
LEARNING CONTROL VIA PROBABILISTIC TRAJECTORY OPTIMIZATION

A Dissertation
Presented to

The Academic Faculty

By

Yunpeng Pan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Robotics in the
School of Aerospace Engineering

Georgia Institute of Technology

December 2017

Copyright c© Yunpeng Pan 2017

LEARNING CONTROL VIA PROBABILISTIC TRAJECTORY OPTIMIZATION

Approved by:

Dr. Evangelos Theodorou, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Byron Boots
School of Interactive Computing
Georgia Institute of Technology

Dr. Eric Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Le Song
School of Computational Science and Engi-
neering
Georgia Institute of Technology

Dr. Jonathan How
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Date Approved: November 1, 2017

To my parents.

ACKNOWLEDGEMENTS

I would like to thank several people for their help leading to the completion of this

thesis. First and foremost, I have immense gratitude for my advisor Evangelos Theodorou,

for providing invaluable guidance toward interesting research directions and for being sup-

portive throughout my PhD journey. In particular, I am thankful for Evangelos’ confidence

in me during the early phase of my PhD study when I was exploring research topics.

I am indebted to Professor Byron Boots, for guiding me to explore new research areas.

His perspectives on machine learning were very helpful which motivate my thinking. It

was a great pleasure to work with him. I am grateful for Professor Eric Johnson for serving

as my advisor during my master study in aerospace engineering, and I would like to express

my gratitude to my committee members Professor Jonathan How and Professor Le Song

for their insightful comments.

I am fortunate to have many collaborators and co-authors to work with. They include

my labmates: Kaivalya Bakshi, Manan Gandhi, George Boutselis, Kamil Saigol, Keuntaek

Lee, Harleen Brar; students from the Professor Boots’ group: Xinyan Yan and Ching-An

Cheng; Professor Panos Tsiotras and his students Wei Sun, Yannis Exarchos and Alfredo

Valverde; Bo Dai from Professor Le Song’s group; Professor Babak Mahmoudi and Mark

Connolly from Emory University; Pierre Sebastian and Professor Demetri Yannopoulos at

the University of Minnesota. I would like to thank Brian Goldfain and Paul Drew from

Professor Jim Rehg’s lab for their help on the AutoRally platform. I am also thankful for

many colleagues with whom I had countless interesting discussions. They include current

and former members in the autonomous control and decision system lab: Grady Williams,

David Fan, Andrew Aldrich, Ethan Evans, Andrew Fillingim, Marcus Pereira, Pat Wang,

Emre Yilmaz; members in the robot learning lab: Nolan Wagener, Mustafa Mukadam,

Sasha Lambert, Gabriel Nakajima An; Yiming Zhao, Oktay Arslan, and Imon Chakraborty

from Professor Panos Tsiotras’s group; Yichen Wang from Professor Le Song’s group;

v

Hancao Li from Professor Haddad’s group; Zhaoyang Lv from Professor Jim Rehg’s group.

Finally, I would like to thank my family, especially my wife Di for offering support and

having patience and confidence in me.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xii

List of Figures . xiii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.1.1 Progress in Artificial Intelligence 1

1.1.2 Challenges in AI-based Robot Control 2

1.2 Objective and Scope of this Thesis . 5

1.2.1 Reinforcement Learning and Optimal Control 5

1.2.2 Probabilistic Modeling and Inference 6

1.2.3 Imitation Learning and Deep Learning 6

1.2.4 Applications to High-Speed Autonomous Driving 7

1.2.5 Contributions and Outline . 8

Chapter 2: Technical Background . 11

2.1 Optimal Control and Reinforcement Learning 11

2.1.1 Problem Formulation . 11

vii

2.1.2 Dynamic Programming . 12

2.1.3 Trajectory Optimization via Local Approximations 14

2.1.4 Path Integral and Linearly Solvable Optimal Control 16

2.2 Supervised Learning using Gaussian Processes 19

2.2.1 Supervised Learning and Bayesian Linear Regression 19

2.2.2 Gaussian Processes for Regression 20

Chapter 3: Probabilistic Differential Dynamic Programming 24

3.1 Introduction . 24

3.2 Preliminaries . 26

3.3 Trajectory Prediction via GP Inference . 28

3.3.1 Approximate Inference via Moment Matching 29

3.3.2 Hyperparameter Optimization . 31

3.3.3 Incorporating Prior Model Knowledge 31

3.4 Probabilistic Trajectory Optimization . 36

3.4.1 Belief Dynamics and Local Approximation 37

3.4.2 Optimization Criterion . 38

3.4.3 Control Policy and Value Function Approximation 41

3.4.4 Control constraint . 43

3.4.5 Summary of algorithm . 44

3.5 Theoretical Analysis . 44

3.6 Further Analysis . 53

3.6.1 Computational complexity . 53

viii

3.6.2 Relation to existing works . 53

3.7 Experimental Evaluation . 55

3.7.1 Tasks . 56

3.7.2 Data efficiency . 59

3.7.3 Computational efficiency . 60

3.7.4 Nonparametric vs. semiparametric learning 60

3.7.5 Risk-sensitive vs. risk-neutral learning 61

3.8 Discussion . 62

Chapter 4: Path Integral Control under Uncertain Dynamics 67

4.1 Introduction . 67

4.2 Gradient-based Approach . 68

4.2.1 Preliminaries . 69

4.2.2 Linearized Hamilton-Jacobi-Bellman Equation for Uncertain Dy-
namics . 71

4.2.3 Relation to Existing Works . 73

4.2.4 Analytic Path Integral Control: a Forward-Backward Scheme 74

4.2.5 Generalization to Unlearned Tasks without Sampling 77

4.2.6 Experiments and Analysis . 78

4.2.7 Summary and Discussion . 82

4.3 Sampling-based Approach . 82

4.3.1 Preliminaries . 83

4.3.2 Model Learning via Sparse Spectrum Gaussian Processes 84

4.3.3 A Path Integral Control Approach with Covariance Adaptation . . . 87

ix

4.3.4 Relation to Existing Works . 93

4.3.5 Experiments and Analysis . 95

4.3.6 Summary and Discussion . 98

Chapter 5: Prediction under Uncertainty in Sparse Spectrum Gaussian Processes 99

5.1 Introduction . 99

5.2 Sparse Spectral Representation of GPs . 102

5.3 Prediction under Uncertainty . 105

5.3.1 Exact moment matching (SSGP-EMM) 105

5.3.2 Linearization (SSGP-Lin) . 109

5.4 Applications . 111

5.4.1 Bayesian filtering . 112

5.4.2 Stochastic Model Predictive Control 114

5.5 Experimentals and Analysis . 117

5.5.1 Bayesian filtering . 117

5.5.2 Model Predictive Control . 119

5.5.3 Additional experiments on approximate inference 121

5.6 Discussion . 124

5.6.1 Conditional independence between outputs 124

5.6.2 SSGP-EKF vs. SSGP-ADF . 124

5.7 Summary . 126

Chapter 6: Deep Imitation Learning for Agile Autonomous Driving 127

6.1 Introduction . 127

x

6.2 Relation to Existing Works . 129

6.3 Imitation Learning for Autonomous Driving 131

6.3.1 Problem Definition . 131

6.3.2 Imitation Learning . 132

6.3.3 Comparison of Imitation Learning Algorithms 136

6.4 The Autonomous Driving System . 137

6.4.1 Algorithmic Expert with Model-Predictive Control 138

6.4.2 Learning a DNN Control Policy 139

6.4.3 The Autonomous Driving Platform 140

6.5 Experimental Setup . 141

6.5.1 High-speed Navigation Task . 141

6.5.2 Test Track . 142

6.5.3 Data Collection . 142

6.5.4 Policy Learning . 143

6.6 Experimental Results . 143

6.6.1 Online vs Batch Learning . 143

6.6.2 Deep Neural Network Policy . 145

6.7 Summary . 145

Chapter 7: Conclusions . 150

References . 163

xi

LIST OF TABLES

3.1 Comparison with DDP-related frameworks 55

4.1 Comparison with some notable and recent path integral-related approaches. 74

4.2 Comparison between our method under unknown dynamics and the itera-
tive PI control with known dynamics model for the cart-pole swing up task.
. 96

5.1 Examples of continuous shift-invariant positive-definite kernels and their
corresponding spectral densities, where r =

√
2ν‖x−x′‖2

`
, Kν is a modified

Bessel function, and h =
2dπ

d
2 Γ(ν+ d

2
)(2ν)ν

Γ(ν)`2ν
. 109

5.2 Comparison of our proposed methods and GP-EMM [49, 69] in terms of
computational complexity and generalizability. 111

5.3 Comparison of our methods with GP-ADF [70] and GP-EKF [112] in terms
of average NLx (negative log-likelihood) of the ground truth states given
estimates and RMSE (root-mean-square error). Lower values are better.
The results correspond to the filtering task in sec 5.5.1. 118

6.1 Comparison of our method to prior work on imitation learning for au-
tonomous driving . 129

6.2 Test statistics. Total loss denotes the imitation loss in (6.6), which is the
average of the steering and the throttle losses. Completion ratio is defined
as the ratio of the traveled time steps to the targeted time steps (3,000).
All results here represent the average performance over three independent
evaluation trials. 144

xii

LIST OF FIGURES

1.1 Media coverage of Deep Blue (left) and AlphaGo (right) achieving super-
human performance in chess and the game of Go. 2

1.2 Left: an autonomous helicopter successfully performs inverted flight. Right:
a humanoid robot fails to maintain balance while stepping out of a vehicle. . 3

1.3 In reinforcement learning, an autonomous agent interacts with the environ-
ment by applying a control. As a consequence, the agent receives a cost (or
reward) and a new state or observation. The goal is to find a sequence of
control to minimize the accumulated future cost. 5

2.1 An one-dimensional example of GP inference. We use a prior mean func-
tion m(x) = 0.63 and covariance function (2.25). Black asterisks are noisy
samples drawn from f(x). Orange solid line is the GP predictive mean, and
shaded area represents standard deviation for each input value x. Note that
the prediction mainly depends on the prior when the input is far away from
observations. 22

3.1 One-dimensional examples of expectation of cost (a), variance of cost (b),
risk-averse (c) and risk-seeking cost fucntions (d). The target state is zero. . 40

3.2 CDIP and Puma-560 tasks. 57

3.3 Cross-entropy parameter optimization for CDIP dynamics model with bad
initial guesses. The horizontal axis is iteration number and vertical axis is
parameter value. Dash lines are the true parameter values. Error bars show
the mean and variance of sampling distributions at each iteration. Note that
some parameters converge to the true values while some others converge to
local minima. 58

xiii

3.4 Comparison between PDDP and PILCO in terms of the number of interac-
tions with the physical system (a) and total computational time (b) required
for learning the CDIP and Puma-560 tasks. PDDP-NP and PDDP-SP cor-
respond to the nonparametric and semiparametric cases, respectively. The
results were averaged over 5 independent trials. 59

3.5 Comparison of the predicted trajectory cost distributions between risk-neutral
(a,b) and risk-sensitive (c,d) learning via PDDP. Early stage and final stage
correspond to the predictions after 1 and 8 optimization stages. 62

3.6 Total trajectory costs by applying PDDP policy after each optimization
stage for risk-neutral (ε = 0) and risk-sensitive learning (ε = 0.2). 3 and 5
rollouts were used for learning in both cases. 63

3.7 The quadrotor flight task. (a) Quadrotor simulation environment. (b) Ex-
pected trajectory cost reduction during PDDP optimization. (c) Trajectory
costs over 10 independent trials using the optimized control policy. (d)
State trajectories of the quadrotor task collected over 10 independent trials
using the optimized controller. Dash lines are desired states. 64

3.8 Constrained and unconstarined control inputs (4 motor torques) for the
quadrotor task. The constraint is incorporated by solving a QP (sec.3.4.4) . 65

4.1 Comparison in terms of sample efficiency and computational efficiency for
(a) cart-pole and (b) double pendulum on a cart swing-up tasks. Left sub-
figures show the terminal desirability ΨT (for PILCO and PDDP, ΨT is
computed using terminal state costs) at each trial. Right subfigures show
computational time (in minute) at each trial. 80

4.2 Resutls for the PUMA-560 tasks. (a) 8 tasks tested in this experiment. Each
number indicates a corresponding target posture. (b) Comparison of the
controllers learned independently from trials and the composite controllers
without sampling. Each composite controller is obtained (4.19) from 7
other independent controllers learned from trials. 81

4.3 (a) Sampling of belief trajectories via probabilistic inference. The solid
line and error ellipse represent predictive mean and variance of the state,
respectively. The computation of probabilistic inference can be distributed
in parallel. (b) Cart-pole swing up task. 95

4.4 Comparison in terms of total trajectory cost reduction at each iteration dur-
ing optimization. 97

xiv

4.5 Trajetory costs collected by executing optimized controls on the true dy-
namics model (5 independent trials). 97

5.1 Black points are ground truth states, red areas are filter distributions for (a)
GP-ADF [70], (c) GP-EKF [112], our proposed methods (b) SSGP-ADF
and (d) SSGP-EKF. The x-axis is the mean of initial belief p(x0), which is
randomly distributed in [−10, 10] and y-axis shows the mean and twice the
standard deviation of filtered distribution p(x1|y1) after observing y1. 116

5.2 Recursive filtering task for high-speed autonomous driving. Figure (b)
shows trajectories of all the states of a 30 seconds continuous driving (1,200
steps), where blue lines are the ground truth, and red lines and red areas are
the mean and twice the standard deviation of the filtered distributions re-
spectively. In (c), the red line and area are the mean and twice the standard
deviation of NLx over six 30 seconds driving with varying number of fea-
tures. 117

5.3 PUMA-560 and quadrotor tasks . 120

5.4 Comparison of the drifting performance using 50 (left), 150 (middle) and
400 (right) random features. Blue lines are the solution provided in [124].
Performance improves with a larger number of features, and with a mod-
erate number of features, MPC with SSGP-Lin behaves very closely to the
ground truth solution. 121

5.5 Cost comparison for arm and quadrotor tasks. 122

5.6 (a)-(b): Approximate inference accuracy test. The vertical axis is the squared
error of cost predictions for (a) quadrotor system and (b) Puma 560 system.
Error bars represent standard deviations over 10 independent rollouts. (c)-
(d): Comparison of computation time on a log scale between (c) SSGP-Lin
and GP-EMM; (d) SSGP-EMM and GP-EMM. The horizontal axis is the
input and output dimension (equal in this case). Vertical axis is the CPU
time in seconds. 123

5.7 KL divergences between SSGP-EMM and GP-EMM, SSGP-Lin and GP-Lin 125

6.1 High-speed off-road driving task . 128

6.2 System diagram . 137

6.3 The DNN control policy . 137

xv

6.4 The AutoRally car and the test track. 147

6.5 Examples of vehicle trajectories. (a) Demonstration of the MPC expert. (b)
Crashing case when using batch imitation learning. (c) The vehicle avoids
crashing when using online imitation learning. Subfigures (b) and (c) depict
test runs of the policies after training on 9,000 samples 148

6.6 Performance . 148

6.7 From left to right: input RGB image, averaged feature maps for each max-
pooling layer. 149

6.8 Performance comparison between our DNN policy and its CNN sub-network
in terms of batch imitation learning loss, where the horizontal axis is the
size of data used to train the neural network policies. 149

xvi

SUMMARY

A central problem in the field of robotics is to develop real-time planning and control al-

gorithms for autonomous systems to behave intelligently under uncertainty. While classical

optimal control provides a general theoretical framework, it relies on strong assumption of

full knowledge of the system dynamics and environments. Alternatively, modern reinforce-

ment learning (RL) offers a computational framework for controlling autonomous systems

with minimal prior knowledge and user intervention. However, typical RL approaches re-

quire many interactions with the physical systems, and suffer from slow convergence. Fur-

thermore, both optimal control and RL have the difficulty of scaling to high-dimensional

state and action spaces.

In order to address these challenges, we present probabilistic trajectory optimization

methods for solving optimal control problems for systems with unknown or partially known

dynamics. Our methods share two key characteristics: (1) we incorporate explicit uncer-

tainty into modeling, prediction and decision making using Gaussian processes; (2) our

algorithms bypass the curse of dimensionality via local approximation of the value func-

tion or linearization of the Hamilton-Jacobi-Bellman (HJB) equation. Compared to related

approaches, our methods offer superior combination of data efficiency and scalability. We

present experimental results and comparative analyses to demonstrate the strengths of the

proposed methods.

In addition, we develop fast Bayesian approximate inference methods which enable

probabilistic trajectory optimizer to perform real-time receding horizon control. It can be

used to train deep neural network controllers that map raw observations to actions directly.

We show that our approach can be used to perform high-speed off-road autonomous driving

with low-cost sensors, and without on-the-fly planning and optimization.

xvii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Artificial intelligence (AI) empowers machines to behave intelligently. Researchers across

the globe have been working on AI since 1950s [1]. In over half a century after its ‘birth’

as an academic field, there were ups and downs in AI in terms of funding, public interest

and commercial success [1]. In the following, we motivate this thesis by discussing the

progress and challenges in AI and robotics in recent decades.

1.1.1 Progress in Artificial Intelligence

Over the last few decades, the fields of AI and robotics have witnessed remarkable progress

in the development autonomous systems that could achieve human-level performance in

specific tasks, thanks to the technological advancement of computer processing power and

data storage. For instance, IBM researchers have pioneered the development of game-

learning computer program ‘TD-Gammon’ [2], and the chess-playing supercomputer ‘Deep

Blue’ [3] in 1990s. While ‘TD-Gammon’ performed slightly worse than expert human

backgammon players, ‘Deep Blue’ achieved unprecedented superhuman performance, beat-

ing the world chess champion Garry Kasparov [3]. It was one of the first and biggest public

leaps forward in AI (see fig. 1.1). However, the impressive performance of ‘Deep Blue’

relies on brute force computation provided by a massively parallel computer system, and

rule-based reasoning programmed by AI researchers. Two decades later, the capabilities of

storing and processing massive amount of data, and the rise of Deep Learning have empow-

ered researchers to address more challenging problems. For example, Google researchers

presented the ‘Deep Q Network’ [4] to play Atari games and ‘AlphaGo’ [5] to play the

1

Figure 1.1: Media coverage of Deep Blue (left) and AlphaGo (right) achieving super-
human performance in chess and the game of Go.

game of Go. Instead of using brute force computation and rule-based reasoning, the central

idea of these approaches is to create a large data set from previous experience using Re-

inforcement Learning (RL) [6], a machine learning paradigm for optimal decision-making

(see fig 1.3), and train a complex neural network using this data set in a supervised fashion.

These developments have pushed real-world applications of AI to a new level (see fig 1.1).

In these tasks, autonomous agents can achieve superhuman performance without explicit

rules imposed by human.

1.1.2 Challenges in AI-based Robot Control

Despite all the success, there are some distinct differences between applying AI to decision-

making in board (or video) games and control of real physical robots. First, in the afore-

mentioned applications, there is a ‘simulator of the world’ and an autonomous agent is free

to explore this world in simulation. However, the real-world scenario is so uncertain, the

2

Figure 1.2: Left: an autonomous helicopter successfully performs inverted flight. Right: a
humanoid robot fails to maintain balance while stepping out of a vehicle.

gap between the simulator and real world is significantly large, therefore it is very chal-

lenging to apply controllers learned from simulation to real-world settings. Second, robot

control tasks have continuous state and action spaces, in contrast to the discrete domain in

board or video games. Again the aforementioned approaches, e.g., [4, 5] cannot be directly

applied to control of physical robots. Third, in board games or robot planning tasks in a

‘grid world’, we assume that global information such as state and cost (or reward) is pro-

vided. However, this information will not be available for physical robotic systems without

using expensive sensors, and an explicit, user-designed performance criterion.

In the following we briefly discuss these challenges. The first one is the difficulty

of building a ‘simulator of the world’ for an autonomous agent to explore. In Markov

Decision Processes (MDPs), this amount to specifying the transition probability from one

state to another, assuming we have access to all states. However, the real dynamics of

physical systems and environment are usually highly uncertain. And physics-based models

can be very inaccurate. For example, helicopter aerodynamics (fig 1.2) is so complex and

not well-understood, there is no explicit model that could accurately predict the helicopter

dynamics [7] due to the difficulty of capturing important physical properties such as the

effect of inertia. One solution is combining physics-based knowledge with a data-driven

model [8, 9]. This hybrid approach has shown impressive results in dynamics modeling and

3

difficult control tasks such as inverted flight. However, in this task, the training data was

using human pilot demonstrations, which implies that the task-related state-action spaces

of the system have been explored. In addition, when making multi-step predictions using

this model, the modeling error will be accumulated and such method does not provide a

solution to cope with the effect of modeling error.

The second issue is continuous state and action spaces. Based on the Bellman’s Dy-

namic Programming principle [10], optimal decision-making in continuous domains suffer

from curse of dimensionality: the number of states grows exponentially with the dimen-

sions of the state space. Therefore it is impossible to use brute force computation (such

as [3]) to explore the whole state space except for low-dimensional systems (i.e., inverted

pendulum). Similarly, the action space is also large, the number of actions increases ex-

ponentially with the dimension of the action space. So even learning-based methods such

as Q-learning [6, 4] cannot be applied here since they require exploring the whole action

space. For example, controlling a humanoid robot (fig 1.2) is extremely difficulty not only

because the system is too complex to model, but also because of its high dimensional state

and action spaces.

The third challenge is the lacks of information about the state and cost. Decision-

making in without fully observable states is usually addressed in partially observable Markov

decision process (POMDP) [11] which is a generalization of MDP. However, solving PODMP

is know to be computationally intractable. Even approximate solutions does not scale to

high-dimensional problems [12]. Regarding the cost or reward function, there are many

control tasks that are too complex to be specified explicitly. For instance, driving a car

like a human driver is a difficult control problem without a explicit performance criterion,

therefore it is not a well-defined RL problem. This challenge leads us to explore alternative

solutions outside the typical RL paradigm.

4

Agent Environment

State or observation
Cost

Control

Figure 1.3: In reinforcement learning, an autonomous agent interacts with the environment
by applying a control. As a consequence, the agent receives a cost (or reward) and a new
state or observation. The goal is to find a sequence of control to minimize the accumulated
future cost.

1.2 Objective and Scope of this Thesis

In this section, we introduce the research topics that will be covered in the thesis as well as

the structure of this thesis.

1.2.1 Reinforcement Learning and Optimal Control

A main theme of this thesis is solving control problems with minimal knowledge of the

system and environment. This can be viewed as a reinforcement learning (RL) problem

[6]. RL is one of the three major paradigms in machine learning, besides supervised and

unsupervised learning. The high-level idea is learning to perform optimally by interacting

with the world. It has little assumption about the system and environment. More precisely,

at each time step, an autonomous agent with no prior knowledge about the world interacts

with the surroundings by applying controls. The agent receives a cost and a new state or

observation as a result of this interaction. The algorithm seeks the actions to minimize

the accumulated future cost. See fig 1.3 for a block diagram of RL. Besides engineering,

5

RL has also been applied to solve decision-making problems in other disciplines such as

finance and recource management [13]. On the other hand, optimal control concerns the

problem of choosing a sequence of actions to minimize a cost function, subject to a known

dynamics constraint. Therefore the key difference between RL and optimal control is the

knowledge of a dynamics model. Both RL and optimal control are rooted in Bellman’s

work on Dynamic Programming [10] which is the ‘Principle of Optimality’ for decision-

making.

1.2.2 Probabilistic Modeling and Inference

One of the key problems in machine learning is to build models to represent uncertainties

that capture statistical dependencies between random variables. A probabilistic model is

such a model that describes data that one could observe from a real system, and the uncer-

tainty of the model is expressed using probability theory. Probabilistic inference amounts to

predicting the probability distribution over a random variable using a probabilistic model.

A complete review of probabilistic modeling and inference is outside the scope of this the-

sis. We refer the interested reader to [14] for a comprehensive study. Instead we focus on a

class of approaches called Gaussian processes (GPs) [15]. In contrast to building paramet-

ric models and fitting parameters to data, in GPs we specify a prior probability distribution

over a function directly. GP models can be applied to nonlinear regression problems, with

the goal of predicting the probability distribution over a function value given a training data

set. Motivated by the difficulty of modeling complex dynamics, in this thesis we will use

GPs to represent dynamics model in a probabilistic fashion.

1.2.3 Imitation Learning and Deep Learning

As mentioned in section 1.1.2, there are many control tasks that are too complex to define

explicitly. ‘Driving a car like a human driver’ is one example. In this case, however, we may

take advantage of expert demonstrations and reformulate the control problem as a problem

6

of imitation learning. The field of imitation learning focuses on developing algorithms

with goal of improving performance by mimicking a expert’s decisions and behaviors. A

key advantage of imitation learning over reinforcement learning is that the complexity of

the control task is implicitly incorporated in the expert’s demonstration and there is no

need to specify the criterion of the control task manually. In fact, imitation learning can

significantly simplify the standard robot control pipeline in which the task is decomposed

into several different modules such as perception, motion planning and control, see [16]

for an example of a robot control pipeline. In contrast, we may learn a mapping from

sensory signals to control actions directly given demonstrations. Now the difficulty of

RL has been transformed to the difficulty of supervised learning, i.e., learning a complex

representation of the control policy given input-output training data where the input data is

high-dimensional (e.g., images).

To address this challenge we take advantage of recent breakthroughs in deep learning

[17]. More specifically, the idea of deep learning is to create a multi-layer architecture

of nonlinear functions, the ouput in each layer is the input to the successive layer. In our

case, the control policy can be represented by a convolutional neural network (CNN) with

multiple layers [18]. The CNN usually has millions of parameters which can be trained in

a supervised fashion using the data set collected from demonstration. CNNs have shown

unprecedented success in tasks such image recognition [18], speech recognition [17], and

aforementioned tasks such as playing video games [4] and the game of Go [5].

1.2.4 Applications to High-Speed Autonomous Driving

High-speed autonomous off-road driving is a challenging robotics problem [19, 20, 21].

To succeed in this task, a robot is required to perform both precise steering and throttle

maneuvers in a physically-complex, uncertain environment by executing a series of high-

frequency decisions. Compared with most previously studied autonomous driving tasks,

the robot must reason about unstructured, stochastic natural environments and operate at

7

high speed. Consequently, designing a control policy by following the traditional model-

plan-then-act approach [19, 22] becomes challenging, as it is difficult to adequately charac-

terize the robot’s interaction with the environment a priori. Recent model predictive control

(MPC) approach [20] relies on expensive and accurate Global Positioning System (GPS)

and Inertial Measurement Unit (IMU) for state estimation and demands high-frequency on-

line replanning for generating control commands. We aim to relax these requirements by

designing a reflexive driving policy that uses only low-cost, on-board sensors (e.g. camera,

wheel speed sensors) using imitation learning and deep learning (as mentioned in section

1.2.3).

1.2.5 Contributions and Outline

The main contribution of this thesis is the computational framework of probabilistic trajec-

tory optimization with applications to reinforcement learning and imitation learning. The

rest of the chapters are organized as follow:

• Chapter 2: Technical Background and Related Work. In this chapter, we provide

important technical background that is necessary to understand this thesis. We will

cover problem formulation of optimal control and the dynamic programming princi-

ple. Motivated by the curse of dimensionality in dynamic programming, two families

of approximation techniques will be discussed. In addition, we briefly review Gaus-

sian process regression, a Bayesian nonparametric technique for supervised learning,

which is central to incorporating uncertainty into dynamics modeling for planning

and control in this thesis.

• Chapter 3: Probabilistic Differential Dynamic Programming. This chapter de-

scribes a model-based reinforcement learning approach that combines probabilistic

inference using Gaussian processes and trajectory optimization using Differential

Dynamic Programming (DDP). The resulting method, Probabilistic Differential Dy-

namic Programming (PDDP), features the benefits from both fields. Experimental

8

results and comparative study show that PDDP performs well in terms of computa-

tional and data efficiency.

• Chapter 4: Path Integral Control under Uncertainty. In this chapter we present

two data-driven optimal control framework that are derived using the path integral

(PI) control approach. We find iterative control laws analytically without a priori

policy parameterization based on probabilistic representation of the learned dynam-

ics model. The two proposed algorithms operates in gradient-based and sampling-

based fashions, respectively. We present results showing that incorporating model

uncertainty into the path integral framework is important to achieving robust perfor-

mance.

• Chapter 5: Prediction under Uncertainty using Sparse Spectrum Gaussian Pro-

cesses. This chapter introduces two analytic moment-based approaches with closed-

form expressions for Sparse Spectrum Gaussian Processes (SSGPs) regression with

uncertain inputs. Our methods are more general and scalable than their standard

GP counterparts, and are naturally applicable to multi-step prediction or uncertainty

propagation. We show that efficient algorithms for Bayesian filtering and stochastic

model predictive control can use these methods, and we evaluate our algorithms with

comparative analyses and both real-world and simulated experiments.

• Chapter 6: High-speed Off-road Autonomous Driving via Deep Imitation Learn-

ing. In this chapter we present an end-to-end imitation learning system for agile,

off-road autonomous driving using only low-cost on-board sensors. By imitating an

optimal controller, we train a deep neural network control policy to map raw, high-

dimensional observations to continuous steering and throttle commands. Compared

with recent approaches to similar tasks, our method requires neither state estima-

tion nor online planning to navigate the vehicle. Real-world experimental results

demonstrate successful autonomous off-road driving, matching the state-of-the-art

9

performance.

• Chapter 7: Conclusions and Future Work. This chapter concludes this thesis by

summarizing the contributions and outlining possible research directions for future

work.

10

CHAPTER 2

TECHNICAL BACKGROUND

In this chapter, we provide a brief introduction to the important technical background which

is the foundation of this work. In section 2.1, we describe the optimal control and rein-

forcement learning (RL) problem formulation, the optimality principle, and two families of

techniques for solving optimal control problems. These techniques use different approx-

imation schemes to bypass the curse of dimensionality. In section 2.2, we briefly review

Bayesian linear regression which leads to the introduction of Gaussian process regression,

a key method used in this thesis for learning system dynamics.

2.1 Optimal Control and Reinforcement Learning

Optimal control is a general mathematical framework that deals with choosing actions to

optimize a performance criterion, subject to a dynamics constraint. Although derived from

different communities, the difference between optimal control and RL is subtle. It is usu-

ally assumed that knowledge of the system dynamics is given in optimal control, but in RL

the dynamics are unknown. Next we formulate the optimal control/RL problem mathemat-

ically.

2.1.1 Problem Formulation

We consider a continuous-time, nonlinear dynamical system described by the following

stochastic differential equation

dx = f(x,u)dt+ Cdω, x(t0) = x0, (2.1)

11

where x ∈ Rn is the state, u ∈ Rm is the control and ω ∈ Rp is standard Brownian

motion noise. f : Rn × Rm → Rn and C ∈ Rn×p are the transition dynamics function

and diffusion coefficient. We consider a finite-horizon control problem which is defined as

finding a control policy π that minimize

J(x(t0)) = E
[
h
(
x(T)

)
+

∫ T

t0

L
(
x(t), π(x(t), t)

)
dt

]
, (2.2)

where h : Rn → R is the terminal cost function, L : Rn × Rm → R is the instantaneous

cost rate. The control policy

u(t) = π(x(t), t)

is a function that maps states and time to actions. The cost J(x(t0)) is defined as the

expectation of the total cost accumulated from t0 to T . E denotes the expectation operator.

Here we may assume that the states are fully observable. Next we review a fundamental

framework for solving this optimal control problem.

2.1.2 Dynamic Programming

Dynamic programming is a well-known framework for solving optimal control problems.

First we introduce the value function or cost-to-go which is the minimum of the accumu-

lated future cost

V (x(t0)) = min
u

(
J(x(t0))

)
. (2.3)

The concept of value function is central to the Dynamic Programming framework, which

was derived from one of the two fundamental optimality principles for optimal control

(besides Pontryagin’s maximum principle) by Richard Bellman [23], it states:

Definition 1. [23] Bellman’s principle of optimality: An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must consti-

12

tute an optimal policy with regard to the state resulting from the first decision.

The other optimality principle for optimal control is Pontryagin’s maximum principle

[24]. It provides a necessary but not a sufficient condition for optimality in deterministic

systems, and it deals with a single trajectory instead of value function or policy over the

whole state space. However, it is outside the scope of this thesis so we skip the discussion

on it. For the rest of our analysis, we discretize the time using the Euler scheme as k =

1, 2, ..., H with time step ∆t = T−t0
H−1

. In order to simplify notation, we use subscripts to

denote time steps for time-varying variables, e.g., xk = x(tk). The discretized system

dynamics can be written as

xk+1 = xk + ∆xk + C
√

∆tξk (2.4)

where ∆xk = ∆tf(xk,uk) and ξk is i.i.dN (0, I). We also define f(xk,uk) = ∆tf(xk,uk)

for simplicity.

According to dynamic programming, the optimal control problem can be solved by

decomposing it into a sequence of single decisions. Mathematically, it is defined by the

Bellman equation

V (xk, k) = min
uk

(
L(xk,uk) + E

[
V
(
xk + ∆xk, k + 1

)])
. (2.5)

Obviously, in order to solve this equation, we need work backward in time. However,

solving this equation suffers form the curse of dimensionality. More specifically, when

the dimension of state and action spaces is high, the total number of states and actions is

enormous after discretization. In this case, solving the Bellman equation becomes compu-

tationally intractable. Next we describe two families of techniques to approximate dynamic

programming that can bypass this issue.

13

2.1.3 Trajectory Optimization via Local Approximations

Solving general nonlinear optimal control problems via dynamic programming is difficult.

But it is known that if the dynamics model is linear and cost function is quadratic, i.e.,

xk+1 = Axk + Buk, L(xk,uk) = xT
kQxk + uT

kRuk, (2.6)

Then the problem can be solved exactly. For simplification of analysis, we ignore the

noise term in this section. Note that the noise term will not affect the resulting control

policy or value function as long as the coeffiicent C in (4.20) is independent of state and

control. The above problem (2.6) can be solved via the Linear-Quadratic-Regulator (LQR)

for deterministic systems or Linear-Quadratic-Gaussian controller (LQG) for stochastic

systems [25].

For nonlinear systems, we can approximate the problem around the neighborhood of

a trajectory as a linear dynamics, quadratic cost problem. And use a LQR-like scheme

to solve it. Now we review a family of approaches for solving nonlinear optimal control

problems based on this idea. First we define the nominal trajectory of state and control

x̄k, ūk and variations of state δxk = xk − x̄k and control δuk = uk − ūk. Next we create

a local model of the dynamics along the nominal trajectory using the 1st order Taylor

expansion

δxk+1 =

(
I +

∂f(xk,uk)

∂x

)
δxk +

∂f(xk,uk)

∂u
δuk, (2.7)

similarly, the cost function is approximated along the nominal trajectory as a quadratic

function via 2nd order Taylor expansion

14

L(xk,uk) =L(x̄k, ūk) + (
∂L(xk,uk)

∂x
)Tδxk + (

∂L(xk,uk)

∂u
)Tδuk+ (2.8)

1

2

 δxk

δuk

T ∂L(xk,uk)

∂x∂x
∂L(xk,uk)
∂x∂u

∂L(xk,uk)
∂u∂x

∂L(xk,uk)
∂u∂u

 δxk

δuk

 .
Therefore the problem is reduced to a linear-quadratic problem locally along the nominal

trajectory. The approximate optimal control law can be obtained as a linear function

δu∗k = π∗(xk) = Ik + Lkδxk (2.9)

where the forms of open-loop and feedback terms Ik,Lk will be discussed in the next

chapter. Plugging the optimal control policy back into the Bellman equation (2.5) leads

to a quadratic approximation of the value function, which can be back-propagated through

time. Updating the optimal control u∗k = ūk+δu∗k and apply it to the nonlinear dynamics to

generate a new state trajectory forward in time. This becomes the new nominal trajectory

and a local model can be created. Therefore the nonlinear control problem can be solved

via iterative backward-forward sweeps until convergence.

The first algorithm in this family, Differential Dynamic Programming (DDP), was de-

veloped in 1970s [26]. Note that DDP uses second-order approximation of the dynamics

instead of linear approximation discussed here. Variations of DDP have been proposed

within the control, robotics and machine learning communities. These variations include

generalizations to stochastic systems [27, 28], extensions to model predictive control [29],

and min-max and cooperative game theoretic formulations [30, 31]. We will cover more

technical details of this class of algorithms in the next chapter.

15

2.1.4 Path Integral and Linearly Solvable Optimal Control

Another way to scalable solution to optimal control problems is via exponential transfor-

mation of the value function. In control theory, this technique was introduced in [32, 33]. In

the past decade it has been explored in terms of path integral interpretations and theoretical

generalizations [34, 35, 36, 37], discrete time formulations [38], and scalable reinforce-

ment learning/control algorithms [39, 40, 41, 42, 43, 44]. The resulting stochastic optimal

control frameworks are known as Path Integral (PI) control for continuous time, Kullback

Leibler (KL) control for discrete time, or more generally Linearly Solvable Optimal Con-

trol [38, 45]. This class of methods usually assume the dynamics model is affine in control

and control cost is quadratic, i.e.,

xk+1 = F (xk) + B(xk)
(
uk + C

√
∆tξk

)
, L(xk,uk) = l(xk) +

1

2
uT
kRuk, (2.10)

where F (·) can l(·) can be arbitrary nonlinear functions. ξ has been defined in (2.4). In

order to derive the solution, we need to introduce the Hamilton-Jacobi-Bellman (HJB)

equation, which is the continuous-time counterpart of the discrete-time Bellman equation

(2.5). Next we will use continuous time notation with subscript t with size ∆t instead of

discrete time step k. The HJB equation takes the following form (derivation is skipped)

[10]:

−∂tV = min

(
lt +

1

2
uT
t Rut +

(
Ft + Btut

)T∇xV +
1

2
Tr
(
BtΣεB

T
t ∇xxV

)
, (2.11)

where lt = l(xt), Ft = F (xt),Σε = CCT, Bt = B(xt), ∇xV = ∂V (x,t+∆t)
∂x

, ∇xxV =

∂V (x,t+∆t)
∂2x

and ∂tV = lim∆t→t
V (xb,t+∆t)−V (xt)

∆t
. Given the fact the the control cost is

quadratic, we can take derivative of the right-hand-side of the above equation with respect

16

to ut and set it to zero, we obtain the optimal control

u∗t = R−1BT
t ∇xV. (2.12)

Plug the above control law back into the HJB equation yields

−∂tV = lt + (∇xV)TFt + (∇xV)TBtR
−1BT

t ∇xV +
1

2
Tr
(
BtΣεB

T
t ∇xxV

)
. (2.13)

Solution to the above equation is the optimal value function. However, solving such non-

linear, second-order partial differential equation (PDE) is difficult. The idea of using ex-

ponential transformation of the value function can reduce this PDE to a linear one. More

precisely, if we set

Ψt = exp(−Vt
λ

)

where λ is a scaling parameter. The above PDE becomes

λ

Ψt

∂tΨt = lt −
λ

Ψt

(∇xΨt)
TFt −

λ2

2Ψ2
t

(∇xΨt)
TBtR

−1BT
t ∇xΨt

+
λ

2Ψ2
t

Tr((∇xΨt)
TBtΣεB

T
t ∇xΨt)−

λ

2Ψt

Tr(∇xxΨtBtB
T
t),

(2.14)

which is still a nonlinear PDE. However, the nonlinear terms cancel out under the constraint

λR−1 = Σε [34]. And the PDE is reduced to

∂tΨt =
1

λ
ltΨt − (∇xΨt)

TFt −
1

2
Tr(∇xxΨtBtB

T
t), (2.15)

which is linear in differential operators. This PDE can be solved via the Feynman-Kac

formula [46]

Ψt =

∫
p(τt|xt) exp

(
− 1

λ
(
T∑
j=t

l(xj)∆t)
)
ΨTdτt, (2.16)

17

where τt is the state trajectory from time t to T . The corresponding control law can be

obtained as

u∗t = R−1BT
t ∇xV = R−1BT

t

∇xΨt

Ψt

. (2.17)

It is worth noting that the control can be computed in a sampling-based or gradient-based

fashion. More technical details will be covered in chapter 4.

18

2.2 Supervised Learning using Gaussian Processes

In this section, we first briefly review supervised learning and Bayesian analysis of standard

linear regression model. Next we introduce Gaussian processes (GPs), a more powerful

class of models for nonlinear regression problems. GP regression will be used to learn

dynamics models for RL and model predictive control (MPC) in the rest of the thesis.

2.2.1 Supervised Learning and Bayesian Linear Regression

Supervised learning is one of the three major paradigms in machine learning (the other

two are unsupervised learning and reinforcement learning). The task is to learn a function

or predictor from a set of labeled data in order to predict unseen data. Classification and

regression are two major tasks in supervised learning. As mentioned in the first chapter,

one of the major challenges in robot control is to build a dynamics model in order to predict

future states, given the current state and action. If we have a set of data observed from the

real system, this task can be viewed as a regression problem in statistical learning, and the

analysis can be performed in the context of Bayesian inference. We start by reviewing the

standard linear model for regression

h(x) = xTw, (2.18)

where x is a n-dimensional input variable. And we collect a set of observation

D = {(xi, yi), i = 1, ..., N}, where y = h(x) + ε, (2.19)

where y is a scalar target variable, ε is i.i.d. and normally distributed noise N (0, σ2
ε). The

goal of linear regression is to estimate the weight w from data, and it can be performed in

the context of Bayesian inference. This treatment is called the Bayesian linear regression

19

[14]. The zero-mean Gaussian noise assumption leads to Gaussian likelihood

p(y|X, w) = N (XTw, σ2
εI), (2.20)

where X is the design matrix and y is target vector collected from the data set D. We can

assume a prior distribution over the weight as

p(w) = N (0,Σw). (2.21)

The posterior distribution over the weight can be derived from the Bayes theorem as

p(w|X,y) =
p(y|X, w)p(w)

p(y|X)
. (2.22)

The numerator of the above expression has the form of a Gaussian distribution over w

because both prior and likelihood are Gaussians. More precisely

p(w|X,y) = N (A−1Xy, σ2
εA
−1), (2.23)

where A = XXT +σ2
εΣw. However, linear models have very limited expressiveness. In or-

der to derive a more complex and flexible model, instead of dealing with distributions over

weights, we can perform Bayesian inference in function spaces directly using Gaussian

processes.

2.2.2 Gaussian Processes for Regression

Gaussian process (GP) is used to define a distribution over functions. Formally it is defined

as

Definition 1. A Gaussian process is a collection of random variables, any finite subset of

which has a joint Gaussian distribution [47].

20

GP can be viewed as a generalization of the Gaussian distribution to an infinite-dimensional

function space. Similar to a Gaussian distribution, a Gaussian process is completely speci-

fied by a mean function and a covariance function, i.e.,

f(x) ∼ GP
(
m(x),k(x,x′)

)
,

where

m(x) = Ef
[
f(x)

]
, k(x,x′) = COVf

[
f(x), f(x′)

]
, (2.24)

where Ef and COVf denote the expectation and covariance operators with respect to the

random function f . The covariance function k(x,x′) is also called a kernel. Without any

prior knowledge of the model, we may assume a prior mean function m(·) = 0 and a

Squared Exponential (SE) covariance function plus a noise covariance

k(xi,xj) = σ2
f exp(−1

2
(xi − xj)

TW−1(xi − xj)), (2.25)

and COV(yi, yj) = k(xj,xj) + σ2
ωδij where δij is a Kronecker delta which is one iff

i = j and zero otherwise. W = diag([l21 ... l2n]). The hyperparameters θ of the kernel

consist of the signal variance σ2
f that controls the variations of the function values from its

mean, the noise variance σ2
ε that determines the noise magnitude we have in the data, and

the characteristic length-scales for input space l1, ..., ln that describe the smoothness of the

function. The kernel function is interpreted as a similarity measure of random variables. In

contrast to parametric approaches such as linear regression that rely on assumed structures

and finite number of parameters, the GP approach puts a prior on function directly, therefore

it is nonparametric.

Given the same data set D = (X,y), the joint distribution of the observed output and

21

-1 0 1 2 3 4

input, x

-2

-1

0

1

2

3

o
u

tp
u

t,
 y

std dev

posterior mean

sample

prior mean

Figure 2.1: An one-dimensional example of GP inference. We use a prior mean function
m(x) = 0.63 and covariance function (2.25). Black asterisks are noisy samples drawn from
f(x). Orange solid line is the GP predictive mean, and shaded area represents standard
deviation for each input value x. Note that the prediction mainly depends on the prior
when the input is far away from observations.

the output corresponding to a given test input x∗ can be written as

p

 y

f(x∗)

 = N
(

0,

 K(X,X) + σ2
εI k(X,x∗)

k(x∗,X) k(x∗,x∗)

),
where K is a matrix with entries Kij = k(x̃i, x̃j). The posterior distribution, or predic-

tive distribution, can be obtained by conditioning the joint distribution on the observed

state transitions. Assuming independent outputs (no correlation between each output di-

mension), the predictive distribution is p(f(x∗)|x∗,D,θ) = N (µ,Σ) where the mean and

variance are specified as

µ = k(x∗,X)(K(X,X) + σεI)−1∆X,

Σ = k(x∗,x∗)− k(x∗,X)(K(X,X) + σεI)−1k(X,x∗).

(2.26)

A toy example of GP regression is shown in fig (2.1).

22

Prediction under Uncertain Input

Our goal is to use GP to model the system dynamics for trajectory optimization, therefore

it is necessary to make multistep predictions using the learned GP dynamics model. In

this case, we need to perform GP regression iteratively when the test input is a probability

distribution. The uncertainty of the input comes from the prediction in the previous step.

Given a input distribution x∗ ∼ N (µ∗,Σ∗), the predictive distribution is

p(f(x∗)) =

∫
p(f(x∗)|x∗)p(x∗)dx∗. (2.27)

Generally, this predictive distribution cannot be computed analytically and the nonlinear

mapping of an input Gaussian distribution leads to a non-Gaussian predictive distribution.

However, the predictive distribution can be approximated by a Gaussian via moment match-

ing, i.e., computing the exact posterior mean and variance [48, 49, 50] . This approach will

be covered in the next chapter.

23

CHAPTER 3

PROBABILISTIC DIFFERENTIAL DYNAMIC PROGRAMMING

Motivated by the challenges of improving robustness to modeling error and solving opti-

mal control problems in continuous state and action spaces, in this chapter we introduce a

probabilistic trajectory optimization for model-based reinforcement learning.

3.1 Introduction

While model-free reinforcement learning (RL) methods have demonstrated promising re-

sults in learning control applications [51, 39, 52, 53], they typically require human expert

demonstrations and a relatively large number direct interactions with the physical system.

In contrast, model-based RL was developed to address the issue of sample inefficiency

by learning transition dynamics models explicitly from data, which can also help to pro-

vide better generalization [54, 55]. However, model-based methods suffer from two severe

issues: 1) classical value function approximation methods [56, 57] and modern global pol-

icy search methods [55] are computationally inefficient for moderate to high-dimensional

problems; and 2) model errors significantly degrade the performance. To address the afore-

mentioned issues, in this chapter we propose an RL framework that relies on Differential

Dynamic Programming (DDP) and Guassian Process (GP) regression.

Originally introduced in the 70’s [26], DDP solves nonlinear optimal control problems

via successive local approximations of dynamics and cost functions along nominal trajec-

tories. DDP iteratively generates locally optimal feedforward and feedback control policies

along with an optimal state trajectory. Compared with global optimal control approaches,

DDP shows superior computational efficiency and scalability to high-dimensional prob-

lems. In the last decade, variations of DDP have been proposed within the control, robotics

and machine learning communities. These variations include generalizations to stochastic

24

systems [27, 28], extensions to model predictive control [29] , and min-max and coop-

erative game theoretic formulations [30, 31].However, DDP relies on explicit dynamics

models and It is sensitive to model errors. To address these issues, various data-driven

approaches have been developed, such as minimax DDP using Receptive Field Weighted

Regression (RFWR) [30], and DDP using expert-demonstrated trajectories [58]. One issue

with these approaches is that the learned models are deterministic and do not explicitly take

into account any model uncertainty. As a consequence, the aforementioned methods have

either limited model expressiveness due to the fixed model structure [58], or require a large

amount of data to learn a good transition model [30, 59]. In this work we perform modeling

and prediction using Gaussian Processes (GPs).

Gaussian Processes (GPs) are used to define distributions over continuous functions

and offer a powerful way to perform Bayesian nonparametric estimation of functions, e.g.,

unknown transition dynamics. Over the last decade, there has been an increasing interest

in developing control/RL algorithms using GPs. For instance, the works by Rasmussen

and Kuss is one of the first GP-based RL algorithm [60]; Nguyen-Tuong and Peters ex-

plored inverse dynamics learning and tracking control via local GPs and semiparametric

GPs [61, 62, 63]; Deisenroth et al. proposed model-based policy search using GPs [64][50];

Hemakumara et al. used GPs for unmanned aerial vehicle controls [65] and Chowdhary et

al. incorporated GPs for adaptive controls [66]. Dallaire et al. use GPs to learn the transi-

tion, observation and reward models in POMDPs[67]. These works have demonstrated the

remarkable applicability of GP-based methods in robotics and autonomous learning.

In this work we integrate GPs into trajectory optimization and propose a probabilistic

variant of DDP, called Probabilistic Differential Dynamic Programming (PDDP). The re-

sulting algorithm performs probabilistic trajectory optimization that combines the benefits

of DDP and GP inference. The major characteristics of PDDP are summarized as follows:

• It features data efficiency that is comparable to the state-of-the-art method.

• Computationally, it is significantly faster than other GP-based policy search methods.

25

• Convergence is guaranteed under certain conditions. Our theoretical analysis gener-

alizes previous work.

• Prior model knowledge and risk-sensitive criterion can be incorporated into our pro-

posed framework.

PDDP is related to a number of recently developed model-based RL approaches that

use GPs to represent dynamics models. In particular, the PILCO framework developed by

Deisenroth et al. [50] has achieved unprecedented performances in terms of data-efficiency.

PILCO requires an external optimizer (e.g.,CG or BFGS) for solving non-convex optimiza-

tion to obtain optimal policy parameters. In contrast, PDDP does not require a policy pa-

rameterization nor an extra optimizer1. Compared with other DDP-related approaches for

stochastic [27, 28], unknown [59, 68] or partially known dynamics [30], PDDP explicitly

takes into account model uncertainty and features the attractive characteristics of GP-based

methods, i.e., data efficiency. In addition, we incorporate cost uncertainty into the opti-

mization criterion for risk-sensitive learning. We will further discuss the similarities and

differences between our method and the aforementioned methods in section 3.6.2.

3.2 Preliminaries

We consider a dynamical system described by the following differential equation

dx = f(x,u)dt+ Cdω, x(t0) = x0, (3.1)

where x ∈ Rn is the state, u ∈ Rm is the control and ω ∈ Rp is standard Brownian motion

noise. f : Rn×Rm → Rn and C ∈ Rn×p are the transition dynamics function and diffusion

matrix. The finite-horizon control problem is defined as finding a sequence of state and a

1We use an off-the-shelf optimizer for kernel parameter optimization but not policy optimization.

26

control policy π that minimize

J(x(t0)) = Ex

[
h
(
x(T)

)
+

∫ T

t0

L
(
x(t), π(x(t), t)

)
dt

]
, (3.2)

where h : Rn → R is the terminal cost function, L : Rn × Rm → R is the instantaneous

cost rate. The control policy u(t) = π(x(t), t) is a function that maps states and time

to actions. The cost J(x(t0)) is defined as the expectation of the total cost accumulated

from t0 to T . Ex denotes the expectation operator with respect to x. We assume that

the states are fully observable. For the rest of our analysis, we discretize the time using

the Euler scheme as k = 1, 2, ..., H with time step ∆t = T−t0
H−1

. In order to simplify

notation, we use subscripts to denote time steps for time-varying variables, e.g., xk = x(tk).

The discretized system dynamics can be written as xk+1 = xk + ∆xk + C
√

∆tξk where

∆xk = ∆tf(xk,uk) and ξk is i.i.d N (0, I). We also define f(xk,uk) = ∆tf(xk,uk)

for simplicity. Finding the globally optimal control policy is computationally intractable

except for linear or low-dimensional systems. In this work we seek locally optimal policy

which is an approximation of the globally optimal policy in the neighborhood of a nominal

trajectory.

Base on the definition of Gaussian process (GP) in section 2.2 of chapter 2, we define

the belief as follow

Definition 2. A belief v of a dynamical system is defined as the probability distribution of

the state x given a set of sampled control inputs and state observations.

In this work, we assume the state is observable, and that a belief can be represented by

a Gaussian distribution over the state of a dynamical system, i.e., p(x) = N (µ,Σ). The

belief can be obtained via approximate inference in probabilistic models given data. In the

next section, we discuss predicting state distributions over a trajectory using GP inference.

27

3.3 Trajectory Prediction via GP Inference

One of the major assumptions of deterministic model-based RL methods is that the optimal

policy obtained using the learned model is close to the nominal optimal policy which could

be obtained if the true model is available. Due to this assumption, the performance of

most deterministic model-based RL methods degrades when the learned model is far from

the actual dynamics. Probabilistic models on the other hand can explicitly incorporate

uncertainty when predicting the system behaviors and reduce the effect of model errors.

In our approach, we use a probabilistic model learning and approximate inference scheme

based on GPs. We have introduced GP in section 2.2 of chapter 2. Now we discuss how to

compute predictive distributions iteratively over a trajectory using GPs.

Assume that we are given the initial state xk and we have computed the predictive

distribution of state xk+1, which is Gaussian distributed p(xk+1) = N (µk+1,Σk+1) where

the state mean and variance are

µk+1 = xk + µfk , Σk+1 = Σfk .

When performing two-step prediction, the input state-control pair x̃k+1 becomes uncertain.

Here we define the input distribution over state-control pair at k as p(x̃k) = p(xk,uk) =

N (µ̃k, Σ̃k). Thus the distribution over state transition becomes

p(f(x̃k)) =

∫
p(f(x̃k)|x̃k)p(x̃k)dx̃k.

Generally, this predictive distribution cannot be computed analytically and the nonlinear

mapping of an input Gaussian distribution leads to a non-Gaussian predictive distribution.

However, the predictive distribution can be approximated by a Gaussian via computing

the exact posterior mean and variance p(f(x̃k)) = N (µfk ,Σfk) [48, 49]. Thus the state

28

distribution at k + 1 is also a Gaussian N (µk+1,Σk+1) [50]

µk+1 = µk + µfk ,

Σk+1 = Σk + Σfk + Σfk,xk + Σxk,fk,,

(3.3)

where Σfk,xk is the cross covariance between state and the corresponding state transition.

The computation of µfk ,Σfk ,Σfk,xk will be discussed in the next section.

3.3.1 Approximate Inference via Moment Matching

Given an input joint distribution N (µ̃k, Σ̃k), we employ the moment matching approach

[48, 49, 50] to compute the predictive distribution. This technique is also known as As-

sumed Density Filtering (ADF) that minimizes the Kullback−Leibler divergence between

the true posterior p(f(x̃k)|µ̃k, Σ̃k) and the Gaussian approximation p(f(x̃k)) ∼ N (µfk ,Σfk)

with respect to the natural parameters of the Gaussian p(f(x̃k)), i.e.,

min
ζ

KL
(

p(f(x̃k)|µ̃k, Σ̃k) ‖ p(f(x̃k))
)

with natural parameters ζ = (Σ−1
fk
µfk ,

1
2
Σ−1
fk

). Next we compute the moments µfk ,Σfk in

closed-form. Applying the law of iterated expectation, the predictive mean µfk is evaluated

as

µfk = Ef ,x̃k

[
f(x̃k)

∣∣∣µ̃k, Σ̃k

]
= Ex̃k

[
Ef

[
f(x̃k)

∣∣x̃k]∣∣∣µ̃k, Σ̃k

]
=

∫
Ef

[
f(x̃k)

∣∣x̃k]N (µ̃k, Σ̃k

)
dx̃k.

To make of analysis concise we omit the conditioning on the training pairs X̃,∆X and

hyperparameters θ. The predictive distributions are explicitly conditioned on the input

arguments, i.e., deterministic x̃k or uncertain µ̃k, Σ̃k. Next we compute the predictive

29

covariance matrix

Σfk =

VARf ,x̃k [f1(x̃k)|µ̃k, Σ̃k] ... COVf ,x̃k [f1(x̃k), fn(x̃k)|µ̃k, Σ̃k]

...

COVf ,x̃k [fn(x̃k), f1(x̃k)|µ̃k, Σ̃k] ... VARf ,x̃k [fn(x̃k)|µ̃k, Σ̃k]

 ,

where the variance term on the diagonal for output dimension i is obtained using the law

of total variance

VARf ,x̃k [fi(x̃k)|µ̃k,Σ̃k] = Ex̃k

[
VARf

[
fi(x̃k)

∣∣x̃k]∣∣∣µ̃k, Σ̃k

]
+ Ex̃k

[
Ef

[
fi(x̃k)

∣∣x̃k]2∣∣∣µ̃k, Σ̃k

]
− µ2

fik
.

and the off-diagonal covariance term for output dimension i, j is given by the expression

COVf ,x̃k

[
fi(x̃k), fj(x̃k)

∣∣µ̃k, Σ̃k

]
=

Ex̃k

[
Ef [fi(x̃k)

∣∣x̃k]Ef [fj(x̃k)
∣∣x̃k]∣∣∣µ̃k, Σ̃k

]
− µfikµfjk .

The input-output cross-covariance is formulated as

Σfk,x̃k = COVf ,x̃k

[
x̃k, f(x̃k)

∣∣µ̃k, Σ̃k

]
(3.4)

= Ex̃k

[
x̃kEf

[
f(x̃k)

∣∣x̃k]T∣∣∣µ̃k, Σ̃k

]
− µ̃kµT

fk
.

Σfk,xk = COVf ,x̃k [xk, f(x̃k)|µ̃k, Σ̃k] can be easily obtained as a sub-matrix of the above

matrix. See [69, 50] for detailed derivations of the moment matching approach. This tech-

nique has been used to perform prediction under uncertain inputs in GP-based estimation

[70] and control [44] tasks.

Despite providing the analytic expressions of the moments, the moment matching ap-

proach does not provide an explicit error between our Gaussian approximation and the true

posterior distribution. An explicit error bound may be achieved by using numerical approx-

30

imation methods. For instance, [71] uses numerical quadrature, and the error bound grows

exponentially with the predictive horizon. However, such methods are known to suffer

from the curse of dimensionality. Hence, the analytic moment based approach presented

above is more suitable for the trajectory optimization framework developed in this work.

3.3.2 Hyperparameter Optimization

The hyper-parameters θ are learned by maximizing the log-marginal likelihood of the train-

ing outputs given the inputs

θ∗ = argmax
θ

{
log

(
p
(

∆X|X̃,θ
))}

. (3.5)

where

log

(
p
(

dX|X̃,Θ
))

=− 1

2
dXT

(
K(X̃, X̃) + σ2

nI
)−1

dX

− 1

2
log
∣∣∣K(X̃, X̃) + σ2

nI
∣∣∣− H + 1

2
log 2π.

This optimization problem is solved using off-the-shelf optimizers [47].

3.3.3 Incorporating Prior Model Knowledge

As a nonparametric approach, GP features flexible representation of the transition dynam-

ics. However, model-based RL methods rely on training data collected from trajectory

rollouts to make predictions. Therefore the learned models do not generalize very well to

unexplored regions of the state-action spaces. In this section, we consider the case when

a parametric structure of the dynamics model, or basis function is known, but the parame-

ters are unknown. Incorporating explicit prior for GP regression has been introduced and

discussed in [72, 47]. Over the last decade, studies show semiparametric models outper-

form purely parametric or nonparametric models for inverse and forward dynamics model

identification of robotic systems [62, 73, 74]. However, these related work considered a

31

special case when the dynamics are linear functions of the model parameters. In this work

we consider a general case when the dynamics can be nonlinear in the parameters. First

we define the basis function φ(x̃k,Θ) therefore the dynamics model can be described in a

semiparametric form

xk+1 = xk + φ(x̃k,Θ)︸ ︷︷ ︸
parametric

+ fe(x̃k)︸ ︷︷ ︸
nonparametric

(3.6)

where fe(x̃k) = f(x̃k)−φ(x̃k,Θ) is the GP error (unmodeled) dynamics. This term repre-

sents the discrepancy between the parametric model and data sampled from the true model.

We have discussed GP model learning and inference in chapter 2 and section 3.3.1,3.3.2 in

this chapter. Given a basis function and training samples, we will learn the unknown model

parameters by minimizing the loss function l(Θ) = 1
2

∑N
j=1

(
∆xj − φ(x̃j,Θ)

)2

which is

the accumulated error between the parametric model prediction and corresponding training

data.

Parameter estimation via cross-entropy optimization

The Cross-Entropy (CE) approach [75] is generally used for estimating rare event prob-

abilities via importance sampling. The key idea is to treat the optimization problem as

a estimation of rare-event probabilities, which correspond to finding parameters Θ that

happens to be close to the optimal parameters Θ∗ = arg min l(Θ). In contrast to gradient-

based optimization methods, CE is a gradient-free method based on random sampling. The

CE method performs optimization with the following basic steps: random sampling – draw

K samples of Θ from a Gaussian distribution. Loss evaluation – compute loss l(Θi) for

each sample i. Sort – sort Θi by loss function values in ascending order. Update – Use

Kl samples correspond to low loss (in the sorted list) to update mean and variance of the

distribution. Then go back to draw samples from this updated distribution. The algorithm

terminates when the variance of the distribution becomes very small. The returned solution

is the mean of final sampling distribution. The CE algorithm is summarized in algorithm 1.

32

Algorithm 1 Cross-Entropy method for parameter learning

1: Initialization: Choose a multi-variate Gaussian distribution N (Θsamp,Σsamp)
2: Sampling: Draw K samples of Θ from N (Θsamp,Σsamp)
3: Loss: Evaluate loss l(Θi) for each sample i
4: Sort: Sort Θ1,...,K w.r.t. l(Θ1,...,K) in ascending order
5: Update: Re-compute mean and variance of the sampling distribution Θsamp =∑Kl

i=1
1
Kl

Θi and Σsamp =
∑Kl

i=1
1
Kl

(
Θi −Θsamp

)(
Θi −Θsamp

)T
6: Iterate: Return to step 2 until convergence
7: Return: Optimal estimate of parameter Θ∗ = Θsamp

Approximate inference via linearization

In order to compute the predictive distribution over xk+1 under uncertain input p(x̃k) =

(µ̃k, Σ̃k), we perform the first-order Taylor expansion of the expectation E[φ(x̃k,Θ)|x̃k]

around a reference point. Here we consider the mean of state-action pair µ̃k

Ex̃k [φ(x̃k,Θ)|x̃k] = Ex̃k [φ(µ̃k,Θ)|µ̃k]

+
∂Ex̃k [φ(x̃k,Θ)|x̃k]

∂x̃k

∣∣∣∣T
x̃k=µ̃k︸ ︷︷ ︸

Φk

(
x̃k − µ̃k

)
.

The predictive mean is obtained by evaluating the function at input mean µ̃k. More pre-

cisely

µφk ≈ φ(µ̃k,Θ). (3.7)

33

Based on the linearized model, the predictive covariance is evaluated as

Σφk = VARx̃k

[
φ(x̃k,Θ)

∣∣µ̃k, Σ̃k

]
≈ VARx̃k

[
Φkx̃k

∣∣µ̃k, Σ̃k

]
+ Σw

= Ex̃k

[
(Φkx̃k −Φkµ̃k)(Φkx̃k −Φkµ̃k)

T
]

+ Σw

= ΦkEx̃k

[
(x̃k − µ̃k)(x̃k − µ̃k)T

]
ΦT
k + Σw

= ΦkΣ̃kΦ
T
k + Σw,

(3.8)

where Σw is a diagonal matrix with entries being the noise variances σ2
w. The cross-

covariance between xk and φ(x̃k,Θ) is computed as

Σx̃k,φk = COVx̃k

[
x̃k,φ(x̃k,Θ)

∣∣µ̃k, Σ̃k

]
≈ COVx̃k

[
x̃k,Φkx̃k

∣∣µ̃k, Σ̃k

]
= Ex̃k

[
(x̃k − µ̃k)(Φkx̃k −Φkµ̃k)

T
]

= Ex̃k

[
(x̃k − µ̃k)(x̃k − µ̃k)T

]
ΦT
k

= Σ̃kΦ
T
k ,

(3.9)

The cross-covariance Σxk,φk = COVx̃k

[
xk,Φkx̃k

∣∣µ̃k, Σ̃k

]
is obtained as a sub-matrix.

The results in (3.7),(3.8) and (3.9) are used to perform long-term prediction, i.e.,

µk+1 = µk + µφk = µk + φ(µ̃k,Θ),

Σk+1 = Σk + Σφk + Σxk,φk + Σφk,xk

= Σk + Σw + ΦkΣ̃kΦ
T
k + ΦkΣ̃k + Σ̃kΦ

T
k .

(3.10)

Different from the exact moment matching used for GP inference, the approach presented

here is an approximation of the moments. In general, exact moments can not be computed

analytically because the basis function φ(x̃k,Θ) from a physical model is unlikely to have

the same form as in GP posterior mean or variance. The partially known parametric model

34

is very useful when predicting in the region with sparse (or no) training samples. However,

the analysis above does not take into account the estimation error of the parametric model,

therefore it could still give problematic long-term predictions.

Semiparametric model

Now we combine the benefits of both parametric and nonparametric models. The semi-

parametric model uses the parametric part to generalize to regions in state-action space

that are far from the training data, where the nonparametric part is used to model the error

dynamics, i.e., difference between the true dynamics and parametric part. For instance the

posterior GP mean becomes

Ef

[
f(x̃k)

∣∣x̃k] =φ(x̃k,Θ) + k(x̃k, X̃)(K(X̃, X̃)

+ σwI)−1
(

∆X−Φ(X̃,Θ)
)
,

(3.11)

where ∆X − Φ(X̃,Θ) = {∆xs1 − φ(x̃s1,Θ), ...,∆xsN − φ(x̃sN ,Θ)} is a collection of

sampled state transition errors. It can be seen that if the query state-action pair x̃k is

very far away from the training samples X̃, i.e., x̃k − x̃si → ∞, i = 1, .., N , the ker-

nel k(xk,x
s
i) = σ2

f exp(−1
2
(xk − xsi)

TW(xk − xsi)) → 0. In this case the nonparametric

part almost vanish and the parametric part dominates in making predictions. Therefore the

parametric model is essential in generalizing the model to regions in state-action space that

are not covered by the training samples. This feature enables accurate prediction under

insufficient exploration.

Given a Gaussian predictive distribution over the error dynamics p
(
fe(x̃k)

)
= N

(
µfk ,Σfk

)
,

and based on the approximate inference methods introduced in chapter 2 and sections

3.3.1,3.3.3 and 3.3.3 in this chapter, the semiparametric dynamics model can be written

35

as

µk+1 = µk + µφk + µfk

Σk+1 = Σk + Σφk + Σfk + Σw

+ Σfk,xk + Σxk,fk + Σφk,xk + Σxk,φk .

(3.12)

where the terms µfk ,Σfk in (3.12) denote predictive distribution over the transition error

dynamics. Note that (3.12) is a generalized version of (4.27). If φ(·, ·) outputs zeros, (3.12)

becomes (4.27). The above semiparametric formulation relies on partial knowledge of the

dynamics model, which is represented by explicit basis function of the state, actions and

unknown parameters. In practice this prior knowledge may be available for mechanical

systems. Studies in the last five years have shown that semiparametric models perform

substantially better than purely parametric and nonparametric models [62, 73, 74]. This

advantage is more significant in real world experiments than in simulations [62, 73]. This is

because the GP error dynamics model also absorbs the modeling error of basis functions in

real physical systems. In contrast, when performing experiments in simulations, the basis

functions are assumed to be good representations of the dynamics and used to generate

sample data. Overall, the proposed model learning and inference scheme takes into account

uncertainty of unknown or partially known dynamics which will be used for controller

design in the next section.

3.4 Probabilistic Trajectory Optimization

Now we introduce Probabilistic Differential Dynamic Programming (PDDP), a trajectory

optimizer that employs a combination of probabilistic inference and Differential Dynamic

Programming (DDP).

36

3.4.1 Belief Dynamics and Local Approximation

In DDP-related algorithms, a local model along a nominal trajectory (x̄k, ūk), is created

based on: i) a first or second-order approximation of the dynamics model; ii) a second-

order approximation of the value function. In our proposed PDDP framework, we will

create a local model along a trajectory of state distribution-control pair (p(x̄k), ūk). In

order to incorporate uncertainty explicitly in the local model, we use the Gaussian belief

vk = [µk vec(Σk)]
T over state xk where vec(Σk) is the vectorization of Σk. Based on

eq.(4.27) or (3.12), the belief dynamics model can be written as

vk+1 = F(vk,uk). (3.13)

Now we create a local model of the belief dynamics. Firstly we define the control and state

variations δvk = vk − v̄k and δuk = uk − ūk. Next we perform Taylor expansion of the

belief dynamics around (vk,uk)

δvk+1 = F bkδvk + Fuk δuk +O(‖δvk‖2 + ‖δuk‖2), (3.14)

In this work we compute the first-order expansion in (3.14) but keep the higher order terms

O(·) for theoretical analysis. The Jacobian matrices F bk and Fuk are specified as

F bk =

 ∂µk+1

∂µk

∂µk+1

∂Σk

∂Σk+1

∂µk

Σk+1

∂Σk

 , Fuk =

 ∂µk+1

∂uk

∂Σk+1

∂uk

 . (3.15)

The partial derivatives ∂µk+1

∂µk
,
∂µk+1

∂Σk
,∂Σk+1

∂µk
,∂Σk+1

∂Σk
,
∂µk+1

∂uk
, ∂Σk+1

∂uk
are computed analytically.

Their forms are omitted due to the space limit. For numerical implementation, the dimen-

sion of the belief can be reduced by eliminating the redundancy of Σk and the principle

square root of Σk may be used for numerical robustness.

37

3.4.2 Optimization Criterion

Since the state is a random variable, we need to compute the expected costs and we define

them as functions of the belief

L̃(vk,uk) = Ex[L(xk,uk)], h̃(vk) = Ex[h(xk)].

For instance, in many optimal control approaches, a quadratic cost function is used

L(xk,uk) = (xk − xgoalk)TQ(xk − xgoalk) + uT
kRuk, (3.16)

where xgoalk is the target state. Given the distribution p(xk) = N (µk,Σk), the expectation

of original quadratic cost function is formulated as the belief-control cost

L̃(vk,uk) = Ex

[
L(xk,uk)

]
= L(µk,uk) + tr(ΣkQ) (3.17)

The cost expectation (3.17) scales linearly with the state covariance, therefore it penalize

both distance between the expected state and the target state, and the uncertainty of the

predictive state. In this work, we also consider a risk-sensitive cost function [76]

L̃(vk,uk, ε) =

1
ε

logEx

[
exp

(
εL(xk,uk)

)]
, ε 6= 0

Ex

[
L(xk,uk)

]
, ε = 0

(3.18)

where ε is the risk sensitivity parameter. Taking the second-order Taylor expansion of the

above cost function about E[L(xk,uk)] yields [76]

L̃(vk,uk, ε) ≈ Ex

[
L(xk,uk)

]
+
ε

2
VARx

[
L(xk,uk)

]
, (3.19)

38

where the variance of cost is obtained as

VARx

[
L(xk,uk)

]
= tr(2QΣkQΣk)

+ 4(µk − xgoalk)TQΣkQ(µk − xgoalk).

(3.20)

Partial derivatives of the cost w.r.t. belief and control ∂
∂vk
L̃(vk,uk) = { ∂

∂µk
L̃(vk,uk),

∂

∂Σk
L̃(vk,uk)}

and ∂
∂uk
L̃(vk,uk) can be computed analytically. Their expressions are omitted due to the

space limit. The cost function (3.19) captures not only the expected cost, but also the pre-

dictive uncertainty of the cost. It can be viewed a generalization of the cost expectation

used in RL and stochastic control. More precisely, when ε = 0 the cost becomes risk-

neutral, which is equal to the expected cost (3.17). ε > 0 corresponds to risk-averse and

ε < 0 corresponds to risk-seeking criterion. In the risk-averse case, the trajectory opti-

mizer explicitly avoid regions with high uncertainty. In the risk-seeking case, trajectories

with higher-variance are preferred. When no prior knowledge of the dynamics model is

available, the risk-averse strategy is a good fit for the PDDP frameworks. Since it relies

on local approximations of the dynamics and data sampled along one or multiple trajec-

tories, the learned model is accurate only within the neighborhood of these trajectories.

The risk-averse policies avoids wide cost distribution explicitly, therefore extensive explo-

rations in highly uncertainty regions are avoided, and the regions close to the sampled data

are preferred. This criterion is especially beneficial for the case when very little samples

are available. For the rest of this chapter, the risk-sensitive learning corresponds to the

risk-averse case when ε > 0.

For a general non-quadratic cost function we approximate it as a quadratic function

39

along the nominal belief and control trajectory (b, ū), i.e.,

L̃(vk,uk) = L̃0
k + (L̃bk)Tδvk + (L̃uk)Tδuk+ (3.21)

1

2

 δvk

δuk

T L̃bbk L̃buk

L̃ubk L̃uuk

 δvk

δuk

+O(‖δvk‖2, ‖δuk‖2),

where superscripts denote partial derivatives, e.g., L̃bk = ∇bL̃k(vk,uk) and L̃0
k = L̃(bk, ūk).

We will use this superscript rule for all cost-related terms.

0
5

10

5

C
o

s
t

20

Expected cost

State variance State mean

30

0

0 -5

(a)

0

5

200

5

C
o

s
t

400

Variance of cost

State variance State mean

600

0

0 -5

(b)

0

5

5

50

C
o

s
t

Risk-averse cost

State variance State mean

100

0

0 -5

(c)

-40
5

-20

5

0

C
o

s
t

Risk-seeking cost

20

State variance State mean

40

0

0 -5

(d)

Figure 3.1: One-dimensional examples of expectation of cost (a), variance of cost (b), risk-
averse (c) and risk-seeking cost fucntions (d). The target state is zero.

40

3.4.3 Control Policy and Value Function Approximation

According to the Dynamic Programming principle [26], the Bellman equation in discrete-

time is specified as follows

V (vk, k) = min
uk

L̃(vk,uk) + V
(
F(vk,uk), k + 1

)︸ ︷︷ ︸
Q(vk,uk)

, (3.22)

where V (vk, k) is the value function for belief v at time step k. At the terminal time step

V (vH , H) = h̃(v(H)). Given the belief dynamics (3.14) and cost (3.21), our goal is to

obtain a quadratic approximation of the value function along a nominal belief trajectory bk

V (vk, k) = V 0
k + (V b

k)Tδvk +
1

2
δvT

k V
bb
k δvk +O(‖δvk‖3). (3.23)

We can do so by expanding the Q-function defined in (3.22) along (bk, ūk)

Qk(bk + δvk, ūk + δuk) = Q0
k + (Qb

k)
Tδvk + (Qu

k)
Tδuk+

1

2

 δvk

δuk

T Qbb

k Qbu
k

Qub
k Quu

k

 δvk

δuk

+O

(∣∣∣∣∣∣∣∣
 δvk

δuk

 ∣∣∣∣∣∣∣∣2
)
,

(3.24)

where

Qb
k = Lbk + (F bk)TV b

k+1, Qu
k = Luk + (Fuk)TV b

k+1, (3.25)

Qbb
k = Lbbk + (F bk)TV bb

k+1F bk, Qub
k = Lubk + (Fuk)TV bb

k+1F bk,

Quu
k = Luuk + (Fuk)TV bb

k+1Fuk .

41

In order to find the optimal control policy, we compute the local variations in control δûk

that minimize the quadratic approximation of the Q-function in (3.24)

δûk = arg min
δuk

[
Qk(bk + δvk, ūk + δuk)

]
= −(Quu

k)−1Qu
k︸ ︷︷ ︸

Ik

−(Quu
k)−1Qub

k︸ ︷︷ ︸
Lk

δvk
(3.26)

The optimal control can be found as ûk = ūk + δûk. The control policy is a linear function

of the belief vk, therefore the controller is deterministic. To ensure convergence we apply

line search by adding a parameter 0 < ε ≤ 1 to the feedforward gain. More precisely

ûk = ūk + εIk + Lkδvk. (3.27)

We start by setting ε = 1 and reduce it if the trajectory cost under the new control is

higher than the cost of the nominal trajectory. If the new cost is lower than the nominal

cost we accept the control ûk and reset ε = 1. We will show the global convergence of

the optimal control and value function in section 3.5. Plugging the optimal control (3.27)

into the approximated Q-function (3.24) results in the following backward propagation of

parameters for value function (3.23)

V 0
k = L0

k + V 0
k+1 − (

1

2
ε2 − ε)(Qu

k)
TIk

V b
k = Qb

k +Qbu
k Ik, V bb

k = Qbb
k +Qbu

k Lk. (3.28)

After the backward pass, we apply the policy (3.27) to generate a new control and belief

trajectory by propagating the belief dynamics 4.28 forward in time. The belief propagation

is performed using approximate inference methods, i.e., exact moment matching (3.3.1)

and linear approximation (3.3.3).

42

3.4.4 Control constraint

Control constrains can be taken into account in different fashions, it has been shown that

using naive clamping and squashing functions performs unfavorably compared to directly

incorporating the constraints while minimizing the Q-function [77]. In this work we take

into account the control constraints by solving a quadratic programming (QP) problem

subject to a box constraint

min
δuk

Qk(vk + δvk,uk + δuk)

sub. to umin ≤ uk + δuk ≤ umax

(3.29)

where umin and umax correspond to the lower and upper bounds of the controller. The QP

problem (3.29) can be solved efficiently due to the fact that at each time step the scale of

the QP problem is relatively small. And warm-start can be used to further speed up the

optimization in the backward pass. Solving (3.29) directly is not feasible since δv is not

known in the backward sweep. The optimum consists of feedforward and feedback parts,

i.e., Ik +Lkδvk = arg minδuk
[
Qk(vk +δvk,uk +δuk)

]
, here we adopt the strategy in [77]

using the Projected-Newton algorithm [78]. The feedforward gain is computed by solving

the QP problem

Ik = arg min
δuk

[
δuT

kQ
uu
k δuk +Qb

kδuk

]
sub. to umin ≤ uk + δuk ≤ umax

(3.30)

The algorithm gives the decomposition of Quuk =

 Quuk,ff Quuk,fc

Quuk,cf Quuk,cc

 where the indices f, c

correspond to clamped (when uk = umin or umax) or free (umin < uk < umax) parts,

respectively. The feedback gain associated to the free part is obtained by Lk = −Quu
k,ffQ

ub
k .

The rows of Lk corresponding to clamped controls are set to be zero. An example of the

constrained and unconstrained controllers for the quadrotor tasks is shown in fig.(3.8).

43

3.4.5 Summary of algorithm

The PDDP framework for RL can be summarized in Algorithm 2. From a high-level view,

the main loop of this algorithm consists of 3 basic components. 1) Model learning (Step

3): Learning a probabilistic GP dynamics model using data sampled from interactions with

physical systems. If prior knowledge (basis function) of the system dynamics is given,

model parameters may be learned as discussed in section 3.3.3; 2) Probabilistic trajectory

optimization (Step 5-7): this iterative scheme has 3 steps at each iteration. First (step 5),

we compute the linear approximation (3.14) of the belief dynamics(4.28) and quadratic ap-

proximation of the cost (3.21) along a nominal trajectory. Second (step 6), we compute a

local optimal control policy (3.27) by backward-propagation of the value function (3.28).

Control constraints can be incorporated in the backward propagation, see section 3.4.4. In

addition we employ a line search strategy to ensure convergence, see section 3.4.3 for de-

tails. Third (step 7), we update and apply the control to obtain a new belief trajectory using

approximate inference methods introduced in sections 3.3.1,3.3.3. This trajectory is used

as the nominal for the next iteration. Regarding the termination condition (Step 8), we con-

sider 3 stopping criteria: i) maximum iteration number is reached, ii) policy improvement

is small enough, and iii) predictive variance exceeds a threshold. The optimization tech-

niques stop the iteration process when at least one of the corresponding termination criteria

is satisfied. 3) Interaction (Step 10), in order to collect new state and control samples we

apply the optimized trajectory and control policy to the physical systems and generate a tra-

jectory rollout. Additional trajectories can be generated using variations of the optimized

trajectory.

3.5 Theoretical Analysis

In this section, we provide theoretical analysis and show that PDDP is globally convergent.

The convergence property of the classical DDP has been discussed in [79] for scalar sys-

44

Algorithm 2 : Probabilistic Differential Dynamic Programming for reinforcement learning
1: Initialization: Apply random or pre-specified control inputs to the physical system

(4.20). Collect data.
2: repeat . Main reinforcement learning loop
3: Model learning: Learn GP hyper-parameters θ by evidence maximization (3.5)

given sample data. Optimize dynamics model parameters if necessary (see section
3.3.3).

4: repeat . Probabilistic trajectory optimization loop
5: Local approximation: Obtain linear approximation of the belief dynamics

(3.14) and quadratic approximation of the cost (3.21) along a nominal trajectory
(v̄k, ūk). See section 3.4.1.

6: Backward sweep: Compute the approximation of the value function (3.28)
and obtain optimal policy for control correction δûk (3.26). See section 3.4.3.

7: Forward sweep: Update control ūk and perform approximate inference to ob-
tain a new nominal trajectory (v̄k, ūk). See sections 3.3.1,3.3.3.

8: until Termination condition is satisfied
9: return Optimal trajectory (v̄k, ūk) and control policy

10: Interaction: Apply the optimized control policy Lk to the system (4.20) along the
optimized trajectory ūk and record data. Additional rollouts can be generated using
variations of the learned controller.

11: until Task learned
12: Return: Optimal trajectory and control policy

tems. However, the analysis is based on the a-priori assumption that the algorithm would

converge. [80] addresses the global convergence of DDP. But it only applies when the run-

ning cost L(·, ·) = 0. Here we provide a more general proof that guarantees convergence.

First, we define the following vectors

∆U = [δuT
1 , ..., δu

T
H−1]T, U = [uT

1 , ...,u
T
H−1]T ∈ Rm×(H−1). (3.31)

In our analysis we make the following assumptions

Assumption 1. Quu
k is positive definite for k = 1, .., H − 1.

Assumption 2. The initial state x1 is known.

Remark 1. The condition in assumption 1 can be easily ensured by applying the Levenberg-

Marquardt-related trick as in [27]. The details are omitted due to page limitation. Assump-

tion 2 is common for most episodic RL methods.

45

Lemma 1. For the total cost J defined in (3.2), belief dynamics defined in section 3.4.1

and optimization criterion defined in section 3.4.2, the following is true

∇ukJ = (Fuk)Tηk+1 + Luk (3.32)

for k = 1, ..., H − 1, where ηk = (F bk)Tηk+1 + Lbk and ηH = h̃b.

Proof. For k = 1, ..., H − 1 we have

∇ukJ = ∇ukEx

[H−1∑
τ=k

L(xτ ,uτ) + h(xH)
]

= ∇uk

[H−1∑
τ=k

L̃(vτ ,uτ) + h̃(vH)
]

=
∂L̃(vk,uk)

∂uk
+
∂L̃(vk+1,uk+1)

∂uk
+ · · ·+ ∂L̃(vH−1,uH−1)

∂uk
+
∂h̃(vH)

∂uk

= Luk + ((Lbk+1)TFuk)T + ((Lbk+2)TF bk+1Fuk)T + · · ·

+ ((LbH−1)TF bH−2 · · · F bk+1Fuk)T + ((h̃b)TF bH−1 · · · F bk+1Fuk)T

= Luk + (Fuk)T
(
Lbk+1 + (F bk+1)T(Lbk+2 + · · ·+ h̃bF bH−1 · · · F bk+2︸ ︷︷ ︸

ηk+2

)

︸ ︷︷ ︸
ηk+1

)
(3.33)

As a result, (3.32) is true.

Next, we show that the control updates found in (3.27) is a descent direction.

Lemma 2. For the total cost J defined in (3.2) and control updates ∆U defined in (3.27,

3.31), the following is true

(∇UJ)T∆U = −ε
H−1∑
k=1

λk +O(ε2) (3.34)

where λk = (Qu
k)

T(Quu
k)−1Qu

k .

46

Proof. In order to show (3.34), it is sufficient to prove

H−1∑
τ=k

(∇uτJ)Tδuτ = −ε
H−1∑
τ=k

λτ + (V b
k − ηk)Tδvk +O(ε2) (3.35)

for τ = 1, ..., H − 1. It is straightforward to see that when k = 1 we have δv1 = 0. And

the above expression is equivalent to (3.34). From now on, we focus on (3.35). First we

consider the case when τ = H − 1. Applying the results from Lemma 1, the policy (3.27)

and expressions from (3.25) (3.28) we have

(∇uH−1
J)TδuH−1 =

(
(FuH−1)TηH + LuH−1

)T
(εIH−1 + LH−1δvH−1)

= (Qu
H−1)T(εIH−1 + LH−1δvH−1)

= −ε(Qu
H−1)T(Quu

H−1)−1Qu
H−1 + (Qu

H−1)T(LH−1δvH−1)

= −ελH−1 +
(
(Qu

H−1)TLH−1 + (Qb
H−1)T − (Qb

H−1)T
)
δvH−1

= −ελH−1 +
(
(V b

H−1)T − ((F bH−1)Th̃b + LbH−1)T
)
δvH−1

= −ελH−1 + (V b
H−1 − ηH−1)TδvH−1

(3.36)

Therefore (3.35) is true for τ = H−1. Now we assume that (3.35) is true for τ = i+1.

More precisely we have

H−1∑
τ=i+1

(∇uτJ)Tδuτ = −ε
H−1∑
τ=i+1

λτ + (V b
i+1 − ηi+1)Tδvi+1 +O(ε2) (3.37)

Now we consider the case when τ = i. Applying the results from Lemma 1, the policy

(3.27) and expressions from (3.25) (3.28) we have

47

H−1∑
τ=i

(∇uτJ)Tδuτ =
H−1∑
τ=i+1

(∇uτJ)Tδuτ + (∇uiJ)Tδui +O(ε2)

=− ε
H−1∑
τ=i+1

λτ + (V b
i+1 − ηi+1)Tδvi+1 + (ηTi+1Fui + (Lui)T)δui +O(ε2)

=− ε
H−1∑
τ=i+1

λτ + (V b
i+1 − ηi+1)T(F bi δvi + Fui δui +O(‖δui‖2

+ ‖δvi‖2)) + (ηTi+1Fui + (Lui)T)δui +O(ε2)

=− ε
H−1∑
τ=i+1

λτ + (V b
i+1 − ηi+1)TF bi δvi +

(
(Fui)TV b

i+1 + Lui
)T
δui +O(ε2)

=− ε
H−1∑
τ=i+1

λτ + (V b
i+1 − ηi+1)TF bi δvi + (Qu

i)
T

(
− ε(Quu

i)−1Qu
i − (Quu

i)−1Qub
i δvi

)
+O(ε2)

=− ε
H−1∑
τ=i+1

λτ − ε(Qu
i)

T(Quu
i)−1Qu

i + (Qb
i − Lbi − ηi + Lbi)Tδvi

− (Qu
i)

T(Quu
i)−1Qub

i δvi +O(ε2)

=− ε
H−1∑
τ=i+1

λτ − ελi +
(
Qb
i − (Qu

i)
T(Quu

i)−1Qub
i)− ηi

)T
δvi +O(ε2)

=− ε
H−1∑
τ=i

λτ + (V b
i − ηi)Tδvi +O(ε2), (3.38)

where we have used the fact that δvk = O(ε) and δuk = O(ε) (see [80]). Now we complete

the proof of (3.35) for k = i. By induction (3.35) is true for k = 1, ..., H − 1, hence (3.34)

is true.

Remark 2. Lemma 2 implies for sufficiently small ε and non-zero λk, the control update

δuk is a descent direction along the nominal trajectory.

Next we provide an expression for the variation of the total cost after using the optimal

control policy (3.27).

48

Lemma 3. The total cost variation at each iteration is

∆J = (
1

2
ε2 − ε)

H−1∑
k=1

λk +O(ε3), (3.39)

where λk = (Qu
k)

T(Quu
k)−1Qu

k .

Proof. First, let (b, ū) be the nominal state-control trajectory at iteration i. We denote the

total cost at iteration i (along the nominal trajectory) by

J (i) =
H−1∑
k=1

L̃(bk, ūk) + h̃(bH) (3.40)

and denote the cost at iteration i+ 1 (after applying the policy) (3.27) by J (i+1). In partic-

ular, J (i+1) will be equal to V 0
k in (3.28), plus some extra terms which appear when higher

order expansions of Q are considered in (3.24). One can obtain

J (i+1) = V (v1, 1) = V 0
1 +O(ε3)

= L̃(b1, ū1) + (
1

2
ε2 − ε)λ1 + V (b2) +O(ε3)

= L̃(b1, ū1) + (
1

2
ε2 − ε)λ1 + L̃(b2, ū2) + (

1

2
ε2 − ε)λ2 + V (b3) +O(ε3)

=
H−1∑
k=1

L̃(bk, ūk) + h̃(bH) + (
1

2
ε2 − ε)

(
λ1 + · · ·+ λH−1

)
+O(ε3)

= J (i) + (
1

2
ε2 − ε)

H−1∑
k=1

λk +O(ε3) (3.41)

Therefore ∆J = J (i+1) − J (i) = (1
2
ε2 − ε)

∑H−1
k=1 λk + O(ε3) which concludes the

proof.

Remark 3. Based on (3.39), a valid candidate for ε in (3.27) should satisfy at each iteration

49

the following line search condition

J (i+1) − J (i) ≤ −κε
H−1∑
k=1

λk, (3.42)

where κ is a small positive number (e.g., κ ≤ 0.01).

Now we show the convergence of the proposed PDDP algorithm.

Theorem 1. As the iteration number approaches infinity, the total cost J and control se-

quence U converge to a stationary point for arbitrary initialization.

Proof. From the fact 0 < ε ≤ 1 it is straightforward to see

ε ≤ 1 =⇒ (
1

2
ε− 1) ≤ −1

2
=⇒ (

1

2
ε2 − ε) ≤ −1

2
ε, (3.43)

therefore from Lemma 3 we have the cost reduction at the ith iteration

∆J (i) ≤ −1

2
ε
H−1∑
k=1

(Qu
k)

T(Quu
k)−1Qu

k +O(ε3). (3.44)

From lemma 2, there exists an ε1 ≤ 1 such that

(∇UJ)T∆U = −ε
H−1∑
k=1

(Quk)T(Quuk)−1Quk , ∀ε ∈ (0, ε1]. (3.45)

Therefore the control update (3.26) is a descent direction. In addition, from (3.44), there

exists an ε2 ∈ (0, ε1] such that

∆J (i) ≤ −1

2
ε
H−1∑
k=1

(Qu
k)

T(Quu
k)−1Qu

k , ∀ε ∈ (0, ε2], (3.46)

which indicates that J (i) is monotonic decreasing for arbitrary initialization. To proceed,

we assume that the search space is compact. Hence, since J is a continuous function of U,

50

there exists a control sequence U∗ such that

lim
i→∞

J (i) = J(U∗). (3.47)

Therefore the total cost J is convergent. In addition, (3.47) implies that as i → ∞, for

arbitrary initialization and k = 1, ..., H − 1

∆J (i) → 0 =⇒ (Qu
k)

T(Quu
k)−1Qu

k → 0

Quu
k is p.d. =⇒ (Quu

k)−1Qu
k → 0 (3.48)

where 0 = [0, ..., 0]T ∈ Rm×1. The above condition indicates the feedforward policy Ik

defined in (3.26) vanishes as i→∞. Hence δuk → Lkδvk. The initial state is given so

δv1 = 0 =⇒ δu1 → L1δv1 → 0

=⇒ δv2 = F b1δv1 + Fu1 δu1 +O(‖δv1‖2 + ‖δu1‖2)→ 0

=⇒ δu2 → L2δv2 → 0 (3.49)

It is straightforward to extend this analysis and we have δuk → 0 for k = 1, ..., H − 1.

Therefore the controls will converge to U∗.

Lastly we show that U∗ is a stationary point. First note that (3.48) implies that Qu
k → 0

for all time instants. As a consequence Qb
k = V b

k . By using the expression in Lemma 1 we

have
∇u∗H−1

J = (FuH−1)Th̃b + LuH−1 = Qu
H−1 → 0

∇u∗H−2
J = (FuH−2)TηbH−1 + LuH−2

= (FuH−2)T
(
(F bH−1)Th̃b + LbH−1

)︸ ︷︷ ︸
QbH−1=V bH−1

+LuH−2 = Qu
H−2 → 0.

(3.50)

We continue the above analysis backward in time for ∇u∗H−3
J → 0, ...,∇u∗1

J → 0 hence

∇U∗J → 0. It is deduced that the controls converge to a stationary point U∗ for arbitrary

51

initialization.

Remark 4. The above analysis shows that our method converges to a stationary solution

under some mild assumptions. Moreover, an explicit expression for the decrease in the cost

after each iteration is provided (3.39). Note that global optimality of the solution to the

original problem is not guaranteed here for two reasons: 1) the nonlinear belief dynamics

leads to a non-convex optimization problem. 2) The belief is a Gaussian approximation and

not necessarily the true posterior distribution, we have discussed this problem in section

3.3.1.

Remark 5. Our method can be classified as a second-order optimal control method and

therefore is expected to outperform standard first-order gradient-based methods, e.g., [50].

Moreover, under the aforementioned assumptions, PDDP is also capable of achieving lo-

cally quadratic convergence rates, i.e., as we get closer to the stationary solution, there

exists a constant c > 0 such that

‖U(i+1) −U∗‖ ≤ c‖U(i) −U∗‖2. (3.51)

This has been proven for scalar systems with no terminal cost term in [79] and generic

problems in [81]. We refer the reader to these papers for more details, since the same proof

can be used here. Note that this extension requires second order expansions of the belief

dynamics (4.28), which would add an extra term inQbb,Qbu andQuu 3.25. Nevertheless, in

this work we choose to use only the first order approximation of the belief dynamics (4.28).

Empirically, neglecting the Hessians of the dynamics results in a more computationally

efficient algorithm without sacrificing the quality of solution (see [82] for discussion).

52

3.6 Further Analysis

3.6.1 Computational complexity

Approximate inference: The major computational effort is devoted to GP inferences. In par-

ticular, the complexity of one-step moment matching is O
(
(N)2n2(n+m)

)
[50], which is

fixed during the iterative process of PDDP. We found a small number of sampled trajecto-

ries (N ≤ 5) are able to provide good performances for a system of moderate size (6-12

state dimensions). However, for higher dimensional problems, sparse or local approxima-

tion of GP (e.g. [61][83][84], etc) may be used to reduce the computational cost of GP

dynamics propagation.

Controller learning: According to (3.26), learning policy parameters Ik and Lk requires

computing the inverse of Quu
k , which has the computational complexity ofO(m3), wherem

is the dimension of control input. For the case of control constrained, the QP also lead to the

complexity of O(m3). It comes from the Cholesky factorization of the Projected Newton

solver. As a local trajectory optimization method, PDDP has a comparable scalability to

the classical DDP.

3.6.2 Relation to existing works

Here we summarize the novel features of PDDP in comparison with some notable DDP-

related frameworks for stochastic systems (see also Table 4.2). First, PDDP is inherently

different from iLQG [27] and sDDP [28], in which the dynamics model is known, and

model uncertainty is ignored. Second, PDDP shares some similarities with the belief space

iLQG [82] framework, which performs the belief space trajectory optimization based on

an extended Kalman filter. Belief space iLQG assumes a dynamics model is given and the

stochasticity comes from the process noises. PDDP, however, is a data-driven approach

that learns the dynamics models and controls from data, and it takes into account model

uncertainties using GPs. Third, PDDP is also comparable with iLQG-LD [59], which is

53

based on learned dynamics using Locally Weighted Projection Regression (LWPR). The

Minimax DDP [30] uses a similar model learning approach (RFWR) with partially known

dynamics. These methods do not incorporate model uncertainty therefore requires a rela-

tively large amount of data to learn an accurate model. Furthermore, PDDP does not suffer

from the high computational cost of finite differences used to numerically compute the first-

order expansions [27][82] and second-order expansions [28] of the underlying dynamics.

PDDP computes Jacobian matrices analytically (3.15). Furthermore, a recent method AGP-

iLQR[68] shows impressive performance and also uses GPs as dynamics model. However,

it drops the uncertainty when performing multi-step predictions. In contrast, PDDP takes

into account explicit uncertainty and optimizes w.r.t. the belief over state. In terms of opti-

mization criterion, AGP-iLQR incorporates predictive variance of the state transition, this

term appears linearly in the cost function. PDDP utilizes the distribution over cost (expec-

tation and variance) as the performance criterion, which is more general. In addition, the

proposed approach is a significant extension of the preliminary work on PDDP [85]. For

instance, in this work we develop a semiparametric learning scheme by incorporating prior

model knowledge; we explore risk-sensitive learning using predicted cost variance; and we

take into account control constraints by solving a QP problem (sec. 3.4.4). All of these

extensions substantially improve the applicability of the PDDP framework.

PDDP is also related to other RL frameworks that are not based on local trajectory

optimization. The most notable algorithm is PILCO [50], a model-based policy search ap-

proach using GPs. Their main differences can be summarized as follows: first, PDDP is

a self-contained trajectory optimization method that features fast convergence, in contrast,

PILCO requires an extra optimizer for policy improvement (e.g., BFGS). Second, PILCO

requires designs of policy parameterization and solves relatively higher-dimensional op-

timization problems (depending on the number of parameters), while PDDP does not re-

quire any policy parameterization. Third, PDDP uses a forward-backward sweep scheme,

the policy improvement at time step k takes into account improvement at future steps. In

54

contrast, PILCO as well as most policy gradient methods find time-independent policies,

which is less efficient.

Many other GP-based planning and Bayesian RL algorithms focus on discrete domains

or finite state/action spaces. These work usually provide an error bound for their approx-

imations, e.g.,[86, 87]. Our problem of interest is inherently different since we focus on

continuous domains.

PDDP Belief
space
iLQG[82]/sDDP[88]

iLQG-
LD[59]

iLQG[27],
sDDP[28]

AGP-
iLQR[68]

Minimax
DDP[30,
89]

Optimization
variables

belief µ,Σ,
control u

belief
µ,Σ ,
control u

state x ,
control u

state x ,
control u

mean of
state µ ,
control u

state x ,
control u

Optimization
criterion

Cost distri-
bution

Expected
cost

Expected
cost

Expected
cost

Expected
cost and
predic-
tive state
variance

Cost incor-
porates a
disturbance
term

Dynamics
model

Unknown
(GP) or par-
tially known
(GP+parametric
model)

Known Unknown
(LWPR)

Known Unknown
(Approx-
imate
GP)

Partially
known
(RFWR)

Linearization Analytic Ja-
cobian

Finite dif-
ferences

Analytic
Jacobian

Finite dif-
ferences

Analytic
Jacobian

Analytic
Jacobian

Table 3.1: Comparison with DDP-related frameworks

3.7 Experimental Evaluation

In this section we evaluate the PDDP framework using three nontrivial simulated examples.

We demonstrate the performance of PDDP by comparative analyses. All experiments were

performed in MATLAB on a 3.7GHz Intel i7 PC.

55

3.7.1 Tasks

In this chapter we consider 3 simulated tasks: Cart-double inverted pendulum swing-up,

PUMA-560 robotic arm reaching, and quadrotor flight.

Cart-double inverted pendulum swing-up

Cart-Double Inverted Pendulum (CDIP) swing-up is a challenging control problem because

the system is highly underactuated with 3 degrees of freedom and only 1 control input. The

system has 6 state-dimensions (cart position/velocity, link 1,2 angles and angular veloci-

ties). The physical model parameters are: masses of the cart and two links, lengths of two

links, and the coefficient of friction. The goal of the swing-up problem is to find a sequence

of control input to force both pendulums from initial position (π,π) to the inverted position

(2π,2π). The balancing task requires the velocity of the cart, angular velocities of both

pendulums to be zero. The time horizon for the task is 1.2 second and dt = 0.02. We

sample 5 trajectories for each optimization stage. For optimization criterion we use both

the expected (risk-neutral) cost and the risk-sensitive cost with ε = 0.2. The CDIP task

posture is shown in fig.3.2a.

PUMA-560 robotic arm reaching

PUMA-560 is a 3D robotic arm that has 12 state dimensions, 6 degrees of freedom with 6

actuators on the joints. The physical model parameters are the moments of inertia, masses,

centers of gravity, lengths and offsets for 6 links. The task is to steer the end-effector to the

desired position and orientation. See an illustration in fig.3.2b. The time horizon for the

task is 2.0 second and dt = 0.02. We sample 3 trajectories for each optimization stage. For

optimization criterion we use the expected cost.

56

Quadrotor flight

Quadrotors are underactuated rotorcraft which rely on symmetry in order to fly in a con-

ventional, stable flight regime. With 6 degrees of freedom and 4 rotors to control them,

the systems attitude is highly coupled with its 3 dimensional movement. See fig.3.7a for

an example. The objective is to start at (1, 1, 0.5) and finish at position (0.5, 1, 1.5) af-

ter 4 seconds. All velocities and angles begin at zero and should end at zero - thus the

quadrotor begins at rest at the start position and should reach the goal position and stop

there. The controls are thrust forces of the 4 rotors and we consider the control constraint

umin = 0.5,umax = 3. A comparison between the constrained and unconstrained con-

trollers is shown in fig.3.8. For optimization criterion we use the risk-sensitive cost with

ε = 0.5. We assume partial knowledge of the dynamics model is known, i.e., the structure

of the transition dynamics with the following unknown parameters: moments of inertia

about X,Y,Z axis, the distance of rotor to the center of mass and the mass of the quadro-

tor. Physical model parameters were learned using 5 sample rollouts and another 5 rollouts

were used for GP model learning. See sec.3.3.3 for details regarding semiparametric model

learning and inference.

(a) (b)

Figure 3.2: CDIP and Puma-560 tasks.

57

10 20 30 40

0
2
4
6

Cart mass (kg)

10 20 30 40
0

2

4
Link1 mass (kg)

10 20 30 40
0

2

4
Link2 mass (kg)

10 20 30 40

1
2
3
4

Link1 length (m)

10 20 30 40

1
2
3
4

Link2 length (m)

10 20 30 40

0

2

4
Coefficient of friction

Figure 3.3: Cross-entropy parameter optimization for CDIP dynamics model with bad ini-
tial guesses. The horizontal axis is iteration number and vertical axis is parameter value.
Dash lines are the true parameter values. Error bars show the mean and variance of sam-
pling distributions at each iteration. Note that some parameters converge to the true values
while some others converge to local minima.

58

3.7.2 Data efficiency

For the case of unknown dynamics, both PDDP and PILCO are based on nonparametric

GP dynamics models. As shown in fig.3.4a, PDDP performs slightly worse than PILCO

in terms of data efficiency based on the number of interactions required to learn the same

tasks. The number of interactions indicates the total amount of sample rollouts required

from the physical systems. Possible reasons for the slightly worse performances are: i)

PDDP’s policy is linear which might be restrictive, while PILCO yields nonlinear policy

parameterizations; ii) As a global method, PILCO encourages more exploration especially

in the early stages of learning. In contrast, PDDP is a local method, it searches for so-

lution in the neighborhoods of trajectories. Despite these differences, PDDP offers close

performances compared to PILCO in terms of data efficiency with less computational cost.

According to the analysis in [50], PDDP would outperform most RL algorithms by at least

an order of magnitude in terms of data efficiency.

CDIP Puma-560
0

5

10

15

20

25

30

35

40
Number of interaction (rollout)

PDDP-NP
PDDP-SP
PILCO

(a)

CDIP Puma-560
10

0

10
1

10
2

10
3

10
4

Total computational time (minute)

PDDP-NP
PDDP-SP
PILCO

(b)

Figure 3.4: Comparison between PDDP and PILCO in terms of the number of interactions
with the physical system (a) and total computational time (b) required for learning the
CDIP and Puma-560 tasks. PDDP-NP and PDDP-SP correspond to the nonparametric and
semiparametric cases, respectively. The results were averaged over 5 independent trials.

59

3.7.3 Computational efficiency

In terms of total computational time required to obtain the final controller, PDDP out-

performs PILCO significantly as shown in fig.3.4b. PILCO requires an iterative method

(e.g.,CG or BFGS) to solve global and high dimensional optimization problems (depend-

ing on the policy parameterization). In contrast, PDDP successively computes local optimal

controls (3.26) without an extra optimizer and features fast convergence [79]. The major

computational demand of PDDP comes from the approximate inference in GPs (moment

matching). We did not use any approximate GP methods such as local GP [61, 90] or sparse

GP [83, 91, 92, 93] approximations. These methods can be applied in PDDP to speed up

computations when the training data size is large, e.g., [94].

3.7.4 Nonparametric vs. semiparametric learning

As shown in fig.3.4, PDDP based on semiparametric model learning and inference (with

known basis function) outperforms both PDDP and PILCO under unknown dynamics in

terms of data and computational efficiency. To distinguish the effect of parametric and

nonparametric models, at each learning stage we use the old samples from previous stages

for parameter estimation. The purpose of the parametric model is to generalize to the state-

action space regions that are far away from the training data used for nonparametric model

learning. This result is not surprising but it shows the potential of applying PDDP in a

more practical way. In real world applications these basis functions are usually available

for mechanical/robotics systems from physics-based models. Learning the model from

scratch is conceptually appealing but practically challenging when the available data are

not sufficiently informative. In addition, the semiparametric approach takes into account

the uncertainty of parametric modeling error. For instance, fig.3.3 show the physical model

parameter learning performance for the CDIP task using algorithm 1. Due to data insuffi-

ciency some parameter estimations deviate from the true values. This parametric error is

learned as the GP error dynamics model (see section 3.3.3). The semiparametric PDDP

60

could be applied to more challenging tasks compared with purely nonparametric methods.

For example, the quadrotor system has highly coupled outputs. In contrast, the nonpara-

metric GP assumed independent output for each dimension, therefore has limited modeling

power in this case. We use the semiparametric PDDP to successfully learn a policy in a

single optimization stage. Results for policy learning and testing are shown in fig.3.7. The

optimization takes less than 20 iterations (see fig.3.7b).

3.7.5 Risk-sensitive vs. risk-neutral learning

Another distinct feature for PDDP is that it incorporates the probability distribution over

the cost as the performance criterion (see section 3.4.2). More precisely the mean and

variance of the predicted cost. We evaluate the effect of the cost function by comparing

the risk-sensitive and risk-neutral cases for the CDIP task. Fig.3.5 shows the predicted

cost distributions during the early and final learning stages. The risk-sensitive learning

leads to relatively less cost uncertainties due to the penalization on predicted cost variance.

Fig.3.6 shows the learning curves for 4 cases on the same task. We use 3 and 5 rollouts

at each optimization phase for both risk-neutral and risk-sensitive learning. An interest-

ing phenomenon is that when using only 3 rollouts (180 data points) for learning. The

risk-sensitive policy outperforms risk-neutral policy significantly. This is because when

the sample data are sparse in state-action regions, the risk-sensitive criterion restricts ex-

ploration in the local region that are close to the sampled data and nominal trajectories. In

contrast, in the risk-neutral case, applying PDDP policy results in higher costs because the

cost variance is higher. When using 5 rollouts (300 data points) per stage, the risk-sensitive

policy learns slower than risk-neutral in the early stages. But they perform similarly in

the final stages. PDDP with both criteria are able to learn the task within about 7-8 opti-

mization stages. Even in the risk-neutral case, PDDP would avoid explorations in highly

uncertain regions because the expected cost (3.17) depends on predictive variance of the

state. Risk-sensitive learning is more conservative and shows encouraging performance

61

when using a very small amount of training data.

Time (second)

0 0.2 0.4 0.6 0.8 1.0 1.2

C
o

s
t

50

100

150

200

250

300

350

400

450
Eearly stage, risk neutral

(a)

Time (second)

0 0.2 0.4 0.6 0.8 1.0 1.2

C
o

s
t

0

50

100

150

200

250

300

350
Final stage, risk neutral

(b)

Time (second)

0 0.2 0.4 0.6 0.8 1.0 1.2

C
o

s
t

50

100

150

200

250

300

350

400

450
Early stage, risk sensitive

(c)

Time (second)

0 0.2 0.4 0.6 0.8 1.0 1.2

C
o

s
t

0

50

100

150

200

250

300

350
Final stage, risk sensitive

(d)

Figure 3.5: Comparison of the predicted trajectory cost distributions between risk-neutral
(a,b) and risk-sensitive (c,d) learning via PDDP. Early stage and final stage correspond to
the predictions after 1 and 8 optimization stages.

3.8 Discussion

In this work our goal is to address the principle challenges of applying reinforcement

learning (RL) in complex real-world scenarios, namely data efficiency, computational cost

and scalability. Thus we have introduced Probabilistic Differential Dynamic Programming

(PDDP), a model-based RL framework for systems with unknown or partially known dy-

namics. PDDP is derived based on two main components: 1) local trajectory optimization

62

0 1 2 3 4 5 6 7 8
Optimization stage #

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

C
o

s
t

×10
4

5 rollouts/opt, risk neutral
5 rollouts/opt, risk sensitive
3 rollouts/opt, risk neutral
3 rollouts/opt, risk sensitive

Figure 3.6: Total trajectory costs by applying PDDP policy after each optimization stage
for risk-neutral (ε = 0) and risk-sensitive learning (ε = 0.2). 3 and 5 rollouts were used for
learning in both cases.

63

X Position (m)

2

0

-2
-2

Y Position (m)

0

2

0

1

2

3

-2

-1

-3

H
e
ig

h
t

(m
)

(a)

Iteration

5 10 15 20

T
o

ta
l
c
o

s
t

0

100

200

300

400

500

600

(b)

Time step

0 20 40 60 80 100

C
o

s
t

0

10

20

30

40

(c)

0 50 100
-1

-0.5
0

0.5
Position X (m)

0 50 100
-0.5

0
0.5

1
Position Y (m)

0 50 100

-2

0

Position Z (m)

0 50 100

0
0.2
0.4
0.6

Velocity X (m/s)

Time step

0 50 100
-0.6
-0.4
-0.2

0

Velocity Y (m/s)

Time step

0 50 100

C
o

s
t

-5

0

5
Velocity Z (m/s)

(d)

Figure 3.7: The quadrotor flight task. (a) Quadrotor simulation environment. (b) Expected
trajectory cost reduction during PDDP optimization. (c) Trajectory costs over 10 indepen-
dent trials using the optimized control policy. (d) State trajectories of the quadrotor task
collected over 10 independent trials using the optimized controller. Dash lines are desired
states.

via forward-backward sweeps, which is a classical method under the name Differential

Dynamics Programming (DDP) [26]. 2) Probabilistic modeling and approximate inference

with Gaussian processes (GPs). PDDP integrates the aforementioned components by rep-

resenting the system dynamics using GPs and performing optimization in Gaussian belief

spaces. To further improve its applicability, we explored the case of risk-sensitive trajectory

optimization.

PDDP generalizes the deterministic [26] and stochastic [27, 28] trajectory optimization

to a probabilistic setting, i.e. probabilistic trajectory optimization. By taking advantages

64

0 20 40 60 80 100
Time step

-2

-1

0

1

2

3

4

5

C
o

n
tr

o
l

in
p

u
t

Constrained controller

1 2 3 4 limits

(a)

0 20 40 60 80 100
Time step

-2

-1

0

1

2

3

4

5

C
o

n
tr

o
l

in
p

u
t

Unconstrained controller

1 2 3 4 limits

(b)

Figure 3.8: Constrained and unconstarined control inputs (4 motor torques) for the quadro-
tor task. The constraint is incorporated by solving a QP (sec.3.4.4)

of recent development in GPs, PDDP offers data efficiency superior to methods based on

learned determinstic models, and comparable to the state of the art GP-based policy search

method [50]. Compared with typical gradient-based policy search methods, PDDP fea-

tures a more computationally efficient policy improvement scheme. PDDP yields local

control policies and requires no a-priori policy parameterization. These strengths lead to a

combination of data efficiency, computational efficiency and scalability. Theoretically, we

provide analyses showing our algorithm converges to a stationary point globally. To our

best knowledge, our analyses offer the most general convergence proof for DDP-related

methods [26, 79, 80, 27, 29, 58, 68, 59]

The computational efficiency of probabilistic inference can be further improved. The

possibility of using sampling-based methods (such as in PEGASUS [95]) instead of de-

terministic inference has been discussed in [55]. However, it may lead to derivatives with

high variance and it is more suitable for sampling-based (gradient-free) methods, e.g.,[96].

Approximate GPs, such as local GP [61, 90] or sparse GP [83, 92], can be exploited to

improve the computational efficiency. For instance, Sparse Spectrum GPs have been used

for fast inference in trajectory optimization [94, 97, 98] when 1) the optimization needs to

be performed in real-time and receding horizon fashion, 2) training dataset is big and 3) the

65

task, dynamics and environment are time-varying.

Application of probabilistic trajectory optimization to real robotic systems is worth fur-

ther investigation. In addition, our approximate inference method does not have an explicit

error bound. Numerical methods such as Gaussian quadrature could provide more accurate

approximations and an error bound [71]. However, such numerical methods are usually

more computationally expensive than closed-form computation as we do here. Further

investigation on combining the benefits of these methods with ours is left for future work.

66

CHAPTER 4

PATH INTEGRAL CONTROL UNDER UNCERTAIN DYNAMICS

In this chapter we present two stochastic optimal control (SOC) frameworks for systems

with unknown or partially known dynamics based on the path integral formulation and

probabilistic inference. We show that the optimal control can be computed in a sampling-

based and gradient-based fashion without replying on local approximation used in PDDP

(see chapter 3).

4.1 Introduction

Stochastic optimal control (SOC) is a general and powerful framework with applications

in many areas of science and engineering. However, despite broad applicability, solv-

ing SOC problems remains challenging for systems in high-dimensional continuous state-

action spaces [56, 57]. Over the last decade, SOC based on exponential transformation

of the value function has demonstrated remarkable applicability in solving real world con-

trol and planning problems. In control theory, the exponential transformation of the value

function was introduced in [32, 33]. In the past decade it has been explored in terms of

path integral interpretations and theoretical generalizations [34, 35, 36, 37], discrete time

formulations [38], and scalable reinforcement learning/control algorithms [39, 40, 41, 42,

43, 44]. The resulting stochastic optimal control frameworks are known as Path Integral

(PI) control for continuous time, Kullback Leibler (KL) control for discrete time, or more

generally Linearly Solvable Optimal Control [38, 45]. In this work we focus on the PI

control framework.

One of the most attractive characteristics of PI control is that optimal control problems

can be solved with forward sampling of Stochastic Differential Equations (SDEs). How-

ever, for model-based PI frameworks [34, 35, 36, 43, 37], full knowledge of a dynamics

67

model is required to perform sampling. And these samples do not take into account any

model uncertainty. In addition, for PI-based model-free policy search frameworks [39, 40],

an intelligent choice of policy parameterization is required and expert demonstrations are

usually necessary for policy initialization. In the following we develop two data-driven

PI control methods to cope with these issues. In section 4.2, we introduce a gradient-

based algorithm where all gradients are computed analytically. In section 4.3, we present

a sampling-based approach where each sample consists of predictive state distributions

computed via sparse spectrum GP inference.

4.2 Gradient-based Approach

Motivated by the aforementioned limitations, in this chapter we introduce a sample effi-

cient, gradient-based approach to PI control. Different from existing PI control approaches,

our method combines the benefits of PI control theory [34, 35, 36] and probabilistic model-

based reinforcement learning methodologies [55, 50]. The main characteristics of the our

approach are summarized as follows

• It extends the PI control theory [34, 35, 36] to the case of uncertain systems. The

structural constraint is enforced between the control cost and uncertainty of the

learned dynamics, which can be viewed as a generalization of previous work [34,

35, 36].

• Different from parameterized PI controllers [39, 40, 43, 37], we find analytic control

law without any policy parameterization.

• Rather than keeping a fixed control cost weight [34, 35, 36, 39, 99], or ignoring the

constraint between control authority and noise level [40], in this work the control cost

weight is adapted based on the explicit uncertainty of the learned dynamics model.

• The algorithm operates in a different manner compared to existing PI-related meth-

ods that perform forward sampling [34, 35, 36, 39, 99, 40, 41, 43, 37]. More precisely

68

our method perform successive deterministic approximate inference and backward

computation of optimal control law.

• The proposed model-based approach is significantly more sample efficient than sampling-

based PI control [34, 35, 36, 99]. In RL setting our method is comparable to the state-

of-the-art RL methods [50, 85] in terms of sample and computational efficiency.

• Thanks to the linearity of the backward Chapman-Kolmogorov PDE, the learned con-

trollers can be generalized to new tasks without re-sampling by constructing compos-

ite controllers. In contrast, most policy search and trajectory optimization methods

[39, 40, 43, 50, 85, 100, 101, 102] find policy parameters that can not be generalized.

4.2.1 Preliminaries

In contrast to the generic problem defined in chapter 1, we consider a slightly different

class of nonlinear stochastic system described by the following differential equation

dx =
(
f(x) + G(x)u

)
dt+ Bdω, (4.1)

with state x ∈ Rn, control u ∈ Rm, and standard Brownian motion noise ω ∈ Rp with

variance Σω. f(x) is the unknown drift term (passive dynamics), G(x) ∈ Rn×m is the

control matrix and B ∈ Rn×p is the diffusion matrix. Given some previous control uold, we

seek the optimal control correction term δu such that the total control u = uold + δu. The

original system becomes

dx =
(
f(x) + G(x)(uold + δu)

)
dt+ Bdω =

(
f(x) + G(x)uold

)︸ ︷︷ ︸
f̃(x,uold)

dt+ G(x)δudt+ Bdω.

69

In this work we assume the dynamics based on the previous control can be represented by

Gaussian processes (GP) such that

fGP(x) = f̃(x,uold)dt, (4.2)

where fGP is the GP representation of the biased drift term f̃ under the previous control.

Now the original dynamical system (4.20) can be represented as follow

dx = fGP + Gδudt, fGP ∼ GP(0,K(xi,xj)), (4.3)

where we use a prior of zero mean and covariance function K(xi,xj) = σ2
s exp(−1

2
(xi −

xj)
TW(xi − xj)) + δijσ

2
ω, with σs, σω,W the hyper-parameters. δij is the Kronecker

symbol that is one iff i = j and zero otherwise. Samples over fGP can be drawn using an

vector of i.i.d. Gaussian variable Ω

f̃GP = µf + LfΩ (4.4)

where Lf is obtained using Cholesky factorization such that Σf = LfL
T
f . Note that

generally Ω is an infinite dimensional vector and we can use the same sample to repre-

sent uncertainty during learning [103]. Without loss of generality we assume Ω to be

the standard zero-mean Brownian motion. For the rest of the chapter we use simplified

notations with subscripts indicating the time step. The discrete-time representation of

the system is xt+dt = xt + µft + Gtδutdt + LftΩt

√
dt, and the conditional probabil-

ity of xt+dt given xt and δut is a Gaussian p
(
xt+dt|xt, δut

)
= N

(
µt+dt,Σt+dt

)
, where

µt+dt = xt + µft + Gtδut and Σt+dt = Σft. In this work we consider a finite-horizon

stochastic optimal control problem

J(x0) = E
[
q(xT) +

∫ T

t=0

L(xt, δut)dt
]
,

70

where the immediate cost is defined as L(xt,ut) = q(xt) + 1
2
δuT

t Rtδut, and q(xt) =

(xt−xdt)
TQ(xt−xdt) is a quadratic cost function where xdt is the desired state. Rt = R(xt)

is a state-dependent positive definite weight matrix. Next we show the linearized Hamilton-

Jacobi-Bellman equation for this class of optimal control problems.

4.2.2 Linearized Hamilton-Jacobi-Bellman Equation for Uncertain Dynamics

At each iteration the goal is to find the optimal control update δut that minimizes the value

function

V (xt, t) = min
δut

E
[∫ t+dt

t

L(xt, δut)dt+ V (xt + dxt, t+ dt)dt|xt
]
. (4.5)

(4.22) is the Bellman equation. By approximating the integral for a small dt and applying

Itô’s rule we obtain the Hamilton-Jacobi-Bellman (HJB) equation (detailed derivation is

skipped):

−∂tVt = min
δut

(qt +
1

2
δuT

t Rtδut + (µft + Gtδut)
T∇xVt +

1

2
Tr(Σft∇xxVt)).

To find the optimal control update, we take gradient of the above expression (inside the

parentheses) with respect to δut and set to 0. This yields δut = −R−1
t GT

t ∇xVt. Inserting

this expression into the HJB equation yields the following nonlinear and second order PDE

−∂tVt = qt + (∇xVt)
Tµft −

1

2
(∇xVt)

TGtR
−1GT

t ∇xVt +
1

2
Tr(Σft∇xxVt). (4.6)

In order to solve the above PDE we use the exponential transformation of the value function

Vt = −λ log Ψt, where Ψt = Ψ(xt) is called the desirability of xt. The corresponding

partial derivatives can be found as ∂tVt = − λ
Ψt
∂tΨt, ∇xVt = − λ

Ψt
∇xΨt and ∇xxVt =

71

λ
Ψ2
t
∇xΨt∇xΨT

t − λ
Ψt
∇xxΨt. Inserting these terms to (4.35) results in

λ

Ψt

∂tΨt = qt −
λ

Ψt

(∇xΨt)
Tµft −

λ2

2Ψ2
t

(∇xΨt)
TGtR

−1
t GT

t ∇xΨt (4.7)

+
λ

2Ψ2
t

Tr((∇xΨt)
TΣft∇xΨt)−

λ

2Ψt

Tr(∇xxΨtΣft).

The quadratic terms∇xΨt will cancel out under the assumption of λGtR
−1
t GT

t = Σft.

This constraint is different from existing works in path integral control [34, 35, 36, 39,

99, 37] where the constraint is enforced between the additive noise covariance and control

authority, more precisely λGtR
−1
t GT

t = BΣωB
T. The new constraint enables an adaptive

update of control cost weight based on explicit uncertainty of the learned dynamics. In

contrast, most existing works use a fixed control cost weight [34, 35, 36, 39, 99, 41, 43,

37]. This condition also leads to more exploration (more aggressive control) under high

uncertainty and less exploration with more certain dynamics. Given the aforementioned

assumption, the above PDE is simplified as

∂tΨt =
1

λ
qtΨt − µT

ft∇xΨt −
1

2
Tr(∇xxΨtΣft), (4.8)

subject to the terminal condition ΨT = exp(− 1
λ
qT). The resulting Chapman-Kolmogorov

PDE (4.36) is linear. In general, solving (4.36) analytically is intractable for nonlinear

systems and cost functions. We apply the Feynman-Kac formula which gives a probabilistic

representation of the solution of the linear PDE (4.36)

Ψt = lim
dt→0

∫
p(τt|xt) exp

(
− 1

λ
(
T−dt∑
j=t

qjdt)
)
ΨTdτt, (4.9)

72

where τt is the state trajectory from time t to T . The optimal control is obtained as

Gtδût = −GtR
−1
t GT

t (∇xVt) = λGtR
−1
t GT

t

(∇xΨt

Ψt

)
= Σft

(∇xΨt

Ψt

)
=⇒ût = uoldt + δût = uoldt + G−1

t Σft

(∇xΨt

Ψt

)
.

(4.10)

Rather than computing∇xΨt and Ψt, the optimal control ût can be approximated based on

path costs of sampled trajectories. Next we briefly review some of the existing approaches.

4.2.3 Relation to Existing Works

According to the path integral control theory [34, 35, 36, 39, 99, 37], the stochastic op-

timal control problem becomes an approximation problem of a path integral (4.37). This

problem can be solved by forward sampling of the uncontrolled (u = 0) SDE (4.20). The

optimal control ût is approximated based on path costs of sampled trajectories. Therefore

the computation of optimal controls becomes a forward process. More precisely, when

the control and noise act in the same subspace, the optimal control can be evaluated as

the weighted average of the noise ût = Ep(τt|xt)
[
dωt

]
, where the probability of a tra-

jectory is p(τt|xt) =
exp(− 1

λ
S(τt|xt))∫

exp(− 1
λ
S(τt|xt))dτ

, and S(τt|xt) is defined as the path cost computed

by performing forward sampling. However, these approaches require a large amount of

samples from a given dynamics model, or extensive trials on physical systems when ap-

plied in model-free reinforcement learning settings. In order to improve sample efficiency,

a nonparametric approach was developed by representing the desirability Ψt in terms of

linear operators in a reproducing kernel Hilbert space (RKHS) [41]. As a model-free ap-

proach, it allows sample re-use but relies on numerical methods to estimate the gradient

of desirability, i.e., ∇xΨt , which can be computationally expensive. On the other hand,

computing the analytic expressions of the path integral embedding is intractable and re-

quires exact knowledge of the system dynamics. Furthermore, the control approximation

is based on samples from the uncontrolled dynamics, which is usually not sufficient for

highly nonlinear or underactuated systems.

73

Another class of PI-related method is based on policy parameterization. Notable ap-

proaches include PI2 [39], PI2-CMA [40], PI-REPS[43] and recently developed state-

dependent PI[37]. The limitations of these methods are: 1) They do not take into account

model uncertainty in the passive dynamics f(x). 2) The imposed policy parameterizations

restrict optimal control solutions. 3) The optimized policy parameters can not be gener-

alized to new tasks. A brief comparison of some of these methods can be found in Table

1. Motivated by the challenge of combining sample efficiency and generalizability, next

we introduce a probabilistic model-based approach to compute the optimal control (4.10)

analytically.

PI [34, 35], iterative PI [99] PI2[39], PI2-CMA [40] PI-REPS[43] State feedback PI[37] Our method
Structural constraint λGtR

−1
t GT

t = BΣωBT same as PI same as PI same as PI λGR−1GT = Σf

Dynamics model model-based model-free model-based model-based GP model-based
Policy parameterization No Yes Yes Yes No

Table 4.1: Comparison with some notable and recent path integral-related approaches.

4.2.4 Analytic Path Integral Control: a Forward-Backward Scheme

In order to derive the proposed framework, firstly we learn the function fGP(xt) = f̃(x,uold)dt+

Bdω from sampled data. Learning the continuous mapping from state to state transition

can be viewed as an inference with the goal of inferring the state transition dx̃t = fGP(xt).

The kernel function has been defined in Sec.4.2.1, which can be interpreted as a similarity

measure of random variables. More specifically, if the training input xi and xj are close

to each other in the kernel space, their outputs dxi and dxj are highly correlated. Given

a sequence of states {x0, . . .xT}, and the corresponding state transition {dx̃0, . . . , dx̃T},

the posterior distribution can be obtained by conditioning the joint prior distribution on the

observations. In this work we make the standard assumption of independent outputs (no

correlation between each output dimension).

To propagate the GP-based dynamics over a trajectory of time horizon T we employ the

moment matching approach [48, 50] to compute the predictive distribution. Given an input

distribution over the stateN (µt,Σt), the predictive distribution over the state at t+ dt can

74

be approximated as a Gaussian p(xt+dt) ≈ N (µt+dt,Σt+dt) such that

µt+dt = µt + µft, Σt+dt = Σt + Σft + COV[xt, dx̃t] + COV[dx̃t,xt]. (4.11)

The above formulation is used to approximate one-step transition probabilities over the
trajectory. Details regarding the moment matching method can be found in [48, 50]. All
mean and variance terms can be computed analytically. The hyper-parameters σs, σω,W
are learned by maximizing the log-likelihood of the training outputs given the inputs [47].
Given the approximation of transition probability (4.27), we now introduce a Bayesian non-
parametric formulation of path integral control based on probabilistic representation of the
dynamics. Firstly we perform approximate inference (forward propagation) to obtain the
Gaussian belief (predictive mean and covariance of the state) over the trajectory. Since the
exponential transformation of the state cost exp(− 1

λ
q(x)dt) is an unnormalized Gaussian

N (xd, 2λ
dt

Q−1). We can evaluate the following integral analytically

∫
N
(
µj ,Σj

)
exp

(
−

1

λ
qjdt

)
dxj =

∣∣∣I +
dt

2λ
ΣjQ

∣∣∣− 1
2

exp
(
−

1

2
(µj − xdj)T

dt

2λ
Q(I +

dt

2λ
λΣjQ)−1(µj − xdj)

)
, (4.12)

for j = t + dt, ..., T . Thus given a boundary condition ΨT = exp(− 1
λ
qT) and predictive

distribution at the final stepN (µT ,ΣT), we can evaluate the one-step backward desirability

ΨT−dt analytically using the above expression (4.12). More generally we use the following

recursive rule

Ψj−dt = Φ(xj,Ψj) =

∫
N
(
µj,Σj

)
exp

(
− 1

λ
qjdt

)
Ψjdxj, (4.13)

for j = t+dt, ..., T−dt. Since we use deterministic approximate inference based on (4.27)

instead of explicitly sampling from the corresponding SDE, we approximate the conditional

distribution p(xj|xj−dt) by the Gaussian predictive distribution N (µj,Σj). Therefore the

75

path integral

Ψt =

∫
p
(
τt|xt

)
exp

(
− 1

λ
(

T−dt∑
j=t

qjdt)
)

ΨTdτt

≈
∫
...

∫
N
(
µT−dt,ΣT−dt

)
exp

(
− 1

λ
qT−dtdt

)∫
N
(
µT ,ΣT

)
exp

(
− 1

λ
qT

)
︸ ︷︷ ︸

ΨT

dxT

︸ ︷︷ ︸
ΨT−dt

dxT−dt

︸ ︷︷ ︸
ΨT−2dt

...dxt+dt

=

∫
N
(
µt+dt,Σt+dt

)
exp

(
− 1

λ
qt+dtdt

)
Ψt+dtdxt+dt = Φ(xt+dt,Ψt+dt). (4.14)

We evaluate the desirability Ψt backward in time by successive computation using the

above recursive expression. The optimal control law ût (4.10) requires gradients of the

desirability function with respect to the state, which can be computed backward in time

as well. For simplicity we denote the function Φ(xj,Ψj) by Φj . Thus we compute the

gradient of the recursive expression (4.14)

∇xΨj−dt = Ψj∇xΦj + Φj∇xΨj, (4.15)

where j = t+ dt, ..., T −dt. Given the expression in (4.12) we compute the gradient terms

in (4.15) as

∇xΦj =
dΦj

dp(xj)

dp(xj)

dxt
=
∂Φj
∂µj

dµj
dxt

+
∂Φj
∂Σj

dΣj

dxt
, where

∂Φj
∂µj

= Φj(µj − xdj)
T dt

2λ
Q(I +

dt

2λ
λΣjQ)−1,

∂Φj
∂Σj

=
Φj
2

(dt

2λ
Q(I +

dt

2λ
λΣjQ)−1

(
µj − xdj

)(
µj − xdj

)T − I
) dt

2λ
Q(I +

dt

2λ
λΣjQ)−1, and

d{µj ,Σj}
dxt

=
{ ∂µj
∂µj−dt

dµj−dt

dxt
+

∂µj
∂Σj−dt

dΣj−dt

dxt
,
∂Σj

∂µj−dt

dµj−dt

dxt
+

∂Σj

∂Σj−dt

dΣj−dt

dxt

}
.

The term∇xΨT−dt is compute similarly. The partial derivatives
∂µj

∂µj−dt
,

∂µj

∂Σj−dt
,

∂Σj

∂µj−dt
,

∂Σj

∂Σj−dt

can be computed analytically as in [50]. We compute all gradients using this scheme with-

out any numerical method (finite differences, etc.). Given Ψt and∇xΨt, the optimal control

takes a analytic form as in eq.(4.10). Since Ψt and∇xΨt are explicit functions of xt, the re-

sulting control law is essentially different from the feedforward control in sampling-based

path integral control frameworks [34, 35, 36, 39, 99] as well as the parameterized state

76

feedback PI control policies [43, 37]. Notice that at current time step t, we update the

control sequence ût,...,T using the presented forward-backward scheme. Only ût is applied

to the system to move to the next step, while the controls ût+dt,...,T are used for control

update at future steps. The transition sample recorded at each time step is incorporated to

update the GP model of the dynamics. A summary of the proposed algorithm is shown in

Algorithm 3.

Algorithm 3 Sample efficient path integral control under uncertain dynamics
1: Initialization: Apply random controls û0,..,T to the physical system (4.20), record data.
2: repeat
3: for t=0:T do
4: Incorporate transition sample to learn GP dynamics model.
5: repeat
6: Approximate inference for predictive distributions using uoldt,..,T = ût,..,T ,

see (4.27).
7: Backward computation of optimal control updates δût,..,T , see

(4.14)(4.15)(4.10).
8: Update optimal controls ût,..,T = uoldt,..,T + δût,..,T .
9: until Convergence.

10: Apply optimal control ût to the system. Move one step forward and record
data.

11: end for
12: until Task learned.

4.2.5 Generalization to Unlearned Tasks without Sampling

In this section we describe how to generalize the learned controllers for new (unlearned)

tasks without any interaction with the real system. The proposed approach is based on

the compositionality theory [104] in linearly solvable optimal control (LSOC). We use

superscripts to denote previously learned task indexes. Firstly we define a distance measure

between the new target x̄d and old targets xdk, k = 1, .., K, i.e., a Gaussian kernel

ωk = exp
(
− 1

2
(x̄d − xdk)TP(x̄d − xdk)

)
, (4.16)

77

where P is a diagonal matrix (kernel width). The composite terminal cost q̄(xT) for the

new task becomes

q̄(xT) = −λ log

(∑K
k=1 ω

k exp(− 1
λ
qk(xT))∑K

k=1 ω
k

)
, (4.17)

where qk(xT) is the terminal cost for old tasks. For conciseness we define a normalized

distance measure ω̃k = ωk∑K
k=1 ω

k
, which can be interpreted as a probability weight. Based

on (4.17) we have the composite terminal desirability for the new task which is a linear

combination of Ψk
T

Ψ̄T = exp
(
− 1

λ
q̄(xT)

)
=

K∑
k=1

ω̃kΨk
T . (4.18)

Since Ψk
t is the solution to the linear Chapman-Kolmogorov PDE (4.36), the linear com-

bination of desirability (4.18) holds everywhere from t to T as long as it holds on the

boundary (terminal time step). Therefore we obtain the composite control

ūt =
K∑
k=1

ω̃kΨk
t∑K

k=1 ω̃
kΨk

t

ûkt . (4.19)

The composite control law in (4.19) is essentially different from an interpolating control

law[104]. It enables sample-free controllers that constructed from learned controllers for

different tasks. This scheme can not be adopted in policy search or trajectory optimization

methods such as [39, 40, 43, 50, 85, 100, 101, 102]. Alternatively, generalization can be

achieved by imposing task-dependent policies [105]. However, this approach might restrict

the choice of optimal controls given the assumed structure of control policy.

4.2.6 Experiments and Analysis

We consider 3 simulated RL tasks: cart-pole (CP) swing up, double pendulum on a cart

(DPC) swing up, and PUMA-560 robotic arm reaching. The CP and DPC systems consist

of a cart and a single/double-link pendulum. The tasks are to swing-up the single/double-

78

link pendulum from the initial position (point down). Both CP and DPC are under-actuated

systems with only one control acting on the cart. PUMA-560 is a 3D robotic arm that has

12 state dimensions, 6 degrees of freedom with 6 actuators on the joints. The task is to

steer the end-effector to the desired position and orientation.

In order to demonstrate the performance, we compare the proposed control framework

with three related methods: iterative path integral control [99] with known dynamics model,

PILCO [50] and PDDP [85]. Iterative path integral control is a sampling-based stochastic

control method. It is based on importance sampling using controlled diffusion process

rather than passive dynamics used in standard path integral control [34, 35, 36]. Iterative

PI control is used as a baseline with a given dynamics model. PILCO is a model-based

policy search method that features state-of-the-art data efficiency in terms of number of

trials required to learn a task. PILCO requires an extra optimizer (such as BFGS) for

policy improvement. PDDP is a Gaussian belief space trajectory optimization approach. It

performs dynamic programming based on local approximation of the learned dynamics and

value function. Both PILCO and PDDP are applied with unknown dynamics. In this work

we do not compare our method with model-free PI-related approaches such as [39, 40, 41,

43] since these methods would certainly cost more samples than model-based methods such

as PILCO and PDDP. The reason for choosing these two methods for comparison is that

our method adopts a similar model learning scheme while other state-of-the-art methods,

such as [100] is based on a different model.

In experiment 1 we demonstrate the sample efficiency of our method using the CP and

DPC tasks. For both tasks we choose T = 1.2 and dt = 0.02 (60 time steps per roll-

out). The iterative PI [99] with a given dynamics model uses 103/104 (CP/DPC) sample

rollouts per iteration and 500 iterations at each time step. We initialize PILCO and the

proposed method by collecting 2/6 sample rollouts (corresponding to 120/360 transition

samples) for CP/DPC tasks respectively. At each trial (on the true dynamics model), we

use 1 sample rollout for PILCO and our method. PDDP uses 4/5 rollouts (corresponding

79

to 240/300 transition samples) for initialization as well as at each trial for the CP/DPC

tasks. Fig. 4.1 shows the results in terms of ΨT and computational time. For both tasks our

method shows higher desirability (lower terminal state cost) at each trial, which indicates

higher sample efficiency for task learning. This is mainly because our method performs

online re-optimization at each time step. In contrast, the other two methods do not use

this scheme. However we assume partial information of the dynamics (G matrix) is given.

PILCO and PDDP perform optimization on entirely unknown dynamics. In many robotic

systems G corresponds to the inverse of the inertia matrix, which can be identified based

on data as well. In terms of computational efficiency, our method outperforms PILCO

since we compute the optimal control update analytically, while PILCO solves large scale

nonlinear optimization problems to obtain policy parameters. Our method is more com-

putational expensive than PDDP because PDDP seeks local optimal controls that rely on

linear approximations, while our method is a global optimal control approach. Despite the

relatively higher computational burden than PDDP, our method offers reasonable efficiency

in terms of the time required to reach the baseline performance.

0 1 2 3
Trial#

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ
T

Cart-pole

Iterative PI (true model, 10
3
 samp/iter)

PILCO (1 sample/trial)

PDDP (4 samples/trial)

Ours (1 sample/trial)

0 1 2 3
Trial#

0

5

10

15

T
im

e

(a)

0 2 4 6 8
Trial#

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ
T

Double pendulum on a cart

Iterative PI (true model, 10
4
 samp/iter)

PILCO (1 sample/trial)

PDDP (5 samples/trial)

Ours (1 sample/trial)

0 2 4 6 8
Trial#

0

50

100

150

200

250

300

350

T
im

e

(b)

Figure 4.1: Comparison in terms of sample efficiency and computational efficiency for
(a) cart-pole and (b) double pendulum on a cart swing-up tasks. Left subfigures show the
terminal desirability ΨT (for PILCO and PDDP, ΨT is computed using terminal state costs)
at each trial. Right subfigures show computational time (in minute) at each trial.

In experiment 2 we demonstrate the generalizability of the learned controllers to new

80

tasks using the composite control law (4.19) based on the PUMA-560 system. We use T =

2 and dt = 0.02 (100 time steps per rollout). First we learn 8 independent controllers using

Algorithm 3. The target postures are shown in Fig. 4.2. For all tasks we initialize with 3

sample rollouts and 1 sample at each trial. Blue bars in Fig. 4.2b shows the desirabilities

ΨT after 3 trials. Next we use the composite law (4.19) to construct controllers without re-

sampling using 7 other controllers learned using Algorithm 3. For instance the composite

controller for task#1 is found as ū1
t =

∑8
k=2

ω̃kΨkt∑8
k=2 ω̃

kΨkt
ûkt . The performance comparison

of the composite controllers with controllers learned from trials is shown in Fig. 4.2. It

can be seen that the composite controllers give close performance as independently learned

controllers. The compositionality theory [104] generally does not apply to policy search

methods and trajectory optimizers such as PILCO, PDDP, and other recent methods [100,

101, 102]. Our method benefits from the compositionality of control laws that can be

applied for multi-task control without re-sampling.

1
234

5

6

8

7

(a)

Task#

1 2 3 4 5 6 7 8

Ψ
T

0

0.2

0.4

0.6

0.8

1

1.2
Independent controller (1 samp/trial, 3 trials)

Composite controller (no sampling)

(b)

Figure 4.2: Resutls for the PUMA-560 tasks. (a) 8 tasks tested in this experiment. Each
number indicates a corresponding target posture. (b) Comparison of the controllers learned
independently from trials and the composite controllers without sampling. Each composite
controller is obtained (4.19) from 7 other independent controllers learned from trials.

81

4.2.7 Summary and Discussion

We presented an iterative learning control framework that can find optimal controllers un-

der uncertain dynamics using very small number of samples. This approach is closely

related to the family of path integral (PI) control algorithms. Our method is based on a

forward-backward optimization scheme, which differs significantly from current PI-related

approaches. Moreover, it combines the attractive characteristics of probabilistic model-

based reinforcement learning and linearly solvable optimal control theory. These charac-

teristics include sample efficiency, optimality and generalizability. By iteratively updat-

ing the control laws based on probabilistic representation of the learned dynamics, our

method demonstrated encouraging performance compared to the state-of-the-art model-

based methods. In addition, our method showed promising potential in performing multi-

task control based on the compositionality of learned controllers. Besides the assumed

structural constraint between control cost weight and uncertainty of the passive dynamics,

the major limitation is that we have not taken into account the uncertainty in the control

matrix G.

4.3 Sampling-based Approach

In this section we develop a sampling-based method that is slightly more general than

the gradient-based method introduced previously. Instead of using full GPs for dynam-

ics modeling and prediction, we leverage the Sparse Spectrum Gaussian Process (SSGP)

[91], which is based on kernel function approximation using finite dimensional random

feature mappings [106]. Algorithms for SSGP regression have demonstrated a superior

combination of computational efficiency and predictive accuracy compared to approxima-

tion strategies such as the Fully Independent Training Conditional (FITC) model [91] and

Locally Weighted Projection Regression (LWPR) [107]. In this work we use SSGP re-

gression to generate sample rollouts in the belief space, therefore model uncertainty can

82

be incorporated explicitly. In order to improve convergence speed, we propose a covari-

ance matrix adaptation scheme to update the exploration magnitude automatically within

the probability-weighted averaging framework.

In the following, we summarize the distinct characteristics of our method:

• The proposed method is data-driven and no prior knowledge of the system dynamics

is required.

• Sampling is performed in belief space. Each sample takes into account predictive

model uncertainty.

• The exploration noise covariance matrix is adapted via probability-weighted averag-

ing.

4.3.1 Preliminaries

In contrast to the special class of systems considered in the previous method, here we con-

sider a general class of nonlinear stochastic system described by the differential equation

dx = f(x,u)dt+ dω, (4.20)

with state x ∈ Rn, control u ∈ Rm, and standard Brownian motion noise ω ∈ Rp. f :

Rn × Rm → Rn is the unknown transition function. In this section we consider a finite-

horizon stochastic optimal control problem

min
u

E
[
q
(
x(T)

)
+

∫ T

t=0

L
(
x(t),u(t)

)
dt
]

︸ ︷︷ ︸
J(x(0))

, (4.21)

where the immediate cost is defined as L(x,u) = q(x) + 1
2
uTRu. R is a positive definite

weight matrix. For the rest of our analysis, we discretize the time using the Euler scheme as

k = 1, 2, ..., H with time step ∆t = T
H−1

and denote xk = x(tk). We use this subscript rule

83

for other time-varying variables as well. The discretized system dynamics can be written

as xk+1 = xk + ∆xk +
√

∆tξk where ∆xk = ∆tf(xk,uk) and ξk is IID with N (0, I).

To simplify notation we define f(xk,uk) = ∆tf(xk,uk). The goal is to find the optimal

control uk at each time step that minimizes the value function

V (xk, k) = min
uk

E
[
L(xk,uk) + V (xk+1, k + 1)|xk

]
. (4.22)

where V is called value function. The above equation is known as the Bellman equation.

Note that the dynamics model f is unknown and needs to be learned from data. In the next

section, we present a probabilistic scheme to learn the dynamics.

4.3.2 Model Learning via Sparse Spectrum Gaussian Processes

In standard GP regression (GPR), we assume the transition function has a prior distribution

f(x̃) ∼ GP(m, k), where m : Rn × Rm → Rn and k : Rn × Rn → R are the mean

and covariance functions, respectively. Without loss of generality, we consider zero mean

m = 0 and the popular Squared Exponential (SE) covariance function with Automatic

Relevance Determination (ARD) distance measure

k(x̃i, x̃j) = σ2
f exp(−1

2
(x̃i − x̃j)

TP−1(x̃i − x̃j)) + σ2
nδij, (4.23)

where δij is a Kronecker delta which is one iff i = j and zero otherwise. P = diag([l21 ... l2n+m
]).

The hyperparameters of the kernel consist of the signal variance σ2
f , the noise variance σ2

n

and the length scales for input space l = [l1 ... ln+m]. Given a dataset of state-control pairs

and the corresponding state transition D = {(xi; ui),∆xi}Ni=1 , the posterior distribution is

exactly Gaussian and can be computed in closed-form. Unfortunately, GPR exhibits sig-

nificant practical limitations for learning and inference on large datasets due to its O(N3)

computation andO(N2) space complexity, which is a direct consequence of having to store

and invert aN×N matrix [47]. This computational inefficiency is a bottleneck for applying

84

GP-based method in real-time.

In order to scale up kernel methods such as GPs, random features can be used to ap-

proximate kernel functions. Based on Bochner’s theorem [108], any shift-invariant kernel

function can be represented as the Fourier transform of a unique measure

k(x̃i − x̃j) =

∫
Rn+m

eiω
T(x̃i−x̃j)p(ω)dω = Eω[zω(x̃i)

Tzω(x̃j)],

where zω(x̃) = [cos(ωTx̃) sin(ωTx̃)]T. We can approximate the SE kernel function by

drawing r random samples from the distribution p(ω) = N (0,P−1)

k(x̃j, x̃k) ≈
r∑
i=1

φωi
(x̃j)

Tφωi
(x̃k) = φ(x̃j)

Tφ(x̃k), (4.24)

where φωi
(x̃) =

σf√
r
[cos(ωT

i x̃) sin(ωT
i x̃)]T. is a feature mapping. Therefore the state

transition function can be represented as a weighted sum of the feature functions

∆x = f(x̃) = wTφ(x̃), φ(x̃) =

 σf√
r

cos(ΩTx̃)

σf√
r

sin(ΩTx̃)

 , (4.25)

where Ω = [ω1, ...,ωr]
T. Assuming the prior distribution of feature weights w ∼ N (0,Σp),

the posterior distribution of ∆x can be derived as in the standard Bayesian linear regression

∆x|D, x̃ ∼ N (wTφ, σ2
n(1 + φTA−1φ)), (4.26)

φ = φ(x̃), w = A−1Φ∆X, A = ΦΦT + σ2
nΣ
−1
p ,

Φ = [φ(x̃1) ... φ(x̃N)].

The above formulation has been derived in SSGP regression [91].

The computational complexity becomes O(Nr2 + r3), which is significantly more ef-

ficient than GPR with O(N3) time complexity when r � N . The hyper-parameters are

85

learned by maximizing the log-marginal likelihood of the training outputs given the inputs

using numerical methods [47]. To update the weights w incrementally given a new sample,

we do not need to store or invert A explicitly. Instead, we keep track of its upper triangular

Cholesky factor A = RTR [107]. Given a new sample, a rank-1 update is applied to the

Cholesky factor R, which requires O(r2) time. In contrast, model update in GPs requires

O(N3). For the rest of the section, we use the SE kernel and linear Bayesian regression as

in [91]. However, our proposed control framework is not tied to these choices. More pre-

cisely, the posterior can be computed by other methods, and other continuous shift-invariant

kernels can be used instead of the SE kernel.

Our goal is to generate trajectory rollouts of probability distributions by applying multi-

step SSGP inference. When propagating the predictive distributions over a time horizon

H , the input state-control pair x̃ becomes uncertain and we need to compute p(∆x) =∫
p(∆x|x̃)p(x̃)dx̃. As mentioned previously, this predictive distribution cannot be com-

puted analytically. We will compute the Gaussian predictive distribution by linearizing the

posterior mean function w.r.t. the input. We skip the details in this chapter and we refer

the reader to chapter 5 for prediction under uncertain inputs in SSGPs. Here we assume

we have computed the predictive Gaussian distribution N (µfk
,Σfk and cross-covariance

Σfk,x̃k . Then we obtain the state space representation of the learned dynamics

µk+1 = µk + µfk
,

Σk+1 = Σk + Σfk + Σx̃k,fk + Σfk,x̃k .

(4.27)

(4.27) is a general representation of dynamical systems. Note that µfk
,Σk and Σx̃k,fk

are nonlinear functions of µk and Σk. Similar formulation can be found in GP-based

reinforcement learning methods such as [50]. Next we derive a stochastic optimal control

scheme based on this expression.

86

4.3.3 A Path Integral Control Approach with Covariance Adaptation

In this section we derive an iterative stochastic optimal control algorithm based on 1) the

probabilistic representation of the dynamics in (4.27), 2) the path integral (PI) control the-

ory and 3) covariance matrix adaptation.

Augmentation of the belief dynamics

In order to incorporate uncertainty explicitly in our control framework, we introduce the

Gaussian belief vk = [µk vec(Σk)]
T which is the predictive distribution over state xk,

where vec(Σk) is the vectorization of Σk. Based on eq.(4.27), the belief dynamics model

can be written as

vk+1 = vk + F(vk,uk). (4.28)

Where F is the belief transition function obtained from (4.27). Note that the belief dy-

namics is deterministic. Next we define an auxiliary control variable ua. The difference

between the actual control and auxiliary control ∆ua = ua − u is expressed by the differ-

ential equation
d∆ua

dt
= G∆ua. (4.29)

Based on the stability theory for linear systems, this system has a constant solution ∆ua =

0 ∈ Rm. This solution is asymptotically stable as t→∞ if the real parts of all eigenvalues

of the transition matrix G are negative. In other words, we can design the matrix G so that

∆ua → 0. In this case the auxiliary control ua is approximately equivalent to the actual

control u. In other words, optimizing ua is approximately equivalent to optimizing u. In

order to perform random exploration we add Gaussian noise ε ∈ Rm with ε ∼ N (0,Σε)

to the system (4.29), therefore we have a stochastic dynamical system represented by SDE

87

d∆ua = G∆uadt+ Bdε. Its discrete-time representation becomes

∆uak+1 = ∆uak + G∆uak∆t+ Bεk
√

∆t, εk ∼ N (0,Σε), (4.30)

where B ∈ Rm×m is the user-designed diffusion matrix, and Σε is the exploration noise

covariance matrix. Based on (4.30) and (4.28) we obtain the augmented belief system

 vk+1

∆uak+1

 =

 vk

∆uak

+

 F(vk,uk)/∆t

−Guk

︸ ︷︷ ︸

f̃(vk)

∆t

+

 0

G

︸ ︷︷ ︸

G̃

uak∆t+

 0

B

︸ ︷︷ ︸

B̃

εk
√

∆t.

(4.31)

We can rewrite the above augmented belief dynamics in a concise form

tk+1 = tk + f̃(tk)∆t+ G̃uak∆t+ B̃εk
√

∆t, (4.32)

where the augmented belief t = [v ∆u]T. The actual control u can be viewed as a varying

parameter of the new system. The control and diffusion matrices G,B can be state (belief)

or time dependent. For simplicity of notation we assume they are constant for the rest of

this section. The augmented belief dynamics (4.32) is affine in the auxiliary control ua as

well as the exploration noise ε. For this type of systems, we can apply the path integral

control theory [36] to obtain a sampling-based control law.

88

Stochastic control law via the path integral formulation

Based on (4.32), the conditional probability of tk+1 given tk and uk is normally distributed.

More precisely we have

p(tk+1) = N (vk + f̃(tk)∆t+ G̃uak∆t, B̃ΣεB̃
T∆t). (4.33)

Given the Bellman equation in (4.22), the Hamilton-Jacobi-Bellman (HJB) equation in

continuous-time is obtained by approximating the integral for a small ∆t and applying

Itô’s rule:

−∂tVk = min
uak

(q̃k +
1

2
uaT
k Ruak + (f̃k + G̃uk)

T∇xVk

+
1

2
Tr(B̃ΣεB̃

T∇xxVk)),

(4.34)

where f̃k = f̃(tk), Vk = V(tk, k) is the value function, and q̃k is the augmented state cost,

which can be defined as

q̃k = Ex[qk] + (∆ua)TR∆ua.

Note that this cost penalizes both the expectation of the state cost and the difference be-

tween the auxiliary control and the actual control. This cost is risk-neutral, and a risk-

sensitive criterion can be incorporated by adding the cost variance term VARx[qk]. Now

we seek the optimal auxiliary control ua for the augmented system, which is an approxi-

mation of the actual optimal control for the original system. To find the optimal control,

we take the gradient of the above expression (inside the parentheses) with respect to uk and

set to 0. This yields uk = −R−1G̃T∇xVt. Inserting this expression into the HJB equation

yields the following nonlinear and second order PDE

−∂tVk = q̃k + (∇xVk)
Tf̃k −

1

2
(∇xVk)

TG̃R−1G̃T∇xVk

+
1

2
Tr(B̃ΣεB̃

T∇xxVk).

89

In order to solve the above PDE we use the exponential transformation of the value function

Vk = −λ log Ψt, where Ψt = Ψ(tk) is called the desirability of tk. Inserting the partial

derivative terms to the above equation results in

λ

Ψk
∂tΨk = q̃k −

λ

Ψk
(∇xΨk)

Tf̃k −
λ2

2Ψ2
t

(∇xΨt)
TG̃R−1G̃T∇xΨk

+
λ

2Ψ2
k

Tr((∇xΨk)
TB̃ΣεB̃

T∇xΨk)−
λ

2Ψt
Tr(∇xxΨkB̃ΣεB̃

T).

(4.35)

The quadratic terms∇xΨk will cancel out under the assumption of λG̃R−1G̃T = B̃ΣεB̃
T.

This assumption was first proposed in [34]. It is straightforward to show that this is equiv-

alent to λGR−1GT = BΣεB
T. This assumption can be easily satisfied in our case since

G and B are designed by the user. Given this assumption, the above PDE is simplified as

∂tΨk =
1

λ
q̃kΨk − f̃T

k ∇xΨk −
1

2
Tr(∇xxΨkB̃ΣεB̃

T), (4.36)

subject to the terminal condition ΨH = exp(− 1
λ
q̃H). The resulting Chapman-Kolmogorov

PDE (4.36) is linear. In general, solving (4.36) analytically is intractable for nonlinear sys-

tems and cost functions. Following the path integral control theory, we apply the Feynman-

Kac formula which gives a probabilistic representation of the solution to the linear PDE

(4.36)

Ψk =

∫
p(τk|tk) exp

(
− 1

λ
(
H∑
j=k

q̃j∆t)
)
ΨHdτk, (4.37)

where τk is the belief trajectory from time k to H . Now we define the path cost

S(τk|tk) = q̃H +
H∑
j=k

q̃j∆t. (4.38)

The optimal control can be obtained as (derivation is omitted)

uak =

∫
P (τk|tk)uL(τk)dτ, (4.39)

90

where the probability of trajectory is defined as

P (τk|tk) =
exp(− 1

λ
S(τk|tk)∫

exp(− 1
λ
S(τk|tk)dτ

, (4.40)

and the local control for each sample is

uL(τk) = R−1GT(GR−1GT)−1Bεk. (4.41)

Note that the optimal control (4.39) is a weighted average of local controls which depend on

the exploration noises ε. This probability-weighted averaging scheme appears in many path

integral control related algorithms, e.g., [34, 35, 36, 43, 39, 40]. Our method differs from

these methods because we incorporate predictive uncertainty into sampling and averaging,

e.g., highly uncertain samples have low probabilities. The control law is based on sampling

from uncontrolled process. This exploration scheme is inefficient for high dimensional or

highly nonlinear systems since uncontrolled trajectories usually have low probabilities (in

high cost region) [34]. In the next section we present an efficient iterative scheme with

covariance adaptation.

Iterative control with covariance adaptation

In order to improve sample efficiency, an importance sampling scheme based on controlled

process has been proposed in [34] and an iterative algorithm has been derived in [99]. The

iterative control law can be expressed as

ua,newk = ua,oldk + δuk, (4.42)

91

where the control correction term and the probability of trajectory are defined as

δuk =

∫
P̃ (τk|tk)uL(τk)dτk,

P̃ (τk|tk) =
exp(− 1

λ
S̃(τk|tk)∫

exp(− 1
λ
S̃(τk|tk)dτk

,

(4.43)

where

S̃(τk|tk) = S(τk|tk) +
H∑
j=k

(
(uaj)

Tuaj∆t+ 2(uaj)
Tεj

)
is the new path cost which has a coupling term between the control and noise added to the

original path cost S(τk|tk) [99]. The derivation is omitted. In the finite sample case we can

rewrite the control law as

ua,newk = ua,oldk +
N∑
i=1

P̃i(τk|tk)uL,i(τk),

P̃i(τk|tk) =
exp(− 1

λ
S̃i(τk|tk)∑N

i=1 exp(− 1
λ
S̃i(τk|tk)dτk

,

(4.44)

where N is the total number of samples. Intuitively, the local control associated with

each sample is weighted by the probability of the path. And the optimal control update

is the probability-weighted average of the local controls. The iterative scheme improves

the scalability of the batch model PI control [109]. However, the exploration noise has a

constant covariance during learning and the trade-off between exploration and exploitation

is omitted.

Now we propose a method for updating the exploration noise covariance matrix via

probability-weighted averaging. The basic idea is similar to the Covariance Matrix Adap-

tation - Evolution Strategy (CMA-ES) [110]. More precisely after each control update, we

update the covariance of the exploration noise

Σnew
ε,k =

N∑
i=1

P̃i(τk|tk)(εk,i − ε̄k)(εk,i − ε̄k)T, (4.45)

92

where ε̄k is the mean of sampled εk. W.l.o.g. we use zero-mean ε̄k = 0. By implementing

this scheme, we not only update the direction of exploration via the iterative PI control

law (4.44), but also the magnitude of the exploration via covariance adaptation (4.45). The

covariance adaptation scheme has shown significant improvement in terms of convergence

speed in policy search [111]. More technical details and interpretations can be found in

[110]. However, our covariance adaptation method is different from previous related works

such as [111]. In our case the noise covariance is time-dependent, i.e., Σnew
ε,k depends on

the time step k. More precisely, the exploration magnitude is different and updated at each

time step along trajectories. At the next iteration, the exploration noise ε1, ..., εH will be

sampled from the updated distribution N (ε̄1,Σ
new
ε,1), ...,N (ε̄H ,Σ

new
ε,H). In contrast, [111]

uses the same noise covariance at each time step to generate trajectories. An algorithm for

episodic reinforcement learning (RL) is summarized in Algorithm 4. This algorithm can

be easily extended to perform model predictive control (MPC).

4.3.4 Relation to Existing Works

In the following we summarize the novel features of the proposed framework. Our method

is derived from the original PI and iterative PI control paradigm [34, 35, 36, 99]. It dif-

fers form these works in three major ways: 1) these methods require full knowledge of the

dynamics model. In contrast, our method is data-driven. 2) Our method performs sam-

pling in belief space and each sample takes into account model uncertainty. 3) Our method

uses covariance adaptation in probability-weighted averaging, which lead to significantly

improved convergence speed. In contrast [34, 35, 36, 99] keep a fixed noise covariance.

Compared with PI-based policy search approaches [39, 40, 43], our method does not re-

quire policy parameterization or demonstration for policy initialization. In particular, the

covariance adaptation scheme has been used in [40] for policy search. Our method differs

from [40] because 1) our method is probabilistic model-based, while [40] is model-free.

The benefits of probabilistic model-based method was discussed in [55]. 2) Our control

93

Algorithm 4 Path Integral Control with Covariance Adaptation under Unknown Dynamics
1: Given: The number of sample N , number of random feature r, parameters B, G and

R
2: Initialization: Collect data from the physical model (4.20) using random controls.
3: Model learning: Train GP hyperparameters. Sample random features and compute

their weights (sec.4.3.2).
4: repeat
5: for k = 1:H do
6: repeat
7: Sample: Generate N trajectories in the augmented belief space

tk:H,1, ..., tk:H,N using
exploration noises εk:H,1, ..., εk:H,N sampled from N (0,Σε,k:H).

8: Evaluate: Compute trajectory cost for each sample S̃1(τ |tk:H), ..., S̃N(τ |tk:H).
9: Probability: Compute probability for each sample P̃1(τ |tk:H), ..., P̃N(τ |tk:H),

see (4.44).
10: Control update: Update control via probability-weighted averaging ua,newk:H =

ua,oldk:H + δuk:H , see (4.44).
11: Covariance adaptation: Update exploration noise covariance matrices

Σε,k:H =
∑N

i=1 P̃i(τ |tk:H)
(εk:H,i − ε̄k:H)(εk:H,i − ε̄k:H)T.

12: until Convergence
13: Execution: Apply ua,newk to the original system (4.20). Move one step forward.

Incorporate new data
and update model (see section 4.3.2).

14: end for
15: until Task learned
16: return Optimal control sequence.

94

policy is time-varing, in contrast to time-invariant parameters in [40]. Recently a gradient-

based PI control method based on GPs was introduced in [44]. This method is sample

efficient but requires partial model knowledge and the system has to be affine in control.

In contrast, our method has no such assumption. Furthermore, our method takes advantage

of fast probabilistic inference in SSGPs which is much more computationally efficient than

full GP inference. Another key aspect of the proposed approach is that computation for

probabilistic inference can be done in parallel (see fig. 4.3a). Real-time implementation

requires a Graphic Processing Unit (GPU).

Target

Start

(a) (b)

Figure 4.3: (a) Sampling of belief trajectories via probabilistic inference. The solid line
and error ellipse represent predictive mean and variance of the state, respectively. The
computation of probabilistic inference can be distributed in parallel. (b) Cart-pole swing
up task.

4.3.5 Experiments and Analysis

In this section we evaluate the performance of the proposed framework using a simulated

cart-pole swing up task, see fig. 4.3b. The cart-pole is an under-actuated systems consist

of a cart and a single pendulum (4 states and 1 control). The tasks is to swing-up the

pendulum from the initial position (point down). We consider a quadratic state cost function

95

Method Optimized av-
erage optimized
total cost

Samples from the
true model

Samples from the
learned model

Number of iter-
ation per time
step

Our method 3.57×104 8 total 300 per iteration 20
Iterative PI
[109]

3.62×104 300 per iteration N/A 20

Table 4.2: Comparison between our method under unknown dynamics and the iterative PI
control with known dynamics model for the cart-pole swing up task.

q(x) = (x− xtarget)TQ(x− xtarget), and therefore

Ex[q(x)] = (µ− xtarget)TQ(µ− xtarget) + Tr(ΣQ),

where x ∼ N (µ,Σ). We initialized our algorithm by 8 trajectories sampled from the true

dynamics model using random controls. In order to demonstrate the effect of covariance

adaptation, we also implemented our algorithm with constant exploration noise covariance.

We performed 5 independent experiments for both cases and the comparison is shown in

fig.4.4. Our covariance adaptation scheme significantly improves the convergence perfor-

mance. This is because exploration magnitude decreased quickly after a few iterations.

The trajectory costs by executing the optimized controls are shown in fig. 4.5. Table 4.2

compares the performance of our method and the iterative PI controller [109] with known

dynamics model. For both methods we used 300 samples and performed 20 iterations per

time step during optimization. Note that our method only uses 8 samples from the true

systems for model learning, and the 300 samples were generated from the learned SSGP

model. Our data-driven method performed well in terms of cost reduction. The iterative PI

controller generally requires more samples and iterations to achieve optimal performance.

In contrast, our method is more efficient and robust to modeling errors because 1) each

sample is generated by probabilistic inference and weighted by its predictive uncertainty,

2) covariance adaptation improves convergence speed.

96

10 20 30 40 50 60 70 80 90 100

Iteration

0

2

4

6

8

10

12

T
o

ta
l

tr
a

je
c

to
ry

 c
o

s
t

×10
5 300 trajectories/iteration (5 independent trials)

Without covariance adaptation

With covariance adaptation

Figure 4.4: Comparison in terms of total trajectory cost reduction at each iteration during
optimization.

10 20 30 40 50 60

Time step

0

200

400

600

800

1000

1200

C
o

s
t

Figure 4.5: Trajetory costs collected by executing optimized controls on the true dynamics
model (5 independent trials).

97

4.3.6 Summary and Discussion

We have introduced a data-driven stochastic control method based on the path integral (PI)

control formulation and probabilistic inference. Similar to related PI control methods [34,

43, 39, 40, 109], we perform sampling and probability-weighted averaging to obtain opti-

mal controls. In contrast to these methods, our method does not rely on model knowledge

or policy parameterization. A key feature of our method is that sampling is performed in

the belief space and each sample takes into account model uncertainty. In addition, we

leverage covariance adaptation in order to tune the exploration magnitude automatically.

We presnted a numerical example demonstrating that 1) our method achieves good perfor-

mance in terms of cost reduction using much less samples from the true system than [109],

2) our covariance adaptation scheme improves convergence speed. Our future work will

focus on GPU implementation of our method and applications in robotics.

98

CHAPTER 5

PREDICTION UNDER UNCERTAINTY IN SPARSE SPECTRUM GAUSSIAN

PROCESSES

Sparse Spectrum Gaussian Processes (SSGPs) are a powerful tool for scaling Gaussian pro-

cesses (GPs) to large datasets. Existing SSGP algorithms for regression assume determin-

istic inputs, precluding their use in many real-world robotics and engineering applications

where accounting for input uncertainty is crucial. We address this problem by proposing

two analytic moment-based approaches with closed-form expressions for SSGP regression

with uncertain inputs. Our methods are more general and scalable than their standard GP

counterparts, and are naturally applicable to multi-step prediction or uncertainty propaga-

tion. We show that efficient algorithms for Bayesian filtering and stochastic model pre-

dictive control can use these methods, and we evaluate our algorithms with comparative

analyses and both real-world and simulated experiments.

5.1 Introduction

The problem of prediction under uncertainty, appears in many fields of science and engi-

neering that involve sequential prediction including state estimation [112, 113], time series

prediction [49], stochastic process approximation [114], and planning and control [50, 44].

In these problems, uncertainty can be found in both the predictive models and the model’s

inputs. Formally, we are often interested in finding the probability density of a prediction

y, given a distribution p(x) and a probabilistic model p(y|x). By marginalization,

p(y) =

∫
p(y|x)p(x) dx. (5.1)

99

Unfortunately, computing this integral exactly is often intractable. In this chapter, we tackle

a subfamily of (5.1) where: 1) the probabilistic model is learned from data and specified

by a sparse spectrum representation of a Gaussian process (SSGP); and 2) the input x

is normally distributed. We show that analytic expressions of the moments of p(y) can be

derived and that these are directly applicable to sequential prediction problems like filtering

and control.

Related work

Gaussian Process (GP) regression with uncertain inputs has been addressed by [48, 49],

and extended to the multivariate outputs by [69]. These methods have led to the develop-

ment of many algorithms in reinforcement learning [60, 50], Bayesian filtering [112, 70],

and smoothing [113]. However, these approaches have two major limitations: 1) they are

not directly applicable to large datasets, due to the polynomial time complexity for exact

inference [47]; and 2) analytic moment expressions, when used, are restricted to squared

exponential (SE) kernels [69] and cannot be generalized to other kernels in a straightfor-

ward way.

A common method for approximating large-scale kernel machines is through random

Fourier features [106]. The key idea is to map the input to a low-dimensional feature space

yielding fast linear methods. In the context of GP regression (GPR), this idea leads to the

sparse spectrum GPR (SSGPR) algorithm [91]. SSGP has been extended in a number of

ways for, e.g. incremental model learning [107], and large-scale GPR [115, 116]. How-

ever, to the best of our knowledge, prediction under uncertainty for SSGPs has not been

explored. Although there are several alternative approximations to exact GP inference in-

cluding approximating the posterior distribution using inducing points, e.g., [84, 117, 118],

comparing different GP approximations is not the focus of this chapter.

100

Applications

We consider two key problems that are widely encountered in robotics and engineering:

Bayesian filtering and stochastic model predictive control.

The goal of Bayesian filtering is to infer a hidden system state through the recursive ap-

plication of Bayes’ rule. Well-known frameworks for Bayesian filtering include unscented

Kalman Filtering (UKF), particle filtering (PF), extended Kalman filtering (EKF), and as-

sumed density filtering (ADF). GP-based Bayesian filtering with SE kernels has been de-

veloped for these frameworks by [112, 70]. We extend this work with highly efficient

SSGP-based EKF and ADF algorithms.

The goal of stochastic model predictive control (MPC) is to find finite horizon optimal

control at each time instant. Due to the high computational cost of GP inference and real-

time optimization requirements in MPC, most GP-based control methods [50, 85, 119] are

restricted to episodic reinforcement learning tasks. To cope with this challenge, we present

an SSGP-based MPC algorithm that is fast enough to perform probabilistic trajectory opti-

mization and model adaptation on-the-fly.

Our contributions

• We propose two approaches to prediction under uncertainty in SSGPs with closed-

form expressions for the predictive distribution. Compared to previous GP counter-

parts, our methods: 1) are more scalable, and 2) can be generalized to any continuous

shift-invariant kernels with a Fourier feature representation.

• We demonstrate successful applications of the proposed approaches by presenting

scalable algorithms for 1) recursive Bayesian filtering and 2) stochastic model pre-

dictive control via probabilistic trajectory optimization.

The rest of the chapter is organized as follows. In §5.2, we give an introduction to

SSGPs, which serves as our probabilistic model. Derivation and expressions of the two

101

proposed prediction methods are detailed in §5.3. Applications to filtering and control, and

experimental results are presented in §5.4 and §5.5 respectively. Finally §5.7 concludes the

chapter.

5.2 Sparse Spectral Representation of GPs

Consider the task of learning the function f : Rd → R, given IID data D = {xi, yi}ni=1,

with each pair related by

y = f(x) + ε, ε ∼ N (0, σ2
n), (5.2)

where ε is IID additive Gaussian noise. Gaussian process regression (GPR) is a principled

way of performing Bayesian inference in function space, assuming that function f has

a prior distribution f ∼ GP(m, k), with mean function m : Rd → R and kernel k :

Rd×Rd → R. Without loss of generality, we assumem(x) = 0. Exact GPR is challenging

for large datasets due to its O(n3) time and O(n2) space complexity [47], which is a direct

consequence of having to store and invert an n× n Gram matrix.

Random features can be used to form an unbiased approximation of continuous shift-

invariant kernel functions, and are proposed as a general mechanism to accelerate large-

scale kernel machines [106], via explicitly mapping inputs to low-dimensional feature

space. Based on Bochner’s theorem, the Fourier transform of a continuous shift-invariant

positive definite kernel k(x, x′) is a proper probability distribution p(ω), assuming k(x, x′)

is properly scaled [106]:

k(x, x′) =

∫
p(ω)ejω

T (x−x′) dω

= E(φω(x)φω(x′)∗), ω ∼ p(ω),

(5.3)

where φω(x) = ejω
T x, and we can see that k(x, x′) only depends on the lag vector separat-

ing x and x′: x − x′. Equation (5.3) leads to an unbiased finite sample approximation of

102

k: k(x, x′) ≈ 1
m

∑
φωi(x)φωi(x

′)∗, where random frequencies {ωi}mi=1 are drawn IID from

p(ω). Utilizing the fact that φω can be replaced by sinusoidal functions since both p(ω)

and k(x, x′) are reals, and concatenating features {φωi}mi=1 into a succinct vector form, an

approximation for k(x, x′) is expressed as

k(x, x′) ≈ φ(x)Tφ(x′), φ(x) =

φc(x)

φs(x)

 , (5.4)

φci(x) = σk cos(ωTi x), φsi (x) = σk sin(ωTi x), ωi ∼ p(ω),

where σk is a scaling coefficient. For the commonly used Squared Exponential (SE) ker-

nel: k(x, x′) = σ2
f exp(−1

2
‖x − x′‖2

Λ−1), p(ω) = N (0,Λ−1) and σk =
σf√
m

, where the

coefficient σf and the diagonal matrix Λ are the hyperparameters, examples of kernels and

corresponding spectral densities can be found in Table 5.1.

In accordance with this feature map (5.4), Sparse Spectrum GPs are defined as follows

Definition 2. Sparse Spectrum GPs (SSGPs) are GPs with kernels defined on the finite-

dimensional and randomized feature map φ (5.4):

k(x, x′) = φ(x)Tφ(x′) + σ2
nδ(x− x′), (5.5)

where the function δ is the Kronecker delta function.

The second term in (5.5) accounts for the additive zero mean Gaussian noise in (5.2),

if the goal is to learn the correlation between x and y directly as in our case of learning the

probabilistic model p(y|x), instead of learning the latent function f .

Because of the explicit finite-dimensional feature map (5.4), each SSGP is equivalent

to a Gaussian distribution over the weights of features w ∈ R2m. Assuming that prior

distribution of weights w is N (0, I) 1 and the feature map is fixed, after conditioning on
1I is the identity matrix with proper size. The prior covariance is identity since E (f(x)f(x)) =

103

the data D = {xi, yi}ni=1, the posterior distribution of w is 2

w ∼ N (α, σ2
nA
−1), (5.6)

α = A−1ΦY, A = ΦΦT + σ2
nI,

which can be derived through Bayesian linear regression. In (5.6), the column vector Y and

the matrix Φ are specified by the data D: Y =

[
y1 . . . yn

]T
, Φ =

[
φ(x1) . . . φ(xn)

]
.

Consequently, the posterior distribution over the output y in (5.2) at a test point x is ex-

actly Gaussian, in which the posterior variance explicitly captures the model uncertainty in

prediction with input x:

p(y|x) = N (αTφ(x), σ2
n + σ2

n‖φ(x)‖2
A−1). (5.7)

This Bayesian linear regression method for SSGP is proposed in [91]. Its time complexity

is O(nm2 + m3), which is significantly more efficient than standard GPR’s O(n3) when

m� n.

Remark It’s worth noting that the methods proposed in this chapter are not tied to specific

algorithms for SSGP regression such as Bayesian linear regression [91], but able to account

for any SSGP with specified feature weights distribution (5.6), where posterior α andA can

be computed by any means. Variations on A include sparse approximations by a low rank

plus diagonal matrix, or iterative solutions by optimization methods like doubly stochastic

gradient descent [115].

E
(
φ(x)TwwTφ(x′)

)
= φ(x)T E(wwT)φ(x′), and E (f(x)f(x′)) = φ(x)Tφ(x′) (see §2.2 in [60] for de-

tails.)
2Conditioning on data D is omitted, e.g., in w|D, for simplicity in notation.

104

5.3 Prediction under Uncertainty

Two methods for prediction under uncertainty are presented under two conditions: 1) the

uncertain input is normally distributed: x ∼ N (µ,Σ), and 2) probabilistic models are in

the form of (5.7) specified by SSGPs. Despite these conditions, evaluating the integral

in (5.1) is still intractable. In this work, we approximate the true predictive distribution

p(y) by a Gaussian distribution with moments that are analytically computed through: 1)

exact moment matching, and 2) linearization of posterior mean function. Closed-form ex-

pressions for predictive mean, variance, covariance, and input-prediction cross-covariance

are derived. We consider multivariate outputs by utilizing conditionally independent scalar

models for each output dimension, i.e., assuming for outputs in different dimension ya and

yb, p(ya, yb|x) = p(ya|x)p(yb|x). For notational simplicity, we suppress the dependency of

φ(x) on x, and treat y as a scalar by default.

5.3.1 Exact moment matching (SSGP-EMM)

We derive the closed-form expressions for exact moments: 1) the predictive mean E y, 2)

the predictive variance VARy and covariance COV(ya, yb), which in the multivariate case

correspond to the diagonal and off-diagonal entries of the predictive covariance matrix, and

3) the cross-covariance between input and prediction COV(x, y).

Using the expressions for SSGP (5.4), (5.7), and the law of total expectation, the pre-

dictive mean becomes

E y = EE(y|x) = E
(
αTφ

)
= αT E

φc
φs

 , (5.8)

Eφci = σk E cos(ωTi x), Eφsi = σk E sin(ωTi x),

where i = 1, . . . ,m, and in the nested expectation EE(y|x), the outer expectation is over

the input distribution p(x) = N (µ,Σ), and the inner expectation is over the conditional

105

distribution p(y|x) (5.7).

By observing (5.8), we see that the expectation of sinusoids under the Gaussian distribu-

tion is the key to computing the predictive mean. Thus, we state the following proposition:

Proposition 1. The expectation of sinusoids over multivariate Gaussian distributions: x ∼

N (µ,Σ), x ∈ Rd, i.e., p(x) = (2π)−
d
2 (det Σ)−

1
2 exp(−1

2
‖x − µ‖2

Σ−1), can be computed

analytically:

E cos(ωTx) = exp(−1

2
‖ω‖2

Σ) cos(ωTµ),

E sin(ωTx) = exp(−1

2
‖ω‖2

Σ) sin(ωTµ).

To prove it, we invoke Euler’s formula to transform the left-hand-side to complex do-

main, apply identities involving quadratic exponentials, and then convert back to real num-

bers. In Proposition 1, the expectations depend on the mean and variance of the input

Gaussian distribution. Intuitively, after passing a Gaussian distributed input through a si-

nusoidal function, the expectation of the output is equal to passing the mean of the input

through the sinusoid, and then scaling it by a constant exp(−1
2
‖ω‖2

Σ), which depends on

the variance of the input. Expectations are smaller with larger input variance due to the

periodicity of sinusoids.

The exact moments are then derived using Proposition 1. By the law of total variance,

the predictive variance is

VARy = EVAR(y|x) + VARE(y|x)

= σ2
n + σ2

n Tr
(
A−1Ψ

)
+ αTΨα− (E y)2,

(5.9)

where Ψ is defined as the expectation of the outer product of feature vectors over input dis-

tribution p(x). Specifically, we compute Ψ by applying the product-to-sum trigonometric

106

identities:

E
(
φφT

)
= Ψ =

Ψcc Ψcs

Ψsc Ψss

 ,
Ψcc
ij =

σ2
k

2

(
E
(
cos(ωi + ωj)

Tx
)

+ E
(
cos(ωi − ωj)Tx

))
,

Ψss
ij =

σ2
k

2

(
E
(
cos(ωi − ωj)Tx

)
− E

(
cos(ωi + ωj)

Tx
))
,

Ψcs
ij =

σ2
k

2

(
E
(
sin(ωi + ωj)

Tx
)
− E

(
sin(ωi − ωj)Tx

))
,

where Ψcc,Ψss,Ψcs are m×m matrices, and i, j = 1, . . . ,m, on whose terms Proposition

1 can be directly applied.

Next, we derive the covariance for different output dimensions for multivariate predic-

tion. These correspond to the off-diagonal entries of the predictive covariance matrix. We

show that, despite the conditional independence assumption for different outputs given a

deterministic input, outputs become coupled with uncertain inputs. Using the law of total

covariance, the covariance is

COV(ya, yb) = COV (E(ya|x),E(yb|x))

= E (E(ya|x),E(yb|x))−(E ya)(E yb)

= αTaΨabαb − (αTa Eφa)(αTb Eφb),

(5.10)

where matrix Ψab is the expectation of the outer product of feature vectors corresponding

to different feature maps φa, φb for outputs ya, yb, computed similarly as in (5.3.1) with

corresponding random frequencies {ωi}, and the scaling coefficient σk (5.4). Vectors αa

and αb are the corresponding weight vectors for ya and yb (5.7). Compared to the expression

for the variance of a single output in (5.9), the term E (COV(ya|x)COV(yb|x)) that is

included in the law of total covariance is neglected due to the assumption of conditional

independence of different outputs (§5.2), so (5.10) does not have the corresponding first

two terms in (5.9).

107

Finally, we compute the cross-covariance between input and each output dimension.

Invoking the law of total covariance:

COV(x, y) = COV(x,E(y|x))

= E (xE(y|x))− (Ex)(E y)

= Υα− (E y)µ,

(5.11)

where matrix Υ is the expectation of the outer product of the input x and the feature vector

φ(x) over input distribution x ∼ N (µ,Σ):

E(xφT) = Υ =

[
Υc

1 . . . Υc
m Υs

1 . . . Υs
m

]
,

Υc
i = σk E

(
cos(ωTi x)x

)
, Υs

i = σk E
(
cos(ωTi x)x

)
,

where i = 1, . . . ,m. We state the following proposition to compute each column in Υ

consisting of expectations of the product sinusoidal functions and inputs.

Proposition 2. The expectation of the multiplication of sinusoids and linear functions over

multivariate Gaussian distributions: x ∼ N (µ,Σ), can be computed analytically:

E
(
cos(ωTx)x

)
=
(
E cos(ωTx)

)
µ− (E(sin(ωTx))Σω,

E
(
sin(ωTx)x

)
=
(
E sin(ωTx)

)
µ+

(
E cos(ωTx)

)
Σω,

where the right-hand-side expectations have analytical expressions (Proposition 1).

To prove it, we find an expression for E
(
aTx cos(ωTx)

)
, for any a, through the complex

domain trick used to prove Proposition 1. Next, the result is extended to E
(
x cos(ωTx)

)
,

by setting a to consist of indicator vectors. Applying Proposition 1 and 2, we complete the

derivation of COV(x, y) in (5.11).

108

Kernel k(x, x′) p(ω)
Gaussian exp(−1

2
‖x− x′‖2

Λ−1) N (0,Λ−1)

Laplacian exp(−‖x− x′‖1)
∏d

i=1
1

π(1+ωi)

Matérn 21−ν

Γ(ν)
rνKν(r) h(2ν

`2
+ 4π2‖ω‖2

2)ν+ d
2

Table 5.1: Examples of continuous shift-invariant positive-definite kernels and their corre-
sponding spectral densities, where r =

√
2ν‖x−x′‖2

`
, Kν is a modified Bessel function, and

h =
2dπ

d
2 Γ(ν+ d

2
)(2ν)ν

Γ(ν)`2ν
.

Remark In summary, SSGP-EMM computes the exact posterior moments. This is equiv-

alent to expectation propagation [120] by minimizing the Kullback-Leibler divergence be-

tween the true distribution and its Gaussian approximation with respect to the natural pa-

rameters. SSGP-EMM’s computation complexity is O (m2k2d2), where m is the number

of features, k is the output dimension, and d is the input dimension. The most computation-

ally demanding part is constructing matrices Ψab (5.10) for each output pair, where each

requires O (m2d2).

Compared to the multivariate moment-matching approach for GPs (GP-EMM) [49, 69]

with O (n2k2d2) time complexity, SSGP-EMM is more efficient when m � n. Moreover,

our approach is applicable to any positive-definite continuous shift-invariant kernel with

different spectral densities (see examples in Table 5.1), while previous approaches like

GP-EMM [69] are only derived for squared exponential (SE) or polynomial kernels. Next

we introduce a more computationally efficient but less accurate approach that avoids the

computation of Ψab’s.

5.3.2 Linearization (SSGP-Lin)

An alternative approach to computing the exact moments of the predictive distribution is

based on the linearization of the posterior mean function in (5.7) at the input mean µ:

m(x) = αTφ(x) ≈ m(µ) + αT Dφ(µ)︸ ︷︷ ︸
M

(x− µ), (5.12)

109

where Dφ(µ) denotes taking the derivative of function φ at µ. Given the definition of

φ in (5.4), Dφ can be found by chain rule: Dφci(x) = −σk sin(ωTi x)ωTi , Dφsi (x) =

σk cos(ωTi x)ωTi .

Utilizing the linearized posterior mean function (5.12), the predictive moments can be

approximated. The predictive mean approximation is

E y = EE(y|x) ≈ m(µ), (5.13)

and the predictive variance approximation is

VARy = EVAR(y|x) + VARE(y|x)

≈ VAR(y|µ) + VAR(αTMx)

= σ2
n + σ2

n‖φ(µ)‖2
A−1 + αTMΣMTα.

(5.14)

and the approximate covariance between output dimension a and b is

COV(ya, yb) = COV (E(ya|x),E(yb|x))

= E
(
αTaMa(x− µ)(x− µ)TMT

b αb
)

≈ αTaMaΣM
T
b αb,

(5.15)

where Ma and Mb are defined as M in (5.12), except that they correspond to feature maps

φa and φb. Notice that the assumption of conditional independence between different out-

puts is invoked here again, cf., (5.10).

Finally, the cross-covariance between the input and output can be approximated as

COV(x, y) = COV(x,E(y|x))

≈ E
(
(x− µ)(αTM(x− µ))

)
= αTMΣ

(5.16)

110

Method SSGP-EMM SSGP-Lin GP-EMM
Time O(m2k2d2) O(m2k +mk2d) O(n2k2d2)
Applicable
kernels

continuous shift-

invariant kernels

continuous shift-

invariant kernels

SE or polynomial ker-

nels

Table 5.2: Comparison of our proposed methods and GP-EMM [49, 69] in terms of com-
putational complexity and generalizability.

Unlike SSGP-EMM, which computes exact moments (§5.3.1), this linearization-based ap-

proach SSGP-Lin computes an approximation of the predictive moments. In contrast to

SSGP-EMM’s O
(
m2k2d

)
computational complexity, the computation time of SSGP-Lin

is reduced to O
(
m2kd

)
, as a direct consequence of avoiding the construction of Ψ (5.3.1)

in SSGP-EMM (5.10), which makes SSGP-Lin more efficient than SSGP-EMM, especially

when the output dimension is high.

Both SSGP-EMM and SSGP-Lin are applicable to a general family of kernels. See

Table 5.2 for a comparison between our methods and GP-EMM [49, 69]. In the next

section, we compare these approaches in applications of filtering and control.

5.4 Applications

We focus on the application of the proposed methods to Bayesian filtering and predictive

control. We begin by introducing Gauss-Markov models, which can be expressed by the

following discrete-time nonlinear dynamical system:

xt+1 = f(xt, ut) + εxt , εxt ∼ N (0,Σεx), (5.17)

yt = g(xt) + εyt , εyt ∼ N (0,Σεy), (5.18)

where xt ∈ Rd is state, ut ∈ Rr is control, yt ∈ Rk is observation or measurement,

εxt ∈ Rd is IID process noise, εyt ∈ Rk is IID measurement noise, and subscript t denotes

discrete time index. We call the probabilistic models (5.17) and (5.18) the dynamics and

111

observation models, and the corresponding deterministic functions f and g the dynamics

and observation functions.

We consider scenarios where f and g are unknown but a datasetD =
(
{(xt, ut), xt+1}n−1

t=1 , {xt, yt}nt=1

)
is provided. The probabilistic models specified by SSGPs can be learned from the dataset,

and then used to model the dynamics and observation (5.17) (5.18). More concretely, the

dynamics model p(xt+1|xt, ut) is learned using state transition pairs {(xt, ut), xt+1}n−1
t=1 ,

and the observation model p(yt|xt) is learned separately from state-observation pairs {xt, yt}nt=1.

5.4.1 Bayesian filtering

The task of Bayesian filtering is to infer the posterior distribution of the current state of

a dynamical system based on the current and past noisy observations, i.e., finding p(xt|t),

where the notation xt|s denotes the random variable xt|y0, . . . , ys. Due to the Markov prop-

erty of the process x, i.e., xt|x0, . . . , xt−1 = xt|xt−1, in Gauss-Markov models, p(xt|t) can

be computed recursively through alternating prediction step and correction step.

Prediction step (xt−1|t−1 → xt|t−1)

In the prediction step, xt−1|t−1 is propagated through the dynamics model p(xt|xt−1, ut−1):

p(xt|t−1) =

∫
p(xt|xt−1, ut−1)p(xt−1|t−1) dxt−1,

which can be viewed as prediction under uncertainty (5.1). Suppose that p(xt−1|t−1) =

N (µ̂t−1|t−1, Σ̂t−1|t−1), with learned SSGP representation for the dynamics, Gaussian ap-

proximations of the output: p(xt|t−1) ≈ N (µ̂t|t−1, Σ̂t|t−1) can be obtained by either SSGP-

EMM (§5.3.1) using (5.8), (5.9) and (5.10), or SSGP-Lin (§5.3.2) using (5.13), (5.14) and

(5.15).

112

Correction step (xt|t−1 → xt|t)

The correction step conditions xt|t−1 on the current observation yt using Bayes’ rule:

p(xt|t) =
p(yt|xt|t−1)p(xt|t−1)∫
p(yt|xt|t−1)p(xt|t−1) dxt

. (5.19)

In the preceding prediction step, we obtain p(xt|t−1) ≈ N (µ̂t|t−1, Σ̂t−1|t−1), which serves

as a prior on xt in this correction step. Due to the intractability of the integral in the denom-

inator, to apply Bayes’ rule we first seek Gaussian approximations for the joint distribution,

as in the previous work on Bayesian filtering relying on GPs [70, 112]:

xt|t−1

yt|t−1

 ∼ N

µ̂t|t−1

µ̂y

 ,
Σ̂t|t−1 Σ̂xy

Σ̂T
xy Σ̂y

 , (5.20)

Invoking p(yt|t−1) =
∫
p(yt|xt|t−1)p(xt|t−1) dxt, the moments µ̂y, Σ̂y, and Σ̂xy in the

joint Gaussian approximation can be computed as the predictive mean, predictive covari-

ance, and input-prediction cross-covariance, for the observation model p(yt|xt) with input

p(xt|t−1), using SSGP-EMM or SSGP-Lin. Having all terms in (5.20) determined, we con-

dition xt|t−1 exactly on current observation yt:

µ̂t|t = µ̂t|t−1 + Σ̂xyΣ̂
−1
y (y − µ̂y),

Σ̂t|t = Σ̂t|t−1 − Σ̂xyΣ̂
−1
y Σ̂xy.

(5.21)

This Gaussian approximation p(xt|t) ≈ N (µ̂t|t, Σ̂t|t) is then used as input to the prediction

step. Thus, we have shown that starting from p(x0) = N (µ0,Σ0), by consecutively apply-

ing prediction and correction steps presented above, we recursively obtain state estimates

for xt|t−1 and xt|t. Rather than using a finite sample-based approximation such as in the

GP-UKF [112], the Gaussian approximations of the full densities p(xt|t) and p(xt|t−1) are

propagated.

113

Algorithm 5 SSGP-ADF and SSGP-EKF
1: Model learning: collect dataset D, and learn SSGP dynamics and observations models

(§5.2.)

2: Initialization: set prior p(x0).

3: for t = 1, . . . do

4: Prediction: compute µ̂t|t−1 and Σ̂t|t−1 . by either SSGP-EMM (§5.3.1) or SSGP-Lin

(§5.3.2).

5: Measurement: make an observation yt.

6: Correction: compute µ̂t|t and Σ̂t|t according to (5.21) by either SSGP-EMM

(§5.3.1) or SSGP-Lin (§5.3.2).

7: end for

We summarize the resulting filtering algorithm SSGP-ADF (assumed density filtering)

and SSGP-EKF (extended Kalman filtering), based on SSGP-EMM and SSGP-Lin, respec-

tively, in Algorithm 5. These are analogs of GP-ADF [70] and GP-EKF [112].

5.4.2 Stochastic Model Predictive Control

The stochastic model predictive control (MPC) problem is to choose a control sequence

that minimizes the expected cost, provided p(xt):

u?t+1:t+T = argmin
ut+1:t+T

E
(
h(xt+T) +

i+T∑
i

l(xt+i, ut+i)
)
,

at each time step, subject to stochastic system dynamics (5.17), where function h : Rd →

R and l : Rd ×Rr → R are the final and running cost respectively.

There are two main challenges to applying MPC in practice: 1) MPC requires an ac-

curate dynamics model for multi-step prediction, and 2) online optimization is very com-

putationally expensive. For clarity in presentation, we will assume that the state is fully

observable henceforth.

114

Algorithm 6 MPC via probabilistic trajectory optimization (1-3: offline optimization, 4-8:
online optimization)

1: Model learning: collect dataset D, and learn SSGP dynamics model (§5.2).

2: Initialization: set t = 0, and estimate p(x0).

3: Trajectory optimization: perform trajectory optimization in belief space, obtain

u?t+1:t+T .

4: repeat

5: Policy execution: apply one-step control u?t+1 to the system and move one step

forward, update t = t+ 1.

6: Model adaptation: incorporate new data and update SSGP dynamics model.

7: Trajectory optimization: perform re-optimization with the updated model. Initial-

ize with the previously optimized trajectory and obtain new u?t+1:t+T .

8: until Task terminated

MPC via probabilistic trajectory optimization

We address the aforementioned challenges by employing a combination of prediction under

uncertainty and trajectory optimization. More precisely, we use SSGP-EMM or SSGP-Lin

to efficiently obtain approximate Gaussian distribution over trajectory of states and perform

trajectory optimization in the resultant Gaussian belief space based on differential dynamic

programming (DDP) [58, 29]. Note that DDP-related methods require computation of first

and second order derivatives of the dynamics and cost. Our analytic moment expressions

provide a robust and efficient way to compute these derivatives.

Within the SSGP framework, we may incrementally update the posterior distribution

over the feature weights w (5.6) given a new sample without storing or inverting the matrix

A explicitly, Instead we keep track of its upper triangular Cholesky factorA = RTR [107].

Given a new sample, a rank-1 update is applied to the Cholesky factor R, which requires

O(m2) time. To cope with time-varying systems and to make the method more adaptive,

we employ a forgetting factor λ ∈ (0, 1), such that the impact of the previous samples

115

decays exponentially in time [121].

Our proposed MPC algorithm, summarized in Algorithm 6, is related to several algo-

rithms and differs in both model and controller learning. First, SSGPs are more robust to

modeling error than Locally Weighted Projection Regression (LWPR) used in iLQG-LD

[59]. See a numerical comparison in [107]. Second, we efficiently propagate uncertainty in

multi-step prediction which is crucial in MPC. In contrast, AGP-iLQR [68] drops the input

uncertainty and uses subset of regressors (SoR-GP) which lacks a principled way to select

reference points. In addition, PDDP [85] uses GPs which are computationally expensive

for online optimization. Two deep neural networks are used for modeling in [122], which

make it difficult to perform online incremental learning, as we do here.

-10 -5 0 5 10
-30

-20

-10

0

10

20

30
GP-ADF

(a) GP-ADF (800 data points)

-10 -5 0 5 10
-30

-20

-10

0

10

20

30
SSGP-ADF

(b) SSGP-ADF (10 features)

-10 -5 0 5 10
-30

-20

-10

0

10

20

30
GP-EKF

(c) GP-EKF (800 data points)

-10 -5 0 5 10
-30

-20

-10

0

10

20

30
SSGP-EKF

(d) SSGP-EKF (10 features)

Figure 5.1: Black points are ground truth states, red areas are filter distributions for (a) GP-
ADF [70], (c) GP-EKF [112], our proposed methods (b) SSGP-ADF and (d) SSGP-EKF.
The x-axis is the mean of initial belief p(x0), which is randomly distributed in [−10, 10]
and y-axis shows the mean and twice the standard deviation of filtered distribution p(x1|y1)
after observing y1.

116

(a) Autonomous driving task (b) Filtered distribution vs. ground truth

(c) NLx vs. # of features

Figure 5.2: Recursive filtering task for high-speed autonomous driving. Figure (b) shows
trajectories of all the states of a 30 seconds continuous driving (1,200 steps), where blue
lines are the ground truth, and red lines and red areas are the mean and twice the standard
deviation of the filtered distributions respectively. In (c), the red line and area are the mean
and twice the standard deviation of NLx over six 30 seconds driving with varying number
of features.

5.5 Experimentals and Analysis

5.5.1 Bayesian filtering

1D One-step filtering

We consider a synthetic dynamical system with ground-truth dynamics f(x) = 1
2
x + 25x

1+x2

and observation g(x) = 6 sin(2x) with Σεx = 1.52 and Σεy = 1 in (5.17,5.18), in a sim-

ilar setting to [70]. We compare the performance of four filters, SSGP-ADF, SSGP-EKF,

GP-ADF [70] and GP-EKF [112]. All models are trained using 800 samples. However,

for SSGP models, only 10 random Fourier features of a SE kernel are used. Figure 5.1

117

Method SSGP-ADF SSGP-EKF GP-ADF GP-EKF
NLx 2.5003 3.415467 2.489385 3.396343
RMSE 4.6822 5.1451 4.6854 5.1012

Table 5.3: Comparison of our methods with GP-ADF [70] and GP-EKF [112] in terms
of average NLx (negative log-likelihood) of the ground truth states given estimates and
RMSE (root-mean-square error). Lower values are better. The results correspond to the
filtering task in sec 5.5.1.

illustrates the comparison of filtered state distribution of a typical realization. We evaluate

the methods by computing NLx (the negative log-likelihood of the ground truth samples

in the filtered distribution) and RMSE (root-mean-square error between filtered mean and

ground truth samples). See Table 5.3 for a detailed comparison. Our methods SSGP-ADF

and SSGP-EKF are able to offer close performance with their full GP counterparts but with

greatly reduced computational cost. See the discussion section for further discussions on

the comparison between SSGP-ADF and SSGP-EKF.

Recursive filtering

We next consider a state estimation task in high-speed autonomous driving on a dirt track

(Figure 5.2a). The goal is to recursively estimate the state of an autonomous rallycar given

noisy measurements. The vehicle state consists of linear velocities (x and y), heading

rate, and roll angle, in body frame. Controls are steering and throttle. Measurements are

collected by wheel speed sensors. This filtering task is challenging because of the complex

nonlinear dynamics and the amount of noise in the measurements. We do not use any prior

model of the car, but learn the model from ground truth estimates of vehicle state generated

by integrating GPS and IMU data via iSAM2 [123]. 50,000 samples are collected from

wheel speed sensors and ground truth state estimates from iSAM2 for training. Because

of the sample size, it is too computationally expensive to use GP-based filter such as GP-

ADF [70]. Instead, we use SSGP-ADF to perform 1,200 recursive filtering steps which

correspond to 30 seconds of high-speed driving. Filtered distributions using 80 features are

shown in Figure 5.2b, and Figure 5.2c shows the mean and twice the standard deviation

118

of NLx over six 30 seconds driving with different number of features. Surprisingly, only

need a small number of features is necessary for satisfactory results.

5.5.2 Model Predictive Control

Tracking a moving target

We consider the Puma-560 robotic arm and quadrotor systems with dynamics model spec-

ified by SSGPs. For both tasks the goal is to track a moving target. In addition, the true

system dynamics vary online, which necessitates both online optimization and model up-

date, as we do here. The tasks are described as follow:

PUMA-560 task: moving target and model parameter changes

The task is to steer the end-effector to the desired position and orientation. The desired

state is time-varying over 800 time steps as shown in fig.5.3a. We collected 1000 data

points offline and sampled 50 random features for both of our methods. Similarly for AGP-

iLQR we used 50 reference points. In order to show the effect of online adaptation, we

increased the mass of the end-effector by 500% at the beginning of online learning (it is

fixed during learning).

Quadrotor task: time-varying tasks and dynamics

The objective is to start at (-1, 1, 0.5) and track a moving target as shown in fig.5.3b for 400

steps. The mass of the quadrotor is decreasing at a rate of 0.02 kg/step. The controls are

thrust forces of the 4 rotors and we consider the control constraint umin = 0.5, umax = 3.

We collected 3000 data points offline, and sampled 100 and 400 features for online learning.

The forgetting factor for online learning λ = 0.992. SSGP-Lin was used for approximate

inference. The receding-horizon DDP (RH-DDP) [29] with full knowledge of the dynamics

model was used as a baseline.

119

-1

1

-0.5

0.5

0

Z

Y

0

0.5

-0.5

1

1

X

0.5-1
0

-0.5
-1

End-effector

(a) Puma 560 task

-1
0
1
2

H
e
ig

h
t

(m
) 3

Quadrotor

5

5

Y Position (m)

0

X Position (m)

0

-5
-5

(b) Quadrotor task

Figure 5.3: PUMA-560 and quadrotor tasks

Results in terms of cost l(xt, ut) are shown in Figure 5.5. Figure 5.5a shows that our

methods outperform iLQG-LD [59] and AGP-iLQR [68]. The similarities and differences

between these methods have been discussed in §5.4.2. Figure 5.5b shows that model update

is necessary and more features could improve performance.

120

Autonomous drifting

We study the control of an autonomous car during extreme operating conditions (power-

slide). The task is to stabilize the vehicle to a specified steady-state using purely longitu-

dinal control during high-speed cornering. This problem has been studied in [124] where

the authors developed a LQR control scheme based on a physics-based dynamics model.

We apply our MPC algorithm to this task without any prior model knowledge and 2,500

data points generated by the model in [124]. SSGP-Lin is used for multi-step prediction.

Results and comparison to [124] are illustrated in Figure 5.4.

-20 -15 -10 -5 0 5

-10

-5

0

5

10

Start

-20 -15 -10 -5 0 5

-10

-5

0

5

10

Start

0 100 200 300 400 500
6
7
8
9

V

0 100 200 300 400 500
-60
-50
-40
-30

0 100 200 300 400 500
0.5
1

1.5
2

V/
R

-20 -15 -10 -5 0 5

-10

-5

0

5

10

Start

0 100 200 300 400 500
6
7
8
9

V

0 100 200 300 400 500
-60
-50
-40
-30

0 100 200 300 400 500
0.5
1

1.5
2

V/
R

β β

0 100 200 300 400 500
6
7
8
9

V

0 100 200 300 400 500
-60
-50
-40
-30

0 100 200 300 400 500
0.5
1

1.5
2

V/
R

β

Figure 5.4: Comparison of the drifting performance using 50 (left), 150 (middle) and 400
(right) random features. Blue lines are the solution provided in [124]. Performance im-
proves with a larger number of features, and with a moderate number of features, MPC
with SSGP-Lin behaves very closely to the ground truth solution.

5.5.3 Additional experiments on approximate inference

We compare the proposed approximate inference methods with three existing approaches:

the full GP exact moment matching (GP-EMM) approach [48, 49, 69], Subset of Regres-

sors GP (SoR-GP) [47] used in AGP-iLQR [68], and LWPR [125] used in iLQG-LD [59].

Note that SoR-GP and LWPR do not take into account input uncertainty when performing

121

100 200 300 400 500 600 700 800

Time step

100

101

102

103

104

C
o

st

Our method (SSGP-EMM)
Our method (SSGP-Lin)
iLQG-LD (LWPR)
AGP-iLQR (SoR-GP)

(a) Robotic arm task cost

100 200 300 400

Time step

5

10

15

20

25

C
o

s
t

With model adaptation (400 feat)

With model adaptation (100 feat)

Without model adaptation (100 feat)

RH-DDP with known model

(b) Quadrotor task cost

Figure 5.5: Cost comparison for arm and quadrotor tasks.

regressions. We consider two multi-step prediction tasks using the dynamics models of a

quadrotor (16 state dimensions, 4 control dimensions) and a Puma-560 manipulator (12

state dimensions, 6 control dimensions).

Accuracy of multi-step prediction

In the following, we evaluate the performance in terms of prediction accuracy. We collected

training sets of 1000 and 2000 data points for the quadrotor and puma task, respectively.

We used 100 and 50 random features for our methods. We used 100 and 50 reference

points for SoR-GP. Based on the learned models, we used a set of 10 initial states and

control sequences to perform rollouts (200 steps for quadrotor and 100 steps for Puma)

and compute the cost expectations at each step. Fig.5.6(a)(b) shows the cost prediction

errors, i.e.(L(xk) − EL(xk))
2. It can be seen that SSGP-EMM is very close to GP-EMM

and SSGP-EMM performs slightly better than SSGP-Lin in all cases. Since SoR-GP and

LWPR do not take into account input uncertainty when performing regression, our methods

outperform them consistently.

122

50 100 150 200

Time step

0

5

10

15

S
q

u
a

re
d

 E
rr

o
r

SSGP-EMM (100 feat)

SSGP-Lin (100 feat)

GP-EMM (2000 pts)

SoR-GP (100 ref pts)

LWPR

(a) Quadrotor

20 40 60 80 100

Time step

0

10

20

30

40

50

S
q

u
a

re
d

 E
rr

o
r

SSGP-EMM (50 feat)

SSGP-Lin (50 feat)

GP-EMM (1000 pts)

SoR-GP (50 ref pts)

LWPR

(b) Puma 560

1 20 30 40 50

Dimension

10
-4

10
-2

10
0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
a
l
ti

m
e
 (

s
e
c
)

SGP-Lin (50 feat)

SGP-Lin (100 feat)

SGP-Lin (200 feat)

SGP-Lin (400 feat)

GP-EMM (800 pts)

(c) Computation time

1 20 30 40 50

Dimension

10
-4

10
-2

10
0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
a
l
ti

m
e
 (

s
e
c
)

SGP-EMM (50 feat)

SGP-EMM (100 feat)

SGP-EMM (200 feat)

SGP-EMM (400 feat)

GP-EMM (800 pts)

(d) Computation time

Figure 5.6: (a)-(b): Approximate inference accuracy test. The vertical axis is the squared
error of cost predictions for (a) quadrotor system and (b) Puma 560 system. Error bars
represent standard deviations over 10 independent rollouts. (c)-(d): Comparison of com-
putation time on a log scale between (c) SSGP-Lin and GP-EMM; (d) SSGP-EMM and
GP-EMM. The horizontal axis is the input and output dimension (equal in this case). Ver-
tical axis is the CPU time in seconds.

Computational efficiency

In terms of the computational demand, we tested the CPU time for one-step prediction us-

ing SSGP-EMM and SSGP-Lin and full GP-EMM. We used sets of 800 random data points

of 1,10,20,30,40,50,60,70,80,90 and 100 dimensions to learn SSGP and GP models. The

results are shown in fig.5.6c,5.6d. Both SSGP-EMM and SSGP-Lin show significantly less

computational demand than GP-EMM with similar prediction performance (fig.5.6c,5.6d).

123

Our methods are more scalable than GP-EMM, which is the major computational bottle-

neck for probabilistic model-based RL approaches [50, 85].

5.6 Discussion

5.6.1 Conditional independence between outputs

To deal with multivariate outputs, the assumption of conditional independence between

any two output dimensions is imposed, which implies that 1) the noise for different out-

puts are independent, e.g., Gaussian noise with diagonal covariance matrix, and 2) there’s

no cross-dependence between channels in the prior, e.g., a vector-valued Gaussian process

(GP) prior with a matrix-valued kernel function that only has nonzero entries on the di-

agonal. These two conditions may be violated in practice. On one hand, the noise may

not be independent in general, e.g., wind blowing in some direction causes coupled noise

on acceleration for aircraft. On the other hand, one may wish to exploit useful structure

between different channels by incorporating them in the prior, e.g., dependence of velocity

and acceleration in learning dynamics, and the relation between inverse dynamics models

for different loads [126]. But, nevertheless, conditional independence is assumed in most

of the related work [50, 112]. And we made this assumption in our experiments as well.

To accommodate conditional dependence in a principled way, vector-valued Gaussian

processes can be used [127, 128]. This generally results in a more complicated model with

additional computational cost. Incorporating vector-valued GPs would be an interesting

extension of this work.

5.6.2 SSGP-EKF vs. SSGP-ADF

Given the results shown earlier, SSGP-EKF seems to underestimate the variance of the

filtered distribution when the input is around zero compared with GP-EKF. In this exper-

iment, only 10 random Fourier features were used to approximate an SE kernel. As the

number of features increases, the filtered distributions using GP-EKF and SSGP-EKF look

124

more similar.

In general, we hypothesize that SSGP-Lin is more sensitive to a small number of fea-

tures than SSGP-EMM. In SSGP-Lin we use a locally linear approximation of a nonlinear

function, and map a Gaussian distribution through this linear function. Intuitively, this lo-

cally linear approximation may vary significantly with the number of features, especially

when the number of features is small. In contrast, in SSGP-EMM we compute the moments

of the predictive distribution without this locally linear approximation. In order to validate

this hypothesis, we performed additional experiments on a one-step approximate inference

task, shown in fig. 5.7. This exact phenomenon was observed in these experimental results.

More precisely, when a small number of features are used (less than 20), the difference

between SSGP-Lin and GP-Lin is greater than the difference between SSGP-EMM and

GP-EMM, where the difference is measured by the KL divergence between the predictive

distributions.

5 10 15 20 25 30 35 40 45 50

Number of features

0

1

2

3

K
L

 d
iv

e
rg

e
n

c
e

Moment-matching

Linearization

Figure 5.7: KL divergences between SSGP-EMM and GP-EMM, SSGP-Lin and GP-Lin

125

5.7 Summary

We introduced two analytic moment-based approaches to prediction under uncertainty in

sparse spectrum Gaussian processes (SSGPs). Compared to their full GP counterparts, our

methods are more general: they are applicable to any continuous shift-invariant kernel.

They also scale to larger datasets by leveraging random features with frequencies sampled

from the spectral density of a given kernel (see Table 5.1, 5.2). Although we adopt the name

SSGP, our proposed methods are not tied to specific model learning methods such as linear

Bayesian regression [91]. They can be applied to any SSGP with a specified feature weight

distribution (5.6), and α and A can be computed via different approaches. For example, A

can be iteratively computed by methods like doubly stochastic gradient descent [115].

We studied the application of the proposed methods to Bayesian filtering and model

predictive control. Our methods directly address the challenging aspects of these problems:

model uncertainty and real-time execution constraints. We evaluated our algorithms on

real-world and simulated examples and showed that SSGP-EMM (§5.3.1) and SSGP-Lin

(§5.3.2) are accurate alternatives to their full GP counterparts when learning from large

amounts of data.

126

CHAPTER 6

DEEP IMITATION LEARNING FOR AGILE AUTONOMOUS DRIVING

In this chapter, we present an end-to-end imitation learning system for agile, off-road au-

tonomous driving using only low-cost on-board sensors. By imitating an optimal controller,

we train a deep neural network control policy to map raw, high-dimensional observations to

continuous steering and throttle commands, the latter of which is essential to successfully

drive on varied terrain at high speed. Compared with recent approaches to similar tasks, our

method requires neither state estimation nor online planning to navigate the vehicle. Real-

world experimental results demonstrate successful autonomous off-road driving, matching

the state-of-the-art performance.

6.1 Introduction

High-speed autonomous off-road driving is a challenging robotics problem [19, 20, 21]

(Fig. 6.1). To succeed in this task, a robot is required to perform both precise steering and

throttle maneuvers in a physically-complex, uncertain environment by executing a series

of high-frequency decisions. Compared with most previously studied autonomous driving

tasks, the robot must reason about unstructured, stochastic natural environments and op-

erate at high speed. Consequently, designing a control policy by following the traditional

model-plan-then-act approach [19, 22] becomes challenging, as it is difficult to adequately

characterize the robot’s interaction with the environment a priori.

This task has been considered previously, for example, by Williams et al. [20, 21] using

model-predictive control (MPC). While the authors demonstrate impressive results, their

internal control scheme relies on expensive and accurate Global Positioning System (GPS)

and Inertial Measurement Unit (IMU) for state estimation and demands high-frequency

online replanning for generating control commands. Due to these costly hardware require-

127

Figure 6.1: High-speed off-road driving task

ments, their robot can only operate in a rather controlled environment.

We aim to relax these requirements by designing a reflexive driving policy that uses

only low-cost, on-board sensors (e.g. camera, wheel speed sensors). Building on the suc-

cess of deep reinforcement learning (RL) [129, 4], we adopt deep neural networks (DNNs)

to parametrize the control policy and learn the desired parameters from the robot’s inter-

action with its environment. While the use of DNNs as policy representations for RL is

not uncommon, in contrast to most previous work that showcases RL in simulated environ-

ments [4], our agent is a high-speed physical system that incurs real-world cost: collecting

data is a cumbersome process, and a single poor decision can physically impair the robot

and result in weeks of time lost while replacing parts and repairing the platform. Therefore,

direct application of model-free RL techniques is not only sample inefficient, but costly and

dangerous in our experiments.

These real-world factors motivate us to adopt imitation learning [131] to optimize the

control policy instead. A major benefit of using imitation learning is that we can leverage

domain knowledge through expert demonstrations.

In this work, we present an imitation learning system for real-world high-speed off-

road driving tasks. By leveraging demonstrations from an algorithmic expert, our system

can learn a control policy that achieves similar performance as the expert. The system

was implemented on a 1/5-scale autonomous AutoRally car. In real-world experiments, we

128

Table 6.1: Comparison of our method to prior work on imitation learning for autonomous
driving

Methods Tasks Observations Action Algorithm Experiment

[130]
On-road

low-speed Single image Steering Batch Real &simulated

[131]
On-road

low-speed Single image & laser Steering Batch Real &simulated

[132]
On-road

low-speed Single image Steering Batch Simulated

[133]
Off-road

low-speed Left & right images Steering Batch Real

[134]
On-road

unknown speed Single image
Steering
+ break Online Simulated

Our
Method

Off-road
high-speed

Single image +
wheel speeds

Steering
+ throttle

Batch &
online

Real &
simulated

show the AutoRally car—without any state estimator or online planning, but with a DNN

policy that directly inputs sensor measurements from a low-cost monocular camera and

wheel speed sensors—could learn to perform high-speed navigation at an average speed of

∼6 m/s and a top speed of ∼8 m/s, matching the state of the art [21].

6.2 Relation to Existing Works

End-to-end learning for self-driving cars has been explored since late 1980’s. Autonomous

Land Vehicle in a Neural Network (ALVINN) [131] was developed to learn steering angles

directly from camera and laser range measurements using a neural network with a single

hidden layer. Based on similar ideas, modern self-driving cars [133, 130, 132] have recently

started to employ a batch imitation learning approach: parameterizing control policies with

DNNs, these systems require only expert demonstrations during the training phase and

on-board measurements during the testing phase. For example, Nvidia’s PilotNet [130],

a convolutional neural network that outputs steering angle given an image, was trained

to mimic human drivers’ reaction to visual input with demonstrations collected in real-

129

world road tests. A Dataset Aggregation (DAgger) [135] related online imitation learning

algorithm for autonomous driving was recently demonstrated in [134], but only considered

simulated environments.

Our problem differs substantially from these previous on-road driving tasks. We study

autonomous driving on a fixed set of dirt tracks, whereas on-road driving must perform well

in a larger domain and contend with moving objects such as cars and pedestrians. While

on-road driving in urban environments may seem more difficult, our agent must overcome

challenges of a different nature. It is required to drive at high speed, and prominent visual

features such as lane markers are absent. Compared with paved roads, the surface of our dirt

tracks are constantly evolving and highly stochastic. As a result, to successfully perform

high-speed driving in our task, high-frequency application of both steering and throttle

commands are required. Previous work only focuses on steering commands [133, 130,

132]. A comparison of different imitation learning approaches to autonomous driving is

presented in Table 6.1.

Our task is most similar to the task considered by Williams et al. [20, 21] and Drews

et al. [136]. Compared with a DNN policy, their MPC approach has several drawbacks:

computationally expensive optimization for planning is required to be performed online at

high-frequency and the learning component is not end-to-end. In [20, 21], accurate GPS

and IMU feedbacks are also required for state estimation, which may not contain sufficient

information to contend with the changing environment in off-road driving tasks. While

the requirement on GPS and IMU is relaxed by using a vision-based cost map in [136], a

large dataset (300,000 images) was used to train the model, expensive on-the-fly planning

is still required, and speed performance is compromised. In contrast to previous work,

our approach off-loads the hardware requirements to an expert. While the expert may

use high-quality sensors and more computational power, our agent only needs access to

on-board sensors and its control policy can run reactively in high frequency, without on-

the-fly planning and optimization. Additionally, our experimental results match that in [20,

130

21] and are faster and more data efficient than that in [136].

6.3 Imitation Learning for Autonomous Driving

To design a policy for off-road autonomous driving, we introduce a policy optimization

problem and then show how a policy can be learned by imitation learning. We discuss the

strengths and weakness of deploying a batch or online imitation learning algorithm to our

task.

6.3.1 Problem Definition

To mathematically formulate the autonomous driving task, it is natural to consider a discrete-

time continuous-valued RL problem. Let S, A, and O be the state, action, and the obser-

vation spaces. In our setting, the state space is unknown to the agent; observations consist

of on-board measurements, including a monocular RGB image from the front-view camera

and wheel speeds from Hall effect sensors; actions consist of continuous-valued steering

and throttle commands.

The goal is to find a stationary deterministic policy π : O 7→ A (e.g. a DNN policy)

such that π achieves low accumulated cost over a finite horizon of length T

min
π
J(π) := min

π
Eρπ

[
T−1∑
t=0

c(st, at)

]
(6.1)

in which ρπ is the distribution of st ∈ S, ot ∈ O, and at ∈ A under policy at = π(ot),

for t = 1 . . . T . Here c(st, at) is the instantaneous cost, which, for example, encourages

maximal speed driving while staying on the track. For notations, we denote Qt
π(s, a) as

the Q-function at time t under policy π and V t
π = Ea∼π[Qt

π(s, a)] as its associated value

function.

131

6.3.2 Imitation Learning

Directly optimizing (6.1) is challenging for high-speed off-road autonomous driving. Since

our task involves a physical robot, model-free RL techniques are intolerably sample in-

efficient and have the risk of permanently damaging the car when applying a partially-

optimized policy in exploration. Although model-based RL may require fewer samples,

it can lead to suboptimal, potentially unstable, results because it is difficult for a model

that uses only on-board measurements to fully capture the complex dynamics of off-road

driving.

Considering these limitations, we propose to solve for the policy π by imitation learn-

ing. We assume the access to an oracle policy or expert π∗ to generate demonstrations dur-

ing the training phase, which relies on resources that are unavailable in the testing phase,

e.g. additional sensors and computation. For example, the expert can be a computationally

intensive optimal controller that relies on exteroceptive sensors not available at test time

(e.g. GPS for state estimation), or an experienced human driver.

The goal of imitation learning is to perform as well as the expert with an error that

has at most linear dependency on T . Formally, we introduce a lemma due to Kakade and

Langford [137] and define what we mean by an expert.

Lemma 4. Define dπ(s) =
∑T−1

t=0 d
t
π(s) as an unnormalized stationary state distribution,

where dtπ is the distribution of state at time t when running policy π. Let π and π′ be two

policies. Then

J(π) = J(π′) + E
s∼dπ

E
a∼π

[Atπ′(s, a)] (6.2)

where Atπ′(s, a) = Qt
π′(s, a) − V t

π′(s) is the advantage function at time t with respect to

running π′.

Definition 3. A policy π∗ is called an expert to problem (6.1) ifCπ∗ = supt∈[0,T−1],s∈S Lip (Qt
π∗(s, ·)) ∈

O(1) independent of T , where Lip(f(·)) denotes the Lipschitz constant of function f and

132

Qt
π∗(s, a) is the Q-function at time t of running policy π∗.

The idea behind Definition 3 is that an expert policy π∗ should perform stably under

arbitrary action perturbation with respect to the cost function c(·, ·), regardless of where it

starts.1 As we will see in Section 6.3.3, this requirement provides guidance for whether to

choose batch learning vs. online learning to train a policy by imitation.

Online Imitation Learning

We now present the objective function for the online learning [138] approach to imitation

learning, which simplifies the derivation in [135] and extends it to continuous action spaces

as required in the autonomous driving task. Although our goal here is not to introduce a new

algorithm, but rather to give a concise introduction to online imitation learning, we found

that a connection between online imitation learning and DAgger-like algorithms [135] in

continuous domains has not been formally introduced. DAgger has only been used heuris-

tically in these domains as in [139, 134].

Assume π∗ is an expert to (6.1) and suppose A is a normed space with norm ‖ · ‖.

Let DW (·, ·) denote the Wasserstein metric [140]: for two probability distributions p and q

defined on a metric spaceM with metric d,

DW (p, q) := sup
f :Lip(f(·))≤1

E
x∼p

[f(x)]− E
x∼q

[f(x)] (6.3)

= inf
γ∈Γ(p,q)

∫
M×M

d(x, y)dγ(x, y), (6.4)

where Γ denotes the family of distributions whose marginals are p and q. It can be shown

by the Kantorovich-Rubinstein theorem that the above two definitions are equivalent [140].

These assumptions allow us to construct a surrogate problem, which is relatively easier to

solve than (6.1). We achieve this by upper-bounding the difference between the perfor-

1We define the expert here using an uniform Lipschitz constant because the action space in our task is
continuous; for discrete action spaces, Lip (Qtπ∗(s, ·)) can be replaced by supa∈AQ

t
π∗(s, a) and the rest

applies.

133

mance of π and π′ given in Lemma 4:

J(π)− J(π∗)

= E
st∼dπ

[
E

at∼π
[Qt

π∗(st, at)]− E
a∗t∼π∗

[Qt
π∗(st, a

∗
t)]

]
≤ Cπ∗ E

st∼dπ
[DW (π, π∗)]

≤ Cπ∗ E
st∼dπ

E
at∼π

E
a∗t∼π∗

[‖at − a∗t‖], (6.5)

where we invoke the definition of advantage functionAtπ∗(st, at) = Qt
π∗(st, at)−Ea∗t∼π∗ [Q

t
π∗(st, a

∗
t)],

the first and the second inequalities is due to (6.3) and (6.4), respectively.

Define ĉ(st, at) = Ea∗t∼π∗ [‖at − a
∗
t‖]. Thus, to make π perform as well as π∗, we can

minimize the upper bound, which is equivalent to solving a surrogate RL problem

min
π

Eρπ

[
T∑
t=1

ĉ(st, at)

]
. (6.6)

The optimization problem (6.6) is called the online imitation learning problem. This sur-

rogate problem is comparatively more structured than the original RL problem (6.1), so

we can adopt algorithms with provable performance guarantees. In this work, we use the

meta-learning algorithm DAgger [135], which reduces (6.6) to a sequence of supervised

learning problems: Let D be the training data. DAgger initializes D with samples gathered

by running π∗. Then, in the ith iteration, it trains πi by supervised learning,

πi = arg min
π

ED[ĉ(st, at)], (6.7)

where subscript D denotes empirical data distribution. Next it runs πi to collect more data,

which is then added intoD to train πi+1. The procedure is repeated for O(T) iterations and

the best policy, in terms of (6.6), is returned. Suppose the policy is linearly parametrized

and ot = xt. Since our instantaneous cost ĉ(st, ·) is strongly convex, the theoretical analysis

134

of DAgger applies. Therefore, together with the assumption that π∗ is an expert, running

DAgger to solve (6.6) finds a policy π with performance J(π) ≤ J(π∗) +O(T), achieving

our initial goal.

We note here the instantaneous cost ĉ(st, ·) can be selected to be any suitable norm

according the problem’s property. In our off-road autonomous driving task, we find l1-

norm is preferable (e.g. over l2-norm) for its ability to filter outliers in a highly stochastic

environment.

Batch Imitation Learning

By swapping the order of π and π∗ in the above derivation in (6.5), we can derive an-

other upper bound and use it to construct another surrogate problem: define c̃π(s∗t , a
∗
t) =

Eat∼π[‖at − a∗t‖] and Ct
π(s∗t) = Lip(Qt

π(s∗t , ·)), then

J(π)− J(π∗)

= E
s∗t∼dπ∗

[
E

at∼π
[Qt

π(s∗t , at)]− E
a∗t∼π∗

[Qt
π(s∗t , a

∗
t)]

]
≤ E

s∗t∼dπ∗
E

a∗t∼π∗

[
Ct
π(s∗t)c̃π(s∗t , a

∗
t)
]
. (6.8)

where we use again Lemma 4 for the equality and the property of Wasserstein distance for

inequality. The minimization of the upper-bound (6.8) is called batch imitation learning

problem [130, 132]:

min
π

Eρπ∗

[
T∑
t=1

c̃π(s∗t , a
∗
t)

]
, (6.9)

In contrast to the surrogate problem in online imitation learning (6.6), batch imitation learn-

ing reduces to a supervised learning problem, because the expectation is defined by a fixed

policy π∗.

135

6.3.3 Comparison of Imitation Learning Algorithms

Comparing (6.5) and (6.8), we observe that in batch imitation learning the Lipschitz con-

stant Ct
π(s∗t), without π being an expert, can be on the order of T − t in the worst case.

Therefore, if we take a uniform bound and define Cπ = supt∈[0,T−1],s∈SC
t
π(s), we see

Cπ ∈ O(T). In other words, under the same assumption in online imitation, i.e. (6.8) can

be minimized to an error that depends linearly on T , the difference between J(π) and J(π∗)

in batch imitation learning can actually grow quadratically in T due to error compounding.

Therefore, in order to achieve the same level of performance as online imitation learning,

batch imitation learning requires a more expressive policy class or more demonstration

samples. As shown in [135], the quadratic bound is tight.

Therefore, if we can choose an expert policy π∗ that is stable in the sense of Defini-

tion 3, then online imitation learning is preferred theoretically. This is satisfied, for exam-

ple, when the expert policy is an algorithm with certain performance characteristics. On

the contrary, if the expert is human, the assumptions required by online imitation learn-

ing becomes hard to realize in real-road off-road driving tasks. Because humans rely on

real-time sensory feedback (as in sampling from ρπ∗ but not from ρπ) to generate ideal

expert actions, the action samples collected in the online learning approach using ρπ are

often biased and inconsistent [141]. This is especially true in off-road driving tasks, where

the human driver depends heavily on instant feedback from the car to overcome stochas-

tic disturbances. Therefore, the frame-by-frame labeling approach [139], for example, can

lead to a very counter-intuitive, inefficient data collection process, because the required

dynamics information is lost in a single image frame. Overall, when using human demon-

strations, online imitation learning can be as bad as batch imitation learning [141], just due

to inconsistencies introduced by human nature.

136

Figure 6.2: System diagram

Figure 6.3: The DNN control policy

6.4 The Autonomous Driving System

Building on the analyses in the previous section, we design a system that can learn to

perform fast off-road autonomous driving with only on-board measurements. The overall

system architecture for learning end-to-end DNN driving policies is illustrated in Fig. 6.2.

It consists of three high-level controllers (an expert, a learner, and a safety control module)

and a low-level controller, which receives steering and throttle commands from the high-

level controllers and translates them to pulse-width modulation (PWM) signals to drive the

steering and throttle actuators of a vehicle.

On the basis of the analysis in Section 6.3.3, we assume the expert is algorithmic and

137

has access to expensive sensors (GPS and IMU) for accurate global state estimates2 and

resourceful computational power. The expert is built on multiple hand-engineered compo-

nents, including a state estimator, a dynamics model of the vehicle, a cost function of the

task, and a trajectory optimization algorithm for planning (see Section 6.4.1). By contrast,

the learner is a DNN policy that has access to only a monocular camera and wheel speed

sensors and is required to output steering and throttle command directly (see Section 6.4.2).

In this setting, the sensors that the learner uses can be significantly cheaper than that of the

expert; specifically on our experimental platform, the AutoRally car (see Section 6.4.3), the

IMU and the GPS sensors required by the expert in Section 6.4.1 together cost more than

$6,000, while the sensors used by the learner’s DNN policy cost less than $500. The safety

control module has the highest priority among all three controllers and is used prevent the

vehicle from high-speed crashing.

The software system was developed based on the Robot Operating System (ROS) in

Ubuntu. In addition, a Gazebo-based simulation environment [142] was built using the

same ROS interface but without the safety control module; the simulator was used to eval-

uate the performance of the system before real track tests.

6.4.1 Algorithmic Expert with Model-Predictive Control

We use an MPC expert [94] based on an incremental Sparse Spectrum Gaussian Process

(SSGP) dynamics model (which was learned from 30 minute-long driving data) and an

iSAM2 state estimator [123]. To generate actions, the MPC expert solves a finite horizon

optimal control problem for every sampling time: at time t, the expert policy π∗(at|st) is a

locally optimal policy such that

π∗(at|st) ≈ arg min
π

Eρπ

[
t+Th∑
τ=t

c(sτ , aτ)|st

]
(6.10)

where Th is the length of horizon it previews.
2Global position, heading and roll angles, linear velocities, and heading angle rate.

138

The computation is realized by the trajectory optimization algorithm, Differential Dy-

namic Programming (DDP) [143]: in each iteration of DDP, the system dynamics and the

cost function are approximated quadratically along a nominal trajectory; then the Bellman

equation of the approximate problem is solved in a backward pass to compute the control

law; finally, a new nominal trajectory is generated by applying the updated control law

through the dynamics model in a forward pass. Upon convergence, DDP returns a locally

optimal control sequence {â∗t , ..., â∗t+Th−1}, and the MPC expert executes the first action in

the sequence as the expert’s action at time t (i.e. a∗t = â∗t). This process is repeated at every

sampling time.

In view of the analysis in Section 6.3.2, we can assume that the MPC expert satisfies

Definition 3, because it updates the approximate solution to the original RL problem (6.1)

in high-frequency using global state information. However, because the MPC requires

replanning for every step, running the expert policy (6.10) online consumes significantly

more computational power than what is required by the learner.

6.4.2 Learning a DNN Control Policy

The learner’s control policy π is parametrized by a DNN containing ∼10 million param-

eters. As illustrated in Fig. 6.3, the DNN policy, consists of two sub-networks: a con-

volutional neural network (CNN) with 6 convolutional layers, 3 max-pooling layers and 2

fully-connected layers that takes 160×80 RGB monocular images as inputs3, and a feedfor-

ward network with a fully-connected hidden layer, that takes wheel speeds as inputs. The

convolutional and max-pooling layers are used to extract lower-dimensional features from

images. The DNN policy uses 3 × 3 filters for all convolutonal layers, and rectified linear

unit (ReLU) activation for all layers except the last one. Max-pooling layers with 2 × 2

filters are integrated to reduce the spatial size of the representation (and therefore reduce

the number of parameters and computation loads). The two sub-networks are concatenated

3The raw images from the camera were re-scaled to 160× 80.

139

and then followed by another fully-connected hidden layer. The structure of this DNN was

selected empirically based on experimental studies of several different architectures.

In construction of the surrogate problem for imitation learning, the action space A is

equipped with ‖ · ‖1 for filtering outliers, and the optimization problem, (6.7) or (6.9),

is solved using ADAM [144], which is a stochastic gradient descent algorithm with an

adaptive learning rate. Note while st or s∗t is used in (6.7) or (6.9), the neural network

policy does not use the state, but rather the synchronized raw observation ot, as input.

Note that we did not perform any data selection or augmentation techniques in any of the

experiments. The only pre-processing was scaling and cropping raw images.

6.4.3 The Autonomous Driving Platform

To validate our imitation learning approach to off-road autonomous driving, the system was

implemented on a custom-built, 1/5-scale autonomous AutoRally car (weight 22 kg; LWH

1m×0.6m×0.4m), shown in the top figure in Fig. 6.4. The car was equipped with an ASUS

mini-ITX motherboard, an Intel quad-core i7 CPU, 16GB RAM, a Nvidia GTX 750ti GPU,

and a 11000mAh battery. For sensors, two forward facing machine vision cameras4, a

Hemisphere Eclipse P307 GPS module, a Lord Microstrain 3DM-GX4-25 IMU, and Hall

effect wheel speed sensors were instrumented. In addition, an RC transmitter could be used

to remotely control the vehicle by a human, and a physical run-stop button was installed to

disable all motions in case of emergency.

In the experiments, all computation was executed on-board the vehicle in real-time. In

addition, an external laptop was used to communicate with the on-board computer remotely

via Wi-Fi to monitor the vehicle’s status. The observations were sampled and action were

executed at 50 Hz to account for the high-speed of the vehicle and the stochasticity of the

environment. Note this control frequency is significantly higher than [130] (10 Hz), [132]

(12 Hz), and [133] (15 Hz).
4In this work we only used one of the cameras.

140

6.5 Experimental Setup

6.5.1 High-speed Navigation Task

We tested the performance of the proposed imitation learning system in Section 6.4 in a

high-speed navigation task with a desired speed of 7.5 m/s. The performance index of the

task was formulated as the cost function in the finite-horizon RL problem (6.1) with

c(st, at) = α1costpos(st) + α2costspd(st)

+ α3costslip(st) + α3costact(at), (6.11)

in which costpos favors the vehicle to stay in the middle of the track, costspd drives the ve-

hicle to reach the desired speed, costslip stabilizes the car from slipping, and costact inhibits

large control commands.

More precisely, the position cost costpos(s) for the high-speed navigation task is a 16-

term cubic function of the vehicle’s global position (x, y):

costpos(s) = c0 + c1y + c2y
2 + c3y

3 + c4x+ c5xy

+c6xy
2 + c7xy

3 + c8x
2 + c9x

2y + c10x
2y2 + c11x

2y3

+c12x
3 + c13x

3y + c14x
3y2 + c15x

3y3.

This coefficients in this cost function were identified by performing a regression to fit the

track’s boundary: First, a thorough GPS survey of the track was taken. Points along the

inner and the outer boundaries were assigned values of−1 and +1, respectively, resulting in

a zero-cost path along the center of the track. The coefficient values ci were then determined

by a least-squares regression of the polynomials in costpos(s) to fit the boundary data.

The speed cost costspd = ‖vx − vdesired‖2 is a quadratic function which penalizes the

difference between the desired speed vdesired and the longitudinal velocity vx in the body

frame. The side slip angle cost is defined as costslip(s) = − arctan2(vy
‖vx‖), where vy is

141

the lateral velocity in the body frame. The action cost is a quadratic function defined as

costact(a) = γ1a1 + γ2a2, where a1 and a2 correspond to the steering and the throttle

commands, respectively. In the experiments, γ1 = 1 and γ2 = 1 were selected.

The goal of the high-speed navigation task to minimize the accumulated cost function

over one-minute continuous driving. That is, under the 50-Hz sampling rate, the task hori-

zon was set T = 3, 000. The cost information (6.11) was given to the MPC expert in

Fig. 6.2 to perform online trajectory optimization with a two-second preview horizon (i.e.

Th = 100). In the experiments, the weighting in (6.11) were set as α1 = 2.5, α2 = 1,

α3 = 100 and α4 = 60, so that the MPC expert in Section 6.4.1 could perform reason-

ably well. The learner’s policy was tuned by online/batch imitation learning in attempts to

match the expert’s performance.

6.5.2 Test Track

All the experiments were performed on an elliptical dirt track, shown in the bottom figure

of Fig. 6.4, with the AutoRally car described in Section 6.4.3. The test track was ∼3m

wide and ∼30m long and built with fill dirt. Its boundaries were surrounded by soft HDPE

tubes, which were detached from the ground, for safety during experimentation. Due to the

changing dirt surface, debris from the track’s natural surroundings, and the shifting track

boundaries after car crashes, the track condition and vehicle dynamics can change from

one experiment to the next, adding to the complexity of learning a robust policy.

6.5.3 Data Collection

Training data was collected in two ways. In batch imitation learning, the MPC expert was

executed, and the camera images, wheel speed readings, and the corresponding steering and

throttle commands were recorded. In online imitation learning, a mixture of the expert and

learner’s policy was used to collect training data (camera images, wheel speeds, and expert

actions): in the ith iteration of DAgger, a mixed policy was executed at each time step π̂i =

142

βiπ∗+(1−βi)πi−1, where πi−1 is learner’s DNN policy after i−1 DAgger iterations, and βi

is the probability of executing the expert policy. The use of a mixture policy was suggested

in [135] for better stability. A mixing rate β = 0.6 was used in our experiments. Note

that the probability of using the expert decayed exponentially as the number of DAgger

iterations increased. Experimental data was collected on an outdoor track, and consisted on

changing lighting conditions and environmental dynamics. In the experiments, the rollouts

about to crash were terminated remotely by overwriting the autonomous control commands

with the run-stop button or the RC transmitter in the safety control module; these rollouts

were excluded from the data collection.

6.5.4 Policy Learning

In online imitation learning, three iterations of DAgger were performed. At each iteration,

the robot executed one rollout using the mixed policy described above (the probabilities of

executing the expert policy were 60%, 36%, and 21%, respectively). For a fair comparison,

the amount of training data collected in batch imitation learning was the same as all of the

data collected over the three iterations of online imitation learning.

At each training phase, the optimization problem (6.7) or (6.9) was solved by ADAM

for 20 epochs, with mini-batch size 64, and a learning rate of 0.001. Dropouts were applied

at all fully connected layers to avoid over-fitting (with probability 0.5 for the firstly fully

connected layer and 0.25 for the rest). See Section 6.4.2 for details. Finally, after the entire

learning session of a policy, three rollouts were performed using the learned policy for

performance evaluation.

6.6 Experimental Results

6.6.1 Online vs Batch Learning

We first study the performance of training a control policy with online and batch imita-

tion learning algorithms. Fig. 6.5 illustrates the vehicle trajectories of different policies.

143

Table 6.2: Test statistics. Total loss denotes the imitation loss in (6.6), which is the aver-
age of the steering and the throttle losses. Completion ratio is defined as the ratio of the
traveled time steps to the targeted time steps (3,000). All results here represent the average
performance over three independent evaluation trials.

Policy Avg. speed Top speed Training data Completion ratio Total loss
Steering /

Throttle loss
Expert 6.05 m/s 8.14 m/s NA 100 % 0 0
Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124
Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055
Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071
Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083

Online (1 iter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 iter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055

Due to accumulating errors, the policy trained with batch imitation learning crashed into

the lower-left boundary, an area of the state space-action rarely explored in the expert’s

demonstrations. On the contrary, online imitation learning let the policy learn to success-

fully cope with corner cases as the learned policy occasionally ventured into new areas of

the state-action space.

Fig. 6.6 shows the performance in terms of distance traveled without crashing5 and Ta-

ble 6.2 shows the statistics of the experimental results. Overall, DNN policies trained with

both online and batch imitation learning algorithms were able to achieve a similar speed

as the MPC expert. However, with the same amount of training data, the policies trained

with online imitation learning in general outperformed those trained with batch imitation

learning. In particular, the policies trained using online imitation learning achieved better

performance in terms of both completion ratio and imitation loss. It is worth noting that the

traveled distance of the policy learned with a batch of 3,000 samples was longer than that

of other batch learning policies. As shown in Table 6.2, this is mainly because this policy

achieved better steering performance than throttle performance. As a result, although the

5We used the safe control module shown in Fig. 6.2 to manually terminate the rollout when the car crashed
into the soft boundary.

144

vehicle was able to navigate without crashing, it actually traveled at a much slower speed.

By contrast, the batch learning policies that used more data had better throttle performance

and worse steering performance, resulting in faster speeds but higher chances of crashing.

6.6.2 Deep Neural Network Policy

One main feature of a DNN policy is that it can learn to extract both low-level and high-

level features of an image and automatically detect the parts that have greater influence on

steering and throttle. We validate this idea by showing in Fig. 6.7 the averaged feature map

at each max-pooling layer (see Fig. 6.3), where each pixel represents the averaged unit

activation across different filter outputs. We can observe that at a deeper level, the detected

salient objects are boundaries of the track and parts of a building. Grass and dirt contribute

little to the DNN’s output.

We also analyze the importance of incorporating wheel speeds in our task. We compare

the performance of the policy based on our DNN policy and a policy based on only the

CNN subnetwork (without wheel-speed inputs) in batch imitation learning. The data was

collected in accordance with Section 6.5.3. Fig. 6.8 shows the batch imitation learning loss

in (6.9) of different network architectures. The full DNN policy in Fig. 6.3 achieved better

performance consistently. While images contain position information, it is insufficient to

infer velocities. Therefore, we conjecture state-of-the-art CNNs (e.g. [130]) cannot be

directly used in this task. By contrast, while without a recurrent architecture, our DNN

policy learned to combine wheel speeds in conjunction with CNN to infer hidden state and

achieve better performance.

6.7 Summary

We introduce an end-to-end learning system to learn a deep neural network driving policy

that maps raw on-board observations to steering and throttle commands by mimicking an

expert’s behavior. We investigate both online and batch learning frameworks theoretically

145

and empirically and propose an imitation learning system. In real-world experiments, our

system was able to perform fast off-road navigation autonomously at an average speed of

∼6 m/s and a top speed of∼8 m/s, while only using low-cost monocular camera and wheel

speeds sensors. Our current and future work include developing more complex policy

representations, such as recurrent neural networks, and to improve robustness to visual

distractions.

146

Figure 6.4: The AutoRally car and the test track.

147

(a) MPC expert

(b) Batch learning (c) Online learning

Figure 6.5: Examples of vehicle trajectories. (a) Demonstration of the MPC expert. (b)
Crashing case when using batch imitation learning. (c) The vehicle avoids crashing when
using online imitation learning. Subfigures (b) and (c) depict test runs of the policies after
training on 9,000 samples

Figure 6.6: Performance of online and batch imitation learning in the distance (meters)
traveled without crashing. The policy trained with a batch of 3,000 samples was used to
initialize online imitation learning.

148

(a) raw image (b) max-pooling1

(c) max-pooling2 (d) max-pooling3

Figure 6.7: From left to right: input RGB image, averaged feature maps for each max-
pooling layer.

Figure 6.8: Performance comparison between our DNN policy and its CNN sub-network
in terms of batch imitation learning loss, where the horizontal axis is the size of data used
to train the neural network policies.

149

CHAPTER 7

CONCLUSIONS

The goal of this thesis is to develop novel methods for controlling robotic systems with

unknown or partially known dynamics. There are several major challenges. First, many

robotics systems have complex dynamics which are difficult to model. Learning a policy

or dynamics model form data requires many interactions with the physical systems, which

is impractical. Second, solving nonlinear optimal control problems in continuous domains

suffers from the curse of dimensionality. Searching an optimal control policy for the whole

state space is computationally intractable except for low dimensional problems.

Motivated by these challenges, we proposed probabilistic trajectory optimization, a

framework for optimal control under unknown or partially known dynamics. Our frame-

work combines the benefits of probabilistic inference and trajectory optimization, namely

robustness to modeling errors, and scalability to high-dimensional state and action spaces.

More specifically, we learn dynamics models from data using Gaussian processes (GPs),

a Bayesian nonparametric approach that provides a superior model expressiveness com-

pared with parametric methods. In terms of control, we developed approaches that perform

Dynamic Programming approximately using two techniques 1) local approximation of the

value function; 2) linearization of the Hamilton-Jacobi-Bellman (HJB) equation. In chap-

ter 3 and 4, we presented algorithms under this framework that perform well in terms of

data efficiency and computational efficiency. In chapter 5, we presented fast approximate

inference methods that are based on sparse spectrum Gaussian processes (SSGPs). These

methods are more efficient and general than their full GP counterparts, and can be directly

applied to perform real-time probabilistic trajectory optimization in a receding horizon

fashion.

When the system state is not easily accessible, we resort to imitation learning where

150

the goal is to train a learner with data generated by an expert. In chapter 6, we developed

an imitation learning system for off-road, high-speed autonomous driving. In our proposed

system, the algorithmic expert is the receding horizon probabilistic trajectory optimizer de-

veloped in chapter 5. Only this expert has access to the system state provided by a state

estimator and expensive sensors, i.e., Global Position System (GPS) and Inertial Measure-

ment Unit (IMU), and a task cost function that depends on the state. The learner is a deep

neural network that only has access to cheap sensors, i.e., camera and wheel speed sensor.

The trained deep neural network driving policy is able to achieve state-of-the-art experi-

mental results on real high-speed racing tasks at a much lower cost compared to receding

horizon control systems.

There are several open problems that are worth further exploration. First, incorporating

state constraints into our probabilistic trajectory optimization framework is an interesting

direction that could improve its applicability to more complex planning tasks. Second, in

approximate inference, a better balance between prediction accuracy and computational

efficiency may be achieved by using variational inference techniques. In addition, in or-

der to enforce safety in autonomous driving, a single reactive controller is not sufficient.

Predictive modeling techniques may be integrated into an end-to-end driving system.

151

REFERENCES

[1] N. J. Nilsson, The quest for artificial intelligence. Cambridge University Press,
2009.

[2] G. Tesauro, “Temporal difference learning and td-gammon,” Communications of
the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[3] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial intelligence, vol.
134, no. 1-2, pp. 57–83, 2002.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484–489, 2016.

[6] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT Press
Cambridge, 1998, vol. 135.

[7] G. J. Leishman, Principles of helicopter aerodynamics with CD extra. Cambridge
university press, 2006.

[8] P. Abbeel, V. Ganapathi, and A. Y. Ng, “Learning vehicular dynamics, with ap-
plication to modeling helicopters,” in Advances in Neural Information Processing
Systems, 2006, pp. 1–8.

[9] P. Abbeel, A. Coates, T. Hunter, and A. Y. Ng, “Autonomous autorotation of an rc
helicopter,” in Experimental Robotics, Springer, 2009, pp. 385–394.

[10] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic
programming and optimal control, 2. Athena scientific Belmont, MA, 1995, vol. 1.

[11] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in par-
tially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1, pp. 99–
134, 1998.

152

[12] M. Hauskrecht, “Value-function approximations for partially observable markov
decision processes,” Journal of Artificial Intelligence Research, vol. 13, pp. 33–94,
2000.

[13] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with
deep reinforcement learning.,” in HotNets, 2016, pp. 50–56.

[14] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[15] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning.
MIT press Cambridge, 2006, vol. 1.

[16] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learning, plan-
ning, and control for quadruped locomotion over challenging terrain,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 2, pp. 236–258, 2011.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[19] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monoc-
ular vision and reinforcement learning,” in International Conference on Machine
learning, 2005, pp. 593–600.

[20] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” in IEEE International Confer-
ence on Robotics and Automation, 2016, pp. 1433–1440.

[21] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. Rehg, B. Boots, and E. Theodorou,
“Information theoretic mpc for model-based reinforcement learning,” in IEEE Con-
ference on Robotics and Automation, 2017.

[22] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” IEEE Transac-
tions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[23] R Bellman, “Dynamic programming princeton university press princeton,” New
Jersey Google Scholar, 1957.

[24] L. S. Pontryagin, Mathematical theory of optimal processes. CRC Press, 1987.

[25] R. F. Stengel, Optimal control and estimation. Courier Corporation, 2012.

153

[26] D. Jacobson and D. Mayne, “Differential dynamic programming,” 1970.

[27] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal feed-
back control of constrained nonlinear stochastic systems,” in American Control
Conference, 2005, IEEE, 2005, pp. 300–306.

[28] E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential dynamic program-
ming,” in American Control Conference (ACC), 2010, IEEE, 2010, pp. 1125–1132.

[29] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential dynamic pro-
gramming.,” in NIPS, 2007.

[30] J. Morimoto and C. Atkeson, “Minimax differential dynamic programming: An
application to robust biped walking,” in NIPS, 2002, pp. 1539–1546.

[31] Y. Pan, K. Bakshi, and E. Theodorou, “Robust trajectory optimization: A coopera-
tive stochastic game theoretic approach,” in Proceedings of Robotics: Science and
Systems, 2015.

[32] W. Fleming, “Exit probabilities and optimal stochastic control,” Applied Math. Op-
tim, vol. 9, pp. 329–346, 1971.

[33] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solu-
tions, 1st, ser. Applications of mathematics. New York: Springer, 1993.

[34] H. J. Kappen, “Linear theory for control of nonlinear stochastic systems,” Phys Rev
Lett, vol. 95, pp. 200–201, 2005.

[35] ——, “Path integrals and symmetry breaking for optimal control theory,” Journal
of Statistical Mechanics: Theory and Experiment, vol. 11, P11011, 2005.

[36] ——, “An introduction to stochastic control theory, path integrals and reinforce-
ment learning,” AIP Conference Proceedings, vol. 887, no. 1, 2007.

[37] S. Thijssen and H. J. Kappen, “Path integral control and state-dependent feedback,”
Phys. Rev. E, vol. 91, p. 032 104, 3 2015.

[38] E. Todorov, “Efficient computation of optimal actions,” Proceedings of the national
academy of sciences, vol. 106, no. 28, pp. 11 478–11 483, 2009.

[39] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral control ap-
proach to reinforcement learning,” The Journal of Machine Learning Research,
vol. 11, pp. 3137–3181, 2010.

154

[40] F. Stulp and O. Sigaud, “Path integral policy improvement with covariance ma-
trix adaptation,” in Proceedings of the 29th International Conference on Machine
Learning (ICML), ACM, 2012, pp. 281–288.

[41] K. Rawlik, M. Toussaint, and S. Vijayakumar, “Path integral control by reproducing
kernel hilbert space embedding,” in Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, ser. IJCAI’13, 2013, pp. 1628–1634.

[42] Y. Pan and E. Theodorou, “Nonparametric infinite horizon kullback-leibler stochas-
tic control,” in 2014 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), IEEE, 2014, pp. 1–8.

[43] V. Gómez, H. Kappen, J. Peters, and G. Neumann, “Policy search for path integral
control,” in Machine Learning and Knowledge Discovery in Databases, Springer,
2014, pp. 482–497.

[44] Y. Pan, E. Theodorou, and M. Kontitsis, “Sample efficient path integral control
under uncertainty,” in Advances in Neural Information Processing Systems, 2015,
pp. 2314–2322.

[45] K. Dvijotham and E Todorov, “Linearly solvable optimal control,” Reinforcement
learning and approximate dynamic programming for feedback control, pp. 119–
141, 2012.

[46] M. Kac, “On distributions of certain wiener functionals,” Transactions of the Amer-
ican Mathematical Society, vol. 65, no. 1, pp. 1–13, 1949.

[47] C. Williams and C. Rasmussen, Gaussian processes for machine learning. MIT
Press, 2006.

[48] J. Q. Candela, A. Girard, J. Larsen, and C. E. Rasmussen, “Propagation of uncer-
tainty in bayesian kernel models-application to multiple-step ahead forecasting,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003.

[49] A. Girard, C. Rasmussen, J. Quinonero-Candela, and R. Murray-Smith, “Gaussian
process priors with uncertain inputs application to multiple-step ahead time series
forecasting,” in Advances in Neural Information Processing Systems (NIPS), 2003.

[50] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for data-efficient
learning in robotics and control,” IEEE Transsactions on Pattern Analysis and Ma-
chine Intelligence, vol. 27, pp. 75–90, 2015.

[51] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradi-
ents,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

155

[52] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.,” in AAAI,
2010.

[53] G. Neumann, “Variational inference for policy search in changing situations,” in
Proceedings of the 28th international conference on machine learning (ICML-11),
2011, pp. 817–824.

[54] C. Atkeson and J. Santamaria, “A comparison of direct and model-based reinforce-
ment learning,” in In International Conference on Robotics and Automation, Cite-
seer, 1997.

[55] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics.,”
Foundations and Trends in Robotics, vol. 2, no. 1-2, pp. 1–142, 2013.

[56] D. Bertsekas and J. Tsitsiklis, “Neuro-dynamic programming (optimization and
neural computation series, 3),” Athena Scientific, vol. 7, pp. 15–23, 1996.

[57] A. Barto, W. Powell, J. Si, and D. Wunsch, “Handbook of learning and approximate
dynamic programming,” 2004.

[58] P. Abbeel, A. Coates, M. Quigley, and A. Y Ng, “An application of reinforcement
learning to aerobatic helicopter flight,” NIPS, vol. 19, p. 1, 2007.

[59] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive optimal feedback control
with learned internal dynamics models,” in From Motor Learning to Interaction
Learning in Robots, Springer, 2010, pp. 65–84.

[60] C. Rasmussen and M. Kuss, “Gaussian processes in reinforcement learning.,” in
NIPS, vol. 4, 2004, p. 1.

[61] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Local gaussian process regression for
real time online model learning,” in NIPS, 2008, pp. 1193–1200.

[62] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learning inverse
dynamics,” in 2010 IEEE International Conference on Robotics and Automation
(ICRA), 2010, pp. 2677–2682.

[63] ——, “Online kernel-based learning for task-space tracking robot control,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, pp. 1417–
1425, 2012.

[64] M. Deisenroth and C. Rasmussen, “Pilco: A model-based and data-efficient ap-
proach to policy search,” in Proceedings of the 28th International Conference on
Machine Learning, 2011, pp. 465–472.

156

[65] P. Hemakumara and S. Sukkarieh, “Learning uav stability and control derivatives
using gaussian processes,” IEEE Transactions on Robotics, vol. 29, pp. 813–824,
2013.

[66] G. Chowdhary, H. Kingravi, J. P. How, P. Vela, et al., “Bayesian nonparametric
adaptive control using gaussian processes,” IEEE Transactions on Neural Networks
and Learning Systems,, vol. 26, no. 3, pp. 537–550, 2015.

[67] P. Dallaire, C. Besse, S. Ross, and B. Chaib-draa, “Bayesian reinforcement learning
in continuous pomdps with gaussian processes,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2009, pp. 2604–2609.

[68] J. Boedecker, J. Springenberg, J. Wulfing, and M. Riedmiller, “Approximate real-
time optimal control based on sparse gaussian process models,” in 2014 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL), IEEE, 2014, pp. 1–8.

[69] M. Kuss, “Gaussian process models for robust regression, classification, and rein-
forcement learning,” PhD thesis, Technische Universität, 2006.

[70] M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck, “Analytic moment-based gaus-
sian process filtering,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 225–232.

[71] J. Vinogradska, B. Bischoff, D. Nguyen-Tuong, H. Schmidt, A. Romer, and J. Pe-
ters, “Stability of controllers for gaussian process forward models,” in Proceedings
of The 33rd International Conference on Machine Learning, 2016, pp. 545–554.

[72] A. O’Hagan and J. Kingman, “Curve fitting and optimal design for prediction,”
Journal of the Royal Statistical Society. Series B (Methodological), pp. 1–42, 1978.

[73] T. Wu and J. Movellan, “Semi-parametric gaussian process for robot system iden-
tification,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2012, pp. 725–731.

[74] E. Schearer, Y.-W. Liao, E. Perreault, M. Tresch, W. Memberg, R. Kirsch, and
K. Lynch, “Identifying inverse human arm dynamics using a robotic testbed,” in
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2014), 2014, pp. 3585–3591.

[75] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, P. LEcuyer, et al., “The cross-entropy
method for optimization,” Machine Learning: Theory and Applications, V. Govin-
daraju and CR Rao, Eds, Chennai: Elsevier BV, vol. 31, pp. 35–59, 2013.

[76] P. Whittle, Risk-sensitive optimal control. John Wiley & Son Ltd, 1990.

157

[77] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic pro-
gramming,” ICRA 2014,

[78] D. Bertsekas, “Projected newton methods for optimization problems with simple
constraints,” SIAM Journal on control and Optimization, vol. 20, no. 2, pp. 221–
246, 1982.

[79] L. Liao and C. Shoemaker, “Convergence in unconstrained discrete-time differen-
tial dynamic programming,” IEEE Transactions on Automatic Control, vol. 36, no.
6, pp. 692–706, 1991.

[80] L.-Z. Liao, Global Convergence of Differential Dynamic Programming and New-
ton’s Method for Discrete-time Optimal Control. Technical report, 1996.

[81] G. I. Boutselis, Y. Pan, G. De La Tore, and E. A. Theodorou, “Stochastic trajectory
optimization for mechanical systems with parametric uncertainties,” ArXiv preprint
arXiv:1705.05506, 2017.

[82] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty
using iterative local optimization in belief space,” The International Journal of
Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012.

[83] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural Computation,
vol. 14, no. 3, pp. 641–668, 2002.

[84] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,”
NIPS, vol. 18, p. 1257, 2006.

[85] Y. Pan and E. Theodorou, “Probabilistic differential dynamic programming,” in
Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1907–1915.

[86] T. N. Hoang, K. H. Low, P. Jaillet, and M. Kankanhalli, “Nonmyopic-bayes-optimal
active learning of gaussian processes,” in Proc. ICML, 2014, pp. 739–747.

[87] C. K. Ling, K. H. Low, and P. Jaillet, “Gaussian process planning with lipschitz
continuous reward functions: Towards unifying bayesian optimization, active learn-
ing, and beyond,” Proc. AAAI, 2016.

[88] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty
using differential dynamic programming in belief space,” in Intl Symposium on
Robotics Research, 2011.

[89] J. Morimoto, G. Zeglin, and C. G Atkeson, “Minimax differential dynamic pro-
gramming: Application to a biped walking robot,” in Proceedings of 2003 IEEE/RSJ

158

International Conference on Intelligent Robots and Systems (IROS 2003)., IEEE,
vol. 2, 2003, pp. 1927–1932.

[90] F. Meier, P. Hennig, and S. Schaal, “Incremental local gaussian regression,” in Ad-
vances in Neural Information Processing Systems, 2014, pp. 972–980.

[91] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-
Vidal, “Sparse spectrum gaussian process regression,” The Journal of Machine
Learning Research, vol. 99, pp. 1865–1881, 2010.

[92] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,”
in Advances in neural information processing systems (NIPS), 2005, pp. 1257–
1264.

[93] Y. Pan, X. Yan, E. Theodorou, and B. Boots, “Adaptive probabilistic trajectory op-
timization via efficient approximate inference,” ArXiv preprint arXiv:1608.06235,
2016.

[94] Y. Pan, X. Yan, E. A. Theodorou, and B. Boots, “Prediction under uncertainty in
sparse spectrum Gaussian processes with applications to filtering and control,” in
International Conference on Machine Learning, 2017, pp. 2760–2768.

[95] A. Y. Ng and M. Jordan, “Pegasus: A policy search method for large mdps and
pomdps,” in Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence, Morgan Kaufmann Publishers Inc., 2000, pp. 406–415.

[96] Y. Pan, K. Saigol, and E. A. Theodorou, “Belief space stochastic control under
unknown dynamics,” in American Control Conference (ACC), 2017, IEEE, 2017,
pp. 3764–3770.

[97] M. Gandhi, Y. Pan, and E. Theodorou, “Pseudospectral model predictive control
under partially learned dynamics,” ArXiv preprint arXiv:1702.04800, 2017.

[98] Y. Pan, X. Yan, E. Theodorou, and B. Boots, “Scalable reinforcement learning
via trajectory optimization and approximate gaussian process regression,” in NIPS
Workshop on Advances in Approximate Bayesian Inference, 2015.

[99] E. Theodorou and E. Todorov, “Relative entropy and free energy dualities: Con-
nections to path integral and kl control.,” in 51st IEEE Conference on Decision and
Control, 2012, pp. 1466–1473.

[100] S. Levine and P. Abbeel, “Learning neural network policies with guided policy
search under unknown dynamics,” in Advances in Neural Information Processing
Systems (NIPS), 2014, pp. 1071–1079.

159

[101] S. Levine and V. Koltun, “Learning complex neural network policies with trajectory
optimization,” in Proceedings of the 31st International Conference on Machine
Learning (ICML-14), 2014, pp. 829–837.

[102] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy
optimization,” ArXiv preprint arXiv:1502.05477, 2015.

[103] P. Hennig, “Optimal reinforcement learning for gaussian systems,” in Advances in
Neural Information Processing Systems (NIPS), 2011, pp. 325–333.

[104] E. Todorov, “Compositionality of optimal control laws,” in Advances in Neural
Information Processing Systems (NIPS), 2009, pp. 1856–1864.

[105] M. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy search for
robotics,” in Proceedings of 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[106] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in
Advances in neural information processing systems, 2007, pp. 1177–1184.

[107] A. Gijsberts and G. Metta, “Real-time model learning using incremental sparse
spectrum gaussian process regression,” Neural Networks, vol. 41, pp. 59–69, 2013.

[108] W. Rudin, Fourier analysis on groups. New York: Interscience Publishers, 1962.

[109] E. A Theodorou, “Nonlinear stochastic control and information theoretic dualities:
Connections, interdependencies and thermodynamic interpretations,” Entropy, vol.
17, no. 5, pp. 3352–3375, 2015.

[110] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evo-
lution strategies,” Evolutionary computation, vol. 9, no. 2, pp. 159–195, 2001.

[111] F. Stulp, E. Theodorou, and S. Schaal, “Reinforcement learning with sequences of
motion primitives for robust manipulation,” IEEE Transactions on Robotics, vol.
28, no. 6, pp. 1360–1370, 2012.

[112] J. Ko and D. Fox, “Gp-bayesfilters: Bayesian filtering using gaussian process pre-
diction and observation models,” Autonomous Robots, vol. 27, no. 1, pp. 75–90,
2009.

[113] M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen,
“Robust filtering and smoothing with Gaussian processes,” IEEE Transactions on
Automatic Control, vol. 57, no. 7, pp. 1865–1871, 2012.

160

[114] C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor, “Gaussian process
approximations of stochastic differential equations.,” Gaussian Processes in Prac-
tice, vol. 1, pp. 1–16, 2007.

[115] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song, “Scalable
kernel methods via doubly stochastic gradients,” in Advances in Neural Information
Processing Systems, 2014, pp. 3041–3049.

[116] X. Yan, B. Xie, L. Song, and B. Boots, “Large-scale Gaussian process regression
via doubly stochastic gradient descent,” The ICML Workshop on Large-Scale Ker-
nel Learning, 2015.

[117] M. K. Titsias, “Variational learning of inducing variables in sparse gaussian pro-
cesses.,” in AISTATS, vol. 5, 2009, pp. 567–574.

[118] C.-A. Cheng and B. Boots, “Incremental variational sparse Gaussian process re-
gression,” in Proceedings of Advances in Neural Information Processing Systems
30 (NIPS), 2016.

[119] A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. Vadakkepat, and G. Neumann,
“Model-based contextual policy search for data-efficient generalization of robot
skills,” Artificial Intelligence, 2014.

[120] T. P. Minka, “A family of algorithms for approximate bayesian inference,” PhD
thesis, Massachusetts Institute of Technology, 2001.

[121] L. Ljung, System identification. Springer, 1998, ch. 11, p. 300.

[122] A. Yamaguchi and C. G. Atkeson, “Neural networks and differential dynamic pro-
gramming for reinforcement learning problems,” in 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE, 2016, pp. 5434–5441.

[123] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “Isam2:
Incremental smoothing and mapping using the bayes tree,” The International Jour-
nal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[124] E. Velenis, E. Frazzoli, and P. Tsiotras, “Steady-state cornering equilibria and sta-
bilisation for a vehicle during extreme operating conditions,” International Journal
of Vehicle Autonomous Systems, vol. 8, no. 2-4, pp. 217–241, 2010.

[125] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online learning in high
dimensions,” Neural computation, vol. 17, no. 12, pp. 2602–2634, 2005.

161

[126] C. Williams, S. Klanke, S. Vijayakumar, and K. M. Chai, “Multi-task gaussian
process learning of robot inverse dynamics,” in Advances in Neural Information
Processing Systems, 2009, pp. 265–272.

[127] P. Boyle and M. Frean, “Dependent gaussian processes,” in Advances in neural
information processing systems, 2005, pp. 217–224.

[128] M. A. Alvarez, L. Rosasco, N. D. Lawrence, et al., “Kernels for vector-valued
functions: A review,” Foundations and Trends R© in Machine Learning, vol. 4, no.
3, pp. 195–266, 2012.

[129] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuo-
motor policies,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–
1373, Jan. 2016.

[130] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, and
U. Muller, “Explaining how a deep neural network trained with end-to-end learning
steers a car,” ArXiv preprint arXiv:1704.07911, 2017.

[131] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in
Advances in Neural Information Processing Systems, 1989, pp. 305–313.

[132] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K. Hedrick, “Learn-
ing a deep neural net policy for end-to-end control of autonomous vehicles,” in
IEEE American Control Conference, 2017.

[133] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoid-
ance through end-to-end learning,” in Advances in Neural Information Processing
Systems, 2006, pp. 739–746.

[134] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end autonomous
driving,” ArXiv preprint arXiv:1605.06450, 2016.

[135] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation learning and
structured prediction to no-regret online learning,” in International Conference on
Artificial Intelligence and Statistics, vol. 1, 2011, p. 6.

[136] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg, “Aggres-
sive deep driving: Model predictive control with a cnn cost model,” ArXiv preprint
arXiv:1707.05303, 2017.

[137] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in International Conference on Machine Learning, vol. 2, 2002, pp. 267–
274.

162

[138] S. Shalev-Shwartz et al., “Online learning and online convex optimization,” Foun-
dations and Trends R© in Machine Learning, vol. 4, no. 2, pp. 107–194, 2012.

[139] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell,
and M. Hebert, “Learning monocular reactive uav control in cluttered natural envi-
ronments,” in IEEE International Conference on Robotics and Automation, 2013,
pp. 1765–1772.

[140] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,” Inter-
national Statistical Review, vol. 70, no. 3, pp. 419–435, 2002.

[141] M. Laskey, C. Chuck, J. Lee, J. Mahler, S. Krishnan, K. Jamieson, A. Dragan, and
K. Goldberg, “Comparing human-centric and robot-centric sampling for robot deep
learning from demonstrations,” ArXiv preprint arXiv:1610.00850, 2016.

[142] N. Koenig and A. H. Design, “Use paradigms for gazebo, an open-source multi-
robot simulator ieee,” in IEEE International Conference on Intelligent Robots and
Systems, 2004.

[143] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential dynamic pro-
gramming,” in Advances in Neural Information Processing Systems, 2008, pp. 1465–
1472.

[144] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ArXiv preprint
arXiv:1412.6980, 2014.

163

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Progress in Artificial Intelligence
	Challenges in AI-based Robot Control

	Objective and Scope of this Thesis
	Reinforcement Learning and Optimal Control
	Probabilistic Modeling and Inference
	Imitation Learning and Deep Learning
	Applications to High-Speed Autonomous Driving
	Contributions and Outline

	Technical Background
	Optimal Control and Reinforcement Learning
	Problem Formulation
	Dynamic Programming
	Trajectory Optimization via Local Approximations
	Path Integral and Linearly Solvable Optimal Control

	Supervised Learning using Gaussian Processes
	Supervised Learning and Bayesian Linear Regression
	Gaussian Processes for Regression

	Probabilistic Differential Dynamic Programming
	Introduction
	Preliminaries
	Trajectory Prediction via GP Inference
	Approximate Inference via Moment Matching
	Hyperparameter Optimization
	Incorporating Prior Model Knowledge

	Probabilistic Trajectory Optimization
	Belief Dynamics and Local Approximation
	Optimization Criterion
	Control Policy and Value Function Approximation
	Control constraint
	Summary of algorithm

	Theoretical Analysis
	Further Analysis
	Computational complexity
	Relation to existing works

	Experimental Evaluation
	Tasks
	Data efficiency
	Computational efficiency
	Nonparametric vs. semiparametric learning
	Risk-sensitive vs. risk-neutral learning

	Discussion

	Path Integral Control under Uncertain Dynamics
	Introduction
	Gradient-based Approach
	Preliminaries
	Linearized Hamilton-Jacobi-Bellman Equation for Uncertain Dynamics
	Relation to Existing Works
	Analytic Path Integral Control: a Forward-Backward Scheme
	Generalization to Unlearned Tasks without Sampling
	Experiments and Analysis
	Summary and Discussion

	Sampling-based Approach
	Preliminaries
	Model Learning via Sparse Spectrum Gaussian Processes
	A Path Integral Control Approach with Covariance Adaptation
	Relation to Existing Works
	Experiments and Analysis
	Summary and Discussion

	Prediction under Uncertainty in Sparse Spectrum Gaussian Processes
	Introduction
	Sparse Spectral Representation of GPs
	Prediction under Uncertainty
	Exact moment matching (SSGP-EMM)
	Linearization (SSGP-Lin)

	Applications
	Bayesian filtering
	Stochastic Model Predictive Control

	Experimentals and Analysis
	Bayesian filtering
	Model Predictive Control
	Additional experiments on approximate inference

	Discussion
	Conditional independence between outputs
	SSGP-EKF vs. SSGP-ADF

	Summary

	Deep Imitation Learning for Agile Autonomous Driving
	Introduction
	Relation to Existing Works
	Imitation Learning for Autonomous Driving
	Problem Definition
	Imitation Learning
	Comparison of Imitation Learning Algorithms

	The Autonomous Driving System
	Algorithmic Expert with Model-Predictive Control
	Learning a DNN Control Policy
	The Autonomous Driving Platform

	Experimental Setup
	High-speed Navigation Task
	Test Track
	Data Collection
	Policy Learning

	Experimental Results
	Online vs Batch Learning
	Deep Neural Network Policy

	Summary

	Conclusions
	References

