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 Abnormal clotting function afflicts up to 30% of severely-injured patients by the time 

they reach the emergency department and is associated with an increased risk of mortality, 

venous thromboembolism, and multiple organ failure. Prehospital identification of patients with 

acute coagulopathy of trauma (ACT), defined as an INR >1.5 on emergency department arrival, 

will facilitate study of the syndrome’s mechanisms and targeted treatment. We developed a 

prehospital prediction model for ACT — the Prediction of Acute Coagulopathy of Trauma 

(PACT) score — using data from severely-injured trauma patients enrolled in a population-

based, multicenter trauma registry. Construction of a parsimonious multivariable logistic 

regression model employed a best-subsets model selection approach and multiply imputed data 

to minimize bias. Predictors in the final model included elevated shock index, older age, 

prehospital cardiopulmonary resuscitation or endotracheal intubation, lower prehospital Glasgow 

Coma Score, and injury mechanism not related to driving or riding a motorcycle, bicycle or in a 



 

motor vehicle. After internal validation of our model using bootstrap techniques, we externally 

validated the PACT score in a separate cohort of severely-injured, transfusion-requiring trauma 

patients admitted to the ICU of a level 1 trauma center. The PACT score demonstrated good 

discrimination (AUROC 0.80, 95% CI 0.72-0.88) and calibration (Hosmer-Lemeshow goodness-

of-fit statistic p=0.37). At a threshold of ≥200, the PACT score’s sensitivity and specificity for 

ACT were 73% and 72%, respectively. By comparison, a previously published prehospital ACT 

prediction score exhibited lower discrimination (AUROC 0.70, 95% CI 0.60-0.80, p=0.038 for 

comparison to PACT score) with evidence of inadequate calibration (Hosmer-Lemeshow 

goodness-of-fit statistic p=0.036). In summary, our prediction score uses routinely-available and 

objective prehospital data to identify patients at increased risk of ACT. The PACT score could 

facilitate subject selection for studies of ACT’s targeted treatment.  
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INTRODUCTION 

 Traumatic injury caused over 110,000 U.S. deaths in 2011 and remains the leading killer 

of adults and children ages 1-44 years (1). Worldwide, trauma accounts for nearly 8% of deaths 

and 9% of disability-adjusted life years lost (2, 3). Uncontrolled hemorrhage is a major cause of 

trauma mortality, contributing to half of all injury-related deaths (4, 5).  

 Post-traumatic coagulopathy is a risk factor for hemorrhage after injury. Whereas 

“traditional” coagulopathy of trauma arises late after injury due to clotting factor dilution and 

consumption, acidosis, and hypothermia (6), acute coagulopathy of trauma (ACT) is an 

endogenous syndrome present on emergency department admission in up to 30% of severely-

injured patients (7, 8). Defined as an international normalized ratio (INR) >1.5 on hospital 

admission, ACT is associated with an increased risk-adjusted probability of all-cause and 

hemorrhage-associated mortality after injury (9). ACT also indicates an increased risk of 

multiple organ failure and, paradoxically, venous thromboembolism (9).  

 Given the early occurrence of bleeding-related deaths, treatment to interrupt or attenuate 

ACT’s adverse effects likely needs to begin quite rapidly after injury and potentially even in the 

prehospital setting. With available technology, diagnosis of ACT in this window is not possible: 

conventional coagulation tests are slow to return, but issues of validity, reliability, availability, 

and interpretation hinder use of point-of-care testing and viscoelastic measures (10-17). A 

simple, validated predictive index using data available by ED admission to identify patients at 

high risk for ACT would therefore advance research and clinical care by facilitating clinical trial 

enrollment, biological specimen collection and, ultimately, targeted ACT treatment.  

 The only out-of-hospital ACT prediction tool reported so far, the Coagulopathy of Severe 

Trauma (COAST) score, is based on vehicle entrapment, chest decompression by paramedics, 
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and prehospital assessment of blood pressure, temperature, and abdominal/pelvic content injury 

(18). Since the score was not externally validated after development in a single-center Australian 

cohort, its generalizability is uncertain (19). In particular, marked differences in U.S. ambulance 

crews’ practice regarding chest decompression, injury pattern evaluation, and temperature 

measurement may pose obstacles to the COAST score’s application in U.S. trauma settings.  

 In the current study, we developed and internally validated a prediction model for ACT 

using patient demographic information, injury characteristics, and clinical data available to 

providers before severely-injured patients’ arrival in the emergency department. Using a separate 

cohort of severely-injured trauma patients, we then validated our score and compared its 

performance to that of the COAST score. 
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METHODS 

Derivation cohort 

 To derive a multivariable model predicting ACT, we studied severely-injured non-

pregnant patients age 18-89 years enrolled in the Oregon Trauma Registry from 2008-2012 (20). 

Oregon’s 49 certified trauma facilities submit data to the registry, maintained by the Oregon 

Health Authority, on injured patients meeting ≥1 of the following criteria: intensive care unit 

(ICU) admission ≤24 hours from emergency department (ED) arrival; trauma team activation; 

surgical evaluation and treatment; prehospital trauma triage criteria met; and injury severity 

score (ISS) >8 (21). Patients dying before ED arrival, with isolated hip fracture after a ground-

level fall, or not treated at a certified trauma center are excluded from the registry. We counted 

as severely injured patients dying prior to discharge or admitted directly from the ED to the ICU 

or surgery. We also included patients transferred from the initial ED to another trauma center’s 

ED if they had an ISS >15 and were admitted from the receiving facility’s ED directly to the ICU 

or to surgery. Exclusion criteria included missing admission INR; initial care outside the trauma 

system; pre-admission anticoagulant medication; blood transfusion during prehospital care; and 

no prehospital care. We also excluded patients with isolated burn or traumatic brain injury (no 

abbreviated injury score [AIS] ≥3 except for head) since coagulopathy in these conditions 

appears distinct from polytrauma-associated ACT (22, 23).  

Oregon trauma facilities employ one trauma registrar per 750 annual trauma cases and 

provide them annual training. Hospitals actively solicit missing data from in-transferring 

facilities and prehospital providers. Unique trauma registry identifiers allow patient data linkage 

across phases of care. Biannual site visits by the state accrediting organization include review of 
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trauma registry data and procedures. The University of Washington and Oregon Health 

Authority Institutional Review Boards approved use of Oregon Trauma Registry data. 

 

Validation cohort 

For model validation, we performed a secondary analysis of data from a prospective 

cohort study (Age of Transfused Blood and Lung Injury After Trauma Study) conducted at 

Harborview Medical Center, a level 1 trauma center in Seattle, WA (24, 25). Blunt trauma 

patients age ≥18 presenting to the ED from March 2010 to December 2013 were eligible for 

enrollment if admitted to the ICU from the ED (directly or via surgery) and transfused ≥1 units 

of red blood cells within 24 hours of injury. Study exclusion criteria included isolated traumatic 

brain injury (radiologic evidence of brain injury and no non-brain injury), transfusion within 6 

months prior to admission, acute respiratory distress syndrome on admission, patient in police 

custody, pregnancy, and expected survival <24 hours. Subjects on warfarin, with no prehospital 

medical care, or missing initial INR values were excluded from the model validation cohort.  

Study subjects were followed from initial ED admission to death or hospital discharge. 

Trained research staff unaware of coagulopathy status collected data on patient characteristics, 

prehospital care, referring hospital care, clinical procedures, complications, and outcomes. 

Independent re-abstraction of 11% of records demonstrated excellent inter-rater reliability with κ 

0.90 (95% CI 0.77-1.00) for ≥1 high-risk injury indicators and κ 0.93 (95% CI 0.80-1.00) for the 

performance of ≥1 prehospital procedures. An experienced database manager confirmed the 

validity of manually abstracted variables and reconciled results with linked, separately abstracted 

data in the hospital’s trauma registry. The University of Washington Institutional Review Board 

approved the original study and granted exempt status to the current secondary analysis. 
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Predictor and outcome definitions 

 ACT was defined as an INR >1.5 on initial measurement in the first ED (9). Potential 

ACT predictors were identified a priori and included patient and injury characteristics as well as 

clinical and management data available prior to hospital arrival. Vital signs are the first-recorded 

values from the prehospital setting and initial ED. Consistent with previous reports (26, 27), we 

observed ≤1 point difference between Glasgow Coma Scores (GCS) measured in the prehospital 

setting and ED for, respectively, 84% and 89% of derivation and validation cohort subjects not 

intubated before ED arrival. We therefore substituted the GCS measured in the ED for missing 

prehospital values if the subject was not intubated prehospital. Given its inverse association with 

ACT risk, GCS was analyzed as the difference between the measured GCS and a normal GCS of 

15 to provide a positive coefficient in the prediction model. Shock index, calculated as the first 

prehospital heart rate divided by the first prehospital systolic blood pressure, was considered 

elevated if ≥1 (28, 29). Out-of-hospital treatments obtained from documentation by prehospital 

and ED providers included cardiopulmonary resuscitation, chest decompression (“flutter” valve 

or needle or tube thoracostomy), and endotracheal intubation or other invasive airway (i.e. 

laryngeal mask airway). Injury severity indicators, also based on provider documentation, 

included death of another person on scene, ejection or need for extrication from vehicle 

(“entrapment”), and rollover motor vehicle accident (30). ISS and AIS values were used as 

markers of global and regional injury severity (31). 

COAST scores (Table 1) were calculated as previously described (18). Since prehospital 

providers in the United States do not systematically document abdominal/pelvic content injury 

(32), we applied a definition — abdominal/pelvic AIS ≥1 — used for a sensitivity analysis in the 

COAST score’s original description (18, 33). Similarly, since U.S. prehospital providers do  
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not systematically record temperature for 

trauma patients (32), we employed the first 

ED temperature in place of the prehospital 

value (34). 

 

Missing data 

 To minimize bias due to missing data 

in the derivation and validation cohorts, we 

performed multiple imputation based on chained equations to create 50 imputed data sets (35-

38). Missing values were imputed using predictive mean matching from three nearest neighbors 

for continuous variables (39) and logistic regression for binary variables. Imputation model 

variables (Table 2) included missing and non-missing candidate predictors, hospital and 

coagulopathy outcomes, and other patient characteristics correlated with missing variables (40). 

 

Model development 

 A multivariable ACT prediction model was constructed from the prehospital variables — 

identified a priori and defined as above — in three steps: candidate predictor modeling, selection 

of a parsimonious final predictor set, and coefficient estimation. To minimize predictive 

optimism and bias in the final predictive model, we sought a final ratio of at least ten outcome 

events to one candidate predictor entered in the model selection algorithm (38, 41-43). To 

achieve this ratio, we (1) discarded variables with p value >0.25 in bivariable analyses or 

missingness >25%; (2) “forced” a variable based on the first prehospital systolic blood pressure 

into the final prediction model given its strong epidemiologic association with ACT and  

Table&1:&Coagulopathy+of+Severe+Trauma+(COAST)+scorea+

Variable& Value& Score&

Entrapment+ Yes+ 1+

Systolic+blood+pressure+ <100+mmHg+ 1+
+ <90+mmHg+ 2+

Temperature+ <35˚C+ 1+
+ <32˚C+ 2+

Chest+decompression+ Yes+ 1+

Abdominal+or+pelvic+content+injury+ Yes+ 1+

Highest+total+possible+ + 7+
a+Reprinted+from+Mitra+et#al.+(Resuscitation+,+2011;+
82:+1208Q1213)+with+permission+from+Elsevier+Ltd.+
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evidence for a causal mechanism underlying this association (44); (3) dropped predictors (such 

as paramedic assessment of injury anatomy) at risk for significant subjectivity (45); (4) merged 

candidate predictors (prehospital systolic blood pressure and heart rate combined into shock 

index) when feasible (29, 38, 46); and (5) collapsed categories of candidate predictors (injury 

mechanism, shock index) when feasible and supported by bivariable analysis (19). Graphical 

Table&2:&Missing+and+nonQmissing+variables+employed+in+imputation+equations+

+

Derivation+cohort+
(N=1829)+

+ Validation+cohort+
(N=285)+

Missing++
N+(%)+

Imputation+model+ +
Missing++
N+(%)+

Imputation+model+

Imputed+ NonQmissing+
covariate+

+ Imputed+ NonQmissing+
covariate+

Age+ 0+ + X+ + 0+ + X+
Sex+ 2+ (0.1)+ X+ + + 0+ + X+
Race+ 37+ (3.3)+ X+ + + 0+ + X+
Hispanic+ethnicity+ 37+ (3.3)+ X+ + + 8+ (1.8)+ X+ +
Transfer+status+ 0+ + X+ + 0+ + X+
Time+from+injury+to+ED+arrival+ 315+ (17.2)+ X+ + + 0+ + X+
Year+ 0+ + X+ + 0+ + X+
Mechanism+of+injury+ 0+ + X+ + 0+ + X+
PreQhospital+vital+signs+ + + + + + + + +
+ First+systolic+blood+pressure+ 295+ (16.1)+ X+ + + 31+ (10.9)+ X+ +
+ First+heart+rate+ 195+ (10.7)+ X+ + + 35+ (12.3)+ X+ +
+ First+respiratory+rate+ 403+ (22.0)+ X+ + + 62+ (21.8)+ X+ +
+ First+Glasgow+Coma+Score+ 355+ (19.4)+ X+ + + 68+ (23.9)+ X+ +
+ Lowest+systolic+blood+pressurea+ —+ —+ —+ + 31+ (10.9)+ X+ +
PreQhospital+interventions+ + + + + + + + + +
+ Cardiopulmonary+resuscitation+ 0+ + X+ + 0+ + X+
+ Chest+decompression+ 0+ + X+ + 0+ + X+
+ Intubation+ 0+ + X+ + 0+ + X+
+ IV+fluida+ —+ —+ —+ + 43+ (15.1)+ X+ +
First+measured+ED+vital+signs+ + + + + + + + + +
+ Systolic+blood+pressure+ 12+ (0.7)+ X+ + + 4+ (1.4)+ X+ +
+ Heart+rate+ 10+ (0.5)+ X+ + + 0+ + X+
+ Temperature+ 283+ (15.5)+ X+ + + 25+ (8.8)+ X+ +
Injury+severity+score+ 48+ (2.6)+ X+ + + 15+ (5.3)+ X+ +
Maximum+abdominal+AIS+ 48+ (2.6)+ X+ + + 15+ (5.3)+ X+ +
Admission+INR+ 0+ + X+ + 0+ + X+
Acute+coagulopathy+of+trauma+ 0+ + X+ + 0+ + X+
Death+before+discharge+ 0+ + X+ + 0+ + X+
Hospital+length+of+stay+ 2+ (0.1)+ X+ + + 0+ + X+
a+Variable+unavailable+for+development+cohort.++
Abbreviations:+ AIS,+abbreviated+injury+score;+ED,+emergency+department;+INR,+international+normalized+ratio+
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analysis based on locally weighted scatterplot smoothing (LOWESS) plots did not reveal 

significant non-linearity in the associations between candidate predictors and admission INR. 

Continuous candidate predictors were therefore evaluated without transformation. 

We adapted the “majority rules” approach to model selection previously described by 

Vergouwe et al (47). Within each imputed dataset, we evaluated all possible combinations of 

predictor variables using a best-subsets approach and a leaps-and-bounds algorithm adapted for 

logistic regression (48-50). The selected model had the lowest Akaike information criterion, a 

likelihood-based measure of model fit that penalizes larger models to reduce overfitting (51). 

The final prediction model included predictors selected in 50% or more of the imputation-

derived models (Figure 1). Coefficients for the 

final prediction model were obtained by 

combining estimated regression coefficients from 

the 50 imputed datasets using Rubin’s rules (52). 

The raw prediction model was simplified by 

rounding each coefficient to one decimal place 

and multiplying by 100 to create the Prediction of 

Acute Coagulopathy of Trauma (PACT) score. 

 

Evaluation of model performance 

We estimated model optimism in the multiply-imputed derivation cohort using bootstrap 

techniques (53, 54). After sampling with replacement for 1,000 iterations, we performed the 

previously-described model selection procedure on each bootstrap sample and compared model 

discrimination in the bootstrapped versus original derivation cohort. The average difference for 

Figure&1.+Schematic+of+“majority+rules”+model+
selection+algorithm.+
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the 1,000 bootstrap samples is an estimate of the deterioration in model discrimination 

attributable to sampling bias. To formally test generalizability, we evaluated the discrimination 

and calibration of the PACT and COAST scores when applied to the validation cohort.  

 

Statistical analysis 

To maximize study power and model generalizability, we included all eligible subjects in 

both cohorts. Bivariable analyses employed unpaired t-tests with unequal variance or Mann-

Whitney tests for continuous variables and chi-square or Fisher’s exact tests for categorical 

variables as appropriate. Regression coefficients are reported with robust standard errors. Model 

discrimination was measured using the area under the receiver operating characteristic curve 

(AUROC), which is reported with 95% confidence intervals and compared using the method of 

Delong et al (55). Model calibration was evaluated (1) graphically by plotting the observed 

versus predicted ACT probabilities across equal quantiles of predicted ACT probability and (2) 

using the Hosmer-Lemeshow goodness-of-fit statistic (56). A p value >0.1 for this statistic 

indicates no significant divergence of observed from predicted probabilities (57). Since the 7-

point COAST score cannot be divided into >7 quantiles, the primary PACT score calibration 

analysis also used 7 quantiles of predicted risk. For other tests, a p value ≤0.05 was considered 

significant. We used Stata version 13.1 (StataCorp LP, College Station, TX) for all analyses and 

adhere to published guidelines for reporting multivariable prediction models (58).  

We performed two sensitivity analyses. We tested whether an alternate ACT definition 

adding partial thromboplastin time (PTT) >60 seconds to INR >1.5 altered our results. We also 

reevaluated our model’s calibration using deciles of ACT risk predicted by the PACT score. 
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RESULTS 

 A total of 1,829 patients enrolled 

in the Oregon Trauma Registry between 

2008 and 2012 met criteria for inclusion 

in the model derivation cohort (Figure 2).+

ACT was present in 108 (5.9%). 

Coagulopathic patients were more 

severely injured, less likely to be injured 

while operating or riding in a motor 

vehicle, motorcycle or bicycle, more 

likely to undergo prehospital 

interventions and had lower prehospital 

systolic blood pressure and GCS (Table 

3). Compared to the derivation cohort, 

the 285 subjects meeting criteria for 

inclusion in the validation cohort (Figure 

3) were more severely injured, displayed 

greater physiologic derangements, and 

were more likely to be intubated 

prehospital (Table 4). In-hospital 

mortality was 49% for subjects with ACT compared to 7% for subjects without ACT (p<0.001) 

in the derivation cohort and 24% vs 7% (p=0.001) in the validation cohort. 

Figure&3.+Patient+enrollment+flow+diagram+for+
validation+cohort.+

Figure&2.+Patient+enrollment+flow+diagram+for+derivation+
cohort.+Some+patients+had+>1+reason+for+exclusion.+
+
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In addition to the binary 

variable for shock index ≥1 that 

was forced into the prediction 

model, seven candidate predictors 

were entered into the model 

selection algorithm based on 

bivariable associations with ACT: 

age; time from injury to ED 

arrival; GCS; a binary variable 

indicating the subject’s injury 

mechanism did not involve driving 

or riding in a motor vehicle, 

motorcycle or bicycle; prehospital 

cardiopulmonary resuscitation; 

prehospital endotracheal intubation 

or other advanced airway 

placement; and prehospital chest 

decompression by needle or tube 

thoracostomy. Variables selected 

algorithmically in >50% of 

imputed datasets and therefore included in the final ACT prediction model were age, prehospital 

CPR and intubation, GCS, and injury mechanism not motor vehicle, motorcycle or bicycle 

accident in addition to the required prehospital shock index variable (Table 5). Within the 

Table&3:&Demographic,+injury+and+clinical+characteristics+of+subjects+
included+in+the+derivation+cohort+by+coagulopathy+status+

+ INR+≤1.5+
(N=1721)+

INR+>1.5+
(N=108)+ p+

Age+ 44.5+ (18.4)+ 47.5+ (21.0)+ 0.14+
Male+sex+ 1248+ (72.6)+ 79+ (73.1)+ 0.93+
Race+ + + + + 0.20+
+ Black+ 56+ (3.3)+ 4+ (3.8)+ +
+ White+ 1381+ (81.9)+ 80+ (75.4)+ +
+ Other+ 249+ (14.8)+ 22+ (20.8)+ +
Hispanic+ 174+ (10.3)+ 13+ (12.3)+ 0.52+
Minutes+from+injury+to+ED+arrival+ 51+ (39Q69)+ 49+ (34Q67)+ 0.21+
Mechanism+of+injury+ + + + + 0.003+
+ Motor+vehicle+accident+ 577+ (33.5)+ 29+ (26.9)+ +
+ Motorcycle+accident+ 170+ (9.9)+ 5+ (4.6)+ +
+ Bicycle+accident+ 77+ (4.5)+ 1+ (0.9)+ +
+ Pedestrian+struck+ 102+ (5.9)+ 14+ (13.0)+ +
+ Fall+ 571+ (33.2)+ 47+ (43.5)+ +
+ Other+ 224+ (13.0)+ 12+ (11.1)+ +
Injury+severity+indicators+ + + + + +
+ Ejection+from+vehicle+ 65+ (3.8)+ 4+ (3.7)+ 0.97+
+ Extrication+ 113+ (6.6)+ 8+ (7.4)+ 0.73+
+ Rollover+motor+vehicle+accident+ 136+ (7.9)+ 8+ (7.4)+ 0.85+
First+measured+preQhospital+vital+signs+ + + + + +
+ Systolic+blood+pressure+ 132+ (27)+ 119+ (28)+ <0.001+
+ Heart+rate+ 94+ (22)+ 95+ (31)+ 0.79+
+ Respiratory+rate+ 20+ (5.3)+ 21+ 6.9)+ 0.28+
+ GCS+ 15+ (13Q15)+ 14+ (9Q15)+ <0.001+
PreQhospital+interventions+ + + + + +
+ Cardiopulmonary+resuscitation+ 25+ (1.5)+ 15+ (13.9)+ <0.001+
+ Chest+decompression+ 24+ (1.4)+ 5+ (3.6)+ 0.025+
+ Intubation+ 263+ (15.3)+ 42+ (38.9)+ <0.001+
Initial+ED+temperature+(C)+ 36.4+ (0.98)+ 35.6+ (2.04)+ 0.002+
Injury+severity+score+ 17.4+ (11.8)+ 26.0+ (13.7)+ <0.001+
Death+before+discharge+ 122+ (7.1)+ 53+ (49.1)+ <0.001+
Hospital+length+of+stay+(days)+ 6+ (2Q12)+ 6+ (1Q19)+ 0.36+
Values+reported+as+median+(SD),+N+(%)+or+median+(IQR).+
Abbreviations:+ACT,+acute+coagulopathy+of+trauma;+ED,+emergency+department;+

GCS,+Glasgow+Coma+Score;+INR,+international+normalized+ratio.+
+
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derivation cohort, the model’s 

AUROC was 0.75 (95% CI 0.69-

0.80). After conversion to a score, 

the AUROC was essentially 

unchanged (0.74, 95% CI 0.69- 

0.79). The Hosmer-Lemeshow 

goodness-of-fit test demonstrated 

no evidence for inadequate model 

fit (p=0.92). Internal validation 

using bootstrap methods estimated 

the optimism contained in the 

PACT score’s AUROC as 0.03 

(95% CI -0.04–0.09), resulting in 

an optimism-adjusted AUROC for 

our ACT prediction score of 0.72 

(95% CI 0.66-0.78). An interactive 

PACT score calculator is available 

online at www.pactscore.com.  

Application of the final PACT score to the more severely injured independent validation 

cohort demonstrated good discrimination, with an AUROC of 0.80 (95% CI 0.72-0.88). 

Performance was superior to the COAST score (Figure 4), which demonstrated an AUROC of 

0.70 (95% CI 0.60-0.80, p=0.038 for comparison). A sensitivity analysis including a PTT >60 

seconds in the definition of ACT yielded similar results (AUROC 0.79 vs 0.71, p=0.048). In 

Table&4:&Demographic,+injury,+and+resuscitation+characteristics+of+
derivation+and+validation+cohorts+

+
Derivation+
cohort+

(N=1829)+

Validation+
cohort+
(N=285)+

Age+ 44.6+ (21.0)+ 48.2+ (19.0)+
Male+sex+ 1327+ (72.6)+ 204+ (71.6)+
NonQwhite+race+ 331+ (18.5)+ 40+ (14.0)+
Hispanic+ 187+ (10.4)+ 18+ (6.4)+
Minutes+from+injury+to+ED+arrival+ 51+ (39Q69)+ 56+ (40Q86)+
Blunt+injury+ 1612+ (88.1)+ 285+ (100)+
Mechanism+of+injury+ + + + +
+ Motor+vehicle+accident+ 606+ (33.1)+ 104+ (36.5)+
+ Motorcycle+accident+ 175+ (9.6)+ 50+ (17.6)+
+ Bicycle+accident+ 78+ (4.3)+ 10+ (3.5)+
+ Pedestrian+struck+ 116+ (6.3)+ 51+ (17.9)+
+ Fall+ 618+ (33.8)+ 44+ (15.4)+
+ Other+ 236+ (12.9)+ 26+ (9.1)+
First+recorded+preQhospital+vital+signs+ + + + +
+ Systolic+blood+pressure+ 131+ (28)+ 116+ (37)+
+ Heart+rate+ 94+ (23)+ 99+ (26)+
+ Respiratory+rate+ 20+ (5.4)+ 19+ (7.6)+
First+recorded+nonQintubated+GCS+ 15+ (13Q15)+ 14+ (8Q15)+
PreQhospital+interventions+ + + + +
+ Cardiopulmonary+resuscitation+ 40+ (2.2)+ 9+ (3.2)+
+ Chest+decompression+ 29+ (1.6)+ 8+ (2.8)+
+ Intubation+ 305+ (16.7)+ 145+ (50.9)+
Initial+ED+temperature+ 36.3+ (1.07)+ 35.9+ (1.23)+
Injury+severity+score+ 17.9+ (12.1)+ 32.3+ (15.1)+
Admission+INR+ 1.19+ (0.77)+ 1.25+ (0.26)+
Acute+coagulopathy+of+trauma+ 108+ (5.9)+ 26+ (9.1)+
Death+before+discharge+ 175+ (9.6)+ 37+ (13.0)+
Values+reported+as+median+(SD),+N+(%)+or+median+(IQR).+
Abbreviations:++ACT,+acute+coagulopathy+of+trauma;+ED,+emergency+

department;+GCS,+Glasgow+Coma+Score;+INR,+international+
normalized+ratio.+
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contrast to the COAST score 

(χdf=5=11.25, p=0.036), the 

Hosmer-Lemeshow goodness-of-fit 

statistic for the PACT score 

demonstrated no statistical 

evidence of inadequate calibration 

(χdf=5=5.51, p=0.37). Graphical 

evaluation of each score suggested 

good calibration of the PACT score 

but an inconsistent association 

between observed and predicted 

ACT risk at higher COAST score 

Table&5:&Results+of+majority+rules+model+selection,+coefficients+of+prediction+model+for+acute+coagulopathy+of+
trauma+and+points+assigned+for+Prediction+of+Acute+Coagulopathy+of+Trauma+(PACT)+score++

Variable+

Models+
containing+
candidate+
predictor+

In+final+
prediction+
model?+

Regression+
coefficient+ SE+ Value+ Points+

per+unit+

First+prehospital+shock+index+≥1+ Forced+into+
model+ Yes+ 0.925+ 0.261+ Yes+ 90+

Age++ 100%+ Yes+ 0.0119+ 0.005+
Age,+rounded+
to+nearest+
decade+

1+

Mechanism+of+injury+not+motor+vehicle,+
motorcycle,+or+bicycle+accident+ 100%+ Yes+ 0.559+ 0.225+ Yes+ 60+

Number+of+GCS+points+below+15+ 98%+ Yes+ 0.0735+ 0.034+ 15+–+GCS+ 7+
Prehospital+CPR+ 100%+ Yes+ 1.069+ 0.468+ Yes+ 110+
Prehospital+intubation+or+advanced+airway+ 64%+ Yes+ 0.487+ 0.333+ Yes+ 50+
Prehospital+chest+decompression+ 2%+ No+ —+ —+ —+ —+
Time+from+injury+to+emergency+department+ 6%+ No+ —+ —+ —+ —+
Constant+ N/A+ Yes+ Q4.288+ 0.341+ —+ —+
Abbreviations:+CPR,+cardiopulmonary+resuscitation;+GCS,+Glasgow+Coma+Score;+N/A,+not+applicable+
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Figure&4.&Comparison+of+the+ability+of+the+PACT+(AUROC+0.79+[0.70Q
0.87])+and+COAST+scores+(AUROC+0.68+[0.58Q0.79])+to+discriminate+
acute+coagulopathy+of+trauma+in+the+ATLAS+cohort+(p=0.041).&
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values (Figure 5). A sensitivity 

analysis dividing the PACT score into 

deciles rather than 7 quantiles of 

predicted risk did not alter these 

conclusions (χdf=8=7.93, p=0.44).  

Setting the PACT score cutoff 

at ≥200 maximized sensitivity and 

specificity at 73.1% and 72.3%, 

respectively (Table 6). Applying this 

threshold to the validation cohort, 187 

of 194 patients (96.4%) with a PACT 

score <200 were correctly identified 

as not having coagulopathy. Among 

those with a positive PACT score, 19 

of 89 (20.9%) had coagulopathy. At 

the COAST score’s recommended 

threshold of ≥3, sensitivity was 26.9% 

and specificity was 86.1% with 36 of 43 

positive results (84.7%) being false 

positives (Table 7).  

  

Figure&5.+Calibration+in+the+validation+cohort+for+observed+
ACT+risk+versus+probability+of+ACT+predicted+by+the+(A)+PACT+
and+(B)+COAST+scores.+Circle+sizes,+proportional+to+the+
number+of+subjects+represented,+indicate+1/7th+quantiles+of+
predicted+risk+(PACT)+or+actual+score+(COAST)+value.&
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Table&6:+Operating+characteristics+for+selected+thresholds+of+the+Prediction+of+Acute+
Coagulopathy+of+Trauma+(PACT)+score+ +
+ ≥50+ ≥100+ ≥150+ ≥200+ ≥250+ ≥300+
Patients+ + + + + + +
+ True+positive+ 25+ 25+ 25+ 19+ 12+ 4+
+ False+positive+ 232+ 198+ 127+ 72+ 31+ 10+
+ True+negative+ 27+ 61+ 132+ 187+ 228+ 249+
+ False+negative+ 1+ 1+ 1+ 7+ 14+ 22+
Operating+characteristics+ + + + + + +
+ Sensitivity+(%)+ 96.2+ 96.2+ 96.2+ 73.1+ 46.2+ 15.4+
+ Specificity+(%)+ 10.4+ 23.6+ 51.0+ 72.3+ 88.0+ 96.1+
+ Positive+likelihood+ratio+ 1.07+ 1.26+ 1.96+ 2.63+ 3.86+ 3.98+
+ Negative+likelihood+ratio+ 0.37+ 0.16+ 0.08+ 0.37+ 0.61+ 0.88+
 

Table&7:+Operating+characteristics+of+the+Coagulopathy+of+Severe+Trauma+(COAST)+score+ +
+ ≥1+ ≥2+ ≥3+ ≥4+ ≥5+
Patients+ + + + + +
+ True+positive+ 23+ 15+ 7+ 1+ 0+
+ False+positive+ 177+ 89+ 36+ 2+ 0+
+ True+negative+ 82+ 170+ 223+ 257+ 259+
+ False+negative+ 3+ 11+ 19+ 25+ 26+
Operating+characteristics+ + + + + +
+ Sensitivity+(%)+ 88.5+ 57.7+ 26.9+ 3.9+ 0+
+ Specificity+(%)+ 31.7+ 65.6+ 86.1+ 99.3+ 100+
+ Positive+likelihood+ratio+ 1.29+ 1.68+ 1.94+ 4.98+ —+
+ Negative+likelihood+ratio+ 0.36+ 0.64+ 0.85+ 0.97+ 1+
+
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DISCUSSION 

 We developed and externally validated a model for predicting ACT prior to ED arrival in 

victims of severe trauma. The PACT score incorporates a small number of objective and easily 

measured data elements routinely available to prehospital providers. Our ACT prediction score 

exhibited good discrimination and calibration when its performance was tested in an independent 

trauma cohort and performed better in both domains than the only previously published ACT 

prediction model. 

The benefits of out-of-hospital identification, expedited triage, and receiving hospital 

notification are well recognized in trauma and other conditions — including stroke and 

myocardial infarction — for which time to treatment affects outcomes (30, 59-61). Given the 

time course of exsanguination-related mortality, the best time to intervene in ACT appears likely 

to be within minutes of injury (13). We created the PACT score in answer to calls for improved 

identification of patients at high ACT risk within this window of opportunity (62, 63).  

Stratification of trauma patients according to ACT risk using the PACT score could aid 

study of the condition’s mechanisms and facilitate interventional trials of its treatment. Enrolling 

patients at high ACT risk would foster efficient resource use, reduce heterogeneity, and enrich 

cohorts with the subjects most likely to benefit from a particular treatment, thereby increasing 

study power. For instance, an important recent study testing 1:1:1 versus 2:1:1 transfusion 

strategies for red blood cells, plasma and platelets failed to show a benefit for its primary end 

point, all-cause mortality, after enrolling patients based on their risk of massive transfusion (64). 

One wonders if targeting patients at high risk of coagulopathy rather than massive transfusion — 

overlapping but not synonymous categories — might have yielded a positive result.  
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The PACT score demonstrated good ability to discriminate patients with ACT. 

Discrimination, measured by the AUC, was in fact better in the validation cohort compared to 

the derivation cohort, suggesting the PACT score has better predictive accuracy for sicker trauma 

patients. This score cannot, however, diagnose ACT with perfect accuracy. The appropriate 

PACT score cutoff will, moreover, depend on the specific application. One ACT authority has 

suggested that a useful ACT prediction model should have at least 90% sensitivity with 

specificity out-performing physician intuition (62). For our model, a score ≥161 is associated 

with 92% sensitivity and 57% specificity. Alternatively, for a theoretical study recruiting patients 

with high ACT risk from the validation cohort, a PACT score ≥250 would enroll 43 patients of 

whom 28% would have ACT. Lowering the threshold to ≥200 would enroll 91 subjects, 21% 

with ACT. Both thresholds compare favorably with the COAST score at its recommended 

threshold, which would enroll 27 subjects with a 19% probability of ACT.  

Patients with ACT experienced substantially increased mortality in both study cohorts. 

This is consistent with previous studies showing ACT to be an independent risk factor for all-

cause and hemorrhage-associated mortality (8, 9, 65). As a whole, variables in our model 

indicate greater injury relative to physiologic reserve, in line with prior research correlating ACT 

prevalence with injury severity and hypoperfusion (7, 66). However, this study was not designed 

to evaluate for independent relationships between ACT and “risk factors” and our results should 

not be interpreted as evidence of causal associations between the studied predictors and ACT.  

The strengths of our study include use of a truly independent cohort for external model 

validation, maintenance of an adequate ratio of events per variable during model selection, and 

use of a model selection algorithm balancing variables’ predictive utility against the risk of 

overfitting. In contrast to complete case analysis, which would have limited our effective sample 
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size and introduced bias into model development and evaluation (38, 67, 68), our approach to 

missing data, multiple imputation, avoided excluding patients with missing predictor values and 

has been widely recommended in recent literature on predictive models (38, 58, 67, 68). 

Nevertheless, we cannot exclude the possibility of residual bias. Excluding patients with missing 

data for the study outcome, admission INR, could also have introduced bias.  

The COAST score’s calculation required several approximations to accommodate 

differences between the Australian derivation dataset and our datasets. We estimated prehospital 

temperature using ED measurements, an extrapolation previously shown to be valid (34). Instead 

of using prehospital providers’ subjective determination of abdominal or pelvic injury, a variable 

that was also not available for our cohorts, we used the abdominal AIS score as was done for a 

sensitivity analysis in the score’s original description (18, 33). These modifications may 

nevertheless have unfairly penalized the COAST score in comparisons with the PACT score. A 

sensitivity analysis substituting the ACT definition employed by Mitra et al. — INR >1.5 or PTT 

>60 seconds — did not alter the results for our comparison of the COAST and PACT scores. 

Our study has several additional limitations. We defined ACT as an INR >1.5 on hospital 

admission, a validated definition (9) which may nevertheless not capture all mechanisms — 

including hyperfibrinolysis — relevant to the syndrome’s impact on trauma outcomes. As noted 

previously, however, our results were unchanged after adding a measure of intrinsic coagulation 

pathway function to our extrinsic pathway-focused definition. Moreover, this increasingly 

common ACT definition does identify a subset of severe trauma patients who, controlling for 

other factors, suffer increased risk of all-cause and hemorrhage-associated mortality (9). In 

parallel with past studies (18), we focused on severely-injured subjects. However, severe injury 

may not be easily recognizable to prehospital providers or on ED admission, and may result in 
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application of the PACT score to patients on whom it has not been tested. The model derivation 

cohort was much less severely injured and, as a result, had less physiologic derangement and 

lower mortality than the validation cohort. This would be expected more rigorously test 

generalizability compared to evaluation in a similarly injured cohort. The fact that the PACT 

score actually performed better in the validation cohort suggests that our model is most accurate 

in very severe injuries. Finally, the incidence of ACT in the validation cohort was lower than 

expected, resulting in a lower than optimal effective sample size for model validation (69). 
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CONCLUSIONS 

We report derivation and external validation of a prediction model that employs objective 

data elements routinely collected by pre-hospital providers to identify patients at increased risk 

of ACT. The PACT score exhibited improved discrimination and calibration relative to a 

previously reported ACT prediction model. Application of the PACT score during study 

recruitment could aid research into ACT treatment by enriching enrolled cohorts with the 

patients most likely to benefit from treatments targeting coagulopathy. 
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