
SMART PROJECTILE PARAMETER ESTIMATION USING
META-OPTIMIZATION

A Dissertation
Presented to

The Academic Faculty

By

Matthew S. Gross

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

December 2017

Copyright © Matthew S. Gross 2017

SMART PROJECTILE PARAMETER ESTIMATION USING
META-OPTIMIZATION

Approved by:

Dr. Mark Costello, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Eric Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Brian German
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Graeme Kennedy
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Aldo Ferri
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: July 31, 2017

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Dr. Mark Costello for his advice and

support over my five years at Georgia Tech. Through his guidance, I have grown as

an engineer, a researcher, and a leader. I would also like to thank my committee for

taking the time and effort to review my thesis and provide valuable feedback to make

sure this work is the best it can be. Additionally, I would like to thank Dr. Frank

Fresconi and the U.S. Army Research Laboratory for funding much of my research

which gave me the experience necessary to complete this thesis.

Surviving five years here at Georgia Tech would not have been possible without

the help and support of my fellow graduate students in Dr. Costello’s research group.

Since my first day on campus, the Center for Advanced Machine Mobility has been a

welcoming environment for research, collaboration, and most importantly, friendship.

I would like to thank all current and past CAMM members who helped me become

the engineer I am today.

Lastly, I would like to thank my friends and family who have supported me throug-

hout my entire journey. I will be forever grateful for the love and support from my

wonderful parents who have always placed a high emphasis on education and have

pushed me to be who I want to be. I also want to thank the Cochran family who

brought me into their lives from the moment I met them. Most importantly, I want

to thank my amazing wife Katy who has been there with me through every delay and

hardship, keeping me on target and making sure I made it all the way to my PhD.

These past few months finish this document have been the hardest of my life, and I

could have never made it through without her.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . ix

List of Figures . xii

Chapter 1: Introduction and Background 1

1.1 Related Work . 4

1.1.1 Aerospace System Parameter Estimation 4

1.1.2 Numerical Optimization . 8

1.1.3 Algorithm Selection . 12

1.1.4 Hybrid and Memetic Algorithms 14

1.2 Thesis Contributions . 16

1.3 Thesis Outline . 17

Chapter 2: Methodology for Smart Projectile Parameter Estimation 20

2.1 Output Error Method . 21

2.2 Projectile Flight Dynamics Model . 23

2.3 Spark Range Flight Testing . 27

2.4 Example Smart Projectile System . 29

iv

2.4.1 Microspoiler Control Mechanism 31

2.4.2 Example Trajectory Results 33

Chapter 3: Topology Analysis of Smart Projectile Parameter Esti-
mation Problem . 42

3.1 Parameter Cross Section Landscape Analysis 43

3.1.1 Roll Dynamics Analysis . 44

3.1.2 Epicyclic Dynamics Analysis 50

3.1.3 Microspoiler Dynamics Analysis 55

3.2 Local Search Analysis . 57

3.2.1 Low Angle of Attack Analysis 58

3.2.2 High Angle of Attack Analysis 59

3.2.3 Active Microspoiler Analysis 64

Chapter 4: Description of Meta-Optimization Framework 66

4.1 Bank of Optimizers . 68

4.1.1 Steepest Descent (SD) . 71

4.1.2 Conjugate Gradient (CG) . 72

4.1.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) 73

4.1.4 Particle Swarm Optimization (PSO) 74

4.1.5 Differential Evolution (DE) 75

4.1.6 Simplex (SIM) . 76

4.1.7 Invasive Weed Optimization (IWO) 78

4.1.8 Tabu Search (TS) . 79

v

4.1.9 Ant Colony Optimization (ACO) 81

4.2 Optimizer Performance Evaluation 82

4.3 Optimizer Selection . 84

4.4 Optimizer Manager . 86

4.5 Auto-Tuning . 89

Chapter 5: Benchmark Function Testing of Meta-Optimization . . . 91

5.1 Benchmark Function Suite . 92

5.1.1 Rosenbrock Function . 92

5.1.2 Rastrigin Function . 92

5.1.3 Griewank Function . 93

5.1.4 Levy Function . 93

5.1.5 Ackley’s Function . 93

5.1.6 Expanded Schaffer F6 Function 94

5.1.7 Expanded Griewank Plus Rosenbrock Function 94

5.1.8 High Conditioned Elliptic Function 94

5.2 Nominal Configuration Results . 94

5.2.1 Single Function Results . 95

5.2.2 Benchmark Suite Results . 99

5.3 Meta-Optimization Trade Studies . 105

5.3.1 Probability Update Rules . 106

5.3.2 Optimizer Efficiency Evaluation 114

5.3.3 Reseeding Parameters . 117

vi

5.3.4 Restarting Parameters . 122

5.3.5 Final Meta-Optimization Configuration 127

5.4 Competition Suite Testing . 130

Chapter 6: Smart Projectile Parameter Estimation Results 138

6.1 Simulated Trajectory Results . 138

6.1.1 Simulated Low Angle of Attack Results 141

6.1.2 Simulated High Angle of Attack Results 149

6.1.3 Simulated Active Microspoiler Results 162

6.1.4 Individual Optimizer Comparison 177

6.2 Projectile Parameter Estimation Trade Studies 178

6.2.1 Number of Measurements and Amount of Noise 179

6.2.2 Number of Trajectories . 182

6.2.3 Combining Trajectories . 184

6.3 Experimental Data Analysis . 187

6.3.1 Roll Parameter Estimation . 188

6.3.2 No Microspoiler Results . 192

6.3.3 Active Microspoiler Results 196

Chapter 7: Conclusions and Future Work 203

7.1 Conclusions . 203

7.2 Recommended Future Work . 206

Appendix A: Adaptive Finite Different Step Length Algorithm . . . 210

vii

Appendix B: Meta-Optimization Trade Study Results 212

B.1 Probability Update Rules . 212

B.2 Optimizer Efficiency Evaluation . 218

B.3 Reseeding . 222

B.4 Restarting . 225

References . 238

Vita . 239

viii

LIST OF TABLES

2.1 Physical Properties of 30 mm Army-Navy Finner 29

2.2 Standard PRODAS ANF Aerodynamic Coefficients 30

2.3 Microspoiler Coefficients Obtained from CFD Analysis 31

3.1 Typical Search Range for Estimated Projectile Parameters . 43

3.2 Low Angle of Attack Local Search Analysis Results 59

3.3 High Angle of Attack Local Search Analysis Results 61

3.4 High α Local Minimum Parameters 62

3.5 Active Microspoiler Local Search Analysis Results 64

4.1 Overview of Included Optimization Algorithms 70

4.2 Example Discrete Weighting Scheme 86

5.1 Benchmark Suite Function Descriptions 93

5.2 Nominal Meta-Optimization Parameters 95

5.3 Individual Optimizer Success Rate (%) on Benchmark Suite 100

5.4 Mean Final Cost for Individual Optimizers on Benchmark Suite101

5.5 Mean Successful Function Calls for Individual Optimizers on
Benchmark Suite . 102

5.6 Meta-Optimization Performance Metrics on Benchmark Suite 104

ix

5.7 Ratio of Individual Optimizer Contributions to Total Meta-
Optimization Cost Reduction (%) on Benchmark Suite 105

5.8 Final Meta-Optimization Configuration 128

5.9 Comparison of Nominal and Final Configurations on Bench-
mark Suite . 129

5.10 Optimizer Final Cost Error Mean and Standard Deviation n
= 10 . 132

5.11 Optimizer Final Cost Error Mean and Standard Deviation n
= 30 . 133

5.12 Optimizer Final Cost Error Mean and Standard Deviation n
= 50 . 134

5.13 Optimizer Final Cost Error Mean and Standard Deviation n
= 100 . 135

5.14 Optimizer Mean Rank . 136

5.15 Number of Times With Top Rank 136

6.1 Standard Deviations of Initial Conditions Used To Generate
Synthetic Data . 140

6.2 Simulated Low Angle of Attack Parameter Estimation Results 141

6.3 χ2 Values for Simulated Low Angle of Attack Trajectories . . 142

6.4 Simulated High Angle of Attack Parameter Estimation Results150

6.5 χ2 Values for Simulated High Angle of Attack Trajectories . 150

6.6 Simulated Microspoiler Coefficient Parameter Estimation Re-
sults . 163

6.7 Simulated Microspoiler Mechanism Parameter Estimation Re-
sults . 163

6.8 χ2 Values for Simulated Active Microspoiler Trajectories . . . 164

6.9 Final Cost for Individual Optimizers 177

x

6.10 Normalized Final Cost Per Measurement over Number of Me-
asurements and Amount of Noise 180

6.11 Measurement Trade Study Average Normalized Percent Error 182

6.12 Normalized Total Function Calls for Varying Number of Tra-
jectories . 183

6.13 Final Cost Per Trajectory for Varying Number of Trajectories 183

6.14 Percent Error in Final Parameter Estimates for Varying Num-
ber of Trajectories . 184

6.15 Percent Error in Final Parameter Estimate for Two Uncon-
trolled Trajectory Combinations 186

6.16 Percent Error in Final Parameter Estimate for Four Active
Microspoiler Trajectory Combinations 187

6.17 Experimental Roll Parameter Results 190

6.18 Experimental Body Aerodynamic Parameter Results 192

6.19 χ2 Values for No Microspoiler Trajectories 192

6.20 Experimental Microspoiler Parameter Results 197

6.21 Microspoiler Mechanism Parameter Estimation Results . . . 197

6.22 χ2 Values for Active Microspoiler Trajectories 197

xi

LIST OF FIGURES

1.1 Example Optimizer Performance on 2-D Griewank Function
(a). Steepest Descent; (b). Particle Swarm Optimization . . 3

1.2 Block Diagram of Output Error Method [5] 5

1.3 Picture of ARL Spark Range [6] 7

1.4 Example Shadowgraph Image of Projectile From ARL Spark
Range [29] . 7

2.1 Example Spark Range Measurements of Projectile Pitch Angle 20

2.2 Example Schematic of OEM Cost Function Trajectory Errors 21

2.3 Projectile Orientation Definition 23

2.4 30 mm Army-Navy Finner with Microspoilers 29

2.5 Microspoiler Actuation Profile 32

2.6 Example Trajectory Inertial-X Position vs. Time 35

2.7 Example Trajectory Inertial-Y Position vs. Range 36

2.8 Example Trajectory Altitude vs. Range 36

2.9 Example Trajectory Roll Angle vs. Range 37

2.10 Example Trajectory Pitch Angle vs. Range 37

2.11 Example Trajectory Yaw Angle vs. Range 38

2.12 Example Trajectory Body X Velocity vs. Range 38

xii

2.13 Example Trajectory Body Y Velocity vs. Range 39

2.14 Example Trajectory Body Z Velocity vs. Range 39

2.15 Example Trajectory Roll Rate vs. Range 40

2.16 Example Trajectory Pitch Rate vs. Range 40

2.17 Example Trajectory Yaw Rate vs. Range 41

2.18 Example Trajectory Total Angle of Attack vs. Range 41

3.1 Contour of Cost Function over Roll Generation and Roll Dam-
ping, Nominal Parameters Cl0 = 0.04375 and Clp = -4.0529 . 45

3.2 Contour of Cost Function over Roll Generation and Initial
Roll Rate, Nominal Parameters Cl0 = 0.04375 and p0 = 104.2
rad/s . 46

3.3 Roll Angle Comparison, Local Minimum Cl0 = 0.0544, p0 =
62.62 . 47

3.4 Contour of Cost Function over Roll Generation and Initial
Velocity, Nominal Parameters Cl0 = 0.04375 and u0 = 984 m/s 48

3.5 Roll Angle Comparison, Local Minimum Cl0 = 0.036963 . . . 48

3.6 Contour of Cost Function over Initial Velocity and Initial Roll
Rate, Nominal Parameters u0 = 984 m/s and p0 = 104.2 rad/s 49

3.7 Roll Angle Comparison, Local Minimum p0 = 154 rad/s . . . 49

3.8 Contour of Cost Function over Normal Force and Pitching
Moment, Nominal Parameters CNα = 8.161 and Cmα = -10.366 51

3.9 Altitude Trajectory Comparison, Cmα Local Minimum 52

3.10 Pitch Angle Trajectory Comparison, Cmα Local Minimum . . 52

3.11 Yaw Angle Trajectory Comparison, Cmα Local Minimum . . . 52

3.12 Contour of Cost Function over Normal Force and Pitching
Moment With Penalty Function, Nominal Parameters CNα =
8.161 and Cmα = -10.366 . 53

xiii

3.13 Contour of Cost Function over Normal Force and Pitching
Moment With Noise and Penalty Function, Nominal Para-
meters CNα = 8.161 and Cmα = -10.366 54

3.14 Contour of Cost Function over Microspoiler Axial Force and
Spin Rate, Nominal Parameters δA = -29 N and Ω0 = 440 rad/s 56

3.15 Pitch Angle Trajectory Comparison, Ω0 Local Minimum . . . 57

3.16 Yaw Angle Trajectory Comparison, Ω0 Local Minimum 57

3.17 High Angle of Attack Local Minimum Inertial-Y Position Tra-
jectory Comparison . 62

3.18 High Angle of Attack Local Minimum Altitude Trajectory
Comparison . 63

3.19 High Angle of Attack Local Minimum Pitch Angle Trajectory
Comparison . 63

3.20 High Angle of Attack Local Minimum Yaw Angle Trajectory
Comparison . 63

4.1 Flow Chart Representation of Meta-Optimization Framework 68

4.2 Optimizer Performance Metric Based on Cost Reduction and
Computation Time . 84

5.1 2-Dimensional Ackley Function 96

5.2 Ackley Function Cost Profile with Optimizer Deployment His-
tory . 97

5.3 Ackley Function Total Percent Cost Reduction 98

5.4 Ackley Function Total Number of Calls of Each Optimizer . 98

5.5 Ackley Function Total Number of Function Calls Used by
Each Optimizer . 98

5.6 Ackley Function Optimizer Probability vs Function Calls . . 99

xiv

5.7 Learning Automaton Reward and Penalty Parameter Norma-
lized Restart Rate . 107

5.8 Learning Automaton Reward and Penalty Parameter Norma-
lized Time Stalled . 108

5.9 Learning Automaton Reward and Penalty Parameter Opti-
mizer Count Deviation . 108

5.10 Learning Automaton Reward and Penalty Parameter Opti-
mizer Average Probability Deviation 109

5.11 Probability Weighting Methods Normalized Mean Computa-
tion Time . 110

5.12 Probability Weighting Methods Normalized Time Stalled . . 111

5.13 Probability Weighting Methods Optimizer Count Deviation . 111

5.14 Probability Weighting Methods Optimizer Average Probabi-
lity Deviation . 112

5.15 Weighting Coefficient Optimizer Count Deviation (a). W0 =
0.5; (b). W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0 114

5.16 Efficiency Check Window at Jref = 0.5 Normalized Success Rate116

5.17 Efficiency Check Window at Jref = 1.5 Normalized Mean Com-
putation Time . 116

5.18 Reference Cost Reduction at Nw = 6000 Normalized Mean
Computation Time . 117

5.19 Reseeding Rate Normalized Success Rate 118

5.20 Reseeding Rate Normalized Mean Computation Time 119

5.21 Reseeding Refinement Rate Normalized Success Rate 120

5.22 Reseeding Diversity Threshold Normalized Success Rate . . . 121

5.23 Reseeding Diversity Threshold Mean Computation Time . . 122

5.24 Restarting Threshold Normalized Success Rate 123

xv

5.25 Restarting Threshold Mean Computation Time 124

5.26 Restarting Threshold Mean Restart Rate 124

5.27 Restarting Exclusion Zone Normalized Success Rate 126

5.28 Restarting Exclusion Zone Mean Computation Time 126

6.1 Simulated Low Angle of Attack X Error vs. Time 143

6.2 Simulated Low Angle of Attack Roll Angle vs. Range 143

6.3 Simulated Low Angle of Attack Body X Velocity vs. Range . 144

6.4 Simulated Low Angle of Attack Roll Rate vs. Range 144

6.5 Simulated Low Angle of Attack Cost Profile 146

6.6 Simulated Low Angle of Attack Total Percent Cost Reduction 146

6.7 Simulated Low Angle of Attack Total Number of Calls of Each
Optimizer . 146

6.8 Simulated Low Angle of Attack Total Function Calls Used by
Each Optimizer . 147

6.9 Simulated Low Angle of Attack Base Drag Profile 148

6.10 Simulated Low Angle of Attack Roll Generation Profile . . . 148

6.11 Simulated Low Angle of Attack Roll Damping Profile 149

6.12 Simulated High Angle of Attack X Error vs. Time 151

6.13 Simulated High Angle of Attack Inertial-Y Position vs. Range 152

6.14 Simulated High Angle of Attack Altitude vs. Range 152

6.15 Simulated High Angle of Attack Roll Angle vs. Range 153

6.16 Simulated High Angle of Attack Pitch Angle vs. Range . . . 153

6.17 Simulated High Angle of Attack Yaw Angle vs. Range 154

xvi

6.18 Simulated High Angle of Attack Body X Velocity vs. Range 154

6.19 High Angle of Attack Body Y Velocity vs. Range 155

6.20 Simulated High Angle of Attack Body Z Velocity vs. Range 155

6.21 Simulated High Angle of Attack Roll Rate vs. Range 156

6.22 Simulated High Angle of Attack Pitch Rate vs. Range 156

6.23 Simulated High Angle of Attack Yaw Rate vs. Range 157

6.24 Simulated High Angle of Attack Total Angle of Attack vs.
Range . 157

6.25 Simulated High Angle of Attack Cost Profile 158

6.26 Simulated High Angle of Attack Total Percent Cost Reduction159

6.27 Simulated High Angle of Attack Total Number of Calls of
Each Optimizer . 159

6.28 Simulated High Angle of Attack Total Function Calls Used
by Each Optimizer . 159

6.29 Simulated High Angle of Attack Nonlinear Drag Profile . . . 160

6.30 Simulated High Angle of Attack Normal Force Profile 161

6.31 Simulated High Angle of Attack Pitching Moment Profile . . 161

6.32 Simulated High Angle of Attack Pitch Damping Profile . . . 162

6.33 Simulated Active Microspoilers X Error vs. Time 165

6.34 Simulated Active Microspoilers Inertial-Y Position vs. Range 166

6.35 Simulated Active Microspoilers Altitude vs. Range 166

6.36 Simulated Active Microspoilers Roll Angle vs. Range 167

6.37 Simulated Active Microspoilers Pitch Angle vs. Range 167

6.38 Simulated Active Microspoilers Yaw Angle vs. Range 168

xvii

6.39 Simulated Active Microspoilers Body X Velocity vs. Range . 168

6.40 Simulated Active Microspoilers Body Y Velocity vs. Range . 169

6.41 Simulated Active Microspoilers Body Z Velocity vs. Range . 169

6.42 Simulated Active Microspoilers Roll Rate vs. Range 170

6.43 Simulated Active Microspoilers Pitch Rate vs. Range 170

6.44 Simulated Active Microspoilers Yaw Rate vs. Range 171

6.45 Simulated Active Microspoilers Total Angle of Attack vs.
Range . 171

6.46 Simulated Active Microspoilers Cost Profile 172

6.47 Simulated Active Microspoilers Total Percent Cost Reduction 173

6.48 Simulated Active Microspoilers Total Number of Calls of Each
Optimizer . 173

6.49 Simulated Active Microspoilers Total Function Calls Used by
Each Optimizer . 173

6.50 Simulated Active Microspoilers Axial Force Profile 174

6.51 Simulated Active Microspoilers Normal Force Profile 175

6.52 Simulated Active Microspoilers Pitching Moment Profile . . 175

6.53 Simulated Active Microspoilers Nominal Spin Rate Profile . 176

6.54 Simulated Active Microspoilers Time Constant Profile 176

6.55 Comparison of Optimizer Performance on Simulated High
Angle of Attack Problem . 178

6.56 2.0σ Altitude Fitting Comparison: (a). 25 Measurements;
(b). 200 Measurements . 181

6.57 Unactuated Trajectory 1 Roll Angle Fit 190

6.58 Unactuated Trajectory 2 Roll Angle Fit 191

xviii

6.59 Unactuated Trajectory 3 Roll Angle Fit 191

6.60 Unactuated Inertial-X Position Error 193

6.61 Unactuated Inertial-Y Position vs. Range 194

6.62 Unactuated Altitude vs. Range 194

6.63 Unactuated Pitch Angle vs. Range 195

6.64 Unactuated Yaw Angle vs. Range 195

6.65 Unactuated Total Angle of Attack vs. Range 196

6.66 Active Microspoiler Inertial-X Position Error 199

6.67 Active Microspoiler Inertial-Y Position vs. Range 200

6.68 Active Microspoiler Altitude vs. Range 200

6.69 Active Microspoiler Pitch Angle vs. Range 201

6.70 Active Microspoiler Yaw Angle vs. Range 201

6.71 Active Microspoiler Total Angle of Attack vs. Range 202

B.1 Learning Automaton Reward and Penalty Factors (a). Success
Rate; (b). Mean Computation Time; (c). Restart Rate; (d).
Time Stalled; (e). Optimizer Count Deviation; (f). Average
Probability Deviation. Overall, lower values of the parame-
ters perform better while higher values have larger deviations.
Also includes a comparison to constant probability and se-
quential selection cases with the probability updates showing
superior performance. 212

B.2 Probability Weighting Method (a). Success Rate; (b). Mean
Computation Time; (c). Restart Rate; (d). Time Stalled;
(e). Optimizer Count Deviation; (f). Average Probability
Deviation. Discrete and continuous weighting schemes are
considered with three different function shapes. Continuous
weighting performed best on computation time and restart
rate while the discrete weighting was best on time stalled.
Square root weighting produced the largest deviations. 213

xix

B.3 Weighting Coefficient Restarting Rate (a). W0 = 0.5; (b).
W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0. Lower values of W0 and
medium values of W1 −W0 required fewer restarts than other
combinations. 214

B.4 Weighting Coefficient Time Stalled (a). W0 = 0.5; (b). W0 =
1.0; (c). W0 = 2.0; (d). W0 = 3.0. Lower values of W0 stall less,
especially on functions 5 and 6. 215

B.5 Weighting Coefficient Optimizer Count Deviation (a). W0 =
0.5; (b). W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0. Clear trend of
increasing deviation with decreasing W0 and increasing W1−W0.216

B.6 Weighting Coefficient Optimizer Probability Deviation (a).
W0 = 0.5; (b). W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0. Si-
milar trend of increasing deviation with decreasing W0 and
increasing W1 −W0. No difference on functions 9 and 10. . . . 217

B.7 Optimizer Efficiency Evaluation Parameters Success Rate (a).
Jref = 0.5; (b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0. Shorter
efficiency windows experience significant loss in success rate.
Little trend seen in terms of Jref 218

B.8 Optimizer Efficiency Evaluation Parameters Mean Computa-
tion Time (a). Jref = 0.5; (b). Jref = 1.0; (c). Jref = 1.5;
(d). Jref = 2.0. Computation time generally increases as the
window increase and decreases with increasing Jref 219

B.9 Optimizer Efficiency Evaluation Parameters Restart Rate (a).
Jref = 0.5; (b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0.
General trend of decreasing restarting rate with increasing
window. No trend in Jref . 220

B.10 Optimizer Efficiency Evaluation Parameters Time Stalled (a).
Jref = 0.5; (b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0.
For most functions, longer windows stall less with medium
windows stalling the least on functions 5 and 6. Time stalled
increases with increasing Jref for functions 1, 5, and 6. 221

B.11 Reseeding Rate Trade Study (a). Success Rate; (b). Mean
Computation Time; (c). Restart Rate; (d). Time Stalled.
Significant reduction in performance as reseeding rate decre-
ases. Some loss in performance is also present if reseeding rate
is too high. Meta-optimization largely ineffective without any
reseeding. 222

xx

B.12 Reseeding Refinement Rate Trade Study (a). Success Rate;
(b). Mean Computation Time; (c). Restart Rate; (d). Time
Stalled. Lower reseeding rates are generally better on success
rate while medium rates are fastest. Lower rates are also best
on time stalled. 223

B.13 Reseeding Diversity Threshold Trade Study (a). Success Rate;
(b). Mean Computation Time; (c). Restart Rate; (d). Time
Stalled. Significant loss in performance on all metrics when
the diversity threshold is too low or too high. Intermediate
values perform best overall. 224

B.14 Restarting Threshold Trade Study (a). Success Rate; (b).
Mean Computation Time; (c). Restart Rate. A lower restar-
ting threshold was better on some functions, but significantly
worse overall. Without restarts, meta-optimization can still
solve some problems reliably, but at the cost of increased
computation time. 225

B.15 Restarting Exclusion Zone Trade Study (a). Success Rate;
(b). Mean Computation Time; (c). Restart Rate; (d). Time
Stalled. Ball and range types of exclusion zone considered at
three different radii. Significant improvement on function 4
with the range type exclusion zone. Larger radius generally
performs better but may be too restrictive on the parameter
space. 226

xxi

SUMMARY

System identification and parameter estimation are valuable tools in the analysis

and design of smart projectile systems. Given the complexity of these systems, it

is convenient to work with mathematical models in place of the actual system. Pa-

rameter estimation uses time history data of the system to determine a model that

accurately matches the data. Many techniques have been developed to perform para-

meter estimation, including regression methods, maximum likelihood estimators, and

Kalman filters.

Maximum likelihood methods, in particular the output error method (OEM),

pose the estimation problem in terms of an optimization problem. OEM has seen

extensive use on projectile systems, utilizing a numerical optimizer such as a Newton

style algorithm to solve for unknown parameters. These algorithms are prone to

converging on local minima present in the projectile dynamics, requiring reasonable

initial guesses of the parameters to ensure convergence. However, for new smart

projectile systems, prior estimates of the control parameters may not be available.

Thus, there is a need for reliable and robust parameter estimation methods that are

not dependent a priori knowledge of the parameters.

This thesis proposes a new method for smart projectile parameter estimation ba-

sed on OEM. To achieve robust and reliable parameter estimates, a new underlying

optimization algorithm is formed, dubbed meta-optimization. Meta-optimization em-

ploys a diverse set of individual optimization algorithms with both local and global

search capabilities. The meta-optimizer operates by iteratively selecting a single al-

gorithm to deploy in a stochastic manner, giving preference to algorithms which have

performed well on the problem. This approach allows synergies to develop between

the individual optimizers, boosting performance beyond what each optimizer is ca-

pable of individually.

xxii

A suite of benchmark functions commonly used in the optimization field are used

to analyze the meta-optimization framework and compare it to other existing algo-

rithms. These functions have the benefit of known structure and solutions and are

less computationally intensive than the parameter estimation problem. A series of

trade studies are performed to evaluate each component of meta-optimization and

determine a robust configuration for use on general optimization problems. Meta-

optimization is also compared to the individual algorithms it employs, showing supe-

rior performance and reliability over this benchmark suite. Finally, meta-optimization

is compared to other state of the art algorithms, showing comparable performance.

The new parameter estimation method is applied to an example smart projectile

system equipped with a new microspoiler control mechanism. Both synthetic and

experimental trajectory data is used to evaluate the effectiveness of the proposed

method. From the synthetic data, the parameter estimation algorithm accurately

estimates the aerodynamic coefficients of a standard projectile as well as parameters

for a smart projectile executing a maneuver. This synthetic data is also used to

conduct trade studies investigating how the data itself impacts the accuracy of the

parameter estimates. Lastly, the method is applied to flight test data collected at

the U.S. Army Research Laboratory spark range with good results in the presence of

large measurement errors.

xxiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

System identification and parameter estimation are common tools within the aero-

space discipline. When working with complex systems, it is often difficult or impracti-

cal to use the actual system for tasks such as designing new control strategies [1, 2]

or characterizing new aircraft configurations [3, 4]. Therefore, it is useful to develop

mathematical models which approximate the behavior of the actual system. System

identification is used to determine appropriate models by observing the response of

the system to various inputs. To simplify this process, a single model can be cho-

sen which contains a number of parameters that govern the behavior of the model.

This type of system identification is known as parameter estimation where the model

is known a priori. A general nonlinear model for parameter estimation is given by

Equation 1.1 [5]

z = h(x) + v (1.1)

where z is the measurement vector, h is a function with known form, v is the mea-

surement noise vector, and x is the set of parameters which govern the model. The

model is often based on the underlying physics of the system with varying levels of

complexity. For example, a dynamic model of a smart projectile system contains the

aerodynamic coefficients for the projectile body and any additional parameters asso-

ciated with the control mechanism [6, 7]. The quality of a set of parameters is deter-

mined by defining a function which compares the output of the model with trajectory

data. This parameter estimation problem can then be posed as an optimization pro-

blem, using a numerical optimization algorithm to seek the set of parameters which

best fit the data [8]. Given the complexity of many models, solving this problem can

1

be difficult for existing numerical optimization methods.

Numerous numerical optimization strategies have been employed to perform para-

meter estimation. These algorithms are iterative approaches that gradually progress

towards a solution which may or may not be the global solution to the problem.

Typically, gradient based optimizers have been used to solve parameter estimation

problems [8]. Other optimizers such as particle swarm optimization [9, 10, 11] and

genetic algorithms [12, 13, 14] have also been used. Each of these algorithms are

suited to different types of problems. For example, gradient based algorithms are

strong local search methods, but are only capable of searching within a neighborhood

around a solution. This is seen in Figure 1.1a where a gradient based optimizer is

used to solve the Griewank function. This function has a global minimum at (0,0)

and alternating minimums and maximums along the x and y directions. Within this

space, there are four local minima at (±π,±
√

2π). As a demonstration, steepest

descent, a simple optimization method that follows the gradients of the function, is

started from a point near (2,-2). As it progresses, the contours of the function steer

the algorithm towards the local minimum at (π,−
√

2π). Global methods like parti-

cle swarm, on the other hand, are able to freely explore the entire parameter space,

but often require significant computation time to determine solutions and are also

not guaranteed to find the global best solution. Figure 1.1b shows a population of

particles, each with a velocity vector which describes the motion of each particle as

it searches the space.

It is important to note that there is no single optimizer that can successfully

solve all optimization problems, let alone solve the problems in a computationally

efficient manner. The proper selection of an optimizer for a given problem is a critical

decision by an engineer as the selection of the wrong algorithm can have serious

consequences. More and more, optimization is being used in an embedded manner

where the optimizer is part of a completely automated process, such as within an

2

x

y

−5 0 5
−5

0

5

(a)

x

y

−5 0 5
−5

0

5

(b)

Figure 1.1: Example Optimizer Performance on 2-D Griewank Function (a). Steepest
Descent; (b). Particle Swarm Optimization

adaptive flight control algorithm [15]. In these cases, the requirements placed on

the optimizer become shifted from traditional practice. It is paramount that the

optimizer work every time and achieve an acceptable solution within a certain amount

of time. Due to the nature of a given problem, numerical optimizers can be prone

to getting stuck during the iterative process, yielding unsatisfactory results. This

can occur in a few ways. On multi-modal problems, optimizers can converge on a

3

local solution instead of the global solution. Optimizers can also diverge on complex

problems, resulting in non-physical solutions. Some optimizers can wander aimlessly

in a limited part of the parameter space far from the global optimum. Any of these

scenarios would be problematic in an embedded system and would be an unacceptable

result for the optimizer. Thus, there is a need for optimizers that are easy to use and

highly reliable at solving a wide range of optimization problems. The concept of

algorithm portfolios and hybrid optimizers provide a potential avenue for improving

reliability by combining a diverse set of optimizers in a common framework that

maximizes performance and adaptability.

1.1 Related Work

Many techniques exist for performing parameter estimation on projectile systems

with the most common utilizing numerical optimizers to obtain accurate estimates.

Existing approaches typically employ gradient based methods which require reasona-

ble estimates of the parameters to guarantee convergence. Metaheuristic optimizers,

on the other hand, are able to search globally and can avoid local optima. The wide

range of optimizers to choose from presents its own challenge, with the selection of ap-

propriate optimizers requiring a priori knowledge of the problem. Multiple methods

have been developed to solve this selection problem by allocating resources between

various optimizers based on performance. More reliable optimizers have also been de-

veloped which combine multiple algorithms to reduce the limitations of the individual

optimizers.

1.1.1 Aerospace System Parameter Estimation

Significant literature exists on the topic of system identification and parameter esti-

mation including entire books on general system identification methods [16, 17, 18],

as well as books specifically covering applications to aerospace systems [5, 19, 20].

4

Parameter Estimation problems are often posed as optimization problems through

the use of maximum likelihood estimators (MLE). The MLE seeks the set of sy-

stem parameters which maximize the likelihood of the system model matching a set

of experimental observations. This method is most effective for stochastic dynamic

systems with both process and measurement noise. The output error method is a

simplified MLE which neglects the process noise, allowing the system dynamics to be

directly integrated. An objective function, also known as a cost function, is defined

to minimize the difference between given data and a simulated model at a discreet

number of points on a set of trajectories. Figure 1.2 gives a general block diagram

for the output error method [5]. Here, observed measurements of the actual system

are compared to outputs from the model using estimated parameters. The parameter

estimates are updated based on the objective function output. It is typical for this

method to be coupled to a Newton style numerical optimizer to solve for unknown

parameters.

System

Model

Parameter

Estimation

Input

u

+ +

Measurement Noise v

Measured Output y

Estimated Output z

Objective

Function

Parameter Estimate x

Cost J

Figure 1.2: Block Diagram of Output Error Method [5]

In the field of projectile parameter estimation, a popular MLE based algorithm

is the Aeroballistics Research Facility Data Analysis System (ARFDAS) [21, 22,

23]. ARFDAS uses projectile linear theory to produce parameter estimates used

as the starting point for the MLE. An iterative approach is used to match simulated

six degree-of-freedom (6DOF) trajectories with experimental data typically obtained

5

from spark range testing [6]. A similar approach was developed by Montalvo and

Costello using the output error method. Like ARFDAS, linear theory is employed to

determine initial values for the unknown parameters before the Levenberg-Marquardt

process is used to estimate the parameters based on coupled computational fluid dyna-

mics (CFD)/rigid body dynamics (RBD) virtual flyouts [7]. Burchett used a gradient

based approach based on a linear model of the projectile dynamics. Simulated yaw

card data with no measurement noise was used to demonstrate the algorithm. The

gradient based method was also compared to a genetic algorithm based approach

[24, 25]. Condaminet et. al. investigated four different problem configurations for

estimating the parameters of a reduced order ballistic model using partial flight data.

In all cases, a Newton-Raphson technique is used to solve the optimization problems

[26].

To perform parameter estimation on projectile systems, data is collected from

test firing projectiles under a range of conditions, often in a spark range [6, 27,

28]. A spark range consists of a set of orthogonal spark shadowgraph stations which

allow for the measurement of the position and orientation of the projectile in flight.

Each spark station consists of a spark box and a camera. The spark box generates

an extremely short duration flash, allowing the camera to capture an instantaneous

image of the projectile in flight. The US Army Research Laboratory (ARL) Transonic

Experimental Facility spark range is pictured in Figure 1.3. Here, the orthogonal

spark stations can be seen with one set in the trench on the ground and the other

along the adjacent wall. The white screens provide a backdrop for the projectile

images, producing a clear image of the projectile. An example shadowgraph image is

shown in Figure 1.4. The position and orientation of the projectile at each station

can then be measured using these images. While spark ranges are known to provide

accurate measurements, the limited number of measurements can cause issues when

performing parameter estimation. Alternatively, the projectile can be outfitted with

6

Spark Box
and Camera

Backdrop
Screen

Figure 1.3: Picture of ARL Spark Range [6]

Figure 1.4: Example Shadowgraph Image of Projectile From ARL Spark Range [29]

on board sensors which record detailed telemetry throughout the flight [30]. More

recently, computational fluid dynamics (CFD) simulations have been employed to

determine the aerodynamics of new projectiles [31, 32]. In addition, CFD techniques

have been combined with flight dynamics simulations to create virtual flyout data

that is used in place of flight testing [33, 34, 7].

One major drawback of existing projectile parameter estimation algorithms is that

while they are powerful and have been successfully deployed to date, they work best

7

when given initial parameter values close to the solution. Newton style numerical

algorithms are local search techniques and are prone to converging on local minima

which are very common in projectile parameter estimation problems. Projectile linear

theory can provide reasonable estimates for some parameters, but does not capture

the fully nonlinear behavior of the projectile and may not be able to provide reaso-

nable estimates for some parameters. This issue greatly decreases the performance

of these techniques on new projectile systems that are more complex and contain

parameters that are completely unknown and cannot be easily estimated through

other methods. These tools also are difficult to modify to account for the addition

of control mechanisms and control logic and may not be the most efficient under all

circumstances.

1.1.2 Numerical Optimization

An enormous amount of information exists on the development and formulation of

optimizers of various styles. Numerous books have been written on the topic including

books on convex optimization [35], numerical optimization [36], linear and nonlinear

optimization [37], and metaheuristics [38, 39, 40, 41] in addition to entire journals de-

voted to optimization such as the Journal of Optimization Theory and Applications,

Journal of Global Optimization, IEEE Transactions on Evolutionary Computation,

and many more. Some specialized books have also been written covering genetic and

evolutionary algorithms [42, 43], particle swarm optimization [44] and simulated an-

nealing [45]. Entire courses are taught on optimization at the university level. The

optimization literature includes theoretical mathematical research, numerical appro-

aches, and numerous applications. Despite the diverse nature of these algorithms,

every optimizer follows a similar framework. First, the algorithm begins from an

initial solution or set of solutions and then iteratively improves this solution until it

reaches some stopping criteria.

8

The basic structure of an optimization problem consists of an objective or cost

function which is minimized or maximized by proper selection of problem parameters.

The problem parameters to be selected may be constrained by equality or inequality

equations. The objective function is defined to describe the goals of the engineering

problem in mathematical terms. Mathematically, an optimization problem can be

expressed as Eq. 1.2.

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(1.2)

where f(x) is the cost function, gi(x) are the inequality constraints, and hi(x) are

the equality constraints. An optimal solution occurs when the gradient of the cost

function equals zero and the Hessian is positive definite for minimization problems

or negative definite for maximization problems. Some optimization problems may

contain multiple solutions which satisfy these requirements. These problems are con-

sidered multi-modal with a single global optimum and numerous local optima.

Due to the complexity of most optimization problems, numerical methods are often

employed to obtain solutions. Each optimizer is suited for a certain type of problem

based on the desired topology. Most optimizers can be broken into two classes:

gradient based methods and metaheuristics. Gradient based methods, also known as

hill climbers, are iterative approaches which seek a lower cost value along a search

direction in the parameter vector space. The search direction is determined using local

information on the gradient and curvature of the cost function. These optimization

algorithms are extremely efficient at solving uni-modal and convex problems, but

are prone to converging to local optima on multi-modal problems. Due to this fact,

gradient based methods are generally considered local search methods and are highly

dependent on initial guesses of the solution.

9

Gradient based algorithms are comprised of two main components; a search di-

rection and a line search algorithm. The primary difference between these algorithms

are the methods for determining an appropriate search direction. The most obvious

direction is the negative of the gradient of the cost function where it is guaranteed

a lower cost can be found. A search in this direction is known as steepest descent.

While steepest descent provides the fastest decrease in cost, this search direction can

be extremely inefficient for complex problems [36]. The most important search di-

rection is the Newton direction. Newton’s method is an iterative approach for finding

the solution of a nonlinear function by taking the first order Taylor series expansion

of the function. For the case of optimization problems, Newton’s method models the

cost function as locally quadratic with a closed form solution that is easily determi-

ned. For quadratic problems, Newton’s method can obtain the solution with a single

step and is very efficient on other convex problems. However, this model requires both

the gradient and the Hessian matrix at the current search point making it a second

order method. Computation of the Hessian, in particular, can be computationally

expensive for complex problems [37].

The other component of gradient based methods is the line search algorithm. The

goal of the line search is to find the lowest cost value along the line defined by the

search direction in the parameter vector space. The simplest line search method is a

backtracking search. Backtracking begins with a Newton step and gradually reduces

the step length until a nontrivial decrease in the cost is observed. A Newton step

is chosen as the first step as it would be expected to produce fast convergence near

the solution. By slowly decreasing the step length, the algorithm ensures that the

step is not too small and will eventually lower cost [37]. Another common line search

technique is the golden section method. This approach is based on the concept of the

golden ratio of the distances between three points on the line. An iterative procedure

is used to gradually reduce the bounds around a minimum value until the minimum is

10

found [46]. On highly nonlinear problems, line search algorithms can struggle where

the local model used to generate the search direction is a poor approximation of the

cost function.

Metaheuristics provide an alternative numerical optimization approach with both

local and global search capabilities. A heuristic is a procedure or process for solving

a problem based on intuition or experience. A metaheuristic is, therefore, a higher

level procedure which selects an appropriate heuristic to apply to a given problem.

The term is also generally used to classify all optimizers that do not use gradient

information. Global metaheuristic optimizers are able to search the entire function

space and often converge on the global optimum, however this is not guaranteed.

These global methods often require a large amount of computation time to determine

the solution, or they may be unable to solve certain classes of problems entirely [38,

39, 40, 41].

Many metaheuristic algorithms are based on phenomenon observed in nature such

as genetic evolution and insect and bird behavior and combine stochastic and local

searches. The stochastic nature of metaheuristic algorithms allows for the exploration

of the search space without getting caught in local optima, guiding the algorithm to-

wards the global solution. These optimizers are best suited for problems where little

information on the problem topology is known. They also have the advantage of not

requiring gradient information, greatly simplifying the algorithms and allowing for

more general applicability [41]. Some of the most popular metaheuristic approaches

are genetic algorithms and similar evolutionary algorithms. Genetic algorithms (GA)

take a population of candidate solutions and express them as a string of bits, or genes,

to form a chromosome. New populations are generated using various genetics inspired

operators, such as gene mutation and crossover, along with a form of natural selection

[42]. Storn and Price developed a simplified evolutionary algorithm called differential

evolution (DE) which uses real numbers to express the variables with requisite modi-

11

fications to the mutation and crossover operators [47]. Another popular population

based optimizer is particle swarm (PSO) developed by Kennedy and Eberhart. The

algorithm is based on swarm behavior observed in nature, specifically the sharing of

information between agents in the swarm [48, 49].

Another category of numerical optimization algorithms for global optimization

are Bayesian optimizers. The basis of Bayesian global optimization (BGO) is to ap-

proximate the objective function using a probabilistic model that is computationally

cheaper than the objective function to solve [50]. These optimizers are especially

effective when the objective function is computationally expensive to evaluate. BGO

begins with an a priori distribution of the objective function which represents the

initial guess of the function landscape. A new point is sampled by seeking the point

with greatest expected improvement according to the a priori distribution. This me-

tric allows for a balance between exploration of uncertain regions of the parameter

space and exploitation of the predicted distribution. The a priori distribution is then

updated based on observing the objective function at this new point [51]. The effi-

cient global optimization algorithm (EGO) is a popular type of BGO, using a kriging

based model to predict the objective function and a branch and bound algorithm

to maximize the expected improvement to determine the next sample point [52, 53].

The exploration and exploitation capabilities of BGO can be controlled through the

selection of different methods for obtaining future sampling points [54].

1.1.3 Algorithm Selection

For an engineer, the selection of an appropriate algorithm to use for a given problem

is a critical decision which may be difficult to make a priori. The process for selecting

a method is essentially the algorithm selection problem outlined by Rice [55]. To se-

lect the best algorithm, Rice proposed a method which seeks to find a mapping from

a set of problems to a set of algorithms based on a specified performance measure.

12

This approach is known as meta-learning and typically uses machine learning to de-

velop this mapping [56, 57, 58, 59, 60]. Another common approach is the algorithm

portfolio which combines a number of different algorithms into a portfolio and allo-

cates computational resources intelligently to reduce computation time and improve

performance for a given problem. The expected performance of each algorithm is

determined by running each algorithm on a set of training problems and applying

machine learning techniques to help predict future performance [61, 62, 63]. A major

drawback of this approach is that it requires training of the mapping before it is used

on a new problem, requiring a large amount of computation time for training and

limiting applicability to only similar problems. Also, the optimal algorithm may vary

throughout the solution process, with a sequence of algorithms being more efficient

than a single algorithm.

Alternatively, a dynamic algorithm portfolio can be used which develops a map-

ping while solving the problem using feedback from the solution process. Given a

set of algorithms, each algorithm is allocated a discrete amount of time to work on

solving the problem. The amount of time given to each algorithm is based on the

relative performance of each algorithm, favoring those which perform best [64, 65,

66]. This approach can be improved by treating the time allocation problem as a

multi-armed bandit problem [67, 68]. This type of problem assumes that the reward

from each action is governed by an unknown probability distribution. By sampling

from the set of actions, estimates for each one can be found with the goal of maxi-

mizing the cumulative reward. This method is also used on continuous optimization

problems to select optimizers from a portfolio [69, 70]. Peng et. al. use a suite of

population based optimizers in a portfolio framework to minimize the risk of solving

a given problem. Each optimizer is allocated a portion of the total computation time

to run with periodic migration of solutions between the algorithms [71]. Yuen et. al.

propose a portfolio with multiple evolutionary algorithms, where selection is based

13

on the predicted performance of each optimizer at some future point, extrapolated

from the cost curve for each optimizer [72, 73]. The selection of optimizers for use

in a portfolio can also be automated to further improve performance and generality

[74, 75]. Carchrae and Beck take a sequential approach where each optimizer is run

for an allocated amount of time using the current best solution as a starting point.

The order of the optimizers is random and the computation time allocated is updated

after all optimizers have run based on the relative performance of each optimizer [76].

A similar approach has also been applied to the selection and combination of sur-

rogate models for solving optimization problems. Surrogate models are mathematical

models used to approximate an objective function that is relatively expensive to eva-

luate [77]. Common surrogate models used in optimization are polynomial regression

[78, 79, 80], radial basis functions [81, 82], and kriging [52, 83]. Like numerical op-

timizers, no single surrogate model works well on all problems and the best model

is often unknown a priori. Goel et. al. proposed an ensemble approach, combining

multiple surrogate models using a weighted average of the model predictions based on

different measures of the goodness of each model [84]. Dempster-Shafer theory can

also be used to select and mix models according to various performance metrics [85,

86]. An ensemble approach was also applied to the EGO algorithm, where multiple

surrogate models were used simultaneously to determine new points to sample in the

parameter space, favoring models that more accurately fit the data [87].

1.1.4 Hybrid and Memetic Algorithms

One common feature of many portfolio approaches is that the individual algorithms

are run independently, with little or no sharing of information. This means that

many times, computation time is being used on algorithms which are not advancing

towards the solution. One alternative is to combine multiple optimizers together to

improve performance. These hybrid optimizers, often called Memetic algorithms, are

14

a class of optimizer which combine global search methods, such as genetic algorithms

and particle swarm, with a local search method to improve the exploitation capability

of the global method. Memetic algorithms follow a general framework with alterna-

ting phases of exploration using the global search method and exploitation with local

search [88]. The term memetic algorithm originated with Moscato who proposed a

new method for solving combinatorial problems which combined simulated annealing

for local search and a genetic algorithm like crossover feature to introduce coopera-

tion between population members [89]. These hybrid methods are extremely useful

on continuous, multimodal problems where existing metaheuristics are inefficient at

obtaining accurate solutions.

The most common optimizers used in memetic algorithms are particle swarm,

differential evolution, and genetic algorithms. These optimizers have been paired with

a number of local search techniques such as Nelder-Mead simplex, the Hooke-Jeeves

method [90], multiple trajectory search [91], stochastic local search [92], iterated

local search [39], and gradient based methods [93, 94]. Within the memetic algorithm

framework, there exist numerous methods for interweaving local search into the global

search methods. One simple approach is to alternate between optimizers sequentially,

such as the method proposed by Wang, et al. which combines PSO with a gradient

based optimizer in a two phase algorithm. The first phase consists of a gradient

descent to search for a local minimum. With a local minimum found, the PSO

phase commences and runs until a lower cost is found [95]. These sequential hybrids

often contain reseeding or other strategies for maintaining diversity and preventing

premature convergence [96, 97, 94, 98]. Local search can also be applied in parallel

to a subset of the population to work together with the global search [99, 100, 101].

Alternatively, the local search can be embedded in the update rules for the population

at every iteration. Rafajlowicz and Subudhi, Jena, and Gupta add a local search step

to DE after a trial vector is generated [102, 103] while Noel replaces the cognitive

15

component of the particle velocity update in PSO with a gradient descent operation

[104].

To better handle a diverse set of optimization problems, adaptive memetic algo-

rithms have been proposed which select from multiple local search strategies. These

adaptive methods use the diversity of the population to determine which local search

algorithm to use at the given time. This approach helps balance exploration and

exploitation of the function space and controls the diversity to prevent premature

convergence [105, 106, 107, 108]. Other hybrid methods have been proposed which

combine multiple metaheuristic optimizers. Shi, et al. developed a hybrid method

with GA and PSO where each optimizer runs separately and the populations are shuf-

fled periodically [109]. Shelokar, et al. combined PSO and ant colony optimization

(ACO), using ACO as a local search method[110]. Another popular combination is

PSO and DE. One approach invokes DE when PSO has stalled to prevent premature

convergence of PSO [111]. A second approach incorporates the memory structure of

PSO into the mutation and crossover operations in DE [112]. Different local search

methods can also be combined to create a global search method [113].

1.2 Thesis Contributions

The objective of this thesis is to develop a new method for performing parameter

estimation on smart projectile systems that is highly accurate and reliable for a wide

range of problems. The core of parameter estimation is the numerical optimization

strategy, with existing approaches utilizing optimizers which require reasonable initial

estimates of the parameters to guarantee convergence. On new projectile configurati-

ons where initial estimates are unavailable, these methods would be unreliable when

presented with complex estimation problems. This thesis proposes a new method for

robust numerical optimization dubbed meta-optimization, an optimizer of optimizers.

The goal of meta-optimization is to iteratively deploy a diverse set of optimizers in

16

an intelligent manner, improving accuracy and reliability across a wide set of optimi-

zation problems. The meta-optimizer must be able to select appropriate optimizers,

ensure smooth transitions between different optimizers, prevent premature conver-

gence in local minima, and improve optimizer parameters which are poorly tuned.

The contributions of this work are expressed through the following three aims:

1. Analysis of the smart projectile parameter estimation problem to understand

potential challenges for conventional numerical optimization algorithms.

2. Development of the individual components of the meta-optimizer with trade

studies to determine the most effective approaches.

3. Evaluation of meta-optimization on performing parameter estimation on a new

projectile configuration using simulated and experimental flight test data.

1.3 Thesis Outline

This dissertation is composed of 7 chapters which are briefly detailed below.

• Chapter 1: Introduction and Background. A review of parameter esti-

mation and numerical optimization is presented. Also related work on existing

projectile parameter estimation techniques, algorithm selection methods, and

hybrid optimizers and memetic algorithms is discussed.

• Chapter 2: Methodology for Smart Projectile Parameter Estimation.

An overview of the 6 degree of freedom smart projectile flight dynamics model

and accompanying aerodynamics model is given. Example smart projectile

system and spark range testing procedure are also described.

• Chapter 3: Topology Analysis of Smart Projectile Parameter Estima-

tion Problem. An analysis of the topology of the smart projectile parameter

17

estimation problem is performed. Specific projectile dynamics and their ef-

fects on the problem topology are investigated. Local minima in parameter

estimation problem are characterized and corroborated through simulation of

projectile dynamics.

• Chapter 4: Description of Meta-Optimization Framework. The meta-

optimization framework is developed with detailed descriptions of individual

components. The individual optimizers used by meta-optimization are descri-

bed.

• Chapter 5: Benchmark Function Testing of Meta-Optimization. In

this chapter, the general behavior of meta-optimization on solving optimization

problems is evaluated using benchmark optimization functions. The perfor-

mance of meta-optimization is compared to the individual optimizers on these

benchmark functions. Trade studies are conducted to understand the behavior

of meta-optimization components and a robust configuration is determined.

Also, meta-optimization is compared to state of the art optimizers on a suite of

benchmark functions used in optimization competitions.

• Chapter 6: Smart Projectile Parameter Estimation Results. Robust

meta-optimization configuration is employed to perform parameter estimation

for a smart projectile system. Simulated trajectory data is used to evaluate

capabilities of meta-optimization to accurately estimate parameters of a pro-

jectile system. The effects of measurement noise and number of measurements

on the accuracy of the parameter estimates are explored through trade studies.

Parameter estimation is performed using experimentally obtained spark range

data.

• Chapter 7: Conclusions and Future Work. Conclusions are drawn based

on the results from the previous chapters. In addition, recommendations for

18

future work are proposed.

19

CHAPTER 2

METHODOLOGY FOR SMART PROJECTILE PARAMETER

ESTIMATION

Parameter estimation is the process of characterizing a model for a real world system

based on data collected from the system. In the case of smart projectile systems, data

is typically collected from flight testing in a spark range which provides measurements

of the position and orientation of the projectile at discrete points along the flight.

Trajectory data can also be generated using CFD/RBD virtual flyouts which utilize

a CFD model to compute the aerodynamic forces and moment on the projectile,

creating realistic trajectories without the need for expensive flight testing [7, 34].

Figure 2.1 shows an example of the type of data obtained from a spark range with a

small number of measurements and some error in each measurement.

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

4

x (m)

θ
(d

eg
)

Measurement
Trajectory

Dynamic Model Prediction

Given Data

Figure 2.1: Example Spark Range Measurements of Projectile Pitch Angle

The parameter estimation problem is formulated using the Output Error Method

(OEM) which defines a cost function as a function of the difference between given

20

trajectory data and a dynamic model prediction of the same trajectory. Trajectory

data comes in the form of measured data from flight testing or CFD/RBD virtual

flyouts. Predictions of the projectile trajectory are obtained from a six degree-of-

freedom (6DOF) projectile flight dynamics representation which simulates the flight

of the projectile given estimates of unknown parameters.

2.1 Output Error Method

The projectile parameter estimation problem is cast in the output error format. Under

this formulation, a cost function is defined based on comparing estimated measure-

ments to known data points along a trajectory. In this case, the estimated measu-

rements are generated from a simulated trajectory generated using estimates for any

unknown parameters. Figure 2.2 shows a schematic of how OEM computes the cost.

Here, there are three measurements of θ at specific range locations. A trajectory is

θ

x

ei

ek

ej

xi xkxj

Measurement

Error

Predicted
Trajectory

Figure 2.2: Example Schematic of OEM Cost Function Trajectory Errors

simulated using an estimate of the parameters of the system. The error between the

predicted trajectory and the measurements is found by taking the difference between

the measurement and the predicted trajectory at the same range or time value. These

errors are computed for every measurement of every state and combined into a single

21

cost function. The typical cost function for the OEM is the sum squared error as

defined in Eq. 2.1 [5, 114].

J(x) =
1

2

N∑
i=1

[zi − yi]
TGi[zi − yi] +

n∑
i=1

ri|max (0, g(x))|3 (2.1)

Here, x is the vector of unknown parameters, y is the measured state vector, z is

the estimated measurement, N is the number of measurements, n is the number of

parameters, Gi is the weighting and scaling matrix, ri is the penalty coefficient, and

g(x) is the inequality constraint function which is positive when the inequality is not

satisfied. The weighting and scaling matrix Gi is generated from three components.

First, the state errors are scaled by the standard deviation of the measurement noise,

ensuring all states contribute to the cost equally. Second, the states can be weighted

against each other to limit the impact of certain states or to highlight others. Finally,

weighting can be applied to each individual measurement along the trajectory in order

to highlight certain behavior and improve the accuracy of the parameter estimates.

Each parameter is constrained to its search range by an exterior penalty function.

In Eq. 2.1, this is represented by the function g(x) which treats each boundary

condition as an inequality constraint. This penalty function adds to the cost when a

parameter exceeds its bounds. A cubic penalty function is chosen because the second

derivative is zero on the boundary, providing sufficient smoothness for hill climbing

based optimization algorithms. The magnitude of the penalty function is set to allow

some exploration beyond the boundary while the overall cost remains high. As the

cost is reduced, the boundary grows steeper relative to the current cost.

In addition to the cost function, the quality of fit for a given set of parameters is

evaluated using the metric χ2. For the jth state, χ2 is computed using Eq. 2.2 [115]:

(χ2)j =
n∑
i=1

(zji − y
j
i)

2

σ2
j

(2.2)

22

where σj is the standard deviation of the measurement noise for this state. Lower

values indicate a better fit with the expected value of χ2 for an optimal trajectory on

the order of the number of measurements.

2.2 Projectile Flight Dynamics Model

The six degree of freedom rigid body flight dynamics simulation is the heart of the

cost function calculation. This model predicts the position, orientation, velocity,

and angular velocity of the projectile as a function of time over the trajectory. It

includes gravity, aerodynamic, and control forces and moments. The orientation of

the projectile body is given by the aerodynamic standard 3-2-1 Euler angle sequence

as seen in Figure 2.3. This sequence defines a set of rotations from the Inertial (I)

reference frame to the Body (B) reference frame.

Figure 2.3: Projectile Orientation Definition

The motion of projectile is governed by a set of kinematic and dynamic equations.

The kinematic equations of motion describe the changes in inertial position (x, y, z)

and orientation (φ, θ, ψ) in terms of the body frame velocity (u, v, w) and angular

23

velocity (p, q, r). These equations are given in Eqs. 2.3 and 2.4 [116].

ẋ

ẏ

ż

 =

cθcψ sφsθsψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cθcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

u

v

w

 (2.3)

φ̇

θ̇

ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

p

q

r

 (2.4)

In these equations, the shorthand notation sα = sin(α) , cα = cos(α), and tα = tan(α)

is used. The dynamic equations of motion govern the motion of the body as a result of

the forces and moments that act on the body. These equations are formed by equating

the time derivative of the linear and angular momentum with the summation of the

forces and moments about the center of mass of the projectile. The translational and

rotational dynamics are given by Eqs. 2.5 and 2.6.

u̇

v̇

ẇ

 =
1

m

X

Y

Z

−

0 −r q

r 0 −p

−q p 0

u

v

w

 (2.5)

ṗ

q̇

ṙ

 = [IB]−1

L

M

N

−

0 −r q

r 0 −p

−q p 0

 [IB]

p

q

r

 (2.6)

Here, m is the mass of the projectile, [IB] is the moment of inertia matrix, X, Y, Z

are the total forces on the body expressed in the B frame, and L,M,N are the total

moments about the center of mass expressed in the B frame.

The forces and moments depicted in Eqs. 2.5 and 2.6 are total forces and moments

acting on the projectile which include aerodynamic (A), gravity (G) and control forces

24

(C). The total forces and moments are given in Eqs. 2.7 and 2.8.

X

Y

Z

 =

XA

YA

ZA

+

XG

YG

ZG

+

XC

YC

ZC

 (2.7)

L

M

N

 =

LA

MA

NA

+

LC

MC

NC

 (2.8)

The aerodynamic forces on the projectile are modeled using existing ballistic expan-

sions with known coefficients given in Eq. (2.9).

XA

YA

ZA

 = −Qd

CX0 + CX2

v2+w2

V 2

CY0 + CNα
v
V
− CYpα wV

pd
2V

CZ0 + CNα
W
V

+ CYpα
v
V
pd
2V

(2.9)

Here, CX0 is the zero yaw drag coefficient, CX2 is the dynamic drag coefficient, CY 0

and CZ0 are the zero yaw normal force coefficients, CNα is the normal force coefficient,

CY pα is the Magnus force coefficient, d is the aerodynamic diameter, V is the total

velocity, and Q is the dynamic pressure given by Q = 1
8
πρd2V 2. The air density ρ is

a function of the altitude h of the projectile as specified by:

ρ = 1.22566578494891(1.0− 0.0000225696709h)4.258 (2.10)

25

The weight of the projectile expressed in the projectile body frame is given by:

XG

YG

ZG

 =

−sθ

sφcθ

cφcθ

mg (2.11)

The total aerodynamic moments are given in Eq. 2.12:

LA

MA

NA

 = Qd2

Cl0 + Clp

pd
2V

Cm0 + Cmα
w
V

+ Cnpα
v
V
pd
2V

+ Cmq
qd
2V

Cn0 − Cmα v
V

+ Cnpα
w
V
pd
2V

+ Cmq
rd
2V

(2.12)

where Cl0 is the roll moment coefficient, Clp is the roll damping moment coefficient,

Cm0 and Cn0 are the zero yaw pitch and yaw moment coefficients, Cmα is the pitching

moment coefficient, Cnpα is the Magnus moment coefficient, and Cmq is the pitch

damping coefficient. These aerodynamic coefficients are typically functions of Mach

number. The control forces XC , YC , ZC and control moments LC ,MC , NC from Eqs.

2.7 and 2.8 are application dependent, with each control method having unique effects

on the projectile dynamics. With all of the applied forces and moments computed,

Eqs. 2.3-2.6 are numerically integrated forward in time using a 4th-order Runge-

Kutta method to generate a trajectory for a projectile configuration.

For most projectile parameter estimation problems, only the aerodynamic coeffi-

cients are estimated, but any parameter used in the model could be estimated as well.

This could include parameters such as the projectile mass m, the moments of inertia

[IB], and the projectile diameter d. The projectile aerodynamic model presented here

has 12 coefficients that need to be estimated. However, for symmetric projectiles, CY0 ,

CZ0 , Cm0 , and Cn0 are zero. In addition, for finned projectiles, it is assumed that the

Magnus coefficients, CY pα and CNpα, are zero as roll rates tend to be small, resulting

26

in negligible Magnus effects. This reduces the number of aerodynamic coefficients for

finned projectiles to seven: CX0, CX2, CNα, Cl0, Clp, Cmα, and Cmq.

2.3 Spark Range Flight Testing

The data used in this work to perform parameter estimation was collected in the

spark range at the U.S. Army Research Laboratory Transonic Experimental Facility.

The spark range consists of twenty five orthogonal spark shadowgraph stations arran-

ged in groups of five along an approximately 200 m range. From each set of images

gathered from the spark stations, position and angular measurements are taken. The

time of each image is also recorded. Due to issues in the collection and processing

of the images, about 5-10% of measurements in a given shot cannot be made. To

generate synthetic spark range data, a trajectory is simulated from launch with the

position, orientation, and time recorded at the range location corresponding to each

spark station. Noise is then added to the measurements to mimic real world data.

Typical measurement errors have a standard deviation of 3 mm for position measure-

ments and 0.1◦ for angle measurements. To reduce the impact of measurement noise

and improve the accuracy of the parameter estimates, multiple trajectories can be

combined together within a single cost function.

The estimated measurements generated by the simulation within the cost function

are obtained by noting when the simulated trajectory passes the time corresponding

to a measurement and interpolating each state back to this time. It is assumed that

the time measurements are known exactly as any measurement errors are significantly

smaller than errors in the state data. Three techniques are used to handle the initial

conditions for each predicted trajectory. In the first method, the simulated trajec-

tories are started from the first spark station, using the first set of measurements as

initial conditions. This simplifies the estimation process as only the initial velocities

and angular velocities must be estimated. While a small amount of error may be

27

added due to noise in the initial measurements, the effect on the quality of the esti-

mates is minimal as long as the measurement error is low. Alternatively, the initial

position and orientation can be estimated. However, this adds additional parameters

that must be estimated, making the problem more difficult for the optimizers. In this

case, a small range based on the typical measurement error is defined around each of

the first measurements, restricting the potential values of the initial conditions.

The final approach instead begins the simulations from launch. Typically, position

and orientation of the gun are fixed, but slight variations in velocity and angular

velocity may occur as the projectile leaves the barrel. Also, the initial roll angle is

unknown and must be estimated. The initial time must also be estimated as the

time measurements are not calibrated to launch. This approach is necessary when

the projectile initial conditions must be constrained to prevent coupling with other

parameters. The challenge of this approach is a lack of observability of the projectile

behavior prior to the first measurement. The computation time for each trajectory

is also increased by 25% due to the longer simulated flight time.

Two models are used for the aerodynamic coefficients. For individual trajectories,

the coefficients can be assumed to be constant with respect to Mach number as the

coefficients do not vary significantly over a single trajectory. When working with

multiple trajectories at different Mach numbers, it is necessary to use a Mach varying

aerodynamic model to best approximate the real world aerodynamics. A linear model

provides a reasonable approximation as the coefficients are roughly linear over small

ranges in Mach number, particularly in the supersonic regime. To characterize this

model, an upper and lower Mach number limit are defined based on the range of

expected Mach numbers for the trajectory data. The aerodynamic coefficients used

in the simulations are computed using:

C(M) = Clo + (Chi − Clo)
M −Mlo

Mhi −Mlo

(2.13)

28

where Clo and Chi are estimates of the coefficient at the Mach number limits.

2.4 Example Smart Projectile System

The smart projectile configuration considered in this work is a finned projectile equip-

ped with a single set of microspoilers. The base projectile is a 30 mm Army-Navy

Finner (ANF). This round is a popular testbed for new control mechanisms as it

has been studied extensively by the community with well documented aerodynamics.

This projectile configuration is shown in Figure 2.4. The round is axi-symmetric with

four fins at the rear of the body. The mass properties of the standard 30 mm ANF

are given in Table 2.1 and the nominal aerodynamic coefficients obtained from the

Projectile Design/Analysis System (PRODAS) aeroprediction tool [117] are given in

Table 2.2.

Figure 2.4: 30 mm Army-Navy Finner with Microspoilers

Table 2.1: Physical Properties of 30 mm Army-Navy Finner

Physical Property Value

mass (kg) 1.5887

diameter (m) 0.03

center of gravity - IB (m) 0.135

IXX (kg-m2) 0.000192388

IY Y = IZZ (kg-m2) 0.00987337

29

Table 2.2: Standard PRODAS ANF Aerodynamic Coefficients

Mach CX0 CX2 CNα Cl0 Clp Cmα Cmq

0.01 0.4698 3.32 12.549 0.086875 -8.0214 -32.771 -396.7

0.4 0.4723 3.32 13.716 0.097 -8.9549 -36.366 -417.1

0.6 0.4735 3.32 14.315 0.10225 -9.4336 -38.136 -427.6

0.7 0.5166 3.56 15.103 0.109 -10.056 -40.228 -437.4

0.75 0.5382 3.68 15.497 0.11237 -10.366 -41.238 -442.2

0.8 0.5597 3.8 15.892 0.11588 -10.677 -42.224 -447.1

0.85 0.6265 4.04 16.524 0.12125 -11.176 -43.865 -456.9

0.875 0.6598 4.16 16.84 0.124 -11.425 -44.666 -461.7

0.9 0.6932 4.28 17.156 0.12675 -11.675 -45.456 -466.6

0.925 0.7303 4.52 17.476 0.12937 -11.925 -46.218 -471.2

0.95 0.7673 4.76 17.795 0.13212 -12.174 -46.968 -475.9

0.975 0.8366 5.15 18.117 0.13487 -12.423 -47.708 -481

1 0.9059 5.53 18.439 0.13763 -12.671 -48.436 -486.2

1.025 0.9299 5.93 18.716 0.14013 -12.903 -50.85 -514

1.05 0.9539 6.34 18.993 0.14275 -13.136 -53.317 -541.8

1.1 0.9086 7.11 19.599 0.14788 -13.607 -58.399 -608.7

1.2 0.8308 8.12 18.522 0.138 -12.704 -54.511 -592.2

1.35 0.7769 7.54 16.661 0.12113 -11.152 -47.185 -553.7

1.5 0.7307 6.94 14.751 0.1035 -9.5432 -39.4 -515.5

1.75 0.6641 6.34 14.337 0.099 -9.1227 -36.855 -507.8

2 0.6174 5.74 10.762 0.066875 -6.1794 -22.225 -406

2.25 0.5765 5.43 10.133 0.061 -5.6344 -19.143 -388.9

2.5 0.5356 5.13 9.503 0.055 -5.0894 -16.048 -371.8

3 0.4742 4.4 8.161 0.04375 -4.0529 -10.366 -331.7

3.5 0.4458 4.06 7.121 0.035125 -3.2611 -6.535 -296.4

4 0.4174 3.71 6.081 0.0265 -2.4692 -2.698 -261

30

2.4.1 Microspoiler Control Mechanism

The microspoiler mechanism consists of four sets of small protrusions which extend

and retract from the projectile body with a prescribed motion and a set frequency. As

seen in Figure 2.4, the microspoilers are placed between the rear fins of the projectile

and are oriented such that they are on the top of the projectile body. Microspoilers

add additional forces and moments acting on the projectile and are incorporated into

the equations of motion of the projectile through the control forces and moments in

Eqs. 2.5 and 2.6. The magnitude of the forces and moments at a given time are a

function of how much of the microspoilers are exposed. The coefficients are functions

of Mach number with values obtained from CFD analysis of the microspoilers given

in Table 2.3 [118].

Table 2.3: Microspoiler Coefficients Obtained from CFD Analysis

Mach δA δN δm

1.1 -7.7 13.7 1.51

1.5 -13.1 34.4 4.13

2.0 -18.5 47.8 5.92

2.5 -23.7 60.6 7.56

3.0 -29.0 73.7 9.25

4.0 -43.1 103.9 13.05

5.0 -59.2 135.2 17.00

The mechanism is designed to spin at a set rate with a spin up period at launch. A

first order model based off of bench testing of the mechanism is used to approximate

the spin rate as it reaches steady state. The expansion for the microspoiler forces and

31

moments is given by:

XC

YC

ZC

 = λ
(
ω0 + Ω0

(
t+ τmse

− t
τms − τms

))

δA

0

δN

 (2.14)

LC

MC

NC

 = λ
(
ω0 + Ω0

(
t+ τmse

− t
τms − τms

))

0

δm − δN∆SLCG

0

 (2.15)

The effect of the microspoilers is parameterized by six parameters: the axial force

coefficient δa, the normal force coefficient δN , the pitching moment coefficient δm,

the initial microspoiler phase ω0, the microspoiler spin rate Ω0, and the microspoiler

time constant τms. Note that by assuming the microspoiler forces and moments are

acting about the projectile center of mass, the δN term in Eq. 2.15 goes to zero. The

magnitude function λ is determined by the design of the microspoiler mechanism and

is given in Figure 2.5.

0 100 200 300
0

0.2

0.4

0.6

0.8

1

ω (deg)

λ(
ω

)

Figure 2.5: Microspoiler Actuation Profile

32

2.4.2 Example Trajectory Results

To understand the dynamics of this projectile and the effects of the microspoilers,

two trajectories were simulated using the model described in this chapter, one with

only the base ANF and the other with the ANF equipped with microspoilers. Both

trajectories were fired with an initial velocity of 1023 m/s or Mach 3. The first

trajectory was given an initial pitch rate of 20 rad/s in order to fully excite the

dynamics of the projectile. The state trajectories for both cases are shown in Figures

2.6-2.18. For reference, the total angle of attack of the projectile ᾱ is given by:

ᾱ = tan−1

(√
v2 + w2

u

)
(2.16)

The projectile dynamics can be broken up into three different groups that are

mostly decoupled from one another: the axial dynamics, the roll dynamics, and the

epicyclic dynamics. The axial dynamics govern the change in axial velocity u and

are primarily driven by the axial force X and has little influence from the other

states. In Figure 2.12, the overall trend in u is dictated by CX0 while CX2 causes

the small oscillations in velocity. However, these small changes in velocity are nearly

imperceptible in the range trajectory in Figure 2.6. When working with spark range

data that only has measurements of x position, changes in the predicted trajectories

due to CX0 will be more pronounced than CX2.

Like the axial dynamics, the roll dynamics are largely decoupled from the other

dynamics as the impact of other states on the roll rate is minimal. This is due to

the roll moment L being significantly larger than the contributions from q and r in

Eq. 2.6. The roll rate profile is controlled by the roll generation coefficient Cl0 and

the roll damping coefficient Clp. These parameters dictate the rate of increase in roll

rate as well as the steady state roll rate which is controlled by the ratio Cl0/Clp. For

this trajectory, the roll rate shown in Figure 2.15 indicates that this round has not

33

yet reached steady state by the end of the flight.

Finally, the epicyclic dynamics cover the remaining projectile body velocities and

angular velocities. These dynamics govern the periodic motion of the projectile and

play an important role in the stability of the projectile. The coefficients associated

with the epicyclic dynamics are CNα, Cmα and Cmq. The effects of the epicyclic

dynamics can be clearly seen in Figures 2.7, 2.8, 2.10, and 2.11 where these states

oscillate at a consistent frequency. The large initial pitch rate generates large angles

of attack, exciting the dynamics and producing large oscillations. For a fin stabilized

projectile, the projectile is statically stable such that angular rates will naturally

decay over time. This is seen in Figure 2.18 where the total angle of attack decays

from 9◦ after launch to only 2◦ at the end of the flight. The angular motion will also

decay as the roll rate increases due to coupling between the roll rate and the pitch

and yaw rates seen in Eq. 2.6.

The microspoilers add an additional axial force, normal force, and pitching mo-

ment to the projectile. The general effect on the axial dynamics is a slightly steeper

decrease in u with the active microspoiler trajectory losing about 10 m/s more by

the end of the flight. The most pronounced effects from the microspoilers are seen

in Figures 2.7 and 2.8. While the base round had almost no motion in y, the mi-

cospoilers steer the round 0.5 m to the right. The microspoilers also push the round

towards the ground with a change of 0.5 m from the launch height. The microspoilers

also generate large perturbations in angle of attack, achieving a maximum of about

7.5◦. Because the microspoilers spin independently of the projectile roll rate, the

forces and moments are not acting in a consistent direction and are generally out of

phase with the epicyclic dynamics. This produces interesting interactions with the

projectile dynamics. For example, looking at Figure 2.10, the oscillations in θ decay

from 100 m to about 200 m before the oscillations increase again. Another example

of these interactions is seen in Figure 2.18 where the angle of attack increase after

34

275 m while the base round continues to decrease. This behavior demonstrates how

the microspoilers are able to influence the projectile trajectory throughout the entire

flight.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

300

350

400

t (s)

x
(m

)

No Microspoilers
Active Microspoilers

Figure 2.6: Example Trajectory Inertial-X Position vs. Time

35

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x (m)

y
(m

)

No Microspoilers
Active Microspoilers

Figure 2.7: Example Trajectory Inertial-Y Position vs. Range

0 50 100 150 200 250 300 350 400
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

x (m)

h
(m

)

No Microspoilers
Active Microspoilers

Figure 2.8: Example Trajectory Altitude vs. Range

36

0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

No Microspoilers
Active Microspoilers

Figure 2.9: Example Trajectory Roll Angle vs. Range

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

8

10

x (m)

θ
(d

eg
)

No Microspoilers
Active Microspoilers

Figure 2.10: Example Trajectory Pitch Angle vs. Range

37

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2

4

6

8

x (m)

ψ
(d

eg
)

No Microspoilers
Active Microspoilers

Figure 2.11: Example Trajectory Yaw Angle vs. Range

0 50 100 150 200 250 300 350 400
950

960

970

980

990

1000

1010

1020

1030

x (m)

u
(m

/s
)

No Microspoilers
Active Microspoilers

Figure 2.12: Example Trajectory Body X Velocity vs. Range

38

0 50 100 150 200 250 300 350 400
−150

−100

−50

0

50

100

150

x (m)

v
(m

/s
)

No Microspoilers
Active Microspoilers

Figure 2.13: Example Trajectory Body Y Velocity vs. Range

0 50 100 150 200 250 300 350 400
−150

−100

−50

0

50

100

150

200

x (m)

w
 (

m
/s

)

No Microspoilers
Active Microspoilers

Figure 2.14: Example Trajectory Body Z Velocity vs. Range

39

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

x (m)

p
(r

ad
/s

)

No Microspoilers
Active Microspoilers

Figure 2.15: Example Trajectory Roll Rate vs. Range

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

5

10

15

20

x (m)

q
(r

ad
/s

)

No Microspoilers
Active Microspoilers

Figure 2.16: Example Trajectory Pitch Rate vs. Range

40

0 50 100 150 200 250 300 350 400
−20

−15

−10

−5

0

5

10

15

20

x (m)

r
(r

ad
/s

)

No Microspoilers
Active Microspoilers

Figure 2.17: Example Trajectory Yaw Rate vs. Range

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

x (m)

α
ba

r
(d

eg
)

No Microspoilers
Active Microspoilers

Figure 2.18: Example Trajectory Total Angle of Attack vs. Range

41

CHAPTER 3

TOPOLOGY ANALYSIS OF SMART PROJECTILE PARAMETER

ESTIMATION PROBLEM

The structure and topology of an optimization problem has a significant impact on

which optimizers will succeed and which will struggle to solve the problem. Unlike

benchmark functions which have a defined mathematical form that can be easily

visualized and analyzed, more practical optimization problems provide very little in-

tuition on which optimizers are most appropriate. In the case of the smart projectile

parameter estimation problem, the high dimensionality and complexity of the ob-

jective function makes it a difficult problem to analyze. However, valuable insight

can be obtained by observing the nature of this problem in a range of situations to

understand the underlying topology of the associated optimization problem.

The analysis performed in this chapter is based on synthetic spark range data

generated for the ANF with microspoilers described in Section 2.4. The synthetic

measurements are obtained using the procedure in Section 2.3. Individual trajecto-

ries are considered with aerodynamic coefficients held constant to the values from

Table 2.2 at Mach 3. For any single trajectory, the aerodynamic coefficients are ge-

nerally considered to be constant as Mach number does not vary significantly over

the duration of the flight. The cost function in Eq. 2.1 was used with the trajec-

tory prediction simulations starting from the first measurement. The states x, y, z,

φ, θ, and ψ can be included in the cost function with all states and measurements

weighted equally. Unless otherwise noted, no noise is added to the synthetic measu-

rements and no bounds are placed on the parameters. Typical search ranges for each

parameter are given in Table 3.1. Note, the nominal values for the initial conditions

are representative values for these parameters as the initial conditions vary between

42

trajectories. Two methods are used to analyze the topology of the smart projectile

parameter estimation problem. The first method generates cost landscapes at diffe-

rent cross sections of the parameter space. The second method uses a local optimizer

to search the parameter space to detect the location of local minima.

Table 3.1: Typical Search Range for Estimated Projectile Parameters

Parameter Nominal

Value

Lower

Bound

Upper

Bound

CX0 0.4742 0.3 0.6

CX2 4.4 3.0 6.0

CNα 8.161 7.0 9.5

Cl0 0.04375 0.03 0.06

Clp -4.0529 -6.0 -3.0

Cmα -10.366 -15.0 -5.0

Cmq -331.7 -500.0 -200.0

u0 (m/s) 1000.0 800.0 1100.0

v0 (m/s) 50.0 -200.0 200.0

w0 (m/s) 50.0 -200.0 200.0

p0 (rad/s) 100.0 50.0 150.0

q0 (rad/s) 10.0 -20.0 20.0

r0 (rad/s) 10.0 -20.0 20.0

3.1 Parameter Cross Section Landscape Analysis

While it is impossible to visualize the topology of the smart projectile parameter

estimation problem over the entire parameter space, it is insightful to observe the

behavior of the cost function on cross sectional slices of regions of interest. To gene-

rate these slices, two parameters are varied over a 1000x1000 grid with the remaining

parameters held fixed to known values. The cost function is evaluated at every grid

point, generating a set of contours that are visualized. The ranges for each investiga-

ted parameter extend 10% beyond the standard search ranges in each direction. In

43

addition, the gradient of the cost function is computed along the search boundaries to

indicate the slope of the cost function along the boundary. The behaviors of interest

are the roll, epicyclic (v, w, q, r), and microspoiler dynamics.

3.1.1 Roll Dynamics Analysis

The parameters associated with roll are the roll generation coefficient (Cl0), roll dam-

ping coefficient (Clp), and initial roll rate (p0). As discussed in Section 2.4, the roll

dynamics are decoupled from the other states. This allows for easy investigation of

the roll dynamics. Roll data is typically wrapped, meaning all angles are restricted to

-180◦ to 180◦. Sometimes roll data is unwrapped to an absolute angle. With unwrap-

ped roll measurements, fitting the roll parameters is very simple and the associated

optimization problem is unimodal. However, when the roll measurements are wrap-

ped, the topology becomes multimodal with complex character and a number of local

minima.

To observe this phenomenon, a case is constructed with only the roll measurements

included in the cost function, restricting the optimization problem to only the roll

dynamics. The first cross section is taken about Cl0 and Clp with the remaining

parameters held fixed. The search range for Cl0 is from 0.03 to 0.06 and the search

range for Clp is from -6 to -3. Figure 3.1 shows the contours of the cost function over

these two parameters. In the figure, the box represents the typical search bounds on

these parameters. The boundary is color coded to indicate if the gradient is pointing

into or out of the search space and the arrows represent the direction of the gradient on

the boundary. The black lines denote the nominal values of the parameters with the

global minimum at their intersection. Overall, this landscape is highly multimodal

with a few local minima within the search bounds as well as some outside of the

search space that would attract optimizers out of the search space. A deep, narrow

valley occurs along the nominal ratio of Cl0/Clp which contains the global minimum.

44

Without a reasonable estimate for Cl0/Clp, an optimizer may struggle to reach the

valley, instead drawn away into a local minima. However, these local minima are very

shallow compared to the global minimum.

C
l0

C
lp

0.024 0.03 0.036 0.042 0.048 0.054 0.06 0.066

−6

−5.4

−4.8

−4.2

−3.6

−3

−2.4

2000

4000

6000

8000

10000

12000

14000

Figure 3.1: Contour of Cost Function over Roll Generation and Roll Damping, Nominal
Parameters Cl0 = 0.04375 and Clp = -4.0529

45

C
l0

p 0 (
ra

d/
s)

0.024 0.03 0.036 0.042 0.048 0.054 0.06 0.066
30

50

70

90

110

130

150

170

0.5

1

1.5

2

x 10
4

Local Minimum

Figure 3.2: Contour of Cost Function over Roll Generation and Initial Roll Rate,
Nominal Parameters Cl0 = 0.04375 and p0 = 104.2 rad/s

Another interesting combination of the roll parameters is Cl0 and p0. This time,

Clp is held fixed and p0 is varied with a search range of 50 rad/s to 150 rad/s. The

landscape shown in Figure 3.2 indicates another highly multimodal topology. Howe-

ver, the local minima in this case are more pronounced and the basin of attraction

around the global minimum is a small oval. The local minima are also deeper, posing

a greater hazard to optimizers solving this problem.

To better understand the causes of these local minima, a trajectory was simulated

using the parameters of the local minimum in the lower right corner corresponding

to Cl0 = 0.0544 and p0 = 62.62 rad/s. Figure 3.3 shows a comparison between the

simulated roll angle trajectory using the nominal parameters and the parameters of

the local minimum. For this set of parameters, the roll angle comes into phase with

the measurements at around 100 m and again briefly at 200 m. While it remains out

of phase for most of the flight, these brief periods where the trajectories align yield

lower cost values. Any change in either parameter will cause the trajectory to shift

46

out of phase which creates the local minimum. As this phenomenon is driven by the

roll dynamics themselves, these local minima would occur regardless of the number

of roll angle measurements used.

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

e
g

)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.3: Roll Angle Comparison, Local Minimum Cl0 = 0.0544, p0 = 62.62

Interactions between the roll parameters are not the only cause of local minima

in the roll dynamics. To investigate the effects of the roll parameters Cl0 and p0

individually, each parameter is varied along with the initial velocity u0. x position

is added to the cost function along with φ to observe changes in the cost due to u0.

For both cases, u0 is varied across a search range of 800 m/s to 1100 m/s. First, Cl0

is considered with the cost landscape shown in Figure 3.4. Overall, the cost function

is more sensitive to changes in u0 than Cl0. On this zoomed in view, a number of

clearly defined local minima are present at varying Cl0 values near the nominal u0.

These local minima are symmetric about the nominal Cl0 with four occurring within

the search space and two less than 20% from the nominal value. The local minimum

at Cl0 = 0.036963 is simulated and plotted in Figure 3.5. As with the previous local

minimum, the roll angle comes into phase with the measurements towards the end of

the flight, creating the local minimum.

47

C
l0

u 0 (
m

/s
)

0.024 0.03 0.036 0.042 0.048 0.054 0.06 0.066

950

975

1000

1025

1

2

3

4

5

6

x 10
4

Local Minimum

Figure 3.4: Contour of Cost Function over Roll Generation and Initial Velocity, Nomi-
nal Parameters Cl0 = 0.04375 and u0 = 984 m/s

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

e
g

)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.5: Roll Angle Comparison, Local Minimum Cl0 = 0.036963

The final parameter of interest is p0. Figure 3.6 shows the cross section of u0

vs p0. Again, the cost function is more sensitive to u0 than p0 with local minima

occurring near the nominal value of u0. The local minima in and near the search

range are about 50 rad/s from the nominal value, but the basins of attraction for the

48

local minima extend about 25 rad/s. Looking at the roll trajectory in Figure 3.7, the

trajectories align from about 150 m to the last measurement.

u
0
 (m/s)

p 0 (
ra

d/
s)

950 975 1000 1025
30

50

70

90

110

130

150

170

1

2

3

4

5

6

7

8
x 10

4Local Minimum

Figure 3.6: Contour of Cost Function over Initial Velocity and Initial Roll Rate, No-
minal Parameters u0 = 984 m/s and p0 = 104.2 rad/s

2
0 50 100 150 200 250

−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

e
g

)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.7: Roll Angle Comparison, Local Minimum p0 = 154 rad/s

Overall, the roll dynamics with wrapped roll measurements present numerous

challenges for an optimizer tasked with estimating these parameters. Both Cl0 and

49

p0 exhibit multiple local minima within the search space, and when combined, create

a complex topology that is difficult to navigate. These local minima are caused by

specific parameter combinations that allow the roll angle trajectory to come into phase

with a subset of the measurements. This phenomenon is caused by the roll dynamics

and thus is independent of the level of noise and the number of roll measurements.

3.1.2 Epicyclic Dynamics Analysis

The epicyclic dynamics of a projectile govern the angular motion of the projectile

about the pitch and yaw axes as well as the angle of attack and angle of sideslip

of the projectile. This corresponds to the states v, w, q, and r. The aerodynamic

coefficients which drive the epicyclic dynamics are the normal force (CNα), pitching

moment (Cmα), and pitch damping (Cmq). To evaluate these dynamics, a trajectory

with high angle of attack is constructed with an initial q at launch of about 20 rad/s.

As seen in Section 2.4, an initial pitch rate of this magnitude will sufficiently excite

the epicyclic dynamics. All states except for φ are included in the cost function as

the epicyclic dynamics do not influence the roll angle.

Interesting behavior in the epicyclic dynamics is observed using a cross section

over CNα and Cmα. Here, CNα has a search range of 7 to 9.5 and Cmα has a search

range of -15 to -5. The landscape shown in Figure 3.8 indicates a strong sensitivity in

cost to Cmα relative to CNα. In general, CNα is only marginally observable without

high angle of attack while Cmα significantly alters the angular motion of the projectile.

The primary feature of this landscape is a ridge which occurs around Cmα = -15. This

feature is represented by the direction of the gradients along the entire Cmα = -15

boundary pointing away from the search space. At this coefficient value, the cost

begins to decrease as the magnitude of Cmα increases. A valley occurs around Cmα

= -17, not far from the boundary of the search space.

50

C
Nα

C
m

α

7 7.5 8 8.5 9 9.5 10
−17

−15

−13

−11

−9

−7

−5

−3

20

40

60

80

100

120

140

160

180

200

220

Figure 3.8: Contour of Cost Function over Normal Force and Pitching Moment, No-
minal Parameters CNα = 8.161 and Cmα = -10.366

To understand why this behavior occurs, multiple trajectories are simulated with

varying Cmα around -17. Figures 3.9-3.11 show comparisons of h, θ, and ψ between

the nominal Cmα and each of these cases. Similar to the roll dynamics, this local

minimum occurs when the oscillations of each of these states come into phase with

the measurements for the last set of spark stations. As Cmα is moved away from -17,

the trajectories shift out of phase, resulting in an increase in the cost.

51

0 50 100 150 200 250
4.75

4.8

4.85

4.9

4.95

5

5.05

x (m)

h
 (

m
)

Measurement
Nominal
C

mα=−15

C
mα=−17

C
mα=−19

Figure 3.9: Altitude Trajectory Comparison, Cmα Local Minimum

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

x (m)

θ
(d

e
g

)

Measurement
Nominal
C

mα=−15

C
mα=−17

C
mα=−19

Figure 3.10: Pitch Angle Trajectory Comparison, Cmα Local Minimum

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

x (m)

ψ
 (

d
e

g
)

Measurement
Nominal
C

mα=−15

C
mα=−17

C
mα=−19

Figure 3.11: Yaw Angle Trajectory Comparison, Cmα Local Minimum

52

This structure becomes an issue when the penalty function is added to the cost

function to constrain the parameters to the desired search space. Figure 3.12 shows a

close-up of the region around the lower right corner of the landscape when the penalty

function is included. Due to the local minimum in the unbounded landscape caused

by the epicyclic dynamics, cost decreases as Cmα moves away from the search space

towards Cmα = -17. However, the value of the penalty function increases rapidly the

further Cmα gets from the boundary, eventually overtaking the pull of the dynamics

and creating a new local minimum not far outside the boundary. A local minimum

also forms on the search boundary when Cmα is varied along with Cmq, q0, and r0.

C
Nα

C
m

α

9 9.1 9.2 9.3 9.4 9.5 9.6

−15.8

−15.6

−15.4

−15.2

−15

−14.8

−14.6

−14.4

−14.2

−14

35

36

37

38

39

40

41

42

43

Local Minimum

Figure 3.12: Contour of Cost Function over Normal Force and Pitching Moment With
Penalty Function, Nominal Parameters CNα = 8.161 and Cmα = -10.366

The epicyclic dynamics are also highly coupled with errors in some parameters

having a large impact on the landscape of the other parameters. One method to

observe this behavior is to examine the landscape of the cost function when noise is

added to the synthetic measurements. The position measurement noise has a standard

deviation of 3 mm and the angle measurement noise has a standard deviation of 0.1◦.

53

For noisy measurements, the optimal set of parameters may not necessarily be same

the as the nominal parameters. Keeping the parameters fixed to their nominal values,

however, has the effect of adding small errors to each parameter. Landscapes observed

under these conditions would characterize the cost function at a set of parameters

typically encountered during the optimization process.

The landscape of CNα vs Cmα with measurement noise and boundaries is given

in Figure 3.13. The primary impact on the cost landscape is a shift of the global

minimum from the middle of the search space to slightly past the boundary on CNα.

In addition, a local minimum occurs in the lower left corner that was not present in

either Figure 3.8 or 3.12. This demonstrates how the coupling between the parameters

can influence the landscape that the optimizers must traverse, creating numerous local

minima which fluctuate due to changing parameters and measurement noise.

C
Nα

C
m

α

7 7.5 8 8.5 9 9.5 10
−17

−15

−13

−11

−9

−7

−5

−3

400

500

600

700

800

900

Noisy
Global
Minimum

Ideal Global Minimum

Local Minimum

Noise

Figure 3.13: Contour of Cost Function over Normal Force and Pitching Moment With
Noise and Penalty Function, Nominal Parameters CNα = 8.161 and Cmα = -10.366

For the epicyclic dynamics, Cmα has a significant impact on the dynamics, creating

a local minimum beyond the typical search range. This tendency in the underlying

54

dynamics causes numerous local minima to form near the search boundary when

the penalty function is enforced. Small errors in some of the parameters can also

cause dramatic shifts in the cost landscape, often pushing the cost contours into the

boundary. This indicates that as an optimizer is progressing on this problem, some

of the parameters may be drawn into the search boundary until accurate estimates

of other parameters are obtained. However, if a local minimum forms along this

boundary, the optimizer may become trapped, unable to improve any parameter.

3.1.3 Microspoiler Dynamics Analysis

The final component of the projectile parameter estimation problem is the microspoi-

ler dynamics. The model for the microspoilers is given in Section 2.4. Of particular

interest is the effect of the microspoiler spin rate (Ω0) on the cost function. For this

case, the spin rate is assumed to be constant for the entire flight, isolating the effects

of the spin rate from the time constant τms. φ is again excluded from the cost function

as the microspoilers to not affect the roll dynamics. A landscape is constructed over

the axial force δA and Ω0. Typically, δA varies from -45 N to -15 N while Ω0 varies

from 350 rad/s to 500 rad/s. The cost contours in Figure 3.14 show multiple local

minima in terms of Ω0. While all of the gradients point into the search space, there

are two local minima which occur in this space. Given the large basins of attraction

for these local minima, only a narrow band of about 25-30 rad/s around the global

minimum stays within its basin. These basins are also relatively deep with costs

not much higher than the optimal solution. Additional local minima appear as Ω0

increases outside of the search space which may be reached if the boundaries are not

enforced.

55

δ
A
 (N)

Ω
0 (

ra
d/

s)

−51 −45 −39 −33 −27 −21 −15 −9
320

350

380

410

440

470

500

530

10

20

30

40

50

60

Local Minimum

Figure 3.14: Contour of Cost Function over Microspoiler Axial Force and Spin Rate,
Nominal Parameters δA = -29 N and Ω0 = 440 rad/s

The local minimum at Ω0 = 488 rad/s is used to understand the nature of these

local minima in the microspoiler dynamics. Figures 3.15 and 3.16 show a comparison

of the θ and ψ trajectories simulated at Ω0 values around this local minimum. As

Ω0 approaches the local minimum, the trajectories begin to shift into phase with

the measurements and start to match the amplitude of the oscillations. Increasing or

decreasing Ω0 causes significant changes in the trajectories, reducing the quality of the

fit and thus increasing the cost. This makes escaping these local minima even more

difficult for the optimizers and presents a significant challenge for obtaining accurate

estimates. When taken together with the roll dynamics and the epicyclic dynamics,

the smart projectile parameter estimation problem presents a number of pitfalls for

any optimizer. Importantly, these local minima are all based on interactions between

certain parameters and the dynamics of the projectile system which manifest as valleys

and basins within the cost landscape.

56

0 50 100 150 200 250
−10

−5

0

5

10

x (m)

θ
(d

e
g

)

Measurement
Nominal
Ω

0
=470 rad/s

Ω
0
=490 rad/s

Ω
0
=510 rad/s

Figure 3.15: Pitch Angle Trajectory Comparison, Ω0 Local Minimum

0 50 100 150 200 250
−10

−5

0

5

10

x (m)

ψ
 (

d
e

g
)

Measurement
Nominal
Ω

0
=470 rad/s

Ω
0
=490 rad/s

Ω
0
=510 rad/s

Figure 3.16: Yaw Angle Trajectory Comparison, Ω0 Local Minimum

3.2 Local Search Analysis

Another technique for understanding the topology of a cost function is to observe

the behavior of a local search algorithm such as a hill climber operating on the

optimization problem over a number of trials [119]. Since hill climbers follow the

gradients of the cost towards a local minimum, they can be used to identify the

location and basin of attraction of local minima in the search space [120]. The basin

of attraction for a local minimum is defined as the subset of the parameter space in

which a local search started within this region will converge on the local minimum

57

[60]. The number of local minima as well as the size and shape of their basins of

attraction provide valuable insight into the overall topology of the problem.

The projectile parameter estimation problem considered here is based on fitting

a single synthetic trajectory with constant aerodynamic coefficients and no measure-

ment noise. Three different parameter estimation cases are considered: low angle of

attack, high angle of attack, and active microspoilers. A different synthetic trajectory

is generated for each case based on the requirements for each estimation problem. To

evaluate the topology of the projectile parameter estimation problem, BFGS is run

1000 times from random initial parameters inside the search range until either the cost

crosses a threshold of 10−6, the rate of reduction in cost falls below a set threshold,

or the optimizer is unable to find a point which reduces the cost. The starting point,

ending point, and gradient at the ending point are recorded as well as the amount

of time the optimizer spends searching outside of the search bounds. To determine

the location of any local minima the hill climber encountered, the ending locations

for each trial were categorized based on distance from neighboring points. A large

clustering of points in one area indicates the presence of a local minimum [119].

3.2.1 Low Angle of Attack Analysis

The simplest parameter estimation case is estimating parameters using a single, low

angle of attack trajectory. This type of trajectory allows for easy estimation of the

base drag coefficient CX0 and the roll parameters Cl0 and Clp as the epicyclic dynamics

are not excited, leaving only the base drag and roll moments acting on the projectile.

In addition, the initial velocity u0 and the initial roll rate p0 must also be estimated

for a total of five parameters when fitting a single trajectory. A synthetic low angle

of attack trajectory is generated using the baseline projectile model from Section

2.4 with no initial angular velocity. Only x and φ are needed in the cost function to

estimate these parameters. As seen in Section 3.1.1, the roll dynamics are multimodal

58

when the roll measurements are wrapped which causes issues for the hill climber.

First, the low angle of attack case is evaluated without bounds on the parameters,

allowing the optimizer to explore beyond the target search space. A summary of

results for this case is presented in Table 3.2. Out of 1000 trials, only 8.4% cross

the cost threshold indicating convergence. In total, there were 205 unique stopping

points for the optimizer. 19 clusters contained 10 or more points with 6 containing

30 or more. Of the six most common local minima, 5 fell outside of the search

space. In total, 62.4% of trials ended outside of the search range of at least one

parameter. These results confirm the observation from Section 3.1.1 that the wrapped

roll dynamics contain a large number of local minima. The addition of the penalty

function to constrain the search space has little impact on the overall performance

of the hill climber with only 7.5% reaching the solution. In this case, there were

27 clusters of 10 or more and 4 of 30 or more. 18 of the 27 clusters were on or

slightly beyond at least one boundary with 60.6% of all ending points on or beyond a

boundary. This indicates that interactions between the projectile dynamics and the

boundaries are creating local minima which are not strictly caused by the projectile

dynamics.

Table 3.2: Low Angle of Attack Local Search Analysis Results

Case Percent

Converged

On Solution

Cluster

Count>10

Cluster

Count>30

Percent On

or Outside

Bounds

Unbounded 8.4 19 6 62.4

Bounded 7.5 27 4 60.6

3.2.2 High Angle of Attack Analysis

Trajectories with high angle of attack are used to estimate the remaining body aero-

dynamic coefficients which are only observable with sufficient angle of attack. This

59

typically means angle of attack values greater than 5◦ for most of the flight. These

coefficients are the nonlinear drag coefficient CX2, the normal force coefficient CNα,

the pitching moment coefficient Cmα, and the pitch damping coefficient Cmq. To help

simplify the estimation process, CX0, Cl0, and Clp are fixed to their nominal values

as these are typically estimated separately. A single synthetic trajectory using the

baseline projectile with a large initial q at launch, like the trajectory discussed in

Section 2.4.2, is used to estimate these parameters. The initial velocities and angular

velocities at the first measurement are also estimated, resulting in 10 parameters for

this estimation problem. All six states are included in the cost function, including φ,

as inaccuracies in p can lead to large errors in the predicted trajectories of θ and ψ

through coupling of the angular velocity dynamics. Table 3.3 provides a summary of

the results for this case.

Beginning with the unbounded case, 65.8% converged on the solution with 2 local

minima with 10 or more points. One local minimum was not far beyond the boundary

in CX2 and Cmq while the other was extremely far from the search space. In total,

34.1 % exceeded at least one boundary with 19% having a final Cmq value less than

-1000 (nominal -331.7), well beyond the boundary. Pitch damping values this large

are not realistic and demonstrate the need to constrain the search space to prevent

the optimizers from reaching non-physical parameters. The cost function was also not

sensitive to CX2 and CNα which sometimes varied significantly between points which

were otherwise close for the remaining parameters. Adding bounds, 62.5% converged

on the global minimum, however, 2 very large local minima occurred on the boundary.

In total, 92.5% of all trials ended at one of these three points. The two local minima

were both on the CX2, Cmα, and Cmq boundaries. A total of 35.1% of trials finished

on at least one boundary. Escaping a local minimum in three dimensions like this is

a challenge for most optimizers and is a potential pitfall for meta-optimization.

60

Table 3.3: High Angle of Attack Local Search Analysis Results

Case Percent

Converged

On Solution

Cluster

Count>10

Cluster

Count>30

Percent On

or Outside

Bounds

Unbounded 65.8 2 0 34.1

Bounded 62.5 2 2 35.1

To better understand why such unrealistic parameter combinations create local

minima, one local minimum from the unbounded, high angle of attack landscape was

simulated to observe the projectile behavior under these conditions. The parameters

for this local minimum are given in Table 3.4 with the nominal parameters given as a

reference. This local minimum is very far away from the search space in both CX2 and

Cmq. CNα and Cmα are also very far from their nominal values. Figures 3.17-3.20 show

the simulated trajectory for these parameters compared to the nominal trajectory.

Given this extremely high value of Cmq, all angular oscillation is quickly damped out

with θ and ψ going to zero. The trajectory also essentially cuts a straight line through

the y and h measurements. With no angle of attack, the cost function is no longer

sensitive to the other aerodynamics coefficients, allowing them to vary significantly

without penalty. Such a trajectory would never be experienced in practice, but these

and similar parameters were reached by the hill climber on a number of trials.

61

Table 3.4: High α Local Minimum Parameters

Parameter Local Minimum Nominal

CX2 222.84 4.4

CNα 0.026 8.161

Cmα -1.03 -10.366

Cmq -8230 -331.7

u0 (m/s) 988.8 983.9

v0 (m/s) -127 -128

w0 (m/s) 62.9 63.3

p0 (rad/s) 104.2 104.2

q0 (rad/s) -8.06 1.87

r0 (rad/s) -15.7 3.9

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x (m)

y
(m

)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.17: High Angle of Attack Local Minimum Inertial-Y Position Trajectory Com-
parison

62

0 50 100 150 200 250
4.75

4.8

4.85

4.9

4.95

5

5.05

x (m)

h
 (

m
)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.18: High Angle of Attack Local Minimum Altitude Trajectory Comparison

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

x (m)

θ
(d

e
g

)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.19: High Angle of Attack Local Minimum Pitch Angle Trajectory Comparison

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

x (m)

ψ
 (

d
e

g
)

Measurement
Nominal parameters
Local Min Parameters

Figure 3.20: High Angle of Attack Local Minimum Yaw Angle Trajectory Comparison

63

3.2.3 Active Microspoiler Analysis

The final case considered is the estimation of the microspoiler parameters. For this

analysis, the synthetic trajectory is generated using a constant spin rate for the entire

flight. To isolate the effects of the microspoilers on the projectile motion, the body

aerodynamic coefficients are held fixed, leaving only the microspoiler force and mo-

ment coefficients δA, δN , and δm, initial phase ω0, and spin rate Ω0 to be estimated in

addition to the initial velocities and angular velocities. The results for this case are

summarized in Table 3.5.

Without bounds, 41.5% of trials reached the global minimum with another 21.5%

falling into 4 different local minima. All four of these local minima were outside

of the bounds of at least one parameter. Overall, the optimizer spent 60% of the

computation time searching outside of the bounds of δA, δN , and δm with 52.5%

ending outside of the search space. With the addition of bounds on the search space,

the number of trials converging on the global minimum increased to 48.5%. One

large local minimum with 17.7% of trials occurred on the boundary for δN , δm, and

Ω0. One local minimum with a cluster of 10 points had Ω0 = 379 rad/s, close to

the local minima in Ω0 identified in Section 3.1.3. In total, 39.7% of trials stalled

on the boundary, less than the number escaping the search space previously. This

large reduction in trials leaving the search space, combined with the increase in the

number of successful trials, indicates that the boundaries are reshaping the landscape,

steering the hill climber back into the search space in some places.

Table 3.5: Active Microspoiler Local Search Analysis Results

Case Percent

Converged

On Solution

Cluster

Count>10

Cluster

Count>30

Percent On

or Outside

Bounds

Unbounded 41.5 4 2 52.5

Bounded 48.5 2 1 39.7

64

Two observations can be made based on the local search analysis of the parameter

estimation problem. First, as was observed in Section 3.1, the projectile dynamics

create a number of local minima in the parameter estimation cost function. The roll

parameters in particular are difficult for a hill climber to navigate due to numerous

local minima scattered about the search space. Second, some local minima exist

outside of the search space with a basin of attraction that reaches inside the parameter

boundaries. For hill climbers beginning within one of these basins, it will be drawn

outside of the search space towards that local minimum. In some instances, these local

minima correspond to non-physical parameter combinations which produce unrealistic

trajectories. Even on runs where the hill climber converged on the solution, it may

have taken a path far outside of the boundaries to get there. When bounds are placed

on the parameters, the attraction of these local minima still shape the cost landscape,

pulling the hill climber into the boundary where new local minima are formed. For

the low and high angle of attack cases, there was little change in performance of

the hill climber when the boundaries were enforced. However, performance improved

for the active microspoiler case with boundaries, indicating a possible benefit for the

optimizers from the boundaries.

65

CHAPTER 4

DESCRIPTION OF META-OPTIMIZATION FRAMEWORK

For any one optimizer, there are a set of optimization problems that the optimizer

is well suited to solve and other problems that pose significant challenges. The ef-

fectiveness of an optimizer is based on the nature of the specific algorithm and the

topology of the problem. For example, hill climbers are extremely efficient on con-

vex problems, but are attracted towards the nearest local minimum. Metaheuristic

methods such as particle swarm optimization (PSO) can freely search the parameter

space, but lack the refinement capabilities near a minimum that hill climbers pos-

ses. On certain problems, different metaheuristics may also struggle with clustering

where the entire population remains near a local minima, unable to escape and re-

sume searching. Since these issues vary from optimizer to optimizer and problem to

problem, selecting an appropriate optimizer for a given problem is a difficult task for

an engineer.

The goal of meta-optimization is to intelligently deploy a diverse set of optimizers,

leveraging the strengths of each optimizer and minimizing their weaknesses in order

to reliably solve challenging optimization problems with minimal user intervention.

A good metaphor for this process is the delegation of tasks between various workers.

A project manager assigns one worker to solve a certain problem and requests an

update after a period of time. The worker is given all of the necessary resources

to work on the problem. After the allotted time, the worker reports back with his

best results and is graded on performance and efficiency. If the worker is making

acceptable progress, the worker continues until the worker gets stuck or slows down.

The manager then decides if they will let the worker continue on the problem or

assign it to another worker. This process continues until the problem is solved. In

66

this way, if one worker is not able to provide results, another worker is assigned the

task to ensure continual progress towards the solution.

Meta-optimization bears some similarities to algorithm portfolios and hybrid op-

timizers. While meta-optimization uses a bank of optimizers and seeks to predict

performance, there are some key differences from existing methods. Unlike algorithm

portfolio approaches, meta-optimization shares information between optimizers with

all optimizers using a common population of solutions. This allows for synergies to

develop between the individual optimizers and ensures maximum use of resources

towards improving the solution. Also, a wide range of optimizers are used with a

combination of local and global search methods, similar to hybrid optimizers. Howe-

ver, meta-optimization does not have a fixed structure or rules for switching between

global and local search. In this way, meta-optimization is able to solve a wide range

of problems with various complexities and structures.

This chapter provides an in depth description of the meta-optimization framework

which consists of five main parts: the bank of optimizers, the performance metric, the

optimizer selection routine, the optimizer manager, and the auto-tuning algorithm.

An overview of this framework is given by Figure 4.1, which shows the general flow

of the meta-optimizer. The basic flow of the meta-optimizer proceeds as follows: an

optimizer is chosen, resources are allocated to the optimizer, the optimizer runs for a

period of time, and then the performance of the optimizer is evaluated. This process

is then repeated until a solution is found or the meta-optimizer has exhausted its

resources. The objective function, also known as the cost function, represents the

optimization problem that is to be solved. In this work, the objective function f(x)

takes a common form given by Eq. 4.1. Here, x is the parameter vector, and L and

67

U are the lower and upper bounds on the parameter space respectively.

minimize
x

f(x)

subject to L ≤ x ≤ U

(4.1)

ObjectiveSFunction

InitializeS
ProbabilitiesS

andS
ReductionS

Rates

EvaluateS
OptimizerS

Performance

UpdatedSParametersS
fromSOptimization,S

UpdatedSProbabilities,S
OptimalSFreeS
Parameters

UpdateSProbabilities

MetaSOptimizer

DeploySOptimizer

SelectS
OptimizerSfromS

BankS

SD

CG

BFGS

PSO

DE

Simplex

Auto-Tune

OptimizerS
Manager

AllocateSTime

InitializeS
Optimizer

AllocateSDataS
Points

ReturnSDataS
Points

Figure 4.1: Flow Chart Representation of Meta-Optimization Framework

4.1 Bank of Optimizers

A key part of meta-optimization is the resident bank of numerical optimizers that can

be used. Many different optimizers, each with numerous variants, could be selected

for inclusion in the bank of optimizers. Each optimizer is individually capable of

obtaining a solution to the given optimization problem. To demonstrate the capabi-

lities of meta-optimization, nine common optimization algorithms were chosen based

on a mixture of local and global search methods, forming the basic group of optimi-

zers deployed by meta-optimization. Each optimizer uses the basic implementation

68

of the algorithm, except in cases where modifications were necessary to adapt the

algorithms to the meta-optimization framework.

The primary category of local search methods are considered hill climbers, where

the algorithm searches for a better solution by incrementally varying the current

best solution, gradually moving towards a local optimum. Included hill climbers are

steepest descent (SD) [46], conjugate gradient (CG) [121], and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method [37]. It is known that the primary drawback with

hill climbers is that they are highly prone to converging to local minima. This is due

to the nature of these algorithms in which they are only able to search in a direction

that lowers the cost function with little ability to explore the search space. Once the

algorithm reaches a local minima, there is no way for the algorithm to leave this point

as the gradient is zero and thus the algorithm cannot produce a new search direction.

For this reason, these methods are generally considered local optimization methods.

To balance these methods, it is necessary to include global optimizers in the bank

of optimizers. These methods search the entire parameter space by operating on a

large set of points, continually seeking the global minimum. The global optimizers

employed are particle swarm optimization (PSO) [48, 49], differential evolution (DE)

[47], invasive weed optimization (IWO) [122, 123, 124, 125], and ant colony optimi-

zation (ACO) [126]. The Nelder-Mead (Simplex) Method [127, 128] and tabu search

[129, 130] are also included in the bank of optimizers. These optimizers form a diverse

set of algorithms, each with different techniques for solving optimization problems.

Each optimizer is suited to different types of problems, providing meta-optimization

with a reliable set of methods to solve a wide range of problems. An overview of the

included optimizers is given in Table 4.1.

69

Table 4.1: Overview of Included Optimization Algorithms

Type
Optimization

Algorithm
Advantages Disadvantages Citation

Hill Climber

Steepest
Descent (SD)

Simple to implement, no memory
Converges to local minima, inefficient

for poorly conditioned problems
[46]

Conjugate
Gradient (CG)

Faster than SD
Converges to local minima, not all

search directions reduce cost function
[121]

BFGS Fast convergence
Converges to local minima, larger

memory storage
[37]

Global
Metaheuristic

Particle Swarm
(PSO)

Global search capacity, simple
implementation

No guaranteed convergence, long run
times, poor local search

[48, 49]

Differential
Evolution (DE)

Global search capacity, simple
implementation

No guaranteed convergence, long run
times, poor local search

[47]

Invasive Weed
(IWO)

Global search capacity, simple
implementation

No guaranteed convergence, long run
times, poor local search

[122,
123, 124]

Tabu Search
(TS)

Global search capacity, able to search
uphill

No guaranteed convergence, long run
times

[129,
130]

Ant Colony
(ACO)

Global search capacity, simple
implementation

No guaranteed convergence, long run
times, poor local search

[126]

Local
Metaheuristic

Nelder-Mead
Simplex (SIM)

Local search without gradient
information, fast convergence

No guaranteed convergence
[127,
128]

70

4.1.1 Steepest Descent (SD)

The simplest of the hill climbers, SD uses the negative of the gradient as its search

direction [46]. The search direction pk is defined as:

pk = −∇f(xk) (4.2)

A first order central finite difference is used to compute the gradient at the current

position as shown in Eq. 4.3:

f ′(x) =
f(x+ h)− f(x− h)

2h
(4.3)

where h is the step length. An adaptive step length algorithm adjusts the step

lengths online to ensure accurate gradient estimates [131]. This algorithm is detailed

in Appendix A. Due to the large variations in magnitude of the parameters in some

optimization problems, the gradient can become poorly conditioned, requiring scaling

to improve performance. Scaling is performed by transforming the parameters by a

matrix D such that x = Dy. The scaled gradient then becomes ∇F (y) = D∇f(x).

The Hessian matrix is used to scale variables and is given by [131]:

D =

1√
H11

0

. . .

0 1√
Hnn

 (4.4)

The diagonal values of the Hessian are approximated using a first order central finite

difference given by Eq. 4.5. This scaling matrix is adjusted at every step, allowing it

to adapt to changes in the parameters as the algorithms progresses.

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
(4.5)

71

A new point is generated by performing a step along the search direction using

Eq. 4.6:

xk+1 = xk + αkpk (4.6)

where αk is the search step length. In this implementation, a backtracking search

is used to determine the step length for the current iteration beginning with a step

length of 1. A step is only accepted if it produces a nontrivial reduction in cost

specified by the Armijo condition [37]:

f(xk + αkpk) ≤ f(xk) + µαkp
T
k∇f(xk) (4.7)

A typical value for the constant µ is 10−4. If a step is not accepted, then the step

length is reduced by:

αk(i+ 1) = rαk(i) (4.8)

where r is the reduction coefficient, usually equal to 0.5. As SD approaches a solution,

the relative change in the cost between iterations is used to detect convergence. This

condition is specified as:

|f(xk)− f(xk−1)|
max [|f(xk−1)|, 10−5]

≤ ε (4.9)

where ε is a set threshold [46]. SD will also stop when no cost reduction can be found

using the backtracking search.

4.1.2 Conjugate Gradient (CG)

Also known as the Fletcher-Reeves method, this hill climber is based on the concept of

conjugacy of each search direction [121]. This implies that each new search direction

is linearly independent to all previous search directions with respect to a matrix A.

72

Mathematically, this means that:

pTkApk−1 = 0 (4.10)

In the CG method, the search directions are conjugate with respect to the Hessian

matrix H. The search direction is given by:

pk = −∇f(xk) + βkpk−1 (4.11)

where βk is defined as:

βk =
∇f(xk)

T∇f(xk)

∇f(xk−1)T∇f(xk−1)
(4.12)

This formula will ensure conjugacy for convex problems where the step length αk is

chosen to minimize the function along the search direction [121]. For general nonlinear

functions and inexact line searches, an additional check must be performed to ensure

the search direction is always a descent direction. This requires that pTk+1∇f(xk) < 0.

If this inequality does not hold, the new search direction is pointing uphill and the

search direction is reset to the negative gradient [131, 46]. This implementation of

CG uses the same backtracking line search and stopping criteria as SD.

4.1.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS)

BFGS is a quasi-Newton method which iteratively updates an approximation of the

Hessian matrix to improve performance and reduce computational expense. For this

method, the search direction is computed by:

pk = −B−1k ∇f(xk) (4.13)

where B is the approximation of the Hessian. A rank-two update is used to ensure

both symmetry and positive definiteness of the Hessian approximation and is given

73

by:

Bk+1 = Bk −
(Bksk)(Bksk)

T

sTkBksk
+

yky
T
k

yTk sk
(4.14)

where yk = ∇f(xk+1)−∇f(xk) and sk = xk+1−xk. To simplify the implementation

of the algorithm, the inverse of the Hessian approximation is instead computed by:

B−1k+1 =

(
I− sky

T
k

yTk sk

)
B−1k

(
I− yks

T
k

yTk sk

)
+

sks
T
k

yTk sk
(4.15)

When BFGS is first called, the matrix B−1k is set to identity. The slope of the search

direction is also checked to ensure a downhill direction with B−1k set to identity if

this is violated [37, 36]. BFGS also uses a backtracking search in this implementation

with the same stopping criteria as SD and CG.

4.1.4 Particle Swarm Optimization (PSO)

PSO is a metaheuristic first developed by Kennedy and Eberhart after observing

swarm behavior in nature [48]. The core principle of the algorithm is the sharing

of information between each particle in the swarm. Each particle is given an initial

position and a random velocity with maximum magnitude equal to 1/20th of the total

search range for each parameter. This value is not considered a tuning parameter for

PSO as it is only used when the population is initialized. Population sizes typically

range from 25 to 50 particles. At each iteration, the position of the ith particle in

the jth dimension is updated using the following equation:

xik+1(j) = xik(j) + V i
k+1(j) (4.16)

where V is the velocity of the particle. The velocity update is given by:

V i
k+1(j) = wV i

k (j) + cprp(P
i(j)− xik(j)) + cgrg(Pg(j)− xik(j)) (4.17)

74

where w is the inertia weight, cp is the cognitive learning factor, cg is the social

learning factor, rp and rg are uniform random numbers in the range [0,1], P i is the

personal best of particle i, and Pg is the global best solution found so far. A bound

is placed on the velocity to prevent particles from quickly exiting the search space.

The parameters w, cp, and cg, as well as the number of particles are used as tuning

parameters. Nominal values for these parameters are 0.729 for w and 1.42 for cp and

cg with population sizes from 25 to 50 particles [48, 49].

The diversity in the population is used to determine when the swarm has collapsed

and will no longer improve. Diversity measures how spread out or clustered the points

are in the population and is given by:

σd =

√∑N
i=1(x

i
r − x̄r)2

N − 1
(4.18)

xir =

√√√√ n∑
j=1

(xi(j)− x̄0(j))2
∆x0(j)2

(4.19)

where x̄0(j) is the mean of the search range of parameter j, ∆x0(j) is the size of the

search range, and x̄r = 1
N

∑N
i=1 x

i
r [132]. Two diversity based checks are employed.

First, PSO will stop when the diversity falls below a specified threshold. Second,

PSO will stop if there is no significant change in diversity for 100 iterations. The

first criteria detects when the population has collapsed on a single point while the

second criteria detects when the optimizer is unable to update any of the points in

the population.

4.1.5 Differential Evolution (DE)

Like other evolutionary algorithms, DE is a population based optimizer modeled af-

ter various mechanisms from biological evolution such as mutation, reproduction, and

competition. DE was designed by Storn and Price as a simple and effective evolu-

75

tionary algorithm for use on real valued optimization problems [47]. The algorithm

contains three operations; mutation, crossover, and selection. New points are gene-

rated according to a greedy condition such that:

xik+1 = argmin
y
{f(y)|y ∈ {xik,uik+1}} (4.20)

where uik+1 is the trial vector which is generated using a two step process. The

mutation step consists of generating a mutant vector based on three members of the

population as given by:

vik+1 = xr1k + F (xr2k − xr3k) (4.21)

where F is the mutation amplitude and r1, r2, and r3 are mutually exclusive random

integers in the range [1,NP] that are also different from the current index i. The trial

vector is then generated one dimension at a time using the crossover operation:

uik+1(j) =

vik+1(j) if r ≤ CR or j = ri

xik(j) if r > CR and j 6= ri

(4.22)

where r is a random number on the range [0,1], CR is the crossover rate, and ri

is a randomly chosen index from 1 to the number of dimensions, n. The tuning

parameters for DE are the population size and the parameters F and CR. Common

tuning parameter values for DE are a population size of 25 with F = 0.8 and CR = 0.9

[47]. DE also uses the same diversity based stopping criteria as PSO.

4.1.6 Simplex (SIM)

Also known as the Nelder-Mead method, SIM is a direct search method based on the

concept of creating a simplex within the search space and then adapting the simplex

to the local landscape of the search space [127]. A simplex is a polytope with n + 1

76

vertices in n dimensions such as a triangle on a plane. The algorithm arranges a set

of test points as a simplex and iteratively replaces the worst point in the set through

various operations including reflection, expansion, contraction, and shrinking. At

each iteration, the vertices are sorted based on cost where i = 1 denotes the lowest

cost and i = n + 1 denotes the highest value. Next, the average of the vertices x̄ is

taken, excluding the worst point. The first operation is reflection of the worst point

with the reflected point defined by:

xr = (1 + α)x̄− αxn+1 (4.23)

where α is the reflection coefficient which is typically equal to 1. If f1 ≤ fr ≤ fn, then

xn+1 is replaced with xr. If fr < f1, then expansion is performed to further reduce

the cost. The expanded point is generated using:

xe = γxr + (1− γ)x̄ (4.24)

where γ is the expansion coefficient typically equal to 2. If fe < fr, then xn+1

is replaced with xe, otherwise it is replaced with xr. If fr ≥ fn, a contraction

step is performed. There are two different types of contraction step. The first is if

fn ≤ fr < fn+1 where the contracted point is given by:

xc = ρxr + (1− ρx̄) (4.25)

where ρ is the contraction coefficient typically equal to 1
2
. Alternatively, if fr ≥ fn+1,

the contraction point is computed using:

xcc = (1 + ρ)x̄− ρxn+1 (4.26)

77

If fc < fr or fcc < fn+1, the contracted point is accepted, otherwise a shrink is

triggered. The shrink consists of replacing every point except the best using the

following equation:

vi = x1 + σ(xi − x1) (4.27)

where σ is the shrink coefficient typically equal to 1
2
. The four coefficients α, γ, ρ,

and σ are the tuning parameters for the method [127, 128]. SIM uses a metric similar

to diversity which uses the standard deviation of the cost of the simplex to determine

when the size of the simplex is too small to continue. This criterion is given by [127]:

√√√√ 1

n+ 1

n+1∑
i=1

(f(xi)− f̄)2 ≤ 10−10 (4.28)

where f̄ is the average cost of all points in the simplex.

4.1.7 Invasive Weed Optimization (IWO)

IWO is based on the reproduction and dispersion of weeds in nature. The general

principle behind the algorithm is that stronger weeds generate more seeds which are

dispersed throughout the search space and grow into plants. Starting from an initial

population of plants, usually 5 to 10, each plant produces a number of seeds si based

on its cost. A linear relation is used to determine the number of seeds given by:

si = smin + (smax − smin)
fi − fmax
fmin − fmax

(4.29)

smax is typically set from 3 to 5 while smin is set from 0-1. Seeds are dispersed

according to a normal distribution xs ∼ N(xi,Σi) centered on the parent plant with

a covariance matrix Σi. An adaptive approach is used to compute each σji in Σi based

78

on the relative cost of the parent plant specified by:

log σi(j) = log σlo(j) + (log σhi(j)− log σlo(j))
fi − fmin
fmax − fmin

(4.30)

The log of the standard deviation is used to allow for a better range of σ values when

there is a large difference between fmin and fmax. The bounds σjhi and σjlo are specified

as a percentage of the total search range for each variable, ranging from 10% of the

search range to 0.001%. After all plants have reproduced, the best pmax plants out of

both of the parents and children are retained for the next generation. It is common

to retain 10 to 50 plants depending on the problem. The tuning parameters for IWO

are the initial population, pmax, smin, smax, σlo, and σhi [122, 123, 124, 125]. The

diversity based stopping criteria are also used for IWO.

4.1.8 Tabu Search (TS)

While tabu search has primarily been used for combinatorial optimization problems,

there are some variants for continuous problems. The continuous tabu search (CTS)

algorithm developed by Siarry and Bethiau shows good performance on many mul-

timodal functions [133]. The primary concept in TS is the tabu list which contains

points in the search space that have been recently evaluated. A point is considered

tabu if it falls within a ball of radius rt around any point in the tabu list. The distance

from a point to the center of the tabu ball is scaled based on a representative value

for each variable. This prevents the method from quickly returning to previously

explored areas. A limited number of points, nt, are retained in the tabu list with

the oldest point removed on every iteration, allowing TS to return to promising areas

after a period of time.

The first step of TS is the generation of n neighbors around the current point

that are not within a tabu ball. To uniformly search the parameter vector space,

79

the neighborhood is broken into m concentric hyper-rectangles [130]. A geometric

partitioning is used such that the side lengths are given by:

hm−i+1(j) =
hm(j)

2i−1
(i = 1, 2, ...,m) (4.31)

The maximum side length hm is set as a fraction of the total search range for each

variable. This partitioning strategy was found to be the most effective across multiple

functions [133]. The neighbors are generated by randomly sampling a single point

within each partition. A point sampled in the ith partition is given by:

xik+1(j) =

xk(j) + hi−1(j) + r(hi(j)− hi−1(j)) if j = ri and rd > 0.5

xk(j)− hi−1(j)− r(hi(j)− hi−1(j)) if j = ri and rd < 0.5

xk(j) + hi(j)(1− 2r) if j 6= ri

(4.32)

where r is a uniform random number, ri is a random integer from 1 to the number

of dimensions, and rd is a uniform random number used to determine the direction

of the sampling. After all neighbors have been generated, the algorithm moves to

the neighbor with the lowest cost that is not tabu, even if the value is higher. After

moving to the best neighbor, the previous point is added to the tabu list. Only the

N most recent points are stored in the tabu list. If a lower cost cannot be found

after 20 iterations, the neighborhood size and tabu radius are halved and the tabu

list is cleared, resuming the search from the best point found so far. Typical tuning

parameters values for TS are nt = 10, hm equal to 25% of the search range, and rt

equal to 10% of the smallest side length of the hyper-rectangle. TS stops when there

has been a specified number of reductions in neighborhood size without sufficient cost

reduction [130].

80

4.1.9 Ant Colony Optimization (ACO)

Like TS, ACO was also originally developed for combinatorial optimization with mul-

tiple methods for applying the general approach to solve continuous problems. One of

the simplest and most effective approaches was developed by Socha and Dorigo which

adapts the concept of pheromone information for continuous applications [126]. ACO

begins with a solution archive of size K, typically made up of 50 potential solutions.

At each iteration, m ants are constructed, one dimension in the parameter space at

a time, using a Gaussian kernel probability density function (PDF) based on the so-

lution archive. The number of ants can vary from 2 to 25 depending on the problem.

The PDF is a weighted sum of Gaussian kernels centered at each solution xi in the

archive. Instead of sampling from the entire PDF, a single kernel is chosen such that

the new ant is generated according to:

x(j) ∼ N(xl(j), σl(j)) (4.33)

where l denotes the index of the chosen kernel. The selection process begins by

sorting the solutions in the archive based on quality, with the best solutions ranked

first. These ranks are used to weight each solution according to:

wi =
1

qK
√

2π
e
− (i−1)2

2q2K2 (4.34)

where q controls the behavior of the weights. Smaller values of q favor the best

solutions while larger values distribute the probabilities more evenly. A value of 10−4

gives the highest weights to the best few solutions. Each solution is then assigned a

probability to be selected pi given by:

pi =
wi∑K
r=1wr

(4.35)

81

Note, the choice of kernel is only performed once per ant. Before the chosen kernel can

be sampled, the standard deviation must be determined. The standard deviation is

based on the average distance between the chosen solution and the rest of the archive

such that for dimension j:

σl(j) = ξ
K∑
i=1

|xi(j)− xl(j)|
K − 1

(4.36)

where ξ controls the convergence rate of the optimizer with ξ = 0.85 commonly used.

After all of the ants are constructed, the K best solutions are retained for the next

generation. The ACO tuning parameters are K, m, q, and ξ [126]. As with the other

population based optimizers, ACO stops based on the diversity criteria.

4.2 Optimizer Performance Evaluation

A key aspect of meta-optimization is an assessment of an optimizer’s performance

when employed on a particular problem. The effectiveness of each optimizer is used

to determine when it is appropriate to change optimizers and which optimizer should

be deployed next. Various measures of online optimizer performance, such as compu-

tation time, cost reduction, predicted performance, and optimizer risk, can be used as

a single performance metric or combined in a composite metric [60, 72, 71]. For the

purposes of meta-optimization, a good optimizer is one which has low computation

time and high cost reduction. In order to codify these characteristics, a metric is

defined that is a function of the percent objective function reduction and the number

of function calls. The percent reduction in the objective function is used such that

the metric is independent of the current objective function value while total function

calls is a convenient surrogate for computation time. A metric combining these two

measures provides a characterization of the efficiency of the optimizer, evaluating the

cost reduction per unit of computation time. Slightly greater weight is placed on the

82

magnitude of the cost reductions than computation time as optimizers which achieve

greater cost reductions should be rated well. Finally, the metric must provide reaso-

nable evaluation of optimizer performance throughout the optimization process and

across all problems.

Based on these considerations, the function shown in Figure 4.2 was chosen as

a performance metric for this implementation of meta-optimization. This function

represents an example efficiency function intended to provide good evaluation of op-

timizer performance over a wide range of problems. The overall shape of the function

was modeled off of a two dimensional sigmoid function with the output η ranging

from 0 for poor performance to 1 for good performance. The inputs to the function

are the normalized percent cost reduction J∗ and the normalized computation time

t∗. To obtain these measures, the percent cost reduction J is divided by a reference

cost reduction Jref while the computation time t is divided by a reference computa-

tion time tref . These reference values are set to represent satisfactory performance

for each optimizer as defined by the user. Since the amount of cost reduction and

computation time can vary greatly between optimizers, the function must cover a

large range in J∗ and t∗, with values up to 20 for both measures. The function is

designed such that the point J∗ = 1 and t∗ = 1 has a value of 0.5, indicating neutral

performance. Also, the function places a larger weight on higher cost reductions,

benefiting functions that run longer while achieving good cost reductions.

83

0
5

10
15

20
25

0
5

10
15

20
0

0.2

0.4

0.6

0.8

1

J*t*

η

Figure 4.2: Optimizer Performance Metric Based on Cost Reduction and Computation
Time

While running, every optimizer is monitored for adequate performance to de-

termine if the optimizer is progressing well or has slowed or stalled and should be

stopped. Efficiency is evaluated over a moving window of function calls Nw. The

reference computation time tref is also set to Nw as the window is the typical range

over which performance is evaluated. The first efficiency check is performed after a

minimum number of 125% of the window (Nw), with a delay of half of the window

before efficiency is evaluated again. This ensures the optimizer is given a reasonable

chance to reduce the cost and allows the optimizer to continue running for some time

as long as it is performing well. If the efficiency is above a threshold of 0.95, the

optimizer will continue to run, otherwise it will continue with probability equal to

the efficiency value.

4.3 Optimizer Selection

The role of the optimizer selection process is to iteratively deploy a single optimi-

zer with preference towards optimizers which perform well on the current problem.

84

As the meta-optimizer progresses towards the solution, different optimizers will be

more effective on the problem than others. The optimizer selector learns from the

performance of each optimizer to ensure appropriate optimizers are selected. The op-

timizer selection takes the form of a variable structure learning automaton where an

optimizer is selected based on a probability distribution. This work considers various

potential methods for updating the probabilities, namely:

Linear Reward-Penalty: A simple update rule is the linear reward-penalty (LR−P)

scheme where the update rate of the probabilities are the same regardless of the output

from the problem. For a continuous output, such as the efficiency ηi of the current

optimizer, the probability updates are given by the following equations [134]:

pi(k + 1) = pi(k)− η(k)aLApi(k) + [1− η(k)][
bLA
m− 1

− bLApi(k)] if α(k) 6= αi (4.37)

pi(k + 1) = pi(k) + η(k)aLA[1− pi(k)]− [1− η(k)]bLApi(k) if α(k) = αi (4.38)

The value aLA is the reward parameter, the value bLA is the penalty parameter, and

m is the total number of optimizers. These equations operate by modifying the

probability of the optimizer which just ran based on its performance and distributing

that change to the other optimizers. As a ground rule, a minimum probability of 3%

is maintained for each optimizer to prevent the probabilities of some optimizers being

driven towards zero. This also sets a maximum probability for any one optimizer at

76%.

Relative Performance: An alternate probability update rule allocates probabilities

based on the relative performance of each optimizer. Each optimizer is assigned a

weight based on the efficiency of that optimizer from the last time it was used. The

probabilities for each optimizer are distributed based on the weights according to:

pi =
wi∑m
i=1wi

(4.39)

85

The weights wi are assigned in a discrete or continuous manner. For the discrete case,

a set of bins are defined with each bin corresponding to a range of efficiency values.

Each bin is assigned a weight which is given to all optimizers within that bin. An

example weighting scheme is given in Table 4.2 below. Here, ηi corresponds to the

upper limit of each bin.

Table 4.2: Example Discrete Weighting Scheme

ηi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

wi 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

For the continuous case, a function is defined to relate efficiency to weight given by

wi = W0 +W1h(ηi). Example weighting functions h(η) include linear, quadratic, and

square root relations. The efficiency values for each optimizer are scaled using an

exponential decay based on the time since that optimizer was last called.

Learning Free: Two additional methods of selecting algorithms are reported in this

work which do not use learning. The first method randomly selects optimizers with

equal and constant probabilities. This would be equivalent to setting aLA and bLA

in Eq. 4.37 to zero. The second method selects optimizers sequentially based on

the order of the optimizers in Section 4.1. At the beginning of each run, a random

optimizer is selected to be deployed first with the sequence repeating until the meta-

optimizer stops.

4.4 Optimizer Manager

The optimizer manager is in charge of handling the hand-off between optimizers

and ensures each optimizer is provided the information it needs to operate on the

problem. Given the diverse range of optimizers employed by the meta-optimizer, the

exchange between optimizers is critical to the smooth operation of the algorithm.

Each optimizer has various inputs and outputs which may not necessarily match

86

with the next optimizer that will be employed. The responsibility of the optimizer

manager is to provide a centralized system for starting each optimizer when it is

selected, including a set of initial points and any information needed to initialize the

optimizer. This also includes reseeding portions of the population and restarting the

optimization process when necessary.

Initialization: At the beginning of the meta-optimization process, the global popu-

lation is seeded with a large number of points generated based on a uniform random

distribution over the search ranges for each parameter. This population is shared

between all of the optimizers, allowing for the exchange of information between op-

timizers. The population must also be sufficiently large to provide enough points for

any optimizer.

Transition to Single Point Optimizer: For SD, CG, BFGS, and TS, only a single

point is operated on at a time. When deployed, the best solution from the global

population is used as the starting point for these optimizers. When the optimizer has

completed, the previous best solution is replaced with the new value obtained from

the optimizer.

Transition to Population Based Optimizer: PSO, DE, SIM, IWO, and ACO

all require a number of points drawn from the common population. Based on the

population sizes for each optimizer, the best points are taken from the population,

guaranteeing preservation of the global best solution found so far. Before these points

are provided to the optimizer, the diversity in the set is checked using Eq. 4.18. For

these optimizers, the diversity plays a critical role in the ability of the optimizer to

explore the parameter space. If the diversity falls below a threshold σd,min, a portion

of the set is reseeded. After running, the set of points are returned to the global

population to be used by the next optimizer.

Reseeding of the Current Population: When reseeding is triggered, the manager

reseeds a percentage of the population (RS). The goal of reseeding is to increase the

87

diversity in the population used by the current optimizer, allowing the optimizer

to resume searching and potentially escape a local minimum. This is necessary to

prevent different optimizers from conflicting where the population returned from one

optimizer does not allow the next optimizer to appropriately operate. Two methods

are employed to generate new points, balancing exploitation of a region of interest

with exploration of the parameter space. The first process is exploitation which is

performed with probability rRS. New points are seeded based on a kernel density

function (KDF) built from all previous solutions evaluated by the optimizers. As the

meta-optimizer runs, optimizers will tend towards certain regions of the parameter

space with low cost. Exploitation seeks to place more points within these regions,

aiding the optimizers in refining the cost. The remaining points are seeded through

exploration by randomly sampling from the full search range. This approach provides

the optimizers with a highly diverse population, greatly increasing their exploration

capacity. Most importantly, exploration places points far from any local minima,

giving the optimizers an opportunity to search a new region of the parameter space

and potentially escape a local minimum.

Restarting of Meta-Optimization Process: In the event that the meta-optimizer

remains locked in a local minimum for a long period of time, the entire meta-

optimization process is restarted. The frequency of restarts is governed by the re-

starting threshold (NR) which sets a limit on the number of function calls meta-

optimization can expend while stalled in a local minimum. Unlike reseeding which

only updates a small portion of the local population used by an optimizer, the re-

starting process generates an entirely new global population shared by all optimizers.

When the new population is generated, an exclusion zone is placed around all previ-

ously detected local minima to prevent any optimizer from starting too close to the

local minima and quickly returning. Exclusion zone types considered in this imple-

mentation are a ball of set radius, similar to the tabu ball from TS, or a range in

88

each dimension. Like in TS, distance from the center of each ball is scaled using a

representative value for each parameter. The radius of the exclusion zone rR is spe-

cified as a percentage of the search range for each parameter. After a certain number

of restarts, the meta-optimizer stops, returning the best local minima found as the

solution.

4.5 Auto-Tuning

The performance of any optimizer is dependent on the various parameters which

control the optimizer’s behavior. For example, PSO has four tuning parameters: po-

pulation size, inertial weight, and two learning factor coefficients. Tuning parameters

are unique to every optimizer and can vary greatly between applications. Typically,

the selection of algorithm tuning parameters is determined by the user, whether from

good values that have been used previously or through manual tuning of the pa-

rameters. For new optimization problems, the best parameters may not be known

initially and require a significant amount of user effort to properly tune. Instead,

auto-tuning is performed where the tuning procedure is conducted online within the

meta-optimization procedure. This improves reliability by adapting the optimizers

to the current problem, allowing for hands-off operation of the individual optimizers.

Auto-tuning is performed using a wandering search which gradually explores the

parameter space in a random manner. This type of search was chosen for this imple-

mentation as it is very simple to implement with basic logic to intelligently guide the

search process. It is generally impractical to utilize traditional numerical optimiza-

tion algorithms to perform auto-tuning within meta-optimization as this would add a

significant amount of computation time that is not spent working on the optimization

problem itself. When auto-tuning is activated, the optimizer is run twice for 1000

function calls, once with the current parameters and once with new parameters. This

provides a side by side comparison of the optimizer with the two parameter sets over

89

a reasonable number of function calls. Only one parameter is tuned at a time to

limit interactions between tuning parameters, with each parameter having an equal

probability of being selected.

Each parameter has a search magnitude and a set of positive and negative incre-

ment probabilities. The new parameter value is generated by perturbing the current

parameter with a random length step based on the search magnitude in a random

direction selected based on the positive or negative probabilities. After both runs

are complete, the optimizer is checked for reduction in objective function, average

objective function value, and diversity. The new parameter is accepted if it has lower

average objective function value and higher diversity, achieving Pareto dominance.

If no new parameters are selected after both directions have been explored, the se-

arch magnitude is reduced by a specified factor. The search direction probabilities

are updated using a P-model learning automaton given in Eq. 4.40 which uses the

acceptance or rejection of the new parameters as its input [134].

if accepted

 pi(n+ 1) = pi(n) + a[1− pi(n)]

pj(n+ 1) = (1− a)pj(n)

if not accepted

 pi(n+ 1) = (1− b)pi(n)

pj(n+ 1) = b+ (1− b)pj(n)

(4.40)

Here, i is the index of the tested direction, j is the index of the opposite direction,

and the reward and penalty parameters a and b are set to 0.5. At the conclusion of

the auto-tuning run, the results with the lowest objective function value are retained,

independent of whether or not the new parameter is accepted. If any additional points

are needed in the population due to a change in population size, they are added using

the reseeding procedure from Section 4.4.

90

CHAPTER 5

BENCHMARK FUNCTION TESTING OF META-OPTIMIZATION

Mathematical benchmark functions are a common tool for the design and testing

of new optimization strategies. These functions are simple mathematical relations

with known structure and solutions. The advantage of using benchmark functions is

that they provide a common set of functions for researchers to use for side by side

comparison of different algorithms. The varying complexity and occurrence of local

minima in these functions allows for the evaluation of optimizers on a wide range of

problem types. Knowledge of the function solution also helps guide development of

new optimizers as performance can be easily graded.

Benchmark functions are also useful as a surrogate for practical optimization pro-

blems. For engineering optimization problems such as smart projectile parameter

estimation, the computation time required to solve the problem makes it impracti-

cal to use the actual problem to test and develop new optimizers. For example, the

projectile parameter estimation problem runs an entire six degree-of-freedom simula-

tion for each trajectory in the cost function. Even on a high performance computer

system, only a few function calls may be executed every second, making it difficult

to use for extensive trade studies and analysis. Real world problems may also lack a

known optimal solution if little information about the system is known a priori.

In this chapter, a suite of benchmark functions are used to analyze the behavior

of the meta-optimization framework on solving various problems. To establish the

efficacy of meta-optimization, the framework is compared to the individual optimizers

on this suite of functions. A series of trade studies are then conducted, investigating

the performance and effects of the individual components of the framework. These

trade studies are used to inform the selection of a configuration for the meta-optimizer

91

that is robust for use in system identification in Chapter 6. Finally, the tuned meta-

optimizer is compared to other state of the art optimizers on a suite of benchmark

functions used in optimization competitions.

5.1 Benchmark Function Suite

Ten well known benchmark functions often used by other researchers were chosen to

evaluate meta-optimization. Each function has a different topology and dimensiona-

lity with a wide range of difficulty. The functions used in this chapter are given in

Table 5.1 with equations following. Of these functions, only the elliptic function f8

is unimodal while the rest are multimodal. The Rosenbrock function f1 has a large

banana shaped valley with a local minimum at (-1,1,...1). Functions f2 and f3 are

periodic with a huge number of local minima. The Levy function f4 is a valley with a

mostly flat bottom with ripples creating local minima. The Ackley function f5 has a

deep funnel with numerous local minima along the sides. The Schaffer F6 function f6

resembles a multi-dimensional wave with repeating crests and valleys. Finally, f7 is

a combination of f1 and f3, producing a very complex, highly multimodal structure.

All of these functions are designed to have a global minimum value of 0.0 and are

evaluated over a range of x0 = [−10, 10].

5.1.1 Rosenbrock Function

f1(x) =
n−1∑
i=1

[100(xi+1 − x2i)2 + (xi − 1)2] (5.1)

5.1.2 Rastrigin Function

f2(x) = 10n+
n∑
i=1

[x2i − 10 cos(2πxi)] (5.2)

92

Table 5.1: Benchmark Suite Function Descriptions

Function

Number
Function Name Function Dimension Global

Min

Ref

1 Rosenbrock f1 30 (1,...1) [135]

2 Rosenbrock f1 100 (1,...1) [135]

3 Rastrigin f2 30 (0,...0) [135]

4 Griewank f3 10 (0,...0) [135]

5 Levy f4 30 (1,...1) [136]

6 Ackley f5 10 (0,...0) [135]

7 Schaffer F6 f6 10 (0,...0) [135]

8
Expanded Griewank

Plus Rosenbrock
f7 10 (1,...1) [135]

9
High Conditioned

Elliptic
f8 30 (0,...0) [135]

10
High Conditioned

Elliptic
f8 100 (0,...0) [135]

5.1.3 Griewank Function

f3(x) =
1

4000

n∑
i=1

x2i −
n∏
i=1

cos(
xi√
i
) + 1 (5.3)

5.1.4 Levy Function

f4(x) = sin2(πw1)+
n∑
i=1

(wi−1)2[1+10 sin2(πwi+1)]+(wn−1)2[1+sin2(2πwn)] (5.4)

Where wi = 1 + xi−1
4

.

5.1.5 Ackley’s Function

f5(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e (5.5)

93

5.1.6 Expanded Schaffer F6 Function

g(x, y) = 0.5 +
sin2

(√
x2 + y2

)
− 0.5

(1 + 0.001(x2 + y2))2

f6(x) = g(x1, x2) + g(x2, x3) + ...+ g(xn−1, xn) + g(xn, x1)

(5.6)

5.1.7 Expanded Griewank Plus Rosenbrock Function

f7(x) = f3(f1(x1, x2)) + f3(f1(x2, x3)) + ...+ f3(f1(xn−1, xn))f3(f1(xn, x1)) (5.7)

5.1.8 High Conditioned Elliptic Function

f8(x) =
n∑
i=1

(106)
i−1
n−1x2i (5.8)

5.2 Nominal Configuration Results

A nominal configuration of the meta-optimizer was chosen to demonstrate the general

performance of the framework on these benchmark functions. The parameters for

this nominal configuration are shown in Table 5.2. It should be noted that this meta-

optimization configuration is not specialized to perform well on these functions, but

is intended to provide reasonable performance on most problems.

94

Table 5.2: Nominal Meta-Optimization Parameters

Parameter Name Value

Algorithm Selection Method Learning Automaton

aLA, bLA Learning Automaton Parameters 0.3

Nw Efficiency Check Window 4000

Jref Reference % Cost Reduction 4.0%

RS Reseeding Rate 0.8

rRS Reseeding Refinement Probability 0.5

σd,min Reseeding Diversity Limit 5e−6

NR Restarting Threshold 500,000

Restarting Exclusion Zone Ball

rR Exclusion Zone Radius 1.0

5.2.1 Single Function Results

In order to highlight the manner in which the meta-optimization algorithm proceeds

during execution, detailed results are provided using the Ackley function (f5). The

2 dimensional Ackley function is shown in Figure 5.1. This function forms a funnel

around the global minimum at (0, 0) with many local minima along the funnel, making

it a very difficult function to solve for many optimizers. Figure 5.2 shows the change in

cost as the meta-optimizer progresses as well as which optimizer is running at a given

time. Note, the vertical lines are used to align significant cost reductions with the

corresponding optimizer. For this particular execution of meta-optimization, during

the initial phase of optimization (0 to 0.5×105 function calls), notable reductions in

the cost are achieved by BFGS and DE. This is followed by a long period (0.5×105

to 1.5×105 function calls) where numerous optimizers were deployed with only a

small number reducing the cost. Towards the end of the optimization process (after

1.5×105 function calls), a large reduction in the objection function is obtained using

PSO. Even though PSO was performing well, it stopped due to the diversity in the

population dropping below the set threshold. Next, TS was deployed, running until

95

Figure 5.1: 2-Dimensional Ackley Function

reaching its stopping criteria of excessive reductions in neighborhood size. Finally,

TS provided additional small reductions before SD finally reached the cost threshold.

The overall behavior follows the general structure of this function which is very flat

with many local minima and a very deep and narrow funnel with the global minimum

at the bottom. While the stochastic nature of the meta-optimizer produces different

results for a single instance, the overall trends are similar over a large number of

trials.

The switching behavior of the meta-optimizer can also be seen in Figure 5.2.

When stalled in a local minimum where no optimizer is doing well, the meta-optimizer

will quickly switch between optimizers until it finds one that can continue progress.

When an optimizer is performing well, it will run for a long period before reaching its

stopping criteria. On occasion, the meta-optimizer may try another optimizer which

may also perform well or switch back to the original optimizer. It may also continue

to choose the current optimizer, stringing together multiple calls.

96

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0 0.5 1 1.5 2 2.5

x 10
5

SD
CG

BFGS
PSO

DE
SIM
IWO

TS
ACO

Function Calls

O
pt

im
iz

er

Figure 5.2: Ackley Function Cost Profile with Optimizer Deployment History

The total percent cost reduction for each optimizer is shown in Figure 5.3. This

is computed by summing the percent reduction for each optimizer on every iteration.

Only six optimizers were able to reduce the cost on this run with TS and PSO

providing the most. Given the nature of an individual run, not every optimizer is

given a good opportunity to work on the problem. As seen in Figure 5.4, the more

effective optimizers like TS and DE were given a few more opportunities than the

other optimizers while CG had the fewest with 3 due to its inability to make progress

when deployed. These differences are also due to the fact that the optimizers continue

to be used as long as they are performing well, allowing them to achieve large cost

reductions for a single deployment. This can be seen clearly in Figure 5.5 where PSO,

DE, and TS ran for the most amount of time. PSO in particular was only called four

times, but each time ran for a long time. The hill climbers also tend to have short run

times due to quickly hitting their stopping criteria when finding a local minimum.

The probabilities of being selected for each optimizer over the course of the run are

97

SD CG BFGS PSO DE SIM IWO TS ACO
0

50

100

150

200

Optimizer

T
ot

al
 P

er
ce

nt
 R

ed
uc

tio
n

Figure 5.3: Ackley Function Total Percent Cost Reduction

SD CG BFGS PSO DE SIM IWO TS ACO
0

5

10

15

Optimizer

T
ot

al
 C

ou
nt

Figure 5.4: Ackley Function Total Number of Calls of Each Optimizer

SD CG BFGS PSO DE SIM IWO TS ACO
0

2

4

6

8

10

12x 10
4

Optimizer

F
un

ct
io

n
C

al
ls

Figure 5.5: Ackley Function Total Number of Function Calls Used by Each Optimizer

98

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function Calls

P
ro

ba
bi

lit
y

SD
CG
BFGS
PSO
DE
SIM
IWO
TS
ACO

Figure 5.6: Ackley Function Optimizer Probability vs Function Calls

shown in Figure 5.6. When an optimizer does well, the learning automaton increases

its probability, making it more likely to be called. As soon as an optimizer does

poorly, its probability is reduced, giving the other optimizers an opportunity to work

on the problem. Generally, only one or two optimizers have a high probability at a

given time with the other optimizers at roughly equal probability.

5.2.2 Benchmark Suite Results

Each of the individual optimizers used by the meta-optimizer were run on the set

of benchmark functions to use as a comparison to the meta-optimizer. For each

function, the individual optimizers were run 500 times with the results averaged for

each function. Each optimizer was given a budget of 10,000,000 function calls to solve

the problem. A cost threshold of 10−10 was used to stop the optimizers and denote a

successful solution. In addition, optimizers were stopped when their stopping criteria

from Section 4.2 were met. It should be noted that the same set of parameters were

99

used for each optimizer across all tests and the parameters were not tuned to any

particular function. The meta-optimizer was also run 500 times on each function

with a budget of 10,000,000 function calls or 10 restarts. The success rate, mean final

cost, and mean functions calls for each optimizer are given in Tables 5.3-5.5.

Table 5.3: Individual Optimizer Success Rate (%) on Benchmark Suite

Function 1 2 3 4 5 6 7 8 9 10

SD 70.6 72.4 0 32.2 0 0 0 0 100 100

CG 54.8 50.2 0 15.6 0 0 0 0 100 100

BFGS 61.2 54.4 0 20.2 0 0 0 0 100 100

PSO 63 49.6 0 0.8 0.2 0 0 0 100 100

DE 76.6 0 0 3.6 38.2 1 0 0 100 99.4

SIM 0 0 0 38.4 0 0 0 0 0 0

IWO 0 0 0 0 0 0 0 0 0 0

TS 80.2 3 0 1.2 0 0 0 0 0 0

ACO 59.4 0 0 0.2 0 0 0 0 100 2

MO 100 100 100 65.4 100 100 2 92.4 100 100

Examining the performance of the individual optimizers in Table 5.3, only f8

(Elliptic Function) could be solved every time by at least one optimizer. A number

of optimizers also have a high success rate on f1 (Rosenbrock Function). Function f8

is easy to solve for hill climbers because it is unimodal while f1 has only a single local

minimum and a very large basin of attraction around the global minimum. In general,

this group of functions provide a challenge for the individual optimizers with a wide

variation in performance between functions. The meta-optimizer, on the other hand,

matches or exceeds the performance of the individual optimizers on every function

and is able to solve every problem at least some of the time. It also produces a lower

cost than any optimizer as seen in Table 5.4, in particular on the problems meta-

optimization could not solve every time. This demonstrates how meta-optimization

is able to combine the various optimizers together to achieve better performance than

100

Table 5.4: Mean Final Cost for Individual Optimizers on Benchmark Suite

Function 1 2 3 4 5 6 7 8 9 10

SD 1.2e+00 1.1e+00 9.9e+02 5.9e-02 7.5e+01 2.2e+00 6.4e+03 6.6e-01 2.7e-12 8.4e-12

CG 3.0e+02 2.2e+04 9.6e+02 8.0e-02 7.5e+01 2.2e+00 2.1e+04 6.8e-01 9.1e-12 1.2e-11

BFGS 4.5e+03 2.3e+05 9.8e+02 9.3e-02 7.8e+01 2.2e+00 1.6e+05 6.7e-01 7.4e-12 3.7e-12

PSO 1.4e+00 1.8e+00 7.9e+01 4.9e-02 4.5e+00 3.5e-01 6.6e-01 1.7e-01 9.4e-11 8.7e-11

DE 3.2e+05 1.5e+07 4.5e+01 6.1e-02 5.3e-01 3.3e-01 1.4e+00 4.1e-01 9.1e-11 2.6e-07

SIM 8.7e+01 1.4e+02 3.6e+01 2.4e-02 9.9e-01 6.1e-01 9.7e+01 3.7e-01 2.9e+02 5.2e+02

IWO 8.6e-01 4.5e+01 3.8e+02 7.5e-02 4.8e+01 1.6e+00 2.5e+00 5.6e-01 1.9e+02 3.9e+03

TS 9.4e-01 9.2e-01 2.0e+02 7.6e-02 6.3e+01 1.2e+00 1.5e+00 6.2e-01 1.9e+01 8.4e+02

ACO 1.5e+00 1.4e+07 1.5e+02 5.6e-02 1.8e+01 7.2e-01 1.3e+00 3.9e-01 9.1e-11 5.7e+03

MO 6.6e-11 5.3e-11 3.8e-11 3.5e-03 3.2e-11 7.3e-11 1.4e-01 4.1e-03 3.5e-12 4.0e-12

101

Table 5.5: Mean Successful Function Calls for Individual Optimizers on Benchmark Suite

Function 1 2 3 4 5 6 7 8 9 10

SD 4.8e+05 1.6e+06 0.0e+00 1.7e+02 0.0e+00 0.0e+00 0.0e+00 0.0e+00 8.3e+02 2.9e+03

CG 7.9e+04 3.1e+05 0.0e+00 6.5e+03 0.0e+00 0.0e+00 0.0e+00 0.0e+00 9.1e+02 3.1e+03

BFGS 8.0e+03 4.6e+04 0.0e+00 3.1e+02 0.0e+00 0.0e+00 0.0e+00 0.0e+00 9.5e+02 3.2e+03

PSO 1.5e+06 2.9e+06 0.0e+00 2.9e+04 2.4e+04 0.0e+00 0.0e+00 0.0e+00 3.4e+04 3.8e+05

DE 3.5e+05 0.0e+00 0.0e+00 2.2e+04 6.9e+04 4.0e+04 0.0e+00 0.0e+00 9.5e+04 4.9e+05

SIM 0.0e+00 0.0e+00 0.0e+00 1.5e+03 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00

IWO 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00

TS 3.0e+06 8.7e+06 0.0e+00 3.2e+03 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00

ACO 3.1e+05 0.0e+00 0.0e+00 2.0e+03 0.0e+00 0.0e+00 0.0e+00 0.0e+00 1.4e+04 1.0e+05

MO 3.1e+05 4.6e+05 1.3e+06 3.3e+06 1.2e+05 1.3e+05 3.9e+06 2.5e+06 6.3e+04 1.4e+05

102

what any one optimizer can achieve alone. While meta-optimization is able to reliably

solve these problems, it is not necessarily faster than all of the individual optimizers

at solving each problem as shown in Table 5.4. This is expected as meta-optimization

will give many different optimizers opportunities to work on a problem and may not

always choose the fastest optimizer. Given the significant increase in performance over

the individual optimizers, this increase in computation time is for many scenarios an

acceptable trade off.

Additional metrics for the performance of the meta-optimizer are given in Ta-

ble 5.6. For most functions, the meta-optimizer required at least one restart on a

number of runs with functions 4, 7, and 8 requiring restarts on over 60%. On average,

about 7 restarts were needed for function 4, 9 restarts were needed for function 7,

and 4 for function 8. Functions 1, 2 and 3 also required some restarts but converged

without a restart on the majority of runs and usually only required a single restart.

The meta-optimizer also spent a majority of the time stalled on functions 4, 7, and 8

indicating the difficulty of these problems and the propensity of these optimizers to

find local minima. In this case, the meta-optimizer was considered stalled when there

was little or no cost reduction for 50,000 function calls. The final metrics, optimizer

count deviation and average probability deviation, measure the deviation from the

case where each optimizer is called an equal number of times with equal probabi-

lity. For reference, if every optimizer had an average probability ±10% from equal, it

would produce a deviation of 10−3. This shows that the algorithm selection process

is most effective on functions 5, 6, 9 and 10 with deviations over 10%. Functions 4,

7, and 8 also have the smallest deviations. When the meta-optimization has stalled,

the probabilities of all of the optimizers remains roughly the same as no optimizer is

able to make progress and have its probability increased.

103

Table 5.6: Meta-Optimization Performance Metrics on Benchmark Suite

Function 1 2 3 4 5 6 7 8 9 10

Restart

Rate (%)
16.6 31.4 20.4 90.8 0 0 99.8 61.4 0 0

Average #

of Restarts
1.15663 1.35032 1.13725 6.82379 0 0 9.34068 4.04886 0 0

Time

Stalled (%)
34.92 41.9 35.31 78.56 0.7059 1.026 66.4 66.73 0 0

Optimizer

Count

Deviation

6.80e-05 4.89e-05 5.10e-04 2.83e-06 5.20e-03 2.42e-03 1.32e-05 1.76e-05 7.99e-03 6.13e-03

Average

Probability

Deviation

2.26e-04 4.12e-04 7.14e-04 2.45e-05 5.40e-03 2.92e-03 1.46e-05 4.46e-05 2.42e-03 1.71e-03

104

Table 5.7: Ratio of Individual Optimizer Contributions to Total Meta-Optimization
Cost Reduction (%) on Benchmark Suite

Function 1 2 3 4 5 6 7 8 9 10

SD 14.3 11.4 4.61 8.78 6.71 6.28 7.49 5.95 14.2 14.0

CG 19.9 18.3 4.26 8.75 7.72 6.41 7.49 5.57 15.3 15.3

BFGS 23.4 36.6 4.77 8.27 6.00 7.34 7.94 5.18 14.4 15.8

PSO 12.5 10.5 41.3 27.7 43.3 35.8 26.1 41.3 11.4 12.2

DE 8.23 1.74 29.6 18.6 11.2 25.0 18.4 25.6 11.6 12.8

SIM 7.29 8.85 7.21 8.71 10.2 7.88 11.2 5.98 12.8 12.3

IWO 0.385 0.133 0.331 0.668 0.638 0.495 1.19 0.582 0.762 0.549

TS 7.37 10.5 4.21 8.70 7.12 6.15 10.5 6.00 7.31 6.20

ACO 6.49 1.95 3.67 9.81 7.17 4.67 9.67 3.86 12.2 11.1

The relative performance of each optimizer can also be seen by examining the

performance of each optimizer deployed by the meta-optimizer on each problem. Ta-

ble 5.7 shows the contribution of each optimizer to the total cost reduction for each

function. PSO is the most effective on functions 3-8, with DE also performing well

on these problems. The hill climbers have the best performance on functions 1, 2, 9,

and 10, but struggle on the harder multi-modal problems. SIM is the most effective

local search method on functions 3-7 with TS most effective on function 8 and equally

effective as SIM on function 4. IWO generally struggles but is able to provide a small

amount of cost reduction on every problem. ACO provides some cost reduction on

all functions, but lags PSO and DE significantly.

5.3 Meta-Optimization Trade Studies

A series of trade studies were conducted to explore the behavior of the various compo-

nents of meta-optimization and their effects on performance. The list of parameters

investigated are given in Table 5.2. These parameters are broken up into four groups:

algorithm selection parameters, efficiency evaluation parameters, reseeding parame-

105

ters, and restarting parameters. For each case, a nominal configuration was used

with only the investigated parameters varied. For the algorithm selection methods,

the configuration in Table 5.2 was used as a baseline. For all other cases, the proba-

bility update was turned off with each optimizer having equal probability. This was

done to help isolate the effects of each parameter from the other components of the

framework. Every configuration was tested on the set of functions from Table 5.1 and

evaluated on the metrics used in Section 5.2.2. To simplify the results and remove

differences between each function, all results except the deviations are normalized ba-

sed on the performance of the nominal configuration. Full plots of all of the following

trade studies are found in Appendix B.

5.3.1 Probability Update Rules

Three different update rules were considered: learning automaton, discrete weighting,

and continuous weighting. For the learning automaton, five different values of the

reward and penalty parameters aLA and bLA were considered as well as two cases with

differing values. The nominal configuration with constant probabilities (a = b = 0)

and the nominal configuration with sequential selection of optimizers are included as

comparisons for the algorithm selection methods. Figure B.1 shows the full results

for the learning automaton parameters. Looking first at success rate in Figure B.1a,

there is a slightly positive trend of increasing success rate with increasing aLA and

bLA on functions 4 and 8 while function 7 shows a slightly negative trend. The

constant probabilities case performs the best on function 7, and generally does well

on functions 4 and 8. On the other hand, the sequential case performs poorly on

function 4, but does achieve better success rate on function 7. It should be noted

that due to the overall low success rates on function 7 and the stochastic nature

of the meta-optimizer, performance on this function can regularly vary by a few

percent between cases, resulting in large differences in relative success rate. In general,

106

there is little correlation between computation time and these parameters. From

Figure 5.7, aLA = bLA = 0.2, 0.3 are the most consistent and overall require the fewest

restarts. However, Figure 5.8 shows that the higher parameter values remain stalled

for less time, especially on functions 5 and 6. On both of these metrics, the constant

probabilities case surpasses the nominal on functions 1 and 2, but performs worse on

the rest of the functions while the sequential case stalls very little on functions 5 and

6. Looking at the optimizer count and average probability deviations in Figures 5.9

and 5.10, increasing aLA and bLA increases the deviation, indicating more variation in

choosing optimizers. When aLA < bLA, there is very little deviation while aLA > bLA

produces extremely large deviations. No improvement in the other metrics is seen for

these configurations.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

 R
at

e

a=b=0.0
a=b=0.1
a=b=0.2
a=b=0.3
a=b=0.4
a=b=0.5
a=0.1,b=0.3
a=0.3,b=0.1
Sequential

Figure 5.7: Learning Automaton Reward and Penalty Parameter Normalized Restart
Rate

For both the discrete and continuous weighting schemes, linear, quadratic, and

square root relations were tested with w0 = 1 and w1 = 5. Results for these configu-

rations are given in Figure B.2. On success rate shown in Figure B.2a, the continuous

107

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

a=b=0.0
a=b=0.1
a=b=0.2
a=b=0.3
a=b=0.4
a=b=0.5
a=0.1,b=0.3
a=0.3,b=0.1
Sequential

Figure 5.8: Learning Automaton Reward and Penalty Parameter Normalized Time
Stalled

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Function Number

C
ou

nt
 D

ev
ia

tio
n

a=b=0.0
a=b=0.1
a=b=0.2
a=b=0.3
a=b=0.4
a=b=0.5
a=0.1,b=0.3
a=0.3,b=0.1
Sequential

Figure 5.9: Learning Automaton Reward and Penalty Parameter Optimizer Count
Deviation

108

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

a=b=0.0
a=b=0.1
a=b=0.2
a=b=0.3
a=b=0.4
a=b=0.5
a=0.1,b=0.3
a=0.3,b=0.1
Sequential

Figure 5.10: Learning Automaton Reward and Penalty Parameter Optimizer Average
Probability Deviation

methods performed best on function 4 while the discrete methods performed best

on functions 7 and 8. From Figure 5.11, the continuous weighting ran the fastest

overall with the square root weighting the fastest, achieving significantly lower com-

putation time on functions 9 and 10. With constant probabilities, computation time

was consistent, but overall worse than the other cases. The sequential selection case

in particular was very fast on functions 2, 6, and 10, but significantly slower on 4

and 5. On functions such as 2 and 10, the hill climbers are very efficient and will

often converge on the solution before another optimizer is used. However, on multi-

modal functions like functions 4 and 5, the meta-optimizer must cycle through all of

the optimizers, even if only a few are able to escape a local minima, while the hill

climbers continue moving towards the local minima every time they are used. With

sequential selection, meta-optimization is guaranteed to select a hill climber within

a few iterations. Figure B.2c shows that the continuous weighting was also best on

restarts on all but function 8, while the discrete weighting was better on time stalled

109

as seen in Figure 5.12. For the deviations shown in Figures 5.13 and 5.14, the conti-

nuous, square root weighting is the most consistent with significantly more deviation

on functions 1-4, 7, and 8. On the other functions, it is on par with the deviation

from the learning automaton with aLA = bLA ≥ 0.3.

0 2 4 6 8 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
T

im
e

a=b=0.0
Disc, Lin
Disc, Sqrt
Disc, Quad
Cont, Lin
Cont, Sqrt
Cont, Quad
Sequential

Figure 5.11: Probability Weighting Methods Normalized Mean Computation Time

Compared to the case with constant probabilities, the algorithm selection methods

did not significantly alter the success rate on any of the functions. However, the most

effective selection configurations achieved significant computation time savings on

some functions. In terms of restart rate and time stalled, the probability updates

may reduce performance on functions 1 and 2. This could be caused by two factors.

First, on some trials, the meta-optimizer may select optimizers such as PSO and

DE which are effective on this function, but not the most efficient. In this case, the

probabilities for these optimizers may be boosted, lowering the chance of selecting

the significantly more efficient hill climbers. In the second scenario, if a hill climber

begins outside of the basin of attraction of the global minimum, it will be attracted

110

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

a=b=0.0
Disc, Lin
Disc, Sqrt
Disc, Quad
Cont, Lin
Cont, Sqrt
Cont, Quad
Sequential

Figure 5.12: Probability Weighting Methods Normalized Time Stalled

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Function Number

C
ou

nt
 D

ev
ia

tio
n

a=b=0.0
Disc, Lin
Disc, Sqrt
Disc, Quad
Cont, Lin
Cont, Sqrt
Cont, Quad
Sequential

Figure 5.13: Probability Weighting Methods Optimizer Count Deviation

111

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

a=b=0.0
Disc, Lin
Disc, Sqrt
Disc, Quad
Cont, Lin
Cont, Sqrt
Cont, Quad
Sequential

Figure 5.14: Probability Weighting Methods Optimizer Average Probability Deviation

towards the local minimum of this function. Since the hill climbers are efficient on

this function, they will achieve high efficiencies and have their probabilities increased.

This lowers the likelihood of selecting a global method that could potentially move

away from the local minimum before the hill climber reaches the local minimum

and the meta-optimizer stalls. On the other functions where there are more local

minima for the hill climbers to find, the opposite trend occurs where the probability

update rules lower the probabilities of the hill climbers, reducing the likelihood of

reaching a local minimum. Overall, these algorithm selection methods show superior

performance over random selection with constant probability and sequential selection.

The final trade study on the probability update rules is an investigation on the

effect of the weighting function coefficients W0 and W1. To test the impact of these

parameters, the continuous, square root weighting function was used as the baseline.

Instead of varying W0 and W1 independently, a test matrix was constructed by va-

rying W0 and W1 − W0. W0 has two primary effects on the probabilities for each

112

optimizer. Increasing W0 will decrease the maximum possible probability and incre-

ase the minimum probability, reducing the potential range of probabilities. On the

other hand, increasing W1−W0 increases the maximum probability and decreases the

minimum probability, increasing the potential range of probabilities. The net effect

is an increase in the range of probabilities for all W0 values. The values investigated

are W0 = {0.5, 1.0, 2.0, 3.0} and W1 −W0 = {3.0, 4.0, 5.0, 6.0}.

Figures B.3-B.6 show some of the results for this trade study. Not shown are

success rate and computation time which did not show any discernible trends in

either parameter. However, the combination of W0 = 1.0 and W1−W0 = 5.0 perfor-

med slightly better on both success rate and computation time. In terms of restart

rate shown in Figure B.3, lower values of W0 required slightly fewer restarts, especi-

ally on function 3. Medium values of W1 −W0 also required slightly fewer restarts

overall. Figure B.4 indicated that lower W0 values also stalled less overall with better

performance on functions 5 and 6. The largest trends occur in the deviations as seen

in Figures 5.15 and B.6. For both metrics, the deviation increases with increasing

W1−W0 and decreases with increasing W0. This conforms with the nature of the weig-

hting functions where a larger range in probabilities will cause meta-optimization to

favor certain optimizers throughout a run, increasing the deviation from equal usage.

The primary effect of the algorithm selection methods is on the frequency of

selecting each optimizer. The large deviations in both the number of times each

optimizer is called and the average probability for each optimizer demonstrate how

the probability update rules favor certain optimizers over others on a given run.

However, large deviations are not necessarily beneficial on all functions. For example,

cases with higher deviations tended to perform worse on functions 1, 2, 9, and 10 and

slightly better on functions 5 and 6. To preserve reliability over a wide range of

problems, algorithm selection methods which produce moderate levels of deviation

should be preferred.

113

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

W
1
−W

0
=3.0

W
1
−W

0
=4.0

W
1
−W

0
=5.0

W
1
−W

0
=6.0

(a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

(b)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

(c)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

(d)

Figure 5.15: Weighting Coefficient Optimizer Count Deviation (a). W0 = 0.5; (b).
W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0

5.3.2 Optimizer Efficiency Evaluation

The efficiency check is characterized by two primary parameters: the check window

Nw and the reference cost reduction Jref . To observe the effect of these parameters, a

test matrix was constructed with check window sizesNw = {1000, 2000, 3000, 4000, 5000, 6000}

function calls and reference cost reduction per 1000 function calls Jref = {0.5, 1.0, 1.5, 2.0}.

The check window not only controls the range over which the optimizers are evalua-

ted, but also the minimum number of function calls allotted each optimizer and the

frequency of efficiency checks. A longer window allows for a more accurate evalu-

ation of optimizer performance, but it also slows down the frequency of exchanges

between optimizers. The reference cost reduction determines what is considered sa-

114

tisfactory performance for the optimizers with higher values grading each optimizer

more harshly. Jref is specified here in terms of cost reduction per 1000 functions calls

such that the reference cost reduction per function call is the same across all window

sizes.

The results for this trade study are shown in Figures B.7-B.10. Figure 5.16 shows

a serious degradation in performance with a shorter window at Jref = 0.5 on function

4. This is primarily due to the meta-optimizer switching off of optimizers too quickly

and not examining a long enough window to properly evaluate performance. There

is no discernible trend in success rate for Jref seen in Figure B.7. The longer window

also does better on function 7, but performs slightly worse on function 8. Clear

trends in window size in terms of computation time can be seen at Jref in Figure

5.17. For functions 1, 2, 5, 6, 8, 9, and 10, computation time generally increases as

the window increases while the opposite is true on function 3 and 4. Figure 5.18 shows

computation time generally decreasing with increasing Jref . With a higher reference

performance, meta-optimization will switch off of poorly performing optimizers faster,

reducing the amount of computation time used on these optimizers. Restarting rate

as seen in Figure B.9 also generally decreases with increasing window with no trend in

Jref . Figure B.10 shows that longer windows stall the least on all but functions 5 and 6

where medium size windows perform best. On functions 1, 5, and 6, there is a slightly

positive trend of increasing time stalled with increasing Jref , however the trend does

not hold for other functions. Overall, shorter and longer windows may provide benefits

on certain functions, but overall have a larger variance in performance. Intermediate

sized windows provide the most consistent performance. A higher reference cost

reduction is also beneficial, particularly on reducing computation time.

115

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

N
w
=1000

N
w
=2000

N
w
=3000

N
w
=4000

N
w
=5000

N
w
=6000

Figure 5.16: Efficiency Check Window at Jref = 0.5 Normalized Success Rate

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Function number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
T

im
e

N
w
=1000

N
w
=2000

N
w
=3000

N
w
=4000

N
w
=5000

N
w
=6000

Figure 5.17: Efficiency Check Window at Jref = 1.5 Normalized Mean Computation
Time

116

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
T

im
e

J
ref

=0.5

J
ref

=1.0

J
ref

=1.5

J
ref

=2.0

Figure 5.18: Reference Cost Reduction at Nw = 6000 Normalized Mean Computation
Time

5.3.3 Reseeding Parameters

The three parameters that govern reseeding are the reseeding rate RS, the reseeding

refinement rate rRS, and the diversity threshold σd,min. The first parameter investi-

gated is the reseeding rate RS which controls the percentage of the population for a

given optimizer that will be reseeded. Ten values were considered ranging from 0.0 to

0.9. Figure B.11 shows the results for this trade study. Looking at Figure 5.19, there

is a clear and significant reduction in success rate for smaller values of RS, especi-

ally on functions 3, 4, and 8. The opposite trend exists on function 7, but there is

significant variation in performance on this function. From Figure 5.20, computation

time also generally decreases with increasing RS until RS = 0.8 after which compu-

tation time increases again. Similar trends also exist for restart rate and time stalled

as seen in Figures B.11c and B.11d respectively, with RS = 0.8 performing best on

every measure except success rate. This behavior indicates some diminishing returns

117

in increasing RS to the point that too high of RS actually degrades performance. In

these cases, very little of the population is retained, effectively restarting the opti-

mizer from an entirely new population. This population may be so diverse that the

optimizers expend most of their computation time on exploration with little ability

for exploitation. Computation time and restart rate on function 3 and time stalled

on function 6 are also very sensitive to RS, with very large increases for smaller RS.

This demonstrates the importance of reseeding in allowing the global optimizers to

free themselves from local minima in a timely manner. Without reseeding, there is

a significant degradation in performance on every function with the meta-optimizer

unable to solve functions 3 and 8 at all, demonstrating how critical reseeding is to

the capabilities of meta-optimization.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

RS=0.0
RS=0.1
RS=0.2
RS=0.3
RS=0.4
RS=0.5
RS=0.6
RS=0.7
RS=0.8
RS=0.9

Figure 5.19: Reseeding Rate Normalized Success Rate

118

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
T

im
e

RS=0.0
RS=0.1
RS=0.2
RS=0.3
RS=0.4
RS=0.5
RS=0.6
RS=0.7
RS=0.8
RS=0.9

Figure 5.20: Reseeding Rate Normalized Mean Computation Time

The reseeding refinement rate rRS controls the frequency of refinement in the

reseeding process as explained in Section 4.4. This parameter controls the balance

between exploration and exploitation when new points are generated, with a lower

value corresponding to greater exploration. Nine values from 0.1 to 0.9 were consi-

dered for this trade study with the results shown in Figure B.12. Figure 5.21 shows

a strong trend of decreasing performance with increasing rRS on function 4, while

medium values tend to do best on function 7. Medium values as seen in Figure B.12b

also run the fastest overall with lower values performing best on all but functions 1

and 2. There is little trend in restarting rate seen in Figure B.12c, however medium

values tend to restart slightly less often. There is also a slightly positive trend in

time stalled in Figure B.12d with rRS = 0.2 doing well on all but function 6. Based

on these results, meta-optimization performs best with more exploration than exploi-

tation. By seeding more points throughout the parameter space, the optimizers are

provided a more diverse population, fueling their exploration capabilities. Also, the

119

longer the meta-optimizer remains near a local minimum, the more the KDF for ex-

ploitation will shift towards the local minimum, causing more reseeded points to fall

in that region. If too much of the population is in the vicinity of a local minimum,

the optimizers will quickly collapse on the local minimum and the meta-optimizer

will remain stalled.

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

4

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

r
RS

=0.1

r
RS

=0.2

r
RS

=0.3

r
RS

=0.4

r
RS

=0.5

r
RS

=0.6

r
RS

=0.7

r
RS

=0.8

r
RS

=0.9

Figure 5.21: Reseeding Refinement Rate Normalized Success Rate

The final parameter that controls reseeding is the diversity limit σd,min used to

trigger reseeding. A higher threshold will cause reseeding to be performed more often

while a lower threshold will make reseeding less likely. The diversity threshold is also

used to control when the population based optimizers have collapsed and should stop

running. The threshold was varied from 5 × 10−4 to 5 × 10−8 with results shown

in Figure B.13. From Figure 5.22, there is a noticeable decrease in performance on

function 7 and a small decrease on function 4 for lower diversity limits. In Figure 5.23,

computation time increased significantly for the lower diversity limits. In addition,

Figures B.13c and B.13d show similar trends for restarting rate and time stalled

120

respectively. With the lower threshold to trigger reseeding, the meta-optimizer is not

reseeding often enough for the global optimizers to be able to escape local minima,

leading to a reduction in performance. On the other hand, the highest diversity

threshold saw a significant increase in computation time on function 3. This is likely

due to the meta-optimizer stopping the global methods too soon, not allowing them

to run long enough to search the parameter space and avoid local minima. The

frequent reseeding can also reduce performance by resetting the population before the

optimizers have had a chance to cooperate on exploring the search space. Overall,

medium values of the diversity threshold performed best with a value of 5 × 10−6

showing good performance across all functions.

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

σ
d,min

=5e−4

σ
d,min

=5e−5

σ
d,min

=5e−6

σ
d,min

=5e−7

σ
d,min

=5e−8

Figure 5.22: Reseeding Diversity Threshold Normalized Success Rate

121

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
T

im
e

σ
d,min

=5e−4

σ
d,min

=5e−5

σ
d,min

=5e−6

σ
d,min

=5e−7

σ
d,min

=5e−8

Figure 5.23: Reseeding Diversity Threshold Mean Computation Time

5.3.4 Restarting Parameters

The frequency of restarts can play a significant role in the performance of meta-

optimization. The restarting threshold NR controls the number of function calls

the meta-optimizer is allowed to expend while stalled in a local minimum. While

the global optimizers may be able to get out of a local minimum if given enough

time, it may be more efficient to start over, maintaining knowledge of the location of

previously reached local minima. Six threshold values were evaluated ranging from

50,000 to 500,000 function calls as well as a case with no restarts. The limit on

total number of restarts is removed to allow reasonable comparisons between each of

these cases as a lower restarting threshold will lead to many more restarts within the

computation time limit.

Figures 5.24-5.26 show the results for this trade study. Note that time stalled is

not evaluated for this trade study as the amount of time stalled is directly related to

the restarting threshold with a larger threshold allowing meta-optimization to remain

122

stalled for a longer portion of a run. Looking at Figure 5.24, lowering the threshold

can both help and hinder meta-optimization. While the lower restarting threshold

improved performance on function 4, there were significant reductions in performance

on functions 3 and 8, functions meta-optimization does not typically struggle with.

Figure 5.25 shows a very large increase in computation time on these two functions as

well. A lower threshold did achieve some computation time reductions on functions 1

and 2, but performed worse overall. As expected, the rate of restarts seen in Figure

5.26 increased significantly as the threshold was reduced. Without restarts, the meta-

optimizer was still able to solve functions 1, 3, 5, 6, 9, and 10 every time, but struggled

on functions 2, 4, and 8. This indicates that on some problems, the meta-optimizer is

able to free itself from a local minima if given enough time. However, as Figure 5.25

shows, the meta-optimizer without restarts required twice as many function calls to

solve function 1 as the nominal configuration, and on no function did the absence of

restarts show improved performance.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

N
R
=50k

N
R
=100k

N
R
=200k

N
R
=300k

N
R
=400k

N
R
=500k

N
R
=∞

Figure 5.24: Restarting Threshold Normalized Success Rate

123

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

N
R
=50k

N
R
=100k

N
R
=200k

N
R
=300k

N
R
=400k

N
R
=500k

N
R
=∞

Figure 5.25: Restarting Threshold Mean Computation Time

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

 R
at

e

N
R
=50k

N
R
=100k

N
R
=200k

N
R
=300k

N
R
=400k

N
R
=500k

N
R
=∞

Figure 5.26: Restarting Threshold Mean Restart Rate

124

The second component of the restarting mechanism is the exclusion zone. When a

restart is performed, no new points are generated within an area around all previous

local minima. This zone can be either a ball around the local minimum or a range

of values in each parameter. Both exclusion zone types were considered with radius

rR = {1, 2, 3} with results in Figure B.15. Figure 5.27 shows a large increase in

success rate on function 4 for the range type zone with slightly worse performance on

function 7. As seen in Figure 5.28, computation time is greatly reduced on function

4 using the range type zone, but the opposite holds true on function 8. Both of

these effects are more pronounced as the radius of the exclusion zone increases. No

discernible trend in either exclusion zone type or radius is observed for restart rate

and time stalled in Figures B.15c and B.15d respectively. While the exclusion zone

radius performed well overall, it should be noted that in some cases, a large radius

exclusion zone can cover all or most of the search space after a number of restarts,

making it difficult to generate new points. Therefore, it is preferable to limit the size

of the exclusion zone. For the range type zone, a lower radius provides a good balance

of performance while maintaining the large improvements on function 4.

125

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

Ball, r
R
=1

Ball, r
R
=2

Ball, r
R
=3

Range, r
R
=1

Range, r
R
=2

Range, r
R
=3

Figure 5.27: Restarting Exclusion Zone Normalized Success Rate

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
T

im
e

Ball, r
R
=1

Ball, r
R
=2

Ball, r
R
=3

Range, r
R
=1

Range, r
R
=2

Range, r
R
=3

Figure 5.28: Restarting Exclusion Zone Mean Computation Time

126

5.3.5 Final Meta-Optimization Configuration

Based on the results from each of these trade studies, the meta-optimization configu-

ration in Table 5.8 was constructed to maximize the performance of meta-optimization

as a general use tool on wide range of problems. First, for the probability update

rules for the algorithm selection, a continuous, square root weighting function was

chosen given its good computation time performance and high deviations. Analysis

of the weighting coefficients W0 and W1 −W0 indicated the best results for medium

values of both, with the combination W0 = 1 and W1 = 5 performing well. For the

efficiency window and reference cost reduction, the combination of a medium window

of 4000 function calls and a high Jref of 2% balances the benefits of a longer window

on some functions and a shorter window on others. The reseeding rate of 0.8 was

the most effective in almost all cases with some reduction in performance when the

reseeding rate was increased. Lower reseeding refinement rates, on the other hand,

showed promising results, indicating a preference for exploration over exploitation in

reseeding. A medium value of the diversity threshold also performed well overall with

both lower and higher thresholds seeing worse results on some problems. The long

restarting threshold of 500,000 function calls was maintained to allow the optimizers

time to escape local minima without restarting too quickly. Finally, the exclusion

range provided a significant improvement in success rate on function 4 with only a

minimal reduction on function 8.

127

Table 5.8: Final Meta-Optimization Configuration

Parameter Name Value

Algorithm Selection Method Continuous

Weighting Function Square Root

W0 Weighting Function Constant 1.0

W1 Weighting Function Slope 5.0

Nw Efficiency Check Window 4000

Jref Reference % Cost Reduction 8.0%

RS Reseeding Rate 0.8

rRS Reseeding Refinement Probability 0.2

σd,min Reseeding Diversity Threshold 5e−6

NR Restarting Threshold 500,000

Restarting Exclusion Zone Range

rR Exclusion Zone Radius 1.0

The performance of this configuration is given in Table 5.9 with the nominal results

included as a comparison. On function 4, the final configuration is able to solve the

problem almost 50% more often than the nominal configuration. The small increase

on function 6 and small decrease on function 8 are minor differences and are effectively

equal in performance. Across all of the functions, computation time is similar for both

configurations with variations of about 5-10%. The largest changes are on function

7 where the final configuration is 25% slower than the nominal, but is 30-40% faster

on functions 9 and 10. Restarting rate and time stalled are also similar across all

functions with the final configuration restarting more often on function 8 and stalling

less often on function 5. Overall, the final configuration matches the performance of

the nominal configuration with large improvements on a few functions.

128

Table 5.9: Comparison of Nominal and Final Configurations on Benchmark Suite

Success Rate (%)

Function 1 2 3 4 5 6 7 8 9 10

Nominal 100 100 100 65.4 100 100 2 92.4 100 100

Final 100 100 100 91 100 100 6 91.4 100 100

Mean Computation Time

Nonimal 3.1e+05 4.6e+05 1.3e+06 3.3e+06 1.2e+05 1.3e+05 3.9e+06 2.5e+06 6.3e+04 1.4e+05

Final 2.8e+05 4.8e+05 1.5e+06 3.5e+06 1.3e+05 1.4e+05 5.1e+06 2.6e+06 4.4e+04 7.4e+04

Restart Rate (%)

Nominal 16.6 31.4 20.4 90.8 0 0 99.8 61.4 0 0

Final 19.6 29.2 25 90.8 0 0 99.2 79 0 0

Time Stalled (%)

Nominal 34.92 41.9 35.31 78.56 0.7059 1.026 66.4 66.73 0 0

Final 44.1 41 37.69 77.96 0.2362 1.701 65.38 65.41 0 0

129

5.4 Competition Suite Testing

In addition to the ten benchmark functions in Section 5.1, meta-optimization was

evaluated on the CEC2014 benchmark function competition suite [135]. Using this

set of functions, meta-optimization can be directly compared with other state of the

art optimizers which participated in this competition. The competition suite consists

of 30 different functions with 10, 30, 50, and 100 dimensions. For each function,

competition rules permit the optimizer to run 51 times with a budget of n× 10, 000

function calls. Three optimizers from the competition were chosen as a comparison

for meta-optimization: linear success-history based adaptive differential evolution (L-

SHADE) [137], replacement strategy differential evolution (RSDE) [138], and united

multi-operator evolutionary algorithms (UMOEAs) [139]. These optimizers are briefly

described below.

Linear Success-History based Adaptive Differential Evolution (L-SHADE):

Developed by Tanabe and Fukunaga, L-SHADE builds off of the existing SHADE

algorithm [140], adding adaption of the population size to the method. SHADE

adjusts the DE tuning parameters F and CR using a memory of previous values of

the parameters which were successful at producing better solutions. The addition of

a linearly decreasing population allows the algorithm to shift from exploration with

a large initial population to more efficient exploitation when the population is small

[137].

Replacement Strategy Differential Evolution (RSDE): For many optimization

problems, DE can expend a large number of functions calls freeing individuals in the

population from a local minima. To overcome this issue, Xu, Huang, and Ye add two

replacement strategies to DE to improve efficiency and reliability. The first strategy

replaces individuals which fail to show improvement with a new position close to

the best point found so far, improving the exploitative ability of the algorithm. The

130

second strategy redistributes the entire population when it has collapsed on a local

minima [138].

United Multi-Operator Evolutionary Algorithms (UMOEAs): UMOEAs is

an adaptive approach for combining multiple evolutionary algorithms into a single

method. Three different multi-operator evolutionary algorithms are used to evolve a

subpopulation for a number of generations. Each algorithms contains additional logic

for allocating resources between each operator. Next, the most effective algorithm is

allowed to evolve its subpopulation for a subsequent number of populations. At the

completion of each cycle, the worst subpopulation is updated using information from

the best subpopulation [139].

The final configuration of meta-optimization given in Table 5.8 was used for this

test. It should be noted that this comparison is being made even though meta-

optimization was designed with the goal of general reliability and robustness while

the other optimizers were tuned specifically for maximum speed and performance

on this set of problems. Detailed results for meta-optimization and these optimizers

are given in Tables 5.10-5.13. The results presented here for the three optimizers

L-SHADE, RSDE, and UMOEAs were originally reported by the authors of each

algorithm and were not obtained from independently implementing and evaluating

these algorithms.

Overall, meta-optimization was comparable to these state of the art optimizers

on many of the competition suite functions. Meta-optimization had some difficulty

on the unimodal functions (1, 2, and 3) for n = 10. At this low dimension, there

is a limited computational budget which does not allow meta-optimization sufficient

time to select the hill climbers which are most efficient on these types of problems.

The other optimizers all incorporate local search strategies in the algorithm, allowing

them to perform well on these problems. On the multimodal functions, the meta-

optimizer achieved similar performance to the other optimizers on many functions.

131

Table 5.10: Optimizer Final Cost Error Mean and Standard Deviation n = 10

Meta-Opt LSHADE RSDE UMOEAs
Fn Mean STD Mean STD Mean STD Mean STD
1 3.37e+03 1.24e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3 1.27e+02 6.86e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
4 6.28e+00 1.52e+00 2.90e+01 1.30e+01 2.81e+00 8.24e+00 0.00e+00 0.00e+00
5 7.03e-01 2.86e-01 1.40e+01 8.80e+00 1.92e+01 3.92e+00 1.69e+01 7.36e+00
6 9.50e-01 7.22e-01 1.80e-02 1.30e-01 5.29e-02 2.13e-01 0.00e+00 0.00e+00
7 1.14e-01 7.64e-02 3.00e-03 6.50e-03 3.55e-02 3.12e-02 0.00e+00 0.00e+00
8 1.48e+00 1.09e+00 0.00e+00 0.00e+00 6.61e-01 9.31e-01 0.00e+00 0.00e+00
9 1.31e+01 5.75e+00 2.30e+00 8.40e-01 8.52e+00 3.71e+00 4.65e+00 1.94e+00
10 7.04e+01 8.01e+01 8.60e-03 2.20e-02 6.84e+01 6.65e+01 6.34e-01 1.14e+00
11 4.95e+02 1.98e+02 3.20e+01 3.80e+01 2.91e+02 1.93e+02 1.59e+02 1.64e+02
12 9.92e+00 3.19e+01 6.80e-02 1.90e-02 2.21e-01 1.37e-01 8.89e-04 3.59e-03
13 1.56e-01 9.66e-02 5.20e-02 1.50e-02 1.28e-01 3.18e-02 9.46e-03 5.05e-03
14 2.26e-01 9.71e-02 8.10e-02 2.60e-02 1.36e-01 4.36e-02 8.34e-02 3.33e-02
15 1.12e+00 5.79e-01 3.70e-01 6.90e-02 9.83e-01 3.70e-01 6.56e-01 2.00e-01
16 2.51e+00 4.96e-01 1.20e+00 3.00e-01 2.23e+00 4.32e-01 1.55e+00 6.47e-01
17 4.99e+02 1.81e+03 9.80e-01 1.10e+00 4.77e+01 5.52e+01 9.90e+00 1.66e+01
18 1.58e+01 2.27e+01 2.40e-01 3.10e-01 2.00e+00 1.10e+00 9.95e-01 9.54e-01
19 8.25e-01 5.08e-01 7.70e-02 6.40e-02 1.03e+00 3.55e-01 1.57e-01 2.56e-01
20 1.48e+01 2.05e+01 1.80e-01 1.80e-01 7.21e-01 6.22e-01 2.98e-01 2.85e-01
21 7.95e+01 1.25e+02 4.10e-01 3.10e-01 1.21e+00 3.33e+00 5.57e-01 1.13e+00
22 4.61e+01 6.03e+01 4.40e-02 2.80e-02 1.17e+01 9.74e+00 2.35e-01 1.97e-01
23 3.23e+02 4.44e+01 3.30e+02 0.00e+00 3.29e+02 0.00e+00 2.00e+02 0.00e+00
24 1.24e+02 8.77e+00 1.10e+02 2.30e+00 1.19e+02 6.59e+00 1.13e+02 3.61e+00
25 1.77e+02 2.88e+01 1.30e+02 4.00e+01 1.30e+02 1.93e+01 1.32e+02 2.43e+01
26 1.00e+02 9.75e-02 1.00e+02 1.60e-02 1.00e+02 3.65e-02 1.00e+02 1.48e-02
27 1.90e+02 1.75e+02 5.80e+01 1.30e+02 9.12e+01 1.40e+02 1.73e+01 5.38e+01
28 3.94e+02 6.47e+01 3.80e+02 3.20e+01 3.87e+02 4.88e+01 2.00e+02 0.00e+00
29 1.24e+03 1.66e+03 2.20e+02 4.60e-01 2.13e+02 2.59e+01 2.03e+02 2.16e+01
30 6.47e+02 2.13e+02 4.60e+02 1.30e+01 5.05e+02 1.06e+02 2.00e+02 0.00e+00

132

Table 5.11: Optimizer Final Cost Error Mean and Standard Deviation n = 30

Meta-Opt LSHADE RSDE UMOEAs
Fn Mean STD Mean STD Mean STD Mean STD
1 7.87e-02 5.56e-01 0.00e+00 0.00e+00 1.50e+03 1.70e+03 0.00e+00 0.00e+00
2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3 4.32e-04 2.58e-03 0.00e+00 0.00e+00 4.74e-02 1.16e-01 0.00e+00 0.00e+00
4 1.33e+01 1.79e+00 0.00e+00 0.00e+00 3.05e+00 1.34e+01 0.00e+00 0.00e+00
5 1.62e+00 4.53e-01 2.00e+01 3.70e-02 2.03e+01 9.88e-02 2.01e+01 1.26e-01
6 8.97e+00 1.78e+00 0.00e+00 0.00e+00 5.16e+00 2.01e+00 0.00e+00 0.00e+00
7 1.76e-02 3.57e-02 0.00e+00 0.00e+00 8.46e-04 1.59e-03 0.00e+00 0.00e+00
8 1.20e+01 4.38e+00 0.00e+00 0.00e+00 2.04e+01 7.04e+00 1.35e+00 1.16e+00
9 1.14e+02 4.70e+01 6.80e+00 1.50e+00 5.80e+01 1.65e+01 8.84e+00 2.78e+00
10 3.57e+02 2.11e+02 1.60e-02 1.60e-02 3.29e+02 2.47e+02 8.93e+00 1.65e+01
11 3.02e+03 6.68e+02 1.20e+03 1.80e+02 2.74e+03 6.44e+02 1.46e+03 7.91e+02
12 1.52e+03 2.42e+03 1.60e-01 2.30e-02 4.44e-01 1.66e-01 2.56e-03 2.35e-03
13 4.36e-01 1.31e-01 1.20e-01 1.70e-02 3.05e-01 5.50e-02 5.46e-02 1.55e-02
14 3.95e-01 2.00e-01 2.40e-01 3.00e-02 2.36e-01 3.37e-02 2.04e-01 4.02e-02
15 8.62e+00 4.06e+00 2.10e+00 2.50e-01 5.92e+00 2.59e+00 3.25e+00 5.21e-01
16 1.16e+01 8.17e-01 8.50e+00 4.60e-01 1.06e+01 7.70e-01 9.93e+00 7.41e-01
17 2.05e+03 1.40e+03 1.90e+02 7.50e+01 1.24e+03 3.79e+02 9.77e+02 3.61e+02
18 8.66e+02 5.37e+03 5.90e+00 2.90e+00 9.54e+01 4.34e+01 2.12e+01 1.04e+01
19 9.82e+00 1.64e+00 3.70e+00 6.80e-01 5.65e+00 1.46e+00 3.56e+00 6.90e-01
20 6.12e+01 4.86e+01 3.10e+00 1.50e+00 3.73e+01 2.55e+01 1.10e+01 4.45e+00
21 1.17e+03 9.99e+02 8.70e+01 9.00e+01 4.71e+02 2.34e+02 3.38e+02 2.19e+02
22 6.07e+02 2.39e+02 2.80e+01 1.80e+01 1.91e+02 1.19e+02 9.54e+01 8.05e+01
23 3.17e+02 0.00e+00 3.20e+02 0.00e+00 3.15e+02 1.62e-06 2.00e+02 0.00e+00
24 2.23e+02 8.77e+00 2.20e+02 1.10e+00 2.24e+02 1.65e+00 2.00e+02 0.00e+00
25 2.05e+02 2.57e+00 2.00e+02 5.00e-02 2.03e+02 1.17e-01 2.00e+02 0.00e+00
26 1.01e+02 1.31e-01 1.00e+02 1.60e-02 1.00e+02 4.14e-02 1.00e+02 2.83e-02
27 5.62e+02 5.02e+01 3.00e+02 0.00e+00 4.69e+02 9.46e+01 2.00e+02 0.00e+00
28 9.52e+02 2.25e+02 8.40e+02 1.40e+01 9.05e+02 1.21e+02 2.00e+02 0.00e+00
29 5.80e+03 4.36e+03 7.20e+02 5.10e+00 6.52e+05 2.66e+06 2.05e+02 2.98e+00
30 4.04e+03 1.37e+03 1.20e+03 6.20e+02 1.70e+03 8.67e+02 2.00e+02 0.00e+00

133

Table 5.12: Optimizer Final Cost Error Mean and Standard Deviation n = 50

Meta-Opt LSHADE RSDE UMOEAs
Fn Mean STD Mean STD Mean STD Mean STD
1 0.00e+00 0.00e+00 1.20e+03 1.50e+03 2.25e+04 1.21e+04 0.00e+00 0.00e+00
2 1.63e-01 8.11e-01 0.00e+00 0.00e+00 3.58e+03 6.56e+03 0.00e+00 0.00e+00
3 7.36e-04 5.20e-03 0.00e+00 0.00e+00 4.10e-01 1.38e+00 0.00e+00 0.00e+00
4 2.77e+01 6.81e+00 5.90e+01 4.60e+01 6.41e+01 3.62e+01 7.82e-02 5.58e-01
5 2.48e+00 6.33e-01 2.00e+01 4.60e-02 2.05e+01 9.61e-02 2.01e+01 1.80e-01
6 1.81e+01 2.44e+00 2.60e-01 5.20e-01 1.72e+01 4.33e+00 6.03e-02 3.02e-01
7 1.38e-02 1.68e-02 0.00e+00 0.00e+00 2.40e-03 4.40e-03 0.00e+00 0.00e+00
8 2.58e+01 1.02e+01 0.00e+00 0.00e+00 5.04e+01 1.24e+01 4.29e+00 3.04e+00
9 2.45e+02 9.88e+01 1.10e+01 2.10e+00 1.42e+02 3.51e+01 1.94e+01 3.61e+00
10 6.80e+02 3.12e+02 1.20e-01 4.10e-02 1.52e+03 9.46e+02 7.55e+01 9.45e+01
11 6.37e+03 9.23e+02 3.20e+03 3.30e+02 6.15e+03 1.05e+03 3.98e+03 1.99e+03
12 3.09e+03 5.07e+03 2.20e-01 2.80e-02 5.38e-01 2.02e-01 1.11e-03 9.06e-04
13 5.08e-01 2.08e-01 1.60e-01 1.80e-02 4.23e-01 6.05e-02 9.85e-02 2.02e-02
14 4.86e-01 2.70e-01 3.00e-01 2.50e-02 2.78e-01 2.25e-02 2.24e-01 3.38e-02
15 2.08e+01 7.06e+00 5.20e+00 5.10e-01 9.96e+00 6.53e+00 5.46e+00 9.66e-01
16 2.08e+01 7.11e-01 1.70e+01 4.80e-01 1.93e+01 8.42e-01 1.92e+01 7.28e-01
17 5.16e+03 5.85e+03 1.40e+03 5.10e+02 4.10e+03 1.68e+03 2.45e+03 4.60e+02
18 2.49e+02 1.00e+02 9.70e+01 1.40e+01 3.40e+02 2.38e+02 9.00e+01 6.12e+01
19 1.37e+01 5.59e+00 8.30e+00 1.80e+00 1.46e+01 2.03e+00 1.17e+01 2.07e+00
20 2.05e+02 1.48e+02 1.40e+01 4.60e+00 1.60e+02 7.30e+01 7.08e+01 3.00e+01
21 3.73e+03 2.51e+03 5.20e+02 1.50e+02 1.58e+03 6.55e+02 1.47e+03 3.92e+02
22 1.39e+03 4.51e+02 1.10e+02 7.50e+01 4.61e+02 2.34e+02 3.64e+02 1.76e+02
23 3.39e+02 0.00e+00 3.40e+02 0.00e+00 3.44e+02 1.19e-05 2.00e+02 0.00e+00
24 2.73e+02 5.92e+00 2.80e+02 6.60e-01 2.76e+02 2.38e+00 2.00e+02 0.00e+00
25 2.09e+02 6.24e+00 2.10e+02 3.60e-01 2.06e+02 7.81e-01 2.00e+02 0.00e+00
26 1.01e+02 1.88e-01 1.00e+02 1.40e+01 1.12e+02 4.97e+01 1.04e+02 1.96e+01
27 8.22e+02 7.94e+01 3.30e+02 3.00e+01 8.04e+02 1.00e+02 2.00e+02 0.00e+00
28 1.47e+03 3.79e+02 1.10e+03 2.90e+01 1.61e+03 3.90e+02 2.00e+02 0.00e+00
29 1.52e+04 3.14e+03 7.90e+02 2.40e+01 5.28e+06 1.64e+07 2.16e+02 2.52e+00
30 7.09e+03 2.36e+03 8.70e+03 4.10e+02 1.12e+04 1.75e+03 2.00e+02 0.00e+00

134

Table 5.13: Optimizer Final Cost Error Mean and Standard Deviation n = 100

Meta-Opt LSHADE RSDE UMOEAs
Fn Mean STD Mean STD Mean STD Mean STD
1 5.61e+03 6.87e+03 1.70e+05 5.70e+04 8.33e+05 2.89e+05 0.00e+00 0.00e+00
2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 7.39e+03 9.84e+03 0.00e+00 0.00e+00
3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 9.77e-01 2.21e+00 0.00e+00 0.00e+00
4 1.03e+03 3.65e+03 1.70e+02 3.10e+01 1.86e+02 4.06e+01 2.31e+01 1.46e+00
5 4.26e+00 1.16e+00 2.10e+01 3.10e-02 2.08e+01 7.85e-02 2.00e+01 1.02e-02
6 4.78e+01 4.18e+00 8.70e+00 2.30e+00 6.02e+01 7.48e+00 8.52e-01 8.71e-01
7 2.03e-03 6.90e-03 0.00e+00 0.00e+00 1.27e-03 2.71e-03 0.00e+00 0.00e+00
8 9.09e+01 2.42e+01 1.10e-02 7.40e-03 1.94e+02 3.02e+01 2.45e+01 1.05e+01
9 7.47e+02 3.96e+02 3.40e+01 5.00e+00 3.20e+02 5.41e+01 5.38e+01 6.68e+00
10 2.19e+03 6.59e+02 2.60e+01 5.80e+00 9.31e+03 2.67e+03 2.99e+03 1.57e+03
11 1.42e+04 1.60e+03 1.10e+04 5.60e+02 1.55e+04 1.54e+03 7.88e+03 1.44e+03
12 1.01e+04 1.17e+04 4.40e-01 4.70e-02 7.42e-01 1.97e-01 6.77e-04 4.18e-04
13 6.37e-01 2.35e-01 2.40e-01 2.10e-02 5.44e-01 4.09e-02 2.05e-01 3.36e-02
14 2.58e+00 1.27e+01 1.20e-01 7.30e-03 2.09e-01 1.23e-02 2.27e-01 2.15e-02
15 7.88e+01 2.88e+01 1.60e+01 1.20e+00 5.24e+01 1.82e+01 1.17e+01 1.41e+00
16 4.46e+01 1.08e+00 3.90e+01 4.80e-01 4.24e+01 1.21e+00 4.26e+01 7.72e-01
17 1.99e+04 1.19e+04 4.40e+03 7.10e+02 9.86e+04 4.60e+04 5.30e+03 7.94e+02
18 4.79e+08 3.36e+09 2.20e+02 1.70e+01 1.26e+03 1.08e+03 4.10e+02 1.03e+02
19 3.25e+01 2.34e+00 9.60e+01 2.30e+00 8.16e+01 2.58e+01 5.84e+01 8.74e+00
20 6.44e+02 1.96e+02 1.50e+02 5.20e+01 5.50e+02 1.76e+02 3.12e+02 6.68e+01
21 1.67e+04 1.10e+04 2.30e+03 5.30e+02 3.49e+04 1.90e+04 4.42e+03 1.60e+03
22 3.78e+03 1.82e+03 1.10e+03 1.90e+02 1.51e+03 4.63e+02 9.27e+02 3.22e+02
23 3.47e+02 4.38e+01 3.50e+02 0.00e+00 3.48e+02 2.12e-03 2.00e+02 0.00e+00
24 3.43e+02 1.74e+01 3.90e+02 2.90e+00 4.06e+02 5.67e+00 2.00e+02 1.51e-03
25 2.40e+02 3.58e+01 2.00e+02 0.00e+00 2.42e+02 7.50e+00 2.00e+02 0.00e+00
26 2.35e+02 1.87e+02 2.00e+02 0.00e+00 1.98e+02 4.97e+01 1.98e+02 1.40e+01
27 1.71e+03 1.40e+02 3.80e+02 3.30e+01 2.01e+03 1.65e+02 2.00e+02 0.00e+00
28 3.12e+03 8.16e+02 2.30e+03 4.60e+01 4.11e+03 7.20e+02 2.00e+02 0.00e+00
29 2.12e+04 4.10e+03 8.00e+02 7.60e+01 8.29e+07 8.20e+07 2.55e+02 1.18e+01
30 1.37e+04 3.41e+03 8.30e+03 9.60e+02 1.31e+04 2.31e+03 2.00e+02 0.00e+00

135

On function 5, meta-optimization was the most effective across all dimensions and

was the best on function 19 for n = 100. However, meta-optimization struggled on

functions 7, 9, 12, 18, and 22 in most dimensions. Function 7 is a variation of the

Griewank function (f5) which meta-optimization was not able to solve consistently

and used a large number of function calls to solve when it was able to. In the case of

function 9, a variation of the Rastrigin function (f8), meta-optimization was able to

solve it every time, but required a large number of function calls and some restarts

to achieve this result. For both of these functions, the computation time limit played

a significant role in degrading the performance of the meta-optimizer.

Table 5.14: Optimizer Mean Rank

Dimension Meta-Opt LSHADE RSDE UMOEAs

10 3.67 1.53 2.67 1.57

30 3.60 1.47 3.00 1.43

50 3.17 1.80 3.40 1.50

100 3.03 1.87 3.33 1.47

Table 5.15: Number of Times With Top Rank

Dimension Meta-Opt LSHADE RSDE UMOEAs

10 2 19 5 15

30 2 19 2 18

50 2 15 0 17

100 4 13 1 19

Tables 5.14 and 5.15 provide aggregate results for each optimizer. In Table 5.14,

each optimizer was given a rank from 1 to 4 based on the mean final error for each

function. The ranks for each optimizer were then averaged over the 30 functions in

each dimension. Table 5.15 counts the number of times each optimizer was ranked first

on a given problem for each dimension. At n = 10, meta-optimization performed the

worst of the four methods and struggled on a number of functions. As the dimension

136

increased, meta-optimization performed better, surpassing RSDE at n = 50 and

n = 100. It should again be noted that the meta-optimization configuration was not

tuned to handle the restrictions for the competition suite. Since the lower dimensional

cases have smaller computational budgets, meta-optimization does not have sufficient

time to determine effective optimizers and allow them to solve the problem. If given

sufficient time to run, meta-optimization would achieve excellent results on many

of these functions. In addition, meta-optimization is limited by the capabilities of

the included optimizers which individually struggle on these functions. Since meta-

optimization considers each optimizer as an individual kernel function that it can

deploy, these state of the art optimizers could potentially be included in the meta-

optimization bank, taking advantage of their superior performance on these problems.

137

CHAPTER 6

SMART PROJECTILE PARAMETER ESTIMATION RESULTS

In this chapter, the parameter estimation algorithm using the output error method

previously described in Chapter 2 will be applied to parameter estimation of a smart

projectile system. Since one of the primary features of the method is the robust

optimization algorithm, results will be focused on the performance of the numerical

optimization scheme. The Army-Navy Finner (ANF) described in Section 2.4 will be

used as the example round. The projectile is equipped with a new microspoiler control

mechanism. Spark range data is used to estimate unknown parameters for this system.

As shown in Chapter 3, the topology of the parameter space for this parameter

estimation problem contains numerous local minima caused by the interactions of the

estimated parameters with the projectile dynamics.

To exercise the parameter estimation algorithm, cases will be examined where

synthetic trajectory data is generated via simulation of the projectile system and

cases where data is obtained from flight experiments in a spark range. Cases using

simulated flight data are advantageous as the underlying parameters to be identified

are known, allowing for accurate validation of the parameter estimation procedure.

The simulated data is also used to explore the nature of the projectile parameter

estimation problem through various trade studies. Finally, parameter estimation is

performed on data collected from experimental flight tests at the U.S. Army Research

Laboratory spark range.

6.1 Simulated Trajectory Results

All synthetic measurement data used in this chapter is generated from simulation

of the smart projectile system described in Section 2.4. The mass properties and

138

standard aerodynamic coefficients for this projectile are given in Tables 2.1 and 2.2

respectively with the microspoiler parameters given in Table 2.3. For this test, the

projectile and microspoiler aerodynamic coefficients were assumed to vary linearly

with Mach number. In general practice, the aerodynamic coefficients can be assumed

to be linear over small ranges of Mach number. The linear coefficients were defi-

ned using the coefficient values at Mach 2 and Mach 3 in Table 2.2 or the projectile

aerodynamics and the values in Table 2.3 for the microspoiler coefficients. The mi-

crospoilers are modeled using Eqs. 2.14 and 2.15 with a spin rate Ω0 of 440 rad/s

and a time constant τms of 0.025 s−1.

A build up procedure is employed to accurately estimate the projectile aerodyna-

mic coefficients and control parameters. This process is designed to mimic a typical

test procedure for conducting spark range tests. First, the uncontrolled round is fired

with low initial angular velocity in order to maintain a low angle of attack for the

entire flight. This low angle of attack trajectory allows for the accurate estimation of

CX0, Cl0, and Clp as these parameters do not depend on angle of attack. With these

parameters estimated, the uncontrolled round is next fired with an initial angular

velocity perturbation, such as the perturbation due to a yaw inducer, to generate tra-

jectories with significant angle of attack. The remaining projectile body aerodynamic

coefficients can then be estimated from these trajectories. The final case considers

the round fired with the microspoilers deployed for the entire flight. By fixing the

projectile body aerodynamic coefficients to their estimated values, the effects of the

microspoilers can be isolated from the body aerodynamic behavior allowing for more

accurate estimates.

The initial conditions for each simulated trajectory were randomly generated based

on a nominal value of z0 = −5 m and u0 = 1023 m/s and standard deviations given

in Table 6.1. The standard deviation on u0 was selected to produce a sufficient

distribution of Mach numbers to properly estimate the linear aerodynamic coefficients.

139

The exception is the high angle of attack case which adds an additional q0 = 20 rad/s.

During spark range testing, this can be achieved by using a yaw inducer to perturb

the round as it leaves the barrel of the gun. φ0 was initialized to a random value

between −180◦ and 180◦. For the active microspoiler trajectories, ω0 was set to a

random value between 0◦ and 360◦.

Table 6.1: Standard Deviations of Initial Conditions Used To Generate Synthetic Data

θ (rad) ψ (rad) u (m/s) p (rad/s) q (rad/s) r (rad/s)

0.001 0.001 35.0 2.0 1.0 1.0

Simulated measurements are recorded at the range locations of the spark stations

at the U.S. Army Research Laboratory Transonic Experimental Facility spark range.

Measurement noise is added with standard deviation of 3 mm and 0.1◦ for position

and angle measurements respectively. The probability of excluding a measurement

was set at 10%. The φ measurements are wrapped to −180◦ and 180◦. Eq. 2.13

is used to characterize the aerodynamic coefficients within the cost function with a

Mach range from 2.75 to 3.25. This range covers the potential distribution of Mach

numbers encountered in the simulated trajectories.

This parameter estimation technique uses the meta-optimization configuration gi-

ven in Table 5.8 with two modifications. Compared to the simple mathematical ben-

chmark functions, the parameter estimation cost function takes significantly longer to

compute, greatly increasing the run time for even a small number of iterations. Due

to this issue, the restarting threshold was reduced to 200,000 function calls. Since the

optimal cost is unknown a priori for these parameter estimation problems, a χ2 thres-

hold of 30.0 for each state is set to indicate an acceptable fit. The meta-optimizer is

stopped when there has been no cost reduction for 25,000 functions calls and the cost

is below the threshold. The second modification to the meta-optimization configura-

tion adds a second reference cost reduction rate which applies below the χ2 threshold.

140

Under normal operation on this parameter estimation problem, the meta-optimizer

will slow down considerably as it approaches the solution, making only small impro-

vements compared to earlier in the process. To account for this, a lower reference

reduction rate is used to prevent optimizers from being improperly penalized during

this phase.

6.1.1 Simulated Low Angle of Attack Results

For the low angle of attack case, three trajectories were used to estimate CX0, Cl0,

and Clp. Since these were the only parameters estimated, only x position and roll

angle were included in the cost function. All of the states and measurements were

weighted equally in the cost function. The trajectory prediction simulations within

the cost function were initialized from launch, requiring estimates for φ0, u0, p0, and

t0. In total, this case required estimates for 18 different parameters. The results

for this case are given in Table 6.2 and the final χ2 values in Table 6.3. The values

of the linear aerodynamic model at M = 2.75 and M = 3.25 are used as the truth

values for evaluating the accuracy of the parameter estimates. As seen in Table

6.2, the parameter estimation algorithm accurately estimated all three coefficients

and obtained good fits for both x and φ. χ2 values in this range indicate that the

errors in the optimal fits are on the order of the magnitude of the noise added to the

measurements.

Table 6.2: Simulated Low Angle of Attack Parameter Estimation Results

M = 2.75 M = 3.25

Parameter Actual Estimate % Error Actual Estimate % Error

CX0 0.51 0.5086 0.278 0.4384 0.4400 0.3675

Cl0 0.0495 0.0496 0.2455 0.038 0.0378 0.4558

Clp -4.5845 -4.5982 0.2999 -3.5213 -3.4996 0.6161

141

Table 6.3: χ2 Values for Simulated Low Angle of Attack Trajectories

x φ

Average 16.19 18.51

Standard Deviation 2.538 2.786

State histories for one of the three trajectories used in the cost function is shown

in Figures 6.1-6.4. These trajectories show how accurately this parameter estimation

method fits the measurement data, even in the presence of noise. Figure 6.1 shows

the x error at every measurement for the optimal trajectory in place of the full x

trajectory. This is due to the fact that the measurement errors are extremely small

relative to the position. For this trajectory, the estimated x measurements are all

within 6 mm from the data. In Figure 6.2, the final estimated trajectory is shown

alongside the measurements and the initial trajectory obtained during the initializa-

tion phase of the parameter estimation process. The initial trajectory provides an

indication of how poor the initial parameter estimates were and how much of an im-

provement this method makes. In the case of φ, the initial trajectory is completely

out of phase with the measurements while the final trajectory fits the data perfectly.

Finally, Figures 6.3 and 6.4 show state histories of u and p respectively. Another

advantage of analyzing simulated data is that states that are not directly measured

can still be plotted as a comparison to the estimated trajectory. For both u and p, the

final trajectory matches the states exactly which would only be possible with highly

accurate parameter estimates.

142

0 0.05 0.1 0.15 0.2 0.25
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t (s)

∆
x

(m
)

Figure 6.1: Simulated Low Angle of Attack X Error vs. Time

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

Measurement
Initial Estimate
Final Estimate

Figure 6.2: Simulated Low Angle of Attack Roll Angle vs. Range

143

0 50 100 150 200 250
990

995

1000

1005

1010

1015

1020

1025

1030

1035

x (m)

u
(m

/s
)

Actual
Initial Estimate
Final Estimate

Figure 6.3: Simulated Low Angle of Attack Body X Velocity vs. Range

0 50 100 150 200 250
−100

0

100

200

300

400

500

600

x (m)

p
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.4: Simulated Low Angle of Attack Roll Rate vs. Range

144

The cost reduction profile is seen in Figure 6.5 below. For this case, about 300,000

function calls were needed for the meta-optimizer to reduce the cost below the thres-

hold. After a large reduction in cost over the first 50,000 function calls, progress

slows as the meta-optimizer tries all of the optimizers, looking for one to perform

well. Finally, SIM takes over and reduces the cost below the threshold. Figure 6.6

shows the total percent cost reduction for each optimizer. This is a cumulative metric

which evaluates the total contributions of each optimizer towards reducing the cost.

On this run, CG, DE, and SIM provide almost all of the cost reduction with small

amounts from SD, BFGS, and IWO. The total number of times each optimizer was

deployed over this run is shown in Figure 6.7. Overall, the optimizers were all given

roughly equal opportunities to work on the problem with CG being used the most.

As CG was the most effective optimizer, it was favored over the other optimizers and

received 4 more calls than any other optimizer. The total number of function calls

used by each optimizer in Figure 6.8 provides additional insight into the distribution

of resources between the optimizers. Here, CG used the most function calls due to

being the most effective and most used optimizer. Combined with the total cost re-

duction, the function calls used by each optimizer provide insight into the efficiency

of each method. In particular, DE and SIM used less than 40% of the function calls

as CG, but achieved over 50% as much cost reduction. PSO, TS, and ACO, on the

other hand, used a similar number of function calls, but were unable to reduce the

cost.

145

0 0.5 1 1.5 2 2.5 3 3.5
x 10

5

10
−2

10
0

10
2

10
4

10
6

function calls

C
os

t

Threshold

Figure 6.5: Simulated Low Angle of Attack Cost Profile

SD CG BFGS PSO DE SIM IWO TS ACO
0

50

100

150

200

Optimizer

P
er

ce
nt

 R
ed

uc
tio

n

Figure 6.6: Simulated Low Angle of Attack Total Percent Cost Reduction

SD CG BFGS PSO DE SIM IWO TS ACO
0

2

4

6

8

10

Optimizer

C
ou

nt

Figure 6.7: Simulated Low Angle of Attack Total Number of Calls of Each Optimizer

146

SD CG BFGS PSO DE SIM IWO TS ACO
0

2

4

6

8

10

12x 10
4

Optimizer

F
un

ct
io

n
C

al
ls

Figure 6.8: Simulated Low Angle of Attack Total Function Calls Used by Each Opti-
mizer

Figures 6.9-6.11 show the profiles for the estimated parameters. After the large

initial reductions in cost, both CX0 values come close to the actual values while

the other parameters still maintain some error. The estimate of CX0 at M = 2.75

comes very close to the boundary after this initial reduction before moving back

into the search space. Cl0 and Clp take longer to converge, slowly moving towards

the solution before jumping to their final values after the last cost reduction around

300,000 function calls. While Clp at M = 2.75 started near its boundary, none of the

optimizers were attracted in that direction.

147

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Function Calls

C
X

0

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.9: Simulated Low Angle of Attack Base Drag Profile

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Function Calls

C
l0

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.10: Simulated Low Angle of Attack Roll Generation Profile

148

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Function Calls

C
lp

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.11: Simulated Low Angle of Attack Roll Damping Profile

6.1.2 Simulated High Angle of Attack Results

With the first three projectile body aerodynamic parameters estimated, the remaining

four parameters CX2, CNα, Cmα and Cmq can be estimated using five high angle of

attack trajectories. To simplify the estimation process, the previously estimated body

aerodynamic coefficients were held fixed to the estimated values from Table 6.2. All

six states were included in the cost function. As with the low angle of attack case,

the states and measurements were all equally weighted and the trajectory prediction

simulations were started at launch. For five trajectories, this resulted in a total of 48

parameters to estimate. Table 6.4 gives the results for the remaining body coefficients

with the χ2 values for each state in Table 6.5

149

Table 6.4: Simulated High Angle of Attack Parameter Estimation Results

M = 2.75 M = 3.25

Parameter Actual Estimate % Error Actual Estimate % Error

CX2 4.735 4.734 0.0139 4.065 3.3866 16.668

CNα 8.8112 9.0298 2.481 7.5107 7.8045 3.911

Cmα -13.3308 -13.3186 0.0912 -7.4012 -7.4168 0.2107

Cmq -350.275 -348.025 0.6424 -313.125 -316.95 1.2216

Table 6.5: χ2 Values for Simulated High Angle of Attack Trajectories

x y z φ θ ψ

Average 19.85 19.09 18.55 20.84 26.25 14.41

Standard Deviation 7.221 2.324 6.59 3.214 11.39 3.855

For this case, the parameter estimation algorithm accurately estimated most of

the parameters with some small error in the estimates of CNα and a large error in CX2

at M = 3.25. Even with these errors, the χ2 values for all of the states indicate very

good fits of the data. This implies that the errors in the estimated parameters are

likely due to poor observability in these parameters compared to the others. CX2 and

CNα are known to be difficult to estimate as they have smaller impacts on the flight

of the projectile. These observability issues are exacerbated when measurement noise

is added to the data. Without any errors in the measurements, all of the parameters

can be estimated exactly. In addition, the parameters at M = 3.25 may be less

observable in general as the trajectories are almost always below this Mach number.

In the case of CX2, given the linear model for the coefficient and a very accurate

estimate at M = 2.75, the actual error in the coefficient in the Mach number ranges

experienced in flight would be much less.

Figures 6.12-6.24 show the full state histories for one trajectory used in this case.

Note that altitude h is plotted in place of z and is given by h = −z. Figures 6.12-6.17

150

correspond to the six states in the cost function. These trajectories help corroborate

the excellent fits indicated by χ2. The measurement errors can be seen clearly in

Figures 6.13 and 6.14 with some measurements slightly off of the fit trajectory. In

terms of the large error in the CX2 measurement, Figure 6.12 shows a good fit in

terms of the x measurements and there is no perceptible difference between the u

trajectories in Figure 6.18. For this trajectory in particular, this demonstrates how the

trajectories are not sensitive to errors in CX2. The final trajectory fits the remaining

states extremely well, reinforcing the accuracy of the parameter estimates.

0 0.05 0.1 0.15 0.2 0.25
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t (s)

∆
x

(m
)

Figure 6.12: Simulated High Angle of Attack X Error vs. Time

151

0 50 100 150 200 250
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x (m)

y
(m

)

Measurement
Initial Estimate
Final Estimate

Figure 6.13: Simulated High Angle of Attack Inertial-Y Position vs. Range

0 50 100 150 200 250
4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

x (m)

h
(m

)

Measurement
Initial Estimate
Final Estimate

Figure 6.14: Simulated High Angle of Attack Altitude vs. Range

152

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

Measurement
Initial Estimate
Final Estimate

Figure 6.15: Simulated High Angle of Attack Roll Angle vs. Range

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

10

x (m)

θ
(d

eg
)

Measurement
Initial Estimate
Final Estimate

Figure 6.16: Simulated High Angle of Attack Pitch Angle vs. Range

153

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

10

x (m)

ψ
 (

de
g)

Measurement
Initial Estimate
Final Estimate

Figure 6.17: Simulated High Angle of Attack Yaw Angle vs. Range

0 50 100 150 200 250
920

930

940

950

960

970

980

x (m)

u
(m

/s
)

Actual
Initial Estimate
Final Estimate

Figure 6.18: Simulated High Angle of Attack Body X Velocity vs. Range

154

0 50 100 150 200 250
−150

−100

−50

0

50

100

150

x (m)

v
(m

/s
)

Actual
Initial Estimate
Final Estimate

Figure 6.19: High Angle of Attack Body Y Velocity vs. Range

0 50 100 150 200 250
−100

−50

0

50

100

150

200

x (m)

w
 (

m
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.20: Simulated High Angle of Attack Body Z Velocity vs. Range

155

0 50 100 150 200 250
−100

0

100

200

300

400

500

x (m)

p
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.21: Simulated High Angle of Attack Roll Rate vs. Range

0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

15

20

25

x (m)

q
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.22: Simulated High Angle of Attack Pitch Rate vs. Range

156

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

20

x (m)

r
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.23: Simulated High Angle of Attack Yaw Rate vs. Range

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

x (m)

α
ba

r
(d

eg
)

Actual
Initial Estimate
Final Estimate

Figure 6.24: Simulated High Angle of Attack Total Angle of Attack vs. Range

157

The cost reduction profile for this case as seen in Figure 6.25 follows a similar path

as the low angle of attack case. The meta-optimizer achieves large cost reductions

over the first 200,000 function calls and crosses the cost threshold at around 300,000

function calls. After this point, the meta-optimizer continues to gradually improve

the solution for another 1,000,000 function calls. Figure 6.26 shows a similar trend

as the low angle of attack case with a few optimizers providing the majority of the

cost reductions. On this trial, SD, CG, PSO, and DE all contribute equally with

small contributions from BFGS, SIM, and TS. The number of times each optimizer

was deployed (in Figure 6.27) is more distributed between the optimizers with BFGS

called the most and CG called the least. One reason BFGS was called the most is that

it was very efficient near the solution where the cost reductions are much lower. CG

on the other hand was called on the first two iterations, but was not selected again for

another 30 iterations. Finally, the total number of function calls for each optimizer is

shown in Figure 6.28. Six of the optimizer all used roughly equal numbers of function

calls with the other three using many fewer. Like BFGS, SIM was efficient close to

the solution, allowing it to run for longer than other optimizers. TS, on the other

hand, was generally ineffective in this range, but required a number of function calls

to reach its stopping criteria.

0 2 4 6 8 10 12
x 10

5

10
−2

10
0

10
2

10
4

10
6

10
8

function calls

C
os

t

Threshold

Figure 6.25: Simulated High Angle of Attack Cost Profile

158

SD CG BFGS PSO DE SIM IWO TS ACO
0

20

40

60

80

100

120

140

Optimizer

P
er

ce
nt

 R
ed

uc
tio

n

Figure 6.26: Simulated High Angle of Attack Total Percent Cost Reduction

SD CG BFGS PSO DE SIM IWO TS ACO
0

5

10

15

20

25

30

35

Optimizer

C
ou

nt

Figure 6.27: Simulated High Angle of Attack Total Number of Calls of Each Optimizer

SD CG BFGS PSO DE SIM IWO TS ACO
0

0.5

1

1.5

2

2.5x 10
5

Optimizer

F
un

ct
io

n
C

al
ls

Figure 6.28: Simulated High Angle of Attack Total Function Calls Used by Each Op-
timizer

159

The convergence profile for each of the parameters is given in Figures 6.29-6.32.

The first parameter to converge was Cmα which reached its actual value in about

150,000 function calls. Cmα is one of the most important aerodynamic coefficients as

it controls the angular behavior and angle of attack of the projectile, making the cost

highly sensitive to variations in this coefficient. Cmq requires about 600,000 function

calls to converge while CX2 and CNα continue to move until the meta-optimizer stops.

For all four coefficients, at least one of the estimates exceeded the search bounds at

some point. CX2, Cmα, and Cmq all quickly leave the search space, but return after a

few iterations. Only CNα at M = 2.75 remains near its boundary for more than a few

thousand function calls, finally jumping towards the actual value after about 400,000

function calls. This jump corresponds to similar corrections in the other parameters

which occurs around the time the cost threshold is crossed in Figure 6.25.

0 5 10 15

x 10
5

0

1

2

3

4

5

6

7

8

9

10

Function Calls

C
X

2

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.29: Simulated High Angle of Attack Nonlinear Drag Profile

160

0 5 10 15

x 10
5

3

4

5

6

7

8

9

10

11

12

13

Function Calls

C
N

α

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.30: Simulated High Angle of Attack Normal Force Profile

0 5 10 15

x 10
5

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Function Calls

C
m

α

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.31: Simulated High Angle of Attack Pitching Moment Profile

161

0 5 10 15

x 10
5

−550

−500

−450

−400

−350

−300

−250

−200

−150

Function Calls

C
m

q

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.32: Simulated High Angle of Attack Pitch Damping Profile

6.1.3 Simulated Active Microspoiler Results

Lastly, the microspoiler parameters are estimated with the the projectile body aero-

dynamic coefficients fixed to their estimated values. These parameters include the

the axial force coefficient δa, the normal force coefficient δN , and the pitching moment

coefficient δm as well as the microspoiler mechanism initial phase ω0, spin rate Ω0,

and time constant τms. The initial phase, spin rate, and time constant are estimated

for every trajectory. Unlike the previous cases, the trajectory prediction simulati-

ons in the cost function were started from the first measurement. This was done to

limit the interactions between the initial pitch rate at launch and the microspoiler

pitching moment. As seen in Section 2.4.2, the microspoilers produce a similar effect

at launch as a large angular velocity perturbation. Under some conditions, changes

in the estimates of the microspoiler parameters may be matched by changes in the

estimated pitch rate, yielding minimal changes in the overall trajectory. To handle

fitting the data in this manner, a modification is needed to the microspoiler model.

162

When starting the simulation at the first measurement, the microspoiler mechanism

will already be spinning at some rate based on the time since launch. The time of

launch can therefore be added to the model such that the spin rate is given by:

Ω(t) = Ω0(1− e−
(t−tinitial)

τms) (6.1)

and the phase is given by:

ω(t) = ω0 + Ω0((t− tinitial) + τmse
− (t−tinitial)

τms − τms) (6.2)

with the initial time estimated based on a least squares fit of the x and t data.

As with the high angle of attack case, five trajectories were used to estimate the

microspoiler parameters. Again, all six states were included in the cost function

with equal weighting. By beginning the trajectory prediction simulations at the first

measurement, estimates are needed for the initial conditions of every state resulting

in 81 parameters to estimate. The test results for this case are given in Tables 6.6

and 6.7 and the final χ2 values in Table 6.8

Table 6.6: Simulated Microspoiler Coefficient Parameter Estimation Results

M = 2.75 M = 3.25

Parameter Actual Estimate % Error Actual Estimate % Error

δA (N) -26.325 -27.046 2.544 -31.625 -33.495 5.914

δN (N) 67.225 84.99 26.44 80.175 73.78 7.979

δm (Nm) 8.4175 8.341 0.9096 10.0825 10.249 1.648

Table 6.7: Simulated Microspoiler Mechanism Parameter Estimation Results

Parameter Actual Mean Estimate STD Estimate % Error

Ω0 (rad/s) 440.0 440.44 0.5569 0.101

τms (1/s) 0.025 0.026 0.0023 4.051

163

Table 6.8: χ2 Values for Simulated Active Microspoiler Trajectories

x y z φ θ ψ

Average 23.87 18.12 22.88 21.87 24.91 23.43

Standard Deviation 11.19 3.575 8.074 6.973 2.546 9.551

Overall, the parameter estimation algorithm is able to accurately estimate the mi-

crospoiler parameters with only small errors in δA and larger errors δN . These errors

may be due to the small errors in CX2 and CNα previously estimated. Also, like

their projectile body counterparts, these parameters are also difficult to estimate as

the cost function is not sensitive to errors in these parameters. There may also be

some coupling between the initial conditions and the microspoiler parameters which

induce additional errors in the estimates. The estimation algorithm is also successful

in estimating the spin rate and time constant for each trajectory which have more

indirect effects on the projectile dynamics. The χ2 values indicate excellent fits of all

states.

The trajectory results for one of the trajectories used by the parameter estimation

algorithm are given in Figures 6.33-6.45. Looking at the trajectories for the measured

states in Figures 6.33-6.38, the estimation algorithm does an excellent job at fitting

a trajectory to the available data as indicated by χ2. Especially for y and h, there

is little disagreement between the fit trajectory and the measurements. Considering

how well the estimation algorithm fit these states, the large errors in δN could not

have played a major role in obtaining this fit. Figures 6.37 and 6.38 show excellent

fitting of θ and ψ which allows for accurate estimation of δm. Looking at v and w in

Figures 6.40 and 6.41 respectively, there are some slight differences between the final

trajectory and the actual trajectory. On v, there is an error in the initial estimate

of about 2 m/s with a similar error on w0. These errors are about 10% of the actual

values and may be an indication of trade-offs between the initial velocities and δN .

164

Figures 6.43 and 6.44 also show small differences between the q and r trajectories.

While the estimate for δm is very accurate, these differences may be due to the errors

in τms or slight errors in Ω0 and ω0. However, these effects do not appear to influence

the θ and ψ fits, meaning the errors may be primarily due to the measurement noise.

0 0.05 0.1 0.15 0.2 0.25
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t (s)

∆
x

(m
)

Figure 6.33: Simulated Active Microspoilers X Error vs. Time

165

0 50 100 150 200 250
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

x (m)

y
(m

)

Measurement
Initial Estimate
Final Estimate

Figure 6.34: Simulated Active Microspoilers Inertial-Y Position vs. Range

0 50 100 150 200 250
4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

x (m)

h
(m

)

Measurement
Initial Estimate
Final Estimate

Figure 6.35: Simulated Active Microspoilers Altitude vs. Range

166

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

Measurement
Initial Estimate
Final Estimate

Figure 6.36: Simulated Active Microspoilers Roll Angle vs. Range

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

10

x (m)

θ
(d

eg
)

Measurement
Initial Estimate
Final Estimate

Figure 6.37: Simulated Active Microspoilers Pitch Angle vs. Range

167

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

10

x (m)

ψ
 (

de
g)

Measurement
Initial Estimate
Final Estimate

Figure 6.38: Simulated Active Microspoilers Yaw Angle vs. Range

0 50 100 150 200 250
920

940

960

980

1000

1020

1040

1060

x (m)

u
(m

/s
)

Actual
Initial Estimate
Final Estimate

Figure 6.39: Simulated Active Microspoilers Body X Velocity vs. Range

168

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

v
(m

/s
)

Actual
Initial Estimate
Final Estimate

Figure 6.40: Simulated Active Microspoilers Body Y Velocity vs. Range

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

w
 (

m
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.41: Simulated Active Microspoilers Body Z Velocity vs. Range

169

0 50 100 150 200 250
50

100

150

200

250

300

350

400

450

500

550

x (m)

p
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.42: Simulated Active Microspoilers Roll Rate vs. Range

0 50 100 150 200 250
−30

−20

−10

0

10

20

30

x (m)

q
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.43: Simulated Active Microspoilers Pitch Rate vs. Range

170

0 50 100 150 200 250
−25

−20

−15

−10

−5

0

5

10

15

20

25

x (m)

r
(r

ad
/s

)

Actual
Initial Estimate
Final Estimate

Figure 6.44: Simulated Active Microspoilers Yaw Rate vs. Range

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

x (m)

α
ba

r
(d

eg
)

Actual
Initial Estimate
Final Estimate

Figure 6.45: Simulated Active Microspoilers Total Angle of Attack vs. Range

171

Unlike the previous cases, the cost profile in Figure 6.46 shows the meta-optimizer

stalling for a long period of time. After a large initial reduction over the first 200,000

function calls, and some smaller reductions over the next 500,000 function calls, pro-

gress stalls almost completely after about 800,000 function calls. It takes the meta-

optimizer over 800,000 more function calls to get going again when SIM is able to make

significant progress. After crossing the threshold at this time, the meta-optimizer

continues making small improvements over another 1.5 million function calls. From

Figure 6.47, CG, BFGS, and SIM dominate the cost reductions with small amounts

from SD, DE, and TS. While effective on the high angle of attack case, PSO and DE

were not given many good opportunities to make progress on this trial. The total

counts for each optimizer in Figure 6.48 shows a mostly equal distribution in counts

with some preference towards CG and BFGS which performed well. SIM used the

most function calls as seem in Figure 6.49 with all but DE, IWO, and ACO using

more than 200,000.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

6

10
−2

10
0

10
2

10
4

10
6

10
8

function calls

C
os

t

Threshold

Figure 6.46: Simulated Active Microspoilers Cost Profile

172

SD CG BFGS PSO DE SIM IWO TS ACO
0

50

100

150

200

250

Optimizer

P
er

ce
nt

 R
ed

uc
tio

n

Figure 6.47: Simulated Active Microspoilers Total Percent Cost Reduction

SD CG BFGS PSO DE SIM IWO TS ACO
0

10

20

30

40

50

60

70

80

Optimizer

C
ou

nt

Figure 6.48: Simulated Active Microspoilers Total Number of Calls of Each Optimizer

SD CG BFGS PSO DE SIM IWO TS ACO
0

1

2

3

4

5

6

7x 10
5

Optimizer

F
un

ct
io

n
C

al
ls

Figure 6.49: Simulated Active Microspoilers Total Function Calls Used by Each Opti-
mizer

173

Profiles for each of the microspoiler parameters are given in Figures 6.50-6.54. The

first parameters to converge are the spin rates for each trajectory with trajectories 2

and 3 the first to settle, followed by 1 and 4 after 800,000 function calls, and finally

trajectory 5 at around 1.6 million function calls, corresponding to the final jump in

cost in Figure 6.46. All of the parameters make large changes at this time, with δA

and δm moving very close to their actual values. The M = 2.75 estimate of δN remains

far from its actual value for the entire process, remaining on the search boundary of

90 for a long time. Ω0 for trajectory 1 exceeds the boundary early on, but quickly

returns to the search space. At least one parameter for each of the coefficients also

briefly reach the boundary. Finally, τms varies for each trajectory with all of the final

values within 15% of the actual values. When the simulation is started from the first

measurement, the microspoilers are already spinning at about 75% of the max speed

by the time the simulation starts, making the impact of τms on the trajectory less

than if the simulation began at launch.

0 2 4 6 8 10

x 10
6

−50

−45

−40

−35

−30

−25

−20

−15

−10

Function Calls

δ A

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.50: Simulated Active Microspoilers Axial Force Profile

174

0 2 4 6 8 10

x 10
6

30

40

50

60

70

80

90

100

110

Function Calls

δ N

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.51: Simulated Active Microspoilers Normal Force Profile

0 2 4 6 8 10

x 10
6

4

5

6

7

8

9

10

11

12

13

14

Function Calls

δ m

M=2.75 Estimate
M=3.25 Estimate
M=2.75 Actual
M=3.25 Actual
M=2.75 Bounds
M=3.25 Bounds

Figure 6.52: Simulated Active Microspoilers Pitching Moment Profile

175

0 2 4 6 8 10

x 10
6

340

360

380

400

420

440

460

480

500

520

Function Calls

Ω
0

Traj 1
Traj 2
Traj 3
Traj 4
Traj 5
Actual
Bounds

Figure 6.53: Simulated Active Microspoilers Nominal Spin Rate Profile

0 2 4 6 8 10

x 10
6

0

0.01

0.02

0.03

0.04

0.05

0.06

Function Calls

τ m
s

Traj 1
Traj 2
Traj 3
Traj 4
Traj 5
Actual
Bounds

Figure 6.54: Simulated Active Microspoilers Time Constant Profile

176

6.1.4 Individual Optimizer Comparison

It is also useful to examine a comparison between the performance of the parameter

estimation algorithm using both the standard individual optimizers and the new

method meta-optimization. The simulated high angle of attack case is used for this

test. Here, each optimizer was started from the same initial point and with the same

set of points. The optimizers then run for 1,000,000 function calls or satisfy their

stopping criteria. The final cost for each of the optimizers is given in Table 6.9. The

cost threshold for this problem was 0.45 which DE, ACO, and meta-optimization

reach. PSO performs very poorly, indicating poor tuning of its parameters for this

problem. All of the hill climbers reach a local minima far from the solution with SIM

stalling as well.

Table 6.9: Final Cost for Individual Optimizers

SD CG BFGS PSO DE SIM IWO TS ACO MO

135.66 24.021 119.43 2538.4 0.3987 970.21 236.39 83.839 0.4281 0.2975

The cost reduction profile for each optimizer is shown in Figure 6.55. In this

case, meta-optimization is the first optimizer to cross the cost threshold and the only

optimizer to reach the solution in the alloted time. However, almost all of the other

optimizers are faster at initially reducing the cost with SIM particularly efficient.

However, it quickly plateaus after only 9000 function calls. The hill climbers also

quickly reach local minima and stop there. PSO, IWO, and TS all gradually reduce

the cost, but do not come close to the solution. Of the two remaining optimizers,

ACO is very efficient over the first 50,000 function calls, but then slows considerably

as it approaches the solution. DE takes a more gradual path, also slowing down as

the cost decreases. The meta-optimizer, on the other hand, is slightly less efficient

over the initial phase, but rapidly reaches the solution in under 200,000 function calls.

177

0 1 2 3 4 5 6
x 10

5

10
0

10
2

10
4

10
6

function calls

C
o

st

SD
CG
BFGS
PSO
DE
SIM
IWO
TS
ACO
MO
Threshold

Figure 6.55: Comparison of Optimizer Performance on Simulated High Angle of Attack
Problem

6.2 Projectile Parameter Estimation Trade Studies

Various trade studies were performed to explore the nature of the projectile parameter

estimation problem using different data sets and estimation approaches. All of these

trade studies use simulated measurement data including some of the data used in

Section 6.1. The first trade study investigates how the number of measurements

and the noise on each measurement impacts the accuracy of the estimates obtained

by the parameter estimation algorithm. The second trade study considers how the

number of trajectories used by the estimation algorithm impact the accuracy of the

parameter estimates. The final trade study evaluates the feasibility of combining

different types of trajectories to estimate parameters that may have observability

issues when estimated together.

178

6.2.1 Number of Measurements and Amount of Noise

One downside of spark range measurements is the limited number of measurements

obtained. Other methods such as onboard sensors and radar systems can greatly

increase the number of measurements for each trajectory. Increasing the number of

measurements acts similarly to using multiple trajectories by giving the parameter

estimation algorithm more data points to use. However, this does not affect the

prevalence of local minima that are due to interactions between the parameters and

the projectile dynamics. The amount of noise on the data also plays a significant role

in the potential accuracy of the parameter estimates. As the noise level increases, the

errors in the measurements can lead the estimation algorithm away from the actual

trajectory. Also, since the standard deviation of the noise is used to scale the states

in the cost function, higher noise leads to the estimation algorithm accepting lower

quality fits.

For this trade study, 25, 50, 100, and 200 simulated spark range measurements

were considered at varying levels of noise. For the 25 measurement case, measure-

ments were taken at the spark station locations while the measurements for the higher

cases were evenly distributed along the spark range. Seven standard deviations were

used equal to 0.2, 0.6, 1.0, 2.0, 3.0, 5.0, and 10.0 times the nominal standard deviation

of 3 mm for position and 0.1◦ for angle. The simulated data sets were all based on

a single high angle of attack trajectory with constant aerodynamic coefficients. The

parameter estimation algorithm was tasked with estimating all seven body aerodyn-

amic coefficients in addition to the unknown initial conditions. Tables 6.10 and 6.11

give the normalized cost per measurement and average normalized percent error for

each case. Both the cost and percent error are normalized by the results from the

case with 25 measurements and 1.0σ which correspond to the standard spark range

conditions.

179

Table 6.10: Normalized Final Cost Per Measurement over Number of Measurements
and Amount of Noise

N 0.2σ 0.6σ 1.0σ 2.0σ 3.0σ 5.0σ 10.0σ

25 1.4339 1.0945 1.0000 1.0429 1.2311 1.2935 1.3537

50 1.4264 1.1961 1.3426 1.0179 1.2925 1.4413 1.3405

100 1.5811 1.2538 1.5325 1.1985 1.5446 1.4739 1.3800

200 1.5603 1.3207 1.6089 1.1367 1.4153 1.4709 1.4869

Table 6.10 shows a general trend of increasing cost per measurement with in-

creasing number of measurements. One possible cause of this phenomenon is that

as the number of measurements increases, the variance in the nominal cost between

trajectories decreases. Here, nominal cost refers to the cost corresponding to the

actual trajectory compared to the noisy measurements. When there are fewer measu-

rements, it is possible to have a set of measurements with very low or very high noise

that is not balanced along the trajectory. With more measurements, the sampled

noise will begin to approach a normal distribution which produces a more consistent

nominal cost on every trajectory. In addition, the cases with fewer measurements

may be prone to overfitting of the data, allowing the parameter estimation algorithm

to reach cost values below the nominal cost. This issue is seen in Figures 6.56a and

6.56b which show a comparison between the h fits for the 25 and 200 measurement

cases with noise of 2.0σ. For the 25 measurement case, four measurements in the

last set all have errors in the same direction, causing the the estimated trajectory

to bend towards these measurements. This reduces the cost compared to the actual

trajectory, but at the cost of some accuracy in the parameter estimates. On the ot-

her hand, the errors in the 200 measurement case are evenly distributed around the

trajectory, allowing a fit that is nearly identical to the actual trajectory.

180

150 160 170 180 190 200 210
4.8

4.82

4.84

4.86

4.88

4.9

4.92

4.94

4.96

4.98

5

x (m)

h
(m

)

Measurement
Final Estimate
Actual

(a)

150 160 170 180 190 200 210
4.8

4.82

4.84

4.86

4.88

4.9

4.92

4.94

4.96

4.98

5

x (m)

h
(m

)

Measurement
Final Estimate
Actual

(b)

Figure 6.56: 2.0σ Altitude Fitting Comparison: (a). 25 Measurements; (b). 200 Mea-
surements

181

Table 6.11: Measurement Trade Study Average Normalized Percent Error

N 0.2σ 0.6σ 1.0σ 2.0σ 3.0σ 5.0σ 10.0σ

25 1.5793 3.1737 1.0000 13.3064 15.3160 26.3583 23.6234

50 0.8114 3.9695 2.3904 11.8376 10.0355 19.0497 32.5358

100 0.4710 1.1573 2.6499 1.3344 11.6892 6.0559 50.2513

200 1.1541 0.6099 2.0343 4.6609 7.2717 9.1068 19.8644

Two trends can be seen in the average percent error in Table 6.11. While the

results show large variation in accuracy between cases, N=200 is generally better than

N = 25 across noise levels. This behavior is expected as more measurements help

the parameter estimation algorithm reduce the impact of the noise on the parameter

estimates. The second trend is a decrease in accuracy with increasing noise. While the

estimation algorithm is still able to obtain accurate estimates at 1.0σ, higher levels of

noise show severe degradations in accuracy, with numerous runs struggling to estimate

CX2 and CNα. In these cases, the parameters reach the search boundaries, bounding

the percent error. For data sets with large measurement errors, a large number of

trajectories or more measurements for each trajectory are needed to obtain accurate

parameter estimates.

6.2.2 Number of Trajectories

As seen in Section 6.2.1, measurement noise can play a significant role in the ability

of the estimation algorithm to obtain accurate parameter estimates, especially given

the limited data from a single spark range test. These estimates can be greatly

improved by using multiple trajectories within the cost function. However, every

additional trajectory adds computation time in addition to requiring more parameters

to estimate. This is because the initial conditions vary between trajectories and

must be estimated for each individual trajectory. To test the effect of the number of

trajectories on the performance of the estimation algorithm, five cases were considered

182

with 1, 3, 5, 7, and 10 trajectories. The high angle of attack case from Section 6.1

was used for this trade study with the five trajectory case used as a baseline and

normalizing factor.

Table 6.12 shows the normalized number of function calls for each case which are

normalized to the case with 5 trajectories. While the computation time can vary

significantly between individual runs, there is a significant trend with the compu-

tation time increasing with more trajectories. Fewer trajectories to fit means fewer

parameters to estimate and fewer data points to fit to simultaneously. This reduces

the complexity of the problem, making it easier for the meta-optimizer to find the

solution. The final cost per trajectory is given in Table 6.13. The cost per trajectory

is computed by dividing the final cost by the number of trajectories. Even though

the costs for each case are within about 10% of the baseline with 5 trajectories, there

is a clear trend showing a increase in cost with more trajectories. As seen in Section

6.2.1, the parameter estimation algorithm may overfit the data when there are few

data points on a single trajectory. When more trajectories are used, the estimation

algorithm must balance the cost between all of the trajectories, limiting the likeli-

hood of overfitting any one trajectory. With too many trajectories, the estimation

algorithm may sacrifice the accuracy of some trajectories in order to fit others with

larger measurement errors.

Table 6.12: Normalized Total Function Calls for Varying Number of Trajectories

1 Traj 3 Traj 5 Traj 7 Traj 10 Traj

0.3078 0.3087 1.0000 1.8259 2.0914

Table 6.13: Final Cost Per Trajectory for Varying Number of Trajectories

1 Traj 3 Traj 5 Traj 7 Traj 10 Traj

0.0543 0.0590 0.0595 0.0636 0.0660

183

Finally, Table 6.14 gives the percent error in each parameter estimate for each

trajectory case. With only one trajectory, the parameter estimation algorithm strug-

gles to fit every parameter except Cmα. Since Mach number decreases only a small

amount over a single trajectory, it is almost impossible to estimate aerodynamic coef-

ficients that vary over a large Mach range. For almost every parameter, increasing

the number of trajectories improves the accuracy of the parameter estimates with the

largest improvement in CNα. The only exception is Cmq which has a slightly worse fit

with ten trajectories compared to five and seven. This may be due to the inclusion

of one or more trajectories with larger errors in the θ and ψ measurements, adding

error to the Cmq estimate.

Table 6.14: Percent Error in Final Parameter Estimates for Varying Number of Tra-
jectories

Parameter 1 Traj 3 Traj 5 Traj 7 Traj 10 Traj

CX2,lo 51.9984 24.8259 0.0139 7.8901 7.8262

CX2,hi 72.2102 5.8239 16.6882 22.4277 8.7278

CNα,lo 6.1296 19.1535 2.4813 0.4234 0.4553

CNα,hi 26.4669 18.3829 3.9111 4.9383 0.0434

Cmα,lo 0.0164 0.1121 0.0912 0.0412 0.0127

Cmα,hi 0.2588 0.1508 0.2107 0.1470 0.0602

Cmq,lo 28.3656 10.5345 0.6424 0.6056 1.4074

Cmq,hi 59.6908 9.5145 1.2216 0.2940 1.7128

6.2.3 Combining Trajectories

For a projectile system such as the microspoiler projectile considered in this work,

the addition of control forces and moments to the estimation problem creates obser-

vability issues for both body and control parameters. For example, CX0 and δA are

inherently coupled as errors in one parameter can be offset by changes in the other

parameter without a meaningful change in cost. Similar issues can also exist between

CX0 and CX2 when just the projectile body aerodynamics are considered. It is for

184

these reasons that the build up procedure from Section 6.1 is used to perform para-

meter estimation where each parameter can be estimated without concerns for these

interactions. However, the flexibility of the parameter estimation algorithm may al-

low for a different approach where trajectories of differing type are combined together

to estimate all parameters simultaneously. The trajectories used for this trade study

are the same trajectories used in Section 6.1.

The first test investigates the combination of trajectories to estimate the projectile

body aerodynamic coefficients. Two combinations are considered, one with five high

angle of attack trajectories (H) and one with two low (L) and three high angle of

attack trajectories. This combination was chosen to provide a balance between the

trajectories while maintaining observability in all of the parameters. All of the pro-

jectile body coefficients were estimated except Cl0 and Clp which were fixed to their

estimated values from Table 6.2. This was done because the roll parameters are easily

estimated independently and estimates of these parameters are not dependent on the

type of trajectory used.

Table 6.15 shows the percent error in the parameter estimates from the actual

values for these two combinations. In this table, Clo represents the coefficient estimate

at M − 2.75 and Chi represents the estimate at M = 3.25. The combination with

only high angle of attack trajectories had small errors CX0,hi and CNα with larger

errors in CX2. With the addition of low angle of attack trajectories, the CX0,hi

estimate improved significantly with large improvements in CX2 as well. Since the

drag force of the low angle of attack trajectories is almost entirely due to CX0, an

accurate estimate of CX0 is required to fit to these trajectories. This allows the

parameter estimation algorithm to more accurately estimate CX2 as any interaction

between the parameters would increase the cost on only the low angle of attack

trajectories. However, the estimates of Cmα and Cmq get slightly worse because

these parameters have low observability on the low angle of attack trajectories. As a

185

result, the estimation algorithm has fewer measurements to utilized to estimate these

parameters.

Table 6.15: Percent Error in Final Parameter Estimate for Two Uncontrolled Trajec-
tory Combinations

Parameter 5H % Error 2L, 3H % Error

CX0,lo 0.179 0.1857

CX0,hi 3.249 0.06836

CX2,lo 13.08 7.699

CX2,hi 75.41 10.4

CNα,lo 2.714 1.403

CNα,hi 3.406 5.023

Cmα,lo 0.09261 0.1293

Cmα,hi 0.1708 0.2471

Cmq,lo 0.7596 3.407

Cmq,hi 1.902 1.164

In the second test, active microspoiler trajectories (M) are combined with no

microspoiler trajectories to estimate both the body and microspoiler aerodynamic

coefficients. As with the first test, Cl0 and Clp are held fixed to their estimated

values. Four combinations were considered: five active microspoiler, two low angle

of attack and three active microspoiler, two high angle of attack and three active

microspoiler, and one low angle of attack, two high angle of attack, and two active

microspoiler. The percent error in each parameter is given in Table 6.16. With only

active microspoiler trajectories, there are large errors in CX2, δA, and δN with smaller

errors in CX0 and CNα. The inclusion of low angle of attack trajectories improves

the estimates for CX0 and CX2, but has little effect on δA. There is also a small

improvement in Cmα, Cmq and δm. Including high angle of attack trajectories, on the

other hand, sees an almost across the board reduction in performance. Using all three

types of trajectories does well on CX0 and δm, but struggles on the other parameters.

In all of these cases, there is some benefit to combining trajectories, especially for

186

estimating CX0. However, without enough trajectories of each type, it is difficult for

the estimation algorithm to differentiate between some of the parameters, ultimately

leading to a loss of accuracy and minimal benefit to combining trajectories. Using a

larger number of each type of trajectory may allow for more accurate estimation, but

at the cost of increased problem difficulty and computation time.

Table 6.16: Percent Error in Final Parameter Estimate for Four Active Microspoiler
Trajectory Combinations

Parameter 5M 2L, 3M 2H, 3M 1L, 2H, 2M

% Error % Error % Error % Error

CX0,lo 0.3621 0.2082 2.823 0.2884

CX0,hi 1.77 0.1878 7.307 0.4103

CX2,lo 20.96 11.23 8.917 23.47

CX2,hi 18.02 8.942 23.42 30.46

CNα,lo 5.579 1.261 3.411 0.6076

CNα,hi 2.513 5.599 6.316 5.372

Cmα,lo 0.1601 0.02905 0.1666 0.2927

Cmα,hi 0.2484 0.1095 0.2422 0.1054

Cmq,lo 4.649 2.286 2.452 2.616

Cmq,hi 0.8577 1.267 3.75 4.353

δA,lo 29.48 29.47 27.45 48.26

δA,hi 32.55 34.93 36.76 58.11

δN,lo 5.786 33.88 33.89 26.36

δN,hi 29.67 35.99 31.09 37.64

δm,lo 0.8421 0.7042 0.3059 0.2562

δm,hi 1.857 0.7471 0.9813 0.4364

6.3 Experimental Data Analysis

To conclude the analysis of the smart projectile parameter estimation algorithm, the

method is applied to experimental data collected from the ARL Transonic Experi-

mental Facility spark range. A total of fourteen shots were obtained; four baseline

rounds and ten equipped with active microspoilers. These shots ranged in Mach

187

number from 1.8 to 2.5. The constructed rounds were also about 30% lighter than

the standard ANF described in Table 2.1. Similar to the procedure in Section 6.1,

the four unactuated trajectories are used to determine the projectile body aerodyn-

amic parameters in order to simplify the estimation of the microspoiler parameters.

A selection of the actuated trajectories are then used to estimate the microspoiler

parameters.

One major issue with the data obtained from the spark range is the amount of

error present in the roll angle measurements. Each trajectory was missing nume-

rous roll measurements and the measurements that were obtained had errors with a

standard deviation of about 20-30◦. This large error, coupled with gaps in the mea-

surements, makes it difficult for the parameter estimation algorithm to estimate the

roll parameters. Since the roll behavior of the projectile is generally decoupled from

the other states, the roll coefficients Cl0 and Clp as well as the initial roll angle and

roll rate are estimated independently. The amount of error on the measurements for

the remaining states were approximated by observing the error between the data and

the optimal trajectory determined by the estimation algorithm for each individual

trajectory. The approximated standard deviations for the measurement errors are 5

mm for position, 0.2◦ for θ and ψ, and 30◦ for φ.

6.3.1 Roll Parameter Estimation

The first step in processing the experimental data is estimating the roll parameters.

While the roll dynamics are decoupled from the other dynamics, the roll rate plays a

significant role in the motion of the projectile. However, the large errors in the roll

measurements make it extremely difficult for the estimation algorithm to determine

the roll parameters and other parameters simultaneously. Three of the unactuated

trajectories were used to estimate the roll parameters. Only x and φ were included

in the cost function with CX0 and u0 estimated in addition to the roll parameters.

188

For this case, p0 was bounded at ±20 rad/s as the rounds were fired from a smooth-

bore barrel which does not produce large initial roll rates. In addition, weights were

added to the φ measurements with larger weights on the earlier measurements. These

weights varied linearly from a weight of 1.0 at the first station to 0.1 at the last station.

The weights are then scaled such that the sum of the weights is equal to the number

of measurements. On these tests, the projectile reaches its steady state roll rate about

halfway through the flight. Larger weights on the early measurements help to better

estimate the transient dynamics of the projectile and puts a larger emphasis on the

behavior of the projectile before it reaches the first measurement. For this case, the

weights decrease linearly with range.

The estimates for Cl0 and Clp atM = 1.8 andM = 2.5 are given in Table 6.17. The

nominal values of these parameters for the standard ANF from Table 2.2 are included

as reference. The first observation from these results is that the estimated coefficients

are significantly higher than the nominal values. However, the mean χ2 value for φ

is 24.46, indicating a good fit given the large amount of noise in the data. The ratio

Cl0
Clp

, on the other hand, is almost exactly the same as for the nominal round. This

ratio characterizes the steady state roll rate of the projectile which is more observable

than the transient behavior. Even with the weighting along the trajectory, the lack of

observability of the projectile motion before the first measurement makes accurately

estimating these parameters extremely difficult. Figures 6.57-6.59 show how well this

set of parameters fits the data with very few noticeable errors.

189

Table 6.17: Experimental Roll Parameter Results

M = 1.8 M = 2.5

Parameter Nominal

ANF

Estimate Nominal

ANF

Estimate

Cl0 0.092575 0.19481 0.055 0.13903

Clp -8.53404 -18.3912 -5.0894 -13.0521
Cl0
Clp

-0.0108 -0.0106 -0.0108 -0.0107

−50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

Measured
Final Estimate

Figure 6.57: Unactuated Trajectory 1 Roll Angle Fit

190

−50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

Measured
Final Estimate

Figure 6.58: Unactuated Trajectory 2 Roll Angle Fit

−50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (m)

φ
(d

eg
)

Measured
Final Estimate

Figure 6.59: Unactuated Trajectory 3 Roll Angle Fit

191

6.3.2 No Microspoiler Results

With estimates for the roll parameters from Section 6.3.1, the remaining body aero-

dynamic coefficients are estimated. For this case, the simulations in the cost function

were started from the first spark station measurement. Since the roll parameter es-

timates only captured the steady state behavior of the roll rate, there may be larger

errors in the roll profile prior to the first measurement, causing additional errors in the

trajectories of the other states. A small weight was placed on the roll measurements,

reducing the impact of these errors on the cost function. The four unactuated shots

were all within the range of M = 2.1 to M = 2.5.

Table 6.18: Experimental Body Aerodynamic Parameter Results

M = 2.1 M = 2.5

Parameter Nominal

ANF

Estimate Nominal

ANF

Estimate

CX0 0.601 0.5239 0.5356 0.4583

Cmα -20.9922 -21.9045 -16.048 -14.3902

Cmq -399.16 -398.01 -371.8 -379.68

Table 6.19: χ2 Values for No Microspoiler Trajectories

x y z θ ψ

Average 32.59 30.62 11.17 28.26 34.12

Standard Deviation 15.13 10.94 3.18 6.248 18.11

The coefficient estimates for the body aerodynamic parameters at M = 2.1 and

M = 2.5 are given in Table 6.18. Note, estimates for CX2 and CNα could not be

found due to a lack of observability of these parameters at the low angles of attack

of these shots. Overall, the parameter estimation algorithm provided accurate fits

to the experimental data. The estimates for Cmα and Cmq were very close to the

nominal values at both Mach numbers and the estimate for Cx0 was about 15% less

192

than the expected value. This discrepancy may be due to small errors in the preflight

weight measurements or small timing errors in the data. Table 6.19 shows the χ2

values for the trajectories which indicate good fits of all of the trajectories. This is

demonstrated in Figures 6.61-6.65 which show the fit for one of the data sets. From

these trajectories, it is clear how accurately the estimation algorithm is fitting the

spark range data, especially the θ and ψ measurements. The angle of attack on this

trajectory remains below 4◦ and decays to below 2◦ about halfway downrange, too

low to obtain accurate estimates of CX2 and CNα.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.01

−0.005

0

0.005

0.01

0.015

0.02

t (s)

∆
x

(m
)

Figure 6.60: Unactuated Inertial-X Position Error

193

0 50 100 150 200 250
−3.6

−3.55

−3.5

−3.45

−3.4

−3.35

−3.3

−3.25

x (m)

y
(m

)

Measured
Final Estimate

Figure 6.61: Unactuated Inertial-Y Position vs. Range

0 50 100 150 200 250
3.1

3.15

3.2

3.25

3.3

3.35

x (m)

h
(m

)

Measured
Final Estimate

Figure 6.62: Unactuated Altitude vs. Range

194

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

x (m)

θ
(d

eg
)

Measured
Final Estimate

Figure 6.63: Unactuated Pitch Angle vs. Range

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

x (m)

ψ
(d

eg
)

Measured
Final Estimate

Figure 6.64: Unactuated Yaw Angle vs. Range

195

0 50 100 150 200 250
0

1

2

3

4

5

6

x (m)

α
ba

r (
de

g)

Figure 6.65: Unactuated Total Angle of Attack vs. Range

6.3.3 Active Microspoiler Results

To determine the microspoiler parameters, four of the ten trajectories were selected

based on the performance of the parameter estimation algorithm in fitting these data

sets individually. The projectile body aerodynamic coefficients CX0, Cl0, Clp, Cmα,

and Cmq were fixed to the estimated values above with CX2 and CNα set to the

nominal ANF values. For this case, the simulations in the cost function were started

from launch. Even though there were concerns about the accuracy of the roll rate

from launch to the first measurement, this was necessary to isolate the impact of the

microspoilers on the projectile by restricting the initial angular velocity at launch.

From observing the no microspoiler results, initial pitch rate q was constrained to a

range of ±2.5 rad/s. The effect of the microspoilers is also most pronounced at launch

where they produce a large perturbation in pitching moment.

It was also necessary to estimate the initial roll angle as the orientation of the

microspoilers at launch has a large impact on the resulting motion. A small weight

196

was placed on the φ measurements to help improve the accuracy of the φ0 estimate

without the errors in the φ measurements significantly adding to the cost. Only

initial φ, u, v, w, q, r, and t were estimated with the remaining initial states fixed to

known values and p0 set to zero. Linearly decreasing weights were also used on every

state trajectory. Because the microspoilers were actuated off of the projectile roll

cycle, the angular motion induced by the microspoilers dissipates once the projectile

reaches its steady state roll rate. Thus, the data from the first few spark stations are

more important for determining the microspoiler parameters. The four trajectories

evaluated cover a Mach range of 1.8 to 2.1.

Table 6.20: Experimental Microspoiler Parameter Results

M = 1.8 M = 2.1

Parameter CFD Estimate CFD Estimate

δA (N) -16.4 -44.098 -19.5 -55.769

δN (N) 42.7 66.344 50.36 102.329

δm (Nm) 5.26 5.243 6.25 6.615

Table 6.21: Microspoiler Mechanism Parameter Estimation Results

Parameter Ideal Mean Estimate STD Estimate

Ω0 (rad/s) 440.0 440.57 33.02

τms (1/s) 0.025 0.0298 0.0145

Table 6.22: χ2 Values for Active Microspoiler Trajectories

x y z θ ψ

Average 179.19 53.26 25.48 170.59 184.20

Standard Deviation 166.15 17.99 6.98 29.94 47.31

Tables 6.20 and 6.21 show the microspoiler coefficient estimates with the values of

the microspoiler coefficients previously determined from CFD are also given as a re-

ference [118]. Of the three microspoiler force and moment coefficients, the parameter

197

estimation algorithm does an excellent job estimating δm with large errors in δA and

δN . The error in δA can be attributed to the value of CX0 of the body being about

10% below the nominal ANF value. It should be noted that when the nominal value

of CX0 was used in place of the estimated value, the estimates for δA were significantly

improved. δN , much like CNα, has very low observability making accurate estimates

difficult. While the estimate of δm at M = 1.8 almost exactly matches the CFD

value, there is some error in the M = 2.1 estimate. Since all of the trajectories are

below M = 2.1, there is less observability in the parameter at the higher end of the

Mach range. The average estimated microspoiler spin rate was nearly identical to the

design value, however not every trajectory matched this performance. The average

estimated time constant for the microspoiler mechanism was also close to the design

value of 0.025 s−1 determined from the bench testing of the mechanism.

Looking at the χ2 values in Table 6.22, the estimation algorithm fits y and z very

well but has some issues with the remaining states. The large variation in χ2 between

trajectories indicates that the estimation algorithm may have difficulty fitting one

or more of the states for a given trajectory. There are a few possible explanations

for these errors in the trajectory fitting. First, as was discussed in Section 6.3.1,

the estimates of Cl0 and Clp were only accurate in terms of the steady state roll

rate and showed good agreement with the data starting at the first measurement.

Errors in the roll rate profile early in the flight can lead to errors in all of the states

throughout the flight. Second, the estimates of the body aerodynamic coefficients

may not be accurate in the Mach range of these trajectories. All of the unactuated

trajectories were fired at Mach numbers above 2.1, requiring extrapolation of the

parameter estimates to the range of the actuated data. Given the large range in

Mach number and lack of trajectory data at the lower Mach number, the assumption

of the aerodynamic coefficients varying linearly may not hold. Finally, the model of

the microspoiler aerodynamics and mechanism may not be accounting for all of the

198

effects of the system in practice, adding errors to the parameter estimates.

The quality of the fits can be seen by looking at the final trajectory for one of the

data sets shown in Figures 6.66-6.71. Figures 6.67 and 6.68 demonstrate the excellent

fits of these states. Looking at Figures 6.69 and 6.70, much of the error in the final

estimate is due to errors towards the end of the trajectory and a few data points where

the magnitude of the estimated trajectory does not quite match the measurement. In

general, the parameter estimation algorithm is able to obtain the general behavior in

θ and ψ, allowing it to accurately estimate δm.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

t (s)

∆
x

(m
)

Figure 6.66: Active Microspoiler Inertial-X Position Error

199

0 50 100 150 200 250
−3.6

−3.55

−3.5

−3.45

−3.4

−3.35

−3.3

−3.25

x (m)

y
(m

)

Measured
Final Estimate

Figure 6.67: Active Microspoiler Inertial-Y Position vs. Range

0 50 100 150 200 250
2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

x (m)

h
(m

)

Measured
Final Estimate

Figure 6.68: Active Microspoiler Altitude vs. Range

200

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

x (m)

θ
(d

eg
)

Measured
Final Estimate

Figure 6.69: Active Microspoiler Pitch Angle vs. Range

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

x (m)

ψ
(d

eg
)

Measured
Final Estimate

Figure 6.70: Active Microspoiler Yaw Angle vs. Range

201

0 50 100 150 200 250
0

1

2

3

4

5

6

x (m)

α
ba

r (
de

g)

Figure 6.71: Active Microspoiler Total Angle of Attack vs. Range

202

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The process of performing parameter estimation for new projectile configurations is

a key component of the design process and is necessary for creating accurate mo-

dels that are used for developing control systems and running simulations for the

projectile. Typically, flight test data is used in addition to CFD and wind tunnel

data when available. While many techniques currently exist for estimating the aero-

dynamic coefficients for projectiles based on flight test data, these methods rely on

accurate initial estimates for the coefficients to ensure convergence. For new projectile

systems with complicated control mechanisms and generally unknown parameters, a

new method is needed to perform parameter estimation. This thesis explored a new

approach to smart projectile parameter estimation, combining an output error ba-

sed algorithm with a new, robust optimization method dubbed meta-optimization.

Meta-optimization was designed to obtain accurate and reliable parameter estimates

for new and complex smart projectile configurations.

To better understand the nature of the smart projectile parameter estimation

problem, a detailed analysis was performed to characterize the landscape of this pro-

blem. The smart projectile considered in this work was a standard finned projectile

equipped with a microspoiler actuator system. Flight data was collected from the

U.S. Army Research Laboratory spark range which collects discrete measurements

of the position and orientation of the projectile. The first analysis used slices of the

cost function at different parameter combinations to visualize the topology of the cost

function and identify local minima. When the roll measurements were bounded, the

203

roll parameters showed numerous local minima, particularly in Cl0 and p0, caused by

the dynamics of the projectile. Local minima also occurred in Cmα and Ω0 and were

confirmed from the projectile dynamics. Local search analysis also revealed nume-

rous local minima, some far outside the search space corresponding to non-physical

parameter sets. However, when bounds were applied to constrain the parameters to

the search space, local minima appeared along the boundary that were not present

before. The presence of these local minima make it difficult to reliably use existing

local search based methods as reasonable estimates of the parameters may not exist

a priori.

The meta-optimization framework addressed these concerns by incorporating a

mixture of local and global optimizers, each suited for different types of problems.

Meta-optimization operates by selecting a single algorithm and deploying it on the

problem. Periodically, the performance of the optimizer is evaluated using an effi-

ciency metric based on cost reduction and computation time. Selection of the opti-

mizers is performed using a variable structure learning automaton which assigns pro-

babilities to each optimizer that are weighted towards the most effective optimizers.

The transition between optimizers is handled by a common manager that provides

the optimizers with the resources to operate on the problem. Finally, auto-tuning

adjusts the optimizers themselves to improve performance online. This framework

allows meta-optimization to reliably solve a wide range of optimization problems.

A suite of optimization benchmark functions were used to analyze and develop

the meta-optimization framework. These functions contained a mixture of unimo-

dal and multimodal functions with varying topology and dimensionality. A single

optimization run was used to demonstrate the behavior of meta-optimization where

each optimizer is given opportunities to work on the problem, collectively working

towards the solution. Meta-optimization was then compared to each of the indi-

vidual optimizers on this suite of functions. On every function, meta-optimization

204

proved to be more effective than any of the optimizers, reliably solving most of the

problems. On the few problems meta-optimization could not solve every time, the

functions also were challenging for the individual optimizers, indicating a limitation in

the performance of meta-optimization due to the capabilities of the included optimi-

zers. The benchmark suite was also used to conduct a series of trade studies on each

component of meta-optimization. A final configuration was determined from these

trade studies maximizing performance and robustness over a wide range of problems.

Finally, meta-optimization was evaluated on the CEC 2014 competition benchmark

suite and compared to three state of the art optimizers entered in the competition.

Even without tuning to handle the conditions of the competition, meta-optimization

achieved comparable performance on many of the functions, with better performance

on the higher dimensional problems.

Lastly, the parameter estimation algorithm was applied to an example smart pro-

jectile system. Fist, the estimation algorithm was evaluated on synthetic trajectory

data designed to replicate data typically obtained from flight testing. Using a build

up procedure designed to replicate spark range testing, the proposed algorithm was

able to accurately estimate all of the aerodynamic coefficients for the projectile body

and microspoilers. The accuracy of estimates obtained by estimation algorithm was

shown through multiple trade studies to be highly dependent on the amount of noise

on the measurements. These errors are mitigated when more measurements are avai-

lable, either by increasing the number of measurements in each trajectory or using

multiple trajectories simultaneously. Lastly, the parameter estimation procedure was

repeated using flight data recorded from experimental testing at the ARL Transonic

Spark Range. The estimation algorithm successfully obtained estimates for the mi-

crospoiler parameters with sufficient accuracy to previous CFD results. Some of the

errors in the estimates can be attributed to the high levels of noise in the data and

a lack of observability of some parameters due to the designed test set up. Overall,

205

this new parameter estimation algorithm utilizing meta-optimization has proven to

be an effective tool for analyzing new smart projectile systems.

7.2 Recommended Future Work

The results of this dissertation have demonstrated the capability of the proposed

parameter estimation algorithm to reliably obtain parameter estimates under a wide

range of conditions. The meta-optimization framework developed for this method

offers numerous avenues for continued development of reliable optimization algorithms

and applications for these methods. Below is a list of potential opportunities for

continued improvement of the smart projectile parameter estimation algorithm and

meta-optimization framework.

1. For estimating parameters of projectiles based on experimental data, a more

detailed aerodynamic model should be considered which accounts for nonline-

arities in the projectile aerodynamics. One core assumption in the projectile

aerodynamic model is that the coefficients are linear over small ranges in Mach

number. However, in practice the coefficients can change rapidly at certain

Mach numbers, making estimates across these ranges inaccurate. An aerodyn-

amic model that can handle these factors would significantly improve the esti-

mation capabilities of the parameter estimation algorithm for future projectile

systems.

2. Further analysis should be conducted into combining different types of trajec-

tories in order to estimate more parameters simultaneously. By grouping these

trajectories together, the total number trajectories necessary to fully estimate

the parameters of the projectile system could be reduced, saving time and cost

when conducting flight test experiments.

3. Given the flexibility of this parameter estimation algorithm, the ability of the

206

method to estimate other parameters of the projectile should be explored. These

parameters include the mass properties of the projectile and the atmospheric

conditions which are typically measured prior to flight testing. Potentially any

parameter within the projectile model could be estimated using this parameter

estimation algorithm.

4. The primary limitation of meta-optimization is the effectiveness of the indivi-

dual optimizers included in the framework. More advanced variants of each

algorithms should be considered which are capable of readily freeing themselves

from local minima. In addition, state of the art optimizers such as L-SHADE

[137] should be evaluated for inclusion as these optimizers have demonstrated

superior performance on extremely difficult optimization problems.

5. Additional methods for auto-tuning of the included optimizer tuning parameters

should be investigated. Methods such as online parameter control have recently

shown promise on controlling evolutionary algorithm parameters. Additional

research should also be conducted to develop a database of known effective

tuning parameter sets for intelligent initialization of these optimizers on new

problems.

6. The penalty function used to constrain the parameter search space was shown

to create difficulties for numerous optimizers. New techniques for handling se-

arch bounds and general constraints should be considered which do not create

additional local minima. Optimizer specific strategies should also be investiga-

ted to improve flexibility for the framework. Further research is needed into the

behavior of the optimizers along these boundaries.

7. Many additional methods exist for evaluating optimizer performance beyond

cost reduction and computation time. Composite metrics which incorporate

207

metrics such as predicted performance and optimizer risk should be developed

and evaluated in the meta-optimization framework.

8. Finally, future work should apply meta-optimization to other challenging en-

gineering optimization problems. Each new application will necessitate furt-

her development of meta-optimization, improving the reliability and robustness

of the method. Ultimately, meta-optimization provides a common framework

that could be applied to any situation where automated selection of diverse

algorithms is needed.

208

Appendices

209

APPENDIX A

ADAPTIVE FINITE DIFFERENT STEP LENGTH ALGORITHM

The accuracy of a finite difference approximation is highly dependent on the choice

of step size. The basis of a finite difference is the assumption that the function in

generally linear in the neighborhood of the current point. If too large of a step is used,

the finite difference can pick up nonlinearities in the function, reducing the accuracy

of the derivative estimate. If the step is too small, there may be no appreciable change

in cost, resulting in a very small or zero derivative estimate. Instead, Gill, Murray,

and Wright use an adaptive approach which adjusts the step length in an online

manner [131]. This is also useful when the ideal step length is unknown a priori. The

algorithm uses the relative condition error of the finite difference to determine if the

current step length is acceptable. Before proceeding, a few terms must be defined.

The method is presented for a single parameter but can be easily applied to multiple

dimensions. First, the forward and backwards finite differences are given by:

ϕF (x, h) =
f(x+ h)− f(x)

h
and ϕB(x, h) =

f(x)− f(x− h)

h
(A.1)

Next, the second order difference is given by:

Φ(x, h) =
f(x+ h)− 2f(x) + f(x− h)

h2
(A.2)

The bounds on the relative condition error of Φ, ϕF , and ϕB are defined as:

Ĉ(Φ) =
4εA
h2|Φ|

and Ĉ(ϕF) =
2εA
h|ϕF |

and Ĉ(ϕB) =
2εA
h|ϕB|

(A.3)

210

where εA is the estimated error and is a function of the cost specified by:

εA = (1 + |f(x)|) max

(
εM ,

εA(x0)

1 + |f(x0)|

)
(A.4)

where εM is machine precision and εA(x0) is determined through the use of a difference

table. The table begins with a set of values of the cost f evaluated at a set of points.

Each point is given by xi = x+ ih where h is a small number. It is assumed that the

computed value f̄i takes the form:

f̄i = f(xi) + δi = f(xi) + θiεA (A.5)

The first column of the table contains the values of f̄i and each subsequent column

is generated using the difference operator. After k differences, ∆kf̄i = ∆kfi + ∆kδi.

Since ∆kf = hkf (k), the value |hkf (k) will become small as k increases, leaving only

the differences in the errors δi. A pattern of behavior emerges after a few columns

where the differences are all of similar magnitude but alternating sign. An estimate

of εA can be obtained from this column using:

ε
(k)
A ∼

maxi |∆kf̄i|
βk

(A.6)

where βk =
√

(2k)!
(k!)2

. The table begins with f evaluated at 20 points and continues

until k = 10. The estimated value of εA is the average of the values computed for

columns 4 through 10. With εA known, the bounds on the relative condition error

can be evaluated and checked. If Ĉ(Φ) ≤ 0.001, h is reduced by a factor of 5 and

Ĉ(Φ) is computed again. If Ĉ(Φ) > 0.1, then the original h is retained, otherwise, h

is reduced until Ĉ(Φ) ≥ 0.001. If the original Ĉ(Φ) ≥ 0.1, then h is increased by a

factor of 5 until Ĉ(Φ) ≤ 0.1. If 0.001 ≤ Ĉ(Φ) ≤ 0.1, then no adjustment is needed.

211

APPENDIX B

META-OPTIMIZATION TRADE STUDY RESULTS

B.1 Probability Update Rules

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

a=b=0.0
a=b=0.1
a=b=0.2
a=b=0.3
a=b=0.4
a=b=0.5
a=0.1,b=0.3
a=0.3,b=0.1
Sequential

(a)

0 2 4 6 8 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Function Number
N

or
m

al
iz

ed
 M

ea
n

C
om

pu
ta

tio
n

T
im

e
(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

 R
at

e

(c)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

Function Number

C
ou

nt
 D

ev
ia

tio
n

(e)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

(f)

Figure B.1: Learning Automaton Reward and Penalty Factors (a). Success Rate; (b).
Mean Computation Time; (c). Restart Rate; (d). Time Stalled; (e). Optimizer Count
Deviation; (f). Average Probability Deviation. Overall, lower values of the parameters
perform better while higher values have larger deviations. Also includes a comparison
to constant probability and sequential selection cases with the probability updates
showing superior performance.

212

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

a=b=0.0
Disc, Lin
Disc, Sqrt
Disc, Quad
Cont, Lin
Cont, Sqrt
Cont, Quad
Sequential

(a)

0 2 4 6 8 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

R
at

e

(c)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

Function Number

C
ou

nt
 D

ev
ia

tio
n

(e)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

(f)

Figure B.2: Probability Weighting Method (a). Success Rate; (b). Mean Computa-
tion Time; (c). Restart Rate; (d). Time Stalled; (e). Optimizer Count Deviation;
(f). Average Probability Deviation. Discrete and continuous weighting schemes are
considered with three different function shapes. Continuous weighting performed best
on computation time and restart rate while the discrete weighting was best on time
stalled. Square root weighting produced the largest deviations.

213

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

 W
1
−W

0
=3.0

W
1
−W

0
=4.0

W
1
−W

0
=5.0

W
1
−W

0
=6.0

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

(c)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

(d)

Figure B.3: Weighting Coefficient Restarting Rate (a). W0 = 0.5; (b). W0 = 1.0; (c).
W0 = 2.0; (d). W0 = 3.0. Lower values of W0 and medium values of W1 −W0 required
fewer restarts than other combinations.

214

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

W
1
−W

0
=3.0

W
1
−W

0
=4.0

W
1
−W

0
=5.0

W
1
−W

0
=6.0

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(c)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

Figure B.4: Weighting Coefficient Time Stalled (a). W0 = 0.5; (b). W0 = 1.0; (c).
W0 = 2.0; (d). W0 = 3.0. Lower values of W0 stall less, especially on functions 5 and 6.

215

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

W
1
−W

0
=3.0

W
1
−W

0
=4.0

W
1
−W

0
=5.0

W
1
−W

0
=6.0

(a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

(b)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

(c)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

C
ou

nt
 D

ev
ia

tio
n

(d)

Figure B.5: Weighting Coefficient Optimizer Count Deviation (a). W0 = 0.5; (b).
W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0. Clear trend of increasing deviation with
decreasing W0 and increasing W1 −W0.

216

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

W
1
−W

0
=3.0

W
1
−W

0
=4.0

W
1
−W

0
=5.0

W
1
−W

0
=6.0

(a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

(b)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

(c)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Function Number

A
ve

ra
ge

 P
ro

ba
bi

lit
y

D
ev

ia
tio

n

(d)

Figure B.6: Weighting Coefficient Optimizer Probability Deviation (a). W0 = 0.5; (b).
W0 = 1.0; (c). W0 = 2.0; (d). W0 = 3.0. Similar trend of increasing deviation with
decreasing W0 and increasing W1 −W0. No difference on functions 9 and 10.

217

B.2 Optimizer Efficiency Evaluation

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

N
w

=1000

N
w

=2000

N
w

=3000

N
w

=4000

N
w

=5000

N
w

=6000

(a)

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

(b)

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

(c)

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

(d)

Figure B.7: Optimizer Efficiency Evaluation Parameters Success Rate (a). Jref = 0.5;
(b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0. Shorter efficiency windows experience
significant loss in success rate. Little trend seen in terms of Jref

218

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(a)

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(c)

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(d)

Figure B.8: Optimizer Efficiency Evaluation Parameters Mean Computation Time (a).
Jref = 0.5; (b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0. Computation time generally
increases as the window increase and decreases with increasing Jref .

219

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

N
w

=1000

N
w

=2000

N
w

=3000

N
w

=4000

N
w

=5000

N
w

=6000

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

(c)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rti

ng
 R

at
e

(d)

Figure B.9: Optimizer Efficiency Evaluation Parameters Restart Rate (a). Jref = 0.5;
(b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0. General trend of decreasing restarting
rate with increasing window. No trend in Jref .

220

0 2 4 6 8 10
0

1

2

3

4

5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

N
w

=1000

N
w

=2000

N
w

=3000

N
w

=4000

N
w

=5000

N
w

=6000

(a)

0 2 4 6 8 10
0

1

2

3

4

5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(b)

0 2 4 6 8 10
0

1

2

3

4

5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(c)

0 2 4 6 8 10
0

1

2

3

4

5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

Figure B.10: Optimizer Efficiency Evaluation Parameters Time Stalled (a). Jref = 0.5;
(b). Jref = 1.0; (c). Jref = 1.5; (d). Jref = 2.0. For most functions, longer windows
stall less with medium windows stalling the least on functions 5 and 6. Time stalled
increases with increasing Jref for functions 1, 5, and 6.

221

B.3 Reseeding

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

RS=0.0
RS=0.1
RS=0.2
RS=0.3
RS=0.4
RS=0.5
RS=0.6
RS=0.7
RS=0.8
RS=0.9

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

R
at

e

(c)

0 2 4 6 8 10
0

5

10

15

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

Figure B.11: Reseeding Rate Trade Study (a). Success Rate; (b). Mean Computation
Time; (c). Restart Rate; (d). Time Stalled. Significant reduction in performance as
reseeding rate decreases. Some loss in performance is also present if reseeding rate is
too high. Meta-optimization largely ineffective without any reseeding.

222

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

4

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

r
RS

=0.1

r
RS

=0.2

r
RS

=0.3

r
RS

=0.4

r
RS

=0.5

r
RS

=0.6

r
RS

=0.7

r
RS

=0.8

r
RS

=0.9

(a)

0 2 4 6 8 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

R
at

e

(c)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

Figure B.12: Reseeding Refinement Rate Trade Study (a). Success Rate; (b). Mean
Computation Time; (c). Restart Rate; (d). Time Stalled. Lower reseeding rates are
generally better on success rate while medium rates are fastest. Lower rates are also
best on time stalled.

223

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

σ
d,min

=5e−4

σ
d,min

=5e−5

σ
d,min

=5e−6

σ
d,min

=5e−7

σ
d,min

=5e−8

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

R
at

e

(c)

0 2 4 6 8 10
0

1

2

3

4

5

6

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

Figure B.13: Reseeding Diversity Threshold Trade Study (a). Success Rate; (b). Mean
Computation Time; (c). Restart Rate; (d). Time Stalled. Significant loss in perfor-
mance on all metrics when the diversity threshold is too low or too high. Intermediate
values perform best overall.

224

B.4 Restarting

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

N
R

=50k

N
R

=100k

N
R

=200k

N
R

=300k

N
R

=400k

N
R

=500k

N
R

=∞

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0

1

2

3

4

5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

R
at

e

(c)

Figure B.14: Restarting Threshold Trade Study (a). Success Rate; (b). Mean Com-
putation Time; (c). Restart Rate. A lower restarting threshold was better on some
functions, but significantly worse overall. Without restarts, meta-optimization can still
solve some problems reliably, but at the cost of increased computation time.

225

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Function Number

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

Ball, r
R

=1

Ball, r
R

=2

Ball, r
R

=3

Range, r
R

=1

Range, r
R

=2

Range, r
R

=3

(a)

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Function Number

N
or

m
al

iz
ed

 M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

(b)

0 2 4 6 8 10
0

0.5

1

1.5

Function Number

N
or

m
al

iz
ed

 R
es

ta
rt

R
at

e

(c)

0 2 4 6 8 10
0

0.5

1

1.5

Function Number

N
or

m
al

iz
ed

 T
im

e
S

ta
lle

d

(d)

Figure B.15: Restarting Exclusion Zone Trade Study (a). Success Rate; (b). Mean
Computation Time; (c). Restart Rate; (d). Time Stalled. Ball and range types of
exclusion zone considered at three different radii. Significant improvement on function
4 with the range type exclusion zone. Larger radius generally performs better but may
be too restrictive on the parameter space.

226

REFERENCES

[1] M. B. Tischler, “System identification requirements for high-bandwidth rotor-
craft flight control system design,” Journal of Guidance, Control, and Dyna-
mics, vol. 13, no. 5, pp. 835–841, 1990.

[2] M. B. Tischler, “System identification methods for aircraft flight control de-
velopment and validation,” Advances in Aircraft Flight Control, pp. 35–69,
1996.

[3] P. C. Murphy and V. Klein, “Transport aircraft system identification from
wind tunnel data,” in AIAA Atmospheric Flight Mechanics Conference and
Exhibit, Honolulu, Hawaii, 2008.

[4] A. Dorobantu, A. Murch, B. Mettler, and G. Balas, “System identification for
small, low-cost, fixed-wing unmanned aircraft,” Journal of Aircraft, vol. 50,
no. 4, pp. 1117–1130, 2013.

[5] V. Klein and E. A. Morelli, Aircraft System Identification: Theory and Practice.
Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc.,
2006.

[6] F. Fresconi, I. Celmins, and B. Howell, “Obtaining the aerodynamic and
flight dynamic characteristics of an asymmetric projectile through experimen-
tal spark range firings,” in AIAA Atmospheric Flight Mechanics Conference,
Portland, Oregon, 2011.

[7] C. Montalvo and M. Costello, “Estimation of projectile aerodynamic coeffi-
cients using coupled cfd/rbd simulation results,” in AIAA Atmospheric Flight
Mechanics Conference, Toronto, Ontario, 2010.

[8] K. W. Iliff, “Parameter estimation for flight vehicles,” Journal of Guidance,
Control, and Dynamics, vol. 12, no. 5, pp. 609–622, 1989.

[9] X. Deng, “System identification based on particle swarm optimization algo-
rithm,” in International Conference on Computational Intelligence and Secu-
rity, Wuhan, China, 2009.

[10] A. Alfi and H. Modares, “System identification and control using adaptive par-
ticle swarm optimization,” Applied Mathematical Modelling, vol. 35, pp. 1210–
1221, 2011.

227

[11] M. Schwaab, E. C. J. Biscaia, J. L. Monteiro, and J. C. Pinto, “Nonlinear para-
meter estimation through particle swarm optimization,” Chemical Engineering
Science, vol. 63, pp. 1542–1552, 2008.

[12] K. Kristinsson and G. A. Dumont, “System identification and control using
genetic algorithms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 22, no. 5, pp. 1033–1046, 1992.

[13] S. Mondoloni and L. S. Litwin, “Parameter estimation using genetic algo-
rithms for air traffic management simulation scenario generation,” in AIAA
Aviation Technology, Integration, and Operations (ATIO) Conference, Forth
Worth, Texas, 2010.

[14] M. S. Whorton, “Closed-loop system identification with genetic algorithms,”
Journal of Aerospace Computing, Information, and Communication, vol. 5,
pp. 161–173, 2008.

[15] S. F. Campbell, N. T. Nguyen, J. Kaneshige, and K. Krishnakumar, “Pa-
rameter estimation for a hybrid adaptive flight controller,” in AIAA Info-
tech@Aerospace Conference, Seattle, Washington, 2009.

[16] L. Ljung, System Identification: Theory for the User, Second. Upper Saddle
River, New Jersey: Prentice Hall, 1999.

[17] K. J. Keesman, System Identification: An Introduction. London, England:
Springer-Verlang London Limited, 2011.

[18] R. Doraiswami, C. Diduch, and M. Stevenson, Identification of Physical Sys-
tems: Applications to Condition Monitoring, Fault Diagnosis, Soft Sensor and
Controller Design. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014.

[19] R. V. Jategaonkar, Flight Vehicle System Identification: A Time Domain Met-
hodology. Reston, Virginia: American Institute of Aeronautics and Astronau-
tics, Inc., 2006.

[20] M. B. Tischler and R. K. Remple, Aircraft and Rotorcraft System Identifica-
tion: Engineering Methods with Flight Test Examples. Reston, Virginia: Ame-
rican Institute of Aeronautics and Astronautics, Inc., 2006.

[21] W. Hathaway, M. Steinhoff, R. Whyte, D. Brown, J. Choate, and R. Aldergren,
“Expert systems and ballistic range data analysis,” in AIAA Aerospace Ground
Testing Conference, Nashville, Tennessee, 1992.

228

[22] M. Fischer and W. Hathaway, “Aeroballistic research facility data analysis
system (arfdas),” U.S. Air Force Armament Laboratory, Tech. Rep. AFATL-
TR-88-48, 1988.

[23] J. Sahu, “Time-accurate numerical prediction of free flight aerodynamics of
a finned projectile,” in AIAA Atmospheric Flight Mechanics Conference and
Exhibit, San Francisco, California, 2005.

[24] B. T. Burchett, “Aerodynamic parameter identification for symmetric pro-
jectiles: Comparing gradient based and evolutionary algorithms,” in AIAA
Atmospheric Flight Mechanics Conference, Portland, Oregon, 2011.

[25] ——, “Aerodynamic parameter identification for symmetric projectiles: An
improved gradient based method,” Aerospace Science and Technology, vol. 30,
pp. 119–127, 2013.

[26] V. Condaminet, F. Delvare, D. Choi, H. Demailly, C. Grignon, and S. Heddadj,
“Identification of aerodynamic coefficients of a projectile and reconstruction
of its trajectory from partial flight data,” Computer Assisted Method in Engi-
neering and Science, vol. 21, pp. 177–186, 2014.

[27] K. C. Massey and S. Silton, “Testing the maneuvering performance of a mach
4 projectile,” in AIAA Applied Aerodynamics Conference, San Francisco, Ca-
lifornia, 2006.

[28] E. Scheuermann, M. Costello, S. Silton, and J. Sahu, “Aerodynamic characte-
rization of a microspoiler system for supersonic finned projectiles,” Journal of
Spacecraft and Rockets, vol. 52, no. 1, pp. 253–263, 2015.

[29] D. Kim, L. Strickland, M. Gross, J. Rogers, M. Costello, F. Fresconi, and I.
Celmins, “Actuator design and flight testing of an active microspoiler-equipped
projectile,” Journal of Dynamic Systems, Measurement, and Control, vol. 139,
no. 10, pp. 111 002–1–15, 2017.

[30] F. Fresconi and T. Harkins, “Experimental flight characterization of asymme-
tric and maneuvering projectiles from elevated gun firings,” Journal of Space-
craft and Rockets, vol. 49, no. 6, pp. 1120–1130, 2012.

[31] S. Silton, “Numerical experiments on finned bodies,” in AIAA Applied Aero-
dynamics Conference, Atlanta, Georgia, 2014.

[32] S. Silton and F. Fresconi, “The effect of canard interactions on aerodynamic
performance of a fin-stabilized projectile,” in AIAA Aerospace Sciences Meet-
ing, Kissimmee, Florida, 2015.

229

[33] J. Dykes, C. Montalvo, M. Costello, and J. Sahu, “Use of microspoilers for
control of finned projectiles,” Journal of Spacecraft and Rockets, vol. 49, no. 6,
pp. 1131–1140, 2012.

[34] J. Stahl, M. Costello, and J. Sahu, “Projectile aerodynamic coefficient estima-
tion using integrated cfd/rbd and flight control system modeling,” in AIAA
Atmospheric Flight Mechanics Conference, Chicago, Illinois, 2009.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cam-
bridge University Press, 2004.

[36] J. Nocedal and S. J. Wright, Numerical Optimization, Second. New York, NY:
Springer Science+Business Media, LLC, 2006.

[37] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization, Second.
Society for Industrial and Applied Mathematics, 2009.

[38] E.-G. Talbi, Metaheuristics: From Deisgn to Implementation. Hoboken, NJ:
John Wiley & Sons, Inc., 2009.

[39] M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics, Second. New
York, NY: Springer Science+Business Media, LLC, 2010.

[40] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Second. Frome, UK:
Luniver Press, 2010.

[41] ——, Engineering Optimization: An Introduction with Metaheuristic Applica-
tions. Hoboken, NJ: John Wiley & Sons, Inc., 2010.

[42] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: Massa-
chusetts Institute of Technology, 1996.

[43] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms. Chiches-
ter, UK: John Wiley & Sons, Inc., 2001.

[44] S. Kiranyaz, T. Ince, and M. Gabbouj, Multidimensional Particle Swarm Op-
timization for Machine Learning and Pattern Recognition. Heidelberg, Ger-
many: Springer-Verlag Berlin Heidelberg, 2014.

[45] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A Sto-
chastic Approach to Combinatorial Optimization and Neural Computing. New
York, New York: John Wiley & Sons, Inc, 1989.

[46] G. N. Vanderplaats, Multidiscipline Design Optimization. Vanderplaats Rese-
arch and Development, 2007.

230

[47] R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic
for global optimization over continuous spaces,” Journal of Global Optimiza-
tion, vol. 11, pp. 341–359, 1997.

[48] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE Confe-
rence on Neural Networks, Perth, Washington, 1995.

[49] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE
World Congress on Computational Intelligence, Anchorage, Alaska, 1998.

[50] J. Mockus, Bayesian Approach to Global Optimization: Theory and Applicati-
ons. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1989.

[51] ——, “Application of bayesian approach to numerical methods of global and
stochastic optimization,” Journal of Global Optimization, vol. 4, pp. 347–365,
1994.

[52] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization
of expensive black-box functions,” Journal of Global Optimization, vol. 13,
pp. 455–492, 1998.

[53] D. Huang, T. T. Allen, W. I. Notz, and R. A. Miller, “Sequential kriging opti-
mization using multiple-fidelity evaluations,” Structural and Multidisciplinary
Optimization, vol. 32, pp. 369–382, 2006.

[54] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking
the human out of the loop: A review of bayesian optimization,” in Proceedings
of the IEEE, vol. 104, 2016.

[55] J. R. Rice, “The algorithm selection problem,” Advances in Computers, vol. 15,
pp. 65–118, 1976.

[56] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning,”
Artificial Intelligence Review, vol. 18, pp. 77–95, 2002.

[57] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforce-
ment learning,” in Proceedings of the Seventeenth International Conference on
Machine Learning, San Francisco, CA, USA, 2000.

[58] W. Armstrong, P. Christen, E. McCreath, and A. P. Rendell, “Dynamic algo-
rithm selection using reinforcement learning,” in International Workshop on
Integrating AI and Data Mining, Hobart, Tasmania, 2006.

[59] M. A. Munoz, M. Kirley, and S. K. Halgamuge, “The algorithm selection
problem on the continuous optimization domain,” Computational Intelligence

231

in Intelligent Data Analysis, Studies in Computational Intelligence, vol. 445,
pp. 75–89, 2013.

[60] M. A. Munoz, Y. Sun, M. Kirley, and S. K. Halgamuge, “Algorithm selection
for black-box continuous optimization problems: A survey on methods and
challenges,” Information Sciences, vol. 317, pp. 224–245, 2015.

[61] C. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence, vol. 126,
pp. 43–62, 2001.

[62] M. Streeter and S. F. Smith, “New techniques for algorithm portfolio design,”
in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, Helsinki, Finland, 2008.

[63] K. Leyton-Brown, E. Nudelman, G. Andrew, J. Mcfadden, and Y. Shoham,
“A portfolio approach to algorithm selection,” in Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico,
2003.

[64] M. Gagliolo, V. Zhumatiy, and J. Schmidhuber, “Adaptive online time alloca-
tion to search algorithms,” Machine Learning: ECML 2004, vol. 3201, pp. 134–
143, 2004.

[65] M. Gagliolo and J. Schmidhuber, “Dynamic algorithm portfolios,” in Ninth
International Symposium on Artificial Intelligence and Mathematics, Ft. Lau-
derdale, Florida, 2006.

[66] ——, “Learning dynamic algorithm portfolios,” Annals of Mathematics and
Artificial Intelligence, vol. 47, no. 3, pp. 295–328, 2006.

[67] M. Gagliolo, “Online dynamic algorithm portfolios,” Ph.D. Dissertation, Uni-
versit della Svizzera Italiana, 2010.

[68] M. Gagliolo and J. Schmidhuber, “Algorithm portfolio selection as a bandit
problem with unbounded losses,” Annals of Mathematics and Artificial Intel-
ligence, vol. 61, no. 2, pp. 49–86, 2011.

[69] P. Baudis and P. Posik, “Online black-box algorithm portfolios for continuous
optimization,” Parallel Problem Solving from Nature-PPSN XIII, pp. 40–49,
2014.

[70] P. Baudis, “Cocopf: An algorithm portfolio framework,” in Poster 2014 -
the 18th International Student Conference on Electrical Engineering, Prague,
Czech Republic, 2014.

232

[71] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algorithm portfo-
lios for numerical optimization,” IEEE Transations on Evolutionary Compu-
tation, vol. 14, no. 5, pp. 782–800, 2010.

[72] S. Y. Yuen, C. K. Chow, and X. Zhang, “Which algorithm should i choose
at any point of the search: An evolutionary portfolio approach,” in Procee-
dings of the 15th annual conference on Genetic and evolutionary computation,
Amsterdam, The Netherlands, 2013.

[73] S. Y. Yuen, C. K. Chow, X. Zhang, and Y. Lou, “Which algorithm should i
choose: An evolutionary algorithm portfolio approach,” Applied Soft Compu-
ting, vol. 40, pp. 654–673, 2016.

[74] K. Tang, F. Peng, G. Chen, and X. Yao, “Population-based algorithm portfo-
lios with automated constituent algorithms selection,” Information Sciences,
vol. 279, pp. 94–104, 2014.

[75] S. Y. Yuen and X. Zhang, “On composing an algorithm portfolio,” Memetic
Computing, vol. 7, no. 3, pp. 203–214, 2015.

[76] T. Carchrae and J. C. Beck, “Applying machine learning to low-knowledge
control of optimization algorithms,” Computational Intelligence, vol. 21, no. 4,
pp. 372–387, 2005.

[77] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K.
Tucker, “Surrogate-based analysis and optimization,” Progress in Aerospace
Sciences, vol. 41, pp. 1–28, 2005.

[78] N. R. Draper and H. Smith, Applied Regression Analysis, 3rd Edition. New
York, New York: John Wiley & Sons, Inc., 1998.

[79] G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Sur-
faces, 3rd Edition. New York, New York: John Wiley & Sons, Inc., 1987.

[80] R. H. Myers, D. C. Montgomery, and y. e. Anderson-Cook Christine M., Re-
sponse Surface Methodology: Process and Product Optimization Using Designed
Experiments.

[81] M. Bjorkman and K. Holmstrom, “Global optimization of costly nonconvex
functions using radial basis functions,” Optimization and Engineering, vol. 1,
pp. 373–397, 2000.

[82] H.-M. Gutmann, “A radial basis function method for global optimization,”
Journal of Global Optimization, vol. 19, pp. 201–227, 2001.

233

[83] S. Jeong, M. Murayama, and K. Yamamoto, “Efficient optimization design
method using kriging model,” Journal of Aircraft, vol. 42, no. 2, pp. 413–420,
2005.

[84] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, “Ensemble of surrogates,”
Structural and Multidisciplinary Optimization, vol. 33, pp. 199–216, 2007.

[85] J. Muller and R. Piche, “Mixture surrogate models based on dempster-shafer
theory for global optimization problems,” Journal of Global Optimization,
vol. 51, pp. 79–104, 2011.

[86] J. Muller and C. A. Shoemaker, “Influence of ensemble surrogate models and
sampling strategy on the solution quality of algorithms for computationally
expensive black-box global optimization problems,” Journal of Global Optimi-
zation, vol. 60, pp. 123–144, 2014.

[87] F. A. C. Viana, R. T. Haftka, and L. T. Watson, “Efficient global optimiza-
tion algorithm assisted by multiple surrogate techniques,” Journal of Global
Optimization, vol. 56, pp. 669–689, 2013.

[88] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms. Berlin,
Germany: Springer-Verlag, 2012.

[89] P. Moscato, “On evolution, search, optimization, genetic algorithms and mar-
tial arts: Toward memetic algorithms,” California Institute of Technology,
Tech. Rep. Caltech Concurrent Computation Program 826, 1989.

[90] R. Hooke and T. A. Jeeves, “Direct search solution of numerical and statistical
problems,” Journal of the ACM, vol. 8, no. 2, pp. 212–229, 1961.

[91] L.-Y. Tseng and C. Chen, “Multiple trajectory search for large scale global
optimization,” in IEEE Congress on Evolutionary Computation, Hong Kong,
China, 2008.

[92] H. H. Hoos and T. Stutzle, Stochastic Local Search: Foundations and Applica-
tions. San Francisco, California: Morgan Kaufmann Publishers, 2005.

[93] Q. Yuan, Z. He, and H. Leng, “A hybrid genetic algorithm for a class of
global optimization problems with box constraints,” Applied Mathematics and
Computation, vol. 197, pp. 924–929, 2008.

[94] A. R. Yildiz, “An effective hybrid immune-hill climbing optimization appro-
ach for solving design and manufacturing optimization problems in industry,”
Journal of Materials Processing Technology, vol. 209, pp. 2773–2780, 2009.

234

[95] Y.-J. Wang, J.-S. Zhang, and Y.-F. Zhang, “A fast hybrid algorithm for glo-
bal optimization,” in Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou, China, 2005.

[96] S. Muelas, A. LaTorre, and J.-M. Pena, “A memetic differential evolution algo-
rithm for continuous optimization,” in International Conference on Intelligent
Systems Design and Applications, Pisa, Italy, 2009.

[97] Y. Gao and Y.-J. Wang, “A memetic differential evolution algorithm for high
dimensional functions’ optimization,” in Third International Conference on
Natural Computation, Haikou, China, 2007.

[98] D. Molina, M. Lozano, C. Garcia-Martinez, and F. Herrera, “Memetic algo-
rithms for continuous optimisation based on local search chains,” Evolutionary
Computation, vol. 18, no. 1, pp. 27–63, 2010.

[99] S.-K. Fan, Y.-C. Liang, and E. Zahara, “Hybrid simplex search and parti-
cle swarm optimization for the global optimization of multimodal functions,”
Engineering Optimization, vol. 36, no. 4, pp. 401–418, 2004.

[100] ——, “A genetic algorithm and a particle swarm optimizer hybridized with
nelder-mead simplex search,” Computers and Industrial Engineering, vol. 50,
pp. 401–425, 2006.

[101] Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis, “Memetic particle
swarm optimization,” Annals of Operations Research, vol. 156, pp. 99–127,
2007.

[102] W. Rafajlowicz, “A hybrid differential evolution-gradient optimization met-
hod,” in International Conference on Artificial Intelligence and Soft Compu-
ting, Zakopane, Poland, 2015.

[103] B. Subudhi, D. Jena, and M. M. Gupta, “Memetic differential evolution trai-
ned neural networks for nonlinear system identification,” in IEEE Region 10
Colloquium and the Third International Conference on Industrial and Infor-
mation Systems, Kharagpur, India, 2008.

[104] M. M. Noel and T. C. Jannett, “Simulation of a new hybrid particle swarm
optimization algorithm,” in Southeastern Symposium on Systems Theory, At-
lanta, Georgia, 2004.

[105] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A fast
adaptive memetic algorithm for online and offline control design of pmsm dri-
ves,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cyberne-
tics, vol. 37, no. 1, pp. 28–41, 2007.

235

[106] ——, “Application of memetic differential evolution frameworks to pmsm drive
design,” in IEEE Congress on Evolutionary Computation, Hong Kong, China,
2008.

[107] A. Caponio, F. Neri, and V. Tirronen, “Super-fit control adaptation in memetic
differential evolution frameworks,” Soft Computing, vol. 13, pp. 811–831, 2009.

[108] V. Tirronen, F. Neri, and T. Karkkainen, “A memetic differential evolution
in filter design for defect detection in paper production,” in Workshops on
Applications of Evolutionary Computation, Valencia, Spain, 2007.

[109] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, and L. M. Wang, “An improved ga
and a novel pso-ga-based hybrid algorithm,” Information Processing Letters,
vol. 93, pp. 255–261, 2005.

[110] P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni, “Particle swarm
and ant colony algorithms hybridized for improved continuous optimization,”
Applied Mathematics and Computation, vol. 188, pp. 129–142, 2007.

[111] K. Muranaka and E. Aiyochi, “Computational properties of hybrid methods
with pso and de,” Electronics and Communications in Japan, vol. 97, no. 4,
pp. 1128–1135, 2014.

[112] R. P. Parouha and K. N. Das, “A robust memory based hybrid differential
evolution for continuous optimization problem,” Knowledge-Based Systems,
vol. 103, pp. 118–131, 2016.

[113] M. A. Ahandani, M.-T. Vakil-Baghmisheh, and M. Talebi, “Hybridizing local
search algorithms for global optimization,” Computational Optimization and
Applications, vol. 59, pp. 725–748, 2014.

[114] J. R. Raol, J. Singh, G. Girija, and E. Institution of Electrical, Modelling and
Parameter Estimation of Dynamic Systems. London, United Kingdom: The
Institution of Engineering and Technology, 2004.

[115] I. Hughes and T. Hase, Measurements and Their Uncertainties : A Practical
Guide to Modern Error Analysis. New York, New York: Oxford University
Press, 2010.

[116] B. Etkin, Dynamics of Atmospheric Flight. Mineola, New York: Dover Publi-
cations, 2000.

[117] Prodas version 3 technical manual, Arrow Tech Associates, Burlington, Ver-
mont, 2000.

236

[118] A. Leonard, J. Rogers, and J. Sahu, “Aerodynamic optimization of microspoi-
ler actuators for guided projectiles,” Journal of Spacecraft and Rockets, 2017.

[119] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph,
“Exploratory landscape analysis,” in Genetic and Evolutionary Computation
Conference, Dublin, Ireland, 2011.

[120] J. Garnier and L. Kallel, “Efficiency of local search with multiple local optima,”
SIAM Journal on Discrete Mathematics, vol. 15, no. 1, pp. 122–141, 2002.

[121] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gra-
dients,” The Computer Journal, vol. 7, no. 2, pp. 149–154, 1964.

[122] A. R. Mehrabian and C. Lucas, “A novel numerical optimization algorithm
inspired from weed colonization,” Ecological Informatics, vol. 1, pp. 355–366,
2006.

[123] H. Bolandi, M. H. Ashtari Larki, S. H. Sedighy, M. S. Zeighami, and M.
Esmailzadeh, “Estimation of simplified general perturbations model for orbital
elements from global positioning system data by invasive weed optimization
algorithm,” Journal of Aerospace Engineering, vol. 229, no. 8, pp. 1384–1394,
2014.

[124] S. Karimkashi and A. A. Kishk, “Invasive weed optimization and its features in
electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 58,
no. 4, pp. 1269–1278, 2010.

[125] Z. D. Zaharis, C. Skeberis, T. D. Xenos, P. I. Lazaridis, and J. Cosmas, “De-
sign of a novel antenna array beamformer using neural networks trained by
modified adaptive dispersion invasive weed optimization based data,” IEEE
Transactions on Broadcasting, vol. 59, no. 3, pp. 455–460, 2013.

[126] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,”
European Journal of Operational Research, vol. 185, pp. 1155–1173, 2008.

[127] J. A. Nelder and R Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[128] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence pro-
perties of the nelder-mead simplex method in low dimensions,” SIAM Journal
of Optimization, vol. 9, no. 1, pp. 112–147, 1998.

[129] O. Hajji, S. Brisset, and P. Brochet, “A new tabu search method for optimiza-
tion with continuous parameters,” IEEE Transactions on Magnetics, vol. 40,
no. 2, pp. 1184–1187, 2004.

237

[130] R. Chelouah and P. Siarry, “Tabu search applied to global optimization,”
European Journal of Operational Research, vol. 123, pp. 256–270, 2000.

[131] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Academic
Press, 1981.

[132] K. Zielinksi, D. Peters, and R. Laur, “Stopping criteria for single-objective
optimization,” in Proceedings of the Third International Conference on Com-
putational Intelligence, Robotics and Autonomous Systems, Singapore, 2005.

[133] P. Siarry and G. Berthiau, “Fitting of tabu search to optimize functions of
continuous variables,” International Journal For Numerical Methods in Engi-
neering, vol. 40, pp. 2449–2457, 1997.

[134] C. Unsal, “Intelligent navigation of autonomous vehicles in an automated
highway system: Learning methods and interacting vehicles approach,” Ph.D.
Dissertation, Virginia Polytechnic Institute and State University, 1998, ch. 3.

[135] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and evalua-
tion criteria for the cec 2014 special session and competition on single objective
real-parameter numerical optimization,” Computational Intelligence Labora-
tory, Zhengzhou University, Zhengzhou, China, Tech. Rep. Technical Report
201311, 2013.

[136] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky, “A numerical evaluation
of several stochastic algorithms on selected continuous global optimization test
problems,” Journal of Global Optimization, vol. 31, pp. 635–672, 2005.

[137] R. Tanabe and A. S. Fukunaga, “Improving the search performance of shade
using linear population size reduction,” in IEEE Congress on Evolutionary
Computation, Beijing, China, 2014.

[138] C. Xu, H. Huang, and S. Ye, “A differential evolution with replacement stra-
tegy for real-parameter numerical optimization,” in IEEE Congress on Evolu-
tionary Computation, Beijing, China, 2014.

[139] S. M. Elsayed, R. A. Sarker, D. L. Essam, and N. M. Hamza, “Testing united
multi-operator evolutionary algorithms on the cec2014 real-parameter nume-
rical optimization,” in IEEE Congress on Evolutionary Computation, Beijing,
China, 2014.

[140] R. Tanabe and A. S. Fukunaga, “Success-history based parameter adaption
for differential evolution,” in IEEE Congress on Evolutionary Computation,
Cancun, Mexico, 2013.

238

VITA

Matthew Gross was born and raised in Fort Washington, PA in the suburbs of Phi-

ladelphia, PA. In 2012, he received a Bachelor of Science degree in Aerospace Engi-

neering from the University of Maryland, College Park. After graduating, Matthew

moved to Atlanta, GA to begin his studies at the Georgia Institute of Technology.

He received a Masters of Science degree in Aerospace Engineering in 2014 and con-

tinued his studies to pursue a Doctor of Philosophy. His research interests include

flight dynamic modeling, control system design, system identification, and engineering

optimization.

239

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Related Work
	Aerospace System Parameter Estimation
	Numerical Optimization
	Algorithm Selection
	Hybrid and Memetic Algorithms

	Thesis Contributions
	Thesis Outline

	Methodology for Smart Projectile Parameter Estimation
	Output Error Method
	Projectile Flight Dynamics Model
	Spark Range Flight Testing
	Example Smart Projectile System
	Microspoiler Control Mechanism
	Example Trajectory Results

	Topology Analysis of Smart Projectile Parameter Estimation Problem
	Parameter Cross Section Landscape Analysis
	Roll Dynamics Analysis
	Epicyclic Dynamics Analysis
	Microspoiler Dynamics Analysis

	Local Search Analysis
	Low Angle of Attack Analysis
	High Angle of Attack Analysis
	Active Microspoiler Analysis

	Description of Meta-Optimization Framework
	Bank of Optimizers
	Steepest Descent (SD)
	Conjugate Gradient (CG)
	Broyden-Fletcher-Goldfarb-Shanno (BFGS)
	Particle Swarm Optimization (PSO)
	Differential Evolution (DE)
	Simplex (SIM)
	Invasive Weed Optimization (IWO)
	Tabu Search (TS)
	Ant Colony Optimization (ACO)

	Optimizer Performance Evaluation
	Optimizer Selection
	Optimizer Manager
	Auto-Tuning

	Benchmark Function Testing of Meta-Optimization
	Benchmark Function Suite
	Rosenbrock Function
	Rastrigin Function
	Griewank Function
	Levy Function
	Ackley's Function
	Expanded Schaffer F6 Function
	Expanded Griewank Plus Rosenbrock Function
	High Conditioned Elliptic Function

	Nominal Configuration Results
	Single Function Results
	Benchmark Suite Results

	Meta-Optimization Trade Studies
	Probability Update Rules
	Optimizer Efficiency Evaluation
	Reseeding Parameters
	Restarting Parameters
	Final Meta-Optimization Configuration

	Competition Suite Testing

	Smart Projectile Parameter Estimation Results
	Simulated Trajectory Results
	Simulated Low Angle of Attack Results
	Simulated High Angle of Attack Results
	Simulated Active Microspoiler Results
	Individual Optimizer Comparison

	Projectile Parameter Estimation Trade Studies
	Number of Measurements and Amount of Noise
	Number of Trajectories
	Combining Trajectories

	Experimental Data Analysis
	Roll Parameter Estimation
	No Microspoiler Results
	Active Microspoiler Results

	Conclusions and Future Work
	Conclusions
	Recommended Future Work

	Adaptive Finite Different Step Length Algorithm
	Meta-Optimization Trade Study Results
	Probability Update Rules
	Optimizer Efficiency Evaluation
	Reseeding
	Restarting

	References
	Vita

