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SUMMARY 

Increasing awareness of the negative impacts of pollutant emissions associated 

with combustion is driving increasingly stringent regulatory limits. In particular, oxides 

of nitrogen, generally referred to as NOx, now face strict limits. These restrictions have 

driven development of cleaner burning combustion systems. Because NOx formation 

increases significantly at elevated temperatures, one method to reduce NOx emissions is 

to burn the fuel at lower temperatures. By premixing the fuel and oxidizer prior to 

combustion significantly lower flame temperatures can be achieved, with corresponding 

reductions in NOx emissions. Unfortunately, premixed combustion systems are generally 

more prone to potentially problematic feedback between the unsteady heat release from 

the flame and unsteady pressure oscillations. This self-excited feedback loop is known as 

combustion instability. Because these oscillations are associated with unsteady pressure 

fluctuations they can degrade system performance, limit operability, and even lead to 

catastrophic failure. Understanding combustion instability is the primary motivation for 

the work presented in this thesis. 

 The interaction of quasi-coherent and turbulent flame disturbances changes the 

spatio-temporal flame dynamics and turbulent flame speed, yet this interaction is not 

fully understood. Therefore, this thesis concentrates on identifying, understanding, and 

modeling these interactions. In order to address this topic, two primary avenues of 

research are followed: development and validation of a flame position model and 

experimental investigations of predicted ensemble-averaged flame speed sensitivity to 

flame curvature.  
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First, a reduced order modeling approach for turbulent premixed flames is 

presented, based on the ensemble-averaged flame governing equation proposed by Shin 

and Lieuwen [1].  The turbulent modeling method is based on the G-equation approach 

used in laminar flame position and heat release studies. In order to capture the 

dependence of the ensemble-averaged turbulent flame speed on the ensemble-averaged 

flame curvature, the turbulent flame model incorporates a flame speed closure proposed 

by Shin and Lieuwen [1]. Application of the G-equation approach in different coordinate 

systems requires the inclusion of time-varying integration limits when calculating global 

flame area. This issue is discussed and the necessary corrections derived. Next, the 

reduced order turbulent modeling approach is validated by comparison with three-

dimensional simulations of premixed flames, for both flame position and heat release 

response. The reduced order model is the linearized, in order to develop fully analytical 

flame position and heat release expressions. The use of the flame speed closure is shown 

to capture nonlinear effects associated with kinematic restoration.  

Second, the development of and results from a novel experimental facility are 

described. This facility has the capability to subject premixed flames to simultaneous 

broadband turbulent fluctuations and narrowband coherent fluctuations, which are 

introduced on the flame through the use of an oscillating flame holder. Mie scattering 

images are used to identify the instantaneous flame edge position, while simultaneous 

high speed PIV measurements provide flow field information.  

Results from this experimental investigation include analysis of the ensemble-

averaged flame dynamics, the ensemble-averaged turbulent displacement speed, the local 

ensemble-averaged area and consumption speed, and the dependence of both the 
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displacement speed and consumption speed on the ensemble-averaged flame curvature. 

Finally, the flame speed sensitivity to curvature is quantified through calculation of the 

normalized turbulent Markstein displacement and consumption numbers.  

The results show that the amplitude of coherent flame wrinkles generally 

decreases with both downstream distance and increasing turbulence intensity, providing 

the first experimental validation of previous isothermal results. The average displacement 

and consumption speeds increase with downstream distance and turbulence intensity, 

reflecting the increasing wrinkled flame surface. The ensemble-averaged, phase 

dependent displacement and consumption speeds demonstrate clear modulation with the 

shape of the ensemble-averaged flame. Specifically, these turbulent flame speeds increase 

in regions of negative curvature. For both the displacement and consumption speed, the 

magnitude of the normalized turbulent Markstein length increases with ratio of the 

turbulent flame wrinkling length to the coherent wrinkling length when 0 2.5Lu S  . For 

0 2.5Lu S  the trends are less clear due to the presence of convecting disturbances which 

introduce additional fine scale wrinkles on the flame. 

Together the results presented in this thesis provide a foundation for modeling 

turbulent flames in the presence of quasi-coherent disturbances. The flame position can 

be modeled using the ensemble-averaged governing equation with the dynamical flame 

speed closure, and the corresponding heat release can be calculated from the turbulent 

consumption speed closure. The turbulent Markstein numbers and uncurved flame speed 

may be extracted from experimental or numerical data. 
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.  INTRODUCTION 

1.1 Motivation 

The ability to control and use fire for cooking, warmth, light, and protection 

marks a distinct turning point in the development of human civilization. The use of fire 

by early hominins dates at least to one million years ago, and possibly as long ago as 1.9 

million years ago [2]. In fact, it is hypothesized that cooking food may have provided the 

necessary caloric requirements which enabled the evolution of modern human 

intelligence in early hominins [3].  

More recently, modern humans used fire for the extraction and forming of metals. 

Although the exact location and date of the first extractive metallurgy is (apparently) 

contentiously debated, there is evidence of early copper smelting at least as long ago as 

7,000 years, near what is now Belovode, in Eastern Serbia [4]. Later use of combustion 

for metals production allowed the development of bronze, iron, and eventually steel and 

other metals. 

The advent of the industrial revolution in the mid eighteenth century expanded the 

role of fire and combustion from heating, cooking, light, and smelting to that of an 

industrial power source. Coal gradually replaced wood and charcoal for metals 

production, heating, and other uses such as salt production, brewing, and soap-boiling [5]. 

After the invention of the steam engine, the use of steam power came to replace water 

and wind power as a primary industrial mover. Further development of the steam engine 

set the stage for a revolution in transportation in the form of the first steam driven 

railways and ships. Although the first patent for a gas turbine was also granted during this 
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period (to John Barber, in 1791), it would be more than a century before practical gas 

turbines were developed [6]. 

The importance of combustion further expanded with the invention of the first 

internal combustion engines and the development of the modern gas turbine engine. 

Although Frank Whittle’s 1930 patent for the first successful gas turbine was intended for 

aircraft propulsion [7], it was only nine years later, in 1939, that the first electrical power 

generation gas turbine, providing 4 MWe, was installed in Neuchâtel, Switzerland. 

Amazingly, this gas turbine set ran until 2002 when the generator broke, and has since 

been restored as an ASME landmark [6].  

Gas turbines are now widely used for aircraft propulsion (i.e. jet and turboshaft 

engines), marine propulsion, to drive pipeline pumps and other industrial applications, 

and have even been used to power automobiles and motorcycles [8]. In addition, gas 

turbines now provide the majority of the electricity generated in the United States. 

1.1.1 Environmental Concerns 

Despite the great value and utility provided by combustion, growth in the use of 

combustion systems as a source of motive and industrial power has, unfortunately, also 

resulted in significant environmental degradation due to pollutant emissions. For gas 

turbines, the air pollutants of most interest include NOx (primarily NO, NO2, and other 

oxides of nitrogen), unburned hydrocarbons (UHC), particulate matter (i.e. smoke) and 

CO. In addition, carbon dioxide (CO2) is of significant concern in regard to global 

climate change [9, 10]. 

Another major potential pollutant from combustion is SOx (i.e oxides of sulphur). 

However, unlike nitrogen, which makes up the bulk of air, the sulphur which reacts to 
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form SOx derives entirely from sulphur in the fuel. Because natural gas contains only 

trace amounts of sulphur and sulphur compounds [9], it is not a significant concern for 

natural gas fueled systems. Similarly, reducing fuel-bound sulphur in aircraft jet fuels 

reduces  SOx emissions from aircraft gas turbines. However, for systems fueled by low-

grade fuel oils, SOx remains a significant pollutant.  

 The demands of a given application constrain gas turbine operating conditions. 

For example, flight gas turbine engines are constrained by the necessity of maintaining 

combustion, at appropriate power levels and with sufficiently fast response time, 

throughout different phases of the flight as well as preserving engine re-light ability 

should the engine flameout. These demands result in variations in fuel-to-air ratio, 

pressure, temperature, and residence time across the operational envelope, which can 

cause increased pollutant emissions. Similarly, the use of gas turbines in ground-based 

power generation for load following can require fast power ramp up and operation at off-

design conditions.  

These primary engine use constraints complicate emissions reduction. For 

instance, formation of particulate emissions and NOx increases during high-power 

conditions (i.e. during takeoff), and although modern aircraft gas turbine engines do not 

emit visible smoke trails, particulate emissions remain of significant concern. Conversely, 

CO and UHC emissions are most significant at low power conditions [11].  

The production and emission of UHCs, particulate matter, CO, and NOx are all 

functions of the design of the combustion system. However, although control and 

mitigation of each of these pollutants remains important, the motivation for this thesis 

stems most directly from efforts to limit NOx emissions. Therefore, the following 
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discussion is limited to NOx-related health and environmental effects, abatement 

strategies, and implications on combustor design. 

1.1.2 Effects of NOx Pollution on Health and the Environment 

Nitrogen oxide emissions from combustion are primarily composed of NO (nitric 

oxide), but also includes NO2 (nitrogen dioxide), and N2O (nitrous oxide). Additional 

nitrogen oxides, such as N2O2, N2O3, N2O4, and N2O5, may be produced, depending on 

the nitrogen valence state, but are not generally produced in large quantities by 

combustion processes [12]. Generally, NO and NO2 are collectively referred to as NOx. 

These NOx compounds are both primary pollutants (i.e. they have direct, negative 

impacts on the public and environment) and react in the atmosphere with other gases and 

water to produce different, additional pollutants, as shown in Figure 1.1. 

 
Figure 1.1. Atmospheric NOx pathways, from Skalska et al. [13]. 

Once emitted into the environment, NO is readily converted to NO2 by reaction 

with oxygen. Even in low amounts, NO2 has direct health impacts, including acute lung 
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injury, fulminant pulmonary edema, increased likelihood of respiratory and 

cardiovascular diseases, and associated mortality [13]. 

Moreover, a variety of secondary reactions produce an array of additional 

pollutants. Both NO and NO2 dissolve in water (as in clouds) to produce acid rain, which 

in turn may cause deforestation and plant death, with potential impacts on agriculture [12, 

13]. The action of UV sunlight and volatile organic compounds (VOCs), which are also 

produced by UV light, with NOx also causes the formation of photochemical smog. As 

shown in Figure 1.1 NO and NO2 are also involved in the production of ground-level 

ozone, which is a pollutant.  

As well as these direct health and environmental impacts, N2O is a powerful 

greenhouse gas, with a warming effect 270 times stronger than CO2 and a half-life of 100 

to 150 years [13]. Furthermore, while NO and NO2 are involved in the production of 

ground-level ozone, N2O, with its long half-life, can travel to the stratosphere where it 

reacts with and destroys stratospheric ozone, which protects the earth from ionizing 

radiation. 

Clearly, the effects of NOx emissions are manifold and detrimental to human 

health and the environment. As a result, the US Environmental Protection Agency (EPA) 

and other governing bodies have implemented increasingly stringent restrictions for NOx 

emissions. 

1.1.3 Environmental Regulations 

The environmental impact of pollutant emissions from combustion systems, 

including gas turbines, has motived increasingly stringent environmental regulations. In 

the United States, the US Environmental Protection Agency, as required by the Clean Air 
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Act, regulates allowable limits on ambient NO2 levels, which are measured as a proxy 

indicator of overall NOx levels [14].  

Similarly, the European Commission has introduced NOx regulations governing 

members of the European Union [15]. Increasing environmental concerns in China have 

also motivated new limits on NOx emissions from power plants [16]. In the US, the air 

quality regulations are divided into primary and secondary standards. Primary standards 

are intended to protect at risk or sensitive populations, including children, the elderly, or 

individuals with relevant health issues. Secondary standards are intended to protect 

against general environmental degradation and its impacts, such as haze, and weathering 

due to acid rain [14]. These standards are summarized in Table 1.1. 

Table 1.1. NO2 / NOx allowable limits for the United States [14] and Europe [15].  

Regulatory 

Agency 

Averaging 

Period 

Level Form 

US 

Environmental 

Protection 

Agency 

1 Hour* 100 ppb 

98th Percentile of 1-hour daily 

maximum concentrations averaged over 

3 years; Primary Standard 

1 Year 53 ppb 
Annual Mean; Primary and Secondary 

Standard 

European 

Commission 

1 Hour 
200 µg/m3 

(~100 ppb) 
Hourly Mean 

1 Year 
40 µg/m3 

(~19.7 ppb) 
Annual Mean 

 

In the US these regulations have been effective in reducing ambient levels of NOx 

as shown in Figure 1.2. In fact, the measured average concentration of NOx decreased 57% 

between 1980 and 2014 [17], and average values have been consistently below the 

national limit standard since circa 1989. 
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Figure 1.2. NO2 trends in the United States. The white line indicates the annual 98th 

percentile for the daily maximum one hour average, based on 26 sites, reproduced 

from [17]. 

For ground-based, (particularly coal-fueled) power generation systems, post-

combustion exhaust cleaning is widely used to remove SOx, mercury, and other toxic 

pollutants. Indeed, this approach is also used in some cases for NOx abatement, discussed 

in the following section. However, for aircraft propulsion, such post-combustion 

pollution control strategies, which typically require large installations as well as injection 

of additional reducing or sorbent chemicals, are impractical. Thus, pollution mitigation 

for aircraft propulsion has necessitated carefully designed gas turbine combustors which 

attempt to prevent the formation of pollutants, rather than clean them from combustion 

products.  

1.1.4 NOx Formation Pathways 

The formation of NOx occurs through four main chemical pathways. These 

pathways are: 1) the Zeldovich/thermal mechanism, 2) the Fenimore/prompt mechanism, 
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3) the N2O pathway, and 4) the NNH pathway [9, 11]. Furthermore, fuel-bound nitrogen, 

as for coal, can also produce NOx.  

The amount of NO produced by the thermal pathway increases significantly if the 

flame temperature exceeds 1800 K. The rate limiting step in this pathway depends on the 

concentration of atomic oxygen, which is an exponential function of temperature. Note 

that super-equilibrium concentrations of atomic oxygen can be as high as 1000 times the 

equilibrium concentration [9]. Because of the dependence on oxygen concentration, the 

amount of NO produced by this pathway is also, essentially, an exponential function of 

temperature [11] and can increase significantly with atomic oxygen concentration. Yet, 

despite its importance, the thermal pathway may not be the major NOx production 

pathway, particularly for flames with lower peak temperatures (i.e. < 1800K) and low 

residence times. 

A second important pathway is the prompt mechanism, which was discovered due 

to observations of greater than expected NO concentrations at relatively cold locations, 

which is unexplained by the thermal mechanism. This pathway depends primarily on the 

presence of CH radicals which form during hydrocarbon combustion. The CH radicals 

react with molecular nitrogen to form NCN and H. The NCN then reacts with OH and O 

to form NO. Because this mechanism depends on the presence of the CH radical, and 

other hydrocarbon radicals, it is particularly important in fuel rich conditions. This 

mechanism contributes significantly as burning pockets form [18]. For this same reason, 

it is not a significant NO source in post-combustion / downstream regions [11]. 

A third NOx formation route is the N2O pathway, which produces both NO and 

N2O. This pathway is initiated by the reaction of atomic oxygen with molecular nitrogen, 
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forming N2O. The N2O then reacts with atomic oxygen or hydrogen to form two NO 

molecules, or an NO and NH molecule, respectively [11]. This pathway is most important 

for lean, cool flames, because of relatively favorable kinetic formation rates under these 

conditions. Therefore, this pathway may be a significant source of NO in modern, lean-

premixed gas turbines [11]. 

A more recently discovered pathway is the NNH route. The molecule NNH forms 

through the reaction of molecular nitrogen and a hydrogen atom. The NNH subsequently 

reacts with atomic oxygen to form NO and NH. At higher combustion temperatures, 

NNH is consumed by other reaction pathways, and is therefore less available for the 

formation of NO, resulting in a relatively small contribution to total NO formation [11]. 

Yet, combustion modeling with perfectly stirred reactors (PSR) at lean, premixed, pre-

vaporized conditions, indicates that the NNH pathway may come to dominate over the 

other NO formation pathways [18]. 

1.1.5 NOx Mitigation and Limiting Strategies 

Approaches to controlling NOx can be broadly categorized into two strategies: 

those focused on removing NOx from the combustion products by some type of treatment 

of the combustion products and those focused on minimizing NOx production during the 

primary combustion process itself. 

A variety of methods of have been developed to reduce the amount of NO in 

combustion products. These approaches generally require the addition of some reacting 

agent. For example, one approach is to chemically reduce NOx by the use of fuel 

reburning, whereby additional fuel is introduced into the primary combustion products. 

This fuel forms hydrocarbon radicals through reactions with oxygen, and these radicals 
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reduce NO to N2 and HCN [19]. Alternatively, selective catalytic and selective non-

catalytic schemes reduce NO to N2 by the use of a catalyst or addition of a reacting agent 

(such as urea or ammonia), respectively [11]. Another approach is to oxidize NOx 

compounds by introduction of ozone, a catalyst or other oxidizing agent into N2O5, which 

is more easily removed [12].  

Two additional methods are to simply remove the nitrogen from the oxidizer and 

burn the fuel in a pure oxygen environment. However, this results in very high 

combustion temperatures which then require cooling / quenching. If the quenching agent 

contains nitrogen, NO may still be formed. Lastly, NOx compounds can be sequestered 

from combustion products using chemicals (sorbents) which absorb NOx compounds, 

similar to post-combustion flue gas processing used to remove SOx compounds. 

Interestingly, it is sometimes possible to process the used sorbent materials into saleable 

materials [12]. 

The second type NOx control strategy aims to prevent the formation of NO during 

the primary combustion process. As discussed in Section 1.1.4 above, and shown in 

Figure 1.3, the formation of NO (and NOx) during combustion depends strongly on 

temperature. Thus, an obvious approach to reducing NOx emissions is to reduce the 

maximum combustion temperature, or reduce residence time at maximum temperature 

[11, 12]. As will be discussed further below, reduction of peak temperature is the NOx 

abatement method underpinning the motivation for this thesis.  
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Figure 1.3. NOx and CO emissions versus temperature and normalized fuel-to-air 

ratio. PB indicates the degree of premixing, from Gokulakrishnan and Klassen [11], 

originally in [20]. 

A variety of methods are available for lowering peak combustion temperatures, 

particularly in ground-based applications. A straightforward approach is to inject an 

energy diluting agent, such as water, steam, or cooled exhaust gas recirculation (EGR) 

[12]. However, injection of water (or steam) can result in reduced efficiencies, and 

erosion on downstream components. Both EGR and water injection may result in 

increased CO emissions due to premature quenching during CO burnout [21, 22]. 

A widely used approach to reducing peak combustion temperatures is to operate 

at either lean or rich conditions, thereby avoiding the highest combustion temperatures 

which occur near stoichiometric equivalence ratios. This approach has been used in 

aircraft combustors in a scheme known as Rich-Quench-Lean (RQL). RQL combustors 

are designed so that at low power conditions the front of the combustor is near a 
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stoichiometric equivalence ratio, which helps to prevent blowout. Diluting air is added 

through liner holes downstream. At high power, the equivalence ratio in the front end of 

the combustor shifts to a fuel rich condition, with an equivalence ratio near two, and thus 

a lower peak temperature. The downstream addition of quenching air through the liner 

holes allows complete combustion. The additional air also increases the temperature, and 

thus NO formation, but because of the fast mixing, the residence time at this temperature 

is short, thereby limiting overall NOx formation [10]. 

A conceptually related approach known as air staging manipulates the amount of 

air at different operational points in order to control temperature and pollutant formation. 

Similarly, it is also possible to manipulate the addition of fuel to avoid peak temperatures 

and chemistries which produce the greatest NOx formation [23]. These approaches often 

incorporate active controls to adjust fuel and air streams in order to achieve stable 

combustion across the range of operating conditions. 

Although all the approaches discussed above provide a means of reducing NOx 

emissions, many have specific drawbacks as well. For instance, the use of reducing 

agents or selective catalytic and non-catalytic approaches have inherent cost and 

durability issues. The RQL approach may produce excess soot and particulate matter. The 

drawbacks with these approaches, increasingly strict environmental regulations, and the 

growth in the use of gas turbines for electrical power generation, have motivated 

continued work to develop superior methods for NOx. One approach, now widely used 

with ground-based power generation is the use of lean, premixed combustion (LPM). 

In LPM combustion systems the fuel, if gaseous, is mixed with the oxidizer 

(typically air) before reaching the combustion zone. The advantages of doing so are 
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twofold. First, creating a lean fuel-air mixture lowers the theoretical peak combustion 

temperature. Second, because the fuel-air mixture is fully premixed, there is no 

opportunity for the formation locally stoichiometric or near stoichiometric pockets of 

combustion, with their increased temperature and NOx creation rates [24]. If a liquid fuel 

is used the fuel must be prevaporized also. Doing so brings attendant challenges, and as 

of 2013, there are no airplanes which utilize fully premixed combustion [25]. An 

alternative approach is the use of Lean Direct Injection (LDI), where fuel is injected into 

a highly turbulent region of the flame. If the turbulence time scale is less than the 

chemical time scale it is possible to approach something like LPM [23]. 

The major advantage of LPM combustion systems is that NOx formed through the 

thermal mechanism is essentially eliminated [24]. However, (and it is a large ‘however’, 

however) LPM systems are prone to combustion instability.  

Combustion instability, discussed further in the following section, is a coupling 

between the fluctuating heat release from the flame and one or more acoustic modes in 

the combustion environment, which may occur through a variety of pathways. The 

associated pressure oscillations can increase maintenance expenses, limit operability, 

induce blow-off or flashback, and in some cases cause severe damage of the combustion 

system [26]. Better understanding these instabilities provides the motivation for this 

thesis. 

1.2 The Problem of Combustion Instability 

As introduced above, combustion instability is a spontaneous, self-sustained 

coupling between heat release from a flame and the natural acoustic modes of the 

combustion chamber. This phenomenon has been the focus of significant research efforts 
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over the past fifty years, and more recently has received a particular focus due to its 

frequent, detrimental occurrence in LPM combustion systems.  

There is a large body of research and a number of review articles and books 

which examine combustion noise, combustion dynamics, and instability in detail, such as 

references [26-33]. The following discussion is intended to provide a general background 

and description of the controlling physics of combustion instability. 

1.2.1 A Brief History of Combustion Instability 

The first recorded observation (of which I am aware) that flames will produce 

pure tones in a semi-enclosed chamber occurred in 1777 when hydrogen (only recently 

discovered) flames in glass tubes were observed to produce ‘singing flames’ [34]. Later 

experiments with flames in glass tubes further investigated these curious flame-sound 

interactions and identified a remarkable number of phenomena important to the modern 

study of thermo-acoustic oscillations. For instance, John Tyndall discusses the 

relationship between the natural modes of the combustion chamber and sound produced 

by the flame, the ability to produce half-tones and over-tones of the natural acoustic 

modes, the dependence on the position of the flame in exciting these natural modes, and 

observations of triggering [34]. Similarly, observations of unconfined flames noted the 

pronounced effect of coherent versus incoherent noise (or vibrations) in eliciting a strong 

flame response with unconfined flames [35].  

Perhaps the most significant contribution from this time period in understanding 

these combustion instabilities was made by Lord Rayleigh in 1878, who identified a 

critical relationship between the phase of the heat addition and the phase of the pressure 

oscillation in the production of sustained instability [36]. This relationship can be 
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understood as analogous to a simple harmonic oscillator, such as a pendulum. If a force is 

applied to a pendulum, in the direction the pendulum is moving, as it passes through its 

lowest point the amplitude of oscillation will be increased. Conversely, if the force is in 

the direction opposite to that of the pendulum, the amplitude of oscillation decreases.i In 

the case of a flame in an acoustic field, energy is transferred from the flame to the 

acoustic field when the addition of heat occurs in phase with acoustic pressure 

oscillations above the average pressure (i.e. when the gas is compressed) [36]. This 

criterion is now known as the Rayleigh criterion. If the energy added to the acoustic field 

exceeds or is equal to the dissipative losses, the energy in the acoustic field is sustained 

or grows in time, respectively [26]. 

An extended version of this criterion may be expressed mathematically as:  

      , , ,i
iVT VT

q x t p x t dtdV x t dtdV    L .  (1.1) 

Here, p’ is the unsteady pressure oscillation, q’ is the unsteady heat fluctuation, x, is the 

spatial location, t is the time, V is the volume of the domain, and T is the period of the 

harmonic oscillations. Li are the losses associated with a given dissipative path, such as 

viscous dissipation, convection outside of the combustor environment, and sound emitted 

[26]. Note that the left hand side of Equation (1.1) is the mathematical expression of 

Rayleigh’s criterion (i.e. energy transfer from the flame to the acoustic field), while the 

inequality and right hand side provide the necessary requirement for growth in the 

magnitude of the acoustic oscillations (i.e. energy transfer into the acoustic field must be 

greater than losses). 

                                                 

i This may be simply demonstrated using your pocket watch. 
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 The issue of combustion instability moved from arcane if interesting observations 

of flames in tubes to one of practical necessity as the power of combustion devices 

increased. In addition to LPM gas turbine systems, combustion instability has been 

observed in liquid and solid rocket motors, jet engine afterburners, and various industrial 

burners [26].  

One of the best known examples of combustion instability occurred in the famed 

F-1 liquid-fueled rocket engine, which powered the first stage of the Apollo moon rocket. 

This rocket engine experienced serious combustion instability problems. Lacking a 

detailed understanding of the combustion instability, engineers performed approximately 

2000 full scale tests specifically to address the problem. Different combinations of fuel 

and oxygen injector arrangements and baffles added to the injector face were tried (see 

Figure 1.4), in an attempt to dampen velocity and pressure oscillations. In one 

configuration, pressure oscillations of 400% of the mean pressure were observed [37]. 

Needless to say, this type of appraoch is expensive and has motivated research in order to 

better understand and predict combustion instability during the design process. 

 
Figure 1.4. Various baffle arrangements tested in order to mitigate combustion 

instability during development of the F-1 engine, from [37]. 
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Combustion instability has also been an ongoing problem for solid-fueled rocket 

motors, including the space shuttle rocket booster motor, the Sidewinder air to air missile, 

the third stage of the Minuteman ICBM, amongst many others. In some cases, the 

instability is small and may be ignored, but often this is not the case. For example, a 1 psi 

fluctuation for the space shuttle solid rocket booster results in a 33,000 lbf change in 

thrust [38].  

Interestingly, a clear understanding and full description of the causes of the 

combustion instabilities observed in many of the solid-fueled rocket motors, as well as 

for the F-1, was never achieved. Instead, during this period, ad hoc methods, such as 

adding baffles or changing the grain of the solid propellant, often sufficed. Despite these 

past practical accomplishments, the susceptibility of LPM systems to combustion 

instability has driven a widespread effort to develop a deeper understanding of this 

problem, and the ability to predict and avoid combustion instability without performing 

thousands of full scale tests. 

1.2.2 Overview of Combustion Instability Damping Mechanisms and Driving Pathways 

Although Equation (1.1) provides a delightfully concise statement of the 

necessary condition for thermo-acoustic oscillation, a more complete picture of 

combustion instability requires understanding the mechanisms through which fluctuations 

in heat release rate and pressure are related. Two important features contained in 

Equation (1.1) (the extended Rayleigh criterion), which are perhaps not readily obvious, 

are 1) the necessity of alignment between the phases of the heat release and pressure 

fluctuations, and 2) the relative magnitude between additions to and losses from the 

acoustic field.  
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The alignment of heat release and pressure oscillations in phase space is of 

primary importance. Specifically, the absolute value difference between the phase of the 

pressure fluctuation and heat addition must be less than or equal to 90o. Returning to the 

analogy of the pendulum, this is another way of saying that a driving force will increase 

the amplitude of the oscillation only when it is pushing in the direction of the pendulum’s 

motion, rather than against it, in which case the amplitude will decrease. 

The second feature of Equation (1.1) is that the energy added to the acoustic field 

must be greater than losses from it. Because combustion instability is composed of 

thermo-acoustic feedback which occurs at a discrete tone or tones, losses in this context 

imply the transfer of energy out of the discrete frequency of interest within the control 

volume [29]. 

Losses occur through three processes, as discussed in reference [26]. First, 

acoustic energy can bet transferred to entropy modes or into vorticity modes. This occurs 

where the acoustic pressure wave interacts with viscous boundaries, and the no-slip 

boundary condition causes the excitation of vortical disturbances. Additional viscous 

losses occur at points of sharp change in the geometry, similar to the head losses 

encountered with flow separation [39]. In addition, the essentially constant wall 

temperature of a combustor at steady state results in entropy fluctuations where the non-

steady temperature fluctuation associated with the acoustic field impinges on the wall. 

Both of these processes result in a transfer of acoustic energy out of the acoustic field of 

interest and thus constitute a damping process [26].  

Second, acoustic energy can move from one acoustic mode (i.e. a discrete 

frequency) to another acoustic mode. Although the acoustic energy is not strictly being 
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damped in such a process, the overall effect may be one of damping if the mode into 

which the acoustic energy is transferred is not one of the combustor’s unstable or 

amplified modes, in which case it acts as an acoustic energy sink. Alternatively, flame 

flapping and turbulent eddies can transfer narrowband acoustic energy to broadband 

acoustic noise, where it is subsequently dissipated [40, 41].  

Third, acoustic energy can leave the combustor by radiation out of the control 

volume, as is the case for emitted sound. Acoustic energy can also convect out of the 

control volume due to mean flow through the combustor, an effect that increases sharply 

with increasing Mach number. Moreover, end losses are particularly important, and may 

dominate over other types of losses, particularly in short ducts (e.g. combustors) [26, 39].  

Based upon the above discussion, it may appear that description and prediction of 

combustion instability is straightforward: determine heat release and pressures oscillation 

phases and magnitudes and calculate expected losses. Yet, predicting the phasing and 

magnitude of the pressure and heat release oscillations requires detailed knowledge of the 

physical pathways which actually link the heat release and pressure fluctuations and vice-

versa. To a large degree it is these dependencies which represent the thorniest aspects of 

combustion instability. The complexity of these interactions is further increased by the 

introduction of turbulence, which, even by itself, remains an unsolved problem. Despite 

these challenges, great progress has been made in understanding different the various 

sounds generation mechanisms and the effects of acoustic pressure oscillations on heat 

release.  

The dominant source of noise in a gas turbine combustor, at low Mach number, is 

due to the dilation of fluid associated with the heat release during combustion, which acts 
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as a monopole (i.e. directionless) sound source at points along the flame. In unconfined 

flames, the sound produced is generally broadband [42, 43]. However, if the flame is 

confined, such as in a combustion chamber, the broadband noise, which contains 

significant low frequency content due to the effect of coherent structures, may excite the 

longitudinal, transverse, or azimuthal natural acoustic frequencies of the duct or 

convective modes [27, 29, 44].  

Fluctuations in heat release ultimately are caused by fluctuations in flow velocity, 

and thermodynamic variables, such as temperature, density, and pressure. However, it is 

important to note that in general fluctuations in these variables can result from multiple 

sources. For example, a vorticity fluctuation will have components arising from acoustic, 

entropy (i.e. temperature and density), and vortical modes [29]. These different modal 

components are linearly independent. However, there are variety of ways in which they 

can couple and interact with one another. For example, in addition to the noise arising 

from the combustion itself, acoustic fluctuations can also arise when vorticity or entropy 

fluctuations pass through a flame, or when entropy fluctuations, also resulting from 

unsteady heat release, are accelerated through a nozzle (as is often the case in a 

combustor) [27, 29, 45]. 

In many combustion systems, the global flame length scale, Fl , is much smaller 

than the length scale of the acoustic disturbances, /a c f  , where c is the speed of 

sound and f  is the disturbance frequency. When this condition is true, the flame is 

acoustically compact, with respect to the discrete disturbance. Acoustic compactness 

greatly simplifies analysis of the flame because the monopole acoustic excitation 

associated with unsteady heat release is then essentially in phase. That is, the sound 
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generated by the flame losses its spatial dependence, at points far from the flame (i.e. at 

distances much greater than the acoustic wavelength). In contrast, if the flame is not 

acoustically compact, the resulting acoustic field varies spatially, in which case the 

acoustic waves may interfere constructively and destructively [27]. Furthermore, the 

coherent effect of acoustically compact pressure and velocity oscillations can increase 

their ability to modify the flame [28]. 

Figure 1.5 shows a simplified outline of the feedback pathways which give rise to 

combustion instabilities in premixed gas turbine systems. Combustion instabilities result 

from a coupling between driving processes which create acoustic oscillations (shown by 

the red arrow in Figure 1.5) and coupling processes, which link the fluctuations back to 

heat release (shown by the green, yellow, and blue arrows). 

 
Figure 1.5. Simplified outline of feedback pathways leading to combustion 

instability. 

It is important to note the generally large difference in time and length scales 

associated with acoustic and convective disturbances. Acoustic disturbances travel at a 

phase speed equal to the sum of the speed of sound and flow velocity in the direction of 

propagation, while convective disturbances propagate at approximately the speed of the 
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mean flow [27]. Because the convective disturbances do not propagate upstream, it is the 

acoustic field which generally closes the coupling path between convective disturbances 

and heat release. That is, the acoustic disturbance is able to propagate upstream and 

thereby trigger a convective disturbance from a heat release oscillation or, conversely, 

trigger a heat release oscillation from a convective disturbance downstream. Note also 

that the time delay between the point in time where a convective disturbance is excited to 

when it interacts with the flame is much longer than the delay associated with an acoustic 

disturbance [46].  

Moreover, the convective length scale /c u f  is much shorter than the acoustic 

length scale, a , such that even for acoustically compact flames, a convective 

disturbance can retain spatial dependence, with important implications in regard to the 

phase of heat release oscillations [27, 46]. 

Pressure and velocity fluctuations associated with the acoustic field alter the 

flame through two primary mechanisms: by changing the flame reaction rate or heat of 

reaction directly, or indirectly by changing the global geometry of the flame and thereby 

changing the surface area of the flame, which is proportional to heat release. The 

resulting fluctuations in heat release add to the acoustic field if the phase of the unsteady 

heat release and pressure oscillations are within 90 degrees of one another, as discussed 

previously. 

These two primary pathways are furthermore composed of a variety of sub-

pathways, describing specific, individual physical mechanisms. For example, direct 

changes in reaction rate occur when the acoustic wave passes through the flame zone 

because of the velocity, pressure, and temperature disturbances associated with the 



 23 

acoustic oscillation. The temperature and pressure perturbations have a direct effect on 

the burning rate of the flame, and while the magnitude of this effect is small compared to 

that associated with velocity disturbances it is likely to satisfy Rayleigh’s criterion and 

contribute to the acoustic field [27]. Thus, while the magnitude of energy transferred into 

the acoustic field per cycle may be quite small, repeated cycling can quickly amplify the 

disturbance [47]. 

Both velocity and density disturbances associated with the acoustic field alter the 

rate at which reactants are delivered to the flame zone, thereby generating heat release 

fluctuations. Similarly, convective vorticity disturbances can change the local flame 

speed due to the associated velocity disturbance. Wrinkles induced on the flame by these 

vorticity fluctuations also alter the local burning rate due to thermodiffusive stretch 

effects [27, 48] and discussed further in Section 2.1.3. 

In addition to inducing local changes in the burning rate, disturbances associated 

with entropy, vorticity, and pressure fluctuations can have a secondary effect on the 

global flame shape by changing the total flame area and/or flame position. That is, 

changes in flame speed will change the orientation of the flame and the global surface 

area. Because the surface area is proportional to the heat release, these dependencies 

introduce a feedback pathway. Furthermore, flame flapping can contribute significantly 

to area variations, noise production, and heat release oscillations, (including production 

of disturbances at integer multiples of the forcing frequency), when the flame interacts 

with a wall [49]. 

To complicate things further, note that these effects are nonlocal, because changes 

in the flame position induced at an upstream point are convected downstream. In this 



 24 

sense, the flame has a memory of earlier perturbations affecting flame speed and shape, 

and thus the flame response at a given location is the convolution of all upstream flame 

disturbances as well as any local disturbances [29].  

Acoustic pressure oscillations and their associated velocity oscillations can also 

trigger hydrodynamic instabilities. These large scale coherent motions cause flame 

wrinkling and resultant heat release oscillations [42, 50]. Additionally, for dump 

combustors or combustors with bluff bodies, the roll-up of a vortex containing both 

unburned reactants and hot products may produce a surge in heat release when the vortex 

interacts with other vortices or walls and the large-scale structures collapses into finer 

scale turbulence. The frequency of vortex shedding is also affected by the acoustic field, 

which can cause the collective interaction of vortices, lowering the dominant vortex 

frequency [51].  

Finally, acoustic pressure oscillations in the combustor environment can alter the 

ratio of fuel to oxidizer upstream, producing equivalence ratio perturbations [46]. When 

these equivalence ratio perturbations pass through the flame, they alter the heat release 

both directly and indirectly. Locally, equivalence ratio oscillations change the flame 

speed and heat of reaction, producing heat release perturbations. Additionally, due to the 

‘memory’ feature of flames subjected to tangential velocity fields (discussed previously), 

these local perturbations indirectly contribute to heat release oscillations at points 

downstream on the flame by changing the flame shape [29, 46].  

Figure 1.6, adapted from Lieuwen [29], shows a more complete picture of the 

coupling pathways which link perturbations in pressure, velocity, and equivalence ratio to 

heat release oscillations, as described above. Clearly, understanding combustion 
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instability is somewhat more difficult (and conceptually complicated) than simply 

determining the phase of heat release and pressure oscillations, their magnitude and 

phase, and their losses; the devil is in the details. 

 
Figure 1.6. Combustion instability pathways showing the acoustic pressure coupling 

(top left), equivalence ratio coupling (top right), and velocity coupling mechanisms 

(bottom center), adapted from Lieuwen [29]. 

 Many of the models developed to analyze explicit flame dynamics and heat 

release response (including some of the work presented in this thesis) assume small 

perturbation amplitudes so that governing equations can be linearized, greatly simplifying 

the analysis. However, while the use of the linear approximation makes models more 

analytically tractable, such models are not generally able to capture non-linear features, 

including limit cycle amplitudes and nonlinear modal coupling, which occur when 

disturbance amplitudes become non-infinitesimal. Together, these difficulties and the 

complexity of the feedback pathways give rise to a very challenging problem. 
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1.3 Current Work 

The work presented in this thesis aims to improve understanding of the response 

of a premixed flame perturbed by both narrowband harmonic oscillations as well as 

broadband fluctuations associated with a turbulent flow field. As such, the flame response, 

both in terms of the spatio-temporal dynamics of flame itself as well as of the heat release 

dynamics is examined. Because the coherent flame response is obscured by the presence 

of fine scale turbulence, much of the work presented here makes use of what is termed an 

‘ensemble average’, which is equivalent to the phase average, for harmonic functions. 

Chapter 2 provides the background for the following analytical and experimental 

work, with a literature review of relevant background material. First, an overview of 

relevant premixed flame dynamics is given, which includes the laminar flame position 

and heat release response, discussion of the effects of stretch sensitivity, and the 

hydrodynamic flame instability. Next, premixed turbulent combustion regimes are 

reviewed in the context of the current work. Then, previous work examining the 

ensemble-averaged flame response is reviewed. Chapter 2 concludes with a review of 

turbulent flame speed closures, including the ensemble-averaged curvature dependent 

closure used throughout this thesis.  

Chapter 3 begins with an introduction to the G-equation, the fundamental 

analytical tool used throughout the following work to model ensemble-averaged flame 

position dynamics, after which a model for heat release is then developed from the G-

equation flame position model. The implications of the choice of coordinate system when 

integrating the flame to determine surface area are also discussed. A description of the 

numerical code used to simulate turbulent, premixed, flames perturbed by harmonic 
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oscillations of the flame attachment point follows. Numerical results regarding the 

ensemble-averaged, turbulent, flame position, displacement and consumption speeds, and 

their sensitivity to ensemble-averaged curvature is then presented.  

The results of the numerical simulations are compared with those of a reduced 

order model derived from the G-equation. Several linearized reduced order models are 

also developed in Chapter 3. These models are also based on the G-equation, but unlike 

those derived in the first part of Chapter 3, assume small perturbation amplitudes, so that 

the G-equation may be linearized. Two models are developed, which examine different 

forms of harmonic forcing: a convecting, decaying vortex and an oscillating flame 

attachment point. These models provide closed form solutions for the linearized flame 

position and heat release fluctuations. 

Chapter 4 provides a description of the novel experimental facility developed for 

this research. This facility produces a premixed, turbulent flame, anchored on an 

oscillating flame holder. Ensemble-averaged flame shape results are presented for 

different forcing frequencies and mean flow speeds. The flame shape and flow field 

results provide the required inputs for calculations of the turbulent displacement and 

consumption speeds, results of which are given. The dependence of the turbulent 

displacement and consumption speeds on forcing frequency and turbulence intensity is 

examined. A physical mechanism is proposed which explains the observed sensitivity. 

Chapter 5 provides an investigation of the ensemble-averaged turbulent 

consumption speed, based on measurements of the flame surface area. A discussion of 

how the flame areas are extracted is followed by results which show the ensemble-
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averaged consumption speed depends on the ensemble-averaged flame curvature similar 

to the displacement speed examined in Chapter 4. 

Chapter 6 provides a summary of the analytical and experimental work and 

conclusions drawn from it, as well conclusions from this work as a whole. Lastly, some 

unanswered questions and directions for future research are discussed. 



 29 

. BACKGROUND AND LITERATURE REVIEW 

This chapter presents a literature review covering areas relevant to this thesis. 

First, concepts from premixed flames, including the laminar flame response to harmonic 

perturbations, and the laminar flame heat release response are reviewed. Following this, 

stretch effects are reviewed. Next, an introduction to turbulent premixed combustion is 

presented reviewing the different regimes of turbulent combustion. The modeling 

approach (i.e. for the ensemble-averaged flame) which provides the foundation for this 

thesis is then discussed, including previous work investigating the ensemble-averaged 

response of premixed turbulent flames, both in terms of spatio-temporal flame dynamics, 

as well as the heat release response. Finally, a review of turbulent flame speed models is 

given. 

2.1 Overview of Relevant Flame Dynamics 

2.1.1 Flame Position Response 

A significant body or research has focused on understanding the spatio-temporal 

dynamics of laminar flames, and the key physics controlling the local space-time 

dynamics of the flame position [52-58] are well understood. A key parameter 

determining the response of flames to acoustic forcing is the ratio of time scales of the 

acoustic forcing and flame wrinkling convection times. This parameter is often denoted 

as a Strouhal (St) number, defined as 0 f cSt f L u , where cu  is a characteristic 

convective speed on the order of the mean tangential flow velocity. For values of St much 

less than unity, the flame has sufficient time to respond globally to the acoustic forcing. 



 30 

In this case, the flame response is equivalent to the flame response for a steady velocity 

field of the same magnitude, and the flame is said to be ‘quasi-steady’ [29].  

For values of St greater than unity, there is insufficient time for flame wrinkles 

introduced by the flow disturbances to convect out of the domain, resulting in an 

increasingly wrinkled flame with increasing forcing frequency. In this case the flame is 

said to be ‘non-quasi-steady’. For flames subjected to forcing with St much greater than 

unity, significant flame wrinkling can result [55]. In the turbulent case, flames are also 

perturbed by turbulent flow disturbances with a continuum of times scales. However, the 

relationship between the acoustic and convective time scales remains fundamentally the 

same, although the flame length and convection speed may be changed by the 

introduction of turbulence. Because the focus of this thesis is the interaction of coherent / 

acoustic flame disturbances with turbulence, the work presented in this thesis is at 

conditions such that St > 1. Thus, the flames examined here are subject to non-quasi-

steady effects.  

For anchored, premixed flames in tangential flows, the flame response is 

governed by several factors. First, the fact that the flame is anchored prevents significant 

flame response in the nearfield. In this region, the response of the flame to a velocity 

perturbation grows monotonically downstream, and is proportional to the magnitude of 

the velocity disturbance [56].  

Further downstream, the flame response becomes more complicated due to the 

fact that the flame retains a certain memory of disturbances which have occurred 

previously and upstream of the local point [52]. Because the phase speeds of the 

disturbances on the flame and convective flow disturbances may not be equal, the flame 
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response is subject to constructive and destructive interference effects between 

convective disturbances and flame wrinkles [54, 59]. As the convective disturbance 

decays downstream, the amplitude of the flame wrinkles may also decrease [56]. In 

addition, for a laminar or weakly turbulent flame, wrinkle growth or decay will be 

influenced by stretch effects [58, 60], as discussed in next Section 2.1.2. 

Far downstream, the flame response is dominated by kinematic restoration, which 

is the smoothing effect caused by flame propagation normal to itself. As such, it is highly 

nonlinear [57]. This effect is illustrated in Figure 2.1, which shows a schematic of a flame 

at two instances of time, as well as the contour of constant displacement from the initial 

location. 

 
Figure 2.1. Illustration of the kinematic restoration effect, showing how an initially 

wrinkled flame becomes smoother due to propagation normal to itself. The dashed 

black lines indicate a position of constant displacement from the initial flame. The 

maxima (top) of these lines is the flame position. 

At points where the flame is cusped towards the reactants, kinematic restoration 

causes an increase in interference of the flame with itself, annihilation of the flame 

surface, and a resulting reduction in the amplitude of flame wrinkles [56, 57]. These same 

processes are also present in turbulent premixed flames, but the situation is further 

complicated by the interaction between coherent velocity disturbances and stochastic 

disturbances due to the flow turbulence. The nature and effect of this interaction is the 

topic of this thesis and will be discussed further throughout the this work. 
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2.1.2 Laminar Heat Release Response 

In addition to the spatio-temporal flame position dynamics, full characterization 

of the flame response also requires understanding the flames’ heat release response [55, 

60-65]. The magnitude and phase of the heat release in relation to the magnitude and 

phase of the incident velocity perturbation is particularly important. The input-output 

relation between the coherent forcing and the coherent fluctuations heat release is often 

measured or quantified using Equation (2.1), which denotes the global flame describing 

function (FDF) of a premixed flame. For example, the spatially integrated heat release of 

a flame forced by flow disturbances: 

   1 0

1 0

ˆ
 ,

ˆ
d

Q Q
FDF a

u u
    (2.1) 

where the    denotes the Fourier transformed variable,  
1

 indicates a coherent 

fluctuation,  
0

 the mean value, a is the amplitude of coherent excitation, d  is the 

angular driving frequency, Q is the global heat release, 1u  is the coherent velocity 

fluctuation. In the linear, small forcing amplitude limit, the FDF is amplitude 

independent and denoted as the global flame transfer function, FTF.  

As Equation (2.1) shows, the FTF or FDF is the ratio of the normalized heat 

release fluctuation, in the frequency domain, to the normalized velocity or other 

perturbation, where both the heat release and perturbation are normalized by a relevant 

mean or reference quantity. The FTF and/or FDF have been widely investigated for 

laminar flames. For example, Fleifil et al. [55] examined the flame response and laminar 

FTF of a flame in Poiseuille flow, modeling the flow using the level set G-Equation 

approach [66]. 
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Figure 2.2 shows area ratio calculations from Fleifil et al. [55]. Note that if the 

density, heat of reaction per unit mass, and burning speed are assumed constant, these 

factors cancel out of the numerator of Equation (2.1), leaving the normalized area 

fluctuation, as shown in Figure 2.2. One of the key findings of this relatively early study 

is that the global heat release response has a low-pass filter characteristic. That is, the 

magnitude of the heat release response decreases with increasing frequency. This can be 

seen quite clearly in Figure 2.2, and results from the fact that for a fixed velocity, 

increasing the frequency results in decreasing displacement.  

 
Figure 2.2. The flame area ratio (A1/A0) as a function of dimensionless frequency, 

StR, reproduced from Fleifil et al. [55]. 

Numerous works have further developed the methods used by Fleifil et al. [55]. 

For example, later workers used a different method to solve for an explicit expression for 

the FTF and were able to incorporate larger flame anglesii [61]. Prediction of the phase 

characteristics was subsequently improved by considering a non-uniform, convecting 

                                                 

ii  Fleifil et al. [55] assumed the flame angle to be very small in order to obtain an explicit 

expression for the flame position and FTF. 
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velocity disturbance [65]. The approach was then extended to include stretch effects, as 

discussed in Section 2.1.2, which were found to impact the FTF both through changes to 

the flame shape and area, as well as through direct contribution to the heat release due to 

flame speed changes at sufficiently high forcing frequency [60]. Santosh and Sujith 

kinematically coupled the acoustic velocity perturbation with the flame shape, resulting 

in a refinement of the low frequency response prediction [64].  

  
Figure 2.3. Experimentally determined FDF gain for a turbulent premixed, swirl-

stabilized flame at three mean flow velocities, from Jones et al. [67]. 

In addition to these laminar studies, The FTF and/or FDF is what is measured in 

the numerous data now available on the response of premixed turbulent flames, such as 

shown in Figure 2.3, to harmonic forcing [31, 67-70]. The turbulent FTF is the focus of 

Sections 3.3.3 and 3.5. 

2.1.3 Flame Stretch 

Whether laminar or turbulent, premixed flames are subject to hydrodynamic 

stretch and curvature effects, which can change the local burning rates. Flame stretch 
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effects result either from changes in the flow velocity tangential to the flame or, if the 

flame is curved, from the flow and flame velocity normal to the flame. Together, 

hydrodynamic strain and curvature effects are described by the stretch rate,  , for 

weakly stretched flames [29, 71]. 

   t t fu v n n          (2.2) 

Here, tu  is the flow velocity tangential to the flame, fv  is the velocity of the 

flame in the laboratory reference frame, and n  is the normal vector on a point on the 

flame surface. Although termed ‘stretch’, the quantity described by Equation (2.2) can 

also be understood as a normalized rate of change in the local flame area. That is, 

 1 A dA dt   in the Lagrangian framework. Thus, the first term in Equation (2.2) 

describes the proportional rate of change in flame area due to flow gradients along the 

flame, while the second term describes the rate of area change due to changes in the 

radius of curvature of wrinkled portions of the flame. 

Stretch due to either hydrodynamic or curvature effects results in misalignment 

between convective and diffusive fluxes. The impact of this misalignment on the burning 

rate depends on the Lewis number, ,Le  D where   is the molecular thermal 

diffusivity, and D is the mass diffusivity, typically of the deficient reactant. To illustrate 

this effect consider Figure 2.4, reproduced from Lieuwen [29], which shows examples of 

flame stretch due to curvature and flame stretch due flow strain. 
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Figure 2.4. Effect of curvature (left) and hydrodynamic stretch (right) in creating 

misalignment between convective and diffusive fluxes. The black solid arrows 

indicate the edge of the streamtube, adapted from [29]. 

If thermal diffusivity is greater than molecular diffusivity (i.e. 1Le  ) a negatively 

stretched flame (Figure 2.4, left) experiences a net positive flux of energy into the preheat 

zone and the reactants arriving at the flame, while a positively stretched flame (Figure 2.4, 

right) will experience a net loss of energy. This gain or loss of energy from the preheat 

zone results in a change in the flame temperature, which alters the flame speed. Note that 

the effects are reversed for a Lewis number less than unity. 

The effect of stretch on the laminar flame speed is often modeled simply using 

either a Markstein length [58], denoted as ML , or Markstein number, M , i.e.: 

 0

L L MS S  L  (2.3) 

This equation is often recast in a non-dimensional form by dividing and multiplying the 

Markstein length and stretch rate by the flame thickness. The stretch rate,  , is a flow 

time scale. Thus, this results in dependence on the Karlovitz number (Ka), discussed in 

Section 2.2, i.e.: 

  0 0

0
1 1M F

L L L M

F L

S S S Ka
S




 
    

 

l
l
L

  (2.4) 



 37 

The Markstein number (or length) can be measured from experiments [72, 73] or 

computations [74]. In addition, analytical models for the Markstein number have been 

derived. For example, Groot et. al [74] expanded upon Chung and Law’s [75] integral 

analysis, and split the Markstein number, for weakly stretched flames, into contributions 

due to stretch and curvature. They showed that while the total Markstein number and the 

curvature Markstein numbers are uniquely defined in terms of unstretched quantities, the 

strain Markstein number is not unique (i.e. it varies along the flame and with the specific 

combustion conditions and geometry). Other workers [76, 77] have examined stretch and 

curvature sensitivity of premixed flames using asymptotic analysis methods (i.e. 

assuming high activation energy kinetics), finding modification of the flame speed with 

flame stretch. DNS has been used to investigate unsteady effects on Markstein number 

[78]. 

Note also, that while the Markstein number provides a convenient approach to 

modeling stretch effects, it must be used with care because it depends on the iso-surface 

used to define the relevant quantities. Nonetheless, the simplicity of the Markstein length 

/ number approach provides a convenient tool for analytical examination of stretch and 

curvature effects. 

2.1.4 Additional Considerations in Turbulent, Premixed Flames 

Because turbulent flames in the corrugated flamelets regime are subject to high 

curvatures and stretching, these thermo-diffusive effects can potentially alter the 

turbulent burning velocity [28, 79]. In fact, there is evidence that thermal-diffusive 

effects may be important even at moderate and high turbulence intensity  0

Lu S  values 
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[79, 80], particularly in hydrogen fueled flames but also possibly for methane-air flames 

[79, 81, 82]. The interaction of turbulence and Lewis number effects is more pronounced 

in thermo-diffusively unstable flames where it leads to an increased flame surface area. 

Therefore, for the range of turbulence intensities and reactant composition (lean methane-

air) in this work, thermo-diffusive effects are expected to have a small to negligible 

impact on the turbulent flame propagation speed and/or its response to curvature because 

lean methane-air flames have a positive Markstein number, as shown in Figure 2.5, (i.e. 

they are thermo-diffusively stable) [83, 84].  

 
Figure 2.5. Laminar Markstein number for methane-air flames as a function of 

equivalence ratio, ϕ, at standard temperature and pressure. Reproduced from 

Tseng et al. [84]. 

However, because the degree to which these effects change turbulent flame 

properties, and particularly how they change the response of the ensemble-averaged 
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flame, remains unsettled in the former and unaddressed in the latter, this effect will be 

considered further in light of the experimental results given in Chapter 4. 

In addition to its relevance in laminar flames, the concept of flame speed 

dependence on flame curvature can be extended to the ensemble-averaged turbulent 

displacement speed in turbulent flames. This extension is elaborated in Section 2.4.1.  

Another potentially confounding effect is that of the Darrieus-Landau instability 

which is a hydrodynamic instability resulting from heat release which preferentially 

slows the flow in front of flame regions convex to the reactants and accelerates the flow 

in concave regions, resulting in disturbance amplification [85]. However, this effect is 

greatly reduced when the turbulence  0 1Lu S O   [79], which is true for all cases 

examined in this work (See Appendix D). Furthermore, the Darrieus-Landau instability 

generally produces relatively large scale disturbances which may be on order of 10 cm 

for atmospheric flames, and this scale is much larger than the scale of flames considered 

in this work.  The potential impact of the Darrieus-Landau instability is discussed further 

in regard to the experimental flame dynamic results, in Section 4.4. 

2.2 Premixed Turbulent Combustion Regimes 

Premixed flames are often specified as being either laminar or turbulent. Yet, it is 

inaccurate to treat all flames in turbulent flows as a well-defined group. This is because 

turbulence, as a continuum process in terms of length and time scales [86, 87], produces a 

range of effects on premixed flames. The nature of these effects depends on the relevant 

length and time scales of the flow and flame. Flames in very weak turbulence may have 
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more in common with laminar flames than with other turbulent flames in extremely 

strong turbulence. 

One way to understand and delineate the various combustion regimes is through a 

plot (commonly called a turbulent combustion or Borghi diagram [88]), which compares 

the length and time sales of the flow to the length and time scales of the flame. Figure 2.6 

shows a turbulent combustion diagram. The root mean square of the turbulent velocity 

fluctuation is u . 0

LS  is the unstretched laminar burning speed, and 11,L Fl , and l are the 

flow integral length scale, the total flame thickness, and the reaction zone thickness, 

respectively. 

 
Figure 2.6. Turbulent combustion diagram showing the relation of the laminar and 

various turbulent combustion regimes to the length scale ratio (x-axis) and time 

scale ratio (y-axis) of the flow and flame [28, 89]. 

As shown in Figure 2.6, there are four turbulent combustion regimes, progressing 

from essentially laminar, but wrinkled flames, to flames subjected to such intense 
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turbulence that the turbulent time and length scales are both faster and smaller than those 

of the flame. Like a peach in a blender, the typical diffusive laminar processes are 

completely disrupted by the turbulence. In addition, Figure 2.6 shows the region (blue) in 

which laminar flames will exist. 

In order to understand Figure 2.6, consider the following time and length scale 

ratios. First, the Karlovitz number (Ka) is ratio of the characteristic chemical time, F , 

associated with the flame, to the characteristic (in this case turbulent) flow time, t , i.e. 

F tKa   . Several Karlovitz numbers are shown in Figure 2.6, corresponding to 

different turbulent scales and flame thicknesses. Note that a similar ratio sometimes used 

in turbulent combustion diagrams, known as the Damköhler number (Da), is ratio of flow 

time to the characteristic flame time, i.e. t FDa   . Thus, it is the inverse of the 

Karlovitz number. 

In the wrinkled flamelets regime (green), the laminar flame speed is greater than 

the turbulent fluctuations, thus the flame is able to quickly dampen wrinkles introduced 

on its surface. This precludes large wrinkle formation and thus interactions of the flame 

with itself. In addition, the turbulent length scale is much larger than the length scale of 

the flame, and therefore the turbulent eddies are unable to disrupt internal flame 

processes.  

In the corrugated flamelets regime (yellow), the turbulent velocity is greater than 

the laminar burning speed, while the turbulent length scale remains equal to or larger than 

all flame length scales. Thus, in this regime, the flame may become highly wrinkled and 

folded. Moreover, pockets of unburned reactants in the products (or vice-versa) may form 

due to flame interactions. Because the burning speed is less than the turbulence velocity, 
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flame wrinkles form faster than they can be smoothed by the flame. To illustrate this, 

compare the wrinkle formation time , ,t t u     with a wrinkle destruction time, 

0

, , .F t t LS   Here, ,t  is a turbulent flame disturbance length scale. 

If 0

, ,t F t LDa S u     is less than unity the smoothing process associated with 

flame speed is overwhelmed by turbulent fluctuations. However, because the turbulent 

eddies remain larger than the flame thickness, i.e. 11 1FL l , the turbulent fluctuations 

are still unable to penetrate the interior of the flame, allowing the flame sheet, though 

corrugated, to function locally in a manner similar to a laminar flame. Quenching is also 

theoretically possible at this point due to hydrodynamic stretch effects [29]. 

The thickened, wrinkled flames regime (shown in brown) is bounded below by a 

Karlovitz number based on the Kolmogorov time scale and time scale associated with the 

overall flame, 1K F KKa     line, and above by the Karlovitz number based on the 

Kolmogorov time scale and flame reaction zone time scale, 1Ka  . The K F KKa  

ratio can be equivalently expressed in terms of length scales as: 2 2

K FKa  l , where   

is the Kolmogorov length scale [86, 89]. Above this line the smallest turbulent length 

scale is on the order of (or smaller than) the total flame thickness. At this point, the 

turbulent eddies begin to change the internal structure of the flame directly, and the 

quasi-steady, laminar nature of flame surface elements is lost [90]. The highly wrinkled, 

possibly broken flame begins to thicken due to the strong turbulent stirring. However, the 

reaction zone, which is approximately 10% the thickness of the flame remains intact, as it 

is still smaller than the smallest turbulent eddies.  
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As shown in Figure 2.6, the 1KKa  , is also known as the Klimov-Williams limit. 

At this limit, steady, laminar flames are expected to extinguish. However, this not the 

case with turbulent flames, as eddies of this size do not effectively stretch the flame and 

are quickly dissipated by increased viscosity at the higher temperatures in the flame and 

reaction zone [29, 91]. 

The well-stirred reactor / broken reaction zone region is shown in red in Figure 

2.6. In this region, the turbulent length and time scales are both smaller and faster than 

those of the flame. Thus, 1KKa    . This Karlovitz number is based on the 

Kolmogorov time scale and a time scale derived from the thickness of the flame reaction 

zone. Again, this ratio can be equivalently defined as: 2 2Ka   l . The laminar flame 

structure is, in theory, overwhelmed by the turbulence such that the reaction 

approximates a well-stirred reactor.  

Finally, the laminar regime occurs below and to the left of the Ret =1 line. In this 

region, the turbulent fluctuations are damped by viscous diffusion. Note that, although 

the preceding discussion addresses these different regimes as well-defined zones, this is a 

simplification, and the boundaries shown in the diagram are only approximate. In reality, 

the thin flamelets regime extends to higher Karlovitz numbers than suggested by the 

Klimov-Williams limit [91, 92]. In addition, turbulent combustion diagrams assume 

frozen, isotropic turbulence, limiting the generality of their application. Such diagrams 

generally do not consider the lifetime of eddies, which on the Kolmogrov scale may be 

too short to adequately wrinkle the flame [28, 93], while other evidence suggests that 

quenching due to flame strain occurs prior to development of a distributed reaction 

regime [94]. 
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 The work presented in this thesis examines flames in the corrugated turbulent and 

thin reaction zones regimes. For numerical and analytical work, examination of flames in 

the wrinkled and corrugated regimes greatly simplifies analysis of the flame. For 

1KKa   1KDa , the flame is thin compared to the all flow length scales, and is 

internally dominated by molecular diffusion rather than turbulent mixing. Thus, the flame 

essentially acts like a discontinuity in the flow. Furthermore, in the corrugated flamelets 

regime, order of magnitude analysis indicate that flame speed propagation tends to 

dominate over diffusive effects [90]. 

2.3 Ensemble-Averaged Flame Response 

Having introduced the turbulent combustion regimes, the response of turbulent 

flames modelled and analyzed through ensemble-averaging is now addressed. As 

discussed above, a considerable amount of research has been focused on the response of 

laminar flames to harmonic flow disturbances, and the key physics controlling both the 

local space-time dynamics of the flame position [52-58] and spatially integrated heat 

release [61-64] are well understood. Yet, virtually all practical combustion devices 

operate in the turbulent regime. If acoustic and/or coherent disturbances are also present, 

then the flame is simultaneously disturbed by both spatio-temporally narrowband and 

broad-band turbulence fluctuations.  

A large body of research has attempted to understand and predict averaged 

turbulent burning speeds as reviewed subsequently in Section 2.4 (See also [92]). On the 

other hand, investigations of the interaction between broad-band turbulence and 

narrowband harmonic disturbances are still relatively sparse, as reviewed below. 
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Moreover, the turbulent displacement speed is not constant in the presence of 

harmonic/coherent disturbances, and furthermore, because the flame dynamics are 

nonlinear, the influence of these disturbances on the flame cannot be treated additively [1, 

95-97], but requires a turbulent flame speed model capable of capturing these dynamical 

effects. 

This problem (i.e. the interaction between narrowband coherent disturbances and 

broadband turbulent disturbances) naturally arises in several applications, such as the 

general problem of turbulent flames in hydrodynamically unstable flow fields, where 

significant narrowband energy exists in large scale, organized vortices. Additionally, this 

problem naturally arises in confined systems which experience thermo-acoustic 

instabilities, as described in Section 1.2. One approach to studying this interaction is to 

identify the coherent content of turbulent flames and flow fields. This can be done 

through the use of the ensemble-average. 

In the context of this work (i.e. in the presence of narrowband harmonic content) 

the ensemble-average is equivalent to a phase average. By sampling either computational 

or experimental data at specific points of phase during the harmonic cycle, and averaging 

these samples together, it is possible to recover the ensemble-average. An illustration of 

this process is shown in Figure 2.7, which plots instantaneous flame edges, determined 

through Mie scattering, from a turbulent flame at the same point of phase in the forcing 

cycle as well as an overlay of thirty edges together. The coherent flame wrinkles which 

are masked in the instantaneous snapshots become obvious when multiple images at the 

same point of phase are overlaid. That is, the use of the ensemble-average allows 
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recovery of the coherent content, which may otherwise be obscured by the presence of 

broadband turbulent fluctuations. 

 
Figure 2.7. Four instantaneous flame edges from a turbulent V-flame, at the same 

point of phase and an overlay (right) of 30 flame edges from the same point of 

phase, f0 = 750 Hz, Ux,0 = 5.0 m/s, u’/ux,0 = 15.1%. 

Hemchandra et al. [96] computationally investigated a turbulent, premixed flame 

perturbed by harmonic, travelling disturbances and presented ensemble-averaged results 

from these calculations. They found that kinematic restoration (i.e. the smoothing effect 

of flame propagation normal to itself) diminishes the amplitude of the wrinkles induced 

by harmonic forcing, and that this effect is enhanced with increasing turbulence, as 

shown in  Figure 2.8. Furthermore, the interaction between the coherent wrinkles due to 

acoustic forcing and the turbulent fluctuations is not simply additive. That is, the 

ensemble-averaged flame position differs from the laminar flame position (even with a 

constant local burning speed, LS ). This indicates a non-linear interaction between the 

coherent and broadband perturbations on the flame. Because of the interaction between 

the coherent and broadband disturbances, the mean flame position (and flow field) are not 

equivalent to the nominal base / unforced conditions [95]. 
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Figure 2.8. Ensemble-averaged flame wrinkle stabilized on a burner lip. The 

turbulence level increases from (a) laminar, to (d) 0 2.0Lu S  , reproduced from 

Preetham and Lieuwen [96]. 

Following this work, Shin and Lieuwen [1] performed a numerical investigation 

of ensemble-averaged flame sheet dynamics for a turbulent, premixed isothermal flame 

anchored on a harmonically oscillating bluff body. They were able to further characterize 

several key effects of turbulence on the ensemble-averaged flame response. First, the 

introduction of turbulence, as with the study by Hemchandra et al. [96], smoothed the 

cusps which result from harmonic forcing and reduced the amplitude of coherent flames 

wrinkles relative to laminar flames. 

In the near field, this smoothing is due to phase jitter and kinematic restoration 

associated with fine-scale turbulent wrinkles. In the far-field, the increase in turbulent 

flame speed accelerates the smoothing of the large-scale, harmonically induced flame 

wrinkles. As will be discussed further in Section 2.4.1, the increased rate of wrinkle 

destruction also has the effect of increasing the displacement speed of the ensemble-

averaged flame. This effect can be seen in Figure 2.9, where the simulated turbulent 

flame is lifted as compared to a laminar flame. 
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Figure 2.9. Ensemble-averaged flame wrinkles attached to an oscillating flame 

holder. (a) illustrates the smoothing effect of turbulence (b) illustrates the decrease 

in flame wrinkle amplitude and the simultaneous increased displacement of the 

mean flame location.  ,  , and s , are the non-dimensional ensemble-averaged 

flame fluctuation, harmonic excitation amplitude and flame coordinate, 

respectively. Figure reproduced from Shin and Lieuwen [1]. 

In addition to the flame position response, Preetham and Lieuwen [96] also 

examined the area ratio response. As noted previously for laminar flames, if the heat of 

reaction per unit mass and local burning speed are assumed constant, a ratio of flame 

areas is equivalent to the heat release ratio. The results of their study indicated that the 

introduction of turbulence reduced the area ratio response of the ensemble-averaged 

flame and also changed the phase response [96].   

Subsequently, Hemchandra et al. [95] assessed the heat release response through 

an asymptotic analysis of turbulent and acoustic fluctuations. In support of the previous 

findings, they determined that the ensemble-averaged heat release response is affected by 

the introduction of turbulence, even to first order in turbulence intensity as compared to 

the laminar heat release response. They attributed this effect to kinematic coupling 

between the acoustic and turbulent fluctuations due to kinematic restoration [95]. 

In sum, these results show that when premixed flames are perturbed by both 

narrowband coherent and broadband turbulent disturbances the flames’ response is 
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changed nonlinearly, both in terms of the flame position, as well as the area and heat 

release response. 

2.4 Turbulent Flame Speed Models 

In laminar, premixed flames, the displacement speed describes the rate at which 

an isosurface propagates, such as a temperature or species mass fraction contour, defined 

with respect to either the burned products or unburned reactants. This propagation 

velocity is a function of the balance between convective fluxes into the preheat zone, 

diffusive heat and species fluxes out of the reaction zone and heat release and chain 

branching reactions in the reaction zone [85]. The high temperature and radical 

concentrations result in strong gradients which drive diffusion toward the unburned 

reactants, igniting them and causing the flame to propagate. Due to the dependence on 

reaction rate and diffusion rate, this process depends on the temperature, pressure, flow 

field, and composition of reactants [9, 48].  

Predictions of turbulent flame speed have long occupied a significant position in 

combustion research. A variety of models, some phenomenological, some empirical, and 

some theoretical, (as well as different combinations of these) have been proposed. The 

primary goal of these turbulent flame speed models has been to develop the tools to 

reliably predict turbulent flame dynamics and heat release. Although significant progress 

has been made in this area, a fully general model of turbulent combustion has yet to be 

developed; this is a formidable task. 



 50 

 
Figure 2.10. Schematic representation of the instantaneous and time averaged flame 

position of a confined, turbulent V-flame. 

For flamelets in the wrinkled and corrugated regimes, the turbulent burning speed 

depends strongly on the total flame surface area. To see this, consider Figure 2.10 which 

shows a cartoon of the instantaneous and time averaged flame position for a turbulent V-

flame spreading from its attachment point to the wall. Convecting downstream from the 

flame holder, the flame becomes progressively more wrinkled by turbulent fluctuations, 

greatly increasing the surface area. If the instantaneous flame propagates at a constant 

local speed, LS , and the reactants are assumed to have a constant density, u , mass 

conservation provides the following global relationship, assuming the flame consumes all 

the reactants. 

 , , 0

u u

L I T T GCm S A S A     (2.5) 

Here, m  is the mass flow rate through the flame, ,I TA  is the instantaneous turbulent 

flame area, ,T GCS  is the turbulent, global consumption speed, and 0A  is the area of the 

average flame. Equation (2.5) can be rearranged to provide a definition for the 



 51 

normalized turbulent global consumption speed in terms of the mean and instantaneous 

flame areas, giving: 

 
, ,

0

T GC I T

L

S A

S A
   (2.6) 

Even if the assumptions in Equation (2.6) are relaxed (e.g. non-constant local burning 

velocity), the importance of the increase in flame area due to wrinkling clearly remains 

critical.  

Recognizing this area dependence, Damköhler [98] proposed one of the first 

turbulent flame speed models for flames in the thin flamelet regime, based on the idea 

that the effect of turbulent eddies is predominantly kinematic and creates a series of 

conical flame elements, similar to the flame produced by a Meker burner. Thus, he 

related the ratio of the turbulent and laminar areas to the ratio of the velocity fluctuation 

and laminar flame speed, i.e.:  
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    (2.7) 

A number of workers have proposed refinements on this basic relationship, as 

discussed in references [9, 28, 89, 93, 99-101]. These improved relationships generally 

take the form [28]: 

 
,

0 0
1

n
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S S

 
   

 
a   (2.8) 

Here, a  and n  are empirical constants with values near unity. Other models of this type 

incorporate the turbulent length scale, burner geometry, or a Markstein length in order to 

make the correlation more robust.  
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Despite the large number of these type of models, and their wide use, they have 

not succeeded generally in accurately predicting the turbulent flame speed without 

adjustment of various coefficients, and there is wide scatter in the derived scaling 

exponents. Driscoll [92] argues that this shortcoming is due to an implicit assumption 

contained in this type of model, namely that the turbulent flame speed is a function of 

local quantities only, and primarily of u’. However, Verma and Lipatnikov  [101] argue 

that the observed scatter does not necessarily completely undermine the concept of a 

well-defined turbulent flame speed, as measured turbulent flame speeds depend strongly 

on the measurement methods used in their determination. 

The notion of a universal, well-defined flame speed is called into doubt because it 

takes a finite amount of time and/or distance for a flame to become wrinkled by turbulent 

fluctuations (as well as for wrinkles to decay). For example, the instantaneous turbulent 

flame area increases with distance from a flame holder for anchored flames and with time 

from initiation for spherically expanding flames. 

This effect can be seen in Figure 2.11, which shows the results of a DNS 

computation for an anchored flamed. Because of this dependence the flame speed cannot 

depend only on local quantities. Moreover, for flames subject to tangential flow, the 

flame retains a ‘memory’ of events which occur upstream. That is, if the flame is 

perturbed at some upstream point, the resulting flame perturbation will convect 

downstream and alter the instantaneous turbulent area at a removed point and time, again 

casting doubt on flame speed correlations based purely on local properties. 
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Figure 2.11. DNS visualization of a bluff-body anchored flame in a turbulent field, 

showing the increase in wrinkling which occurs with distance from the anchor point. 

The surface is determined from the local temperature gradient, from [102].  

Similar correlations have also been adapted for use in the thin reaction zones 

regime to model the local effect small scale turbulent motions on the local flame 

consumption speed, ,T LCS . At the small scales the effect of turbulence is to increase the 

thermal diffusivity and thereby increase the reaction rate. For example, Zimont and 

Battaglia [103] assumed that the small scale wrinkles on the flame reach statistical 

equilibrium (analogous to turbulent equilibrium) and use the following model for sub-

grid turbulent flame speed in a RANS/LES computation: 

 

1/2 1/4

, 11

0 0

T LC

u

L L

S u Lu

S S 

    
    

  
A   (2.9) 

The constant A  is adjustable here ( A ~0.5), and u  is the molecular thermal 

diffusivity of the reactants. 
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In this application, the flame speed model given in Equation (2.9) is used to 

model the dynamics of a Favre averaged progress variable field, i.e.: 

       ,

Model Closure TermsUnclosed Terms

u

t T LC

c
cu c u W D c S c

t


    


          


  (2.10) 

where the    indicates a time average,     a fluctuating quantity, c  is the Favre 

average progress variable, and W  is the chemical source term. The first of the unclosed 

terms describes turbulent transport of the scalar progress variable, while the second is the 

chemical source term. In a separate but related paper, Zimont [104] points out that while 

many flame speed models assume some equilibrium balance between flame area creation 

and destruction, most practical combustors do not operate in this regime, but rather have 

continuously increasing flame brush thickness. That is, residence times are too short to 

allow this fully-developed equilibrium to occur. This implies, again, that the flame speed 

model needs to be non-local. 

Note that this approach, (where the probability of mean temperature, density, and 

other conditional quantities are modeled in terms of a progress variable), derives from the 

well-known Bray-Moss-Libby (BML) formulation [105, 106] which has been widely 

used [28, 99, 106]. 

 In addition to the correlation methods, and the BML approach, turbulent flame 

speeds have also been modeled using an approach known as flame surface density 

modeling. Marble and Broadwell [107] first introduced this method for diffusion flames 

in the fast chemistry limit (i.e. flamelet regime) for their work on Project Squid (a rocket 

engine development program). In this method, area increase due to turbulence and the 

reaction rate per unit area are treated essentially independently. The turbulent flame 
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speed can be determined from the turbulent flame area multiplied by the rate of reactant 

consumption per unit area.  

One of the major advantages of the flame surface density approach is that it is not 

a fully local model. Instead, the flame surface density,  , which is the amount of flame 

area contained within a unit volume, is modeled using a partial differential conservation 

equation of the form [92, 107]: 

 
2

2T eu v M Q
t x y y

 
    

     
   

  (2.11) 

The left-hand side describes convection of flame surface by the flow. In the first 

term on the right-hand side, T  is the turbulent viscosity, and the full term describes 

dissipation of flame surface area due to turbulence. The second term predicts creation of 

flame area due to stretching. The third term on the right hand side, M , describes flame 

area destruction due to flame merging, and eQ  describes loss of flame surface area due to 

flame quenching [91]. Once the flame surface density is known, it can be multiplied by a 

stretch factor, 0I  [92, 108], which describes the enhancement of the burning rate due to 

stretch. The flame speed is recovered by integrating through the flame, i.e.:  

  0

, 0T LC LS S I d 




    (2.12) 

The flame surface density method also does not directly describe the propagation 

speed of an iso-contour. Rather, it describes the local turbulent consumption speed, or, 

when integrated, the global turbulent consumption speed.  

Similarly, the turbulent flame speed may be estimated from measured 

experimental flame areas, similar to the model given in Equation (2.12). This approach is 
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adopted in Chapter 5, for an investigation of the ensemble-averaged turbulent 

consumption speed. Note that the preceding discussion of turbulent flame speed models 

is by no means comprehensive, but lays the groundwork for the following research 

presented in this thesis. Additional discussions of the turbulent flame speed may be found 

in references [28, 89, 92, 99] for example. 

2.4.1 Turbulent Flame Speed Closure for the Ensemble-Averaged Turbulent Flame 

Before continuing to the next chapter, a final flame speed model is introduced. 

The problem of combustion instability in turbulent combustors, discussed in Section 1.2, 

directly motivates the development of this model, which was proposed by Shin and 

Lieuwen [1]. This flame speed closure model is introduced here but will be further 

discussed in the following chapters. 

It is important to point out that the flame speed models introduced above, with the 

exception of the flame surface density approach, are intended to predict an average 

turbulent flame speed based on relevant statistics of the flow. That is, these models 

represent an attempt to model the propagation speed of some average iso-contour, as 

shown in Figure 2.10. Furthermore, these models do not capture (or attempt to capture) 

any dynamical effects due to the spatio-temporal dynamics of the iso-contour on which 

they are based. In effect, they are largely independent of the flame. 

Note that depending on how the flame surface generation, destruction, and 

merging terms in Equation (2.11) are modeled, it may be possible to capture some 

dynamical effects, as well as the convective nature arising from the terms on the left hand 

side of the equation. However, the flame surface density approach requires the solution to 
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the additional PDE (i.e. Equation (2.11)) as well as modeling the aforementioned flame 

surface area generation and destruction terms, increasing computational demands. 

In contrast, Shin and Lieuwen’s model [1] attempts to model the propagation of a 

time or phase dependent iso-contour, the speed of which depends not only on statistics of 

the flow but also on shape of the iso-contour itself, and does so using a simple reduced 

order model which does not require solution of any additional equations. This flame 

speed closure is intended to capture the interaction of the broadband, fine scale 

perturbations due turbulence and the narrowband perturbations resulting from harmonic 

disturbances of the flame or flow field, on the ensemble-averaged (i.e. phase averaged) 

flame surface. 

This problem occurs in several applications, such as the general problem of 

turbulent flames in hydrodynamically unstable flow field and also arises in confined 

systems which experience thermo-acoustic instabilities, which can result from the self-

excited feedback between heat-release and narrow-band acoustic oscillations [31-33], as 

discussed in Chapter 1. 

The interaction between turbulent and harmonic perturbations is modeled through 

the use of a flame speed closure expression analogous to that of stretch sensitive laminar 

flames, i.e.:  

  0

, , ,( , ) ( ) 1 ( ) ( , )T Disp T Disp T DS s t S s s C s t    (2.13) 

Here, ,T DispS  is the ensemble-averaged turbulent displacement speed, where the angle 

brackets henceforth indicate an ensemble-averaged quantity. This is the speed at which 

the ensemble-averaged flame propagates into the ensemble-averaged velocity field. The 

quantity 
0

,T DispS  is the unperturbed, ensemble-averaged turbulent displacement speed, 
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,T D  is the turbulent Markstein length, which quantifies the dependence of the turbulent 

ensemble-averaged displacement speed on the curvature of the ensemble-averaged flame, 

C . As discussed above, the turbulent Markstein number may vary as a function of the 

turbulent intensity, turbulent length scale, spatial location, or other statistics of the flow. 

 Lipatnikov and Chomiak [109] have previously introduced a similar concept, also 

denoted as a turbulent Markstein number, in their study of expanding spherical turbulent 

premixed flames. In this study they compared predicted and measured flame radii from 

[110], finding linear growth in the flame speed with time due to flame brush development 

and the average (i.e. global) stretch due to the flame curvature. For weakly globally 

stretched flames, they found a nearly linear dependence of the flame speed on the 

turbulent Markstein number [109]. 

The dependence of the ensemble-averaged turbulent displacement speed on the 

ensemble-averaged flame curvature is predicated on the annihilation of flame surface 

area which occurs when flamelets merge due to kinematic restoration, introduced for 

laminar flames in Section 2.1.1. The kinematic restoration effect is enhanced by the 

presence of turbulence [96]. To understand this more clearly, consider Figure 2.12 which 

shows a depiction of a turbulent flame subjected to positive, zero, and negative 

curvatures. 
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Figure 2.12. Schematic of the interaction of narrowband flame curvature with 

broadband turbulent wrinkling, following Shin and Lieuwen [1]. 

 Large scale negative flame curvatures (i.e. concave towards the reactants) 

resulting from harmonic oscillations are expected to cause an increase in the turbulent 

burning speed because in these regions the flame is essentially facing itself and, due to 

the normal propagation of the flame surface it quickly intersects the opposing flame 

surface, wherein both flame surfaces are annihilated. In contrast, this effect is decreased 

in flat and positively curved flames. The overall result is that a negatively curved flame is 

excepted to propagate further into the reactants than a flat or positively curved flame. 

This model forms the basis of the following work presented in this thesis. 
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. MODELING THE RESPONSE OF TURBULENT 

FLAMES TO HARMONIC FORCING  

 As discussed in Chapters 1 and 2, thermo-acoustic oscillations are a key 

motivator for this work, as these self-excited oscillations involve the feedback of 

narrowband acoustic oscillations with vortices and the flame [26, 30, 42]. The least 

understood part of the internal feedback loop leading to these oscillations is how flames 

respond to these narrowband oscillations. 

Chapter 2 introduced the laminar flame position and heat release response, and as 

discussed previously, a significant literature now exists on the response of laminar flames 

to harmonic flow disturbances. The key physics controlling both the local space-time 

dynamics of the flame position [52-54, 56, 57, 111] and spatially integrated heat release 

[55, 61, 62, 65] is well understood. 

However, real flames, in most practical combustion systems, exist in a turbulent 

flow environment and so the flame is simultaneously disturbed by both spatio-temporally 

narrow and broadband disturbances. Because the flame dynamics are nonlinear, the 

influence of these disturbances on the flame cannot be treated additively [1, 95, 96].  

This chapter describes an analysis of the ensemble-averaged flame position and 

heat release dynamics of harmonically forced, turbulent, premixed flames, and was 

presented in reference [112]. The chapter starts with the development of the G-equation, 

which is the basis for most of the analysis in this thesis. After this development, the 

problem of determining the global surface area of premixed flames is discussed. 

Specifically, a subtle, but important issue regarding the use of different coordinate 
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systems is explained and resolved. Next, a description of the ensemble-averaged flame 

position equation and its use in defining the ensemble-averaged turbulent flame speed are 

given. The problem geometry, introduced above, is then elaborated on, followed by a 

description of the numerical procedure, and an explanation of the calculation of the 

global heat release. Validation of the proposed flame speed closure and modeling 

approach is provided by a direct comparison of the flame shape and heat release between 

the numerical simulation and the analytical model in Section 3.4. The use of the flame 

speed closure is further examined with two model problems in Section 3.5: (1) the 

development of a linear model from the general analytical model presented in Section 3.4 

and (2) application of these results to a flame perturbed by a convecting, decaying vortex. 

A discussion of the results is also given in Section 3.5, while Section 3.6 presents 

conclusions from this work. 

3.1 Modeling Approach 

3.1.1 The G-Equation 

This section introduces the primary analytical tool, the G-Equation, used 

throughout this thesis to analyze the flamelet dynamics, flame area, and as the basis of 

the definition for the ensemble-averaged turbulent flame speed, discussed in Section 3.2.1.  

This approach is commonly used in studies of flame kinematics [54, 55] and is 

well-developed [68, 113-116]. For high activation energy molecular kinetics, the flame 

becomes thin relative to the scales of the flow and can be treated as a flow discontinuity. 

Following the derivations given by Lieuwen [29] and Markstein [66], an implicit and 

explicit governing equation for premixed flames can be derived. In this approach, the 
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flame is defined as the location of the zero surface in a scalar variable field, denoted by G, 

i.e.: 

  , 0G x t    (3.1) 

This definition is shown schematically in Figure 3.1, where the value of G decreases 

towards the reactants. 

 
Figure 3.1. Schematic illustration of the variation of G and definition of the flame. 

Because G = 0 at all locations on the flame by definition, if one follows a Lagrangian 

flame packet it can be seen that: 

  , 0
Flame

D
G x t

Dt
   (3.2) 

This expression can be expanded in an Eulerian frame as: 

 
 

   
,

, 0u
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f
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G x t
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u   (3.3) 

where u
u  is the unburned flow velocity at the flame front and LS denotes the local 

propagation front speed, with respect to the reactants, and fv  is the speed of the flame in 
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the laboratory frame. The unit vector normal to the flame, pointing towards the reactants, 

is n . Equation (3.3) shows that G is not only convected by the flow, but also propagates 

at some velocity, LS . The unit vector normal to the flame, n , may be defined in relation 

to the gradient of the G field as: 

 
G

n
G


 


  (3.4) 

Then, substituting Equation  (3.4) into (3.3) and rearranging provides a useful form of the 

G-equation: 

 u

L

G
G S G

t


  


u     (3.5) 

For a single valued flame position, this implicit equation can be further refined using a 

change of variables to obtain an explicit governing equation for the premixed flame 

position. Note, however, that the computational results shown later in this chapter, do not 

assume a single valued flame position. Defining   , ,G x z t y  , and substituting into 

Equation (3.5),  this equation can be written as: 

 

1/2
2 2

1x y z Lu u u S
t x z x z

            
         

         

  (3.6) 

Equation (3.6) provides an explicit governing equation for the instantaneous 

flame position. Here, the flame position equation is defined on a coordinate system 

oriented along the x, y coordinate system, but it is also possible to define the equation on 

a coordinate system based on the mean flame position. The left-hand side describes how 

the flame sheet is convected by the flow, while the right-hand side describes the flames 

propagation normal to itself towards the reactants. The strong nonlinearity inherent in 
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premixed flame dynamics derives from the kinematic restoration effect described by the 

right-hand side of Equation (3.6). 

3.1.2 Coordinate Systems, Integration Limits, and End Corrections 

Before continuing to a discussion of the calculation of the heat release response 

from the numerical results, a subtlety of integrating the surface area of confined flames 

and the appropriate resolution is examined. Specifically, this subsection describes the 

influence of coordinate systems and integration limits on global FTF calculations [63]. 

Here also, the front tracking approach (i.e. the G-Equation approach, as given in Equation 

(3.5)), forms the basis of the flame response modeling. 

As shown in Figure 3.2, and discussed in the previous section, ( , )G x t can be 

written as an explicit flame position,  , by defining the location of the instantaneous 

flame sheet with respect to some coordinate system. 

 
Figure 3.2. Schematic of coordinate systems, direction of flame dependence and end 

correction factor. 
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For example, past studies have defined the flame position with respect to the axial 

coordinate [56, 59], transverse coordinate [55, 117, 118] or in a coordinate system normal 

to the time averaged flame position [1, 53, 65]. To illustrate, the resulting expression 

written in the axial coordinate system is: 

1/2
2 2

1A A A A A
x y z Lu u u S

t x z x z

            
         

         

. (3.7) 

Here,  , ,A A x z t  . The reasons for using different coordinate systems depend 

upon the particular focus of the study. The majority of studies have used a transverse 

coordinate system. However, Schuller et al. [65], Lieuwen [29], and Preetham et al. [53] 

used the normal coordinate system for their discussion of the local space-time dynamics 

of the flame sheet, as they are most naturally evident in that coordinate system. Shin et al. 

[59] and Shanbhogue et al. [56] used the axial coordinate system for their study of the 

growth and decay of the flame response, as the position of shallow angle flames remains 

a single valued function of the coordinate for much larger amplitudes in that coordinate 

system. 

For linearized flame area dynamics, the flame area transfer function is defined as: 

1 0

1, 0

ˆ ( )
( )

ˆ
d

d

ref

A A
FTF

u u


  ,       (3.8) 

where ˆ
refu  denotes the “reference” excitation velocity, such as the velocity at the flame 

base. The instantaneous flame area is given by: 

     
 

0

( )

L t

A t dA t      (3.9) 

The leading order perturbation to this flame area is given by: 
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whose frequency domain equivalent for a two-dimensional domain in the different 

coordinate systems is: 
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 ,    (3.12) 

    
Length fluctuation
of unperturbed flame

ˆ ˆ
Normal dA s   .    (3.13) 

where 0,AL W  , and x  and s  are shown in Figure 3.2. The differences between 

Equations (3.11), (3.12), and (3.13) reflect the way first order area fluctuations manifest 

in the different coordinate systems. In the axial coordinate system, first order area 

fluctuations occur over the length of the base flame and in the oscillating integration limit. 

In the transverse coordinate system, there is no variation in integration limit; first order 

area fluctuations manifest entirely along the base flame. In the normal coordinate system 

there is no variation in base flame position with downstream coordinate. That is, 

,0 0N s   , eliminating area fluctuation contributions along the base flame; area 

fluctuations are manifest entirely in the oscillating integration limit.  

It seems intuitive that a global quantity such as flame area should be invariant of 

the coordinate system. However, the solution to these expressions are completely 
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different, depending upon integration limits. For example, if the integration limits are 

assumed to be constants, and equal to a fixed axial distance, 0, AL  (the flame height), 

transverse distance, W (flame width), or flame length, 2 2

0,AL W , then three different 

answers are obtained for the FTF. To illustrate, consider the solution of eqn. (3.8) using 

these fixed integration limits for a two dimensional geometry, and the excitation of the 

flame by bulk axial forcing, a problem originally solved by Fleifil et al. [55] in the 

transverse coordinate system: 
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  (3.15) 

    0NormalFTF       (3.16) 

where 0, 0A d ASt L u . Note that the transverse and axial FTFs differ by a factor of 

 2 , while the FTF is identically zero for the normal coordinate system (the area 

contribution arising at higher order). For this reason, Schuller et al. [65] and Preetham et 

al. [53] worked in a normal coordinate system when analyzing the local space time flame 

dynamics, but reverted to a transverse coordinate system for finding the flame area. 

It is important to recognize that all of these solutions are correct within the 

approximations of the fixed integration limits; the fact that they are different arises from 

the fact that they are all solutions to different problems. For example, a problem where 

the transverse integration limit is fixed necessarily involves an oscillatory flame length in 

the other two integration limits, as shown in Figure 3.2. 
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Probably the most physically relevant problem for confined flame problems is the 

situation where the integration limit is transversely fixed. This represents a problem 

where an oscillatory flame spreads to the wall and the edge of the approach flow 

reactants, with an oscillatory flame height and length. In order to analyze this case in the 

normal or axial coordinate systems requires the solution of Equation (3.8) with a time 

varying integration limit. The time varying integration limit corrections for the axial and 

normal coordinate systems were determined by expanding the frequency domain 

fluctuating flame position functions to first order in a Taylor series and solving for the 

end correction using the geometric relations shown in Figure 3.2. They are given by: 
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   (3.18) 

Substituting these expressions into Equations (3.11) and (3.13) yields the expression 

shown in Equation (3.15) for all three coordinate systems, as must be the case. 

The key takeaway from this subsection is the significance of the integration limit 

when evaluating global FTF’s – very different answers are obtained for different 

assumptions on the integration surface. These differences in the global flame area and 

their resolution are applied in the following sections in order to determine both the 

analytical and numerical heat release response.  

3.2 Problem Definition 

Having introduced the G-Equation, explicit flame position equation, integrated 

flame surface area, and flame transfer function, I now continue with the current problem: 
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modeling the response of turbulent flames to harmonic forcing. To set up the problem, 

consider Figure 3.3 which shows a flame spreading from a stabilization point. Again, if 

the flame is weakly wrinkled, it is possible to define its instantaneous location by the 

single valued function  .  

 
Figure 3.3. Schematic of flame geometry and coordinate system 

In addition, we can define the spatially integrated heat release as Q. As discussed 

in the Section 3.1.2, and noted in Humphrey et al. [63], multiple definitions for the 

spatially integrated heat release exist, depending upon one’s assumptions of the 

potentially oscillating integration limits. Here, I assume that flames are confined and 

spread to the wall and so the transverse integration limits are fixed, implying that the 

axial integration limits oscillate. 

 We can write each of the relevant variables, , ,u Q , as the following triple 

decomposition, shown here for flow velocity:  

        0 1 2, , ,t t t  u s u s u s u s   (3.19) 
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where  
0
 is the time-averaged quantity, defined as: 

    0
0

1
,

T

t dt
T

 u s u s   (3.20) 

The second quantity,  
1
, is the coherent fluctuation and is defined using the ensemble 

average, denoted by the operator , as:  

      1 0, ,t t u s u s u s .  (3.21) 

And, the random fluctuation,  
2
 is then: 

        2 0 1, , ,t t t  u s u s u s u s   (3.22) 

Note that    1 20 0
0 u u , 2 0u , but 1 0u . 

The key problem of interest in this chapter is the input-output relation between the 

coherent velocity forcing and the coherent fluctuations in flame position and heat release; 

e.g., for the spatially integrated heat release of a flame forced by flow disturbances:  

  
1 0

1 0

ˆ

 ,
ˆ

d

Q Q
FDF a

u u
    (3.23) 

where, in contrast to Equation (2.1), the quantities of interest are now determined by 

ensemble-averaging, as indicated by the  brackets. Equation (3.23) denotes the global 

flame describing function (FDF) of the turbulent, premixed flame.  

This problem - i.e., the input-output relation between the coherent velocity forcing 

and the coherent fluctuations in flame position and heat release of turbulent flames- has 

been previously addressed both implicitly and explicitly. Hemchandra et al. [96] appears 

to be the first study which explicitly considered the ensemble-averaged response of a 

flame forced by simultaneous broadband and narrowband disturbances. A related follow 
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on study was also reported by Hemchandra et al. [95]. The first of these studies 

demonstrates that one of the key effects of the broadband disturbances, 2u , on Q  is 

through its influence on the time-averaged flame shape. This particular effect can be 

modeled by treating the flame as laminar and considering its response to harmonic 

forcing, but using the time-averaged turbulent flame properties as inputs to the flame 

shape – this is referred to as a "quasi-laminar" approach below. iii In addition, flame 

wrinkles induced by the random fluctuations increase the destruction rate of the coherent 

wrinkles due to harmonic forcing, such as shown in Figure 3.7. Thus, the effects of 

turbulence and harmonic forcing are not simply additive but are nonlinearly coupled. 

Shin and Lieuwen [1] subsequently analyzed the explicit dynamic influences of 

turbulence on the ensemble-averaged flame dynamics and showed that, for flames with 

constant local laminar burning velocities, background broadband forcing leads to an 

effect on the ensemble-averaged flame position that is equivalent to a modulation in 

turbulent burning velocity, proportional to the local ensemble-averaged curvature. In 

other words, to reiterate the flame speed closure discussed in Section 2.4.1: 

  0

, , ,( , ) ( ) 1 ( ) ( , )T Disp T Disp T DS s t S s s C s t    (2.13) 

where ,T DispS  is the ensemble-averaged turbulent displacement speed (defined in Equation 

(3.26)), and C  is the ensemble-averaged flame curvature. Due to its analogy with the 

                                                 

iii Note that an analogous approach is sometimes used in the hydrodynamic stability literature, 

where the time averaged velocity profile of a turbulent flow is used as an input to a stability calculation to 

determine the growth rate of a harmonic space/time disturbance; see discussion of this approach in, e.g., 

references [119-121] 
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stretch sensitivity of laminar flames, ,T D  is denoted as the turbulent displacement 

Markstein length (although the local, instantaneous burning velocity is stretch 

independent in this calculation). Note that this modulation of the ensemble-averaged 

turbulent burning velocity is not captured by quasi-laminar approaches. 

In addition, several experimental studies have used measured velocity fields as 

inputs to the level-set equation to predict flame position [69] and FDF’s [70]. These 

FDF’s were also directly measured and compared to the predictions. These approaches 

used the measured ensemble-averaged velocity field as inputs to the level-set equation, 

and the mean turbulent flame position as parameters. As noted above, this quasi-laminar 

approach accounts for turbulent background effects on time-averaged flame properties 

and ensemble-averaged fluctuating quantities, but does not incorporate any dynamical 

effects. These analyses showed quite good agreement with the predictions and 

measurements, suggesting that the key impact of the turbulent background is on the time-

averaged flame/flow properties.  

The objective of this chapter is to analytically consider this problem further. The 

spatially integrated heat release, ( )Q t , of a turbulent, premixed flame, is examined by 

modeling the ensemble-averaged flame response, using Shin and Lieuwen’s [1] 

ensemble-averaged turbulent flame speed closure, Equation (2.13), discussed above.  

Both the numerical and analytical analysis here is restricted to isothermal flames. 

For real flames, heat release, and the resulting density change, alters the approach flow, 

and there is a significant body of work which discusses this effect [113, 116, 122, 123].  

Realistically, flames generally have non-zero heat release, density, and 

temperature jumps. However, it should be noted that the isothermal limit is interesting for 
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its own sake, as there are practical applications such as vitiated flow or highly 

compressed flows with small temperature and density jumps. A non-zero density jump 

introduces an important effect, the Darrieus-Landau flame instability, resulting from 

changes in the approach flow which cause flame wrinkle amplification [113]. In addition, 

heat release for a ducted flame causes acceleration of the flow, causing the velocity field 

to vary spatially along the flame.  

As the focus of this chapter is on the influence of the stochastic flame wrinkling 

induced by turbulent velocity fluctuations upon the coherent wrinkles induced by the 

harmonic flow disturbances, this assumption enable us to focus on the flame dynamics 

problem, without the added complication of the modifications of the flow field induced 

by the moving flame. However, Chapters 4 and 5 address the flame speed closure from 

an experimental (i.e. non-isothermal) perspective.  

3.2.1 Ensemble-averaged Flame Position Equation 

This section presents a discussion of the ensemble-averaged flame position 

equation, which is based on the explicit flame position equation (Equation (3.6)) 

introduced in Section 3.1.1. The ensemble-averaged flame position equation is used both 

in the following theoretical and numerical analysis as well as the experimental work 

presented in Chapter 4, and is the primary analytical tool of this study.  

In order to derive a model equation-for the ensemble-averaged flame, one could 

start from Equation (3.6). However, ensemble-averaging this equation leads to: 
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  (3.24) 
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Note that analyzing the ensemble-averaged flame position,  , as shown in Equation 

(3.24), leads to the same “closure” problem as found in most nonlinear problems, such as 

in the Reynolds-Averaged Navier-Stokes (RANS) equations. As such, Shin and Lieuwen 

[1] computationally solved the G-equation, Equation (3.5) (i.e., they did not assume that 

the flame was instantaneously single valued) for a flame with constant laminar burning 

velocity, LS , and post-processed the ensemble-averaged results. In analogy with 

Equation (3.6), above, they wrote the following equation relating ensemble-averaged 

flame position to the ensemble-averaged disturbance field: 

 

1/2
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       (3.25) 

There are no assumptions in this equation; rather it defines the turbulent displacement 

speed, ,T DispS , which can be seen by rearranging the above as:  
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                   (3.26) 

where   is the ensemble-averaged flame position, and s is the downstream coordinate 

for a coordinate system aligned with the unforced flame position, and z is the transverse 

coordinate, parallel with the flame holder, as shown in Figure 3.3. The use of Equations 

(3.25) and (3.26) requires the ensemble-averaged flame to remain single-valued, which 

introduces an upper limit on harmonic forcing amplitude, but does not require the 

instantaneous flame to remain single-valued, as shown in Figure 3.4.  
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Figure 3.4. Snapshots of the instantaneous flame surface (top) and ensemble-

averaged result (bottom) at two time instances, t·ωd = 0 (left) and t·ωd = π/2 (right). 

Data shown for a turbulent field with L11 /ε = 0.5, ε/(uS,0/ωd) = 0.65, u’/us,0 = 0.082. 

Empirical post-processing of their computational results led Shin and Lieuwen [1] 

to the model equation for ,T DS  shown in Equation (2.13). Related equations for the phase 

or ensemble-averaged flow dynamics have also been developed for work on the 

hydrodynamic instability of shear flows in the presence of background turbulence; e.g., 

see Tammisola and Juniper [124]. Some of these results from Shin and Lieuwen [1] are 

reproduced in Figure 3.6 and discussed further in Section 3.3.4. 

Having considered the flame position, I next consider its heat release. The 

ensemble-averaged, spatially integrated heat release is given by the expression: 
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where   is the unburned gas density, Rh  is the heat of combustion per unit mass, and 

dA is the instantaneous flame area element. The integration limits,  Is t  and  Ws t  are 

time dependent, reflecting the potential motion of both the flame stabilization point and 

flame length. Assuming constant density and heat of reaction, I define the turbulent 

consumption speed, ,T CS  through the following relation: 
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s t s t

T C L

s ts t

S t s dA S dA    (3.28) 

Although ,T CS  was not analyzed by Shin and Lieuwen [1], results presented in Section 

3.3.4 show that it exhibits a similar sensitivity to ensemble-averaged flame curvature, 

C , although the proportionality constant is not exactly equal to ,T D . In addition, ,T CS  

is examined experimentally in Chapter 5. 

3.3 Numerical Calculations – Oscillating Flame Holder 

3.3.1 Geometry  

 Following Shin and Lieuwen [1], I consider first the problem of an oscillating 

flame holder [52, 125, 126]. This is an important canonical problem for understanding 

flame response physics, because the oscillating flame holder is the only flame wrinkle 

excitation source, and leads to a traveling wave that convects down the flame. The 

magnitude of this flame wrinkling traveling wave is constant when considering a constant 

density, constant burning velocity, linear analysis. A number of studies have investigated 

FDFs where forcing is induced by velocity fluctuations [53, 60]. In this case, the flame is 

excited simultaneously over its entire length and the resulting flame wrinkle amplitude 
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exhibits spatial interference patterns, as discussed in Section 2.1.1. These interference 

patterns complicate the analysis of flame wrinkle destruction behavior; multiple 

processes can lead to reduction in flame wrinkling amplitude. Thus, the simplification 

afforded by use of flame anchor excitation facilitates identification of key problem 

variables. The more physically interesting velocity forced flame problem is considered in 

Section 3.5.2. 

 Consider the geometry shown in Figure 3.3, where a flame is attached to a 

harmonically oscillating bluff-body, and spreads to the wall. Figure 3.4 shows two 

snapshots of the instantaneous, multi-valued flame, and the corresponding ensemble-

averaged result at that same phase of the harmonic forcing cycle. Note that at high 

turbulence intensities, the instantaneous flame may become highly multi-valued and is 

three-dimensional. In this case, the ensemble-averaged result remains single-valued (but 

not necessarily in general) and is two-dimensional. 

 As discussed in Section 3.1.1, the area integration is taken over a fixed width 

(rather than fixed length, or fixed axial distance), which is the most physically relevant 

problem for confined combustion problems. The inclusion of end correction factors 

accounts for flame area fluctuations which occur as a wrinkled flame intersects a wall. 

The unforced burning area is based on the two-dimensional area of the flame, equal to the 

flame length. It is calculated as the time-averaged length of the mean flame, integrated 

between the oscillating end points: 
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This flame length is used to calculate the Strouhal number,   ,0Lf f d sSt L u  . 
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3.3.2 Numerical Procedure 

This section describes the numerical approach used to compute the space-time 

dynamics of the flame position and heat release. Analysis of the ensemble-averaged 

space-time dynamics of the flame position,  , was previously presented by Shin and 

Lieuwen [1]; here I consider also the heat release. The key assumptions for this analysis 

are that (1) LS is constant (2) the flame remains attached to the harmonically oscillating 

flame holder (3) isothermal flow field, as discussed in Section 3.2. 

As described by Shin [97] and Shin and Lieuwen [1], the level-set equation is 

solved with a semi-Lagrangian Courant-Isaacson-Rees (CIR) scheme, using the back-

and-forth error correction and compensation (BFECC) method [127]. The computational 

domain size is 201 x 201 x 801, and the time step is 1/(1000 f0), where f0 is the forcing 

frequency. The spatial resolution is greater than  ,0 0 100su f , 11 10L . The scheme 

provides fifth-order accuracy where the solution has smooth spatial derivatives, and is 

third-order accuracy in regions where spatial gradients are discontinuous. 

The attachment condition at the oscillation flame holder is specified by enforcing 

values of the G field as positive in the products and negative in the reactants. At time 

points where the flame holder exists between grid points, the adjacent values of the G 

field are determined by bilinear interpolation. In calculating the G field, a local level-set 

approach is adopted. In this approach, the G-field is solved only in a small region 

adjacent to the G = 0 level-set, which reduces computational expense. Outside of the 

local level-set region, the values of the G-field have no physical meaning, and thus are 

not solved for. In order to improve numerical stability, a re-distancing procedure is used, 
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wherein the values of the G-field are periodically reset by solving a signed distance 

function [127].  Periodic boundary conditions are used at the transverse (side) boundaries, 

and a non-reflecting boundary condition is used at the domain outlet. The non-reflecting 

boundary is implemented using a fully upwind differencing scheme [97]. 

Grid convergence was determined for several cases; for a laminar baseline case, 

less than 1% difference in flame position was obtained with a factor-of-ten increase in 

grid density at  ,0 25s ds u   . A second case was conducted with a turbulence 

intensity of ,0 0.04su u  , and a factor-of-two increase in grid density, showed a 3% 

difference in the ensemble-averaged flame position at  ,0 15.s ds u    

As discussed in Shin and Lieuwen [1], different approaches have been used in the 

past to determine ensemble-averaged flame positions. One approach is to binarize the G-

fields between products and reactants and then average these fields. The averaged field is 

then associated with a progress variable (e.g. C ), and the ensemble-averaged flame 

position defined at some progress variable value, such as 0.5C  . However, this 

approach results in a progress variable which defines a median rather than mean value of 

the flame position. This difference is discussed further in Chapter 4 and Appendix B. As 

this creates some complications when comparing with analytical results, I extract the 

instantaneous flame position coordinates and define the flame position as the average 

transverse value at each axial location. The ensemble-averaged flame position results 

from ensemble averaging over 160 forcing cycles.  

For the oscillating flame holder problem, the flow field consists of the 

superposition of a spatially uniform field with a stochastic component, but with no 

coherent component; i.e. 
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         0 2, ,t t u s u s u s     (3.30) 

The stochastic velocity fluctuations are isotropic, incompressible, and Gaussian 

distributed with spatial correlation lengths that decay exponentially over a longitudinal, 

integral length scale; i.e. 
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The flow convects these disturbances with the mean flow velocity as-per Taylor’s 

hypothesis, and so the integral time and length scales are directly related through the 

mean flow velocity. As such, while these disturbances are stochastic, the fact that they 

are single length/time scale implies that they do not describe Navier-Stokes turbulence. 

However, this general structure of the correlation function is used routinely in the 

turbulence literature, e.g., see [87] and [128]. These flow disturbances are used as inputs 

to solve Equation (3.5)– note that the fact that the flow field is imposed upon the flame, 

as opposed to being simultaneously solved with the flame implies negligible gas 

expansion across the flame, as discussed above. Additional discussion of the numerical 

method and turbulence field are given in Shin and Lieuwen [1]. The outputs of these 

calculations are instantaneous flame positions and areas. 

3.3.3 Numerical Heat Release Calculations  

 Because the numerical calculations all assume constant local burning velocity, LS , 

and mixture composition, heat release is directly proportional to instantaneous flame 

surface area. To calculate the numerical flame area, the instantaneous flame position and 

area (with area data extracted from the multi-valued numerical simulation) are averaged 
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in the transverse direction. Because the discretization of the flame position and area along 

the s-coordinate does not generally align with a desired integration point on the y-axis, 

the flame position is interpolated between adjacent s-locations where it crosses the 

integration limits. The area fluctuation is determined by taking the Fourier transform of 

the entire area time signal. This area is then normalized by fL , the two-dimensional 

unforced area, which again is proportional to the burning rate. 

The maximum area fluctuation occurs when out of phase wrinkle anti-nodes exist 

at the integration limits, at a given instant in phase time, as illustrated in Figure 3.5.  

 
Figure 3.5. Illustration of flame length fluctuation. 

This maximum flame length fluctuation, normalized by the flame length, fL  is:  
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    (3.32) 

Equation (3.32) is equal to the denominator of the FDF, which is defined as:  
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Q Q
FDF
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 82 

where ref  denotes the amplitude of displacement of the flame holder in the flame normal 

direction. Note that setting Equation (3.32) equal to the denominator in Equation (3.33), 

and solving for 0l , provides the appropriate reference length scale. 
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      (3.34) 

3.3.4 Numerical Calculation of Turbulent Parameters 

 As discussed above in the context of Equation (2.13), in the far-field, ,T DispS  

shows curvature dependence analogous to that of stretch sensitive laminar flames with 

positive Markstein lengths [1]. This section briefly shows several illustrative calculations 

demonstrating this dependency. 

 
Figure 3.6. Joint probability density function plots showing the normalized, non-

dimensional (a) effective turbulent displacement speed and (b) effective turbulent 

consumption speed versus ensemble-averaged flame curvature extracted from 

numerical computations of the level set equation. The turbulent Markstein lengths 

are derived from the slope of the linear regressions. Data shown for a turbulent field 

with L11 /ε = 0.5, ε/(uS,0/ωd) = 0.65. 
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 Figure 3.6 shows illustrative calculations, plotting the joint probability density 

functions of the turbulent flame speed and ensemble-averaged curvature, .C  Results 

are shown for both ,T DispS  and ,T CS  for the locations  ,0 10.2 35.3s ds u     at which 

,T DispS and ,T CS  approach a constant value (near the flame holder, both the burning 

velocities and turbulent Markstein lengths change substantially). This result demonstrates 

the clear correlation between the instantaneous flame speed and ensemble-averaged 

curvature. The line is a least-squares best fit through the simulation results. The 

simulations show that ,T DispS  and ,T CS  (and therefore ,T D and ,T C ) have similar 

dependencies on turbulence intensity and instantaneous curvature, with ,T CS  greater than 

or equal to ,T DispS  by about 10-45%, depending on turbulent intensity. Note that the figure 

uses data from multiple spatial locations, while the parameters used for the calculations 

described in Section 3.4 are calculated locally, at each spatial location. These results 

show that the consumption speed, like the displacement speed, demonstrates an 

approximately linear sensitivity to ensemble-averaged curvature and can be modeled as: 

    0

, , ,( , ) ( ) 1 ( ) ( , )T C T C T CS s t S s s C s t      (3.35) 

where ,T C  is the turbulent consumption speed length, and 
0

,T CS  is the uncurved 

consumption speed.  

 From these results, the value of 
0

,T DispS  in Equation (2.13) is determined by 

extrapolating ,T DispS  to zero curvature. At each spatial location, the turbulent 

displacement Markstein length, ,T D  and turbulent consumption Markstein length ,T C  

are calculated by determining the slope of the regression between ,T DispS  (or ,T CS ) and the 
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ensemble-averaged curvature, ,C  and then dividing by the value of 0

,T DispS  or 0

,T CS , for 

the displacement or consumption Markstein length, respectively. These extracted local 

values of 
0 0

, , ,,  ,T Disp T C T DS S   and ,T C  are used in the reduced order model discussions in 

the next sections. Additional results and discussion of these trends, as well as a physical 

explanation of why this correlation occurs, is described in [1] and also in Chapters 4 and 

5, and so I do not go into further details here. 

3.4 Analytical Model Development and Validation 

This section describes the development of a reduced order model for Q , 

utilizing the turbulent flame speed models described above. The results of this model are 

compared to computed results for flame position and Q  in Section 3.4.2 and 3.4.3, 

respectively. 

3.4.1 Formulation 

 We can use the equations for the ensemble-averaged flame position, Equation 

(3.25), and heat release Equations (3.27) and (3.28) along with the closures for the 

turbulent displacement and consumption speeds to solve for the FDF. In other words, the 

flame position is solved from the following expression, derived from Equations (2.13) 

and (3.25): 
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where ,s effu  indicates the effective tangential velocity of the wrinkle (i.e. ,s effu  is the 

slope of the phase of the ensemble-averaged flame wrinkle), which accounts for 

correlations between turbulent and harmonic fluctuations. This effect was not accounted 

for in the original publication of Shin and Lieuwen [1]. The correction is quite small but 

its effect compounds with distance from the flame holder. Also, note the definition of 

ensemble-averaged curvature, ,C so that flames oriented convex to the reactants have 

positive curvature, as typically defined for flamelets : 
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    (3.37) 

This equation can be solved for a given disturbance field, and axial distribution of 

0

,T DispS  and ,T D . Then, having solved for  ,s t , the heat release can then be solved 

from the expression 
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  (3.38) 

where I assume constant   and Rh . The FDF result then follows from inserting the 

computed heat release into Equation (3.33). In order to evaluate the validity of the flame 

speed closures for the turbulent displacement and consumption speeds, the flame position 

and heat release response were compared to the numerical results, as shown in the 

following two subsections. 
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3.4.2 Model Evaluation: Flame Position 

The turbulent flame speed closure was evaluated by integrating Equation (3.36) 

for a two-dimensional geometry.  
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   (3.39) 

This equation was solved using a total variation diminishing (TVD) Runge-Kutta scheme, 

employing weighted, essentially non-oscillatory (WENO) derivatives and local Lax-

Friedrichs flux [129]. Values of 
0

,T DispS  and ,T D   at each spatial location, s, were 

extracted from the computed results, as described at the end of Section 3.3.4. Similarly, 

the effective tangential velocity is calculated by extracting the wrinkle phase speed from 

the phase of the ensemble-averaged result. 

Figure 3.7 shows a comparison between the flame fluctuation determined from 

ensemble-averaging of the numerical solution to the G-equation (solid line; discussed in 

Section 3.3) and the predicted flame fluctuation determined from the analytical model (i.e. 

from integration of Equation (3.39), dotted line), as well as the quasi-laminar result 

(dashed line, discussed below). The figure shows that the ensemble-averaged flame shape 

predicted from the analytical model agrees very well with the ensemble-averaged results 

directly extracted from the computations. For the two lower turbulence cases, the 

predicted flame shape is virtually identical. For the two higher turbulence intensity cases, 

there is some difference between the analytical and numerical predictions, the difference 

increasing with the flame coordinate, s. 
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Figure 3.7. Ensemble-averaged flame position calculated from numerical solution of 

the G-equation (solid lines), integration of Equation (3.39) (dotted lines), and “quasi-

laminar” result (dashed lines). Data shown for a turbulent field with L11 /ε = 0.5, 

ε/(uS,0/ωd) = 0.65, t·ωd = π, and u’/us,0 = 0.010, 0.021, 0.041, 0.082. 

The quasi-laminar results shown in Figure 3.7 incorporate the spatial variation in 

0

,T DispS  but have no dynamical flame speed closure model (equivalent to setting , 0T D  ). 

The turbulent flame speed closure clearly improves the accuracy of the predicted flame 

position, even for the lowest turbulence intensity. These comparisons, therefore, 

demonstrate the validity of the turbulent Markstein length displacement speed closure, 

Equation (2.13) discussed previously, for low to moderate turbulence intensities. 

3.4.3 Model Evaluation: Heat Release 

 Further validation of the turbulent displacement speed closure, as well as of the 

turbulent consumption speed closure, which is closely related to heat release, is given by 

comparing the heat release characteristics of the numerical solution of the G-equation to 

those predicted by the analytical model. The numerical heat release is determined by 
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integrating the instantaneous flame surface area over the integration domain, and finding 

the response at the forcing frequency using the Fourier transform of the area time signal. 

The flame area integration of the non-linear analytical model is accomplished using a 

trapezoidal integration method. The values of ,T D , ,T C , 0

,T DispS , and 0

,T CS  used in the 

analytical model correspond to those calculated from numerical data simulated with the 

specified values 11L , u  and harmonic forcing amplitude. The response at the forcing 

frequency is determined using the Fourier transform of the burning-rate weighted area 

time signal. 

Figure 3.8 shows the gain and phase of the numerical (solid lines), analytical 

(dotted lines), and quasi-laminar (dashed lines) FDFs. Before discussing these results, it 

is important to explain how the laminar, constant flame speed flame holder forced 

response differs from the velocity forced one. The velocity forced FTF asymptotes to a 

value of unity as frequency tends to zero. This result can be understood from quasi-steady 

considerations – an increase in flow velocity of a fixed composition mixture causes a 

proportional increase in heat release rate. In contrast, the FTF of the flame holder forced 

flame asymptotes to zero as frequency tends toward zero, since the quasi-steady heat 

release is invariant to flame holder position. 

Similarly, the gain of the velocity forced FTF, while exhibiting some interference 

patterns, has a general low pass filter character, decaying as 1/St, as discussed in Section 

2.1.2. This occurs because the magnitude of particle displacement, and consequent flame 

wrinkling scales as 1u f , and so doubling the frequency at a fixed velocity disturbance 

magnitude halves the magnitude of displacement fluctuations. In contrast, the 

displacement is forced for the oscillating flame holder problem, and so the magnitude of 
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flame wrinkling does not roll off with frequency when normalized by displacement 

amplitude. Similar to the velocity forced case, the gain of the laminar FTF is modulated 

due to phase cancellation effects associated with integration. 

 
Figure 3.8. Flame describing function gain (left) and phase (right) calculated from 

the numerical solution of the G-equation (solid lines), integration of Equation (3.38) 

(dotted lines), and quasi-laminar result (dashed lines). Data shown for a turbulent 

field with L11 /ε = 0.5, ε/(uS,0/ωd) = 0.65, at two turbulence intensities. 

The analytical model correctly predicts the shape of the numerical FDF. Both the 

numerical solution and analytical model clearly indicate the role of phase cancellation 

effects in controlling the gain, and the gain maxima and minima are well-aligned in 

Strouhal space. In addition, Figure 3.8 shows that the model predicts two key qualitative 

effects of stochastic fluctuations: (1) a progressively decreasing maximum, and 

increasing minimum, of the FDF with increasing Strouhal number, and (2) a slight shift 

in the position of the node and anti-node locations in Strouhal space, associated with 

higher turbulence intensity. These effects are also present in the simulations, and are 

discussed further in the context of the linearized model problem presented in Section 

3.5.1 
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The phase results also are quite similar between the model and the computations - 

namely, the linearly increasing phase with frequency, the jump in phase across the gain 

minima, and the smoothing effect of the stochastic fluctuations on this phase jump.  

In addition to the analytical and numerical results, Figure 3.8 shows the results 

from the quasi-laminar approach, which are nearly identical to those of the analytical 

model, for ,0 0.021su u  . However, the model shows a significant improvement in 

prediction of gain maxima over those of the quasi-laminar approach with respect to the 

numerical results, at ,0 0.082su u  . Nonetheless, this close concurrence between the 

quasi-laminar result and the analytical model result suggests why quasi-laminar 

approaches have been so successful in comparisons of experimental data and models. 

Apparently, the “averaging” inherent in calculation of a global quantity, such as heat 

release, minimizes the importance of this turbulent flame speed modulation induced by 

turbulent fluctuations. 

3.5 Results: Model Problems 

 The purpose of the prior section was to evaluate the closures presented in 

Equations (2.13) and (3.35) in terms of predicting the phase-averaged flame position and 

heat release response obtained from phase averaging the full computations. The purpose 

of this section is to analyze two model problems and to obtain analytical solutions that 

explicitly illustrate turbulence impacts on the FTF. Such explicit solutions are not 

possible in general, such as for the comparison shown in the prior section, because the 

equations to be solved are nonlinear and have non-constant coefficients. This section 

considers the linearized problem with constant coefficients in order to obtain explicit 
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solutions that show the form of the solution. The first problem is the linear analysis of the 

oscillating flame holder problem, addressed in the previous section. The second problem 

is the case of a velocity forced flame with a convecting, decaying velocity disturbance, 

and a stationary attachment point, a problem previously investigated for laminar flames 

[60, 130, 131]. 

3.5.1 Model Problem: Flame Perturbed by an Oscillating Flame Holder 

 While the preceding general analysis (Section 3.4) required the use of numerical 

solutions to determine the spatio-temporal flame and heat release characteristics, here I 

simplify the above expressions in order to obtain explicit analytical results. The key 

additional assumptions for this model problem are that (4) 
0

,T DispS , ,T D , and ,T CS  are 

spatially constant, and (5) small amplitude disturbances so that results can be linearized. 

As in the prior section, for this oscillating flame holder problem, ensemble-average 

properties are two-dimensional and 1 0u . Applying the additional assumptions (4) and 

(5) to Equation (3.36), leads to: 

   

2

1 1 10
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    (3.40) 

Here, the  are shown to again emphasize that this is the ensemble-averaged problem, 

but are not included for the following development. The problem is transformed to 

Fourier space using a definition for the fluctuating quantities as: 

      1 1
ˆ( , ) Real di t

s t s e
    .   (3.41)where 

1̂   is the fluctuating Fourier-space ensemble-averaged flame position, and   is a non-
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dimensional excitation amplitude. This equation is solved subject to the boundary 

condition: 

       1 0, Real di t
s t e

  
  ,    (3.42) 

which stipulates that the flame remains attached to the moving flame holder at s = 0. The 

second boundary condition is that no disturbances flow from the end of the flame 

upstream – it will be described further below. The general solution is given by: 

      1 2

1
ˆ sR sRs Ae Be        (3.43) 
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Here, ,s effu  is the flow velocity tangential to the unforced flame. The R1 term corresponds 

to the solution with a wave moving downstream, while the term R2 is associated with the 

wave moving upstream. This latter term is nonphysical and so the coefficient B that 

multiplies terms containing R2 is set to zero. In the small ,T D  limit, the R1 term can be 

expanded as: 

    

0 2

, , 2

1 ,3

, ,

( )
T D T Disp dd

T D

s eff s eff

Si
R O

u u

 



     (3.45) 

Hence the solution is as follows: 
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Thus, the solution for 1  shows that a wrinkle present on the flame front convects in the 

s-direction at a velocity of ,s effu  and decays exponentially at a rate proportional to ,T D . 
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Consider the heat release next which, when linearized, is given by: 
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 The limits of integration oscillate due to wrinkles on the flame, and it is therefore 

necessary to introduce start and end corrections to the limits of integration, as discussed 

previously in Section 3.1.1, and Reference [63]. The start and end corrections equal: 
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Assuming spatially constant 
0

,T CS  and ,T C , integration of Equation (3.47) yields: 
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  (3.50) 

where I have decomposed the contributions of flame area and turbulent burning velocity 

fluctuations to the ensemble-averaged heat release. Normalizing these terms by the mean 

flame heat release, and 0l  (see Equation (3.33)), leads to the following flame area and 

turbulent burning velocity transfer functions: 

     111 1
1 1
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2 2

fWI I
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A dFTF e e e e        (3.51) 

         11 1 1
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The total analytical linear transfer function is simply the sum of these two components. 
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Using the small   expansion derived in Equation (3.45), this expression becomes: 

 

 
0 2 0 2

, , ,

, , 03 3

, , , , ,

1
exp 1 exp 1 tan

2

Tot d

T Disp d T Disp d d T Cd d
I T D f T D

s eff s eff s eff s eff s eff

FTF

S S ii i
s L

u u u u u



    
  



         
                              

 (3.54) 

This equation is then non-dimensionalized per the following scheme. 
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where all lengths are non-dimensionalized by  , /s eff du  , and all velocities by ,s effu . 

Non-dimensional spatial lengths along the s-axis are denoted as Strouhal numbers, as 

described previously. The transfer function is then given by:  
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  (3.56) 

Equation (3.53) and (3.56) are key products of this chapter – they show the explicit 

dynamical influence of stochastic background fluctuations on the ensemble-averaged heat 

release oscillations.  

Figure 3.9 plots the magnitude and phase of FTFTot from Equation (3.53). Also, 

0

,T CS  is assumed equal to 
0

,T DispS  for these calculations. Note that Figure 3.9, which 

illustrates the linearized flame response, cannot be directly compared to Figure 3.8, 

which also includes nonlinear effects (leading to harmonics in the flame wrinkling 
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spectrum and kinematic restoration) and is included to demonstrate the validity of the 

flame speed closure. 

 
Figure 3.9. Analytical FTF gain (left), and phase (right) as a function of StLf, for a 

turbulent field with L11 /ε = 0.5, ε/(uS,0/ωd) = 0.65, σT,D /(uS,0/ωd) = 0.0, 0.0313, 0.0408, 

and 0.0568, for the turbulence intensities from u’/uS,0= 0 to 0.041, respectively. 

The key dynamical effect of stochastic background disturbances enters through 

the turbulent Markstein length terms. Their influence on the model problem gain results 

can be seen most easily by working from the expansion in Equation (3.54). The 

magnitude of the small   expansion is: 

       
0 0

, , , ,
1

1 cos
2

I T Disp T D Lf T Disp T DSt S St S
Tot d LfFTF e St e

 


 
   (3.57)

This expression shows two influences of ,T D . First, it causes a general decay in the gain 

through the term 0

, ,exp .I T Disp T DSt S     This decay in gain values at a fixed Strouhal 

number with increasing turbulence intensity is clearly evident in Figure 3.9.iv 

                                                 

iv Note, however, that the numerical results and non-linear analytical integration (see Figure 3.8) 

show that the FDF gain can increase with turbulence if the mean flame speed and flame slope changes with 

downstream distance.  
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 The second effect of stochastic fluctuations is to reduce the influence of the 

interference term,   0

, ,1 cos expLf Lf T Disp T DSt St S     ; thus, increasing ,T D  causes the 

turbulent flame FTF to reduce its peak values, but also to increase the gain minima. 

Again, both of these effects are evident in Figure 3.9. For example, the calculation results 

in the figure show that the first maximum drops from a value of 1 to about 0.91 at the 

highest turbulence intensity cases. The Strouhal number exerts a similar influence, as it 

multiplies ,T D , and is therefore responsible for the drop in magnitude of the local 

maxima with increasing frequency. For example, the highest turbulence intensity case 

gain has values of 0.91, 0.87, and 0.83 for the first three local maxima.  

There are also competing effects in area and burning rate terms. Consider 

Equation (3.56): the magnitude of the third term, representing fluctuations due to burning 

rate increases with increasing turbulent Markstein lengths, while the first term, 

representing area changes decreases. That is, increasing the turbulent displacement 

Markstein length increases the rate of wrinkle destruction, which reduces the integration 

limit corrections and therefore the area fluctuations arising from those corrections. 

This point can be seen from Figure 3.10, which shows the magnitude of the 

individual contributions to the FTF, where the contribution from the downstream 

integration limit correction is denoted FTFW, and the upstream integration limit correction 

is denoted FTFI; collectively these two contributions are equal to FTFA. Note that the 

magnitude of FTFI stays constant, while the magnitude of FTFW decreases with 

increasing Strouhal number. This reflects the fact that at higher LfSt  there is more time / 

distance for flame wrinkles to decay downstream and consequently the area fluctuation 

and contribution to the FTF are reduced.  
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Figure 3.10. Individual contributions to the analytical FTF, for a turbulent field 

with L11 /ε = 0.5, ε/(uS,0/ωd) = 0.65, u’/uS,0 = 0.01. FTFI, FTFW, and FTFS are the 

contributions due to the start correction, wall correction, and consumption speed, 

respectively. 

Additionally, Figure 3.10 shows the contribution due to the non-constant 

consumption speed, FTFS, given in Equation (3.52). Clearly, area fluctuations dominate 

the FTF, rather than the consumption speed correction. Ultimately, the small contribution 

due to the consumption speed correction reflects the fact that the consumption speed 

differs little from 
0

,T DispS  for this linear analysis. This is not to say, however, that the 

effect of ,T D is insignificant. On the contrary, ,T D  has a large effect on the FTF, but 

that effect occurs through changes to the flame area, rather than the flame speed. The 

right side of Figure 3.9 shows the phase of the analytical FTFs. For increasing values of 

,T D , the phase change across the gain minima becomes smoother. 

Comparing the analytical results in Figure 3.9 to the numerical simulation results 

presented in Figure 3.8, it is clear that this model problem correctly predicts the general 

qualitative shape of the numerical FDF – specifically, the progressive decrease of FTF 

gain maxima, and increase of gain minima, with increasing Strouhal number. 
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 The qualitative features of the phase are also predicted by the model. The phase 

increases linearly with increasing Strouhal number, jumping across the gain minima. In 

addition, the stochastic fluctuations smooth the gain jumps, similar to the numerical 

simulation. Finally, the linear, analytical model clearly displays higher gain maxima 

values. This difference results from nonlinear effects which spread the heat release 

response spectral energy over higher harmonics of the forcing frequency, and in turn 

decrease the amplitude of the FDF at the forcing frequency. 

3.5.2 Model Problem: Flame Perturbed by Convecting, Decaying Vortex 

 As described earlier, the oscillating flame holder problem is an important one 

from a pedagogical perspective. In this section, I consider a problem that has additional 

complexities, but is of significant interest as a practical problem. Specifically, this section 

considers the response of a flame to a convecting disturbance, generalizing the laminar 

FTF work previously presented in several studies [53, 65, 131]. While a fully general 

treatment of this problem requires numerical treatment as in Section 3.4, I consider here a 

V-flame model problem which is quite similar to several of the prior laminar studies. I 

retain the same assumptions as in Section 3.5.1, except here the flame holder is fixed and 

there is a harmonically oscillating flow disturbance, whose component normal to the 

nominal flame position is given by: 
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    (3.58) 

where  is a non-dimensional velocity perturbation amplitude,   is a non-dimensional 

decay rate, and cu  is the velocity disturbance phase speed along the flame coordinate. 
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The derivation of the flame position and FTF are given in Appendix A. The resulting 

Fourier space fluctuating flame position is:  
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  (3.59) 

This solution can be expanded around small   values as:  
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(3.60) 

Non-dimensionalizing the FTF, according to the scheme given in Equation (3.55), gives:  
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  (3.61) 

Additionally, Equation (3.61) can be expanded for small turbulent Markstein lengths as: 
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 (3.62) 

Figure 3.11 shows the FTF gain and phase for the convecting, decaying velocity 

disturbance perturbed V-flame. For comparison to the oscillating flame holder model 

problem, the same values of 
0

,T DispS , ,T D , and ,T C  are used.  
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Figure 3.11. Analytical FTF gain (left), and phase (right) for a V-flame perturbed by 

a convecting, decaying velocity perturbation, uS,0/uc = 0.5, γ = 0.25, as a function of 

StLf, for a turbulent field with L11 /ε = 0.5, ε/(uS,0/ωd) = 0.65, σT,D /(uS,0/ωd) = 0.0, 

0.0313, 0.0408, and 0.0568, for the turbulence intensities from u’/uS,0 = 0 to 0.041, 

respectively. 

The gain of the FTF shows the characteristic magnitude roll-off with increasing 

Strouhal number. In the bulk forcing case (i.e., , 0s eff cu u  ), with no disturbance 

velocity decay  0  , the turbulent, ensemble-averaged FTF reverts to the same as that 

previously derived for a stretch-sensitive, bulk-forced laminar flame [60, 131]. The effect 

of increasing turbulence, with a resultant increase in the turbulent Markstein length, is 

less pronounced for the convecting, decaying velocity disturbance than for the oscillating 

flame holder model problem, but still results in a similar effect; increasing turbulence 

decreases the FTF gain maxima. The phase plot of the FTF shown in Figure 3.11 shows 

the influence of the convecting velocity disturbance. Note the near linear dependence of 

the phase with Strouhal number for low Strouhal values, implying that the flame can be 

described by a lumped, fixed time delay model in this region. 

 The close correspondence between the FTFs at different turbulence intensities 

indicates why the quasi-laminar approach has been successful for prediction of turbulent 

flame response to harmonic disturbances. The FTF of the convecting, decaying vortex 
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problem is not as strongly dependent on turbulence intensity, because the presence of the 

convecting disturbance continuously excites the flame response. 

3.6 Conclusions on Reduced Order Turbulent Flame Modeling 

This chapter examines the global heat release response of turbulent, premixed, 

flames subjected to harmonic forcing of the flame holder. The position of the ensemble-

averaged flame is determined by application of a definition for the effective turbulent 

flame speed, given by Shin and Lieuwen [1]. The curvature sensitivity of the ensemble-

averaged flame is accounted for by inclusion of a curvature dependent flame speed, 

which is a function of the turbulent Markstein length. Validation for the closure model is 

provided by comparison to a numerically simulated flame. For low to moderate 

turbulence intensities, the model predicts a nearly identical flame shape and closely 

approximates the gain and phase of FDF. Furthermore, these results demonstrate that a 

key qualitative trend predicted by the burning velocity closure – the progressive decrease 

in maxima and increase in minima with Strouhal number – is also observed in the 

ensemble-averaged computational results.  

Together, these results show that it is possible to model the response of a 

turbulent flame perturbed by both narrowband harmonic oscillations and broadband 

turbulence though analysis of the ensemble-averaged flame, for low to moderate 

stochastic amplitudes. Furthermore, this approach captures some of the nonlinear effects 

of turbulence (i.e. kinematic restoration) even in a linearized model. This approach is 

analogous to that used with laminar flames, and uses a modified flame position equation, 

as well as an ensemble-averaged flame speed closure with a Markstein like dependence 

on the ensemble-averaged flame curvature.  
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Two linear model problems are also presented. The first derives the FTF for the 

oscillating flame holder problem. These linear models show that it is possible to capture 

several of the key effects of stochastic disturbances on the FTF. Specifically, the linear 

model predicts increasing Strouhal number simultaneously decreases gain maxima and 

increases gain minima. FTF phase trends also qualitatively match the numerical results. 

The second model problem investigates a flame attached to a stationary flame holder, but 

perturbed by a convecting decaying velocity fluctuation. Similar to the first model 

problem, increasing turbulence decreases the gain maxima. 
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. EXPERIMENTAL INVESTIGATION OF 

TURBULENT, HARMONICALLY FORCED, PREMIXED FLAMES 

Chapter 3 demonstrated that the use of the ensemble-averaged flame speed closure, 

Equation (2.13), improves predictions of both the spatio-temporal flame position and heat 

release dynamics. Furthermore, it was shown that the use of this closure model captures 

some of the non-linear effects due to kinematic restoration even in linear, reduced order 

models. Thus, this flame speed closure shows promise in modeling ensemble-averaged 

turbulent flame dynamics. So far, however, the justification for its use is predicated 

entirely on isothermal numerical simulations and theoretical investigations. The purpose 

of this chapter is to investigate the spatio-temporal dynamics of the ensemble-averaged 

flame and flame speed closure through experimental investigations. 

The rest of this chapter is organized as follows. First, a description of the 

experimental facility is given, describing the burner configuration and the method of 

harmonic forcing. The following subsections describe the image processing steps 

necessary for determining the ensemble-averaged flame position and ensemble-averaged 

velocity fields. Then, results and discussion of the ensemble-averaged flame position and 

burning speed are presented in Section 4.3. Lastly, Section 4.5 provides conclusions from 

this experimental work. 

4.1 Experimental Methods 

Because this chapter examines the experimentally determined ensemble-averaged 

turbulent flame position and turbulent displacement speed, the isothermal assumption is 
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clearly inapplicable. As a result, the flow field can no longer be considered to be 

decoupled from the flame dynamics. For a confined, anchored flame, the products will 

accelerate due to dilatation associated with the flame’s heat release. In recognition of this 

difference, a slight modification of Equation (3.26) is used in calculating the ensemble-

averaged turbulent displacement speed, ,T DispS .  
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where, t̂  is the phase time (i.e. the time associated with a specific point of phase in the 

forcing cycle, and used to differentiate from instantaneous quantities), and u  indicates 

the reactant conditioned ensemble-averaged velocity field. Formally, this definition for 

,T DispS  is identical to the two-dimensional version of the definition given in Equation 

(3.26), because in the isothermal case, the reactant conditioned velocity field is equal to 

the non-conditioned velocity field. This modified nomenclature is introduced here for 

specificity, as well as to clarify the definition for future work. 

4.1.1 Experimental Setup 

 Like the isothermal work discussed in Chapter 3, the experimental work presented 

here examines a turbulent, premixed flame attached to an oscillating flame holder. The 

experiment is conducted in an atmospheric, premixed methane-air facility. The 

equivalence ratio, calculated laminar flame speed and thickness are given in below in 

Table 4.1, for the various mean flow velocities and blockage ratios (discussed below). 

The laminar flame speed, 0

LS , is based on a Chemkin [132] PREMIX calculation using 
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the GRIMech 3.0 mechanism [133]. The flame thickness is determined from the reactant 

and product temperature and maximum gradient, i.e.   max( ).b u

F T T dT dx l  

Table 4.1. Equivalence ratio and calculated unstretched laminar flame speed and 

flame thickness at each experimental flow condition. 

,0xU  Blockage Ratio (%) Equiv. Ratio 
0  (m/s)LS  Fl  (mm) 

5 m/s 

0 0.95 0.36 0.44 

69 0.97 0.37 0.44 

94 0.98 0.37 0.44 

97 0.97 0.37 0.44 

8 m/s 

0 0.91 0.34 0.46 

69 0.92 0.35 0.45 

94 0.91 0.34 0.46 

97 0.91 0.34 0.46 

 

A schematic of the experimental setup is shown in Figure 4.1. The burner test 

section consists of a circular jet with an exit diameter of 27.4 mm, surrounded by a 

velocity-matched, annular co-flow, with a diameter of 36.3 mm. The mean flow, Ux,0, is 

from bottom to top. The bluff body is held approximately 10 mm above the exit plane, 

bisecting the jet. The bluff body is a 20 AWG (0.81 mm) nichrome wire. 

The wire is heated by application of a 6-12 V AC current. The nichrome wire 

oscillates transverse to the mean jet flow, driven harmonically at the forcing frequency by 

two modified 90 W Goldwood speakers (see Figure 4.1). The speakers are connected in 

parallel to the fixture which holds the oscillating flame holder. The driving signal is 

created by a function generator and amplified using two linear amplifiers, one for each 

speaker. 

Fuel and air enter the burner at its base through four inlet ports. The flow then 

passes through a metal screen which mixes the fuel-air mixture and supports a bed of 

ball-bearings above the screen. After the ball-bearing bed, the fuel-air mix continues 
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through a settling plenum before passing through the variable turbulence generation 

plates. The turbulence generator consists of two plates with several pie-shaped slots cut 

through them and is detailed in Marshall et al. [134]. 

 
Figure 4.1. (a) A schematic of the experimental facility, showing major burner 

components, and (b) an image of the experimental facility in use, showing the V-

flame and oscillating flame holder. 

The bottom plate is fixed, while the top plate can rotate over a 28o range. By 

changing the relative angle between the top and bottom plates, the blockage ratio can be 

varied from 69-97%. The plate angle is measured from a compass, with an uncertainty of 

±0.25o. This turbulence generation system allows the independent variation of the mean 

flow velocity and turbulence level. For the lowest turbulence case, the plates are removed 

entirely. However, even in this case the flow has a low turbulence level. After the 
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turbulent generation plates, the flow passes through a contoured nozzle, designed to 

create a uniform top-hat velocity profile at the plane of the jet exit. 

The main air supply is metered using an Aalborg GFC-67, 0-500 L/min mass flow 

controller, while the fuel is metered using an Omega FMA-5428, 0-50 L/min mass flow 

controller. Co-flow air is metered using an Omega FMA-1843 gas flow meter and manual 

needle valve. The main air and fuel mass flow controllers are controlled using LabVIEW. 

The co-flow air is adjusted to match the main jet velocity. 

Mie scattering is used both to detect the flame edge and quantify the velocity field 

using particle image velocimetry (PIV). Images are taken using a Photron Fastcam SA5 

high speed video camera with a Nikon Micro-Nikkor f=55m f/2.8 lens, set to a resolution 

of 768 x 848 pixels for the 200 Hz and 750 Hz cases and 640 x 848 pixels for the 1250 

Hz case. A bandpass filter is used to minimize off-frequency light. The camera is 

triggered by a timing box tied to the laser pulse from a dual head, frequency doubled 

Litron Nd:YLF, 527 nm laser. The laser is formed into a vertical sheet, approximately 6 

cm high and 1 mm thick. The laser and optical setup are shown in Figure 4.2.  

 
Figure 4.2.  Schematic of laser and camera setup. 

Titanium oxide (TiO2) seed particles, with a nominal diameter of 1 micron are 

added to the flow by diverting a portion of the main air (prior to mixing with the fuel) 
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through a small cyclone seeder. The seeded flow re-enters the main flow upstream of the 

settling plenum and prior to the turbulence generator. Cold flow tests show the seed to be 

well-mixed with the main flow. The co-flow is unseeded. 

Three forcing frequencies (200 Hz, 750 Hz, and 1250 Hz) are investigated at two 

nominal mean, axial flow velocities (5 m/s and 8 m/s), denoted as ,0xU , and four 

turbulence intensities each ( ,0 8 32%xu u   ), where u  is the root mean square of the 

turbulent velocity fluctuations, and ,0xu  is the mean measured axial flow velocity. For the 

200 Hz cases, pairs of images are recorded at 2000 Hz. For the 750 Hz and 1250 Hz cases, 

a sequence of images is taken at 7500 Hz and 12500 Hz, respectively. These acquisition 

rates result in 10 samples per forcing cycle for all conditions and, by virtue of being a 

nearly exact integer multiple of the forcing frequency, virtually eliminate spectral leakage 

bias errors in spectral estimation. The total number of image pairs is 8790, 17580, and 

21095, for the 200 Hz, 750 Hz, and 1250 Hz cases, respectively. 

 PIV processing is accomplished with LaVision DaVis PIV software [135], using a 

multipass algorithm. The first pass uses a 48 x 48-pixel interrogation window, with 25% 

overlap between windows, while two subsequent passes use an 8 x 8-pixel window, with 

a 25% overlap. This yields a resolution 6 pixels (~0.46 mm) between vectors. However, 

note that due to the window overlap, adjacent velocity vectors are not completely 

independent. The uncertainty of these measurements and calculations is discussed in 

Section 4.2.3.  
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4.2 Image and Data Processing 

4.2.1  Image Processing Procedure 

This section details the steps used to extract ensemble-averaged flame edge and 

flow field data. The raw images collected during the experimental run are first de-warped 

using LaVision’s DaVis PIV processing software [135]. This step corrects image 

distortion due to the presence of the quartz window and provides physical reference 

coordinates for the images. Figure 4.3 shows four representative images of the flame at 

different conditions, at this stage of processing. 

 
Figure 4.3. Four representative instantaneous flame images, at (a) f0 = 750 Hz, ux,0 = 

4.2 m/s, u’/ ux,0 = 26.8%, (b) f0 = 750 Hz, ux,0 = 7.1 m/s, u’/ ux,0 = 25.5%, (c) f0 = 1250 

Hz, ux,0 = 4.2 m/s, u’/ ux,0 = 12.2%, (c) f0 = 1250 Hz, ux,0 = 6.7 m/s, u’/ ux,0 = 28.0%. 

Image (a) shows the cropped region. 

If necessary, the strength of unwanted reflections is reduced using a sliding 

minimum subtraction method. This algorithm subtracts a weighted minimum intensity 

value (determined over a set number of images at a given point of phase) at each pixel, 

effectively removing persistently bright pixels. However, for most cases this step was not 

required. Next, axial (i.e. flow direction) variation in the image brightness, resulting from 

laser sheet intensity variation, is normalized. This normalization uses the average 
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brightness of a region with recirculating seed and illuminated by the laser, but beyond the 

edge of the jet as a reference. The normalization is accomplished by dividing each row in 

the image by the corresponding row in the intensity reference multiplied by a weighting 

factor. After normalizing the images, they are filtered using a Gaussian filter, which 

removes high frequency noise, and then filtered with an edge-preserving bilateral filter. 

The images are cropped to a region containing the flame, reactants, and the region 

downstream of the co-flow, as the flame expands into this region due to flow divergence 

around the flame, as shown in Figure 4.3 and Figure 4.4. The cropped images are 

binarized using a weighted threshold based on Otsu’s method [136]. This produces a 

series of instantaneous, binary flame images, an example of which is shown in Figure 4.4. 

 
Figure 4.4. Identification of ensemble-averaged flame edges from instantaneous 

flame images, at ux,0 = 4.2 m/s, u’/ ux,0 = 26.5%, and f0 = 750 Hz. Ensemble-averaged 

edge shown at C   0.2 (blue), C   0.5 (black), and C  0.8 (red). Dimensions shown 

are in mm. 

In order to determine the ensemble-averaged flame edge, the set of instantaneous 

binary images at a given phase in the forcing cycle are averaged together. This produces 

an ensemble-averaged progress variable field, which varies from zero in the reactants to 

unity in the products. The ensemble-averaged flame edge associated with some reference 

progress variable contour is then extracted, as shown in the fourth image in Figure 4.4. 

Note that the coherent harmonic wrinkle, initially obscured by the turbulent fluctuations, 
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becomes evident after ensemble-averaging. The result of these processing steps is the 

physical location of the ensemble-averaged flame edge, at each phase in the forcing cycle. 

Note that because flame locations are determined by averaging a series of binary images, 

the resulting flame positions reflect the median location of the flames rather than the 

arithmetic mean of the flame locations. This difference is discussed further in Appendix 

B, and also in reference [1]. 

4.2.2 Ensemble-Averaged Flame and Flow Field 

 Figure 4.5 shows a simple schematic of the flame geometry, and the coordinate 

systems used in defining the ensemble-averaged flame wrinkles. The s-coordinate is 

defined as the mean flame position. Although the mean flame position is not exactly a 

straight line, it is nearly so: linear regressions on the full mean flame yield an average 

correlation coefficient (R2) value of 0.97, with the lowest observed R2 = 0.91. 

 Determination of the fluctuating, ensemble-averaged flame position, and 

reduction of noise inherent in the experimental data, requires several processing steps. 

These processing steps are needed because the edge data extracted from the ensemble-

averaged progress variable fields is subject to spatial aliasing. In order to remove noise in 

the extracted data, the ensemble-averaged flame edge is fit with a smoothing spline curve. 

Only minimal smoothing is necessary, and the interpolated flame edges fit the original 

edge data well, with R2 > 0.99 for all cases. 

The ensemble-averaged, fluctuating flame position as a function of the s 

coordinate,  1
ˆ,s t , is extracted from the ensemble-averaged flame edge data (see Figure 

4.5) by determining the perpendicular distance from the mean flame to the ensemble-
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averaged flame (using a normal vector defined from a linear regression with a sliding 

stencil on the mean flame), at each s location on the mean flame, and at each phase. The 

flame position is defined as positive towards the reactants, regardless of whether it is the 

left or right flame edge, as shown in Figure 4.5. 

 
Figure 4.5. Schematic of the coordinate system, ensemble-averaged turbulent flame 

(dashed), and instantaneous flame (solid). The excitation amplitude is  , d  is the 

radial driving frequency. 

The result of these processing steps are ensemble-averaged, fluctuating flame 

positions, as shown in Figure 4.8, which is discussed further in the next section. While 

the instantaneous flame may be highly corrugated, the ensemble-averaged flame is 

relatively smooth. In fact, the ensemble-averaged flame actually becomes smoother with 

increasing turbulence intensity due to the kinematic restoration effect discussed earlier, 

even while the instantaneous flame becomes more wrinkled. 

The velocity field is determined using PIV measurements, as described previously 

in Section 4.1.1. Representative instantaneous flow results, with the instantaneous and 
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ensemble-averaged flame position are shown in Figure 4.6. The velocity fields are 

ensemble-averaged by averaging the instantaneous, reactant conditioned, velocity fields 

at a given phase of the forcing cycle. Reactant conditioning is carried out by only 

including velocity values from the reactants, upstream of the instantaneous flame. This 

averaging procedure produces ensemble-averaged, reactant-conditioned velocity fields, 

,u  which are a function of spatial location and phase. 

 
Figure 4.6. Representative instantaneous flow field and flame edge (solid) and 

ensemble-averaged flame edge (dashed), at ux,0 = 7.2 m/s, u’/ ux,0 = 25.6%, and f0 = 

750 Hz. Phase increases from left to right, in increments of t̂ T = 0.10, where T is 

the cycle period. 

In addition to the ensemble-averaged velocity field, calculation of the ensemble-

averaged turbulent burning speed, ,T DispS , (defined in Equation (4.1)) requires the first 

derivative of the flame with respect to s. This is computed by fitting a spline to the 

ensemble-averaged flame fluctuation. The first (and second) derivatives can then be 

calculated from the spline fit. Note that the second derivative is required for calculation 

of the ensemble-averaged flame curvature. This fitting procedure is used in order to 

minimize the amplification of noise which otherwise occurs when finding finite 

difference approximations to derivatives.  
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Figure 4.7. Ensemble-averaged flame at 0.5C   and progress variable field showing 

the decrease in wrinkling amplitude and degree of cusping with increasing 

turbulence intensity, f0 = 750 Hz, ux,0 = 4.9, 4.7, 4.1, and 3.8 m/s, from left to right. 

Derivatives in the phase domain are computed using a weighted essentially non-

oscillatory (WENO) derivative algorithm [129]. This is necessary because the change of 

flame position in time can be discontinuous as a result of strong cusp formation. These 

strong cusps are particularly evident at the lowest turbulence intensities, while increasing 

turbulence intensity significantly decreases their magnitude, as shown in Figure 4.7. The 

WENO derivative is designed to accurately measure the derivative of a function with 

such discontinuous derivatives. 

4.2.3 Uncertainty Analysis 

Uncertainty in flame position is determined by comparison of raw, instantaneous 

flame images with the algorithmically determined instantaneous flame edge. The 

thickness of the flame edge is manually adjusted until it overlaps the apparent flame edge 

based on the raw image. The thickness is recorded, and this procedure is repeated for 55 

images for each data set. A one-sided, 95% confidence interval is calculated for each set 
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of thickness values, and this measurement is taken to be the uncertainty in instantaneous 

flame position. 

In order to determine the uncertainty of the calculated ensemble-averaged 

turbulent flame speeds, the ensemble-averaged flame edge uncertainty is calculated from 

the instantaneous flame edge uncertainty, using standard propagation of uncertainty 

techniques [137]. However, because of the complexity of the processing algorithms used 

to extract the ensemble-averaged flame and flow fields used in the calculation of the 

ensemble-averaged turbulent burning speed, ,T DispS , a Monte-Carlo approach is adopted 

in order to determine flame speed uncertainty.  

This is accomplished by first creating a synthetic progress variable field which is 

qualitatively similar to the actual data, but based on a known analytical function. The 

analytical function has the same number of phase points, and the same approximate shape, 

wrinkle magnitude, and convection speed as the experimental data. Gaussian noise with a 

specified mean and standard deviation, determined from the ensemble-averaged flame 

position data (discussed above), is introduced. Similarly, synthetic velocity fields with the 

same mean axial velocity are created. Noise is introduced in this synthetic velocity data 

based on the mean axial velocity, frame position, time delay between PIV image pairs, 

number of velocity data points included in each phase average, pixel size, and uncertainty 

in the calibration plate used for PIV analysis, as discussed further below.  

The synthetic data is processed using the same algorithm as that used for the 

actual experimental data. Uncertainty is determined by comparison of relevant quantities 

(i.e. derivatives of flame position and velocity) with the known, analytical function on 

which the synthetic data is based. For each quantity, a one-sided, 95% confidence interval 
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is determined and this value is used to find the relative uncertainty in a given quantity. 

Finally, the uncertainty of an actual specific ensemble-averaged flame speed data point is 

determined using standard error propagation techniques, which provides final uncertainty 

estimates that vary depending on the magnitude of measured quantities (i.e. an 

uncertainty is found for each data point). Uncertainties in averaged quantities are again 

determined using standard uncertainty propagation techniques. 

 The turbulent Markstein length, ,T D , and uncurved turbulent flame speed, 0

,T DispS , 

are calculated from the slope and intercept of an orthogonal regression between the 

,T DispS  and C  values, as discussed in Section 4.4.  To characterize the uncertainty in 

,T D  and 
0

,T DispS  a Monte Carlo approach is also used. Synthetic data is created by 

drawing from a normal distribution with a mean equal to the calculated experimental data 

value and a standard deviation equal to one half the same data point’s uncertainty. These 

synthetic data are generated in each flame curvature bin, as shown in Figure 4.16. 

Estimates of ,T D  and 
0

,T DispS  are determined from 1000 independently generated 

realizations. A 95%, two-sided confidence interval based on these 1000 synthetic values 

of ,T D  and 
0

,T DispS  provides the uncertainty estimate. 

Uncertainty estimates of the instantaneous PIV flow field measurements are based 

on four factors: out of plane particle movement, particle aliasing due to pixel resolution, 

calibration error due to pixel resolution, and the manufacturing tolerance of the 

calibration plate. The effect of out of plane particle movement increases from zero at the 

center of the image to approximately 20% at the edges of the image. The uncertainty in 

the particle position due to finite resolution is estimated as 10% of the pixel size. 
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Similarly, the uncertainty of the calibration due to finite pixel resolution is estimated as 

10% of the pixel size. The manufacturing tolerance of the calibration plate is 0.02 mm. 

The uncertainties resulting from these factors are treated additively. Because these 

uncertainty estimates depend both on the mean flow velocity and the time delay between 

images, the uncertainty due to a given factor and the overall uncertainty vary from case to 

case. Uncertainties due to out of plane motion and particle location are treated as random 

uncertainties, while the uncertainties resulting from calibration error are treated as bias 

errors. The resulting PIV uncertainty varies significantly with position for a given case 

(due to out of plane particle motion) and between cases, due to differences in mean 

velocity and different time delays between image pairs.  

The largest uncertainties in instantaneous, ensemble-averaged, and time averaged 

velocities are approximately 17%, 6%, and 5%, respectively. The largest uncertainty of 

the ensemble-averaged velocity fields used for calculation of the ensemble-averaged 

turbulent displacement speed is approximately 6%.  

4.3 Experimental Results and Discussion 

 This section presents results for the ensemble-averaged flame position and ,T DispS . 

Figure 4.8 shows the ensemble-averaged flame position fluctuation at two forcing 

frequencies and four turbulence intensities. Each line is the ensemble-averaged flame 

edge at given phase. Note that harmonic wrinkling is not necessarily evident on the 

instantaneous flame, but can be seen much more readily by the ensemble-averaging 

process. Clear harmonic wrinkling of the flame is observed in all cases. In addition, the 

downstream convection of these flame wrinkles is also evident by the axial translation of 

the wrinkles at subsequent phases. 
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At the lowest turbulence intensity and a forcing frequency of 750 Hz, 

approximately five full spatial periods of oscillation are present on the flame, while at 

1250 Hz, there are approximately eight full periods of oscillation, reflecting the reduced 

convective length scale at 1250 Hz. Representative results from the 750 Hz and 1250 Hz 

cases are examined in the following discussion and results. 

 
Figure 4.8. Ensemble-averaged flame position fluctuations with increasing 

turbulence intensity from the left flame edge at f0 = 750 Hz, ux,0 = 4.9, 4.7, 4.1, and 

3.8 m/s (a-d), and for a right flame edge at f0 = 1250 Hz, ux,0 = 4.5, 4.6, 4.3, and 4.4 

m/s (e-h). 

As introduced in Section 4.2, the flame positions are the median rather than the 

arithmetic mean of the flame position. This is most pronounced in the low turbulence 

intensity cases Figure 4.8(a,e), where the flame is clearly asymmetrically distributed 

around the zero location. This effect decreases with increasing turbulence due to the 
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decrease in the magnitude of the flame position fluctuations, as the median does not 

reflect the magnitude of outlying events. 

One of the most prominent observations from these data is the smoothing effect of 

turbulent fluctuations on the harmonic flame wrinkle. In the low turbulence cases (Figure 

4.8a,e) the harmonic flame wrinkles persist beyond the experimentally observable 

window, while for the high turbulence intensity cases (Figure 4.8c,d,g,h) the harmonic 

wrinkles are damped out to within the measurement tolerance, after approximately 10-20 

mm downstream from the flame holder. This smoothing effect increases monotonically 

with turbulence intensity. This result is consistent with conclusions reached in prior 

isothermal computations from Shin and Lieuwen [1] and Hemchandra et al. [96]. Thus, 

these results clearly show that turbulent flow disturbances dissipate the magnitude of 

wrinkles introduced on the flame by acoustic disturbances and/or quasi-coherent large 

scale vortical structures. 

Figure 4.8 also provides an indication of the importance of thermo-diffusive 

effects on the ensemble-averaged flame response. For lean, methane-air flames, the 

laminar Markstein length is positive. That is, these flames are thermo-diffusively stable, 

and therefore the effect of thermo-diffusive effects should act to smooth flame wrinkles. 

Moreover, because the importance of these effects decreases with increasing turbulence, 

the most pronounced dependence of the flame on thermo-diffusive effects is expected to 

occur at the lower turbulence intensities, as discussed previously in Section 2.1.4. 

However, as shown in Figure 4.8, the largest wrinkle amplitude and even wrinkle growth 

is observed at the lowest turbulence intensities. This is inconsistent with a thermo-
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diffusively controlled flame response and indicates that for the mixture composition 

investigated in this work, these effects are likely to be insignificant. 

 Isothermal calculations and modeling results suggest that the wrinkle amplitude 

should decay exponentially with distance downstream. These data clearly show that this 

is not the case. Rather, the growth/decay in flame wrinkle amplitude is non-monotonic 

for the two lower turbulence cases at 750 Hz, and the lowest turbulence case at 1250 Hz. 

For the two lowest turbulence intensities, flame wrinkle amplitude first grows up to an 

axial position of ~17 mm, in Figure 4.8(a) before decreasing further downstream. This 

non-monotonic behavior is likely due to gas expansion effects which induce phase-

coherent velocity disturbances, as discussed next. 

Detailed analysis of Figure 4.8 shows the effect of an additional convecting 

disturbance, for the low and moderate turbulence intensity cases. This disturbance likely 

results from vortex shedding from the flame. Note that a significant difference between 

the current work and the previous computational studies is that only an isothermal flame 

was considered by Shin and Lieuwen [1] and Hemchandra et al. [96], effectively 

removing the influence of the flame on the flow field. An important effect of heat release 

(i.e., non-isothermal effects) is that the coherent flame wrinkles modulate the approach 

flow velocity, also introducing an additional source for coherent wrinkles on the flame. 

This coherent velocity disturbance can be seen clearly in the data in Figure 4.9(a), 

which shows the normal component of the reactant conditioned, ensemble-averaged 

velocity. The figure shows a propagating disturbance on the velocity beyond about s = 5 

mm. Again, this velocity disturbance is not directly excited in the experiment (only flame 
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base motion and turbulent flow disturbances are directly excited) – rather, it is an indirect 

effect due to vortex shedding and gas expansion-induced motion. 

 
Figure 4.9. (a) Ensemble-averaged normal velocity along the right mean flame 

position (average over all phases), at f0 = 750 Hz, ux,0 = 4.8 m/s, u’/ux,0 = 9.3%, (b, c) 

Ensemble average flame position, showing the effect of the convecting vortex at two 

points of phase, t̂ T = 0 (solid) and t̂ T = 0.5 (dashed) for (b) f0 = 200 Hz, ux,0 = 8.1 

m/s, u’/ux,0 = 8.8%, and (c) f0 = 200 Hz, ux,0 = 8.1 m/s, u’/ux,0 = 8.4%. 

This harmonic modulation of the disturbance velocity provides an indicator of 

how important non-isothermal effects are in understanding these interactions. For the 

result in Figure 4.9(a), it shows that the induced disturbance in velocity is about 18% of 

the mean velocity. This convecting flow disturbance can also be seen in Figure 4.9(b,c), 

which plots the ensemble-averaged flame at two points of phase at the lowest frequency 

for which data were obtained. For this low frequency (f0 = 200 Hz) case, only 

approximately three-quarters of the convective wavelength due to the harmonic flame 

holder movement appears on the flame, enabling more clear separation in scales of the 

flame wrinkling induced by flame holder motion and convecting velocity disturbances. 

The smaller scale undulations are the result of a velocity disturbance. 

Left side 

Right side 
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4.4 Turbulent Ensemble-Averaged Burning Velocity 

Although the flame position is important in its own right, the ensemble-averaged 

burning speed, ,T DispS , provides insight into how it is temporally modulated by the 

harmonic disturbances. Values of ,T DispS  are determined from the ensemble-averaged 

velocity and flame edge data, using Equation (4.1). As discussed above, the ensemble-

averaged flame develops small-scale wrinkles which are not directly due to harmonic 

flame holder motion, and these regions are not included in the flame speed calculations as 

they add significant noise to the calculation of derivatives. For example, in Figure 4.8(b) 

the included region corresponds to s = 4-30 mm. 

Note that ,T DispS  is a function of both time (or, more precisely, the phase) and space, 

as opposed to the more familiar turbulent displacement speed which is taken as a time 

average and, consequently, is only a function of space. The average of ,T DispS  over all 

phases, denoted as ,T DispS , provides a measure of the spatial dependence of ,T DispS , as 

shown in Figure 4.10. Note that ,T DispS  is a function of both harmonic disturbance 

amplitude and turbulence intensity, so all results are shown for constant 0.32 mm   

(Figure 4.10a) and 0.27 mm   (Figure 4.10b).  

 

 



 123 

 
Figure 4.10. Ensemble-averaged turbulent burning speed, averaged over all phases, 

,T DispS , for (a) right flame edge, f0 = 750 Hz, ux,0 = 4.6, 4.3, and 4.4 m/s, and u’/ ux,0 = 

14.6%, 24.4%, and 26.4%, (b) right flame edge, f0 = 200 Hz, ux,0 = 7.8 m/s, 7.2, and 

7.1 m/s, and u’/ ux,0 = 13.1%, 25.5%, and 26.7%, in order of circles, diamonds, and 

squares, respectively for both cases. 

The average ensemble-averaged turbulent burning speed increases in a roughly 

monotonic fashion with increasing downstream distance. This is a familiar result in 

anchored flames [138]. In general, ,T DispS  also increases with increasing turbulence 

intensity. The value of ,T DispS  at the higher turbulence intensities is approximately 1.5-4 

times greater than at the lowest turbulence intensities, for both forcing frequencies shown. 

A complete set of average flame speed plots for all cases and turbulence intensities is 

given in Appendix F. 

Consider next the axial dependence of the phase-dependent burning speed, ,T DispS . 

Both the 750 Hz (Figure 4.11) and 1250 Hz (Figure 4.12) cases show significant 

variations in ,T DispS  with the flame coordinate. Several trends are evident - of particular 

interest are changes in ,T DispS  which correspond with the curvature of the ensemble-

averaged flame. For instance, Figure 4.11(a) shows a series of peaks in the flame speed 

with the magnitude of the peaks diminishing with the s coordinate. In the flame wrinkle 

plot (Figure 4.11b), these peaks generally correspond to regions of negative flame 

curvature. For example, consider Figure 4.11(a) at s ≈ 7, 11, 13, 17, and 21 mm. The 
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temporal maxima in flame speed is also noticeable for the higher turbulence intensity 

Figure 4.11(c). However, the maxima are not as sharp, a reflection of the fact that the 

ensemble-averaged flame is smoother for the higher turbulence intensity case. In other 

words, C  varies more smoothly at higher turbulence (at increasing s) than at the lower 

turbulence intensity case, where the flame is composed of broad regions of positive 

curvature, punctuated by relatively narrow regions of strongly negative curvature. 

 
Figure 4.11. Normalized ensemble-averaged turbulent displacement speed (a,c) and 

flame fluctuation (b, d) as a function of the flame coordinate, for the right edge at f0 

= 750 Hz, (a, b) ux,0 = 4.6 m/s, u’/ ux,0 = 14.6%, and (c, d), the right edge at ux,0 = 4.4 

m/s, u’/ ux,0 = 26.4% at two phases, t̂ T = 0 (circles) and t̂ T = 0.5 (triangles). 

This same modulation of ,T DispS  is also clear in Figure 4.12, which plots the 

ensemble-averaged turbulent displacement speed for a 1250 Hz case. Again, there is a 

distinct correspondence between points of negative curvature and local peaks in the 

ensemble-averaged turbulent flame speed, for both points of phase shown. 

For the lower turbulence intensity case (Figure 4.12a,b) the peaks are sharper than 

for the higher turbulence intensity case (Figure 4.12c,d). Again, increased turbulence 

intensity smooths the flame wrinkles, decreasing the magnitude of ensemble-averaged 
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flame curvature. Thus, the areas of increased flame speed are also broadened and of 

lower magnitude. Like the 750 Hz cases (Figure 4.11) the 1250 Hz cases shown in Figure 

4.12 also demonstrate diminishing flame speed modulation with downstream distance. As 

the flame wrinkles decay, so too do the modulations in ensemble-averaged turbulent 

flame speed. Additionally, the magnitude of flame speed modulation appears reduced at 

1250 Hz as compared to the 750 Hz case, due to the somewhat reduced flame wrinkle 

size, as seen in Figure 4.8. 

 
Figure 4.12. Ensemble-averaged turbulent displacement speed (a, c) and flame 

fluctuation (b, d) as a function of the flame coordinate, for the right edge at f0 = 1250 

Hz, (a, b) ux,0 = 4.6 m/s, u’/ ux,0 = 13.0%, (c, d) ux,0 = 4.4 m/s, u’/ ux,0 = 22.0%, at two 

phases, t̂ T = 0 (circles) and t̂ T = 0.5 (triangles). 

To further examine modulation of ,T DispS , Figure 4.13 shows a PDF plot of the 

normalized ensemble-averaged displacement speed plotted against the normalized 

ensemble-averaged curvature. The best fit line in Figure 4.13 and those used in 

determining the turbulent Markstein lengths shown later are determined by orthogonal 

linear regression (i.e. a procedure that minimizes the orthogonal distance from the best fit 

line to the data, rather than minimizing either the x or the y distance). The orthogonal 
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linear regression is the appropriate regression tool when there is uncertainty in both the 

regression variable and the regressor [139], in this case the experimentally determined 

ensemble-averaged flame curvature. 

Figure 4.13 shows that ,T DispS  correlates with C . Specifically, ,T DispS  increases 

with negative ensemble-averaged flame curvature. This point was previously inferred 

from the analysis of Figure 4.11 and Figure 4.12, but can be seen more directly here. 

 
Figure 4.13. PDF plot of the ensemble-averaged turbulent displacement speed 

versus normalized ensemble-averaged flame curvature for the left edge at f0 = 750 

Hz, ux,0 = 4.7 m/s, u’/ ux,0 = 15.7%. The red line is determined by orthogonal linear 

regression. 

However, while Figure 4.13 provides evidence for this relationship, the 

relationship between ,T DispS  and C  cannot be determined using a straightforward 

regression analysis, as this leads to significant bias errors because the data is not 

uniformly distributed in curvature space. Figure 4.13 clearly shows a clustering of data 

for ensemble-averaged curvatures between zero and unity, which has the effect of biasing 
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any regression between the two variables towards values in a relatively narrow, positive 

curvature range. This analysis is concerned with the effect of flame curvature not only at 

these most probable, positive curvature locations but also for relatively improbable events 

at large negative flame curvature. Therefore, an additional processing step is utilized to 

minimize bias error effects due to the nonuniform sampling in curvature space. First, the 

data is divided into bins for sub-ranges of curvature values. Then, a conditional median 

value for ,T DispS  is determined in each curvature bin where there are at least five data 

points. The median, rather than a mean, is used so that the value for a given bin is not 

skewed by outlying data points. Several representative results of this procedure are 

shown in Figure 4.14 and Figure 4.16. 

 
Figure 4.14. (a) Dependence of the ensemble-averaged turbulent displacement speed 

upon ensemble-averaged curvature for the right edge at f0 = 750 Hz, Ux,0 = 5.0 m/s, 

0.5,C   for three turbulence intensities, ux,0 = 4.7 m/s, u’/ux,0 = 15.7% (solid line, 

diamonds), ux,0 = 4.1 m/s, u’/ux,0 = 29.5% (dashed line, squares), and ux,0 = 3.8 m/s, 

u’/ux,0 = 33.1% (dotted line, triangles), (b) Numerical results reproduced from Shin 

and Lieuwen [1].  

These data are the most significant result from this chapter, and clearly show the 

relationship between curvature and turbulent displacement speed. In particular, they show 
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the approximately linear rise in ,T DispS  with curvature. Note the use of a slightly different 

non-dimensionalization for curvature in Figure 4.14(b). ,T DispS  and ,T effS are both defined 

from Equation (4.1), however, the ,T effS calculation used an ensemble-averaged flame 

based on the mean, rather than the median, flame location. Figure 4.14(a) also shows that, 

for this case, the uncurved ensemble-averaged turbulent displacement speed, 
0

,T DispS , (i.e. 

the intercept of the regression line at zero curvature) and the slope of the regression 

demonstrate similar sensitivities to increasing turbulence. That is, the uncurved turbulent 

displacement speed increases with increasing turbulence, and the sensitivity of the flame 

speed to curvature (as characterized by the slope of the regression line) increases. 

However, in general the dependence of slope and intercept is not a monotonic function of 

turbulence intensity, as discussed later. For reference, Figure 4.14(b) reproduces a result 

from Shin and Lieuwen [1], which shows a scatterplot of calculated ,T DispS  values (i.e., 

the data is not averaged in curvature bins as in Figure 4.14(a)), also demonstrating an 

approximately montonic relationship between the ensemble-averaged flame curvature 

and flame speed. Both results are consistent with the closure in Equation (2.13), 

previously proposed by Shin and Lieuwen [1]. 

The dependence of ,T DispS  on C  shown in Figure 4.14 and Figure 4.16 results 

from the interaction between the large-scale, narrowband disturbances due to the 

harmonic forcing and the small-scale, broadband disturbances due to turbulence. Figure 

4.15, reproduced from Section 2.4.1 for reference, illustrates this effect. 
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Figure 4.15. Schematic of the interaction of narrowband flame curvature with 

broadband turbulent wrinkling, following Shin and Lieuwen [1]. 

  For a flame with coherent negative curvature, as shown on the right-hand side of 

the figure, the distance between opposing flame surfaces will on average be decreased, 

particularly at the trailing edge of the flame [1]. In turn, this increases the rate at which 

opposing faces will interact and annihilate one another through kinematic restoration (i.e. 

the propagation of the flame normal to itself). The net result is that the average flame 

surface propagates further in the negatively curved case than for positive or neutral 

curvature over a given time increment. 

Similar relationships between ,T DispS  and C  were observed for all 750 Hz and 

1250 Hz cases, and most 200 Hz cases, as illustrated in Figure 4.16. A full set of the 

experimental correlations is provided in Appendix G. In these results, ,T DispS  is 

normalized by the local average value, ,T DispS , and denote this quantity as TS , which 

somewhat reduces the sensitivity of the plots to turbulence intensity and helps identify 

the spatio-temporal modulation of the phase dependent flame speed. Figure 4.16(c) 

illustrates the relationship of the normalized uncurved turbulent flame speed values, 0

TS , 

and the “normalized turbulent Markstein length,” ,T DM  to the intercept and slope of the 

regression line. Note that while ,T DM  describes the same fundamental curvature 
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sensitivity as ,T D , because ,T D  cannot be recovered from values of ,T DM , and vice-

versa, ,T DM  is not directly proportional to the definition given in Equation (2.13). These 

normalized values are also non-dimensional. 

 
Figure 4.16. Dependence of the normalized ensemble-averaged turbulent 

displacement speed upon ensemble-averaged curvature at four representative 

conditions, (a) left edge, f0 = 750 Hz, ux,0 = 4.8 m/s, u’/ux,0 = 9.3%, 𝐂 = 𝟎. 𝟓, (b) left 

edge, f0 = 750 Hz, ux,0 = 7.0 m/s, u’/ux,0 = 27.3%, 𝐂 = 𝟎. 𝟓, (c) left edge, f0 = 1250 Hz, 

ux,0 = 4.7 m/s, u’/ux,0 = 14.5%, 𝐂 = 𝟎. 𝟓 (d) left edge, f0 = 1250 Hz, ux,0 = 6.2 m/s, 

u’/ux,0 = 32.1%. 

Note the consistent flattening of TS  between approximately zero and unity 

curvature. This behavior is evident in Figure 4.16(a), but also occurs at other conditions 

and appears to approximately coincide with the region of higher data realizations (see 
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Figure 4.13). There are two possible explanations: (1) this flattening trend may be a bias 

error associated with non-uniform sampling of the curvature space. In other words, 

uncertainty in the curvature causes errors in estimation of the curvature in the high 

probability data region, (2) this flattening may reflect a real change in the sensitivity of 

the flame speed to curvature for positive curvature values. As shown in Figure 4.16 (as 

well as in the full set of results in Appendix G), this flattening trend is a common feature 

for many of the examined experimental conditions. 

If the flattening is a real result, this indicates that for positive curvatures the 

relationship between curvature and flame speed changes. That is, the turbulent Markstein 

number may itself be a function of the curvature, demonstrating different values at 

positive and negative curvatures. As discussed in Section 2.1.4, there are several features 

of premixed flames which can impact the flame response, including thermo-diffusive 

effects and the Darrieus-Landau instability. It is unlikely that the thermo-diffusive effect 

could account for this flattening. That is, for the thermo-diffusively stable reactant 

mixture examined in this work, this effect should further decrease the flame speed in the 

positive curvature regions rather than increase (and therefore flatten) the trend. 

A second possibility is that this flattening reflects the effect of the Darrieus-

Landau instability. This explanation appears more likely as the hydrodynamic instability 

should cause wrinkle growth and thus would amplify wrinkles with positive curvature. 

Moreover, as shown in Appendix G, the most pronounced flattening at positive 

curvatures generally occurs for low and moderate turbulence intensity, where the 

hydrodynamic is expected to be most significant. Note also that this flattening occurs for 
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other progress variables, both higher and lower, and is not unique to the choice of the 

0.5C   definition for the ensemble-averaged flame, as discussed further in Appendix C. 

An interesting result of negative ,T DispS  values is observed at the lowest 

turbulence intensities in some cases. Figure 4.17 shows a PDF illustrating the occurrence 

of some realizations of negative ensemble-averaged turbulent displacement speeds. In 

these cases, (particularly the 200 Hz, Ux,0 = 8 m/s cases) negative ,T DispS  values were 

observed at points near flame cusps (See Appendix G for additional results). In most 

cases the negative flame speeds constitute only a small fraction of the overall realizations 

(such as shown in Figure 4.13), and these instances fall within the absolute uncertainty of 

the measurements and calculations. However, the fact that this phenomenon is observed 

repeatedly (1) at the lowest turbulence intensity, and (2) at locations of strong cusping 

suggests it is not simply an error. Moreover, it is well known that laminar and turbulent 

displacement speeds can become negative. This occurs when the reference isocontour 

moves in the same direction as the flow; in contrast, consumption- based flame speed 

definitions are always positive. For example, in locally laminar flames, negative 

displacement speeds occur for strongly stretched and curved flames [29, 81, 140, 141]. 

Of course, it is important to note that the presence of these negative ensemble-averaged 

turbulent flame speeds is a function of the definition and does not imply that 

instantaneous flame speeds are negative. 

4.4.1 Turbulent Displacement Markstein Numbers 

These results, such as those shown in Figure 4.16, can also be used to quantify the 

sensitivity of the flame speed modulation to curvature. Figure 4.19 shows the results for 
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the 750 Hz case, while Figure 4.20 shows the results for all cases. The value of ,T DM  is 

estimated separately from both sides of the flame. Because this estimate of ,T DM  is prone 

to noise induced from estimation of derivatives, cases (which differ between the left and 

right sides of the flame) where there are significant convecting velocity disturbance 

amplitudes are excluded because this convecting disturbance introduces short length scale 

flame wrinkles which significantly complicate estimates of flame position derivatives 

(i.e., see discussion in context of Figure 4.9). This is done by only including cases where 

the maximum normal velocity perturbation magnitude, averaged over all phases, 

 ,1max nu < 00.55 LS .  

 
Figure 4.17. PDF plot of ensemble-averaged displacement speed versus ensemble-

averaged curvature for a case showing realizations of negative flame speeds for the 

left edge at f0 = 750 Hz, ux,0 = 7.9 m/s, u’/ux,0 = 9.8%. 

   Figure 4.19(a) plots results for the 750 Hz, 5 m/s case. It shows that the non-

dimensional turbulent Markstein length is largely insensitive to the turbulence intensity. 

This is somewhat surprising as earlier isothermal work [1] indicated increasing sensitivity 

of the ensemble-averaged turbulent displacement speed with turbulence intensity; i.e., 
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that ,T DM  increases with u’. Thus, while Figure 4.19(a) and above results confirm the 

sensitivity of the ensemble-averaged turbulent displacement speed to ensemble-averaged 

flame curvature, it indicates that this this sensitivity does not increase with increasing 

turbulence. A potential resolution between these results is that that the turbulence 

intensity examined in this work is significantly higher than that examined by Shin and 

Lieuwen [1]. In fact, the highest turbulence intensity examined by Shin and Lieuwen [1] 

is approximately equal to the lowest turbulence intensity examined in the current work 

(e.g. ,0 0.10,xu u   0 0.40Lu S  ). Thus, one possibility is that the increase in sensitivity 

observed previously occurs at relatively low turbulence intensity but saturates at higher 

turbulence levels.  

Indeed, there is good physical reason to expect such saturation; i.e., if the 

sensitivity of the ensemble-averaged flame speed to curvature occurs due to mutual 

interaction and annihilation of opposing flame faces in negatively curved regions, as 

proposed by Shin and Lieuwen [1] and discussed above in relation to Figure 4.15, it 

seems likely that this mechanism would saturate at stronger turbulence, because once the 

flame faces interact, the mechanism of interaction is eliminated.  

 
Figure 4.18. Schematic illustration of curvature sensitivity saturation with 

increasing turbulence intensity. The center figure illustrates the convective, c , and 

turbulent flame, ,t , length scales. 
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This point is illustrated pictorially in Figure 4.18; at low turbulence intensities 

where the magnitude of turbulence induced flame wrinkling is small relative to the 

coherent flame wrinkle wavelength, these small-scale wrinkles increase the rate of 

coherent wrinkle destruction. In contrast, once the magnitude of these turbulence-induced 

wrinkles approaches the coherent wrinkling wavelength, the effect will saturate with 

increasing turbulent wrinkling amplitude. 

 
Figure 4.19. Calculated non-dimensional turbulent Markstein lengths at f0 = 750Hz, 

(a) for a nominal mean flow velocity Ux,0 = 5 m/s, (b) for a nominal mean flow 

velocity Ux,0 = 8 m/s. Circles indicate values determined from left side of the flame 

while diamonds indicate the right side of the flame. 

Some support for this interpretation can be obtained from Figure 4.19(b), obtained 

at a 60% higher mean flow velocity, and therefore a longer convective wavelength 

( ,0 0c xu f  ) than the lower mean flow results. Following the above argument, 

increasing the convective wavelength would delay saturation to higher turbulence 

intensities. Indeed, as Figure 4.19(b) shows, ,T DM  appears more sensitive to turbulence 

intensity at lower values of 0

Lu S . Specifically, ,T DM  is decreasing with turbulence 
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intensity before reaching a nearly constant value of , 0.075T D M  at the higher 0

Lu S

values. 

 Figure 4.20 summarizes results from all cases where accurate ,T DM estimates can 

be obtained. As suggested by the discussion above, ,T DM  is plotted as a function of the 

ratio of turbulent flame wrinkling amplitude, ,t , normalized by the coherent flame 

wrinkle wavelength, ,0 0c xu f  . In this case, , intt u  , and int  denotes the integral 

turbulence time scale, estimated as ,0xD u , where D is the jet diameter.  

 
Figure 4.20. Calculated non-dimensional turbulent Markstein numbers plotted as a 

function of the ratio of a turbulent , ,0t xu D u   to convective length scale, c . The 

color indicates whether 0 2.5Lu S  (green) or 0 2.5Lu S  (blue). 

The results in Figure 4.20 suggest that the ,T DM =  ,t cf    scaling captures 

some, but not all, of the sensitivity to turbulence intensity. Specifically, it suggests that 

,T DM  is independent of turbulence intensity for ,t c  ~ O(1) (specifically ,t c  > 

~0.75), with a value around 0.3. As discussed above, this may indicate that the global 
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response saturates at higher ,t c  values, although, due to the limited number of data 

points at the higher wrinkle ratios it is not possible to conclude this with certainty. The 

two colors shown in Figure 4.20 indicate whether the given data point has 0 2.5Lu S 

(green) or 0 2.5Lu S   (blue). Although the grouping is not completely homogeneous, it 

is evident that points in the higher 0

Lu S regime follow a different trend than for those 

with the lower 0 2.5Lu S   values. To see this more clearly, Figure 4.21 shows these two 

groupings in individual plots. 

 
Figure 4.21. Normalized turbulent Markstein values for (a) data points with 0

Lu S 

2.5, and (b) 0

Lu S >2.5 as a function of the ratio of turbulent flame wrinkling length 

to the coherent wrinkle length. 

For the low 0

Lu S  cases, Figure 4.21(a), the normalized turbulent Markstein 

length appears generally insensitive to the ratio of turbulent and coherent length scales. 

On the other hand, for values of 0 2.5Lu S  , as shown in Figure 4.21(b), there is an 

approximately monotonic increase in the value of ,T DM  with increasing wrinkling length 

scale ratio. The different frequencies and flow velocities are distributed between both 

groupings; e.g., it is not that the 5 m/s velocity data falls into one set and the 8 m/s fall 
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into the other (although because the grouping is based on 0

Lu S , the higher values 

generally come from the 8 m/s cases). 

Returning to the discussion introduced in Section 2.1.4, regarding the effect of the 

Darrieus-Landau instability on the ensemble-averaged flame response, the results shown 

in Figure 4.20 and Figure 4.21 indicate the approximate point at which turbulence effects 

come to dominate the flame response over this instability mechanism. For values of 

0 2.5Lu S  , the ensemble-averaged flame response appears to be largely controlled by 

the effect of kinematic restoration, resulting in the montonic trend observed in Figure 

4.21(b). Moreover, the value of 0 2.5Lu S   as a cutoff between these two regimes is in 

line with research which suggests that the Darrieus-Landau instability is greatly 

diminished for values of  0 1Lu S O   [79]. In their work on turbulent, expanding 

spherical flames and global stretch, Lipatnikov and Chomiak [109] also suggest that the 

hydrodynamic instability is negligible for 0 3.6Lu S  . Other work [142] suggests that 

even for low turbulence intensity, 0 1Lu S  , density ratio effects by themselves do not 

appear to strongly alter average turbulent flame speeds, at least in expanding spherical 

flames. In addition to the Darrieus-Landau instability, other factors also likely affect the 

results in the low 0 2.5Lu S  regime. For example, even after filtering the results to 

remove cases with unusably large convecting disturbances, the low turbulence cases 

generally still contained the largest remaining disturbances. 

There are also several outlying values which occur for lower values of the length 

scale ratio in the 0 2.5Lu S  regime. The two largest values in Figure 4.21(b), at 

, 0.65T D M  and , 0.75T D M , are the result from a specific case ( 0 1250 Hz, f  Ux,0 =8.0 
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m/s,  ,0 14.0%xu u  ), and it is possible that there is an unknown confounding variable in 

this case. Furthermore, consider that while the grouping used in Figure 4.21 appears to 

separate the two groups quite well, the exact point of division is not obvious and these 

values may potentially fall into the other category, due to the various complicating effects 

discussed above. If these two outlying data points are neglected, the monotonic increase 

in ,T DM  with increasing wrinkling length scale ratio, up to , 0.8t c   is unmistakable, 

as shown in shown in Figure 4.21(b). 

The preceding discussion shows that in the low turbulence regime (i.e. 

0 2.5 3.0Lu S   ) the ensemble-averaged results are potentially affected by the presence 

of hydrodynamic instabilities, and high probability of convecting disturbances. Thus, in 

the low 0

Lu S  the effect of turbulence on the ensemble-averaged turbulent displacement 

speed and its dependence on curvature is unclear.  

On the other hand, for 0 2.5Lu S  a distinct trend emerges, with the value of 

,T DM  increasing with the ratio of the wrinkling length scales, ,t c   before possibly 

saturating at values above  , 1t c O   . This result suggests that this ,t c   parameter 

captures the sensitivity of ,T DM  to turbulence intensity at higher 0

Lu S  values, but that 

the grouping definitions are not complete, while at lower values of 0

Lu S  laminar-like 

flame instabilities and other factors come to dominate. 

4.5 Conclusions on Ensemble-averaged Experimental Flame Position and Speed 

 This chapter presented experimental results showing the interaction of turbulent 

flow disturbances with harmonic flame wrinkles. Harmonic perturbations are introduced 
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on the flame using an oscillating flame holder. Turbulence is introduced in the flow with 

the use of a variable turbulence generation system. Simultaneous Mie scattering and high 

speed PIV provide instantaneous flame edges and the instantaneous flow fields. The 

flame edges and flow fields are ensemble-averaged to determine the ensemble-averaged 

flame wrinkle dynamics and flow field. 

The key contribution of this chapter is showing that interactions between 

turbulent flow disturbances with harmonic flame wrinkling significantly alter the 

ensemble-averaged flame dynamics. Specifically, the flame shape results show that 

increasing turbulence causes a decrease in amplitude of the harmonic flame wrinkles. 

These flame shape results are similar to those found in some previous isothermal 

computational studies.  

 Using the ensemble-averaged flame shape data and flow field, the ensemble-

averaged, turbulent burning speed is calculated using a definition proposed by Shin and 

Lieuwen [1]. The ensemble-averaged turbulent burning speed, when averaged over all 

points of phase, increases approximately montonically with the flame coordinate. 

Furthermore, the phase-dependent turbulent burning speed shows dependence on the 

shape of the ensemble-averaged flame. Specifically, the flame speed increases where the 

ensemble-averaged flame curvature is negative. At low turbulence, and high mean flow 

velocity conditions, the strong wrinkling of the ensemble-averaged flame speed produces 

negative ensemble-averaged flame speeds, using the definition given in Equation (4.1). 

The sensitivity of the ensemble-averaged turbulent burning speed is quantified by 

calculation of the turbulent Markstein length. The results provide confirmation of the 

curvature sensitivity of ensemble-averaged flame speeds. It is suggested that the turbulent 
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Markstein length is controlled by the ratio of the turbulent flame wrinkling amplitude, 

and the coherent flame wrinkling wavelength for values of 0 2.5 3Lu S   .  

Several additional studies are recommended as follow-ons. First, while it is well 

known quasi-coherent velocity disturbances are present in shear driven, high turbulence 

flows, these data clearly show the nonlinear interaction between the multi-scale turbulent 

disturbances and the more narrowband disturbances associated with coherent structures. 

In other words, conceptual models of controlling physics in combustors with shear driven 

turbulence must account for the fundamentally different effects of spectrally distributed 

turbulent disturbances and more narrowband, quasi-coherent disturbances. Future work 

should consider the effects of additional superposed velocity disturbances, such as two 

superposed coherent frequencies that are and are not integer multiples.  

Finally, guiding theories are clearly needed for interpreting the results. Due to the 

inherent noisiness of the results, a result of taking second derivatives of data, and also the 

potential presence of confounding effects at low turbulence levels, several trends are 

confirmed but interpretation would benefit from a guiding theory. 
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. EXPERIMENTAL INVESTIGATION OF 

ENSEMBLE-AVERAGED TURBULENT FLAME AREA AND 

CONSUMPTION SPEED 

The previous chapters showed that the ensemble-averaged flame position can be 

modeled using the ensemble-averaged flame position equation, Equation (3.25), with the 

flame speed closure, Equation (2.13), proposed by Shin and Lieuwen [1]. Chapter 3 

demonstrated that this modeling approach improves predictions of the ensemble-averaged 

flame position and heat release and more closely matches high fidelity simulations than 

quasi-laminar models which do not incorporate the dynamical flame speed closure. In 

fact, this modeling approach is even able to capture some nonlinear effects of kinematic 

restoration in linearized models.   

Chapter 4 demonstrated experimentally that the ensemble-averaged flame speed 

shows the predicted curvature sensitivity even in the more complex case of a real, non-

isothermal flame. In addition, Chapter 4 examined the ensemble-averaged turbulent flame 

position, the mean ensemble-averaged turbulent displacement speed, and the local 

curvature dependence.  

 However, by themselves, these studies of the ensemble-averaged flame position 

and ,T DispS  remain in some ways incomplete. While knowledge of ,T DispS  and its 

sensitivity to curvature are important for modeling the ensemble-averaged flame, it does 

not provide direct information about the rate of conversion of reactants to products. For 

instance, the observed negative values of ,T DispS  obviously do not imply negative heat 

release. Thus, to better understand the ensemble-averaged and particularly the heat 
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release, this chapter examines the turbulent flame surface area, which is approximately 

proportional to the heat release rate. The turbulent flame heat release rate is an important 

parameter in understanding the thermo-acoustic feedback loop. The heat release rate and 

turbulent consumption speed concept were introduced in the context of the numerical and 

theoretical investigations presented in Chapter 3.  

This chapter presents an investigation of the turbulent flame area and the closely 

related ensemble-averaged turbulent consumption speed, ,T CS . The chapter is organized 

as follows. First, a discussion of the definition for the ensemble-averaged turbulent 

consumption speed is given. Next, I explain the procedure used to extract the local and 

ensemble-averaged turbulent flame areas. Results are presented in Section 5.3 showing 

the spatial development of the ensemble-averaged turbulent consumption speed, ,T CS , the 

consumption speed modulation with ensemble-averaged flame shape, and the sensitivity 

of ,T CS  to ensemble-averaged flame curvature. Finally, conclusions from this work are 

given in Section 5.4. 

5.1 The Ensemble-Averaged Turbulent Consumption Speed 

In order to relate the measured flame areas to the consumption speed, a definition 

for the ensemble-averaged, turbulent consumption speed, ,T CS   is developed here. Recall 

that the ensemble-averaged, spatially integrated heat release rate is given by the 

expression: 

  
 

 s t
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where   is the unburned gas density, Rh  is the heat of combustion per unit mass, and 

dA is the instantaneous area element. In order to quantify local degree of flame wrinkling, 

this concept is extended to a local element of the flame surface. 

Following the discussion presented in Chapter 3, with the assumption of constant 

density and heat of reaction, the ensemble-averaged turbulent consumption speed, ,T CS  is 

defined through the following relation: 

      0

, 1, , ,T C LS t s A t s S A t s     (5.2) 

Here, A  is the area element determined within an incremental band which 

encompasses a slice of the local flame, as illustrated in Figure 5.1. Fundamentally, 

Equation (5.2) states that the turbulent consumption speed is proportional to the ratio of 

flame areas between the instantaneous flame and a reference surface. For this work, as for 

that presented in Chapter 3, the reference surface is chosen to be the area of the 

ensemble-averaged flame. 

 
Figure 5.1. Schematic illustration of the instantaneous (red, solid), ensemble-

averaged (blue, dotted), and time mean flame (black, dashed) area differential 

elements, showing the global flame (a) and local enlargement showing how 

areas/lengths are calculated (b).  
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Rearranging Equation (5.2) provides a definition for the ensemble-averaged 

turbulent consumption speed. 
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  (5.3) 

In order to further clarify these definitions, Figure 5.1 shows a schematic illustration of 

the different surface areas. 

This definition can also be understood as an extension of the flame speed term 

defined for the flame surface density modeling approach (see Chapter 2), but for an 

ensemble-averaged flame in two dimensions. Recall that the flame surface density,  , 

describes the flame surface area per unit volume. Multiplying the flame surface density 

by a stretch factor, 0I  [92, 108], which models the enhancement of the burning rate due 

to stretch, and integrating through the flame brush provides a definition for the local 

turbulent consumption speed. That is:  

  0

, 0T LC LS S I d 




   (5.4) 

For the experimental results presented here, it is not possible to identify the 

differential flame surface area but a similar quantity may be defined by determining a 

ratio of surface areas, as with the definition given in Equation (5.3). Thus, the flame 

integrated area ratio is estimated as: 

  
1

A
d

A
 






 

   (5.5) 

As discussed in Section 2.1.3, for the range of turbulence intensities and reactant 

composition (lean methane-air) examined here, thermo-diffusive effects are expected to 

have a small to negligible impact on the turbulent flame propagation [83, 84]. Therefore, 



 146 

the stretch factor is assumed unity, i.e. 0 1I  . If these definitions are substituted in into 

Equation (5.4), the definition for the local, instantaneous turbulent consumption speed is 

recovered. 

 0
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A
S S

A





 (5.6) 

Ensemble-averaging Equation (5.6) returns us to the definition given in Equation 

(5.3). Equations (5.6) and (5.3) describe the local, ensemble-averaged consumption 

speed, which depends on a ratio of the ensemble-averaged instantaneous flame surface 

areas to the ensemble-averaged flame reference area. An analogous definition could be 

created using the time mean surface area, 0A  (rather than the ensemble-averaged surface 

area, 1A ), and doing so would provide information on the relation of the mean flame 

area and time varying ensemble-averaged area. However, the present work is concerned 

with developing a more complete understanding of the ensemble-averaged flame 

dynamics. Thus, the focus here is on the relationship between the ensemble-averaged and 

ensemble-averaged instantaneous flame surfaces, rather than the relationship between the 

time mean and ensemble-averaged instantaneous flames. Therefore, the definition given 

in Equation (5.6) is used in the following work. 

In order to examine the curvature dependence of ,T CS , a turbulent ensemble-

averaged consumption speed closure similar to that introduced in Section 3.3.4 is used to 

determine the turbulent consumption Markstein number. For this closure, the 

consumption speed is assumed to have a linear dependence on the ensemble-averaged 

flame curvature, analogous to the flame displacement speed closure, i.e: 

  0

, , ,
ˆ ˆ( , ) ( ) 1 ( ) ( , )T C T C T CS s t S s s C s t    (5.7) 
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For the results presented in this chapter, the flame speed is normalized by the 

local average value of the flame speed in order to better identify flame speed modulation 

associated specifically with the interaction of turbulent and coherent disturbances. This 

normalized flame speed is defined and denoted as      , , ,
ˆ ˆ, ,T C T C T Ct s S t s S sS , where 

 ,T CS s  is the local flame speed averaged over all phases. This normalization is 

analogous to that used in the investigation of ,T DispS  in in Chapter 4. With this 

normalization the flame speed closure becomes: 

  0

, , ,
ˆ ˆ( , ) ( ) 1 ( ) ( , )T C T C T Cs t s s C s t S S M   (5.8) 

Although values of ,T CS  cannot be recovered from ,T CS  and vice-versa, they demonstrate 

the same fundamental sensitivity to curvature. Because the normalized values produce 

much clearer trends they are used for the work presented in this chapter. 

5.2 Turbulent Flame Area Extraction Method 

Turbulent flame areas are extracted from the same set of data described in 

Chapter 4. The pre-processing steps used to prepare the instantaneous flame images 

(normalization, image filtering and cropping, and binarization) are the same as those 

described in Section 4.2.1. The instantaneous flame areas are extracted directly from each 

instantaneous binary image. 

The area of the ensemble-averaged flame, A1, is extracted from the ensemble-

averaged flame, which is determined according to the procedure described in Section 

4.2.2. The method of determining both the instantaneous and ensemble-averaged flame is 

discussed next. 
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5.2.1 Determination of Included Edges 

To determine the flame area, each instantaneous image was first divided into left 

and right side portions. This was done by determining the centroid of each reactant region 

in a binary image. Recall that the white regions indicate the reactants, for instance as 

shown in Figure 5.2. If the x-coordinate of a centroid is less than zero (in the coordinate 

system defined with the origin at the average location of the flame holder), then that 

reactant region is included in the left-hand side. If the centroid of the region is greater 

than zero, the region is included in the right-hand side of the flame. Examples of these 

divided flames are shown in Figure 5.2, where either the right side flame (a-c) or the left 

side flame (d) is shown.  

 
Figure 5.2. Examples of included edges used for determining the flame surface area 

(a) f0 =200 Hz, u’/ux,0 = 25.5%, ux,0 = 7.2 m/s, (b) f0 =750 Hz, u’/ux,0 = 14.6%, ux,0 = 

4.6 m/s, (c) f0 =1250 Hz, u’/ux,0 = 13.0%, ux,0 = 4.6 m/s, (d) f0 =1250 Hz, u’/ux,0 = 14.8, 

ux,0 = 7.8 m/s. Dimensions are in millimeters. 

A primary challenge in determining instantaneous flame surface areas for non-

envelope flames, or for highly turbulent flames, is including flame edges which can 

reasonably be expected to indicate the flame interface while excluding those which are 

not expected to indicate the flame. Figure 5.2 shows four examples of instantaneous 
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flames and the edges which were included (indicated in red) in calculating the 

instantaneous flame surface area.  

In the region immediately downstream of the flame holder, the flame can 

reasonably be assumed to exist at all times, as was observed during operation of the 

experiment. Furthermore, the outer edge and the bottom edge of the reactant pockets can 

be safely assumed to never represent the flame. However, at points downstream 

(particularly at higher turbulence intensities) it is not always clear whether the reactant 

edge is or is not a flame. Therefore, it is necessary to create and apply a series of logical 

rules to determine which edges to include or exclude. 

 
Figure 5.3. Schematic illustrating included and excluded flame edges. Red edges 

indicate inclusion during area calculation. Black edges indicate exclusion. 

The rational used to create the edge determining algorithm is principally based on 

including region edges which face the interior (flame side) of the reactant field while 

excluding those edges that face towards the outside of the jet. The start and endpoints of 

an edge are determined by finding points which are both furthest towards the outer edge 

and also either the lowest (starting point) or the highest (ending point). Pockets which 
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occurred outside the main jet are excluded, while pockets which occur towards the 

interior of the primary flame edge are included completely (i.e. they are assumed to be 

burning on all the way around). Finally, holes within a reactant pocket were included. 

These rules are illustrated schematically in Figure 5.3, while Figure 5.2 shows several 

examples from the experimental data set. 

5.2.2 Instantaneous and Ensemble-Averaged Flame Area 

After determining which edges to include, the instantaneous area is calculated as a 

function of the mean flame coordinate. This is done by projecting two normal vectors 

from the mean flame. The distance between the vectors is approximately 0.15 mm. Then, 

the arc length of both the instantaneous flame and of the ensemble-averaged flame 

contained within the band is calculated. This is accomplished by finding all intersections 

between the instantaneous flame and normal vectors and finding all the edge points 

which fall between the intersections. The algorithm is written so that the flame area from 

multiple individual flame elements is included in the area for a given increment. This is 

illustrated schematically in Figure 5.1 and shown below in Figure 5.4. For the increment 

shown in Figure 5.4(a,b) six instantaneous individual flame elements (indicated in cyan) 

are included in the local area summation. 

The area is determined by finding the sum of the length of all local flame 

elements. For this two-dimensional data, the arc length of flame elements is assumed 

proportional to the surface area (i.e. assuming a unit depth in the z-direction). Similarly, 

the area of the ensemble-averaged flame is also determined by finding the arc length of 

the ensemble-averaged flame element. The results of these summations are the local area 
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of the ensemble-averaged flame and the ensemble-averaged instantaneous flame area at 

each s-location for each point of phase. 

 
Figure 5.4. Illustration of the flame area extraction method, showing the 

instantaneous flame (red), the ensemble-averaged flame (white/blue), and the mean 

flame (white/black), the normal vectors defining the local increment (green), the 

included instantaneous flame elements (cyan), and the ensemble-averaged flame 

element (magenta). The magenta boxes indicate the enlarged region shown in the 

subsequent image. Dimensions are in millimeters. 

The instantaneous area calculations produce a time series of local areas 

(integrated through the flame brush), at each location along the mean flame. The time 

series is composed of approximately 9,000 data points at each s location for the 200 Hz 

cases, 17,500 for the 750 Hz cases, and 21,000 for the 1250 Hz cases. The ensemble-

average of the instantaneous areas is determined by averaging all points which occur at 

given point of phase at each s location. Finally, the ensemble-averaged turbulent 

consumption speed is calculated according to Equation (5.3). 

Estimates of uncertainty for ,T CS  are computed from the standard error of the 

mean of the instantaneous time series of ,T LCS  at each s location. The value of the 
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standard error is multiplied by two to obtain a 95% confidence estimate of the standard 

error of the mean. The turbulent normalized consumption Markstein length, ,T CM , and 

uncurved turbulent consumption flame speed, 0

,T CS , are calculated from the slope and 

intercept of an orthogonal regression between the ,T CS  and C  values. A Monte Carlo 

approach is used to characterize the uncertainty in ,T CM  and 
0

,T CS . This uncertainty 

characterization approach is identical to that described for the displacement Markstein 

length in Section 4.2.3. That is, synthetic data is created by drawing from a normal 

distribution with a mean equal to the calculated experimental data value and a standard 

deviation equal to one half the same data point’s uncertainty. These synthetic data are 

generated in each flame curvature bin. Estimates of ,T CM  and 
0

,T CS  are determined from 

1000 independently generated realizations. A 95%, two-sided confidence interval based 

on these 1000 synthetic values of ,T CM  and 
0

,T CS  provides the uncertainty estimate. 

However, note that the uncertainty values associated with these ensemble-averaged area 

calculations are much smaller than those associated with ,T DispS , because the area 

calculations do not require velocity inputs or computing derivatives which amplify 

uncertainties. 

5.3 Experimental Area and Consumption Speed Results 

This section presents results from the experimentally determined flame ensemble-

averaged turbulent consumption speed, ,T CS . First, results for ,T CS  when averaged over 

all phases, ,T CS , are examined. Next, results showing the modulation of ,T CS  with 

ensemble-averaged flame shape are presented. 



 153 

5.3.1 The Average Ensemble-Averaged Consumption Speed  

In Chapter 4 an approximately linear increase in the ensemble-averaged turbulent 

displacement speed with downstream distance is identified and the increase attributed to 

an increase in flame area. This conclusion is further supported by the results of this flame 

area investigation. Figure 5.5 shows the ensemble-averaged turbulent consumption speed, 

averaged over all phases, ,T CS , calculated according to Equation (5.3). 

 
Figure 5.5. Average ensemble-averaged turbulent consumption speeds at (a) left 

side, f0 = 200 Hz (a, stars) u’/ux,0 = 8.4%, ux,0 = 4.8 m/s; (a, circles) u’/ux,0 = 16.2%, 

ux,0 = 4.7 m/s; (a, diamonds) u’/ux,0 = 29.6%, ux,0 = 4.0 m/s; (a, squares) u’/ux,0 = 

32.9%, ux,0 = 3.8 m/s; and (b) right side, f0 = 750 Hz (b, stars) u’/ux,0 = 8.0%, ux,0 = 7.8 

m/s; (b, circles) u’/ux,0 = 14.2%, ux,0 = 7.7 m/s; (b, diamonds) u’/ux,0 = 24.7%, ux,0 = 7.2 

m/s; (b, squares) u’/ux,0 = 27.4%, ux,0 = 7.0 m/s. 

For all cases, there is a clear increase in ,T CS with downstream distance, as shown 

in Figure 5.5. The results for all cases are given in Appendix H. Moreover, the increase 

with distance is generally monotonic and nearly linear for all cases. In comparison to the 

ensemble-averaged turbulent displacement speed, ,T DispS , results presented in Section 4.3 

and Appendix F, the average consumption speed is much less noisy. As discussed 
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previously calculation of ,T DispS  requires numerical approximations of sometimes noisy 

experimental data, a procedure which further amplifies that noise. The differences 

between the 
,T DispS  and 

,T CS  results provide an indication of the degree of noise in the 

former. Note also that ,T CS  generally appears to converge towards a common value 

(slightly greater than the laminar flame speed, 0 0.36 m/sLS  ) near the flame holder. The 

increase over the laminar value is likely attributable to the coherent flame surface 

wrinkling. 

In addition, Figure 5.5 shows that the higher nominal mean velocity produces 

slightly higher values of ,T CS . Note that the Figure 5.5(a), with a lower mean velocity, 

has a slightly different y-axis scaling than the Figure 5.5(b). This result is consistent with 

higher turbulent flame speeds at higher values of 0

Lu S , as discussed in Chapter 2. The 

turbulence level, in terms of 0

Lu S increases with increasing mean velocity, for a fixed 

value of ,0su u . 

It is also interesting to note a clear relationship between the coherent flame 

wrinkling amplitude and ,T CS . In cases where the ensemble-averaged flame wrinkle 

increases in amplitude before decreasing further downstream, non-monotonic variation is 

observed in ,T CS , as shown in Figure 5.6 where the y-axis scale is adjusted to allow 

examination of this relatively minor trend.  
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Figure 5.6. Variation of the ensemble-averaged turbulent consumption speed (top) 

with magnitude of the ensemble-averaged flame wrinkle (bottom) for the right edge, 

at f0 = 750 Hz, u’/ux,0 = 9.3%, ux,0 = 4.8 m/s. 

The non-monotonic variation of ,T CS  shown in Figure 5.6  reflects the fact that the 

consumption speed is a function not only of turbulent forcing but also of harmonic 

forcing. For the case shown in Figure 5.6 growth in ,T CS  is observed up to approximately 

s = 13 mm, coincident with the peak ensemble-averaged flame wrinkle amplitude. 

Further downstream the coherent wrinkles decay. However, ,T CS  first decreases before 

subsequently increasing again. The second increase is likely due to the increase in flame 

area associated with increasingly wrinkled flame due to turbulent wrinkles while the first 

peak in ,T CS  reflects the increase in flame area associated with the coherent flame 

wrinkles. 
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5.3.2 Turbulent Ensemble-Averaged Consumption Speed Modulation 

Having examined the spatial variation of the ensemble-averaged consumption 

speed averaged over all phases, ,T CS , we can now examine the phase dependent behavior 

of   ,
ˆ,T CS t s . Figure 5.7 shows the normalized ensemble-averaged consumption speed, 

,T CS . Like the results for ,T DispS  presented in Section 4.4, ,T CS  clearly modulates with the 

shape of the ensemble-averaged flame. In fact, the modulation of ,T CS  is, if anything, 

more distinct than the modulation of ,T DispS , as shown in  Figure 5.7. 

At lower turbulence intensity, as shown in Figure 5.7(c,d), where the 

instantaneous flame is only moderately wrinkled by turbulent fluctuations, ,T CS  shows 

strong modulation with the ensemble-averaged flame. Because the area included in a 

local increment increases along the vertical edge of the coherent wrinkles (i.e. on either 

side of a flame cusps), the consumption speed also increases before decreasing slightly at 

the local flame position minima. This behavior is evident in both plots in Figure 5.7, but 

is more pronounced in Figure 5.7(b). These local ,T CS  minima are not as apparent at 

higher turbulence, as shown in Figure 5.7(a). This decrease may result from increased 

phase jitter at higher turbulence as well as smoother flame area modulation. 
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Figure 5.7. Normalized ensemble-averaged turbulent consumption speed (a,c) and 

flame fluctuation (b, d) as a function of the flame coordinate, at (a, b) left edge, f0 = 

750 Hz, ux,0 = 4.1 m/s, u’/ ux,0 = 29.5%, (c, d), left edge, f0 = 1250 Hz,  ux,0 = 8.0 m/s, u’/ 

ux,0 = 7.6% at two phases, t̂ T = 0 (circles) and t̂ T = 0.5 (triangles). 

At higher turbulence intensity, the modulation of ,T CS  is somewhat diminished in 

magnitude, but remains closely aligned with the curvature of the ensemble-averaged 

flame. As was the case with the ensemble-averaged turbulent displacement speed, higher 

turbulence smooths the ensemble-averaged flame, as well as introducing increased phase 

jitter in the ensemble-averaged instantaneous flame area. Together, the result is a 

reduction of the magnitude of the curvature and broadening of coherent instantaneous 

flame area modulations, in turn reducing the magnitude of ,T CS  modulation, as shown in 

Figure 5.7(a). Similarly, as the ensemble-averaged flame wrinkle amplitude decays 

downstream, the amplitude of ,T CS  modulation also decreases.  

These results indicate that the ensemble-averaged turbulent consumption speed 

modulates in a manner very similar to that of the ensemble-averaged displacement speed. 

Specifically, ,T CS  increases in regions where the ensemble-averaged flame is concave to 

the reactants (i.e. negative curvature) and decreases where the ensemble-averaged 
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curvature is positive. The amplitude and length scale of modulation reflect the amplitude 

and length scale of the variation in curvature along the ensemble-averaged flame.  

To illustrate the relationship between the consumption speed and curvature more 

clearly, Figure 5.8, shows several representative PDF plots of the normalized ensemble-

averaged turbulence consumption speed, ,T CS , as a function of the normalized ensemble-

averaged flame curvature. Additional results are provided in Appendix I. Again, note that 

this normalization is equivalent to that used in for the previous investigation of ,T DispS , 

presented in Chapter 4. 

 
Figure 5.8. PDF plots of the normalized ensemble-averaged turbulent consumption 

speed versus normalized ensemble-averaged flame curvature for left edge, at f0 = 

750 Hz, (a-d) ux,0 = 4.9, 4.7, 4.1, and 3.8 m/s, and (a-d) u’/ ux,0 = 8.9, 15.7, 29.5, and 

33.1%. The red line is determined by orthogonal linear regression. The color bar 

indicates the normalized density of data points. 
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Figure 5.8 shows that, in general, ,T CS  increases where the ensemble-averaged 

flame curvature is negative, supporting the curvature sensitivity discussed above and 

illustrated in Figure 5.7. However, the sensitivity at the lower two turbulence levels does 

not appear to follow a monotonic trend. Instead, ,T CS appears to decrease quite strongly 

for positive values of curvature before flattening at large negative curvature values. Thus, 

the variation of the consumption speed with ensemble-averaged curvature is less clear at 

low turbulence intensity, but approaches a more nearly linear trend at higher turbulence 

levels. 

Next, the normalized flame speed data are binned based on curvature values, in 

the same way as was done for the displacement speed data discussed in Chapter 4. Figure 

5.8 shows the same clustering of data for ensemble-averaged curvatures between zero 

and unity as was observed previously, in regard to ,T DispS . Again, this has the effect of 

biasing any regression between the two variables towards values in a relatively narrow, 

positive curvature range, which has the effect of biasing any regression towards these 

positive values. Therefore, an additional processing step is utilized to minimize these bias 

error effects. First, the data is divided into bins for sub-ranges of curvature values. Then, 

a conditional median value for ,T CS  is determined in each curvature bin where there are at 

least ten data points. The median, rather than a mean, is used so that the value for a given 

bin is not skewed by outlying data points. 

Figure 5.9 shows the deweighted, normalized ensemble-averaged consumption 

speed as a function of the normalized ensemble-averaged curvature. Several trends are 

immediately obvious. First, for the low turbulence case shown in Figure 5.9(a), it is clear 

that a simple orthogonal linear regression does not provide an adequate description of the 
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variation in ,T CS  with C . For this case, (as well as several other low turbulence cases 

shown in Appendix I), at positive curvature, ,T CS  has nearly constant value less then 

unity ( , 0.85T C S ). Then, almost exactly at the point of zero curvature, ,T CS  transitions 

discontinuously to a nearly constant value greater than unity ( , 1.3T C S ).  

 
Figure 5.9. Dependence of the normalized ensemble-averaged turbulent 

consumption speed on ensemble-averaged curvature at four representative 

conditions, (a) left edge, f0 = 750 Hz, ux,0 = 4.8 m/s, u’/ux,0 = 9.3%, 𝐂 = 𝟎. 𝟓, (b) right 

edge,  f0 = 750 Hz, ux,0 = 7.0 m/s, u’/ux,0 = 27.3%, 𝐂 = 𝟎. 𝟓, (c) left edge, f0 = 1250 Hz, 

ux,0 = 4.7 m/s, u’/ux,0 = 14.5%, 𝐂 = 𝟎. 𝟓 (d) left edge, f0 = 1250 Hz, ux,0 = 6.2 m/s, 

u’/ux,0 = 32.1%. 

This flattening trend is also similar to the flattening that is observed in Chapter 4 

with respect to the displacement speed. The fact that similar flattening is observed for 

both the displacement and consumption speeds at positive curvature values provides 
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further evidence that this is a real trend. The physical reason for this flattening in the 

consumption speed is discussed further below. 

The discontinuous flame speed curvature sensitivity implies that there are two 

relatively constant area ratios associated with either positive or negative curvature in this 

regime. Note that his behavior is also observed in Figure 5.8(a,b). In this low turbulence 

regime, the flame is only weakly wrinkled by turbulence. Therefore, the variation in ,T CS

derives primarily from the coherent wrinkling of the instantaneous flame. Recall that the 

definition of ,T CS  is functionally a ratio of the ensemble-averaged instantaneous flame 

area to the area of the ensemble-averaged flame. However, these two areas are not 

generally equal, even in the low turbulence case.  

 
Figure 5.10. Ensemble-averaged (black dashed) and instantaneous (red solid) flames 

at f0 = 750 Hz, ux,0 = 4.8 m/s, u’/ux,0 = 9.3%. 

 Consider Figure 5.10, which shows an ensemble-averaged and an instantaneous 

flame at the same point of phase for the case shown in Figure 5.9(a). The ensemble-

averaged flame is generally smoother and of lower amplitude than the instantaneous 
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flame. Thus, the nearly constant values of ,T CS at positive and negative curvature reflects 

the fact that there are nearly constant area ratios obtained between the instantaneous and 

ensemble-averaged flames at a given curvature. 

As the turbulence level increases the consumption speed curvature sensitivity 

appears to transition smoothly between the discontinuous, nonlinear trend shown in 

Figure 5.9(a) and the clearly linear trend shown in Figure 5.9(b). Figure 5.9(c) shows an 

example of an intermediate case where ,T CS  appears to asymptote at both low and high 

curvatures, but transitions smoothly between these extremes and does not display a 

discontinuous jump. In general, the trend is linear at high turbulence intensity. However, 

the results also become progressively noisier, as illustrated in Figure 5.9(d). 

 Having discussed these local dynamics, we can now examine the dependence of 

the normalized turbulent consumption Markstein number, ,T CM , with the ratio of 

turbulent to coherent wrinkling amplitude, discussed in Section 4.4. The flame wrinkling 

amplitude, ,t , is normalized by the coherent flame wrinkle wavelength, ,0 0c xu f  . In 

this case, , intt u  , and int  denotes the integral turbulence time scale, estimated as 

,0xD u , where D is the jet diameter.  

This approach is again used here because the same fundamental dependence on 

turbulent and coherent length scales is expected to control the sensitivity of the 

consumption speed. For , (1)t c O   , increasing this length scale ratio increases the 

probability that a given increment will contain more flame surface in negatively curved 

regions (producing the curvature sensitivity). At the same time, for , (1)t c O   , it is 

reasonable to expect a saturation in the curvature sensitivity because of kinematic 
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restoration and resulting flame surface annihilation, which will increasingly reduce the 

relative increase of area and thus ,T CS  in negatively curved regions.  

This concept is illustrated schematically in Figure 5.11, where the green regions 

indicate the incremental region for calculation of the flame surface area. Note that for the 

, (1)t c O    case interaction of opposing flame faces results in a diminished increase in 

surface area in the negative curvature regions; the stronger turbulence causes destruction 

of the coherent instantaneous flame surface area fluctuations, thus reducing the curvature 

sensitivity. 

 
Figure 5.11. Schematic illustration of flame surface area curvature dependence for a 

, (1)t c O    case (top) and a , (1)t c O    case (bottom). The green regions 

indicate an increment of included flame. 

 This idea is supported by Figure 5.12 which summarizes results from all cases 

where accurate ,T CM  estimates can be obtained. The data points are filtered to remove 



 164 

cases where the flame was simultaneously disturbed by a strong convective disturbance. 

Thus, only cases where  ,1max nu < 00.55 LS  are included, following the same filtering 

process as used for the displacement speed investigation. As suggested by the discussion 

above, ,T CM  is plotted as a function of the length scale ratio of turbulent flame 

perturbations to convective disturbances.   

 
Figure 5.12. Calculated non-dimensional turbulent consumption Markstein 

numbers plotted as a function of the ratio of a turbulent , ,0t xu D u   to convective 

length scale, c . The color indicates whether 0 2.5Lu S  (green) or 0 2.5Lu S  (blue). 

Figure 5.12 shows results for ,T CM  as a function of flame wrinkling length scale 

ratio. The data are again plotted in two groups, determined by the magnitude of 0

Lu S , 

following the displacement speed data presented in Chapter 4. Unlike the results for 

, ,T DM  however, here the low 0

Lu S  group is less distinct, and there is significant overlap 

between the low and high 0

Lu S  regimes. For both groups of data ,T CM  increases with 

,t c  , apart from a few outlying data points beyond , 1,t c    where the increasing 
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curvature sensitivity may saturate. Again, the two values outlying values at ,t c  = 0.25 

are associated with the same case (i.e. they are from the left and right sides of the flame at  

0 1250 Hz, f  Ux,0 =8.0 m/s,  ,0 14.0%xu u  ). 

Figure 5.13 shows the low and high 0

Lu S  groupings plotted separately. The trend 

shown in Figure 5.13(b) is largely unchanged from the overall trend shown in Figure 

5.12. However, the low 0

Lu S  appears to saturate at , 0.2t c   . For 0 2.5Lu S   it is 

not clear whether there is a saturation, because there are only two data points beyond 

, 0.8t c   , although the two rightmost points suggest this. 

 
Figure 5.13. Normalized turbulent consumption Markstein number (a) data points 

with 0

Lu S  2.5, and (b) 0

Lu S >2.5 as a function of the ratio of turbulent flame 

wrinkling length to the coherent wrinkle length. 

Figure 5.13(a) shows, for 0 2.5,Lu S   ,T CM  increases linearly from , 0t c    

to , 0.2t c   , before saturating at , 0.17T C M . This result differs from the 

displacement speed results. Recall that ,T DM  appears insensitive to wrinkling length scale 

ratio at 0 2.5.Lu S   The earlier discussion regarding the expected curvature sensitivity 
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explains these low turbulence results well, although it is also worth noting that ,T CM in 

this turbulence range is more difficult to interpret due to the discontinuous behavior 

discussed above, in relation to Figure 5.9(a).  

The results for 0 2.5Lu S  show that ,T CM continues to increase beyond 

, 0.2t c   . One possibility is that in the low turbulence regime the amount of local 

wrinkling is limited due to laminar-like flamelet propagation, so that the flame never 

becomes highly multi-valued, thus limiting the range of local area ratios. At high 

turbulence intensity, the local wrinkling is perhaps strong enough to cause the flame to 

become multivalued, which at points near flame cusps would result in significantly 

increased flame areas and consumption speeds. 

Despite some minor differences, the general results shown in Figure 5.12 and 

Figure 5.13 for ,T CM  are remarkably similar, both in general trend as well as magnitude, 

to the results for ,T DM  shown in Figure 4.20 and Figure 4.21 in Chapter 4. For example, 

,T CM  and ,T DM  both increase for , 0.8t c    before reaching a possible saturation. 

Furthermore, the value of ,T DM  at , 0.8t c    is approximately 0.35 while that of ,T CM

is approximately 0.2. 

The close correspondence between these two sets of results is significant in itself. 

Consider that the flame speed values are determined through entirely different 

methodologies, excluding the early image processing. The displacement speed is 

calculated through ensemble-averaging instantaneous flames to determine the ensemble-

averaged flame and ensemble-averaging instantaneous flow fields to determine the 

ensemble-averaged velocity field. Temporal and spatial derivatives are calculated and 
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these along with the velocity information are used as inputs to Equation (4.1). The 

consumption speed, on the other hand, is extracted directly from instantaneous flame 

areas, normalized by the area of the ensemble-averaged flame. The determination of ,T CS  

requires no velocity field data at all, nor does it require any estimation of spatial or 

temporal derivativesv. The concurrence from these two sets of results provide strong 

mutual support for the flame speed closures given in Equation (2.13) and Equation (5.7); 

the turbulent flame speed is a function of the ensemble-averaged flame curvature. 

5.4 Conclusions on Ensemble-Averaged Flame Area and Consumption Speed 

This chapter presented experimental results examining the local ratio of the 

ensemble-averaged area of the instantaneous flame to the area of the ensemble-averaged 

flame. The consumption speed is calculated as the ratio of the ensemble-averaged 

instantaneous area to the ensemble-averaged flame area, multiplied by the unstretched 

laminar flame speed. 

Coherent disturbances are imposed on the flame using an oscillating flame holder, 

and turbulent flow disturbances are introduced with a turbulence generation system, as 

described in Chapter 4. The instantaneous flame position is determined from two 

dimensional Mie-scattering images. This information is used to determine both the 

ensemble-averaged flame position and to determine the instantaneous flame location. The 

instantaneous area is determined by measuring the instantaneous flame arc length within 

a small band projected perpendicularly from the position of the mean flame. Care is taken 

                                                 

v  However, note that ensemble-averaged flame curvature does require calculation of spatial 

derivatives. 
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to only include flame edges which are likely to represent the flame rather than simply the 

interface between reactants and co-flow air. The area of the ensemble-averaged flame is 

determined analogously, but using the position of the ensemble-averaged flame.  

The main finding of this chapter is that the ensemble-averaged turbulent 

consumption speed demonstrates sensitivity to the ensemble-averaged flame curvature 

which is very similar to the sensitivity of the ensemble-averaged displacement speed. 

This finding is significant because the method used to calculate the displacement and 

consumption speeds share no common methodology beyond the initial image processing 

and filtering and the use of the ensemble-averaged flame area as the numerator of the 

consumption speed definition. 

The ensemble-averaged turbulent consumption speed, when averaged over all 

points of phase, generally increases with the flame coordinate, and demonstrates a clear 

dependence on both turbulence intensity and coherent flame wrinkle amplitude. In some 

low turbulence cases, non-monotonic behavior is observed due to coherent wrinkle 

growth and decay. The results from the consumption speed are much less noisy than for 

the displacement speed. Moreover, near the flame holder the average consumption speed 

converges to an approximately common value, on the order of the laminar flame speed. 

The phase-dependent turbulent consumption speed shows a dependence on the 

shape of the ensemble-averaged flame, similar to that of the displacement speed. 

Specifically, the flame speed increases where the ensemble-averaged flame curvature is 

negative. At low turbulence intensities, ,T CS  often modulates discontinuously with the 

ensemble-averaged flame curvature. For positive curvatures, the normalized consumption 

speed is less than unity while for negative curvatures it is greater than unity. 
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Following the analysis of Chapter 4, the sensitivity of the ensemble-averaged 

consumption speed is quantified by calculation of the normalized turbulent Markstein 

number. The general results closely follow the trend and magnitude of the displacement 

speed results and provide mutual validation of the curvature sensitivity of turbulent flame 

speeds.  

The turbulent consumption Markstein number, like the turbulent displacement 

Markstein number, is controlled by the ratio of the turbulent flame wrinkling amplitude, 

and the coherent flame wrinkling. For values of 0 2.5Lu S   the Markstein number 

increases and then saturates, while for 0 2.5Lu S  the Markstein number continues to 

increase at higher values of the flame wrinkling length scale ratio and does not clearly 

reach a constant value. 
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. CONCLUSIONS AND FUTURE WORK 

This chapter provides a summary of the results and key findings presented in this 

thesis. In addition, some suggestions for future avenues of research building on these 

thesis results are given. The need to improve predictions of turbulent flame spatio-

temporal position and heat release dynamics provides the fundamental motivation for the 

work presented in this thesis. As is typically the case in realistic combustion 

environments [26], flames are perturbed not only by narrowband acoustic and/or 

hydrodynamic disturbances but also broadband turbulent fluctuations. Therefore, this 

work has focused on developing a modeling approach and validating that approach 

against numerically simulated and experimental data. 

6.1 Summary of Work 

This thesis concentrates on identifying, understanding, and modeling the 

interaction between narrowband quasi-coherent hydrodynamic and/or acoustic 

disturbances and broadband disturbances associated with turbulence in premixed flames. 

To address these issues, two corresponding primary avenues of research were followed. 

In the first, theoretical reduced-order models of the turbulent flame position and heat 

release response were developed and validated against numerical simulations. Second, 

because all previous work on this subject was based on isothermal simulations, a novel 

experimental facility was developed with the capability to subject premixed flames to 

simultaneous broadband turbulent fluctuations and narrowband coherent fluctuations 

introduced on the flame with an oscillating flame holder. This experimental work is 

further composed of analysis of the ensemble-averaged flame dynamics, the ensemble-
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averaged turbulent displacement speed, the local ensemble-averaged area and 

consumption speed, and the dependence of both the displacement and consumption speed 

on the ensemble-averaged flame curvature. Finally, the flame speed sensitivity to 

curvature is quantified through calculation of the normalized turbulent Markstein 

displacement and consumption numbers. These findings were presented in Chapters 3 

through 5.  

 Chapter 3 developed and validated the fundamental modeling and data analysis 

approach used throughout this thesis. The turbulent modeling method is based on the G-

equation approach used in laminar flame position and heat release studies. In order to 

apply this approach to flame area and heat release analysis, an inconsistency which arises 

when determining the heat release response in different coordinate systems was first 

addressed. To correctly determine the flame surface area of a premixed flame, it is 

necessary to include time varying corrections to the limits of integration depending on the 

way first order area fluctuations manifest in the different coordinate systems.   

The G-equation approach was then extended to turbulent flames through 

development of the ensemble-averaged turbulent flame position equation, where the 

turbulent flame speed closure proposed by Shin and Lieuwen [1] is used. In this closure, 

the turbulent flame speed is modeled as a function of the ensemble-averaged flame 

curvature, and the sensitivity to curvature quantified by the turbulent Markstein number. 

This approach is analogous to stretch dependent laminar flame speed models. Results 

from the reduced-order ensemble-averaged turbulent flame governing equation were 

compared with results from numerical simulations of the same flame configuration. The 

modeling approach predicted many of the dynamical features found in the numerical 
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simulation. Moreover, the modeling results were improved by the use of the flame speed 

model. This approach was further extended by assuming small perturbation amplitudes, 

allowing development of fully analytical expression for the flame position and heat 

release. These linearized models captured important nonlinear features of the numerical 

simulations. 

A significant limitation of the work presented in Chapter 3, as well as previous 

investigations of ensemble-averaged flame dynamics [1, 96, 97], is the use of the 

isothermal assumption, necessary for analytical and numerical tractability. To overcome 

this limitation Chapter 4, examines the ensemble-averaged flame position and speed 

response experimentally. The development of an experimental facility which allows 

investigations of premixed, turbulent flames perturbed by harmonic oscillations of the 

flame holder is detailed. This facility is capable independent variation of mean flow 

velocity, turbulence intensity, harmonic forcing frequency, and equivalence ratio. High 

speed Mie scattering images are used to identify both the instantaneous flame edge 

position and for use in PIV flow field measurements. Together, this data provides the 

inputs for the flame speed equation, equivalent to the ensemble-averaged flame 

governing equation. 

The amplitude of coherent flame wrinkles was generally observed to decrease 

with both downstream distance and with increasing turbulence intensity, providing the 

first experimental validation of the previous isothermal results. At low turbulence 

intensity, the presence of convective disturbances (due to vortex shedding from the flame 

holder and heat release effects from the wrinkled flame) resulted in fine scale coherent 

wrinkles which complicated subsequent analysis. Analysis of the ensemble-averaged 
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displacement speed when averaged over all points of phase indicated that the average 

displacement speed increases downstream and with increasing turbulence intensity. 

Moreover, investigation of the phase dependent, ensemble-averaged displacement speed 

demonstrated clear modulation with the shape of the ensemble-averaged flame. 

Specifically, the displacement speed increases in regions of negative curvature. The 

magnitude of the curvature sensitivity appears to depend largely on turbulent intensity 

( 0

Lu S ) and on the ratio of the turbulent flame length scale to coherent flame length scale. 

At low 0

Lu S , the turbulent Markstein number appears insensitive to changes in length 

scale ratio. In this regime, the results are subject to convecting disturbances and the 

possible influence of the Darrieus-Landau instability. For higher 0

Lu S , the magnitude of 

the normalized turbulent displacement Markstein length increases with the wrinkling 

length scale ratio. This dependence is attributed to the increase in kinematic restoration 

associated with the introduction of turbulence on a globally curved flame. 

Lastly, Chapter 5 extended the analysis of the experimental data to a study of the 

instantaneous, local flame surface area and the ensemble-averaged turbulent consumption 

speed derived therefrom. The ensemble-averaged turbulent consumption speed is defined 

as the ratio of the ensemble-averaged instantaneous local flame area to the area of the 

local ensemble-averaged flame, multiplied by the laminar burning speed. Like the 

displacement speed, the consumption speed, averaged all points of phase increases with 

turbulence intensity and downstream distance. The results from the consumption speed 

are much less noisy than those of the displacement speed because the consumption speed 

does not require estimating temporal or spatial derivatives. In addition to turbulence 
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intensity and downstream location, the consumption speed also depends on the coherent 

wrinkle amplitude, although to a lesser degree than turbulence and downstream distance. 

The phase-dependent consumption speed modulates with the ensemble-averaged 

flame shape similar to the modulation observed with the ensemble-averaged displacement 

speed. That is, the consumption speed increases in regions of negative ensemble-

averaged flame curvature and also decreases in regions of positive curvature. As such, the 

consumption speed results generally validate the flame curvature sensitivity. However, at 

low turbulence intensity the modulation of flame speed with curvature does not display a 

linear relationship with curvature but instead is often discontinuous, with nearly constant 

increased values in negative curvature regions and decreased values in positive curvature 

regions.  

Finally, the curvature sensitivity of the consumption speed is quantified by 

calculation of the turbulent consumption speed Markstein number. The results are 

remarkably similar to those for the displacement speed. This finding is notable because 

the methodologies for determining these flame speeds are essentially independent from 

one another. The turbulent consumption Markstein number appears to increase with the 

ratio of wrinkling length scales, following the trend observed with the turbulent 

displacement Markstein number. One notable difference is that a clear trend is observed 

at low 0

Lu S  values, in contrast to the results for the displacement Markstein number. 

6.2 Key Findings 

This section summarizes the key findings from the body of work presented in this 

thesis. The first key finding is that it is possible to model a turbulent flame using the 

ensemble-averaged flame position equation, and that by incorporating the flame speed 
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closure model suggested by Shin and Lieuwen [1], the agreement with a simulated 

turbulent flame is improved. Secondly, this approach captures some of the nonlinear 

effects of turbulence (i.e. kinematic restoration) even in linearized models. Another 

important insight from this thesis is the necessity of accounting for oscillating integration 

limits when determining the global flame surface area. This point is particularly 

important when working with a coordinate system oriented on the mean flame, as the 

linearized area fluctuations in this system result entirely from the time-varying end 

corrections to the area integral. 

The second key finding from this work is that experimentally generated 

ensemble-averaged flame wrinkles are affected by the presence of turbulence, supporting 

conclusions drawn previously from observations in isothermal simulations. That is, there 

is a nonlinear interaction between broadband turbulence and quasi-coherent flame 

disturbances which change the average properties of the flame. Moreover, the curvature 

sensitivity previously observed in isothermal computations of turbulent premixed flames 

is also observed in experimental investigations of turbulent premixed flames. This finding 

implies that development of more accurate, reduced-order turbulent flame models 

requires accounting for the dynamical effect of the ensemble-averaged flame shape on the 

displacement and consumption speeds. In addition, it was found that the turbulent 

displacement Markstein number varies with the ratio of turbulent flame length scale to 

the coherent flame wrinkle length scale. This work is particularly important for predicting 

thermo-acoustic combustion instabilities because the flame wrinkle amplitude and decay 

rate strongly influence the coherent heat release response. 
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The last key findings from this work come from the investigation of the local 

flame surface area, presented in Chapter 5. The ensemble-averaged consumption speed 

modulates with curvature comparable to the ensemble-averaged displacement speed 

modulation. That is, the consumption speed increases in negative curvature regions and 

decreases in positive curvature regions. Moreover, the sensitivity of the consumption 

speed to flame curvature follows very a very similar trend, as demonstrated by the 

variation of the turbulent consumption Markstein number with wrinkling length scale 

ratio. The turbulent consumption Markstein number increases with increasing length 

scale ratio. 

Taken together, these key findings point to the utility of the ensemble-averaged 

turbulent flame modeling approach. The position of the ensemble-averaged flame can be 

modeled using the ensemble-average flame position equation with the flame speed 

closure, where measured experimental or numerical data provide turbulent displacement 

Markstein numbers and uncurved flame speeds. Once the flame position is known, heat 

release information can be determined using the consumption flame speed model with 

experimentally or numerically computed flame consumption speed information.  

The ensemble-averaged modeling approach provides a new method of modeling 

turbulent flames in the presence of coherent forcing. Because of the relatively simplicity 

of this method, significant reductions in computational expense or even fully analytical 

expressions for turbulent heat release are possible. This capability, in turn, allows more 

rapid prediction of possible combustion instability, and thus helping to increase the 

reliability, reduce maintenance expenses, and avoid catastrophic failure in low NOx, lean, 

premixed gas turbine combustion systems.  
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6.3 Suggested Future Work 

The work presented here suggests several future studies. First, an obvious next 

step is to determine the heat release from an experimentally investigated flame or from a 

high fidelity numerical simulation, such as DNS. This information could be compared 

with predictions from the reduced order models to further validate the modeling approach 

presented in Chapter 3.  

 The results presented in Chapter 4 provide an initial foray into analysis of the 

turbulent Markstein number. However, given the need to separate the data into two 

groups based on turbulence intensity and the relative noisiness of the results, additional 

work should focus on further identifying the physical mechanisms driving the curvature 

sensitivity, with the goal of improving understanding of the underlying controlling 

principles.  

It is suggested that the Darrieus-Landau instability may play a role in changing 

the turbulent flame speed curvature sensitivity, particularly at low values of 0

Lu S . The 

importance of this effect could be investigated by preheating the reactants (i.e. using a 

vitiated flow) to minimize the density ratio across the flame and thereby reduce the 

strength of the hydrodynamic instability. Similarly, the generality of these results could 

be extended to other pressures through modification of the experimental facility to 

pressures above atmospheric, which would impact the local flame speed and flame 

thickness and local, flamelet stretch sensitivity. 

Future work should also examine the ensemble-averaged hydrodynamic stretch 

which is likely to also impact the ensemble-averaged flame response and could 

potentially resolve the ambiguities associated with the presence of strong convecting 
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disturbances. Significant clarification on this issue may also be gained by performing 

high fidelity simulations which account for heat release and flame generated vorticity. 

These issues are particularly relevant as the analysis of the experimental data was 

significantly complicated by the presence of convective velocity disturbances due to 

vortex shedding from the flame holder and the oscillating density gradient associated 

with the flame.  

 Additional analysis should also be directed towards examining the dependence of 

the Markstein number and uncurved flame speeds with additional turbulent and forcing 

parameters, such as the integral length scale and oscillation amplitude of the flame 

holder. 

 In addition, the generality of the results presented in this thesis should be 

extended to other geometries, as all results presented in here are based on the unusual 

configuration of an oscillating flame anchor. Given the difficulties associated with the 

convecting disturbances, discussed in Chapter 4, it is possible - though perhaps unlikely - 

that the interaction between the coherent and turbulent fluctuations which gives rise to 

the flame speed curvature sensitivity is altered by velocity disturbances. Thus, a first step 

in determining the generality of this sensitivity would be to extend these results to the 

canonical geometry of a Bunsen flame, forced not with an oscillating flame holder but 

with the more typical velocity forcing. If the flame speed sensitivities observed in the 

present work are observed in other geometries, this would provide strong evidence of the 

generality of the flame speed curvature sensitivity. 

 Finally, the local, time resolved area data presented in Chapter 5 provides the 

opportunity for interesting additional investigations beyond the scope of this thesis. For 
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instance, it would be interesting to examine the frequency content of the area signal both 

in terms of spatial and modal development, as the development of higher frequency 

content could impact the heat release response. It would also be quite interesting to see 

how the instantaneous area fluctuations correlate with instantaneous velocity fluctuations. 

Such an investigation could provide useful insight into the validity of the correlational 

turbulent flame speed models discussed in Chapter 2, or provide insight for their 

improvement. 
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APPENDIX A. DERIVATION OF CONVECTING VORTEX 

MODEL PROBLEM 

Application of the given assumptions to Equation (3.36) leads to the following 

ordinary partial differential equation for the Fourier transformed flame position:  
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This equation has the same homogeneous solution as Equation (3.40), but a 

different particular solution due to the nature of the harmonic forcing. The solution of the 

Fourier space flame fluctuation is given by:  
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(A.2) 

where 
1,2

R  are defined according to Equation (3.44). This equation is solved 

subject to the stationary flame-attachment boundary condition:  

     1 0, 0s t         (A.3) 

As with the oscillating flame holder model problem, the second boundary 

condition stipulates that no information propagates upstream. Therefore, the B coefficient 

is set to zero. The resulting Fourier space fluctuating flame position is:  
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This solution can be expanded around small   values as:  
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   (A.5) 

Unlike the oscillating flame holder problem, with the velocity forced case only a 

downstream integration limit correction is required, because the flame attachment point is 

stationary. This end correction, determined in the same manner as described in Section 

3.5.1 is: 
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The general form of the heat release, after linearization, is given below. 
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Assuming spatially constant 
0

,T CS  and ,T C , integration of Equation (A.7) yields: 
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  (A.8) 

The normal component of the coherent velocity fluctuation at the flame anchor 

provides the reference flow disturbance. 
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This velocity disturbance, after normalization by ,0nu , becomes: 
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Then, the resulting FTF according to Equation (3.23) is 
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This expression can be non-dimensionalized according to the scheme given in 

Equation (3.55) as:  

 
     
 

1 1

0 , 1

0 2

, ,

tan 1 1
L L L Lf f f f

f

St P St R St R St P

T C

Tot d

L T Disp T D

e e R e P e

FTF
St S P P i

 




     
  

 
  (A.12) 

Equation (3.61) can be expanded for small turbulent Markstein lengths as: 
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APPENDIX B.  EFFECT OF ENSEMBLE-AVERAGED FLAME 

POSITION: MEDIAN VERSUS MEAN 

As discussed in Section 4.2.2, the experimentally determined ensemble-averaged 

flame position is determined by creating a phase dependent progress variable field at each 

point of phase in the forcing cycle. This progress variable field is found by averaging 

binarized instantaneous images at a given point of phase. The ensemble-averaged flame 

results from extracting a progress variable iso-contour at a chosen progress variable 

contour. 

Alternatively, the ensemble-averaged flame position could, in theory, be 

determined as an arithmetic mean of instantaneous flame positions. In which case, the 

instantaneous flame positions as a function the x, y, or s coordinate system would be 

required. However, this approach is problematic for a multivalued flame, as it is not clear 

how to consistently define the flame position once disconnected pockets or multivalued 

corrugations appear. On the other hand, an ensemble-averaged flame position based on 

the rebinarization approach provides a consistent and computationally inexpensive way to 

deal with instantaneous flame positions which in many cases are multi-valued. 

 
Figure B.1. Illustration of the effect of using binarization to determine the ensemble-

averaged flame position. 
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Figure B.1 shows an illustration of why the binarization procedure produces a 

median rather than an arithmetic mean flame position. The top four rows illustrate several 

instantaneous flame positions. The fourth row shows the resulting progress variable field 

value determined by averaging the binary values from the top four rows. The fifth row 

shows the ensemble-averaged flame position, based on the 0.5C   contour. The iso-

contour is defined by rebinarizing for values of 0.5C  . Thus, the contour lies at the 

interface between 0.5 and 0.25.  

Note that the position of the ensemble-averaged flame will not be affected by 

changing any of the instantaneous flame positions as long as that change does not alter 

the values in the cells adjacent to the ensemble-averaged flame position. For example, the 

instantaneous flame position shown in row two could be changed from four to three 

without changing the ensemble-averaged flame position. On the other hand, changing the 

value in row one will always alter the ensemble-averaged flame position. Thus, it is clear 

that the ensemble-averaged flame position reflects the median value. At the same time, 

any change in the instantaneous flame positions will alter the arithmetic mean flame 

position, shown in row five. 
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APPENDIX C. PROGRESS VARIABLE CONTOUR 

DEPENDENCE 

The results shown in this thesis are generally defined based on a progress variable 

contour definition for the ensemble-averaged flame of 0.5C  . Here, the generality of 

the results for a flame definition at two other progress variable contours is briefly 

considered in terms of changes in the regression between normalized curvature and the 

Markstein number dependence.  

First, Figure C.1 shows two regressions for the same experimental case, but with 

the ensemble-averaged flame defined on two different progress variable iso-contours. 

The regressions are very similar in terms of slope and intercept. Figure C.1(b) shows 

increased noise, however.  

 
Figure C.1.  Regression for, left edge,  f0 = 750 Hz, u’/ux,0 = 15.7%, ux,0 = 4.7 m/s 

based on ensemble-averaged flames defined at the (a) 0.2C   and (b) 0.8C 

progress variable iso-contours. 

In addition, Figure C.1 shows that, for both cases, there is a flattening of the slope 

between approximately zero and unity curvature values. In fact, Figure C.1(a) shows a 
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slightly increasing value of the normalized displacement speed for positive curvatures 

before again decreasing. The fact that this flattening is observed at multiple progress 

variable contours may indicates that this is real trend, rather than result of uncertainty in 

the curvature estimates. 

Turning now to the Markstein number, the results shown in Figure 4.19 and 

Figure 4.20 are determined using an ensemble-averaged flame based on the 0.5C   

progress variable contour. 

 
Figure C.2.  Calculated non-dimensional turbulent Markstein numbers at f0 = 750 

Hz, based on (a) the left and (b) the right side of the flame, as a function of progress 

variable contour at four turbulence intensities, increasing in order of circles, 

diamonds, squares, and triangles, respectively. 

Figure C.2 clearly shows that the choice of progress variable, upon which the 

ensemble-averaged flame is defined, affects the calculated turbulent Markstein number. 

Changing the definition of the ensemble-averaged flame changes both the shape of the 

surface as well as the surface position. In turn, this changes the ensemble-averaged 

velocity seen by the surface. Moving towards the products, the reactant-conditioned 

velocity field begins to approach that of the products because pockets and peninsulas of 

reactants are included in the ensemble-averaging and will therefore affect the result. 
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Secondly, the shape of the flame and therefore derivatives of flame change the calculated 

ensemble-averaged displacement speeds. Still, the variation due to progress variable 

choice is similar to the variation occurring within a given case between the left and right 

side of the flame. Interestingly, much larger variations with progress variable contour are 

observed for figure Figure C.2(a) than for Figure C.2(b), where the trend remains largely 

unchanged. Furthermore, Figure C.2 shows that the progress variable choice does not 

appear to change the sign of ,T DM . 
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APPENDIX D. MEASURED EXPERIMENTAL CONDITIONS 

This appendix provides a summary of the measured conditions at each test 

condition. The mean flow velocity and u’ are measured separately for both the left and 

right sides of the flame. The oscillation amplitude,  , is determined from the magnitude 

of a fast Fourier transform (FFT) of the flame holder position oscillation.  

Table  D.1. Nominal and measured conditions at each experimental test condition. 

0  (Hz)f   ,0  (m/s)xU   
Flame 

Side ,0  (m/s)xu    (m/s)u   ,0xu u  0

Lu S   (mm)  

200 5.0 Left 4.83 0.41 0.084 1.13 0.47 

200 5.0 Left 4.71 0.76 0.162 2.07 0.50 

200 5.0 Left 3.98 1.18 0.296 3.17 0.48 

200 5.0 Left 3.78 1.25 0.329 3.38 0.47 

200 5.0 Right 4.75 0.41 0.086 1.13 0.47 

200 5.0 Right 4.62 0.77 0.166 2.09 0.50 

200 5.0 Right 4.30 1.13 0.263 3.05 0.48 

200 5.0 Right 4.35 1.19 0.275 3.24 0.47 

200 8.0 Left 8.14 0.72 0.088 2.11 0.45 

200 8.0 Left 7.82 1.13 0.145 3.26 0.51 

200 8.0 Left 6.80 1.98 0.292 5.81 0.48 

200 8.0 Left 6.06 2.17 0.359 6.39 0.42 

200 8.0 Right 8.07 0.68 0.084 1.99 0.45 

200 8.0 Right 7.75 1.02 0.131 2.93 0.51 

200 8.0 Right 7.21 1.84 0.255 5.39 0.48 

200 8.0 Right 7.06 1.89 0.267 5.54 0.42 

750 5.0 Left 4.87 0.43 0.089 1.20 0.42 

750 5.0 Left 4.67 0.73 0.157 1.99 0.31 

750 5.0 Left 4.12 1.22 0.295 3.27 0.32 

750 5.0 Left 3.76 1.25 0.331 3.38 0.32 

750 5.0 Right 4.78 0.45 0.093 1.24 0.42 

750 5.0 Right 4.61 0.67 0.146 1.83 0.31 

750 5.0 Right 4.34 1.06 0.244 2.85 0.32 

750 5.0 Right 4.37 1.15 0.264 3.13 0.32 

750 8.0 Left 7.94 0.78 0.098 2.29 0.36 

750 8.0 Left 7.76 1.14 0.147 3.28 0.32 

750 8.0 Left 6.98 1.91 0.273 5.58 0.32 

750 8.0 Left 6.01 2.24 0.373 6.57 0.35 
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750 8.0 Right 7.83 0.63 0.080 1.84 0.36 

750 8.0 Right 7.67 1.09 0.142 3.13 0.32 

750 8.0 Right 7.19 1.78 0.247 5.20 0.32 

750 8.0 Right 7.01 1.92 0.274 5.64 0.35 

1250 5.0 Left 4.69 0.65 0.139 1.82 0.55 

1250 5.0 Left 4.65 0.67 0.145 1.83 0.28 

1250 5.0 Left 4.14 1.18 0.284 3.17 0.26 

1250 5.0 Left 3.70 1.24 0.335 3.36 0.28 

1250 5.0 Right 4.54 0.52 0.114 1.44 0.55 

1250 5.0 Right 4.60 0.60 0.130 1.63 0.28 

1250 5.0 Right 4.33 1.06 0.245 2.86 0.26 

1250 5.0 Right 4.43 0.98 0.220 2.65 0.28 

1250 8.0 Left 8.01 0.61 0.076 1.80 0.22 

1250 8.0 Left 7.79 1.15 0.148 3.31 0.35 

1250 8.0 Left 7.11 1.84 0.258 5.37 0.23 

1250 8.0 Left 6.24 2.01 0.321 5.89 0.21 

1250 8.0 Right 7.97 0.83 0.104 2.44 0.22 

1250 8.0 Right 7.69 1.01 0.132 2.92 0.35 

1250 8.0 Right 7.31 1.61 0.220 4.70 0.23 

1250 8.0 Right 7.21 1.75 0.243 5.15 0.21 
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APPENDIX E. ENSEMBLE AVERAGED FLAME POSITIONS 

This appendix presents a full set of results from the experimental investigation of 

the ensemble-averaged flame position. 

 
Figure E.1.  Ensemble-averaged flame position fluctuations at f0 = 200 Hz at (a, top) 

u’/ux,0 = 8.4%, ux,0 = 4.8 m/s; (a, bottom) u’/ux,0 = 8.6%, ux,0 = 4.8 m/s; (b, top) u’/ux,0 = 

16.2%, ux,0 = 4.7 m/s; (b, bottom) u’/ux,0 = 16.6%, ux,0 = 4.6 m/s; (c, top) u’/ux,0 = 

29.6%, ux,0 = 4.0 m/s; (c, bottom) u’/ux,0 = 26.3%, ux,0 = 4.3 m/s; (d, top) u’/ux,0 = 

32.9%, ux,0 = 3.8 m/s; (d, bottom) u’/ux,0 = 27.4%, ux,0 = 4.3 m/s. 
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Figure E.2. Ensemble-averaged flame position fluctuations at f0 = 200 Hz at (a, top) 

u’/ux,0 = 8.8%, ux,0 = 8.14 m/s; (a, bottom) u’/ux,0 = 8.4%, ux,0 = 8.1 m/s; (b, top) u’/ux,0 

= 14.5%, ux,0 = 7.8 m/s; (b, bottom) u’/ux,0 = 13.1%, ux,0 = 7.8 m/s; (c, top) u’/ux,0 = 

29.2%, ux,0 = 6.8 m/s; (c, bottom) u’/ux,0 = 25.5%, ux,0 = 7.2 m/s; (d, top) u’/ux,0 = 

35.9%, ux,0 = 6.1 m/s; (d, bottom) u’/ux,0 = 26.7%, ux,0 = 7.1 m/s. 
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Figure E.3. Ensemble-averaged flame position fluctuations at f0 = 750 Hz at (a, top) 

u’/ux,0 = 8.9%, ux,0 = 4.9 m/s; (a, bottom) u’/ux,0 = 9.3%, ux,0 = 4.8 m/s; (b, top) u’/ux,0 = 

15.7%, ux,0 = 4.7 m/s; (b, bottom) u’/ux,0 = 14.6%, ux,0 = 4.6 m/s; (c, top) u’/ux,0 = 

29.5%, ux,0 = 4.1 m/s; (c, bottom) u’/ux,0 = 24.4%, ux,0 = 4.3 m/s; (d, top) u’/ux,0 = 

33.1%, ux,0 = 3.8 m/s; (d, bottom) u’/ux,0 = 26.4%, ux,0 = 4.4 m/s. 
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Figure E.4. Ensemble-averaged flame position fluctuations at f0 = 750 Hz at (a, top) 

u’/ux,0 = 9.8%, ux,0 = 7.94 m/s; (a, bottom) u’/ux,0 = 8.0%, ux,0 = 7.8 m/s; (b, top) u’/ux,0 

= 14.7%, ux,0 = 7.8 m/s; (b, bottom) u’/ux,0 = 14.2%, ux,0 = 7.7 m/s; (c, top) u’/ux,0 = 

27.3%, ux,0 = 7.0 m/s; (c, bottom) u’/ux,0 = 24.7%, ux,0 = 7.2 m/s; (d, top) u’/ux,0 = 

37.3%, ux,0 = 6.0 m/s; (d, bottom) u’/ux,0 = 27.4%, ux,0 = 7.0 m/s. 
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Figure E.5. Ensemble-averaged flame position fluctuations at f0 = 1250 Hz at (a, top) 

u’/ux,0 = 13.9%, ux,0 = 4.7 m/s; (a, bottom) u’/ux,0 = 11.4%, ux,0 = 4.5 m/s; (b, top) 

u’/ux,0 = 14.5%, ux,0 = 4.6 m/s; (b, bottom) u’/ux,0 = 13.0%, ux,0 = 4.6 m/s; (c, top) u’/ux,0 

= 28.4%, ux,0 = 4.1 m/s; (c, bottom) u’/ux,0 = 24.5%, ux,0 = 4.3 m/s; (d, top) u’/ux,0 = 

33.5%, ux,0 = 3.7 m/s; (d, bottom) u’/ux,0 = 22.0%, ux,0 = 4.4 m/s. 
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Figure E.6. Ensemble-averaged flame position fluctuations at f0 = 1250 Hz at (a, top) 

u’/ux,0 = 7.6%, ux,0 = 8.0 m/s; (a, bottom) u’/ux,0 = 10.4%, ux,0 = 8.0 m/s; (b, top) u’/ux,0 

= 14.8%, ux,0 = 7.8 m/s; (b, bottom) u’/ux,0 = 13.2%, ux,0 = 7.7 m/s; (c, top) u’/ux,0 = 

25.8%, ux,0 = 7.1 m/s; (c, bottom) u’/ux,0 = 22.0%, ux,0 = 7.3 m/s; (d, top) u’/ux,0 = 

32.1%, ux,0 = 6.2 m/s; (d, bottom) u’/ux,0 = 24.3%, ux,0 = 7.2 m/s. 
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APPENDIX F. AVERAGE DISPLACEMENT SPEEDS 

This appendix provides plots of the average ensemble-averaged turbulent 

displacement speed as a function of the flame coordinate for all cases. Turbulence level 

generally increases in order of stars, circles, diamonds, to squares. Data from the left side 

of the flame are shown in subplots (a) and (c), while data from the right side of the flame 

are shown in subplots (b) and (d). 

 
Figure F.1. Average ensemble-averaged turbulent displacement speed at f0 = 200 Hz  

(a, stars) u’/ux,0 = 8.4%, ux,0 = 4.8 m/s; (a, circles) u’/ux,0 = 16.2%, ux,0 = 4.7 m/s;  

(a, diamonds) u’/ux,0 = 29.6%, ux,0 = 4.0 m/s; (a, squares) u’/ux,0 = 32.9%, ux,0 = 3.8 

m/s; (b, stars) u’/ux,0 = 8.6%, ux,0 = 4.75 m/s; (b, circles) u’/ux,0 = 16.6%, ux,0 = 4.62 

m/s; (b, diamonds) u’/ux,0 = 26.3%, ux,0 = 4.3 m/s; (b, squares) u’/ux,0 =27.5%, ux,0 = 

4.35 m/s; (c, stars) u’/ux,0 = 8.8%, ux,0 = 8.14 m/s; (c, circles) u’/ux,0 = 14.5%, ux,0 = 7.8 

m/s; (c, diamonds) u’/ux,0 = 29.2%, ux,0 = 6.8 m/s; (c, squares) u’/ux,0 = 35.9%, ux,0 = 

6.1 m/s; (d, stars) u’/ux,0 = 8.4%, ux,0 = 8.1 m/s; (d, circles) u’/ux,0 = 13.1%, ux,0 = 7.8 

m/s; (d, diamonds) u’/ux,0 = 25.5%, ux,0 = 7.2 m/s; (d, squares) u’/ux,0 = 26.7%, ux,0 = 

7.1 m/s. 

 



 198 

 
Figure F.2. Average ensemble-averaged turbulent displacement speed at f0 = 750 Hz  

(a, stars) u’/ux,0 = 8.9%, ux,0 = 4.9 m/s; (a, circles) u’/ux,0 = 15.7%, ux,0 = 4.7  m/s;  

(a, diamonds) u’/ux,0 =29.5%, ux,0 =4.1   m/s; (a, squares) u’/ux,0 =33.1%, ux,0 = 3.8  

m/s; (b, stars) u’/ux,0 = 9.3%, ux,0 = 4.8 m/s; (b, circles) u’/ux,0 = 14.6%, ux,0 = 4.6 m/s;  

(b, diamonds) u’/ux,0 = 24.4%, ux,0 = 4.3 m/s;(b, squares) u’/ux,0 = 26.4%, ux,0 = 4.4 

m/s; (c, stars) u’/ux,0 = 9.8%, ux,0 = 8.0 m/s; (c, circles) u’/ux,0 = 14.7%, ux,0 = 7.8 m/s;  

(c, diamonds) u’/ux,0 = 27.3%, ux,0 = 7.0 m/s; (c, squares) u’/ux,0 = 37.3%, ux,0  = 6.0 

m/s; (d, stars) u’/ux,0 = 8.0%, ux,0 = 7.8 m/s; (d, circles) u’/ux,0 = 14.2%, ux,0 = 7.7 m/s;  

(d, diamonds) u’/ux,0 = 24.7%, ux,0 = 7.2 m/s; (d, squares) u’/ux,0 = 27.4%, ux,0 = 7.0 

m/s. 
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Figure F.3. Average ensemble-averaged turbulent displacement speed at  f0 = 1250 

Hz (a, stars) u’/ux,0 = 13.9%, ux,0 = 4.7 m/s; (a, circles) u’/ux,0 = 14.5%, ux,0 = 4.7 m/s;  

(a, diamonds) u’/ux,0 = 28.4%, ux,0 = 4.1 m/s; (a, squares) u’/ux,0 = 33.5%, ux,0 = 3.7 

m/s; (b, stars) u’/ux,0 = 11.4%, ux,0 = 4.5 m/s; (b, circles) u’/ux,0 = 13.0%, ux,0 = 4.6 m/s;  

(b, diamonds) u’/ux,0 = 24.5%, ux,0 = 4.3 m/s; (b, squares) u’/ux,0 = 22.0%, ux,0 =4.4 

m/s; (c, stars) u’/ux,0 = 7.6%, ux,0 = 8.0 m/s; (c, circles) u’/ux,0 = 14.8%, ux,0 = 7.8 m/s;  

(c, diamonds) u’/ux,0 = 25.8%, ux,0 = 7.1 m/s; (c, squares) u’/ux,0 = 32.1%, ux,0 = 6.2 

m/s; (d, stars) u’/ux,0 = 10.4%, ux,0 = 8.0 m/s; (d, circles) u’/ux,0 = 13.2%, ux,0 = 7.7 m/s;  

(d, diamonds) u’/ux,0 = 22.0%, ux,0 = 7.3 m/s; (d, squares) u’/ux,0  = 24.3%, ux,0  = 7.2 

m/s. 
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APPENDIX G. ENSEMBLE-AVERAGED DISPLACEMENT 

SPEED CURVATURE CORRELATIONS 

This appendix provides a comprehensive set of correlations between the 

normalized ensemble-averaged turbulent displacement speed, TS , and the normalized 

ensemble-averaged flame curvature, ,0x dC u  . The left-hand side of the figure shows a 

normalized joint probability density plots while the right-hand side of the figure shows 

the corresponding deweighted correlation plot. Data from the left side of the flame are 

shown in subplots (a) and (b), while data from the right side of the flame are shown in 

subplots (c) and (d). 

 
Figure G.1. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 8.4%, ux,0 = 4.8 m/s; (c, d) u’/ux,0 = 8.6%, ux,0 = 4.8 m/s. 
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Figure G.2. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 16.2%, ux,0 = 4.7 m/s; (c, d) u’/ux,0 = 16.6%, ux,0 = 4.6 m/s. 

 
Figure G.3. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 29.6%, ux,0 = 4.0 m/s; (c, d) u’/ux,0 = 26.3%, ux,0 = 4.3 m/s. 
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Figure G.4. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 32.9%, ux,0 = 3.8 m/s; (c, d) u’/ux,0 = 27.4%, ux,0 = 4.3 m/s. 

 
Figure G.5. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 8.8%, ux,0 = 8.14 m/s; (c, d) u’/ux,0 = 8.4%, ux,0 = 8.1 m/s. 
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Figure G.6. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 14.5%, ux,0 = 7.8 m/s; (c, d) u’/ux,0 = 13.1%, ux,0 = 7.8 m/s. 

 
Figure G.7. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 29.2%, ux,0 = 6.8 m/s; (c, d) u’/ux,0 = 25.5%, ux,0 = 7.2 m/s. 
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Figure G.8. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 35.9%, ux,0 = 6.1 m/s; (c, d) u’/ux,0 = 26.7%, ux,0 = 7.1 m/s. 

 
Figure G.9. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 8.9%, ux,0 = 4.9 m/s; (c, d) u’/ux,0 = 9.3%, ux,0 = 4.8 m/s. 
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Figure G.10. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 15.7%, ux,0 = 4.7 m/s; (c, d) u’/ux,0 = 14.6%, ux,0 = 4.6 m/s. 

 
Figure G.11. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 29.5%, ux,0 = 4.1 m/s; (c, d) u’/ux,0 = 24.4%, ux,0 = 4.3 m/s. 
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Figure G.12.  Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 33.1%, ux,0 = 3.8 m/s; (c, d) u’/ux,0 = 26.4%, ux,0 = 4.4 m/s. 

 
Figure G.13. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 9.8%, ux,0 = 7.94 m/s; (c, d) u’/ux,0 = 8.0%, ux,0 = 7.8 m/s. 
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Figure G.14. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 14.7%, ux,0 = 7.8 m/s; (c, d) u’/ux,0 = 14.2%, ux,0 = 7.7 m/s. 

 
Figure G.15. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 27.3%, ux,0 = 7.0 m/s; (c, d) u’/ux,0 = 24.7%, ux,0 = 7.2 m/s. 
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Figure G.16. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 37.3%, ux,0 = 6.0 m/s; (c, d) u’/ux,0 = 27.4%, ux,0 = 7.0 m/s. 

 
Figure G.17. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 13.9%, ux,0 = 4.7 m/s; (c, d) u’/ux,0 = 11.4%, ux,0 = 4.5 m/s. 
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Figure G.18. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 14.5%, ux,0 = 4.6 m/s; (c, d) u’/ux,0 = 13.0%, ux,0 = 4.6 m/s. 

 
Figure G.19. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 28.4%, ux,0 = 4.1 m/s; (c, d) u’/ux,0 = 24.5%, ux,0 = 4.3 m/s. 
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Figure G.20. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 33.5%, ux,0 = 3.7 m/s; (c, d) u’/ux,0 = 22.0%, ux,0 = 4.4 m/s. 

 
Figure G.21. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 7.6%, ux,0 = 8.0 m/s; (c, d) u’/ux,0 = 10.4%, ux,0 = 8.0 m/s. 
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Figure G.22. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 14.8%, ux,0 = 7.8 m/s; (c, d) u’/ux,0 = 13.2%, ux,0 = 7.7 m/s. 

 
Figure G.23. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 25.8%, ux,0 = 7.1 m/s; (c, d) u’/ux,0 = 22.0%, ux,0 = 7.3 m/s. 
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Figure G.24. Normalized ensemble-averaged turbulent displacement flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 32.1%, ux,0 = 6.2 m/s; (c, d) u’/ux,0 = 24.3%, ux,0 = 7.2 m/s. 
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APPENDIX H. AVERAGE CONSUMPTION SPEEDS 

This appendix provides plots of the mean ensemble-averaged turbulent 

consumption speed as a function of the flame coordinate for all cases. Turbulence level 

generally increases in order of stars, circles, diamonds, to squares. Data from the left side 

of the flame are shown in subplots (a) and (c), while data from the right side of the flame 

are shown in subplots (b) and (d). 

 
Figure H.1. Average ensemble-averaged turbulent consumption speed at f0 = 200 Hz  

(a, stars) u’/ux,0 = 8.4%, ux,0 = 4.8 m/s; (a, circles) u’/ux,0 = 16.2%, ux,0 = 4.7 m/s;  

(a, diamonds) u’/ux,0 = 29.6%, ux,0 = 4.0 m/s; (a, squares) u’/ux,0 = 32.9%, ux,0 = 3.8 

m/s; (b, stars) u’/ux,0 = 8.6%, ux,0 = 4.75 m/s; (b, circles) u’/ux,0 = 16.6%, ux,0 = 4.62 

m/s; (b, diamonds) u’/ux,0 = 26.3%, ux,0 = 4.3 m/s; (b, squares) u’/ux,0 =27.5%, ux,0 = 

4.35 m/s; (c, stars) u’/ux,0 = 8.8%, ux,0 = 8.14 m/s; (c, circles) u’/ux,0 = 14.5%, ux,0 = 7.8 

m/s; (c, diamonds) u’/ux,0 = 29.2%, ux,0 = 6.8 m/s; (c, squares) u’/ux,0 = 35.9%, ux,0 = 

6.1 m/s; (d, stars) u’/ux,0 = 8.4%, ux,0 = 8.1 m/s; (d, circles) u’/ux,0 = 13.1%, ux,0 = 7.8 

m/s; (d, diamonds) u’/ux,0 = 25.5%, ux,0 = 7.2 m/s; (d, squares) u’/ux,0 = 26.7%, ux,0 = 

7.1 m/s. 
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Figure H.2. Average ensemble-averaged turbulent consumption speed at f0 = 750 Hz  

(a, stars) u’/ux,0 = 8.9%, ux,0 = 4.9 m/s; (a, circles) u’/ux,0 = 15.7%, ux,0 = 4.7 m/s;  

(a, diamonds) u’/ux,0 =29.5%, ux,0 =4.1   m/s; (a, squares) u’/ux,0 =33.1%, ux,0 = 3.8  

m/s; (b, stars) u’/ux,0 = 9.3%, ux,0 = 4.8 m/s; (b, circles) u’/ux,0 = 14.6%, ux,0 = 4.6 m/s;  

(b, diamonds) u’/ux,0 = 24.4%, ux,0 = 4.3 m/s;(b, squares) u’/ux,0 = 26.4%, ux,0 = 4.4 

m/s; (c, stars) u’/ux,0 = 9.8%, ux,0 = 8.0 m/s; (c, circles) u’/ux,0 = 14.7%, ux,0 = 7.8 m/s;  

(c, diamonds) u’/ux,0 = 27.3%, ux,0 = 7.0 m/s; (c, squares) u’/ux,0 = 37.3%, ux,0  = 6.0 

m/s; (d, stars) u’/ux,0 = 8.0%, ux,0 = 7.8 m/s; (d, circles) u’/ux,0 = 14.2%, ux,0 = 7.7 m/s;  

(d, diamonds) u’/ux,0 = 24.7%, ux,0 = 7.2 m/s; (d, squares) u’/ux,0 = 27.4%, ux,0 = 7.0 

m/s. 
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Figure H.3. Average ensemble-averaged turbulent consumption speed at  f0 = 1250 

Hz (a, stars) u’/ux,0 = 13.9%, ux,0 = 4.7 m/s; (a, circles) u’/ux,0 = 14.5%, ux,0 = 4.7 m/s;  

(a, diamonds) u’/ux,0 = 28.4%, ux,0 = 4.1 m/s; (a, squares) u’/ux,0 = 33.5%, ux,0 = 3.7 

m/s; (b, stars) u’/ux,0 = 11.4%, ux,0 = 4.5 m/s; (b, circles) u’/ux,0 = 13.0%, ux,0 = 4.6 m/s;  

(b, diamonds) u’/ux,0 = 24.5%, ux,0 = 4.3 m/s; (b, squares) u’/ux,0 = 22.0%, ux,0 =4.4 

m/s; (c, stars) u’/ux,0 = 7.6%, ux,0 = 8.0 m/s; (c, circles) u’/ux,0 = 14.8%, ux,0 = 7.8 m/s;  

(c, diamonds) u’/ux,0 = 25.8%, ux,0 = 7.1 m/s; (c, squares) u’/ux,0 = 32.1%, ux,0 = 6.2 

m/s; (d, stars) u’/ux,0 = 10.4%, ux,0 = 8.0 m/s; (d, circles) u’/ux,0 = 13.2%, ux,0 = 7.7 m/s;  

(d, diamonds) u’/ux,0 = 22.0%, ux,0 = 7.3 m/s; (d, squares) u’/ux,0  = 24.3%, ux,0  = 7.2 

m/s. 
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APPENDIX I. ENSEMBLE-AVERAGED CONSUMPTION SPEED 

CURVATURE CORRELATIONS 

This appendix provides a comprehensive set of correlations between the 

normalized ensemble-averaged turbulent consumption speed, ,T CS , and the normalized 

ensemble-averaged flame curvature, ,0x dC u  . The left hand side of the figure shows a 

normalized joint probability density plots while the right hand side of the figure shows 

the corresponding deweighted correlation plot. Note that due to the y-axis scale the 

uncertainty bars are not visible in some of the deweighted plots. Data from the left side of 

the flame are shown in subplots (a) and (b), while data from the right side of the flame 

are shown in subplots (c) and (d). 

 
Figure I.1. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 8.4%, ux,0 = 4.8 m/s; (c, d) u’/ux,0 = 8.6%, ux,0 = 4.8 m/s. 



 217 

 
Figure I.2. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 16.2%, ux,0 = 4.7 m/s; (c, d) u’/ux,0 = 16.6%, ux,0 = 4.6 m/s. 

 
Figure I.3. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 29.6%, ux,0 = 4.0 m/s; (c, d) u’/ux,0 = 26.3%, ux,0 = 4.3 m/s. 
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Figure I.4. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 32.9%, ux,0 = 3.8 m/s; (c, d) u’/ux,0 = 27.4%, ux,0 = 4.3 m/s. 

 
Figure I.5. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 8.8%, ux,0 = 8.14 m/s; (c, d) u’/ux,0 = 8.4%, ux,0 = 8.1 m/s. 
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Figure I.6. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 14.5%, ux,0 = 7.8 m/s; (c, d) u’/ux,0 = 13.1%, ux,0 = 7.8 m/s. 

 
Figure I.7. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 29.2%, ux,0 = 6.8 m/s; (c, d) u’/ux,0 = 25.5%, ux,0 = 7.2 m/s. 
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Figure I.8. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 200 

Hz at (a, b) u’/ux,0 = 35.9%, ux,0 = 6.1 m/s; (c, d) u’/ux,0 = 26.7%, ux,0 = 7.1 m/s. 

 
Figure I.9. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 8.9%, ux,0 = 4.9 m/s; (c, d) u’/ux,0 = 9.3%, ux,0 = 4.8 m/s. 
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Figure I.10. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 15.7%, ux,0 = 4.7 m/s; (c, d) u’/ux,0 = 14.6%, ux,0 = 4.6 m/s. 

 
Figure I.11. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 29.5%, ux,0 = 4.1 m/s; (c, d) u’/ux,0 = 24.4%, ux,0 = 4.3 m/s. 
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Figure I.12.  Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 33.1%, ux,0 = 3.8 m/s; (c, d) u’/ux,0 = 26.4%, ux,0 = 4.4 m/s. 

 
Figure I.13. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 9.8%, ux,0 = 7.94 m/s; (c, d) u’/ux,0 = 8.0%, ux,0 = 7.8 m/s. 
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Figure I.14. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 14.7%, ux,0 = 7.8 m/s; (c, d) u’/ux,0 = 14.2%, ux,0 = 7.7 m/s. 

 
Figure I.15. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 27.3%, ux,0 = 7.0 m/s; (c, d) u’/ux,0 = 24.7%, ux,0 = 7.2 m/s. 
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Figure I.16. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 750 

Hz at (a, b) u’/ux,0 = 37.3%, ux,0 = 6.0 m/s; (c, d) u’/ux,0 = 27.4%, ux,0 = 7.0 m/s. 

 
Figure I.17. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 13.9%, ux,0 = 4.7 m/s; (c, d) u’/ux,0 = 11.4%, ux,0 = 4.5 m/s. 
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Figure I.18. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 14.5%, ux,0 = 4.6 m/s; (c, d) u’/ux,0 = 13.0%, ux,0 = 4.6 m/s. 

 
Figure I.19. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 28.4%, ux,0 = 4.1 m/s; (c, d) u’/ux,0 = 24.5%, ux,0 = 4.3 m/s. 
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Figure I.20. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 33.5%, ux,0 = 3.7 m/s; (c, d) u’/ux,0 = 22.0%, ux,0 = 4.4 m/s. 

 
Figure I.21. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 7.6%, ux,0 = 8.0 m/s; (c, d) u’/ux,0 = 10.4%, ux,0 = 8.0 m/s. 
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Figure I.22. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 14.8%, ux,0 = 7.8 m/s; (c, d) u’/ux,0 = 13.2%, ux,0 = 7.7 m/s. 

 
Figure I.23. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 25.8%, ux,0 = 7.1 m/s; (c, d) u’/ux,0 = 22.0%, ux,0 = 7.3 m/s. 
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Figure I.24. Normalized ensemble-averaged turbulent consumption flame speed 

versus curvature shown with (a, c) PDF plots and (b, d) deweighted plots, at f0 = 

1250 Hz at (a, b) u’/ux,0 = 32.1%, ux,0 = 6.2 m/s; (c, d) u’/ux,0 = 24.3%, ux,0 = 7.2 m/s. 
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