
ABSTRACT

Title of dissertation: IMAGE ESTIMATION AND UNCERTAINTY
QUANTIFICATION

Viktoria Taroudaki, Doctor of Philosophy, 2015

Dissertation directed by: Professor Dianne P. O’Leary
Department of Computer Science

Recorded images are usually contaminated by blur and noise. The restora-

tion of such altered images is an ill-posed problem. Even if the blur is known, the

unknown noise leads to uncertainty in the restored image. The naive restoration

approach fails since it contains a lot of noise at high frequencies that destroys the

computed restored image. To remedy this problem, this work focuses on the compu-

tation of the restored image by using spectral filters that give weight to components

of the image that are not so contaminated by noise. We use different filtering meth-

ods such as the Truncated Tikhonov, Truncated SVD, and new methods that we

created here and we seek to find a near optimal choice of the filter parameter which

will give the best approximation of the original image. We define and compute the

Picard Parameter when the problem satisfies the Discrete Picard Condition, and

with that we estimate the noise properties. Also, we develop a new method to com-

pute the near optimal solution by using statistical analysis which also gives us a way

to estimate the error of the solution, a way to quantify uncertainty.

IMAGE ESTIMATION AND UNCERTAINTY QUANTIFICATION

by

Viktoria Taroudaki

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Dianne P. O’Leary, Chair/Advisor
Professor Radu Balan
Professor David Jacobs
Professor Kayo Ide
Professor Kenneth Elpus, Dean’s Representative

© Copyright by
Viktoria Taroudaki

2015

Dedication

To the people who stood by my side during my PhD studies.

ii

Acknowledgments

This work wouldn’t have been completed without the help of many people. I

appreciate everything they consciously and unconsciously did for me all the years I

was working to increase my knowledge and improve my skills.

First, I would like to thank my advisor, Professor Dianne P. O’Leary who

introduced me to the field of Image Processing and gave me the opportunity to

work on this field for my dissertation under her supervision. I learned so much more

from her as she was there for me at any time inside and outside the University walls.

Second, I would like to thank Professor Radu Balan, Professor Kayo Ide,

Professor David Jacobs, and Professor Kenneth Elpus, for being members of my

Dissertation Committee, for all the scheduling modifications they needed to make

for the defense, and for their very good suggestions and helpful comments on my

work. Also, I should add here Professor Eugenia Kalnay for being a member of my

Preliminary Examination Committee and for giving me advice for improvement.

Next, I would like to thank Professor Konstantina Trivisa, the director of the

AMSC Program. Her help and support since the very first day made me feel I was

in the right place to complete my PhD.

Ms. Alverda McCoy, the AMSC Program coordinator, was always there when-

ever I needed any help with the paperwork for the smooth completion of my studies

and she gave a different kind of support than the faculty or the students.

I would also like to thank my extraordinary colleagues at the AMSC, MATH,

and CS programs who were sharing with me the difficulties of graduate life inside

iii

and outside school. Knowing that I was not alone in this journey gave me motivation

to continue and pursue the doctorate degree. I can only hope that I played some role

in their success. Thank you to Joshua Ballew, Patrick Carlos, Brianna Cash, Marie

Chau, Alex Cloninger, Stefan Doboszczak, Tim Doster, Tyler Drombowsky, Virginia

Forstall Amanda Galante, Ariel Hafftka, Summer Hu, Madhura Joglekar, Anne

Jorstad, Mark Lai, Ioannis Markou, Franck Ndjakou Njeunje, Dimitris Ntogkas,

Enrique Otarola Pasten, Maziar Raissi, Christiana Sabett, Abhishek Sharma, Lucia

Simonelli, Michelle Sobel, Christoforos Somarakis, Alexey Stepanov, Ignacio Tomas,

Hana Ueda, Karamatou Yacoubou Djima, and Arseny Zakharov.

Together with the above fellow students, my friends from the Summer School

at the FIELDS Institute, Toronto Canada in July 2012, and the Gene Golub SIAM

Summer School, Shanghai, China in July 2013 were there to support me during

conferences and not only. They are too many to mention but they know who they

are and I thank them all!

I would also like to thank my friends outside the department. First of all, a

huge thanks to my roommates Irene Kyza, Nisha Kurian, Alec Armstrong, Kara

Johnson, Michael Di Salvo, Lejla Sarcevic, Stephanie Young, Dana Botesteanu,

Wenjin Chung, Abigail Lim, and Tong Wu, who tolerated me during the most

difficult years of my graduate studies and created a friendly environment for me to

work in. They took care of me when I needed it and they appreciated it when I did

the same. They made my life easier. Thanks to George Zoto, George Zaki, Alma

Jean Zaki, Jonathan Jesurai, Khurram Shahzad, Laura Maratou Kolias, Kleoniki

Vlachou, Thodoris Rekatsinas, Evripidis Paraskevas, Konstantinos Zampogiannis,

iv

Elena Stai, Dimitris Spyropoulos, and Jonathan Braxton with whom I shared a

lot of good moments that made me relax in between stressful times, and gave me

strength to stay in the right track for me.

Nothing happens without faith in God, and so, I would like to thank Fa-

ther Nick and Presvytera Kostoula, Father Jason and Presvytera Alexandra, Father

Michael, Joe Mayes, Chrissy Mayes, Aleko Tiches, Kathy Matrakas, Ted Matrakas,

Kristina-Maria Paspalis, Eleni Paspalis, Kostas Paspalis, John Alexiou, Nina Alex-

iou, Patrick O’Donnel, Alexia Christian, Elias Mavromatis, Maria Poulakis, Maria

and Dr. Theodore Papaloizos and all the Parishioners of Saints Constantine and

Helen of Washington DC.

On the friends list, I shouldn’t forget my old friends from Greece and around

the world, Dimitra Trobouki, Argyro Xanthaki, Dimitra Xanthaki, Theoni Agathou,

Nikos Pattakos, Laurel Kanawayer, Ines Brahim, Guillaume Chappel, Sophia Tudin

Karina, Maria Saitaki, Maria Christofi, George Moutsatsos, George Tzanakis, Nikos

Pattakos, Manos Kamarianakis, Nikos Mitsakos, George Papageorgiou, Vasilis Nout-

sis, and Dimitris Antonopoulos. Even though they are far and we don’t communicate

much, I know that they are always there for me.

In addition, I would like to thank my teachers, mentors, and Professors at

the Universities of Crete, Athens and Maryland. Especially, Mrs. Brotzaki, Mr.

Orfanoudakis, Mr. Armaos, the Hellenic Mathematical Society, Prof. Dougalis, Prof.

Makridakis, Prof. Chatzipantelidis, Prof. Garefalakis, Prof. Skandalis, Prof. Stratis,

Prof. Papadopoulou, Prof. Kosioris, Prof. Balan, Prof. Nochetto, Prof. Levermore,

Prof. Ide, Prof. Kalnay, and Ms. Kimberly Fouche who helped and encouraged me

v

before and during my graduate studies. I don’t know where I would have been

without them.

Stephen Semick, my DRP student, helped me develop as a teacher and men-

tor in a different way than the students I had helped as a Teaching Assistant at

the Universities of Crete, Athens and Maryland and he shouldn’t be left without

mentioning.

Another huge thanks goes to the School of Music and the Choral Activities

Program. I spent six years at the University of Maryland singing at the choirs

and had a great time preparing and performing great pieces at the University, the

Kennedy Center, Strathmore, and Mayerhoff Music Halls as well as other places in

Washington DC and Maryland under the direction of great conductors. Thanks to

Dr. Edward Maclary, Dr. Kenneth Elpus, Tim Reno, Stephen Holmes, Scot Hanna-

Weir, Cindy Bauchspies, Allan Laino, Paul Heins, Rachel Carlson, Ianthe Marini,

Steven Seigart, Lauri Johnson, and the members of the University Chorale and

Women’s chorus who let me join them in singing and take a break from work. It

helped me a lot.

My family’s love, guidance and continuous support was there for me whenever

I needed it. I would definitely not be where I am now if they hadn’t helped me

get through struggles that seemed impossible to handle. My parents (Especially

my father, Michael Taroudakis, who was always my example going through this

process), my sisters, my grandmothers, my aunts, uncles, and cousins all showed me

how much they understood that I chose a difficult path to follow and supported me

in any way they could.

vi

Together with my family, Joshua Ballew was always there for me in the best

and the worst moments during the last few years.

I would like to mention that the work presented in this thesis was partially

supported by the NSF Grant DMS 1016266 and that I was also supported by the

Onassis Foundation Scholarship.

Lastly, I would like to thank one of the teachers in my elementary school. I

don’t recall his name but I can’t forget the role he played in my life. He substituted

for my teacher for a few days when I was in the fifth grade. There was a question

about a circle in a square with side length 1 unit. We had to find the area or the

circumference of the circle. It might seem like a very simple exercise but at the time

I was the only one who solved it and he congratulated me. He was the first teacher

who did that for math with me. In addition to that he gave us a song so that we

can remember the first few digits of π. And that was when I decided that I would

like to work more on math. And I didn’t change my mind since then. So thank you

Mr. ...

I am sure I have left out many people that I should thank and I apologize to

those I missed. There were so many people who passed by my life and left a small

or big mark on me that made me who I am and do what I do. And this dissertation

is a result of that. The order I mentioned people above has nothing to do with the

magnitude of the impact all these people had on me. So, thank you all!

vii

Table of Contents

List of Tables xi

List of Figures xii

List of Abbreviations xv

1 Introduction 1
1.1 Point-Spread Function and Blurring Matrix 2
1.2 The model . 4
1.3 Image Restoration . 4
1.4 Spectral Filters . 5
1.5 Generalized Cross Validation and Discrepancy Principle 8
1.6 Our contributions . 9

2 Picard Parameter Estimation 12
2.1 A Fredholm integral equation . 12
2.2 The discrete problem . 14
2.3 Manual estimation of the Picard parameter 16
2.4 Automatic estimation of the Picard parameter when the noise is

Gaussian . 19
2.4.1 Normality testing by histogram 20
2.4.2 The Lilliefors test . 21
2.4.3 Using Lilliefors to estimate the Picard parameter 23

2.5 Results . 25
2.6 Conclusions . 27

3 Near Optimal Filter for TSVD (SOF-TSVD) 29
3.1 Introduction . 29
3.2 Derivation of the optimal TSVD filter (SOF-TSVD method) 30
3.3 Two special cases . 35

3.3.1 Vertical blur . 35
3.3.2 Kronecker products . 36

3.4 Numerical experiments . 38

viii

3.4.1 Set-up . 38
3.5 Conclusions . 47

4 Near Optimal Parameter Choice and Uncertainty Quantification for General
Filters 49
4.1 Introduction . 49
4.2 Our new near-optimal filter method 51
4.3 Uncertainty quantification . 55
4.4 Conclusions . 56

5 New Spectral Filters 57
5.1 Introduction . 57
5.2 Truncated Tikhonov Filter (TTik) . 58
5.3 Truncated Singular Component Filter (TSCMk) 60
5.4 The Hybrid Tikhonov-TSVD (HYBR) Filter 61
5.5 A continuous TSVD (ContTSVD) Filter 63
5.6 The Heaviside (HS) and the Tangent (TAN) Filters 67
5.7 The cubic spline filter . 70
5.8 Conclusions . 76

6 Experimental Evaluation of the Methods 78
6.1 Introduction . 78
6.2 Numerical Results . 79

6.2.1 Example 1 . 80
6.2.2 Example 2 . 90
6.2.3 Example 3 . 100
6.2.4 Example 4 . 109
6.2.5 Example 5 . 117
6.2.6 Example 6 . 126
6.2.7 Example 7 . 135

6.3 Conclusions . 144

7 Conclusions and Future Work 146
7.1 Conclusions . 146
7.2 Future work . 148

7.2.1 Work on the Picard parameter 149
7.2.2 Work on the SOF method . 149
7.2.3 Work on spectral filters . 149

Appendix A Point Spread Functions, Construction of Blurring Matrices, and
Noise 151
A.1 Two common models of blurring . 151

A.1.1 Gaussian blur . 151
A.1.2 Separable Gaussian blur . 154

A.2 Blurring an image and constructing noise 155

ix

Bibliography 156

x

List of Tables

1.1 Model Equation Symbols and Explanation 4

3.1 Relative errors
‖xfilt−xtrue‖
‖xtrue‖ for a 64×64 image. 41

3.2 Estimation of parameter λ for a 64×64 image. 42

3.3 Relative errors
‖xfilt−xtrue‖
‖xtrue‖ for a 128×128 image. 45

3.4 Estimation of parameter λ for a 128×128 image. 45

6.1 Example 1 results. 82
6.2 Example 1 results, continued. 83
6.3 Example 2 results. 92
6.4 Example 2 results, continued. 93
6.5 Example 3 results. 102
6.6 Example 3 results, continued. 103
6.7 Example 4 results. 110
6.8 Example 4 results, continued. 111
6.9 Example 5 results. 119
6.10 Example 5 results, continued. 120
6.11 Example 6 results. 128
6.12 Example 6 results, continued. 129
6.13 Example 7 results. 136
6.14 Example 7 results, continued. 137

xi

List of Figures

1.1 Part of the colorband of a gray-scale image, with pixel values ranging
from 0 (upper left) to 255 (lower right). 2

1.2 Example of an artificial image. 3

2.1 Picard plot of the true blurred image with no noise added. 17
2.2 Picard plot of the known values of the blurred image with added noise

with standard deviation s = 1. 18
2.3 Picard plot of the known values of the blurred image with added noise

with standard deviation s = 10. 18
2.4 Histograms of samples of the normal distribution with size 10000 and

10, and the uniform distribution with size 10 and 10000. 21

3.1 Solutions for low resolution 64× 64 Barbara image and various noise
levels. 43

3.2 Errors for low resolution 64 × 64 Barbara image and various noise
levels. 44

3.3 Solutions for low resolution 128 × 128 Barbara image and various
noise levels. 46

3.4 Errors for low resolution 128× 128 Barbara image and various noise
levels. 47

5.1 Singular values in descending order. 58
5.2 TTik filter. 59
5.3 TSCM filter. 60
5.4 Hybrid filter. 62
5.5 ContTSVD µ parameter definition. The ratio of the distance denoted

by the right green curve over the right red curve is the same as the
ratio of the distance denoted by the left green curve over the distance
denoted by the left right curve. 65

5.6 ContTSVD filter on the left and zoomed area of interest of the Con-
tTSVD filter on the right. 67

5.7 Heaviside 1 Filter. 68
5.8 Heaviside 2 Filter. 69

xii

5.9 Tangent Filter. 70
5.10 Spline filter with 3 knots. 74
5.11 Spline filter with 5 knots. 74
5.12 Spline filter with 10 knots. 75
5.13 Spline filter with 30 knots. 75

6.1 Example 1: Computed solutions. 84
6.2 Example 1: Computed solutions, continued. 85
6.3 Example 1: Errors. 86
6.4 Example 1: Errors, continued. 87
6.5 Example 1: Filters. 88
6.6 Example 1: Filters, continued. 89
6.7 Example 2: Computed solutions. 94
6.8 Example 2: Computed solutions, continued. 95
6.9 Example 2: Errors. 96
6.10 Example 2: Errors, continued. 97
6.11 Example 2: Filters. 98
6.12 Example 2: Filters, continued. 99
6.13 Example 3: Computed solutions. 101
6.14 Example 3: Computed solutions, continued. 104
6.15 Example 3: Errors. 105
6.16 Example 3: Errors, continued. 106
6.17 Example 3: Filters. 107
6.18 Example 3: Filters, continued. 108
6.19 Example 4: Computed solutions. 112
6.20 Example 4: Computed solutions, continued. 113
6.21 Example 4: Errors. 114
6.22 Example 4: Errors, continued. 115
6.23 Example 4: Filters. 116
6.24 Example 4: Filters, continued. 117
6.25 Example 5: Computed solutions. 121
6.26 Example 5: Computed solutions, continued. 122
6.27 Example 5: Errors. 123
6.28 Example 5: Errors, continued. 124
6.29 Example 5: Filters. 125
6.30 Example 5: Filters, continued. 126
6.31 Example 6: Computed solutions. 130
6.32 Example 6: Computed solutions, continued. 131
6.33 Example 6: Errors. 132
6.34 Example 6: Errors, continued. 133
6.35 Example 6: Filters. 134
6.36 Example 6: Filters, continued. 135
6.37 Example 7: Computed solutions. 138
6.38 Example 7: Computed solutions, continued. 139
6.39 Example 7: Errors. 140

xiii

6.40 Example 7: Errors, continued. 141
6.41 Example 7: Filters. 142
6.42 Example 7: Filters, continued. 143

A.1 Point spread functions of size 3× 3. 152
A.2 Blurring matrix A for an image of size 5× 5 with a PSF of size 3× 3. 154

xiv

List of Abbreviations

cdf cumulative distribution function
ContTSVD Continuous Truncated SVD
DP Discrepancy Principle
DPC Discrete Picard Condition
exp std estimated standard deviation
GCV Generalized Cross Validation
HS Heaviside filter
HYBR Tikhonov Truncated SVD Hybrid filter
Matlab Mathworks’ Matrix Laboratory software
PP Picard Parameter
PSF Point Spread Function
SNR Signal-to-Noise ratio
SOF Statistical Optimal Filtering
SVD Singular Value Decomposition
SVE Singular Value Expansion
TAN Tangent Filter
Tik Tikhonov filter
Tikk Tikhonov filter truncated using the PP
TSCM Truncated Singular Component Method
TSCM Truncated Singular Component Method truncated using the PP
TSVD Truncated Singular Value Decomposition
TSVDk Truncated Singular Value Decomposition truncated using the PP

xv

Chapter 1: Introduction

People have always wanted to keep snapshots of their everyday life for reference

at a later time or for research and educational purposes. Cavemen drew on the walls

of the caves using colors made from nature. Later artists painted their houses, graves

and other buildings, objects or paintings with various scenes. More recently, cameras

were invented, first engraving, then analog cameras and at last digital cameras. In

none of these cases is the object represented exactly in the image. But as technology

progresses, the accuracy of the representation increases. Digital cameras give us very

good representations of the true image, but due to the procedure that the image

passes through, blurring occurs. This blurring can be caused by the machine errors

in transforming the image into data in the camera and from the background and

the way of taking the picture. Having clear images is not a luxury. Sometimes it is

a matter of life and death, like in surgeries where the doctor needs to know exactly

where to operate, or in weather forecasts.

The images that are recorded by cameras or medical imaging devices are usu-

ally contaminated by blur and noise that come from factors such as the motion of

the camera or the object, the setting, the surrounding atmosphere or turbulence.

The restoration of such altered images is a challenging problem since it is ill-posed.

1

Even if the blur is known (e.g., due to the motion or defocus), the noise is unknown

and random which can lead to multiple restored images corresponding to a given

noisy blurred image. We seek to better approximate the true image by estimating

the noise properties such as the mean and the standard deviation.

An image is divided into pixels that have values denoting the color of that

pixel. A grayscale image, which we will use for simplicity, has one value for each

pixel, an integer in the interval [0, 255]. 0 is the black color, and 255 is the white

color. See Figure 1.1

Figure 1.1: Part of the colorband of a gray-scale image, with pixel values ranging

from 0 (upper left) to 255 (lower right).

Blurring occurs when the image of a pixel is affected by its neighbors. In this

project, we will assume that this is caused by a linear transformation arising from

the camera.

1.1 Point-Spread Function and Blurring Matrix

In general, the blurring matrix A can be experimentally measured using point

spread functions (PSF) for each pixel of the original image. An easy way to do this

2

is by constructing an artificial image of size mv×mh which contains only one white

pixel (of value 255) as the target pixel, say the (i, j) pixel of the image X (or the

(j−1) ·mv + i element of the vector x formed by stacking the columns of the image)

and black anywhere else (value 0). See Figure 1.2.

Figure 1.2: Example of an artificial image.

We consider this as the image with no blur or noise, and we blur it the same

way as we would blur the original image. Then, we measure the resulting nv × nh

blurred image B, the point spread function. The corresponding vector b, formed by

stacking the columns of B, is the (j − 1) ·mv + i column of the matrix A.

If we know that the blur is spatially invariant, then measuring only one column

of the blurring matrix A is enough to determine the whole matrix, as the rest of the

columns of A are simply going to be some displacement of that one column. (See

Appendix A for more details.)

If the blur is spatially variant, we need to move the target point to all the

pixels of the image and measure the blur to compute all the columns of the blurring

matrix. For more information, someone could consult [21].

3

1.2 The model

We will use the notation in Table 1.1.

Table 1.1: Model Equation Symbols and Explanation

Symbol Size Explanation

A m× n Matrix defined through the point spread function (PSF)

Xtrue Original true image

xtrue n× 1 Vector containing the values corresponding to the pixels of

the image Xtrue

B The blurred image we measure

b m× 1 Vector which contains the values of the pixels of the

blurred image B

e m× 1 Noise vector

With the above notation, the discrete linear model of the blurred grayscale

image is described by the equation

b = Axtrue + e, (1.1)

and we know that 0 ≤ xj ≤ 255, j = 1, . . . , n.

1.3 Image Restoration

Much research has been performed on ways to restore an image (see for ex-

ample [2], [7], [23]) and many different approaches and algorithms are now used to

eliminate noise and blur.

4

My work focuses on the computation of a restored image using spectral filters

that give weight to components of the image that are not so contaminated by noise.

To do this, we estimate the properties of the noise such as the mean and the standard

deviation. For each filtering method, an optimal choice of the filter parameters will

give the best approximation of the original image xtrue.

1.4 Spectral Filters

We assume that b = btrue + e where btrue = Axtrue is the true image, and the

noise e consists of samples from a distribution with mean 0 and standard deviation

s. The matrix A is m × n with m ≥ n, full-rank (rank=n) and generally ill-

conditioned, since it is a discretization of an ill-posed operator. From this point, for

simplicity, we will assume that A is a real matrix but the generalization to complex

is straight-forward.

To explore the ill-conditioning of the matrix A, we look at its singular value

decomposition (SVD). Let the SVD of A be A = UΣVT . The matrices U and V

are orthogonal with size m ×m and n × n respectively. The matrix Σ is a matrix

whose main diagonal elements are the singular values of the matrix A in decreasing

order (σ1 ≥ σ2 ≥ · · · ≥ σn > 0). The other entries in the matrix Σ are zero.

First consider the special case where m = n. Since A does not have zero

singular values, it is nonsingular. The solution of the problem (1.1) can be found by

multiplying both sides of Equation (1.1) by the inverse of the matrix A and taking

into account that the matrices U and V in the SVD are orthogonal (i.e., UT = U−1

5

and VT = V−1), and the matrix Σ is diagonal. This means that

b = Ax + e ↔ b− e = Ax

↔ A−1 (b− e) = x

↔
(
UΣVT

)−1
(b− e) = x

↔ VTΣ−1UT (b− e) = x.

So using the definition of matrix-vector multiplication a few times, the true solution

to our problem is

xtrue =(VTΣ−1)
n∑
i=1

uTi (b− e)

=VT

n∑
i=1

uTi (b− e)

σi

=
n∑
i=1

uTi (b− e)

σi
vi.

(1.2)

where ui is the i-th column of the matrix U and vi is the i-th column of the matrix

V, since Σ is a diagonal matrix with singular values σi

Since the error vector e is unknown, we cannot use this to solve the problem.

One approach to estimating xtrue when m ≥ n is to minimize the norm of the

residual Ax− b. We use the notation ‖.‖ to denote the 2-norm of a vector. Then

min
x
‖Ax− b‖2 = min

x
‖UΣVTx− b‖

= min
x
‖UTUΣVTx−UTb‖

= min
x
‖ΣVTx− β‖

= min
x
‖Σz− β‖,

(1.3)

6

where β ≡ UTb or (βi ≡ uTi b) and z = VTx and since the matrix U is orthogonal,

it satisfies ‖UTy‖ = ‖y‖, for every vector y.

The solution of problem (1.3) is

xnaive =
n∑
i=1

uTi b

σi
vi. (1.4)

This solution is naive since for small singular values, the fraction becomes huge and

may surpass the numbers that a computer can handle. Clearly this is not the desired

solution. For this reason we apply a spectral filter φλ, as

xfilt =
n∑
i=1

φλ(σi)
uTi b

σi
vi. (1.5)

In all of these cases, though, the solution is just an estimate of the original

image since the noise is unknown.

We assume that the problem satisfies the discrete Picard condition [15], which

means that there is a parameter k such that uTi b ≈ uTi e for i ≥ k,

The filter is determined by one or more parameters λ. Examples of such filters

are the truncated SVD (TSVD) filter [10],

φi = φλ(σi) =


1 if σi ≥ σλ,

0 otherwise,

(1.6)

the Tikhonov Filter [22]

φi = φλ(σi) =
σ2
i

σ2
i + λ

, (1.7)

and the TSCM (Truncated Singular Component Method) filter [24]

φi =


1 if |uTi b| > λ2 and i < λ1,

0 otherwise.

(1.8)

7

Notice that all of these filters reduce the contributions for which the Picard condition

predicts that the data is unreliable.

1.5 Generalized Cross Validation and Discrepancy Principle

Our goal is to determine the parameter λ for the filter so that we obtain a good

solution. Here we discuss two popular methods for determining the parameters.

Generalized Cross-Validation (GCV). GCV [11] determines the parameter λ

so that if we leave one observation bi out of the computation, it is best predicted

by the parameters chosen. It has been shown that this means that we minimize the

GCV function

G(λ) =
‖(I−AVΦΣ−1UT)b‖2

2

trace(I−AVΦΣ−1UT))2
, (1.9)

where Φ is the diagonal matrix of the filter factors φi. In the case of the TSVD

filter, this general form of the GCV function can take the more specific form:

G(λ) =
‖b−Axk‖2

2

(n− k)2
. (1.10)

The GCV method makes no assumptions about the error.

The Discrepancy Principle (DP). The Discrepancy Principle [19] computes

the parameter λ for which the norm of the residual approximates the expected

norm of the noise (δ = E(‖e‖2)):

‖b−Axfilt‖2 = τδ, (1.11)

8

where τ is a factor commonly set to τ ∈ {2, 3, 4, 5}. In our work, we used the

parameter τ = 2. This method relies on having a good estimate of the expected

norm of the noise.

1.6 Our contributions

Chapter 2. Assuming the Picard condition holds and that the error is Gaussian,

we propose a method for estimating the properties of the noise, i.e., its mean and

its standard deviation.

For this, we define the Picard Parameter (PP), the index beyond which the

observed data, in the coordinate system of the SVD, are overwhelmed by error.

Automatic estimating of this important Picard Parameter is developed (Section

2.4) and is presented in addition to its manual estimation (Section 2.3).

The Picard Parameter is helpful because it gives an estimate of when the

blurred image’s components are contaminated by noise. We can thus discard those

from our computations to find the solution.

Chapter 3. Ideally, instead of solving (1.3), we want to determine a filter φλ to

minimize the norm of the error:

min
φ
‖xfilt − xtrue‖. (1.12)

This is not possible, since xtrue is not known.

Using statistical analysis, D.P. O’Leary estimated the near-optimal parameter

for Tikhonov filtering [22]. Here, we extend this approach and determine the near-

9

optimal parameter for the TSVD filter.

Chapter 4. Our approach is quite general, and next we show how near-optimal

parameters can be determined for arbitrary filters, including known filters such as

TSCM. We call the method SOF, for Statistically Optimal Filter. We also discuss

how to quantify the uncertainty in the computed solution.

Chapter 5. We propose several new filters: a slight modification of the Tikhonov

Method, the TIKk (Truncated Tikhonov)

φi =


0 if i ≥ λ2,

σ2
i

σ2
i+λ1

otherwise,

(1.13)

a new hybrid filter (HYBR)

φi =


1 if i ≤ λ1,

σ2
i

σ2
i+λ2

if λ1 < i ≤ λ3 − 1,

0 if i ≥ λ3,

(1.14)

a continuous version of the TSVD (ContTSVD)

φλ(y) =


1, if y ≥ λ

y−σi+1

λ−σi+1
, if σi+1 ≤ y < λ

0, if y < σi+1,

(1.15)

some Heaviside filters, and a cubic spline filter with any number of knots.

Chapter 6. We evaluate our new filters and our new SOF method for determining

near-optimal filter parameters by testing against state-of-the-art algorithms such as

the TSVD and Tikhonov filters and use of the Discrepancy Principle and GCV for

determining filter parameters.

10

Chapter 7. In summary, the major contributions of this work are

• Definition of the Picard parameter and development of algorithms for deter-

mining it.

• Development of an algorithm for determining near-optimal filter parameters

for any spectral filtering method.

• Uncertainty quantification through an estimate for the expected error in any

spectral filtering method.

• Development of several new spectral filters. Some of them are modifications

of already known ones like the Truncated Tikhonov filter, combinations of

two filters like the Hybrid filter, or continuous versions of the discrete ones

(ContTSVD). Some of the filters we present in this work are brand new though,

like the Heaviside and Tangent filters or the spline filter either with linear or

logarithmic spacing of the knots.

11

Chapter 2: Picard Parameter Estimation

In this chapter we define the Picard Parameter and discuss its estimation that

will be necessary for the following chapters. To make it easier for the reader to follow,

we define notation that will be used in the rest of the thesis. Initially, in Section 2.1,

we review the continuous Picard condition based on the Fredholm integral equation

and in Section 2.2 the discrete Picard condition that will be used in Chapters 3 and

4. We define the Picard parameter and in Section 2.3 we show how it is estimated

manually. In Section 2.4 we present two ways of automatically estimating the Picard

parameter, using histograms (2.4.1) or the Lilliefors test (2.4.2). Numerical results

and conclusions are given at the end of the chapter (Sections 2.5 and 2.6).

2.1 A Fredholm integral equation

Following the presentation of [20] and [13], we consider the Fredholm equation

of the first kind ∫
Ω

K(s, t)f(t)dt = g(s), (2.1)

with known functions K and g, and unknown function f . For photographic image

deblurring problems, Ω ⊂ R2 is the domain of the image, and f : Ω→ R. According

to the Singular Value Expansion (SVE), a kernel K for which ‖K‖L2 <∞ (i.e., K

12

is square integrable) can be written as

K(s, t) =
∞∑
i=1

µiui(s)vi(t), (2.2)

where ui and vi are the left and right singular functions of K and µi are the singular

values of K, µ1 ≥ µ2 ≥ · · · ≥ 0. The singular functions ui and vi are orthonormal

and the singular values are in nonincreasing order. Because K is square integrable,∑∞
i=1 µ

2
i <∞. According to the Singular Value Expansion theorem

∫
Ω

K(s, t)vi(t)dt = µiui(s), i = 1, 2, · · · . (2.3)

Multiplying (2.1) by ui(s) and integrating with respect to s we obtain

∫
Ω

ui(s)

∫
Ω

K(s, t)f(t)dtds =

∫
Ω

ui(s)g(s)ds.

Using (2.2), we see that

∫
Ω

∫
Ω

ui(s)
∞∑
j=1

µjuj(s)vj(t)f(t)dtds =

∫
Ω

ui(s)g(s)ds.

The functions ui are orthonormal, so

∫
Ω

ui(s)ui(s)ds = 1,∫
Ω

ui(s)uj(s)ds = 0, i 6= j,

and therefore ∫
Ω

µivi(t)f(t)dt =

∫
Ω

ui(s)g(s)ds. (2.4)

Defining the inner product of two functions f and g defined on Ω as

〈f, g〉 ≡
∫

Ω

f(t)g(t)dt, (2.5)

13

equation (2.4) leads to

〈vi, f〉 =
1

µi
〈ui, g〉. (2.6)

Using that, we see that

f(t) =
∞∑
i=1

〈vi, f〉vi(t) =
∞∑
i=1

〈ui, g〉
µi

vi(t). (2.7)

The Picard Condition [20] for problem (2.1) is

∞∑
i=1

(
〈ui, g〉
µi

)2

<∞. (2.8)

If the Picard condition is satisfied, then f is the solution to (2.1). The Picard

condition means that the sequence of inner products {〈ui, g〉} decays faster than

the singular values, {µi}. In this case the problem is well defined and there is a

solution. The problem is that when g includes noise, the Picard condition is usually

violated. Even if the true right-hand side satisfies the Picard condition, the noise is

random and in general does not satisfy it. Thus, the sum does not satisfy the Picard

condition. If that is the case, then there is the possibility that the sequence of inner

products {〈ui, g〉} does not decay faster than the sequence of singular values of K,

{µi}, and then there is no solution. Also that means that for small singular values,

the error dominates, i.e., 〈ui, g〉 ≈ 〈ui, e〉 if µi is small. This observation will be used

later on in the computation of the Picard parameter.

2.2 The discrete problem

Now, let’s see how the previous Fredholm integral equation model relates to

the model of the image deblurring problem as described in Chapter 1.

14

A recorded image is a discretized version of the original image that can be

described as a function f : Ω→ R. The camera will only record a rectangular part

of this image. This rectangular image can be discretized using pixels. Each pixel

will have one value. We can simplify the problem by stacking the pixels of the image

in a vector. For example if the image is n1 × n2, then the pixel that is located in

the d1 row and d2 column will have a new coordinate of i = (d2 − 1) · n1 + d1. The

blurring matrix in the discretized case comes from values of K(s, t) multiplied by

some weights that come from the approximation of the integral by a quadrature

method as described below.

One idea (see [20]) is to discretize (2.1) by using a quadrature method at n

points {tj}nj=1 ⊂ Ω, so that

g(s) =

∫
Ω

K(s, t)f(t)dt ≈
n∑
j=1

wjK(s, tj)f(tj). (2.9)

Using m discrete points {si}mi=1 ⊂ Ω we have m linear equations. If we define the

matrix A to have the elements aij ≡ wjK(si, tj) and define the vectors b and x

with elements bi ≡ g(si) and xj ≡ f(tj), then the system of m equations becomes

b = Ax. For the rest of the discussion we will assume for simplicity that n = m.

We consider the case where there is added noise and so

Ax + e = b. (2.10)

Let A = UΣVT be the singular value decomposition of the matrix A. The

matrices U and V are orthogonal and include as columns the singular vectors of the

matrix A, and Σ is a diagonal matrix whose elements are called the singular values

15

of A, denoted by σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. In the noise-free case, (2.10) takes the

form

Axtrue = btrue. (2.11)

The vector btrue in (2.11) satisfies the discrete Picard condition (DPC) if the cor-

responding coefficients |(βtrue)i| = |uTi btrue| decay on average faster than the σi

(see [13]). The added noise does not necessarily abide by this condition, and the

above statement is not true for (2.10). There is an index k after which the coeffi-

cients |uTi btrue| stop decaying and become close to |εi| = |uTi e|. For a fixed length

of the unknown vector n, define k to be the index for which βi ≈ εi for i ≥ k.

This parameter k is important since it signifies the point after which β =

UTb is dominated by noise. If we discard the components k, · · · , n, we don’t lose

important information and we reduce the computational cost.

We name this parameter k the Picard Parameter.

2.3 Manual estimation of the Picard parameter

The Picard parameter can be estimated graphically. The Picard plots show

the natural logarithm of the |βi| and the singular values σi with respect to the

index i. According to the definition of the discrete Picard condition, on average

the right-hand side values |βi| should decay faster than the corresponding singular

values σi.

Figure 2.1 shows the Picard plot of the upper left 64× 64 part of the Barbara

image blurred by separable Gaussian blur (see Appendix A) with no added noise.

16

In this noise free case, the problem satisfies the DPC. We can see that the elements

of β decay faster than the singular values as expected.

Figure 2.1: Picard plot of the true blurred image with no noise added.

Figures 2.2 and 2.3 show the Picard plots after including noise of standard

deviation s = 1 and s = 10, respectively.

17

Figure 2.2: Picard plot of the known values of the blurred image with added noise

with standard deviation s = 1.

Figure 2.3: Picard plot of the known values of the blurred image with added noise

with standard deviation s = 10.

The behavior of the components of β in the last two plots is different from

18

that of Figure 2.1. We see that β levels off at a certain point due to the additive

noise that does not satisfy the Picard Condition.

The Picard parameter k is the index for which the βi values do not decay as

fast as the singular values due to the noise. That will mean that the βi values mostly

contain error.

When s = 1, the values βi start behaving like the noise after an index slightly

larger than 1000. So we could choose to keep a few more than 1000 singular com-

ponents for this problem. For s = 10 the noise dominates faster and we don’t need

to keep as many as 1000 singular components. In fact we need approximately 800.

This number, the Picard parameter k, is chosen as the index where on average, the

singular values keep decreasing whereas the βi values behave like noise. When there

is no such behavior, we need to keep all of the singular values and k > n.

2.4 Automatic estimation of the Picard parameter when the noise is

Gaussian

The manual estimation of the Picard Parameter in Section 2.3 is determined

by the user by eyesight and is not necessary the same for every user. It also requires

that the computation be paused so that the user can determine the value. In this

section, we seek a method that will work faster and be independent of the user.

We make the assumption that the error that is added to the image is normally

distributed. This assumption will help in determining a simple algorithm for the

estimation of the Picard parameter. Other types of error would require a different

19

testing method for determining where the vector β behaves like ε = uTi e.

So, again, the Picard parameter k is the index after which the βi are close

to the error vector elements, εi: βi ≈ εi, for i ≥ k. We assume that the error

vector is sampled from a normal distribution with unknown mean and standard

deviation. Our goal is to determine a value k beyond which the βi are plausible

samples from a normal distribution. This procedure is called normality testing and

can be approached in different ways.

2.4.1 Normality testing by histogram

The easiest way is to construct the histogram of the values βi, choosing bins so

that the distribution doesn’t seem too coarse or too fine. If the distribution of the

sample seems to have a bell shape, then it is plausible that the sample comes from a

normal distribution with mean and standard deviation close to the ones estimated

from the sample [6].

In general, the larger the sample is, the better the estimates will be. For ex-

ample, in Figure 2.4 the histogram of 10000 samples resembles a normal distribution

with mean 0 whereas the second histogram that uses only 10 samples from a normal

distribution does not resemble a bell-curve. It looks similar to the third histogram

in the figure which is of 10 samples from a uniform distribution. Again, increasing

the number of samples to 10000, we get a better understanding of the distribution.

20

Figure 2.4: Histograms of samples of the normal distribution with size 10000 and

10, and the uniform distribution with size 10 and 10000.

2.4.2 The Lilliefors test

Other methods used for normality testing examine whether a null hypothesis

is valid or not. These tests compare a sample with specific mean and standard

deviation to a normal distribution with the same parameters. These methods include

the D’Agostino’s K-squared test [5], the Jarque-Bera test [16], the Lilliefors test [17],

the Kolmogorov-Smirnov test [18], and others [6].

For our purposes, we will use the Lilliefors test which is an adaptation of the

Kolmogorov-Smirnov test.

The Lilliefors test is performed on a sample of points in three major steps.

21

1. We estimate the population mean and the population variance using the sam-

ple mean and variance.

2. We compute the maximum discrepancy between the empirical distribution

function of the sample and the cumulative distribution function of the normal

distribution with the estimated mean and variance.

3. We assess whether the maximum discrepancy is large enough to be statistically

significant.

More specifically, the empirical distribution function Fn for n independent and

identically distributed observations Xi is defined as

Fn(x) =
1

n

n∑
i=1

IXi≤x, (2.12)

where

IXi≤x(x) =


1 if Xi ≤ x,

0 otherwise.

Since the Lilliefors method is a variation of the Kolmogorov-Smirnov method,

we use a statistic to determine whether the sample is taken from a normal distri-

bution with no specified mean and standard deviation. For that, and for a given

cumulative distribution function (cdf)

F (x) = P (X ≤ x), (2.13)

where P (E) denotes the probability of the event E, we define the maximum dis-

crepancy as

Dn = sup
x
|Fn(x)− F (x)|. (2.14)

22

In the case of the standard normal distribution, the cdf is the integral

Φ(x) =
1√
2π

∫ x

−∞
e
t2

2 dt, (2.15)

whereas for a general normal distribution with mean µ and standard deviation s,

the cdf becomes

F (x) = Φ

(
x− µ
s

)
. (2.16)

According to the Glivenko-Cantelli theorem [1, 9], if the sample that we ex-

amine comes from a distribution F (x), then Fn(x) will uniformly converge to F (x)

almost surely. That is

Dn = ‖Fn − F‖ = sup
x
|Fn(x)− F (x)| → 0 (2.17)

almost surely. In other words, P (limn→∞Dn = 0) = 1.

For the Kolmogorov-Smirnov test and therefore the Lilliefors test, the samples

are standardized (i.e., they are manipulated so that they have mean 0 and standard

deviation 1) and compared to the standard normal distribution. We define the null

hypothesis for this to be “the standardized sample is taken from the standard normal

distribution”. If Dn is less than a desired tolerance, then the null hypothesis that

our sample comes from a normal distribution with mean and standard deviation

the experimental ones is true with some probability. The smaller the tolerance, the

larger the probability is.

2.4.3 Using Lilliefors to estimate the Picard parameter

Based on the above, we want to find the point where the coefficients βi start

behaving like noise by testing whether the sample of βi comes from a normal distri-

23

bution.

The Picard parameter is k when the last n − k + 1 values of βi come from a

normal distribution but adding more values destroys normality.

We estimate k using the Lilliefors test. Initially, we check a small sample of

at least the last four values. While the null hypothesis is satisfied, i.e., the sample

comes from a normal distribution with some confidence that we require, then we

add the next value and check again. If the sample does not come from a normal

distribution with that confidence, then we need to make sure this was not a random

failure due to the specific sample we tested. For this reason, we continue checking

until the null hypothesis fails for a specific number nf of consecutive samples. If the

last value that we used is βi, then k = i+ nf .

The larger the sample is, the larger the number of elements to be added has

to be to actually see some significant difference in the behaviour of a sample and

say with confidence that we have to stop. That means that once we see a sample

that fails the Lilliefors test, especially for a large sample, we can stop. From our

experience and for the sizes of the images we use that go up to 256 × 256, we set

nf = 10. For larger images or for very low rank matrices, it might be necessary to

impose a length limit on the sequence used for the Lilliefors test so that the non-

normal samples are noticeable, testing elements k through k + n̂ when k + n̂ < n.

Since the definition of the Picard parameter can be interpreted as the index

after which the distribution of the right-hand side resembles the distribution of the

noise, the statistical properties of the noise can be estimated from these values. So,

using the Matlab commands

24

exp mean=mean(beta(k:n));

exp stdev=std(beta(k:n));

we can estimate the mean and the standard deviation of the noise after we have

computed the Picard parameter k using the Lilliefors normality test.

In case there is no noise, we expect that the |βi| will decrease in average and

that the DPC will be satisfied. That means that we do not expect the last β values

to resemble a normal distribution, so the Lilliefors test will fail. Thus we would

need to keep all the singular values and we would set k = n+ 1.

In Matlab, the Lilliefors method is implemented using the lillietest com-

mand. It receives as input the sample, and it returns 0 if with 95% certainty the

sample comes from a normal distribution and 1 if it does not.

The resulting algorithm is given in Algorithm 1.

2.5 Results

We designed Algorithm 1 to give us a conservative overestimate of k. We are

looking for an overestimate because we want to make sure that we will not lose

any singular values that would give important information about the image, thus

oversmoothing the image. Ignoring fewer singular values solves this problem but also

adds noise components. A conservative overestimate helps us not neglect important

information but not add too much of the noisy part of the image in the solution.

In case when the DPC is satisfied, the algorithm will return k = n + 1 and

estimate the mean and standard deviation of the noise to be zero.

25

1: Input: The vector β of length n with at least 14 trailing entries due

to noise.

2: Output: The estimated Picard parameter k and the estimated

standard deviation of the noise (exp stdev) and the experimental

mean of the noise (exp mean).

3: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

4: check=sum(h(:));

5: start=n-3;

6: while check < 10 do

7: h = [lillietest(β(start : n)), h(1), h(2), · · · , h(9)]

8: start=start-1;

9: check=sum(h(:));

10: end while

11: k=start+10;

12: if k < n− 3 then

13: exp stdev=std(β(k : n));

14: exp mean=mean(β(k : n));

15: else

16: exp stdev= 0;

17: exp mean= 0;

18: k = n+ 1;

19: end if

Algorithm 1: Picard Parameter Estimation
26

The Algorithm works well as we illustrate here for the examples discussed

earlier in this chapter.

For the problem in Figure 2.2, the result from the code in this case is k = 2253.

The manual estimation is approximately 1800. For the problem in Figure 2.3, the

result from the code in this case is k = 877. The manual estimation is approximately

800. In both cases, the parameter estimated by the code is larger than the one

estimated manually by the user. That means that there is less chance of disregarding

important information given by the image.

Figure 2.1 is the Picard plot for the same image blurred with the same blurring

matrix but with no added noise. The result from the code is k = 4065 which is very

close to the dimension of the problem, 4096. Using the Picard plot in Figure 2.1 we

can see that since there is no noise, the elements of β keep decreasing on average

faster than the corresponding singular values. That means that all of the singular

values should be used. In cases like this when the Picard Parameter is computed to

be very close to the size of the image, the user might choose to disregard it and use

all the singular values.

2.6 Conclusions

In this chapter, we reviewed the discrete Picard condition. We introduced the

Picard Parameter and we described manual and automatic ways of computing it.

The manual approach is based on the Picard plots and the automatic on histograms

and the Lilliefors method for normality testing. We also provided numerical exam-

27

ples. Estimating the Picard parameter is essential in the next chapters that present

the restoration of images using spectral filters. Knowing the Picard parameter will

reduce the computational cost of the restoration, and provide approximations of the

standard deviation and the mean of the noise that are essential for computing the

optimal parameters for the spectral filters we will introduce.

28

Chapter 3: Near Optimal Filter for TSVD (SOF-TSVD)

3.1 Introduction

Recall from Chapter 1 that our goal is to find a approximate solution to the

ill-posed deblurring problem (1.1):

b = Axtrue + e.

Noise makes it difficult to find the solution. One way to find a good estimate of

the solution is by designing filters to diminish the effect of the noise. In the work

presented in this chapter, we follow an approach similar to the one of O’Leary for

the Tikhonov Filter [22] to compute the Optimal TSVD Filter.

In this work, we deviate from the usual definition of the commonly used filters

such as the Tikhonov, the TSVD, and the TSCM filters in terms of the index of the

ordered singular values. We, instead, convert that notation to one that involves the

singular value, rather than the index of the singular value. This gives uniformity for

all the filters whether they are continuous or discrete.

The Tikhonov filter is

φλ(σi) =
σ2
i

σ2
i + λ

, for i = 1, ..., n, (3.1)

29

with a continuous parameter λ ∈ R+, and the TSVD filter is

φλ(σi) =


1 if 1 ≤ i ≤ λ,

0 otherwise ,

(3.2)

parameter λ ∈ {1, . . . , n}.

In Section 3.2, we compute the optimal TSVD filter given the Picard param-

eter computed in Chapter 2. Later, in Section 3.3, we use standard techniques for

the special case of blurs that are separable in order to save time in the SVD. The

numerical experiments presented in Section 3.4 compare our choice of λ with two

standard approaches, the Discrepancy Principle and Generalized Cross Validation.

We show that the optimal filter that we compute performs better than that com-

puted using the Discrepancy Principle or Generalized Cross Validation when the

Picard parameter is chosen wisely. In addition, the method gives relative errors

close to the minimal possible.

3.2 Derivation of the optimal TSVD filter (SOF-TSVD method)

Recall that the solution of the problem (1.3) is

xnaive =
n∑
i=1

uTi b

σi
vi =

n∑
i=1

βi
σi

vi. (3.3)

This solution is naive since it contains a lot of noise at high frequencies that destroys

the computed restored image. The high frequencies appear when the denominator

(i.e., the singular value) is small.

A filtered solution takes the form

xλ =
n∑
i=1

φλ(σi)
βi
σi

vi. (3.4)

30

The truncated SVD filter leaves out the singular values that are smaller than some

value, and the Tikhonov regularization introduces weights to the components of the

solution that decrease as the components are more likely to be contaminated by

noise.

Using the truncated SVD (TSVD), the regularized solution becomes

xTSV D =
λ∑
i=1

uTi b

σi
vi =

λ∑
i=1

βi
σi

vi. (3.5)

For the optimal truncated SVD, we need to compute the λ ∈ R+ for which the

solution is as close to the noise-free problem’s solution as possible. This noise-free

solution is

xtrue =
n∑
i=1

uTi (b− e)

σi
vi =

n∑
i=1

βi − εi
σi

vi, (3.6)

where εi = uTi e.

Ideally, we need to minimize the norm of the error:

min
λ
‖xTSV D − xtrue‖2 ≡ min

λ
f(λ). (3.7)

This is not possible, though, since the original image xtrue is unknown. If we knew

the noise e, we could recover xtrue, so we want to estimate the noise. If the noise-free

system satisfies the discrete Picard condition, we can estimate the properties of the

noise, i.e., its mean and its standard deviation, and use this to estimate f(λ).

31

We see from (3.5), (3.6), and (3.7) that the error function is

f(λ) = ‖xTSV D − xtrue‖2

=
λ∑
i=1

(
βi
σi
−
(
βi − εi
σi

))2

+
n∑

i=λ+1

(
βi − εi
σi

)2

=
λ∑
i=1

(
εi
σi

)2

+
n∑

i=λ+1

(
βi − εi
σi

)2

=
n∑
i=1

(
εi
σi

)2

+
n∑

i=λ+1

(
βi
σi

)2

− 2
n∑

i=λ+1

(
βiεi
σ2
i

)
.

(3.8)

If the third summation did not exist, the minimum value would be attained

for λ = n since the first summation is independent of λ and the second one is non-

increasing as λ increases. This means that we would use the full SVD and we would

not drop any of the singular values.

But for the third summation we have that

• The terms for i ≈ n tend to be the largest (in absolute value) since the

denominators are the smallest.

• If the system satisfies the discrete Picard condition, then for terms with i ≥ k,

where k < n is the Picard parameter defined in Section 2.2, εi ≈ βi.

Therefore, we can approximate f(λ) by

f̂(λ) =
n∑
i=1

(
εi
σi

)2

+
n∑

i=λ+1

(
βi
σi

)2

− 2
n∑
i=k

(
βi
σi

)2

− 2E

(
k−1∑
i=λ+1

βiεi
σ2
i

)
,

where E denotes the expected value and the last summation is understood to be

empty if λ > k − 2.

This helps us because the expected value of the noise is computable and so

the last three terms of f̂(λ) are computable too.

32

Because b = btrue + e, and assuming that the noise has mean 0 and standard

deviation s,

E(βiεi) = E(uTi (btrue + e)εi)

= E(uTi btrueεi) + E(uTi e εi)

= uTi btrueE(εi) + E(ε2i)

= E(ε2i)

= s2.

(3.9)

Therefore,

f̂(λ) =
n∑
i=1

(
εi
σi

)2

+
n∑

i=λ+1

(
βi
σi

)2

− 2
n∑
i=k

(
βi
σi

)2

− 2s2

k−1∑
i=λ+1

1

σ2
i

Since the first and the third terms are independent of λ, we need to find the

λ that minimizes the sum of the other two terms

g(λ) =
n∑

i=λ+1

(
βi
σi

)2

− 2s2

k−1∑
i=λ+1

1

σ2
i

. (3.10)

We name this approach SOF-TSVD, which stands for Statistical Optimal Fil-

tering with the TSVD, since we use statistical methods to deal with the noise. Our

algorithm is summarized as Algorithm 2.

The main cost is that of computing the SVD, O(n3) = O(n3
1n

3
2).

The above algorithm is for general blur when we express the image as a vector.

For the construction of the blurring matrix, we need to take special care of the

boundary conditions, i.e., the boundary pixels of the image blurred. More details

are given in Section A.1.

33

1: Input: Blurring matrix A, given image b, and the Picard parameter

k.

2: Output: Optimal parameter λ∗, restored image x∗.

3: Compute SVD of A = UΣVT .

4: Let β = UTb.

5: Compute experimental standard deviation as:

s = std(β(k : end)).

6: Find the minimizer λ∗ of

g(λ) =
n∑

i=λ+1

(
βi
σi

)2

− 2s2

k−1∑
i=λ+1

1

σ2
i

for λ ∈ {1, . . . , k − 1} (for the SOF-TSVDk variant) or λ ∈ {1, . . . , n}

(for the SOF-TSVD variant).

7: Then

x∗ =
λ∗∑
i=1

βi
σi

vi.

Algorithm 2: Computing the SOF-TSVD and SOF-TSVDk filtered solutions.

34

3.3 Two special cases

We discuss in this section two special cases of blur that reduce computational

cost.

3.3.1 Vertical blur

Vertical blur occurs when the pixel values of the blurred image depend only

on the values of the pixels that are in the same column in the original image. In

this case, deblurring each column of the image is an independent problem. For an

image with n1 rows of pixels, if the blur for each column of pixels is the same, then

we can represent it as an n1 × n1 matrix A and our model becomes

AX + E = B.

For each column bj of the image, we use the method described above to compute the

restored column bj. The final restored image is the set of all the restored columns.

If we denote β = UTB, then the last two steps in Algorithm 2 should be replaced

by:

for every column j in the image do

Find the minimizer λ∗j of

g(λ) =

n1∑
i=λ+1

(
βi
σi

)2

− 2s2

k−1∑
i=λ+1

1

σ2
i

for λ ∈ {1, . . . , k− 1} (for the SOF-TSVDk variant) or λ ∈ {1, . . . , n} (for

the SOF-TSVD variant).

35

Then

x∗j =
λ∗∑
i=1

βij
σi

vi.

end for

The cost of this method is O(n3
1), since the most costly operation we need

to do is to compute the SVD of the n1 × n1 matrix. Everything else only requires

simple operations of matrices of cost O(n2
1). If we do those n2 times for the columns

of the image, then the total cost is O(n3
1 + n2

1n2).

Vertical blur is a special case of separable blur that is discussed next.

3.3.2 Kronecker products

In the general blur approach, the sizes of the matrices that are used in the

computations are large. This results in large computational cost. In particular cases

though, we can increase the efficiency of the algorithms. Some blurring operators

are separable and can be written as a Kronecker product of two other matrices of

sizes that correspond to the number of rows and the number of columns in the image

array. An example is the boxcar filter that is developed by the combination of two

independent blurring motions, horizontal and vertical.

A separable blurring matrix can be decomposed as A = Ar ⊗Ac,where Ar is

the blurring that affects the rows of the image, Ac is the blurring that affects the

columns, and ⊗ denotes the Kronecker product of matrices. If Ar is the identity

matrix, then the blur is vertical blur.

36

For separable blur, the problem becomes: Given the blurred image B and the

matrices Ar and Ac, find the approximation of the true image X when (Ar ⊗Ac) x+

e = b, or equivalently,

AcXAT
r + E = B,

where E is random noise. In Section A.1.2, we discuss one way to compute Ar and

Ac.

Let the SVDs of the matrices Ar and Ac be Ar = UrΣrV
T
r and Ac =

UcΣcV
T
c . Then, except for ordering, the SVD of A is

A = Ar ⊗Ac = (UrΣrV
T
r)⊗ (UcΣcV

T
c) = (Ur ⊗Uc)(Σr ⊗Σc)(Vr ⊗Vc)

T ,

and can be used without being explicitly formed.

The only problem with this is that even if the SVD of the matrix A can be

written as a Kronecker product and can be used without being explicitly formed,

the diagonal matrix of singular values Σr ⊗ Σc is not ordered properly; i.e., the

singular values are not in decreasing order any more. So, in computing our filter,

we need to account for this correctly.

Everything that has been sorted will be denoted by its name under a hat.

Now let’s call S the n1 × n2 matrix that contains the singular values of the

matrix Σc ⊗ Σr as its elements. An ordered vector σ̂ gives the singular values of

the Kronecker product matrix in nonincreasing order. In Matlab, it is computed as

follows.

S=diag(Sc)*(diag(Sr))’;

sigma=reshape(S, n, 1);

37

[sigma hat, ind sort]=sort(sigma,1,’descend’);

where ind sort is the vector of the indices of the singular values when the singular

values are sorted in descending order; i.e., sigma(ind sort(1)) is the largest sin-

gular value and sigma(ind sort(n)) the smallest. The inverse permutation vector

iprm(ind sort)=(1:n)’ is used to reverse the process.

With the above, the algorithm now changes to Algorithm 3.

For an n1 × n2 image, the matrix Ar is n2 × n2 and the matrix Ac is n1 × n1.

The cost of the SVDs for these matrices is of order O(n3
2) and O(n3

1) respectively.

The other costly steps are the formation of B̃ and X∗, which can be done in

O(min(n1, n2) max(n1, n2)2) time. So the total computational cost of the algorithm

is O(max(n1, n2))3 which is much less than O(n3
1n

3
2).

3.4 Numerical experiments

Numerical experiments were performed using the Barbara image with separa-

ble blur with varied resolution. The results for the SOF choice of parameter were

compared to the corresponding ones coming from choosing λ using the Generalized

Cross Validation (GCV) method and the Discrepancy Principle (DP) [14] and by

minimizing the real error of the filtered solution.

3.4.1 Set-up

We apply the methods to the problem using the same noise sample. We

manage that by using the same seed in the random number generation. The mean

38

1: Input: Ar, Ac, B, and the Picard parameter k.

2: Output: λ∗, X∗.

3: Compute the SVD of Ar = UrΣrV
T
r and Ac = UcΣcV

T
c .

4: Let B̃ = UT
c BUr.

5: Compute the n1 × n2 matrix S = diag(Σc)diag(Σr)
T of singular

values.

6: Let σ̂ be the vector of singular values ordered in descending order,

and let β̂ contain the elements of B̃ permuted to correspond to the

ordering of σ̂.

7: Compute the experimental standard deviation as s = std(β̂(k : end)).

8: Find the minimizer λ∗ of

g(λ) =
n∑

i=λ+1

(
β̂i
σ̂i

)2

− 2s2

k−1∑
i=λ+1

1

σ̂2
i

for λ ∈ {1, . . . , k − 1} (for the SOF-TSVDk variant) or λ ∈ {1, . . . , n}

(for the SOF-TSVD variant).

9: Then X∗ = Vc[(B̃./S). ∗Φ]VT
r , where Φij =


1 if Sij ≥ σ̂(λ),

0 otherwise.

Algorithm 3: Computing the SOF-TSVD and SOF-TSVDk filtered solutions

for a separable blur.

39

of the noise is taken to be 0 and the standard deviation will vary, to explore how it

affects the results.

The following results come from the 256 × 256 Barbara image. The tables

show the results of five different methods of computing the solution of the problem

together with some parameters of the noise. The first set of three tables is for a low

resolution 64× 64 image, and the last set of three tables is for the 128× 128 image.

For ease in reading, all the tables show the real standard deviation of the noise in

the first row and the first two tables in each set show the experimental standard

deviation computed by Algorithm 1 in the second row. The third row of the first

two tables in each set tables shows the signal-to-noise-ratio, (SNR) of the blurred

images which is SNR = µ
s
, where µ is the mean of the image B and s the standard

deviation of the noise. The rest of the rows of the tables compare the results of five

different methods using the TSVD filter. These methods are:

• R-TSVD: The real estimate computed by minimizing ‖xfilt−xtrue‖. Note that

this is done with knowledge of the true solution.

• SOF-TSVD: The minimization of g(λ) is performed over possible values λ =

λ1, . . . , λn, using the Picard parameter to estimate the standard deviation.

• SOF-TSVDk: The minimization of g(λ) is performed over possible values

λ = λ1, . . . , λk−1, using the Picard parameter and the estimated standard

deviation.

• GCV-TSVDk: TSVDk filtered solution with parameter chosen using General-

ized Cross Validation.

40

• DP-TSVDk: TSVDk filtered solution with parameter chosen using the Dis-

crepancy Principle.

In each set of tables, the first table compares the relative error of the methods,

whereas the second table compares the parameter chosen, the index of the singular

value at which we truncate, and the third the running time for each of the methods.

Looking at the relative errors, it is seen that the SOF-TSVDk method has

in general a smaller relative error than the Discrepancy Principle method for the

TSVDk filter and thus it better estimates the image. The relative error is also close

to the real relative error when we know the true solution

Example 1

For the first example, the dimension of the Barbara image is 64× 64.

Table 3.1: Relative errors
‖xfilt−xtrue‖
‖xtrue‖ for a 64×64 image.

std 0.1 1 10 25

s 0.127 1.149 10.633 25.598

SNR 1117.136 111.729 11.188 4.486

R-TSVD 0.0296 0.0636 0.126 0.179

SOF-TSVD 0.0296 0.0639 0.126 0.180

SOF-TSVDk 0.0296 0.0639 0.126 0.180

GCV-TSVDk 0.0296 0.0639 0.126 0.180

DP-TSVDk 0.0500 0.101 0.244 0.428

41

Table 3.2: Estimation of parameter λ for a 64×64 image.

std 0.1 1 10 25

s 0.127 1.149 10.633 25.598

SNR 1117.136 111.729 11.188 4.486

R-TSVD 3596 2394 768 491

SOF-TSVD 3596 2377 768 567

SOF-TSVDk 3596 2377 768 567

GCV-TSVDk 3596 2394 768 491

DP-TSVDk 2640 944 178 18

We can see that as the standard deviation of the noise increases, the SNR

decreases which means that the noise affects the image more. That has an effect in

the results as well. The larger the standard deviation, the larger the relative errors

are. But our SOF-TSVDk method works comparably to the R-TSVD method if the

Picard parameter is estimated properly, i.e., if we use all the important informa-

tion. In addition, SOF-TSVDk performs better than the TSVDk with parameter

computed using the Discrepancy Principle, in general.

42

σ = 0.1

σ = 1

σ = 10

σ = 25

Figure 3.1: Solutions for low resolution 64 × 64 Barbara image and various noise

levels.

43

σ = 0.1

σ = 1

σ = 10

σ = 30

Figure 3.2: Errors for low resolution 64×64 Barbara image and various noise levels.

Example 2

For the second example, the dimension of the Barbara image is 128× 128.

44

Table 3.3: Relative errors
‖xfilt−xtrue‖
‖xtrue‖ for a 128×128 image.

std 0.1 1 10 25

s 0.113 1.057 10.424 25.618

SNR 1128.206 112.820 11.282 4.512

R-TSVD 0.0213 0.0512 0.105 0.149

SOF-TSVD 0.0214 0.0526 0.105 0.150

SOF-TSVDk 0.0214 0.0526 0.105 0.150

GCV-TSVDk 0.0214 0.0512 0.105 0.149

DP-TSVDk 0.383 0.0772 0.209 0.400

Table 3.4: Estimation of parameter λ for a 128×128 image.

std 0.1 1 10 25

s 0.113 1.057 10.424 25.618

SNR 1128.206 112.820 11.282 4.512

R-TSVD 14370 9084 2721 1522

SOF-TSVD 14172 8923 2721 1502

SOF-TSVDk 14172 8923 2721 1502

GCV-TSVDk 14370 9084 2721 1522

DP-TSVDk 9968 3477 395 34

We can see that as the standard deviation of the noise increases, the SNR

decreases which means that the noise affects the image more. That has an effect in

the results as well. The larger the standard deviation, the larger the relative errors

45

are. But our SOF-TSVDk method works comparably to the R-TSVD method if the

Picard parameter is estimated properly, i.e., if we use all the important informa-

tion. In addition, SOF-TSVDk performs better than the TSVDk with parameter

computed using the Discrepancy Principle, in general.

σ = 0.1

σ = 1

σ = 10

σ = 25

Figure 3.3: Solutions for low resolution 128× 128 Barbara image and various noise

levels.

46

σ = 0.1

σ = 1

σ = 10

σ = 25

Figure 3.4: Errors for low resolution 128 × 128 Barbara image and various noise

levels.

3.5 Conclusions

In this chapter, we presented a new algorithm for the computation of the near

optimal parameter of the TSVD filter. The analysis uses the statistical properties of

the noise as computed using the Picard parameter discussed in Chapter 2. Ideally,

we want to minimize the norm of the error. That is not possible without knowing

the noise. We overcome this problem by using expected values. That helps in the

sense that we obtain a function that depends only on the standard deviation of the

noise. This can be estimated by using the Picard parameter if the noise-free problem

satisfies the Discrete Picard Condition.

47

We compared our new SOF-TSVD and SOF-TSVDk methods with methods

that choose the TSVD parameter using GCV or the Discrepancy Principle. Ex-

perimental results showed that our method performs well compared to these two

other methods, computing solutions with smaller relative error than the discrep-

ancy principle. When the Picard parameter is computed properly, the solutions

from the SOF-TSVD and SOF-TSVDk methods are comparable to the true optimal

(uncomputable) solution.

48

Chapter 4: Near Optimal Parameter Choice and Uncertainty Quan-

tification for General Filters

4.1 Introduction

We start again with the simple linear model for the image restoration of

b = Ax + e, (4.1)

where b is the observed image in vector form, A the blurring matrix that is known

or can be estimated using the same device that captured the unknown image x to

create b, and e is the unknown random noise.

In Chapter 3 we used the TSVD filter to find the solution x. The goal was to

use statistical analysis to estimate the optimal parameter for the filter so that the

computational cost becomes small and the solution more accurate.

In this chapter, we will follow a similar approach for general filters. Again

the goal is to approximate the real solution xtrue. The existence of noise creates

artifacts that destroy the naive solution, as we saw in Chapter 3. Like TSVD, the

filters considered in this chapter weight the terms in the solution to reduce these

artifacts.

Once again, if the SVD of A is A = UΣV∗, with σ1 ≥ σ2 ≥ · · · ≥ σn > 0,

49

βi ≡ uTi b, and εi ≡ uTe, then the true solution of problem (4.1) is

xtrue =
n∑
i=1

uTi (b− e)

σi
vi =

n∑
i=1

βi − εi
σi

vi. (4.2)

As discussed in Chapter 2, the Discrete Picard condition is satisfied when,

on average, the values βi decay faster than the singular values σi. When noise is

present, this might not be true. The filters weight the terms in (4.2) to decrease the

effect of the noise on the image.

The filtered solution of problem (4.1) is

xfilt =
n∑
i=1

φi
uTi b

σi
vi =

n∑
i=1

φi
βi
σi

vi, (4.3)

where φi = φλ(σi) is the filter component.

So in general, we want to compute the parameters λ of the filter such that the

quantity

‖xtrue − xfilt‖ (4.4)

is minimized.

The Truncated SVD filter has already been discussed in Chapter 3. The

Tikhonov filter has been analyzed in [22]. In Section 4.2, we show how to approxi-

mately minimize (4.4) for a general filter. Then in Section 4.3 we discuss how the

uncertainty in our solution can be quantified by estimating ‖xtrue − xfilt‖. In the

next chapter, we will present some specific cases of useful filters.

50

4.2 Our new near-optimal filter method

We repeat our computation of the error as in Chapter 3 but for the general

filter rather than the TSVD filter.

Our assumptions are that the noise has mean 0 and standard deviation s, and

that k is the Discrete Picard parameter.

We have

‖xtrue − xfilt‖2 =
n∑
i=1

[(
βi − εi
σi

− φi
βi
σi

)]2

=
n∑
i=1

(
(1− φi)βi − εi

σi

)2

=
n∑
i=1

(1− φi)2β2
i + ε2i − 2(1− φi)βiεi

σ2
i

=
n∑
i=1

ε2i
σ2
i

+
n∑
i=1

(1− φi)2β2
i − 2(1− φi)βiεi
σ2
i

=
n∑
i=1

ε2i
σ2
i

+
k−1∑
i=1

(1− φi)2β2
i − 2(1− φi)βiεi
σ2
i

+
n∑
i=k

(1− φi)2β2
i − 2(1− φi)βiεi
σ2
i

. (4.5)

The problem with this is that we do not know what the noise is and so we cannot

compute εi or βiεi. What we can do is notice that the first term of the last equation

does not depend on the filter and so when we try to minimize the error, we can

ignore that term. So now we need to minimize the function

ĝ(φ) =
k−1∑
i=1

(1− φi)2β2
i − 2(1− φi)βiεi
σ2
i

+
n∑
i=k

(1− φi)2β2
i − 2(1− φi)βiεi
σ2
i

. (4.6)

We can do that by approximating this function with another one while esti-

51

mating βiεi by E(βiεi). The values βi are known since they are the blurred image

values in the orthogonal space.

So now, using the fact that βi ≈ εi for i ≥ k, we have

ĝ(φ) ≈
k−1∑
i=1

(1− φi)2β2
i − 2(1− φi)E(βiεi)

σ2
i

+
n∑
i=k

(1− φi)2β2
i − 2(1− φi)β2

i

σ2
i

=
k−1∑
i=1

(1− φi)2β2
i − 2(1− φi)s2

σ2
i

+
n∑
i=k

(1− φi)2β2
i − 2(1− φi)β2

i

σ2
i

,

since

E(βiεi) = E(uTi (btrue + e)εi)

= E(uTi btrueεi) + E(uTi e εi)

= uTi btrueE(εi) + E(ε2i)

= E(ε2i)

= s2.

(4.7)

assuming that b = btrue + e, and that the noise has mean 0 and standard deviation

s.

So our approach is to minimize the function

g(λ) =
k−1∑
i=1

(1− φi)2β2
i − 2(1− φi)s2

σ2
i

+
n∑
i=k

(1− φi)2β2
i − 2(1− φi)β2

i

σ2
i

, (4.8)

with respect to the parameters λ that define the filter φi = φλ(σi), and thus find

the near-optimal filter, which will give us the near-optimal solution. If the mean of

the error distribution is nonzero, then the correct expression is more complicated,

and this expression should not be used.

In this general case, the algorithm is given in Algorithm 4.

52

1: Input: Blurring matrix A, given image b, the Picard parameter k

and the formula for the filter φλ.

2: Output: Optimal parameter λ∗ of the filter, restored image x∗.

3: Compute the SVD of A = UΣVT .

4: Let β = UTb.

5: Estimate the experimental standard deviation as:

exp-stdev = std(β(k : end).

6: Find the minimizer λ∗ of

g(λ) =
k−1∑
i=1

(1− φλ(σi))
2β2

i − 2(1− φλ(σi))s
2

σ2
i

+
n∑
i=k

(1− φλ(σi))
2β2

i − 2(1− φλ(σi))β
2
i

σ2
i

,

with respect to λ.

7: Then, x∗ =
∑n

i=1 φλ∗(σi)
βi
σi

vi.

Algorithm 4: Computing the near optimal filter.

53

Remark 1. It is easy to see that equation (4.8) agrees with the result obtained before

for the TSVD. By substituting

φi =


1 if 1 ≤ i ≤ λ

0 otherwise

in (4.8), we have that

g1(λ) =
k−1∑
i=λ+1

β2
i − 2s2

σ2
i

+
n∑
i=k

β2
i − 2β2

i

σ2
i

=
n∑

i=λ+1

β2
i

σ2
i

− 2s2

k−1∑
λ+1

1

σ2
i

− 2
n∑
k

β2
i

σ2
i

.

(4.9)

But here again the last term is independent of λ, so what we really need to minimize

is

g(λ) =
n∑

i=λ+1

β2
i

σ2
i

− 2s2

k−1∑
λ+1

1

σ2
i

, (4.10)

which is the same quantity that we computed in Chapter 3, Equation (3.10).

Remark 2. Minimizing equation (4.8) for the Tikhonov filter will give the same

solution as the one produced by O’Leary in [22].

Substituting the Tikhonov filter

φi =
σ2
i

σ2
i + λ

, for i = 1, ..., n

in (4.8), we have

g2(λ) =
k−1∑
i=1

(
λ

σ2
i+λ

)2

β2
i − 2 λ

σ2
i+λ

s2

σ2
i

+
n∑
i=k

(
λ

σ2
i+λ

)2

β2
i − 2 λ

σ2
i+λ

β2
i

σ2
i

=
n∑
i=1

(
λ

σ2
i+λ

)2

β2
i

σ2
i

− 2
k−1∑
i=1

(
λ

σ2
i+λ

)
s2

σ2
i

− 2
n∑
i=k

(
λ

σ2
i+λ

)
β2
i

σ2
i

.

(4.11)

54

A way to minimize this is to find the zeros of the derivative

g′2(λ) =
n∑
i=1

2
λβ2

i

(σ2
i + λ)

3 − 2
k−1∑
i=1

s2

(σ2
i + λ)

2 − 2
n∑
i=k

β2
i

(σ2
i + λ)

2 (4.12)

which is the same as finding the zeros of the function

g(λ) =
n∑
i=1

λβ2
i

(σ2
i + λ)

3 −
k−1∑
i=1

s2

(σ2
i + λ)

2 −
n∑
i=k

β2
i

(σ2
i + λ)

2 (4.13)

which is Equation (2.2) in [22].

4.3 Uncertainty quantification

The statistical analysis we used to develop a computable function from the

norm of the error to be minimized can also be used to develop a criterion of uncer-

tainty quantification.

Recall from (4.5) that

‖xtrue − xfilt‖2

=
n∑
i=1

ε2i
σ2
i

+
n∑
i=1

(1− φi)2β2
i

σ2
i

−
k−1∑
i=1

2(1− φi)βiεi
σ2
i

−
n∑
i=k

2(1− φi)βiεi
σ2
i

.

In order to define the function (4.8), we ignored the first term of the above equation

since it did not depend on the filter φ or the parameter λ. In order to estimate

the error though, we need to keep the first term. Since that term is noise and is

unknown, we cannot compute it and so we will use the expected value E(ε2i) to

estimate it.

We also take advantage of the fact that, by hypothesis, the true data compo-

nents are approximately zero for i = k, . . . , n. So we estimate the error only in the

55

directions corresponding to i = 1, . . . , k−1, and we call this ‖xtrue−xfilt‖k So now,

‖xtrue − xfilt‖2
k

≈
k−1∑
i=1

s2

σ2
i

+
k−1∑
i=1

(1− φi)2β2
i

σ2
i

−
k−1∑
i=1

2(1− φi)s2

σ2
i

This quantity is computable. The smaller this quantity is, the more we can believe

in our filtered solution.

4.4 Conclusions

The statistical approach for the computation of the near-optimal parameters

presented for the TSVD in Chapter 3 was extended in this chapter in a more gen-

eral form. We call this general approach the SOF (Statistically Optimal Filtering

method). With this SOF method, we can estimate near-optimal parameters for any

filters whether the parameters to be determined are continuous or discrete, or both,

and regardless of their number.

This method also provides a nice criterion for uncertainty quantification when

the Discrete Picard condition is satisfied by our problem, since the error of the

solution that we get from a specific filter can be estimated using the known data.

In order to show how our SOF method works compared to the established

methods, Generalized Cross Validation (GCV) method and the Discrepancy Prin-

ciple (DP), in Chapter 5, we develop new filters with different kind and number of

parameters. In Chapter 6, we will see that our SOF method behaves comparably to

the GCV and the DP methods.

56

Chapter 5: New Spectral Filters

5.1 Introduction

In this chapter, we introduce some new and useful special cases of the general

filter φλ(σi), i = 1, . . . , n, for which we performed statistical analysis in Section 4.2.

We note that in order to use our SOF method, Algorithm 4, we only need to

have a way to evaluate φλ at the singular values, so we focus on the definition of φλ

and its geometric shape.

In Section 5.2, we discuss a new Truncated Tikhonov filter and in Section 5.3,

the Truncated Singular Component Method filter. Later, in Section 5.4, we intro-

duce a new hybrid method that combines the TSVD with the Tikhonov filter. The

next section, Section 5.5, discusses a new Continuous TSVD filter as an example of

how discrete filters can be modified to be viewed as continuous, which can create

easier minimization problems. Heaviside and Tangent filters are briefly introduced

in Section 5.6. Finally, another new method, the cubic spline with a general num-

ber of knots, is presented in Section 5.7. Numerical examples in the next chapter

provide some insight about how these filters perform. Our SOF method for finding

a near-optimal λ will be compared to Generalized Cross Validation (GCV) and the

Discrepancy Principle (DP) for the same methods.

57

In this chapter we plot typical shapes of the filters using a blurring matrix

whose singular values are plotted in Figure 5.1. When convenient we use the notation

σ(i) = σi.

Figure 5.1: Singular values in descending order.

5.2 Truncated Tikhonov Filter (TTik)

The Truncated Tikhonov filter is a truncated form of the Tikhonov filter:

φi =


σ2
i

σ2
i+λ2

, if 1 ≤ i ≤ λ1,

0, otherwise,

(5.1)

where λ1 and λ2 are the parameters of the filter, with λ1 ∈ Z+ and λ1 < k, k being

the Picard Parameter, and λ2 ∈ R+.

58

The function φλ, shown in Figure 5.2, is

φλ(σ) =


σ2

σ2+λ2
, if σ ≤ σ(λ1),

0, otherwise.

(5.2)

Figure 5.2: TTik filter.

Using this filter, we retain the good properties of the Tikhonov filter, i.e.,

we decrease the weight on the terms that contain the small singular values, and

also we decrease the computational cost since we do not add the terms that do not

contribute any significant information but are dominated by noise.

We can find the optimal parameter set for this filter by finding the optimal λ2

for every possible value of λ1 and then choosing the best overall. Alternatively, we

can set λ1 = k − 1 and solve for λ2, as we did in our numerical experiments.

59

5.3 Truncated Singular Component Filter (TSCMk)

The Truncated Singular Component Method (TSCM) has been proposed by

Rust [24]. The filter is very close to the Truncated Singular Value Decomposition

filter but instead of only truncating with respect to the singular value’s magnitude,

it truncates with respect to uTi b as well. The resulting TSCMk filter is

φi =


1, if 1 ≤ i ≤ λ and |uTi b| > τs2,

0, otherwise ,

(5.3)

where τ is truncation level, s the standard deviation of the noise elements, and

λ ∈ Z+, λ ≤ k, with k being the Picard Parameter.

This filter, shown in Figure 5.3, is unusual in that it is undefined except at the

singular values σ1, . . . , σn and depends on the right-hand-side data of the problem.

Figure 5.3: TSCM filter.

60

Given the values of the Picard parameter k and the truncation level τ , the

filter depends only on the one parameter λ. So given a value for τ , the minimization

in Algorithm 4 is easily done for the single parameter λ.

5.4 The Hybrid Tikhonov-TSVD (HYBR) Filter

In this section, we introduce a new, hybrid filter that combines the Tikhonov

regularization filter with the TSVD filter.

Define the hybrid Tikhonov-TSVD filter as

φi =


1, if i ≤ λ1,

σ2
i

σ2
i+λ3

, if λ1 < i ≤ λ2,

0, if λ2 < i ≤ n.

(5.4)

This filter depends on three parameters, λ1, λ2 ∈ Z+, and λ3 ∈ R+.

That means that we assume that all of the singular values with an index less

than λ1 correspond to important information whereas those which have an index

greater than λ2 correspond to components dominated by noise and as such they are

discarded. In addition, we want λ2 ≤ k, where k is the Picard parameter. For the

intermediate singular values, we apply the Tikhonov filter.

The function φλ, shown in Figure 5.4, is defined by

φλ(σ) =


1, if σ ≥ σ(λ1),

σ2

σ2+λ3
, if σ(λ1) > σ ≥ σ(λ2),

0, if σ(λ2) > σ ≥ σn.

It is useful to note here that with the assumption that the problem satisfies

61

the discrete Picard condition with parameter k, the values that the parameters can

take are limited: 0 ≤ λ1 ≤ λ2 < k, and λ3 ∈ R+.

Figure 5.4: Hybrid filter.

In Algorithm 4, we minimize g(λ) for each possible value of (λ1, λ2) and then

choose the best overall, where 0 < λ1 ≤ λ2 < k.

If instead we constrain λ2 = k − 1, then the hybrid filter is simplified:

φi =


1, if i ≤ λ1,

σ2
i

σ2
i+λ3

, if λ1 < i ≤ k − 1,

0, if i ≥ k.

(5.5)

For simplicity in notation and comparison to the filter described earlier, we do not

62

rename the continuous parameter λ3.

Fuhry and Reichel [8] have created a similar filter called the regularized Tikhonov

Filter. Their filter is the following:

φi =


1, if σi > λ,

σ2
i

λ2
, if λ > σi.

(5.6)

5.5 A continuous TSVD (ContTSVD) Filter

Some filters have continuous parameters (e.g., Tikhonov), some have discrete

parameters (e.g., TSVD) and some have both (e.g., the new HYBR filter of Section

5.4).

Continuous functions of continuous parameters are somewhat easier to handle,

so we show in this section, using TSVD as an example, how discrete parameters

might sometimes be replaced by continuous ones, making a closely related filter.

It is possible to formulate TSVD with a continuous parameter, and we develop

this new filter here. Recall that the TSVD filter is

φi =

{
1, if i ≤ λ,

0, if i > λ.

Here λ is an integer parameter. For some particular integer value λ the singular

values with index i ≤ λ are kept but for i ≥ λ, we assume that they are the cause

of the noise features in the image and we discard them.

By changing this to

φi =

{
1, if σi ≥ λ,

0, if σi < λ,
(5.7)

63

λ becomes a continuous parameter. The cut-off point would depend on the value

of the singular values and not the indices but still the function (4.8) would be

discontinuous with respect to the parameter λ.

One idea to create a function of a continuous parameter λ would be the fol-

lowing:

Suppose λ is such that σi+1 < σi ≤ λ ≤ σi−1. Then define

φλ(σ) =


1, if λ ≤ σ,

σ−σi+1

λ−σi+1
, if σi+1 ≤ σ < λ,

0, if σi+1 > σ.

(5.8)

Here, σi is defined in a way that enforces a gap between singular value σi and singular

value σi+1 and thus avoids the singularities in the denominator of the filter function

value.

Thus,

φλ(σj) =


1, if j < i,

σi−σi+1

λ−σi+1
, if j = i,

0, if j > i.

In the case where i = n, define φλ(σn) = 1. Notice that the filtered solution would

then be the naive solution since φλ(σj) = 1 for j = 1, . . . , n.

Unlike the standard TSVD filter, this filter is a continuous function of σ. But

it is not a continuous function of λ: at the point where λ crosses a singular value,

the filter loses its continuity.

The following is a successful approach to the problem of transforming the

discrete TSVD to one that is continous with respect to λ.

First, let’s assume that the continuous parameter of the filter is λ and that

σi+1 ≤ λ < σi. Let’s also assume that the next distinct singular value less than σi+1

64

is σi+`. Distinct means that the singular values are some chosen tolerance apart.

We could choose the tolerance to be 10−6. Then we define a parameter µ, the point

at which the filter becomes zero, to be

µ = σi+` +
σi+1 − σi+`
σi − σi+1

(λ− σi+1). (5.9)

Thus the ratio of the distance λ−σi+1 to the distance σi−σi+1 is equal to the ratio

of the distance µ − σi+` to the distance σi+1 − σi+`; see Figure 5.5. So as λ slides

toward σi+1, µ slides toward σi+`.

Figure 5.5: ContTSVD µ parameter definition. The ratio of the distance denoted

by the right green curve over the right red curve is the same as the ratio of the

distance denoted by the left green curve over the distance denoted by the left right

curve.

65

With that, we define the continuous TSVD filter as

φλ(σ) =


1, if σ > λ,

σ−λ
λ−µ + 1, if µ < σ ≤ λ,

0, if σ ≤ µ.

(5.10)

This is a continuous version of the TSVD filter. In general, we don’t need to evaluate

the filter at any points other than the singular values. So, with the above notation

and definition of λ and µ, we have that

φλ(σj) =


1, if j < i,

σj−λ
λ−µ + 1, if j = i,

0, if j > i.

(5.11)

.

The filter can be seen in the left plot of Figure 5.6. The right plot shows the

area of interest of the filter. It is obvious that the filter is different than the TSVD

filter but based on the definition, only at one singular value. The filter transitions

from 1 at λ to 0 at µ.

66

Figure 5.6: ContTSVD filter on the left and zoomed area of interest of the Con-

tTSVD filter on the right.

In this section we transformed a discrete filter to a continuous one that can

also be used in Algorithm 4.

5.6 The Heaviside (HS) and the Tangent (TAN) Filters

In general, the filters give more weight to the components of the solution that

correspond to the large singular values and less to those with smaller singular values.

In other words, they are low-pass filters.

The TSVD can be considered as a Heaviside function.

H(y) =


1, if y > 0,
1
2
, if y = 0,

0, if y < 0.

(5.12)

We can use a function that is close to H(y), modified so that some value σ̃

67

maps to 0. Some examples are shown in Figure 5.7.

φλ(σi) = e−e
−(σi−σ̃)/λ (5.13)

Figure 5.7: Heaviside 1 Filter.

Alternatively, we can use the filters

φλ(σ) =
1

1 + e−(σ−σ̃)/λ
(5.14)

shown in Figure 5.8.

68

Figure 5.8: Heaviside 2 Filter.

In both cases, the filters depend on the continuous parameter λ and the choice

of the value σ1 ≤ σ̃ ≤ σn, which can either be specified or used as a second parameter

in the filter.

To avoid the choice of the centering parameter, we can use the Tangent filter

φλ(σ) = λ1 tan

(
λ2
π

4

σ

σ1

)
, (5.15)

where λ = [λ1, λ2].

69

Figure 5.9: Tangent Filter.

This filter, shown in Figure 5.9, depends on two continuous parameters λ1 and

λ2, 0 ≤ λ1 ≤ λ2 ≤ 1.

5.7 The cubic spline filter

Another idea is to create a filter using a cubic spline. A cubic spline s(y) with

knots y1 < y2 < · · · < yp defined on [y1, yp] has the properties:

• It is a cubic polynomial in each interval [yi, yi+1] for i = 1, · · · , p− 1.

• The function, its 1st derivative, and its 2nd derivative are continuous.

• The 3rd derivative can be discontinous only at the knots.

70

Define hi+1 = yi+1− yi for i = 1, · · · , p− 1. In the interval [yi, yi+1], we define

the spline as

si+1(y) = mi
(yi+1 − y)3

6hi+1

+mi+1
(y − yi)3

6hi+1

+ ai(y − yi) + bi (5.16)

for some constants mi, mi+1, ai, bi.

So in total, in order to determine the spline, we need to find a1, . . . , ap−1,

b1, . . . , bp−1, and m1, . . . ,mp. That means our total number of parameters to be

determined is 3p− 2.

Our constraints are continuity of the function and the derivatives at the knots.

Continuity of s(y)

si+1(yi) = mi

h2
i+1

6
+mi+10 + ai0 + bi

and

si(yi) = mi−10 +mi
h2
i

6
+ ai−1hi + bi−1.

By setting these two expressions equal to each other, we have that:

si+1(yi) = mi

h2
i+1

6
+ bi = mi

h2
i

6
+ ai−1(hi) + bi−1 = si(yi).

Doing this for every intermediate knot, this gives p− 2 constraints.

Continuity of s′(y)

We follow the same procedure for the continuity of the first derivative. We

have:

s′i+1(y) = −mi
(yi+1 − y)2

2hi+1

+mi+1
(y − yi)2

2hi+1

+ ai (5.17)

71

Now,

s′i+1(yi) = −mi
hi+1

2
+mi+10 + ai

and

s′i(yi) = −mi−10 +mi
hi
2

+ ai−1.

By setting these two expressions equal to each other, we have that:

s′i+1(yi) = −mi
hi+1

2
+ ai = +mi

hi
2

+ ai−1 = s′i(yi).

and again, we have p− 2 constraints.

Continuity of s′′(y)

For the second derivative, we have:

s′′i+1(y) = mi
(yi+1 − y)

hi+1

+mi+1
(y − yi)
hi+1

. (5.18)

Now,

s′′i+1(yi) = mi +mi+10

and

s′′i (yi) = mi−10 +mi.

By setting these two expressions equal to each other, we have that:

s′′i+1(yi) = mi = s′′i (yi).

Thus our definition of the spline ensures this continuity.

So in total, we have 2p− 4 conditions.

If we set m1 = mp = 0, then we have a total of 2p − 2 conditions and the p

remaining free parameters are the parameters λ of the spline filter.

72

We choose λ = [m2, · · · ,mp−1, a1, b1]. Then we can see that, given values of

these parameters, the other parameters can be determined from

ai = ai−1 +mi
hi + hi+1

2

and

bi = bi−1 + ai−1hi +mi

h2
i − h2

i+1

6
.

Instead of setting m1 = mp = 0, we can set s(y1) = 0 and/or s(yp) = 1.

When s(y1) = 0, we get that

m1 = −b1
6

h2
2

.

Since b1 is a free parameter and y1 and y2 are known, we can find m1 and still use

forward substitution as described above.

In the case when s(yp) = 1, we get that

mp =
6(1− bp−1 − ap−1hp)

(hp)2
.

Since mp is not needed to compute any of the ai or bi, we can still use forward

substitution.

Figures 5.10 – 5.13 show the spline filter with p = 3, 5, 10, and 30 knots. The

plots on the left show the spline filter when the knots are equally spaced on a linear

scale, whereas the plots on the right have the knots equally spaced on a logarithmic

scale.

73

Figure 5.10: Spline filter with 3 knots.

Figure 5.11: Spline filter with 5 knots.

74

Figure 5.12: Spline filter with 10 knots.

Figure 5.13: Spline filter with 30 knots.

75

So, using Algorithm 4, we can determine the optimal λ for the filter φλ(σ) =

s(σ). We can add the condition that φλ(σ) ∈ [0, 1], for σ ∈ [σn, σ1], which holds for

the other filters discussed in this chapter. This could be done as a constraint on the

spline, but we chose to impose it afterward, setting φλ to 0 or 1 if s(σi) falls outside

[0, 1].

Based on our experience, a small number of knots (p = 3, 4, or 5), with y1 = σn

and yp = σ1 (or alternatively, y1 = log(σn) and yp = log(σ1)), is sufficient for good

performance and keeps the computational cost low.

5.8 Conclusions

In this chapter, we introduced several new spectral filters. Some of them are

truncated versions of known filters, using the Picard Parameter as estimated in

Chapter 2, and some others are completely new filters that again include the Picard

Parameter but could be used even if someone does not want to crop them using it.

In Chapter 3, we introduced the TSVDk filter that is a variation of the TSVD

filter when the Discrete Picard condition is satisfied. Assuming that the Discrete

Picard condition is satisfied in our problem and that the Picard parameter has been

computed, we introduced the Truncated Tikhonov filter, a variation of the Tikhonov

filter. In addition, we modified the TSCM method into one that takes into account

the Picard parameter. A Hybrid filter that combines the TSVDk and the Truncated

Tikhonov filter was introduced next to show that we can combine filters to obtain

some of the good properties of both filters. In addition, we created a continuous

76

alternative to the discrete TSVDk filter which gives insight on how methods can be

treated as continuous. Two continuous Heaviside filters and a tangent filter were also

introduced. Finally, we defined and presented the cubic spline filter with a general

number of knots. These knots could be spaced either linearly or logarithmically.

In the next Chapter we implement those filters with three different methods

for determining the parameters λ, our new SOF method as well as GCV and the

DP. The results show that these filters are good filters and that in some cases they

outperform some of the already established filters.

77

Chapter 6: Experimental Evaluation of the Methods

6.1 Introduction

We discussed in Chapter 5 several filters that could be used to compute a

solution xfilt to the inverse problem b = Ax + e when we know the vector b and

the matrix A. In this chapter, we consider b to be the vector of an image that

is contaminated by the known blur A and unknown noise e. We will compare the

performance of the usual TSVD and Tikhonov (TIK) filters to some of the ones that

we developed. The filters will be denoted as follows:

• TIKk: The truncated Tikhonov filter developed in Section 5.2 using the Picard

parameter estimation developed in Chapter 2,

• TSVDk: The TSVD filter developed in Chapter 3 using the Picard parameter

estimation developed in Chapter 2,

• TSCMk: The TSCM filter presented in Section 5.3, truncated using the Picard

parameter estimation developed in Chapter 2,

• HYBR: The Hybrid filter developed in Section 5.4 that combines TSVDk and

TIKk,

78

• SPL lin: The spline filter developed in Section 5.7, with linear spacing of the

knots,

• SPL log: The spline filter developed in Section 5.7, with logarithmic spacing

of the knots.

We use three methods to find the optimal parameter λ for each of the filters.

The name of the method will be denoted as a prefix.

• SOF: Our method for Statistically Optimizing the Filter (SOF) developed in

Chapters 3 and 4

• GCV: Generalized Cross Validation, described in Section 1.5

• DP: Discrepancy Principle, described in Section 1.5

For example, using the above notation, SOF HYBR will denote the Hybrid

filter when computed using our SOF method.

The results are presented in different ways. Tables report the relative errors,

the average error per pixel, and the parameter λ for each filter. Figures show the

images of the solutions and the errors, as well as the optimal filters. The error

images are scaled with white denoting values of at least 0.2 standard deviations.

The better the solution is, the darker the error image should be.

6.2 Numerical Results

In this section, we present a few different examples, using the Barbara, the

Pirate, and the UMD images. The blurring matrix that is used is a separable

79

Gaussian blur as described in Appendix A and is the same for all images of the

same size. The additive noise is always of mean zero and with standard deviation

that varies and is mentioned in each example since it is important.

6.2.1 Example 1

This experiment is performed using a 64 × 64 resolution Pirate image. The

noise that is added is of standard deviation s = 10. The signal to noise ratio that

comes from that is SNR=10.910. The Picard parameter that is computed and used

for the methods that require it is k = 767 that results into an estimated standard

deviation of exp stdev = 10.723.

Tables 6.1 and 6.2 present the results. Our methods perform comparably to

the Full-TSVD method that is computed using all available singular values. That

means that the Picard parameter has been computed correctly and we didn’t lose

much information. Of the new methods, the Hybrid method using GCV to find

the solution is the best. The relative error of the HYBR filter is very close to that

of the TSVD which seems to be the best filter according to our SOF method. It

is interesting to see that whereas the average error of the TSVD is larger that the

one of the HYBR when computed with the GCV method, the relative error behaves

the opposite way. The TSVD and TSVDk with the Discrepancy Principle behave

the worst. It is also interesting to see that the two Spline methods behave very

similarly, and that the Tikhonov filter is a lot worse than the rest of the filters

when computed with the GCV method but better that the rest when we use the

80

Discrepancy Principle.

From Figures 6.1 and 6.2, we can see that the Discrepancy Principle method

oversmooths the image and we can verify the results we mentioned above.

From the error Figures 6.3 and 6.4 we can see that the Discrepancy Principle

method fails to restore the edges of the image. We can also see that the TSVD filter

with the SOF and GCV methods gives the darkest error images, i.e., error images

close to zero. In general, the filters have more error at the edges of the pirate.

Comparing the filter figures (Figures 6.5 and 6.6) we can draw conclusions

about the weight we should give to each singular value. For example, looking at

the TSVD filter and the others as well and knowing that the errors are smaller for

the SOF and GCV methods, we can deduce that the large singular values should be

given a larger weight than what the Discrepancy Principle method assigns but we

shouldn’t give much weight on smaller singular values like the GCV-TIK suggests.

81

Table 6.1: Example 1 results.

Method Relative error Average error Lambda

SOF-TSVD 1.37e-001 1.29e+001 1.00e+003

GCV-TSVD 1.37e-001 1.29e+001 1.00e+003

DP-TSVD 2.57e-001 2.26e+001 1.52e+002

SOF-TIK 1.66e-001 1.57e+001 1.06e-001

GCV-TIK 2.29e-001 2.18e+001 1.72e-002

DP-TIK 2.12e-001 2.08e+001 1.94e-001

SOF-TIKk 1.42e-001 1.30e+001 9.82e-003

GCV-TIKk 1.42e-001 1.31e+001 3.67e-003

DP-TIKk 2.16e-001 2.09e+001 1.87e-001

SOF-TSVDk 1.43e-001 1.31e+001 7.66e+002

GCV-TSVDk 1.43e-001 1.31e+001 7.66e+002

DP-TSVDk 2.57e-001 2.26e+001 1.52e+002

SOF-TSCM 1.45e-001 1.33e+001 1.52e+001

GCV-TSCM 1.45e-001 1.33e+001 1.50e+001

DP-TSCM 2.47e-001 2.26e+001 1.64e+002

SOF-HYBR 1.41e-001 1.29e+001 [4.82e+002 , 6.57e-002]

GCV-HYBR 1.41e-001 1.28e+001 [4.16e+002 , 5.48e-002]

DP-HYBR 2.30e-001 2.07e+001 [1.00e+001 , 5.35e-001]

82

Table 6.2: Example 1 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 1.43e-001 1.30e+001


−8.67e− 001; 1.58e+ 001

−3.17e+ 000;−1.78e− 001

9.614154e− 001



GCV-SPL lin 1.43e-001 1.30e+001


2.70e+ 001;−1.12e+ 001

3.74e+ 000;−2.55e+ 000

1.167968e+ 000



DP-SPL lin 2.42e-001 2.10e+001


1.70e− 001; 8.22e− 001

2.34e− 001; 8.59e− 001

4.238888e− 002



SOF-SPL log 1.43e-001 1.29e+001


3.25e− 001; 2.78e− 004

1.52e− 001; 1.72e− 001

8.324527e− 001



GCV-SPL log 1.43e-001 1.29e+001


2.78e− 001;−5.40e− 001

−5.97e− 001; 2.79e− 001

7.974489e− 001



DP-SPL log 2.44e-001 2.10e+001


9.57e− 001; 5.73e− 001

7.16e− 001; 2.87e− 001

2.724047e− 002



83

Figure 6.1: Example 1: Computed solutions.

84

Figure 6.2: Example 1: Computed solutions, continued.

85

Figure 6.3: Example 1: Errors.

86

Figure 6.4: Example 1: Errors, continued.

87

Figure 6.5: Example 1: Filters.

88

Figure 6.6: Example 1: Filters, continued.

89

6.2.2 Example 2

This experiment is performed using a 64 × 64 resolution Pirate image. The

noise that is added is of standard deviation s = 1. The signal to noise ratio that

comes from that is SNR=108.943. The Picard Parameter that is computed and used

for the methods that require it is k = 2770 that results into an estimated standard

deviation of exp stdev = 1.073.

Tables 6.3 and 6.4 present the results. In general, with the smaller standard

deviation of the noise, the results are better as expected by an order of magnitude.

Our methods perform comparably to the TSVD and the TIK filter that are

computed using all available singular values. That means that the Picard parameter

has been computed appropriately and we didn’t lose much information. The best

results seem to come from the SOF-TIK method, whereas the DP-TSVD and DP-

TSVDk give the worst results. Once again, for each method, our method gives

similar results with those using the GCV method and better than those using the

Discrepancy Principle method. Looking at the two spline filters with the different

spacing, we can see that one filter does not perform better than the other with all

three methods.

Figures 6.7 and 6.8 show the restored images using the above methods. Figures

6.9 and 6.10 show the error images in an appropriate scale and Figures 6.11 and

6.12 show the optimal filters.

The error images now are scaled based on the smaller standard deviation, so

we cannot compare them to the ones from the previous example based on color. We

90

can however see that here, the edges of the image are not as clear as they were with

the higher standard deviation of the noise and again we can mostly see something

at the DP method solutions and not so much in the SOF or GCV results.

From Figures 6.11 and 6.12, we see that fewer singular values are associated

with noise and so we need to give higher weights to more than we did in the example

in Section 6.2.1. Comparing the filters of the SOF-TSVD and the SOF-TSVDk, we

can deduct that the Picard Parameter has been computed properly.

91

Table 6.3: Example 2 results.

Method Relative error Average error Lambda

SOF-TSVD 6.99e-002 6.51e+000 2.41e+003

GCV-TSVD 7.02e-002 6.53e+000 2.38e+003

DP-TSVD 1.08e-001 9.84e+000 1.01e+003

SOF-TIK 6.53e-002 6.02e+000 8.67e-003

GCV-TIK 7.55e-002 7.17e+000 1.30e-003

DP-TIK 7.17e-002 6.53e+000 1.57e-002

SOF-TIKk 6.69e-002 6.17e+000 4.98e-003

GCV-TIKk 6.88e-002 6.42e+000 1.22e-003

DP-TIKk 7.40e-002 6.73e+000 1.56e-002

SOF-TSVDk 6.99e-002 6.51e+000 2.41e+003

GCV-TSVDk 7.02e-002 6.53e+000 2.38e+003

DP-TSVDk 1.08e-001 9.84e+000 1.01e+003

SOF-TSCM 7.24e-002 6.79e+000 1.52e+000

GCV-TSCM 7.20e-002 6.76e+000 1.35e+000

DP-TSCM 9.70e-002 8.85e+000 8.68e+000

SOF-HYBR 6.68e-002 6.15e+000 [1.03e+003 , 5.55e-003]

GCV-HYBR 6.67e-002 6.15e+000 [1.03e+003 , 4.47e-003]

DP-HYBR 8.76e-002 7.65e+000 [2.12e+002 , 4.54e-002]

92

Table 6.4: Example 2 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 6.76e-002 6.27e+000


−5.14e+ 000; 8.52e+ 001

−4.40e+ 001;−2.06e+ 000

1.764376e+ 000



GCV-SPL lin 6.70e-002 6.19e+000


4.93e+ 002;−7.71e+ 002

6.85e+ 002;−2.80e+ 001

4.113429e+ 000



DP-SPL lin 8.87e-002 7.77e+000


1.49e− 001; 7.52e− 001

2.19e− 001; 8.78e− 001

3.925452e− 001



SOF-SPL log 6.66e-002 6.15e+000


−5.38e− 001;−3.37e− 004

9.29e− 001; 5.32e− 001

4.736340e− 001



GCV-SPL log 6.67e-002 6.16e+000


−1.08e+ 000; 7.06e− 001

−7.20e− 001; 7.42e− 001

3.807012e− 001



DP-SPL log 1.03e-001 9.11e+000


9.03e− 001; 6.48e− 001

7.46e− 001;−1.32e− 001

3.180766e− 002



93

Figure 6.7: Example 2: Computed solutions.

94

Figure 6.8: Example 2: Computed solutions, continued.

95

Figure 6.9: Example 2: Errors.

96

Figure 6.10: Example 2: Errors, continued.

97

Figure 6.11: Example 2: Filters.

98

Figure 6.12: Example 2: Filters, continued.

99

6.2.3 Example 3

This experiment is performed using a 64× 64 resolution Barbara image. The

noise that is added is of standard deviation s = 1. The signal to noise ratio that

comes from that is SNR=111.729. The Picard Parameter that is computed and used

for the methods that require it is k = 2394 that results into an estimated standard

deviation of exp stdev = 1.147.

Tables 6.5 and 6.6 present the results.

Figures 6.13 and 6.14 show the restored images using the above methods.

Figures 6.15 and 6.16 show the error images, and Figures 6.17 and 6.18 show the

optimal filters.

In this example, the filter that gives the smaller relative error is the SOF-TIK.

That verifies the fact that our method can give better results that the GCV and

the Discrepancy Principle especially if we see that the GCV-TIK is the worst of all

the filters when we use GCV. In this case GCV-TIK is worse than DP-TIK as well,

something that we don’t see in any of the other filters. The order of magnitude of

the errors in this case is the same as the order of magnitude of the errors in the case

of the Pirate image with the same parameters of the noise.

By looking at either the solution images or the error images, we can see that

DP smooths the image by losing information near the edges of the object whereas

the GCV-TIK solution is not as smooth as the images that are better solutions. This

can be seen from the filter figures as well. The GCV-TIK gives larger weight to small

singular values that are dominated by noise whereas the DP method ignores singular

100

values that hold important information about the image. It is also interesting to see

how quickly the weight of the singular value changes in the case of the spline filter.

Figure 6.13: Example 3: Computed solutions.

101

Table 6.5: Example 3 results.

Method Relative error Average error Lambda

SOF-TSVD 6.35e-002 6.10e+000 2.43e+003

GCV-TSVD 6.35e-002 6.10e+000 2.43e+003

DP-TSVD 1.01e-001 9.47e+000 9.43e+002

SOF-TIK 6.10e-002 5.75e+000 1.24e-002

GCV-TIK 7.09e-002 6.89e+000 1.33e-003

DP-TIK 6.47e-002 6.09e+000 1.69e-002

SOF-TIKk 6.24e-002 5.93e+000 4.43e-003

GCV-TIKk 6.29e-002 6.02e+000 9.01e-004

DP-TIKk 6.88e-002 6.45e+000 1.66e-002

SOF-TSVDk 6.40e-002 6.12e+000 2.38e+003

GCV-TSVDk 6.40e-002 6.12e+000 2.38e+003

DP-TSVDk 1.01e-001 9.47e+000 9.43e+002

SOF-TSCM 6.52e-002 6.25e+000 1.63e+000

GCV-TSCM 6.48e-002 6.22e+000 1.50e+000

DP-TSCM 9.00e-002 8.44e+000 9.68e+000

SOF-HYBR 6.23e-002 5.90e+000 [1.00e+003 , 5.40e-003]

GCV-HYBR 6.23e-002 5.89e+000 [1.00e+003 , 5.18e-003]

DP-HYBR 8.77e-002 7.96e+000 [5.56e+002 , 8.59e-002]

102

Table 6.6: Example 3 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 6.42e-002 6.12e+000


−1.63e+ 000; 4.33e+ 001

−2.01e+ 001;−9.81e+ 000

6.352153e+ 000



GCV-SPL lin 6.56e-002 6.18e+000


3.37e+ 002;−1.47e+ 002

2.14e+ 002;−2.14e+ 001

3.399844e+ 000



DP-SPL lin 8.45e-002 7.60e+000


1.47e− 001; 7.57e− 001

2.21e− 001; 8.74e− 001

4.002758e− 001



SOF-SPL log 6.36e-002 6.03e+000


6.09e+ 001; 5.83e− 005

−8.52e+ 000;−1.09e+ 001

4.013329e+ 000



GCV-SPL log 6.42e-002 6.05e+000


7.59e− 001;−4.62e− 001

−1.60e− 001;−1.35e− 001

8.878763e− 001



DP-SPL log 9.44e-002 8.59e+000


9.12e− 001; 6.14e− 001

7.21e− 001; 2.17e− 002

3.078151e− 002



103

Figure 6.14: Example 3: Computed solutions, continued.

104

Figure 6.15: Example 3: Errors.

105

Figure 6.16: Example 3: Errors, continued.

106

Figure 6.17: Example 3: Filters.

107

Figure 6.18: Example 3: Filters, continued.

108

6.2.4 Example 4

This experiment is performed using the 128 × 128 Pirate image. The noise

that is added is of standard deviation s = 1. The signal to noise ratio that comes

from that is SNR=110.033. The Picard Parameter that is computed and used for all

the methods that require it is k = 16013 that results into 372 cropped eigenvalues

and an estimated standard deviation of exp stdev = 0.961.

Tables 6.7 and 6.8 present the results.

Figures 6.19 and 6.20 show the restored images using the above methods.

Figures 6.21 and 6.22 show the error images, and Figures 6.23 and 6.24 show the

optimal filters.

What is very interesting with this problem is the fact that the SOF method

fails when paired with the TSVD. That happens because the method keeps all the

singular values (see Figure 6.23). By giving the same weight in all singular values,

we don’t really deblur the image. The Tikhonov filter paired with the SOF method

gives a very good estimate. When we combine the two methods though to the

HYBR filter, the SOF method doesn’t fail but it works better than each of the two

individually. The same happens when we use the GCV method as well. Another

interesting fact with this example is that the DP-TIK is better than the GCV-TIK

and that the SOF-TSCM and GCV-TSCM perform worse than the other filters with

the corresponding methods and the DP-TSCM. This is easily seen in the figures of

the solution and of the error.

Our methods perform comparably to the TSVD method that is computed

109

Table 6.7: Example 4 results.

Method Relative error Average error Lambda

SOF-TSVD 1.19e+001 1.14e+003 1.64e+004

GCV-TSVD 6.02e-002 5.60e+000 8.90e+003

DP-TSVD 8.58e-002 7.51e+000 3.96e+003

SOF-TIK 5.43e-002 5.10e+000 5.35e-003

GCV-TIK 7.10e-002 6.81e+000 1.34e-003

DP-TIK 5.69e-002 5.16e+000 1.44e-002

SOF-TIKk 5.43e-002 5.10e+000 5.35e-003

GCV-TIKk 7.10e-002 6.81e+000 1.34e-003

DP-TIKk 5.69e-002 5.16e+000 1.44e-002

SOF-TSVDk 5.89e-002 5.53e+000 9.97e+003

GCV-TSVDk 6.02e-002 5.60e+000 8.90e+003

DP-TSVDk 8.58e-002 7.51e+000 3.96e+003

SOF-TSCM 3.85e-001 3.69e+001 1.36e+000

GCV-TSCM 4.61e-001 4.42e+001 6.05e-001

DP-TSCM 7.81e-002 7.00e+000 7.64e+000

SOF-HYBR 5.37e-002 5.04e+000 [4.46e+003, 5.78e-003]

GCV-HYBR 5.39e-002 5.07e+000 [4.10e+003 , 5.47e-003]

DP-HYBR 8.44e-002 7.38e+000 [3.77e+003, 7.44e-001]

110

Table 6.8: Example 4 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 5.49e-002 5.16e+000


5.94e+ 001; 3.25e+ 003

−3.80e+ 002; 6.33e+ 000

−1.786134e− 002



GCV-SPL lin 5.84e-002 5.54e+000


−4.06e+ 000;−3.64e+ 000

2.13e+ 001; 1.27e+ 000

6.746483e− 001



DP-SPL lin 6.51e-002 5.71e+000


1.43e− 001; 7.09e− 001

6.34e− 001; 5.45e− 001

4.663053e− 001



SOF-SPL log 5.88e-002 5.55e+000


6.86e− 001;−1.69e− 001

6.88e− 001;−5.54e− 001

4.987661e− 001



GCV-SPL log 5.34e-002 4.94e+000


1.01e+ 000;−7.96e− 003

−4.85e− 001;−8.95e− 001

5.496191e− 001



DP-SPL log 7.99e-002 6.64e+000


1.00e+ 000; 1.81e− 001

1.21e− 001;−1.14e+ 000

4.093088e− 001



111

using all available singular values. That means that the Picard parameter has been

computed correctly and we didn’t lose much information. The new Hybrid method

using GCV to find the solution is the best whereas the TSVD with the Discrepancy

Principle behaves the worst. The Truncated Tikhonov is the best method if the

GCV method is not used and very close to the Hybrid method when GCV is used.

Figure 6.19: Example 4: Computed solutions.

112

Figure 6.20: Example 4: Computed solutions, continued.

113

Figure 6.21: Example 4: Errors.

114

Figure 6.22: Example 4: Errors, continued.

115

Figure 6.23: Example 4: Filters.

116

Figure 6.24: Example 4: Filters, continued.

6.2.5 Example 5

This experiment is performed using the 128 × 128 Barbara image. The noise

that is added is of standard deviation s = 1. The signal to noise ratio that comes

117

from that is SNR=112.820. The Picard Parameter that is computed and used for all

the methods that require it is k = 9943 that results into 6442 cropped eigenvalues

and an estimated standard deviation of exp stdev = 1.050649.

Tables 6.9 and 6.10 present the results.

Figures 6.25 and 6.26 show the restored images using the above methods.

Figures 6.27 and 6.28 show the error images, and Figures 6.29 and 6.30 show the

optimal filters.

Even though the SOF-TSVD does not fail in this case, the SOF-HYBR and

the GCV-HYBR are better than the TSVD and the TIK filters when computed

using the same methods. DP-TIK is still better than the the Hybrid though when

computed using the Discrepancy Principle. The spline filters give very good results

as well similar to the other methods.

It can be seen here as well that the DP method oversmooths the image and

that is why the error images show the edges of Barbara.

118

Table 6.9: Example 5 results.

Method Relative error Average error Lambda

SOF-TSVD 5.12e-002 4.87e+000 8.92e+003

GCV-TSVD 5.26e-002 4.93e+000 7.97e+003

DP-TSVD 7.72e-002 6.72e+000 3.47e+003

SOF-TIK 4.82e-002 4.50e+000 1.28e-002

GCV-TIK 6.70e-002 6.53e+000 1.38e-003

DP-TIK 4.98e-002 4.61e+000 1.59e-002

SOF-TIKk 4.85e-002 4.55e+000 7.07e-003

GCV-TIKk 5.04e-002 4.83e+000 9.65e-004

DP-TIKk 5.16e-002 4.76e+000 1.58e-002

SOF-TSVDk 5.12e-002 4.87e+000 8.92e+003

GCV-TSVDk 5.26e-002 4.93e+000 7.97e+003

DP-TSVDk 7.72e-002 6.72e+000 3.47e+003

SOF-TSCM 5.12e-002 4.88e+000 1.49e+000

GCV-TSCM 5.13e-002 4.91e+000 1.34e+000

DP-TSCM 6.95e-002 6.22e+000 8.97e+000

SOF-HYBR 4.80e-002 4.45e+000 [4.46e+003, 1.08e-002]

GCV-HYBR 4.79e-002 4.46e+000 [3.99e+003, 8.99e-003]

DP-HYBR 7.48e-002 6.41e+000 [3.14e+003, 4.61e-001]

119

Table 6.10: Example 5 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 4.86e-002 4.50e+000


3.87e+ 002;−2.17e+ 002

−3.28e+ 002;−2.17e+ 001

3.287367e+ 000



GCV-SPL lin 4.88e-002 4.50e+000


1.61e+ 002;−1.80e+ 001

−2.74e+ 002;−1.06e+ 001

2.153707e+ 000



DP-SPL lin 6.14e-002 5.05e+000


1.44e− 001; 6.99e− 001

5.98e− 001; 5.57e− 001

4.899174e− 001



SOF-SPL log 4.84e-002 4.48e+000


4.85e− 001;−1.07e+ 000

6.71e− 001; 2.50e− 001

5.310893e− 001]



GCV-SPL log 4.84e-002 4.48e+000


6.39e− 001;−1.44e+ 000

5.67e+ 000; 2.21e− 001

5.313338e− 001



DP-SPL log 7.46e-002 6.14e+000


1.29e+ 000; 2.12e− 001

1.25e− 001; 1.12e− 001

−3.996123e− 001



120

Figure 6.25: Example 5: Computed solutions.

121

Figure 6.26: Example 5: Computed solutions, continued.

122

Figure 6.27: Example 5: Errors.

123

Figure 6.28: Example 5: Errors, continued.

124

Figure 6.29: Example 5: Filters.

125

Figure 6.30: Example 5: Filters, continued.

6.2.6 Example 6

This experiment is performed using the 256×256 UMD image. The noise that

is added is of standard deviation s = 1. The signal to noise ratio that comes from

126

that is SNR=205.4301. The Picard Parameter that is computed and used for all the

methods that require it is k = 64790 that results into 747 cropped eigenvalues and

an estimated standard deviation of exp stdev = 0.98769.

Tables 6.11 and 6.12 present the results. We omitted the HYBR problem due

to the computational time it requires.

Figures 6.31 and 6.32 show the restored images using the above methods.

Figures 6.33 and 6.34 show the error images, and Figures 6.35 and 6.36 show the

optimal filters.

In general the errors now are smaller than with the Pirate image when the

same noise is used. That tells us that the image plays an important role on how the

restoration is affected by the image. Something noticeable from the error figures is

the border of the images that is whiter than the rest of the image including the logo

itself.

In this case the SPL lin method gives the smallest error when computed with

the SOF method or the GCV method. The TSCM filter though that gives relative

errors of an order of magnitude higher than the rest filters when computed with the

SOF or GCV methods, gives the best results when the DP method is used.

127

Table 6.11: Example 6 results.

Method Relative error Average error Lambda

SOF-TSVD 2.48e-002 3.91e+000 3.54e+004

GCV-TSVD 2.53e-002 3.65e+000 3.13e+004

DP-TSVD 3.77e-002 3.86e+000 1.38e+004

SOF-TIK 2.48e-002 4.06e+000 7.37e-003

GCV-TIK 4.46e-002 7.76e+000 7.87e-004

DP-TIK 2.47e-002 4.01e+000 8.54e-003

SOF-TIKk 2.48e-002 4.06e+000 7.37e-003

GCV-TIKk 4.46e-002 7.76e+000 7.87e-004

DP-TIKk 2.47e-002 4.01e+000 8.54e-003

SOF-TSVDk 2.48e-002 3.91e+000 3.54e+004

GCV-TSVDk 2.53e-002 3.65e+000 3.13e+004

DP-TSVDk 3.77e-002 3.86e+000 1.38e+004

SOF-TSCM 3.29e-001 5.73e+001 1.40e+000

GCV-TSCM 4.20e-001 7.30e+001 4.58e-001

DP-TSCM 2.38e-002 3.62e+000 1.11e+001

128

Table 6.12: Example 6 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 2.36e-002 3.62e+000


1.37e+ 000; 3.86e− 001

−3.97e− 003; 3.67e+ 000

4.773255e− 002



GCV-SPL lin 2.42e-002 3.84e+000


−2.45e+ 001; 2.56e+ 001

1.04e+ 001; 4.59e+ 000

3.226832e− 002



DP-SPL lin 3.05e-002 4.54e+000


6.24e− 001; 1.02e− 001

4.23e− 001; 2.45e− 001

6.403497e− 001



SOF-SPL log 3.44e-002 5.78e+000


4.14e− 002; 3.74e− 001

−2.57e− 002;−1.64e− 001

2.620007e− 001



GCV-SPL log 2.25e-002 3.19e+000


9.26e− 001; 1.36e− 001

−2.76e− 001;−1.09e+ 000

6.735136e− 001



DP-SPL log 3.78e-002 3.56e+000


8.17e− 001; 2.33e+ 000

7.91e+ 000;−4.09e+ 000

−1.603588e− 001



129

Figure 6.31: Example 6: Computed solutions.

130

Figure 6.32: Example 6: Computed solutions, continued.

131

Figure 6.33: Example 6: Errors.

132

Figure 6.34: Example 6: Errors, continued.

133

Figure 6.35: Example 6: Filters.

134

Figure 6.36: Example 6: Filters, continued.

6.2.7 Example 7

This experiment is performed using the 256×256 UMD image. The noise that

is added is of standard deviation s = 10. The signal to noise ratio that comes from

that is SNR=20.539. The Picard Parameter that is computed and used for all the

methods that require it is k = 64790 that results into 747 cropped eigenvalues and

an estimated standard deviation of exp stdev = 9.8769.

135

Table 6.13: Example 7 results.

Method Relative error Average error Lambda

SOF-TSVD 5.25e-002 7.92e+000 1.29e+004

GCV-TSVD 5.25e-002 7.92e+000 1.29e+004

DP-TSVD 1.16e-001 1.53e+001 2.70e+003

SOF-TIK 8.94e-002 1.55e+001 4.88e-002

GCV-TIK 1.57e-001 2.74e+001 9.82e-003

DP-TIK 1.03e-001 1.88e+001 8.99e-002

SOF-TIKk 8.94e-002 1.55e+001 4.87e-002

GCV-TIKk 1.57e-001 2.74e+001 9.82e-003

DP-TIKk 1.03e-001 1.88e+001 8.99e-002

SOF-TSVDk 5.25e-002 7.92e+000 1.29e+004

GCV-TSVDk 5.25e-002 7.92e+000 1.29e+004

DP-TSVDk 1.16e-001 1.53e+001 2.70e+003

SOF-TSCM 3.29e+000 5.73e+002 1.40e+001

GCV-TSCM 4.20e+000 7.31e+002 4.35e+000

DP-TSCM 1.04e-001 1.65e+001 1.62e+002

136

Table 6.14: Example 7 results, continued.

Method Relative error Average error Lambda

SOF-SPL lin 2.53e-001 4.40e+001


5.51e+ 004; 6.53e+ 004

−4.44e+ 002;−9.18e+ 003

7.746834e+ 002



GCV-SPL lin 4.82e-002 6.71e+000



−3.16e+ 000

−9.45e+ 000

−2.29e+ 000

3.73e+ 000

−8.148776e− 001



DP-SPL lin 1.18e-001 1.67e+001


5.87e− 001; 1.90e− 001

5.15e− 001; 2.18e− 001

1.408959e− 001



SOF-SPL log 2.46e-001 4.28e+001


3.27e− 001;−1.32e− 003

7.42e− 001;−5.77e− 001

5.810294e− 001



GCV-SPL log 4.82e-002 6.74e+000


4.84e− 001; 9.32e− 001

8.66e− 003;−1.20e+ 000

2.407503e− 001



DP-SPL log 1.15e-001 1.37e+001


3.18e+ 000; 7.85e+ 000

3.57e+ 001;−2.05e+ 001

−1.578348e+ 000



137

Figure 6.37: Example 7: Computed solutions.

138

Figure 6.38: Example 7: Computed solutions, continued.

139

Figure 6.39: Example 7: Errors.

140

Figure 6.40: Example 7: Errors, continued.

141

Figure 6.41: Example 7: Filters.

142

Figure 6.42: Example 7: Filters, continued.

Tables 6.13 and 6.14 present the results of seven different filters (omitting

HYBR) for the computation of the solution of the image restoration problem.

Figures 6.37 and 6.38 show the restored images using the above methods.

Figures 6.39 and 6.40 show the error images, and Figures 6.41 and 6.42 show the

optimal filters.

As expected, the errors here increase due to the higher noise that was added to

the image. In general, the SOF method produces better results than the GCV and

143

the DP methods except for the case of the TSCM filter and the spline filters. Once

again we can conclude that different filters work better with different methods. The

TSVD and TSVDk seem to work better than the rest with the SOF method whereas

the TIK and TIKk seem to give better results than the other methods paired with

the DP. The SPL lin and SPL log paired with the GCV give the best solutions

and the least error overall.

This can be seen in the figures as well. The TSCM with SOF and GCV does

not give a solution that resembles the UMD logo and different methods paired with

different filters either oversmooth the image or keep part of the noise in them. In

contrast with the previous example, here we see more noise in the logo than in the

borders of the image.

From the filters figures, we can also conclude that we need only a small portion

of the singular values to get a good estimate of the image solution. It is also

interesting to see how a small spike between the SOF-SPL log and GCV-SPL lin

filters creates such a different solution with different errors.

6.3 Conclusions

It seems from the experiments that the in general the SOF method works

better than the Discrepancy Principle which gives error images that show the edges

of the images. It seems though that the TSCMk filter does not work as well with the

SOF method than it does with the Discrepancy Principle. Our TSVDk filter also

performs better than the TSVD filter which sometimes fails. Different filters give

144

smaller errors with different methods. It is not always the same method that will

give the best results and a filter might give very good results with one method but

very bad results with another one. In general, our new filters and our new method

are very competitive with the already known ones since they perform better in many

cases. The HYBR filter combines good properties of the TSVD and the TIK filters

and in many cases it gives better results than both of the filters it consists of. The

trade-off for this filter though is the running time which is not reported here but is

larger than that of the other filters since it combines both discrete and continuous

parameters and thus it needs more operations for the minimization.

145

Chapter 7: Conclusions and Future Work

7.1 Conclusions

The goal of this work was to solve the problem

Ax + e = b, (7.1)

where b is the input, A is a known matrix, e is a random vector of additive Gaussian

noise and x the unknown vector.

Assuming that the problem satisfies the discrete Picard condition, we intro-

duced in Chapter 2 the Picard parameter which signifies the point where, in the

coordinate system defined by the singular value decomposition of A, the right hand

side of (7.1) is dominated by noise. In addition, we reviewed how to estimate the

Picard parameter manually and developed an algorithm that automatically com-

putes the Picard parameter, when the noise is Gaussian, using the Lilliefors test.

The results from this algorithm are similar to those we compute manually. In later

chapters, we used the Picard parameter to reduce the effect of the noise while using

spectral filters to minimize the error. In addition, the Picard parameter helps to

reduce the computational cost of the restoration of images using spectral filters.

In Chapter 3, we use the Truncated SVD filter with the addition of the Picard

146

parameter (TSVDk) to estimate the solution. Our main goal was to minimize the

error that the solution using the TSVDk filter would have. Since the problem is

an inverse ill-posed problem, we do not know what the noise is and so, we had to

use a statistical approach to eliminate the noise from our equations. Using the fact

that the noise is a random and Gaussian, we were able to rewrite the norm of the

error using the expected value of the noise. Doing so, we still needed to know the

standard deviation of the unknown noise. The Picard parameter helped us estimate

this standard deviation since we know which elements of the known image resemble

noise. Using these tools, we developed a method for the TSVDk that computes the

near optimal parameter for the specific filter. We compared our results with those

computed using the GCV and the Discrepancy Principle. Our method worked very

well and the relative and average errors were close to those that the TSVD would

give if we knew the real solution. We also took advantage of the Kronecker products

for the SVD of the blurring matrix in case the blur is separable. That reduced the

computational time of the computation of the SVD, which is the most expensive

part of the algorithm.

In Chapter 4, the same statistical analysis was used to determine the near

optimal parameters for general spectral filters. Again, the importance of the Picard

parameter estimation is clear here since in the process of creating the method,

a function that depends on the noise in the image needs to be minimized, and

the Picard parameter helps in computing that estimated value. The method we

developed and called SOF also gives us a way to estimate the error without knowing

anything about the noise except that it has mean zero and known variance. That

147

gives us a way to quantify uncertainties.

We developed more filters with varied number and continuity properties of

the parameters in Chapter 5. These new filters include a Truncated Tikhonov with

a continuous parameter, a TSCM that uses the Picard parameter, and a Hybrid

method that consists of the Truncated Tikhonov and the TSVDk and involves one

discrete and one continuous parameter. We also developed a continuous equivalent

to the TSVDk filter and showed that we can create continuous filters from discrete

ones. We also proposed Heaviside and tangent filters. Finally, we developed a cubic

spline filter. This filter has a general number of knots that can be spaced either

linearly or logarithmically.

We tested our SOF algorithm with most of the above filters in Chapter 6 to

compare with the GCV and the Discrepancy Principle. The results of our statistical

analysis compared to those with the optimal solution are good. The SOF method

outperforms DP in most cases. It also gets results close to those of the GCV.

In general, we created a new method and new filters that very well estimate a

solution to the ill-posed problem (7.1) and provide some intuition about uncertainty

quantification.

7.2 Future work

There are many questions that arose from this project. Some of them were

answered but there are others that still need to be considered.

148

7.2.1 Work on the Picard parameter

• Is there a better way to use the Lilliefors method for the computation of the

discrete Picard parameter?

• How can other normality testing techniques be used to develop a method for

the computation of the discrete Picard parameter?

• If the additive error is not sampled from a normal distribution, what meth-

ods can be used for the estimation of the Picard parameter and what other

assumptions are needed?

7.2.2 Work on the SOF method

• The SOF method requires an estimate of the standard deviation of the noise.

Are there better ways to do this?

• Could different properties of the blurring matrix reduce the computational

cost of the SVD and the SOF method?

• Can other uncertainty quantification estimates be developed?

• Can we combine the SOF and DP methods to obtain better results?

7.2.3 Work on spectral filters

• What combination of filters could be used to get the good properties of both

but without increasing the computational cost?

149

• What happens if we use higher continuity properties in the spline filter?

• Is there a best number of knots for the spline filter?

• Is the linear or the logarithmic scale better for the spline filter?

• How do the filters work without the truncation with the Picard parameter?

• How can the discrete filters be modified to become continuous?

• Are there better filters for a specific image depending on its features, like

boundary, sharp, smooth, etc?

• Will future testing reveal recommendations for which particular parameter

choice method should be used for each kind of filter?

150

Chapter A: Point Spread Functions, Construction of Blurring Ma-

trices, and Noise

In Section A.1 we discuss how blurring matrices are constructed from point

spread functions (PSFs). Then in Section A.2 we discuss how our data is generated.

A.1 Two common models of blurring

Two common models of blurring are Gaussian blur and separable blur, and

we discuss each.

A.1.1 Gaussian blur

In this model, the blurring matrix A is constructed using spatially invariant

blur and Gaussian PSFs. Usually these PSFs are of much smaller size than the

original image. Let p̂ be the size of the PSF. Then, for k, l = 1 . . . p̂, define

PSF (k, l) = exp
(
− 1

2

(k − c1)2

s2
1

− 1

2

(l − c2)2

s2
2

)
,

where c1 and c2 are the coordinates of the center of the PSF, usually (dp̂/2e, dp̂/2e).

In our experiments we set p̂ = 3 or p̂ = 5 and s1 = s2 = 3. We also set m = n,

making A square.

151

Figure A.1: Point spread functions of size 3× 3.

As an example, suppose we have a true image of size 5× 5 and a PSF of size

3× 3. So the PSF array is of the form

× × ×

× × ×

× × ×

where the red denotes the center of PSF and × denotes a nonzero element. This

means that a given pixel in the true image is averaged with its 8 nearest neighbors

to create a blurred pixel. The elements are normalized so that they sum to 1.

Let’s assume that pixels outside the true image are zero, and imagine forming

an artificial image having a white color (which we normalize to 1 here instead of

255) at the first pixel and black (0) everywhere else. Then the blurred image will

152

look like

× × 0 0 0

× × 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

and stacking this, column by column, we get the first column of the blurring matrix

A.

As Matlab is column oriented, we count the pixels column by column, so the

second pixel is the one which is in the second row but first column. So, for the

second pixel, the blurred image will look like

× × 0 0 0

× × 0 0 0

× × 0 0 0

0 0 0 0 0

0 0 0 0 0

and stacking this, column by column, we get the second column of the blurring

matrix A.

If we do this for all the pixels of the image we will end up having the block-

tridiagonal blurring matrix A shown in Figure A.2, where the elements on the main

diagonal are equal to the red weight.

153

Figure A.2: Blurring matrix A for an image of size 5× 5 with a PSF of size 3× 3.

A.1.2 Separable Gaussian blur

Separable blur is a combination of two different blurs: horizontal blur Ar

affects the rows of the image, and vertical blur Ac affects the columns. As described

in Section 3.3.2, the blurring matrix A is the Kronecker product of the two blurs

A = Ar ⊗Ac. Since not all matrices are separable, for the purposes of this thesis,

we generate a separable blur using the following steps:

1. In the experiments we use a 3× 3 Gaussian PSF.

2. We pad P with zeros so that it has the same dimensions as the image that we

blur.

3. We use the Matlab function [Ar, Ac]=kronDecomp(P, center) written by

Hansen, Nagy, and O’Leary in their HNO package [14], to form a separable

approximation to the Gaussian blur. This decomposition is not exact but we

set A = Ar ⊗Ac.

154

A.2 Blurring an image and constructing noise

After the blurring matrix A has been computed, we blur the image X by

computing Ax, where x is the vector formed by stacking columns of X. But in

order to simulate the real case of blurred images, we need to add random noise.

For this, we construct a random vector, e, with elements with mean 0 and standard

deviation a specified number s. The variance matrix in this case is the identity

matrix multiplied by the number s2, so it is symmetric and invertible. The noisy

blurred image is then b = Ax + e. For reproducability, the same noise sample is

used in all experiments.

155

Bibliography

[1] F.G. Cantelli. Sulla determinazione empirica delle leggi di probabilita. Giorn.
Ist. Ital. Attuari, 4:421–424, 1933. Referenced by Kevin Ford, University of
Illinois at Urbana-Champaign, (http://www.math.uiuc.edu/ ford/wwwpaper-
s/kol engl2.pdf).

[2] S. Cho and S. Lee. Fast motion deblurring. ACM Transactions on Graphics
(TOG), 28(5):145, 2009.

[3] J. Chung, M. Chung, and D.P. O’Leary. Designing optimal filters for ill-posed
inverse problems. SIAM J. Sci. Comput., 33(6):3132 – 3152, 2011.

[4] J. Chung, M. Chung, and D.P. OLeary. Optimal filters from calibration data
for image deconvolution with data acquisition error. Journal of Mathematical
Imaging and Vision, pages 1–9, 2012.

[5] R.B. D’Agostino. An omnibus test of normality for moderate and large sample
size. Biometrika, 58:341–348, 1971.

[6] J. Devore. Probability and Statistics for Engineering and the Sciences. Cengage
Learning, 2012.

[7] M. Elad and A. Feuer. Restoration of a single superresolution image from
several blurred, noisy, and undersampled measured images. IEEE Trans. on
Image Processing, 6(12):1646–1658, 1997.

[8] M. Fuhry and L. Reichel. A new Tikhonov regularization method. Numerical
Algorithms, 59(3):433–445, 2012.

[9] V. Glivenko. Sulla determinazione empirica delle leggi di probabilita. Giorn.
Ist. Ital. Attuari, 4:92–99, 1933. Referenced by Kevin Ford, University of
Illinois at Urbana-Champaign, (http://www.math.uiuc.edu/ ford/wwwpaper-
s/kol engl2.pdf).

156

[10] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse
of a matrix. SIAM J. Numer. Anal., 2(2), 1965.

[11] G.H. Golub, M. Heath, and G. Wahba. Generalized Cross Validation as a
method for choosing a good ridge parameter. Technometrics, 21:215–223, 1979.

[12] P.C. Hansen. The discrete Picard condition for discrete ill-posed problems. BIT
Numerical Mathematics, 30(4):658–672, 1990.

[13] P.C. Hansen. Discrete Inverse Problems - Insight and Algorithms. SIAM,
Philadelphia, 2010.

[14] P.C. Hansen, J. Nagy, and D.P. O’Leary. Deblurring Images: Matrices, Spectra,
and Filtering. SIAM, Philadelphia, 2006.

[15] R.J. Hanson. A numerical method for solving Fredholm integral equations of
the first kind using singular values. SIAM J. Numer. Anal., 8(3):616–622, 1971.

[16] C.M. Jargue and A.K. Bera. A test for normality of observations and regression
residuals. International Statistical Review, 55(2):163–172, 1987.

[17] H.W. Lilliefors. On the Kolmogorov-Smirnov test for normality with mean
and variance unknown. Journal of the American Statistical Association,
62(318):399–402, 1967.

[18] F.J. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68–78, 1951.

[19] V.A. Morozov. On the solution of functional equations by the method of regu-
larization. Soviet Math. Dokl., 7:414–417, 1966.

[20] J.L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with
Practical Applications. SIAM, Philadelphia, 2012.

[21] J.G. Nagy and D. P. O’Leary. Restoring images degraded by spatially-variant
blur. SIAM J. Sci. Comput., 19(4):1063–1082, 1998.

[22] D.P. O’Leary. Near-optimal parameters for Tikhonov and other regularization
methods. SIAM J. Sci. Comput., 23(4):1161–1171, 2001.

[23] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[24] B.W. Rust. Truncating the singular value decomposition for ill-posed problems.
NISTIR 6131, U.S. Dept. of Commerce, 1998.

[25] P.N. Swarztrauber. The methods of cyclic reduction, Fourier analysis and the
FACR algorithm for the discrete solution of Poisson’s equation on a rectangle.
SIAM Rev., 19(3):490–501, 1977.

[26] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

157

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Point-Spread Function and Blurring Matrix
	The model
	Image Restoration
	Spectral Filters
	Generalized Cross Validation and Discrepancy Principle
	Our contributions

	Picard Parameter Estimation
	A Fredholm integral equation
	The discrete problem
	Manual estimation of the Picard parameter
	Automatic estimation of the Picard parameter when the noise is Gaussian
	Normality testing by histogram
	The Lilliefors test
	Using Lilliefors to estimate the Picard parameter

	Results
	Conclusions

	Near Optimal Filter for TSVD (SOF-TSVD)
	Introduction
	Derivation of the optimal TSVD filter (SOF-TSVD method)
	Two special cases
	Vertical blur
	Kronecker products

	Numerical experiments
	Set-up

	Conclusions

	Near Optimal Parameter Choice and Uncertainty Quantification for General Filters
	Introduction
	Our new near-optimal filter method
	Uncertainty quantification
	Conclusions

	New Spectral Filters
	Introduction
	Truncated Tikhonov Filter (TTik)
	Truncated Singular Component Filter (TSCMk)
	The Hybrid Tikhonov-TSVD (HYBR) Filter
	A continuous TSVD (ContTSVD) Filter
	The Heaviside (HS) and the Tangent (TAN) Filters
	The cubic spline filter
	Conclusions

	Experimental Evaluation of the Methods
	Introduction
	Numerical Results
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future work
	Work on the Picard parameter
	Work on the SOF method
	Work on spectral filters

	Appendix Point Spread Functions, Construction of Blurring Matrices, and Noise
	Two common models of blurring
	Gaussian blur
	Separable Gaussian blur

	Blurring an image and constructing noise

	Bibliography

