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SUMMARY

As general aviation (GA) industry and its operations have grown along with the aviation

industry development, improving aircraft safety has been a key interest in the GA industry.

According to the U.S. Department of Transportation, GA in the U.S. has been suffering

higher fatal accident rate compared to that of scheduled airline flights. This statistic indi-

cates that safety enhancement effort is inevitable and reduction of GA aircraft fatality rate

needs to be a prioritized goal in the GA community.

The increasing pervasiveness of data-driven-safety programs such as flight data mon-

itoring (FDM) in commercial aviation has permeated GA, giving rise to a growing body

of quantitative safety analysis opportunities. FDM and other data-driven programs such as

flight operations quality assurance (FOQA) feature a retrospective analysis of flight data

records that identify potential safety-critical phenomena and the formulation and imple-

mentation of corrective actions. Thus, quantitative aircraft performance modeling emerges

as a critical enabler for safety analysis, particularly when coupled with flight data records

that produce a rich and meaningful picture of operational safety.

However, the intended application of the operational safety analysis imposes essential

requirements on GA aircraft models and flight data records to be used by safety analysts.

First, models must provide predictive capabilities with high flexibility and accuracy over

the wide range of operational conditions. Also, to maximize the benefits of data-driven

safety analysis, securing tidy data that is ready to be analyzed is as important as the on-

going collection and analysis of flight data records. Thus, the objective of this study is to

develop a proactive operational safety analysis method by introducing a realistic and ac-

curate performance modeling method and an efficient data noise removal technique for a

fixed-wing GA aircraft. This fundamental goal leads to the following sub-goals. First, this

research aims to develop a realistic and accurate aerodynamic performance model that is

computationally affordable and compositionally flexible so that this modeling method can
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be utilized by any GA aircraft users capturing the characteristics of each aircraft. Also, this

study proposes an effective noise removal technique for the purpose of obtaining clean and

credible flight information for the operational safety assessment process. Finally, using the

developed reliable aerodynamic performance model and filtered clean flight data, this work

suggests an idea of evaluating flight performance safety of a GA fixed-wing aircraft using

flexible standard performance envelopes and a quantitative safety assessment metric.

For achieving the first research goal, this study suggests a data-driven aerodynamic

modeling methodology for a GA fixed-wing aircraft. As the first step for developing an

accurate aerodynamic model, this study introduces an improved theoretical modeling ap-

proach that evaluates, compares, and combines all the possible theoretical performance

modeling methods. Based on the developed theoretical model, this study enhances the ac-

curacy of the aerodynamic model by fitting the model curves to the actual flight data which

is collected from a test flight. The necessary accuracy of the aerodynamic model can be

satisfied when the model is able to estimate the flap activity during flight. The developed

aerodynamic model in this study can be used to indicate the aircraft’s proximity to stall

which is one of the unsafe aerodynamic events.

The second goal of this study is to develop a methodology that can effectively remove

data noise and improve the quality of the flight data records. As the role of flight data

in aviation safety enhancement programs becomes increasingly important, this study en-

sures clean flight data. This study introduces the HADaR (Hybrid Approach for Data-noise

Reduction) method that examines various data noise filtering techniques in both time and

frequency domains to suggest an affordable and effective data cleaning process while pre-

serving true aircraft behavior. The HADaR method identifies and categorizes important

data parameters considering the measuring methods. In this method, three data noise filter-

ing techniques in the time domain, and two data noise filtering techniques in the frequency

domain are utilized with two different levels of filtering intensity factors for each tech-

nique. Based on the selected parameters and data noise filtering techniques, this method

xxvii



investigates the filtering effect of each combination then selects the most effective data

noise filtering method. The developed HADaR method can improve the credibility of the

data-driven analysis result of further flight data analysis.

Lastly, this research suggests a flight safety assessment procedure that utilizes flexible

standard performance envelopes and a quantitative safety assessment metric for the safety

evaluation. This research suggests a statistical approach of defining flexible performance

envelopes by observing normal operations in a large number of flight data records. Also,

this study introduces a quantitative safety evaluation metric, the Cumulative Landing and

Approach Safety Score (CLASS), to measure the abnormality of the data parameters of the

flight. Finally, this study demonstrates a safety quantification process using the developed

performance envelope and the CLASS metric.

In summary, this study reveals that the suggested data-driven aerodynamic modeling

method and the HADaR method are capable of providing more credible information to-

ward the GA safety assessment work. For the aviation safety enhancement efforts to be

more successful, precise aircraft performance models and clean flight data have to be ap-

propriately obtained and utilized. Furthermore, a proper data noise filtering method that

is specific to GA flight data and an appropriate data collection procedure is required for

improving the reliability of data-driven safety analysis programs. Finally, this study har-

monizes the accurate performance model and the noise-filtered flight data to satisfy the

requirements of the GA safety enhancement programs. Therefore, this research is expected

to positively contribute to GA safety enhancement by introducing a quantitative safety as-

sessment and monitoring methodology for GA safety improvement.
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CHAPTER 1

INTRODUCTION

1.1 General Aviation

1.1.1 Definition of General Aviation

General aviation (GA) is a sometimes ambiguous concept. The federal aviation ad-

ministration (FAA) defines GA as “That portion of civil aviation that does not include

scheduled or unscheduled air carriers or commercial space operations [1].” The General

Aviation Manufacturer’s Association (GAMA) has a similar definition: “All aviation other

than commercial and military aviation [2].” The International Civil Aviation Organization

(ICAO) defines GA as “All civil aviation operations other than scheduled air services and

non-scheduled air transport operations for remuneration or hire [3].” The Aircraft Owners

and Pilots Association (AOPA) uses a much more specific definition in their annual acci-

dent analysis. “GA is all flight activity of every kind except that done by the uniformed

armed services and the scheduled airlines. In addition to personal and recreational flying,

it includes public-benefit missions such as law enforcement and fire suppression, flight in-

struction, freight hauling, and passenger charters, crop-dusting, and other types of aerial

work that range from news reporting to helicopter sling loads [4].” As stated in the above

definitions, all aircraft operations that are not categorized as commercial, cargo, or military

operations can be defined as GA operations. Thus, GA operations can range from personal

or recreational activities to instructional, medical, and touristic operations. Actively oper-

ating GA aircraft in the U.S. and their primary use are summarized in Table 1.1. In this

study, GA is defined as any small fixed-wing aircraft for non-scheduled, on-demand, and

non-commercial operations.
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Table 1.1: Active U.S. GA Aircraft by Primary Use and Aircraft Type [2]

Aircraft Type Total Personal Business Instructional Aerial Apps. Air Taxi Tour Medical Other

Fixed-Wing 164,293 107,469 25,360 12,529 6,112 5,790 525 876 5,631

Piston

Turboprop

Turbojet

141,141

9,712

13,440

104,669

1,263

1,537

13,920

3,579

7,861

12,182

162

185

3,775

2,236

101

1,567

1,548

2,675

509

16

0

425

252

199

4,092

657

882

Rotorcraft 10,506 1,277 976 1,603 3,302 684 424 1,498 743

Other Aircraft 4,941 3,723 13 518 0 0 635 2 50

Gliders

Lighter-than-Air

1,870

3,071

1,455

2,268

8

13

360

158

0

0

0

0

40

595

0

2

15

35

Experimental 27,922 25,284 770 697 209 19 102 27 816

Special Light-Sport 2,369 1,948 45 320 26 2 0 0 28

All Aircraft 210,030 139,700 27,163 15,667 9,650 6,494 1,685 2,403 7,267

1.1.2 General Aviation Industry

The GA industry, as an essential part of the air transportation system, takes an important

role in the aviation industry in the United States. Taking into consideration manufacturing

and visitor expenditures, GA accounted for an economic contribution of USD 76.5 billion.

According to AOPA, GA aircraft is the mainspring of a $20 billion a year industry, and it

can generate more than $150 billion in economic activity [5]. Also, GA contributed USD

38.8 billion in economic output and created 496,000 jobs in 2009 [6]. Despite a rapid de-

crease in GA operation caused by the effects of the 9/11 terror attack, increasing fuel prices,

and worldwide economic recession, the GA industry strived for invigorating the GA econ-

omy and the GA airplane shipment and billings rebounded in 2010. The active GA fleet

is projected to increase at an average annual rate of 0.2 percent over the 21-year forecast

period, with turbine-powered and jet-propulsion aircraft portion increasing at 2.1 and 2.5

percent a year respectively. In an actual flight operation point of view, the total number

of GA hours flown will increase by 1.2 percent yearly, and turbine and jet GA aircraft are
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forecast to increase 2.6 percent and 3.1 percent per year respectively over the forecast pe-

riod, which is from 2015 to 2036 [7]. As the aforementioned statistics have indicated, GA

takes an indispensable and essential role not only in the aviation industry but also in the

economy nationwide.

Figure 1.1: GA Airplane Shipments and Billings Worldwide (1994 – 2017) [2]

1.2 Aviation Safety

Aviation is one of the safest means of transportation. According to FAA, the total avi-

ation accident rate in the U.S. has been reduced by 57% since 2001 [8]. Although aviation

safety record indicates that aviation safety has been improved over decades, aviation safety

has always been fundamental ongoing considerations in the aviation community because

of the significant impact. Safety is defined by ICAO as “The state in which the possibility

of harm to persons or of property damage is reduced to, and maintained at or below, an ac-

ceptable level through a continuing process of hazard identification and risk management

[9].” Under the ultimate goal of improving aviation safety, numerous safety enhancement

programs have been established.
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1.2.1 Safety Management System (SMS)

To maximize opportunities for continuous and effective improvement of the overall

aviation system safety, safety management system (SMS) framework has been developed.

SMS is the formal, top-down, organization-wide approach to managing safety risk and as-

suring the effectiveness of safety risk controls. It includes systematic procedures, practices,

and policies for the management of safety risk [10]. In other words, SMS is a dynamic risk

management system based on quality management system (QMS) principles in a struc-

ture scaled appropriately to the operational risk, applied in a safety culture environment.

ICAO defines SMS as “A systematic approach to managing safety, including the neces-

sary organizational structures, accountabilities, policies and procedures [9].” The principal

idea of SMS is to provide a systematic approach for achieving acceptable levels of safety

risk. SMS is comprised of four functional components and Table 1.2 summarizes important

components of the SMS framework.

Table 1.2: Safety Management System Framework [9]

Safety Policy

and Objectives
Safety Risk Management Safety Assurance Safety Promotion

• Management Commitment

& Responsibioity

• Safety Accountabilities

• Appointment of Key Safety

Personnel

• SMS Implementation Plan

• Coordination of Emergency

Response Planning

• SMS Documentation

• Hazard Identification

• Risk Assessment

& Mitigation

• Safety Performance

Monitoring & Measurement

• The Management of Change

• Continuous Improvement

of the SMS

• Training and Education

• Safety Communication
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1.2.2 Flight Data and Aviation Safety Enhancement Programs

Aircraft flight data that is collected using onboard data measurement and recording de-

vices enable various data-driven flight safety analysis. The flight data monitoring (FDM)

or Flight Operations Quality Assurance (FOQA) programs are representative examples of

the safety improvement efforts using flight data records. The primary purpose of FDM or

FOQA program is to improve operational safety and efficiency by regularly recording and

analyzing flight data [11]. The Aviation Safety Action Program (ASAP) is another form

of data-driven safety enhancement program which focuses on encouraging voluntary re-

porting of safety issues and events [12]. In addition, FAA and aviation industry developed

the Aviation Safety Information Analysis and Sharing (ASIAS) program which is for mon-

itoring known risks, evaluating the effectiveness of deployed mitigations, and detecting

emerging risks by sharing a wide variety of safety data and information across the aviation

industry [13]. The aforementioned data analysis and sharing programs are typical exam-

ples of safety enhancement program which is well established and widely used for large

commercial aircraft.

1.3 General Aviation Safety

1.3.1 Aviation Safety Statistics

As GA industry and its operations have grown along with the aviation industry develop-

ment, improving aircraft safety has been a critical interest in the GA industry because safety

is generally attributed by the industry to be the major hurdle for higher utilization of GA

aircraft in the transportation system. According to the U.S. Department of Transportation

(USDOT), GA in the year of 2014 suffered 1.40 fatal accidents for every 100,000 hours of

flying in the United States compared to zero fatal accident rate for scheduled airline flights

[14]. The historical accident rates of air carrier and GA aircraft are compared in Figure 1.2

and Figure 1.3. As shown in the figures, GA has higher accident rates and fatality rates than

5



air carriers. This statistical data indicates that GA operational safety enhancement effort is

inevitable and reduction in GA aircraft accident rates needs to be set as a common goal in

the GA community.

Figure 1.2: U.S. Air Carrier Accident Rate History [14]

Figure 1.3: U.S. General Aviation Accident Rate History [14]
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1.3.2 Safety Enhancement Efforts for General Aviation

In order to improve GA safety, numerous efforts have been made by the GA community.

For example, one of the main goals of the National Aeronautics and Space Administration

(NASA) is to develop technologies to reduce aircraft safety risks substantially [15]. Also,

the Federal Aviation Administration (FAA) has set a target to reduce GA fatal accident rate

of less than 1.02 fatal accidents per 100,000 flight hour [16]. The General Aviation Joint

Steering Committee (GAJSC) analyzes aviation safety data to identify emerging issues

and develop mitigation strategies to address and prioritize safety issues [17]. In addition,

many organizations such as General Aviation Air Safety Investigators (GA-ASI) of GAMA

and Air Safety Institute of AOPA Foundation hold workshops or training programs with a

goal of helping all pilots fly safer by sharing, discussing, and educating current safety-

related information [18][19]. Furthermore, FAA has constantly been striving to improve

GA safety. One of the FAA’s effort is Partnership to Enhance General Aviation Safety,

Accessibility and Sustainability (PEGASAS) which is partnering with a national network

of world-class researchers, educators and industry leaders for the mission of GA safety

enhancement [20]. Although these safety programs for GA have been contributing to GA

safety improvement, the accidents rate of GA is still much higher than that of the air carrier.

Thus, the uniqueness of GA has to be well acknowledged by aviation safety stakeholders,

and it has to be considered when GA safety enhancement efforts are pursued.

1.3.3 Approach and Landing Safety

According to Flight Safety Foundation (FSF), approach-landing phase is one of the

riskiest phase of flight [21]. A review of accident statistics indicates that more than 45

percent of GA accidents occur during the approach and landing phases [22]. Among the

identified cases of the accidents, the pilot related issue is the biggest contributing factor that

takes over 90 percent of the accidents. Also, 33 percent of the accidents were caused by the

loss of control (LOC) issue according to the FAA. Various accidents can happen during the
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approach and landing phase of flight and controlled flight into terrain (CFIT) and runway

excursions are the most common types of GA accidents during approach and landing phase.

Because the approach and landing is a high risk phase of flight, a lot of safety enhancement

efforts for this phase of flight have been conducted to address the risks. For example, Fala

et al. developed algorithms to detect safety events during the approach phase using the

flight data generated by a Cirrus SR-20 aircraft which is one of the widely used GA aircraft

[23]. The algorithms developed by Fala et al. detects and categorizes the safety events

in the approach and landing phase. Also, Rao et al. investigated historical GA accident

data from the National Transportation Safety Board (NTSB) and revealed the main causes

for unstable approaches in GA operations [24]. The FSF suggested the specific criteria

for defining stabilized approach that can provide useful insight to approach and landing

safety assessment efforts [25]. When an aircraft is not satisfying requirements for a safe

landing during approach and landing phase, the aircraft should perform a go-around. A

go-around is a standard aircraft maneuver which is a procedure of discontinuing an ap-

proach to landing flight to avoid potentially dangerous situations. To maximize the benefits

of the go-around maneuver, Campbell et al. conducted an experiment to develop more re-

alistic go-around criteria for transport category aircraft [26]. The information provided by

the Campbell et al. can be used to revise and improve the stabilized approach criteria for

commercial airline aircraft by relating the flight parameters during approach and landing

performance parameters. This strategy can be applied to the GA field to improve the safety

of GA approach and landing operations. Based on observations of the studies mentioned

above, concentrating on safety of approach and landing phase of flight has a high impact

on improving overall GA safety. This effort can be supported by developing quantitative

methods to understand safety of approach and landing operations. Pilots can use the identi-

fied and quantified safety information to develop their proper skills for stable approach and

landing, and they can follow established procedures to reduce the chance of an accident

caused by a pilot-related mishap.
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1.3.4 Uniqueness of General Aviation

Since GA is different from regular commercial aviation regarding not only aircraft type

but also its operation concept, it is indispensable to understand the uniqueness of GA to

improve its safety. First of all, GA aircraft are heterogeneous and usually smaller than

commercial aviation aircraft or military aircraft. Also, GA aircraft are operated by various

types of pilots such as private pilots, flight instructors, student pilots and so on. That means

each GA pilot’s experience level is diverse compared to airline pilots, and as a result, the

GA flight operations and its safety characteristics are also different. Besides, GA operations

and its flight profiles are more flexible than airliners or military operations because it is non-

scheduled flight. GA operations range from personal or recreational flight to instructional

flight, and GA aircraft operate in various airports. In the U.S., around 5,200 airports are

available for GA aircraft while scheduled flights operate in approximately 530 airports in

the U.S. [27] Thus, each GA mission profile is unique and corresponding flight performance

characteristics are also different from each other. Another unique characteristic of GA

is its lack of data logging capability. Flight data recording device is not mandatory for

GA aircraft, so many GA aircraft do not have data recording capability. However, FAA

developed a smartphone application named GAARD which is designed to collect flight

data and enhance aviation safety. Using this application, GA pilots can record and monitor

the flight data by collecting GPS position and attitude information [28].

Considering the characteristics of GA aircraft and operations, a more flexible approach

of GA safety assessment and enhancement is required. For example, aircraft performance

characteristics can vary depending on the pilot’s experience level, the age of aircraft, or

operation type. Thus, safety enhancement effort has to be made considering the uniqueness

of GA mentioned above, and realistic and credible GA flight data is one of the critical

element of this safety improvement approach.
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1.4 Summary

GA safety is an essential part of the aviation industry in the U.S. and has been con-

tributing positively to the community in numerous ways. However, GA has been suffering

from a relatively high rate of accident and fatality, so various aviation safety programs

are developed to improve GA safety. The benefits of aviation safety management and en-

hancement programs described in the above section can be maximized when the programs

are flexible enough to reflect the uniqueness of GA operations properly. For the aviation

safety enhancement efforts to be flexible, precise aircraft performance models and clean

flight data have to be appropriately obtained and used. For this reason, an aircraft perfor-

mance modeling method that can generate a not only flexible but also accurate performance

model is necessary for predicting and capturing aircraft behavior in any operational con-

ditions. Furthermore, a data noise filtering technique that is specific to GA flight data and

its collection procedure is required for improving the reliability of data-driven safety anal-

ysis programs. Finally, the harmonization of accurate performance models and clean flight

data is expected to positively contribute to GA safety enhancement by enabling flexible and

reliable operational safety assessment and monitoring.

Figure 1.4: Map of the General Aviation Airports [29]
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter focuses on the literature review of existing aircraft performance modeling

methods and flight data analysis program and how they have been applied to not only GA

but also overall aviation safety improvement. The first section of this chapter explains

various programs and efforts for improving aviation safety that has been done by multiple

aviation industry stakeholders. The next part discusses how flight data is applied to aviation

safety improvement programs and introduces different types of flight data analysis methods

and their applications. Also, the following section addresses the importance of data quality,

then provides a brief overview of various noise filtering methods that are commonly used in

the data analysis field. The last part explains existing aerodynamic modeling methods for a

fixed-wing aircraft with different levels of model fidelity, then discusses their applicability

to GA aviation safety assessment.

2.1 Aviation Safety Enhancement Efforts

Safety means that “the state in which the possibility of harm to persons or of property

damage is reduced to, and maintained at or below, an acceptable level through a continuing

process of hazard identification and safety risk management” [9]. Based on the definition

of “safety”, aviation safety means that the state in which risks of an aircraft or an aviation

system are reduced and controlled to an acceptable level. To improve aviation safety, there

have been many studies and programs in the aviation field and it is still ongoing efforts.

This section intends to provide some examples of aviation safety enhancement programs.
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2.1.1 Flight Operational Quality Assurance (FOQA)

FOQA is the most representative use of flight data for aircraft safety enhancement pro-

gram. This program is a voluntary safety program that is intended to make commercial

aviation safer by providing commercial airlines and pilots for sharing every possible infor-

mation that is related to aviation safety. [30]. In this program, FAA can monitor overall

trends in aircraft operations and take actions to address operational risk issues. The funda-

mental goal of this program is to allow all related parties to identify and reduce or eliminate

safety risks, as well as minimize deviations from the regulations[9]. In order to achieve this

objective and gain helpful information, the airlines, pilots, and the FAA agree to participate

in this program under the ultimate goal of making aviation safer. A FOQA program is used

to reveal operational situations in which risk is increased to enable early corrective action

before that risk results in an incident or accident [30].

2.1.2 Aviation Safety Assurance Program (ASAP)

ASAP are the most important part of the safety management system that aviation ser-

vice providers or aircraft operators shall implement in order to meet ICAO SARPS and

regulatory requirements [31]. Safety assurance includes systematic processes for contin-

uous monitoring and recording of the organization’s safety performance, as well as the

evaluation of the safety management processes. Safety assurance demonstrates that or-

ganizational arrangements and processes for safety achievement are correctly applied and

continue to achieve their intended goals [30].

2.1.3 Aviation Safety Information Analysis and Sharing (ASIAS)

ASIAS is a collaborative government and industry initiative on data sharing and anal-

ysis to proactively discover safety concerns before accidents or incidents occur, leading to

timely mitigation and prevention [32]. ASIAS works as a primary channel for the sharing

of safety information among its stakeholders, contributing an important resource for the
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aviation community. The goal of ASIAS the establishment of a broad network of safety in-

formation sources shared by stakeholders. ASIAS program has connected a wide variety of

safety data and information sources across government and industry, including voluntarily

provided safety data [33]. The ASIAS program works closely with the Commercial Avia-

tion Safety Team (CAST) and the General Aviation Joint Steering Committee (GAJSC) to

monitor known risk, evaluate the effectiveness of deployed mitigations, and detect emerg-

ing risk.

2.1.4 Partnership to Enhance General Aviation Safety, Accessibility and Sustainability

(PEGASAS)

The main purpose of PEGASAS is to enhance GA safety, accessibility, and sustain-

ability by collaborating with the FAA, universities, researchers, and industry leaders [34].

In order to achieve the goal, PEGASAS has established an extended network of relevant

aviation-related organizations and industry partners such as not only industrial companies,

but also government agencies, and airport operators. This program has been devoted to

conducting various researches in collaboration with the stakeholders for enhancing GA

safety.

2.2 Flight Data in Aviation Safety Programs

2.2.1 Flight Data Analysis

Data is defined as the values or qualitative or quantitative variables, belonging to a set

of items. Flight data analysis (FDA) is a generic term for gathering and analyzing data

recorded during routine flights to improve flight crew performance, operating procedures,

flight training, air traffic control procedures, air navigation services, or aircraft maintenance

and design [35]. FDA and flight data monitoring (FDM) technique was enabled by the de-

velopment of flight data recorders (FDR). The main purpose of FDR was to assist accident

investigators in determining the cause of aviation accidents. Repeatedly gathering and an-
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alyzing flight data from the flight recorders reveals meaningful information and provides

the aircraft operators deep understanding of what constituted a safe envelope for the flight

operations. It also provides performance information on airframes and engines.

FDA is an essential element to SMS in the aviation field. FDA programs and FDM

techniques are used for monitoring and analysis of flight operations and performance data.

In addition, they can also detect adverse trends in any part of the flight regime which can be

mitigated by revision of Standard Operating Procedures (SOP), Air Traffic Control (ATC)

procedures or understanding anomalies in aircraft performance [36]. FDA/FDM is very

useful in identifying exceedances of flight parameters that either indicate an underlying

systemic issue or improper operating technique. This is established by comparing the spe-

cific flight record to the nominal profile developed based on the fleet profile. For example,

a flight maneuver can be detected as an unstable approach when it is detected as an isolated

event [37].

A core element in the successful application of FDA/FDM in SMS is securing informa-

tive flight data. This can be achieved by continuously collecting flight data and ensuring

that the collected flight data is clean and has no inherent noise. When it is observed that

the collected flight data has a significant noise, the noise must be removed by applying

appropriate data noise filtering techniques.

2.2.2 Data Noise

As mentioned earlier, ensuring clean flight data is an essential requisite for flight-data-

driven safety management. Therefore, this section is dedicated to overviewing what kind

of noise filtering methods are existing in the aviation field.
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Time Domain Filtering Methods

• Kalman Filter-Based Methods

One of the well-known noise filtering methods in the time domain is the Kalman filter-

ing method. The Kalman filter has as objective the minimization of the estimation square

error of a nonstationary signal buried in noise. This noise filtering technique deals with

random processes described using state–space modeling which generates signals that can

be measured and processed utilizing time recursive estimation formulas. The Kalman fil-

ter is a recursive estimator. This means that only the estimated state from the previous

time step and the current measurement are needed to compute the estimate for the current

state. In contrast to batch estimation techniques, no history of observations and/or esti-

mates is required [38]. Figure 2.1 describes the basic concept of the discrete-time Kalman

filter method. In addition to the discrete-time Kalman filter, The Kalman filtering method

has been developed and transformed into various forms such as extended Kalman filter,

frequency-weighted Kalman filter, Unscented Kalman filter, Kalman-Bucy filter, and so

on.

Figure 2.1: Timeline Showing a Priori and a Posteriori State Estimates and Estimation-
Error Covariances [39]

Frequency Domain Filtering Methods

• Fourier Transformation Filtering

Another way of removing data noise is investigating the data in the frequency domain

by applying the Fourier transformation method. The Fourier Transform is extensively used
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in the field of Signal Processing in many applications. Flight data is also a kind of signal

which is logged in the time domain. Thus, the Fourier transform (FT) decomposes the data

into frequency components. In signal processing, the FT can reveal important character-

istics of a signal including noise components. The TF has two main categories: Discrete

Fourier transform (DFT) and fast Fourier transform (FFT).

The Fourier transform is a mathematical formula that relates a signal sampled in time

or space to the same signal sampled in frequency. For a vector that has uniformly sampled

points, the following Equation 2.1 defines the DFT of x where i is the imaginary unit,

w = e−2πi/n is one of n complex roots of unity. j and k are indices that run from 0 to n-1

[40]. Also, Equation 2.2 is the inverse Fourier transform that converts a signal in frequency

domain back to time domain.

yk+1 =
n−1∑
j=0

wjkxj+1 (2.1)

xj+1 =
1

n

n−1∑
k=0

w−jkyk+1 (2.2)

The FFT is a variation of DFT that is more efficient computationally. While a one-

dimensional DFT requires on the order of n2 floating-point operations for a vector of n

data points, the FFT requires on the order of n log n operations, a significant reduction in

computational complexity [40].

Observations

In the previous sections, the most prominent noise filtering concepts are reviewed in

both time and frequency domain. Since flight data consists of various types of parame-

ters measured with different types of measuring instrument, the types of data noise that

are embedded in the recorded flight data can be grouped into some categories according

to the inherent characteristics caused by the nature of measuring instrument. For example,
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Figure 2.2: Data Noise in Frequency Domain [41]

speed-related parameters are measured using pitot tube which is a tool to measure the total

pressure. Angle-related parameters such as pitch and bank angles are measured using a gy-

roscope. Positions of an aircraft such as latitude/longitude and altitude are measured using

GPS and barometer respectively. Therefore, different noise removal techniques may be re-

quired for a certain type of noise in each parameter and a tactical approach for minimizing

possible errors in FDA caused by data noise is necessary.

2.3 Fixed-Wing Aircraft Performance Models

Among various types of performance models for predicting and defining the behavior

of the aircraft when performing different kinds of maneuvering, an aerodynamic model is

one of the most primary models for capturing fundamental behaviors of aircraft. Many

modeling methods for developing aerodynamic models have been introduced from low

fidelity to high fidelity depending on the purpose of the model. This section summarizes

the review of the aerodynamic modeling methods.
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2.3.1 Physics-Based Modeling Method

Aerodynamic modeling for aircraft performance consists of two main parts: lift-curve

modeling and drag polar modeling. Figure 4.2 shows the typical shapes of lift curve and

drag polar of a fixed-wing aircraft. The lift-curve model is used for predicting variation in

the lift coefficient with a change in the angle of attack, and the drag polar model provides

the relationship between the lift of an aircraft and its drag. Various theoretical aerodynamic

modeling methods for estimating the aerodynamic performance of an aircraft using key

aerodynamic parameter were surveyed and explained.

Lift-Curve Modeling

An aerodynamic model (a lift-curve) that provides the fully defined relationship be-

tween the lift coefficient and the angle of attack for an aircraft was created by evaluating in

three stages that include all the aspects of the aircraft: the 2-D wing airfoil, the 3-D wing,

including the 3-D effect, and complete aircraft. The lift curve for each stage that governs

the shape of the curve is defined by five parameters: the zero-lift angle of attack, the lift-

curve slope, the angle of attack limit for a linear range, the angle of attack for the maximum

lift coefficient, and the maximum lift coefficient [42]. Creating the linear range of the lift

curve using zero the lift angle of attack, the lift-curve slope, and the angle of attack limit

for the linear range is straightforward. In other words, the lift curve can be expressed by a

simple straight-line equation. The non-linear part near the stall point can be modeled using

a quadratic equation, and it can be defined by the lift-curve slope, the angle of attack for

the maximum lift coefficient, and the maximum lift coefficient given a requirement that the

slope of the linear and nonlinear parts (dCL/dα) is identical where the two parts meet. The

combination of these two equations of the linear and non-linear area completes basic lift

performance modeling for an aircraft in a clean configuration.

When an aircraft is required to use high lift devices in a specific operation such as

takeoff or landing operation, the lift characteristics change because of the effect of high-lift
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device deployment. This effect causes a lift increment, a lift-curve slope change, and a

maximum lift coefficient increment [42]. Figure 4.5 notionally describes how the lift-curve

varies in flaps-deplyed configuration. The amount of the lift increment or the slope change

depends on the amount of flap deflection.

Drag Polar Modeling

The drag polar is the aerodynamic characteristic that is most relevant for modeling

or assessing the aircraft’s performance capabilities/characteristics. The drag coefficient

can be presented as a function of the angle of attack, but another effective plot that can

provide the aerodynamic performance of an aircraft is the drag polar, which shows the

drag coefficient as a function of the lift coefficient. The drag polar of an aircraft contains

almost all information required for analyzing its aerodynamic performance. Aircraft drag

is mainly composed of parasite drag and induced drag. Equation 2.3 is a general expression

of drag coefficient for an aircraft in a clean configuration with a parasite drag term and an

induced drag term [43].

Parasite drag, also called zero-lift drag, consists of mostly skin-friction drag and small

separation pressure drag [44]. Induced drag is drag resulting from the lift that is propor-

tional to the square of the lift coefficient with a proportionality factor K, shown in Equation

2.3. The skin-friction method and the component buildup method [44] are methods for par-

asite drag estimation. In addition, induced drag factor K can be estimated by the Oswald

span efficiency method and the leading-edge suction method [44]. A detailed description

of each estimation method for parasite drag and induced drag will be provided in the next

subsequent sections.

CD = CDmin +
CL

2

πARe
= CDmin +KCL

2 (2.3)

∆CDflap = ∆CDp + ∆CDi + ∆CDint (2.4)
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Drag characteristic, as well as lift characteristic, is highly dependent on the flap deploy-

ment of an aircraft. The drag increment can be estimated from the sum of the flap profile

drag increment, the induced drag increment, and the interference drag increment [42]. The

total aircraft drag coefficient in the flap-down condition can be expressed as the sum of the

drag coefficient of a clean configuration aircraft and drag coefficient increment caused by

the flap deflection. For flap-deployed configuration, the drag increment caused by deflected

flap can be estimated using Equation 2.4, where (∆CD)flap is total drag change and ∆CDp,

∆CDi, and ∆CDint are parasite, induced, and interference drag change respectively.

2.3.2 The Bootstrap Approach

The Bootstrap Approach (TBA) is a simple flight-data-driven performance modeling

method for a fixed-pitch propeller-driven aircraft. In addition to the original TBA, Ex-

tended TBA was also developed for variable pitch propeller aircraft [45]. The fundamental

idea of TBA is that a set of simple equations with nine aircraft parameters plus aircraft

weight and density can generate the drag polar and propeller polar, which represents a re-

lation between power and thrust, of an aircraft. The aircraft weight and air density are the

variables that need to be identified by the pilot. The pilot may find the aircraft weight by

directly measuring them or adding the weights of fuel, oil, crew, passengers, and baggage

to the empty weight. In addition, the pilot can obtain air density during flight using pressure

altitude and the outside air temperature information. The nine aircraft parameters that are

essential to this method are listed in Table 2.1 [45].

The first five parameters in Table 2.1 – wing reference area, wing aspect ratio, rated

mean-sea-level (MSL) torque, altitude drop-off parameters (power lapse parameter), and

propeller diameter – are given in the POH or the engine manual. Wing reference area, wing

aspect ratio, and propeller diameter are cleared indicated in POH. The altitude drop off

parameter, which is the proportion of internal engine losses not responsive to atmospheric

density, may be inferred from in the engine manual or it also can be computed by conduct-
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ing a simple experiment to see how engine power or torque drops off with altitude. For

most internal combustion aircraft engines, this number is about 0.12 and it is substantially

correct [46]. The rated MSL torque M0 can be calculated using Equation 2.5 whare P0 is

the full throttle power, n0 is the rated maximum propeller revolutions per second. The other

four parameters – parasite drag coefficient, aircraft efficiency factor, propeller polar slope,

propeller polar intercept – should be computed from multiple glides and climb maneuvers,

which is describing the basic concepts of obtaining the input parameters for TBA.

M =
P

2πn
or M0 =

P0

2πn0

(2.5)

Table 2.1: Bootstrap Data Plate Items

Bootstrap Data Plate Item Symbol Aircraft

Wing Reference Area S Airframe

Wing Aspect Ratio AR Airframe

Rated MSL Torque M0 Engine

Altitude Dropoff Parameter C Engine

Propeller Diameter d Propeller

Parasite Drag Coefficient CD0 Airframe

Aircraft Efficiency Factor e Airframe

Prepeller Polar Slope m Propeller

Propeller Polar Intercept b Propeller

Among the nine parameters listed in Table 2.1, the parasite drag coefficient and the

aircraft efficiency factor can be computed from multiple glide test data using Equation 2.6

and 2.7 [45]. A pilot conducts glide flight repeatedly over the same vertical interval until

the best glide angle γbg, and the best glide speed Vbg are identified. The glide test must

be conducted for each flap setting to obtain the drag polar parameters for flap-deflected
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aerodynamic performance estimation.

CD0 =
W sin γbg

ρ0VCbg
2S

(2.6)

e =
4W cos γbg

πAR tan γbgρ0VCbg
2S

(2.7)

Similarly, the propeller polar slope m and propeller polar intercept b can be obtained

from multiple climb flight test data. The basic form of a propeller polar is shown in Equa-

tion 2.8 where CT is thrust coefficient and CP is power coefficient. This equation is empir-

ically supported by the assumption of linearity between CT/J2 and CP/J2 [47].

CT
J2

= m
CP
J2

+ b (2.8)

During repeated climb maneuvers, speed for largest climb angle Vx and speed for best

rate of climb Vy are identified. Then the pilot or user is able to calculate the intercept of

the linearized propeller polar, b using Equation 2.9. Also, the propeller polar slope can be

computed using Equation 2.10. Alternatively, the pilot can simply make a level full-speed

flight to find VM and use Equation 2.11 to calculate the propeller polar slope, m [45].

b =
SCD0

2d2
− 2W 2

ρ2d2SπeARVx
4)

(2.9)

m =
2n0dW

2

Φ(σair)P0ρSπeAR

(
3Vy

2

Vx
4 +

1

Vy
2

)
(2.10)

m =
2n0dW

2

Φ(σair)P0ρSπeAR

(
1

VM
2 +

VM
2

Vx
4

)
(2.11)

Once the nine parameters for TBA are all identified, the pilot can compute the aircraft

performance using the parameters and develop flight performance data table specific to
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the aircraft. This chapter is for introducing performance modeling methods, generation of

performance data using the TBA method will be discussed later.

In summary, the TBA method is a simple but reliable performance modeling method

for an existing fixed-wing light aircraft with fixed-pitch propellers. This modeling method

requires basic flight skills to conduct several sets of glide and climb flight test maneuvers.

2.3.3 System Identification and Parameter Estimation

System identification is the process of determining an adequate mathematical model,

usually containing differential equations, with unknown parameters that have to be deter-

mined indirectly from measured data [48]. It is mainly focusing on the determination of

the mathematical or performance model structure representing the dynamic system, which

is in general unknown and not unique. Zadeh defines system identification as ”the determi-

nation, on the basis of observation of input and output, of a system within a specified class

of systems to which the system under test is equivalent [49].”

In the flight vehicle development phase, system identification is useful because it en-

ables the development of adequately accurate and validated mathematical models of the

flight vehicle. More specifically, system identification provides an overall understanding of

the flight vehicle’s dynamics by observing the inputs and its response to them. Furthermore,

system identification yields an accurate and comprehensive database for flight simulators

which is extremely useful for realistic pilot training. Although the system identification

method provides high fidelity performance models, the measurement of inputs and system

response to applied inputs are required to determine the system model.

2.3.4 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is a numerical analysis method for predicting

the aerodynamic performance of aircraft. This analysis method is used for not only aircraft

but also various fluid mechanics-related applications such as fan, wind blades, automobiles
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and so on. CFD is widely used in aircraft aerodynamic performance analysis because it

allows the aerodynamics performance estimation of an aircraft with extremely high levels

of accuracy. In addition, CFD analysis provides the ability to conduct thorough, automated,

multi-point design optimization. It is obvious that CFD has many advantages such as high

accuracy, reality, and broad applicability, it requires enormous computational requirements

and time compared to the classical aerodynamic modeling methods. Furthermore, aircraft

geometry is the key requisite for CFD analysis but detailed geometry information of aircraft

is usually not available for common GA aircraft users. Also, CFD analysis should be

followed by result validation based on experimental data but it is generally not affordable

for GA aircraft owners, pilots, or safety analysts. Lastly, modeling cost or CFD analysis

tool cost is extremely high.

2.3.5 Experimental Method

The basic idea of wind tunnel test is observing and measuring the effects of air moving

past solid objects to identify the object’s aerodynamic parameters. A wind tunnel consists

of a tubular testing zone with the testing object mounted in the middle. During an exper-

iment, air is made to flow past the model by a powerful fan system while the forces on

the object are measured using various types of instrumentation such as sensors to measure

aerodynamic forces, pressure distribution, or other aerodynamic-related characteristics of

the testing object [50].

Flight testing is for developing and gathering data during actual flight of an aircraft and

then analyzes the flight data to evaluate the aerodynamic performance characteristics of the

aircraft for in design validation including safety aspects. The main objective of flight test is

finding and fixing any design problems and verifying/documenting the vehicle capabilities

for certification. The flight test phase can range from the test of a single system such as

wing or winglets to the complete development and certification of a new aircraft. Therefore,

the duration of a particular flight test program can vary from a few weeks to many years
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and the modeling cost as well as modeling time for flight test is tremendously expensive.

2.3.6 Fidelity Spectrum of Aerodynamic Models

In the previous section, the currently existing aerodynamic modeling methods with var-

ious levels of fidelity are summarized and explained. Since each modeling method has its

own purpose and targeting fidelity, selecting an appropriate aerodynamic modeling method

considering the modeling purpose is important to maximize benefits from the model. Thus,

it is required to consider the trade-off between accuracy against modeling cost.

Figure 2.3: Conceptual Fidelity Spectrum of Aerodynamic Modeling Methods

2.4 Summary and Observations

The aviation safety enhancement programs mentioned above have been achieving steady

improvement in aviation safety through various efforts and collaborations. From the ob-

servations on the programs, it is shown that flight data accounts for a large portion of the

programs. However, most of the aviation safety programs mentioned above are aimed at

improving the commercial aviation safety which can take full advantage of the data because

enough amount of flight data is available. One of the unique characteristics of GA is that

GA aircraft do not record flight data, so an extra effort is required to utilize a data-driven

safety enhancement program for GA. Furthermore, it is observed that the importance of the

flight data is often neglected in the programs. It is certain that the results from data-driven

analysis programs are highly dependent on the quality of the data being utilized in the pro-

cess. Therefore, there is a need for a method that can appropriately remove the noise in the
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flight data. Also, it is discovered that there is a lock of the standard to assess the GA aircraft

safety quantitatively. Considering the characteristics of the GA, the GA can generate the

flight data relatively freely. Therefore, applying this uniqueness of GA to the GA safety

improvement effort will maximize the advantage of the flight data and complement the

shortcomings of data-driven GA safety program mentioned above. The observations from

the survey lead to the research goal of this study which is elaborated in the next chapter.
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CHAPTER 3

PROBLEM FORMULATION

The purpose of this chapter is formulating research problem with the given observations

from the literature review. In the beginning, the research objective is stated to describe

clearly what the aim of this research is. Then, research questions that represent the scope

of this research are formulated in the following sections.

3.1 Research Objective

Given the requirements that are reviewed and identified in the literature review, this

study seeks to identify more effective methods for evaluating the operational safety of a

fixed-wing GA aircraft using an aerodynamic performance model and flight data analysis

techniques. To achieve this main research goal, three sub-objectives are derived.

First, this research aims to develop a realistic and accurate aerodynamic performance

model that is computationally affordable with adequate fidelity and compositionally flexi-

ble so that this modeling method can be used by any GA aircraft users capturing the char-

acteristics of each aircraft. This goal has to be supported by the answer to what constitutes

a suitable aerodynamic model for operational safety assessment.

Next, this study intends to suggest an effective noise removal technique to obtain clean

and tidy flight data records for the aerodynamic modeling process as well as the operational

safety assessment process. To ensure that the flight data to be used in the process is clean,

it is required to have a proper way of quantifying the data noise, then establish a method

that can reach to the optimal degree of tidiness.

Finally, using a previously obtained reliable aerodynamic performance model and fil-

tered clean flight data, this work develops and tests the idea of evaluating flight performance

safety of a GA fixed-wing aircraft. By achieving this goal, this research is able to propose
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an effective and practical procedure of identifying and quantifying any unsafe behavior of

an aircraft.

The research objective and sub-objectives stated above are summarized in Figure 3.1.

Ultimately, this study attempts to provide answers to the following key research questions

that are formulated in the next section.

Figure 3.1: Overview of Research Objective

3.2 Research Questions

3.2.1 Aerodynamic Performance Model

In the literature survey, it is observed that an aircraft performance model can introduce

more transparency and capability to flight data-driven safety analysis by actually looking at

the aircraft behavior and flight data simultaneously. In order to enhance GA safety through

successful application of SMS, accurate aircraft performance models are critical requisites
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because main requirements of SMS such as hazard identification, risk assessment, and

safety performance monitoring must be supported by the ability to capture the behavior of

aircraft precisely under any operational conditions. The review of aerodynamic modeling

methods for a fixed-wing aircraft provided the general concept of the various modeling

methods with advantages and limitations. For example, Pilot’s operating handbook (POH),

which is a document developed by the airplane manufacturer and approved by the FAA,

lists essential information regarding the design, operation, and limitations of the aircraft,

as well as its performance characteristics. Although the performance information in POH

is accurate under specifically indicated conditions, it should be able to flexibly adapt to

other operating conditions that are not stated in POH. Given the needs of performance pre-

dictability using an aerodynamic model for flight data analysis, it is essential to generate

an aerodynamic model with an appropriate level of fidelity. In other words, flexible per-

formance models that are able to capture realistic flight characteristics under any operating

condition are required for aviation safety management. Thus, this study attempts to an-

swer the following research question to generate an aerodynamic model for a fixed-wing

GA aircraft for the purpose of GA operational performance envelope identification. The

hypothesis to that is established to provide the answer to the research question 1 is also

described below.

Research Question 1

What is a more effective way of developing an aerodynamic model that has a neces-

sary level of fidelity to adequately predict aerodynamic performance and capture unsafe

aerodynamic behaviors of a fixed-wing GA aircraft?
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Hypothesis 1

An aerodynamic model that is accurate enough to estimate flap usage during flight can

capture unsafe behaviors of a fixed-wing GA aircraft, and the necessary accuracy can be

achieved with the combination of a theoretical model and flight data.

It is important to note that requisite information for the development of models should

be publicly available and provided by reputable or authoritative sources such as a pilot’s

operating handbook and published flight/ground test data. The is a significant and recurring

issue in aircraft model development and calibration process because much of the requisite

information is not typically available to the public. By answering the research question, it is

expected that this study identifies and introduces a better way to find a reasonable trade-off

between model accuracy and modeling cost with given reference data and ability to obtain

or generate any required data.

3.2.2 Data Noise Filtering

The advantages of flight data analysis are well acknowledged in the aviation industry

and tremendous data-driven safety enhancement programs have been developed and widely

used. As noted in the literature review section, FDM is the representative flight data anal-

ysis program focusing on aviation safety enhancement. However, such data-driven safety

programs have limitations to be used for GA operations because GA aircraft are not ob-

ligated to flight data record and the majority of GA aircraft currently in service are not

equipped with devices capable of recording flight data. Although FAA developed a free

app named GAARD for pilots to contribute their flight data to a national database for safety

monitoring [28], providing the flight data using this app is voluntary and non-enforceable.

Thus, there is an inevitable limit to the use of flight data for improving GA safety.

Although flight data perform highly important roles in safety analysis by providing

the behavioral information of aircraft, flight data itself contain unavoidable noise. That
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being said, even if GA flight data is secured, it is difficult to extract accurate information

because of inherent noise in the flight data collected by an app or other recording devices.

Therefore, ensuring clean and tidy flight data that is ready to be analyzed is crucial in the

use of that data in aircraft safety assessment work. In other words, it is essential to be able

to “clean up” recorded flight data in order to develop performance models using voluntarily

self-recorded flight data and also perform retrospective flight safety analysis.

While various types of noise filtering methods have been introduced in the data ana-

lytics fields, the inherent characteristics of data noise in different types of data parameters

have not been examined thoroughly. To be more specific, there is no explicit information

whether a certain noise filtering method performs better with a specific type of data pa-

rameters. Therefore, the focus of this study is an examination of the effects of different

filtering methods applied to each data parameters which are measured in different measur-

ing method. The benefits of noise filtering method and flight data-driven safety analysis

can be maximized by answering research question 2. Based on the research question, the

following hypothesis for research question 1 is as follows.

Research Question 2

What kind of noise filtering techniques or data cleaning methods are suitable for ef-

fectively detecting and removing existing noise in flight data while preserving true aircraft

behaviors?

Hypothesis 2

Specific flight parameters require noise removal techniques that can capture the char-

acteristics of the parameters. Applying a filtering method that is identified considering

inherent noise characteristics to corresponding parameters will ensure the necessary level

of filtering result.
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3.2.3 Flight Safety Assessment

As discussed earlier, in aircraft operational safety analysis, it is important to have pre-

cise information about the aircraft performance. The true aircraft performance information

can be estimated using an accurate aircraft performance model and reliable flight data. The

two components are the most important sources of the aircraft performance information

because they can be used to predict or analyze the behavior of an aircraft and the flight

capabilities of an aircraft.

For assessing the flight capabilities of an aircraft, flight envelopes provide meaningful

information about operational limits of the aircraft. Thus, by looking at the aircraft behav-

ior in those flight envelopes, we can determine if certain flight operation is dangerous so

that a pilot must avoid that kind of operation. Although POH is the official flight manual

which contains proven performance data in certain conditions and publicly available pri-

mary source of that performance information, POH has some limitations that can hamper

performance envelope identification. For example, most speeds in POH are not cited for

various gross weights and density altitudes. Moreover, the rate of climb and best glide

information are only for one gross weight. In addition to the drawbacks mentioned above,

there are many other limitations of POH performance data. Thus, identifying more flexible

operational limits or flight envelopes of an aircraft strategically using actual flight data has

to be an essential step during flight safety assessment efforts.

Moreover, detecting unsafe events of flight requires consideration of not only the pre-

defined flight envelopes but also frequency and likelihood of that events. In this safety

assessment process, quantitative safety metrics are required that can indicate both aircraft

performance characteristics and abnormality of the flight. Statistical data analysis method

using enough number of sample flights can support this quantitative safety evaluation pro-

cess.

32



Therefore, this research will address the following research questions and proposes an

effective way of assessing operational performance safety of an aircraft by answering the

following questions. The requirements as mentioned earlier can be satisfied by answering

the research questions shown below and proving the following hypothesis can support the

answer.

Research Question 3

How can flight performance safety of a fixed-wing GA aircraft be analyzed using a

synthesis of an accurate aerodynamic performance model and clean flight data?

• How can operational performance limits or flight envelopes for a fixed-wing GA

aircraft be identified using performance models and flight data?

• How can the generated performance envelopes be used for quantitatively judging or

determining that an aircraft is in a dangerous or safe state?

Hypothesis 3

Using a synthesis of a realistic aircraft performance model and clean flight data will

reduce the chance of misidentifying or failing to identify abnormal flight operations.

3.3 Research Scope

3.3.1 Fixed-Wing General Aviation Aircraft

Among various types of GA aircraft, Cessna Skyhawk (C172S) aircraft is selected for

providing answers to the research questions stated in the previous section. One of the main

reason why this aircraft can be a good sample aircraft for this study is that C172 is the most
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popular fixed-wing propeller-driven aircraft consistently in the GA community. According

to NASA statistics, the C172 aircraft accounted for 13.5% of all aircraft, and it is the largest

number of aircraft models in 1999 [51]. In 2017, 129 airplanes are shipped by manufac-

turer worldwide for the C172S aircraft, and it is the highest number in the year among other

comparable piston-engine fixed-wing aircraft [2]. Another reason is that C172S belongs to

the aircraft type that has been most frequently contributing to the GA accident records.

AOPA’s study has shown that non-commercial fixed-wing GA flights were responsible for

82% of all the GA accidents in 2014, and more than 70% of the accident aircraft were

single-engine fixed-gear (SEF), including 60% of those involved in fatal accidents [52].

Also, personal flights resulted in 76.1% of the GA accidents in 2014 and 82.5% of fatal

accidents. Table 3.1 and Table 3.2 show the statistics in detail. For this reason, the Cessna

C172S model is the most suitable GA aircraft for achieving the goal of this study. The

example picture of C172S and its three-view are shown in Figure 3.2 and Figure 3.3.

Figure 3.2: Cessna Skayhawk (C172S) [53]
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Figure 3.3: Cessna Skayhawk (C172S) Three-View (Normal Ground Attitude) [54]

Table 3.1: General Aviation Accidents in 2014 [52]

Non-Commercial Commercial

Fixed-Wing Helicopter Fixed-Wing Helicopter

Number of Accidents 952 108 68 36

Number of Aircraft 959 108 68 36

Number of Fatal Accidents 196 14 11 8

Lethality (percent) 20.6 13.0 16.2 22.2

Fatalities 300 24 17 13
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Table 3.2: GA Accidents: Type of Operation [52]

Type of Operation Accidents Fatal Accidents Fatalities

Personal 730 76.1% 165 82.5% 246 82.0%

Instructional 132 13.8% 17 8.5% 32 10.7%

Public Use 8 0.8% 1 0.5% 1 0.3%

Positioning 16 1.7% 4 2.0% 4 1.3%

Aerial Observation 5 0.5% 2 1.0% 2 0.7%

Business 22 2.3% 2 1.0% 2 0.7%

Executive / Corporate 1 0.1% 0 0.0% 0 0.0%

Other Work Use 25 2.6% 4 2.0% 5 v1.7%

Other or Unknown 20 2.1% 5 2.5% 8 2.7%

3.3.2 Phases of Flight

The final stage of this study is to evaluate the operational safety of the flight using the

flight data records. The flight data is a record of all the data parameters from the start of

the flight until landing, and each flight contains multiple phases of flight. As discussed

earlier, approach and landing phases of flight are considered as one of the most riskiest

flight. According to the AOPA’s report, pilot-related causes consistently account for about

75 percent of non-commercial fixed-wing accidents [52], and landing related accidents are

the most frequent accidents as described in Figure 3.4. Although various safety enhance-

ment effort for these risky phases of flight have been performed by many safety programs,

GA operations have a lot of variabilities during these phases and safety performance of an

aircraft needs to be properly measured. Thus, this study focuses on quantifying GA opera-

tion safety during approach and landing phase for improving flight safety of GA fixed-wing

aircraft because this final phase of flight is often considered as one of the most dangerous

parts during flight.
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Figure 3.4: Types of Pilot-Related GA Accidents [52]

3.3.3 Flight Data

As explained in the previous sections, flight data takes the critical role in this research.

Thus, obtaining real flight data records is the most important requirement of this work. For

this study, more than 1,500 training or regular flight data records flown by C172S aircraft

are acquired with the help of a flight school. These records are for research purpose only

and have been provided without any detailed information such as the tail number or the

name of the pilot or student. The flight data parameters in the records are time series

data which are logged in Garmin G1000 data recorder format. The logged data contains

basic aircraft state information as well as basic position, speed, GPS data, and so on. The

parameters recorded by the G1000 system are listed in Table 3.3. In this study, a subset of

the logged parameters are selected and they are considered as a raw data set. Using these

raw data parameters, These flight data records are the main source of this study and will be

used for data-driven aerodynamic performance model development, the data noise removal

process, and GA operational safety assessment.

37



Table 3.3: The List of Data Parameters in G1000 Logging System [55]

Date Longitude (degrees; geodetic; +East) GPS fix

Time Magnetic Heading (degrees) GPS horizontal alert limit

GPS altitude (MSL) HSI source GPS vertical alert limit

GPS altitude (WGS84 datum) Selected course SBAS GPS horizontal protection level

Baro-Corrected altitude (feet) Com1/Com2 frequency SBAS GPS vertical protection level

Baro Correction (in/Hg) Nav1/Nav2 frequency Fuel Qty (right & left)(gals)

Indicated airspeed (kts) CDI deflection Fuel Flow (gph)

Vertical speed (fpm) VDI/GP/GS deflection Fuel Pressure (psi)

GPS vertical speed (fpm) Wind Direction (degrees) Voltage 1 and/or 2

OAT (degrees C) Wind Speed (knots) Amps 1 and/or 2

True airspeed (knots) Active Waypoint Identifier Engine RPM

Pitch Attitude Angle (degrees) Distance to next waypoint (nm) Oil Pressure (psi)

Roll Attitude Angle (degrees) Bearing to next waypoint (degrees) Oil Temperature (deg. F)

Lateral and Vertical G Force (g) Magnetic variation (degrees) TIT (deg. F)

Ground Speed (kts) Autopilot On/Off Manifold Pressure (in. Hg)

Ground Track (degrees magnetic) AFCS roll/pitch modes CHT

Latitude (degrees; geodetic; +North) AFCS roll/pitch commands EGT
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CHAPTER 4

AERODYNAMIC PERFORMANCE MODEL DEVELOPMENT

This chapter explains the developed flexible aerodynamic modeling methodology that

can provide a solution to the first research question formulated in the previous chapter. The

first section in this chapter provides an overview of the aerodynamic modeling methodol-

ogy which consists of the physics-based modeling process and data-driven modeling pro-

cess. Then, the suggested aerodynamic modeling process is described in detail in the fol-

lowing section. Finally, the experiment which provides answers to the research questions

is elaborated with the modeling result.

4.1 Methodology Development

4.1.1 Overview

The primary purpose of this aerodynamic modeling methodology development for a

fixed-wing GA aircraft is to ensure that the obtained aerodynamic model is flexible enough

to capture the aerodynamic performance characteristics of an aircraft with high fidelity

and affordable modeling efforts. To accomplish this goal, this chapter aims to provide a

methodology for successfully answering the research question below which was formu-

lated in the previous chapter.

Research Question 1

What is a more effective way of developing an aerodynamic model that has a neces-

sary level of fidelity to adequately predict aerodynamic performance and capture unsafe

aerodynamic behaviors of a fixed-wing GA aircraft?
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As the first step toward answering the question, an aerodynamic model will be devel-

oped starting with the lowest fidelity method then increase its fidelity by introducing actual

flight data into the modeling process. Among various aerodynamic performance modeling

methods introduced in the previous chapters, selecting an accurate as well as the compu-

tationally affordable aerodynamic model is the main goal of this proposed method. In the

beginning, this study first uses a physics-based modeling approach to develop a theoretical

model that will be used as a basis for the next data-driven modeling process. For developing

a theoretical aerodynamic model, several aerodynamic modeling and calibration methods

are surveyed, examined, and compared in this study. Then, an aerodynamic model will

be established in multiple flap settings and validated against not only the data published

in reliable sources such as the pilots operating handbook, historical data, and wind tunnel

experiment but also the best combination of the sources.

Next, this study will develop a data-driven modeling method that improves accuracy

and flexibility of the previously obtained theoretical aerodynamic model using actual flight

data which is strategically generated and collected for this modeling process. This study

suggests several simple flight maneuvers with different flap activities for generating a set

of reference flight data which will be used for improving the fidelity of the developed

theoretical aerodynamic model. Using the reference flight data record from the sample

flight maneuvers, this study will develop a data-driven aerodynamic model by determining

the optimized set of shape modification factors that can alter the shape of the lift curve and

the drag polar of the aerodynamic model.

Finally, the fidelity of the aerodynamic model will be evaluated to see if this model

meets the pre-defined requirements for the model fidelity. The requirement for an accept-

able model fidelity is that the aerodynamic model has to be able to capture the aerodynamic

performance variance caused by different flap settings. The fidelity of the obtained aero-

dynamic model will be evaluated and tested in the last section of this chapter. The overall

process flow of the proposed aerodynamic modeling method is described in Figure 4.1. As
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shown in the flowchart, the final outcome of this modeling process is a data-driven aerody-

namic model for a fixed-wing GA aircraft, which is C172S aircraft in this research scope. It

is important to note that the proposed flexible aerodynamic modeling method in this study

is applicable to any other aircraft models.

Figure 4.1: Overview of Aerodynamic Modeling Process
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4.1.2 Experiment Setup

Ultimately, this aerodynamic performance model is for evaluating GA operational safety.

For this purpose, the following hypothesis for the first research question is established in

the previous chapter. Thus, the rest of this chapter is mainly about proving the hypothesis

to answer the first research question and to achieve the research goal.

Hypothesis 1

An aerodynamic model that is accurate enough to estimate flap usage during flight can

capture unsafe behaviors of a fixed-wing GA aircraft, and the necessary accuracy can be

achieved with the combination of a theoretical model and flight data.

Given the hypothesis stated above, the fidelity of the developed aerodynamic model will

be tested to examine if this model is credible enough to capture the aircraft’s flap activity

during the flight. Although the flap setting is the most important factor in predicting the

aerodynamic performance of an aircraft, most of the GA aircraft do not have flap activity

record during flight. Therefore, the criterion for determining the accuracy of the aerody-

namic model to be developed in this study is that the model is able to predict flap activity

using given flight data parameters. The flight data record provides sufficient information of

angle-of-attack (AOA) during the flight, and the aerodynamic coefficient can be obtained

by inputting the AOA into the aerodynamic model. The aerodynamic model will output lift

and drag coefficients for different flap settings which will be compared to the data-driven

lift and drag coefficients. These data-driven aerodynamic coefficients are calculated using

the following Equation 4.1 and Equation 4.2 assuming that aircraft weight is known and

the thrust information is given by the propulsion model of the C172S aircraft. The data

parameters other than the aircraft weight and thrust can be provided by the flight record.

42



This equations and parameters will be explained in detail in the following chapter.

L = W cos θw cosφw −
W

g
Vabsqw (4.1)

D = T −W sin θw −
W

g
V̇abs (4.2)

Once the desired fidelity of the aerodynamic model is achieved, the model will be used

to detect unsafe flight behavior of the aircraft. Among many unsafe flight maneuvers, a

stall is the most representative unsafe flight maneuver and this research will test whether a

stall behavior can be detected using this aerodynamic model.

4.2 Advanced Physics-Based Model

4.2.1 Overview

Aerodynamic modeling for aircraft performance consists of two main parts: lift-curve

modeling and drag polar modeling. Figure 4.2 shows the typical shapes of lift curve and

drag polar of a fixed-wing aircraft. The lift-curve model is used for predicting variation in

the lift coefficient with a change in the angle of attack, and the drag polar model provides

the relationship between the lift of an aircraft and its drag. In this modeling process, various

theoretical aerodynamic modeling methods for estimating the aerodynamic performance of

an aircraft using the key aerodynamic parameter were surveyed and explained. The final

outcome of this modeling process will be lift curve and drag polar for clean configuration

and three different flap-down configurations of C172S aircraft. Figure 4.3 describes the

scope of this aerodynamic modeling process.

Lift Curve Modeling

An aerodynamic model (a lift-curve) that provides the fully defined relationship be-

tween the lift coefficient and the angle of attack for an aircraft was created by evaluating in
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Figure 4.2: Generic Lift Curve and Drag Polar [44]

Figure 4.3: Aerodynamic Modeling Scope
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three stages that include all the aspects of the aircraft: the 2-D wing airfoil, the 3-D wing,

including the 3-D effect, and complete aircraft. The lift curve for each stage that governs the

shape of the curve is defined by five parameters: the zero-lift angle of attack, the lift-curve

slope, the angle of attack limit for a linear range, the angle of attack for the maximum lift

coefficient, and the maximum lift coefficient [42]. Figure 4.4 show how these parameters

define the lift curve for the aerodynamic modeling stage of the complete aircraft. Creating

the linear range of the lift curve using zero the lift angle of attack, the lift-curve slope, and

the angle of attack limit for the linear range is straightforward. In other words, the lift curve

can be expressed by a simple straight-line equation. The non-linear part near the stall point

can be modeled using a quadratic equation, and it can be defined by the lift-curve slope,

the angle of attack for the maximum lift coefficient, and the maximum lift coefficient given

a requirement that the slope of the linear and nonlinear parts (dCL/dα) is identical where

the two parts meet. The combination of these two equations of the linear and non-linear

area completes basic lift performance modeling for an aircraft in a clean configuration.

When an aircraft is required to use high lift devices in a specific operation such as

takeoff or landing operation, the lift characteristics change because of the effect of high-lift

device deployment. This effect causes a lift increment, a lift-curve slope change, and a

maximum lift coefficient increment [42]. Figure 4.5 notionally describes how the lift-curve

varies in flaps-deployed configuration. The amount of the lift increment or the slope change

depends on the amount of flap deflection.

Drag Polar Modeling

The drag polar is the aerodynamic characteristic that is most relevant for modeling

or assessing the aircraft’s performance capabilities/characteristics. The drag coefficient

can be presented as a function of the angle of attack, but another effective plot that can

provide the aerodynamic performance of an aircraft is the drag polar, which shows the

drag coefficient as a function of the lift coefficient. The drag polar of an aircraft contains
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Figure 4.4: Construction of Aircraft Lift-Curve [42]

Figure 4.5: Construction of Aircraft Lift-Curve with Flap Down [42]

almost all information required for analyzing its aerodynamic performance. Aircraft drag

is mainly composed of parasite drag and induced drag. Equation 4.3 is a general expression

of drag coefficient for an aircraft in a clean configuration with a parasite drag term and an

induced drag term [43]. Parasite drag, also called zero-lift drag, consists of mostly skin-

friction drag and small separation pressure drag [44]. Induced drag is drag resulting from

the lift that is proportional to the square of the lift coefficient with a proportionality factor

K, shown in Equation 4.3. The skin-friction method and the component buildup method

[44] are methods for parasite drag estimation. In addition, induced drag factor K can be

estimated by the Oswald span efficiency method and the leading-edge suction method [44].

A detailed description of each estimation method for parasite drag and induced drag will
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be provided in the next subsequent sections.

CD = CDmin +
CL

2

πARe
= CDmin +KCL

2 (4.3)

∆CDflap = ∆CDp + ∆CDi + ∆CDint (4.4)

During flight, drag characteristic, as well as lift characteristic, is highly dependent on

the flap deployment of an aircraft. The drag increment can be estimated from the sum of

the flap profile drag increment, the induced drag increment, and the interference drag incre-

ment [42]. The total aircraft drag coefficient in the flap-down condition can be expressed

as the sum of the drag coefficient of a clean configuration aircraft and drag coefficient in-

crement caused by the flap deflection. For flap-deployed configuration, the drag increment

caused by deflected flap can be estimated using Equation 4.4, where ∆CDflap is total drag

change and ∆CDp, ∆CDi, and ∆CDint are parasite, induced, and interference drag change

respectively.

4.2.2 Lift Curve Construction

Zero Lift Angle-of-Attack

Zero Lift Angle-of-Attack is the angle of attack at which the lift coefficient is zero.

• 2-D Airfoil

Airfoil databases or airfoil performance analysis tools provide the aerodynamic perfor-

mance of a specific airfoil. A NASA technical report titled “Summary of Airfoil Data” [56]

contains a vast collection of airfoil experimental data and aerodynamic characteristics of

various airfoils. Whenever possible, one study recommended using actual airfoil experi-

mental data or numerical analysis data to find the zero lift angle of attack of an airfoil [42].

If such data are not available, the zero lift angle of attack can be calculated using Equation
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4.5, suggested by the United States Air Force Stability and Control Digital DATCOM [57].

Factor k is an empirical factor that depends on the airfoil series. In Equation 4.5, Cli is the

design lift coefficient and αi is the angle of attack for the design lift coefficient. Reference

[57] provides design lift coefficients and the angle of attack for the coefficients in tabular

form.

α0l = k(αi −
57.3

2π
Cli) (4.5)

• 3-D Wing

In terms of the aerodynamic performance of a 3-D wing, wing geometry such as the

aspect ratio, the sweep angle, the taper ratio, and the incidence angle has a significant ef-

fect on aerodynamic performance. For wings with constant airfoil sections and linear twist

distributions, the wing zero lift angle of attack can be estimated from Roskam’s equation,

Equation 4.6 [42], which requires the airfoil lift-curve slope, also obtained above. In addi-

tion, the twist angle and the change in the angle of attack caused by the wing twist are used

to estimate the zero lift angle of attack of a wing. A book written by Snorri Gudmundsson

suggests another method using the zero lift angle of attack of an airfoil for that of 3-D wing

[58].

α0LW =

{
α0l +

(
∆α0

εt

)
εt

}{
(α0l)atM

(α0l)atM=0.3

}
(4.6)

• Complete Aircraft

The zero lift angle of attack of a complete aircraft in a clean configuration can be esti-

mated from Equation 4.7 using the zero angle of attack lift coefficient and the slope of the

aircraft lift curve, which need to be obtained before this step. To find the zero lift angle

of attack for an entire aircraft, one must first define the lift coefficient at the zero angle

of attack. Obtaining this lift coefficient first is a small difference between the first and
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second stage procedures. The lift coefficient at the zero angle of attack can be estimated

from Equation 4.8. The variable ε0h is the horizontal tail downwash angle for the zero

aircraft angle of attack. Setting this value zero is typically acceptable according to refer-

ence [42]. Variables iW and ih are the incidence angle of the wing and the horizontal tail,

respectively. Finally, CL0Wf
is the wing-fuselage interference factor, which depends on the

fuselage geometry.

α0LA = −CL0A

CLαA
(4.7)

CL0A
= CL0Wf

+ CLαhηh
Sh
S

(ih − ε0h) (4.8)

Lift-Curve Slope

Lift-Curve Slope defines the slope of the straight line in the linear range of the curve.

• 2-D Airfoil

The lift-curve slope of an airfoil can be obtained from airfoil databases or technical

reports. Actual airfoil data should be used for determining the slope whenever these data

are available. Equation 4.9 in the DATCOM method [57] provides a way of estimating the

airfoil lift curve for arbitrary airfoils. Here, (Clα)theory is the theoretical airfoil section lift-

curve slope, which has been presented as a function of only the airfoil thickness ratio. The

ratio ofClα to (Clα)theory is an empirical correction factor that accounts for the development

of the boundary layer that extends to the airfoil trailing edge. β is the Prandtl-Glauert

compressibility correction factor.

Clα =
1.05

β

(
Clα

(Clα)theory

)
(Clα)theory (4.9)
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• 3-D Wing

The lift-curve slope of a 3-D wing can be estimated using Equation 4.10. This equation

is accurate up to the drag-divergent Mach number and reasonably accurate up to Mach 1 for

a swept wing [44][42][58]. In this equation, AR is the wing aspect ratio, β is the Prandtl-

Glauert correction factor, κ is the ratio of the two-dimensional lift-curve slope to 2π, and

ΛC/2 is the sweepback of the mid-chord of the wing. John Anderson suggests a slightly

different equation shown in the Equation 4.11 [43]. This equation, Helmbold’s equation,

is accurate for wings with an aspect ratio smaller than four and in the incompressible air

condition.

CLαW =
2πAR

2 +
√

(ARβ
κ

)2(1 +
(tan ΛC/2)2

β2 ) + 4
(4.10)

CLαW =
Clα√

1 +
Clα

(πAR)2
+

Clα
πAR

(4.11)

• Complete Aircraft

The first method for estimating the lift-curve slope for a complete aircraft clean config-

uration is shown in Equation 4.12 [42]. Wing-fuselage lift-curve slope CLαwf is estimated

using the wing-fuselage interference factor and the clean wing lift-curve slope. ηh is the

dynamic pressure ratio of the horizontal tail, and dη/dα is the downwash gradient at the

horizontal tail. Another expression for the complete aircraft lift-curve slope is given in

Equation 4.13 [58]. This equation is similar to Equation 4.12 but uses the wing lift-curve

slope instead of the wing-fuselage lift-curve slope and the dynamic pressure ratio. Equa-

tion 4.14 is a semi-empirical formula for a complete aircraft lift-curve slope [44]. This lift-

curve slope can be estimated from the exposed wing planform area and fuselage lift factor

F , which accounts for the fact that the fuselage creates some lift caused by a spillover of
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lift from the wing.

CLαA = CLαWf
+ CLαhηh

(
Sh
S

)(
1−

(
dε

dα

))
(4.12)

CLαA = CLαW + CLαh

(
Sh
S

)(
1−

(
dε

dα

))
(4.13)

CLαA = CLαW

(
Sexposed
Sref

)
F (4.14)

Linearity Limit Angle

Linearity Limit Angle is the angle-of-attack limit for the linear range, which means that

this angle is the upper limit of the linear range of the lift curve. After this angle, the lift

coefficient does not increase proportionally to angle-of-attack.

• 2-D Airfoil

This angle of attack should be obtained from experimental data. Additionally, Roskam

provides a summary of basic airfoil data [42]. The airfoil lift-curve plot from other airfoil

data sources can be used to determine the point at which the graph starts to lose its linearity.

The Engineering Sciences Data Unit (ESDU) suggests a method of estimating the angle of

attack limit for an arbitrary airfoil [59]. Equation 4.15 shown below defines the linearity

limit with the information for the maximum sectional lift coefficient and the lift-curve

slope.

α∗ = α0 +
Clmax − 0.3

Clα

(
180

π

)
(4.15)

• 3-D Wing

Estimating the angle of attack at which the lift-curve deviates from linear variation for

a wing cannot be accomplished by a specific method. However, using the angle of attack
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linear limit of an airfoil instead of that of a 3-D wing, which was found in the previous

stage, is acceptable in a preliminary design [42].

• Complete Aircraft

The angle of attack limit for the linear lift curve range of an aircraft can be expressed

as Equation 4.16 , where iW is the incidence angle of the wing [42]. This equation is often

acceptable in the preliminary design stage.

α∗
A = α∗

W − iW (4.16)

Angle-of-Attack for the Maximum Lift Coefficient

Angle-of-Attack for the Maximum Lift Coefficient is the angle at which the maximum

lift coefficient occurs. This angle is known as the stall angle because stall occurs beyond

this angle.

• 2-D Airfoil

This information is an essential characteristic of an airfoil because it is the point at

which stall occurs. Thus, this value should be found in the airfoil database or other aero-

dynamic sources. Also, this angle can be found in a lift curve graph obtained from experi-

ments. ESDU proposes an equation that can define the angle of attack for the maximum lift

coefficient using the lift curve slope and the linear range limit of an airfoil [59], as shown

in Equation 4.17.

αClmax = α∗ +
0.39

Clα

(
180

π

)
(4.17)
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• 3-D Wing

The angle of attack at which maximum lift coefficient is located can be calculated using

Equation 4.18, which is from DATCOM method 2 [57]. CL(αW
is the wing lift curve slope

obtained in the previous step, CLmaxW the maximum lift coefficient of a wing, α0LW the

wing zero lift angle, and ∆αstall the angle of attack increment factor, a function of the

leading edge parameter and the leading edge sweep angle.

(αCLmax)W =
CLmaxW
CLαW

+ α0LW + ∆αstall (4.18)

• Complete Aircraft

The angle of attack for the maximum lift coefficient of an aircraft can be estimated from

Equation 4.19 [42]. ∆αW/C is the difference between the angles of attack for a carnard

stall and for the wing stall of a complete aircraft. This term can be neglected for the aircraft

without a carnard wing.

(αCLmax)A = (αCLmax)W − iW −∆αW/C (4.19)

Maximum lift coefficient

The maximum lift coefficient is the highest lift coefficient of the airfoil, the wing, and

the aircraft without high lift devices.

• 2-D Airfoil

The maximum lift coefficient can be obtained from an airfoil database or experimental

data and estimated. The airfoil maximum lift coefficient depends on the following param-

eters[42][57]:

• The leading edge shape quantified by the ∆y parameter

53



• The maximum thickness and the position of the maximum thickness

• The maximum camber and the position of the maximum camber

• The Reynold’s number

• The Mach number

Given information about the parameters, we can estimate the maximum lift coefficient

of an airfoil by adding the camber, the thickness, the Reynold’s number, the airfoil rough-

ness, and the Mach number effect to the basic airfoil maximum lift coefficient, which is a

function of the airfoil geometry, as shown in Equations 4.20[42][57].

Clmax = Clmaxbase +Clmaxcamber +Clmaxthickness +ClmaxReynolds +Clmaxroughness +ClmaxMach

(4.20)

• 3-D Wing

The subsonic maximum lift coefficient for an untwisted-, constant-section, a high aspect-

ratio wing can be estimated using the expression below [57]. The ratio of the maximum

lift coefficient of the wing to that of the airfoil, the Mach number correction factor, and

∆CLmaxW are obtained from a data plot, a function of the Mach number and the leading

edge shape factor. The sectional maximum lift coefficient, estimated above, is used in

Equation 4.21.

CLmaxW =
CLmaxW
Clmax

Clmax + ∆CLmaxW (4.21)

• Complete Aircraft

The maximum lift coefficient of an aircraft can be calculated from Equation 4.22[42].

In this equation, most of the terms, except the horizontal tail downwash angle for the zero
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angle of attack for an aircraft, ε0h , are obtained from the previous steps. Reference [42]

indicates that using zero for that angle is acceptable for this parameter.

CLmaxA = CLmaxW − CLαWf
∆αW/C + CLαh

(sh
s

){(
αCLmax

)
A

(
1− dε

dα
− ε0h

)
+ ih

}
(4.22)

Lift with Flaps Down

The way to estimate the effect of high lift device deployment highly depends on the

types of lift device. There are various types of trailing edge flaps and leading edge flaps,

and the aerodynamic modeling method for each type of device is explained in [42]. In this

study, single-slotted flap type is chosen to estimate the aerodynamic effect on the perfor-

mance model. The main effects of flaps are lift increment, lift-curve slope change, and

maximum lift coefficient increment. Each effect needs to be calculated separately in three

different stages: 2-D airfoil, 3-D wing, and complete aircraft level.

Figure 4.6: Schematic of the Single Slotted Flap [58]

• Lift Increment

The airfoil incremental lift coefficient due to single-slotted flap deflection, ∆Cl is ob-

tained using Equation 4.23 [42]. The airfoil lift-curve slope, Cla is from previous flap-up

lift-curve. αδ and δf is the airfoil lift effectiveness parameter and flap deflection, respec-

tively.

55



The wing lift increment can be estimated from Equation 4.24 [42], where kb is the flap-

span factor and αδCL/δCl is the ratio of the 3-D flap-effectiveness parameter to the 2-D

flap-effectiveness parameter, which is a function of aspect ratio and flap-chord ratio. The

aircraft lift increment due to flap deflection can be obtained from Equation 4.25 [42]. kwh

is the wing-on-horizontal-tail interference factor and it is acceptable to use a value of one

in early design. ∆εf is the increase in tail downwash angle due to wing flap deflection.

∆Cl = Clααδδf (4.23)

∆CLW = kb∆Cl

(
CLαW
Clα

)(
αδCL
δCl

)
(4.24)

∆CLA = ∆CLW + kWh
Sh
S

∆CLh − CLαhηh
Sh
S

∆εf (4.25)

• Lift-Curve Slope Change

The flapped airfoil lift-curve slope is changed because the flapped airfoil chord, c’ is

normally more significant than the unflapped airfoil chord, c. For this reason, the lift-

curve slope with flap deflection is given in Equation 4.26. The wing lift curve slope with

flap deflection may be shown as Equation 4.27, where SWf
is the flapped wing area. The

aircraft lift curve slope with the flap deflection can be estimated using Equation 4.28 [42].

(dε/dα)δ is the flaps-down downwash gradient at the horizontal tail.

(Clα)δ =
c
′

c
Clα (4.26)

(CLαW )δ = CLαW

{
1 +

(
c
′

c
− 1

)
SWf

S

}
(4.27)
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(CLαA )δ = kWh(CLαW )δ + CLαhηh
Sh
S

{
1− (

dε

dα
)δ

}
(4.28)

• Maximum Lift Coefficient Increment

The maximum lift coefficient change of an airfoil can be calculated using Equation 4.29.

The k’s are correction factors which accounts for the flap-chord ratio, flap angle difference,

and flap motion. Equation 4.30 is the estimation of the maximum wing incremental lift

coefficient due to flaps. k∆ is a planform correction factor which accounts for the wing

sweep effect. The aircraft maximum lift coefficient increment due to flap deflection can be

obtained from Equation 4.31 [42]. This estimation method uses the information of previous

wing lift increment and horizontal tail aerodynamic and geometric characteristics.

∆Clmax = k1k2k3(∆Clmax)base (4.29)

∆CLmaxW = ∆Clmax
SWf

S
k∆ (4.30)

∆CLmaxA = (∆CLmaxW ) + CLαh
Sh
S

{
(1− dε

dα
) + ih −∆εf

}
(4.31)

4.2.3 Drag Polar Construction

Parasite Drag (Zero-Lift Drag)

• Equivalent Skin-Friction Method

The equivalent skin-friction method is based on the fact that an aircraft in clean config-

uration will have parasite drag which is mostly skin-friction drag and small separation drag.

This method uses the concept of an equivalent skin friction coefficient, Cfe which includes

both skin-friction and separation drag. The parasite drag can be estimated by Equation 4.32
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[44][42]. Swet is the aircraft total wetted area that is the sum of each component’s wetted

area.

CD0 = CDmin = Cfe

(
Swet
Sref

)
(4.32)

• Component Buildup Method

The component buildup method estimates the subsonic parasite drag of each compo-

nent using a flat-plate skin-friction drag coefficient, Cf and form factor, FF [44]. The

form factor estimates the pressure drag due to viscous separation. Also, the interference

effect of the component drag is calculated as a factor, Q. Then the total component drag

is obtained using Equation 4.33. CDmisc is the drag coefficient which accounts for the ad-

ditional drag contributions due to aircraft component such as fuselage upsweep. CDL&P
is

the drag coefficient that is caused by leakage and protuberance drag.

CD0 = CDmin =

∑
(CfcFFcQcSwetc)

Sref
+ CDmisc + CDL&P

(4.33)

• Extracting Drag from L/Dmax Information

The parasite drag coefficient can be estimated using the aircraft performance data such

as the best gliding speed. Pilot’s operating handbooks (POH) usually provides the best

gliding speed. Since the best gliding condition means that the parasite drag is minimum

at this point, the parasite drag can be estimated using Equation 4.34 [58]. The maximum

lift-to-drag ratio, aspect ratio, Oswald span efficiency factor, and other operating condition

such as gliding altitude and gross weight are required for this estimation.

CD0 = CDmin =
CLBG

(L/D)max
− (CLBG)2

πARe
(4.34)
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Induced Drag

• Oswald Span Efficiency Method

The induced drag of an aircraft is proportional to the square of the lift coefficient with

a factor, K, which is expressed as Equation 4.35 [44]. The Oswald efficiency factor, e, is

typically between 0.7 and 0.85 and it is the best if the Oswald factor is known for a specific

aircraft. Otherwise, it is possible to estimate the Oswald factor, and there are numerous

estimation methods for this factor. This factor accounts for the extra drag due to the non-

elliptical lift distribution and the flow separation.

K =
1

πARe
(4.35)

• Leading Edge Suction Method

This method is a semi-empirical method for estimation of K. If there is no viscous sep-

aration or induced downwash, it is the ideal case that is called 100% leading-edge suction

and Oswald factor, e, is 1 in this case. When e is 1, the K equals the inverse of the aspect

ratio times π. On the other hand, when the leading edge suction is 0%, which is the case

of a zero-thickness flat-plate airfoil, all pressure forces cause high drag. In this case, the K

value is the inverse of the lift-curve slope. The actual K can be estimated using weighting

factor Sc as shown in Equation 4.36. For a subsonic wing with large leading-edge radius

and moderate sweep, the Sc value is usually between 0.85 and 0.95 [44].

K = SCK100 + (1− SC)K0 (4.36)

Drag with Flaps Down

The flap deflection will cause additional drag and the drag coefficient due to flap de-

flection may be expressed as the total sum of flap profile drag increment, induced drag
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increment, and interference drag increment [44]. The total aircraft drag coefficient in flaps-

down condition is a summation of the clean configuration drag coefficient and this flap drag

coefficient. The flap profile drag increment, the induced drag increment, the interference

drag increment due to flaps, and the total aircraft drag increment due to flap deflection may

be found from the following equations 4.37 ∼ 4.40.

∆CDp = ∆Cdp cos(Λc/4)

(
Swf
S

)
(4.37)

∆CDi = K2
(
∆CLflap

)2
cos(Λc/4) (4.38)

∆CDint = Kint∆CDp (4.39)

∆CDflap = ∆CDp + ∆CDi + ∆CDint (4.40)

4.2.4 Result Summary

The previous sections have shown that the five parameters for construction of the lift

curve for an aircraft can be obtained from various methods. The sequences of evaluation

and the flow of lift-curve shape parameters are summarized and shown in Figure 4.7.

Lift Curve Modeling Result: Flaps Up

• 2-D Airfoil Lift-Curve Parameters

The five parameters that are required fully construct the lift-curve can be estimated

using various methods. However, DATCOM suggest that it is encouraged to use actual

wind- tunnel test data if it is available [57]. The C172S aircraft uses NACA2412 airfoil

for the main wing [58], and the aerodynamic characteristic of this airfoil are available from
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various source as shown in Table 4.1.

Table 4.1: Summary of 2-D Airfoil Lift-Curve Parameters

Modeling Result Reference Values
Lift-Curve Parameters

DATCOM ESDU Cudmundsson Roskam NACA R-824

Zero lift angle of attack, α0l [deg] -1.9192 -1.8 -2 -1.938

Lift-curve slope, Clα [1/deg] 0.017 0.101 0.105 0.1054

AOA limit for curve linearity, α* [deg] 10.398 9.5 9.814

AOA for max lift coefficient, αClmax [deg] 14.0989 16 16.8 16.6261

Maximum lift coefficient, Clmax 1.4156 1.62 1.671 1.6713

• 3-D Wing Lift-Curve Parameters

The lift-curve parameters for 3-D wing aerodynamic performance are obtained using

several different modeling methods considering the wing geometry of the C172S aircraft.

It is to be noted that some references share the same estimation methods. As stated above

and shown in Figure 4.7, some of these parameters use the result of previous 2-D airfoil’s

result, and the combinations of selected parameters in this stage will affect the result of the

next stage, which is for the entire aircraft performance modeling. Since the comparable

reference for the wing only is not available in the public domain, the validation of these

results will be performed in the next stage along with the complete aircraft aerodynamic

modeling results.

• Complete Aircraft Lift-Curve Parameters

The five parameters for the lift-curve of complete aircraft are slightly different than the

parameters for 2-D airfoil or 3-D wing lift curve. In this stage, the lift coefficient at zero
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Table 4.2: Summary of 3-D Wing Lift-Curve Parameters [42][56][58]

Lift-Curve Parameters Gudmundsson DATCOM Roskam Raymer Anderson

Zero lift angle of attack, α0LW [deg] -1.938 -0.6776

Lift-curve slope, CLαW [1/deg] 0.0829 0.0829 0.0829 0.0835

AOA limit for curve linearity, α*
W [deg] 9.8140

AOA for max lift coefficient, (αCLmax)W [deg] 18.5825 18.5825

Maximum lift coefficient, CLmaxW 1.4944 1.4944

angle of attack, rather than zero lift angle of attack, is used to determine the linear line of

lift-curve. The reason is that it is easier to estimate the lift change due to the fuselage and

horizontal tail than to estimate the angle of attack at which the aircraft produces zero lift.

The modeling results are compared to the reference data in Table 4.3 which is from the

University of Illinois at Urbana-Champaign (UIUC) [60].

Table 4.3: Summary of Complete Aircraft Lift-Curve Parameters

Lift-Curve Parameters Gudmundsson Roskam Raymer Reference Data [60]

Zero Angle of Attack Lift Coefficient,α0LA[deg] 0.0433 0.1639 0.155

Lift curve slope,CLαA [1/deg] 0.0910 0.0866 0.0961 0.093

AOA limit for curve linearity, α*
A [deg] 8.3140 9.657

AOA for max. lift coefficient,(αCLmax)A [deg] 17.0825 16.5

Maximum lift coefficient, CLmaxA 1.6 1.5735 1.5404
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• Lift Curve Validation

The lift-curve for the C172S were developed for the pre-stall and post-stall regime using

the aerodynamic modeling methods presented above. The pre-stall lift curve buildup was

implemented using the method proposed separately by Roskam and Raymer, having com-

pared it to all other methods reviewed and finding that they provide the best fit to the known

aerodynamic properties of the C172S. Among the estimated results using various modeling

methods for each parameter in different stages, the combination of methods which provides

the closest lift-curve model to the reference data was selected and is summarized in Table

4.4. Although it is shown that Roskam’s method is used for all parameters in Stage 3, the

results are highly dependent on the previously chosen parameters. In other words, it is im-

portant to choose the best combination of parameters among various resources even though

the reference values of the airfoil are all from a reliable document. The reference values

used are somewhat different from each other, as shown in the 4.1, and this small difference

causes loss of validity in the end. Thus every possible resource should be evaluated and

considered in the aerodynamic modeling process in advance. The plot shown in Figure

4.8 illustrates the value of CLmax (dotted horizontal line) derived from the POH stall data

in flap-up configuration, which matches values published in a variety of sources including

Jane’s All the World’s Aircraft [61]. The plot also depicts the lift curve slope here devel-

oped with the method by Roskam and Raymer in the linear (solid) and non-linear (dotted)

regime. Also shown is published data for the C172S (circles) generated with the Flight

Gear Flight Simulator (FGFS) aerodynamic model. This data is initially developed for the

Smart Icing System Project at the University of Illinois at Urbana-Champaign, using tunnel

data to develop a linear and nonlinear aircraft model. This reference data was adjusted here

to match the known and empirically validated value of CLmax (stars). Results show good

agreement between the developed model, general trends of the adjusted data from higher

fidelity methods, and the empirical value of CLmax .
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Table 4.4: Selected Combinations of Lift Curve Parameters for C172S

Stage 1

2-D Airfoil

Stage 2

3-D Wing

Stage 3

Complete Aircraft

Lift-Curve Parameters Selected

Method
Value

Selected

Method
Value

Selected

Method
Value

Zero lift angle of attack NACA R-824 -1.938 Roskam -0.6776

Lift curve slope NACA R-824 0.1054 Raymer 0.0829 Gudmundsson 0.0910

Zero AOA lift coefficient Roskam 0.1805

AOA limit for curve linearity NACA R-824 9.814 Roskam 9.814 Roskam 8.3140

AOA for max. lift coefficient NACA R-824 16.626 DATCOM 18.5825 Roskam 17.0825

Maximum lift coefficient NACA R-824 1.6713 DATCOM 1.4944 Roskam 1.5735

Figure 4.8: C172S Lift-Curve Model with Selected Combination of Parameters

Lift Curve Modeling Result: Flaps Down

The flap effects on the lift characteristics are obtained for each stage as shown in Ta-

ble 4.5. C172S has single-slotted flaps, and the result is obtained under the assumption of
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30-degree flap deflection. It is shown that the effect of the flap is smaller on the complete

aircraft configuration compared to the 3-D wing or 2-D airfoil. The lift-curve slope change

is shown to be very small, and the flap deflection mainly changes overall and maximum lift

coefficient of the aircraft.

Table 4.5: Summary of Lift-curve Parameters with Flaps Down

Flap Effects 2-D Airfoil 3-D Wing
Complete

Aircraft

Lift Increment 0.5711 0.2104 0.1648

Lift-Curve Slop Change 0.1111 9.7895e-04 9.7492e-04

Maximum Lift Coeff. Change 0.2464 0.0920 0.0130

Figure 4.9: Lift Curves of C172S Aircraft with and without Flap Effect
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The lift curves for different flap settings shown in Figure 4.9 are valid up to the stall

point. The shape of the lift curves are defined by the five parameters for complete aircraft

shown in Table 4.4. One lift curve consists of two parts: a linear line and a curve. The lift

curve slope and zero angle-of-attack lift coefficient determines the linear line, and the other

three factors define the shape of the remaining part. The curve part connects the end point

of the straight line and the maximum lift point. Even though the shape of the curvature

expresses lift coefficients beyond the maximum lift point, they are the outcome of the

generated curve that satisfies given constraints, and they do not provide actual modeled lift

information. Thus, the developed aerodynamic model can only provide lift coefficients that

correspond to angle-of-attack less than the maximum lift angle-of-attack.

Drag Polar Modeling Result: Flaps Up

• Parasite Drag

The results of three different parasite drag estimation methods are summarized and

compared in Table 4.6. As shown in the table, the minimum drag extracting method from

the best gliding speed gives the highest value of parasite drag which is the closest value to

the reference data.

• Induced Drag

Oswald span efficiency method and leading-edge suction method are investigated, and

the results are compared in Table 4.7. The Oswald span efficiency factor, e, was estimated

using Kroo’s method [62] using C172S wing geometry and its value is 0.7469. The Oswald

span efficiency method yields the closest K value to the reference data.
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Table 4.6: Parasite Drag Modeling Result

Estimation Methods CD0

Equivalent Skin-friction Method 0.0229

Component Buildup Method 0.0207

Minimum Drag Extracting from Best Gliding Speed 0.0344

Flight Gear Aerodynamic Model [60] 0.0355

NASA Historical Data [63] 0.0319

Table 4.7: Induced Drag Modeling Result

Estimation Methods K

Oswald Span Efficiency Method 0.0562

Leading Edge Suction Method 0.0709

Flight Gear Aerodynamic Model 0.05499

• Drag Polar Validation

The pre-stall drag polar for C172S aircraft was obtained using the combination of

extracting parasite drag from the best gliding speed method and Oswald span efficiency

method. The results are shown in Table 4.8 and Figure 4.11. This drag polar was devel-

oped using Equation 2.3 for the set of CL vs. α values in the linear regime where the flow

is attached and no degradations of CL or additional increase in CD due to separation phe-

nomena are observed. It is known that CD as a function of α is well behaved as a quadratic

relationship up to the stall point. Accordingly, a quadratic CD vs. α relationship was read-

ily developed using the lift curve (CL vs. α), and the drag polar for the linear regime (CD

vs CL). The relationship was extended up to the stall point. The resulting drag polar up

to the stall point is shown in Figure 4.11 where the linear and non-linear regions of the lift

curve are differentiated. The reference data (circles) is the FGFS aerodynamics model data,
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here adjusted (stars) to match the validated CLmax and known (L/D)max value from NASA

historical report [63]. In general, good agreement is observed, between the model and the

FGFS data for the linear lift regime and up to the midpoint of the non-linear regime. Good

agreement is further noted for the adjusted FGFS data.

Figure 4.10: Comparison of Drag Polar Estimation Results

Table 4.8: Selected Combinations of Drag Polar Parameters for C172S

Drag Polar Parameters Selected Method Value

Parasite Drag, CD0 Extracting from Best Gliding Speed (POH) 0.0344

Induced Drag Coeff. K Oswald Span Efficiency Method 0.0568

• Drag Polar Modeling Result: Flaps Down

The drag increment due to flap deflection is estimated, and the results are shown in Ta-

ble 4.9. As explained earlier, the drag variation caused by flap deflection can be estimated
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Figure 4.11: C172S Drag Polar Model with Selected Combination of Parameters

in three aspects: profile drag change, induced drag change, and interference drag change.

Among three flap-deflected configurations, the modeling result of the maximum flap de-

flection is shown here as an example. The 30 degree of flap deflection causes a total drag

increment, and the amount of induced drag increment depends on the angle of attack as

shown in 4.12. It is shown that smaller deflection adds smaller drag into the aircraft drag

characteristic. The results below are under the condition of 30-degree flap deflection. The

total drag variation can be obtained by summing the three different drag components.

Table 4.9: Drag Increment due to Flap Deflection: 30 degree

Drag Increment due to Flap (30 degree) K

Profile Drag Increment 0.0028

Induced Drag Increment Shown in Figure 4.12

Interference Drag Increment 0.0011

Total Drag Increment Shown in Figure 4.12

Similar to the lift curves for different flap settings developed in the previous section,
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(a) Induced Drag Increment (b) Total Drag Increment

Figure 4.12: Drag Increment due to Flap: 30 Degree Deflection

Figure 4.13: Drag Polar Change due to Flap Deflection: 30 degree

drag polars for different flap settings also consists of two parts. Instead of having one

quadratic equation for one drag polar, two different curves for the linear part and non-linear
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part were obtained. The drag polar up to the linearity limit of the lift curve can be expressed

using the modeled parameters. For the non-linear part, the modeled drag coefficients can be

expressed as a function of angle-of-attack, and the points are fitted using another curve. By

connecting the two curves and plotting them on lift and drag coefficients domain, the drag

polar for that flap condition can be obtained as shown in Figure 4.13. Again, even though

the shape of the drag polars for each flap setting provide drag information beyond the stall

points, that information cannot be trusted because they are defined by the second curves

that were designed to pass the given points within non-stall ranges. Thus, the developed

drag polars can only provide lift and drag coefficients information that correspond to angle-

of-attack less than the maximum lift angle-of-attack.

4.3 Data-Driven Model

This section will provide a detailed explanation about a data-driven aerodynamic mod-

eling method which is to improve the model fidelity by using actual flight data. The ad-

vanced theoretical aerodynamic model obtained in the previous physics-based modeling

process will be used as a basis for this data-driven modeling process which will be covered

in this section. Strategic flight maneuvers for flight data generation have been proposed and

described in the following section. The next section explains how the obtained data can be

used to improve the fidelity of the aerodynamic model.

4.3.1 Tactical Flight Data Generation

The suggested flight maneuvers for flight data generation consist of five different ma-

neuvers. An overview of this flight data generation plan is shown below in Figure 4.14. It

comprised two complete cycles of the flap (0-10-20-30-20-10-0 deg) during cruise flight

at two distinct altitudes. Between the two cruise segments, the aircraft climbs from the

low cruise altitude to the high cruise altitude with the maximum power setting. After that,

the flaps were used during a transition to slow flight followed by a simulated rectangular
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Figure 4.14: Overview of the Suggested Flight Maneuver for Data Collection

pattern entry at the altitude. The Garmin G1000 data log corresponding to this flight has

been verified to ensure that the test flight is acceptable. Since the Garmin G1000 does not

record flap position, flap operation during the flight was noted by the flight crew using the

NAV1 frequency, which is logged by the G1000 system. The original flight cards that con-

tain the detailed explanation of the flight maneuvers are described in the appendix section.

The flight cards were provided to partners at Ohio State University and the flight data was

generated by them. Figure 4.15 provide an overview of sample flight parameters generated

from the suggested flight maneuvers.

4.3.2 Data-Driven Modification Strategy

Lift Curve and Drag Polar Shape Variation

The aerodynamic model consists of lift curve and drag polar, and the basic idea of the

data-driven aerodynamic model is to find the best shape of the lift curve and drag polar

which minimize the errors between the reference data points and the aerodynamic model.
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(a) Altitude (MSL) (b) Indicated Airspeed

Figure 4.15: Sample Flight Data Parameters from the Suggested Flight Maneuvers

In order to vary the shape of the lift curve and drag polar, it is necessary to parameterize

the shape of both lift curve and drag polar. For this purpose, shape modification factors

were introduced, and they can add flexibility to the model by altering the shape of the

lift curve and drag polar for both clean configuration and flap deployed configuration. To

be more specific, the shape modification factors changes the lift curve shape factors, drag

polar coefficients, lift increment due to flap deflection, and drag increment due to flap

deflection. The relationship between the introduced shape modification factors and the

shape of the lift curve and drag polar is described in Figure 4.16. As shown in Figure

4.16, the shape modification factors can vary the values of modeling factors that defines the

lift curve shapes and the drag polar shapes for both clean configuration and flap-deflected

configurations.

Possible ranges of the defined shape modeling factors were set to the extent that the

factors do not violate physics constraints. Figure 4.17 describes the variation of clean con-

figuration lift curve and drag polar with different shape modification factors applied within

the pre-defined ranges. To be more specific, shape modification factor settings within the

given ranges change the shape of the baseline lift curve or the baseline drag poalr, but some

of them may distort the basic characteristics of the model. Considering the physics of the

74



Figure 4.16: Model Modification Strategy using Shape Modification Factors

aerodynamic model, the shape factor settings that are not physically possible were removed

from the possible combinations of the factors. As shown in the figure, the shape modifica-

tion factors can cover the entire range of possible lift curve and drag polar shapes. Thus,

the final goal of this process is to find the best fitting lift curve and drag polar that mini-

mizes the errors between the modeled aerodynamic coefficients and the flight data-driven

aerodynamic coefficients.

Reference Data

The recorded data during the suggested flight maneuvers contains a rich set of informa-

tion with different flap activities that can be used for the data-driven aerodynamic modeling

method. Assuming that aerodynamic characteristics of an aircraft do not change signifi-
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Figure 4.17: Lift Curve and Drag Polar Variation using Shape Modification Factors

cantly during the entire flight, the flight data parameters from the two cruise maneuvers

were selected and used in this modeling process.

First of all, the flight data provides angle-of-attack information which is an essential

input for the aerodynamic model. However, the Garmin G1000 does not directly record the

angle-of-attack data. Therefore, angle-of-attack needs to be calculated using other given

parameters such as pitch angle and flight path angle because angle-of-attack is the angle

between pitch angle and flight path angle of an aircraft as shown in Figure 4.18. The flight

path angle also needs to be calculated using vertical speed and ground speed data because

the flight path angle is not one of the data parameters that G1000 records. The equations

for calculating those values are shown in the below equations where α is angle-of-attack, θ

is pitch angle, and γ is flight path angle.

α = θ − γ (4.41)

γ = arctan

[
VspdG

GndSpd

]
(4.42)

Once the angle-of-attack during the flight is calculated using Equations 4.41 and 4.42,

the aerodynamic coefficients during the flight also can be obtained from the aerodynamic
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model. The lift coefficients and drag coefficients are the values that will be compared to

the data-driven lift and drag coefficients.

Figure 4.18: Angle-of-Attack, Pitch Angle, and Path Angle

As shown in the Equations 4.1 and 4.2 earlier, the aerodynamic forces, lift and drag,

during flight can be calculated using logged flight parameters such as pitch rate, absolute

velocity, roll angle, and so on. Each parameter that is required for calculating lift and

drag can be obtained directly from the flight data record or calculation using other logged

parameters. The equations for calculating the parameters that cannot be obtained directly

from the flight data record are listed below [43][44][64].

q = θ̇ cosφ+ ψ̇ cos θ sinφ (4.43)

θw = γ (4.44)

Vabs =
√
V 2
spdG +GndSpd2 (4.45)

Once lift and drag during the flight are obtained using the logged or calculated data

parameters listed above, the calculated lift and drag are converted into aerodynamic coef-
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ficients using Equations 4.46 and 4.47, where S is the given wing area, V is airspeed, ρ is

air density.

CL =
2L

ρV 2S
(4.46)

CD =
2D

ρV 2S
(4.47)

When modeled aerodynamic coefficients and data-driven aerodynamic coefficients are

both obtained from the equations above, optimal shapes of lift curve and drag polar can

be obtained by selecting shape modification factors that minimize the errors between the

modeled values and data-driven values. In other words, the lift curve and drag polar shapes

that minimize the root-mean-square error (RMSE) between modeled and data-driven aero-

dynamic coefficients are considered as the aerodynamic model which is accurate enough

to predict flap activity. This level of model fidelity meets the goal of this study as stated

earlier. The result of this data-driven aerodynamic modeling is discussed in the following

section, and the fidelity of this model will be tested.

4.3.3 Modeling Result

Lift Curve

As explained in the previous section, lift curve shapes for different flap settings are

optimized using shape modification factors and data-driven aerodynamic coefficients. The

result of lift curves for each flap settings are shown in Figure 4.20. The reference data points

which are calculated lift coefficients using a subset of the generated flight data shown as

circles in the figure. The dotted lines are the previously obtained physics-based model and

the solid lines are the data-driven aerodynamic model. Figure 4.21 shows that the accuracy

of the lift curve has been improved by data-driven modeling process regarding not only the

magnitude of the errors but also the shape of the error distribution.
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Figure 4.19: Lift Curve Model Fitting Details

Finally, accurate lift curves for different flap settings are obtained through this data-

driven modeling process. In this modeling process, the lift curve shape that minimizes the

errors between modeled coefficients and the flight data is considered the best data-driven
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Figure 4.20: Lift Curve Modeling Result for Different Flap Settings

lift curve. In other words, the final lift curve shapes, shown in Figure 4.22, are chosen

because these shapes have the minimum RMSE values compared to other lift curve candi-

dates generated using the pre-defined shape factors. It has to be acknowledged here that

the amount of error that can be allowed in this step has to be set considering the limita-

tion of this method. The reference data points, the calculated aerodynamic coefficients, are

obtained from the flight data, and they may have some uncertainties. Thus, the modeling

errors which are the discrepancies between the modeled aerodynamic coefficients and the

data-driven estimated coefficients cannot be zero. Instead, all the quantified error-sums of

the candidates are compared, then the case that has the minimum error is chosen in this
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study as the final lift curve. The final results are shown in Figure 4.22 and compared with

the baselines which are the physics-based lift curves.

Figure 4.21: Lift Curve - Error Distribution

Figure 4.22: Lift Curve Modeling Result
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Drag Polar

In the same way as the lift curves are optimized in the above section, drag polar shapes

for different flap settings are also optimized using shape modification factors and data-

driven drag coefficients. The result of drag polars for each flap settings are shown in Figure

4.23. Same as the lift curves, the circles are representing the data-driven aerodynamic co-

efficients and dotted and solid lines are physics-based and data-driven drag polars respec-

tively. Also, Figure 4.24 compares errors of theoretical drag polar and the newly obtained

data-driven drag polar. It is shown that the drag coefficient errors are reduced after the

data-driven model modification process. As discussed in the lift curve modeling part, the

modeling error shown in Figure 4.24 is from the case that has the minimum error among

many other drag polar candidates populated using the drag polar shape modification fac-

tors. Again, the reference data points for fitting the drag polars are from the actual flight

data which contains unavoidable uncertainties. That means it is not possible to have perfect

reference data set for this data-driven modeling process. Thus, the target error that can be

allowed in this modeling process has to be defined, then the results has to satisfy the target.

The goal of this data-drive aerodynamic modeling process is to find the shape modification

factors that produces the minimum error-sum among the set of shape factors within the

pre-defined ranges. The final drag polars for each flap setting described in Figure 4.23 are

the best possible outcome of this data-driven aerodynamic modeling method.

Through this data-driven modeling process, a more accurate aerodynamic model which

meets the research goal of this study is obtained, and the results are shown in Figure 4.25

as four different drag polars. This aerodynamic model will be examined if it is accurate

enough to capture flap activity during flight. Once this aerodynamic model is verified to be

sufficiently accurate, it will be used to test if unsafe aerodynamic behavior can be detected

using this aerodynamic model.
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Figure 4.23: Drag Polar Modeling Result for Different Flap Settings

4.4 Experiment and Result

4.4.1 Flap Activity Estimation

Flap deflection is one of the significant factors affecting aerodynamic characteristics of

an aircraft. That being said, an accurate aerodynamic model can predict flap activity during

flight if sufficient flight data parameters are given. In other words, if an aerodynamic model

can accurately predict flap deployment, then the model can be considered a sufficiently ac-

curate model. Therefore, the fidelity of the aerodynamic model will be tested by examining

its flap estimation capability.
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Figure 4.24: Drag Polar - Error Distribution

Figure 4.25: Drag Polar Modeling Result

The overall process of estimating flap positions is described in Figure 4.26. As the first

step, the calculated angle-of-attack during the entire flight are inputted to the aerodynamic

models for different flap settings. The C172S aircraft has four different flap settings: clean
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configuration, 10-degree setting, 20-degree setting, and 30-degree setting. By inputting the

angle-of-attack derived from the flight data into the four aerodynamic models, four sets

of lift and drag coefficients for each flap settings are obtained because each lift curve and

drag polar provides different aerodynamic coefficients. Since the flap position is not known

yet, these four lift and drag coefficients are possible candidates for the correct aerodynamic

coefficients. Based on the information about the data-driven lift and drag coefficients and

comparing the with the previously obtained modeled aerodynamic coefficients, the best set

of aerodynamic coefficients and the corresponding flap position can be selected.

Figure 4.26: Flap Activity Estimation Process using the Aerodynamic Model

Harrison et al. from Georgia Institute Technology developed an algorithm for the es-

timation of flap deflection using collected flight data [65]. The fundamental idea of this

algorithm is based on the concept of the total mechanical energy of an aircraft during flight.
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In this algorithm, the specific total energy rates can be calculated using both flight data or

estimated forces from aircraft performance models. The airspeed and aircraft weight from

flight data and thrust and drag from the performance models can provide the total energy

rate [66]. Also, Airspeed, altitude, and gravity acceleration can estimate the total energy

rate as shown in Equation 4.48. More detailed information about this algorithm and the

energy metrics can be found in [65], [37], and [67].

Ė =
(T −D)V

W
= ḣ+

V × V̇
g

(4.48)

By comparing the total energy rates from two difference sources, this algorithm detects

the flap activities during flight. The biggest difference between the flap estimation method

in this study and the flap detection algorithm proposed by Harrison et al. is that this method

focuses on aerodynamic coefficients only instead of using thrust, drag, and weight infor-

mation. It is shown in this study that flap estimation using aerodynamic coefficients can

detect unknown flap activities during flight with high accuracy.

Figure 4.27 shows the drag coefficients obtained from the four different drag polars

with given angle-of-attack information. Also, data-driven aerodynamic coefficients were

calculated in the previous chapter and plotted in Figure 4.27. By selecting the modeled line

that is closest to the data-driven line, the flap position during the flight can be estimated.

To be more specific, by comparing the coefficients obtained from the aerodynamic model

and the flight data, the most likely flap setting can be estimated by selecting the closest

modeled coefficients to the data-driven coefficients.

To see the difference between modeled and data-driven coefficients more clearly, the

errors between the modeled values at each flap setting and data-driven values are shown

in Figure 4.28. In this figure, the lowest line represents the smallest error, and the rank of

the modeled lines keep changing through the flight. That means the flap position can be

estimated by selecting the modeled line that has the lowest rank.

The initial result obtained by the method described above is shown in Figure 4.29 (a).
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Figure 4.27: Comparison of Modeled and Data-Driven Drag Coefficients

Figure 4.28: Errors Between Modeled and Data-Driven Drag Coefficients

As shown in the figure, it is observed that the initial flap estimation result contains a bunch

of non-negligible fluctuation of flap position in a very short period, which is almost impos-

sible. By adding a condition that flap position cannot be changed within a short period, the
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erroneous fluctuation in the predicted flap position can be removed. When we consider that

the flap position cannot be changed in a very short period of time, the erroneous fluctua-

tions can be removed, then the aerodynamic model-driven flap estimation process provides

more reliable result. When the time threshold was set as 10 seconds, almost every short

fluctuations are removed as shown in Figure 4.29 (b).

In the flap estimation result, the overall estimation result matches to the logged flap

activity almost perfectly while there are two false positives and one true negative. The two

false positives are located around 1,000 seconds and 2,500 seconds in flight time. These

may be caused by modeling error, but the first false positive and second false positive can

be removed when the time threshold is set as 20 seconds and 18 seconds respectively. The

true negative is located around 4,600 flight seconds which is when stall occurred. Thus,

this true negative cannot be considered as a modeling error. The most notable result of

this flap estimation test is that the aerodynamic model is able to predict the flap position

change during approach and landing which is not logged by the pilot. According to this

aerodynamic model driven flap estimation, the pilot deployed the flap in stages when the

aircraft approached for landing, which is a routine procedure for landing. The hypothesis

established in this chapter is that an aerodynamic model that is accurate enough to estimate

flap usage during flight can capture unsafe behaviors of a fixed-wing GA aircraft, and

the necessary accuracy can be achieved with the combination of a theoretical model and

flight data. Based on the above result, it can be concluded that the aerodynamic model

has reached the necessary fidelity by combining the theoretical modeling method and the

data-driven modeling method.

4.4.2 Stall Recognition

In the previous section, it is proven that the aerodynamic model developed in the last

section is accurate enough to estimate flap deflections during flight. To answer to the re-

search question and prove that the suggested data-driven modeling method provides a more
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(a) Initial Flap Estimation Result

(b) Modified Flap Estimation Result

Figure 4.29: Flap Activity Estimation Result using the Aerodynamic Model
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efficient performance model that can detect any unsafe aerodynamic behaviors of an air-

craft, this section examines whether the aerodynamic model can identify a stall recovery

flight which was a part of the suggested flight maneuver. As proposed, the pilot conducted

a constant level flight, then slowly reduced its airspeed maintaining the desired altitude.

During the flight, the pilot deployed its flap step by step and stalled with full flap condition,

then recovered from the stall. This suggested slow flight and stall maneuver is summarized

in Figure 4.30.

Figure 4.30: Flight Maneuver - Slow Flight, Stall, and Recovery

The flight data during this stall maneuver is shown in Figure 4.31 and marked as red cir-

cles. The blue circles are data points from other flight maneuvers such as two cruise flight

with flap cycle, maximum power climbing, simulated pattern, and approach and landing.

As seen in the figure, many red circles are widely located outside the normal operating

region in the lift curve and drag polar domain. At the beginning of this phase of flight, red

circles remain in the normal region. However, when the aircraft approaches the stall point,

the red circles move toward the outside of the normal operating area. This trend can be

more clearly seen in Figure 4.32 which shows lift and drag coefficient errors. The lift and
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drag coefficients errors shown in the figure are the minimized error resulted from the data-

driven modeling process. As discussed in the modeling process in the previous section,

these errors between modeled coefficient and the data are unavoidable errors caused by the

inherent uncertainties of the flight data. Thus, these errors are supposed to be close to zero,

and any big errors can be considered as the consequences of unexpected events that cannot

be estimated by the performance models. In Figure 4.32, it is shown that the modeling

errors spike on both lift coefficient and drag coefficient when the aircraft is getting close to

stall. Therefore, it can be concluded that the aerodynamic model developed in this study

can detect aircraft’s unsafe behavior, which is the proximity to stall, by observing the dis-

crepancy between modeled aerodynamic coefficient and actual flight data. This conclusion

can only be supported by the fact that the aerodynamic model is accurate, and it is proven

in this study that the developed aerodynamic model is accurate enough to detect abnormal

behavior of the aircraft and the reliability of the model was supported by showing its capa-

bility of flap activity prediction.

Figure 4.31: Aerodynamic Model and Unsafe Flight Data
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Figure 4.32: Stall Recognition using Aerodynamic Model

4.4.3 Summary

Considering the nature of GA operations, a flexible aerodynamic modeling method for

GA fixed-wing aircraft has been elaborated in this chapter. The research goal of this chapter

was to generate a realistic and accurate aerodynamic performance model that is computa-

tionally affordable with adequate fidelity and compositionally flexible so that this modeling

method can be used by any GA aircraft users capturing the characteristics of each aircraft.
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To support this goal, the necessary level of the model fidelity was set as the capability of

predicting its flap activity in the entire flight. Also, the hypothesis, which is that an unsafe

flight of an aircraft can be detected with an accurate performance model and flight data

record, was established. For developing an aerodynamic model that meets the necessary

level of fidelity, a theoretical model that can serve as the basis model was developed not

only using single theoretical modeling method but also evaluating, comparing, and com-

bining all the possible modeling methods. Based on the developed theoretical model, the

accuracy of the aerodynamic model was improved by optimizing the shape of the model

using shape modification factors and actual flight data. Strategic flight maneuvers were

suggested for generating realistic flight data for the modeling process, and the partners at

Ohio State University provided the flight data of these maneuvers. It is proven that the

final outcome of this data-driven modeling process can estimate the flap activity during

flight with high accuracy. Given the accurate aerodynamic model, the proximity to stall

can be detected by observing the error which is basically the discrepancy between modeled

aerodynamic coefficients and data-driven calculated aerodynamic coefficients.
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CHAPTER 5

FLIGHT DATA NOISE FILTERING METHOD DEVELOPMENT

This chapter is devoted to the development of data noise filtering method for GA flight

data. Based on the literature survey and the previous data-driven aerodynamic modeling

method, it is acknowledged that flight data takes a crucial role in the data-centered GA

flight safety enhancement efforts. Thus, improving the quality of flight data by introducing

an effective noise removal technique is the primary goal of this chapter. In the beginning,

this chapter discusses the proposed methodology and review the research questions and

hypothesis that are established in the previous chapter to achieve the research goal. The

next section describes the selected data parameters to be filtered and the filtering methods

that will be covered in this method. Finally, a quantitative metric that can measure the

effectiveness of the filtering method is introduced then the optimal filtering case is selected

using the proposed metric.

5.1 Methodology Development

5.1.1 Overview

The main focus of this chapter is to provide a novel approach for noise filtering in the

flight data records of GA fixed-wing aircraft. It is noted that flight data record is an irre-

placeable factor in assessing and improving GA flight safety. Although ongoing collection

and analysis of flight data records takes place an important role in the aviation safety im-

provement program, one of the most crucial requirements is securing clean and meaningful

data that is ready to be analyzed to maximize the benefits of data-driven safety analysis. In

other words, removing data noise in the collected data record is as important as collecting

and analyzing flight data, and the benefit of using flight data in the process of GA safety
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enhancement efforts can be maximized when the data to be used in the process is clean and

reliable.

Figure 5.1: Data Analysis Procedure

In addition, as revealed in the previous chapter, flight data can also be used in the

data-driven performance modeling process and the accuracy of the performance model can

be improved when the flight data is truly providing actual aircraft performance informa-

tion without data noise. Thus, the objective of this study is to examine various data noise

filtering techniques considering inherent characteristics of flight data parameters and to

introduce an efficient noise removal method for the purpose of general aviation safety en-

hancement. This study aims to answer the following research question 2 to achieve the

research goal which is ensuring clean flight data to be used in both data-driven GA perfor-

mance modeling process and GA safety assessment effort.

Research Question 2

What kind of noise filtering techniques or data cleaning methods are suitable for ef-

fectively detecting and removing existing noise in flight data while preserving true aircraft

behaviors?

One of the most important premises for answering the research question stated above

is that the noise filtering technique proposed in this study should not distort the actual

behavior of the aircraft. In other words, it is necessary to have a credible metric which

represents the true behavior of aircraft. This study suggests the aerodynamic coefficients

obtained from the performance model as the metric that can be believed as the factors
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Figure 5.2: Flight Data Noise Filtering Process

which are not affected by data noise. The overall process of the suggested data noise

filtering technique is described in Figure 5.2. As shown in the flowchart, the aerodynamic

performance coefficients from the previously developed aerodynamic model will serve as

the key evaluation metric in this process.

The first approach to answer the research question is to select primary data parameters

which will be used in the noise filtering process. As described in the previous chapter for

the data-driven aerodynamic modeling process, the data-driven aerodynamic coefficients

can be calculated by inputting corresponding flight data parameters into the equations of

motion. The logged data parameters cannot be directly used in the equations of motion, so

it is necessary to convert the original form of parameters into required input parameters.

Thus, proper data noise removal technique has to be applied to the data processing because

the parameter converting process can intensify the potential data noise. This study focuses

on the original form of data parameters to be converted into the required input parameters

for the calculation of data-driven aerodynamic coefficients.

Once the objective data parameters are selected, they are categorized considering the

nature of their measurement type. It is assumed that the inherent noise characteristics of

logged flight data can differ depending on how the data parameters are measured. For this
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reason, flight data measuring devices are surveyed and the selected data parameters are

assigned to each category according to the measurement method.

Next step is to apply noise filtering techniques to the categorized data parameters.

Among various noise filtering techniques, possibly suitable techniques for flight data pa-

rameters are selected in the time domain and the frequency domain filtering methods for

capturing a broad range of noise characteristics. The selected filtering techniques are ap-

plied to each data categories and the effect of the applied noise filtering method are com-

pared for every combination of the techniques. Finally, this study will suggest a method-

ology that can select the optimal combination of noise removal techniques by providing

answer to the research question Then this methodology will be verified and supported by

the suggested experiment described in the next section.

5.1.2 Experiment Setup

Data noise is an unwanted but inevitable presence in the data analysis process. It is

certain that data noise is also present in various forms in flight data records. Therefore,

the purpose of this research is to remove as much data noise as possible in the flight data.

However, since data noise exists in various forms, the effect of noise filtering cannot be

maximized using single noise removal technique only. This is because each noise can

be effectively removed only by applying a filtering technique that is suitable for its noise

characteristics. It is assumed that the noise characteristic is determined by how the data

is measured. Therefore, the following hypothesis has been established, and this study at-

tempts to achieve the research purpose which is developing a methodology of effective

flight data noise removal by proving this hypothesis.
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Hypothesis 2

Specific flight parameters require noise removal techniques that can capture the char-

acteristics of the parameters. Applying a filtering method that is identified considering

inherent noise characteristics to corresponding parameters will ensure the necessary level

of filtering result.

In order to prove the hypothesis mentioned above, a great number of filtering cases

will be developed by combining the pre-selected data noise filtering techniques and the

parameters of interest. An important factor to be considered in the case development phase

is that the cases should be able to cover the effect of filtering intensity factors used in

filtering techniques. For this reason, two levels of filtering intensity factors are chosen for

each noise removal technique. In the end, noise filtering cases for the experiment will be

technically populated with different types of filtering techniques, different levels of filtering

intensity, and different categories of data parameters. The process of developing effective

noise filtering cases will be explained in detail in the following sections.

The basic purpose of the filtering cases populated in this study is to find the best com-

bination of filtering techniques with optimal filtering intensity factor applied to appropriate

data parameters. To test and select the best way of data noise filtering for flight data anal-

ysis, it is required to have a quantitative metric that can measure the effectiveness of each

filtering case. This study proposes a metric named “Filtering Effectiveness Value (FEV)”

which is a newly developed form of error between noisy data and true data. Thus, the main

goal of this test is to find the case that minimizes the suggested FEV. The definition of FEV

and how it is calculated will be explained in the following section in detail. Using this

evaluation metric, the most effective way of flight data noise filtering will be selected, then

the hypothesis will be proved in the end.
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5.2 Motivation for Data Noise Filtering

In the data-driven process, it is obvious that the data quality greatly affects the result

from data analysis. When some data parameters are cannot be directly obtained from the

database, but the unknown parameters are the necessary complement of the data process,

they may have to be calculated using given data parameters. Especially in GA aircraft, the

acquisition of enough data parameters are limited, so conversion between data parameters

frequently occurs. For example, the Garmin G1000 data logging system in C172S air-

craft does not provide any angle-of-attack parameter, which is the most critical parameter

for aerodynamic models. Angle-of-attack information during flight can be easily obtained

when the airspeed parameters in both x-direction and z-direction in wind frame are avail-

able. When the flight data record does not have the information of airspeed in the wind

frame, and Angle-of-attack can also be calculated using its flight path angle and pitch an-

gle. The flight path angle is also not provided by the G1000 system, and it can be calculated

using ground speed and vertical speed. When the ground speed is not available in the data

set, it can also be calculated using latitude and longitude information. As can be seen from

the above example, many converting steps with a number of data parameters may be needed

for obtaining one required parameter. In this situation, the quality of the obtained parame-

ter, angle-of-attack, cannot be trusted when the data quality of the input parameters for the

conversion, such as latitude, longitude, vertical speed, and pitch angle is not guaranteed.

In fact, the quality of the final outcome of this process can become worse because of the

nature of noises. The following test case can support this statement.

Assuming that an aircraft is in a simple cruise condition, its lift coefficient during this

maneuver can be calculated using simple equations when its weight, reference area, and

flight conditions are given. The necessary data parameters and detailed flight conditions

are given below.

• Phase of flight : Constant speed level flight - cruise
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• Aircraft weight : 2,200 lbf (constant)

• Reference wing area : 174 ft2

• Cruise altitude : 4,000 ft(MSL) (constant)

• Air density : 0.0023 slug/ft3 (constant)

• Cruise airspeed : 70 knots (constant)

• Cruise duration : 300 sec

During the sample cruise flight, the lift coefficient can be calculated using the aircraft

weight, altitude, air density, and airspeed, known that lift is equal to the aircraft weight.

In this situation, the calculated lift coefficient during this flight is also constant. The noise

effect on this conversion process is evaluated using normal distributed random noise which

is generated and added to each parameter. The clean parameters and noisy parameters are

compared in Figure 5.3, and the distribution of the generated noise for each parameter is

shown in Figure 5.4. In the figures, the lift coefficient is the calculated parameter using the

other three parameters.

In order to quantify noisiness of data, root-mean-squared error (RMSE) and signal-to-

noise ratio (SNR) is calculated for each parameter. The RMSE is a metric that measures

the differences between true value and noisy value. Smaller RMSE is better because it is

basically the sum of squared error. The SNR is one of the most widely-used metrics which

compares a level of signal power to a level of noise power. SNR is most often expressed

in decibels (dB). When it is required to reduce data noise, higher SNR numbers mean a

better specification, since there is more signal power then noise power. That means data

with higher SNR has more useful information than unwanted data, the noise. The result

of this noise effect test described in Figure 5.5 provides a meaningful motivation for this

research. According to the result, the SNR of the calculated parameter, Lift coefficient, has

decreased by 19.3% compared to others, which means the noise power has been increased
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Figure 5.3: Sample Data Parameters with Artificial Noise

after the calculation. The result of RMSE shows a similar result. The RMSEs for each

parameter are normalized using their mean value so that they can be compared in the same

domain. As shown in Figure 5.5 (b), the normalized RMSE of the estimated lift coefficient

is 143% higher than that of the other parameters. The test result leads to the conclusion that

data noise removal is an essential step before processing the given data parameters for data

analysis tasks to avoid any unwanted situation such as potential data noise is intensified by

the parameter converting process. The rest of this chapter will discuss how the unwanted

data noise in the flight data can be filtered scientifically.

101



Figure 5.4: Artificial Noise Distribution

(a) Signal-to-Noise Ratio (b) Normalized RMSE

Figure 5.5: Noise Comparison between Input Parameters and Calculated Parameter

5.3 Flight Data Parameters

5.3.1 Parameter Selection

Identifying important parameters to be used in this noise filtering effort is the first step

to be considered. The equations of motion play the most crucial part by connecting the
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data-driven aerodynamic coefficient and modeled aerodynamic coefficients. Among many

other data parameters in the logged flight data set, this study focuses on the parameters

used in this equations of motion. Equations 5.1 and 5.2 are the equations to be used for

the data processing, and Equations 5.3 and 5.4 are the equations for converting the outputs

of the equations of motion, lift and drag, to non-sensationalized parameters, aerodynamic

coefficients.

L = W cos θw cosφw −
W

g
Vabsqw (5.1)

D = T −W sin θw −
W

g
V̇abs (5.2)

CL =
2L

ρV 2
absS

(5.3)

CD =
2D

ρV 2
absS

(5.4)

The equations of motion require multiple parameters as its inputs, and they are primarily

from the flight data records. However, the logged flight data parameters need to be pre-

processed to be used in the equations above because the flight data record does not log

every input parameters for the equations. The input data parameters for the equations can be

divided into three groups: Direct parameters, calculated parameters, and given parameters.

The direct parameters are the parameters that can be obtained directly from the flight data

records. The roll angle is the only parameter that is logged by the data recorder and used

in the equations as its original form for the data processing. The calculated parameters

are the parameter that is not recorded by the data logging system but can be calculated

using other data parameters in the logged dataset or previously given or known parameters.

For example, the angle-of-attack parameter can be calculated using ground speed, vertical
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speed, and pitch angle as discussed in the previous section for the noise effect test. Other the

than angle-of-attack, pitch rate, absolute speed are dynamic pressure are other examples of

the calculated parameters. The last group is the given parameters which are obtained from

other sources such as the pilot’s operating handbook (POH), propulsion model, or standard

atmosphere table. The wing area, thrust, and aircraft initial weight the parameters that

belong to the given parameters category. Although the thrust parameter is considered as

a given parameter, actually the propulsion model is given, so any other logged parameters

that are required for the propulsion model need to be included in the target parameters to

be filtered. All data parameters needed in this process are listed in Table 5.4 with a brief

explanation of how they are obtained and what other parameters are required for getting

that particular parameter.

The relations of all the data parameters mentioned above is systematically described in

Figure 5.6. As discussed earlier, the data-driven aerodynamic coefficients are calculated

using the corresponding flight data parameters into the equations of motions. Also, angle-

of-attack information from the flight data record will provide the modeled aerodynamic

coefficients which are considered as the reference data points. all the data parameters from

the data recorder will be transformed into the inputs of the equations as well as the input for

the aerodynamic model. Then, the data-driven and the modeled coefficients are compared

to measure the effectiveness of the applied filtering cases. Finally, the parameters that will

be filtered in this study are selected and listed in Table 5.1.

As shown in Figure 5.6, This data processing flow includes many calculations, and

this implies that this data process can amplify the data noise inherent in the data param-

eters. Thus, it is highly important to apply proper data noise removal techniques to this

data processing steps to prevent the data quality from deteriorating. The next section will

discuss the nature of these parameters and how they can be categorized considering their

measurement methods.
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Table 5.1: Selected Parameters for Noise Filtering

Parameter Description Unit

AltMSL Mean-sea-level altitude ftMSL

IAS Indicated airspeed knots

TAS True airspeed knots

P itch Pitch angle deg

Roll Roll angle deg

HDG Heading deg

OAT Outside air temperature degC

GndSpd Ground speed knots

VSpdG Vertical speed – GPS fpm

RPM Engine revolution per minute rpm

FFlow Engine fuel flow gph

5.3.2 Parameter Categorization

The data parameters mentioned above are measured in many different ways using dif-

ferent measuring devices. Because the main purpose of this study is to remove noise from

the flight data parameters, a sufficient understanding of how the data parameters are mea-

sured is necessary for this study. This is because the nature of the inherent noise of the

data parameters depends on the way how they are measured, and noise removal techniques

should be applied differently depending on the nature of the noise. Therefore, this section

will describe the principles of how the above-mentioned data parameters are measured, then

classify the selected parameters to be filtered in this study according to the corresponding

measurement methods.
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Flight Instruments

To understand the nature of data noise in the flight data parameters, flight instruments

for measuring the flight data are surveyed and explained in this section. The flight in-

struments for measuring flight data can be classified into six groups: Pitot-static system,

gyroscopic system, magnetic system, thermometric system, global positioning system, and

engine system. The principles of each measuring system and their basic concept will be

discussed in the following sections.

• Pitot-Static System

The pitot-static system is a combined system which measures airspeed, altitude, and

vertical speed. This system uses the static air pressure and the dynamic pressure caused

by the motion of the aircraft during flight. The static air pressure, or ambient pressure, is

simply the barometric pressure in the air where the aircraft is present. The dynamic pressure

is a pressure due to the motion of the aircraft. These two pressures measured by the pitot

tube in this system are transferred to the airspeed indicator, vertical speed indicator, and

altimeter. The components of this pitot-static system are described in Figure 5.7. This

system sends the measured airspeed, altitude, and vertical speed from the air pressure to

the flight data recorder.

Figure 5.7: Pitot-static system[68]
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• Gyroscopic System

The gyroscopic system is the instrument that measures the attitude of the aircraft.

Among various flight instruments utilize the properties of a gyroscope for their operation,

the attitude indicator is the most common instrument containing gyroscopes. A gyroscope

is a wheel that is mounted on the instrument to capture the motion of any spinning object.

By mounting this wheel on a set of gimbal rings, the gyro is able to rotate freely in any

direction. Thus, if the gimbal rings are tilted or twisted, the gyro remains in the plane in

which it was originally spinning. The attitude of the aircraft attitude such as pitch and roll

angle is measured based on this principle. The attitude indicator shown in Figure 5.8 (a) is

the device that displays a picture of the attitude of the aircraft, and this device indicates the

changes in attitude instantaneously.

(a) Attitude Indicator (b) Heading Indicator

Figure 5.8: Gyroscopic System and Magnetic System [68]

• Magnetic System

The magnetic system is basically the compass system that shows direction relative to

the geographic directions. The heading indicator shown in Figure 5.8 (b) is fundamentally

a mechanical instrument designed to facilitate the use of the magnetic compass. Although

108



this device utilizes the gimbal rotation same as the gyroscopic system, heading indicator is

separated from the gyroscopic system because errors in the magnetic compass may cause a

different type of data noise. The magnetometer in the G1000 provides the magnetic north

reference and the heading parameter can be obtained from this information.

• Thermometric System

The thermometric system is the device that measures the outside air temperature. The

temperature sensor consists of a bimetallic-type thermometer in which two different ma-

terials are combined together in a single strip and twisted into a helix [68]. The outside

temperate measured by this sensor is transmitted to the flight data recorder and logged as a

parameter named OAT which will provide meaningful information for the condition of the

atmosphere. This information is also an input for the propulsion model which provides the

estimated thrust during the flight.

• Global Positioning System

The global positioning system, known as GPS, is a satellite-based radio-navigation sys-

tem. This system in the aircraft is actually a receiver of the GPS signal from four or more

GPS satellites. The Garmin G1000 GPS receiver receives not only latitude and longitude

information but also geometric height above Mean Sea Level which can vary significantly

from the altitude information from the pressure altimeter. The ground speed and vertical

speed parameters are based on this GPS signal. Thus, it is considered that the potential

noises in these two parameters have similar characteristics.

• Engine System

The flight data parameters which are related to the aircraft engine is the fuel flow rate

and the RPM. The fuel flow rate provides information about fuel consumption, so the

weight changes during flight can be measured. The RPM is an important parameter that
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indicates the throttle setting set by the pilot. This information is a crucial element for the

propulsion model for estimating the thrust. The fuel flow rate and the RPM use different

sensors to measure the values, but they are considered as one category in the study. The

assumption that the engine itself is the most contributing factor that causes data noise in the

two parameters is the main reason why the parameters fall into this engine system category

together.

Categorized Data Parameters

Based on the measuring method explained in the previous sections, the target param-

eters to be used in this noise filtering study are grouped by six categories and they are

summarized below. It is assumed that the data parameters in the category have similar na-

ture of noise in them, thus the same noise filtering technique is required for the parameters

in the category.

• Pitot-Static System : Mean-sea-level altitude, Indicated airspeed, True airspeed

• Gyroscopic System : Pitch angle, Roll angle

• Magnetic System : Heading

• Thermometric System : Outside air temperature

• Global Positioning System : Ground speed, Vertical speed

• Engine System : Engine revolution per minute, Engine fuel flow

5.4 Noise Filtering Techniques

5.4.1 Overview of Noise Filtering Methods

Flight data quality enhancement is a fundamental topic of this chapter as discussed ear-

lier. Depending on the mechanism that generates the flight data, the noise can be classified
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into different categories, and the selected data parameters for this study were categorized

in the previous chapter considering the measuring mechanism. Data noise reduction can

be performed in two domains: Time-domain and frequency-domain. Frequency-domain

approaches are usually preferred in real-time applications because they can be imple-

mented efficiently compared to the time-domain approaches. However, frequency-domain

approaches cannot efficiently remove a certain type of noise such as residual noise [69].

The time-domain noise reduction approach does not have this problem, but they are com-

putationally more complex. The research question in this chapter is stated here again.

Research Question 2

What kind of noise filtering techniques or data cleaning methods are suitable for ef-

fectively detecting and removing existing noise in flight data while preserving true aircraft

behaviors?

In order to answer the question, multiple data noise filtering techniques are surveyed in

both time and frequency domain to effectively remove various types of noise stored in the

flight data parameters. Based on the surveyed filtering methods, proper filtering techniques

are selected for the research goal which is developing an efficient methodology of flight

data noise filtering specifically for data-driven flight safety assessment effort.

5.4.2 Time-Domain Noise Reduction Techniques

Moving Average Method

The moving average method is the most well-known filtering method especially for

digital signal processing because it is the easiest filtering method to understand and use.

This method is optimal for reducing random noise while retaining a sharp step response.

However, the moving average is the worst filter for frequency domain signals, with little

ability to separate one band of frequencies from another [70].
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This filtering method smooths data by substituting each data point with the average of

the adjacent data points within the span which is set by users. This filtering process requires

an input called “span” which is the sample size of the data points they are averaged by the

filter at a time. When the span size is given, the moving average filter calculates the average

of the data points within the span size and produces a single output. This averaging process

is expressed in Equation 5.5 where x is the input, y is the output, andM is the span size, As

the span increases, the filtering intensity becomes higher, and this means the smoothness

of the output increases.

yi =
1

M

M−1∑
j=0

xi+j (5.5)

Figure 5.9: Example of a Moving Average Filter with Different Number of Points [71]

Local Regression Method

The local regression method is a type of generalized moving average and polynomial

regression method [72]. This method fits a smooth curve between two variables or a smooth

surface between an outcome and the predictor variable [73]. Figure 5.10 shows the basic

concept of the local regression method. At each point, this technique utilizes a regression

function to fit nearest neighbors of that point. The most common techniques of this method

are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scat-

terplot smoothing) filter. Both are non-parametric regression methods that combine mul-

tiple regression models in a k-nearest-neighbor-based meta-model [73]. These techniques
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use a robust weight function so this process is resistant to outliers [74]. The biggest dif-

ference between the two techniques is the model used in the regression. LOWESS uses

a linear polynomial model and LOESS uses a quadratic polynomial model. This method

extends the idea of fitting a line over variable bin-widths but it is a weighted regression

line. The process is weighted because a regression weight function is defined for the data

points contained within the span. This span is the input variable for this filtering method

defined by users. Like the moving average method, the smoothness of the output increases

as the span increases. This study will apply the LOESS method which is more suitable for

non-linear signals.

Figure 5.10: Example of Weighted Local Regression [75]

Smoothing Spline Method

The smoothing spline is a method of fitting a smooth curve to a data set which may

contain noise using a spline function, and it provides a flexible way of estimating the un-

derlying regression function. The basic definition of the spline function is that it is a curve

created from polynomial sections that are subject to conditions or continuity at their joints

[76]. Spline interpolation method gives a good trade-off between the smoothness of the

data and its closeness to the data points. [77]. This method minimizes the following value,
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where p is the specified smoothing parameter and Wi is the specified weights.

p
∑
i

wi(yi − s(xi))2 + (1− p)
∫

(
d2s

dx2
)2dx (5.6)

In Equation 5.6, when the smoothing factor p becomes one, it generates a cubic spline

interpolant while it creates a least-squares line fit when p equals zero. This study will

investigate the effect of the smoothing spline filtering method with two different levels of

the smoothing factor.

5.4.3 Frequency-Domain Noise Reduction Techniques

Fast-Fourier Transform Method

The Fast Fourier Transform (FFT) is a method for calculating the discrete Fourier trans-

form to sample signals in time-series and to divide them to their frequency components. In

other words, the FFT is a converting process for a signal from time domain to frequency

domain. The baseline of this filtering method is that actual data and noise data have their

frequencies, so by looking at the signals in the frequency domain, the noise can be ef-

ficiently distinguished then removed. The basic concept of this signal transformation is

illustrated in Figure 5.11.

While it produces the same result as the other approaches, it is incredibly more efficient,

Figure 5.11: Signals in Time Domain and Frequency Domain [78]
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often reducing the computation time by hundreds. As shown in Figure 5.12, FFT consists

of three steps. The first step is to decompose an N point time domain signal into N signals

each containing a single point. The next step is to find the spectrum of each of the N point

signals. The final step is to synthesize the N frequency spectra into a single frequency

spectrum [70] . During the FFT filtering process, the target data points can be filtered using

a sum of weighted sine and cosine terms of increasing frequency.

The FFT filter has very good smoothing procedures, and users can choose cutoff fre-

quency which controls its filtering intensity. Also, this filter is computationally efficient

because it stores the coefficients rather than the data points. Adding FFT terms with higher

frequency components improves the quality of the fit of areas containing rapid changes. In

this study, the FFT filtering effect will be investigated with different levers of the cutoff

frequency.

Figure 5.12: Flow Diagrom of the FFT [70]
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Empirical Mode Decomposition Method

The empirical mode decomposition (EMD) is an adaptive method in which a given

discrete signal is decomposed into a set of oscillating components through a transforma-

tion process [79]. The EMD method is inherent to the Hilbert-Huang Transform (HHT)

which is a transformation algorithm for decomposing the given data in time domain into

its oscillatory modes named intrinsic mode functions (IMF) in the frequency domain. This

transformation process is called the “sifting process,” and the steps of this process are sum-

marized as listed below [80].

• Determine the location of local maxima and minima of given signalX(t) to construct

an upper envelope s+(t), and a lower envelope s−(t).

• Calculate the mean envelope of the spline curves at ith iteration, mk,i(t).

mk,i(t) =
1

2
[s+(t) + s−(t)] (5.7)

• With ck(t) = X(t) for the first iteration, subtract mean envelope from residual signal.

The procedure is iterated again at step 1 with the new value of Ck(t).

Ck(t) = Ck(t)−mk,i(t) (5.8)

• If Ck(t) matches the criteria of an IMF, a new residual is computed. To update the

residual signal, subtract the kth IMF from the previous residual signal.

rk(t) = rk−1(t)− ck(t) (5.9)

• Then begin from step 1, using the residual obtained as a new signal rk(t), and store

ck(t) as an intrinsic mode function.
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• For N intrinsic mode functions, the original signal is represented as,

X(t) =
N∑
i=1

ci(t) + rN(t) (5.10)

Once IMFs are obtained, they yield instantaneous frequencies as functions of time that

give sharp identifications of embedded structures. Thus, this filtering method provides

meaningful information about instantaneous frequency information. Another advantage of

this EMD method is its high efficiency that can be gained from the adaptive process. Also,

since the decomposition is based on the local characteristic time scale of the data, it is

applicable to nonlinear and non-stationary processes. For the purpose of the noise filtering

work, the EMD filtering method will be implemented to the selected flight data parameters

and its filtering effectiveness will be examined.

5.5 Experiment and Result

5.5.1 Case Development

The primary purpose of this experiment is to effectively apply various noise reduction

techniques to the selected flight data parameters. As stated earlier, it is assumed that there

exist various types of noise in the flight data; thus different ways of noise removal technique

are required to maximize the benefits of this noise filtering process. For this experiment, a

total of 11 data parameters that take the main role in the process of flight data analysis are

selected. The selected data parameters are grouped by six categories considering how they

are collected in terms of measuring devices. Then, various data noise filtering techniques

and their characteristics are surveyed and summarized. Among many noise filtering meth-

ods, three filtering techniques in time-domain and two techniques in frequency-domain are

chosen for this study. The focus of this noise-filtering study is to investigate the effect of

different filtering techniques with varying factors of intensity. The larger the filtering fac-

tor, the more data is filtered. Conversely, the smaller the filtering factor, the less data is
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filtered. Figure 5.13 shows an example of the effect of filtering intensity factors applied to

a sample indicated airspeed parameter.

Figure 5.13: The Effect of Filtering Intensity Factor Levels

Since each noise filtering technique has its own filtering intensity factor which affects

the filtering result significantly, two levels - high and low - of the intensity factors for each

technique were defined. The two different levels of intensity factors can be used to detect

the effect of intensity factors on the data noise filtering result. The high and low-intensity

levels are chosen based on the observations from the preliminary filtering effect tests. The

selected noise filtering methods and their intensity factor settings for this data noise filtering

study are summarized in Table 5.2.

Table 5.2: Selected Noise Filtering Methods and Intensity Factor Settings

Filtering Methods Intensity Factor High Low

Moving Average (MA) Span 20 5

Robust Loess (RL) Span 20 5

Smoothing Splines (SS) Smoothing Parameter 0.5 0.1

Fast-Fourier Transform (FFT) Cutoff Frequency 0.25 0.0625

Empirical Mode Decomposition (EMD) Tolerance 0.02 0.98
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Given the categorized data parameters, the selected data noise removal techniques, and

the defined intensity factors, this study attempts to evaluate the noise filtering effectiveness

of all the possible combinations of filtering techniques and data parameters. Therefore,

total 1,000,000 noise filtering cases are populated with six data categories and five noise

filtering techniques with two levels of each filtering intensity factor. Figure 5.14 illustrates

the overall process of this case development. Among the developed filtering cases, the most

effective filtering combination will be selected with a suggested quantitative metric which

will be explained in the next section.

Figure 5.14: Noise Filtering Case Development and Evaluation Process

5.5.2 Filtering Effectiveness Evaluation

Evaluation Strategy

To maximize the effect of the data noise removal process, the effectiveness of noise

filtering methods has to be quantitatively defined first. As shown in Figure 5.14, the fil-

tered data parameters will be converted into aerodynamic coefficients then compared to

the aerodynamic coefficients obtained from the aerodynamic model. The most important

aspect during the flight data noise removal process is that the noise filtering process should
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remove data noise only while maintaining the true behavior of the aircraft. If the noise

filtering process is not appropriately applied, the noise filtering result of this process is

against the research purpose because the true information can be lost. The aerodynamic

coefficients provided by the accurate model can be trusted as the true information when

the model is accurate, and that is why the modeled aerodynamic coefficients are consid-

ered as reference data points. Therefore, the outcome of each noise filtering case will be

compared to the modeled aerodynamic coefficient and the difference between them will be

measured using a quantitative metric. This quantitative metric represents the effectiveness

of the noise filtering case and the best case will be selected in the end.

Evaluation Metrics

This section suggests several quantitative a metric that can be used for the evaluation

process discussed in the previous section. Since the goal is to minimize the errors between

the data-driven aerodynamic coefficients and modeled aerodynamic coefficients, this study

will measure the magnitude and dispersion of the errors using root-mean-squared error

and standard deviation respectively. Also, the signal-to-noise ratio (SNR) will compare

the desired data and filtered data noise. Finally, this study will suggest a combined metric

named filtering effectiveness value (FEV) which has to be minimized to obtain the best

result. In this experiment, the FEV for each filtering case will be calculated, then the case

which has the minimum FEV will be considered as the best combination of data parameters

and data noise filtering techniques.

• Root-Mean-Squared Error (RMSE)

One of the most common metric used to measure errors is the root mean square error

(RMSE) [81]. The RMSE is defined as the sum of the square root of the errors, and it can

be calculated using Equation 5.11, where ŷi is reference data, yi is estimated data, and n

is a number of data points. This metric provides information about the magnitude of the
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errors. Thus, lower RMSE value means the error between reference data and estimated or

filtered data is small.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(5.11)

• Standard Deviation (SD)

The standard deviation (SD) is another common metric that represents a characteristic

of errors. The SD is used to quantify the variation or dispersion of a set of reference data

and estimated data, and it can be calculated using Equation 5.12. In the equation, ēi is the

mean of errors, ei is the errors at each data point. When this value is small, it indicates that

the data points are close to the mean of the data points. Therefore, it is required to have

the smallest SD in this experiment because it means that the errors between the modeled

aerodynamic coefficients and data-driven coefficients tend to be close to the mean which is

desired to be zero.

SD =

√∑n
i=1(ēi − ei)2

n− 1
(5.12)

• Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) is a measurement which compares the desired signal

and the background noise. This value is a proportion of desired signal power to noise

power, and it is often expressed as decibels: Signal-to-noise ratio in decibel (SNRdB). The

SNRdB can be expressed as shown in Equation 5.13, where Psignal is signal power and

Pnoise is noise power [82]. When the SNRdB is higher than 0, it means there is more signal

power then noise power. Thus, a higher SNRdB value is desired because that means the

data contains more powerful signal information compared to noise information. This study

seeks to find the case which has the maximum SNRdB value because in this case, the noise
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power has the minimum effect in the data compared to other cases.

SNRdB = 10log10
Psignal
Pnoise

(5.13)

• Filtering Effectiveness Value (FEV)

The evaluation metrics mentioned previously all have meaningful information about

the characteristics of the error. Based on the definition of the metrics, it is desired to have

minimum RMSE, minimum SD, and maximum SNRdB. In order to examine whether the

noise filtering process improves the result compared to the baseline, the metrics mentioned

above can be normalized using the baseline values which is the metrics of the raw data.

The normalized metrics are calculated using the following Equations 5.14 - 5.16, where i

indicates the case number and the metrics with the bar on top means the metrics obtained

from the raw data without noise filtering applied. According to their definition, the noise

filtering process improves the result when the normalized metrics are greater than one, and

worsens the result when they are less than one.

nRMSE(i) =
RMSE(i)

RMSE
(5.14)

nSD(i) =
SD(i)

SD
(5.15)

nSNRdB(i) =
SNRdB(i)

SNRdB
(5.16)

In this experiment, it is desired to have a single metric that can combine all three met-

rics to have more robust results of the data noise filtering process by considering all three

aspects of the errors mentioned above. Thus, this study suggests another metric named

FEV which can be obtained from Equation 5.17. By this definition, the effectiveness of

data noise filtering can be judged as improved if it is smaller than one and worsened if it is
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greater than one. The FEV will be the metric for evaluating the effectiveness of data noise

filtering cases in this experiment.

FEV (i) =
nRMSE(i)× nSD(i)

nSNRdB(i)
(5.17)

5.5.3 The Optimal Filtering Method

This section provides the result of the data noise filtering experiment. The goal of this

experiment is to prove the following hypothesis:

• Hypothesis 2: Specific flight parameters require noise removal techniques that can

capture the characteristics of the parameters. Applying a filtering method that is

identified considering inherent noise characteristics to corresponding parameters will

ensure the necessary level of filtering result.

The case that provides the minimum FEV is the case that successfully reduces the

noise in the flight data. Since the aerodynamic model provides two different reference

data, lift and drag coefficients, the FEV values in terms of both lift and drag coefficients

are investigated. From the 1,000,000 cases with different data noise filtering methods and

data parameters assigned, the same number of sets containing two FEVs of the “filtered”

data-driven lift and drag coefficient for each case were obtained. The obtained FEVs are

plotted in the lift coefficient and the drag coefficient domain as shown in Figure 5.15.

In the figure, the baseline point which is the FEV value of “non-filtered” data is spotted

as a red circle. Since the FEV is the value normalized by the baseline error metrics, both the

FEV of lift coefficient and the FEV of drag coefficient are one as described. By definition

of the FEV, the points located inside the box defined by the FEV number of one for both

are the results that have improved noise filtering effect, which means that the data noise

in the data parameters is removed by this process. It is also shown that a large number of

points are located outside the desired box. This indicates that data noise filtering process
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Figure 5.15: Data Noise Filtering Result with the Baseline and the Optimal Filtering Ef-
fectiveness Value

can worsen the result by over-filtering the data and possibly distorting the true behavior

of the aircraft. Among the obtained results, the optimal point is chosen and highlighted in

Figure 5.15 at the bottom left. This point is the optimal case that minimizes the FEV of both

lift and drag coefficients, and the data parameters and applied noise filtering techniques are

shown in Table 5.3. According to the result, it is shown that the moving average method

with high span setting worked best for the pitot-static system, the gyroscopic system, and a

global positioning system. For the thermometric system, the robust Loess method with high

span setting resulted in the best filtering effect while the smoothing spline technique with

high smoothing parameter setting resulted in the best effect. The magnetic system is the

only parameter category that was filtered best in the frequency domain. The empirical mode
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Table 5.3: The Optimal Filtering Case

Moving

Average

(MA)

Robust

Loess

(RL)

Smoothing

Splines

(SS)

Fast-Fourier

Transform

(FFT)

Empirical

Mode

Decomposition

(EMD)

High Low High Low High Low High Low High Low

Pitot-Static

System

Altitude

OIndicated Airspeed

True Airspeed

Gyroscopic

System

Pitch Angle
O

Roll Angle

Magnetic

System
Heading Angle O

Thermometric

System
Outside Air Temp. O

Global Positioning

System

Ground Speed
O

Vertical Speed

Engine

System

Fuel Flow
O

RPM

decomposition technique performed best for removing data noise in the heading parameter.

From the result, it can be concluded that the combinations of data parameters and data

noise filtering techniques mentioned above is the most effective combination for data noise

filtering the given flight data.

5.5.4 Summary

As the role of flight data in aviation safety enhancement programs becomes increas-

ingly important, ensuring clean flight data is also crucial to achieving the goal. However,

the importance of flight data quality is often not considered an important factor that secures

a reliable result. Especially when the number of data parameters is insufficient as in the

flight data record in GA aircraft, the flight data quality should be considered more impor-

tant because data parameter conversion process amplifies the power of data noise. Thus,
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the primary goal of this study was to develop the most effective data cleaning method

for GA flight data analysis with a limited number of flight data parameters. As the first

step to achieve this goal, important data parameters are identified and grouped by six cat-

egories considering their measuring devices. Next, various data noise filtering techniques

are surveyed in both time-domain and frequency-domain, then the filtering intensity ranges

for each technique were set. Based on the selected parameters and data noise filtering tech-

niques, noise filtering cases for the experiment were populated using a full factorial method

to investigate all possible combinations. To select the best case in the developed combi-

nations, noise filtering effectiveness metric, named FEV, was defined The FEV examines

the errors between data-driven aerodynamic coefficients and modeled aerodynamic coeffi-

cients. The reason why the modeled values were selected as the reference data is that the

modeled values can be considered as the true behavior of the aircraft and that should not be

affected by the data noise filtering process. Thus, the case that resulted the minimum FEV

were selected which means that this data noise filtering combination can remove the data

noise most effectively in terms of the magnitude and variation of the error as well as noise

power in the data set. It is also shown that data noise filtering process can worsen the result,

so filtering techniques have to be properly selected. Finally, the optimal filtering case was

identified, and this suggested technique can be applied to further flight data analysis and

improve the credibility of the data analysis result.
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Figure 5.16: Sample Data Parameters: Comparison of Raw data and Filtered Data
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Table 5.4: Input Parameters and Required Parameters for Calculating the Input Parameters

Parameter Description Unit Note

T Thrust lbs Given parameter (propulsion model)
- RPM Engine RPM 1/min Logged parameter
- AltMSL Mean-sea-level altitude ftMSL Logged parameter
- OAT Outside air temperature degC Logged parameter
- TAS True airspeed knots Logged parameter
- ρ Air density slug/ft3 Calculated parameter

W Aircraft weight lbs Calculated parameter
- FFlow Fuel flow gph Logged parameter
- WTO Aircraft T/O weight lbs Given parameter

g Gravity acceleration ft/s2 Calculated parameter
- AltMSL Mean-sea-level altitude ftMSL Logged parameter
- OAT Outside air temperature degC Logged parameter

ρ Air Density slug/ft3 Calculated parameter
- AltMSL Mean-sea-level Altitude ftMSL Logged parameter
- OAT Outside air temperature degC Logged parameter

α Angle-of-Attack deg Calculated parameter
- γ Flight path angle deg Calculated parameter
- θ Pitch angle deg Logged parameter

q Pitch rate rad/s Calculated parameter
- φ Roll angle deg Logged parameter
- θ Pitch angle deg Logged parameter
- HDG Heading angle deg Logged parameter

φ Roll angle deg Direct parameter

γ Path angle deg Calculated parameter
- VSpdG Vertical speed - GPS fpm Logged parameter
- GndSpd Ground speed knots Logged parameter

Vabs Absolute velocity ft/s Calculated parameter
- VSpdG Vertical speed - GPS fpm Logged parameter
- GndSpd Ground speed knots Logged parameter

Pdyn Dynamic pressure lbf/ft3 Calculated parameter
- IAS Indicated airspeed knots Logged parameter
- ρ Air density slug/ft3 Calculated parameter

S Wing area ft2 Given parameter
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CHAPTER 6

OPERATIONAL SAFETY ASSESSMENT

This research work is intended to show that the proposed data-driven aerodynamic mod-

eling approach and the suggested flight data noise filtering method can contribute to GA

safety enhancement efforts by providing more accurate aerodynamic characteristics during

flight and better quality of flight data records. From the previous chapters, it was verified

that the fidelity of the aerodynamic model had been improved and the quality of the flight

data also has been enhanced. The first section of this chapter describes the methodology

for operational safety assessment using the developed aerodynamic model and the cleaned

flight data. The next section provides a statistical approach for developing operational en-

velopes for C172S aircraft using a large amount of flight data records. The last section

discusses the practical usage of the suggested operational envelope by showing a detection

process of abnormal flight operation.

6.1 Methodology Development

6.1.1 Overview

This chapter focuses on the operational safety evaluation process of fixed-wing GA

aircraft. It is expected that incorporating the previously obtained aerodynamic model and

clean flight data into the operational safety evaluation process will improve the validity of

the data-driven GA safety assessment procedures. In other words, this chapter is intended

to show that the benefits from the previous data-driven aerodynamic modeling method and

the data-noise filtering method can practically affect the safety assessment process in a pos-

itive way. Therefore, the following research question was established, and the fundamental

goal of the following sections is to provide answers to this question to support the research
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goal of this study.

Research Question 3

How can flight performance safety of a fixed-wing GA aircraft be analyzed using a

synthesis of an accurate aerodynamic performance model and clean flight data?

• How can operational performance limits or flight envelopes for a fixed-wing GA

aircraft be identified using performance models and flight data?

• How can the generated performance envelopes be used for quantitatively judging or

determining that an aircraft is in a dangerous or safe state?

In order to address the research question, this study utilizes a large amount of flight

data records of C172S GA aircraft which are provided in courtesy of a research partner

school. Among thousands of the available flight data records, a subset of the data set was

chosen for the scope of this research considering operating regions, flight profiles, and data

quality. For example, in the original dataset, some of the data were not fully logged from the

beginning to the end, and some flights were logged while conducting multiple go-around

practices. Also, the flights operated in multiple airports and take off and landed on various

runways. Since such factors may affect the consistency of the results, this study focused on

the flights landed on the runway that has the most operations were involved. After this pre-

processing of the flight data records, the number of flight data records given by the research

partner school was reduced to around 1,400 flights, and they were the primary resources of

this data-driven safety assessment effort.

Given the data records, operational flight envelopes during approach and landing phases

are examined by statistically analyzing common behaviors of the aircraft during that phases

of flight. As discussed earlier, approach and landing is highly risky phases of flight. Among

various flight operations, this study focuses on the approach and landing safety of GA. By
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concentrating on these high risky phases, the safety assessment method suggested in this

study can improve the efficiency of the hazard identification process. That being said, this

study suggests a GA safety assessment methodology that enhances the safety management

system which can have a positive impact on overall GA safety. Thus, the flight data record

that corresponds to approach and landing are extracted for the statistical analysis. Once

the flight data records are processed for further analysis, they are analyzed in terms of

approach safety and landing safety. To assess the flight safety in both the approach and

landing phases, the critical data parameters that represent approach and landing safety per-

formances are selected and explained in the next section. Using these parameters, standard

operating ranges of the parameters are identified for determining any abnormal activities of

the aircraft. This operational safety analysis uses both raw flight data and noise-removed

flight data to compare and examine the effect of the noise removal step on the results.

The next step in this flight safety assessment work is to detect abnormal flights in the

data set using both raw and noise-filtered data. In this step, operational flight safety is

reviewed using a statistical metric that represents how the flights are far from “normal”

operations. After abnormal events are detected among the flights in approach and landing

phases, the corresponding flights are reviewed and examined in the end to provide the

answer to the research question stated above.

6.1.2 Experiment Setup

This section provides plans of the experiment designed to support the research question

established in the previous section. The goal of this research is to suggest a methodology

for developing standard operational envelopes that can be used for enhancing GA fixed-

wing aircraft flight safety. The standard flight envelope is somewhat ambiguous to be de-

termined because of the variety of GA aircraft characteristics and operational procedures.

Thus, considering safety as normality can be more helpful for establishing its operational

performance envelopes. Also, it is necessary to measure the operational safety using a
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quantitative metric for the assessment work to be more consistent. This research, therefore,

demonstrates the following hypothesis to provide solutions to satisfy the requirements that

are essential for a more reliable and steadier GA flight safety assessment procedure.

Hypothesis 3

Using a synthesis of a realistic aircraft performance model and clean flight data will

reduce the chance of misidentifying or failing to identify abnormal flight operations.

In order to prove the hypothesis mentioned above, it is required to have the two pri-

mary elements: Reference performance envelopes and a quantitative safety metric for the

flight safety assessment. As discussed earlier, the reference performance envelopes can

be defined in a statistical way using the flight data records. By looking at their ordinary

and general operations in the flight data, standard operational limits are obtained in this

study. Among many other phases of flight, this study mainly focuses on approach and

landing phases because these are considered as more safety-critical phases of flight. In

the suggested process of developing standard flight performance envelopes, key flight data

parameters of interest are selected for both approach and landing phases considering safety

events related to each phase. While some parameters are selected for both phases of flight,

some parameters are chosen for landing or approach phase only. The selected parameters

will be discussed in the following section. Using the selected flight parameters that can

represent the safety behavior of the aircraft, ordinary operational ranges are set and they

are used in this safety assessment experiment.

After the standard flight performance envelopes that define ordinary flight performances

are developed, a quantitative metric is developed for measuring the aircraft’s operational

safety based on the performance envelopes. The developed metric takes the most important

role in this experiment by quantifying how far the flight is from the ordinary flight. The

definition of the developed metric is elaborated in the following section. Using this quan-
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titative safety metric, this experiment attempts to detect abnormal flights among the given

set of flight data records.

Given the standard operation envelopes and the quantitative safety assessment metric,

this experiment performs safety assessment works on the entire flight records using both

raw data and noise-filtered data. Finally, the result of this experiment proves that a synthesis

of the data-driven aircraft performance model and noise-filtered flight data provides more

reliable results of GA flight safety assessment procedures.

6.2 Standard Flight Performance Envelopes

As discussed in the previous section, this study focuses on approach and landing phases

which are considered as one of the safety-critical phases of flight due to the proximity to

the ground. The following sections explain the suggested steps of developing standard

flight performance envelopes for both the approach and landing phases. The flight data

parameters selected for assessing each phase of flight are listed and explained first. Next,

standard flight performance envelopes for the selected flight data parameters are shown.

6.2.1 Landing Phase

Parameter Selection

The representative safety events that are relevant to the landing phase are a hard landing,

runway over-run, and runway veer off. The definitions of the landing safety events are

explained as follows.

• Hard Landing: The event when an aircraft hits the runway with higher force and

speed than that in normal touch-down.

• Runway Over-run: The event when an aircraft on takeoff or landing roll extends

beyond the end of the runway.
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• Runway Veer-off: The event when an aircraft on takeoff or landing roll extends the

side line of the runway.

Multiple facts can cause the explained safety events during landing. One of the facts

that can lead to poor landing is the high energy at touch-down. The total energy of aircraft

consists of potential energy and kinetic energy, and they can be calculated using Equation

6.1 and 6.2 respectively, where W is the aircraft weight, h is the altitude, V is the airspeed,

and g is the gravity acceleration.

PE = Wh (6.1)

KE =
WV 2

2g
(6.2)

The total energy of the aircraft is the sum of both potential energy and kinetic energy.

When the total energy is normalized by the aircraft weight, it becomes the specific total

energy, STE which can be calculated using Equation 6.3. This metric is also known as the

total energy height and it is independent of aircraft weight. Poor management of this total

energy height at landing can cause the undesired safety events mentioned above.

STE = h+
V 2

2g
(6.3)

Another factor that can cause an unsafe event at landing is the abnormal aircraft speed.

Aircraft speed can be divided into longitudinal and lateral speed with respect to the ground

surface. Vertical speed and ground speed are the two airspeed components of an aircraft

and the two parameters at touch-down are examined in this study for the landing safety as-

sessment. Aircraft attitude at touch-down is also the data parameter that can be considered

as one of the contributing factors to the safety event at landing. Poor management of pitch

can cause both hard landing and runway over-run, and poor roll angle at touch-down can

lead the aircraft to the runway veer-off.
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The location on the runway where the aircraft hits at touch-down is also an important

factor for landing safety. Since the runway where the aircraft landed in the flight data is

long enough not to worry about the runway over-run. Thus, this study examines the center-

line deviation of the touch-down point only.

Finally, this research utilizes the contributing factors for aircraft landing performance

mentioned above and examines the operational safety of the landing phase using the se-

lected flight data parameters at the touch-down moment. The selected flight data parame-

ters for the landing safety assessment effort are listed in Table 6.1. Thus, this study intends

to develop standard operational envelopes for each parameter and the developed operational

envelopes are explained in the next section.

Table 6.1: Flight Data Parameters for Landing Performance Assessment

Flight Data Parameter Flight Data Name Unit

Total Energy Height TE ft

Total Energy Height Rate TER ft/sec

Vertical Speed VSpd fpm

Ground Speed GndSpd knots

Pitch Angle Pitch degree

Roll Angle Roll degree

Center-Line Deviation CDev ft

Performance Envelopes

The fundamental concept of the performance envelopes to be developed in this study is

to provide the range of normal operations for GA fixed-wing aircraft. The normal opera-

tions can be defined by observing a large number of flight data records. Mean and standard

deviation are the primary drivers for developing the standard operational envelope in this

research. For the parameters that are selected for the safety assessment, mean and standard
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deviation of the parameter are obtained at the moment of the touch-down. Assuming that

the number of the flight records are large enough so the data follows a normal distribu-

tion, the abnormality level can be defined by the standard deviation which is a measure

for quantifying the amount of variation of the data. The abnormality levels can be defined

using following equations where X is the data parameter of interest, µ is the mean of the

dataset, and σ is the standard deviation of them.

µ− σ ≤ X ≤ µ+ σ (6.4)

µ− 2σ ≤ X ≤ µ+ 2σ (6.5)

Equation 6.4 defines the boundaries for the abnormality level 1, and Equation 6.5 de-

fines the boundaries for the abnormality level 2. The abnormality level 1 boundaries form

the range where the data parameter is in the condition of a normal operation. In other

words, the range within one standard deviation from the mean can be considered as a

standard operating range. Similarly, the parameters located outside of the one-standard-

deviation boundaries (level 1), and within the two-standard-deviation boundaries, (level 2),

are considered as in the “warning” condition. When the parameter is outside of the level 2

boundaries, it is detected as a “severe” situation. In statistics, the three-sigma rule of thumb

explains that nearly all data points are located within three standard deviations of the mean.

Figure 6.1 depicts this three-sigma rule. As shown in the figure, approximately 4.5% of

the dataset are outside of the level 2 range when the dataset follows a normal distribu-

tion. Thus, this study considers any parameters of the flight data records are lies outside of

the two-standard-deviation range, defined as the abnormality level 2, as “abnormal” events

during the flight.

Applying this statistical approach in the development of standard flight performance

envelopes, the range of normal and abnormal operations for the selected parameters are

136



defined. The rest of this section provides the defined performance envelopes for the touch-

down safety assessment work.

Figure 6.1: Normal Distribution Curve with Mean and Standard Deviation [83]

• Energy Parameters

The energy parameters at the touch-down points are collected to provide the operational

envelopes for each energy metric. As defined in Figure 6.2, the abnormality level-one-

boundaries for the total energy height are 112.22 ft and 171.46 ft while the abnormality

level-two-boundaries for the total energy height are 82.59 ft and 201.08 ft. The mean of

total energy height is 141.84 ft.

The total energy height rate is also one of the informative data parameters for evaluat-

ing touch-down performance. As shown in Figure 6.2, the mean, the abnormality level-1

boundaries, and the abnormality level 2 boundaries are defined and summarized in Table

6.2.

• Speed Parameters

The speed parameters that can be used for the safety assessment at touch-down are the

vertical speed and the ground speeds. The collected data points of the vertical speed (sink
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(a) Total Energy Height (b) Total Energy Height Rate

Figure 6.2: Energy Parameters at Touch-Down

rate) and the ground speeds are distributed in Figure 6.3. Using these parameters at the

touch-down moment, the boundaries for normal operation ranges are defined as shown in

Figure 6.4. The detailed information of the boundaries are summarized in Table 6.2 in the

following section.

Figure 6.3: Touchdown Speed (Sink Rate and Ground Speed)
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(a) Vertical Speed (b) Ground Speed

Figure 6.4: Speed Parameters at Touch-Down

• Attitude Parameters

When an aircraft hits the ground during landing, its attitudes have to be managed ac-

cordingly to avoid undesired safety events such as hard landing or runway excursion. Thus,

the aircraft attitude parameters, pitch and roll, are evaluated at touch-down and shown in

Figure 6.5. From the distribution of them, the abnormality levels are set as described in

Figure 6.6 and they are listed in Table 6.2.

• Location Parameter

Touch-down location on runways is highly relevant to runway over-run or runway veer-

off events. When the runway where an aircraft operates is sufficiently long, the pilot may

not pay attention to the longitudinal position of its touchdown. The selected runway in

this study is sufficiently long, so longitudinal points of the flights are not concerned in

this study. Instead, the centerline deviation of each flight was measured to evaluate its

touch-down performance regarding the location. The measured touch-down locations for

the flights are depicted in Figure 6.7 (a), and the defined standard operation ranges are

described in Figure 6.7 (b). The detailed information about the specified ranges are shown
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Figure 6.5: Touchdown Attitude (Pitch and Roll)

(a) Pitch Angle (b) Roll Angle

Figure 6.6: Attitude Parameters at Touch-Down

in Table 6.2 in the next section.

Summary

As discussed previously, aircraft landing performance can be evaluated using specific

parameters that have significant impacts on its touch-down performance. Therefore, the

key data parameters for the landing performance assessment are selected and elaborated in
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(a) Touch-Down Location (Runway 9R and 27L) (b) Runway Center-line Deviation

Figure 6.7: Touch-Down Location and Center-Line Deviation

previous sections. For each selected parameter, normal operation ranges in two different

levels were defined using its mean and standard deviation at touch-down. Finally, the

standard performance envelopes were developed for all the selected parameters, and they

are summarized in Table 6.2. This values will be used for the landing safety assessment

work for a specific flight in later part in this chapter.

Table 6.2: Standard Safe Performance Envelopes for Touch-Down

Parameter Unit
Center Abnormal Lv1 Abnormal Lv2

Mean Lower Upper Lower Upper

Total Energy ft 141.84 112.22 171.46 82.59 201.08

Total Energy Rate ft/s -9.78 -11.59 -7.96 -13.41 -6.15

Vertical Speed fpm -210.42 -262.51 -158.34 -314.59 -106.25

Ground Speed Knots 55.92 49.70 62.15 43.47 68.38

Pitch deg 2.67 1.32 4.03 -0.04 5.38

Roll deg 0.01 -1.02 1.03 -2.04 2.05

Centerline Deviation ft 1.28 -3.25 5.80 -7.77 10.32
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6.2.2 Approach Phase

Parameter Selection

Approach phase is the last portion of the flight prior to landing. During the approach

phase, an aircraft loses altitude and the pilot pay attention to the aircraft attitude, speed,

and alignment with the runway while descending. For example, it is desired to maintain 3

degrees of descent angle in a stable approach. In addition, the normal approach requires

constant airspeed and a constant energy loss during the flight. In this phase of flight, the

flap setting is one of the main contributing factors that affect the aircraft stability during

approach, and this information is essential for evaluating its safety in terms of airspeed

because the exceedance limits are often defined in a specific flap setting. Also, the aerody-

namic coefficients information that can be obtained from the aerodynamic model is crucial

indicators for the aircraft’s approach performance. Therefore, the following parameters in

Table 6.3 are selected for the development of standard performance envelope during the

approach phase.

As shown in Table 6.3, the selected parameters for this phase of flight shares the same

parameters for the landing performance assessment work. For location indicating parame-

ters, altitude above ground level is selected instead of center-line deviation compared to the

landing performance parameters. Furthermore, aerodynamic-related parameters such as lift

coefficient, drag coefficient, and angle-of-attack parameters are added for the assessment

of the flight safety in the approach phase. Similar to the previous touch-down performance

parameters, these approach performance parameters are used for the development of the

standard operational envelopes for the approach phase of flight. While the basic definition

of the suggested approach performance envelopes remains the same as the previously ex-

plained landing performance envelopes, the normal operating range of the approach phase

are not for one specific moment. The suggested approach performance envelopes vary

according to the distance remaining to the touch-down point.
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Table 6.3: Flight Data Parameters for Approach Performance Assessment

Flight Data Parameter Flight Data Name Unit

Total Energy Height TE ft

Total Energy Height Rate TER ft/sec

Vertical Speed VSpd fpm

Ground Speed GndSpd knots

Pitch Angle Pitch degree

Roll Angle Roll degree

Altitude above Ground Level AltAGL ft

Lift Coefficient CL

Drag Coefficient CD

Angle-of-Attack AOA degree

Indicated Airspeed IAS knots

Performance Envelopes

The methodology of developing performance envelopes for the approach phase is al-

most the same as the methodology that is explained in the landing phase performance en-

velope. The biggest difference is that the performance envelope for the approach phase is

for observing the flight performance from a reference point to the touch-down point based

on the distance left until the runway. The reason why the remaining distance is set as refer-

ence information is this is the only parameter that does not change depending on different

flights, so it provides objective information about each flight parameter. Thus, the selected

data parameters are observed with respect to the distance remaining. The distance left for

each flight can be calculated using its latitude and longitude information when the touch-

down point is obtained. Again, as discussed in the operational envelope development step

for the landing phase, the same statistical approach is applied using its mean and standard
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deviation. Eventually, normal operating ranges for each selected parameter are defined in

two abnormality levels. The subset of the developed standard operation envelopes is shown

as follows. This section intends to focus on the flight data parameters that are not discussed

in the landing performance envelopes.

• Aircraft Altitude and Speed

Altitude and airspeed are the most representative parameters that provide intuitive in-

formation about the status of the flight. As discusses earlier, the flight parameters are

compared with respect to the distance remaining until the touch-down location. Figure 6.8

shows the overall flight profiles of the altitude and the indicated airspeed. As shown in the

figures, the variance of the parameters forms the normal operating ranges and the ranges

are varying when the aircraft approaches the touch-down point. If a specific distance is se-

lected, the developed boundaries of the abnormality levels are defined using the mean and

the standard deviation of that point. This instantaneous information about the performance

envelopes will be discussed later.

(a) Altitude (b) Indicated Airspeed

Figure 6.8: Altitude and Indicated Airspeed Envelopes during Approach Phase
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• Aerodynamic Parameters

The aerodynamic parameters of an aircraft during flight such as lift and drag coefficients

are another set of parameters that can be used for determining if the aircraft is in a stable

and safe condition. The parameters can be obtained using the aerodynamic model that was

developed in the previous chapter. This aerodynamic model requires two inputs: Angle-

of-attack and flap settings. The angle-of-attack information can be calculated using the

other flight data parameters such as flight path angle and pitch angle. The quality of these

parameters can be assured when the proposed data-noise filtering technique is applied to

them. Also, the flap settings can be estimated using the aerodynamic model and other data

parameters as discussed in the previous chapter. This flap information is very important

because that flap setting defines several exceedance events for airspeed [23]. Since the

flap setting is not often logged for GA aircraft, clean flight data and accurate aerodynamic

performance model that are previously obtained can provide an essential information for

the approach safety analysis. The following figures are the identified operating envelopes

for the flap setting, angle-of-attack, and aerodynamic coefficients.

(a) Flap Setting (b) Angle-of-Attack

Figure 6.9: Aerodynamic Inputs Envelopes during Approach and Landing
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(a) Lift Coefficient (b) Drag Coefficient

Figure 6.10: Aerodynamic Coefficients Envelopes during Approach and Landing

• Energy Parameters

The energy parameters are universal parameters that can be examined in any phases

of flight for any aircraft. Especially when the energy parameters are normalized by the

aircraft weight, they can provide general information about the aircraft’s energy state during

flight. As discussed in the section about the landing performance envelope, same energy

parameters are examined in approach phase again. The energy parameters with varying

values of distance remaining are gathered to provide the operational envelopes for each

energy metric during the approach phase, and they are shown in Figure 6.11.

• Instantaneous Envelopes

From the continuous operating envelopes defined in the previous section, instantaneous

envelopes also can be defined when a reference distance left is fixed. Previously, normal op-

erating envelopes for the final thee nautical mile of flight has been developed but the scope

can be defined by safety analyzers or users. Also, instantaneous performance envelopes can

be obtained when the remaining distance is set as a specific point of interest. For example,

the abnormality limits at the moment when the distance remaining is 0.5 nautical miles

146



(a) Lift Coefficient (b) Drag Coefficient

Figure 6.11: Aerodynamic Coefficients Envelopes during Approach and Landing

can be identified by looking at the previously defined approach operating envelopes. Some

examples of the identified abnormality limits for this case are shown in Figure 6.12. The

boundaries for the other approach performance parameters are also obtained in the same

way and summarized in Table 6.4.

(a) Angle-of-Attack at 0.5 nmi left (b) Total Energy Height at 0.5 nmi left

Figure 6.12: Sample Instantaneous Envelopes during Approach and Landing
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Table 6.4: Standard Normal Performance Envelopes (0.5 nmi left) - Approaching Phase

Parameter Unit
Center Abnormal Lv1 Abnormal Lv2

Mean Lower Upper Lower Upper

Total Energy ft 680.38 560.95 799.80 441.53 919.23

Total Energy Rate ft/s -10.42 -14.33 -6.50 -18.24 -2.59

Vertical Speed fpm -519.03 -704.95 -333.12 -890.87 -147.20

Ground Speed Knots 71.45 61.39 81.50 51.34 91.55

Pitch Angle deg -2.49 -4.48 -0.50 -6.47 1.49

Roll Angle deg -1.63 -8.34 5.09 -15.06 11.81

Altitude (AGL) ft 422.42 309.11 535.72 195.80 649.03

Lift Coeff. 0.73 0.56 0.90 0.38 1.07

Drag Coeff. 0.10 0.07 0.12 0.04 0.15

Agle-of-Attack deg 1.68 0.17 3.18 -1.33 4.68

Indicated Airspee Knots 75.70 66.02 85.38 56.33 95.06

6.2.3 Summary

In this section, approach performance envelopes for various flight data parameters are

developed in a statistical method. It is shown that the suggested method for developing

normal operating envelopes provided answers to the following research question.

Reserach Question 3.1

How can operational performance limits or flight envelopes for a fixed-wing GA aircraft

be identified using performance models and flight data?

As mentioned prevouisly, this study focuses on safety-critical performance parameters

so operational performance limits for the certain parameters have been created in this sec-
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tion. The flight data parameters that can provide useful information for determining the

aircraft’s safety or stability during approach were selected. Among the parameters chosen,

aerodynamic coefficients offer beneficial information to the safety assessment procedure

by making the flap activity information available using the aerodynamic model and other

flight data parameters. Using the selected parameters, the standard performance envelopes

for each parameter are defined for the approach and landing phases of flight. Finally, it is

demonstrated that instantaneous flight envelopes can be specified when a reference distance

is set and the specified flight envelopes when the distance remaining is 0.5 nautical miles

are summarized.

6.3 Safety Assessment using Safety Score

The primary purpose of this section is to suggest a quantitative metric that can be used

for GA flight safety assessment with given standard performance envelopes for approach

and landing phases. As explained earlier, the developed standard performance envelopes

are based on the common behaviors of the aircraft operated at a specific runway. By looking

at how a particular flight is operating within the normal operating ranges obtained above,

the flight can be judged if it is in a safe or normal operational region or not. In other words,

the safety of a specific flight at a certain moment can be examined by looking at its position

in the normality range, which is the standard performance envelopes, constructed from the

information of other aircraft’s behaviors at the moment. It has to be noted here that not

every abnormal flight detected by this method cannot be considered as unsafe flight be-

cause GA aircraft operations may contain many variabilities in their operations. However,

abnormal operations or flights are likely to become unsafe operations when the normality

is quantitatively defined with a sufficient number of reference datasets. when it is required

to examine the flight safety in a certain period of operation, the normality test mentioned

above has to be performed differently. Thus, this section is devoted to providing the an-

swers to the research question 3.2. To be more concrete, the following sections explains
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quantitative metrics that can be utilized in the flight safety assessment procedure using the

previously obtained standard performance envelopes.

Research Question 3.2

How can the generated performance envelopes be used for quantitatively judging or

determining that an aircraft is in a dangerous or safe state?

6.3.1 Abnormality Test

In statistics, the z-score is the number that indicates the normality of the data. When

the mean and the standard deviation are calculated, the Z-score can also be calculated using

Equation 6.6, where µ is the mean, and σ is the standard deviation of the data set. x is the

specific data point and Equation 6.6 calculates its z-score of the data point x.

z =
x− µ
σ

(6.6)

By the definition of the z-score shown in the equation above, this metric can be useful

for assessing the abnormality of the flight for an instantaneous point. For example, at the

moment of the touch-down of an aircraft, the center-line deviation of the specific flight

can be examined using the z-score. When the absolute value of the calculated z-score of

the center-line deviation is greater than one and less than two, it means that this specific

touch-down performance falls into the abnormality level 1, “warning”, by the definition of

the developed performance envelope for the center-line deviation. Similarly, if the z-score

of the center-line deviation at touch-down is greater than 2, it means that the touch-down

performance in terms of its location was poor and this event is assigned to the level 2,

“Severe”. Using this metric, it is possible to examine how a specific data parameter at a

certain instantaneous moment is abnormal. In other words, the Z-score can be used to test

abnormality of any particular flight at a specific moment.
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6.3.2 Cumulative Landing and Approach Safety Score (CLASS)

It is explained that the Z-score is a good quantitative metric for an instantaneous event.

However, when evaluating flight safety analysis, it is not sufficient to evaluate the overall

flight profile for a specific parameter by looking at the momentary events only. Thus, this

study proposes a new quantitative metric that can satisfy the following requirements.

• The metric should be able to test abnormality of a flight with given data set and

performance envelopes.

• The metric should be able to measure how long the flight has crossed the normal

operating boundaries.

• The metric should be able to reflect how far away the abnormal event of the flight

occurred from the touchdown, and should be able to weight based on the remaining

distance.

• The metric should be able to compare the operational safety of a specific data param-

eter among different flights.

Having a quantitative metric that satisfies the above-mentioned requirements is essential

for GA operational safety performance during the approach and landing phase. Thus, this

study proposes a quantitative safety evaluation metric named “Cumulative Landing and

Approach Safety Score (CLASS).” The quantitative metric, CLASS, can be defined through

the following procedure which consists of four steps.

CLASS Calculation Step 1

A sample flight is shown in Figure 6.13 (a) for a selected parameter x. When a data

parameter x is given at a point with the distance left D(i), the Z-score at this point can be
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calculated using Equation 6.7. From the flight data records, the mean µ(i) and standard

deviation σ(i) of the parameter x at the point i are given.

Zx(i) =
x(i)− µx(i)

σx(i)
(6.7)

By the definition of the z-score, the obtained z-score is the score that shows how far the

data point is from the mean value normalized by the standard deviation at the moment. The

calculated z-score is also a dataset that varies with the distance left as shown in Figure 6.13

(b).

(a) A Parameter and its Envelope (b) Abnormality Score

Figure 6.13: A Sample Flight for CLASS Calculation - Part 1.

CLASS Calculation Step 2

Now, it is intended to detect any data points that exceed both the upper or lower bound-

aries of the pre-defined abnormality level 2. Thus, the calculated z-scores are converted to

absolute values first, then subtracted by two as shown in Equation 6.8. The result of this

step of calculation is shown in Figure 6.14 (a).

Z∗
x(i) = |Zx(i)| − 2 (6.8)
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If the value Z∗
x(i) is a negative value here, that means the point where Z∗

x(i) is within

the abnormality level 2 range. Thus, safety score of the points with negative Z∗
x(i) values

need to be set as zero. In other words, the safety score does not intend to detect any points

that is within normal operating ranges, so the safety score of the points are neglected.

CLASS Calculation Step 3

Then, the current safety score, Z∗
x(i) is normalized by the distance left added by a

weighting factor w. It is important to note that events that occur near the touchdown point

are riskier than events that occur farther from that point. In other words, even if the ex-

ceeded area in two different points with different distance remaining, it cannot be consid-

ered as the two results have the same degree of risk. The importance of its proximity to the

touch-down point can be weighted using the weighting factor. When the weighting factor

is selected as a higher number, it means that the distance left has less impact on the safety

score. Conversely, a low weighting factor is chosen, the effect that the remaining distance

has on the safety score becomes high. Also, the safety score is converted into a negative

value for more intuitive interpretation of the metric, since “safety” is often considered as a

positive concept. In this way, higher CLASS value indicates safer or more ordinary con-

dition and lower CLASS value indicate that the parameter is in more abnormal condition.

Therefore, the weighted safety score at the moment, Z∗
x(i) can be expressed as Equation

6.9, and the result of the sample flight is depicted in Figure 6.14 (b).

Z∗
x(i) =


− Z∗x(i)
D(i)+w

, if Z∗
x(i) ≥ 0

0, otherwise.
(6.9)

CLASS Calculation Step 4

Finally, the CLASS for the data parameter x can be obtained by integrating all the

data points in the series using Equation 6.10. The CLASS of this parameter x during the
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(a) Exceeded Abnormality Score (b)

Figure 6.14: A Sample Flight for CLASS Calculation - Part 2.

approach and landing phases is -0.42 when the weighting factor is selected as 3. By the

definition of CLASS, the maximum value of this score is zero. When the CLASS is closer

to zero, it means that the parameter evaluated by this metric has never exceeded the normal

operating range during the flight.

CLASSx =
∑
i

Z∗
x(i) (6.10)

By the definition of the CLASS, this value indicates the weighted area of the ex-

ceedances happened during flight normalized by distance. Thus, this metric is a dimen-

sionless quantity, so this safety score can be used for any data parameters in the flight data.

In summary, this safety metric can provide information about how big, how long, and when

the data parameter during approach and landing phase exceed the abnormality level 2. The

next section demonstrates how this metric can be utilized for a specific flight data record to

quantitatively evaluate the flight safety during the approach and landing phase.
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6.4 Experiment and Result

The primary focus of this study is to improve GA safety by combining aerodynamic

models with clean data. As the last step to achieve the overarching goal of this study,

this section performs several experiments using the aerodynamic model and noise-filtered

flight data. In the earlier section of this chapter, a methodology for determining the standard

operational envelopes has been introduced, and the methodology has been utilized using a

large number of actual flight data. Furthermore, a quantitative metric that can measure not

only the magnitude of safety exceedance events but also the duration of the events has been

developed. The following experiments in this next chapter will demonstrate the process of

evaluating the operational safety of the GA aircraft by combining the standard performance

envelope and the safety assessment metric mentioned above.

6.4.1 Unstable Approach Detection

Among various phases of flight, this experiment focuses on quantitatively measuring

the operational safety during approach and landing phase. The suggested safety assess-

ment metric, CLASS, can be used for any metrics if its mean and standard deviation are

provided from the populated data points from the flight data records. Using the previously

defined performance envelopes, this experiment demonstrates the suggested flight safety

assessment method on a certain flight record. The selected flight number has been investi-

gated using the safety evaluation method.

In this experiment, the following eleven flight parameters are examined and their CLASS

values are obtained. Among the mentioned parameters of interest, the total energy height

will be discussed in this section.

• Total Energy Height (TE) • Altitude AGL (ft)

• Total Energy Height Rate (TER) • Indicated Airspeed (IAS)

• Vertical Speed (VSpd) • Lift Coefficients (CL)
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• Ground Speed (GndSpd) • Drag Coefficients (CD)

• Pitch Angle (Pitch) • Angle of Attack (AOA)

• Roll Angle (Roll)

The flight performances of the above parameters within the pre-defined performance

envelopes are described in Figures 6.15 – Figure 6.20. As shown in the figures, some data

parameters remained within the boundaries of abnormality level 2, while other parameters

violated the boundaries multiple times. Instead of looking at the unsafe events shown

in the figures intuitively, the exceedance events for each data parameter are required to

be examined and compared quantitatively. Therefore, based on the criteria of calculating

the CLASS elaborated in the previous section, the CLASS values for each parameter are

calculated with both filtered data and raw data. Table 6.5 summarizes the CLASS for the

approach and landing phase of the selected flight.

(a) Total Energy Height (b) Total Energy Height Rate

Figure 6.15: Safety Assessment - Energy Parameters

As observed in Table 6.5, some parameters have the CLASS values of zero while other

parameters have negative CLASS values. For example, the vertical speed has the low-

est CLASS value compared to the other parameters. This low vertical-speed CLASS can
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(a) Vertical Speed (b) Ground Speed

Figure 6.16: Safety Assessment - Speed Parameters

Table 6.5: Quantified Flight Safety Results using CLASS

Approach Stability Parameters CLASS (Filtered)

Total Energy -0.5195

Total Energy Rate -0.3591

Vertical Speed -0.7328

Ground Speed -0.0404

Pitch Angle -0.5134

Roll Angle -0.2055

Altitude AGL -0.6167

Lift Coefficient 0.0000

Drag Coefficient 0.0000

Angle-of-Attack -0.0195

Indicated Airspeed 0.0000

be interpreted as that the aircraft had to sharply reduce its altitude in areas close to the

touchdown point and this situation caused the vertical velocity to exceed the performance
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envelope. Since the exceedance happened near the touch-down point, the safety score of

this flight was worsened by the weighting factor. On the other hand, the aerodynamic pa-

rameters, the angle-of-attack, and the indicated airspeed have the safest score, which is

zero, or relatively high scores. That means the aircraft was in a ordinary situation in terms

of aerodynamic performance. Overall CLASS values for this particular flight indicate that

this flight can be considered as a poor energy management flight.

(a) Pitch Angle (b) Roll Angle

Figure 6.17: Safety Assessment - Attitude Parameters

(a) Altitude AGL (b) Indicated Airspeed

Figure 6.18: Safety Assessment - Altitude and Speed
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(a) Lift Coefficient (b) Drag Coefficient

Figure 6.19: Safety Assessment - Aerodynamic Parameters

Figure 6.20: Safety Assessment - Angle-of-Attack

The quantified safety score of a particular parameter indicates how normal this parame-

ter was during the flight. The selected performance parameters for evaluating approach and

landing abnormality can be compared effectively using a spider chart as shown in Figure

6.21. This chart provides an overview of the flight using quantified safety performance

using CLASS. This chart also shows the difference between filtered data result and raw

data result. The next section discusses this noise effect on the safety assessment process.

As shown in the figure, total energy, vertical speed, pitch angle, and altitude have lower

CLASS values which means they performed abnormally during the flight. The spider chart
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of CLASS can be used not only to compare different parameters of a flight but also to

compare the overall operational performances between different flights. For example, Fig-

ure 6.21 and Figure 6.22 provide the quantified abnormality information for two different

flights. By looking at these two charts together, the overall operational performance can

be quantitatively compared. As shown in Figure 6.22, the flight number 98 was in more

abnormal state in terms of its aerodynamic performance compared to the number flight

1,392 described in Figure 6.21. In this way, any flight performances in the dataset can be

analyzed and compared each other.

Figure 6.21: Safety Quantification using CLASS: Flight No. 1,392

To conclude that a certain flight operation was abnormal in terms of this specific param-

eter, other parameters and their circumstances must be considered together. For example, if

the aircraft was approaching in a high-altitude condition, the pilot had to make the aircraft

pitch-down so that the altitude of the aircraft can be in the normal range. In this case, the

energy and pitch both can be detected as abnormal, but the abnormal pitch is the result

of one of the pilot’s corrective actions caused by the high altitude or high energy state.

Thus, a comprehensive insight into the quantified safety scores is required for the flight
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Figure 6.22: Safety Quantification using CLASS: Flight No. 98

safety assessment, and the developed CLASS metric provides beneficial information for

the comprehensive safety assessment.

6.4.2 Data Noise and CLASS

In the previous section, it is shown that the CLASS metric can be utilized in the GA

aviation safety assessment effort using a large number of flight data records. Also, the

CLASS metric provides intuitive and useful information for safety measurement. The two

fundamental elements of the safety assessment procedure are the standard performance en-

velopes and the quantitative metric, CLASS. Both elements are data-driven information so

possibly existing data noise can affect the safety assessment result. The previous approach

and landing safety assessment effort has been done with noise-filtered data obtained from

Chapter 5. This experiment is designed for examining the effect of data noise on the GA

approach and landing safety assessment result using CLASS. The result of this experiment

can support the following hypothesis that has been established for the safety assessment of

GA operations.
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Hypothesis 3

Using a synthesis of a realistic aircraft performance model and clean flight data will

reduce the chance of misidentifying or failing to identify abnormal flight operations.

As the first step of the evaluation process, the safety assessment work conducted in the

previous section was reproduced with raw flight data. The abnormality evaluation results

of the same flight using both raw and filtered data cases are summarized in Table 6.6 and

described in 6.23.

Table 6.6: CLASS Comparison between Filtered and Raw Data

Approach Stability Parameters CLASS (Filtered) CLASS (Raw)

Total Energy -0.5195 -0.5307

Total Energy Rate -0.3591 -0.4040

Vertical Speed -0.7328 -0.4935

Ground Speed -0.0404 -0.0380

Pitch -0.5134 -0.3643

Roll -0.2055 -0.1968

AltAGL -0.6167 -0.6178

CL 0.0000 0.0000

CD 0.0000 0.0000

AOA -0.0195 -0.0207

IAS 0.0000 -0.0049

As shown in both Table 6.6 and Figure 6.23, while many parameters have the similar

CLASS result, the difference of the vertical speed and the pitch CLASS results is reflec-

tively large. Also, it was detected that the indicated airspeed was in the safe operational

envelope during the entire approach phase when the noise-filtered data is used for the eval-

uation. However, when the raw data was used in the process, the CLASS of indicated
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Figure 6.23: CLASS Result Comparison between Raw Data and Filtered Data Utilized

airspeed shows that it has exceeded the boundary even if it was a small period of time. The

lift coefficient is also a similar example of this difference, but in this case, the CLASS of lift

coefficient shows oppositely. This difference can be caused by different boundaries defined

because of data noise. Also, even if the boundaries are similarly defined when noise-filtered

or raw data parameters are utilized, the flight data parameter itself being observed in the

safety assessment process may show different behaviors. The result of the suggested safety

assessment method can have less false-positive detections using the filtered data. In or-

der to have a better observation on the causes of discrepancy, the total energy rate of the

previously evaluated flight was chosen because this parameter has the highest discrepancy

of raw data or filtered data-driven CLASS results. As shown in Figure 6.24, both data-

driven boundaries of performance envelopes and the flight parameter being examined have

a non-negligible discrepancy. From this observation, it is confirmed again that a data noise

reduction process is absolutely necessary in the data-driven analysis because it is shown

that data noise may have a significant impact on the result in a specific case. This can be

supported by comparing how many flights in the entire flight data records are perceived
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as the events that exceeded the boundaries of the performance envelope. In this study, the

total energy height and vertical speed are selected as sample parameters for observing the

effect of data noise on the abnormality detection results.

(a) Total Energy Rate from Filtered Data (b) Total Energy Rate from Raw Data

Figure 6.24: Total Energy Rate Comparison : Raw data and Filtered Data

Total Energy Height

For 1,447 flight records, total energy height of each flight was calculated for this re-

search. Also, the CLASS value for the total energy height was also obtained from the data

by measuring its variation from the mean. The total energy height CLASS are derived using

both raw and noise-filtered data and gathered to examine the differences between them.

Figure 6.25 shows the differences between raw-data-driven CLASS and filtered-data-

driven CLASS. The differences between them are explicitly shown in Figure 6.26. Overall,

the filtered data detected the abnormal events with the more lower CLASS value which

means raw data observed the exceedances as more severe events. The result is summarized

in Figure 6.27. Among the entire flights, the filtered data detected 255 flights that exceeded

the total energy height boundaries while the raw data detected 310 flights as the case. The

number of flights that were detected by both raw and filtered data is 251. Only four flights
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Figure 6.25: Total Energy Height CLASS - All Flights

Figure 6.26: Total Energy Height CLASS Difference - All Flights

were detected only by the filtered data, and 59 flights are detected only by raw data. When

the result of the filtered-data-driven assessment is considered true, utilizing raw data in the

process false-positively detects 59 events out of 1,447 flights.
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Figure 6.27: Total Energy Abnormality Detection

Vertical Speed

The same experiment was conducted on the vertical speed parameter. As discussed ear-

lier, this vertical speed parameter has the biggest discrepancies between raw-data-driven

CLASS and filtered-data-driven CLASS. Figure 6.28 and Figure 6.29 visualizes the dis-

crepancy as below.

Figure 6.28: Total Energy Height Rate CLASS - All Flights

According to the CLASS calculated using the filtered data, 546 flights were detected as

the flight that has exceeded that given normal operating performance envelopes at least once

166



Figure 6.29: Total Energy Height Rate CLASS Difference - All Flights

during the flight. On the other hand, 1,057 flights out of 1,447 flights were detected by the

raw-data-driven CLASS. Among them, 534 flights are detected as abnormal flights by both

filtered and raw-data-driven CLASS valuse. The quantitatively assessed abnormality result

for vertical speed parameter of entire flights are summarized in Figure 6.30. Overall, raw

data detects more flights as abnormal exceedances, and that can be considered as driven by

the data fluctuation caused by the data noise. As discussed earlier, the safety quantification

result can be more reliable when the flight data parameters are filtered by a proper data

noise removal technique because noise-filtered data can reduce false-positively detected

abnormal events. Thus, it can be concluded that the previously established hypothesis has

been proven through this experiment.

6.4.3 Summary

This study has shown that standard flight performance envelopes for a certain flight data

parameter can be established by looking at a large number of flight data. The fundamen-

tal idea for this suggestion is that abnormality is the one that has to be avoided in terms
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Figure 6.30: Vertical Speed Abnormality Detection

of safety. Thus, a quantitative metric, named CLASS, has been developed to measure the

abnormality of the data parameter of interest. This experiment utilized the developed per-

formance envelopes for the chosen parameters to detect any abnormal exceedances of the

flight data parameters during approach and landing phases of flight. Also, it is proven that

the CLASS can be used for detecting abnormal events for any parameters when normal op-

erating range limits for the parameters are given. Finally, this study examined the difference

between the safety assessment results driven by data noise by looking at the CLASS values

obtained from raw and noise-filtered data. As a result, it is concluded that raw-data-driven

CLASS values are more likely to detect abnormal events falsely and applying data-noise

filtering techniques can reduce the chance of false-positively detecting any safety events.
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CHAPTER 7

CONCLUSION

7.1 Summary

As air traffic demand is expected to increase significantly, aircraft safety has been a

vital issue in the aviation community. However, the aviation aircraft accident statistics

show that general aviation aircraft have relatively higher fatal accident rate compared to

other classes of aircraft. Thus, the general aviation community has exerted great efforts

to enhance the general aviation aircraft safety. Although extensive researches have been

conducted to make the aircraft operations safe, most of the safety enhancement techniques

are for large commercial aircraft. Also, safety enhancement techniques for GA requires

additional cost for acquiring additional devices such as flight data recorder. To bring the

benefits of the aircraft safety enhancement system to the GA field, it is essential to have

a good understanding of the uniqueness of the GA. The benefits of aviation safety man-

agement and enhancement programs can be maximized when the programs are flexible

enough to reflect the uniqueness of GA operations adequately. Given the requirements for

GA aircraft safety, this study established a research goal that is to provide more effective

methods for evaluating the operational safety of a fixed-wing GA aircraft using an aero-

dynamic performance model and flight data noise removal techniques. This fundamental

goal leads to the following sub-goals. First, this research aims to develop a realistic and

accurate aerodynamic performance model that is computationally affordable and compo-

sitionally flexible so that this modeling method can be utilized by any GA aircraft users

capturing the characteristics of each aircraft. Also, this study proposes an effective noise

removal technique for the purpose of obtaining clean and credible flight information for the

operational safety assessment process. Finally, using the developed reliable aerodynamic
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performance model and filtered clean flight data, this work suggests an idea of evaluating

flight performance safety of a GA fixed-wing aircraft using flexible standard performance

envelopes and a quantitative safety assessment metric.

To achieve the first research goal which is to develop a realistic and accurate aerody-

namic performance model, this study provides a flexible aerodynamic modeling methodol-

ogy for a GA fixed-wing aircraft considering the nature of GA operations. The necessary

fidelity level of the aerodynamic model is defined as the capability of predicting its flap

activity during flight. As the first step for developing an aerodynamic model that meets the

necessary level of fidelity, this study introduces an improved theoretical modeling approach

not only using a single theoretical modeling method but also evaluating, comparing, and

combining all the possible modeling methods. Based on the developed theoretical model,

this study enhances the accuracy of the aerodynamic model by optimizing the shape of the

model curves with shape modification factors and actual flight data. For generating realistic

flight data for the data-driven modeling process, this study suggests several strategic flight

maneuvers, then utilizes the flight data obtained from the suggested flight maneuvers. It

is proven that using the final outcome of this data-driven modeling process, the developed

aerodynamic model can estimate the flap activity during flight with high accuracy. Given

the accurate aerodynamic model, it is tested that the discrepancy between modeled aero-

dynamic coefficients and data-driven calculated aerodynamic coefficient can indicate the

proximity to stall. Finally, this study provides an aircraft performance modeling method

that can generate a not only flexible but also accurate performance model, which can predict

and capture the aircraft aerodynamic behavior in any operational conditions.

The second goal of this study is to develop a methodology that can effectively remove

any data noise and improve the quality of the flight data records for flight data-driven GA

safety enhancement programs. As the role of flight data in aviation safety enhancement

programs becomes increasingly important, this study ensures clean flight data to achieve

the goal of the programs. When the number of data parameters is insufficient as in the flight
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data record in GA aircraft, the flight data quality should be considered more important be-

cause data parameter conversion process amplifies the power of data noise. To solve this

problem, this study introduces the HADaR (Hybrid Approach for Data-noise Reduction)

method which is designed for filtering data noise in flight data records. The first process

of the HADaR method is identifying important flight data parameters and grouping the pa-

rameters by six categories considering their measuring devices. It is assumed here that data

noise characteristics are dependent on their measuring types. The next step of this method

is to survey and investigate various data noise filtering techniques in both time-domain and

frequency-domain. In this study, three techniques in the time domain, and two techniques

in the frequency domain are utilized with two different levels of filtering intensity factors

for each technique. Based on the selected parameters and data noise filtering techniques,

this method populates the noise filtering cases using the full factorial method to investi-

gate all possible combinations. To select the best case in the developed combinations, this

method uses the noise filtering effectiveness metric, named FEV, which examines the errors

between data-driven aerodynamic coefficients and modeled aerodynamic coefficients con-

sidering the magnitude of the error, the variation of the error and noise power in the dataset.

This method considers the modeled values as the reference data because the modeled val-

ues can be considered as the true behavior of the aircraft, and that should not be affected

by the data noise filtering process. In the end, this method selects the case that yields the

minimum FEV, and it means that the selected data noise filtering combination can remove

the noise most effectively with less probability of losing true behavior of the aircraft. After

the experiment, it is shown that data noise filtering process can worsen the result, so noise

filtering techniques have to be utilized appropriately. Finally, this study suggests that the

HADaR method can be applied to further flight data analysis to improve the credibility of

the data-driven analysis result.

The ultimate goal of this study to develop a safety enhancement methodology for a GA

fixed-wing aircraft using the developed reliable aerodynamic performance model and the
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clean flight data. Thus, the last part of this study suggests a procedure for flight safety

assessment that utilizes flexible standard performance envelopes and a quantitative safety

assessment metric for the safety evaluation. First of all, this study provides a way of estab-

lishing the flexible standard performance envelopes for a particular flight data parameter by

observing a large number of flight data records. The basic foundation of the flexible stan-

dard performance envelopes is that any abnormal flight or event within the large dataset can

be considered as an event that has a higher possibility of being unsafe. Besides, this study

suggests a quantitative safety evaluation metric, the Cumulative Landing and Approach

Safety Score (CLASS), to measure the abnormality of the data parameters of the flight

compared to the other flights that have contributed to forming the standard envelope. The

CLASS provides intuitive and useful information for the safety evaluation process because

direct comparisons between different parameters are available with this metric. Using the

developed performance envelope and the CLASS metric, this study demonstrates that a

specific flight and their flight data parameters can be quantitatively determined if the flight

has any abnormal exceedances during the flight during its approach and landing phases of

flight. The quantitative analysis is available due to the CLASS that can detect risky events

for any parameters when the performance envelopes and their boundaries for the parameters

are given. Also, this study examines how data noise can affect the flight safety assessment

results by comparing the CLASS values obtained from raw and noise-filtered data. Finally,

this experiment demonstrates that applying the HADaR method can provide more reliable

safety assessment results and this can be quantitatively judged using the CLASS metric.

In summary, this study reveals that the suggested data-driven aerodynamic modeling

method and the HADaR method are capable of providing more credible information to-

ward the GA safety assessment work. For the aviation safety enhancement efforts to be

flexible, precise aircraft performance models and clean flight data have to be appropriately

obtained and used. Furthermore, a proper data noise filtering method that is specific to GA

flight data and an appropriate data collection procedure is required for improving the relia-
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bility of data-driven safety analysis programs. Finally, this study provides a way to satisfy

the above-mentioned requirements for the GA safety enhancement programs by harmoniz-

ing the accurate performance model and the cleaned flight data Therefore, this research is

expected to positively contribute to GA safety enhancement by introducing a quantitative

safety assessment and monitoring methodology to the GA safety field.

7.2 Contributions

The primary contribution of this research is the quantitative flight safety assessment

and monitoring methodology for GA operations. In particular, this study allows GA safety

analysts or GA users to develop the standard flight performance envelopes that are most

appropriate for their operational condition or the aircraft they utilize. The standard flight

performance envelopes developed by the method provided in this study serve as a criterion

for judging or assessing the GA flight safety. This study provides a quantitative safety

assessment metric, the CLASS. The quantitative metric suggested by this study provides

a means of objectively determining the safety of not only a GA aircraft but also any other

type of aircraft. Therefore, this study contributes to the evaluation of GA flight safety using

the suggested performance envelopes and the quantitative safety assessment metric.

Furthermore, this study contributes to more precise and flexible information at the flight

planning stage. One of the most important information used in the flight planning stage is

the aerodynamic performance information of the aircraft. The aerodynamic model de-

veloped using the proposed data-driven aerodynamic modeling process can provide the

information reflecting the characteristics of a particular aircraft. Because this information

reflects the characteristics of a particular aircraft, the flight plan established with this in-

formation will further ensure the safety of the flight. A possible outcome of this research

contribution can be a form of smart device applications that enables GA stakeholders or

GA aircraft users to have more reliable flight data monitoring results and more accurate

flight operation plans.
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Finally, the HADaR method suggested in this study contributes to improving the re-

liability of the results from data-driven GA safety enhancement programs. It is evident

that the results from data-driven analysis programs are highly dependent on the quality of

the data being utilized in the process. Considering the importance of the aviation safety-

related result, the reliability of the result should be improved by enhancing the quality of

the data. Thus, this study provides GA safety stakeholders a methodology for incorporating

appropriate data noise filtering techniques into their safety assessment process.

To sum up, the ultimate contribution of this study is the formulation and demonstra-

tion of a quantitative data-driven GA safety assessment methodology. The flexible and

reliable aircraft performance model and the accuracy-enhanced flight data records support

the proposed safety assessment methodology. Eventually, this research will contribute to

improving GA aircraft safety by closing the existing gap that current safety enhancement

programs have such as lack of reliable flight data and absence of flexible aircraft perfor-

mance information.

7.3 Recommendations

This study suggested a methodology for improving the safety of GA and provided a

way to satisfy the requirements for achieving this goal, then successfully demonstrated its

applicability. The suggested GA safety enhancement methodology can be further improved

when the predictive capability is incorporated in the GA safety assessment work. As dis-

cussed earlier, the crucial parameters that represent the aircraft’s flight safety are selected

and investigated using the CLASS metric. Revealing the relation between landing per-

formance indicators and approach performance indicators can maximize the benefit of the

suggested assessment methodology. Appropriate machine learning techniques are expected

to reveal the relation, and approach and landing simulation experiments can be used to ob-

tain data necessary for machine learning techniques. Once machine running techniques

reveal the relationship between the approach parameters and the touch-down parameters,
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the GA safety assessment method will be more useful because of its predictability obtained

from the knowledge about the relationship.

Furthermore, the advantages of the data-driven aerodynamic modeling suggested in this

study can provide benefits to GA aircraft users as a flexible flight planning tool. The exist-

ing flight planning tools are widely used in the GA community, but these tools utilize the

aircraft performance tables provided by the aircraft manufacturer. In this study, it is shown

that the suggested data-driven modeling methodology can provide more flexibility to the

aerodynamic performance models. Thus, the data-driven aerodynamic models developed

through the proposed methodology in this study can practically benefit the GA users if the

advantages of the developed model in this study are transformed into a user-specific perfor-

mance table or a flight planning tool. If this user-specific flight planning tool is practically

realized as a type of mobile applications, it is one example of the case in which this study

actually contributes to improving aviation safety.

Also, the developed quantitative safety evaluation metric, the CLASS, can be used for

educational purposes. Since the CLASS is a metric that can measure how safely the aircraft

performed within the normal operating range, it is another form of the scores that can be

used to asses student pilots performance at pilot training schools. In addition, the safety or

abnormality assessment method for GA operation suggested in this study can be connected

with the performance models and cleaned flight data to investigate and mitigate the actual

causes of the abnormal events detected by this method. This effort to find the exact causes

of the detected abnormal performances requires more information about unknown pilot in-

puts. Thus, a flight simulator environment supported by accurate and realistic performance

models can provide useful information for further improvement of this method.
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APPENDIX A

THEORETICAL AERODYNAMIC MODELING EQUATIONS

A.0.1 Overview

The aerodynamic model consists of lift and drag models for flap-up condition and flap-

down condition. Thus, the theoretical aerodynamic modeling process can be divided into

four parts: lift curve modeling for clean configuration, lift curve modeling for flap-deployed

configuration, drag polar for clean configuration, and drag polar for flap-deployed config-

uration. For clean configuration of an aircraft, the lift curve can be modeled in three steps:

2-d airfoil, 3-d wing, and complete aircraft. For flap-deflected configuration of an aircraft,

variation of lift caused by the flap deflection can be estimated using three parameters: lift

increment, lift-curve slope change, and maximum lift-coefficient increment. For the drag

polar of an aircraft in clean configuration, total drag of an aircraft consists of parasite drag

and induced drag that can be modeled in several theoretical methods. For the drag variation

caused by flap settings can be modeled considering profile drag increment, induced drag

increment, and interference drag increment. The following sections summarizes all the

equations for estimating lift curve and drag polar components. Chapter 4 explains provides

detailed information on the equations summarized in this section.

A.0.2 Lift Equations

Flaps-Up

• Zero Lift Angle-of-Attack

• 2-D Airfoil (α0l)

α0l = k(αi −
57.3

2π
Cli) (A.1)
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• 3-D Wing (α0LW )

α0LW =

{
α0l +

(
∆α0

εt

)
εt

}{
(α0l)atM

(α0l)atM=0.3

}
(A.2)

• Aircraft (α0LA)

α0LA = −CL0A

CLαA
(A.3)

CL0A
= CL0Wf

+ CLαhηh
Sh
S

(ih − ε0h) (A.4)

• Lift Curve Slope

• 2-D Airfoil (Clα)

Clα =
1.05

β

(
Clα

(Clα)theory

)
(Clα)theory (A.5)

• 3-D Wing (CLαW )

CLαW =
2πAR

2 +
√

(ARβ
κ

)2(1 +
(tan ΛC/2)2

β2 ) + 4
(A.6)

CLαW =
Clα√

1 +
Clα

(πAR)2
+

Clα
πAR

(A.7)

• Aircraft (CLαA )

CLαA = CLαWf
+ CLαhηh

(
Sh
S

)(
1−

(
dε

dα

))
(A.8)

CLαA = CLαW + CLαh

(
Sh
S

)(
1−

(
dε

dα

))
(A.9)
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CLαA = CLαW

(
Sexposed
Sref

)
F (A.10)

• Angle-of-Attack Limit for Linear Range

• 2-D Airfoil (α*) & 3-D Wing (α*
W )

α∗ = α*
W = α0 +

Clmax − 0.3

Clα

(
180

π

)
(A.11)

• Aircraft (α*
A)

α∗
A = α∗

W − iW (A.12)

• Angle-of-Attack for Maximum Lift Coefficient

• 2-D Airfoil (αClmax )

αClmax = α∗ +
0.39

Clα

(
180

π

)
(A.13)

• 3-D Wing ((αCLmax)W )

(αCLmax)W =
CLmaxW
CLαW

+ α0LW + ∆αstall (A.14)

• Aircraft ((αCLmax)A)

(αCLmax)A = (αCLmax)W − iW −∆αW/C (A.15)

• Maximum Lift Coefficient

• 2-D Airfoil (Clmax)

Clmax = Clmaxbase+Clmaxcamber+Clmaxthickness+ClmaxReynolds+Clmaxroughness+ClmaxMach

(A.16)

179



• 3-D Wing (CLmaxW )

CLmaxW =
CLmaxW
Clmax

Clmax + ∆CLmaxW (A.17)

• Aircraft (CLmaxA )

CLmaxA = CLmaxW−CLαWf
∆αW/C+CLαh

(sh
s

){(
αCLmax

)
A

(
1− dε

dα
− ε0h

)
+ ih

}
(A.18)

Flaps-Down

• Lift Increment

• 2-D Airfoil (∆Cl)

∆Cl = Clααδδf (A.19)

• 3-D Wing (∆CLW )

∆CLW = kb∆Cl

(
CLαW
Clα

)(
αδCL
δCl

)
(A.20)

• Aircraft (∆CLA)

∆CLA = ∆CLW + kWh
Sh
S

∆CLh − CLαhηh
Sh
S

∆εf (A.21)

• Lift Curve Slope Change

• 2-D Airfoil ((Clα)δ)

(Clα)δ =
c
′

c
Clα (A.22)
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• 3-D Wing ((CLαW )δ)

(CLαW )δ = CLαW

{
1 +

(
c
′

c
− 1

)
SWf

S

}
(A.23)

• Aircraft ((CLαA )δ)

(CLαA )δ = kWh(CLαW )δ + CLαhηh
Sh
S

{
1− (

dε

dα
)δ

}
(A.24)

• Maximum Lift Coefficient Increment

• 2-D Airfoil (∆Clmax)

∆Clmax = k1k2k3(∆Clmax)base (A.25)

• 3-D Wing (∆CLmaxW )

∆CLmaxW = ∆Clmax
SWf

S
k∆ (A.26)

• Aircraft (∆CLmaxA )

∆CLmaxA = (∆CLmaxW ) + CLαh
Sh
S

{
(1− dε

dα
) + ih −∆εf

}
(A.27)
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A.0.3 Drag Equations

Flaps-Up

• Parasite Drag (Zero-Lift Drag)

• Equivalent Skin-Friction Method

CD0 = CDmin = Cfe

(
Swet
Sref

)
(A.28)

• Component Buildup Method

CD0 = CDmin =

∑
(CfcFFcQcSwetc)

Sref
+ CDmisc + CDL&P

(A.29)

• Extracting Drag from L/Dmax Information

CD0 = CDmin =
CLBG

(L/D)max
− (CLBG)2

πARe
(A.30)

• Induced Drag

• Oswald Span Efficiency Method

K =
1

πARe
(A.31)

• Leading Edge Suction Method

K = SCK100 + (1− SC)K0 (A.32)
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Flaps-Down

• Drag Increment

• Flap Profile Drag Increment

∆CDp = ∆Cdp cos(Λc/4)

(
Swf
S

)
(A.33)

• Induced Drag Increment

∆CDi = K2
(
∆CLflap

)2
cos(Λc/4) (A.34)

• Interference Drag Increment

∆CDint = Kint∆CDp (A.35)

• Total aircraft Drag Increment

∆CDflap = ∆CDp + ∆CDi + ∆CDint (A.36)
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APPENDIX B

FLIGHT MANEUVER CARDS FOR FLIGHT DATA COLLECTION

One of the advantages of GA operation is that generating data is relatively easy. In order

to obtain realistic and use-specific information, this study suggests a set of flight maneuvers

which consists of five different phases: low altitude cruise, climb, high altitude cruise, slow

flight and stall recovery, and simulated go-around flight. The suggested flight comprised

two complete cycles of the flap (0-10-20-30-20-10-0 deg) at two distinct altitudes separated

by a full-power climb. Thereafter, the flaps were used during a transition to slow flight

followed by a simulated rectangular pattern entry at altitude. The Garmin G1000 data log

corresponding to this flight has been verified to ensure that the test flight is acceptable. Flap

operation during the flight was noted by the flight crew using the NAV1 frequency, which

is logged by the G1000 system. The following figures are the flight test cards that describe

the suggested flight maneuvers. Based on this flight cards, a partner school has generated

a flight data record. This study has utilized this flight data in the data-drive aerodynamic

modeling process and the data-noise filtering process.
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Figure B.1: Flight Card - Overview of the Flight
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Figure B.2: Flight Maneuver 1 - Flap Cycle Test during Cruise at 3,000 ft
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Figure B.3: Flight Maneuver 2 - Climb Test from 3,000 ft to 5,500 ft
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Figure B.4: Flight Maneuver 3 - Flap Cycle Test during Cruise at 55,000 ft
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Figure B.5: Flight Maneuver 4 - Slow Flight Test (Stall Recovery)
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Figure B.6: Flight Maneuver 5 - Rectangular Pattern and Go-Around Test
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