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SUMMARY

In order to improve the energy efficiency and environmental compliance of future

aircraft, the aviation industry has sought to investigate the inclusion of a variety of

new technologies that are capable of enabling these goals. Among these technologies

is a suite of structural technologies that are aimed at reducing airframe weight. At the

conceptual level of aircraft design, the issues of vehicle weight and technology impact

are of paramount importance. In aerospace engineering literature, there is a consensus

that the finite element method (FEM) is the most accurate numerical method for de-

termining the structural behavior and consequently, the weight of structural concepts

that do not have vast empirical weight data. In the areas of conceptual and prelimi-

nary level design, the finite element method is often used in tandem with numerical

optimization techniques to enable design space exploration and for finding suitable

candidates that meet the requirements for the design problem. Unfortunately, the

inclusion of detailed finite element analysis into conceptual level design environments

has traditionally been prohibitive because of the associated computational expense.

Recently, there has been significant interest in the development of reduced order

modeling strategies that are capable of expediting analyses performed by high fidelity

simulations. Among these methods, a class of techniques known as Reduced Basis Ap-

proximation or Reduced Basis Methods has gained popularity because of their ability

to replicate the accuracy of the higher fidelity analyses but at a very small fraction

of the computational cost. In particular, a recently proposed approach known as the

“Static Condensation Reduced Basis Element (SCRBE) method” is quite attractive

because of its versatility of modeling a wide variety of final problem configurations
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with a relatively small data set. This approach has been demonstrated on large-scale

problems with physical problem domains that can be constructed from several re-

peated, underlying reference sub-domains or components. Unlike traditional reduced

order modeling approaches, the SCRBE method performs the model reduction at the

sub-domain level. This feature of the method enables the creation and analysis of

a large variety of final problem domain configurations that can all be modeled with

underlying physics.

The aim of this work is to develop an approach that uses the SCRBE method to

enable conceptual-level, linear-static, structural design/optimization. While there has

been extensive development in the SCRBE method since its inception, the author was

unable to find many published, academic work that investigates the extension of this

method to enable numerical optimization. Instead, most of the papers in literature

focus on determining the state variable/ solution of the weak form of the underlying

partial differential equation being modeled and then one or more outputs that depend

on this solution. In the case of gradient-based optimization, one also needs the gradi-

ents of these outputs. For large-scale problems, numerical differentiation is not viable

due to the computational expense associated with the “curse-of-dimensionality.” This

work presents an approach to estimate common, conceptual-level structural design

metrics and their gradients under the SCRBE paradigm. This is so as to enable the

structural optimization problem.

Another observation from the literature is that there tends to be a disparity be-

tween the computational time required to compose the equations to be solved in the

SCRBE method and the time required to actually solve these equations. The lit-

erature recommends certain operational procedures that can be taken advantage of

to tackle this overhead. This includes the use of repeated/ cloned sub-domains and

interactive design. However, these methods may not be applicable during numerical

optimization. Also, recall that numerical optimization is a “many-query” problem;
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and as such, requires many calls of the simulator during the course of the optimization

process. Admittedly, certain implementation strategies (such as the use of parallel

computation) can be used to help to alleviate this overhead. This thesis proposes

a technique that addresses this computational overhead and is perhaps most benefi-

cial in situations where there are limited to moderate computational resources avail-

able. This technique leverages the matrix Discrete Empirical Interpolation Method

(mDEIM) [1, 2].

The developments in this thesis are illustrated on a simple canonical problem

of the strength design of a membrane-loaded, patched, variable-stiffness, composite

plate. The findings of the experiments indicate that the SCRBE method, plus the

techniques that are added to address the efficiency of the method have the potential to

enable efficient conceptual-level structural design. It is anticipated that this approach

can eventually be extended to conceptual-level studies of larger subsystems commonly

featured in aerospace construction and forms an exciting avenue for future research.
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Chapter I

INTRODUCTION

1.1 Motivation

Over the next 20 years, there is expected to be rapid growth in the aviation indus-

try on both the domestic and international levels. According to the International

Air Transport Association (IATA) [3], it is likely that passenger numbers will reach

approximately 7.3 billion by 2034. This represents a 4.1% average annual growth in

demand and air connectivity that will result in more than doubling the 3.3 billion

passengers that travelled during 2014. In 20 years’ time, it is projected that avia-

tion will support around 105 million jobs and $6 trillion in GDP [3]. Unfortunately,

accompanied with this promising economic development are concerns about the in-

creased negative environmental impact associated with additional levels of aircraft

activity. Aviation activity produces several pollutants; primarily, noise and gaseous

pollutants (NOx, CO2 emissions etc.). Currently, aviation contributes approximately

2% of carbon dioxide emissions and an estimated 3% of all greenhouse gases [4].

However, due to the expected growth in air traffic volume over the next few decades,

these contributions are expected to increase significantly in the absence of adequate

intervention. As such, it is incumbent on aviation stakeholders to devote considerable

attention to this area in order to stabilize and reduce said emissions. Furthermore,

due to the capricious nature of oil prices, there is the need for energy-efficient aircraft

so as to address not only the environmental concerns, but also the airline operators’

direct operating costs.

There have been several regulatory initiatives aimed at addressing both the current

levels and expected increases in deleterious gaseous emissions. In Europe, the EU
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emissions trading system (EU ETS) was launched to establish policies to combat

climate change [5]. Similarly, in the United States of America (USA), the American

Clean Energy and Security Act (ACES) was proposed in 2009. Also, in the summer

of 2009, the aviation industry announced its commitment to a global approach to

mitigating aviation greenhouse gas emissions, adopting three high-level goals [6]:

� An average improvement in fuel efficiency of 1.5% per year from 2009 to 2020

� A cap on net aviation CO2 emissions from 2020 (carbon-neutral growth)

� A reduction in net CO2 emissions of 50% by 2050 relative to 2005 levels

In order to address these high-level goals, the aviation industry established a four-

pillar strategy comprised of the following [7]:

� Investment into new technologies (more efficient airframe, engines and equip-

ment, sustainable biofuels, new energy sources)

� Efficient operations (drive for maximum efficiency and minimum weight)

� Effective infrastructure (improved air routes, air traffic management and airport

procedures)

� Positive economic measures (carbon offsets, global emissions trading)

The first of the four pillars, i.e. new technology, has been highlighted as potentially

the most effective means of achieving these high-level goals [6]. In the USA, the

National Aeronautics and Space Administration (NASA) embarked on an initiative

known as the Environmentally Responsible Aircraft (E.R.A) Project. According to

[8], the E.R.A. project aims to, “explore and document the feasibility, benefits and

technical risk of vehicle concepts and enabling technologies to reduce aviation impact

on the environment.” In the initial phase of the project, a set of very aggressive

but clear, quantitative targets were stipulated for key metrics associated with aircraft
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Table 1: NASA system-level goals [9]

Technology benefitsa N+1 (2015) N+2 (2020) N+3 (2025)
Noise (cum. below stage 4) -32 dB -42 dB -52 dB
LTO NOx (below CAEP6) -60% -75% -80%
Cruise NOxb -55% -70% -80%
Aircraft fuel burnb -33% -50% -60%
aN+1 and N+3 values are referenced to a Boeing 737-800 with CFM56-7B engines,
and N+2 values are referenced to a Boeing 777-200 with GE90 engines
bRelative to 2005 best in class

performance and emissions. Targets were stated for 5 year increments ranging from

2015 to 2025. These are summarized in table 1.

The E.R.A project seeks to identify and quantify the impact of a wide variety of

technologies falling into the following categories [8]:

� Innovative Flow Control Concepts for Drag Reduction

� Advanced Composites for Weight Reduction

� Advanced UHB Engine Designs for Specific Fuel Consumption and Noise Re-

duction

� Advanced Combustor Designs for Oxides of Nitrogen Reduction

� Advanced Airframe and Engine Integration Concepts for Community Noise and

Fuel Burn Reduction

Each of these technologies will affect at least one of the following aircraft metrics:

� Energy Conversion Efficiency (TSFC)

� Lift-to-drag ratio (L/D)

� Empty Weight (W0)

� Aircraft Noise

� Combustion emissions
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The impact of the first three metrics on fuel burn can be understood through the

rearranged Breguet’s range equation (1).

Wf = (Wpl +W0)

(
exp

(
R× TSFC
V × L/D

)
− 1

)
(1)

As indicated, in order to minimize the fuel needed (Wf ) to perform a mission with a

stipulated flight range (R), velocity (V ) and payload weight (Wpl), it is beneficial to

minimize W0 and TSFC; while maximizing the L/D of the aircraft.

The technologies under investigation that affect the airframe of new aircraft can be

hierarchically decomposed in a bottom up fashion as: Material Level, Structural

Concepts Level and New Aircraft Concepts Level. A brief overview of some of

the concepts in these areas will be given in the following sections

1.2 Hierarchy Of New Structural Concepts

1.2.1 Material Level

Advanced composite materials have been identified as the new technology “S-curve”

for achieving light-weight, structurally-efficient airframes [10]. Indeed, Nicolais [10]

notes that the potential of aluminum alloys, (the traditional construction materials for

high-subsonic speed aircraft) to improve the mechanical performance (i.e. strength

and stiffness) of airframes has been explored exhaustively. This can be seen, for

example, in the development of the aluminum-lithium alloys. The need for these

alloys came in response to the competition created by composite materials. The

goals to be met included, similar strength and stiffness characteristics to that of the

7075-T6 aluminum alloy, while having similar damage tolerance to 2024 aluminum

alloys. However, despite attaining these improvements, composite airframe structures

typically achieve a 25-35% saving in weight over those made from aluminum alloys

[11].
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Advanced composite materials are heterogeneous in nature. They feature high-

strength, stiff fibers surrounded by a homogeneous resin (matrix). The fibers are

responsible for the stiffness and tensile strength of these materials. There are several

types of fibers used including, Aramid (Kevlar), fiber-glass, boron and graphite. In

the context of aerospace structural design, graphite fibers are the most popular due

to their overall superior mechanical characteristics. The purpose of the resin (ma-

trix) used in composite materials is to bind together and protect the fibers, as well

as to distribute the applied loads among them. The resin is responsible for the creep,

compressive and shear strength characteristics of the material. In aerospace struc-

tures, thermoset resins, such as epoxy, are popular because of their good mechanical

characteristics and suitability to manufacturing relative to thermoplastic resins. The

fibers and resin are assembled into individual layers called laminae or plies ; with the

longitudinal axis of the fibers being the reference (0 deg) axis. These plies are stacked

together into laminates as shown in figure 1. The number of plies, their orientations

and individual thickness used in the laminate can be varied as desired.

Figure 1: A single composite ply vs. a composite laminate

This versatility of composite materials allows for structural designers to tailor
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them to specific loading scenarios so as to provide efficient load paths. Additional

attractive features of composites include [12]:

� High stiffness and strength to weight ratios

� Reduced sensitivity to cyclic loads

� Improved corrosion resistance

� The capability of producing large parts without the need for the excessive joining

of smaller parts (resulting in weight reduction)

� The capability of using highly-automated manufacturing processes so as to

maintain high production efficiency and quality

Unfortunately, composites do have their associated disadvantages relative to alu-

minum alloys [11,12]. These include:

� More susceptibility to impact damage

� Sensitivity to moisture absorptions and ultra-violet radiation. These cause re-

ductions in the mechanical properties of these materials

� Significant manufacturing costs (non-recurring costs such as tooling investments

and recurring costs such as material costs)

� High certification costs for the finished article

Recently, composite materials were incorporated into the primary structures of

the wings and fuselage of large transport aircraft including the Boeing B787 and

the Airbus A350. The empty weight of Boeing’s B787 consists of 50% composites.

According to Tenny et. al [13], the B787 is 40,000 lbs. lighter than airplanes of a

similar size that are constructed from conventional materials. Furthermore, it is about

20% more fuel efficient and produces 20% fewer fuel emissions. Indeed, the use of

composite materials in the airframe of new aircraft has great potential for addressing

the need for fuel-efficiency, and thus, for the reduction of harmful gaseous emissions.
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Figure 2: Composite utilization in the Boeing B-787 [13]

1.2.2 Structural Concept Level

A variety of novel structural concepts, featuring not only advanced composite ma-

terials, but also traditional aluminum alloys, have been developed with the aim of

reducing the empty weight of airframe structures. They are meant to be used as

novel construction techniques for the primary structures comprising the airframe of

conventional tube and wing aircraft, as well as for new aircraft concepts such as the

Blended Wing Body (BWB) aircraft. These structural concepts typically provide

more efficient load paths and as a result, require less material for construction. This

leads to lower empty weight. Figure 3 shows some of the new structural concepts

being considered in the NASA ERA framework. A brief description will be given for

a few of the pictured concepts. This is so as to stimulate an appreciation for the

improvements provided by these concepts over traditional aerospace structural panel

designs. For further details on omitted concepts, see [14].

Fiber Tow Steered Tailored Composites - Perhaps the simplest way of constructing

a structural panel (curved or flat) made of composite materials is to use a constant

laminate throughout its domain. However, in several references [15–18], it was shown

7



that varying the laminate construction throughout a panel is more structurally ef-

ficient than having a constant laminate all through the domain. In a variety of

aerospace constructions, laminate variation is done by subdividing the domain of the

panel into smaller “patches.” The number of plies, their orientations and thicknesses

are kept constant within each patch. On the other hand, the limiting case for the

variable stiffness concept is to allow the fiber angles to vary continuously throughout

the entirety of the panel rather than in a piecewise constant fashion. This is so as to

achieve the maximum structural efficiency possible [19].

The Fiber Tow Steered Tailored Composites concept uses advanced tow-placement

machines during manufacturing to lay the raw-material (often pre-preg tape) down

in a fashion that is pre-determined to achieve high structural efficiency for a given

application. This construction technique has received attention in several studies in-

cluding [17,20–22]. In terms of its potential use in airframe construction, the primary

structures within the fuselage have been highlighted as an area of interest.

PRSEUS Concept - The PRSEUS panel concept has garnered considerable atten-

tion since the early 1990s [23]. It is a stiffened panel concept constructed of carbon

warp-knit fabric, pultruded rods, foam core and stitched threads. The PRSEUS con-

cept is shown in figure 3. Instead of using mechanical fasteners, simple co-curing

(with no stitching) or paste bonding to attach the stiffeners and frames to the skins;

they are stitched extensively through the thickness, forming a highly unitized struc-

ture. The design provides several benefits relative to traditional advanced composite

stiffened panels. These include:

� Maintaining structural continuity by eliminating mechanical attachments, gaps,

and mouse holes. This provides continuous load paths between the skin, stiff-

eners and frame components of the panels [24].

� Excellent damage arrestment characteristics. The extensive stitching helps to

prevent inter-laminar resin failure, as well as to limit damage propagation within
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bays of the panels, precluding catastrophic structural failure during operation.

This has been demonstrated in several experimental studies [25–27]

� The formation of a rigid, self-supporting preform that obviates the need for inte-

rior mold tooling during manufacturing. The resin infusion and out-of-autoclave

curing also aid in reducing recurring fabrication costs relative to conventional

composite manufacturing [24].

� The use of high-modulus, carbon pultruded rods that not only aid in securing

the connection between the stringers and frames, but also significantly increase

the stability of the panel against buckling [28,29].

The main application of interest for this concept is in the airframe of the BWB

concept. Several studies consider the conceptual level design of BWB aircraft featur-

ing this concept. These include [30–32].
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Figure 3: Hierarchy of structural technologies in the NASA ERA project. Images:

Material Level - Advanced composites [33]. Structural concept level - PRSEUS

panel [34], Curvilinear stiffened panel [35], Fiber tow-steered comp. [20]. Aircraft

concept level - BWB [36], TBW [37]
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1.2.3 Aircraft Concept Level

The highest level in the previously described hierarchy concerns new aircraft con-

cepts. The external shape and design of these new concepts aim at producing sig-

nificantly higher aerodynamic efficiency (lift-to-drag ratio) relative to conventional

aircraft. For example, consider the truss-braced wing concept investigated during

the Boeing-NASA SUGAR study [38]. Due to the structural support provided by

the strut and jury in the configuration, very high aspect ratio wings are achievable.

This significantly lowers the induced drag of the aircraft. Another example is the

Blended Wing Body (BWB) concept. The BWB features an unconventional exter-

nal shape which provides a lower wetted area relative to conventional tube-and-wing

aircraft [39]. In turn, the lower wetted area allows for lower friction and thus profile

drag.

The airframes of these aircraft are exposed to different loading scenarios relative

to those of conventional aircraft designs. An example is in the fuselage design for the

BWB as against a traditional tube-and-wing aircraft. The cabin of transport aircraft

are pressurized at high altitudes so as to provide a safe and comfortable environment

for the passengers and crew. When a traditional circular (or near circular) fuselage is

subjected to this pressure, it is reacted efficiently by the fuselage skin in the form of

membrane (hoop) tension [11]. In the case of the BWB, its center body section houses

the passengers. It does not have a near circular shape and in fact, its longitudinal

cross-sections are shaped like airfoils. This is so as to provide additional lift for the

aircraft [39]. Unlike the fuselage skins in the tube-and-wing case, the outer shell of

the BWB center-body section experiences an unfavorable interaction of pressure and

bending loads [32]. This loading scenario requires special consideration in structural

design.

Thus far, it has been highlighted that in order to achieve the aggressive targets

set for fuel efficiency and the reduction of emissions, it is highly desirable to reduce
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the empty weight of the new aircraft concepts being considered for introduction into

service. As such, there is expected to be extensive use of advanced composite materials

for the construction of the airframe of future aircraft. Furthermore, very efficient

structural panel concepts are being considered for more efficient load paths, resulting

in further weight reduction. These structural panel concepts are exposed to new,

non-trivial loading scenarios that were not present in traditional aircraft. Therefore,

all these factors require special attention during the aircraft design process.

1.3 Aircraft Design

The design of complex systems can be segmented into three major phases. These

are, conceptual level design, preliminary level design and detailed design. Conceptual

design concerns the initial formulation of candidate vehicles capable of performing

the required mission(s). Here, a set of requirements - including those from the cus-

tomer and those from regulations - are communicated to the designer. It is at the

conceptual design level that questions of configuration arrangement, size, weight, and

performance are addressed [40]. Major architectural decisions can be made, such as

the number of engines to be used, the type of empennage arrangement (cruciform tail,

conventional tail etc.), or perhaps the use of canards instead. After a suitable candi-

date design has been selected, preliminary design can begin. When the process enters

the preliminary design level, major architectural changes are no longer permitted. It

is at this stage that the disciplines (structures, aerodynamics, propulsion, stability

and control, etc.) will focus on the analysis and design of their specific subdomains of

interest on the selected candidate. As such, the aim of this stage is to design the sys-

tem to such a level so that detailed design can begin. In the detailed design stage, the

details relating to the actual fabrication of the aircraft are considered. This involves

the development of rather intricate drawings or CAD files that facilitate the piecing

together of the components of the aircraft. Additionally, there is extensive testing
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of the fabricated structure in order to assess if it meets the necessary certification

requirements.

Figure 4: Progression of design knowledge, design freedom and cost committed

throughout the stages of aircraft design

Figure 4 presents a notional plot depicting the distribution of design freedom,

design knowledge and cost committed across the various phases of aircraft design.

For traditional design (dashed curves), it can be seen that during the early stages

there is a great deal of design freedom. Unfortunately, in this early phase there

is little design information available and knowledge is typically accumulated as the

design process progresses. By the end of the conceptual design phase, there is a

significant commitment of cost and reduction in design freedom despite having little

information about the system. Across the remaining design phases, further increases

in design knowledge and cost commitment occur, while the design freedom continues

to decrease.

There is a paradigm shift taking place in the way complex systems are being de-

signed. The focus of design has shifted from design for performance to design for

affordability [41, 42]. Consideration of additional issues - including life-cycle cost,
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manufacturability, environmental compliance, safety, maintainability, etc. - has to

take place earlier in the design process. This is due to more stringent requirements

being placed upon designs. Additionally, it is extremely costly to make significant

changes in the design if it is found to be deficient in any one of these areas at a later

design stage. As such, it is desirable to increase the design knowledge during the

conceptual level of design while keeping the design freedom open as long as possible

and gradually committing cost (solid curves in figure 4). To meet these needs, new

aircraft are increasingly being designed in Integrated Product Development (IPD)

environments, and the work itself is carried out by Integrated Product Teams (IPT).

In this approach, rather than sequentially designing each discipline of the aircraft, a

concurrent design environment is created where representatives from each discipline

are brought together to collectively design the aircraft. This includes disciplines that

were typically ignored in conceptual design, such as manufacturing. The advantages

of this approach include: fewer required engineering changes in production, reduced

manufacturing costs and better product quality [40]. In order to gain an apprecia-

tion of the quantitative impact of these disciplines on the metrics of interest at the

conceptual level, multi-disciplinary analysis and optimization (MDAO), modeling and

simulation (M&S) environments are developed which are capable of capturing interac-

tions among the disciplines. A typical MDAO M&S environment is an amalgamation

of modules (each representing one or more disciplines) where the aim is to “size” the

aircraft, while adhering to the strict requirements collected by the design team.

According to Raymer [40], the determination of weight is paramount to this sizing

process, as it determines if the aircraft under consideration is capable of perform-

ing its intended mission(s). In the face of the paradigm shift in structural design,

wherein new material systems, new structural concepts, and new aircraft are being

investigated, there are at least two pertinent questions that can be asked. (1) What

are the methods available to determine airframe empty weight at the conceptual/
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early preliminary design level? (2) Of these methods, which ones are suitable for the

new airframe technologies being considered? These questions will be examined in the

following subsection.

1.3.1 Conceptual Level Weight Estimation

1.3.1.1 Criteria Used To Evaluate Weight Estimation Methods

Elham [43] provided criteria that a suitable conceptual level design, empty weight

estimation method should satisfy. These criteria are:

� Design sensitivity (reflect features of the design under consideration)

� Very fast (computation time on order of seconds/minutes)

� Very accurate (error less than 5%)

� Largely based on physics, rather than statistics, such that innovative design

solutions can also be addressed

� Suitable to support MDO studies

� Flexible enough to account for the inevitable difference in type and amount of

data available at different design stages.

Elham [43] also provided a convenient categorization of popular methods available

in aerospace literature for empty-weight estimation. These are Classes I-IV, with an

intermediate class between classes II and III referred to as Class II &1/2. Class I-

III methods are commonly used in the conceptual and preliminary levels of design,

whereas class IV methods are typically used during the detailed design level and

require an intricate understanding of the selected concept. Thus, class IV methods

are not suitable for the initial formulation of concepts, nor are they suited for extensive

design space exploration. Thus, class I-III methods will be described briefly in the

following paragraphs.
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1.3.1.2 Class I And II Methods

Both of these classes are based on the use of statistical methods. They leverage

data gathered from the extensive development of aluminum alloy aircraft over the

years. Unlike the remaining classes which focus on the specific subsystem being

considered, class I methods provide an estimate for the empty weight of the entire

aircraft. The weight regressions used are categorized based on aircraft class and

function. They were derived by assessing the correlation between the empty weight

and the takeoff gross weight of a large number of aircraft within a particular category.

In the design of traditional aircraft configurations utilizing aluminum alloys, these

methods are indeed convenient, as there is typically little design information available

during their initial formulation. Class II methods on the other hand, carry out the

empty weight estimation on the level of the major subsystems of the aircraft (wings,

fuselage, empennage, landing gear system, etc.). They typically leverage many more

design parameters than class I methods. For example, the estimate of wing weight

may be a function of variables including wing area, thickness to chord ratio, and sweep.

These methods are thus more design sensitive than class I methods, in that they are

more reflective of the characteristics of the design being considered. Unfortunately,

both of these classes of methods are not suitable for weight estimation of new airframes

featuring new structural technologies, simply because the data for them do not exist.

The extent to which composites are now being used in new designs is unprecedented.

Furthermore, these methods provide no detailed knowledge of the internal structural

designs of the aircraft (or its major components) so that a convenient transition

into preliminary design can occur. Attempts have been made to quantify the weight

savings achievable (such as Raymer [40]) when composite materials are employed, by

the use of scaling or “fudge” factors. However, these generic scaling factors cannot

capture the subtleties featured in the new designs and indeed, can only give crass

estimates of the weight of these new concepts. Examples of class I and II methods
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include work by Raymer [40], Roskam [44], Torenbeek [45], and Howe [46].

1.3.1.3 Class III Methods

Instead of relying on the use of statistical data, class III methods are aimed at per-

forming the structural design of the primary structures within the airframe that satisfy

various constraints, including: structural failure mechanisms, aeroelastic constraints,

manufacturing constraints, etc. This problem is in essence one of optimization. There

are many methods of various levels of fidelity available in this class. Some methods

leverage convenient reductions in problem dimension while others aim to study the

structural behavior of the three dimensional structure. The former methods are

known as Operational Model Order Reduction methods [47]. Examples of methods

within this category applied to weight estimation of the wingbox (a popular aircraft

subsystem) is equivalent beam methods [48–51]. They are based on the observation

that for high aspect ratio, thick wings, the approximation of their kinematic behavior

with an equivalent beam model is reasonable. The stress and strain behavior of their

cross-sections is approximated by thin-walled beam theory. For wing structures where

the beam assumption becomes inappropriate - such as for thin, low aspect ratio wings

- equivalent plate analysis (EPA) [52–61] methods become more attractive for use.

In this approach, the wing is approximated by a thin plate. The kinematic behavior

through the thickness is approximated by using the kinematic assumptions associated

with popular plate theories such as Kirchhoff’s plate theory or Mindlin’s plate theory.

Overall, the methods based on operational model order reduction struggle to capture

detailed structural behaviors, such as the stress distributions in the presence of geo-

metric discontinuities. Furthermore, they are incapable of determining the structural

stability characteristics of the wing-box under study; thus, they are typically sup-

plemented by analytical [62–66], and/or experimental [67–69], methods that provide

approximate buckling and crippling criteria.
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The rapid development of computational capabilities over the years has allowed

for the development of increasingly complex simulations for studying the behavior of

physical systems/processes. Perhaps the chief embodiment of this in the analysis of

aerospace structures is the usage of finite element methods. Displacement based finite

element analysis (FEA) discretizes a continuum structure into contiguous elements

that are connected at vertices (nodes) and along edges and sides. The displacement

behavior of the structure of interest is approximated by solving a sparse system of

equations. The stress and strain behavior of the structure can then be recovered using

post-processing techniques on the displacement data. Furthermore, if the model is

of suitable fidelity, then the structural stability characteristics can be appropriately

modeled. Unfortunately, the finite element method is well-known to be computa-

tionally burdensome; thus several simplifications or strategies are often leveraged to

reduce the execution time for analysis. Popular methods proposed include multi-level

analysis [70–72], cross-sectional smearing [73, 74], and multi-fidelity analysis [72, 75].

In the literature, there is a consensus that sufficiently detailed finite element analysis

is preeminent in accuracy among the available numerical structural analysis meth-

ods [11, 12, 43, 48]; however, due to the associated computational expense, it has

traditionally been viewed as inappropriate for the conceptual level of aircraft design.

This is due to the fact that this stage features extensive design space exploration and

optimization, requiring numerous evaluations of the parametric FEM analysis.

1.3.1.4 Class II &1/2 Methods

These methods feature the use of either analytical or numerical techniques for struc-

tural analysis from class III coupled with empirical weight estimation. They were

born from the fact that there are components of the aircraft structure that are struc-

turally non-critical and thus their weight cannot be estimated by means of structural

analysis. These include the leading and trailing edge secondary structures, high-lift
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devices, control surfaces etc. of a wing; the internal furnishing within a fuselage;

and the control surfaces on the empennage. Additionally, estimates of non-optimum

weights have to be included because the simplified mathematical models used to ap-

proximate the primary structures do not capture them. Fortifications necessitated

by stress concentrations in the primary structure, as well the need for mechanical

fastening of parts, are both examples of additional weight sources that cannot be

captured by the analysis methods available during conceptual and preliminary level

design. Examples of class II &1/2 methods include [76–78].

1.3.2 Structural Optimization

Thus far, we have seen that class III methods are the most suitable numerical means

for determining the weight of structural concepts that do not have a vast empirical

database. The underlying simulations arising from this class are often used in the

context of structural or multidisciplinary optimization. When the underlying simu-

lation is the finite element method, the problem falls into a general class of problems

known as Partial Differential Equation (PDE) constrained optimization

problems [79]. Optimization problems of this type takes the following form:

Optimize : J (u(µ, x), µ) (2)

With respect to : µ ∈ Rp, x ∈ Ω (3)

Subject to : gi (u(µ, x), µ) ≤ 0, i = 1, . . . , n (4)

hj (u(µ, x), µ) = 0, j = 1, . . . ,m (5)

R (u(µ, x), µ) = 0 (6)

Where:

� µ ∈ Rp, design parameter vector of dimension p
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� u(µ, x), the state variable of the problem (e.g. the displacement field for solid

mechanics)

� Ω is the problem domain

� J (u(µ), µ), the cost or objective function of the problem

� gi (u(µ), µ)), the inequality constraints of the problem

� hj (u(µ), µ)), the equality constraints of the problem

� R (u(µ), µ)), the vector-valued residual defining the weak form of the PDE

In this context, the finite element model is used to determine a discrete approxi-

mation of the state variable, u(µ, x). The algebraic system associated with the FEM

problem corresponds to the weak form of the governing partial differential equation.

The vector valued residual of this algebraic system is represented as R (u(µ), µ)). In

the case of structural analysis, the state variable, u(µ, x), is often the displacement

field of the structure being modeled. However, it is often the case where one is not

directly interested in the state variable in and of itself, but on the various metrics that

depend on it. These metrics include: the objective function, J (u(µ), µ); and the con-

straints, gi (u(µ), µ)), hj (u(µ), µ)). Examples of the objective function include: total

mass, strain energy, and compliance of the structure. Whereas, examples of struc-

tural constraints include: material strength, structural stability, aeroelastic stiffness

requirements, producibility and manufacturing costs. The goal of the optimization

problem is to find a design that optimizes one or more prescribed objective functions,

while satisfying the prescribed problem constraints.

In the literature for PDE constrained optimization, there are two common frame-

works used to solve problems of this kind [79]. These are: (1) the Nested Analysis And

Design (NAND) approach and; (2) the Simultaneous Analysis And Design (SAND)

approach. In the former approach, the state variable is not considered explicitly in the

optimization procedure; but instead, the weak form of the partial differential equa-

tion (R (u(µ), µ)) = 0) is solved exactly at each major iteration of the optimization
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procedure. The state variable (and its derivative if used) is then used to calculate

the cost and constraint functions (and their derivatives if necessary). On the other

hand, in the latter method, the equality constraint formed by the partial differential

equation is treated similarly to the other constraints. The optimizer is responsible

for enforcing the satisfaction PDE equations as the procedure advances towards an

optimum. In both cases, gradient-based optimization is preferable because it is better

suited to handle the “curse of dimensionality”.

Optimizer 

minimize
𝜇∈𝐷

    𝐽(𝑢 𝜇 , 𝜇) 

  
𝑔𝑖 𝑢 𝜇 , 𝜇 ≤ 0

ℎ𝑗 𝑢 𝜇 , 𝜇 = 0
 

Subject to: 

PDE Solver 

𝑅 𝑢 𝜇 , 𝜇 = 0 

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 
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𝝁 
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& 

Figure 5: An illustration of the NAND framework

Optimizer 

minimize
𝜇∈𝐷

    𝐽(𝑢 𝜇 , 𝜇) 

  

𝑔𝑗 𝑢 𝜇 , 𝜇 ≤ 0

ℎ𝑖 𝑢 𝜇 , 𝜇 = 0

𝑅 𝑢 𝜇 , 𝜇 = 0 

 
Subject to: 

Figure 6: An illustration of the SAND framework

In practice, the solution of the underlying partial differential equation is computa-

tionally burdensome and often inhibits efficient optimization for large scale problems.

At the conceptual level of aerospace design, it is desirable to have tools that are

able to perform optimization and design in seconds to minutes, and not hours to
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Figure 7: Main idea of reduced-order modeling. (Simulation image taken from [80])

days. To this end, a key enabler in mathematical, engineering and science litera-

ture is projection-based, reduced order models. These methods have been shown to

drastically reduce the time required to perform PDE constrained optimization.

1.4 Reduced Order Modeling

In recent years there has been extensive development in the field of Galerkin projection-

type Reduced Order Modeling (ROM) techniques. They are based on the realization

that the solution of a typical finite element analysis is often more succinctly expressed

by a subspace of the high-dimensional finite element approximation space. In fact, the

associated finite element approximation spaces are often referred to as “unnecessarily

rich”. The basis functions in the associated reduced subspaces are empirically derived

and have larger support than the nodal basis functions associated with the lower order

polynomial finite element methods. They allow for the conversion of the sparse linear

algebraic system associated with the standard FEM method into a dense but much

smaller linear algebraic system. This allows for astounding speed-ups in computation

times. Analyses that once took hours are now being done in seconds/minutes.

22



1.4.1 Major Limitations Of Traditional Projection-Based ROM For Con-
ceptual Design

Indeed, projection-based ROM is an impressive tool that provides the opportunity to

perform analyses on very large numerical problems, that were once computationally

prohibitive at the conceptual and early preliminary levels of design. Unfortunately,

the traditional approach is not without its limitations. One such limitation in the

present context is the lack of versatility in the method when wholesale changes are

made to the problem domain being analyzed. Projection-based ROM is empirical in

nature. That is to say, a parametric finite element model has to be specified; from

which data are extracted (often through a greedy sampling procedure) and then the

reduced variant of the problem is created. Often, great care is taken in creating

these finite element models in the first place. Subject-matter expertise is frequently

required to assist in the creation of these models and to ensure that they behave

adequately. This often requires significant time and effort for very large aircraft

subsystems and systems. If major changes were to be made to the configuration

being investigated - such as the discrete additional or removal of sub-regions in the

configuration’s physical domain - the model has to investigated again by personnel

with the appropriate domain knowledge. This idea is illustrated in figure 8. The

reduced order model is then recreated to reflect the updated configuration.

Another limitation in prescribing the reduced order model at the global level is

associated curse of dimensionality associated with furnishing the snapshot data from

which the empirical basis is created. Consider the structural wingbox illustrated in

figure 11. Often with wingbox structures, each sub-region (illustrated with different

colors) is equipped with parameters describing their local material system (many pa-

rameters for composites!) and their local geometric definition. The global parameter

space/design vector is formed by the Cartesian product of these local subregions plus
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Figure 8: Examples of problem domains modeled with the finite element method
that feature discrete addition and subtraction of sub-regions. (Inspired by an image
presented in [81])

the parameters defined globally (such as load factor). Consequently, the global pa-

rameter space can perhaps venture into the 100’s-1000’s of parameters. Admittedly,

there are greedy sampling algorithms available in the ROM literature that are able

to address high dimensional problems [83]. However, they depend on using expensive

optimization-based strategies, which further exacerbates the effort required to create

the reduced order models in the first place. Even worse, information and time is lost

when major configuration changes have to be made and the ROM has to be thrown

out.

Recall that during the conceptual level of aerospace design, there is the most design

freedom. Therefore, we are interested in investigating several, sometimes disparate

concepts, that have the potential to meet the imposed requirements. In the area

of structural design, this translates to having the ability to investigate a variety of

24



Ω1 Ω2 Ω3 

Ω4 Ω5 Ω6 

Ω7 Ω8 Ω9 

𝑢 
Γ

= 0 

𝑓 
Γ𝑛

 

𝑓 
Γ1

 

Ω𝑖 Ω𝑖′  

(a) 

Ω𝑖 

(b) 

(c) 

Figure 9: Decomposing the problem domain into repeated physical sub-domains.
(a) Global problem domain. (b) Individual sub-domain. (c) A pair of sub-domains
connected at a shared interface. (Inspired by an image presented in [81])

structural concepts in an efficient manner. A method that has been proposed recently

in the ROM literature seems to have the potential to address these concerns. It is

known as the Static Condensation Reduced Basis Element (SCRBE) Method.

1.4.2 Key Enabler: Static Condensation Reduced Basis Element Method
(SCRBE)

The SCRBE method embraces a “bottom-up hierarchy” in creating problem domains.

Under this paradigm, a library of reference, interoperable components are studied in

isolation and in local neighborhoods of components. They are then used to create

large problem domains. This idea is illustrated in figure 9. It is at the component

level that the reduced order modeling is enabled. This method is aimed at expediting

the familiar static condensation approach [84] to solving the finite element method.

Static condensation is particularly suited for high-performance/parallel implementa-

tion. The SCRBE is most beneficial and perhaps only suitable for very large problems

that consist of repeated sub-components. Aerospace structural design fits quite well

into this paradigm. The resulting structures are often large and highly modular in
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Figure 10: Aircraft configurations that might reuse the same structural building
blocks [82]

nature and feature repeated sub-components with minor geometric variations among

them. This premise has also been embraced in commercial structural analysis tools

such as Collier Research’s Hypersizer [33]. It leverages the fact that aerospace struc-

tures consist of a library of stringer-stiffened panels and that they can be used in

a variety of configurations, thanks to the modularity of common structural designs.

Note however, that there is no concern about redundancy in the approach; since

Hypersizer is not meant to replace the finite element model, but is instead meant

to post-process the results of the finite element procedure and provide estimates of

structural constraints of interest. The SCRBE method on the other hand is meant

to replace the FEM with a cheaper, but highly accurate surrogate model.

Another advantage of this type of approach is the capability to create and study

subsystems (such as wings, fuselages, empennages) in isolation; and then join them

together with ease. This modularity allows for collaborations from distributed teams

and perhaps even help to reduce the design cycle time required for structural design.

Due to the promise of the method, it deserves further investigation. It should be

26



noted however, that a certain caveat has to be placed on the scope of said investiga-

tion. While it is desirable to eventually develop a sophisticated, conceptual level tool,

equipped with parametric CAD for preprocessing the geometry of large-scale aircraft

structural sub-systems and systems; the focus in this thesis will be placed on studying

the underlying mathematics and procedures of the structural design problem. This

desire further motivated the choice of the canonical problem used for investigation.

The goal here is to understand the usage of the SCRBE method for the desired objec-

tive, first within a simple context. Further investigations for more complex problems

- such as the one pictured in figure 11 - is left to future work.

Figure 11: Modularity in aerospace structural design. Wingbox example

The remainder of this thesis is structured as follows:

� In chapter 2, a literature review of the use of projection-based ROM in opti-

mization problems is provided. This is followed by a literature review of the
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SCRBE method and the potential challenges its use potential use in optimiza-

tion problems.

� In chapter 3, the problem being addressed in this thesis will be defined and the

scope limitations will be specified

� In chapter 4, an overview will be given on the abstract finite element formu-

lation; as well as the introduction of reduced basis approximation in order to

expedite the simulation.

� In chapter 5, the abstract framework of the SCRBE framework is presented.

It is further extended to facilitate the optimization procedure in the present

context

� In chapter 6, a modified approach, built on the same elements presented for the

SCRBE approach in chapter 5 will be presented. This is aimed at ameliorat-

ing one specific limitation presented in SCRBE literature, that is discussed in

chapter 2

� In chapter 7, a canonical, structural design problem will be introduced. It is

a simple, membrane plate design problem, that can help to foster an appreci-

ation of how the methods described in this thesis can be applied to aerospace

structural design problem that uses composite materials. Furthermore, it will

serve as the numerical test-bed for the hypotheses developed during the course

of this thesis.

� In chapter 8, the experimental results will be presented and analyzed

� In the final chapter, chapter 9, the conclusions and the limitations of this work

will be presented. Areas for future work will also be highlighted
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Chapter II

BACKGROUND AND LITERATURE REVIEW

2.1 Chapter Overview

In this chapter, a literature review is provided for the use of projection-based ROM

in PDE-constrained optimization and also for the Static Condensation Reduced Basis

Element Method (SCRBE). From the author’s review of the available literature, some

gaps and challenges will be highlighted regarding the potential use of the SCRBE

method for performing aerospace, conceptual-level structural design. Finally, the

research objective of this work will be stated.

2.2 Literature Review: Projection-Based Reduced Order Mod-
els In PDE-constrained Optimization

Projection-based reduced order models are an attractive alternative to solving the

full, high fidelity models in many areas of science and engineering for “many-query”

and “real-time” problems. PDE-constrained optimization falls into the many-query

category. The use of projection-based reduced order models is aimed at drastically

decreasing the computational cost associated with estimating the metrics that are

normally determined by the underlying PDE.

The goal of RB methods is to carry out a Galerkin projection of the governing

differential equation of the problem onto a lower dimensional subspace built upon

the general numerical approximation space applied to the weak form of the problem.

The finite element approximation space is commonly used in these types of problems.

Using adequately chosen samples in the parameter space, various configuration snap-

shots are taken of the high fidelity simulation. They are then compressed with the

Proper Orthogonal Decomposition (POD) procedure and used to form the required
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lower dimensional approximation spaces. This results in linear algebraic systems that

can be solved expeditiously due to their reduced sizes.

Numerical Experimentation 

𝜇1 𝜇3 

𝜇𝑛 
𝜇𝑛−1 

𝜇2 

Parameter Domain Samples 

𝑋 = 𝑥1 𝑥2 𝑥3 … 𝑥𝑛 

Configuration snapshots 

Step 1 Step 2 Step 3 

Step 4: Perform SVD 

𝑈1 𝑈2 … 𝑈𝑚 

𝜎1 
 𝜎2 

𝜎3 
⋱ 
𝜎𝑟 

𝑉1 

𝑉𝑟  

… 

𝑈 Σ 𝑉 

= 𝑠𝑣𝑑(𝑋) 

Step 6 

Φ = 

Retain modes with most energy 

𝑈1 𝑈2 … 𝑈𝑟 

𝑚 ≪ 𝑟 

Figure 12: Illustration of the Proper Orthogonal Decomposition procedure

In the literature, the methods used to address PDE-constrained optimization with

projection-based ROM typically fall into one of two broad categories. These are:

(1) Online-Offline decomposition and (2) Adaptive Framework or Progressively Con-

structed reduced order models. The main features of the two methods are:

Figure 13: Two common schemes used in ROM assisted PDE-Optimization. (a)

Online-offline decomposition (b) Progressively constructed
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Online-Offline decomposition: In this approach, there is a clear distinction

between the phases of the optimization procedure where the high-fidelity and re-

duced order models are queried. During the offline stage of the procedure, the key

ingredients of the ROM models are built using data provided from the high-fidelity

model. An adequately chosen greedy sampling technique is used to generate samples

throughout the parameter space associated with the optimization problem. The as-

sociated configuration snapshots at these parameter settings are used to generate an

empirical basis via POD. This empirical basis is then used to enable more concise

Galerkin projections when the weak forms of the underlying PDEs are expressed.

On the other hand, during the online stage, the reduced order model is exclusively

queried for the metrics of interest. A key requirement for the efficiency during the on-

line stage is the “affine” or “separability” property. With this property, the operators

in the problem can be written in the form: A(µ) =

Q∑
q

θq(µ)Āq. Here, the operator is

written as the linear sum of parameter dependent coefficients (θq(µ)) and parameter

independent terms
(
Āq
)
. Using this decomposition, the projection operation of the

Galerkin projection procedure can take place offline. Given an empirical basis Φ̃, the

projection of a stiffness matrix, for example, onto a low-dimensional subspace takes

the form: Φ̃TA(µ)Φ̃ =

Q∑
q

θq(µ)
(

Φ̃T ĀqΦ̃
)

. During the offline phase, the parameter

independent terms are created and stored; while during the online stage, the neces-

sary operators can be efficiently assembled by first, evaluating the coefficients of the

expansion (θ(µ)′s); then, by carrying out the linear sum shown above.

Such an approach has been used in the literature in the areas of: shape optimiza-

tion [85–88]; inverse problems [89,90]; multi-objective problems [91]; among others.

Adaptive Framework: In this approach, the high-fidelity model and reduced or-

der model are used in tandem throughout the optimization procedure. These methods

are very popular in the optimization literature for science and engineering problems.

They are based on the observation that during the optimization procedure, the path
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taken by the optimizer accounts for a very limited region of the design space. As

such, proponents of this methods claim that when samples are taken globally over

the entire design space, they are “wasted” because they give us information in areas

of the design space that are not important to the optimization path. Consequently,

the methods in this category seek to construct the empirical basis from the high-

fidelity models in the neighborhood of the design point at each major iteration of the

optimization procedure. This approach is often paired with a trust-region strategy

(e.g. [92–95]). The trust-region takes into consideration the region of validity of the

reduced order model and limits the strides that are taken during the iterations of the

optimizer. Since the empirical basis generated by this procedure are created in the

neighborhood of the current design point in the optimization procedure, it is likely to

have smaller cardinality than an empirical basis generated for the entire design space.

The major disadvantage of using this approach is that the online stage is con-

siderably more expensive than using the online-offline decomposition. This is due to

the fact that the high fidelity model has to be queried during the online phase and

the fact that the convenient affine property is less effective when the empirical basis

has to be periodically updated. Some of the works in literature aim to reduce the

overhead. Qian [94] used a certification procedure is used to determine if the reduced

order model is accurate enough at the current design point and in its neighborhood.

The reduced model is only recreated if this is not satisfied. This has the advantage

of reducing the number of times the high-fidelity method has to be called during the

online procedure. Carlberg [96, 97] used both the state variable and its derivatives

to compute the empirical basis at a given design point. The latter can be cheaply

obtained by using mathematical procedures aimed at solving linear algebraic systems

with multiple right hand sides (such as back-solving after using LU or Cholesky de-

composition with a direct solver; or by using an iterative solver with multiple right

hand sides [98]).
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2.3 High Level Overview Of Static Condensation

The merits of the SCRBE method were highlighted in chapter 1 and as such, this is the

ROM approach of interest going forward. The literature for the SCRBE method can

admittedly be abstract upon initial viewing. In order to provide an easier introduction

for the reader who is unfamiliar with approaches of this kind; the static condensation

method, as applied to the discrete finite element method, will be reviewed. Although

there are some differences between the two methods (such as the Galerkin projection

of the weak form), examining the static condensation approach is instructive for this

case. The areas where the SCRBE is used to improve the efficiency of the static

condensation will be identified during this presentation

2.3.0.1 Overview Of The Static Condensation Method Applied To The Discrete
Finite Element Problem

𝜸𝒊,𝟏

𝜸𝒊,𝟐
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Figure 14: Illustration of a problem domain decomposed into four non-overlapping

subdomains/ components (a) Individual component (b) Assembly of components.

(Inspired by an image presented in [99])
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Figure 14 shows a non-overlapping decomposition of a problem domain. It is assumed

that there is a finite element mesh on this domain. For the global system, the discrete

finite element linear algebraic equation is:

Ku = f (7)

The stiffness matrix is represented as K; the displacement at the nodes is u; and

finally, the force values on the nodes is f . If we consider the degrees of freedom on

various regions of the problem domain, we have: bi the degrees of freedom on the

interior of component i (or bubble space); Γj, is the vector of displacements on the

jth interface between a pair of components; fj, is the vector of force values on the jth

interface. For simplicity, the assumption is made that the forces on the interior of

the component domains are zero. The solution and forces on the interfaces can each

be collected and represented as uΓ = {uΓ1 , uΓ2 , uΓ3 , uΓ4} and fΓ = {fΓ1 , fΓ2 , fΓ3 , fΓ4}

, respectively. Using this partitioning, equation 7 can be decomposed as:

Kb1b1 0 0 0 Kb1Γ

0 Kb2b2 0 0 Kb2Γ

0 0 Kb3b3 0 Kb3Γ

0 0 0 Kb4b4 Kb4Γ

KT
b1Γ KT

b2Γ KT
b3Γ KT

b4Γ KΓΓ





ub1

ub2

ub3

ub4

uΓ


=



0

0

0

0

fΓ


(8)

The basic idea of the static condensation procedure is to use equation 8 to obtain a

linear algebraic system that is written in terms of the degrees of freedom on the inter-

faces of the problem domain. This can be achieved by performing the multiplication

on the left hand side of eq. 8, then by performing the steps of the block Gaussian

elimination.
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Kb1b1ub1 +Kb1ΓuΓ

Kb2b2ub2 +Kb2ΓuΓ

Kb3b3ub3 +Kb3ΓuΓ

Kb4b4ub4 +Kb4ΓuΓ∑4
i=1K

T
biΓ
ubi +KΓΓuΓ


=



0

0

0

0

fΓ


(9)

The steps of the block Gaussian elimination are:

1. Perform the multiplication of the left hand side of equation 8. This is written

as eq. 9.

2. From the first four rows, solve to obtain ubi = K−1
bibi
KbiΓuΓ

3. Insert these solution into the equation corresponding to the last row. This

results in equation 11

4. Solve the Schur complement equation, eq (12), for uΓ

5. Using uΓ, solve for ubi on each component by solving ubi = K−1
bibi
KbiΓuΓ

Operation 3 above leads to:

4∑
i=1

KT
biΓ
ubi +KΓΓuΓ = fΓ (10)

(
4∑
i=1

(
KT
biΓ
K−1
bibi
KbiΓ

)
+KΓΓ

)
uΓ = fΓ (11)

KschuruΓ = fschur (12)

The resulting system that is formed in eq. (12) is known as the Schur comple-

ment . In forming this system, the degrees of freedom on the interior of the compo-

nents in the problem domain are “condensed” and written in terms of the degrees of

freedom on the interfaces. There are several key takeaways from this procedure

� Each component’s contribution to eq. 12 is independent of the contributions of

other components; thus, invites parallelization
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� The coefficient matrix of the Schur complement, Kschur, is denser than K and

is of much smaller size

� If K is Symmetric and Positive Definite (SPD), then so is Kschur (see proof

in [100]).

2.3.0.2 Application Of Reduced Order Modeling

The nodal-based finite element approximation space is used to solve the weak form of

the PDE for many applications. A typical basis function in this scheme is illustrated

in figure 15. The use of this type of basis function is very versatile in representing

complex domains, as well as for refining the approximation in areas of interest in

the problem domain. However, the associated linear algebraic systems are high di-

mensional and become computationally expensive to solve. The SCRBE approach

identified areas where the static condensation procedure could be expedited. It ad-

dressed this by finding alternative ways of expressing the solutions on the various

regions of the problem domain. The SCRBE method sought to find basis functions

that: have larger support than the nodal basis functions; can be tailored to the spe-

cific problem at hand; and provide more concise linear algebraic systems to be solved.

An example of an edge mode and a bubble space mode is shown in figures 16 and 17,

respectively.

Figure 15: Illustration of a nodal basis function
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Figure 16: Example of an edge mode

𝑥2 

𝑥1 

𝑢(𝑥1, 𝑥2) 

Figure 17: Example of a bubble mode

The use of bubble modes expedites step 2 of the block Gaussian elimination pro-

cedure; while the use of the edge space modes results in a Schur complement of much

smaller size than using the nodal basis functions in step 4. This allows for faster

solution times of the Schur complement.
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2.4 Literature Review: SCRBE approach

Now that the main idea of what the SCRBE method addresses has been conveyed, the

relevant literature will now be reviewed. The SCRBE method falls into the category

of online-offline decomposition. The ingredients to the method are determined offline

to enable a relatively efficient online stage.

Perhaps the earliest method that resembled the current Reduced Basis Element

(RBE) method was developed by Lφvgren et. al [101–103] and applied to problems in

computational fluid dynamics. In these papers, the problem domain was decomposed

into parametric components over which the RB method was applied. They were

then “glued” together with a mortar-type, Lagrange multiplier method. The earliest

papers describing the modern form of the SCRBE method, involving interoperable

sub-domains (components) modeled through a combination of the RB method and

static condensation, was by Huynh [104,105]. The SCRBE method is similar in flavor

to the classical Component Mode Synthesis (CMS) method. In the CMS method, the

first set of eigenvectors of the eigenvalue problem associated with the stiffness and

mass matrices local to each component are determined. The solution of the weak

form within each component is represented as a linearly scaled, truncated sum of

the most significant eigenvectors. The static condensation method is then used to

form a Schur complement system associated with the coupling modes on the inter-

faces between these components. The Schur complement system is normally of much

smaller dimension that the original FEM problem. However, Kathrin [106] noted

that the CMS approach suffers from rather slow convergence when an eigenmodal

expansion is used to approximate the local solution on the interior of the compo-

nents. On the other hand, the RB approximation can achieve an exponential rate of

convergence [107]. As such, the SCRBE method uses the RB approximation instead

of component mode synthesis to determine the local solution within each of the com-

ponents. Huynh extended this approach to more complex problems for parametrized
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complex Helmholtz partial differential equations [105] and three dimensional acoustic

muffler analysis [108].

The computational efficiency of the SCRBE hinged, not only on the how concisely

the solution on the interior of the components could be represented, but also on how

concisely the coupling modes on the interfaces or global ports between components

could be expressed. In Huynh’s work, the solution on the interfaces was represented

by an eigenfunction basis or more precisely, by the Legendre polynomials derived

from the singular Sturm-Louville problem. Eftang et. al [81, 99, 109], later improved

the SCRBE method by representing the solution on the interface using empirically

derived modes. These empirical coupling modes are determined by the application of

an algorithm that Eftang proposed. In this process, any two connectable components

from a predetermined library of archetype components are paired together at the

specific interface under study. The remaining non-shared interfaces are then subjected

to random but smooth non-homogeneous Dirichlet boundary conditions. The solution

over the shared interface is extracted and used to construct a snapshot set. After

applying a proper orthogonal decomposition procedure to the retrieved data, a more

concise basis for the coupling modes between components would then be available for

online utility. This special variant of the SCRBE method was designated the Port

Reduced Static Condensation Reduced Basis Element (PR-SCRBE) method. In the

test problems considered, the use of empirical modes achieved much faster convergence

than the eigenfunctions modes. Eftang proposed an aposteriori error certification with

each of his contributions. However, Smetana [106] later made improvements in the

sharpness of the solution and output bounds relative to Eftang’s work. Smetna et al.

also investigated optimal spaces for the port modes [110]. Here they proposed modes

derived from a“transfer eigenproblem” and was shown to obtain rapid convergence.

Since the publication of these core set of papers, there have been other works in
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literature that build upon this base. Vallaghé [111] investigated a mixed-mean con-

jugate heat exchanger modeling problem; solving symmetric eigenproblems [112] and

parabolic PDE problems [113]. A limitation in the SCRBE literature was tackled

by Bader et al. [114] when they studied Reynolds Lubrication problem. Previously,

the interfaces between components within the problem domain were not allowed to

intersect with each other. In their work, the authors pursued a space decomposition

approach wherein the solution on the interfaces of the problem domain was repre-

sented by a combination of vertex and edge modes. However, the edge modes that

they chose were not empirical, but eigenfunctions similar to the approach in the ini-

tial set of papers by Huynh. Other related methods in literature pursue combined

domain decomposition and reduced empirical subspaces, adding in techniques from

multiscale FEM for repeated grid structures [115, 116]. However, the focus of this

thesis will be based on the work done under the SCRBE umbrella.

2.5 Challenges And Gaps In The Literature

After a review of the literature in this area, the author was unable to find any other

published work that applied the SCRBE method to aerospace structural design i.e.

structural optimization applied to an aerospace-type problem. In fact, most of the

reviewed papers that build on the SCRBE approach focused on investigating the

solution associated with a particular PDE and then evaluating the outputs that de-

pend on it. The only paper found that references the SCRBE approach and performs

numerical optimization was the work by Vidal-Codina et al. [116] for stochastic mul-

tiscale problems. In this work, they investigated the stochastic simulation and robust

design of wave propagation through heterogeneous materials. The authors chose to

use Lagrange polynomials distributed on Chebyshev nodes on the interfaces between

the components. While this was an excellent piece of work, there are three main lim-

itations with using this type of approximation space, particularly when dealing with
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problem domains with geometrically complex, two dimensional interfaces in between

the components.

� The Lagrange polynomial subspace is not hierarchical i.e. if it is enriched, it

cannot reuse the same basis modes from the Lagrange polynomial subspaces of

smaller cardinality. This provides some challenges that will be discussed later.

� Particularly for two dimensional interfaces (i.e. faces) between components,

empirically-obtained subspaces lead to much faster convergence as the approx-

imation is refined relative to other approximation approaches [81, 99,109].

� It is difficult to find predetermined basis functions that are adaptable to com-

plex, two dimensional interfaces between components. Admittedly, a piecewise

approximation can be used on the interface, but this increases the dimension-

ality of the approximation. Empirical modes do not suffer from this limitation.

An example of a complex geometrical interfaces in the context of aerospace

structural design is illustrated in figure 18

In the case of gradient-based optimization, derivatives are needed for both the

cost and constraint functions. Numerical differentiation is unsuitable to provide these

quantities because problems using the SCRBE approach are likely to have very large

parameter vectors and would require significant overhead to compute the required

derivatives. As such, the direct method or adjoint method has to be used in order

to calculate the derivatives of the metrics of interest. This requires approximations

of the derivatives of the state variable or the Lagrange multipliers of the adjoint

derivative problem, respectively, throughout the domain, including on the interfaces.

The author was not able to find any works in the SCRBE literature that addressed

the problem of determining empirical subspaces on the interfaces that are trained for

the Lagrange multipliers of the adjoint problem or state variable derivatives.

From these observations, the first pair of gaps are:
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Figure 18: Examples of stiffened panels used in the wingbox

Gap 1.0: An approach is needed for performing conceptual level aerospace struc-

tural design with the SCRBE Method

Gap 2.0: An approach is needed to determine empirical subspaces on the in-

terfaces between components that provide concise approximations of the state

variable and its derivatives in the aerospace structural design context.

2.5.1 Computational Overhead With SCRBE Approach

A commonly highlighted issue in the SCRBE literature, is the computational overhead

required to produce ingredients of the Schur complement when serial computing is

used relative to the cost of solving the resulting system [105]. As an example of this

disparity, consider an example from the literature. Bader [114] applied the SCRBE

approach to a problem that was modeled with the Reynolds lubrication equations.
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The global physical problem domain investigated consisted of 72 components. In

their results, they noted that it required 3s to assemble the Schur complement while

it only took 0.07s to solve it.

In the SCRBE literature, there are a few operational practices that are taken

advantage of for reducing the impact of the overhead for large problem domains.

These are:

� Effective Components: With this approach, it is noted that for the com-

putational domain of many problems, there may be a significant quantity of

components that are identical to one another. This is with regards to the com-

ponent type and the current parameter settings on the component. With this

knowledge, the local contribution to the Schur complement only has to be calcu-

lated for an “effective component,” and used to fill the corresponding locations

in the Schur complement matrix

� Interactive Design: With this design approach, there are no restrictions

placed on the replication of components and their settings in the problem do-

main. However, with this approach, the parameter vector of only one compo-

nent is updated at a time before resolving the Schur complement system. Using

this approach, one only needs to update the portion of the Schur complement

stiffness matrix that is affected by the modified component

In the case of gradient-based optimization, neither of these approaches are suitable

because at each major iteration of the method, the entire global parameter vector for

the problem is likely to change at each major iteration of the optimization proce-

dure. This requires an update the local contribution of each component to the global

Schur complement stiffness matrix and the associated systems required to furnish the

gradients.

This brings us to the next gap:
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Gap 3.0: An approach is needed to help to alleviate some of the computational

overhead associated with furnishing the ingredients of the SCRBE method.

The expense in forming - in particular - the coefficient stiffness matrix is due to:

(1) determining the solution on the interior of each component as a function of the

degrees of freedom on its local interface i.e. the bubble solutions. (2) Using these

bubble solutions to form the local component contribution to the coefficient stiffness

matrix of the Schur complement system. In the SCRBE method, a single reduced

basis is formed for each interface mode in order to expedite step (1). Alternative, but

similar works to the SCRBE method in the ROM literature attempt to bypass the

expense of step (1) by creating a single reduced bubble space that can accommodate a

wide variety of local boundary conditions prescribed on the interfaces and interior of

a component’s domain. This reduced bubble space is formed by examining snapshots

for the local solution defined on the interior of the component for several combina-

tions of parameter settings and a variety of boundary conditions. As such, this only

necessitates the solution of one linear algebraic system with multiple right hand sides

when determining the bubble solutions. This approach is used by Ipichino et al. [117],

Buhr et al. [115], and Vidal-Codina et al. [116]. However, these bubble spaces will

inevitably be larger than any of the individual bubble spaces tailored specifically to

a particular interface mode in the SCRBE method. This is due to the amalgamation

of a large number of datasets that may be mutually correlated, but are not likely to

completely overlap. Therefore, there is a trade-off between solving potentially many,

small linear algebraic systems (Eftang [109] estimates a cardinality of 10 per basis) in

the SCRBE method, versus solving one larger linear algebraic system with multiple

right hand sides in the alternative methods. Recall that for a direct method, the

expense of the solving linear algebraic system is O(N3 + N2M) flops. Here, N and

M are the size of the system and the number of right hand sides, respectively. This

is likely to be applied due to the density of the ROM system.

44



Figure 19: Shell subjected to two cases of boundary conditions. (a) Out of plane
pressure loading, p(µ, x), with pinned boundary conditions. (b) In plane loading with
roller boundary conditions

45



In the numerical experiments performed by the authors in the alternate methods,

the problems were linear elliptical and featured solution fields that were scalar (e.g.

temperature fields). In the case of solid mechanics, the solution fields are often vector

fields. Depending on how the boundary conditions are applied, responses in certain

degrees of freedom may not be elicited, making it difficult to find a single reduced

basis that can accommodate a wide variety of bubble solutions. Consider the example

shown in figure 19. Illustrated here is a plate subjected to two loading scenarios.

For the plate, there are 5 degrees of freedom per node for this i.e. 3 orthogonal,

translation d.o.f. and 2 (meaningful) rotational degrees of freedom. In the example

shown, consider two sub-cases:

Case (a):

� Simply supported, pinned boundary conditions

� Application of an out-of-plane pressure field

Case (b):

� Roller boundary conditions

� Material and geometric symmetry of the plate’s cross-section

� Application of in-plane boundary loads with no eccentricity

Case (a) will invoke out-of-plane displacement and rotations, with no in-plane dis-

placements; whereas, case (b) will bring about the opposite. In-plane displacements,

with no out-of-plane displacements or rotations. Thus, it can be seen that it is not

straight-forward to create one global reduced bubble space that can accommodate

various boundary conditions when a vector-field is being investigated. This challenge

can perhaps be overcome by creating a separate empirical basis for the component of

the state solution corresponding to each nodal degree of freedom and concatenating

the various groups to form a global basis. However, this approach will increase the

size of the overall basis.
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The author acknowledges these other works in literature. However, in the present

context, a method will be proposed in chapter 6 that attempts to bypass the calcula-

tion of the reduced bubble solutions and the need for performing step (2) during the

online stage of the procedure. Instead, the proposed method works with terms that

are dependent on the number of interface modes defined locally on each component

within the problem domain. The performance of the proposed approach will only be

compared to the SCRBE method.

2.5.2 Key Enabler: Parallel Computing

Besides the possible methods discussed above, the solution times can be expedited by

the manner of implementation. As mentioned in chapter 1, the SCRBE method is very

much patterned after the traditional static condensation approach for decomposing

and solving the full finite element problem for very large systems. However, the

introduction of reduced order modeling at the component level helps to expedite the

calculations of the ingredients to the Schur complement stiffness matrix and to solving

the Schur complement itself. In the literature for using high performance computing

for large finite element systems, there are several frameworks that are presented to

tackle this problem. Saad [100] provides an excellent overview of various algorithms

available for the task of computing and solving the Schur complement in parallel.

The purpose here is not to be exhaustive in listing all of the possible algorithms

and rate their relative performance. Rather it is to state the observation that the

task of calculating the local contributions to the Schur complement and its associated

systems is “embarrassingly parallel.” That is to say, they can be performed in parallel

without any interdependencies between the tasks. In performing these tasks, the

computational time is:

Tp = Tcomp + Tcomm (13)

=
Ts

n
+ Tcomm (14)
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where:

� Tp represents the computational cost required to distribute, compute and collect

the SCRBE ingredients in parallel

� Tcomp represents the computational cost required to perform only the computa-

tion part of the SCRBE ingredients

� n is the number of processors

� Ts represents the computational cost required to compute the SCRBE ingredi-

ents serially

� Tcomm is the overhead required to transmit data for the present problem. This

overhead is heavily dependent the parallel computing architecture and the al-

gorithm being used

There is some speedup afforded when solving the Schur complement using a par-

allel computing architecture; however, since this cost has been shown empirically to

be a very small fraction of the overhead cost of the SCRBE method, the impact of

parallel computing on it will not be addressed. From equation 14 we can see that

provided the communication costs can be kept the same, we can reduce the parallel

computation time provided that we can reduce the serial computation time required

to produce the ingredients to the Schur complement.

Figure 20 further explores the impact of reducing the computational overhead

at the component level to the overall efficiency of the method. Here we see that if

the average overhead per component is cheaper than using another approach, then

the impact of the time saving becomes more significant with an increased number of

components being treated serially or in parallel on a single node.

2.6 Research Objective

The research objective will now be stated for the present work. It is meant to address

the Gap 1.0. It is:
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Figure 20: A notional plot of the serial time required vs number of components for
two approaches. These approaches have different average times required to calculate
their local Schur ingredients
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Research Objective: To develop an approach that uses the Static Condensation

Reduced Basis Element Method to enable efficient, conceptual-level, aerospace

structural design

In the chapters that follow, the approach taken to address this research objec-

tive will be presented. Along the way, the gaps that have presented here will be

addressed through the use of appropriate research questions, hypotheses, and then

finally numerical experimentation

2.7 Chapter Summary

A literature review was performed for PDE constrained optimization and the SCRBE

approach. This was followed by a highlight of a few challenges that the author

identified when exploring the literature associated with the method. Several gaps

were identified and then finally, the research objective that guides this research was

officially stated.
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Chapter III

PROBLEM DEFINITION

3.1 Chapter Overview

In this chapter, an overview will be provided for the problem that will be addressed in

this thesis. Additionally, some limitations in the scope of the work will be stated. For

convenience, the research objective presented at the end of chapter 2 will be restated

here:

Research Objective: To develop an approach that uses the Static Condensation

Reduced Basis Element Method to enable efficient, conceptual-level, aerospace

structural design

3.2 Problem Statement And Scope Limitations

Aerospace structural design is a very complex field with many considerations re-

quired throughout the design phases. For the present problem, a list of the high level

limitations and assumptions will be stated in order to provide a reasonable project

scope. It is with the understanding that focus is on the conceptual and perhaps early

preliminary levels of the aircraft design process.

1. Class III Method: A review of the categories of methods for weight estima-

tion throughout the phases of aircraft design was presented in chapter 1. It was

seen here that due to inherent lack of detailed component definition in the early

phases of design, estimates made by numerical methods for primary weight have

to be supplemented by empirical methods to furnish complete weight estimates.

The work here is meant to enable the class III contribution to the class II&1/2

category. However, estimating the weight of the secondary structures will not
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be considered and the author defers to other work in literature.

2. NAND Framework: Since most of the ROM papers in literature seem to fall

into the NAND framework, this approach is considered in this work.

3. Single Disciplinary Analysis: In aerospace design, many sub-disciplines are

highly coupled with each other. This often necessitates the multi-objective

optimization frameworks to capture the couplings and make necessary trade-

offs. However, for simplicity, the focus will be placed on structural optimization

as an individual discipline.

4. Static, Linear Elasticity: For this work, the focus will be placed on static,

linear-elasticity problems.

5. Mass Minimization: The main focus of this work is to find the lightest,

structurally admissible designs at the conceptual level. As such, the objective

function selected for this work is the mass associated with the physical domain

being considered.

6. Structural Constraints: There are many possible constraints to be consid-

ered in structural design. This includes manufacturing considerations (espe-

cially with the use of composite materials); production consideration; aeroe-

lastic constraints; etc. However, only structural constraints will be considered

here. Further details will be given regarding the assumptions for the structural

constraints in section 3.2.2.

7. Aposteriori Certification Aposteriori error certification is an excellent fea-

ture described in the reduced basis approximation literature. With this tool,

at any point in the parameter space (i.e. any combination of design variables)

it gives an upper bound on the approximation error between the reduced order
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model and the truth model from which the ROM was created. An error certifi-

cation framework was not developed in this work, but instead was relegated to

future work.

3.2.1 Statement Of The Optimization Problem Constrained By Schur
Complement

Now that the scope of the present work has been specified. The structural optimiza-

tion problem that is addressed will now be specified. It is:

Optimize : m (µ) (15)

w.r.t : µ ∈ D, x ∈ Ω (16)

Subject to : R (u(µ), µ) = 0 (17)

g` (u(µ, x), µ) ≤ 0 for 1 ≤ ` ≤ ng (18)

Here:

� µ - the parameter vector (design variables) of the entire domain

� x - the location in the physical domain Ω

� u - the state variable of the problem. In this case, it is the displacement field

� m - the total mass associated with the physical domain

� R (u(µ), µ) - The residual of the discretized, weak form of the PDE

� g` - the `th inequality constraint that depends on the state variable

Note that equality constraints are not explicitly considered here. In this opti-

mization statement, the inequality constraints are dependent on the state variable,

u. According to the NAND framework, the weak form of the PDE is treated as a

black-box. Consequently, this black-box needs to provide estimates of the constraints,

g`, and their derivatives whenever needed.
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3.2.2 Conceptual Level Structural Inequality Constraints

Aerospace structural subsystems are normally composed of stiffened panels. This

type of construction normally features thin, stiffened components, that typically have

high stiffness-to-strength ratios relative to other types of constructions. An overview

of typical aerospace structural design, particularly in the case of a wingbox, is given

in appendix A.3.

Figure 21: Exploded Isometric View of a Conventional Transport Aircraft Wing [118]

Figure 22: An example of a stiffened panel undergoing panel buckling [33]

When stiffened panels are loaded, they are vulnerable to certain types of failures
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which render their use limited or even results in catastrophic failure. Kassapoglou [12]

provided a detailed description of these potential failure mechanisms. They can be

placed into two broad categories. These are: (1) material failure and (2) structural

instability when compressive loads/stresses are present. In the former category, the

material comprising the components fail because the local stresses and/or strains

that develop exceed the material strengths. The second category of failures involve

either the loss of structural stability of each stiffened panel as a whole or the localized

instability of any of its constituents. Localized instability includes, skin buckling

between stiffeners; stiffener crippling; skin-stiffener separation; stiffener inter-rivet

buckling; and stiffener column buckling. It is incumbent on the structural designer to

not only ensure that all these failure modes are precluded during aircraft operation,

but to also sequence them such that if one should occur, it is one that will not result

in catastrophic failure of the entire aircraft.

3.2.2.1 Material Failure

The first type of structural failure can be described as a bound constraint. The associ-

ated inequality constraints, g` = g` (u(µ, x), µ) , 1 ≤ j ≤ ng, form nonlinear function-

als that vary over the problem domain, Ω. The condition: max g = g`(u(µ, x∗), µ) ≤ 0

where x∗ = argmaxx g`(u(µ, x), µ) has to be satisfied by the optimization procedure;

however, the location of x∗ varies with parametric changes to the problem. Since

the state variable u(µ) (and hence g`) is not calculated analytically, it is difficult to

determine where max g = g`(u(µ, x∗), µ) occurs in the problem domain. Early works

in literature attempted to address this problem by checking the constraint of the

finite element mesh in various locations (perhaps even element by element). How-

ever, this presents two main challenges in the present context, (1) A strict tenet of

the SCRBE approach and of reduced basis approximation approaches in general is,

the underlying finite element model should not be queried during the online stage
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of the procedure. (2) The maximum values produced in this fashion do not enable

continuous derivatives of the constraint to be found, as is needed by the optimization

procedure.

To address this problem, several constraint aggregation techniques have been pro-

posed in the literature of structural optimization. The constraint aggregate takes the

form of:

c(g, ρ) = max g + r(g, ρ) (19)

where: c(g, ρ) is the constraint aggregate approximation of g(u(µ, x∗), µ); ρ is the

aggregation parameter that controls the functional approximation; and, r(g, ρ) is the

residual term. The approximation must have the following behavior

lim
ρ→∞

c(g, ρ) = max g (20)

This form now gives a smooth estimate to the quantity of interest.

Several constraint aggregate functionals have been proposed including: the Kreis-

selmeier Steinhauser (KS) functional [119]; the p−norm functional; and the induced

aggregation functional [120, 121]. Kennedy et. al [120], carried out a convergence

study on the convergence behavior among these functionals. They noted, that the

accuracy of the discrete forms of both the KS and p−norm functionals diminished

as the underlying finite element mesh was refined; whereas, the induced functional

displayed mesh-independent convergence behavior. The finite element meshes that

are used in Reduced Basis Approximation applications tend to be quite refined. Due

to the favorable, mesh-independent properties of the discrete version of the induced

aggregation functional, it was selected for this work.

The particular choice of induced aggregate functional selected for this work is the

induced exponential functional and the continuous version takes the form:

cIE(g`, ρ) =

∫
Ω
g`(x)eρg`(x)dΩ∫
Ω
eρg`(x)dΩ

(21)
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where Ω in this context is the physical domain. This functional is evaluated by the use

of numerical integration. Additionally, the value of ρ and the order of the numerical

integration have to be determined in a heuristic fashion in order to minimize r(g, ρ)

for a given application. In this work, although r(g, ρ) might not be zero in a practical

setting, the inequality constraints estimated with this approach is still treated as the

truth model. It is expected that the practitioner will make sufficient refinements to

the problem in order to get the estimates to within suitable tolerances.

3.2.2.2 Structural Instability

While the use of reduced order modeling allows one to capture the behavior of quite

detailed finite element models, the partial differential equation selected for this thesis

does not capture the structural stability (global or local buckling) of problem domain

and its components. This normally involves the solution of the eigenvalue problem:

Kψ = λKGψ (22)

Where: λ is the eigenvalue; ψ is the eigenmode; and K and KG are the small deflection

and geometric stiffness matrices of the structure, respectively, associated with the

buckling problem.

An alternative method that is commonly used in conceptual level structural de-

sign, is global-local analysis. With this type of approach, the global finite element

model corresponding to the linear static structural problem is first solved for the dis-

placement field and reaction stresses/forces. Semi-analytical models (e.g. [122–125]);

detailed finite element models (e.g. [126, 127]); or experimental-data based analysis

( [128–130]) can then be used to determine whether or not the local regions within

the model are above some threshold for structural stability. Although the use of the

detailed finite element method for solving the buckling eigenproblem is prohibitive at

the conceptual level due to the computational cost, there are maturing reduced order
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modeling approaches that seek to expedite this type of analysis. Such an example is

the work by Vallaghé et al. [112] and Horger et al. [131]

These localized models often require as input, the displacement or internal forces

acting on the boundaries of the sub-regions. In the case of structural instabilities,

this often takes the form of the averages of the load distributions on the boundaries.

This idea is illustrated in figure 24.
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Figure 23: An illustration of a global local-analysis. (a) Global model (b) Local model

Consequently, estimates of these average loads need to be supplied whenever these

constraints are required. The boundary loads take the functional form: NΓ
xx (u(µ), µ),

NΓ
yy (u(µ), µ), NΓ

xy (u(µ), µ). Here NΓ
xx and NΓ

yy are the normal stress resultants on

the edges of the constituent thin plates, while NΓ
xy is the shear stress resultant. If

other quantities are needed for the buckling analysis, such as moment resultants

or part stresses, they can be furnished in a similar manner. The key take-away is

the functional dependence on the approximate solution of the PDE, u (µ), and the
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parameter set µ. The averages of the above-listed quantities are:

NΓ
xx,avg =

∫
Γ
NΓ
xx (u(µ), µ) dΓ∫

Γ
(1)dΓ

(23)

NΓ
yy,avg =

∫
Γ
NΓ
yy (u(µ), µ) dΓ∫

Γ
(1)dΓ

(24)

NΓ
xy,avg =

∫
Γ
NΓ
xy (u(µ), µ) dΓ∫

Γ
(1)dΓ

(25)

Here Γ corresponds to the local, physical domain boundary segment of interest. Since

these quantities will have to be determined with the finite element method, they have

to be calculated on the finite elements in the vicinity of the local boundary. As such,

area weighted averages are often used in order to estimate the average loads [33].

Denoting the collective area of the finite element mesh in the vicinity of a particular

local boundary as As, the updated averages are:

NΓ
xx,avg ≈

∫
As
Nxx (u(µ), µ) dAs∫

As
(1)dAs

(26)

NΓ
yy,avg ≈

∫
As
Nyy (u(µ), µ) dAs∫

As
(1)dΓ

(27)

NΓ
xy,avg ≈

∫
As
Nxy (u(µ), µ) dAs∫

As
(1)dAs

(28)

The terms are dependent on the displacement solution in the vicinity of the local

boundary next to which As is defined. In order to avoid overly querying the underly-

ing finite element model, these area-weighted integrals will be approximated by the

Gaussian quadrature approach. These average values are fed into the approach used

to calculate the various forms of structural stability constraints. This takes the form:

BC
(
NΓ
xx,avg, N

Γ
yy,avg, N

Γ
xy,avg, µ

)
≤ 0.

Depending on the level of abstraction required, these averages loads may not

be calculated on entire local boundary, but on non-overlapped sub-regions of the

boundary.
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Figure 24: Evaluating the average edge loads (a) on local boundary (b) on mesh in

the vicinity of a local boundary

These choices for dealing with the constraints offer a compromise for the require-

ment of not querying the underlying FEM model. Although the FEM model will be

queried, it will be at a very small number of sampling points on the problem domain

and as such, should not prove to be overbearing in the overall scheme.
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3.3 Presentation Of Research Questions

Research questions have been generated in response to the gaps identified in chapter

2 and are presented below. For ease of reference, the relevant gap is paired with the

associated research question.

3.3.1 Research Question 1

Gap 2.0: An approach is needed to determine empirical subspaces on the in-

terfaces between components that provide concise approximations of the state

variable and its derivatives in the aerospace structural design context.

RQ 1.0: What is a suitable approach for determining empirical interface sub-

spaces that can concisely represent the constraints and their derivatives as the

fidelity of the model is refined?

3.3.2 Research Questions 2 and 3

Gap 3.0: An approach is needed to help to alleviate some of the computational

overhead associated with furnishing the ingredients of the SCRBE method.

RQ 2.0: What is an alternative approach for generating the ingredients of the

SCRBE procedure that will help to alleviate the computational overhead, for

similar levels of approximation error?

RQ 3.0: How do the SCRBE method and its surrogate compare in an optimiza-

tion setting?

The hypotheses that will be raised in response to these research questions pre-

sented in chapter 2 will be stated in chapters 5 and 6. Finally, numerical experiments
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will be performed to address the hypotheses in chapter 8.

3.4 Chapter Summary

In this chapter, the major assumptions and limitations of the this work were presented.

This was followed by the statement of the research questions that appear throughout

out the rest of the work.
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Chapter IV

THE FINITE ELEMENT PROBLEM AND REDUCED

BASIS APPROXIMATION

4.1 Chapter Overview

In this chapter, a presentation is given for the strong form of the governing partial

differential equation associated with the linear elastostatic problem. This is followed

by the development of the abstract finite element problem. The chapter is rounded

out by a presentation of the use of reduced basis approximation to expedite the finite

element problem. The development in chapter 5 builds upon the material presented

here. Therefore, a proper understanding of the material in this section is fundamental

for the remaining work.

4.2 Linear Elasticity: Strong Form and Weak Form

4.2.1 Strong Form Of The Linear Elastostatic Problem

Consider a generic solid as shown in figure 25. It has a domain Ω ⊂ Rd (where

d = {1, 2, 3}), with a Lipschitz boundary, Γ. The domain is subjected to a body force,

f ; homogeneous displacement boundary conditions on the boundary segment ΓD ⊂ Γ;

and surface traction, gN , on the boundary segment ΓN = Γ \ ΓD. The linear elliptic

partial differential equation (PDE) governing the stress and displacement behavior
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throughout the solid can be written as follows 1

−∇ · σ = f, in Ω (29)

σij = Cijklεkl, in Ω (30)

u = 0, on ΓD (31)

σ · en = gnN , on ΓN (32)

σ · et = gtN , on ΓN (33)

Figure 25: Illustration of an arbitrary solid with domain Ω subjected to a body force

f , a traction force gN and homogeneous displacement boundary conditions.

Equation (29) is known as Cauchy’s equilibrium equation. In component form it

can be written as 2:

− ∂σij
∂xj

= fi (34)

1Note that gN is used to describe a boundary traction in this context and not a constraint on
the optimization problem as used in other chapters.

2Note that Einstein’s summation convention is used here.
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Here σ is the second-order stress tensor. The terms in the stress tensor, σij, represent

the force per unit area in direction xi on a surface with unit normal along the direc-

tion xj. As such, the diagonal elements, σii, are direct stresses and the off-diagonal

elements, σij (i 6= j), are shear stresses. In the absence of concentrated moments,

the principle of conservation of angular momentum shows that the stress tensor is

symmetric. Thus, there are only 6 independent terms in the tensor.

The displacement field of the solid is represented by u = u(x), for x ∈ Ω. Specif-

ically, for an individual particle, the displacement from its initial position, x0, to its

final position, x, is given by u(x) = x− x0. Assuming small displacement gradients,

the strain of the solid is measured with the second-order, linearized strain tensor, ε.

The stain tensor is given by

ε =
1

2
(∇u+∇uT ) (35)

or in component form

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(36)

A critical assumption in the linearized case is that the point-wise rotations are small.

The diagonal terms, εii, represent the change in length in the xi direction, while the

off-diagonal terms, εij (i 6= j), represent the first order change in the angle between

two initially orthogonal directions, xi and xj. The constitutive relationship equation

(30), relates the stress to strain in the material. In the linear elastic case it is known

as Hooke’s law, with the fourth order elastic tensor, C = Cijkl. In the most general

form, C has 36 independent components; however, for certain classes of materials, it

can be greatly simplified. Consider for example, C for an isotropic solid. The tensor

Cijkl is given by

Cijkl =
ν

(1 + ν)(1− 2ν)
δijδkl +

1

2(1 + ν)
(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ d (37)

This results in a sparse tensor with few non-zero terms. In general, utilizing the
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symmetry property of Cijkl, equation (30) can be written in the form

σij = Cijkl
∂uk
∂xl

, 1 ≤ i, j, k, l ≤ d (38)

Therefore, the strong form of the equation governing the displacement of the solid can

be restated by substituting equation (38) into equation (29) resulting in the following

linear, second order elliptic PDE

−∇ · (C∇u) = f (39)

or in component form

− ∂

∂xj
(Cijkl

∂uk
∂xl

) = fi, 1 ≤ i, j, k, l ≤ d (40)

Along sections of the boundary, Γ, certain displacement and traction boundary con-

ditions are specified. Along the portion, ΓD, Dirichlet boundary conditions are pre-

scribed. These are applied directly to u(x). In the case shown in Figure 25, u|ΓD = 0,

as stated in equation (31). Along the portion of the boundary, ΓN , tractions forces

(concentrated or distributed) are applied. Traction forces apply Neumann boundary

conditions i.e. they specify boundary values on the first derivative of u(x). The trac-

tion forces can be resolved into two components, one tangential to the surface (gtN)

and the other normal (gnN). Using equation (38), the Neumann boundary conditions

(equations (32) and (33)) can be restated as:(
Cijkl

∂uk
∂xl

)
· enj = gnNe

n
i , 1 ≤ i, j, k, l ≤ d (41)(

Cijkl
∂uk
∂xl

)
· etj = gtNe

t
i, 1 ≤ i, j, k, l ≤ d (42)

4.2.2 Parametrization Of The Problem

To describe more general situations, the problem domain, Ω; the elastic tensor (Cijkl);

and the forces (f and gN); can be made to be parametric. These quantities are

parametrized by the parameter vector µ ∈ D ⊂ Rp. This vector consists of p elements,
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each of which has a finite and closed domain. D represents the Cartesian product

of all of the parameter domains belonging to the elements of µ. For convenience,

the vector µ can be decomposed as µ =
{
µE, µf , µgN , µgeo

}
. Here µE relates to the

mechanical properties of the material (e.g. Young’s modulus: E, Poisson’s ratio: ν);

µf and µgN relate to the forces; and µgeo relate to the parametrization of the problem

domain. Cijkl, f and gN can also vary spatially. As an example of the representation

of the spatial and parameter dependence, Cijkl can be written as Cijkl = Cijkl
(
x, µE

)
.

4.2.3 Weak Form Of The Linear Elastostatic Problem

It is rather difficult to solve the system of equations stated in equation (29)- (33)

directly for complex domains and complex boundary conditions. Thus, the finite

element method is often leveraged to provide an approximate solution. The weak

form of the finite element method, applied specifically to the second order elliptic

PDE discussed thus far, will be now presented. The development of the equations

will be with respect to a reference domain, Ω̂ (with boundary Γ̂), and not the actual

problem domain, Ω. Steps to relate the problem solved over the actual domain to

that over the reference domain will be presented in section 4.2.7. In what follows,

quantities with the {̂·} symbol will correspond to their representation in the reference

domain, while quantities without it correspond to the actual problem domain

To commence, two important vector spaces will be introduced. The first is the

L2(Ω̂) vector space. It is a Hilbert space3 that satisfies the following criterion

L2(Ω̂) = {v̄ : Ω̂→ R :

∫
Ω̄

|v̂|2dΩ̂ <∞} (43)

3A Hilbert space is a vector space equipped with an inner product and where all Cauchy sequences
converge i.e. complete.
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It is equipped with an inner product and an induced norm defined respectively as

< v̂, ŵ >L2(Ω̂)=

∫
Ω̂

v̂ ¯̂wdΩ̂ (44)

‖v̂‖L2(Ω̂) =
√
< v̂, v̂ >L2(Ω̂) =

(∫
Ω̂

|v̂|2dΩ̂

) 1
2

(45)

The second important function space in this context is the Sobolev space, H1
(

Ω̂
)

.

This Sobolev space is defined as follows

H1
(

Ω̂
)

=

{
v̂ ∈ L2(Ω̂) : ∇v̂ ∈

(
L2(Ω̂)

)d}
(46)

In this case, both the function itself and its weak derivative are bounded. An impor-

tant subspace of H1
(

Ω̂
)

is the following

H1
0

(
Ω̂
)

=
{
v̂ ∈ H1

(
Ω̂
)

: v̂|Γ̂ = 0
}

(47)

Here, homogeneous Dirichlet boundary conditions are applied to the entire boundary

of the problem domain. For many problems, only one or a few sections of the boundary

are subjected to Dirichlet boundary conditions. This can be represented by, X, an

infinite dimensional space such that
(
H1

0

(
Ω̂
))d
⊂ X ⊂

(
H1
(

Ω̂
))d

. X is endowed

with inner product 〈·, ·〉X and norm ‖ · ‖X = (〈·, ·〉X)
1
2 . It is now appropriate to

introduce the bilinear functional â (·, ·;µ) : X × X × D → R and linear functional

f̂ (·;µ) : X ×D → R. The weak form of the governing equation can now be derived.

Multiplying equation (34) by an arbitrary test function, ŵ ∈ X, and integrating over

the domain Ω̂

−
∫

Ω̂

ŵi
∂σ̂ij
∂x̂j

dΩ̂ =

∫
Ω̂

ŵif̂idΩ̂ ∀ŵ ∈ X
(

Ω̂
)

(48)

Integrating the left hand side by parts and applying the divergence theorem gives

−
∫

Ω̂

ŵi
∂σ̂ij
∂x̂j

dΩ̂ = −
∫

Γ̂

ŵiσ̂ij êjdΓ̂ +

∫
Ω̂

∂ŵi
∂x̂j

σ̂ijdΩ̂ (49)

Substituting equation (49) into equation (48) and applying equation (32) and equation

(33) yields ∫
Ω

∂wi
∂xj

σijdΩ =

∫
Ω

wifidΩ +

∫
Γ

wig
n
N ê

n
i dΓ +

∫
Γ

wig
t
N ê

t
idΓ (50)
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Using equation (40)

a (u,w;µ) = f (w;µ) ∀w ∈ X (Ω) (51)

Where

a (u,w;µ) =

∫
Ω

∂wi
∂xj

Cijkl
∂uk
∂xl

dΩ (52)

f (w;µ) =

∫
Ω

wifidΩ +

∫
Γ

wig
n
N ê

n
i dΓ +

∫
Γ

wig
t
N ê

t
idΓ (53)

Equation 51 is known as the weak form or alternatively as the variational formulation.

Often times, we are interested in some output that is a function that is dependent on

the state variable and the problem parameters. This takes the form: s (u (µ) , µ).

4.2.4 “Truth” Finite Element Approximation

At this point the finite element approximation can be introduced. A finite, but high

dimensional space, Xh ⊂ X, known as the “truth” approximation space, is used to

replace X in the weak form equation (51). This subspace inherits the inner product

and induced norm from the functional space X, that were previously presented. The

truth finite element approximation is thus: ∀µ ∈ D ⊂ Rp, evaluate one or more

outputs of interest of the form:

sh (µ) = s
(
uh (µ, x) , µ

)
(54)

Where uh (µ, x) satisfies

a
(
uh, v;µ

)
= f (v, µ) ∀v ∈ Xh (55)

Normally, the approximation space Xh is sufficiently refined so that u(µ, x) and

uh(µ, x) are almost indistinguishable. Thus, why Xh is often referred to as the “truth”

approximation space to X.
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4.2.5 Well-Posedness Of The Weak Form

The solution given by equation (51) and equation (55) can be shown to be unique

by using the Lax-Milgram theorem [132]. However, this is contingent on the bilinear

functional, a (·, ·;µ), satisfying two important properties. These are that a (·, ·;µ)

must both be coercive and continuous. In addition, the linear functional f (·;µ) has

to be continuous. First, the coercive constants for the bilinear functional are defined

as:

α(µ) = inf
w∈X

a (w,w;µ)

‖w‖2
X

(56)

αh(µ) = inf
w∈Xh

a (w,w;µ)

‖w‖2
X

(57)

Provided that the finite element approximation space is conforming, the coercive

requirement is as follows:

∃α0 ∈ R+ : 0 < α0 ≤ α(µ) ≤ αh(µ)

The continuity constants can also be defined as:

γ(µ) = sup
v∈X

sup
w∈X

a (v, w;µ)

‖v‖2
X‖w‖2

X

(58)

γh(µ) = sup
v∈Xh

sup
w∈Xh

a (v, w;µ)

‖v‖2
X‖w‖2

X

(59)

Thus the continuity requirement can be stated as:

∃γ0 ∈ R+ : γh(µ) ≤ γ(µ) ≤ γ0 <∞ ∀µ ∈ D

The functional f (·;µ) can be shown to be continuous in a similar fashion.

4.2.6 Affine Parameter Dependence

In order to achieve computational efficiency in the RB method, a crucial requirement,

especially for the bilinear functional, is the affine or separable property relative to

the parameter µ. The affine property for bilinear functional can be expressed:

a (w, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(w, v) ∀w, v ∈ Xh, ∀µ ∈ D (60)
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The linear functional f (·;µ) can also be expressed in this fashion as:

f (v;µ) =

Qf∑
q=1

Θq
f (µ)f q(v) ∀v ∈ Xh, ∀µ ∈ D (61)

The functions Θq
a(µ) : D → R and Θq

f (µ) : D → R are typically very smooth

functions dependent only on µ. On the other hand, the functions f q (·) : X → R and

aq (·, ·) : X × X → R are independent µ. It is desirable for Qa and Qf to be small

numbers so as to aid in the computational efficiency of the RB computation.

4.2.7 Parametric Problem Domain And The Weak Form

The development of the weak form thus far considers a reference problem domain, Ω̂,

that is independent of geometric parameters. As highlighted in section 4.2.2, more

general problem considerations require Ω to be parametric. Furthermore, additional

versatility is offered by representing Ω as a set of non-overlapping sub-domains, Ωk,

each equipped with its own set of parameters, µk. This can be stated precisely as

Ω = ∪Kdomk=1 Ωk (µk) (62)

With open component sub-domain Ωk, 1 ≤ k ≤ Kdom, that satisfy and Ωk ∩ Ωk′ =

∅, 1 ≤ k < k′ ≤ Kdom. An example of this type of decomposition is illustrated

in figure 26. Each of these Kdom sub-domains is related to the reference domain by

Ω̂k = Ωk (µgeoref ), where µref are the parameters that recover the reference domain.

The weak form, equations (51) and (55), are defined with respect to the reference

domain; thus, it is necessary to relate problem (actual) domain to the reference

domain. This is typically done by the use of an affine geometric map that relates

points in the reference domain to the points in the problem domain. This map takes

the form of

Ωk (µ) = T aff,k
(

Ω̂k;µgeok

)
, 1 ≤ k ≤ Kdom; (63)

The map must be individually invertible, collectively continuous and bijective. These
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Ω1 Ω2 Ω3 

Ω4 Ω5 Ω Ω6 

Ω7 Ω8 Ω9 

Figure 26: Decomposition of the problem domain Ω into 9 non-overlapping sub-
regions

requirements can be represented mathematically as

T aff,k (x̂;µgeok ) = T aff,k′ (x̂;µgeok′ ) ∀x̂ ∈ ¯̂
Ωk ∩ ¯̂

Ωk′ , 1 ≤ k ≤ Kdom (64)

The affine map takes the form

T aff,k
i (x̂;µgeok ) = Caff,k

i (µgeok ) +
d∑
j=1

Gaff,k
ij (µgeok ) x̂j 1 ≤ i ≤ d (65)

Here Caff,k
i (µ) : D → Rd represents a translation vector and Gaff,k

ij (µ) : D → Rd×d

represents a transformation matrix. Typical operations of the latter include, rotation,

scaling and/or shear. An important feature of affine maps is that they are invertible

and result in a positive mapping Jacobian. The global map that links the problem

domain to the reference domain can be defined as

T aff,k (·;µ) : Ω̂→ Ω (µ) ,where T aff (x̂;µ) = T aff,k (x̂;µ) ,

k = min
k′∈{1···Kdom}|x∈Ωk′

k′ (66)

Rozza [86] describes a variety of sub-domain shapes and parametrizations that can

be used in this context. This includes, standard, elliptic and curvy triangles. Veroy
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Table 2: Mappings for common planar, elementary transformations

Transformation Figure Gaff,k
i (µgeok ) Caff,k

i (µgeok )

Horizontal and vertical stretch 27 (b), (c)


t1

t̂1(µgeok )
0

0
t2

t̂2(µgeok )


{

0
0

}

Horizontal Shear 27 (d)

[
1 − tan(α)
0 1

] {
0
0

}

Rotation 27 (e)

[
cos(α) sin(α)
− sin(α) cos(α)

] {
0
0

}

[133] presented several elementary transformations that can be used to morph the

domain. These are presented in figure 27. For the mappings shown, the associated

transformations are presented in table 2. For more complex geometric transformations

that do not admit affine parametrization, one can employ the use of the discrete

empirical interpolation method [134] to provide an approximation for efficient system

assembly.

In section 4.2.3 the weak form was developed for the reference domain. The weak

form developed for a general problem domain can be related to the reference domain.

The bilinear operator with respect to the actual domain is

a (w, v;µ) =

Kdom∑
k=1

a (w|Ωk , v|Ωk ;µk) (67)

Applying the geometric map, T aff,k (x;µ), yields

a (w, v;µ) =

Kdom∑
k=1

âk
(
w|Ωk ◦ T

aff,k (x;µ) , v|Ωk ◦ T
aff,k (x;µ) ;µk

)
(68)
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Figure 27: Examples of elementary, planar transformations. (a) Reference domain
(b) Horizontal stretching (c) Vertical stretching (d) Horizontal shear (e) Rotation
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Similarly the linear functional f (·;µ) can be defined as

f (v;µ) =

Kdom∑
k=1

f̂k
(
v|Ωk ◦ T

aff,k (x;µ) ;µk
)
∀v ∈ X (69)

Thus the general problem statement becomes. Evaluate

s (u (µ) ;µ) (70)

where u (µ) ∈ X (µ) satisfies

a (u (µ) , v;µ) = f(v), ∀v ∈ X (µ) (71)

Here
(
H1

0 (Ω)
)d ⊂ X ⊂

(
H1 (Ω)

)d
. Also, the bilinear and linear functionals need to

satisfy, a (·, ·;µ) : X ×X → R and f (·;µ) : X → R, respectively.

4.3 Mathematical Overview Of The Reduced Basis Method

4.3.1 RB Approximation Space

As mentioned in section 1.4, Xh is unnecessarily rich and indeed, the solution is

likely to lie on a manifold of much smaller dimension than the full truth subspace.

Based on this important observation, the task is now to identify a suitable set of

N points on this low-dimensional manifold so that a new solution, u (µ|new), can

be represented as a linear combination of the solutions precomputed at these N

known points (or “snapshots”), i.e. uh (µ|n) , 1 ≤ n ≤ N . It is desirable that

N � N so as to achieve significant speed-ups in computations. In the literature, the

Greedy sampling algorithm [107] is typically used to determine the sample points,

µ|n ∈ SN , 1 ≤ n ≤ N . The Greedy sampling algorithm tries to find the smallest set

of N points in the domain D that minimizes ‖uh (µ)−uhN (µ) ‖X , where uhN (µ) is the

RB approximation to the true FE solution uh (µ). Through this procedure, a sequence

of hierarchical subspaces of Xh is sought that takes the form WN , 1 ≤ N ≤ Nmax.

The hierarchical requirement simple means that W1 ⊂ W2 ⊂ · · · ⊂ WNmax ⊂ Xh. The

set of sample points from the parameter manifold are

SN = {µ|1, µ|2, . . . , µ|N} , where µ|i ∈ D, 1 ≤ N ≤ Nmax (72)
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The sequence of sample sets for increasing N are also hierarchical i.e. S1 ⊂ S2 ⊂

· · · ⊂ SNmax . The resulting global reduced basis space is

W u
N = span

{
uh (µ|n) , 1 ≤ n ≤ N, 1 ≤ N ≤ Nmax

}
(73)

Here uh (µ|n) ∈ Xh and µ|n ∈ SN . By construction, W u
N is hierarchical for increasing

N . Unfortunately, as the number of retained snapshots increases (i.e. as N increases),

the latter elements in the set become increasingly co-linear. The is due to the fact

that if the first n snapshots allow rapid convergence in approximating u (µ|new), then

the n + 1th snapshot onward will be linearly dependent on the first n snapshots. To

remedy this, a QR factorization technique such as the modified Gram-Schmidt or the

Householder transformation [135] can be used to extract an orthonormal basis from

W u
N . The result is a new global reduced basis space

W ζ
N = span {ζn, 1 ≤ n ≤ N, 1 ≤ N ≤ Nmax} (74)

Where 〈ζn, ζm〉X = δnm. Rozza [86] noted the significant improvement in the condition

number of the coefficient matrix of the linear algebraic system associated with the

RB method in numerical problems.

An alternative approach for generating the reduced basis is to generate samples in

the parameter domain with sampling techniques, such as random or Latin-Hypercube

sampling. The hierarchical, empirical basis is then generated by applying the Proper

Orthogonal Decomposition procedure to the associated snapshots of the solution eval-

uated at these sampled locations.

4.3.1.1 Galerkin Projection To The RB subspace

The analysis now has to be represented with respect to the new approximation space

W ζ
N ⊂ Xh. To do this, a Galerkin projection is carried out using W ζ

N as both the test

and trial space. The displacement solution, u (x;µ), projected onto W ζ
N is

uN (µ) =
N∑
j=1

uN,j (µ) ζj = ZUN (75)
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Where Z ∈ RN×N is a matrix whose columns are the elements of W ζ
N i.e. column j is

ζj ∈ RN . UN (µ) ∈ RN is a column vector whose elements are the unknown weighting

coefficients used to scale the elements of W ζ
N so as to achieve an approximation of

u (x;µ). The weak form of the problem can be represented in this new subspace

a (uN (µ) , v;µ) = f (v) , ∀v ∈ W ζ
N (76)

Substituting equation (75) into equation (76) gives

a

(
N∑
j=1

uN,j (µ) ζj, ζi;µ

)
= f (ζi) , ∀ζi ∈ W ζ

N (77)

Expanding gives

N∑
j=1

uN,j (µ) a (ζj, ζi;µ) = f (ζi) , 1 ≤ i ≤ N (78)

This can be represented as an equivalent linear algebraic system

AN (µ)UN (µ) = F (µ) (79)

After solving this system, the output can be evaluated as

sN = sN (UN (µ) , µ) (80)

Where AN (µ) ∈ RN×N is the stiffness matrix with respect to the subspace W ζ
N and

UN (µ) , F (µ) ∈ RN are the vector of weighting coefficients and forces (relative to

W ζ
N), respectively. The task is now to relate the problem developed in the physical

finite element space (equation (71)) to that in W ζ
N (equation (79)). Since ζi ∈ W ζ

N ⊂

Xh, it can be represented with the Lagrangian basis elements (ϑm associated with

Xh). Thus

ζi =
N∑
m=1

ζmi ϑm (81)

Inserting this representation into equation (77) gives

N∑
j=1

uN,j (µ) a

(
N∑
m=1

ζmi ϑm,
N∑
k=1

ζkj ϑk;µ

)
= f

(
N∑
k=1

ζki ϑk

)
, ∀i, j ∈ {1, · · · , N}

(82)
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Using the bilinearity and linearity of a (·, ·;µ) and f (·;µ), respectively, gives

N∑
j=1

uN,j (µ)
N∑
m=1

N∑
k=1

ζmi ζ
k
j a (ϑm, ϑk;µ) =

N∑
k=1

ζki f (ϑk) , ∀i, j ∈ {1, · · · , N} (83)

This results is equivalent to the linear algebraic system derived in equation (79).

AN (µ) can be represented more concisely as

AN (µ) = ZTAN (µ)Z (84)

While FN (µ) takes the form

FN (µ) = ZTFN (µ) (85)

Where AN (µ) ∈ RN×N and FN (µ) ∈ RN respectively represent the stiffness matrix

and load vector relative to the finite element space, Xh. Z ∈ RN×N is a linear

transformation which allows a change of basis from those in Xh to those in W ζ
N .

Thus, equation (84) and equation (85) are the representations of AN (µ) and FN (µ)

in W ζ
N , respectively. Early efforts with the RB method sought to first assemble AN (µ)

and FN (µ) and then project them into W ζ
N in the real time context [86]. This was

followed by solving the associated linear algebraic system equation (79) to determine

UN (µ). This approach resulted in only moderate speedups over solving equation

(55) directly, primarily due to the expense of computing equation (84). Fortunately,

thanks to the affine decomposition of a (·, ·;µ) and f (·;µ), these computation of can

be avoided in a real time context. Leveraging the affine property (equations (60)-(61))

and starting from equation (83), the relationship between AN (µ) and AN (µ) can be

determined in a more convenient fashion. To wit

N∑
j=1

uN,j (µ)
N∑
m=1

N∑
k=1

ζmi ζ
k
j

[
Qa∑
q=1

Θq
a (µ) aq (ϑm, ϑk;µ)

]
=

N∑
k=1

ζki

 Qf∑
q=1

Θq
f (µ) f q (ϑk)

 ,
∀i, j ∈ {1, · · · , N} (86)
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Rearranging gives

N∑
j=1

uN,j (µ)

Qa∑
q=1

Θq
a (µ)

N∑
m=1

N∑
k=1

ζmi ζ
k
j a

q (ϑm, ϑk;µ) =

Qf∑
q=1

Θq
f (µ)

N∑
k=1

ζki f
q (ϑk) ,

∀i, j ∈ {1, · · · , N} (87)

This can be represented more concisely as

N∑
j=1

uN,j (µ)

Qa∑
q=1

Θq
a (µ)

(
ZTAqNZ

)
=

Qf∑
q=1

Θq
f (µ)

(
ZTF q

N
)
,

∀i, j ∈ {1, · · · , N} (88)

Which leads to

N∑
j=1

uN,j (µ)

Qa∑
q=1

Θq
a (µ)AqN =

Qf∑
q=1

Θq
f (µ)F q

N ,

∀i, j ∈ {1, · · · , N} (89)

Where AqN = ZTAqNZ ∈ RN×N and F q
N = ZTF q

N ∈ RN×1 are parameter independent

terms in the affine decomposition. Equation (89) is fully equivalent to equation (79).

It provides a result that is critical for the efficiency of RB computations in real

time. Notice that AN (µ) is found by first finding the product of each parameter

dependent scalar, Θq
a (µ) ∈ R, and the associated parameter independent matrix,

AqN , for 1 ≤ q ≤ Qa. This is followed by summing the Qa products in order to form

AN (µ). FN (µ) can be found in a similar fashion.

4.3.2 Online/Offline Problem Decomposition

This convenient result allows for the separation of the RB procedure into two con-

venient stages. First, a very expensive offline process that involves calculating the

parameter independent terms, AqN and f qN , is carried out. It is important to note that

this procedure is performed only once. The second step involves an inexpensive online

procedure where the approximation to the field variable, UN (µ) is sought. Unlike the
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offline step, the online step is carried out many times and is especially suitable to the

“many-query” and “real-time” problems. The computations performed in each of the

two steps, as well as their computation costs are

� Offline: This step involves determining theNmax sample points µn ∈ SN ⊂ D on

the parameter manifold, followed by calculating the associated snapshots uh (µn)

via a full finite element model representing the problem. After orthonormalizing

W u
N to form W ζ

N , the parameter independent terms in (equation (89)) can be

determined by first assembling the parameter independent terms in the affine

representation associated with the full FE model, AqN and F q
N , and then by

performing the computations (equation (84))-(equation (85)).

� Online: The steps involves assembling the terms AN (µ) =
∑Qa

q=1 Θq
a (µ)AqN

and FN (µ) =
∑Qf

q=1 Θq
f (µ)F q

N leveraging the parameter independent terms de-

termined in the offline step. The linear algebraic system (equation (79)) can

then be solved, followed by the determination of the output of the problem

sN = sN (UN (µ) , µ).

A very important result of this problem decomposition is that the online steps are

completely independent of dimension of the original FE problem, N . Thus, regardless

of how refined the FE mesh is, the RB method’s performance is only contingent on

Qa, Qf , and N . The operation count involved in carrying out the online computation

includes

� Assembly: O (QaN
2) +O (QfN)

� Solving the linear system: In lieu of using an iterative method, the linear system

(equation (79)) can be solved in O (2/3N3) steps

� Memory storage: The online storage cost is O (QaN
2
max) +O (QfNmax)

Thus, it is apparent that the number of retained snapshots, N , plays a crucial role
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in determining the efficiency of the online phase of the RB procedure. As such, it is

desirable to have a small set W ζ
N that rapidly converges in approximating uh.

4.3.3 A-Posteriori Error Estimation

In section 4.3.2 the importance of selecting a small number of retained snapshots, N ,

was highlighted; as this is paramount to the efficiency of the online performance of

the RB method. One of the powerful additions to the RB Method framework is the

a-posteriori error estimation. The a-posteriori error estimation not only addresses the

issue of efficiency, but also provides a rigorous upper bound for the error of the output,

sN (uN (x;µ) , µ), and the field solution, uN (x;µ), from the RB approximation relative

to the corresponding quantities from the finite element “truth” approximation. Thus,

the a-posteriori error estimation establishes the reliability of the RB approximation of

these quantities. To satisfy the requirements of efficiency and reliability, the following

error estimates can be introduced

∆en
N (µ) ≈ ‖uh (µ)− uhN (µ) ‖X (90)

∆s
N (µ) ≈

∣∣sh (µ)− sN (µ)
∣∣ (91)

Where ∆en
N (µ) and ∆s

N (µ) are the error estimators for the energy norm and output,

respectively. Also, uhN is the representation of uN in the Lagrangian basis associated

with X. The remaining quantities are as previously defined. The requirements for

these error estimators are that they need to be reliable, sharp, and inexpensive to

compute. Further, the effectivities of these error estimators can be defined as

ηenN (µ) =
∆en
N (µ)

‖uh (µ)− uhN (µ) ‖X
(92)

ηsN (µ) =
∆s
N (µ)

|sh (µ)− sN (µ)|
(93)

Leveraging ηenN (µ) and ηsN (µ) the reliability and sharpness requirements can be quan-

tified. This is done, for example with ηenN (µ) as

1 ≤ ηenN (µ) ≤ ρ (94)
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Where ρ ≈ 1. There rigor and reliability requirement is ensured by enforcing that

the effectivities are greater than 1, while the sharpness is enforced by seeking an

upper bound, ρ, that is close to 1; thus, not grossly over-predicting the error. In

online usage, the error estimators are useful for determining the minimum number of

retained snapshots that are needed for a certain level of accuracy. Thus, the problem

can be stated as, find the minimum number of retained snapshots, Nmin, such that

∆s
N ≤ εsmax (95)

∆en
N ≤ εenmax (96)

Where εsmax and εenmax are suitably chosen error limits for the output and field variable,

respectively. Veroy [133] derives expedient error estimators that were leveraged for

linear elasticity problems.

4.4 Chapter Summary

In this chapter, the abstract finite element problem was presented for the linear elasto-

static solid mechanics problem. This was followed by the inclusion of reduced basis

approximation for expediting the analysis. The work in the rest of this thesis builds

upon the fundamental platform laid out in this chapter.
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Chapter V

SCRBE APPROACH FOR GENERATING

CONSTRAINTS

5.1 Chapter Overview

The purpose of this chapter is to provide the development of the SCRBE approach.

First, a high level overview of how the SCRBE method is used in the optimization

procedure is given. This is so as to facilitate an easier transition into the more

demanding mathematical content associated with the SCRBE method. After this,

the mathematical details in using the SCRBE method in evaluating the constraints

of interest and their sensitivities are presented. Furthermore, an approach is proposed

for determining empirical subspaces that can approximate the state variable and its

derivatives on the interfaces of the problem domain. Finally, the detailed offline and

online procedures of the method are highlighted.

5.2 High Level Overview Of The SCRBE approach

The optimization problem of focus was presented in chapter 3. The main steps in-

volved in addressing this problem are presented in figure 28. The procedure begins

with the prescription and assembly of the global, physical problem domain. As men-

tioned in chapter 1, the physical problem domain is made up of several sub-domains

that are each formed from an archetype or reference component coming from a library.

The basic idea of this approach is presented in figures 30 and 31. After the prob-

lem domain has been assembled, boundary conditions can be specified and applied.

These can include tractions (such as pressure fields) and imposed displacements on

the boundary of the model. These boundary conditions can be parametric in order
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to reflect various scenarios of interest to the designer. After these ingredients have

been specified, the optimization procedure can be performed.

A simplified illustration of the numerical optimization procedure is shown in figure

29. Under the NAND paradigm, at each step of the optimization procedure, a vector

of parameters, µ, is passed into the function call module. This function call module in

turn returns snapshots of the objective function, the constraints and their gradients

corresponding to the parameter set. In the present context, the former is the mass of

the assembled domain. The inner working of the function module is shown graphically

in figure 30. The parameter vector, µ, is used to update the problem domain (e.g.

geometry and/or material properties) and the boundary conditions. The mass of the

updated physical problem domain and its gradient are determined and passed to the

optimizer. Both the updated physical problem domain and boundary conditions are

then passed to the constraint evaluation module so that the constraints and their

gradients can be determined.
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Figure 28: Flowchart for the optimization problem
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Optimizer 

Function call 

𝜇 
𝑔𝑗(𝑢 𝜇 , 𝜇) 

𝛻𝑔𝑗(𝑢 𝜇 , 𝜇) 

𝑚(𝜇), 𝛻𝑚(𝜇) 

Figure 29: A simplified illustration of a function call during optimization

Update Problem 

Domain + Boundary 

Conditions  

Evaluate 

Mass 

𝜇 

𝑔𝑗(𝑢 𝜇 , 𝜇) 

𝛻𝑔𝑗(𝑢 𝜇 , 𝜇) 
Constraint 

Evaluation 

𝑚(𝜇), 𝛻𝑚(𝜇) 

Ω(𝜇) 

Figure 30: The operations associated with a function call
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Library of M archetype components Instantiated domain 

Figure 31: The use of archetype components to construct a problem domain for a

wingbox example
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Ω 2 
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Ω2(𝜇2) 

ΩNc
(𝜇𝑁𝑐) 
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Ω3(𝜇3) 

Group of 

𝑁𝑟𝑒𝑓  archetype 

components 

𝑁𝑐 - instantiated 

components 

Assembled 

Problem Domain 

Figure 32: Domain assembly procedure
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Step I: Component Level Assembly

• Local stiffness terms (eq. 156)

• Local force terms (eq. 157)

• Solution recovery mappings 

(eq. 128,160)

Step II – Assemble Global Schur 

Complement (eq. 155,159)

Step III – Global Interface Solution

• Interface Solution (eq. 155)

• Interface Solution Derivative 

(eq. 159)

Step IV – Evaluate Constraints

(eqs. 161-170)

𝜇

𝑔𝑗(𝑢 𝜇 , 𝜇)

𝛻𝑔𝑗(𝑢 𝜇 , 𝜇)

𝑢𝑠 𝜇 , 𝛻𝑢𝑠 𝜇

𝕂𝑢𝑢 𝜇 , 𝛻𝕂𝑢𝑢 𝜇

𝔽𝑢 𝜇 , 𝛻𝔽𝑢 𝜇

𝔽𝑢
𝑖 𝜇 , 𝛻𝔽𝑢

𝑖 𝜇

𝕂𝑢
𝑖 𝜇 , 𝛻𝕂𝑢

𝑖 𝜇

ഥ𝑈𝑏,𝐺𝑄
𝑖 , 𝑈𝑏,𝐺𝑄

𝑖 𝜇𝑖 , 𝑏𝑖,𝐺𝑄
𝑓,ℎ

(𝜇𝑖)

∇𝑈𝑏,𝐺𝑄
𝑖 𝜇𝑖 , ∇𝑏𝑖,𝐺𝑄

𝑓,ℎ
(𝜇𝑖)

Figure 33: The procedure with the Constraint Evaluation module

The main structure of the constraint evaluation module, along with references to

the associated equations are presented in figure 33. Within this module, there are four

major steps that are performed. Steps I and IV occur at the local component level;

while steps II and III occur at the global level of the interconnected system. Step I

is concerned with the calculation of the local contributions to the Schur complement

linear algebraic system, as well as the terms required to recover the state variable on

each component. For the former case, these are the contributions to the coefficient

stiffness matrix, as well as to the right-hand side of the system. For the latter, these

are certain mappings that work in tandem with the state variable on the interface

between the components to recover the solution on their interior. In step II, the

global Schur complement system is formed from the contributions collected from

the individual components in the problem domain. The connectivity of the linear

algebraic system is reflected by the connectivity of the components through their

interfaces. Step III follows. Here, the state variable and its gradient prescribed

88



on the interfaces between the components are determined. The resulting interface

solution fields are then passed along with the solution recovery mappings (from step

I) to the procedure in step IV in order to evaluate the constraints and their derivatives

on the problem domain.

5.3 Static Condensation Applied To A System Of Compo-
nents

Now that the high level overview of the procedure has been presented, the mathemat-

ical development will now be given in detail. The presentation in this section builds

upon the work presented by Eftang [81, 109]. As such, this includes shared notation

and sequencing of the development; particularly in subsections 5.3.1 through 5.3.5.

5.3.1 System of Components And Interfaces

5.3.1.1 Reference Components

The SCRBE approach begins with the prescription of a set of unique components

that can be copied, modified and then configured into a wide variety of final, physical

problem domains. The resulting global, physical problem domains all share the same

underlying mathematical model; and some behavior of interest can simulated therein.

These components are referred to as “reference” or “archetype” components. The

reduced order models are specified at the level of the reference components and are

created during a laborious offline process. The behavior of each of these components

is studied both individually and in local neighborhoods of interacting components.

The quantity of archetype components studied during the offline stage will be de-

noted by Nref. Each of these archetype components has a reference physical domain,

Ω̂m ∈ Rd where d ∈ {2, 3}. The boundary of an archetype component’s physical do-

main is represented as ∂Ω̂m. It is formed by a set of nem ∈ N local edges
(

if ∂Ω̂m ∈ R1
)

or local faces
(

if ∂Ω̂m ∈ R2
)

. In what follows, both component boundary types will

be referred to as edges for simplicity of notation. Each local edge is represented as
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êm,j ⊆ ∂Ω̂m, 1 ≤ j ≤ nem. On each archetype component, pairs of adjacent local

edges meet at a local vertex, i.e. ¯̂em,j ∩ ¯̂em,j′ 6= ∅1 for 1 ≤ j, j′ ≤ nem, and further,

∂Ω̂m =

nem⋃
j=1

¯̂em,j. A local vertex that is formed from the intersection of two adjacent

local edges, ¯̂em,j and ¯̂em,j′ is denoted by v̂m,j,j′ . Finally, each archetype component

has a set of parameters (or design variables), µ̂m ∈ Dm ⊂ RPm , for 1 ≤ m ≤ Nref.

5.3.1.2 Instantiation Of Components And Physical Problem Domains

During the online stage of the method, a system of components is instantiated from

the set of reference components. The quantity of instantiated components is denoted

asNc. Each of these instantiated components can be uniquely mapped to an archetype

component. This is denoted by the mapping G : {1, ..., Nc} → {1, ..., Nref}. This type

of mapping is often used in the SCRBE literature and is repeated here. During the

instantiation procedure, a local parameter vector, µi, is used to update the properties

of the associated component, i.e. component i. This can include the parameterization

of a domain mapping applied to its local physical domain. This takes the form of:

Ωi = Ti
(

Ω̂G(i)

)
, ei,j = Ti

(
êG(i),j

)
and vi,j,j′ = Ti

(
v̂G(i),j,j′

)
, 1 ≤ i ≤ Nc. The geometric

mappings, Ti, were already discussed in section 4.2.7.

Using these instantiated components as building blocks, the complete physical

domain, Ω, can now be represented as Ω =
Nc⋃
i=1

Ωi. In words, as the non-overlapping

intersection of the instantiated components’ physical domains. The underlying com-

ponents are connected to each other at the local edges, ei,j, and/or at local vertices,

vi,j,j′ . When the instantiated components are connected by their local edges, the local

collection is referred to as a global edge, Ep, 1 ≤ p ≤ nE0 . The set of all the global edges

is designated as: E = {E1, . . . EnE0 }. Two convenient mappings discussed in [104,105],

will now be introduced. The first corresponds to the connectivity of global edges and

is represented as the connectivity map, πEp , 1 ≤ p ≤ nE0 . A global edge formed by the

1The notation ·̄ is used to represent the “closure” of the physical domain
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meeting of two local edges, ei,j and ei′,j′ 1 ≤ i, i′ ≤ Nc, 1 ≤ j ≤ neG(i), 1 ≤ j′ ≤ neG(i′),

can be represented by πEp = {(i, j), (i′, j′)}. Similarly, a global edge with only one

local edge can be represented as πEp = {(i, j)}. This mapping can be trivially ex-

tended to situations wherein more than three congruent, local edges meeting at a

global edge; however, for simplicity, this is not represented explicitly in this work.

A subset of these global edges, nE ≤ nE0 , are those upon which Dirichlet boundary

conditions are not imposed. These make up the edges on the interior of the system’s

problem domain, as well the parts of the domain’s periphery on which tractions can

be applied or that are left free. The second is: for each instantiated component, i,

1 ≤ i ≤ Nc, a local-to-global map Ci is applied to a local edge j, 1 ≤ j ≤ neG(i). This

map then links a local edge, ei,j to a global edge, Ep, as Ci(j) = p.

As mentioned previously, the edges in the problem domain are allowed to intersect.

The global vertices are designated by Vz, 1 ≤ z ≤ nV,0, where nV0 is the total number

of global vertices in the assembled domain, Ω. In a similar fashion to the global edges,

the set of all the global vertices is designated as: V = {V1, . . . VnV0 }. A subset of the

vertices, nV ≤ nV0 , are those that do not belong to the boundary segment ∂ΩD i.e.

the region where known Dirichlet boundary conditions are applied. The global edges

that meet at an individual global vertex, Vz, can be identified through the use of

connectivity maps, πVz . As an example, consider a global vertex which is formed by

the intersection of the closure of four global edges (see figure 35), i.e. Vz = Ēp∩ Ēp′ ∩

Ēp′′∩Ēp′′ . The connectivity map in this case can be represented as, πVz = {p, p′, p′′, p′′′}

for 1 ≤ z ≤ nV and 1 ≤ p, p′, p′′, p′′′ ≤ nE0 . Illustrations of an archetype component,

followed by its instantiation and inclusion into a working system is shown in figures 34

and 35. The key idea of the instantiation of reference components and their inclusion

in the formation of the global physical problem domain is illustrated in both figures

30 and 31.

The global parameter or design variable vector of the entire system, µ, is made
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up of the parameter domains defined on the each of the local components and aux-

iliary parameters (such as those defining boundary tractions or parametric Dirichlet

boundary conditions). The auxiliary parameters are designated as: Daux ∈ Rpaux with

paux ∈ N. Using this designation, the global parameter domain defined for the global

problem can be defined as: D ⊆ DG(1) ×DG(2) × · · · × DG(Nc) ×Daux.

𝑒 𝑚,1 

𝑒 𝑚,4 

𝑒 𝑚,2 𝑒 𝑚,3 

𝑣 𝑚,1,2 𝑣 𝑚,1,3 

𝑣 𝑚,2,4 𝑣 𝑚,3,4 

Ω 𝑚 

𝑒𝑖,1 

𝑒𝑖,4 

𝑒𝑖,2 𝑒𝑖,3 

𝑣𝑖,1,2 𝑣𝑖,1,3 

𝑣𝑖,2,4 𝑣𝑖,3,4 

Ω𝑖 

(a) Reference Component (b) Instantiated Component 

Figure 34: An illustration of an archetype component followed by its instantiation

5.3.2 Billinear Form, Linear Functional And Finite Element Space

Each of theNref components has a parameter-dependent, affine billinear form, âm (·, ·;µm) :(
H1(Ω̂m)

)d
×
(
H1(Ω̂m)

)d
× Dm → R for (d = {1, 2, 3}), and a linear functional,

f̂m (·;µm) :
(
H1(Ω̂m)

)d
×Dm → R, prescribed over its domain. An important prop-

erty for both the billinear and linear functionals is that they should possess the affine

or separable property. This takes the form:

âm (·, ·;µm) =

Qa∑
q=1

θaq (µm)âm (·, ·)

f̂m (·;µm) =

Qf∑
q=1

θfq (µm)f̂m (·)

(97)

In this type of decomposition, there are parameter independent terms (âm (·, ·) and

f̂m (·)) that are scaled by parameter dependent scalars
(
θaq (µm) and θfq (µm)

)
to form
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Examples of connectivity maps: 
• Global map for edge     𝐸4:   𝜋𝐸

4 = { 1,3 , (2,2)} 
• Global map for vertex   𝑉5:    𝜋𝑉

5 = {4, 6, 7, 9} 

𝐸1 𝐸2 

𝐸3 𝐸4 𝐸5 

𝐸8 𝐸9 𝐸10 

𝐸11 𝐸12 

𝐸6 𝐸7 

𝑉1 𝑉2 𝑉3 

𝑉4 𝑉5 𝑉6 

𝑉7 𝑉8 𝑉9 

Ω1 Ω2 

Ω3 Ω4 

Figure 35: An illustration of an assembled problem domain using the components
from figure 34

their respective output functional. This allows for a separation of the offline and online

stages of the Reduced Order Modeling (ROM) and has been shown to considerably

increase the efficiency of “many-query” or “real-time” problems. If this is not satisfied,

then the Discrete Empirical Interpolation Method (DEIM) [134] approach is often

used in literature to create an approximation of the desired form.

The local, high-dimensional, discrete finite element space, X̂h
m of size Nm, is now

introduced as the function space used to provide an approximation of the solution

within the mth component. The trace of this finite element function space, restricted

to the closed domain of an edge, is referred to here as the edge space and is defined

as, P̂ h
m,j ≡ X̂h

m

∣∣∣
¯̂em,j

, 1 ≤ j ≤ nem, and is of dimension Nm,j. The designation of the

trace space and the associated basis was used in [109]. The basis functions for each
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edge space are denoted by {χ̂m,j,k}
Nm,j
k=1 . Expanded, it is written as:

P̂ h
m,j = span

{
χ̂m,j,1, ..., χ̂m,j,NG(i),j

}
(98)

The local finite element space defined for an instantiated component mapped to

the FE space defined over the corresponding reference domain is

Xh
i = span

{
T roti

(
v ◦ T −1

i

)
, v ∈ X̂h

G(i)

}
; (99)

Similarly, the basis elements in the edge space, P h
i,j, on an instantiated component

can be mapped to the corresponding reference edge space, P̂ h
G(i),j, as

χi,j,k = T roti

(
χ̂G(i),j,k ◦ T −1

i

)
, 1 ≤ j ≤ neG(i), 1 ≤ i ≤ Nc, 1 ≤ k ≤ NG(i),j; (100)

Thus, the discrete edge space on an instantiated component can be represented as

P h
i,j = span

{
χi,j,1, ..., χi,j,Ni,j

}
(101)

Here, [·] ◦ T −1
i is similar to the geometric map discussed in section 4.2.7. The map

T roti (·) is applied to reference component to properly orient it for “docking” to a

global edge [81].

Congruency is enforced on the global interfaces between components. For the

edges interfacing at a global edge, Ep, we have:

P h
i,j = P h

i′,j′ (102)

Here, the indices are governed by the connectivity map associated with the global

edge, i.e. πEp . In other words, the underlying finite element discretization must

“match” at the each global edge. Similarly, for the global edges interfacing at a global

vertex, Vz, we must have congruency of the associated edge spaces at the vertex. In

the event that the problem domain is planar, this is trivially satisfied because the

interfacing edges all intersect at a single node.
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The bilinear form and linear functionals for the system can be introduced ∀v, w ∈

(H1(Ω))
d

as

a(w, v;µ) =
Nc∑
i=1

âG(i)

((
T roti

)−1 (
v|Ω̄i ◦ Ti

)
,
(
T roti

)−1 (
w|Ω̄i ◦ Ti

)
;µi

)
(103)

and

f(w;µ) =
Nc∑
i=1

f̂G(i)

((
T roti

)−1 (
w|Ω̄i ◦ Ti

)
;µi

)
(104)

The global space, X(Ω), discussed in section 4.2.4 is reused here. To this point,

it is assumed that the domain is suitably constrained so that the bilinear operator

remains coercive over X(Ω). The global finite element approximation space can now

be expressed as

Xh(Ω) = ⊕Nci=1X
h
i (Ωi) ∩X(Ω) (105)

The size of this space is N . The intersection is included so as to “preserve the

boundary conditions and the global continuity of X(Ω)” [81].

5.3.2.1 Global Finite Element Problem

Finally, the global finite element problem to be solved can be stated as: ∀µ ∈ D, find

uh(µ, x) ∈ Xh(Ω) such that

a
(
uh(µ, x), v;µ

)
= f (v;µ) , ∀v ∈ Xh(Ω); (106)

with the outputs of interest:

� Constraints: g`(u
h(µ, x), µ) for 1 ≤ ` ≤ ng.

Here ng is the number of constraints that are dependent on the state variable.

5.3.3 Static Condensation - Edge and Vertex Modes

In the static condensation procedure, the global finite element problem is written

in terms of the degrees of freedom on the interfaces between the components on

the problem domain; i.e. the union of all the global edges and global vertices. The

degrees of freedom corresponding to the state variable on the interior of the component
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domains are first condensed and written in terms of the solution on the interfaces.

Consequently, the discrete global finite element space, Xh (Ω), is decomposed into,

bubble spaces, defined on the interior of each component and, interface spaces, defined

on the edges and vertices.

In the initial set of papers in the SCRBE literature, the component domains were

assembled in such a way that the global edges did not intersect with each other.

Consequently, modes from the edge space P h
i,j - defined on each component boundary

- could be selected without the need for special modifications. In order to remove this

limitation, later papers (Bader [114]) pursued a space decomposition approach and

allowed the global edges to intersect. This type of space decomposition approach is

commonly used in domain decomposition FEM approaches [136]. The state variable

was expressed on the interfaces with a combination of vertex modes and edge modes.

The vertex modes chosen were the hat functions defined on the coarse grid formed by

the component boundaries. These modes have a non-zero value at the vertex about

which they are defined and a value of zero at all other vertices. They also have a

linear variation over the edges that are coincident with the vertex. On the other

hand, the edge modes were chosen to have support2 over the open domain of each

edge, and would vanish at the global vertices bounding the edge. These two mode

types are illustrated in figure 36.

For the present work, a similar decomposition of the interface solution will be

pursued. These modes come from the edge spaces, P h
i,j, and share the same support

as the modes already defined in this section.

For each global edge, Ep, the edge modes are represented as:

χEp,k, 1 ≤ k ≤ NEp (107)

Where NEp is the number of modes used to represent the solution on the global edge

2The support of a function, f(x), is defined as: supp(f) =
{
x ∈ Ω̄ : f(x) 6= 0

}
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Assembled Problem Domain 

Vertex Mode 
Assembled Problem Domain 

Edge Mode 

(a) (b) 

Figure 36: An illustration of the vertex modes and edge modes used to express the
solution on the interfaces

Ep. To enable model reduction, we require that the edge modes come from a subspace

of the edge space, P h
i,j. This subspace should be hierarchical and allow for rapid

convergence to approximation of the state variable on the interface as the number of

modes is increased. An approach to furnish an empirical subspace satisfying these

properties is provided in section 5.4.1.

For each global vertex, Vz, the vertex modes are defined as:

χVz,k′ , 1 ≤ k′ ≤ NVz (108)

Here NVz is the number of modes used to represent the solution on the global vertex

Vz.

5.3.4 Static Condensation - Interface Mode Extensions And Bubble So-
lutions

The process of static condensation begins by the specification of the bubble spaces

on each of the archetype components. They are defined as:

B̂h
m;0 =

{
v ∈ X̂h

m : v|êm,j = 0, 1 ≤ j ≤ nem

}
; (109)

The elements of B̂h
m;0 vanish on the local edges of each component. An example of

a bubble function defined on the interior of a component is illustrated in figure 37.
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The analogous bubble space defined on an instantiated component i is Bh
G(i);0.

Figure 37: An illustration of a bubble space function

Now that the bubble space has been defined, the next task to define the extension

of each edge and vertex mode into the interior of the neighboring components. In the

initial set of papers in the SCRBE literature, the interface modes were “lifted” into

interior of the component such that weak form of the Laplacian PDE was satisfied

by the extension on the component domain. This was referred to as the harmonic

extension. The literature suggests that one is free to chose the elliptical partial

differential equation that is used to determine the extension of the interface mode

into the interior of the component. As such, the approach taken by [115] will be

used because of convenience. The extension of a particular edge mode, χEp,k, into the

interior of the components that surround the global edge will be referred to as: ΨE,h
p,k .

For each component adjacent to the edge, Ωi, the local extension into its interior is

designated as: ΨE,h
p,k

∣∣∣
Ω̄i

. The local extension ΨE,h
p,k

∣∣∣
Ω̄i

must satisfy:

aG(i)

(
ΨE,h
p,k

∣∣∣
Ω̄i
, v; µ̄

)
= −aG(i)

(
χEp,k

∣∣
Ω̄i
, v; µ̄

)
, ∀v ∈ Bh

G(i);0 (110)

Here, µ̄ is a randomly chosen, but fixed value in the parameter space of the local

98



component. In a similar fashion, the extension of a vertex mode, χVz,k′ , into the

interior of the adjacent components will be denoted to as: ΨV,h
z,k′ . The local extension

into component, Ωi is found by solving:

aG(i)

(
ΨV,h
z,k′

∣∣∣
Ω̄i
, v; µ̄

)
= −aG(i)

(
χVz,k′

∣∣
Ω̄i
, v; µ̄

)
, ∀v ∈ Bh

G(i);0 (111)

The global extension of the edge modes can be written concisely as:

ΨE,h
p,k =

⋃
i∈πEp

ΨE,h
p,k

∣∣∣
Ω̄i

(112)

Similarly, the global extension for the vertex modes is written as:

ΨV,h
z,k =

⋃
i∈πVz

ΨV,h
z,k

∣∣∣
Ω̄i

(113)

The extensions for both the edge and vertex modes are calculated during the once

and for all during the offline stage of the procedure.

The static condensation approach seeks to remove the degrees of freedom corre-

sponding the state variable expressed on the interior of the component domains. As

such, these solutions are expressed in terms of the degrees of freedom on the inter-

face. For each interface mode, we desire to find the bubble solution on a component

that is induced from a unit perturbation of the mode. The bubble solution induced

by a global extension mode, ΨE,h
p,k , is designated as, bE,hp,k . The corresponding local

terms defined on a component, Ωi, are: ΨE
p,k

∣∣
Ω̄i

and bE,hp,k

∣∣∣
Ω̄i

, respectively. The bubble

solution, bE,hp,k

∣∣∣
Ω̄i

, is obtained by solving the following equation:

aG(i)

(
bE,hp,k

∣∣∣
Ω̄i
, v;µ

)
= −aG(i)

(
ΨE,h
p,k

∣∣∣
Ω̄i
, v;µ

)
, ∀v ∈ Bh

G(i);0 (114)

using the linearity of the system, we have:

aG(i)

(
ΨE,h
p,k

∣∣∣
Ω̄i

+ bE,hp,k

∣∣∣
Ω̄i
, v;µ

)
= aG(i)

(
ΦE,h
p,k

∣∣∣
Ω̄i
, v;µ

)
= 0, ∀v ∈ Bh

G(i);0 (115)
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The term ΦE,h
p,k

∣∣∣
Ω̄i

is referred to as the fundamental solution defined on the interior of

a component Ωi. The analagous bubble solution bVz,k′
∣∣
Ω̄i

induced by the extension of

the vertex mode extension, ΨV,h
z,k′ , is determined by:

ai

(
bV,hz,k′

∣∣∣
Ω̄i
, v;µ

)
= −ai

(
ΨV,h
z,k′

∣∣∣
Ω̄i
, v;µ

)
, ∀v ∈ Bh

G(i);0 (116)

with the associated fundamental solution determined by

aG(i)

(
ΨV,h
z,k′

∣∣∣
Ω̄i

+ bV,hz,k

∣∣∣
Ω̄i
, v;µ

)
= aG(i)

(
ΦV,h
z,k′

∣∣∣
Ω̄i
, v;µ

)
= 0, ∀v ∈ Bh

G(i);0 (117)

The global fundamental solution corresponding to an edge mode is:

ΦE,h
p,k =

⋃
i∈πEp

ΦE,h
p,k

∣∣∣
Ω̄i

(118)

for components i defined on the map, πEp . Similarly for the vertex mode,

ΦV,h
z,k =

⋃
i∈πVz

ΦV,h
z,k

∣∣∣
Ω̄i

(119)

Using these elements, we now define the following function subspaces that will be

used later on during the Galerkin and Petrov-Galerkin stages for the static conden-

sation procedure. These subspace groups are:

SEasymm (Ω) ≡
{

ΨE,h
p,k , 1 ≤ p ≤ nE, 1 ≤ k ≤ NEp

}
SVasymm (Ω) ≡

{
ΨV,h
z,k′ , 1 ≤ z ≤ nV , 1 ≤ k′ ≤ NVz

}
Sasymm (Ω) ≡

{
v : v ∈ SEasymm (Ω) ∪ SVasymm (Ω)

} (120)

and

SEsym (Ω) ≡
{

ΦE,h
p,k , 1 ≤ p ≤ nE, 1 ≤ k ≤ NEp

}
SVsym (Ω) ≡

{
ΦV,h
z,k′ , 1 ≤ z ≤ nV , 1 ≤ k′ ≤ NVz

}
Ssym (Ω) ≡

{
v : v ∈ SEsym (Ω) ∪ SVsym (Ω)

} (121)

The final ingredient that has to be developed before we are able to express the

global solution of the problem is bubble solution that is induced when traction is
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applied directly on the interior of the component domain (e.g. a pressure field).

Given a traction defined directly on the interior of the component domain, the bubble

solution bf,hi is obtained by solving:

aG(i)

(
bf ;h
i (µ), v;µ

)
= fG(i) (v;µ) , ∀v ∈ Bh

G(i);0 (122)

5.3.5 The Schur Complement

Using these fundamental solutions and the traction-induced bubble solutions, the

global solution is now defined as:

uh(µ) =
nE∑
p=1

NEp∑
k=1

Up,k (µ) ΦE,h
p,k +

nV∑
z=1

NVz∑
k′=1

Uz,k′ (µ) ΦV,h
z,k′ +

Nc∑
i=1

bf,hi (123)

Notice that with the exception of the traction-induced bubble solution, the global

state variable is written in terms of the degrees of freedom on the interfaces i.e.

Up,k (µ) and Uz,k′ (µ) defined on the global edges and vertices respectively. This

global solution is also referred to as the trial solution.

The task is now to determine the state variable on the interfaces of the problem

domain. In the literature for SCRBE, there are two approaches used to determine

the unknowns degrees of freedom. The most common approach is to use the subspace

Ssym (Ω) as the test space in the Galerkin projection procedure. The resulting system

takes the form:

a
(
Φh(µ), v;µ

)
us(µ) = f (v;µ)−

Nc∑
i=1

a
(
bf ;h
i (µ), v;µ

)
, ∀v ∈ Ssym (Ω) (124)

where Φh(µ) ∈ Ssym (Ω). Switching from the abstract form of the global system, the

discrete version of the system can be written as:

Kuu(µ)Us(µ) = Fu(µ) (125)

and is of dimension Nsc. Here Kuu(µ)3 represents the global stiffness matrix; Us(µ)

3The Schur complement stiffness matrix is represented here as Kuu(µ) instead of Auu(µ) as is often
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represents the vector of unknown coefficients for the interface state variable; Fu(µ)

represents the sum of the global force vector consisting of traction applied directly to

the interfaces in the problem domain and the induced forces on the interfaces due to

traction-induced bubble solutions bfi (µ) (i.e.
∑Nc

i=1 Kub(µ)bfi (µ)). The elements of the

Schur complement are formed at the component level and then assembled into the

global system by use of the Direct Stiffness Method [137]. At the component level,

we have:

Ki
uu,((m,k),(m′,k′))(µ) = ai

(
Φg,h
m,k

∣∣∣
Ω̄i
, Φg′,h

m′,k′

∣∣∣
Ω̄i

;µ

)
(126)

Fiu,(m′,k′)(µ) = f

(
Φg′,h
m′,k′

∣∣∣
Ω̄i

;µ

)
− a

(
bf ;h
i (µ), Φg′,h

m′,k′

∣∣∣
Ω̄i

;µ

)
(127)

Here, Φg,h
m,k, Φg′,h

m′,k′ ∈ Ssym (Ω) are used generically to refer to either of the fundamental

solutions induced by the edge or vertex modes.

A less commonly used approach is to select the function subspace Sasymm and per-

form the Petrov-Galerkin procedure instead of the Galerkin procedure when creating

the weak form of the PDE. This approach was developed by Eftang [81]. Using this

approach leads to the following system.

a
(
Φh(µ), v;µ

)
Us(µ) = f (v;µ)−

Nc∑
i=1

ai

(
bf ;h
i (µ), v;µ

)
, ∀v ∈ Sasymm (Ω) (128)

The discrete system takes a similar form to equation 125 except for the fact that

the coefficient matrix Kuu(µ) is not symmetric. This can be seen by examining the

contributions to the Schur complement at the component level

Ki
uu,((m,k),(m′,k′))(µ) = ai

(
Φg,h
m,k

∣∣∣
Ω̄i
, Ψg′,h

m′,k′

∣∣∣
Ω̄i

;µ

)
(129)

Fiu,(m′,k′)(µ) = f

(
Ψg,h
m′,k′

∣∣∣
Ω̄i

;µ

)
− a

(
bf ;h
i (µ), Ψg,h

m′,k′

∣∣∣
Ω̄i

;µ

)
(130)

The lack of symmetry was handled by performing the following operation to recover

done in Reduced Basis Approximation literature. This was done to cater to a structural/aerospace
design audience
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symmetry:

Ki
uu,((m,k),(m′,k′))(µ) =

1

2
ai

(
Ψg,h
m,k

∣∣∣
Ω̄i
, Φg′,h

m′,k′

∣∣∣
Ω̄i

;µ

)
+

1

2
ai

(
Φg,h
m,k

∣∣∣
Ω̄i
, Ψg′,h

m′,k′

∣∣∣
Ω̄i

;µ

)
(131)

The Petrov-Galerkin procedure is advantageous for the following reasons:

� Less computational time is required to assemble the Schur complement contri-

butions during the online stage

� There is less memory overhead when storing the associated affine matrices

� Less computational time is required to create the underlying components during

the offline stage of the procedure

For these reasons, the Schur complement furnished by the Petrov-Galerkin procedure

will be used for the remainder of this section.

5.3.6 Recovering The State Variable On The Interior Of The Components

A pair of mappings will now be defined in order to conveniently recover the state

variable on the interior of each component. These mappings are:

U i
b : DG(i) × RNsc → RNbi (132)

Ū i
b : RNsc → RNbi (133)

Here Nbi corresponds to the number of degrees of freedom used to represent the

state variable on the interior of the domain Ωi. The columns of the first mapping,

U i
b(µi) ∈ RNbi×Nsc , correspond to the bubble solutions that are induced by the exten-

sion of each interface mode defined on the component’s boundary; i.e. bE,hp,k

∣∣∣
Ω̄i

and

bV,hz,k′
∣∣∣
Ω̄i

. Similarly, the columns of Ū i
b ∈ RNbi×Nsc are formed from the extensions of

the interface modes defined on the component’s boundary; i.e. ΨE,h
p,k

∣∣∣
Ω̄i

and ΨV,h
z,k′

∣∣∣
Ω̄i

.

The column that each entry is placed in is governed by the location of the associated

degree of freedom in the vector, Us. Clearly, both mappings are sparse since only a

small fraction of the interface degrees of freedom will correspond to the bubble solu-

tions and extensions of a given component. This is especially true for large problem
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domains containing many components.

Using these mappings; the traction induced bubble solution, bf ;h
i (µ); and, the

global interface solution, Us(µ); the complete solution on the interior of a component,

U(µ)|Ω̄i , can be recovered as:

U(µ)|Ω̄i =
[
Ū i
b + U i

b(µi)
]
Us(µ) + bf ;h

i (µ) (134)

5.3.7 Inequality Constraints On Each Component

In this section, an overview will be given on how the inequality constraints are treated

under the present framework. The constraints are defined locally on each of the

components in the problem domain. Thus, the material strength and structural

stability constraints are all evaluated on the component’s physically domain Ωi

5.3.7.1 Bound Constraints

Consider an arbitrary inequality constraint, g = g(U (µ, x)|Ω̄i , µ), defined on the

interior of a generic component’s physical domain, Ωi. The continuous, induced ex-

ponential constraint-aggregation functional applied to this constraint takes the form:

cIE(ρ, g) =

∫
Ωi
geρgdΩi∫

Ωi
eρgdΩi

(135)

Since the inequality constraint is not available in an analytical form, the functional

has to be approximated by the use of numerical integration. In particular, by the use

of the Gaussian quadrature. The discrete form can be expressed as:

c̃IE(ρ, g) =

∑n
℘=1

w℘

ws
g|℘eρ(g|℘−max(g|℘))∑n

℘=1
w℘

ws
eρ(g|℘−max(g|℘))

(136)

Where:

� w℘ is the Gaussian quadrature weight at node j

� ws is the sum of the Gaussian quadrature weights, ws =
∑n

℘=1 w℘

� ρ is the aggregation parameter that controls the functional approximation
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� g|℘ is the inequality constraint evaluated at node ℘

The argument of the exponential function is shifted in order to avoid numerical ill-

conditioning as g℘ → ∞. With this formulation, the constraint only needs to be

evaluated in the vicinity of the Gaussian quadrature nodes on the component domain.

This is illustrated in figure 38.

Gaussian Quadrature 
Sampling Locations 

Figure 38: Sampling points for the Gaussian quadrature on the finite element mesh
using 2 sampling points in each direction

In the context of aerospace structural analysis, it is very common to discretize the

problem domain with triangular or quadrilateral finite elements and use a lower order

polynomial approximation subspace with Lagrangian basis functions. In this work,

consideration is restricted to approximation spaces of this kind. In this context, in

order to determine the discrete constraint aggregate, we only need the state variable

on the nodes in the vicinity of the quadrature sampling points. These values are then

used to calculate the inequality constraints at the quadrature sampling points, and

then ultimately, used to calculate the discrete constraint aggregate. Consequently,

the induced constraint aggregate can be represented as:

c̃IE = c̃IE

(
ρ, g

(
U(µ)|Ωi,GQ

)
, µ
)

(137)
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Γ 𝜇𝑖) 

 

(a) 

(b) 

𝜇i 

Figure 39: Use of the state variable to furnish an approximation of the constraints.
(a) Constraint aggregate (b) Buckling Constraint

where U(µ)|Ωi,GQ is used to restrict the state variable to the nodes in the vicinity of

the Gaussian quadrature sampling points. Using this restriction, the expression for

the state variable on the interior of the components can be similarly restricted as:

U(µ)|Ωi,GQ =
[
Ū i
b,GQ + U i

b,GQ(µi)
]
Us(µ) + bf ;h

i,GQ(µ) (138)

5.3.7.2 Structural Stability Inequality Constraints

The average boundary loads are determined with the Gaussian quadrature in a similar

fashion the bound-constraint. The approximate integration takes the form.
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NΓv
xx,avg ≈

1

Avs

n∑
℘=1

w℘N
Γv
xx,℘

(
U(µ)|ΓvΩi,GQ

, µi

)
(139)

NΓv
yy,avg ≈

1

Avs

n∑
℘=1

w℘N
Γv
yy,℘

(
U(µ)|ΓvΩi,GQ

, µi

)
(140)

NΓv
xy,avg ≈

1

Avs

n∑
℘=1

w℘N
Γv
xy,℘

(
U(µ)|ΓvΩi,GQ

, µi

)
(141)

Here Γv is the local boundary being considered on the problem domain, Ωi. The

Gaussian quadrature sampling locations are not the same as those for the bound-

constraints. Here, the sampling points are located in the vicinity of the local boundary

being investigated. This is illustrated in figure 40.

Gaussian Quadrature 
Sampling Locations 

Domain for integration 
at the boundary, 𝐴𝑠 

Figure 40: Sampling points for the Gaussian quadrature on the finite element mesh
in the vicinity of a local boundary

In order to have more concise equations, the state variable restricted at the Gaus-

sian quadrature sampling points will be denoted simply as U(µ)|Ωi,GQ for both cases.

5.3.8 Calculating The Sensitivity Of The Inequality Constraint

For gradient-based optimization, estimates are needed for the constraints and their

derivatives. Based on the discussion in section 2.5, using numerical differentiation
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to provide estimates of the constraint derivatives is not viable because it only ex-

acerbates the concerns about the computational overhead of the SCRBE approach.

Consequently, the use of direct method or adjoint method are the only viable options

for efficiency. Initial attempts were made by the author to use the adjoint method.

However, with the choice of constraint aggregation functionals to represent the in-

equality constraints, this led to peaked/non-smooth functions on the interior of the

components and on the global edges. The peaks were centered around the points were

the constraints were sampled on the finite element mesh. This made it difficult to

determine concise empirical subspaces that could approximate both the state variable

and the Lagrange multipliers on the problem domain. For this reason, only the direct

method will be considered for providing estimates of the derivatives.

Consider and arbitrary variable µr ∈ R that belongs to the global parameter set

µ. Taking the derivative of eq. 137 yields:

dc̃IE
dµr

=
∂c̃IE
∂µr

+
∂c̃IE

∂ U(µ)|Ωi,GQ

∂ U(µ)|Ωi,GQ
∂µr

(142)

and similarly, the sensitivity of the edge loads are:

dNΓv
xx,avg

dµr
=
∂NΓv

xx,avg

∂µr
+

∂NΓv
xx,avg

∂ U(µ)|Ωi,GQ

∂ U(µ)|Ωi,GQ
∂µr

(143)

dNΓv
yy,avg

dµr
=
∂NΓv

yy,avg

∂µr
+

∂NΓv
yy,avg

∂ U(µ)|Ωi,GQ

∂ U(µ)|Ωi,GQ
∂µr

(144)

dNΓv
xy,avg

dµr
=
∂NΓv

xy,avg

∂µr
+

∂NΓv
xy,avg

∂ U(µ)|Ωi,GQ

∂ U(µ)|Ωi,GQ
∂µr

(145)

where:

∂ U(µ)|Ωi,GQ
∂µr

=
[
Ū i
b,GQ + U i

b,GQ(µi)
] ∂Us(µ)

∂µr
+
∂U i

b,GQ(µi)

∂µr
Us(µ) +

∂bf ;h
i,GQ(µ)

∂µr
(146)

The sensitivity of the constraints with respect to µr is dependent on: Us (µ),

ΨE,h
p,k , ΨV,h

z,k′ , b
E,h
p,k , bV,hz,k′ , b

f ;h
i,GQ(µ), and their derivatives. However, recall that ΨE,h

p,k and

ΨV,h
z,k′ are parameter independent. The terms bE,hp,k , bV,hz,k′ , and their derivatives are only

dependent on the local parameters defined on the components. In addition to these
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local parameters, bf ;h
i,GQ(µ) and its derivative are also dependent on the parameters

pertaining to the boundary traction. The interface solution, Us (µ) and its derivative

are dependent on all the parameters in the set µ. To determine the derivatives, we

solve the following equations. For
∂Us(µ)

∂µr
, we take the derivative of equation (125):

Kuu(µ)
∂Us(µ)

∂µr
=
∂Fu(µ)

∂µr
− ∂Kuu(µ)

∂µr
Us(µ) (147)

For bE,hp,k (µi) and bV,hz,k′(µi), we take the derivative of equations (114) and (116), respec-

tively:

ai

 ∂bE,hp,k

∣∣∣
Ω̄i

∂µr
, v;µi

 = − ∂ai
∂µr

(
bE,hp,k

∣∣∣
Ω̄i
, v;µi

)
− ∂ai
∂µr

(
ΨE,h
p,k

∣∣∣
Ω̄i
, v;µi

)
, ∀v ∈ Bh

i;0

(148)

and

ai

∂ bV,hz,k′
∣∣∣
Ω̄i

∂µr
, v;µi

 = − ∂ai
∂µr

(
bV,hz,k′

∣∣∣
Ω̄i
, v;µi

)
− ∂ai
∂µr

(
ΨV,h
z,k′

∣∣∣
Ω̄i
, v;µi

)
, ∀v ∈ Bh

i;0

(149)

For bf ;h
i (µ), we take the derivative of equations (122):

ai

(
∂bf ;h

i (µ)

∂µr
, v;µ

)
= − ∂ai

∂µr

(
bf ;h
i (µ), v;µ

)
+
∂fi (v;µ)

∂µr
, ∀v ∈ Bh

G(i);0 (150)

There are several things to note about underlying terms,
∂Kuu(µ)

∂µr
and

∂Fu(µ)

∂µr
:

� Provided that µr does not come from the auxiliary parameter set, the contri-

butions from each local component to these terms are non-zero only when the

derivative is taken with respect to one of the component’s local parameters.

� If this is not the case, then
∂Fu(µ)

∂µr
has contributions from all components on

which the boundary traction is applied, while the term
∂Kuu(µ)

∂µr
vanishes.

� The contribution from each local component to
∂Kuu(µ)

∂µr
is dependent on

∂ bE,hp,k

∣∣∣
Ω̄i

∂µr

and
∂ bV,hz,k′

∣∣∣
Ω̄i

∂µr
.
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In the case where the traction applied to the component during a given function

call is not parametric, each component produces Ki
uu(µi), Fi(µi) and pG(i) pairs of

derivatives,
∂Ki

uu(µi)

∂µr
and

∂Fi(µi)
∂µr

. Recall that pG(i) is the number of parameters on

component i. If the traction is parametric, then there are the additional terms for

∂F(µ)

∂µr
corresponding to the number of auxiliary parameters defining the traction.

5.4 Model Order Reduction Applied To Static Condensa-
tion Procedure

The novelty of the SCRBE procedure is that it took the traditional static condensation

procedure and expedited it. This was achieved by finding subspaces of the function

spaces already introduced that provide more concise linear algebraic systems to be

solved locally and also globally. In this context, one seeks to find approximation

subspaces that can concisely represent the state variable and its derivative on the

global interfaces and on the interior of the components. In this work, we seek function

subspaces that are hierarchical and can represent the state variable and its derivatives

with the same orthonormal basis. The hierarchical property is important because it

facilitates varying the fidelity of the approximations so that trade-offs can be made

between solution accuracy and computational cost.

The process by which the edge modes, χEp,k, are determined will be described in

section 5.5. We now seek to determine the reduced bubble solution corresponding

to each of the global interface mode extensions into the interior of each component

domain. The dimension of the original finite element space on the interior of each

component, Nbi , is expected to be very large and does not facilitate efficient compu-

tation. In the original papers in the SCRBE literature, empirical bubble subspaces

were developed to represent the state variable induced by each of the mode extensions

into the interior of each of the component domains. For the present work, we seek

bubble subspaces that can represent both the state variable and its derivative induced
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by each interface mode extension on the interior of component i. We refer to these

bubble subspaces as: B̃E
p,k

∣∣∣
Ω̄i

and B̃V
z,k′

∣∣∣
Ω̄i

for the global edge mode extensions and

global vertex extensions, respectively. The manner in which these bubble spaces will

be produced is described in section 5.5.0.7.

Using these bubble spaces, we redefine the state equations ((114) and (116)) as:

ai

(
b̃E,hp,k

∣∣∣
Ω̄i
, v;µ

)
= −ai

(
ΨE,h
p,k

∣∣∣
Ω̄i
, v;µ

)
, ∀v ∈ B̃E

p,k

∣∣∣
Ω̄i

(151)

ai

(
b̃V,hz,k′

∣∣∣
Ω̄i
, v;µ

)
= −ai

(
ΨV,h
z,k′

∣∣∣
Ω̄i
, v;µ

)
, ∀v ∈ B̃V

z,k′

∣∣∣
Ω̄i

(152)

and their derivatives ((148) and (149)) as:

ai

 ∂b̃E,hp,k

∣∣∣
Ω̄i

∂µr
, v;µi

 = − ∂ai
∂µr

(
b̃E,hp,k

∣∣∣
Ω̄i
, v;µi

)
− ∂ai
∂µr

(
ΨE,h
p,k

∣∣∣
Ω̄i
, v;µi

)
, ∀v B̃E

p,k

∣∣∣
Ω̄i

(153)

ai

∂ b̃V,hz,k′
∣∣∣
Ω̄i

∂µr
, v;µi

 = − ∂ai
∂µr

(
b̃V,hz,k′

∣∣∣
Ω̄i
, v;µi

)
− ∂ai
∂µr

(
ΨV,h
z,k′

∣∣∣
Ω̄i
, v;µi

)
, ∀v ∈ B̃V

z,k′

∣∣∣
Ω̄i

(154)

These equations lead to the modified fundamental solutions:

Φ̃E
p,k

∣∣∣
Ω̄i

= ΨE
p,k

∣∣
Ω̄i

+ b̃E,hp,k

∣∣∣
Ω̄i

(155)

Φ̃V
z,k′

∣∣∣
Ω̄i

= ΨV
z,k′

∣∣
Ω̄i

+ b̃V,hz,k

∣∣∣
Ω̄i

(156)

5.4.0.1 Model Reduced Schur Complement

Using the reduced bubble spaces (eqs. (151) and (152)) and reduced fundamental

solutions ((155) and (156)), we can now define the reduced global solution:

ũ(µ) =
nE∑
p=1

NEp∑
k=1

Ũp,k (µ) Φ̃E
p,k +

nV∑
z=1

NVz∑
k′=1

Ũz,k′ (µ) Φ̃V
z,k′ +

Nc∑
i=1

b̃fi (157)

Using the global solution and Sasymm to perform the Petrov-Galerkin procedure

to define the updated global equations:
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a
(

Φ̃(µ), v;µ
)
ũs(µ) = f (v;µ)−

Nc∑
i=1

ai

(
b̃fi (µ), v;µ

)
, ∀v ∈ Sasymm (Ω) (158)

with the discrete form being:

K̃uu(µ)Ũs(µ) = F̃u(µ) (159)

where

K̃i
uu,((m,k),(m′,k′))(µi) =

1

2
ai

(
Ψ̃g
m,k

∣∣∣
Ω̄i
, Φg′,h

m′,k′

∣∣∣
Ω̄i

;µi

)
+

1

2
ai

(
Φ̃g
m,k

∣∣∣
Ω̄i
, Ψg′,h

m′,k′

∣∣∣
Ω̄i

;µi

)
(160)

F̃iu,(m′,k′)(µi) = f

(
Ψg,h
m′,k′

∣∣∣
Ω̄i

;µi

)
− a

(
b̃fi (µi), Ψg,h

m′,k′

∣∣∣
Ω̄i

;µi

)
(161)

The derivative of the Schur complement takes the form:

K̃uu(µ)
∂Ũs(µ)

∂µr
=
∂F̃u(µ)

∂µr
− ∂K̃uu(µ)

∂µr
Ũs(µ) (162)

Note that in addition to the terms that K̃i
uu(µ) depends on,

∂K̃i
uu(µ)

∂µr
also depends

on
∂b̃Ep,k
∂µr

and
b̃Vz,k′

∂µr
.

5.4.0.2 Reduced versions of the constraints and their derivative

Using the reduced versions of the bubble solutions induced by interface mode ex-

tensions, the reduced parametric mappings for expressing the state variable on the

interior a component i can be represented as:

Ũ i
b : DG(i) × RNsc → RNbi (163)

Using this mapping (eq. 163); the parameter independent mapping (eq. 133);

and the reduced Schur complement solution, Ũs; the solution on the interior of the

component can be represented as:

Ũ(µ)
∣∣∣
Ωi,GQ

=
[
Ū i
b,GQ + Ũ i

b,GQ(µi)
]
Ũs(µ) + b̃fi,GQ(µ) (164)
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The reduced order variant of the bound constraints can then be represented as:

˜̃cIE = ˜̃cIE (ρ, g( Ũ(µi)
∣∣∣
Ωi,GQ

)
, µ

)
(165)

while the reduced edge loads are:

ÑΓv
xx,avg = ÑΓv

xx,avg

(
Ũ(µi)

∣∣∣
Ωi,GQ

, µ

)
(166)

ÑΓv
yy,avg = ÑΓv

yy,avg

(
Ũ(µi)

∣∣∣
Ωi,GQ

, µ

)
(167)

ÑΓv
xy,avg = ÑΓv

xy,avg

(
Ũ(µi)

∣∣∣
Ωi,GQ

, µ

)
(168)

The derivatives of the bound constraint is:

d˜̃cIE
dµr

=
∂˜̃cIE
∂µr

+
∂˜̃cIE

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂µr
(169)

and for the edge loads, the derivatives are:

dÑΓv
xx,avg

dµr
=
∂ÑΓv

xx,avg

∂µr
+

∂ÑΓv
xx,avg

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂µr
(170)

dÑΓv
yy,avg

dµr
=
∂ÑΓv

yy,avg

∂µr
+

∂ÑΓv
yy,avg

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂µr
(171)

dÑΓv
xy,avg

dµr
=
∂ÑΓv

xy,avg

∂µr
+

∂ÑΓv
xy,avg

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂µr
(172)

where:

∂ Ũ(µ)
∣∣∣
Ωi,GQ

∂µr
=
[
Ū i
b,GQ + Ũ i

b,GQ(µi)
] ∂Ũs(µ)

∂µr
+
∂Ũ i

b,GQ(µi)

∂µr
Ũs(µ) +

∂b̃fi,GQ(µ)

∂µr
(173)

5.4.1 Empirical Mode Training - Research Question 1 (RQ1)

Attention is now turned to the task of determining edge subspaces that can con-

cisely represent the state variable and its derivatives on the interfaces of the problem
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domain. In previous work in the SCRBE literature, the focus has been on approximat-

ing the state variable of a problem and then calculating the outputs that depend on

it. However, the general reduced order modeling literature suggests that an empirical

subspace trained specifically for the state variable of a problem is not sufficient to also

represent its derivatives when the direct method is used to calculate them [138,139].

This then leads to the first research question.

Research Question 1.0 (RQ1.0): What is a suitable method for determining

empirical edge subspaces that can concisely approximate the state variable and

its derivatives on the component interfaces?

5.5 Empirical Modes For Edge Spaces

5.5.0.1 Overview

The “configuration agnostic” feature of the SCRBE method provides great versatility

when modeling a wide variety of problem domains with only a handful of reference

components. However, with this feature comes the difficulty of anticipating the pos-

sible state variables that will have to approximated on the component interfaces for a

wide variety of problem setups. To address this problem, Eftang [81,99,109] proposed

a heuristic algorithm to simulate various scenarios that a global interface might be

exposed to when it is included into configurations. The procedures in this section

follow this type of approach. There is the need to simulate the state variable and

its derivatives on an interface within a generic assembly of components and then to

determine an empirical subspace to approximate them.

5.5.0.2 Testing Apparatus

Figures 41 and 42 illustrate the testing domains that will be considered. However,

note that we are not restricted to global domains of the type shown in figure 41 (i.e.

a simple rectangular grid). The figure’s purpose is merely to illustrate an example
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of how the testing domains can be extracted from large scale systems. Other pos-

sible testing domains can be devised depending on the anticipated connectivity of

components in a local sense.

Testing sub-domain 1 

Testing sub-domain 2 

Figure 41: Testing subdomains within the global problem domain

The testing domains are comprised of components that are compatible with each

other at their interfaces. Each component has its own parameter set µi. For the

testing domains considered in this problem, the global edge that is of interest, E, is

highlighted for clarity. The boundary of the testing domain is subjected to arbitrary

Dirichlet boundary conditions and consistent with the work of Eftang, this is done by

using Legendre polynomials as the basis for the arbitrary displacement specification.

Modifications have to be made for more complex, two dimensional boundaries (i.e.

faces) with complex geometry. This takes the form:

uk(µ) =
nα∑
℘=1

α℘(µ)φ℘(Γ) (174)

where {φ1(Γ), φ2(Γ), φ3(Γ), . . . } are the Legendre polynomials prescribed on the bound-

ary segment of interest, Γ. Similar to the work of Eftang, the coefficients of the ex-

pansion, α℘(µ), are chosen as the controlling parameters of the approximation of the
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𝑉1 

𝑉2 

𝐸 

Sub-domain boundary 

Interior mesh 

Component boundary 

Edge being tested 

Vertices adjacent to edge 

Figure 42: Testing subdomains for the empirical edge modes

Dirichlet boundary condition. The maximum absolute value allowed for each coeffi-

cient is lowered as ℘ increases. This is done to bias the approximation to the first

few modes of the linear expansion.

Depending on the problem being solved, suitable traction forces can also be applied

to the interior of the problem domain. Using both of these sources of inhomogeneity

to the underlying partial differential equation, we seek to simulate state variable and

its derivatives that will be on the identified edge in a general application. Note that

we not only have to simulate the derivatives of the state variable with respect to the

local parameters, but also with respect to the parameters beyond the testing domain.

5.5.0.3 Linear Algebraic System - State Variable

The linear algebraic system to be solved for the state variable on the global problem

domain is:

Ku = f (175)
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Here, K corresponds to the stiffness matrix of the entire problem domain, u is the

discrete version of the state variable and f is the vector of forces applied to global

problem domain. It should be noted that static condensation is not used here. The

blocked linear algebraic system associated with the general global problem domain is:

 Kuu Kuk

Kku Kkk


 uu

uk

 =

 fu

fk

 (176)

The subscript u is used to represent the degrees of freedom on the interior of the

test domain, while the degrees of freedom on the boundary of the the test domain and

beyond are represented with the subscript k. It is assumed that uk on the boundary

of the test domain is known and is approximated by smooth test functions. Using

this information, the stiffness matrix can be decomposed for an equation to solve for

u. This is:

Kuuuu +Kukuk = fu (177)

Rearranged we have:

Kuuuu = fu −Kukuk (178)

Note that the terms Kuu and Kuk in equation (178) are only dependent on the pa-

rameters defined on the components within the testing domain, while fu depends

on parameters coming from the auxiliary parameters set. Using this setup, we can

simulate the state variable induced for a variety of parameter settings on the interior

of the test domain and Dirichlet boundary conditions on the boundary.

5.5.0.4 Linear Algebraic System - State Variable Derivatives

Except for the prescription of an optional traction on the interior of the test domain,

fu, the setup in the previous subsection is similar to the work proposed by Eftang.

Attention is now turned to building on this platform to provide the data required

to estimate the derivatives of the state variable. The process begins by taking the
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derivative of equation 178:

 Kuu Kuk

Kku Kkk




∂uu

∂µr

∂uk

∂µr


=


∂fu

∂µr

∂fk

∂µr


−


∂Kuu

∂µr

∂Kuk

∂µr

∂Kku

∂µr

∂Kkk

∂µr


 uu

uk

 (179)

Similar to determining the state variable, it is assumed that uk and
∂uk

∂µr
are both

known and can be approximated separately. Again, the choice of approximation is

the use of Legendre polynomials with smoothness constraints at points where there

are sharp changes in the boundary’s topology (e.g. corners). Extracting the rows of

equation (179) corresponding to these degrees of freedom
∂uu

∂µr
and rearranging leads

to:

Kuu
∂uu
∂µr

=
∂fu
∂µr
− ∂Kuu

∂µr
u− ∂Kuk

∂µr
uk −Kuk

∂uk

∂µr
(180)

In this equation, Kuu, Kuk,
∂Kuu

∂µr
and

∂Kuk

∂µr
only depend on the local parameters of the

components within the testing domain.
∂fu

∂µr
will only depend on auxiliary parameters

coming from the set, Daux. As such, all of these terms vanish when the derivative is

calculated with respect to parameters outside of the test domain. However, the term

∂uk

∂µr
also depends on the far field components’ parameters. Since the configuration

outside of the test domain can be arbitrarily specified, the term
∂uk

∂µr
will be treated

as such.

5.5.0.5 Equations To Provide Simulation Data

Thanks to the linearity of equations (178) and (180), we define the following equations:

118



SC1 : Kuu

(
µ|dom

)
us1 = −Kuk

(
µ|dom

)
uk
(
µ|bnd

)
(181)

SC2 : Kuu

(
µ|dom

)
us2 = fu (µ|aux) (182)

DC1 : Kuu

(
µ|dom

) ∂ud1
∂µr

= −
∂Kuu

(
µ|dom

)
∂µr

uu −
∂Kuk

(
µ|dom

)
∂µr

uk
(
µ|bnd

)
(183)

DC2 : Kuu

(
µ|dom

) ∂ud2
∂µr

= −Kuk

(
µ|dom

) ∂uk (µ|bnd
)

∂µr
(184)

DC3 : Kuu

(
µ|dom

) ∂ud3
∂µr

=
∂fu (µ|aux)

∂µr
(185)

Here there parameter dependence of the known terms have been expressed. The

parameters are:

� µ|dom - The parameters corresponding to the components in the testing domain

� µ|bnd - The parameters controlling the Dirichlet boundary conditions

� µ|aux - The parameters controlling the force inhomogeneity applied to the do-

main

Correspondingly, the parameter domains associated with these parameters are, D|dom
test ,

D|bnd
test, and D|aux

test, respectively. These spaces have cardinality, pdom, pbnd and paux,

respectively. In any of the algorithms that follow, the parameter sample set that is

used for empirical mode training will be designated as Ξ. It consists of parameter

samples taken from the Cartesian product of the test parameters spaces. For example,

a parameter sample set defined as: Ξ ∈ D|dom
test ×D|bnd

test simply means parameter samples

formed by combining parameter samples taken from the subspaces D|dom
test and D|bnd

test.

Using these five cases expressed in equations (181) to (185), we seek to find an

empirical subspace for the state variable and its derivatives on the identified global

edge. Since the same approximation approach is used for both uk and
∂uk

∂µr
, the cases

SC1 and DC2 should yield the same snapshot set. Thus, going forward, only one of

these two cases will be used.
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Finally, combining the state variable and its derivatives is a non-trivial task. Much

of the literature that seek to combine the state variable and its derivatives seem to

rely on heuristic methods [96, 97, 138, 139]. For the present problem, the approach

taken by Schmidt et al. [138] will be used. In this paper, the data sets are scaled by

a scaling approach and then using the weighted Proper Orthogonal Decomposition

approach [140], an empirical basis is found for the data. We would like that each of

the four remaining sample sets be represented well by the resulting empirical modes.

5.5.0.6 Edge Mode Training Algorithm

Algorithms will now be presented for determining the empirical subspace associated

with the highlighted edge in the test domains. Before this, the Proper Orthogonal

Decomposition (POD) procedure will be highlighted, as this is the basis for finding all

of the empirical subspaces found throughout this work. The algorithm for performing

the proper orthogonal decomposition is presented in algorithm 1.

Algorithm 1: Proper Orthogonal Decomposition (POD)

input : S, ηtol

output : X, ηrefine

begin
� Perform SVD on the snapshot set: [U,Σ, V ] = svd(S)

� Find n : argminn
σn

σ1

≤ ηtol

� Get the empirical modes, X = {U1, U2, . . . , Un} ⊂ U

� Retain the normalized singular values for global tolerance refinement
procedure, ηrefine = {σ1/σ1, σ2/σ1, . . . , σn/σ1}

end

Often the choice for the tolerance function in literature for the POD procedure is

n : argminn

∑n
i=1 σ

2
i∑ns

i=1 σ
2
i

≥ 1− ηtol, where ns is the number of snapshots used. This can

be used as an alternative to the choice used in algorithm 1. Algorithm 2 corresponds
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to extracting the portions of the state variable or its derivative on a given global

edge, that need to approximated by the edge function space. This is done simply

by realizing that the representation of the vertex modes must be equal to the state

variable at V1 and V2, while the representation by the empirical edge modes should

vanish at both locations.

Algorithm 2: Remove Vertex Mode Contributions (RVMC)

input : uĒ,
{
χV1,1, . . . , χ

V
1,NV1

}
,
{
χV2,1, . . . , χ

V
2,NV2

}
output : uout

begin

uout = uĒ −
NV1∑
k=1

〈
uĒ|V1 , χ

V
1,k

∣∣
V1

〉
χV1,k

∣∣
Ē
−
NV2∑
k′=1

〈
uĒ|V2 , χ

V
2,k′

∣∣
V2

〉
χV2,k′

∣∣
Ē

end

Algorithm 3: State Solution 1 Sample (SS1S)

input : Ξ ∈ D|dom
test ×D|bnd

test

output : S1

begin

Initialize: S1 = ∅;
foreach µ ∈ Ξ do

� Solve eq. (181)

� Extract the solution on the tested edge, i.e. uĒ = us1|V1 ⋃E
⋃
V2

� S1 = {S1

⋃
uĒ}

end

end

The next step is to furnish the data required to determine the empirical subspaces

on the global edges. Algorithms 3 through 6 are used to provide the snapshot data

needed to create the empirical modes. The weighted Proper Orthogonal Decompo-

sition is then used to combine the snapshot sets. This is algorithm 7. The weights,

W = {w1, w2, . . . , wn} are such that wi ∈ [0, 1]. In the work of Schmidt et al. [138],

they noted that the wi’s are chosen by the experimenter and can be used to take into
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Algorithm 4: State Solution 2 Sample (SS2S)

input : Ξ ∈ D|dom
test ×D|aux

test

output : S2

begin
Initialize: S2 = ∅;
foreach µ ∈ Ξ do

� Solve eq. (182)

� Extract the solution on the tested edge i.e. uĒ = us2|V1 ⋃E
⋃
V2

� S2 = {S2

⋃
uĒ}

end

end

consideration that the gradient of the state variable is a function of the state variable

itself. With this realization, wi can be set to wi < 1, if desired.

For the case where the state solution is vector valued field one empirical subspace

is created for each degree of the freedom in the vector field. For example, in a planar

solid mechanics problem, the in-plane displacement field u = {u1, u2} is vector valued.

Separate empirical subspaces are created for u1 and for u2. The number of degrees of

freedom in the vector valued field is d.

Finally, algorithms 1 through 7 are then used in algorithm 8 to create the empirical

edge subspace for the global edge being investigated.

5.5.0.7 Bubble Space Training Approach

We now examine the bubble spaces found through the various steps of the model

reduction formulation. As mentioned in section 5.4, the empirical subspaces will be

built for both the bubble spaces and their derivatives on each local component. To

this end, three algorithms are provided for creating the empirical subspaces associated

with the bubble solutions of the problem. A parameter sample set is generated for

the archetype component being tested. The archetype component is instantiated and
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Algorithm 5: Derivative Solution 1(a)(DSS1A)

input : Ξ ∈ D|dom
test ×D|aux

test ×D|bnd
test ×D|bnd

test

output : {S3, S4, . . . , Spdom+2}
begin

for r ← 1 To pdom do

Initialize: Sr+2 = ∅;
foreach µ ∈ Ξ do

� Decompose: µ as
{
µ|dom, µ|aux, µ|bnd

1 , µ|bnd
2

}
� Using µ|dom, µ|aux and µ|bnd

1 , solve eq. (178) for uu

� Using µ|dom, µ|bnd
2 and uu solve eq. (183)

� Extract the sensitivity on the tested edge i.e.
∂uĒ
∂µr

=
∂ud1
∂µr

∣∣∣∣∣
V1

⋃
E

⋃
V2

� Sr+2 =

{
Sr+2

⋃ ∂uĒ
∂µr

}

end

end

end

the parameter sample set is represented as Ξ ∈ Ditest.

The first two algorithms, algorithm 9 and 10, correspond to training the subspaces

for the interface mode extensions into the interior of the components. For a given

component i, we consider the interface mode extensions for edges and vertices that

are coincident to the boundary of the component.

The third algorithm, algorithm 11, corresponds to determining the empirical sub-

spaces associated with the bubble solutions induced by tractions applied directly to

the interior of the component. The algorithm is:

5.5.1 Empirical Mode Training - Hypothesis 1 (HYP1)

The work in the previous subsection leads to the following hypothesis.
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Algorithm 6: Derivative Solution 1(b)(DSS1B)

input : Ξ ∈ D|dom
test ×D|aux

test

output :
{
Spdom+3, Spdom+4, . . . , Spdom+paux+2

}
begin

for r ← 1 To paux do

Initialize: Spdom+2+r = ∅;
foreach µ ∈ Ξ do

� Solve eq. 185

� Extract the sensitivity on the tested edge i.e.
∂uĒ
∂µr

=
∂ud2
∂µr

∣∣∣∣∣
V1

⋃
E

⋃
V2

� Spdom+r+2 =

{
Spdom+r+2

⋃ ∂uĒ
∂µr

}
end

end

end

HYP 1.0: Relative to the underlying finite element mesh, the use of the empirical

edge subspaces and the associated empirical bubble spaces should lead to fast

convergence of the estimated constraints and their derivatives as the model is

refined.

5.6 Computational Procedures

The procedures for the offline and online computations required by the SCRBE ap-

proach will be highlighted in this section.

5.6.1 Offline Computational Procedures

The very first step in the SCRBE procedure is the creation of the empirical modes

on the interfaces of the problem domain and on the interior of the constituent com-

ponents. The procedure to create these modes are based on the algorithms that were

already presented in sections 5.5.0.6 and 5.5.0.7.
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Algorithm 7: Weighted Proper Orthogonal Decomposition (wPOD)

input :
{
S1, S2, . . . , Spdom+paux+2

}
, W =

{
w1, w2, . . . , wpdom+paux+2

}
, ηtol

output : X, ηtol

begin

Initialize: Scomb = ∅;
for i← 1 To (pdom + paux + 2) do

weight = 0;

for j ← 1 To |Si| do

weight = weight + ‖Si,j‖
end

Scomb =

{
Scomb

⋃ wi|Si|
weight

Si

}
;

end
X = POD(Scomb, ηtol)

end

5.6.1.1 Offline Step 1 - Creation Of Empirical Modes

As previously stated, the edge modes are used in tandem with vertex modes to provide

the approximations on the interfaces of the problem domain. The vertex modes of

choice are the hat function that were described in section 5.3.3. For this work, a

unique edge subspace is determined for each unique combination of component types

surrounding a particular global edge, rather than combining them to form a singular

edge subspace. Admittedly this approach leads to more storage overhead; however,

it allows for terse subspaces tailored to a particular component configuration. For

each unique combination of components surrounding a type of global edge, the test

subdomains illustrated in figure 42 are created and subjected to algorithm 8.

The empirical edge subspaces and vertex modes are then used to create the inter-

face mode extensions into the interior of the components adjacent to each global edge.

This is represented by eq. (114) and (116), respectively. This procedure is carried

out once for each combination of interface mode and archetype component that are

incident to a global edge. Using the resulting interface mode extensions, the tailored
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Algorithm 8: Get Edge Modes (GetEdgeModes)

input : {S1, S2, . . . } ,W , ηtol,
{
χV1,1, . . . , χ

V
1,NV1

}
,
{
χV2,1, . . . , χ

V
2,NV2

}
output : Xedge, 1 ≤ i ≤ d
begin

Initialize: Xedge = ∅;
for i← 1 To d do

� Extract pure edge terms:

– Si = RVMC ({Si1, Si2, . . . } ,
{
χV1,1, . . . , χ

V
1,NV1

}
,
{
χV2,1, . . . , χ

V
2,NV2

})
� out = wPOD(Si,W , ηtol)

� X̃edge = Xedge

⋃
out

end

end

bubble spaces for the bubble solution and its derivative are created for each interface

mode defined on each global edge. The associated algorithms are 9 and 10. Finally,

the empirical bubble spaces corresponding to the traction applied to the interior of

each component is found by using algorithm 11.

5.6.1.2 Offline Step 2 - Creation Of Affine Components

The vertex modes, the empirical edge modes, and associated bubble subspaces are

now used to create the affine matrices and vectors that are called during the online

stage of the procedure. In order to facilitate understanding, the discrete versions of

the equations developed in this chapter will be used.

5.6.1.3 Schur Complement: Coefficient Matrix And Interface Forces

We begin by writing the discrete for the coefficient matrix for the Schur complement:
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 Ψ|bnd
Ω̄i

Ψ|int
Ω̄i


T  Ki

ee Ki
eb

Ki,T
eb Ki

bb


 Ψ|bnd

Ω̄i

Ψ|int
Ω̄i

+ b(µ)|Ω̄i

 =

 Ψ|bnd
Ω̄i

Ψ|int
Ω̄i


T  Ki

ee Ki
eb

Ki,T
eb Ki

bb


 Ψ|bnd

Ω̄i

Ψ|int
Ω̄i

︸ ︷︷ ︸
term 1

+

 Ψ|bnd
Ω̄i

Ψ|int
Ω̄i


T  Ki

ee Ki
eb

Ki,T
eb Ki

bb


 0

b(µ)|Ω̄i

︸ ︷︷ ︸
term 2

(186)

The term Ki corresponds to the stiffness matrix defined on the finite element mesh

of the component. The subscripts e and b represent the degrees of freedom on the

interface and interior of component i, respectively. Ψ|Ω̄i is used to represent the col-

lection of interface mode extensions that are incident to component i. Consequently,

Ψ|bnd
Ω̄i

and Ψ|int
Ω̄i

are used to refer to the restriction of the extensions to the boundary

and the interior of component i, respectively. Finally, b(µ)|Ω̄i is used to refer to all

of the bubble solutions that are induced by the interface mode extensions, Ψ|Ω̄i .

Term 1 in the representation has a simple parametric relationship. The interface

mode extensions for the component are used to transform the parameter independent

terms in the affine representation for the component’s stiffness matrix. The resulting

reduced, parameter-independent affine matrices need to calculated only once and

stored. It should also be noted that several of affine terms are symmetric. This can

and should be taken advantage of for concise offline storage and expedient online

assembly.

Term 2 is a little more challenging. It depends on the bubble solutions induced by

the interface mode extensions. These bubble solutions do not have affine parametric

dependence and must be solved each time there is a parametric change for the com-

ponent. This is done by solving the discrete versions of eq. (151) and eq. (152) (and

eq. (153) and (154) for the derivative, respectively). If bubble solutions were to be

determined by the use of the finite element bubble space defined on the component,
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then the equation to be solved would take the form:

Ki
bb b(µ)|Ω̄i = −Ki

bb Ψ|int
Ω̄i
−Ki

be Ψ|bnd
Ω̄i

(187)

However, in the SCRBE approach, instead of solving eq. (187) in one step, a reduced

bubble subspace is created for each mode in the set Ψ|Ω̄i in order to expedite the

solution. Using the reduced bubble spaces, X̃b,E
p,k

∣∣∣
Ω̄i

and X̃b,V
z,k′

∣∣∣
Ω̄i

, we have the following

set of equations corresponding to eqs (151) - (154):(
X̃b,E
p,k

∣∣∣
Ω̄i

T

Ki
bb X̃

b,E
p,k

∣∣∣
Ω̄i

)
b̃E,hp,k

∣∣∣
Ω̄i

= −X̃b,E
p,k

∣∣∣
Ω̄i

T

Ki
bb ΨE,h

p,k

∣∣∣int

Ω̄i
− X̃b,E

p,k

∣∣∣
Ω̄i

T

Ki
be ΨE,h

p,k

∣∣∣bnd

Ω̄i

(188)

and(
X̃b,V
z,k′

∣∣∣
Ω̄i

T

Ki
bb X̃

b,V
z,k′

∣∣∣
Ω̄i

)
b̃V,hz,k′

∣∣∣
Ω̄i

= −X̃b,V
z,k′

∣∣∣
Ω̄i

T

Ki
bb ΨV,h

z,k′

∣∣∣int

Ω̄i
− X̃b,V

z,k′

∣∣∣
Ω̄i

T

Ki
be ΨV,h

z,k′

∣∣∣bnd

Ω̄i

(189)

The associated derivatives are, respectively:

(
X̃b,E
p,k

∣∣∣
Ω̄i

T

Ki
bb X̃

b,E
p,k

∣∣∣
Ω̄i

) ∂ b̃E,hp,k

∣∣∣
Ω̄i

∂µr
= −

(
X̃b,E
p,k

∣∣∣
Ω̄i

T ∂Ki
bb

∂µr
X̃b,E
p,k

∣∣∣
Ω̄i

)
b̃E,hp,k

∣∣∣
Ω̄i

−X̃b,E
p,k

∣∣∣
Ω̄i

T ∂Ki
bb

∂µr
ΨE,h
p,k

∣∣∣int

Ω̄i
− X̃b,E

p,k

∣∣∣
Ω̄i

T ∂Ki
be

∂µr
ΨE,h
p,k

∣∣∣bnd

Ω̄i
(190)

and

(
X̃b,V
z,k′

∣∣∣
Ω̄i

T

Ki
bb X̃

b,Z
z,k′

∣∣∣
Ω̄i

) ∂ b̃V,hz,k′
∣∣∣
Ω̄i

∂µr
= −

(
X̃b,V
z,k′

∣∣∣
Ω̄i

T ∂Ki
bb

∂µr
X̃b,V
z,k′

∣∣∣
Ω̄i

)
b̃V,hz,k′

∣∣∣
Ω̄i

−X̃b,V
z,k′

∣∣∣
Ω̄i

T ∂Ki
bb

∂µr
ΨV,h
z,k′

∣∣∣int

Ω̄i
− X̃b,V

z,k′

∣∣∣
Ω̄i

T ∂Ki
be

∂µr
ΨV,h
z,k′

∣∣∣bnd

Ω̄i
(191)

Due to the convenience of the affine representations, we only need to calculate and

store the affine terms:

� X̃b,E
p,k

∣∣∣
Ω̄i

T

Ki,q
bb X̃

b,E
p,k

∣∣∣
Ω̄i

� X̃b,E
p,k

∣∣∣
Ω̄i

T

Ki,q
bb ΨE,h

p,k

∣∣∣int

Ω̄i
+ X̃b,E

p,k

∣∣∣
Ω̄i

T

Ki,q
be ΨE,h

p,k

∣∣∣bnd

Ω̄i

� X̃b,V
z,k′

∣∣∣
Ω̄i

T

Ki,q
bb X̃

b,Z
z,k′

∣∣∣
Ω̄i
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� X̃b,V
z,k′

∣∣∣
Ω̄i

T

Ki,q
bb ΨV,h

z,k′

∣∣∣int

Ω̄i
+ X̃b,V

z,k′

∣∣∣
Ω̄i

T

Ki,q
be ΨV,h

z,k′

∣∣∣bnd

Ω̄i

Where index q is used to represent the qth parameter independent term in the affine

expansion of the component’s stiffness matrix. The next set of quantities that need

to be determined are those in term 2. Written with respect to the bubble solutions

coming from the truth space of the component, this is:

(
Ψ|int

Ω̄i

T
Ki
bb + Ψ|bnd

Ω̄i

T
Ki,T
be

)
b(µ)|Ω̄i (192)

Using the model order reduction on the bubble spaces, the equations to be solved are:

(
Ψ|int

Ω̄i

T
Ki
bb + Ψ|bnd

Ω̄i

T
Ki,T
be

)
X̃b,E
p,k

∣∣∣
Ω̄i

(193)

and (
Ψ|int

Ω̄i

T
Ki
bb + Ψ|bnd

Ω̄i

T
Ki,T
be

)
X̃b,V
z,k′

∣∣∣
Ω̄i

(194)

The affine terms that need to be stored are:

�
(

Ψ|int
Ω̄i

T
Ki,q
bb + Ψ|bnd

Ω̄i

T
Ki,q,T
be

)
X̃b,E
p,k

∣∣∣
Ω̄i

�
(

Ψ|int
Ω̄i

T
Ki,q
bb + Ψ|bnd

Ω̄i

T
Ki,q,T
be

)
X̃b,V
z,k′

∣∣∣
Ω̄i

Calculating the derivative of the coefficient matrix of the Schur complement can

be trivially achieved by using the affine parametric dependence of the terms listed

above.

In terms of the force term that is applied to the Schur complement, it is assumed

that this term can be represented in an affine form, f i(µ) =

Qf∑
q=1

θf (µ)f̄ i,q. Using this

representation, the forces on the interfaces can be represented as:

Ψ|int
Ω̄i

T
f ib(µ) + Ψ|bnd

Ω̄i

T
f ie(µ) =

Qf∑
q=1

θfq (µ)
(

Ψ|int
Ω̄i

T
f i,qb (µ) + Ψ|bnd

Ω̄i

T
f i,qe (µ)

)
(195)

The terms
(

Ψ|int
Ω̄i

T
f i,qb (µ) + Ψ|bnd

Ω̄i

T
f i,qe (µ)

)
are calculated and stored offline.
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5.6.1.4 Traction Induced Bubble Solution Terms

The next set of terms to be determined are those that correspond to the traction

induced bubble solutions on component i. The discrete form of eq. (122) is:

Kbbb
f = f ib ; (196)

The model reduced version, written with respect to the appropriate reduced order

modes, X̃b,f
∣∣∣
Ω̄i

, is: (
X̃b,f

∣∣∣
Ω̄i

T

Ki
bb X̃

b,f
∣∣∣
Ω̄i

)
b̃f = X̃b,f

∣∣∣
Ω̄i

T

f ib (197)

The affine terms that need to be calculated and stored are:

�

(
X̃b,f

∣∣∣
Ω̄i

T

Ki,q
bb X̃

b,f
∣∣∣
Ω̄i

)
� X̃b,f

∣∣∣
Ω̄i

T

f i,qb

The derivatives of the bubble solution,
∂b̃f

∂µr
, are calculated using these same ingredi-

ents.

These bubble solutions also have a contribution to the inhomogeneity of the Schur

complement equation. This takes the form:(
Ψ|Ω̄i

TKi
be

T
)
b̃f (198)

Using the reduced bubble space associated with this bubble solution, the terms that

need to be created and stored offline are:(
Ψ|Ω̄i

TKi,q
be

T
)
X̃b,f

∣∣∣
Ω̄i

(199)

5.6.1.5 Solution Recovery On The Interior Of The Component

Finally, the retrieval of the state variable on the interior of each component is enabled

by the two mappings (eq. (132) and (133)):

Ū i
b = Ψ|Ω̄i

U i
b = b(µ)|Ω̄i

(200)
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and by bi,f . After introducing the model order reduction and the restriction operation

to the nodes in the vicinity of the Gaussian quadrature points, the terms that need

to be created and stored are: Ψ|Ω̄i,GQ, X̃b,E
p,k

∣∣∣
Ωi,GQ

, X̃b,V
z,k′

∣∣∣
Ωi,GQ

, and X̃b,f
∣∣∣
Ωi,GQ

. The

designation ·|GQ simply means that the corresponding terms are restricted to the

aforementioned nodes close to the Gaussian integration points.

5.6.2 Online Computational Procedures And Computational Complexity

5.6.2.1 Refinement For Edge And Bubble Subspaces

The convenient feature about using hierarchical bases for the empirical edge and

bubble subspaces is that smaller subspaces of these spaces can be formed by using a

subset of the basis modes without the need for special modification. This is partic-

ularly convenient when it is desired to refine the sizes of the terms used in reduced

model. In a similar fashion to the approach used by Eftang [109], the basis used for

each empirical subspace will be segmented into active modes and inactive modes. The

former modes consist of modes arising from the POD procedure that possess the most

energy; whereas, the latter set of modes are the remaining modes used to round out

the subspace. Using this decomposition, the model reduced terms can be partitioned

to reflect this approach. As an example, consider the contribution of component i to

the coefficient matrix of the Schur complement. The partitioning becomes:

Ki
uu =

 Ki,AA
uu Ki,AI

uu

Ki,IA
uu Ki,II

uu

 (201)

A similar decomposition can be performed for the other terms depending on the edge

modes and those depending on the bubble space modes. For the terms considered

during the online procedures, only the entries that only correspond to the active

modes need to be formed. For this work, the singular values obtained from the POD

procedure are used to determine the number of active modes used for the approxima-

tions. To whit, two “fidelity parameters” are defined to globally control the number
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of active modes. These are ηedge and ηb. These correspond to the tolerance for all of

the edge and bubble spaces, respectively. The tolerances are based on the one defined

in the POD algorithm; in that for each subspace, the minimum number of modes

needed to satisfy the tolerance are retained.

5.6.2.2 Overview Of The Online Procedure

The terms described in the offline computational procedure allows for an efficient

online procedure. These terms are mostly independent of the finite element mesh.

The exception is evaluating the constraint constraints. However, due to the use of

lower-order Gaussian quadrature, this should not be an overbearing concern. The

following sections describe the steps that need to be taken during the online stage of

the method. Throughout the presentation, a time complexity analysis is presented

for each major step. In order to enable this analysis, the following terms are defined:

� Nmax
E - is the maximum number of edge mode degrees of freedom on any single

global edge in the problem domain after the edge space refinement

� Nmax
V - is the maximum number of vertex mode degrees of freedom on any single

global vertex in the problem domain

� nb - is the maximum number of bubble modes associated with any single in-

terface mode extensions used throughout the problem domain after the bubble

space refinement

� nfb - is the maximum number of bubble modes associated with the traction

induced bubble solution for any component in the problem domain after the

bubble space refinement

� QK - The number of terms in the affine representation for K

� Nc - The number of components in the assembled problem domain

� nµi,max - The maximum number of parameters defined on any component in the

problem domain.
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For simplicity, it is assumed that each component has 4 local edges and 4 local

vertices. Modifications can be trivially made in cases where this is not so. As such,

for brevity, the term Ninterface = 4(Nmax
E +Nmax

V ) is now introduced for more concise

complexity analysis terms. This is the maximum number of interface modes defined

on any component in the problem domain.

5.6.2.3 Online Step 1 - Schur Complement: Core Affine Matrices

As described in section 5.6.1.3, the formation of the coefficient matrix of the Schur

complement can be performed in two major steps. Correspondingly, there are two

terms (expressed in in eq. (186)) which need to be determined. During the online

stage, term 1 can be expeditiously assembled for the coefficient matrix of the Schur

complement and its derivative by using the associated affine decomposition. The com-

putational complexity associated with this step is O (Nc(nµi,max + 1) [QKN 2
interface]).

5.6.2.4 Online Step 2 - Schur Complement: Solving For The Local Bubble Solu-
tions

The first step in producing term 2 in equation (186) is to solve for bE,hp,k

∣∣∣
Ω̄i

, bV,hz,k′
∣∣∣
Ω̄i

and their derivatives. These terms are also used in the parameter dependent mapping

to recover the solution on the interior of each component (eq. 163) and its deriva-

tives. The bubble solutions and their derivatives are found by solving equations (188)

through (191) for each degree of freedom on each interface entity on each compo-

nent. In solving for the bubble solution and its derivatives in each case, a single LU

decomposition is performed on the shared coefficient matrix. This is followed by back-

solving for the terms of interest using the right-hand sides. The overall computational

complexity for this procedure is O (NcNinterface [2/3n3
b +QK(nµi,max + 1)n2

b ]).
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5.6.2.5 Online Step 3 - Schur Complement: Adding In The Bubble Solutions To
Schur Complement

Using the bubble solutions and their derivatives determined in the previous step,

the model reduced version term 2 can now be computed. This is done with the

aid of equations (193), (194) and their derivatives. The overall time complexity for

performing this operation is O (Nc(nµi,max + 1) [QKnbN 2
interface]).

The model reduced versions of terms 1, 2 and their derivatives are used to create

asymmetric versions of the coefficient matrix of the Schur complement matrix and its

derivatives. The symmetric versions are created by using the operation in eq. (131).

The forces on the interface and their derivatives are determined by assembling the

terms in eq. (195).

5.6.2.6 Online Step 4 - Traction Induced Bubble Solutions

The traction induced bubble solution and its derivatives are determined by eq. (197)

and the appropriate derivatives of this equation. In the similar fashion to section

5.6.2.4, an LU decomposition is preformed for the coefficient stiffness matrix, followed

by the back-solving procedure for the various right-hand sides required for calculating

the bubble solution and its derivatives. The inhomogeneity introduced into the Schur

complement is recovered by using eq. (198). The associated inhomogeneity for the

derivative of the Schur complement can be trivially solved using these ingredients.

The overall time complexity for solving for the bubble solution and its derivatives is:

O
(
Nc

[
2/3nfb

3
+ (nµi,max + 1)

(
QKnfb

2
+Qfnfb

)])
. The overall time complexity for

determining the inhomogeneities is: O
(
Nc(nµi,max + 1)

[
QKn

f
bNinterface

])
5.6.2.7 Online Step 5 - Schur Complement: Solving For The Schur Complement

Solution And Its Derivatives

The terms produced in Online steps 3 and 4 are used to produce equations (159)

and (162). Since the coefficient matrix is the same in both equations, this allows for

134



the use of a technique that can solve linear algebraic systems with multiple right-

hand sides for the same coefficient matrix. The coefficient matrix for the global

Schur complement is sparse. This allows the use methods such as: (1) sparse LU

decomposition of the coefficient matrix with back-solving for the multiple cases on

the right-hand side. (2) The use of an indirect method that is adapted to solving

multiple right-hand sides (e.g. [98]). Both approaches allow for cheaply determining

the derivatives of the Schur complement solution. For this work, approach (1) was

selected.

5.6.2.8 Online Step 6 - Recovering The Constraints and Their Derivatives

The final step in the online procedure is to recover the constraints and their deriva-

tives over the problem domain. Before this can be done, the state variable and its

derivatives have to be recovered on the interior of each component in the vicinity of

the Gaussian quadrature sampling points. Using the outcomes provided in section

5.6.1.5, the state variable and its derivatives defined on the interior of the component

domains can be approximated. The resulting terms are then used to estimate the

constraints and their derivatives.

5.6.2.9 Overall Time Complexity For The Online Steps Associated With The
Overhead

The overall computational complexity is:

O
(
Nc

{
Ninterf. [2/3n3

b +QK(nµi,max + 1)n2
b ] +

[
2/3nfb

3
+ (nµi,max + 1)

(
QKn

f
b

2
+Qfn

f
b

)]
+(nµi,max + 1) [QKnbN 2

interface] + (nµi,max + 1)
[
QKn

f
bNinterface

]})
(202)

The time complexity can be made to be more concise; however, it is left in this

format so that the contributions from the various online sub-steps can be identified.

This time complexity is very similar to the version presented by Huynh [104]. The

main differences are the following:
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� The factor (nµi,max + 1) to account for the inclusion of the derivatives

� The first bracketed term above has an additional term, QK(nµi,max + 1)n2
b , that

is associated with solving for the derivative of the reduced bubble solutions.

� The third bracketed term, (nµi,max + 1)QKnbN 2
interface, is reduced by a factor of

nb because of the Petrov-Galerkin projection of the system’s PDE.

� The inclusion of the terms that are dependent on the bubble solution induced

by direct tractions

We can see from this time complexity that the overhead scales poorly when :

� The number of interface modes grows i.e. Ninterface →∞

� The affine representation of the bilinear operator are not concise (QK →∞)

� Bubble subspaces with large cardinalities (nb, n
f
b →∞).

5.7 Chapter Summary

In this chapter, the details of using the SCRBE method to estimate the constraints

and their derivatives of the problem of interest were provided. This was followed by

the proposal of an algorithm to determine edge subspaces for the concise approxi-

mation of the state variable and its derivatives on the interfaces. A summary of the

steps during the offline and online procedures were also provided.
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Algorithm 9: Empirical Bubble Spaces For The Edge Modes

input : Ξ, ΨE,h
p,k

∣∣∣
Ω̄i

, W , ηtol

output : X̃b,E
p,k

∣∣∣
Ω̄i
, ηrefine

begin

Initialize: S1 = ∅;
foreach µ in Ξ do

� Solve equation (114)

� S1 =

{
S1

⋃
bE,hp,k

∣∣∣
Ω̄i

}
end

for r ← 1 To pG(i) do

Initialize: Sr+1 = ∅;
foreach µ in Ξ do

� Solve equation (148)

� Sr+1 =

Sr+1

⋃ ∂bE,hp,k

∣∣∣
Ω̄i

∂µr


end

end

[X̃b,E
p,k

∣∣∣
Ω̄i
, ηrefine] = wPOD ({S1, S2, . . . } ,W , ηtol);

end
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Algorithm 10: Empirical Bubble Spaces For The Vertex Modes

input : Ξ, ΨV,h
z,k′

∣∣∣
Ω̄i

, W , ηtol

output : X̃b,V
z,k′

∣∣∣
Ω̄i
, ηrefine

begin

Initialize: S1 = ∅;
foreach µ in Ξ do

� Solve equation (116)

� S1 =

{
S1

⋃
bZ,hz,k′

∣∣∣
Ω̄i

}
end

for r ← 1 To pG(i) do

Initialize: Sr+1 = ∅;
foreach µ in Ξ do

� Solve equation (149)

� Sr+1 =

Sr+1

⋃ ∂bV,hz,k

∣∣∣
Ω̄i

∂µr


end

end

[X̃b,V
z,k′

∣∣∣
Ω̄i
, ηrefine] = wPOD ({S1, S2, . . . } ,W , ηtol);

end
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Algorithm 11: Empirical Bubble Spaces For Component Traction

input : Ξ, W

output : X̃b,f
∣∣∣
Ω̄i
, ηrefine

begin

Initialize: S1 = ∅;
foreach µ ∈ Ξ do

� Solve equation (122)

� S1 =

{
S1

⋃
bf ;h
i

∣∣∣
Ω̄i

}
end
for r ← 1 To pG(i) do

Initialize: Sr+1 = ∅;
foreach µ ∈ Ξ do

� Solve equation (150)

� Sr+1 =

Sr+1

⋃ ∂bf ;h
i

∣∣∣
Ω̄i

∂µr


end

end

[X̃b,f
∣∣∣
Ω̄i
, ηrefine] = wPOD({S1, S2, . . . } ,W , ηtol);

end
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Chapter VI

SCRBE-DEIM APPROACH FOR GENERATING

CONSTRAINTS

6.1 Chapter Overview

This chapter is concerned with addressing research questions 2 and 3. This is done

by identifying places where adjustments can be made in the SCRBE procedure, in

order to reduce the computational overhead associated with the method. For ease of

reference, the research questions are restated here:

RQ 2.0: What is an alternative approach for generating the ingredients of the

SCRBE procedure that will help to alleviate the computational overhead, while

not drastically increasing the approximation error?

RQ 3.0: How do the SCRBE method and its surrogate compare in an optimiza-

tion setting?

6.2 Identification Of Bottlenecks In The SCRBE Procedure

In chapter 5, a formulation was presented for determining typical, state-variable

dependent, inequality constraints and their derivatives on a component using the

SCRBE method. It was shown there that in furnishing these quantities, there is a

certain level of independence among the components comprising the problem domain.

In section 5.6.2.2, an overview was given for the computational complexity associated

with the online stage of the SCRBE method, it was shown that in cases where the

number of affine terms is not small (i.e. Q → ∞) and when the cardinality of the

bubble spaces are large, the overhead associated with SCRBE method is exacerbated.
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Clearly, the overhead of the method comes from calculating the terms required from

each component to calculate the Schur complement system and the outputs.

In this chapter, we will be examining the static condensation terms produced by

only using the reduced modes on the interfaces in the static condensation procedure

i.e. before model reduction is applied to the bubble spaces. These are the terms

described in sections 5.3.5, 5.3.6 and 5.3.8. As such, the key terms that have to be

provided by the components in the problem domain are:

� Stiffness matrix components: Ki
uu(µi) and

∂Ki
uu(µi)

∂µr

� Force terms: Fiu(µ) and
∂Fiu(µ)

∂µr

� Parameter-dependent solution recovery: U i
b,GQ(µi) and

∂U i
b,GQ(µi)

∂µr

� Bubble solution due to traction on the interior of the component: bf ;h
i,GQ(µ) and

∂bf ;h
i,GQ(µ)

∂µr

These terms are all nonlinear and have nonaffine parametric dependence. All

terms are dependent on the local parameter set defined on the component. The force

terms are also dependent on the auxiliary parameter set. All these terms readily

accommodate the edge mode refinement procedure by the addition or deletion the

relevant rows and/or columns from the matrices as described in section 5.6.2.1. In

order to calculate these terms, there were several intermediate system solves and

operations that were required to get the final desired form. It would be convenient

to have a more direct approach to furnish these terms.

6.2.0.1 Dealing with the nonaffine parametric dependence of the nonlinear terms

In the general case, while the affine parametric dependence of the underlying bilinear

and linear functionals associated with the weak form of the underlying PDE is a key
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requirement for efficiency in reduced basis approximation, this is sometimes not pos-

sible with certain problems. This is the case for the terms described above. There are

two common approaches in literature that address efficiently approximating ROMs in

such cases in many-query or real-time problems. These are: (1) Methods that seek to

perform direct interpolation among adjacent reduced order models that are precalcu-

lated at various points in the design space. (2) Methods belonging to a growing area

of research known as “hyper-reduction.” In what follows, a brief literature review will

be provided for both of these methods.

6.3 Key Enablers: ROM Interpolation and Hyper-reduction

6.3.0.1 ROM Interpolation

This category of methods was perhaps the earlier of the two types of approaches to

be developed. In this case, the ROM is first determined at various points in the

parameter space. Some methods (e.g. [141–143]) seek to interpolate among these

ROMs in the original space in which the matrices are defined. In the associated

papers, the entries of the nonlinear matrix (i.e. Aij (µ)) were interpolated by the use

of cubic splines. These authors noted that they obtained “good results” relative to

other, more sophisticated interpolation schemes. An inherent limitation of this type

of interpolation scheme is that there is no guarantee that certain properties of the

nonlinear term are inherited at interpolated points in the design space. For example,

if the coefficient matrix in a linear algebraic system (e.g. a stiffness matrix) is non-

singular, symmetric and positive definite (SPD), it is desirable to maintain these

properties at design points evaluated outside of the sampling set in the parameter

domain. While it is easy to ensure symmetry, it is not as easy to ensure positive

definiteness. For imposed constraints like this, other methods sought to first project

the sampled ROM into adjacent matrix spaces; perform interpolation in these spaces;

and then map the product back to the original space that the ROM is defined in.
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Such an approach is pursed in the following works [142, 143]. This approach ensures

that estimates produced by these methods possess the desired properties. However,

the underlying exponential and logarithmic mappings of the matrix (expm(X) and

logm(X), respectively) induce some computational overhead. These mappings have

an additional computational complexity of O (qN3) [144]. Here, q is not necessarily

small, such as in the case of an LU or Cholesky decomposition of an operator (i.e.

q = 2/3 and q = 1/3, respectively).

6.3.0.2 Hyper-reduction

Methods of this type are becoming increasingly popular in science and engineering

applications that feature nonlinear PDEs. These areas include: nonlinear solid me-

chanics, computational fluid dynamics, etc. The key idea of this method is to deter-

mine an approximate affine relationship for nonlinear operators that have nonaffine

parameter dependence:

A (µ) ≈ Am (µ) =

Q∑
q=1

θ (µ)q Ā
q
m (203)

Note that the use of θ here is not to be confused with the use in scaling parameters

used in the weighted POD algorithm in section 5.5.0.6. With this decomposition, pa-

rameter independent terms are first determined during a laborious offline procedure;

whereas, the parameter dependent coefficients are calculated during the online stage

of the procedure.

There are many sub-categories of methods that address the problem shown in

eq. 203. Although they go by different names in the literature, their end goal is

aimed at producing the form shown. These methods include: Empirical Interpolation

Method(EIM) [145, 146], Discrete EIM (DEIM) [147], Matrix DEIM (MDEIM) [1,

2, 148, 149], Missing point estimation [150], gappy POD [151]. However, with the

exception of MDEIM, Negri [1] and Bonomi [2] both note that these procedures have
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an “extensive, problem-specific pre-processing phase” that has to be carried out in

order to obtain the desired parametric form. On the other hand, the MDEIM has

been shown to admit an “efficient and algebraic structure”. It is for this reason why

this type of approximation is pursued.

6.4 Overview Of The MDEIM Approach

Before identifying the areas where the hyper-reduction procedure can be applied to

the SCRBE approach, as well as the modifications made for this work, an overview

will be given on MDEIM. The MDEIM approach is built upon the DEIM method

and is meant to approximate nonlinear, nonaffine matrices (particularly operators).

However, the DEIM approach is aimed at approximating vectors f (µ) rather than

matrices. As such, the first step is normally to convert the nonlinear matrix with

nonaffine parameter dependence, A(µ) ∈ Rn×m into a vector. This is enabled by the

vec(·) operator. This function simply stacks the column of the operator into a large

vector, i.e. A(µ) ∈ R(n×m) → vec(A(µ)) ∈ R(nm×1). The reverse of this operation is

designated as vecr (·). With these operations in tow, the main offline and online steps

of the MDEIM will now be presented.

6.4.0.1 MDEIM Offline - Determining The Parameter Independent Terms, Āq

The parameter independent terms are determined through the following procedure:

1. Generate samples ns in the parameter domain, D i.e. Dtest ∈ D : |Dtest| = ns

2. Evaluate the nonlinear operator snapshots at these points, i.e. S = {vec(A(µ))

: µ ∈ Dtest}

3. Perform POD on the snapshot sample set to determine a concise basis to rep-

resent, S. This takes the form: Φ = POD(S, εtol)

Here Φ ∈ Rnm×N are the N empirical modes that are used to concisely approx-

imate vec(A(µ)) at any point in the parameter domain. A key requirement to ap-

proximating the coefficients θ is the formation of the recovery matrix ΦI ∈ RN×N .
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This matrix is formed by using the DEIM procedure. The algorithm associated with

the DEIM procedure will not be stated here, but instead, the author defers to [134].

The main take away is that using a greedy sampling procedure, N indices in the

vector vec(A(µ)) that help to provide the best approximation of the coefficients θ are

determined. These indices are denoted as I ⊂ {1, . . . , nm}, |I| = N . Using these

indices, the DEIM procedure also produces an operator ΦI ∈ RN×N that is used to

recover the coefficients needed to produce the approximation Am (µ). ΦI ∈ RN×N

is built using the rows in Φ corresponding to the indices, I. This recovery will be

described in the following section.

6.4.0.2 MDEIM Online - Recovering The Approximation, A(µ)

Using this empirical basis, an approximation of the nonlinear operator at the param-

eter value µ can be obtained by performing the operation: A(µ) = vecr (Φθ(µ)). The

coefficients, θ(µ) = {θ1, θ2, . . . , θN} in this linear expansion are obtained by perform-

ing the following procedure:

1. For a given parameter value of µ, evaluate the term vec(A(µ)) at the indices I.

This takes the form: vec(A(µ))I .

2. Using operator ΦI , approximate the coefficients θ by solving the equation,

ΦIθ = vec(A(µ))I

3. The approximation of the nonlinear operator is: A(µ) = vecr (Φθ(µ))

Thus, using this procedure, the operator can be estimated at any point in an affine

manner.

6.4.0.3 Challenges With The Stated Interpolation Approach

One key observation in the online procedure is the sampling of the nonlinear operator

required at the indices I. The indices correspond to the nodal values on the underly-

ing finite element mesh used to solve the PDE problem. Both Negri [1] and Bonomi [2]
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note the efficiency of the sampling technique for the nonlinear operator that they ex-

plored. These operators are large, sparse and built upon lower-order, polynomial finite

elements. Thus, getting the element-wise contributions to vec(A(µ))I is trivial and

can be done efficiently. However in the case of the SCRBE technique, sampling at an

element in the vectorized matrices involves considerably more work. The underlying

calculations include solving the bubble space problem for extensions of the interface

modes. Solving for these bubble solutions on the underlying finite element mesh is

expensive. Alternatively, if the reduced bubble spaces are used to facilitate the com-

putation, there is added approximation error introduced in order to gain the desired

expediency. Additionally, in order to recover the coefficients θ, one has to solve the

associated linear algebraic system. Since ΦI is dense, this is a O(N3) calculation.

6.5 Application Of Hyper-Reduction + Interpolation To The
SCRBE Approach

The SCRBE procedure readily admits an interpolation formulation of this type, be-

cause as previously noted, the entries arising from each component are only dependent

on the local parameter vectors associated with it. This allows an offline study of each

archetype component that would create ingredients available for online utility. Going

forward, this method will be referred to as the Static Condensation Reduced Basis El-

ement − Discrete Empirical Interpolation Method (SCRBE-DEIM). The steps taken

in this modeling procedure will be described in the following sections.

6.5.1 Selection Of An Alternative Interpolation Procedure

While the application of the MDEIM method to the SCRBE approach should be

relatively efficient, there are the aforementioned issues raised about the overhead

during interpolation. In the present case, we are not comparing performance to

the High Fidelity Model (HFM), but instead we are comparing to an ROM (i.e.

the SCRBE approach), which should be relatively fast. It is desirable to obtain
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an alternative approach to the SCRBE method that can achieve as much relative

efficiency as possible. For these reasons, the decision was made to estimate the

coefficients in the linear expansion with surrogate models. The particular choice of

surrogate model should be amenable to nonlinear approximations, while not having

overbearing overhead.

In order to meet the desired objectives, feed-forward, multi-layer, artificial neural

network surrogate modeling is chosen to interpolate the N coefficients in the approx-

imation.

6.5.1.1 Overview Of Neural Network Surrogate Modeling

An artificial neural network (ANN) mathematical model - when used in a regression

setting - tries to approximate the functional relationship between one or more pa-

rameters, µ, to corresponding output(s) y = f(µ) i.e. an approximate mapping of

the form f̃ : µ→ f̃(µ). The neural network has a hierarchical structure with several

layers of interconnected nodes. There is an input layer, one of more hidden layers, and

an output layer of nodes. In the feed-forward variant of the neural network, data is

communicated from the input layer through to one or more nodes in the hidden layers

and then out to the output layer. The contributions of each of nodes in a given layer

are weighted before passing each node in the succeeding layer. Each of the hidden

nodes is equipped with an activation function. Common choices for these activation

functions are the hyperbolic tangent and exponential functions, linear functions etc.

For a more detailed review of artificial neural network for regression purposes, please

see [152].

For the present work, the attractive feature of the ANN is the computational com-

plexity associated with its use. For example, if there are two hidden layers with Nw1

and Nw2 nodes, respectively; the computational complexity associated with generat-

ing the N surrogate models is: O (N (Nw2Nw1 +Nw1 |µ|)). If Nw1 and Nw2 are on the
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Figure 43: An illustration of an artificial neural network

order of the reduced bubble space cardinality and the number of approximation co-

efficients, N , then there can be a considerable advantage in using the neural network

regression purely from an efficiency point of view.

6.5.2 Treatment Of The Elements Of The SCRBE

Now that the high level idea has been given for the approximation procedure, atten-

tion is now turned to the details of the SCRBE procedure in this context. In section

6.2, the main elements that have to be provided for each component were listed. For

the stiffness matrices, Ki
uu(µ), and

∂Ki
uu(µ)

∂µr
, in order to ensure symmetry during the

approximation, only the lower triangular part each matrix is modeled explicitly. To

enable this, the lower triangular part of the relevant stiffness matrix is first extracted,

then each column from the lower triangular regions is stacked into a vector. This
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is done with the mapping vecLT (·), with reverse operation vecLTr (·). For the map-

ping of the parameter-dependent interior solution map, U i
b,GQ(µi), and

∂U i
b,GQ(µi)

∂µr
,

the regular vec(·) and vecr(·) operators can be applied.

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑎34
𝑎44

𝑣𝑒𝑐𝐿𝑇(𝐴) =

𝑎11
𝑎21
𝑎31
𝑎41
𝑎22
𝑎32
𝑎42
𝑎33
𝑎43
𝑎44

𝐴 =

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31
𝑎41

𝑎32
𝑎42

𝑎33
𝑎43

𝑣𝑒𝑐(𝐴) =

𝑎11
𝑎21
𝑎31
𝑎41
𝑎12
𝑎22
𝑎32
𝑎42
𝑎13
𝑎23
𝑎33
𝑎43

Figure 44: Illustration of the vector mappings

Finally, the remaining terms present a bit more of a challenge. These include: the

force terms, Fiu(µ) and
∂Fiu(µ)

∂µr
; and the traction induced bubble solutions, bf ;h

i,GQ(µ)

and
∂bf ;h

i,GQ(µ)

∂µr
. This is due to the fact that in addition to the parameters defined

for the component, they also depend on prescribed boundary tractions applied to

the component. Recall the force term for the Schur complement equation shown
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in equation (158). The instantiated component can be placed at many different

locations in the final physical problem domain. As such, the current approach can

only be applied if the restriction of the term f(·, µ) to an instantiated component

i.e. (f(·, µ)|Ωi), is independent of where this component is located in the physical

problem domain. If this requirement is not satisfied, then the development presented

in section 5.6.2.6 can be used instead.

6.5.2.1 Notes About The Coefficient Schur Complement Matrix

Among these terms, special mention has to be made about the terms entering the

Schur complement coefficient matrix, i.e. Ki
uu(µi). It would be beneficial to have a

guarantee that these terms are positive definite; particularly when an indirect solver

is used to solve the system. The challenge that arises is that there is an overhead

associated with the aforementioned mappings when interpolation techniques that en-

force positive definiteness are used. Encouraged by the work of Degroote et al. [141],

where they successfully performed the interpolation in the original matrix space, the

positive definiteness requirement will not be strictly enforced so as to get the best effi-

ciency from the method. In a similar manner, Negri [1] and Bonomi [2] did not enforce

the positive definiteness requirement in the MDEIM case. If positive-definiteness is

absolutely required for robustness sake, then interpolation can be performed in the

appropriate tangent matrix spaces. Note that the overall approach should still be

efficient and that it is only one of a group of terms that need to be estimated by the

SCRBE approach for each component.

6.5.3 Updated Offline Procedure

The algorithms associated with the offline stage of the SCRBE-DEIM method can

now be presented. Algorithm 5.1 is the procedure that is responsible for determin-

ing the empirical modes for approximating the nonlinear matrices arising from the

SCRBE procedure, as well as the surrogate models of the interpolation coefficients.
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The algorithm takes the inputs; the parameter domain sample, Dtest; the snapshots

generated at these points, S = {f(µ) : µ ∈ Dtest}; and the convergence tolerance for

the POD procedure, εtol. The algorithm produces the outputs: the empirical basis,

Φ; the surrogate coefficients for the approximation coefficients, θ̃.

Algorithm 12: SCRBE DEIM Offline

input : S, εtol, X
output : Φ, θANN
begin

� Determine the empirical basis associated with the snapshots:
Φ = POD(S, εtol)

� Create the testing data to create the ANN surrogates: θtest = ΦTS

� Create the ANN surrogates for the coefficients with the data: θtest = ΦTS

� The coefficients are: θANN

end

6.5.4 Updated Online Procedure

Using the elements produced during to the offline procedure (Φ and θANN), we can

now recover estimates for the SCRBE terms (f(µ)) at any given point in the parameter

space, µ ∈ D. The control parameter for the edge fidelity, ηedge is also included to

help to refine the approximation. The associated algorithm is:

Algorithm 13: SCRBE-DEIM Online

input : Φ, θANN , µ, ηedge

output : f̃(µ)
begin

� Evaluate the surrogates at µ: θ̃ = θANN (µ)

� Retain the relevant rows and/or columns of the empirical basis, Φ,
corresponding to the control parameter, ηedge

� Recover the approximation for f (µ) as f̃ (µ) = Φθ̃

end
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The output f̃(µ) can be reshaped by the appropriate reverse operator and then

included in the SCRBE procedure.

6.5.5 Online Complexity Analysis

Attention is now turned to analyzing the computational complexity associated with

assembling the ingredients for the problem domain. The relevant terms required to

perform the complexity analysis are restated here:

6.5.5.1 Definition Of Terms

� Nmax
E - is the maximum number of edge mode degrees of freedom on any single

global edge in the problem domain after the edge space refinement

� Nmax
V - is the maximum number of vertex mode degrees of freedom on any single

global vertex in the problem domain

� Ninterface = 4(Nmax
E +Nmax

V )

� Nc - the number of components in the assembled problem domain

� nµi - the maximum number of parameters among all of the components

� QKemp - the maximum number of terms required for the approximate affine

representation of Ki
uu(µ) and

∂Ki
uu(µ)

∂µr
among all of the components

� Qu - the maximum number of terms required for the approximate affine repre-

sentation of U i
b,GQ(µi) and

∂U i
b,GQ(µi)

∂µr
among all of the components

� Qbf - the maximum number of terms required for the approximate affine repre-

sentation of bf ;h
i,GQ(µi) and

∂bf ;h
i,GQ(µi)

∂µr
among all of the components

� τsurr - The maximum number of operations required to evaluate any of the

surrogates for the problem coefficients

6.5.5.2 Complexity Analysis Of Each Major Term

Using these terms, the online time complexity for the major steps are:
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Terms Time Complexity

Ki
uu(µi),

∂Ki
uu(µi)

∂µr
O (Nc (nµ + 1)QKemp (τsurr +N 2

interface))

Fiu(µ),
∂Fiu(µ)

∂µr
O (Nc (nµ + 1)Qf (τsurr +Ninterface))

U i
b,GQ(µi),

∂U i
b,GQ(µi)

∂µr
O (Nc (nµ + 1)Qu (τsurr +Ninterface))

bf ;h
i (µ),

∂bf ;h
i (µ)

∂µr
O
(
Nc (nµ + 1)Qbf τsurr

)
6.5.5.3 Overall Complexity Analysis

This leads to an overall time complexity of:

O
(
Nc (nµ + 1)

[
QKemp

(
τsurr +N 2

interface

)
+Qf (τsurr +Ninterface) + (204)

Qu (τsurr +Ninterface) +Qbf τsurr
])

6.5.5.4 Comparison To The SCRBE Approach

Here we see that computational time is not dependent on the cost of solving bubble

solutions on the problem domain. Instead, to form the ingredients of the static con-

densation problem, we are only required to do an affine summation for each term.

Furthermore, the largest multiplicative factor of the N 2
interface terms is QKemp , as op-

posed to nbQK in the case of the SCRBE method. The latter scales poorly with affine

representations for the bilinear operator that are not concise (QK →∞) and bubble

spaces with large cardinalities nb →∞. For efficiency, it is critical to keep the values

of QKemp , QKb , Qu, Qbf and τsurr as low as possible.

6.6 Chapter Summary

In this chapter, an alternative method was presented to provide the ingredients of

the SCRBE approach. The approach leverages a modified version of the Matrix

Discrete Empirical Interpolation approach. It was shown through a time complexity
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analysis that the SCRBE-DEIM approach should have a competitive advantage from

an efficiency point of view relative to the SCRBE approach. The relative accuracy is

yet unclear and will have to be tested.

The hypotheses corresponding to the research questions will now be stated.

Hypothesis 2.0: Based on a time complexity analysis, the SCRBE-DEIM ap-

proach should help to alleviate some of the computational overhead of the SCRBE

approach. However, a reduction is accuracy is expected due to the use of inter-

polation techniques in multiple places

Hypothesis 3.0: The SCRBE-DEIM approach should help to alleviate some

of the computational overhead during the optimization procedure. However, its

suitability as a replacement to the SCRBE method is contingent on its accuracy

along the optimization paths.
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Chapter VII

CANONICAL PROBLEM

7.1 Chapter Overview

In this chapter, the pair of canonical problems that were studied for this work is

presented. This includes: a description of the use of archetype components; the

underlying finite element mesh; the choice of component parametrization and the

treatment of the state variable dependent constraints.

7.2 Introduction Of The Design Problem

For the canonical problem, it was desired to select a representative, yet simple

aerospace design problem for application of the methods examined in this work. Due

to the increased use of composite materials in aerospace structural design over the

years, a canonical problem centered around their use was coveted. As such, the

problem chosen was the membrane strength design of a patched, variable stiffness

composite plate. Figure 45 illustrates a patched, variable stiffness composite plate.

With this type of design, the entire problem domain is segmented into subregions.

Within each subregion, the laminate lay-up (i.e. number of plies, their orientations

and overall laminate thickness) is uniform throughout its local, physical domain; but

is allowed to differ from adjacent subregions. This type of design has been shown to

provide superior structural performance relative to constant stiffness designs; wherein,

the entire structure has a consistent laminate throughout its physical domain [153].

155



Figure 45: Illustration of a variable stiffness plate

The patched, variable stiffness composite design fits well into the paradigm of the

SCRBE method. Each or a group of the sub-regions can be treated as a component

under the SCRBE paradigm. As such, these components naturally inherit the mate-

rial and geometric parametrization from the individual or group of variable stiffness

sub-regions. For this work, each sub-region will be treated as a component.

7.3 Description Of The Two Canonical Problems

Two canonical problem variants that will be used to perform the numerical experi-

ments in the following chapter. Variant 1 was created for the purpose of investigating

research questions 1 and 2; whereas variant 2 was created in order to investigate

research question 3 i.e. for the optimization problem. Although the SCRBE and

SCRBE-DEIM methods allow for the direct application of boundary tractions to

the periphery of the problem domain, the implementation by the author was per-

formed in an ad-hoc fashion for the application of Dirichlet boundary conditions.

The approximation spaces used on the boundaries for the test problems were La-

grange polynomials distributed on Chebyshev nodes. This is similar to the approach

used by Vidal-Codina et al. [116] for a one dimensional interface/boundary. A space

decomposition approach of the type described in section 5.3.3 could have been used.

However, since Dirichlet boundary conditions are prescribed and are not modulated,
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the simpler approximation space was chosen in order to reduce the required experi-

mental effort in training the empirical edge spaces on the periphery.

The displacement field applied in the normal direction of the top and bottom

boundaries are parabolic, with the maximum value occurring in the middle of the

boundary and zero at either bounding vertex. In the lateral directions along these

boundaries, the displacement are constrained. On the left and right boundaries,

homogeneous Dirichlet boundary conditions are applied.

𝑣0 

−𝑣0 

𝑣0 

−𝑣0 

Figure 46: The two variants of the canonical problem. Left: problem domain variant

1. Right: problem domain variant 2

For variant 2, the extra rows of components were added in order to mimic the

application for boundary tractions on the 3 interior rows of components. This was

done by first fixing the material parameters in the domain and then by applying the

prescribed Dirichlet boundary conditions to the periphery. The resulting internal
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forces developed on the upper and lower highlighted edges were kept fixed and used

during the optimization procedure for experiment 2. It should be noted that the

Lagrange polynomial basis (with a fixed number of modes) was also used for the

boundary of the interior domain. Therefore, only the interfaces on the interior of the

highlighted physical problem domain feature an empirical basis.

7.3.0.1 Choice Of Laminate Parametrization

Kennedy and Martins [154] provided a thorough review of the methods that are avail-

able in the composite structural design literature for laminate parametrization. The

two major category of methods identified are: direct methods and indirect methods.

For indirect methods, rather than working with the physical parameters that directly

describe the laminates; intermediate variables which are functions of the physical

parameters are used. The primary manifestation of this approach in the literature

is with the use of lamination parameters. They were initially introduced by Tsai

and Pagano [155]. Lamination parameters were chosen for the canonical problems

described in this section. They provide the opportunity to create relatively concise,

affine relationships for the requisite stiffness matrices and do not scale poorly when

a large number of plies are used to construct the composite laminate.

The main challenges with using lamination parameters are: (1) recovering phys-

ically realizable laminates from the found optimum designs and (2) properly identi-

fying the feasible design/parameter space for which they are meaningful. Regarding

limitation (1), a commonly used approach in addressing this problem is to use a

multilevel optimization approach [153]. In this approach, the lamination parameters

are first used to design the laminate for some objective (such as mass minimization,

compliance, etc). Subsequently; another optimization routine is used to obtain a

detailed ply-by-ply laminate definition that meets manufacturing and certification re-

quirements. The author defers to the work in literature for this post-processing step.
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Limitation number 2 will be addressed in section 7.3.3.

In chapter 4, the strong and weak forms of the linear-static elasticity problem

were presented. In appendix A, the constitutive model of a general, anisotropic

composite laminate using shell theory is presented. This is followed by the inclusion

of lamination parameters and material invariants for an affine representation of the

stiffness matrix.

7.3.0.2 Design Rules For The Canonical Problem

The following are the major design rules that were imposed on the problem:

� Symmetry and balance of the laminate is enforced in each component

� Each component contains at least one ply with one of the following orientations:

{00,−450, 450, 900}. This is to enable stress calculations.

� Blending will not be enforced between adjacent sub-regions on the problem

domain.

7.3.1 Assembly Of The Archetype Components Into The Problem Do-
main

For the present work, there are nine archetype components. They are each built upon

the same finite element mesh (figure 48); and use the same constitutive relationship

and parameter spaces. The difference among them lies in the choice of edge and

vertex modes (including transformations) used to form the local boundaries. The

nine archetype components form the basis of the problem domains considered in

this section. Figure 47 shows the two problem domains and the use of archetype

components as building blocks for their creation. Each unique archetype component

is illustrated with a unique color.
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(a) (b) 

Figure 47: Assembly of template components into the problem domain. (left) Problem

domain 1. (right) Problem domain 2

7.3.2 Finite Element Subspace Chosen For The Components

Both the SCRBE and SCRBE-DEIM methods are built upon the finite element ap-

proximation space. A finite element approach had to be chosen that is compatible

with the shell theory used to model the composite plate. For this purpose, the flat

shell approach [156] was chosen for the present work. This approach avoids several

types of “locking” 1 that often plague shell finite element implementations.

Figure 48 shows the finite element mesh that is used to model each component in

the variable stiffness composite plate’s domain. The mesh has 25 bilinear elements (26

nodes) along each of the four local boundaries and features a two-way bias towards

1Locking can be defined as the presence of artificial stresses in a finite element formulation.
There are four common types of locking, including, (1) Transverse shear locking; caused by incorrect
transverse forces under bending; (2) In-plane shear locking in plates and shells; (3) Membrane locking
that occurs in curved beams and shells; (4) Volumetric locking that occurs with Poisson ratio, ν ≈ 0.5

160



the vertices of the domain. The direct application of Dirichlet boundary conditions to

the boundaries of the plate in the various directions during the training procedures

led to a somewhat non-smooth displacement field in the peripheral regions of the

plate. The use of the mesh bias was found to quickly diminish this pattern as one

moved away from the periphery of the domain. In total, there are 3456 degrees of

freedom on the mesh.

-1

-0.8

-0.6

-0.4

-0.2
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 48: Finite element mesh on a template component

This finite element mesh was used for the following tasks:

� The creation of the components used within the truth model. The truth model

was used for validation purposes.

� The creation of the testing domains used for the edge space and bubble space

training procedures described in section 5.5.

� The creation of the SCRBE stiffness matrices and solution recovery mappings

used in the SCRBE-DEIM approach.

The truth models corresponding to the canonical problems were created and val-

idated against similar models created in the commercial Finite Element software,

ABAQUS [157]. There was good agreement between the corresponding models for
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displacement estimations and the slight differences (< 1%) were attributed by the

author to the differences in finite element formulations.

7.3.3 Stiffness Matrix Parametrization For Each Component

Based on the presentation in appendix A, the stiffness matrix for a general, anisotropic

composite laminate can be described by a combination of: the laminate thickness,

lamination parameters and lamina invariant terms. The laminate thickness and lam-

ination parameters are used to create the affine coefficients for the stiffness matrix;

whereas the lamina invariant terms, along with the finite element truth space, is used

to create the parameter independent terms. The resulting affine representation for

the stiffness matrix for component i is:

Ki = hKA0 +
4∑
q=1

hξAq K
Aq +

4∑
q=1

h2ξBq K
Bq +

h3

12
KD0 +

4∑
q=1

h3

12
ξDq K

Dq (205)

Here:

� h - the overall thickness of the laminate

� −1 ≤ ξA[1,2,3,4] ≤ 1 - governs the pure membrane behavior of the laminate

� −1 ≤ ξD[1,2,3,4] ≤ 1 - governs the pure bending behavior of the laminate

� −1 ≤ ξB[1,2,3,4] ≤ 1 - governs the coupled membrane-bending behavior of the

laminate

� KA0 and KD0 - stiffness matrix contributions that are not paired with lamina-

tion parameters

� Kjq j = {A,B,D} q = {1, 2, 3, 4} - stiffness matrix contributions that are

associated with lamination parameters

Due to the use of a balanced and symmetric laminate, we attain certain simplifica-

tions. Chiefly, ξAq = 0, q = {3, 4} and ξBq = 0, q = {1, 2, 3, 4}. Furthermore, since

the problem being studied involves only the membrane deformation under balanced

and symmetric laminate assumptions, the affine representation for the stiffness matrix
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for each component becomes:

Ki = hKA0 + hξA1 K
A1 + hξA2 K

A2 +
h3

12
KD0 (206)

Although the three parameters: h, ξA1 and ξA2 , are sufficient for parametrizing the

stiffness matrix associated with the laminate under these restrictions; this does not

form the full set of terms that have be considered when online parametric changes are

made. The lamination parameters are highly correlated with each other and as such,

are not allowed to vary independently. There has been extensive work in the literature

to define the interdependencies among the lamination parameters. Bloomfield et

al. [158] presented a collection of several of the closed form constraints that were

developed in literature for defining the feasible domain for the lamination parameters.

It was shown by Grenestedt and Gudmundson [159] that this feasible region is convex.

The closed-form lamination parameter constraints summarized by Bloomfield are:

2
(
ξj1
)2 − 1− ξj2 ≤ 0 (207)

2
(
1 + ξj2

) (
ξj3
)2 − 4ξj1ξ

j
3ξ
j
4 +

(
ξj4
)2 −

(
ξj2 − 2(ξj1)2 + 1

)
(1− ξj2) ≤ 0, (208)(

ξj1
)2

+
(
ξj3
)2 − 1 ≤ 0, (209)

1

4

(
ξAk + 1

)3 − 1− ξDk ≤ 0, (210)

−1

4

(
ξAk − 1

)3 − 1 + ξDk ≤ 0, (211)

−4
(
ξAk + 1

) (
ξDk + 1

)
+
(
ξAk + 1

)4
+ 3

(
ξBk
)2 ≤ 0, (212)

−4
(
ξAk − 1

) (
ξDk − 1

)
+
(
ξAk − 1

)4
+ 3

(
ξBk
)2 ≤ 0, (213)

for j ∈ {A,D}, k = {1, . . . , 4}

After the simplification provided by the assumptions for the present problem, there

are a total of 13 lamination parameter constraints that remain. Notice that there

are couplings between in membrane lamination parameters (A) and the out-of-plane

(D) parameters. Going forward, the collection of these lamination parameters will

be referred to as lamConstraints
(
ξA1,2, ξ

D
1,2,3,4

)
. Based on the correlations of the
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lamination parameters, the parameters for each component are: µi =
{
h, ξA1,2, ξ

D
1,2,3,4

}
.

7.3.4 State-Variable Dependent Constraint For The Problem

The state-variable dependent constraint that was considered is a first-ply failure,

material strength constraint. In particular, the Tsai-Wu ply failure constraint was

applied to all of the components in the problem domain. The Tsai-Wu failure con-

straint takes the form:

σ2
xx

X tXc
+

σ2
yy

Y tY c
−
√

1

X tXc

1

Y tY c
σxxσyy+

(
1

X t
− 1

Xc

)
σxx+

(
1

Y t
− 1

Y c

)
σyy+

τ 2
xy

S2
−1 = 0

(214)

Where:

� σxx, σyy, τxy - The axial, lateral and shear stresses, respectively, in the lamina

� X t, Y t - The tensile strength in the axial and lateral directions, respectively, of

the lamina

� Xc, Y c - The compressive strength in the axial and lateral directions, respec-

tively, of the lamina

� S - The shear strength of the lamina

The material strength terms are determined experimentally.

𝜀11(𝑥3) σ1(𝑥3)

𝑥3

𝑥1

Figure 49: Composite laminate under pure membrane loading. (Left:) strain distri-

bution. (Right:) stress distribution.

164



The Tsai-Wu constraint is a type of bound-constraint and must be satisfied at all

points in the problem domain. The assumption was made that each component has

at least one of each of the following ply angles: {00,−450, 450, 900}. For each of these

ply angles, the Tsai Wu constraint is calculated using the local ply stresses developed

after applying the boundary conditions to the problem. For pure membrane loading,

under the conditions of a symmetric and balanced laminate, the strain field is uniform

through the thickness of the laminate. However, when the ply angles vary through

the thickness of the laminate, the stress field is not and varies in a piece-wise constant

fashion (figure 49). For each component, the Tsai-Wu constraint is evaluated for each

ply angle at the Gaussian quadrature sampling locations and then used to determine

the associated constraint aggregate functionals over the entire component.

7.4 Chapter Summary

In this chapter, the two variants of the canonical problem were presented. They will

be used as the test bed for the numerical experiments described in chapter 8.
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Chapter VIII

NUMERICAL EXPERIMENTS

In this chapter, an overview will be given on how the algorithms presented through-

out the work were applied to the canonical problem. Additionally, the numerical

experiments used to investigate the hypotheses discussed in chapters 5 and 6 are

presented.

8.1 Numerical Training Procedures For The Canonical Prob-
lem

8.1.1 Generation Of The Parameter Space Samples

For the algorithms used to create the ingredients of the SCRBE and SCRBE-DEIM

approaches, samples are needed within the parameter space. The Latin Hypercube

sampling [160] technique (LHS) was used to generate these samples. Each compo-

nent has a parameter space of dimension of seven. The samples were generated within

the feasible space prescribed by the function lamConstraints(·). During the exper-

imental testing, the author noticed some strange, non-smooth displacement fields

for parameter values that are close to the boundary formed by lamConstraints(·).

To mitigate the effects of these aberrant points, a small constant was added to the

estimates produced by lamConstraints(·) in order to shift feasible space.

Using the sample set formed on an individual component, the sample set for a

larger physical domain consisting of several components was formed by taking the

Cartesian product of the local samples. Random permutations of the local samples

were combined to form each individual global sample for a problem domain. Due

to the prescription of the feasible parameter space in this fashion, it is unlikely that

the corners of this design subspace will be explored during the online optimization
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procedure. Therefore, no special care is taken to study the behavior of these regions.

8.1.2 SCRBE Training Procedure

8.1.2.1 Edge Mode Training

Using the testing domains built upon the finite element meshes described in section

7.3.2 and the parameter samples mentioned in section 8.1.1, the edge mode training

algorithms described in section 5.5.0.6 were performed. A representative set of the

edge modes for an interior edge is depicted in figure 50.

Figure 50: Empirical modes found the solution u1(x) for a typical interior edge

For the present problem, there are three types of edge modes used in the problem

domain: (1) those on the interior; (2) those joining the interior and the periphery of

domain; and (3) those used exclusively on the periphery of the domain. However, as

described in section 7.3, predetermined, non-empirical modes were selected for the

boundaries, for simplicity sake. The edge modes were rotated as necessary and used

to form the boundaries of the local archetype components.
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8.1.2.2 Bubble Mode Training

Leveraging the empirical edge modes and their extensions into the interior of the

components, algorithm 5.5.0.7 was used to obtain the corresponding bubble space

modes defined on the interior of the adjacent components. Figure 51 illustrates the

number of bubble modes that were extracted for each of the first eight modes on a

typical interior edge. The bubble space fidelity parameter, ηb, can be used to vary

the number of bubble modes used in the approximation and is also illustrated here.

Figure 51: The quantity of empirical bubble modes associated with the first eight

interface modes of a typical interior edge

8.1.3 SCRBE-DEIM Training Procedure

Next, the offline elements of the SCRBE-DEIM approach were created. As described

in section 6.5.3, this includes the empirical modes required for approximating the

operators and mappings; as well as the artificial neural network models that are used

to provide estimations for the coefficients in their approximate affine representations.
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8.1.3.1 Stiffness Matrix Approximation

Using the parameter samples described in section 8.1.1, the symmetric stiffness ma-

trices and their derivatives described in section 5.3.5 were evaluated at the sampling

locations. Using the Proper Orthogonal Decomposition (POD) procedure for each

stiffness matrix sample set, the empirical modes needed to provide the pseudo-affine

relationships were determined. Figure 52 shows the number of empirical modes that

were obtained for a POD tolerance of ηtol.

Figure 52: Quantity of empirical modes created for the stiffness matrices of the 9

archetype components. (a) State matrix. Derivative with respect to: (b) h (c) ξA1

(d) ξA2
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(a)

(b)

Figure 53: The training results for the first two coefficients of the stiffness matrix

for archetype component 1. Actual vs. predicted results - Left training data. Right

validation data
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The artificial neural network (ANN) surrogate models corresponding to the ap-

proximation coefficients were created in the statistical software package JMP [161]

and in the software package MATLAB [162]. Two-thirds of the samples generated

in the parameter space were used to train the ANN model, whereas the remaining

one-third samples were used for validating and testing the performance of each re-

gression. Each ANN was two-layered with 15 nodes in each layer. The activation

function selected for each node was the tanh(·) function.

The regression statistics for the first two coefficients of the stiffness matrix of

archetype component 1 are shown in figure 53. Judging by the R2 values and the

actual vs. residual plots, it seems that the ANNs capture the functional behavior of

the raw data quite well.

8.1.3.2 Parameter-Dependent Mapping Affine Approximation

The parameter domain samples were also used in the estimation of the terms required

for affine approximation of the parameter-dependent mappings. First, the empirical

modes were created for each unique combination of edge subspace and local edge on

the archetype component. In total, there were 14 mappings created for the archetype

edges and 8 mappings created for the vertices. The number of modes retained for

both type of interface components are shown in figure 54 and 55, respectively.

171



Figure 54: Quantity of empirical modes created for the archetype components edges.

(a) State matrix. Derivative with respect to: (b) ξA1 (c) ξA2
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Figure 55: Quantity of empirical modes created for the archetype components vertices.

(a) State matrix. Derivative with respect to: (b) ξA1 (c) ξA2

Similar to the stiffness matrices, the ANN surrogates were created for each group-

ing of edge modes and vertices for the state mappings as well as each of their deriva-

tives with respect to the parameters on which they depend.

8.2 Experiment 1: Convergence Behavior Of The SCRBE
And SCRBE-DEIM Approximations

Attention is now turned to the first of the two experiments considered in this section.

The purpose of the first experiment is to investigate the first two hypotheses that

were proposed in this work. The approximation convergence behavior was studied on

problem domain variant 1 and the comparison in overhead computation time required

was investigated on the middle three rows of problem domain variant 2.

8.2.1 Procedure For Experiment 1(a)

The following procedure was used to generate the results for experiment 1(a).
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� Step 1: 100 random design points were selected from the feasible region of

the domain formed by table 3 i.e. after the constraint set, lamConstraints(
ξA1,2, ξ

D
1,2,3,4

)
, was applied.

� Step 2: Problem domain variant 1 was created with the truth finite element

model, the SCRBE approach and the SCRBE-DEIM approach. The selected

design points in step 1 were applied to each component for the three methods.

� Step 3: On the boundary of the problem domain, a parabolic displacement

field was applied in the normal direction of the upper and lower boundaries.

The magnitude of the displacement was 1mm in the center of the field. Fur-

thermore, the left and right boundaries of the problem domain were subjected

to homogeneous Dirichlet boundary conditions.

� Step 4: Among the Tsai-Wu constraint values that resulted after inducing

stresses on the interior of the problem domain for each design point, the most

active one (largest non-negative value) evaluated on the truth model was se-

lected for analysis.

� Step 5: The derivative of this constraint was also found by evaluating it nu-

merically on the refined truth model.

� Step 6: The corresponding Tsai-Wu constraint value and its derivative were

evaluated with the SCRBE and SCRBE-DEIM approaches

� Step 7: For the SCRBE and SCRBE-DEIM approaches, the fidelity of the

interface and bubble space approximations were varied in order to study the

convergence behavior of the models. The values of these parameters that were

investigated are presented in tables 4, 5 and 6. Tables 4 and 5 also show the

correspondence between the selected ηedge values and the average number of edge

modes per nodal DOF used to form the Schur complement (after the deletion of

rows and columns corresponding to the application of the boundary conditions).
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� Step 8: Similarly, the mesh density of the finite element model was also var-

ied and used to calculate the metrics listed above. This formed the basis of

comparison for the speed of convergence.

Table 3: Parameter domain for each archetype component

Parameter h(m) ξA1 ξA2 ξD1 ξD2 ξD3 ξD4

Lower Limit 1.40e−2 −1 −1 −1 −1 −1 −1

Upper Limit 7.70e−2 1 1 1 1 1 1

Table 4: Correspondence between the interface fidelity parameter setting, ηedge, and

the average number of edge modes used on the edges per nodal d.o.f. (part 1)

Step 1 2 3 4 5 6 7 8 9

ηedge 10−0.50 10−1.00 10−1.25 10−1.50 10−2.00 10−2.50 10−2.75 10−3.00 10−3.25

N 2.00 2.07 3.57 4.00 4.71 6.00 7.00 8.07 9.00

Table 5: Correspondence between the interface fidelity parameter setting, ηedge, and

the average number of edge modes used on the edges per nodal d.o.f. (part 2)

Step 10 11 12 13 14

ηedge 10−3.50 10−3.75 10−4.00 10−4.25 10−4.50

N 10.07 11.00 12.00 13.43 14.00
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Figure 56: Displacement solution of the problem

Table 6: Values investigated for the bubble space fidelity parameter

Step 1 2 3 4 5 6

ηb 10−1.0 10−2.0 10−3.0 10−4.0 10−5.0 10−6.0

8.2.2 Results From Experiment 1(a)

Figure 56 illustrates the displacement field associated with experiment 1 for one of

the investigated design points. As expected, the displacement field on the upper and

lower boundaries of the problem domain mimic the applied Dirichlet boundary field,

while the displacement vanishes at the interior and on the left and right boundaries.

Figure 57 shows the maximum Tsai-Wu constraint values found for the compo-

nents in the problem domain for one of the 100 randomly selected design values. For

the 90 and 0 degree ply angles, there is symmetry in the stress values found on the

components in the problem domain, while for the −45 and 45 degree plies, there is

anti-symmetry for the constraint values evaluated on the domain. For the parame-

ter samples evaluated on the problem domain, the most critical constraint value was

consistently found on the 90 degree ply closer to boundary of the problem domain.
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Figure 57: Maximum Tsai-Wu stress constraint values calculated for the various plies
in the problem domain

8.2.2.1 Overview Of The Convergence

The observations corresponding to the 100 design points considered were collected.

For the same settings (i.e. edge and bubble space refinement parameters or mesh

density), the observed metrics of interest were found to be stochastic in nature. As

such, the convergence behavior of both the mean of the metrics and their distributions

were investigated.

8.2.2.2 Convergence Behavior Of The Mean Of The Metrics With Model Refine-
ment

Figure 58, shows the convergence behavior of the mean of the relative errors for

the most active Tsai-Wu constraint values and their derivatives for the 100 design

points that were investigated. For the top plot, the absolute value of the relative

error between the Tsai-Wu constraint (σ) and its approximation (σa) is shown on

the ordinate; while the average number edge modes required for each nodal degree
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of freedom per edge is shown on the abisca. The refinement of the bubble solution

approximation for the SCRBE approach is shown with various trend lines.

For both approximation approaches, there appears to be rapid convergence to the

mean of the Tsai Wu constraint values predicted by the truth model relative to the

approximations made with FEM mesh refinement. The “edge modes” for the FEM

mesh refinement is the finite element basis functions associated with the interior nodes

on the edge. Indeed, with the exception of when ηb = 1e − 2, using an average of

only 4 edge modes per nodal degree of freedom per edge leads to approximation with

less than 1.0% of the truth model’s prediction. The refinement of the mesh used on

the FEM model leads to comparatively much slower convergence of the constraint

prediction. The best approximation achieved by this approach was 1% error in the

range of values considered. For the SCRBE method, the influence of the bubble space

fidelity parameter, ηb, seems to be more pronounced as the number of global interface

modes used increases. For an increasing quantity of edge modes, refinement of ηb

leads to an approximation refinement of several orders of magnitude.

The mean of the relative error of the approximations furnished by the SCRBE-

DEIM method converges to 0.3%. However, it is clear that the SCRBE approach is

superior in its convergence as the model parameters are refined. Both methods are

comparable in accuracy in the domain of ηedge ∈ [1e−1.50, 1e0] or N ∈ [2.00, 4.00]

edge modes per edge per nodal dof. Beyond this domain, further refinement does

not appear to have a significant influence on the SCRBE-DEIM approach. Despite

this observation, the SCRBE-DEIM still provides an excellent approximation of the

constraint.

Regarding the approximation of the constraint derivative (bottom plot in figure

58), both methods display fast convergence as the model parameters are refined.

The approximation furnished by the SCRBE-DEIM method appears to be slightly

better for the derivative; however, its convergence still stalls beyond a certain level
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Figure 58: Convergence of the approximation of the most active Tsai-Wu constraint.
Top: Mean of the observations. Bottom: the mean of the observation derivatives
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of the refinement. The associated domain extends to ηedge ∈ [1e−2.50, 1e0] or N ∈

[2.00, 6.00] edge modes per edge per nodal dof.

8.2.2.3 Distributions Of The Approximation Error With Mesh Refinement

The distributions of the relative error for the maximum constraint values for the

various settings of the refinement parameters are shown in three groups of plots i.e.

figures 59 to 61. The analogous plots for the derivatives are shown in figures 62 to

64. The distributions are presented in the form of box-plots. Each box in the plots

has the following characteristics:

� The red line within the blue box represents the median of the distribution

� The bottom and top lines of the blue box represent the 25th and 75th percentile

values of the distribution, respectively

� The whiskers (black lines) denote the extent of the distributed values that are

not considered outliers

� Finally, the red data points are those observations that are considered outliers

For the estimates corresponding to the SCRBE approach for the constraint value,

(first 5 boxes in each subplot in figures 59 to 61), it can be seen that the simultaneous

refinement of the number of edge modes and the bubble modes has the effect of

lowering the median value of the residual error, as well as lowering the upper limit of

the distributions. On the other hand, for the SCRBE-DEIM method, apart from an

initial decrease in these terms for smaller values of the number of edge modes used

(roughly N = 2 to N = 4), further refinement does not appear to have a significant

impact on the quality of the approximation produced. In fact, the upper limits of

the error distributions do not appear to get better than 1e− 2, i.e. an upper limit of

error 1%.

Similar behavior can be observed for the derivative of the constraint with refine-

ment of the model parameters. However, for the SCRBE-DEIM approach, the upper
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limit of the error distribution for the derivatives becomes lower than 1%.
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Figure 59: Box plots for the maximum Tsai-Wu approximations - Group 1
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Figure 60: Box plots for the maximum Tsai-Wu approximations - Group 2
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Figure 61: Box plots for the maximum Tsai-Wu approximations - Group 3
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Figure 62: Box plots for the maximum Tsai-Wu derivative approximations - Group 1
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Figure 63: Box plots for the maximum Tsai-Wu derivative approximations - Group 2
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Figure 64: Box plots for the maximum Tsai-Wu derivative approximations - Group 3

8.2.3 Experiment 1(b): Timing Analysis Of The Approaches

The following procedure was followed for the timing analysis
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� Step 1: A random point was selected within the feasible space of the parameter

domain associated with problem domain variant 2. Its physical domain was

constructed with both the SCRBE and SCRBE-DEIM approaches.

� Step 2: The time required to assemble the contributions to the Schur comple-

ment, the outputs and their derivatives from the middle three rows of compo-

nents were measured and averaged over 15 repetitions.

� Step 3: The average times were recorded as both the SCRBE and SCRBE-

DEIM models were refined

Figure 65 shows the average serial computational time required to compute the

ingredients of the SCRBE and SCRBE-DEIM approximations. This includes the

local Schur stiffness matrices, the parameter-dependent, solution recovery mappings

and their derivatives. The computational time required to solve for the state solution

and its derivative with respect to all of the parameters of the problem was at most

0.15s. This value corresponds to the maximum number of global interface modes

considered. This observation is consistent with the expectations from literature; in

that, the formation of the ingredients of the Schur complement and the problem

outputs accounts for the majority of the computational time required by the method.

As revealed by the analysis in section 8.2.2.2, the two methods are comparable in

accuracy in the lower end of the domain of edge modes, i.e. N (i.e. 2 ≤ N ≤ 4). In

this region, the speed-ups afforded by the SCRBE-DEIM method over the SCRBE

method ranges from 2.91 − 5.73 times. As discussed in section 2.5.2, the task of

computing the ingredients to these approximations is embarrassingly parallel. This

implies that the computational time scales linearly with the number of components

that are being evaluated at any one time, whether serially or on a single processor

in a parallel computing architecture. Due to this linear growth, the time difference

between the methods should become especially significant when a large number of

components are being considered.
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It is also noteworthy that the computational time required for the SCRBE-DEIM

method appears to the insensitive to the number of global interface modes used in

the approximation in the lower end of the domain considered. This indicates that the

dominant factor in the computation is the time required to evaluate the underlying

surrogate models. In the present implementation, the number of surrogate models

used does not vary with the refinement parameters of the model and presents the

same computational overhead for all of the values that are considered.
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Figure 65: Average computational time required to form the local Schur stiffness

matrices, the strain approximation matrices and their derivatives

8.3 Experiment 2: Optimization Study

The purpose of the second experiment is to determine if the SCRBE-DEIM approach

is a suitable substitute for the SCRBE method as a means of providing estimates of

the constraints and their derivatives in a gradient-based optimization context.
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8.3.1 Procedure For Experiment 2

The following procedure was used to generate results for experiment 2

� Step 1: In a similar fashion to experiment #1, a truth model and the two

SCRBE variants were constructed for problem domain variant 2.

� Step 2: As described in section 7.3, the region of the domain being optimized

corresponds to the middle three rows of the domain. The top and bottom row

of components are used to determine the reaction forces applied the boundary

of the domain of interest after Dirichlet boundary conditions are applied. A

single design point is chosen in the feasible space of the parameter domain of

the archetype component and is replicated for all the components in the top

and bottom regions of the problem domain.

� Step 3: Using the associated stiffness matrices and the boundary displacement

fields, the reactions forces on the periphery of the interior domain of interest

are calculated and fixed. For this problem, the magnitude of the displacement

is 6mm.

� Step 4: For the interior domain, three random design points within the feasible

region of the parameter space for the problem domain were selected as the initial

points of the optimization procedure.

� Step 5: The interior-point optimization algorithm [163] was used to optimize

the two SCRBE variants of the problem with various settings of ηedge and ηb.

In order to foster an “apples-to-apples” comparison, the same parameters and

tolerances were used for the optimizer in all cases.

� Step 6: For the optimal solutions furnished by the optimization procedures,

the truth model was used to validate the results.

Correspondingly, the optimization problem is:
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Optimize : m(µ) (215)

w.r.t : µ ∈ D, x ∈ Ω (216)

Subject to : R (us(µ), µ) = Kuu(µ)us −Ku0(µ̄)u0 = 0 (217)

σTW
j (us(µ, x), µ) ≤ 0, for 1 ≤ j ≤ 72 (218)

lamConstraints (µ) + c0 ≤ 0 (219)

Here:

� µ - the parameter vector (design variables) for the inner three rows of compo-

nents

� µ̄ - the fixed parameter vector used for the outer rows of components

� x - the location in the physical domain Ω

� us, u0 - the state solution on the internal global interfaces and boundaries,

respectively

� m - the total mass associated with the inner three rows of components

� R (us(µ), µ) - the residual of the discretized, weak form of the PDE

� Kuu, Ku0 - the global Schur complement stiffness matrices.

� σTW
j - the jth Tsai-Wu constraints

� c0 - the heuristic constant chosen to curtail the lamination parameter design

space

8.3.2 Results From Experiment 2

The main results of experiment 2 are presented in this section. A typical distribution

of the component masses (kg) that results after the convergence of the optimization

procedures is shown in figure 66.
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Figure 66: Mass distribution (kg) on the component plates in the domain

It can be seen here that based on the local masses, the components in the corners

of the problem domain tend to require more reinforcement compared to those on the

interior. This observation can perhaps be attributed to the large reaction stresses that

develop from constraining both the displacements on the left and right boundaries of

the problem domain. These stresses tend to become less pronounced as one moves

away from the corners of the problem domain.

Figure 67 shows the optimal (total) masses found by the various optimization

procedures. In each subplot, the optimal masses found by the SCRBE method corre-

spond to the first four columns in the groupings. The final column in each grouping

corresponds to the optimum found by the SCRBE-DEIM approach. It can be seen

here that the optimal values found by these procedures are fairly close to each other.

The optimal masses found fall into the range of 67 − 70kg. The mass values found

seems to be stochastic and appear to not only be affected by the accuracy of the con-

straint approximations, but also by termination criteria specified for the optimization
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Figure 67: Optimal masses found by the optimization procedures for the three initial
design points

algorithm. Among the observations for the three initial design points, there are places

were the SCRBE-DEIM approach yields higher masses than its SCRBE counterpart.

However, the maximum difference is roughly 2%.

8.3.2.1 Convergence Results For The Tsai-Wu Constraint Values

The form of the Tsai-Wu constraint is such that very small values can be observed

at various design points in the parameter domain. This would lead to badly scaled

problem when the relative error is calculated and would render the estimates to be

ineffective when assessing the suitability of the methods. As an alternative, the
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measure of effectiveness that will be used is how well the SCRBE and SCRBE-DEIM

methods are able to provide optimal solutions that do not violate the constraints of

the problem when they are evaluated by the truth model.

The most active constraint values - as evaluated by the truth model - for the

various refinement settings and initial points are presented in figure 68. The constraint

tolerance set for the optimizer was 1e− 4. For the SCRBE approach, the most active

constraint values tend to decrease with refinement of both ηedge and ηb for the three

initial points considered. On the other hand, the value predicted by SCRBE-DEIM

approach decreases initially and then asymptotes to values of at most 8e − 3 as the

model is refined. Since the Tsai-Wu constraint is normalized, this value represents

a 0.8% violation outside the feasible region of the design space. These results and

the results presented in section 8.2.2.2 indicate that with adequate refinement, the

SCRBE gives the better chance between the two approaches of finding a candidate

design point that satisfies the constraints of the problem.

8.3.2.2 Computational Overhead Analysis For The Approaches

The final analysis in this section is the comparison of the computational overhead

required by the SCRBE and SCRBE-DEIM in performing the optimization. Figure

70 shows the number of function and derivative calls required by the optimization

procedures. In one call to either model, the function value, constraint values and their

derivatives are all supplied simultaneously. The number of function and derivative

calls seem to vary somewhat across optimization run; with no clear distinction as

to which method and setting requires the least functions calls in the optimization

procedure.

Using this data plus the timing data presented in figure 65, the overhead required

to assemble the ingredients to the Schur complement systems and outputs was es-

timated. These data are presented in figure 71. It is clear that the SCRBE-DEIM

193



N = 3.74

N = 4.00

N = 5.22

N = 7.24

N = 9.00
10-4

10-3

10-2

10-1

N = 3.74

N = 4.00

N = 5.22

N = 7.24

N = 9.00
10-4

10-3

10-2

10-1

N = 3.74

N = 4.00

N = 5.22

N = 7.24

N = 9.00
10-4

10-3

10-2

10-1

Figure 68: The most active constraints when the optimal solutions are evaluated by
the truth model for the three initial design points
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Figure 69: Number of active constraints when the optimal solutions are evaluated by
the truth model for the three initial design points
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approach provides considerable savings in the computational overhead time relative

to the SCRBE approach. This becomes especially significant when the number of

global interface modes increases. However, as discussed in section 8.2.2.2, the accu-

racy of the two methods is comparable only in the lower end of the domain for the

number of edge modes considered. For the lowest number of edge modes considered

(i.e. N = 3.74), the savings afforded by the SCRBE-DEIM approach was approxi-

mately 75− 85%. The savings is computational time is more significant as the model

is refined; however, this becomes meaningless beyond after a while due to the limi-

tation in accuracy. Therefore, it is incumbent on the designer to establish this point

where further refinement is pointless.

8.4 Chapter Summary

In this chapter, results were presented for the numerical experiments performed on the

canonical problem. The results indicate that both the SCRBE and SCRBE-DEIM

methods achieve relatively fast convergence as the fidelity parameters are refined

(< 1% error). However, the SCRBE method is superior in its convergence beyond

this threshold, while the SCRBE-DEIM somewhat stalls. When compared in an op-

timization framework, it is apparent that the SCRBE-DEIM approach achieves a

significant saving in the computational overhead but with a smaller chance of satisfy-

ing all of the constraints on the problem as evaluated by the truth model. However,

the associated error level is not overbearing and invites further examination.
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Figure 70: The number of function and derivative calls made by the optimization
procedures
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Figure 71: Estimated total computational overhead time required to perform the
optimization procedures
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Chapter IX

CONCLUSIONS AND FUTURE WORK

In light of the expected environmental challenges associated with increased air traffic

over the years to come, the aviation industry has sought to incorporate a wide range

of technologies in the design of new vehicles. Among these technologies are a set

of structural technologies that are expected to reduce the weight of the airframe of

these new concepts. It is imperative that the impact of these new technologies be

considered at the conceptual level of aerospace design. Although the conceptual level

tools for weight estimation and structural design have been suitable in their function

for traditional aircraft, they may be unsuitable for newer, unconventional materials,

structural concepts and vehicles. The finite element method has been highlighted

by literature as the most accurate method available for numerical structural analysis

and as a result for determining the weight of the airframe. Unfortunately, its use

in early design has been restricted due to its associated computational expense. A

class of techniques, known collectively as Reduced Basis Approximation, has arisen

in applied mathematics for the expedient numerical solution of partial differential

equations. Specifically, the Static Condensation Reduced Basis Element (SCRBE)

method is promising for large-scale airframe structural design, due to its versatility

and its computational expediency.

The focus on this research is to identify an approach with which the SCRBE

method could be applied for the purpose of conceptual-level, linear-static, aircraft

structural design; primarily as a means of enabling weight estimation. This included

identifying ways in which common conceptual level structural constraints and their

derivatives could be included into the framework, and a way that the framework
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itself could be expedited. This process was illustrated on a simple design problem to

first foster and understanding of the presented methods. In the following sections,

the research questions and hypotheses will be addressed based on the experimental

results; as well as: the main limitations; avenues for improvement; and proposed

future work will be identified.

9.1 Research Questions And Hypotheses

9.1.1 RQ1 And HYP1

RQ 1.0: What is a suitable approach for determining empirical interface sub-

spaces that can concisely represent the constraints and their derivatives as the

fidelity of the model is refined?

HYP 1.0: Relative to the underlying finite element mesh, the use of the empirical

edge subspaces and the associated empirical bubble spaces should lead to fast

convergence of the estimated constraints and their derivatives as the model is

refined.

Based on the results presented in section 8.2.2.2 for a domain featuring homoge-

neous parameter values, the use of the empirical edge modes and the empirical bubble

spaces lead to fairly fast convergence to the evaluated constraint and its derivative

when compared to the finite element mesh of the truth model. Indeed, for the same

level of accuracy, both the SCRBE and SRBE-DEIM approaches were shown to lead

to Schur complements with smaller sizes relative to problem formulated with the ap-

proximation space of the FEM. While these results are promising, in a similar manner

to the conclusions drawn by Eftang [99] in his initial proposal for empirical port mode

training, he noted that the use of empirical modes becomes even more impressive

when two dimensional interfaces are used. It is desirable to eventually evaluate this

procedure on two dimensional interfaces, such as stringer-stiffened panels or perhaps
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even full sections in aircraft design.

9.1.2 RQ2 And HYP2

RQ 2.0: What is an alternative approach for generating the ingredients of the

SCRBE procedure that will help to alleviate the computational overhead, while

not drastically increasing the approximation error?

HYP 2.0: Based on a time complexity analysis, the SCRBE-DEIM approach

should help to alleviate some of the computational overhead of the SCRBE ap-

proach. However, a reduction is accuracy is expected due to the use of interpo-

lation techniques in multiple places

Based on the results presented in section 8.2.2.2, it can be seen that the SCRBE-

DEIM approach achieves a similar rate of convergence as the SCRBE method to about

an accuracy level of 0.3% mean relative error. However, after this point, further re-

finement to the model does not have significant influence on the accuracy provided.

On the other hand, the speed-ups afforded by the SCRBE-DEIM model are rather

significant relative to the SCRBE model and led to a significant reduction in over-

head required to produce the elements for the static condensation and the constraint

outputs.

9.1.3 RQ3 And HYP3

RQ 3.0: How do the SCRBE method and its surrogate compare in an optimiza-

tion setting?
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HYP 3.0: The SCRBE-DEIM approach should help to alleviate some of the

computational overhead during the optimization procedure. However, its suit-

ability as a replacement to the SCRBE method is contingent on its accuracy

along the optimization paths.

Based on the results presented in section 8.3.2, it is clear that the SCRBE-DEIM

approach offers an advantage relative to the SCRBE method in overcoming the over-

head associated with the SCRBE approach. However, as expected the SCRBE-DEIM

approach somewhat stalls in its ability to approximate the constraints. In spite of

this, it is fairly accurate based on the stipulations by Elham [43] for a conceptual level

design tool (section 1.3.1.1). Here it was stated that a conceptual level tool needs

to have an error of less than 5%. The SCRBE-DEIM method was able to furnish

objective values to within 2.0% and constraint values that are within 1% of the more

refined SCRBE models, but at a fraction of the overhead cost.

9.2 Limitations In The Proposed Method And Suggestions
For Improvement

In this section, some of the limitations identified by the author are examined; along

with suggestions as to how they can be addressed. This is performed for each of the

major levels of the work presented.

9.2.0.1 Overall Limitations

� Snapshot Sampling Procedures: In the edge mode training algorithms

presented in section 5.5.0.6, a combination of random sampling and Latin-

Hypercube sampling was used to generate samples in the parameter domain

for the testing problems. While sampling approaches of this kind are common

in the SCRBE literature, there are optimization-based, goal-oriented, greedy

sampling approaches in the general reduced order modeling literature that are
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aimed at addressing high-dimensional problems [83]. For the problems consid-

ered in this work, the parameter spaces associated with the testing domains are

formed from the Cartesian product of the parameter spaces of the individual

components and the polynomial coefficients for the displacement approxima-

tions on the boundaries. Depending on the problem, this has the potential

to form high-dimensional parameter spaces. The use of this alternate type of

greedy sampling method, has been shown to provide even more concise em-

pirical subspaces relative to other sampling methods for such high-dimensional

problems. This is an area for improvement for future work

9.2.0.2 SCRBE-DEIM Approach

� Surrogate Modeling Approach: Artificial neural network surrogate models

were selected for interpolating in the coefficients in the SCRBE-DEIM approach.

It is clear from the results in section 8.2.3 that the computational time did

not vary for the lower number of edge modes considered. This indicates that

the overhead required to evaluate the underlying surrogate models formed the

bottleneck in the procedure at this point. There were over 1500 surrogate models

used for the nine archetype components. For each of the surrogates associated

with the stiffness matrices, the author just blanketly used 15 neurons in each

of the two hidden layers of the network. While for the parameter dependent

solution recovery matrices, 5 neurons were used in the hidden layers for the

coefficients with more influence and 8 and 6 neurons were used for the first and

second layers, respectively, of the remaining coefficients. It was evident in many

cases that the level of refinement was unnecessary, but it provided robustness in

other cases where the nonlinear functional relationship of the coefficient being

modeled was a bit more challenging. This is a big area for improvement in

future work. The following are alternative strategies that can perhaps be used
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to create more parsimonious models:

– Network Pruning: In the literature for machine learning, there are a

set of techniques known as pruning algorithms that are aimed at reducing

the complexity of the neural network in an automated fashion. In general,

these algorithms train the initially prescribed network using the given data;

then, it identifies certain networks connections that are less essential than

others and edits the model as necessary. Examples of this type of approach

include: Hanson et al. [164], Ström et al. [165], and Han et al. [166].

– Multiple Regression Techniques: The approximations for the coef-

ficients of the pseudo-affine relationships are independent of each other.

This implies that the choice of regression technique can be chosen specif-

ically based on the nonlinear behavior of the particular coefficient. For

those coefficients that have simpler functional relationships, simpler re-

gression models such as response surface equations can perhaps be used.

The neural network models should perhaps be used when the functional

relationship of the coefficient becomes more challenging to approximate.

If successful, the overall number of operations should be reduced. How-

ever, this has to take place in an automated fashion, as performing manual

model selection is not pragmatic for the scale of the problem considered

here. Such automated selection approaches were investigated by Couckuyt

et al. [167], Mehmani et al. [168]; among others.

� Inclusion Of More Empirical Modes For The Pseudo-Affine Approx-

imations: In the offline procedure for the SCRBE-DEIM approach described

in section 6.5.3, it was stated that the cardinality of the empirical subspaces

used to represent the nonlinear operators and mappings would be kept fixed.

However, these bases are hierarchical and the inclusion of more modes could
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potentially lead to more accurate predictions by the SCRBE-DEIM approach.

The author avoided adding these empirical modes with less “energy” due to fact

that their associated coefficients were highly nonlinear relatively to the first few

used in the affine representations. This happened for all of the operators and

mappings considered. Thus, the decision was made to not include the number

of modes beyond a certain tolerance, as this would necessitate more complex

surrogate models to capture the nonlinear functional behavior and further add

to the overhead required. If the strategies suggested above regarding creating

parsimonious surrogate models prove successful, perhaps simpler models could

be used for some of the earlier coefficients with simpler functional relationships,

while the more adaptable models could be reserved for later, more nonlinear

coefficients. This approach has the potential to include more empirical modes

into the approximations so as to improve the accuracy; while, not terribly ex-

acerbating the computational overhead required.

9.3 Recommendations For A Conceptual-Level Design Frame-
work

Based on the results presented in the literature, the SCRBE approach provides the

opportunity to significantly expedite the familiar static condensation method. This

is achieved by reducing the approximation spaces on the interior of the components

comprising the model; as well as, reducing the sizes of the interfaces between the

components and providing smaller systems to solve. Traditionally, this method has

been applied with serial computation with special approaches to ensure efficiency rel-

ative to the full finite element approach. For large systems where there are parameter

changes to all of the components at each major iteration of an optimization proce-

dure, a parallel implementation is needed. The use of model reduction and parallel

computation should lead to very efficient computation of the metrics of interest.
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For conceptual level structural design, the author recommends using the SCRBE-

DEIM approach to furnish the quantities of interest. This recommendation is pri-

marily due to reduction in overhead when solving for the constraints of the problem.

This speed-up is expected to be even more significant in cases where serial computa-

tion is used or when the number of components being evaluated on a single processor

grows. As discussed in section 9.1.3, the SCRBE-DEIM approach does not achieve

the level of accuracy that the SCRBE approach does with model refinement. How-

ever, for comparable error levels, the speedups afforded by the SCRBE-DEIM method

are rather significant. Furthermore, these errors values are not exacerbating and fall

within the threshold for a conceptual level tool.

Finally, a major limitation in the author’s implementation of the SCRBE-DEIM

approach is the training of the artificial neural networks. If the methods discussed

in section 9.2 are applied to remedy this situation, the author is confident that the

speedups that will be afforded by the SCRBE-DEIM method will be even more sig-

nificant than what were presented in this work.

9.4 Contributions Of This Thesis

The main contributions of this thesis are:

� A framework was proposed to perform conceptual level, linear-static structural

optimization using the SCRBE method. This framework considered how to ac-

count for common conceptual level constraints and how to find their sensitivities

with respect to the model parameters.

� A method was proposed to find empirical edge subspaces that approximate both

the state variable and its derivatives on the interfaces of the problem domain

� An alternative approach to furnish the ingredients of the SCRBE method was

proposed. This is referred to as the SCRBE-DEIM approach. It was shown to

reduce the overhead associated with the SCRBE approach, but with a trade-off

206



in accuracy. However, the error values reported were not overbearing and fall

within the acceptable range for a conceptual level tool.

9.5 Future Work

There are many exciting avenues for future work; some of which will be investigated

by the author, but could form the potential for work by others. These include:

� Aposteriori Error Estimation: An important feature of reduced basis ap-

proximation techniques is the prescription of an aposteriori error certification

framework. This provides the capability of prescribing an upper-bound to the

error associated with the outputs of the model at any point in the parameter

space. This is particularly useful for giving confidence in the estimates by the

model, as well as providing a means of refining the quality of the model in a

structured, mathematically manner, rather than in a heuristic fashion. For the

present work, there are several additional challenges that are presented. For

the SCRBE approach, there is an additional error that is included with the use

of bound constraints, as described in section 3.2.2.1. This additional error has

to be accounted for. In the associated papers, there does not appear to be a

way to calculate this additional error term. For the SCRBE-DEIM, there are

aposteriori error estimation techniques presented in the literature as well. For

the approach considered, the error associated with the used of surrogate models

has to also be included in the estimate.

� More Complex, Large-Scale Problems Consistent with the other works in

the SCRBE literature, a simple, yet representative problem was investigated

in order to study the behavior of the method. For future problem, it is desir-

able to look at much larger problems that are representative of the subsystems

in aerospace construction. This includes commercial aircraft wing-boxes and

fuselages. Furthermore, it is desirable to investigate the use of the proposed
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empirical edge mode training algorithms to components that feature two di-

mensional interfaces. In particular, investigating the behavior with stringer

stiffened panels that are rife in aerospace construction.

� Parallel Implementation: The opportunities to parallelize the computations

the calculations associated with the SCRBE and SCRBE-DEIM methods have

been consistently highlighted throughout this work. For the test problems con-

sidered, they were implemented in the software package MATLAB [162] in a

serial fashion. It is desirable to implement the work presented in this thesis in

parallel, taking full advantage of multi-threading and multi-processing to even

further expedite the methods for large scale problems.
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Appendix I

.

A.1 Shell Formulation, Composite Laminate Constitutive
Relationship And Affine Representation

If the composite laminate being modeled is sufficiently thin, it can be modeled by

the use of shell theory. This is a form of operational model order reduction that

conveniently helps to reduce the size of the systems that need to be solved. Here,

the displacement behavior through the thickness of the laminate is simplified. The

development for the composite laminate is presented below.

A.1.0.1 Displacement And Strain Fields

Consider a shell that is described in a Cartesian reference frame. Any point in its

domain can be represented as x = {x̂1, x̂2, x̂3} ∈ Ω̂h ⊂ R3 (figure 72). The coor-

dinates (x̂1, x̂2) describe the in-plane positions of the shell, while x̂3 is the out of

plane coordinate, through which the kinematic behavior is approximated. As per

the stipulations of general plate/flat shell theory, the mid-plane of the shell is used

as reference for its kinematics. Using the Mindlin-Reissner theory, the displacement

field, uh = {û1, û2, û3}, can be described mathematically as

û1(x̂1, x̂2, x̂3) = û0
1(x̂1, x̂2) + x̂3β̂x̂1(x̂1, x̂2)

û2(x̂1, x̂2, x̂3) = û0
2(x̂1, x̂2)− x̂3β̂x̂2(x̂1, x̂2) (220)

û3(x̂1, x̂2, x̂3) = û0
3(x̂1, x̂2)

where û0
1, û

0
2, and û0

3 represent the orthogonal displacements of any point in the shell’s

mid-plane; while β̂x1 and β̂x2 represent the rotation of an infinitely rigid, transverse

material line about the x̂2 and x̂1 axes, respectively. According to the prescription
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Figure 72: Deformation behavior of a shell under the first order shear deformation
theory

of the Mindlin-Reissner plate theory, this arbitrary material line does not have to

remain normal to the mid-plane after it rotates.

The strain field can be derived from the displacement field (220) using (36)

ε̂11 =
∂û1

∂x̂1

=
∂û0

1

∂x̂1

+ x̂3
∂β̂x1
∂x̂1

ε̂22 =
∂û2

∂x̂2

=
∂û0

2

∂x̂2

− x̂3
∂β̂x2
∂x̂2

γ̂12 = 2ε̂12 =
∂û1

∂x̂2

+
∂û2

∂x̂1

=
∂û0

1

∂x̂2

+
∂û0

2

∂x̂1

+ x̂3

(
∂βx̂1
∂x̂2

− ∂β̂x2
∂x̂1

)
(221)

γ̂13 = 2ε̂13 =
∂û1

∂x̂3

+
∂û3

∂x̂1

= β̂x̂1 +
∂û0

3

∂x̂1

γ̂23 = 2ε̂23 =
∂û2

∂x̂3

+
∂û3

∂x̂2

= −β̂x̂2 +
∂û0

3

∂x̂2
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Here γ̂ij represents engineering shear strain, which can easily be related to mathe-

matical shear strain, ε̂ij, as shown. As a result of the infinitely rigid material line

assumption, the direct strain component through the thickness vanishes; thus ε̂33 = 0.

The derivatives of the mid-plane displacements and rotations can be represented more

concisely by use of the following relationships

ε̂0
i =

∂û0
i

∂x̂i
, ε̂0

12 =
∂û0

1

∂x̂2

+
∂û0

2

∂x̂1

, i ∈ {1, 2}

κ̂i = (−1)i+1∂β̂x̂i
∂x̂i

, κ̂12 =
∂β̂x̂1
∂x̂2

− ∂β̂x̂2
∂x̂1

, γ̂0
i3 = (−1)i+1β̂x̂i +

∂û0
3

∂x̂i
, (222)

A.1.0.2 Stress Resultants

The stress tensor is described in further detail in appendix 4.2.1. To be consistent with

engineering literature, the shear stresses will be represented with τ̂ij instead of σ̂ij. In

the flat shell formulation, instead of working with the stress tensor components, σ̂ij,

it is more common to work with cross-sectional quantities known as stress resultants.

These stress resultants include three in-plane forces, three moments and two shear

forces, each defined per unit span. The in-plane forces are defined as

N̂1(x̂1, x̂2) =

∫
h

σ̂1dx̂3, N̂2(x̂1, x̂2) =

∫
h

σ̂2dx̂3, N̂12(x̂1, x̂2) =

∫
h

τ̂12dx̂3 (223)

Where N̂1 and N̂2 are direct forces and N̂12 is a shear force. Note also that
∫
h
(·)dx̂3

represents the integration of a quantity through the thickness i.e.
∫ h/2
−h/2(·)dx̂3. The

transverse shear forces per unit span, Q̂1 and Q̂2, are defined as

Q̂1(x1, x2) =

∫
h

τ̂13dx3, Q̂2(x1, x2) =

∫
h

τ̂23dx3, (224)

These shear forces both act out of plane, but the subscript denotes the orientation of

the cross-sectional face upon which they act. Finally, the bending moments, M̂1 and

M̂2, and the twisting moment, M̂12, are defined as

M1(x1, x2) =

∫
h

x3σ1dx3, M2(x1, x2) =

∫
h

x3σ2dx3, M12(x1, x2) =

∫
h

x3τ12dx3

(225)
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A.1.0.3 Constitutive Relationships

As presented in section 4.2.1, the constitutive relationship between stress and strain

in a linear elastic case is given by the relationship, σ̂ij = Ĉijklε̂kl (30). In the case of

composite materials, the constitutive relationship for a single orthotropic composite

lamina can be represented in its local coordinate system as 1

σ̂xx

σ̂yy

τ̂yz

τ̂zx

τ̂xy


=



Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66





ε̂xx

ε̂yy

γ̂yz

γ̂zx

γ̂xy


(226)

Recall that each ply can be oriented at different angles relative to the global x1

direction of the laminate. Consequently, the elastic tensor for a single ply has to be

transformed into to a representation in the global coordinate system as

σ̂1

σ̂2

τ̂23

τ̂31

τ̂12


=



Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66





ε̂11

ε̂22

γ̂23

γ̂31

γ̂12


(227)

The quantities describing the material’s physical properties , Qij for i, j ∈ {1, 2, 4, 5, 6},

are

Q11 = E11/(1− ν12ν21), Q22 = E22/(1− ν12ν21),

Q12 = Q21 = ν12E22/(1− ν12ν21), Q44 = G23, (228)

Q55 = G31, Q66 = G12 = G31

Where Eii, Gij and νij are the direct stiffness, shear stiffness and Poison’s ratio,

respectively, of the lamina in the specified directions. Consider a laminate consisting

1In this document, the coordinates of a single lamina are represented as {x, y, z}, while the
coordinate system of the entire laminate is {x1, x2, x3}
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of N plies as shown in figure 73. The distance from the mid-plane to the upper

(lower) edge of the kth ply located below (above) the mid-plane is denoted by hk.

The stiffness of the entire laminate - based on the stacking of the constituent laminae

- can be determined by integrating the piecewise constant constitutive relationship

through the thickness of the laminate. An example of this for the direct, in-plane

force per unit span, N1, will now be derived. Using (221), (223) and (227)

N1(x1, x2) =

∫
h

Q̄11

(
∂û0

1

∂x̂1

+ x̂3
∂β̂x1
∂x̂1

)
+ Q̄12

(
∂û0

2

∂x̂2

− x̂3
∂β̂x2
∂x̂2

)
+

Q̄16

(
∂û0

1

∂x̂2

+
∂û0

2

∂x̂1

+ x̂3

(
∂βx̂1
∂x̂2

− ∂β̂x2
∂x̂1

))
dx3, (229)

Figure 73: A general composite laminate with N plies

Using the fact that the kinematic terms are independent of x3 and that the ma-

terial quantities, Qij, are piece-wise constant, (229) takes the form

N1(x1, x2) = A11
∂û0

1

∂x̂1

+B11
∂β̂x1
∂x̂1

+ A12
∂û0

2

∂x̂2

−B12
∂β̂x2
∂x̂2

+ A16

(
∂û0

1

∂x̂2

+
∂û0

2

∂x̂1

)
+B16

(
∂βx̂1
∂x̂2

− ∂β̂x2
∂x̂1

)
, (230)
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Where Aij =
N∑
k=1

Qij(hk − hk−1) and Bij =
N∑
k=1

Qij

2
(h2

k − h2
k−1) are the in-plane and

coupling stiffness terms, respectively. As shown, the sum is carried out over the N

plies constituting the laminate. Performing the same operation for the other stress

resultants, the following cross-sectional constitutive relationship results

N̂1

N̂2

N̂12

M̂1

M̂2

M̂12

Q̂1

Q̂2



=



A11 A12 A16 B11 B12 B16 0 0

A12 A22 A26 B12 B22 B26 0 0

A16 A26 A66 B16 B26 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B12 B22 B26 D12 D22 D26 0 0

B16 B26 B66 D16 D26 D66 0 0

0 0 0 0 0 0 Ā44 Ā45

0 0 0 0 0 0 Ā45 Ā55





ε̂0
1

ε̂0
2

ε̂0
12

κ̂1

κ̂2

κ̂12

γ̂0
13

γ̂0
23



(231)

or more concisely with the block matrix and vector representation
N̂

M̂

Q̂

 =

A B 0

B D 0

0 0 Ā




ε̂0

κ̂

γ̂0

 (232)

Here: Dij =
n∑
k=1

Qij

3

[
h3
k − h3

k−1

]
, i, j ∈ {1, 2, 6}, and Āij =

n∑
k=1

Q̄ij [hk − hk−1],

i, j ∈ {4, 5} are the laminate bending stiffnesses and the out-of-plane shear stiff-

nesses, respectively. Additionally, the strain terms can be represented more concisely

as: mid-plane strains, ε̂0 = {ε̂0
1, ε̂

0
2, ε̂

0
12}; curvatures, κ̂ = {κ̂1, κ̂2, κ̂12}; and out of

plane shear strains, γ̂0 = {γ̂0
13, γ̂

0
23}.

The constitutive relationship, (232), represents a fully anisotropic composite lam-

inate. For certain stacking sequences, the stiffness matrix can be simplified. When

the stacking sequence is symmetric about the mid-plane, the coupling matrix van-

ishes, i.e. B = 0. Furthermore, if for every ply oriented at an angle −θ there is a

corresponding one oriented at an angle +θ, the laminate is said to be balanced and

the terms A16, A26, and A45 all vanish.
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A.1.0.4 Lamination Parameters

For the composite laminate, a rather convenient parametrization of the constitutive

matrix is by the use of lamination parameters and material dependent matrices. The

favorable decomposition afforded by laminate parametrization is especially useful for a

concise affine representation of the finite element stiffness matrix. This parametriza-

tion approach will be briefly described here. A more detailed presentation of the

laminate parametrization for a plate or shell featuring the Mindlin-Reissner plate

theory can be found in Grenestedt [169] and Foldager [170].

In order to calculate the sub-components of the laminate constitutive matrix, A,

B, D and Ā, the following material independent and dependent matrices are defined:



A11

A22

A12

A66

A16

A26


= h



1 ξA1 ξA2 0 0

1 −ξA1 ξA2 0 0

0 0 −ξA2 1 0

0 0 −ξA2 0 1

0 ξA3 /2 ξA4 0 0

0 ξA3 /2 −ξA4 0 0





U1

U2

U3

U4

U5


(233)



B11

B22

B12

B66

B16

B26


=
h2

4



0 ξB1 ξB2 0 0

0 −ξB1 ξB2 0 0

0 0 −ξB2 0 0

0 0 −ξB2 0 0

0 ξB3 /2 ξB4 0 0

0 ξB3 /2 −ξB4 0 0





U1

U2

U3

U4

U5


(234)
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D11

D22

D12

D66

D16

D26


=
h3

12



1 ξD1 ξD2 0 0

1 −ξD1 ξD2 0 0

0 0 −ξD2 1 0

0 0 −ξD2 0 1

0 ξD3 /2 ξD4 0 0

0 ξD3 /2 −ξD4 0 0





U1

U2

U3

U4

U5


(235)

and finally, 
Ā44

Ā55

Ā45

 = h


1 ξA1

1 −ξA1

0 −ξA2


 U6

U7

 (236)

The parameter dependent terms or “lamination parameters” are defined as:

ξA[ 1, 2, 3, 4] = 1/2

∫ 1

−1

[cos2θ(z), cos4θ(z), sin2θ(z), sin4θ(z)] dz, (237)

ξB[ 1, 2, 3, 4] =

∫ 1

−1

[cos2θ(z), cos4θ(z), sin2θ(z), sin4θ(z)] zdz, (238)

ξD[ 1, 2, 3, 4] = 3/2

∫ 1

−1

[cos2θ(z), cos4θ(z), sin2θ(z), sin4θ(z)] z2dz, (239)

where θ(z) is the distribution of the ply orientations through the normalized thickness

coordinate z̄ = (2/h) z. They represent the moments of the trigonometric functions

entering in the rotation formula for the stiffness matrices relative to the plate/shell
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mid-plane. The parameter independent terms are:

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66)/8,

U2 = (Q11 −Q22)/2,

U3 = (Q11 +Q22 − 2Q12 − 4Q66)/8, (240)

U4 = (Q11 +Q22 + 6Q12 − 4Q66)/8,

U5 = (Q11 +Q22 − 2Q12 + 4Q66)/8 (241)

U6 = (Q44 +Q55)/2

U7 = (Q44 −Q55)/2

The Ui terms are referred to as lamina invariants because they depend only on the

material properties of a given lamina and not on its orientation.

All 12 lamination parameters satisfy −1 ≤ ξA,B,D[1,2,3,4] ≤ 1. There are certain simpli-

fications that occur with the lamination parameters for particular types of laminate

lay-ups. For symmetric layups, the terms ξB[1,2,3,4] all vanish. For the case of a bal-

anced and symmetric laminate, the terms ξA[3,4] and ξB[1,2,3,4] all go to zero. Thus,

a symmetric and balanced laminate can be described by 6 lamination parameters

and the overall thickness of the plate, h. The remaining lamination parameters are

ξA[1,2] and ξD[1,2,3,4]. Note that there are only two lamination parameters describing the

membrane behavior, while there are four describing the bending behavior.

In addition to the side constraints, there a several feasibility constraints that must

be prescribed for the space of lamination parameters

A.2 Domain Partitioning With Quadrilateral Finite Ele-
ments

This section provides a description of the discretization of the reference domain, Ω̂, as

well as a description of the weak form (106) associated with finite element subspace,

X̂h, used for the flat shell problem. It is assumed that the finite element partitioning,
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P̂ , of the domain by quadrilateral finite elements {K̂} satisfy the following properties

� The domain is partitioned by the elements such that:
¯̂
Ω =

⋃
K∈P

¯̂
K

� The nonempty intersection of the closure of any two or more distinct elements

is either a single common edge or a single common vertex of both elements

Figure 74: A flat shell discretized with quadrilateral elements

Figure 74 shows a simple flat shell that is discretized with quadrilateral elements.

It is assumed that the partitioning is regular. The reference domain for each quadri-

lateral element, K̂, can be represented within its plane by natural coordinates,

K̂ = {(η, ξ) : −1 ≤ η, ξ ≤ 1} (242)

Recall from section 5.3.1 that the reference domain can be related to the actual

problem domain by use of a geometric map of the form, T : Ω̂ → Ω. The mapping

can be applied here to transform a quadrilateral element on the reference domain to

its representation on the problem domain.

219



A.2.0.1 Finite Element Subspace on Quadrilaterals

The finite element subspace, X̂h, is built upon the lower order polynomial approxi-

mations of the mid-plane displacements and slopes of the shell, defined on P̂ . Corre-

spondingly, each of these terms is built upon the polynomial space, Qp, which consists

of polynomials of degree at most p in each variable,

Qp = span
{
xlym, 0 ≤ l,m ≤ p

}
(243)

Let v̂h0 represent the vector consisting of the d′ arbitrary mid-plane displacements and

slopes2 prescribed over the entire problem domain. The finite element subspace, X̂h0 ,

of order p on the regular, reference quadrilateral mesh prescribed on the reference

domain can now be defined as

X̂h0 =

{
v̂h0 ∈

(
C(

¯̂
Ω)
)d′

: ∀K̂ ∈ P̂ , v̂h0|K̂ ∈ (Qp)
d′
}

(244)

The finite element space, X̂h, corresponding to the arbitrary displacements in the

three orthogonal directions associated with the Cartesian reference frame, i.e. v̂h =

{v̂1, v̂2, v̂3}, can then be approximated by (see (220))

X̂h =

{
v̂h ∈

(
C(

¯̂
Ω)
)3

: v̂h = [x̂3]v̂h0 ; v̂h0 ∈ X̂h0

}
(245)

where for d′ = 5

[x̂3] =

1 0 0 x̂3 0

0 1 0 0 x̂3

0 0 1 0 0

 (246)

The corresponding subspace when the reference domain is mapped to the problem

domain is

Xh =
{
vh ∈

(
C(Ω̄)

)3
: vh = v̂h ◦ T −1; v̂h ∈ X̂h

}
(247)

The degrees of freedom associated with the subspace Xh consist of function values of

the mid-plane displacements and slopes of the shell at the nodes of the quadrilateral

mesh, {f(xk) : k ∈ N}, where N is the total number of nodes.3 These nodal values

2d′ = 5 or 6 terms depending on the shell FEM formulation
3The nodes are the vertices of all the elements used in the mesh.
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are used with a Lagrangian or nodal basis, {ϑk : k ∈ N}, to represent the associated

function in the subspace. Each basis element satisfies the following conditions:

1. ϑ ∈ X̂h, ∀k ∈ N

2. ϑk(xl) = δkl, ∀k, l ∈ N

Figure 75: A Langrange basis function about an arbitrary node

Figure 75 shows an arbitrary node that represents the intersection of four quadri-

lateral elements, each consisting of four nodes. The Lagrangian basis function at this

node is

ϑk =



(1+η1)(1+ξ1)
4

, in
¯̂
K1,

(1−η2)(1+ξ2)
4

, in
¯̂
K2,

(1−η3)(1−ξ3)
4

, in
¯̂
K3,

(1+η4)(1−ξ4)
4

, in
¯̂
K4,

0, in
¯̂P \ (

⋃4
i=1

¯̂
Ki)

(248)

This expression can be easily modified when more or less elements intersect at the

kth node.

A.2.0.2 Weak Form

Let the degrees of freedom for all the nodes on the quadrilateral partitioning, P̂ , be

collected into the column vector q ∈ RN ′
, where N ′ is total number of degrees of
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freedom. The interpolation of these nodal values to any point within the domain

is performed by using the shape function matrix, [N ] ∈ Rd′×N ′
. [N ] consists of

the Langrangian basis functions, ϑk, in the appropriate element locations. Thus,

to obtain the mid-plane displacements and slopes at any point x̂ = {x̂1, x̂2}, the

following relationship is used

{
û0

1, û
0
2, û

0
3, β̂x1 , β̂x2

}T
= [N ] {q} (249)

The mid-plane strains and curvatures (222) can be determined by pre-multiplying

(249) by the differential operator matrix, [∂]. [∂] consist of partial derivatives in

appropriate element locations, which collectively transform the displacement field to

the (222). Thus

{
ε̂0, κ̂, γ̂0

}T
= [∂]

{
û0

1, û
0
2, û

0
3, β̂x1 , β̂x2

}T
= [∂] [N ] {q} (250)

Finally, to obtain the stain field associated with the entire domain, as prescribed by

(221), the matrix [x̂3]∂ can be introduced. In a similar fashion to (246), its non-zero

elements are simply 1 or x3 and it facilitates the relationship between the mid-plane

strains and curvatures to the strain field defined on Ω̂h
m. Therefore

{ε̂11, ε̂22, γ̂12, γ̂13, γ̂23}T = [x̂3]∂
{
ε̂0, κ̂, γ̂0

}T
= [x̂3]∂ [∂] [N ] {q} (251)

The billinear form and linear functional for the linear elastostatic governing dif-

ferential equation are presented in appendix 4.2.3. For convenience, they are restated

here. For i, j, k, l ∈ {1, 2, 3}

â (v̂, ŵ;µ) =

∫
Ω̂

∂ŵi
∂x̂j

Cijkl
∂v̂k
∂x̂l

dΩ̂, ∀v̂, ŵ ∈ (H1(Ω̂))d (252)

f̂ (ŵ;µ) =

∫
Ω

ŵif̂idΩ̂ +

∫
Γ̂

ŵiĝ
n
N ê

n
i dΓ̂ +

∫
Γ̂

ŵiĝ
t
N ê

t
idΓ̂ (253)

To enable the finite element approximation, the trial space for the unknown displace-

ment vector, ûh, is restricted to X̂h ⊂
(
H1(Ω̂m)

)d
. The strain field,

∂ûk
∂x̂l

, was derived
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for the shell formulation and is presented in (251). For the test functions, the La-

grangian basis functions associated with each degree of freedom for each node are

used. These can be obtained by setting all but the rth column of the shape function

matrix to zero. This is designated as [N ]r. The gradient associated with each test

function, ŵr, is given by

∇ŵr = [x̂3]∂ [∂] [N ]r , r ∈ N ′ (254)

The constitutive relationship, Cijkl
∂ûk
∂x̂l

, for an orthotropic lamina was presented in

(226). The bilinear form can be derived by inserting this constitutive relationship

along with (251) and (254) into (252). Using the relationship dΩ̂ = dx̂3dÂ, the

integration can be performed through the thickness of the shell, resulting in the

linear algebraic system associated with the weak form

[A(µ)]{q(µ)} = {f(µ)} (255)

of size N ′. The rth row of A(µ) and the rth element of {f(µ)} are given by

[A(µ)]r,: =

∫
Âm

([∂] [N ]r)
T [C]cs ([∂] [N ]) dÂm (256)

{f(µ)}r =

∫
Âm

[N ]Tr

(∫
ĥ

[x̂3]f̂dx̂3

)
dÂm +

∫
Âm

[N ]Tr ĝN · ê
ndÂm

+

∫
Âm

[N ]Tr ĝN · ê
tdÂm

(257)

The matrix [C]cs is the cross-sectional constitutive relationship given by (232) for a

composite laminate. The remaining integrals are with respect to the in-plane coordi-

nates of the shell, i.e. dx̂2 and dx̂3 : dx̂2dx̂3 = dÂm. f is a body force acting within

the domain and ĝN represent traction forces acting on the boundary of the domain.

The uniqueness of the flat shell formulation comes from performing the integration

of the bending and membrane stiffness matrix terms on the boundaries of smoothing

cells defined within the finite elements; while the shear terms are approximated by

independent interpolation functions in natural coordinates. This removes the issue of

locking and furthermore, it is robust and computationally inexpensive.
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A.3 Wing-Box Design

Figure 76: A conventional transport aircraft wing [118]

Figure 76 shows a typical wing for a commercial transport aircraft. In addition to

the wing-box, the entire wing assembly consists of high-lift devices, control surfaces,

landing gear system etc. In the chord-wise direction of a typical wing, the wing-box

starts at about 15% of the chord and terminates at approximately 55 − 60% [11].

In the span-wise direction, extending from the center-body section contained in the

fuselage, it commences at the wing-fuselage intersection and extends to the wing

tip. Its main purpose is to provide the flexural and torsional rigidity needed by the

wing when it is subjected to a variety of external loads. The primary external loads

that the wing-box experiences are due to air loads. These loads are generated by

the pressure difference between the upper and lower surfaces of the wing when the

aircraft produces lift. Air loads experienced during maneuvers or gusts often tend

to be most critical from a structural perspective. In normal, positive-g flight, this

pressure differential induces upward flexure (bending) of the wing, and also torsion
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in the case of swept wings. In addition to air loads, the wing is subjected to a

variety of other loads, including inertia from its own weight; pressure loads from the

fuel stored within it; concentrated loads from attachments (engine nacelle support,

high-lift devices, and control devices); landing gear impact loads; etc. The wing-box

achieves the requisite structural rigidity by means of its specially designed constituent

parts. Figure 77 shows an exploded isometric view of the components of the wing

box. The components shown include wing-box covers, spars, and ribs.

Figure 77: Exploded isometric view of a conventional transport aircraft wing [118]

A.3.0.1 Wing-box Covers

The wing-box covers are the only parts of the wing-box exposed to the flow-field

external to the aircraft. The upper and lower covers are composed of skins (thin shells)

reinforced by longitudinal stringers (stiffeners). These covers provide the majority of

the bending stiffness needed by the wing. Additionally, the enclosed cross-section

formed by the wing-covers and the spars resist torsion; which is especially prominent

on swept winged aircraft. As it relates to the influence of air loads, the lower wing-

box cover is loaded primarily by the tension produced by the upward bending of the
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wing while the aircraft is in flight, as well as by direct and torsional shear stresses.

When only static loading is being considered, this combination of loads may be the

most critical in determining the thicknesses necessary to obviate failure of the wing-

cover. In general, however, due to the significant variation in load direction tension

during upright, positive-g flight and compression while the aircraft is on the ground or

during negative-g flight there is a potential for failure due to fatigue. Thus, material

selection is critical and not only involves strength and stiffness considerations, but

also the inclusion of suitable damage tolerance properties. On the other hand, the

upper wing cover is primarily loaded in compression and the most critical issue is the

structural stability (buckling and crippling) within the bays formed by the intersection

of the upper wing-cover with the spars and two consecutive ribs. The use of stiffener

reinforced skins allow for a structurally efficient design with high bending stiffness

with low weight. Due to the fact that the compressive loads experienced by the

upper wing-box cover panels are greater than those in the lower-skin, the stiffeners

on the former are normally more densely arranged than those on the latter. There is

a wide variety of stiffener cross-sections available for use on stiffened panels. A few

options are shown in figure 78. The shape of the cross-section of these stiffeners aid in

the stability behavior of the panels onto which they are incorporated. As such, some

stiffeners allow for more structurally stable panels than others. Niu [48] provides a

quantitative comparison of the efficiency of common stiffeners used on stiffened panels

in the aerospace context. In practice, the final choice of stiffeners to be used depends

on additional factors such as manufacturability and ease of access for fatigue crack

inspection.
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Figure 78: Examples of stiffened panels used in the wingbox

A.3.0.2 Wing Ribs

The ribs are structures discretely placed along the span of the wing. The main

purposes of the ribs are to maintain the contour shape of the wing-box’s externally

exposed surfaces and to limit the unsupported spans of the cover panels. Additionally,

the ribs may be used for the introduction of discrete load sources into the wing-box

assembly. Examples include, the engine nacelle support and flap track support. These

loads are distributed to the wing-box covers and spars. A typical wing rib is composed

of caps, stiffeners and webs. The spacing between the ribs is an important consider-

ation. The distance in between adjacent ribs directly affects the panel distances of

the upper and lower wing-covers situated in between them. With all other factors

being unchanged, the greater the aspect ratio of the wing-cover panels in between

adjacent ribs, the more susceptible they are to structural stability issues. In order

227



to compensate for this, the wing-cover panels have to be reinforced, thereby adding

weight. Thus, for an optimum weight wing-box assembly, there is a trade-off that has

to be considered between increasing rib spacing (decreasing the number of ribs and

thus rib weight) and the resulting increase in the weight of the wing-covers necessary

to maintain structural stability.

A.3.0.3 Wing Spars

The wing spars are long beams that span the wing-box. In transport aircraft there

may be two or three spars used in the wing-box’s construction and the volume in

between them is normally reserved for fuel storage. Each spar is normally composed

of beam caps, shear webs and stiffeners. The beams caps assist the wing-covers in

providing flexural rigidity of the wing, while the shear webs resist direct and torsional

shear loads. As stated before, the external air loads act of the wing covers. In turn

these loads are directed to the ribs and then to the spar webs in the form of shear

loads. There is a variety of cross-sectional shapes available for the spars, including

I-beam, C-channel, sinusoidal etc.

A.3.0.4 Stiffened Panel Failure Mechanisms

The components of the wing-box highlighted thus far, all feature stiffened panels.

When stiffened panels are loaded, they are vulnerable to certain types of failures

which render their use limited or even results in catastrophic failure. Kassapoglou

[12] provides a detailed description of these potential failure mechanisms. They can

be categorized into two types of failures; these are material failure and structural

instability. In the former category, the constituent materials of both the skins or

stiffeners of the components may fail when loaded beyond their strengths. In the

case of composite laminates, failure is typically signified when any one of constituent

lamina fails. The second category of failures involve either the structural instability of

each stiffened panel as a whole or the localized instability of any of its constituents.
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Localized instability includes, skin buckling between stiffeners; stiffener crippling;

skin-stiffener separation; stiffener inter-rivet buckling; and stiffener column buckling.

It is incumbent on the structural designer to not only ensure that all these failure

modes are precluded during aircraft operation, but to also sequence them such that

if one should occur, it is one that will not result in catastrophic failure of the entire

aircraft.
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[74] Ragon, S., Gürdal, Z., Haftka, R., and Tzong, T., “Global/local structural wing
design using response surface techniques,” AIAA Paper , , No. 97-1051, 1997.

[75] Balabanov, V., Haftka, R. T., Grossman, B., Mason, W. H., and Watson, L. T.,
“Multifidelity response surface model for HSCT wing bending material weight,”
Proc. 7th. AIAA/USAF/NASA/ISSMO Symposium on Multidisiplinary Anal-
ysis and Optimization, 1998, pp. 2–4.

[76] Schneider, W., “A procedure for calculating the weight of wing structures with
increased life: for presentation at the 33rd Annual Conference of the Society of
Allied Weight Engineers, Inc., Fort Worth, Texas, 6-8 May, 1974,” 1974.

[77] Burt, M., “Weight prediction for wings of box construction,” Tech. rep., Min-
istry of Supply, Royal Aircraft Establishment, RAE Farnborough, 1955.

[78] Shanley, F. R., Weight-strength analysis of aircraft structures , Dover Publica-
tions, 1960.

[79] Hazra, S. B., Large-scale PDE-constrained Optimization in Applications ,
Vol. 49, Springer Science & Business Media, 2009.

[80] “NASA - High-Fidelity Aeroelastic Simulations of Future Airplane Concepts,”
.

235



[81] Eftang, J. L. and Patera, A. T., “Port reduction in parametrized component
static condensation: approximation and a posteriori error estimation,” Inter-
national Journal for Numerical Methods in Engineering , Vol. 96, No. 5, 2013,
pp. 269–302.

[82] “NASA Unveils Future Aircraft Designs: Stunning Models,” .

[83] Bui-Thanh, T., Willcox, K., and Ghattas, O., “Model reduction for large-scale
systems with high-dimensional parametric input space,” SIAM Journal on Sci-
entific Computing , Vol. 30, No. 6, 2008, pp. 3270–3288.

[84] Wilson, E. L., “The static condensation algorithm,” International Journal for
Numerical Methods in Engineering , Vol. 8, No. 1, 1974, pp. 198–203.

[85] Manzoni, A., Quarteroni, A., and Rozza, G., “Shape optimization for viscous
flows by reduced basis methods and free-form deformation,” International Jour-
nal for Numerical Methods in Fluids , Vol. 70, No. 5, 2012, pp. 646–670.

[86] Rozza, G., Lassila, T., and Manzoni, A., “Reduced basis approximation for
shape optimization in thermal flows with a parametrized polynomial geomet-
ric map,” Spectral and high order methods for partial differential equations ,
Springer, 2011, pp. 307–315.

[87] Rozza, G. and Manzoni, A., “Model order reduction by geometrical
parametrization for shape optimization in computational fluid dynamics,” Pro-
ceedings of the ECCOMAS CFD 2010, V European Conference on Computa-
tional Fluid Dynamics , No. CONF, 2010.

[88] Lassila, T., Manzoni, A., Quarteroni, A., and Rozza, G., “Boundary control
and shape optimization for the robust design of bypass anastomoses under un-
certainty,” ESAIM: Mathematical Modelling and Numerical Analysis , Vol. 47,
No. 4, 2013, pp. 1107–1131.

[89] Lassila, T., Manzoni, A., Quarteroni, A., and Rozza, G., “A reduced compu-
tational and geometrical framework for inverse problems in hemodynamics,”
International journal for numerical methods in biomedical engineering , Vol. 29,
No. 7, 2013, pp. 741–776.

[90] Cuong, N. N., Reduced-basis approximations and a posteriori error bounds for
nonaffine and nonlinear partial differential equations: Application to inverse
analysis , Ph.D. thesis, Citeseer, 2005.

[91] Iapichino, L., Ulbrich, S., and Volkwein, S., “Multiobjective PDE-constrained
optimization using the reduced-basis method,” 2013.

[92] Arian, E., Fahl, M., and Sachs, E., “Trust-Region Proper Orthogonal Decom-
position for Flow Control,” Vol. 2000-2101, 02 2001.

236



[93] Kunisch, K. and Volkwein, S., “Proper orthogonal decomposition for optimality
systems,” Vol. 42, 01 2008.

[94] Qian, E., Grepl, M., Veroy, K., and E Willcox, K., “A Certified Trust Region
Reduced Basis Approach to PDE-Constrained Optimization,” Vol. 39, 02 2017.

[95] Zahr, M. and Farhat, C., “Progressive construction of a parametric reduced-
order model for PDE-constrained optimization,” Vol. 102, 12 2014.

[96] Carlberg, K. and Farhat, C., “A low-cost, goal-oriented compact proper or-
thogonal decomposition basis for model reduction of static systems,” Vol. 86,
04 2011, pp. 381 – 402.

[97] Carlberg, K. and Farhat, C., “A Compact Proper Orthogonal Decomposition
Basis for Optimization-Oriented Reduced-Order Models,” 09 2008.

[98] Raddum, H. and Semaev, I., “Solving Multiple Right Hand Sides linear equa-
tions,” Vol. 49, 12 2008, pp. 147–160.

[99] Eftang, J., Huynh, D., Knezevic, D., Rønquist, E., and Patera, A., “Adaptive
port reduction in static condensation,” Proceedings of 7th Vienna Conference
on Mathematical Modelling–MATHMOD , 2012.

[100] Saad, Y., Iterative methods for sparse linear systems , Vol. 82, siam, 2003.

[101] Løvgren, A. E., Maday, Y., and Rønquist, E. M., “A reduced basis element
method for the steady Stokes problem,” ESAIM: Mathematical Modelling and
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