
ABSTRACT

Title of thesis: LMONAD: INFORMATION FLOW
CONTROL FOR HASKELL
WEB APPLICATIONS

James Parker, Master of Science, 2014

Thesis directed by: Professor Michael Hicks
Department of Computer Science

Many web applications adhere to privacy policies for users and offer rich access

control policies. It can be difficult to enforce these policies because applications can

be complex, large, and involve multiple developers. Information Flow Control (IFC)

can address this difficulty by guaranteeing that policies are enforced.

This thesis presents LMonad, an IFC system designed to enforce IFC policies

in Haskell web applications. LMonad generalizes LIO, previous work that offers IFC

for Haskell programs. Specifically, LMonad provides a monad transformer to enforce

IFC, in LIO’s style, over any existing computation. In addition, LMonad offers label

annotations to specify policies, and it guarantees that database interactions adhere

to the policies.

To evaluate LMonad, we developed an example website with various IFC poli-

cies and converted a large, existing web application to include LMonad policies.

Results indicate that LMonad has low runtime overhead and is feasible to use in

terms of programmer effort.

LMONAD: INFORMATION FLOW CONTROL
FOR HASKELL WEB APPLICATIONS

by

James Lee Parker

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2014

Advisory Committee:
Professor Michael Hicks, Chair/Advisor
Professor Jeffrey S. Foster
Professor Elaine Shi

c© Copyright by
James Lee Parker

2014

Acknowledgments

I would like to acknowledge my advisor, Professor Michael Hicks, for his guid-

ance in completing this research. I would like to acknowledge my thesis committee,

Professor Jeffrey S. Foster and Professor Elaine Shi, for taking the time to review

this work. Finally, I would like to thank my labmates, friends, family, and loved

ones for their support.

ii

Table of Contents

List of Tables iv

List of Figures v

List of Abbreviations vii

1 Introduction 1

2 Background 7
2.1 Haskell . 7
2.2 Yesod . 9
2.3 Information Flow Control . 9
2.4 LIO . 10

3 LMonad 14
3.1 Design and Implementation . 15

4 Integrating LMonad with Yesod 19
4.1 Integrating an example website . 19
4.2 Simplifying Integration . 24

4.2.1 Label Annotations . 25
4.3 Protected Entities . 27
4.4 Expressive Database Queries . 30

5 Evaluation 36
5.1 Example Website . 38
5.2 Build it Break it Fix it Web Application 38
5.3 Analysis . 42

6 Related Work 44

7 Conclusion 46

Bibliography 47

iii

List of Tables

5.1 The number of LOC changed in handler files while integrating LMonad
into the example Yesod application. 37

5.2 Experimental results comparing latency times between the example
website with and without LMonad. The average and standard devi-
ation of latency times in seconds for 1,000 trials are shown. 37

5.3 The number of LOC changed while integrating LMonad into the Build
it Break it Fix it application. 40

5.4 Mean and standard deviation of latency in seconds of 1,000 trials for
the vanilla and the LMonad Build it Break it Fix it web application. 40

iv

List of Figures

1.1 Function that redirects unauthorized users from viewing a team’s
confidential information on the Build it Break it Fix it website. This
function is unneeded with LMonad. 4

1.2 A manual access control check that decides whether to display a user’s
confidential information. LMonad can simplify and reduce the code
associated with this check. 5

2.1 Eq instance for the Foo data type. 8
2.2 The confidentiality security lattice representing classified and public

data. 10
2.3 The Label typeclass, specifying an interface for the security lattice. . 10
2.4 An example program with a floating label system. 11
2.5 Highlights from LIO’s API. 12
2.6 API for Labeled values. 13

3.1 The LMonad typeclass, and the LMonadT transformer used to add IFC
to any monad. 15

3.2 LIO implemented in LMonad. 16
3.3 Differences in LMonad’s API. 17
3.4 An example LMonad program that opens and prints a document.

The current label is shown in the comments, and runLMonad initially
sets the current label to bottom. 17

3.5 An example trusted function which sets the clearance based on the
current user. The clearance label is shown after every statement. . . . 18

4.1 An example website that violates policy. 19
4.2 Hiding functions that could circumvent IFC checks. 20
4.3 Defining labels as DCLabels where principals are users and adminis-

trators. 21
4.4 The redefined authentication functions now also raise the clearance

label when a user is logged in. 22

v

4.5 The LEntity typeclass which defines how to raise the current label
on database interactions for an entity, and an instance of the LEntity
typeclass for the User table. 23

4.6 Export of Database.LPersist to use LMonad’s library functions
that check IFC policies. 23

4.7 The replaced get function that now correctly raises the label by call-
ing getLabelRead and taintLabel. 23

4.8 The fixed profile page example that no longer has a policy violation. . 24
4.9 Grammar for label annotations used to define IFC policies. Each slot

corresponds to the permissions required to read, write, and create a
field, respectively. Keywords allow the expression of which permis-
sions are required. 25

4.10 An example of the modified DSL to specify IFC policies for the email
field. 25

4.11 The ToLabel typeclass creates a mapping from principals to labels.
Instances of this typeclass are also shown for the user and adminis-
trator principals. 27

4.12 get is too eager in enforcing IFC so this page will always dispay a
permission denied error for the public. 28

4.13 The protected entity version of User, and the ProtectedEntity type-
class that ProtectedUser must create an instance of. 29

4.14 The pGet function to get the protected version of an entity from the
database. 30

4.15 The fixed version of the profile page making use of protected entities. 31
4.16 The LSQL grammar used for expressive SQL queries. This language

is used to perform IFC safe queries to the database. Some notable
features are the ability to use outer joins and the use of antiquotation
to include the results of Haskell expressions in queries. 32

4.17 LSQL statement from the Build it Break it Fix it website, and the
code that is automatically generated. A lot is going on here, but the
main takeaway is that the appropriate IFC checks are made on all the
results returned by the database through the calls to raiseLabelRead. 34

4.18 LSQL statement retrieving judges’ emails and the corresponding gen-
erated code. The main point here is that proper IFC checks are in-
serted via taintLabel. 35

5.1 Security violation that allows anyone to post announcements on the
contest website. LMonad prevents this type of IFC violation. 39

5.2 Excerpt of changes made to the break submission page to support
LMonad. Changes are in orange and deletions are in red. 41

vi

List of Abbreviations

t Join (Least upper bound)
u Meet (Greatest lower bound)
v Flows to
⊥ Bottom
> Top

CSRF Cross Site Request Forgery
DSL Domain Specific Language
LOC Lines of Code
IFC Information Flow Control
SQL Structured Query Language
XSS Cross Site Scripting

vii

Chapter 1: Introduction

As cloud services become ubiquitous, it is essential that web applications pro-

tect the privacy of their users and strengthen the security of their systems. These

web applications can be complex since they are typically maintained by multiple

developers and have large code bases. These realities make it extremely difficult to

enforce privacy and access control policies through manual inspection of the code.

One solution to this problem is to use Information Flow Control (IFC) to automat-

ically guarantee that these policies are enforced.

LIO is an existing IFC framework designed for Haskell applications [1]. This

system provides strong guarantees about confidentiality and integrity, which can

be leveraged to enforce an application’s policies. Unfortunately, LIO has some

limitations that prevent it from being used for web applications written in Haskell.

The first is that LIO only enforces IFC for the IO monad. This is insufficient since

Yesod, a web framework for Haskell, runs in a special Handler monad. Therefore,

LIO is unable to enforce IFC for Yesod applications. Another limitation is that LIO

limits monadic lifting to trusted code, which prevents regular code from performing

IO operations. This allows secure systems to be built from the ground up, but can

be too constraining for developers who wish to use existing libraries like Yesod.

1

LMonad addresses these limitations by generalizing LIO. LMonad generalizes

LIO by providing a monad transformer, so that IFC can be added to any existing

computation. In addition, the developer may relax the condition that only trusted

code can perform lifting.

Objects in LMonad have a security label associated with them, where labels

have a partial ordering. LMonad enforces IFC in LIO’s style by dynamically keeping

track of two pieces of information. The first is the label of objects already read or

written by a program. The second is the clearance label which restricts what the

program is allowed to read or write. If the program ever tries to manipulate an

object with a label below the current label or above the clearance label, a security

exception occurs and the program fails safely.

LMonad integrates with Yesod by replacing functions that interact with the

database. The database functions provided by LMonad guarantee IFC policies are

enforced by inserting appropriate checks on database reads and writes. LMonad

also supports richer database queries through a DSL called LSQL. LSQL queries

can include outer joins, and they also enforce IFC policies with appropriate label

checks. Haskell’s type system statically enforces that LMonad’s database functions

are used. IFC policies are enforced dynamically by LMonad and fail gracefully when

policy violations occur. To define IFC policies, LMonad offers label annotations,

which allow the developer to define the label associated with objects stored in the

database.

A key advantage of using LMonad is that it is much easier to guarantee that

IFC policies are being enforced. In traditional applications, it is the developer’s

2

job to ensure complete mediation of security-sensitive operations and to perform

the right authorization checks — any failure to do so may result in a systemwide

violation of security. The entire code base essentially becomes trusted, and it would

be arduous to audit the entire system to ensure that all the checks are correct and

satisfy IFC policies. With LMonad, the trusted computed base of an application

shrinks dramatically. Typically, auditors would only need to verify the trusted code

that sets the clearance works properly, while LMonad would guarantee that the

rest of the code adheres to the IFC policies. For example, the original codebase

of the Build it Break it Fix it web application consists of 7,077 trusted lines of

code. It is almost imposible to verify this amount of code, and a previous version of

the application had at least one security policy violation. By adding LMonad, the

trusted code base of this site shrinks to 70 lines of code. It is almost trivial to verify

that this code properly sets the clearance label.

LMonad’s abstractions can be used to simplify code that performs permission

checks. In many cases, manual access control checks can be eliminated since LMonad

automatically provides these checks. For example, the Build it Break it Fix it

website has a function, shown in Figure 1.1, that redirects unauthorized users before

displaying a team’s confidential information. This function first checks if the user

is an administrator. It then does a database query to see if the user is on the

given team. If both of these conditions are false, it redirects the user’s browser to a

permission denied page. With LMonad, this function can be removed because any

database queries that retrieve the team’s confidential information will automatically

enforce IFC policies and redirect unauthorized users. LMonad gives the developer

3

redirectUnauthorizedTeam tId = do

(Entity uId u) <- requireAuth

if userAdmin u then

return ()

else do

teams <- runDB $ select $ from $

\(t ‘LeftOuterJoin ‘ tm) -> do

on (t ^. TeamId ==. tm ^. TeamMemberTeam)

where_ (t ^. TeamId ==. val tId &&.

(t ^. TeamLeader ==. val uId

||. tm ^. TeamMemberUser ==. val uId))

limit 1

return t

if (List.length teams) == 1 then

return ()

else

permissionDenied "Permission denied."

Figure 1.1: Function that redirects unauthorized users from viewing a team’s confi-
dential information on the Build it Break it Fix it website. This function is unneeded
with LMonad.

this type of access control check for free, thereby reducing the developer’s workload.

Another way LMonad simplifies permission checks is that developers can ask

the floating label system whether the program has permission to take an action.

For example, Figure 1.2 shows a website without LMonad that needs to manually

perform access control checks. This process is tedious as the program first needs

to check whether the user is logged in. Then it needs to check whether the user is

viewing its own profile or if the user is an administrator. If all of these conditions

are true, then the site can display the confidential information. The details of

this are later discussed in Section 4.3, but LMonad can simplify and reduce the

code associated with this access control check. LMonad does this by looking at

the current label and clearance to determine whether to display the confidential

4

getProfileR :: UserId -> Handler Html

getProfileR uId = do

userM <- maybeAuth

let dispEmail =

case userM of

Nothing ->

mempty

Just (Entity uId ’ u) ->

if uId == uId ’ || userAdmin u then

[whamlet|

<p>

Email: #{ userEmail u}

|]

else

mempty

...

Figure 1.2: A manual access control check that decides whether to display a user’s
confidential information. LMonad can simplify and reduce the code associated with
this check.

information or not.

LMonad’s implementation is split into two libraries. The core library includes

the generalization of LIO and enforces IFC for Haskell applications. The other

library integrates with Yesod by providing label annotations, IFC safe database

functions, and LSQL. The implementation of the former is 569 lines of code, while

the latter is 4,028 lines of code. Both libraries are released as open source and are

available on GitHub1.

To evaluate LMonad, we developed an example website with access control

policies designed to protect users’ private information. We also converted Build

it Break it Fix it, a large existing web application, to make use of LMonad. Our

results indicate that it is feasible to use LMonad in Yesod applications. Programmers

1https://github.com/jprider63/LMonad

5

need to exert moderate effort to support LMonad, however most of the changes are

straightforward and the type checker indicates where the changes need to be made.

In terms of performance, experimental benchmarks only show a roundtrip latency

overhead of up to 4 milliseconds or 4.82%.

The main contribution of this work is LMonad, which is a generalization of

LIO that is more flexible and deployable. LMonad provides end-to-end security

by enforcing IFC across database boundaries for the web development framework

Yesod. LMonad supports a richer, policy-enforced query language, and it is par-

ticularly novel in that the query language allows outer joins. This work provides

LMonad’s implementation and an evalutation that demonstrates LMonad is effective

at enforcing security policies with minimal overhead.

6

Chapter 2: Background

This chapter describes background information for this work, and previous

work I built upon. I discuss some of the features from the Haskell programming

language. Readers who are familiar with Haskell and its common abstractions may

feel free to skip this section. Yesod is like the “Rails” of Haskell, and we mention

some of its benefits. Then the chapter introduces the basics of IFC. Finally, we

highlight LIO’s floating label IFC system.

2.1 Haskell

Haskell is a lazy, functional programming language [2]. It has a strong, static

type system that catches many bugs at compile time. As such, if a program compiles,

the developer has more of an assurance that the program is correct [3].

Haskell has typeclasses, which are akin to interfaces in other languages and

traits in Rust [4]. Typeclasses allow overloading of their functions. When a devel-

oper creates a new datatype, the developer can create an instance of a typeclass.

Figure 2.1 illustrates how this would be done for the Foo data type and the Eq

typeclass. The typeclass definition of Eq is also included. This definition requires

that instances of Eq define two functions, == and /=, that implement equals and

7

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

data Foo = Foo | Fighters

instance Eq Foo where

(==) Foo Foo = True

(==) Fighters Fighters = True

(==) _ _ = False

(/=) a b = not (a == b)

Figure 2.1: Eq instance for the Foo data type.

not equals for the datatype. In the figure, type Foo has two constructors Foo and

Fighters. Foo’s instance of Eq is implemented such that two Foos are equal only if

both arguments have the same constructors.

Monads are frequently used in Haskell to chain together special computations

that can cause side effects [5]. For example, the IO monad allows programs to

perform operations like interacting with the file system, reading from standard input,

and writing to standard output. Monads can also be layered on top of one another.

The mechanism to perform this layering is called a monad transformer. Monad

transformers are important because they allows developers to combine the effects

of computations that run in different monads. To run a computation of an inner

monad in the outer monad, the programmer can simply lift the inner computation

using a monad tranformer.

8

2.2 Yesod

Yesod is a web development framework for Haskell [6]. It is a very strong

framework for developing web applications for many reasons. The first is that it

has a strong type system that prevents many kinds of web-based attacks including

cross site scripting (XSS), cross site request forgery (CSRF), and SQL injection.

In addition, it provides a rich environment for web development by taking care of

routing, database queries, and session cookies. Finally, Yesod is actively developed

and has a responsive community that is willing to aid developers and fix issues.

2.3 Information Flow Control

Information Flow Control (IFC) systems restrict how information flows within

a program’s execution. Different channels are used to model the inputs and outputs

of a program with different principals. IFC systems are used to enforce confiden-

tiality models like non-interference and integrity models like confinement.

Non-inteference states that attackers cannot distinguish between the outputs

of a program when that program is given different secret inputs [7]. This guarantees

that non-interfering programs will not leak secret information. Confinement provides

integrity in programs by preventing a principal from writing to channels other than

its own [1].

9

H

L

Figure 2.2: The confidentiality security lattice representing classified and public

data.

class (Eq l) => Label l where

leq :: l -> l -> Bool

lub :: l -> l -> l

glb :: l -> l -> l

Figure 2.3: The Label typeclass, specifying an interface for the security lattice.

2.4 LIO

LIO is a dynamic, floating label IFC framework for Haskell [1]. In such a

system, objects have labels associated with them that indicate policy properties like

confidentiality and integrity. Labels allow the program to keep track of whether the

code executing on behalf of a principal has permission to read or write to protected

values. When a policy violation occurs, LIO halts the program’s execution and

handles the error.

Labels in LIO must create a security lattice. Security lattices can be used

to model how information is allowed to flow within a system [8]. For example,

Figure 2.2 shows a confidentiality lattice with two labels, high (H) and low (L).

These can be thought of as classified and public information, respectively, so low

information can flow to high information, but the reverse is not allowed. Labels in

10

printDocument handler = do -- L0

doc <- openDocument handler -- L0 ‘join ’ LD

print doc -- L0 ‘join ’ LD

Figure 2.4: An example program with a floating label system.

LIO programs must provide the least upper bound (Join, t), greatest lower bound

(Meet, u), and flow to (v) operators to create a security lattice. Specifically, labels

must correctly implement the Label typeclass shown in Figure 2.3.

LIO is a floating label system because LIO dynamically keeps track of the

current label and clearance as the program executes. Behind the scenes, LIO stores

the current label and clearance label in a mutable tuple. Every operation performed

in a LIO computation could cause the current label to be updated. For example,

whenever a value with a label is manipulated, the current label rises to join of the

value’s label and itself. As a result, the current label monotonically increases. An

example of a program with a floating label system is shown in Figure 2.4. The

comments show what the current label is at every line in the function. The func-

tion printDocument take a handler to a document, opens it, and then prints the

document to the screen. When the document is opened, openDocument taints the

current label with the document’s label LD. Since the current label is initially L0,

the resulting current label rises to L0 t LD. From now on, the current label can only

stay at its current level or increase.

Initially, LIO programs carefully set the clearance label. If the current label

ever exceeds (or can not flow to) the clearance, then a policy violation has occurred

and execution halts. This behavior is required so that LIO programs do not leak con-

11

evalLIO :: LIO l a -> LIOState l -> IO a

getLabel :: Label l => LIO l l

setLabel :: Label l => l -> LIO l ()

getClearance :: Label l => LIO l l

setClearance :: Label l => l -> LIO l ()

Figure 2.5: Highlights from LIO’s API.

fidential data. LIO formally proves this statement with a proof of non-interference.

LIO also proves confinement which guarantees the integrity of sensitive data.

Figure 2.5 highlights parts of LIO’s API. The function evalLIO runs an LIO

computation given an initial current label and clearance state. The first argument

with type LIO l a is the LIO computation that will be evaluated. The polymorphic

type l is the computation’s label type, while type a is the type returned by the

computation. The second argument with type LIOState l sets the initial current

label and clearance label. LIOState l is basically a wrapper around a tuple of two

labels of type l. The API also has getter and setter functions for the current label

and clearance. It is important to note that the label passed into the setters must

satisfy the condition, currentLabel v newLabel v clearance, in order to preserve

the security of the label system.

LIO has a special mechanism which allows the program to perform a compu-

tation without raising the current value. The restriction is that the result of the

computation cannot be directly returned. Instead, a Labeled object is returned

in place of the result. The Labeled object remembers the result and the current

label at the end of the computation. When the result is extracted from the Labeled

12

data Label l => Labeled l a

label :: Label l => l -> a -> LIO l (Labeled l a)

unlabel :: Label l => Labeled l a -> LIO l a

labelOf :: Label l => Labeled l a -> l

toLabeled :: Label l => l -> LIO l a -> LIO l (Labeled l a)

Figure 2.6: API for Labeled values.

object, the current label is tainted by the label of the computation. This allows a

program to delay tainting of the current label.

The API associated with Labeled values is found in Figure 2.6. A key feature is

that the constructor for Labeled values is not exported, so the contents of Labeled

values cannot be read or modified. label and unlabel box and unbox Labeled

values with appropriate IFC checks. labelOf retrieves the label of the boxed value.

The interesting case is toLabeled, which allows the program to perform an LIO

computation that delays raising the current label. This is safe since the result is

boxed and cannot be read without calling unlabel, which would taint the current

label appropriately.

13

Chapter 3: LMonad

The goal of this work is to support IFC in Yesod, and LIO already provides

IFC for Haskell, so one might wonder why this work does not just use LIO. The

primary reason is that LIO has limited compositionality. LIO runs on top of the IO

monad, but Yesod mainly uses the Handler monad. As a result, one would have to

rewrite all of Yesod’s functionality on top of LIO.

LMonad provides a solution to the compositionality problem by creating a

monad transformer. This monad transformer can be run over any existing monadic

computation. Thus developers can utilize existing code and libraries, like Yesod,

while enforcing IFC policies.

Another reason this work does not use LIO is that LIO only provides monadic

lifting through the trusted function ioTCB. This means that only trusted code is

able to call this function; this design decision prevents regular code from perform-

ing computations in the IO monad. As a result, programs using LIO are able to

build secure systems from the ground up by selectively whitelisting code that does

not circumvent IFC checks. Unfortunately, this whitelisting approach can be too

restrictive and cumbersome for developers who wish to use existing libraries.

To address this issue, LMonad provides the option to allow more of a blacklist-

14

class Monad m => LMonad m where

lFail :: m a

lAllowLift :: m Bool

data (Label l, Monad m, LMonad m) =>

LMonadT l m a = LMonadT (StateT (l, l) m a)

Figure 3.1: The LMonad typeclass, and the LMonadT transformer used to add IFC to
any monad.

ing philosophy. When the developer allows it, arbitrary computations on the inner

monad are allowed to be lifted. In this situation, the programmer is responsible for

hiding code that could potentially circumvent IFC checks. This seems reasonable

in Yesod applications since most code is imported from the Import module; the

programmer should be able to replace imports of Yesod’s database functions with

LMonad’s in a single location. Developers could also use automated tools to ensure

that blacklisted code is not used. For instance, a simple script could use grep to

detect when modules that go around IFC safety checks are imported.

3.1 Design and Implementation

Here we highlight some of the design and implementation of LMonad. LMonad

itself is a generalization of LIO as it works for any monad that implements its type-

class, not just IO. Figure 3.1 shows this typeclass. lFail defines what to do when a

policy violation occurs. lAllowLift tells LMonad whether it should allow arbitrary

functions to be lifted, thereby making them available in LMonad computations. This

function is how the programmer can choose either the whitelisting or blacklisting

approach.

15

instance LMonad IO where

lFail = exitFailure

lAllowLift = return False

type LIO l a = LMonadT l IO a

Figure 3.2: LIO implemented in LMonad.

LMonad offers the transformer LMonadT to add IFC onto any monad. Its

definition can be seen in Figure 3.1. The datatype LMonadT has type parameters l,

m, and a. These types respectively correspond to the computation’s label, the inner

monad, and the computation’s return type. The label type must be an instance

of the Label typeclass, and the inner monad must be instances of the Monad and

LMonad typeclasses. The LMonadT constructor is a wrapper around a state monad

transformer (StateT), which keeps track of the current label and clearance label.

LMonadT’s constructor is not exported so untrusted code cannot modify the current

label and clearance label.

Figure 3.2 demonstrates how LIO can be implemented in LMonad, which

shows that LMonad is a generalization of LIO. Specifically, IO is made an instance

of LMonad where lifting is not allowed. Then LIO is defined as a type alias of

LMonadT with the inner monad set to IO.

LMonad’s API is very similar to LIO’s, but there are a few differences that

make LMonad easier to use. These changes still preserve the security properties

demonstrated by LIO. As seen in Figure 3.3, the Label typeclass now requires

instances to implement bottom (⊥) from the security lattice. This is now required

due to a change in runLMonad. This change is a design choice that initially sets

16

class (Eq l) => Label l where

leq :: l -> l -> Bool

lub :: l -> l -> l

glb :: l -> l -> l

bottom :: l

runLMonad :: (Label l, LMonad m) =>

LMonadT l m a -> m a

raiseClearanceTCB :: (Label l, LMonad m) =>

l -> LMonadT l m ()

toLabeled TCB :: (Label l, LMonad m) =>

l -> LMonadT l m a -> LMonadT l m (Labeled l a)

Figure 3.3: Differences in LMonad’s API.

main = runLMonad $ do -- bottom

handler <- getHandler "doc.txt" -- bottom

printDocument handler -- bottom ‘join ’ LD

Figure 3.4: An example LMonad program that opens and prints a document. The
current label is shown in the comments, and runLMonad initially sets the current
label to bottom.

both the current label and clearance to bottom. Figure 3.4 shows an example of

how to use runLMonad in an application to track IFC. The comments show the

current label after every statement. Unlike LIO, this application does not need to

explicitly specify an initial current label and clearance since runLMonad sets them

both to bottom.

To set the clearance label, the trusted function raiseClearanceTCB is now

provided. This function will lift the clearance to the join of the old clearance and the

given label. This function is convenient when developers need to assign clearances

multiple times, like when there are multiple types of principals. An example of

how to use raiseClearanceTCB to set the clearance is found in Figure 3.5. The

17

setUserClearance = do -- C0

user <- getCurrentUser -- C0

raiseClearanceTCB

(UserLabel user) -- C0 ‘join ’ (UserLabel user)

Figure 3.5: An example trusted function which sets the clearance based on the
current user. The clearance label is shown after every statement.

comments show the clearance label after every statement, and the initial clearance

is C0. The trusted function setUserClearance sets the clearance label by calling

raiseClearanceTCB with the current user’s label. The resulting clearance is the

join of the initial clearance and the current user’s label.

toLabeledTCB is now a trusted function as it raises the clearance while com-

puting Labeled values. Since we potentially allow lifting, the underlying monad

could leak information to an external source. All trusted functions are in a separate

module though, so trusted code must import this module explicitly. toLabeledTCB

is used extensively by LMonad’s database functions to delay reading results from

the database and tainting the current label.

For convenience, LMonad implements two labeling systems. The first is called

PSLabel and is the powerset of all principals. Another is DCLabel, which LIO also

provides. Disjunction category labels were introduced by Stefan et al. [9]. They are

represented as boolean formulas of principals in conjunctive normal form. In other

words, they are ands of ors of principals. The security lattice is implemented for

both of these labels. Now developers can use these labels in their LMonad programs

by defining an appropriate principal datatype. An example of this is later shown in

Figure 4.3.

18

Chapter 4: Integrating LMonad with Yesod

The high level goals of integrating LMonad with Yesod are to provide a simple

mechanism to define IFC policies and to ensure that all database interactions respect

these policies. Yesod has an existing DSL to define database models. IFC policies

should be defined by making label annotations to the field definitions in this DSL.

Database functionality provided by LMonad should also automatically insert IFC

checks. This chapter details how these goals are accomplished.

4.1 Integrating an example website

Our efforts to integrate LMonad with Yesod are guided by a simple example

website where users can create accounts, log in, view profiles, and update personal

getProfileR :: UserId -> Handler Html

getProfileR uId = do

user <- runDB $ get uId

defaultLayout $ do

[whamlet|

<p>

Username: #{ userIdent user}

<p>

Email: #{ userEmail user}

|]

Figure 4.1: An example website that violates policy.

19

import Yesod as Import hiding (

...

runDB, -- database functions

get,

update ,

...,

maybeAuthId , -- authentication functions

requireAuthId

)

Figure 4.2: Hiding functions that could circumvent IFC checks.

information. In this example website, we want to enforce a policy where users

can only read or modify their personal information (like their email address) and

administrators can read, but not modify, anyones private information. Figure 4.1

depicts a simple webpage that violates this policy. This webpage takes a user’s

identifier as an argument, which Yesod provides by parsing the URL. It then does

a database query to retrieve the user entity that corresponds to the given identifier.

Finally, it generates HTML that displays the user’s username and email address.

This webpage violates the policy because it never checks whether the user is logged

in before displaying the user’s email address on the page. Any public visitor to the

website will see the email address, which is a clear violation of the privacy policy.

Integrating LMonad with Yesod can prevent this policy violation.

The first step to integrating LMonad in the application is to blacklist all func-

tions that could circumvent IFC checks. This is simple to do in the Yesod application

by hiding all the database functions from the Import module. This is demonstrated

in Figure 4.2. Authentication functions are also hidden as a matter of convenience,

as they can be replaced by trusted code that raises the current user’s clearance.

20

data Principal =

PrincipalAdmin

| PrincipalUser UserId

type MyLabel = DCLabel Principal

Figure 4.3: Defining labels as DCLabels where principals are users and administra-
tors.

The next step is to define an appropriate label to enforce the policy. For the

example website, we use the DCLabels to keep track of confidentiality and integrity.

Here, principals are administrators and all the users, as seen in Figure 4.3.

After choosing a labeling system, functionality should be added to set the

clearance label when a user is logged into the site. It can be convient to add this func-

tionality to the authentication functions since the authentication functions should

already be used where privileged tasks occur. If setting the clearance is provided by

another function, calls to this function would have to be added throughout the appli-

cation’s code, resulting in significantly more work for the developer. An example of

these definitions are shown in Figure 4.4. The trusted function, raiseUserLabel’,

creates a label corresponding to the given user. It also joins in the administrator

label if the user is an adminstrator. Finally, it raises the clearance level to that

of the computed label. Note that this function is not exported by the module for

external use.

Entities are the Haskell data types that represent tables from the database,

similar to an object relational mapping (ORM). For example, there is a User entity

that is a record with fields for the user’s username, password, and email address.

To continue integration, the developer needs to define how to derive labels

21

maybeAuth = ...

requireAuth = do

user <- lLift Auth.requireAuth

raiseUserLabel ’ user

return user

raiseUserLabel ’ (Entity userId user) =

let label ’ = dcSingleton $ PrincipalUser userId in

let label = if userAdmin user then

lub label ’ $ dcSingleton PrincipalAdmin

else

label ’

in

raiseClearanceTCB label

Figure 4.4: The redefined authentication functions now also raise the clearance label
when a user is logged in.

on reads, writes, and creations for every database entity. This is done by creating

instances of the typeclass LEntity, which is displayed in Figure 4.5. The figure

also shows an example instance implementation for the User table. Since either an

administrator or the owner can read the user’s data, the meet of the admin and

user’s confidentiality labels is returned. Similar functionality is implemented for

writes and creations.

The final step in integration is to replace all database functions with ones pro-

vided by LMonad’s Yesod library. We have already hidden Yesod’s database func-

tions, so we can easily replace them by exporting Database.LPersist in the Import

module. These database function names are overloaded with Yesod’s database func-

tions so no more code changes are necessary. The provided database functions call

the previously defined LEntity functions so that the current label rises on database

reads, writes, and creations. An example of one of these library functions is shown

22

class Label l => LEntity l e where

getLabelRead :: Entity e -> l

getLabelWrite :: Entity e -> l

getLabelCreate :: e -> l

instance LEntity MyLabel User where

getLabelRead (Entity id user) = glb

(dcConfidentialityLabel PrincipalAdmin)

(dcConfidentialityLabel $ PrincipalUser id)

getLabelWrite (Entity id user) = dcIntegrityLabel $

PrincipalUser id

getLabelCreate user = bottom

Figure 4.5: The LEntity typeclass which defines how to raise the current label on
database interactions for an entity, and an instance of the LEntity typeclass for the
User table.

import Database.LPersist as Import

Figure 4.6: Export of Database.LPersist to use LMonad’s library functions that
check IFC policies.

in Figure 4.7. The get function retrieves a result from the database and raises the

current label when a result is returned.

Once integration is complete, we can see how to fix the policy violation from

the original example in Figure 4.1 by using LMonad. Figure 4.8 shows the fixes.

Specifically, the developer must indicate that the computation should run in LMonad

by calling runLMonad; a call is made to raiseUserLabel to raise the logged in user’s

get key = do

res <- Persist.get key

whenJust res $ lift .

taintLabel . getLabelRead . (Entity key)

return res

Figure 4.7: The replaced get function that now correctly raises the label by calling
getLabelRead and taintLabel.

23

getProfileR :: UserId -> Handler Html

getProfileR uId = runLMonad $ do

raiseUserLabel

user <- runDB $ get uId

defaultLayout $ do

setTitle "Example webpage"

[whamlet|

<p>

Username: #{ userIdent user}

<p>

Email: #{ userEmail user}

|]

Figure 4.8: The fixed profile page example that no longer has a policy violation.

clearance; the redefined runDB and get are called which redirects the client’s browser

to an error page if the user does not have permission to view the entity returned by

the database.

4.2 Simplifying Integration

At first glance, it appears as though it is a lot of work for developers to integrate

LMonad with a Yesod application. Even worse is the fact that the developer could

make a mistake during integration and fail to enforce an IFC policy. Ideally, the

developer would only need to integrate a small, trusted amount of code, which

could be easily verified. Fortunately, LMonad solves this problem because a lot of

the integration can be automated. The library will generate code that enforces the

IFC policies correctly. This leaves the developer to make cosmetic changes and focus

on the small trusted computing base.

24

C = ‘<’ L ‘,’ L ‘,’ L ‘>’

L = K | ‘_’

K = A ‘||’ K | A

A = ‘Id ’ | ‘Const ’ name | ‘Field ’ name

Figure 4.9: Grammar for label annotations used to define IFC policies. Each slot
corresponds to the permissions required to read, write, and create a field, respec-
tively. Keywords allow the expression of which permissions are required.

User

ident Text

password Text

email Text < Const Admin || Id, Id , _ >

admin Bool

Figure 4.10: An example of the modified DSL to specify IFC policies for the email

field.

4.2.1 Label Annotations

Programmers can define IFC policies by manually creating LEntity instances

for each table (or entity) in their database models. This presents an implemen-

tation burden to developers, and there is no assurance that they are accurately

implementing the policies. LMonad addresses this with label annotations, which

are a straightforward means to define IFC policies.

Yesod already provides a model DSL to define database schemas and each

table’s corresponding Haskell data type (called entities). LMonad modifies this DSL

so that IFC policies can be defined in a simple manner. After each field definition

in a database entity, the developer has the option of including a label annotation to

indicate how the current label should rise on database reads, writes, and creations.

Keywords are used to indicate different policy dependencies. Id means the current

25

label should be tainted by the current entity’s identifier. Const means the current

label should be tainted by a constant label. Field means the current label should be

tainted by another field of a given name in that entity. An underscore, , means that

the current label should not change for the given action. Multiple label annotations

can be combined with ||, which means that either label has permission to do a

specificied action. The grammar used to annotate labels is shown in Figure 4.9.

Figure 4.10 shows an example of how the developer can take advantage of the

modified DSL to define IFC policies. After the email field’s definition, optional

angled brackets indicate a label annotation. Each slot corresponds to required per-

missions on read, write, and creation of the email field. This example policy states

that the user must be an administrator or owner to read the email field. Users

can only modify their own email addresses, and anyone can write to the email field

while creating a new entity.

LMonad implements the IFC policies by automatically generating code that

taints the current label for each field in the entity and creates a LEntity instance

for the entity. This is done through the use of Template Haskell which manipulates

the AST during compilation. This automates the process of writing the integration

code previously seen in Figure 4.5.

To use label annotations, the developer only needs to define a mapping from

a principal’s type to its label. This can be done by creating an instance of ToLabel

for each principal type. This is straightforward and is demonstrated in Figure 4.11.

The mapping for Const labels is given by String instances.

Through the use of label annotations, developers can easily define IFC policies

26

class ToLabel t l where

toConfidentialityLabel :: t -> l

toIntegrityLabel :: t -> l

instance ToLabel (Key User) MyLabel where

toConfidentialityLabel uId = dcConfidentialitySingleton $

PrincipalUser uId

toIntegrityLabel uId = dcIntegritySingleton $

PrincipalUser uId

instance ToLabel String MyLabel where

toConfidentialityLabel "Admin" =

dcConfidentialitySingleton PrincipalAdmin

toConfidentialityLabel _ = error "ToLabel: Invalid string"

toIntegrityLabel "Admin" =

dcIntegritySingleton PrincipalAdmin

toIntegrityLabel _ = error "ToLabel: Invalid string"

Figure 4.11: The ToLabel typeclass creates a mapping from principals to labels.
Instances of this typeclass are also shown for the user and administrator principals.

on their database models. These policies should be straighforward to understand,

and the programmer can now have confidence that the policies are implemented

correctly.

As a side note, the only restriction on label annotations is that Id cannot

appear in the creation annotation. When the entity is being created, its identifier

does not exist yet so you cannot have policies that depend on the identifier.

4.3 Protected Entities

The LEntity typeclass successfully enforces IFC policies, but it can be too

conservative in certain cases. For example, consider a modification of the profile

page that only shows public information to other users (Figure 4.12). The page will

always redirect to the permission denied page if the user is not logged in as the user

27

getProfileR :: UserId -> Handler Html

getProfileR uId = runLMonad $ do

authId <- maybeAuthId

user <- runDB $ get uId

let dispEmail = if (Just uId) == authId then

[whamlet|

<p>

Email: #{ userEmail user}

|]

else

mempty

defaultLayout $ do

setTitle "Example webpage"

[whamlet|

<p>

Username: #{ userIdent user}

^{ dispEmail}

|]

Figure 4.12: get is too eager in enforcing IFC so this page will always dispay a
permission denied error for the public.

whose profile is being viewed. This happens since the call to get taints the current

label by the join of all the fields in the returned entity. This is too conservative

because the user’s identity is public and anyone should be able to read it, but there

is no way for them to read the identity. In this case, get is too eager to taint the

email field’s label, even though the program does not read that field for public

users.

The solution to this problem is to introduce protected entities. Protected

entities are a class of datatypes that allow a program to delay tainting the current

label. They are similar to regular entities, but any field with an IFC policy is boxed

into a Labeled value. Now the current label will only rise when Labeled fields are

unboxed.

28

data ProtectedUser = ProtectedUser {

pUserIdent :: Text

, pUserPassword :: Text

, pUserEmail :: Labeled MyLabel Text

}

class ProtectedEntity e p | e -> p where

toProtected :: LMonad m => Entity e -> LMonadT l m p

Figure 4.13: The protected entity version of User, and the ProtectedEntity type-
class that ProtectedUser must create an instance of.

In order to easily ensure that the security of IFC policies are maintained, each

entity needs a corresponding protected entity data type. For example, Figure 4.13

shows the protected entity version of User. Protected entities must also be instances

of the typeclass ProtectedEntity which maps each entity to its corresponding

protected entity. These instances typically will make use of toLabeledTCB to box

protected fields. To utilize protected entities, LMonad provides modified database

functions, like pGet (Figure 4.14), to retrieve the protected entities. This is possible

because the library functions can convert database results into protected entities by

calling functions provided by the ProtectedEntity typeclass.

LMonad can autogenerate the code that defines protected entities and their

ProtectedEntity instances by using Template Haskell and label annotations. Once

again, developers do not need to manually define new data types and label checks.

They can be confident that security policies are correctly enforced by the generated

code.

With protected entities, we can fix the profile webpage example so that anyone

can read the user’s identity. The fixed version is found in Figure 4.15. As one can

29

pGet key = do

res <- lLift $ Persist.runDB $ Persist.get key

maybe (return Nothing) handler res

where

handler val = do

protected <- toProtected $ Entity key val

return $ Just protected

Figure 4.14: The pGet function to get the protected version of an entity from the
database.

see, we now use pGet to retrieve the protected user entity. A nice feature of protected

entities is that they enable the use of the floating label system itself to check whether

the clearance gives us permission to unbox protected fields. An example of this can

be seen in the protected profile page, where we use canUnlabel to determine whether

to unbox and display the email address.

4.4 Expressive Database Queries

Many real world web applications need more expressive database queries than

the simple ones we have seen so far. Haskell already has a nice library, called

Esqueleto, which allows developers to perform richer queries in a type safe manner.

For LMonad to be feasible for real world applications, these kinds of queries need to

make IFC checks as well. This is problematic, though, because there can be many

of these queries spread throughout a Yesod application. Each of these queries would

need to be audited to make sure that they make the proper IFC checks. This would

need to be redone everytime a policy changes as well. Furthermore, it is not always

obvious how to uphold the IFC policies for complex database queries.

30

getProfileR :: UserId -> Handler Html

getProfileR uId = runLMonad $ do

raiseUserLabel

user <- runDB $ pGet uId

canReadEmail <- canUnlabel $ pUserEmail user

dispEmail <- if canReadEmail then do

email ’ <- unlabel $ pUserEmail user

return $ [whamlet|

<p>

Email: #{email ’}

|]

else

return mempty

defaultLayout $ do

setTitle "Example webpage"

[whamlet|

<p>

Username: #{ userIdent user}

^{ dispEmail}

|]

Figure 4.15: The fixed version of the profile page making use of protected entities.

LMonad solves this problem by providing another DSL called LSQL, which is

a subset of SQL. The grammar for LSQL is found in Figure 4.16. Developers can use

LSQL to make more expressive SQL queries in a safe manner. A few notable features

that it enables are inner joins, outer joins, conditionals, ordering, limits, offsets, and

antiquotation of Haskell expressions. Under the hood, LSQL uses Esqueleto, which

is a Haskell library that provides type safe SQL queries.

To ensure that all the IFC policies are enforced, the generation code extracts all

of the TERMs in the LSQL statement. For all of the TERMs found, their label’s depen-

dencies are included in the requested fields of the select statement. The LSQL state-

ment is converted into Esqueleto code, so the SQL queries generated are still type

checked and protected against injection attacks. LMonad also generates IFC policy

31

STMT = CMD | CMD ‘;’

CMD = SELECT TERMS ‘FROM ’ TABLES WHERE ORDERBY LIMIT OFFSET

SELECT = ‘SELECT ’ | ‘PSELECT ’

TABLES = table | TABLES JOIN table ‘ON ’ BEXPR

JOIN = ‘INNER JOIN ’ | ‘OUTER JOIN ’ | ‘LEFT OUTER JOIN ’

| ‘RIGHT OUTER JOIN ’ | ‘FULL OUTER JOIN ’

BEXPR = ‘(’ BEXPR ‘)’ | ‘NOT ’ BEXPR | TERM ‘IS NULL ’

| TERM ‘IS NOT NULL ’ | B BBINOP B | BEXPR BEBINOP BEXPR

BEBINOP = ‘AND ’ | ‘OR ’

BBINOP = ‘==’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’

B = ‘#{’ antiquote ‘}’ | CONST | TERM

CONST = ‘TRUE ’ | ‘FALSE ’ | int | double | ‘\’’ string ‘\’’

TERMS = ‘*’ | TERMSS

TERMSS = TERM | TERM ‘,’ TERMSS

TERM = table ‘.’ FIELD | FIELD

FIELD = ‘*’ | field

WHERE = ‘WHERE ’ BEXPR | NULL

LIMIT = ‘LIMIT ’ nat | NULL

OFFSET = ‘OFFSET ’ nat | NULL

ORDERBY = ‘ORDER BY’ ORDER

ORDER = TERM | TERM ‘ASC ’ | TERM ‘DESC ’ | TERM ‘,’ ORDER

Figure 4.16: The LSQL grammar used for expressive SQL queries. This language
is used to perform IFC safe queries to the database. Some notable features are
the ability to use outer joins and the use of antiquotation to include the results of
Haskell expressions in queries.

32

checks for all of the TERMs previously found in the LSQL statement. If PSELECT was

given, LMonad will wrap the values returned by the database into Labeled values.

To demonstrate how LSQL works, Figure 4.17 shows a LSQL statement from

the Build it Break it Fix it web application. Tables User and UserInformation

contain private information about contestants so the current label needs to be

tainted with the labels of results from the database. The figure also shows the

code generated from the LSQL statement. This code first runs the corresponding

Esqueleto database query. Then it maps over every row returned by the query,

calling raiseLabelRead to taint the label for every result. Figure 4.18 provides an-

other example and shows the corresponding generated code. This LSQL statement

protects the judges’ email addresses.

33

-- LSQL

select User.*, UserInformation .* from User

left outer join UserInformation

on User.id == UserInformation.user

where User.id == #{uId}

limit 1

-- Generate code

res_0 <- select $ from $

\(LeftOuterJoin _user _userinformation) -> do

on (just (_user ^. UserId) ==.

_userinformation ?. UserInformationUser)

where_ (_user ^. UserId ==. val uId)

limit 1

return (_user , _userinformation)

lift $ mapM (\(_e_user@(Entity _user_id _user),

_userinformation_maybe) -> do

raiseLabelRead _e_user

maybe (return ())

raiseLabelRead _userinformation_maybe

return (_e_user ,_userinformation_maybe)

) res_0

Figure 4.17: LSQL statement from the Build it Break it Fix it website, and the code
that is automatically generated. A lot is going on here, but the main takeaway is
that the appropriate IFC checks are made on all the results returned by the database
through the calls to raiseLabelRead.

34

-- LSQL

select User.email from User inner join Judge

on User.id == Judge.judge

where Judge.contest == #{cId}

-- Generated code

res_0 <- select $ from $ \(InnerJoin _user _judge) -> do

on (_user ^. UserId ==. _judge ^. JudgeJudge)

where_ (_judge ^. JudgeContest ==. val cId)

return (_judge ^. JudgeContest , _judge ^. JudgeJudge ,

_user ^. UserId , _user ^. UserEmail)

lift $ mapM (\(_judge_contest , _judge_judge ,

_user_id , _user_email) -> do

taintLabel (readLabelUserEmail ’ _user_id)

return (_user_email)

) res_0

Figure 4.18: LSQL statement retrieving judges’ emails and the corresponding gen-
erated code. The main point here is that proper IFC checks are inserted via
taintLabel.

35

Chapter 5: Evaluation

I developed two web applications to evaluate the integration of LMonad into

Yesod. The first is the example website that is referenced throughout the previous

chapter. The other is the Build it Break it Fix it website. Each web application has a

LMonad implementation and a vanilla implementation that does not automatically

provide IFC checks.

Two methods are used to evaluate LMonad’s integration. The first is an

approximation of developer effort in integrating LMonad. The measure we use

to estimate this is the number of lines of code changed in handler functions that

respond to web requests. This measure does not include integration changes that

are automatically provided by LMonad’s DSL and library functions.

The second method used is a measure of the performance difference between

the vanilla and LMonad implementations of the web applications. We measure

average roundtrip latency times in seconds over 1,000 trials for key page handlers.

We also compute the standard deviation for these results and the overhead of the

LMonad versus vanilla implementations. Most of the requests were simple GET

requests that retrieve content. There are a few POST requests that update state in

the web application. All requests were measured using a bash script that utilized

36

Handler LOC Changed Total LOC in File

/home 2 30
/profile 6 37
/protected profile 19 49
/register 8 51
/update email 13 47

Table 5.1: The number of LOC changed in handler files while integrating LMonad
into the example Yesod application.

Handler Verb Vanilla Latency LMonad Latency Overhead

Mean (s) SD (s) Mean (s) SD (s)

/home GET 0.0488 0.0015 0.0483 0.0009 -1.02%
/register GET 0.0481 0.0007 0.0483 0.0013 0.42%
/profile GET 0.0487 0.0013 0.0485 0.0009 0.41%
/protected profile GET 0.0489 0.0014 0.0490 0.0014 0.20%
/update email GET 0.0489 0.0014 0.0484 0.0011 -1.02%
/update email POST 0.0556 0.0020 0.0557 0.0095 0.18%

Table 5.2: Experimental results comparing latency times between the example web-
site with and without LMonad. The average and standard deviation of latency times
in seconds for 1,000 trials are shown.

the unix time application. curl was used to send the HTTP requests. Cookies

and CSRF tokens were explicitly defined so that a user was logged into the site,

and the user had sufficient permissions for all of the handlers. The server used

for benchmarks was running Red Hat Enterprise Linux Server 6.5 with 24 2.2 GHz

CPUs and 32 GB of RAM. All measurements were performed locally to eliminate

network effects. PostgreSQL 9.3.5 was also run locally as the database backend.

37

5.1 Example Website

As a reminder, the example website has a policy that only administrators

and users can read their email addresses. Also, users can only edit their own email

addresses. Table 5.1 shows the numbers of lines of code changed to support LMonad

for various handlers. Experimental results measuring latency for the vanilla and

the LMonad example sites are found in Table 5.2. This experiment was set up as

described in the previous section. The handlers investigated correspond to various

pages on the site like the home page, the registration page, and the profile page.

The latency measurements also benchmark the time taken to update the user’s email

address via the POST request.

5.2 Build it Break it Fix it Web Application

The Build it Break it Fix it web application is used to help run a secure pro-

gramming contest. The website allows contestants to provide personal demographic

information, receive contest announcements, view scores, and examine their submis-

sions. It is a relatively large application with 7,077 lines of code and 80 modules.

When adding LMonad to the site, there were various policies that needed to

be enforced. The first is similar to the example website where only users can read or

modify their personal information. The exception to this is that administrators can

read this information. A similar policy is enforced for defining which git repository is

used to make contest submissions for teams. Another policy is that while announce-

38

postAddAnnouncementR :: Handler Html

postAddAnnouncementR = do

((res , widget), enctype) <- runFormPost postForm

case res of

...

FormSuccess (FormData title contest markdown draft) -> do

addAnnouncement title contest draft markdown

redirect AdminAnnouncementsR

Figure 5.1: Security violation that allows anyone to post announcements on the
contest website. LMonad prevents this type of IFC violation.

ments are public to read, only administrators can modify or create announcements.

One limitation encountered during integration was that four modules use aliasing,

which is currently not supported in LSQL statements. As a result, these modules

import blacklisted libraries and check IFC manually.

Adding IFC actually does prevent security violations from occuring in the

contest website. For example, one bug that previously existed in the code was

a missing check to make sure a user was an administrator before posting a new

announcement. This allowed anyone to make contest announcements! The offending

code of this example is shown in Figure 5.1. This function parses POST data and

then adds a new announcement via addAnnouncement upon success. The user is

never authenticated, so anyone can post new announcements and potentially deface

the website. In the converted version of the website, LMonad prevents this and

similar bugs with its IFC checks. When addAnnouncement makes the database call

to insert a new post, the insertion will fail and redirect to a permission denied page.

According to git, 1,149 insertions were made to enable LMonad in the contest

site, with 524 of those insertions occuring in handler code. Table 5.3 displays the

39

Handler LOC Changed Total LOC in File

/announcements 22 145
/announcement/update 11 190
/profile 14 136
/buildsubmissions 3 213
/buildsubmission 1 213
/breaksubmissions 26 254
/breaksubmission 7 254

Table 5.3: The number of LOC changed while integrating LMonad into the Build
it Break it Fix it application.

Handler Verb Vanilla Latency LMonad Latency Overhead

Mean (s) SD (s) Mean (s) SD (s)

/announcements GET 0.0577 0.0025 0.0584 0.0023 1.21%
/announcement/update POST 0.0543 0.0014 0.0551 0.0020 1.47%
/profile GET 0.0523 0.0017 0.0528 0.0018 0.96%
/buildsubmissions GET 0.0677 0.0024 0.0694 0.0025 2.51%
/buildsubmission GET 0.0706 0.0020 0.0740 0.0020 4.82%
/breaksubmissions GET 0.0633 0.0022 0.0650 0.0022 2.69%
/breaksubmission GET 0.0584 0.0014 0.0608 0.0017 4.11%

Table 5.4: Mean and standard deviation of latency in seconds of 1,000 trials for the
vanilla and the LMonad Build it Break it Fix it web application.

40

getParticipationBreakSubmissionsR :: TeamContestId

-> Handler Html

getParticipationBreakSubmissionsR tcId = runLMonad $

Participation.layout Participation.BreakSubmissions tcId $ do

submissions <- handlerToWidget $ runDB $ [lsql|

select BreakSubmission .*, Team.name from BreakSubmission

inner join TeamContest on

BreakSubmission.targetTeam == TeamContest.id

inner join Team on TeamContest.team == Team.id

where BreakSubmission.team == #{tcId}

order by BreakSubmission.timestamp desc

|]

case submissions of

...

_ ->

let row (Entity sId s, Value target) = do

...

time <- lLift $ lift $ displayTime $

breakSubmissionTimestamp s

return [whamlet ’|

...

|]

in

...

Figure 5.2: Excerpt of changes made to the break submission page to support
LMonad. Changes are in orange and deletions are in red.

number of changed lines of code for select handlers. Note that the code for the

buildsubmissions and buildsubmission pages is in the same file; here LOC changed

is split according to which page was modified. The same is true for the breaksub-

missions and breaksubmission pages. Figure 5.2 demonstrates some of the changes

made to support LMonad on the break submissions page. Adding runLMonad runs

the computation in the LMonadT transformer to track IFC. A previous Esqueleto

expression is converted to use the LSQL DSL. The rest of the changes are small

type fixes that need to be made due to the conversion.

41

Table 5.4 compares the latency of both versions of the site. The handlers

benchmarked correspond to displaying the announcements, updating an announce-

ment, retrieving the user’s profile with personal information, getting the list of a

team’s submissions, and viewing the results of a specific submission. The same

experimental setup was used as before.

5.3 Analysis

The total number of lines that have changed indicate that it is not trivial to

integrate LMonad since every handler needs modification. This is mainly because

computation is run in a different monad so certain functions need to be lifted. Also,

Esqueleto database queries need to be rewritten in LSQL. That being said, most

modules required relatively few changes compared to their overall size. The type

checker also guides the programmer to where changes need to be made. Therefore,

we conclude that it is feasible for a developer to properly intregrate LMonad into a

Yesod application with moderate effort.

Most of the handlers show little to no overhead between the vanilla and

LMonad versions of the website. In fact, the greatest latency occurs in the buildsubmission

handler, and that is only 4 milliseconds of slowdown. This is only an overhead of

4.82%. These results indicate that LMonad incurs a negligible performance hit.

While LMonad’s overhead is small, it still exists. This overhead most likely

comes from the IFC checks that LMonad makes for every result returned by the

database. This hypothesis implies that overhead increases with more results re-

42

turned by the database. The benchmark data from the Build it Break it Fix it web

application seems to support this theory. For example, the buildsubmission handler,

which has the largest overhead, returns 30 results from the database in the bench-

mark. On the other hand, the profile page has the lowest overhead and only returns

two database results. It is possible that other factors could also affect performance.

For instance, certain database operations, like writing to existing rows, could incur

greater overhead. This seems possible given the benchmark results because updat-

ing an existing announcement has 1.47% overhead, despite the fact that this handler

only makes four reads and one write.

43

Chapter 6: Related Work

This work directly builds upon LIO [1], DCLabels [9], Yesod [6], and security

lattices [8], which have previously been discussed.

There are many works that attempt to control how information flows within

a program. Sabelfeld and Myers present a comprehensive survey paper in this

area [10]. This work distinguishes between various ways that secure information

can leak out of a program. It also discusses different mitigation techniques like a

program counter based static type system.

JIF by Myers provides IFC for Java programs using a static type system [11].

Pottier and Simonet present Flow Caml,which is similar to JIF except it is designed

for ML [12]. Flow Caml also uses a static type system, and information flow can be

infered since type inference for ML is decidable.

Other lines of work are more similar to LMonad since they attempt to track

information flow accross database boundaries. Schoepe et al. offer SeLINQ to

accomplish this. They use a DSL in a language like F# to express database queries.

A main distinction between LMonad and their work is that SeLINQ uses a static

type system. SeLINQ’s quatation language is also less expressive since it does not

support outer joins.

44

SELinks is a programming language by Corcoran et al. designed to build

secure web applications that interact with databases [13]. An interesting feature

of SELinks is that policy enforcement is moved to the PostgreSQL database server

when possible to improve performance. The language also uses dependent types to

make sure IFC policies are checked. Again, SELinks statically enforces IFC which

differs from LMonad’s dynamic floating label system. LMonad also provides richer

database queries through the LSQL DSL.

Chlipala’s UrFlow provides a unique method for implementing information

flow policies [14]. UrFlow statically checks policies for Ur/Web applications using

symbolic execution and automated theorem proving. While it is convenient that

UrFlow checks policies statically, UrFlow applications can take a much longer time

to compile than LMonad applications.

Fabric by Liu et al. is a language and decentralized system to enforce IFC [15].

Fabric is different from LMonad and previously mentioned works since it no longer

focuses on the interaction between a web application and its database. Instead,

Fabric provides guarantees about how information is distributed amongst nodes in

a network.

There are various labeling schemes that can be use to track information flow.

Montagu et al. survey various information flow labels [16]. This work compares

different labels in terms of their expressivenes. The authors develop a theoretical

abstraction called label algebras to perform this comparison. Developers should use

this work to help decide which label system to use with their LMonad applications.

45

Chapter 7: Conclusion

This work has presented LMonad, a generalization of LIO that supports IFC

for arbitrary monads. It provides additional functionality to integrate LMonad with

web applications written in Yesod. In particular, a DSL for label annotations is

given to specify IFC policies. LSQL and LMonad’s library functions also enforce

IFC when interacting with a backend’s database by automatically inserting policy

checks.

Integrating LMonad with Yesod applications is feasible since the provided

functionality and the DSL reduce the developer’s work to a reasonable effort. Fur-

thermore, the runtime performance of the integrated version of the website is com-

parable to vanilla implemenations.

LMonad is currently limited by the fact that LSQL does not support aliases in

queries. In future work, the author plans to address this issue by adding aliases to

LSQL. In addition, the author aims to formally prove that LMonad’s interactions

with databases satisfy IFC models.

46

Bibliography

[1] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible
dynamic information flow control in haskell. SIGPLAN Not., 46(12):95–106,
September 2011.

[2] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph Fasel, Maŕıa M. Guzmán, Kevin Hammond, John Hughes, Thomas
Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson.
Report on the programming language haskell: A non-strict, purely functional
language version 1.2. SIGPLAN Not., 27(5):1–164, May 1992.

[3] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[4] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’89, pages 60–76, New York, NY, USA, 1989.
ACM.

[5] Philip Wadler. Monads for functional programming. In Advanced Functional
Programming, pages 24–52. Springer, 1995.

[6] Yesod web framework for haskell. http://www.yesodweb.com/.

[7] Joseph A. Goguen and Jos Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy’82, pages 11–20, 1982.

[8] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976.

[9] Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Disjunc-
tion category labels. In Proceedings of the 16th Nordic Conference on Informa-
tion Security Technology for Applications, NordSec’11, pages 223–239, Berlin,
Heidelberg, 2012. Springer-Verlag.

47

[10] A. Sabelfeld and A.C. Myers. Language-based information-flow security. Se-
lected Areas in Communications, IEEE Journal on, 21(1):5–19, Jan 2003.

[11] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’99, pages 228–241, New York, NY, USA,
1999. ACM.

[12] François Pottier and Vincent Simonet. Information flow inference for ml. ACM
Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

[13] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Cross-tier, label-based
security enforcement for web applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 269–282,
June 2009.

[14] Adam Chlipala. Static checking of dynamically-varying security policies in
database-backed applications. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 1–, Berkeley,
CA, USA, 2010. USENIX Association.

[15] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C.
Myers. Fabric: A platform for secure distributed computation and storage.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 321–334, New York, NY, USA, 2009. ACM.

[16] Benôıt Montagu, Benjamin C. Pierce, and Randy Pollack. A theory of
information-flow labels. In Proceedings of the 2013 IEEE 26th Computer Se-
curity Foundations Symposium, CSF ’13, pages 3–17, Washington, DC, USA,
2013. IEEE Computer Society.

48

