has pull (vertical or horizontal) or compression (vertical or

horizontal).

Schemaastre collections of actions, processes and objects and other schemas that are linked
by the same principles to form aarnerrhasme wor k |
schema of transformations, he or she can ideatiBflectiona translatioror a stretch and
can work with them out, given a problesituation.The framework of a schema must be
coherent both explicitly and implicitly. With schemas in pldearners are less likely to
49



fear mathematics, in general, and any question that applies knowledge about

transformations of functions, polygons or solids, in particular.

These four components are presented as having a hierarchy, but in reality the

implemertation of the elements may be in any order.

The APOSmodelmakes provision for the analysis of data. The presence or absence of

specific ment al constructions can be connec

doing mathematical tasks. The differeetween complete and incomplete performances

can be assessed by reference to mental constructions of actions, processes, objects and/or
schemas to explain why some learners do better than others on a specific task. The APOS
modelenables us to make pretlic ons about | earnerso | ikely
with mathematical concepts and problem situationse decompositionsf schemas in

terms of mental constructs are ways of orgagi hypotheses about how the learning of
mathematical concepts &k place. These descriptions also provide a language for talking
about such hypotheses

2.10 {C!w5Q{ ah59[ hC /hb/9t¢

S f a (1894)model of concept formation has three stag@sriorization, condensation

andreification:

1 Interiorizationoccurs when a learner acquaints herself or himself with a mathematical
concept and the processes concerning it.
1 Condensatioroccurs when the learner sees the concept in relation to other concepts

and is able to see the connections between these concepts.
The first and second stages are operational or pracesged.

1 Reification occurs when the learner has built up a comprehensive picture of the
mathematical concept. At this stage, the development achieves a structural level and
50
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the concept is understoad an object, a structure or a product, which can be subject to
new operationgSfard,1991).

Sfardbés model of concept formation is compa
although they refer to the reification stage as the learner having devalapedeptual
entity. Dubinsky uses the ternencapsulationin preference toreification (1991).
Dubinskyds and Sfar ddppearnodbal eimpl ar et hahaPedgehbd

of cognitive constructivism (See section 3.1.1 below).

2.11 ANEWMODEL

This section presents a new ideal model of the process of understanding the concepts of
transformations of functions developed by this research study. It has four developmental
stages, which are | inK®danad Bddué¢ (@BORandd s APOS
it may be considered a direct application of the Tall and Vinner (1981) model. The model

promotes the formation of correct concept images.
STAGE 1:Verbal definition

Learners first receive the information about transformations of functier&Ny via the
teachersdé introductory | esson, demonstratio
foundation for conceptual understanding. It would be almost impossible for learners to

enter the next stage of graphical representation if they havendetstood what they are

to represent. Understanding t haentevigizatma | def i n
(1991) and opens the way factionsas per Dubinskyds APOS model

STAGE 2:Graphical representation

In order to reinforce the vieal definitions, learners need to identify and represent the

transformations by means of Cartesian graphs. This stage equatesdnathstage in the

APOS model. Learners have to learn every action involved in the transformations, be they

counting squees or using mathematical instruments to reflect or translate each point of the
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original function. The three transformations dealt with in this study, reflectimslation

and stretch, becomactions physically and mentally when mapping functions toeoth
functions. At lower levels of understanding, learners engage with every action involved in
isolation from the previous action and the following action. For example, the learner acts

on one point of the transformation at a time, until the whole funbégrbeen transformed.
STAGE 3:Algebraic representation

The third stage occurs when learners identify and represent transformations algebraically
with a formula. The formulae take two possible forms: showing effects of parameters on
the original functionpr showing how the two coordinates of a generic point in the original
function transform to the image function. This stage corresponds fwrdbessstage in
Dubi nskyods mmmbenbatiofatcdrdirdg o Stand (1991). The early phase of
this sta@ may be characterized by computing and manipulating points without reasoning
about processes, but just by uncoiling the given algorithms for the synthesizing of
transformations. After a learner has repeated the actions and reflected upon them, he or she
may begin to internalize the actions and connect them to fgonocess The learner is

then able to transform the whole object at once. If a learner hamcesslevel
understanding of transformation concepts he or she can also imagine the image of a
trarsformation without actually performing the action and can reverse the steps of the

transformation to get a reverse process/transformation.
STEP 4:Coherent understanding

At this stage the learner understands transformations of functions fully and ¢gheren
verbally, graphically and algebraically and without confusing one with another. This is a
generalizedprocess of understanding transformations abject and schemalevels
(Dubinsky, 1991) or theeification stage (Sfard, 1991). Objects represkmitages or
connections between processes. If a learner has an objective understanding of
transformations of functions, he or she can operate two or more transformations
successively or simultaneously, and can also do the reverse easily. The learnso can al
compare and contrast them correctlyséhemais a more advanced stage of relational
conceptualization where a learner is able to understand and perform two or more
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transformations that have taken place. Schematization, in this context, refers tétshe ab
to do something with little or no thinking at all, i.e. some of the links between concepts and
their manifestations are established automatically. Figdréelow summarizes the steps

of understanding of transformations of functions.

Figure 2.4 A model for developmental understanding of transformations of

functions.

Understanding Understanding of transformations Observable skills exhibited

Of Transformation within-context-of-Functions by learners
Generalized ::ull rI(aI?tionalflIJn(jt?rstanging of
process of Coherent ranslation, reflec |9n an

derstandin ) stretch of functions: verbal,
un 9 understanding : .
transformations graphical and algebraically.
A

Algebraic - Learners can identify and
representation of Algebraic Images represent transformations
transformations algebraically.

Representating

transformations - Learners can identify.and
by a Cartesian Graphical Images represent tansformations by a
graph. Cartesian graph.
A

Verbally
representating /_\ Learners have verbal
transformations Definitionsof understanding of the

Transformation transformations.

Concents
\/
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2.12CONCLUDING REMARK

The analysis of concept images and the presentation of various models serve as a basis for
this study because they provide a platform from which to explore images of the
mathematicatoncepts of transformations of functions and related reasoning in that section
of mathematics. The following chapter is a literature review about scholarship relevant to

this research study.
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CHAPTERHREE

Theoetical Framework and Litdtae Review

Thetheoreti@al frameworkof this studys influenced byhe dual cocktail of constructivist
theory of learning and the cognitive process of conceptual development. As such, this
chapter focuses on theviews of thegproponents and supporters the twotheoretical
frameworks The section for literature review looks at what other researchers worked on

similar studiegelating toconceptualisation.

3.1 THEORETICAL FRAMEWORK

Learning has been explained from different theoretical perspectivels as behaviourist,

cognitivist or constructivist. A learning theory can function as a lens through which facts

about how learning takes place are viewed and it normally influences what is seen and not

seen about the facts. Learning theories help imeret facts, for example, good learning
processes are |ikely to result in appropri at

mind. Concept images can be interpreted using learning theories.

Contemporary psychology of mathematics educationngreg on the constructivist and

cognitivist philosophies. The formation of concept images by learners can be explained

through thesphilosophiesConstructivist theories of thinking and reasoning can be traced

back as far as Gidoattista Vico in the 1700&lasersfeld, 1984), but Piaget and Vygotsky,

writing in the 1970s, are considered the first true constructivist scholars with regards to

education. Constructivism is now considered to have two major strgaensonal

constructivism of which the major mponents arePiaget and Von Glasersfeld

(Gl asersfeldds views of | earner independence
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andsociatculturalconstructivismof which the major proponent is Vygotsky. Piaget tends

to associate learning with menthle ve |l opment (see section 3.1.1
premise is that learners are constructors or creators of their own knowledigetie

t eac her 0 sGlagersfeld] 4984).eContept images develop as learners construct
knowledge, mentally or saally, about a particular formally defined concept. A discussion

of the two subdivisions of cognitive constructivism, personal constructivism (Piaget and

Von Glasersfeld) and soctallturalconstructivism (Vygotsky), follows.

3.1.1Cognitiveconstructivem and concept images

Pi ag @a®pformulation of personal constructivism, i.eognitive constructivism
postulates that children develop personal cognitive structures and capabilities as they
learn, that help them to construct their own understarafinggality (concepts) in various

ways through exploring, observing, listening, touching etc. These sensory activities,
referred to as active learning or learning by doing, link new knowledge to previously
learnt knowledge. Piaget did not use the term ephanages, but he referred to such
ideas in other words. According to Pia@&985) under the umbrella acfquilibration,
learners are empowered to transform and reorganize their cognitive constructs (schemas)
constantly throughssimilationt* accommodatin'® anddisequilibration® Piaget refers

to the permanency of results that derive fro
data and the subsequentalination with the world that lies between the senses.

14 Organization of new experiences with current understanding or logical structure
IS Reflection and organization of current understanding to integrate new experiences
18 New experiences thatontradict current understanding leading to accommodation of skrmbwledge.
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3.1.2 Radical Constructivisand Concpt Images

Von Glasersfeld refers to concept images as conceptual structures. His version of
constructivism is regarded as being more raft
knowledge is individually created and adjudicated and that experiewbatdrings forth

knowledge claims. According to Von Glasersfedi984), knowledge consists of

conceptual structures (concept images) that act as epistemic (knowledge) agents and it is
actively built by the thinking individual through the senses or angratbmmunication

forms experienced within the individual | e
involvement of learners in the process of learning. Von Glasersfeld did not rate social
interactions among learners as being important to knowledge buildenfpcused on the

|l earnersd individuality and said that knowl e
need to assimilate and accommodate new knowledge irtex@mtng schemas for easy

and meaningful learning. Von Glasersfeld reasoned that ievew knowledge does not

fit into the preexisting schemas, equilibrium can still occur, but this requires some
adjustment of concepts to enable sensory insights for accommodation. This would lead to

conceptual structures (concept image) forming.

3.1.3Socialcultural constructivism and concept images

Vygotsky refers to concept images using the temowledge structureHis primary notion

of social cultural constructivismnsists that knowledge construction does not happen in

the mind of a learner. #tresses that knowledge acquisition and construction happen as a

learner interacts with his or her surroundin$886). This points to the importance of

interaction with other people in the school context for learning conceptsdiadtigue

with other l@arners andassistancefrom teachers and fellow learners. Dialogue aids

understanding of concepts, and assistance from others strengthens the learning process
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wi t hi n a zore eofa proximal @evelopmentRE)!’. Readinesso-learn and
scaffolding® are two of the factors that influence learning within thBLZ (Vygotsky,
1978). Scaffolding is built through the learrseipport materials or tools that are used.
These could be in the form of hints or advice that prompts reflection, coaching, articulation
of different ideas, or making links between every day and formal concepts. All these

pathways facilitate concept image formation.

3.14 SocialculturalConstructivisnas viewed by Ernest

Ernest (1991) is concerned with the nature of mathematics and howuglg and learnt

within the society of learning. He emphasizes the role of teachers in communicating
mathematical concepts to learners and checking conception by means of testing and
assessment. He is of the opinion that personal mathematical knowlezlgeoficepts,
theorems, algorithms, objectives and other mathematical truths) and explicit mathematical
knowledge representations are products of educational research and cultural products
created by humans. He was widely criticised, especially for tha ¢kt mathematical
theorems are truths and that these truths cannmrbgible or revisablebut arenaturally
infallible. His other controversial position was that mathematics is socially constructed
and accepted, where the acceptance is purely @rbdkis of group agreememrnest
argues that mathematical knowledgeation,communication anglustification happened

in historical communities thdived with traditions of mathematical practi¢dbat were

based on certaigriteria for acceptability. Tdtraditionsincluded accepable forms of
presentation, reasoning and consistency.tBese ignored the dynamics of development

of mathematical concepts, theories and rules of accepthleve.views come and are

debated critically and new consensus reached

7The ZPDisth®@2 y OSLJidzt £ 1y 26t SRAS Il L) 60SG6SSy letekKS f SI Ny SNR3
expected by teachers or the syllabus.

18 Scaffolding refers to theognitive Hpprenticeshi2 ®
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3.1.5 Modelsof humanmemory structures

Concept image formation is a salient product of information processing within the
memory structures. The study of memory structures and the explanation of the memory
process date back to the fourth centuGBwhen the Greek philosopher Aristotle used

a simile of wax impressions to describe memory structures, as he considered them to be
copies of reality that individuals store and retrieve lafeihin, 1983. The assumption

he made was that whatever is renfoered is a simple copy of what was originally
experienced in reality. This view was soon superseded since people normally remember
part, but not all, of what they experience so, in most cases, remembering is an attempt to
reconstruct what was experiendédkinson & Shifrin, 1968 asited in Khateeb, 2008

According to Tulvin Atkinson and Shifrin described a model for human memory that
consists of three sumemories, namelysensory memorghortterm memoryandlong-

term memoryin their research inthow learnt information is process¢étio83) The
linkage between the suhemories is illustrated in figui@1 In this model, thesensory
memorybuffers sensory stimuli (information) from the iconic (visual), echoic (auditory)
and hepatic (touch) channelhe important information filters from sensory memory to
shortterm memory. This happens only if the content is interesting to the learner;
otherwise it quickly decays and is lost. T$tertterm memoryis for temporaryrecall
information and, because i$ limited capacity, it is characterized by rapid information
decay. Within the shoterm memory is the working memory, which determines what to
pay attention to and process. Working memory holds on to speech and sound information
temporarily through thehonological loop. It creates mental (concept) images or solves
visual and spatial problems through the vispatial sketchpad and controls attention
systems through the central executiValg¢in, 1983;Khateeb, 2008).
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Figure 3.1 The Atkinson and Shfrin (1968) modeffor human memory

uffers sensory stimuli seen,
heard or written

an be easily forgotten (decay)
nly interesting mental images
filter through

[Source: Tulvin (1983)]

yTemporaryrecall of mental
images

an be retieved when still
as limited capacity

room for new images

through

existing

ental images decay to create

nderstood m. images filter

rolonged storage of
mental images

Y here little/no decay
an be retrieved

According to Atkinson and Shifrin (1968, cited in Khateeb, 2008)ptinggterm memory

is characterised by prolonged storage of important information that has travelled through
theworkingmenor y, t herefore

t her e

i s (1088)madél e

of longterm memory there areemantic episodicand proceduralmemorystructures,

which this research study correlates with concept images, for they store information and

allow it to be recalled explicitly or implicitly. It is important, therefore that learners use

proper learning styles and strategies that take information directly to theelong
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memory. Effective teaching facilitates such styles and strategies of learning. This

structure is summarized in Figuse2 below.

Figure 3.2 Tulvin model for long-term memory structure.

episodic
memory

procedural
memory

[Adapted from Tulvin (1983)]

According to Tulvin (1988 semantic memory structures consist of acquired facts,
concepts and skills from learning, spiic memory consists of events and experiences,
and procedural memory is a form of stepstep procedures, psychomotor skills and
algorithms. It is therefore logical that a combination of these memories influences the
formation of concept images. Khate@®08) indirectly warned against reheal%ab it
cannot store information in the lotgrm memory.tlis unfortunatetherefore thatmost
learners learn in thless than effectivevay (DoE, 2013 2014) Better ways of storage
should be encouraged, fexample, those that involve continuous use and schematic
learning or processriented learning. Tulvin (1983, in Khateeb, 2008) states that decay,

1% Repeated exposure to information or singing jingles.
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interference and some emotional factors negatively affect-tenmg memory, while
prompting may retrieve infenation stored in the loatgrm memory by recal or
recognition?! In mathematics education today prompting can be done by testing or posing
problems.

The visuespatial sketchpad is important in creating mental images and in the solution of
visual and sp&l problems. The information that is remembered is highly dependent upon
the way in which it was processed (Tulvin, 1983). The processing of new information
depends heavily upon memory of past experience. Schemas develop that link often
encountered famédir situations to guide in the understanding and memory of the new

events.

3.2 LITERATURE REVIEW

Documented research on mathematical conceptualization has been done since the second
half of the 28" century, as it is an ever topical issue. Concepsatan studies in
education focus mainly on mathematical reasoning, concept images, cognitive conflicts
and learning catastrophes. Significant research in the study of coalcsggiorwas done

by Tall in the 1970s and Byinner and HershkowitzZT all andVinner, Presmegusiskin,
Fischbeinand othersn the 1980s,anthe bulk of theinformation now available about
conceptialisationwas published in the 199QBreyfus, 1991;Gray & Tall, 1994; Sfard,
1994; Eysenck & Keane, 199Duval, 1998; Markmann, 1999and the first decade of

the 2F' century (Thompson, 2000; Akkock & Tall, 2002; Pinto & Tall, 2Q0Rlia,
Gagatsis & Deliyianni, 2005Tall, 2005; Viholainen, 20Q8Gagatsis, Panaoura, Elia,
Stamboulidis and Spyroi201Q and Tsamir, Tirosh, Levenson, Baikand Tabach

2014).

20 Reproducing as it is found in the source.
21 By means of cues.
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The paragraphs below outlir@milar researches to this one, in methodology and

objectives, which were done about conceptualising mathematical concepts.

Tal | i nvestigated studentsd wundersléexanding o
number, real number, limit, continuous, infinity, and proof (1977a). The study was carried

out using questionnaires and follay interviews. The students gave conflicting
explanations of the terms, as Skemp (1976) also found when researching lledatibna
instrumental understanding. The study identified difficulties, cognitive conflicts and
catastrophes (misconceptions) in learning mathematical concepts and obtaining the
necessary skills in the process of restructuring schemas for logical undegtandeas.

Tall (1977a) hypothesizes that such problems in understanding develop during the
process of instruction, but stops short of blaming teachers. The understanding of
mathematics seems to occur in spurts, alternating sense and confusion, ttekiagy ta

the brain to restructure already existing schemas and work with dynamic flow.
Establishing clarity and ensuring permanent understanding of mathematical ideas is a
demanding task for teachers. Cognitive conflicts and learning catastrophes occur for

many | earners, which is why this study i1Is res
and mathematical reasoning. Tall (1977a) advises not to underestimate the role of the
teacher, for he or she facilitates schematic restructuring for learners.theteaa 6 s use of
programmed learning, work cards, and other tools, together with the voice, helps unblock

lines of thought that could potentially lead to conflicts and catastrophes. Competent
teachers immediately identify these at the moment of occurr&heecurrent study deals

with Grade 11 learners, who are the year before thethijh-schooling examinations

so the teachers get informed about such experiences in the mathematics teaching

profession

Tall (1977b) explains reports on the investigationedarth Warwick University students
doing mathematical proofs on limits of sequences. He presents a qualitative description
of the mental activity that happens when new concepts are formed. He uses a rather
complex model that focuses aitractors which link flows between concepts and
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schemas, anepellers which hold concepts and schemas apart, but that are involved in

the same topic. The data used to illustrate the investigated experience was collected from

students by means of a test task with folgmquestionnaires. The study by Tall revealed

some difficulties, cognitive conflicts and catastrophes in learning the mathematical

concepts and skills used by learners to build up schemas for understanding ideas logically.

In this study,Tall discusses howetchers are tasked with identifying conflicts and

smoothing them out suitably. Learners may not be able to identify their own learning

problems, so a teacher has to usedhe r t and science of teachi ni
observation skillsto identify lear ner s6 i ndi vi dual di fficultie

possible conflicts, giving a clear exposition of the major mathematical ideas (1977b).

Tall and Vinner were the first scholars to emphastrecept imagandconcept definition

after the terms werer§it introduced by Vinner and Hershkowitz (1980). They distinguish

concept images from concept definitions in the context of limits of sequences, series and
functions, and continuity in functions. They
structurei n t he i ndividual 6s mind that is associ .
Tall and Vinner regard concept definitions as words that are used, in books or scientific

articles, to specify a particular concept. A concept definition may be learnt by an

indi vi dual i n rote fashion. I n order to invest
continuity, Tall and Vinner (1981) used questionnaires, casual observations, and follow

up questionnaires and interviews. The students were asked to explain antdrowogk t

some examples that had missing intermediate working stages, and were asked to define

0l i mito. The researchers found that even th
correctly, they had their own concept image of a limit, which was enoughefor ti

attempt examples. Students usedwordslikb appr oaches 60t deged st cl o8& e
for instance The concept image for continuity of a function given by some students was

the idea of a graph without gaps or one drawn freely without liftiegoencil from the

paper. The research study that forms the basis of this thesis uses the term concept image

with the same meaning as Tall and Vinner (1981) do. It uses a diagnostic test and follow

up i nterviews to deter mi nteemdticalaeasoeimgwith concep

respect to transformations of functions.
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In another study conducted in 1986, Tall analysed, from a single activity task, the
relationship between the definition of a tan
to a piecewiséunction graph of

— [ X- for- x<0
y _{ x+x2- for- x20

Only a third of the students in the study had correct tangent images, and Tall emphasized

that individuals build up their mental imagery of concepts in ways that may not always

be coherent and consistent (1988). The difficulties thmeteawhen students learn

mathematics, do not necessarily stem from a lack of aptitude on the part of students, as

was shown by Tall s study, they are a wides
study is being performed against this backdrop.

Borba and Cof rey (1996) examined studentsd <cons
functions (translation, reflection, and stretch) in what they called a multiple
representational environment. They started with visualization exercises investigating the
implications of visial changes of points up to algebraic symbolism. The researchers gave
instructions, asked questions, and descri bedc
did tasks with paper and pencil and using an Apple Macintosh computer with Function

Probe softwre. The researchers concluded that visual reasoning, i.e. seeing graphical
transformations on the plane, is a powerful form of cognition and that it is essential that

teachers give students adequate time, opportunity, and resources to make constructions,
investigations, conjectures and modifications. The researchers also emphasized that
students develop effective strategies of enquiry when presented with an environment
supporting the use of multiple representations. It is for this reason that the cturdgnt s

focuses on concept images, mathematical reasoning and transformation in graphs.

Weber (2002) analysed how students arrive at an understanding of exponential and
logarithmic functions. He interviewed students three weeks after they had first learnt the
concepts, asked them how they went about computing the concepts, and questioned them
about the functionsd properties. Hi s findin
exponents and logarithms, only a few of them could reason about the processesljnvolv
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e. g. exponentiati on. Guided by the first t w
APOS theory (1991), Weber proposed a set of theoretical constructions that students
could use in future to understand these concepts,

Pinto and Tall (2002) usedrigitudinal observation and follewp interviews to assess how

students construct formalisms from their own vispatial imagery in the context of limits

of sequences. The premise was that students use reflective abstractions as mental processes

to constrat meaning from quantified statements through vispatial imagery, i.e. using
strategies consonant with Dubinskyds APOS th
at work and tapeecorded, transcribed and analysed in depth interviews they conducted

with the students. They found that students refined their own understanding of objects to
represent and translate convergence of sequences into images and actions. They connected
the studentsd | earning strat eg®simpsontl®3,t he t he
1994) and Dubinskyds APOS theory (1991).

Nyi kahadzoyi (2006) assessed student teache
using operended, taslbased and reflective interviews in a case study of six-fieat

Zimbabwean student teachstadying for a certificate in teaching secondary school level
mathematics. The study was done over a period of three months and it ranged over subject

matter knowledge and pedagogicahtent knowledge for the concept of a function, as
wellastheunderinng pedagogi cal reasons for the stud:
used to teach the concept. The majority of the student teachers were found to have a
processconception of a function and a few of them gavetlsedretic definitions. The

s t u d eotion sf@ function was mostly confined to real number sets and they did not

think of considering other mathematical objects (for example, the differential operator and

the determinant function) as functions.

Viholainen (2008) conducted a study at six rfigh universities using mathematics

education student teachers between the middle and the final phase of their university

studies as subjects. The study was conducted using a written practical task and interviews

to investigate informal and formal undersiing of concepts of derivatives and

differentiability and how the students used informal and/or formal reasoning in problem
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solving situations where these concepts were needed. It showed that connecting formal
and informal reasoning was a challenge ferstudents, the majority of whom tended to
avoid using definitions when solving problems. This tendency hindered reasoning in the
problem solving processes and sometimes led to conclusion errors. However, some
students were able to use definitions wheredsto do so. As a result of the study,
Viholainenr ecommends teaching mathematics in a v
development of coherent knowledge structures, which is perceived to strengthen the
understanding of connections between informal anddbrapresentation3he fact that
students at university have such difficulty with mathematical reasoning highlights the
need for interventions to begin at an earlier stage in their education, which is why this
research study focuses on secondary schaahégs so that the necessary strategies can

be implemented before students enter university

Gagatsi s, Panaour a, EIl i a, Stamboulidis and ¢
definitions for the concept of axis of reflection for a function. They astgbt with nine

tasks involving various forms, representations and prolsl@ining activities, to collect

data. The students had difficulty giviogpardefinitions as well as resolving the algebraic,

graphical and tabular tasks. The researchers citkdolaflexibility in the use of a variety

of approaches to conceptualize the axis of reflection.

Using operended, written, test questions and ssimictured interviews, Bayazit (2011)
investigated how student teachers understood connections betweeaialget) graphical
representations of functions, how they developed the function concept, and how they used
it thereafter. The researcher explored flexibility in switching between algebraic and
graphical representations of functions, and the vertical dexednt of the processbject
conception of functions various contexts. The results indicated that teachers depended
more upon algebraic expressions in their thinking and reasoning than graphical (Cartesian)
representations. Bayazit (2011) recommendptheessobject conception as being useful

in promoting more successful mathematical reasoning.

Tsamir, Tirosh, Levenson, Barkai and Tabach (2014) conducted a research study that
involved teachers practicing concept images and concept definitions ofdsiaogcles
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and cycles. They asked teachers to define these concepts in their own words and identify
the associated geometric representations. The teachers were also required to identify
examples and neexamples of the concepts. The teachers were ahlset@orrect and
precise mathematical language in defining the concepts, and were also able to identify
examples and neexamples of triangles and circles but some had difficulty when dealing

with cylinders.

Sepeng (2014) carried out a study in urban tdwpssin South Africa, where learners are

from an array of multcultural backgrounds, using tests and focus groups discussions to
investigate | ear ner s 6wotldeprollems ino matteematds.eThe s ol vi
study revealed that learners draw onirtheultural knowledge when constructing
justifications and solutions to problems. Sepeng concluded that teachers need to
incorporate oubf-school realworld knowledge in formal classroom mathematics to boost

l earner sé6 mat hemat i ofadmmobnesanseovhen sotyingsptobldms.s a n d

Our research study has similar characteristics to most of the reviewed studies as well as
some significant di fferences. Al | focus on
reasoning in the construction of kn@dge. They assess visual reasoning and cognition,

and identify challenges, difficulties, cognitive conflicts and catastrophes in the process of
learning mathematical concepts, developing skills, and building schemas for understanding
ideas logically. Thigesearch study wikkxplore Grade 18 ar ner sé under st andi
concepts of translation, reflection, and stretch in relation to functions, by mapping at least

one point of a function from its original position onto new position(s) (or images) using a
well-defined rule and multiple verbal, graphical and symbolical representatens.

explained earlier in section 1.4, Grade 11 learners were preferred for the study against the
younger Grade 10 with shorter period of exposure to transformations, functrapbhkg

and effects of parameters on transforming functions and against older Grade 12 for the
syllabus section is not part of content to be dealt with as new and that they are perceived

to be busy due to preparation for matriculatiirhas just been meiwtned above that
researches done abomtathematicalproblems of understanding and conceptualisation
weremostly focused on university studemsis it a fair deal to do witsecondary school

learners.The termconcepts imagewill be used to referto learnérs r e pr esent ati on
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other forms of interpretation. Their explanations and justifications, or attempts at such, will
be referred to amathematical reasoning/arious concept images result when learning
transformations of functiongnd mathematicadkills and abilities to think and reason

mathematically, develop.

What sets this studwppart from the others reviewed abpigeits geographical focus, the

stage of educational development of the subjects, the specific context of the topic, some
methodologiesand the extensiveness of its scope. This study has practical and theoretical
relevance and it is intended not only to promote debate around how students understand
and think, but also to improve classroom learning activities and have a positive impact on
the practice of teaching the concepts in focus and to broaden and deepen the understanding

of mathematical teaching and learning
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CHAPTEROUR

Methodology

The main goal of this study is to explore and describe how Grade 11 learners inaeghre
represent three concepts involved in transforming functions. The empirical component of
the study was a diagnostic test taken by 96 Grade 11 mathematics learners from three
schools in Johannesburg East district, South Africa. The diagnostic testiavagilated

with followrup interviews with thel4 learners who achieved a higher than 30%
achievement score for the test. Although the number of Grade 11 pupils at the schools
totalled more than 96, the number of participants was limited because of egisemtind
nontconsent. This chapter covers the design of the study, the description of instruments
used for testing and interviews, and the methodology followed in collecting, recording,
summarizing, analysing and presenting the data. It also gives aipkescrof the
participants, sampling procedures, and strategies used to ensure reliability and validity of
the research process.

4.1 THE RESEARCH DESIGN

An exploratory mixed method design (Creswell & Plano Clark, 2011) was the model used
in this reseait study to collect both quantitative and qualitative data. This design was
considered the most likely to provide the opportunity for epémdedness on the part of

both the researcher and tpeospectivereadersof this thesis through insights and
guestiming. Although an exploratory mixed method design facilitates the collection and
analysis of quantitative data so that salient interesting results or cases can be selected to

form the basis of a more profound qualitative study, slight adjustments andcauoatifs
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were made to that design in this case. In this study, a diagnostic test collected both
guantitative and qualitative data simultaneously, and the results then lead to the selection

of participants for a further qualitative study through interviews.

The research design adopted and adapted for this study was influenced, in many ways, by
similar studies focusing on mathematical reasoning, concept images, cognitive conflicts
and learning catastrophes (Tall, 1977a; 1977b; Tall and Vinner, 1981; Ta8l, Rto

and Tall, 2002; Nyikahadzoyi, 2006; Viholainen, 2008) reviewed in Chapter 2 above.
They were mainly practical tasks, structured or epetied questionnaires, structured or
openended interviews, or casual or longitudinal observations. This stiogted and
adapted some of those methodologies as its goals were similar to those of the studies

reviewed, but applied them to a study of high school learners.

Both the quantitative and the qualitative data were collected from the same respondents
and thesame problem situation, so that a clearer understanding of the problem could be
gained than from just one data type. The main methodology of the study is qualitative
analysis, but quantitative justifications are used in places to support the quakstiNg. r

A large group of 96 learners wrote the diagnostic test from which quantitative and
gualitative data were converted into achievement scores, and then learners whose
achievement score was greater than 30% were interviewed. The interviews produced

quditative data for triangulation purposes.

The exploratory mixed method design facilitated awlepth study of words, phrases,
statements and spatial diagrams (visual images) communicated by the participating
learners These were taken as artefacts of capt imagesas learnersreasoned and
demonstrated their understanding of translating, reflecting and stretching functions. This
grounded theory approach facilitated making comparisons of learned experiences from
three sample schoolg addition, it washoped to collect a wide variety of information
pertaining to | earnersd understanding of
debate for generalizing the findings from the three samples and constructing relevant new

knowledge.
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The data collection veadone between April 2012 and October 2013 during, and soon
after school hour s, i n such a way that it
Participating learners had been taught transformation geometry, functional graphs and the
effects of parametersnofunctional graphs during formal school lessons before they

participated in the study.

4.2 SAMPLING PROCEDURE

Initially, the study plan was to sampieore thanl00 respondentsut of a total of 110
Grade 11 Mathematics learndrem three high schoalsSinceno artificial sampling
strategy was used to select participants for the diagnostionds86 learnerended up
participaing. Thesewere those Grade 11 mathematics learners present on the day the
diagnostic test was conducted, and who had retuthe consent forms signed by their
parents or guardians. The thregh schools werepurposivelysampled because of
proximity to the researcheout of 10 high schoolgluster ofSandtonin Johannesburg
East District (D9).Johannesburg East District (P8 one of the 15 Gautergglucation
districts anchas 37high schools oubf 114 schools in Johannesburg metropolitan .city
The metropolitan city of Johannesburgs the bulk of thd96 high schools inSouth
Africads Gauteng Pr ov it Distect (DIY tvas chéserhf@rn ne s b ur ¢
convenience and accessibility during the research study because one of thevgahools
where the researcher worked and the othemrer@neighbouring schools to the first one.
The first school (Sample A) contributed 30 ofit36 mathematics learners it had. The
second and third schools (Samples B and C) hasdut2of 48 and 24 out of 26
mathematics learners respectiveNinety-six learners wre a manageable number of
study subjects for an-depth study to provide meaningftdnclusions. The study tested
learners in Grade 11 because theg &donger period of experience with transformation
geometry, functional graphs and the effects of parameters on transforming functions,
compared to Grade 10 learners, and this meanthbgptiere likely to have wefbrmed
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concept images and mathematical reasoning. Grade 12 learners were not tested because
that grade is the final year of secondary schoolSouth Africa and a research study

could have disrupted matriculation examinatioegarations. The 14 interviewees were
selected on the basis of having scored over 30% in the diagnostic test and being present
on the days that interviews took platee 30% threshold was used based on the fact that
30% is the promotion mark for mathenaatilearners to proceed to the next grade.
Basically a learner is perceived to have acquired some minimum mathematical skills

when he or she achieved above 30% mark.

43 THE PARTICIPANTS

The participants in the diagnostic test activities were 96 Gradeatders taking the
subject mathematics (not the subject mathematical literacy, which is an alternative option
for South African high school learners, who do not have transformations nor functions in
their syllabus). Of the 96 learners who participatethendiagnostic test, 58 were girls

and 38 were boys. The sample size was appropriate for the purpose of the study because

it could give enough data to draw some conclusions.

The participants6 ages ranged froeageti5 t o
16 to 18. The detailed age distribution is given in table 4.1 below:

TABLE 4.1: Age distribution of the participants, in their samples.

Female O 4 15 2 0 21
Male 0 0 5 3 1 9
Female 1 8 16 1 1 27
Male 1 4 8 1 0 14
Female O 1 5 4 0 10
Male 1 5 5 4 0 15
3 22 54 15 2 96
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The mean age for the combination was 16.9 years, whereas the median and modal ages

were both 17 years.

In terms ofrace (which is not relevanoif the results of this study), threajority of

|l earner s, 9 3 %, wer e African, 5% wer e mi x ed

terminology of the former apartheid regime) and 2% were of Asian descent. The Africans
were of different ethnic cultures, nameaNdebele, Sepedi, Sotho, Swati, Tswana, Venda,
Xhosa, and Zulu, and there were a few learners from African countries other than South
Africa. The medium of instruction used for mathematics in the sampled schools is English
(see 4.3). Although the South Afan constitution states that all learners have the right to
receive education in the official language(s) of their choice in a public education
institution (National Education Policy Act, 1996outh African Schools Actl996, in
practice it is difficult for schools, particularly those that are undesourced, to
accommodate | earnersdé6 diversity of home
medium of instruction in many South African secondary schools. In the three schools
under discussion, themeas no chance of a learner switching teaching language because

two of the mathematics teachers were South Africans of Indian descent and one was a

Zimbabwean national, and none of the three is able to teach mathematics in any official

South African languagother than English.

ang

The schoolsveref or mer model C schools (in the ter ms

hierarchy of school types) and they charfges of between R1@00 and R16 000 per

year . The school s6 admi ni sherrthattfeeyweere@didf i cer s

either by |l earnersé parents, f osThethreepar ent s

schoolswere relatively well resourced anddperceivedbetterstandards thathose in

run-down inner city or poor township areas.

4.4 DARA COLLECTION INSTRUMENTS

The two data collecting instruments used were a diagnostic test (see Appendix A) and a

follow-up faceto-face interview (see Appendix B). The model for the instruments and
74



methods was adopted and adapted from previous simildiestas outlined in section
4.1, above. A full description of the instruments is provided in theseations that

follow.

4.4.1. The diagnostic test

The document used for the written diagnostic test is presented in Apgebeiaw. This

diagnostic testvasprepared by this researcherthe main instrumerdéind wasused to

measure | earnersdé concept i mages and mat heme
of functions.The test had to be subjected to validity and reliability tests (see section 4.5

below) The test was to be completed within an hour, using only a pen or pencil. The

answers were written in the space provided on the test sheet.

At the top of the first page of the test sheet, learners were required to fill in their names,
gender and ages.awes were needed for possible later interviewgad, and gender

and age were required for demographic analysis. The learners were told that if they were
not comfortable giving their real names, they could use pseudonyms. A summary of
| ear ner s ac irdoematomiy is presénted in section 4.2 and Table 4.1, above.
Immediately below this information on the test sheet were instructions to learners about
filling in the required demographic information, and the need to answer all questions or
provide a reson when unable to answer .The instructions were followed by 10 questions,
some with at most three sujuestions. Learners were to think critically, explain,
illustrate, evaluate and justify the mathematical concepts and relationships they built.

The firstobjective of the study was to investigate concept images built by learners as they
learn, interpret and represent the concepts of translation, reflection and stretch of
functions, and Question 1 required learners to define those concepts in their own word
The objective of obtaining concept definitions continued to be addressed by other
guestions, in other ways. @stion 2 used drawn graphs of quadragixponential and

cubic functiors, and learners were required to illustrate a translation, a refleatidna

stretch of these three graphspestively. This question was afternative way of asking
75



Question 1. Learners were expected to show consistent knowledge of the three
transformations of functions by demonstrating the skills necessary to represanag
they had defined them in their answer to the first question.

Questions 3 and 4 showed drawn graphs of hyperbolas, exponential functions and cubic
functions, and, on the basis of the definitions, learners were required to interpret
transformations tfm algebraic representation, then describe fully and illustrate them.
They were to interpret, algebraically or symbolically, the translation, reflection, and
stretch, and then perform graphical representations. The two requirements were
alternatives, askomfor the same transformation but applied to a different function. This
pairing continued for the rest of the test where eachnoobered question was paired

with an evemumbered question, which facilitated sldlf and alternative form

reliabilities the results for the reliability tests are shown in Appendix 3).

Questions 5 and 6 focused on stretching of trigopnometric functions, given by both

algebraic representations and algebraic formulae, in pursuing the same purpose as
Questions 3 and 4. Questiorisand 8 had verbal descriptions of transformations and

learners were required to write the corresponding algebraic formulae for each
transformation. Questions 9 and 10 showed functional graphs with illustrations of their

image graphs after transformatioand learners were required to identify the
transformations that had taken place and describe them fully. Questions 3 to 10 mainly
addressed the descriptive research question and tg sub st i on s . From t he
answers, the relationship between tleincept images and the formal definitions of the

three transformationsase vi dent . The precision in | earner :¢

reasoningcouldthen be measured against tbhemal definitions

4.4.2 The followup clinical interview

Thefollowu p cl i ni cal interview was intended to f
and interpretations of the central concept images and mathematical thinking, and clarify

gaps uncovered in the test responses.
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Appendix B shows the interview guide used irstfésearch study. The same definitions
asked for in the test were asked for in the interview. The design of thevgasdsemi

closed or semstructured, because, despite the presence of specific themes, the interviews
would inevitably deviate slightly frm the plan in practice, depending on the

intervieweesod views and progress, SO0 some de
the sequence of themes and the depth covered (Kvale, 1996). The interview questions

were partly predetermined, as per the intewschedule and partly generated during
interviews in response to the | earnersdo answ

The interviews were conducted in English, and the language used was as simple as
possible to be easily understood by the learners. A voice recorder was used so that
interviews could be replayed if necessarensure accurate transcription. The verbatim

transcript of the interviews appears in Appendix C.

Learners were instructed to ask for a question to be repeated or asked in an alternative
form if they had not understd it well. The learners were sometimes asked to repeat their
responses for clarity and sometimes to illustrate what they said. This measure was taken

to assure reliability of the information exchanged. Each interview took about 15 to 20

minutes dependingn t he precision of the | earnerso

competence. The interviewees were asked to explain, sometimes with graphical
illustrations, the concepts of translation, reflection and stretéimofions (see Question

1 in Appendix B. Thesame issues were addressed by the questions in the test (see

Question 1 in Appendix Apand this research studybés explo

research suluestion. The interviewees were also given transformations in the form of
algebraic representatisrand asked to describe them fully. This replicated what was
asked in Questions 3, 4, 5, and 6 of the test, except without Cartesian graphs. These
activities mainly addressed the descriptive research question and itsjuagtions.
Finally, learners werasked to describe fully the transformations shown by the positions

of the original and the image Cartesian graphs. The discussions in the last two tasks were
strongly connected to the descriptive splestion and its mirguestions. A detailed
analysis othe interviews was done from the verbatim transcription of the recordings (see

Chapter 5).
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4. 5VALIDITY ANRELIABILITY CHECKS

4.5.1 Psychometric validity for the study

The exploratory mixed method design (Creswell & Plano Clarid,1pas deemed
suiteble for providing both quantitative and qualitative data. The procedure used in this
research study was influenced by, and adopted and adapted from, previous studies with
similar goals (see section 4.1). Tudies ori gin
made it psychometrically valid for this study because the chances of it being successful in
these circumstances were high. Quantitative and qualitative data were drawn from the same
problem situation and the same respondents, to achieve a cleaeestanding of the
problem. A slight variation from the original procedure was that no quantitative data
analysis was done first to select respondents for a more profound qualitative study. Instead,
the diagnostic test collected quantitative and qualitatata simultaneously, and then the
resultant scores were used to select participants for a further qualitative study done by

means of interviews.

4.5.2 Content and construct validity for the diagnostic test and
follow-up interview

The following measures ere taken to construct the most appropriate diagnostic test and
interview schedulevhich wouldachieve the objectives of the study and test within the
scope of the NCSCAPS syllabus for Grade 15omecopies of the test form and the
section of the Grade Kyllabus that deals with transformations of functions were given to
two university educators and two other high school teachers to comment on whether the
guestions were suitably clear and accessible to Grade 11 learners and were addressing the
syllabus olectives sufficiently. They were requested to make suggestions for improvement
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and also to assess according to the Likert scale, how thoroughly the test examined the full

scope of syllabus content for transformations of functions to the required depth. One
educator from each of the two categories r e:¢
comment s. By counting the 6yesdé answers and
compliance, the high school teacher indicated a 77.5% compliance with syllabutivebjec

while the university educator indicated &% compliance. Theomponentsatings were
correlated. The Spear man r ank owadcealaulatedor r el at
and found to be 0.99 (see Appendix D) showing very strong positive nmmusto
correlation between the educatorsé rating of
the scope of the syllabus for transformations of functions. This gave the instrument the
necessary content and construct/factual validities. The interview dsztighied the same

objectives as the test, therefore the validity of the test implied that of the interview. The

pilot study (see section 4.6) had the purpose of validating these instruments.

4.5.3 Reliability of the diagnostic test

In order to check #reliability of the written test form and the interview schedule before
the main data was collected, a spsalhle preliminary study was done with 30 leariiees

the pilot study in susection 4.5.% The items in the tesas stated beforgjere desigad

in the followingway sothat internal consistenamuld betestable. Each evamumbered
guestion asked the same thing as the-madbered question that preceded it but in a
different form to allow splihalf correlation. Outlier questions were removetl ahe
resulting scatter plot for success rates showed a strongly positive correlation with the
coefficient 0.9 (for? =0.81) using the FATHOMcomputer program (see Figure 4.1
below). A retest was done with 10 learners, and their scores were processed through the
SpearmasBrown prophecy formula. The smaller sample of 10 gave a psychometric
reliability or r-value of 0.86. The internal consistency with the bigger sample of 30, after
the removal of outliers, was estimated to be r = 0.79 using the {Rideardson Fonula

21.
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A follow-up interview was done with two learners and the verbatim transcript was
subjected to credibility and dependability checks (see section 4.5.5). The research

instruments were then deemed ready for the main study.

4.5.4 Acceptability of thestrument

After the pilot test, oral feedback was invited from learners. There were mixed opinions
about the fairness of the test. Some learners confessed that the content had been covered in
class but their memory of it had faded. Others said theitgcteminded then to study

more. Generally learners felt the test was challenging as they lacked-daptim

understanding of the concepts covered.

4.5.5 Credibility and dependability of the prepared interview
guestions

This was done through reflectioho | e ar n e r s 6 pilot diagmostiotestasd them t h e
inviting comments from colleagues about the prepared interview schedule questions. Two
voice records of preliminary interviews were given to colleagues to transcribe and then
compared with thoseotie by the researcher to check on the consistency or reliability of

data obtained. The colleagues approved the method

45.6 The pilot study

The pilot study(referred to in susection 4.5.3) involved a class of 30 Grade 11

mathematics learners (21 girhnd 9 boys)it was done at one of thegh schodd in the

sample the year that preceded the one when the main study was cofitaetéghrners

who participated in the pilot study did not participate in the main study because they were
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now in Grade 12 waning that they would not qualiffheconsent formsor these learners

had beersigned by parents/guardians and returnébe learners wertound to beaged

between 16 and 19 years, anditmeedium of instruction in the schoalas English. The

learner proficiency in spoken English was gene
enough for academic communication. The aim of the pilot study was to improve and refine

the research instruments, aodnake sure that they were valid and consistent in cagturin

| e ar n enstandingwfrthed concepts refflection,translationand stretch, in relation to

functions and their verbal, graphical and symbolical representations.

Learners were given a question paper thayanswered within an hour. The responses on

eachof the answer scrigwere then assessed. Markifog the pilot diagnostic testas

done with codes, not ticks or crosses, so that if learners saw their scripts latefatloring

upinterviews, they had no idea of whether their answers had beectoorincorrect. The

codes were also used in the pilot data analysis. Questions posed during the clintcal face

face interviews were generated in response
solicit further clarification about gaps found ino#te answers. Not all learners were

interviewed, the interviewees were seleatatiar answes tothe teswere interestingnd

the scorethey had obtainediere equal to or more than 30%, which is the promotion mark

if learners have to proceedtogra@e1l The codes used to mark | ear

study are given below in section 4.6.1.1.

4.5.7 Dataanalysis and interpretation

The data from théoth pilot andmain studywere to beexamined qualitatively and
quantitatively. The data were detailed descriptions and evidence (words, graphs and
formul ae) from the | earnersé reflections on
and stretch concepts and their manifestations in functions. The frequencies of similar
responses frorboththe diagnostic test and the verbatim transcripts of the voice records
from the interview inforred the qualitative descriptions. The words extracted from the
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testwould evidencs to authenticate the claims. Thereafter, interpretaticasbased on

the expresgsns and evidences for concept images and mathematical reasoning.

Quantitative data analysiwas done with the assistance @f computer program
Statistical Package for Social Sciences (SRBFHATHOM. The data cleaning process
was effected to ensure acate data to facilitate bett@omparisons of tendencies,

similarities and differences amdsothe formation of ultimate conclusions.

4.6.1.1 Assessment criteria for responses to the wpitettest

Task responses were classified using the follgvssessment criteria:

1 Verbal or word descriptions of the concept were coded with the letter V.
1 Graphic representations of the concept were coded with the letter G.

1 Symbolical representations of the concept were coded with the letter S.

In this classificabn, an answer was placed into a class if at least one criterion of the class

in question was fulfilled.
Class 0: Unclassified

1 No verbal description of the concept (VO).

1 No graphic representation of the concept (GO0).

1 No symbolical (algebraic) representatiof the concept or answer (SO0).

1 A failure to answer the question with or without explanation (V0/G0/S0).
Class 1: Misconception

9 Verbal description that does not resemble the concept (V1).
1 Graphic representation that does not resemble the concept (G1).
1 Symbolical (algebraic) representation that does not resemble the concept or the

expected answer (S1).

Class 2: Partial or ambiguous conception
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Verbal description with some aspects of the concept but lacking accuracy (V2).
Graphic or visual representationgiwlittle understanding but some correct aspects
of the concept (G2).

1 Symbolical (algebraic) representation with little understanding but some correct
aspects of the concept or the answer (S2).

Class 3: Correct conception or interpretation of concept

1 Verbal description that reflects the correct formal or informal meaning of the
concept (V3).

1 Graphic or visual representation showing complete understanding of the concept
(G3).

1 Symbolical (algebraic) representation showing full conceptual understanding (S3).

The values VO, V1, V2, V3; GO, G1, G2, G3; SO, S1, S2, S3, depending on assessment
criteria, werecounted, and their frequencies, were recorded as success rates in Appendix
F. Altogether they were 90 pieces of data. The success rates for theiratdred
guestions and those for the evaimbered questions were paired, iewitem, and are
presented in Table 4.2 below.

TABLE 4.2: Success rates of similapilot question items to checKor consistency.

Question

_ a |b |c |a |b (c |a |b |a |c
litem
Q1 0 1 1 4 |4 |3 13 (22 |13 | 4
Q2 1 0 |4 2 |4 5 17 {18 | 10 | 3
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Question

_ a |b |a b |a |b |a |b (a |a |a |[b |a |b

fitem

Q3 4 |10|5 |16|12 |9 |6 |6 |10|9 (10|10 |7 |1

Q4 8 (7 |7 129 |14 |4 |6 |4 |1 |9 |8 |12 |1

Question/ Question/

item item

Q5 5 15|19 |1 Q7 17 13

Q6 5 |15 |5 |5 Q8 20 15

Question

_ a |b |c |a |b (a |b |c |a |a |[b |c |a |b a

fitem

Q9 10|24 |8 (152 |5 |1 |2 |0 |3 |25 |24 |1 |6 0

Q10 1021 |10 |15(4 |4 |0 |O |1 |5 |20(23|4 |7 0

Quest

_ al|b c d a b c d alb d |a |b |cC a

fitem

Q11 912 (13 |15 |21 |23 |28 |19 |8|4 4 |7 |4 |2 10
1

Q12 11 (11 |12 |23 |21 |28 |22 |8|6 7 12 |6 |2 6
3

Question/
a |b |c d a |b |c d a |b |c d

item

Q1i(cont)j1 |1 |O |2 |3 |2 |10|2 |1 |2 |0 |2

Q12(cont))5 |1 |O (O |3 |9 |6 |3 |0 |2 |0 |5
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The two sets opilot data were then correlated, the scatter plot drawn, and the correlation

coefficient stated. Figure 4.1 below shows that information.

4.6.1.2 Summary of results

The graph in Figure 4.1 shows tRATHOM producecs c at t er pl ot and t he

regression line with equatign=0.877x + 0.97for spliti half correlation of success rates
for thepilot results of the diagnosttest.

There is a strong positive correlation with coefficierrt 0.9 (r? =0.81).

Figure 4.1: Scatter plot showing splithalf correlation of success rates of 30

participant learners in the pilot diagnostic test.

Collection 1  Scatter Piot| #
30

25

201

0 > 10 15 20 25 30
x
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Figure 4.1 andhte correlation coefficient of 0.9, show that the odd and -evenbered

guestions were consistently reliable, therefore the diagnostic test questions were suitable

for determining |l earnersdé abilities to defin
on functions, consistently. Sections 4.6.1.3 to 4.6.1.12 go on to look at how learners in the

pilot study performed in the activities cited in the study objectives.

4.6.1.3 Verbal definition oéflection, translatiomnd stretch

The tabulated informadn (see Table 4.2 above)dicates that the majority of the learners
could attempt a definition of translation, reflection, and stretch, which is an indication that
they understood what Question 1 required. Those who failed to define the concepts

correctly, failed due to a lack of knowledge and not dumisconstruirg the question.

1 Of the 30 learners, 13 (43.3%) accurately defined reflection, 13 (43.3%) gave
incomplete definitions of reflection, and 4 (13.3%) gave definitions showing
misconceptions abougflection.

1 Of the 30 learners, only 3 (10%) could define translation accurately, 22 (73.3%)
gave incomplete definitions, and 4 (13.3%) gave definitions showing
misconceptions about translation.

1 Ofthe 30 learners, 4 (13.3%) gave accurate definitionseaith, 22 (73.3%) gave
incomplete definitions, and 3 (10%) gave definitions showing misconceptions

about stretch.

All the responses given by learners indicated that their responses could be useful for the
proposed major study. efidition of theaconedpts transfatiom | ear n
reflection, and stretch is given in Vignette 4.1.
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Vignette 4.

in the pilot study.

———— —

1. ()

(b)
N2

{c)
Y

Ncfine, in your vwn words, a cellection.
Rtﬂtﬂ‘ e s an gy view 2l e gaw from He @ng olisfance:

Lefire, in your 0wt words, & inmslation, , "
f(QI‘lS’ﬁ.hC\‘l i5 fh Shif"fuui of an 'hnd\r}l?- tthov g of dewee, “‘H"’\”tf %
Usiby s ;

Deline, in your own words. a siretch
Y stre feh ewld e the .'r.lejl.‘ ek of an mu'v.]O

For the following functional wraph, illustrai the imags after a reflection in
the x iy,

4.6.1.4. Graphical representations of reflecticamslationand stretch

Eighteen of the sample (60%) drew the translated image well. A significant number (30%)
drew queer graphs. Three of the learners (10%) exhibited serious misconceptions. Eighteen
of them (60%) had slight misconceptions while 5 (16.6%) kerious misconceptions.

Three learners (10%) answered well whilst 4 learners (13.3%) did not attempt to answer

the question.

Seventeen out of 30 learners (56.6%) could carry out a reflection, but did it about the
incorrect axis. Ten of them (33.3%) didmperfectly.Eighteendrew the reflected image
about they-axisalthoughthe question required them to reflect aboutxtagis. One learner

reflected abouy =- 6. Only one left the question unanswered.

An exampl e
Vignette 4.2.

1: Example of | earnerdés verbal

nm

of a | ear ne ragsormgtionacpnbeptsiadivenrire pr es er
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Vignette 4.2:. X amp |l e of misconceieedgnaphicél sepresentation of a
reflection in the pilot study.

2, () For the lollawing lunctiomal graph, illusteate the image after a reflestion in
the X — iy,
\ Vlll by
|
| / N

&, -5

4.6.1.5 Drawing the graphs

The success ratings for the task indicated that most leameesstood that they were to

make graphical presentations of translation, reflection and stretch. Those who failed to
represent the function correctly failed due to a lack of knowledge of the correct graph and

not because they ha ésidhtequued d graph.tTloecedamplehmrat t he
Vignette 4.2 also confirms this. Learners seem to find it more difficult to effect stretch

graphically although they knew that they were to draw an image after a stretch (see
Vignette 4.3 below).
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Vignette 4.3: Exanp |l e of amiscoaceived grapbicalrepresenttion of a

stretch in the pilot study.

Gy Forthe lillowing fanetional graph, llustrate che imeage afier
horizonwal sivelch of factor 2. centre orizin,

4.6.1.6 Verbal descriptions and graphical representations from
symbolically given functions

Learners gave descriptions of concepts and represented them dhapklisaonceptions
were evidenandsome learners left blank spaces (see Appendix F). These were associated
with a lack of knowledge rather than misunderstanding the question, as a significant

number of learners indicated on the question paper and datangiews.

4.6.1.7 Drawing the image and stating the transformation involved

The results in th&able4.2above indicate that learners were able to draw images and state

the transformations involved. Very few learners gave correct answers however, and
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misconceptions and blank spaces were apparent. Again these were associated more with a
lack of knowledge than misunderstanding the question. This could be seen from the

inscriptionssomelearners wrote on the question paper.

4.6.1.8 Stating and illustrafy the transformation involved from verbal
descriptions

Learners stated the transformations and represented them graphically (see Vignette 4.4).
The number of misconceptions and blank spaces was higher than for previous questions.
This was because of thaigher level of skilé the question required, and a lack of
knowledge, rather than misunderstanding thestiole. Some learners stated astson the

guestion paper and during interviews (see Vignette 4.5).

Vignette 4. 4: E repreagntedattem(bt to |dentfyr artransfdrmation
in the pilot study.

[l

b) v=x? 1 i i1
oy err el £ Vg Grepls =3 JRasmes i

Ly

-

|
o g

iE

N
= uratl,

G Fed= XIS
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Vignette 4.5: Example where a learner expressed having difficulty with task in the

pilot study.
/—l" D N 3N (0: S v
Ve ) i’f VS <O [‘iM $liA :j

; [,\
'\.j ~ L S0 o 1 =

4.6.1.9 Writing the formulae from verbal descriptions

The majority of learners left somé the answer spaces blank while a significant number
gave erroneous formulae. For some questions, such as 9(a), 9(b) verbal, 10(b) verbal and
10(c), no correct answers were given. Some learners stated on the question paper and

during interviews that theyrfd algebra difficult. Some of the blank spaces were associated

with insufficient time to finish the test.

formulae.
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Vignette 4. 6: E x a mprépeesestddattempntgwriie a forema@aen er 6 s
in the pilot.

F :
Q9 Write down the formulae for:
GO A tanslinlion of v = wnx paunkts (0 the right aad qQeunits
upward, where p and g are bath positive (ntegers,
e ip - -_r\’(:,\'v\(.:
>
(b) A rellecdan of ¢ = 2% in the v« axiy and alw in the v - axly
<o wnd comment about the results
v

(©) A vertical sueleh of v e ¢otx by fuowre 2,
3 \’—’)("C'; =

- 10 Write down Lhe formulue for

(a) A wanslation of y = coux prumilx 10 the leltand q- units
dnwnward.

5 ‘\1 - L'{/C\"Y_“;(L'J

» )
(M) A reflection of ¥ — “ ilnthe y—avis und alzo in the % —axis
*

and comment aboul the re

ulis.
S0 o — O mﬂ'{ Le Yedue E'CM |

50 ~;{ N ol s waitl ey w cfiae el
)
(h) A horizenl stectoh ol 3 = sinx by factor | .
- ¢ - < Ly o
<A L) = < in '/? ~¢ e kj - ‘)\V\._L
8

4.6.1.10 Identifying transformation(s) that map a function to an
illustrated image

Most of the learners left the answer spaces blank for Questions 11 and 12. Some who
answered the questions had difficulty and revealed misconceptianmisbonceptions in

these questions were mostly associated with a lack of knowledge and not with
misunderstanding the questions. Some blank spaces were associated with insufficient time

to finish the test, as some learners indicated on the question pdpurang interviews.
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4.6.1.11 Projection of main study results based on the pilot study

The pilot study revealed that some learners find it challenging to define reflection
translationand stretch, and make graphical representations of them. We waqeédt e

i nconsi stencies in | earnersd6 constructed de
with representations of translation, reflection, and stretch, to reveal the depth of their
knowledge of the concepts. Whatever they used to demonstrate theietgeywvhether

correct or incorrect, could be considered their concept image. We appreciate that many
learners are unable to express exactly what they understand about concepts in words, but
they did their best with the terms and words at their disposa).tlierefore, sometimes a

very difficult task to interpret what learners mean when they attempt to define concepts in
their own words. Their concept images may differ slightly or significantly from the
accepted definition. From these preliminary resules recommend interviews and think

aloud protocols as a necessary way of spanning the understanding gap from both the

researcherds and the | earnerds perspective.

4.6.1.12 Adjustments of the research instruments

The following adjustments were made to th&truments for the main study, based on the
findings of the pilot study:

1 The number of questions was reduced from 12 to 10.

1 Question 7 was merged with Question 9 to become the new Question 7.
1 Question 8 was merged with Question 10 to become the new Qu#6ti

1 Questions 11 and 12 were relabelled as Questions 9 and 10.

1 Subquestions were reduced from a maximum of 4 to a maximum of 2 per question,
by leaving out alread{ested aspects. This was done so that more learners would
be likely to finish the teshithe time allotted.

93



4.7 ETHICACONSIDERATIONS

The research complied with prescribed ethical considerations, such as informed consent,
confidentiality and ethical cl earance. Parti
consent for the method ofath collection by signing consent forms provided by the

researcher.

4.7.1 Informed consent

The designed consent forms clearly stated that voice recordings, photographs and
videotapes may be taken as part of the data collection process. The consemteficems

issued and returned, signed, before the research began.

4.7.2 Confidentiality

The research process adhered to the highest levels of confidentiality. The datadcollect
wereconfidential and anonymous awereonly used for the stated purposes g giudy.

The names of participants and their schools do not appear anywhere in the report. Only
the names of the district, the province, the city and the country in which the study was

conducted appear. All the requirements of the ethics committesme.

4.7.3 Ethical Clearance

After the validity and reliability checks were done and before the instruments and
methodologies were applied, the instruments and the data collecting procedures was sent

to the universityo6s et daliagpovalovasgramtddtalowingf or cl e
the study to proceed (see Appendix J, below).
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CHAPTERVE

The Data and its Analysis

This chapter presents | earnerso description
reflection,translation and stretch and how geare manifest in functions. ilence in

the form of | earnersd own words from the di
vignettes of the test answer sheets, are provided to authenticate the claims made. In
addition, this chapter provides anothdorm of visual evidence using frequency

categories of similar responses from the diagnostic test. Finally, a summary of the
information gathered from the interview responses is presented. The interviews served a
triangulation function. Samples of the vetibatranscripts of the voice recordings from

the interviews appear at the end of this report as Appendix C. Categories of similar
responses were quantified to enable frequency counting and tables of results were drawn

up. The coding scheme and data entsthmad were tested during the pilot study. The

analysis of resultant frequency data was carried out using the computer program

Statistical Package for Social Sciences (SPSS). The analysis necessitated a data cleaning
process. Comparisons of frequency tablkesabled identification of tendencies,

similarities and contrasts and provided the basis from which to draw conclusions. Ages

or age range and gender comparisons formed part of the demographic analysis, which

was presented in Chapter 4, section 4.2.
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51 9!' wbOw{ Q w9{thb{9{ ¢h ¢19 5L!T
RELATIVE FREQUENCY ANALYSIS OF CONCEPT IMAGES

A multi-task diagnostic test was the main instrument used for this study. The 96 learners

in the full sample group were required to answer ten questwitis, at most, three

constituent parts, in words or by means of visuals, within ahone time limit. The

procedure leading up to writing the test is outlined above in section 4.4.1. An account of

learner responses, the descriptive analysis of resulise@aluation of concept images

from learner responses to the diagnostic test, is given below in section 5.1 (subsection 5.1.1

to subsection 5.1.5). Answers were assessed for correctness and then used as a basis for
comparing formal definitions and propere s of t he mappings of f unc
responses in the three sample groups (A, B and C) were analysed separately and
comparatively in frequency tables and vertical mlbidtr charts. The horizontal multar

chart at the end of each analysisshawsc o mpar ati ve summary of | eal

the group as a whole.

5.1.1 Verbal descriptions of concepts that transform functions

Question 1 read as follows:

a) Define, in your own words, a reflection.
b) Define, in your own words, a translation.

c) Define in your own words, a stretch.

This question required learners to write their verbal images (definitions) of the three
transformations (reflection, translation and stretch) as they manifest on functions. It was
insufficient for learners to define a conteysing just its name. Vignettes 5.1 and 5.2,

below, provide examples of how learners defined the three transformation concepts.
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Vignette 5.1: Example of learned slefinition of reflection, translation and stretch
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Vignette 5.2: Another example of learner® definition of transformation concepts
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flection in the
2. (a) For the following

X — @xis

Some of the terms used by learners to define transformations were appropriate although

they differed from the formal definitions in some cases (see Vignettes 5.1 and 5.2 above).

Belowisaquestiomo-questi on analysis of the | earnerso

pdPmdmdm [ SFNYSNBRQ OSNbBIf AYlI3ISa

Refl ecti on i s dnmappmagthal pyodudes miironimadesafpoinis in lines
or in polygons about a particular lncalled an axis of e f | e€%(Tapsonn 2006).

22 Sometimes referred to as mirror line or line of symmetry.
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Learners in the sample groups also used termdlilpeed inverted imager symmetrical
imagein place of the ternmirror image as could be expected when giving their own
definitions of reflection. Most of the learners gjgled to express their definitions in
correct English, and some definitions suffered from a lack of precision. However, after
careful scrutiny of the responses, the following categories of definitions were constructed

for assessment:

(a) A correctdefinition of reflection, which refers to the two aspects of reflection, namely,
the relative positions of the original object, and its image with respect to the axis of
reflection.

(b) A partly correctdefinition, which refers to only one of the two aspectsediection
mentioned in (a), above.

(c) An incorrect definition which is either so broad that it applies to transformations in
general and not reflection specifically, or is not related to reflection at all.

(d) Did not attempt to answekwhere the learmdeft blank the space provided for the

answer.

Some learners were able to giveoarectdescription of what a reflection is. The examples

bel ow are given using the | earner6s own word

1 Itis a transformation of an image about a line where the shapgdsed on the other
side of the line.
The formation flipped or that flips to another place about a certain axis or line.
It is when a graph is transformed through a line of symmetry. It produces a mirror
image of that graph.
It is when a specific shape lane has a mirror like image about tk@xis ory-axis.
The mirror image of a shape about yher x-axis.
It is a repetition of an object across thaxis orx-axis not changing the size or shape
but changing the coordinates.
1 A mapping that producesrairror image of a point, line or polygon about a particular

line.
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1 A copy of an image that is exactly the same as the original. It is about a certain line e.g.
x=0.

Most of theincompletedefinitions did not refer to the axis of reflection. The examples
bel ow are given using the | earnersd own word

considered incomplete are given in brackets:

1 Itis creating a mirror image of a particular object (No mention of relative position of
the original and image function respect to reflection).
It is when an image is flipped (No mention of axis of reflection).
It is a mirror image of an object or a shape (No mention of axis of reflection).
It is the image, which is symmetrical and exactly the same, on the other sider(blo mi
line).

1 It is the same graph just on different side depending on where the graph is reflected
(No mirror line).
It is an image produced from an original picture (No mention of how is it produced).
It is an exact replica of the object (No mention ofvhis it replicated).
It is repetition of an image across thaxis or they-axis not changing the size or shape
but changing the coordinates (No mention of how the image comes about).
When a graph makes an image about thextiieory=0 (No source of thanage).
When an image is mirrored in a specific direction (No mirror line).

An object showing on another set accurately (No mention of how it is showing).

Some of the definitions given by learners wiereorrect. The examples below are given
usingtheleaener 6s own words, and the reasons why t

in brackets:

1 Itis the image that is exactly the same as the ordinary (All transformations have images.
The term ordinary is ambiguous).

1 Itis a way of changing the position ofagrams on a graph (Not clear haowall
transformations can change position).

1 Animage of a structure, object or picture (It could be any transformation).
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An exact replica of the object (No mention of how it is replicated).
Reflection is an image viewetthe same from same distance (Not clear how it is
different from images of other transformations).
1 Transformation in which an image of the original object is shown (No indication of
what the image is and how it is formed).
1 Itis an image of a structure, @lof or picture or shape (No mention of how the image
is formed).
It is an object showing on another set accurately (Not clear what the other set is like).
Plotting points juxtaposed to each other (Meaning not clear).

A glance of the same picture (No secqncture mentioned and what it looks like).

= =/ =4 =

It is the way of changing the position of diagrams on a graph (No aspect differentiating

it from other transformations).

1 Itis an act of casting back an image so it can be reflected (Not clear).

Of the 96 learars in the full sample group, only 47 (49%) defined reflection correctly,
mentioning both its two aspects, and 38 (40%) defined reflection incompletely, mentioning
only one aspect. Of the incorrect definitions, 6 (6%) were too general, and 5 (5%) showed
misconceptions about reflection. No learners left the answer space blank. The frequency

count can be seen in Table 5.1, section 5.1.1.2 below.

5.1.1.2 Frequency analysis of verbal definitions of reflection of a
function

In order to have a clearer compavatipicture of how learners defined reflection, a

frequency table for the responses (Table 5.1) and a bar graph (Figure 5.1) were created.

100



Table 5.1: Evaluation frequencieso f | ear ner s0 v er b aafundtiana g e s
(Question 1a) (n=96)

Assessing thel Frequency Relative | Cumul.
Concept Image| Sample | Sample | Sample | Sub- | Frequen | Percentag
(Reflection) A B C total | cy e
a | Correct image 13 24 10 47 0.49 100.0
Partly correct
b | 13 14 11 38 0.40 51.0
image
Incorrectimage |4 4 3 11 0.11 11.0
Did not attempt | O 0 0 0 0 0
TOTAL 30 42 24 96 1.00

Table 5.1 shows that most learners (89%) had valid or partially correct ideas about
reflection although some found it difficult to define it well or convincingly. This was the
same in all three sampleghe multiplebar chart for samples A, B and C is shown below,

in Figure 5.1.

Figure 5. 1: Graph showing frequencies of

functions (n=96)

30
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5

0
Did not attempt Incorrect image partly correct image Correct image

Sample A mSample B m Sample C
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Figure 5.1 displays | earnerso vteersbnmples. def i ni -
The first bar (blue) refers to Sample A, the middle bar (orange) to Sample B, and the last

bar (grey) to Sample C, in the categorie€ofrect Image, Partly Correct Image Incorrect

Image,and Did not AttemptlIt can be seen from the graplatlall learners attempted to

define the concept reflection. The highest percentage of learners (49%) had correct
concepts of reflection, while 40% had partly correct ideas about reflection. The lowest

number in each case (11%) is of learners who had misptions.

~
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Translation is formally defined as fa mappi
polygon by sliding it 1in a spé€lapsdnj2006)di rect i
This description has two aspects, namely that points move the same distance, and
movement is in a common direction. Both of these aspects need to be stated for the
definition to be considered complete. The process of evaluating learner definitions was
complicated due to the varied language used, and the sometimes imprecise descriptions,

hence careful scrutiny was necessary. The same parameters were used to assess the answers

as in section 5.1.1.1;

(a) A correctdefinition of translation, which refers to bothpects of translation namely

(i) di spl acement (di stance) and (i) speci
displacement).

(b) A partly correctdefinition which refers to only one of the two aspects of translation
mentioned in (a).

(c) An incorrect definition which is either so broad that it applies to transformations in

general and not translation specifically, or is not related to translation at all.

(d) Did not attempt to answewhere the learner left blank the space provided for the

answer.

Thel earner s6 descr i pt ioormestinctuted at leaseane of he cept e d
following terms:displacemenimovementlide change of positioandshift, for a specific
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distance, followed byupward downward to the leff to the rightor in a straight

line/specific direction

Examples otorrectdefinitions given by learners are shown below:

T

= =4 4 4 A -

The movement of all points of a graph in a particular factor either up, down, left or
right.

When every point of the body moves the same distance in the s&cteod.

When the original object is moved certain units up or down, left or right.
Transformation that moves points or shapes the same distance in a common direction.
Is to move or shift an image to certain units up/down or to left/right.

It is a transbrmation of an image either going up, or down, left or right by certain units.
The way of changing the position of diagrams with given units either upwards or
downwards.

Translation is when a point;) is moved/shifted by units up, units down, unifs ¢

units right.

Examples opartly correctdefinitions and the reasons why they are considered incomplete

(in brackets) are given below:

T

Movement of a graph upwards, downwards, or to the right or to the left (No emphasis
on same distance).
When a graplinas been shifted either upward or downward or sideways (No mention
of distance).
It is moving a graph through a slide i.e. to the left or right, downwards or upwards (No
mention of distance).
It is the transformation of shifting an image to the left, rigipt or down (No mention
of distance).
A transformation that moves points in a common direction (No indication of same
distance).
It moves points or shapes in the same direction (No indication of same distance).
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1 Itis when an object or shape or graph isvewto the right or left, front or back (No
indication of same distance).
1 It is when a graph moves vertically or horizontally, does not change shape (No

indication of specific distance).

Examples ofincorrect definitions and the reasons why they are carsid incorrect (in

brackets) are given below:

1 Shift ofimage from its original point/place/coordinates to another (No mention of what
the shift is and how far).

1 Movement of a diagram across fraxis and the-axis changing the coordinates but
not the imge (Not different from other transformations).
Shifting or moving to certain positions (Not different from other transformations).
Moving an image of a graph to a different position from where it was (Neither direction
nor distance mentioned).

1 Moving theobject to the next point, from one position to the other (Neither direction
nor distance mentioned).
The repeat of a diagram in a graph (Not specific of where and how).
Movement of a shape along a Cartesian plane with no change in shape or size (All
congriencies do that).
Movement that occurs when you rearrange objects (Not clear or specific).
When a mirror image moves certain units from its original position (T&rnor image
inappropriate, no direction, no distance).

1 When a figure moves towards point@B, whether it rotates or moves up down or left
and right (Ambiguous).

1 A type of transformation whereby an object can either be reflected or rotated i.e. the
object and the image are not of the same distghmdiguous).

1 When a point is moved around chamy in position or size. (Change of size is
inappropriate).

1 When a point is moved around a number of degrees, does not change shape but its

coordinates, (No degrees involved in translation).
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When a point is moved, when an image is resized (\Wamideds inappropriate).
When points are flipped for e.¢gx;y) - (y;- X) (Word flipped is inappropriate and
the formula is for a 90° anticlockwise rotation).

1 Change in position by a point in a plane diagram e&gy) - (- y;x) (Formula is for
a 90° clockwise rotation).

1 Change of coordinatés(x;y) - A'(- x;y) (Formula is for a reflection about tlye
axis).

1 Is when you enlarge part of a drawing in which you add (Wenthrge is
inappropriate).

1 It is an image of shape that is reflected uponxtagis ory-axis (Wordreflectedis
inappropriate).

1 Itis when thegraph moves as a whole across throughout the set of axixe.§g) or
(- x-y) (Formula for reflection iry-axis).

1 Itis when you move a shape altogether fromytlagis to thex-axis if necessary on the
graph either clokwise or anticlockwise (Facts mixed up).

1 It is the movement of the image and how it is moved or translated or rotated
(Ambiguous and use of wordtatedinappropriate).

T It is when someone interprets a certain |
(Linguistic instead of mathematical context).

1 Itis when a figure moves towards a point A from B whether it rotates or moves up,
down or left or right (Ambiguous).

1 Is an object moved around a number of degrees but it does not change itSCahigipe

its coordirates. (Appropriate for rotation).

Of the 96 learners in the sample, 76 learners (79%) used at least one of the correct
descriptive terms. However, of those, only 25 (26%) could define translation completely,
51 (53%) gavepartly correctdefinitions using ecepted terms, 15 (16%) gaweorrect
definitionsand 5 learners (5%lid not attemptto answer. Complete information of
frequencies is given below in section 5.1.1.4 and Table 5.2.
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5.1.1.4
function

In order to have a clearer comparative picture of how learners defined translation, a

Frequency analysis for verbal definitions of translation of a

frequency table for the responses (Table 5.2) and a bar graph (Figure 5.2) were created.

Table 5.2: Evaluation frequencies o f | earner sdé ver hiomlof ai mages
function (Question 1b) (n=96)
Assessing thg Frequency _
Relative Cumul.
Concept Image Sample| Sample | Sample | Sub-
. Frequency | Percent
(Translation) A B C total
a Correctimage |1 14 10 25 0.26 100.0
Partly  correct
b 24 18 9 51 0.53 74.0
image
Incorrect image
c _ . 4 7 4 15 0.16
(misconception) 21.0
d Did not attempt| 1 3 1 5 0.05 5.0
TOTAL 30 42 24 96 1.00

Table 5.2 shows that most learners (85%) had the correct idea about translation but half of
those were unable to provide accurate defing. Learners in sample A were the most

unable. The multiple bar chart for samples A, B and C is shown in Figure 5.2 below.
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Figure 5.2: Graph showing frequencieo f | e a r n emagedof tramslatioreof a

function (n=96)
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Figure 5.2 displays &#r ner s6 ver bal definitions of tran

samples, a few learners did not attempt to define the concept reflection. The numbers of
learners who had misconceptions was greater than for reflection. A few more learners had
partly corect ideas about translation than reflection, and the number of learners who had

the correct idea about translation was less than for reflection.

~
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Stretch is formally degegpositibneotiall pogsits dutsidenaa ppi n g
particular line (invariant line) away from that line or towards that line in a specific given
s ¢ a (Tapgon, 2006) It can be either an outward stretch or an inward stretch
(compression/contraction) in tixedirectionor y-direction (i.e. away or towards tieaxis
or they-axis). For the definition to be complete, there are three aspects that have to be
included, namely, (i) the invariant line, (i) movement of points which are outside the
invariant line, away from otowards the invariant line, and (iii) scale (proportion of
distance of original point from invariant line to that of its image from the invariant line).
Many learners had difficulty defining stretch and it was also more complex for the
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researcher to evaltae and categorize |l earners6 definit

sections 5.1.1.1 and 5.1.1.3 were used to evaluate the definitions given:

(a) A correctdefinition of stretch, which refers to all three aspects of the concept.

(b) A partly correctdefinition which refers to only one or two of the three aspects of stretch
mentioned in the definition above.

(c) Anincorrect definitionwhich is either so broad that it applies to transformations in
general and not stretch specifically, or is not related &icstrat all, or is ambiguous.

(d) Did not attempt to answekwhere the learner left blank the space provided for the

answer.

For a | earner 6s d e sooectit pad toonclude ai ledsteonemfoties i der e
following terms:expansion/contractigrextension/compressipimcrease/decrease in sjze

points move apart/closermaking longer/shorter widening/narrowing lengthening/

shorting fatten/make slinpull/squeeze on both en@mnlarge/shrinkspacing/bring points

closer, all followed bya factor, specific scale factgrcertain scale factor.

Examples opartly correctdefinitions of stretch are given below:

Enlargement of the graph or coordinates by a factor.

Enlargement of the graph by a specific scale factor.

The type of transformation wherebg object is enlarged by a certain factor depending
on what is given.

It is when a graph is expanded in a certain scale.

A shape is increased by a certain factor vertically or horizontally.

Enlarging a graph by means of spacing the points by a given rati

An expansion of a graph depending on the factor.

= =4 4 A -4

When a graph is pulled up at the top and down at the bottom end or when a graph is

pulled horizontally on both ends.

=

When the graph increases whether upwards or downwards.

Dooming of a graph on imag@\ot sure of what the learner meant)
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It is an enlargement of a graph/shape either negative (smaller/reduction) and positive
(enlargement) of the shape/graph.

An expansion or compression of a common translation.

A graph that opens up wide, left and righstietches.

When the graph is lengthened/widened horizontally or vertically.

To pull a shape from its original to a narrow figure vertically or horizontally.
When the graph is lengthened/shortened horizontally or vertically.

When a graph on the Cartesidane is pulled vertically and horizontally.
When a graph is widened horizontally or vertically.

When a graph is made bigger through stretching it either horizontally or vertically.
When you pull something on both ends.

It is to extend something verticalby horizontally to another point.

It is when a graph is expanded on both sides.

It is when a figure is made bigger horizontally and vertically.

Making something larger/bigger or smaller.

Enlarging or shrinking an object.

When something gets pulled, makimd¢pnger.

Making the graph larger and longer than the original.

When an image is widened.

Spacing the points by a given ratio.

Enlarging the image using factors by multiplying all values by the factor.

Graph is made to appear longer than its usual length.

Some examples of definitions considenecbrrectare given below:

1
T
T
T

A transf or mat iars owltemirateaaregnmoeg. h 6 s

It is the drawing of a shape on the Cartesian plane.

It is when an image moves horizontally or vertically on the axis.

It is when a trig graph or a functiyonal
values.

Is a free hand estimated drawing, an incorrect drawing. Inaccurate drawing.
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i Stretchisafablesemionduct or (The researchemehas
of reference for this response was).

Extension of the graph by changing the graph by adding or subtracting.

Something that is drawn without rules (Not clear).

It is when a figure has been distorted (Not clear what sort of distortion).

A straight line tlat is 180 degrees (Meaningless).

= =2 =4 A -

It is a freehand drawing that involves only the main coordinates (Meaningless).

Of the 96 learners in the sample, 75 (78%) gave at least one of the aspects of stretch, 26
(27%) gave largelgorrectdefinitions, but 49 (51%gave onlypartly correctdefinitions.

A total of 13 (14%) learners hadcorrect definitions about stretch and 8 (8%ip not
attemptan answer. It is evident from these results that learners found it more difficult
dealing with the concept of stretchath with reflection or translation. None of the
definitions given by learners mentioned an invariant line. The frequencies of these results

are shown in Table 5.3 in section 5.1.1.6 below.
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5.1.1.6
function

Table 5.3: Evaluationfrequencieso f

(Question 1c) (n=96)

|l earner so

astetchimfaa funciioma g e s

Frequency analysis for verbal definitions ofetct of a

Assessing  thg Frequency _
Relative Cumul.
Concept Image | Sample| Sample| Sample | Sub-
Frequency | Percent
(Stretch) A B C total
a Correctimage |4 14 8 26 0.27 100.0
Partly  correct
b . 22 19 8 49 0.51 73.0
image
Incorrect image
o _ _ 3 6 5 13 0.14 22.0
(misconception)
d Did not attempt | 1 3 4 8 0.08 8.0
TOTAL 30 42 24 96 1.00

Table 5.3 shows that most learners (78%) $ame idea of stretch although the majority

could not define it completely. The graph below gives a comparative picture.
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Figure 5.3: Graph showing frequencieo f | ear ner sd v astrbtehlof def i ni t

afunction (n=96)
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Figure5.3displays ear ner s6 verbal definitions of stre

samples, only slightly more than half the learners (51%) haattly correctidea about

stretch, and even fewer (27%) could accurately define it.

The horizontal compound bar ehabelow (Figure 5.4) correlates and summarizes
information from the clustered column mtii@r charts, to enable a comparison of the

information about | earnersé concept 1Iimages o0
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Figure 5.4: Graph comparing frequenciesof Correct,Partly correct, Incorrect, and Did

not attemptevaluations aboutdefinitions of transformations (n=96)
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Did not attempt
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o
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Figure 5.4 displays a cross comparison of learners responses in each evaluative category.
The graph is positively skew&thnd suggests thah all three samples, learners have some
idea of transformation concepts but have difficulty describing them accurately. Reflection

is betterunderstood than translation or stretch.

5.1.2 Graphical Interpretations and Representations

Question 2 of th diagnostic test required learners to draw graphical images of the three
transformations (reflection, translation and stretch) as they manifest on some given
functions. Graphical images are visuals with mathematical meaning, and in this study,
learners wee required to drawn them on the Cartesian plane. How learners responded to

guestions of interpreting or drawing such images is discussed below.

23 A statistical distribution where most scores are lower 50%henscale

113



(0p))
QX

pPMPHDOM [ SFNYSNARQ INI LIKAOFE AYLIl 3

The question read as follows:

For the followirg graph, illustrate the image after a reflection in thaxis.

The correct image is an 0O0nd shaped parabol a
original O0ub6 b anpdé2D). @fthe 36 hearhess, 6% (68%]) could reflect

about hex-axis as required while 19 learners (20%) reflected incorrectly aboyakis.

Three learners (3%) reflected about lines other than the axes, 6 learners (6%) drew
diagrams that were not reflections, and 6 learners (6%) did not attempt to answer the

guestion.

The list below describes some of fhertly correc{PC)andincorrect(l) images drawn by

learners:

1 Animage of reflection about thyeaxis followed by a reflection about tkexis or vice
versa(l).
An image of reflection in the-gixis(l).
An image of a translation in the directionxdfollowed by a reflection in thg-axis or
vice versdl).

1 A reflection in thex-axis followed by a translation 10 units to the right and 6 units
downward(PC).
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1 Animage of translation 10 units to the rigimtd 6 units upward followed by a reflection
in thex-axis(l).
A rotation of 90° clockwise about (2), also about (0;0).
A reflection in y=-3 followed by a translation to the rigfRC).

A translation to the rightr downwards by lun).
1 Arefledion in y=2 or in y=6 (PC).

A comparison of the results is provided in Table 5.4 and Figure 5.5, below.

Table 5.4: Evaluation frequencieso f | earnerso6 graphical [
function (Question 2a) (n=96)

Assessing thg Frequency

Approx. | Cumul.
Concept Image | Sample| Sample | Sample | Sub-
Percent | Percent

(Refledion) A B C total

a Correctimage |10 35 20 65 68.0 100.0
Partly  correct

b . 17 1 1 19 20.0 32.0
image
Incorrect image

c _ _ 2 2 2 6 6.0 12.0
(misconception)

d Did not attempt | 1 4 1 6 6.0 6.0
TOTAL 30 42 24 96 100.0

Table 5.4, above, shows that the majority of learners (68%) could reflect the graph
correctly. A number (20%) reflected about a line other than the prescribed line and 6% did

not reflect the function but drewrs@ other figure. A total of 6% did not draw anything.
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Figure 5.5: Graph showing frequencieo f | e graphieal ima@esof reflection of

a function (n=96)
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Figure 5.5 displays |l earnersd graphical re|

sampls. The graph shows that many learners could do the graphical representation well

but the difference in abilities between Sample A and Sample B was significant.

pPMPH PH [ SFNYSNBQ 3INFLKAOFE AYIF3AS 2
The question read as follows:

For the following graph, illustrate the image after a translatior2 ohits to the right and

3 units upwards.

|l Er =]
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This question required learners to slide the exponential graph two units to the right and
then three units upwards or vice versa. Most lear{@%) performed the translation fairly
correct image although sontecked complete accuracyhe remaining 34% had either
partly correct, incorrect or blanE.x a mp | e s  oofrectlaedanconrexiragrams are

given in Vignettes 5.3 and 5rdspectiely.

Vignette 5.3: Example offl e a r ooerectsindage of atranslation of a function
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The list below indicates some of thartly correct (PC) anmhcorrect(l) images drawn by

learners:

Translated vertically upwards only (six learnép<}).
Translatechorizontally to the right only (five learner@C).
Translated upwards and to the left (three learn(®G).
Reflected aboug-axis then upward translation (two learn€i$)
Translated vertically downwards and to the ri@#t).

Rotated 90° clockwisecentre at the origi(l).

Stretched in the-direction with X = -5 invariant(l).

A line y=x-2 (I).

= =2 A4 4 A4 -4 A - -2

Upward translation through 4 units (PC).
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Vignette 5.4: Exampleofil ear ner 6 s mi s c anmagesof tramsldtiorgofea p hi ¢ a |
function

T —— T —— — i ——
o -
\"‘f-
(b3 For the following gruph, Ulusimute the image after o translation of 2 units \
the tight and 3 unils upwards. |
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| b
b, £ kb s S L B2
L End Y l
_&l\r's\.lcf—\ i ‘\_.3 Ny i Y 3
|

The misconceptionliistrated in Vignette 5.4 is a reflection abouttkeis.

Sixty-three learners (66%) performed the translation accurately while 20 (23%) did the
directions correctly but were not accurate with the units. Five learners (5%) did not attempt
a drawing, butdid not give a reasorSix learners had misconceptions about how to

illustrate translation graphically. This information is shown in full in Table 5.5 and Figure
5.6, below.

118



Table 5.5: Evaluationfrequenciesof | ear ner so6 gr aphi ofal I mage:
function (Question 2b) (n=96)

Assessing thg Frequency

Approx. | Cumul.

Concept Image | Sample | Sample | Sample | Sub-
Percent | Percent

(Reflection) A B C total

a Correctimage | 19 28 16 63 66.0 100.0
Partly  correct

b 9 8 5 22 23.0 34.0
image
Incorrect image

c _ _ 1 2 2 6 6.0 11.0
(misconception)

d Did not attempt| 1 4 1 5 5.0 5.0
TOTAL 30 42 24 96 100.0

From this Table 5.5, it can be seen that a fairly high percentage of learners had graphical
images of translating a function that were correc¥/{s@naccuracies are common (23%)

and many misconceptions were evident. Learners who did not attempt a drawing amounted
to 5% of the sample. The graphical representation of these results is shown in Figure 5.6,

below.
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Figure 5.6: Graph showing frequercieso f | e ar n e rimapes gf trangatidnc a |

of a function (n=96)
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NN PR —— -

Didn't attempt Incorrect Partly correct Correct
H Sample A m Sample B m Sample C
Figure 5.6 displays | earnersodé graphical repr

shows that many learners understood graphical translation. A significant number lacked

acaracy, however.

(0p))
Qx

pPmMdPH dPo [ SFNYSNBQ 3INFLKAOFE AYIl 3

The question read as follows:

For the following graph, illustrate the image after a horizontal stretch of factoraxjsy
invariant

-1 4

-2+

W S

-g
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The question required the learneosscompress a cubic function graph horizontally by
factor ¥2 with they-axis invariant. The equation of the function was not given. Eleven
learners (11.5%) performed the stretch accurately, while 35 (36.5%) produced images that

did not show a stretch sigroantly different from the original. Twentyree (24%)
attempt ladoddoawiumge@ngit and@

|l earner s di d not
SO canaoi

figure out ,whoantdti Kk nroeve d k6 equati on,

andd meot iterpdet the concept referred to in the question al t hough
they had | eft the

after SOl
did not give a reason why

representations are given in Vignettes 5.5 and 5.6, below.

Vignette 5. 5: E % partipcbneeivedfgraghicdineageof stestchtof a

function
" —
{ey Farike [ollowing graph, illustrate the iimage aller a hortzosil stretch of
faclor 5. v-ax1s Invariant.
ST T g ) =
I I yo Al
£ at — =1
L = ——
B IR O O )
I ' ! 4 !
Hal D .
s -3 -3 -2 | 2y v 4 7 A
) | 5 BT S ;l. 54 A i =
s | : ,*‘.-" |
l l7 ! F I
| \ L
e ' o =
'l N
J
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Vignette 5. 6: Exniasoopdeieed grdphical represantatiomfrstéetch

of a function

(253

i |

Learner misconceptionsome partly correct (PC) arathers totally incorrect (Nvere

evident from graphs drawn as described below:

Translating to the left (twelve learners, see Vignettg(H.6)
Translated to the right (two learn€i¥)
Reflecting about thg-axis (three learnergl).

Reflecting about thg-axis (one learnefl).

= =4 4 4 -

Horizontdly pulling/outward stretch (eleven learndRL).
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1 Vertically pulling/outward stretch (two learne{i8L).
9 Anticlockwise rotation (one learngl).
1 Vertical compression/inward stretch (two learners, see VignettgP&p)
1 One learner who drew two incorrdctma g e s | antnat tsuzedwhat the word
invari aft means?®b

1 Horizontal outward stretch instead of compresgoa).

1 Vertical compression instead of horizontal compres@re).

Learners seem to find it more difficult to provide stretch images gralphthan translation

or reflection images. This may be due to the fact that the concept of stretch is not as clear
to them as the other two concepts are, possibly because the concept does not have adequate
coverage in the NOEAPS syllabus (see sectidnl). Table 5.6 and Figure 5.7, below,

present visual representations of the results obtained.

Table 5.6: Evaluation frequencies o f |l earnerso gr aphofcal i mag
function (Question 2c¢) (n=96).

Assessing thq Frequency
Approx. Cumul.

Concept Image [ Sample| Sample| Sample| Sub-
Percent Percent

(Stretch) A B C total

a Correctimage |4 3 4 11 115 100.0
Partly  correct

b 17 15 3 35 36.5 88.5
image
Incorrect image

c _ _ 3 18 6 27 28.0 52.0
(misconception

d Did not attempt| 6 6 11 23 24.0 24.0
TOTAL 30 42 24 96 100.0
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The results in Table 5.6 show that very few learners could implement stretch (11.5%). If
the graphical images for the three mappings are compared, it is clear that stretch is the most

difficult for learners to represent graphige{see also Figure 5.7).

Figure 5.7: Graph showing frequencies® | e ar n e r smagesgof strgichdf & a |

function (n=96)

20
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6
4
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Didn't attempt Incorrect Partly correct Correct
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Figure 5.7 shows that |l earnersd6 graphical

extremely problematic. Most learnersutib not represent stretch correctly and more
learners did not attempt to answer this question than any of the previous questions. Stretch
is an issue which mathematics teachers need to note and attempt to correct. Figure 5.8,

below, gives a cross companisof the transformations.
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Figure 5.8: Graph comparing frequenciesof Correct, Partly correct, Incorrect and

Did not attempt evaluations aboutgraphical imagesof stretch of a function (n=96)

Correct
Partly correct

Incorrect

'I'HI

Didn't attempt

10 20 30 40 50 60 70

o

m Stretch = Translation m Reflection

From Figure 5.8, it can be seen that the comparifond ear ner s6 gr aphi cal
across the concepts shows that stretch is the most difficult graphical representation for

learners to master, and reflection is the easiest.

5.1.3 Graphical Interpretations from Symbolical Representations

Question 3in the diagnostic test required learners to recognize transformation concepts

from symbolical or algebraic images and illustrate them graphically.
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5.1.3.1 Learner ability to recognize reflection from a symbolical image (Question 3a)
The question read dsllows:

lllustrate, on the diagram, the image 6f{x) when it transforms td (- x) . Describe fully

the transformation involved.

f(x)

The question required the learngrsecognize and describe the concept of reflection about
they-axis from a symbolical imag&hefunction involved was a hyperbola but its equation

was not given. Reflecting this function about the axeslédivelyeasy because there is no
difference in the image whether reflected aboutxth&is or they-axis. For that reason it

was expected thahost learners, if not all, would be able to reflect correctly. Fitty

(57%) learners drew the correct image in both the second and fourth quadrants (see
example in Vignette 5.7) and described it correctly. Tw4ingy (26%) drew an incomplete
correctimage in one of the two quadrants. Of these, 11 learners (11%) provided the correct
description (a reflection about tlyeaxis) while 7 stated that it is a reflection aboutxhe

axis. Nine learners (9%) did not draw the image, and some gave only wegteniptions,

which were mostly misconceptions.

There werevery fewtotally correct responseSome responses considered cor(€gtand
partly correct (PCyvere as follows:

1 Correct illustration Reflection in xaxis; reflection in yaxis; 180 clockwise /

anticlockwise rotatior(PC).

1 Correct illustration. Translated througkaxis (PC)
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1 Correct illustration. Points are reflected about thaxis (PC).

1 Reflection aboutsaxis.Correct illustrationPC).

1 Correct illustration. Reflection alongaxis like (x;y)Y (-x;y) (C).
1 Incomplete illustration, only in the fourth quadrant (PC).

1 Correct illustration, no description (PC).

1 Correct illustration, translation along theyis (PC).

f Incomplete illustration (seco«d)¥gladrant
x;y) (PC).

T Correct illustradtxisowerxaXiifgax) ( Cefl ected on

T Correct illustration, AThe i mage of f (x)

Vignette 5.7: Example ofl e a r noerectigsphical image f (- X)

Some nisconceptionse vi dent i n |apedistedlzelovs 6 answer s
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