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The goal of this work is to develop a 2D, heterogenous model for the purpose

of studying liquid drainage from micro-foams and micro-emulsions. Liquid drainage

within foams and emulsions is an important phenomenon because it affects several

intrinsic properties of foams and emulsions, including their viscoelastic and ther-

mophysical properties. While previous attempts have explained some aspects of

drainage with a homogenous treatment, there are fundamental questions regarding

drainage that remain unanswered.

In our heterogenous model, we treat the bubbles and droplets of micro-foams

and micro-emulsions as rigid particles because their small radii result in large sur-

face tension forces, which cause them to remain spherical for a significant portion

of time. To track the sharp, rigid interfaces of the droplets and bubbles, we build

our heterogenous model upon the Arbitrary Lagrangian Eulerian (ALE) method.

The ALE method is a moving grid method that can be expensive because the fi-

nite element matrices must be reassembled each time the grid is moved and grid



deformation can lead to low quality elements. We reduce the cost of running ALE

simulations by employing a second order accurate, semi-implicit-explicit time inte-

gration scheme designed for low Reynolds number flows and by utilizing a novel

function for controlling the deformation of the mesh.

With this heterogenous model, we first investigate coarsening induced drainage

within an idealized micro-foam. Our heterogenous model shows that the foam’s liq-

uid channel thicknesses must be allowed to vary with time in the bubble’s coarsening

equations. In addition, our model also shows that bubble position is as important as

bubble size when it comes to the coarsening process. We conclude this work with a

series of studies designed to determine the algorithm’s ability to capture the bubbles

and droplets of micro-foams and micro-emulsions as a collection of free bodies. The

results of this testing indicate that our algorithm is capable of capturing a micro-

emulsion as a collection of free body droplets. However, the testing also indicates

that our algorithm is not capable of capturing micro-foams as a collection of free

body bubbles at this time.
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Chapter 1: Introduction

1.1 Multiphase Flows

Multiphase flows are present all around us and they directly affect our every-

day life. Examples of multiphase flows include soil sedimentation in rivers, droplet

deformation in sprays, and liquid drainage in emulsions and foams. These flows have

impacts ranging from inkjet printing to waterway dredging and from gold mining

to automobile safety. Because of the great significance of these flows in practical

applications, many attempts have been made to investigate them.

Within these attempts, a homogeneous approach has typically been taken

and the multiphase media is assumed to be a continuum. While some insights

can be gained from homogeneous approaches, more meaningful results are gained

from studies that take a heterogeneous approach and distinguish between phases.

Still, there are a limited number of heterogeneous media models within the current

literature [6, 16, 27]. As such, homogeneous media models remain the cutting edge

technique in numerous multiphase problems, such as liquid drainage in foams and

emulsions [26].

Drainage is an important phenomenon because it affects several intrinsic prop-

erties of aqueous foams and emulsions. This is due to the fact that the amount of
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water within a foam or emulsion directly influences how that foam or emulsion

behaves as a media. For example, drainage impacts the effective thermal conduc-

tivity, density, heat capacity, viscosity, and gas diffusivity of foams and emulsions,

which govern the heat, mass, and momentum transport in the foams and emulsions.

With regards to fire fighting foams, these drainage impacts play a significant role in

determining whether or not a fire can be successfully extinguished.

Despite a rich amount of literature on the subject, homogeneous media models

have left several fundamental questions regarding drainage and its effects open.

The goal of this work is to make significant advances towards the creation of a

heterogenous media model for the purpose of studying local liquid drainage in micro-

foams and micro-emulsions in order to answer some of these open fundamental

questions.

1.2 The Arbitrary Lagrangian Eulerian Method

The heterogenous model of drainage under consideration is based upon the

2D incompressible Navier-Stokes equations and the Arbitrary Lagrangian Eulerian

(ALE) method. The ALE method is a moving mesh method that was devised in the

1960’s, however, it wasn’t until the work done in the 1970’s by C. W. Hirt and his

Los Alamos research group, that the ALE method’s true potential was realized [19].

Since then, the ALE method has successfully been applied to several multiphase

problems and has gained popularity within the multiphase community because it

combines the ability of the Eulerian frame to handle grid distortions with the ability

2



of the Lagrangian frame to accurately track sharp interfaces [6, 16, 27]. The ALE

method does this by employing the referential frame and moving the boundary grid

points with a specific velocity. On moving boundaries, the grid points move with

the interfacial velocity, while those on stationary boundaries remain fixed. Interior

grid points are allowed to move with an arbitrary velocity. By moving the grid

points in such a fashion, the moving interfaces are treated in the Lagrangian frame,

allowing for sharp interface tracking, while the stationary boundaries are treated in

the Eulerian frame, allowing for a moderate degree of grid distortion to be handled.

Though the ALE method allows for an accurate treatment of moving inter-

faces, it subjects simulations to some of the limitations common to Lagrangian

simulations. Specifically, the finite element matrices must be reassembled each time

the grid moves. This process can be very expensive and typical ALE algorithms only

exacerbate this cost. This is because low accuracy time integration schemes are em-

ployed, which necessitate the use of iterative solvers to find the domain’s location at

the next timestep, Ωn+1. After each iteration in which the grid is moved, reassembly

is required, regardless of whether or not the simulation is moving forward in time.

We build our heterogeneous drainage model by designing an ALE algorithm

that does not require iterative methods to find Ωn+1. This is accomplished by

incorporating a second order accurate time integration scheme into the model. In

addition, we seek to reduce the cost of remeshing, due to grid distortion, by limiting

the distortion itself. This is accomplished by devising a novel function to control

the deformation of the mesh, which in turn reduces the frequency of remeshing.

Together, these two aspects significantly reduce the simulation’s CPU time over

3



previous codes, without a loss of accuracy.

1.3 Bubbles and Droplets as Rigid Cylinders

To capture the micro-bubbles and micro-droplets within this heterogeneous

drainage model, we employ a no-slip, rigid particle boundary condition to represent

the surfaces of the bubbles and droplets. This is a reasonable boundary condition

because the radii of the bubbles and droplets that comprise the foams and emulsions

under investigation are between 10−3m and 10−4m. On this scale, the surface tension

force is so large that the bubbles and droplets remain spherical for a significant

portion of time, which was confirmed by experimental observation. Since we have a

2D model, these rigid, spherical bubbles and droplets are approximated by infinite

cylinders.

In general, the no-slip, rigid particle boundary condition takes the form

~U = ~V + ~ω × ( ~X − ~Xc) (1.1)

where ~U , ~V , ~ω, ~X, and ~Xc represent the velocity of the fluid surrounding the particle,

the translational velocity of the particle, the rotational velocity of the particle,

the interfacial grid point locations, and the particle’s centroid respectively [14, 16].

Equation 1.1 is a 3D expression and despite the model being in 2D, it is kept in

its general, 3D form. This is because the entries corresponding to the additional

dimension are identical to 0 in 2D and are ignored after the cross products are taken.

For rigid, infinite cylinders in 2D, the equations governing ~V and ~ω can be

4



simplified to

d~V

dt
=

(
ρB − ρ
ρB

)
~g +

(
1

ρBAB

)∫
Γ

(
P~n+ τ · ~n

)
dΓ (1.2)

and

d~ω

dt
=

(
2

ρBABr2
B

)∫
Γ

(
~X − ~Xc

)
× (P~n+ τ · ~n) dΓ, (1.3)

while still allowing the general form of Equation 1.1 to be employed [3, 4, 14, 16].

Within Equations 1.2 and 1.3, ρ is the density of the surrounding fluid, ρB is the

density of the cylinder, P is the fluid’s dynamic pressure, τ is the fluid’s viscous

stress tensor, AB is the area of the cylinder, rB is the cylinder’s radius, ~g is the gravity

vector, ~n is the normal unit vector pointing into the cylinder, and Γ represents the

cylinder’s boundary. These equations have been used extensively in sedimentation

studies and we refer the reader to [9, 11,14–16].

The challenge in coupling Equations 1.2 and 1.3 to the incompressible Navier-

Stokes equations is that when ρB becomes small with respect to ρ, the terms on

the right hand side of Equations 1.2 and 1.3 become large, which causes the overall

system to become stiff. This has limited the range of the ρB and ρ values that have

previously been explored with Equation 1.1. To further advance our heterogenous

drainage model, the algorithm is tailored to allow new regions of ρB to be explored.

This is accomplished by including a predictor-corrector scheme that iterates upon

P, τ , ~V , and ~ω, but not Ωn+1. This maintains the reassembly cost savings while

mitigating the stiffness from the ρ−1
B terms in Equations 1.2 and 1.3.

The main contributions of this work to the existing ALE literature are made

possible by our algorithm. Specifically, by reducing the cost of ALE simulations,
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we are able to investigate coarsening induced drainage in foams, and by mitigating

the rigid particle boundary condition stiffness, we are able to study new regimes of

rigid cylinders. These advances have allowed us to draw important conclusions about

coarsening, all while moving closer to the creation of a heterogenous, free body model

of micro-foams and micro-emulsions. Upon completion of such a model, a successful,

comprehensive investigation of drainage in micro-foams and micro-emulsions would

be possible.

1.4 Outline of Thesis

In Chapter 2, we discuss the two-dimensional, incompressible Navier-Stokes

equations that govern our ALE systems. We begin with the conservation of mass and

momentum equations, apply our system assumptions, and translate the equations

into the referential frame. Once the governing equations have been discussed, their

weak form is presented. The semi-implicit-explicit time integration scheme that we

employ to solve the weak form of the incompressible Navier-Stokes equations is then

described. Time-step analysis of the scheme, with new results, is also provided. The

chapter concludes with an in-depth review of the algorithm. This review includes an

exploration into how the grid is moved and how the grid deformation is controlled.

In Chapter 3, we present several validation studies that are performed on our

algorithm and its implementation. The validation studies can be separated into two

categories. The first set of studies are based on a time dependent, analytical solution

to the incompressible Navier-Stokes equations. Comparing numerical results to this

6



analytical solution is a popular method for benchmarking codes [21,23]. We extend

this method to the ALE framework and use it to investigate the algorithm’s ability

to accurately track interfaces as well as to confirm the accuracy of our algorithm.

The second set of studies take into account the coupling of Equations 1.2 and 1.3

to the incompressible Navier-Stokes equations. The studies begin by examining the

code’s ability to accurately predict drag coefficients for a stationary cylinder exposed

to free stream flows and flows within a channel. In the next study, the cylinder is

made buoyant and the fluid’s dynamic viscosity, µ, is varied. For each value of µ

tested, the cylinder is allowed to reach its terminal velocity, VT . The numerical

solutions for VT are then compared to an empirical approximation [11, 25]. The

purpose of this set of studies is to confirm our code’s ability to model buoyant and

leaden droplets and bubbles.

In Chapter 4, one of the fundamental questions regarding foams, drainage due

to coarsening, is investigated. Coarsening is the process where larger foam bubbles

grow at the cost of smaller bubbles. This can have a significant effect on drainage.

We create a local model of an idealized foam and derive the rates of coarsening

for each bubble. With these rate of coarsening equations, local interstitial fluid

flow is induced and constant versus varying film thicknesses are investigated. To

determine whether constant or varying film thicknesses more accurately represent

the local drainage process, the model results are compared to experimental drainage

data from [17]. Then, the importance of bubble size and position with regards to

coarsening are investigated with our idealized foam and coarsening equations.

In Chapter 5, two performance studies, whose purposes are to determine our
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model’s capabilities with regards to ρB, are run. The first test involves running

simulations, with ever decreasing values of ρB, out to steady state until decreasing

ρB further makes finding the steady state prohibitively expensive. This investigation

is parallel in nature to the final validation test and its purpose is to highlight the

buoyant regimes that we are able to model for an extended period of time with

our current computational resources. Of course, computational resources are always

increasing and just because modeling smaller bubble densities is too expensive today

does not mean that they will be in the future. To put a lower bound on the bubble

densities that the code can handle, ρB is further decreased in the second application.

For each ρB tested within this study, the simulations are run until the solution’s

stability is not in question. Once stability becomes an issue, the study concludes.

We determine the contributions that our model makes by comparing the results of

these tests to the results from other published works.

Chapter 6 provides the conclusion to this dissertation.
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Chapter 2: Governing Equations and Algorithm

The investigation of drainage in foams and emulsions requires the accurate res-

olution of the low Reynolds number fluid flow that occurs within the liquid channels.

This is because the flow surrounding the bubbles and droplets directly affects the

interfacial positions when Equations 1.2 and 1.3 are invoked. Without an accurate

calculation of the stress field, the interfacial positions and model’s results become

questionable, even when the ALE method is being utilized.

2.1 ALE Conservation Equations

The flow that takes place in the liquid channels is governed by the conservation

of mass and momentum equations. These equations, for a viscous, compressible,

Newtonian fluid in the Eulerian frame, are represented by

ρ
∂~U

∂t

∣∣∣
X

+ ρ~U · ∇~U +∇P = −∇ · τ (2.1)

and

∂ρ

∂t

∣∣∣
X

+ ~U · ∇ρ = −ρ∇ · ~U, (2.2)

[3, 4]. The term |X on the time derivative in Equations 2.1 and 2.2 is meant to

highlight the fact that the time derivative is taken with the stationary coordinate,
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X, fixed in time.

Translating Equations 2.1 and 2.2 from the stationary frame to the referential

frame can be easily accomplished by utilizing the well known relationship

∂f

∂t

∣∣∣
X

+ ~U · ∇f =
∂f

∂t

∣∣∣
χ

+ (~U − ~W ) · ∇f (2.3)

presented in [7]. The left hand side of Equation 2.3 represents the material derivative

of a function f in the stationary frame, while the right hand side represents the

material derivative of f in the referential frame, χ. The term |χ on the time derivative

in Equation 2.3 signifies that the time derivative is taken with χ fixed in time. The

referential frame moves with an arbitrary velocity, ~W . Note that by specifying the

frame velocity ~W to be ~0, the Eulerian frame is recovered. Similarly, the Lagrangian

frame can be recovered by setting ~W to be ~U . For this reason, the referential frame’s

material derivative is said to take an Arbitrary Lagrangian Eulerian form.

By letting f equal ρ in Equation 2.3, the Eulerian material derivative in Equa-

tion 2.2 can be replaced with the ALE material derivative. Similarly, by letting f

equal ~U in Equation 2.3 and multiplying by ρ, the Eulerian material derivative in

Equation 2.1 can be replaced with the ALE material derivative. These substitutions

result in

ρ
∂~U

∂t

∣∣∣
χ

+ ρ(~U − ~W ) · ∇~U +∇P = −∇ · τ (2.4)

and

∂ρ

∂t

∣∣∣
χ

+ (~U − ~W ) · ∇ρ = −ρ∇ · ~U, (2.5)

which represent the conservation of mass and momentum equations in the ALE

form.
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At this point we assume that the fluid is incompressible and has a constant

dynamic viscosity, µ. This simplifies Equation 2.5 to

∇ · ~U = 0 (2.6)

and allows τ to be written as τ = −µ(∇~U +∇~UT ) [3, 4]. Note that the expression

∇ · τ can be further reduced to −µ∇2~U using the above assumptions, but that

simplification is not made here because the term ∇ · τ is needed in the weak form.

By substituting ~U = [u, v], ~W = [wu, wv], and τ = −µ(∇~U +∇~UT ), Equations 2.4

and 2.6 can be written in 2D Cartesian coordinates as

ρ
∂u

∂t

∣∣∣
χ

+ ρ(u−wu)
∂u

∂x
+ρ(v−wv)

∂u

∂y
+
∂P

∂x
= µ

[
∂

∂x

(
2
∂u

∂x

)
+
∂

∂y

(∂u
∂y

+
∂v

∂x

)]
, (2.7)

ρ
∂v

∂t

∣∣∣
χ

+ ρ(u−wu)
∂v

∂x
+ρ(v−wv)

∂v

∂y
+
∂P

∂y
= µ

[
∂

∂x

(∂u
∂y

+
∂v

∂x

)
+
∂

∂y

(
2
∂v

∂y

)]
, (2.8)

and

∂u

∂x
+
∂v

∂y
= 0 (2.9)

which represent our model equations in component form.

2.2 Weak Formulation

To ensure a solution for u, v, and P can be found, the finite element spaces

that are used in the weak form must be chosen in such a way that the Babuška-Brezzi

condition is satisfied [18]. There are several combinations of finite element spaces

that satisfy the Babuška-Brezzi condition, but the combination we use corresponds

to the triangular Taylor-Hood element. The reasons for this are twofold. First,

having a quadratic velocity function and a linear pressure function provide the
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necessary balance between accuracy and computational cost. Second, the multi-scale

flows we are studying with this code often reach the regime of lubrication at several

locations within the domain. Because the Taylor-Hood elements are quadratic with

respect to velocity, a single element can provide the exact solution for velocity in

these locations. Of course, the grid has a higher density than one element in these

locations, but the use of Taylor-Hood elements allows for a coarser mesh than other,

less accurate elements would require.

Let φi denote the quadratic velocity test function and let ψi denote the linear

pressure test function in the Taylor-Hood element. By multiplying Equations 2.7

and 2.8 by φi and Equation 2.9 by ψi, integrating over Ω, and applying integration

by parts on the viscous and pressure terms,∫
Ω

ρ
∂u

∂t

∣∣∣
χ
φi dΩ +

∫
Ω

ρ(u−wu)
∂u

∂x
φi dΩ +

∫
Ω

ρ(v−wv)
∂u

∂y
φi dΩ−

∫
Ω

P
∂φi
∂x

dΩ +

∫
Ω

2µ
∂u

∂x

∂φi
∂x

dΩ +

∫
Ω

µ
(∂u
∂y

+
∂v

∂x

)∂φi
∂y

dΩ = ru, (2.10)

∫
Ω

ρ
∂v

∂t

∣∣∣
χ
φi dΩ +

∫
Ω

ρ(u−wu)
∂v

∂x
φi dΩ +

∫
Ω

ρ(v−wv)
∂v

∂y
φi dΩ−

∫
Ω

P
∂φi
∂y

dΩ +

∫
Ω

µ
(∂u
∂y

+
∂v

∂x

)∂φi
∂x

dΩ +

∫
Ω

2µ
∂v

∂y

∂φi
∂y

dΩ = rv, (2.11)

and ∫
Ω

∂u

∂x
ψi dΩ +

∫
Ω

∂v

∂y
ψi dΩ = 0 (2.12)

follow. The terms ru and rv represent the line integrals along Γ that result from the

integration by parts. They are represented by

ru =

∫
Γ

(
2µ
∂u

∂x
nx + µ

(∂u
∂y

+
∂v

∂x

)
ny −Pnx

)
φi dΓ (2.13)
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and

rv =

∫
Γ

(
µ
(∂u
∂y

+
∂v

∂x

)
nx + 2µ

∂v

∂y
ny −Pny

)
φi dΓ, (2.14)

where nx and ny represent the components of the outward unit normal along Γ.

Equations 2.10, 2.11, and 2.12 represent the weak form of the non-conservative

ALE conservation equations.

2.3 Time Integration Scheme

To solve Equations 2.10, 2.11, and 2.12, a scheme popular in Eulerian codes

and designed for low Reynolds number flows is implemented [12]. The scheme is

referred to as BDEX2 since it utilizes a second order accurate backwards difference

stencil for the time derivative as well as a second order accurate extrapolation stencil

for the convection terms. While the convection terms are treated explicitly through

extrapolation, the viscous and pressure terms are handled implicitly to remove any

timestep restrictions related to viscosity. The reader should be made aware that the

BDEX2 scheme has also been referred to as Extrapolated Gear and SBDF within

Eulerian codes [1]. Several BDEX schemes, of up to fifth order, are analyzed for the

Stokes Equations in the ALE form in [19].

There are two main reasons for using BDEX2. First, handling the convection

terms explicitly removes the need for an iterative, nonlinear matrix solver. An

explicit treatment of these terms is reasonable because the convection contributions

are relatively small in low Reynolds number flows. The second reason is that an

iterative solver such as a predictor-corrector scheme, PE(CE)k, is typically needed
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to accurately find Ω at the next timestep, Ωn+1, when low accuracy elements and

time discretizations are used [27]. The accuracy of BDEX2 and the Taylor-Hood

elements allow Ωn+1 to be found accurately in a single step, removing the need to

iteratively find Ωn+1.

Allowing for a variable time step, the second order accurate backwards differ-

ence approximation of the time derivative at time tn+1 takes the form

∂f

∂t

∣∣∣n+1

≈ a1f
n+1 + a2f

n + a3f
n−1 (2.15)

where

a1 =
2∆tn + ∆tn−1

(∆tn)2 + ∆tn∆tn−1
, (2.16)

a2 = −∆tn + ∆tn−1

∆tn∆tn−1
, (2.17)

and

a3 =
∆tn

∆tn∆tn−1 + (∆tn−1)2
(2.18)

where ∆tn = tn+1−tn. Because we are approximating the time derivative at time

tn+1, all terms are integrated over Ωn+1 in Equations 2.10, 2.11, and 2.12 with the

exception of the two terms in the time discretization that relate to past informa-

tion. These terms are integrated over Ωn and Ωn−1, respectively [10]. Although the

convection terms are treated explicitly using extrapolation, they are integrated over

Ωn+1. This is because the purpose of the extrapolation stencil is to approximate the

value at time tn+1. The extrapolation stencil used is represented by

fn+1 ≈ f̂n+1 = bfn + cfn−1 (2.19)
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where

b =
∆tn + ∆tn−1

∆tn−1
(2.20)

and

c = − ∆tn

∆tn−1
. (2.21)

Before continuing, it is important to note that φi ≡ φi(t) in the ALE form

and the appropriate choice of φi on Ωn is φni [10]. Similarly, ψni is the appropriate

choice for ψi on Ωn. This is because both φi and ψi are test functions over Ω.

Thus, they must change in time when Ω does. By applying the time discretization

and extrapolation stencils as well as choosing φi and ψi at the appropriate times,

Equations 2.10, 2.11, and 2.12 become

∫
Ωn+1

ρa1u
n+1φn+1

i dΩ +

∫
Ωn

ρa2u
nφni dΩ +

∫
Ωn−1

ρa3u
n−1φn−1

i dΩ +

∫
Ωn+1

ρ(ûn+1−ŵn+1
u )

∂ûn+1

∂x
φn+1
i dΩ +

∫
Ωn+1

ρ(v̂n+1−ŵn+1
v )

∂ûn+1

∂y
φn+1
i dΩ−

∫
Ωn+1

Pn+1∂φ
n+1
i

∂x
dΩ +

∫
Ωn+1

2µ
∂un+1

∂x

∂φn+1
i

∂x
dΩ +

∫
Ωn+1

µ
∂un+1

∂y

∂φn+1
i

∂y
dΩ +

∫
Ωn+1

µ
∂vn+1

∂x

∂φn+1
i

∂y
dΩ = rn+1

u , (2.22)

∫
Ωn+1

ρa1v
n+1φn+1

i dΩ +

∫
Ωn

ρa2v
nφni dΩ +

∫
Ωn−1

ρa3v
n−1φn−1

i dΩ +

∫
Ωn+1

ρ(ûn+1−ŵn+1
u )

∂v̂n+1

∂x
φn+1
i dΩ +

∫
Ωn+1

ρ(v̂n+1−ŵn+1
v )

∂v̂n+1

∂y
φn+1
i dΩ−

∫
Ωn+1

Pn+1∂φ
n+1
i

∂y
dΩ +

∫
Ωn+1

µ
∂un+1

∂y

∂φn+1
i

∂x
dΩ +

∫
Ωn+1

µ
∂vn+1

∂x

∂φn+1
i

∂x
dΩ +

∫
Ωn+1

2µ
∂vn+1

∂y

∂φn+1
i

∂y
dΩ = rn+1

v , (2.23)
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and ∫
Ωn+1

∂un+1

∂x
ψn+1
i dΩ +

∫
Ωn+1

∂vn+1

∂y
ψn+1
i dΩ = 0, (2.24)

respectively. To complete the transformation of Equations 2.7, 2.8 and 2.9, the

substitutions

u =
∑
j

uh,jφj, (2.25)

v =
∑
j

vh,jφj, (2.26)

and

P =
∑
k

Ph,kψk (2.27)

are made in Equations 2.22, 2.23, and 2.24. This results in a system of linear

equations governing uh, vh, and Ph. Within this spatial discretization, uh and vh

represent the velocity component values of the j velocity nodes on the Taylor-Hood

elements. Similarly, Ph represents the pressure values of the k pressure nodes on

the Taylor-Hood elements.

2.4 BDEX2 Timestep Analysis

As previously discussed, the diffusion terms are treated implicitly in order to

remove the timestep restriction that arises from the large viscous terms in these

multi-scale problems. However, the resulting timestep restriction is not obvious.

Ascher et al. performed timestep analysis on the BDEX2 scheme, but the analysis

was only performed using a constant timestep and was limited in scope [1]. To

discern how BDEX2 behaves with a non-constant timestep, von Neumann stability
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analysis was performed using the following convection-diffusion equation,

∂u

∂t
= −Umax

∂u

∂x
+ ν

∂2u

∂x2
. (2.28)

Discretizing Equation 2.28 using BDEX2 and second order centered differencing

gives

a1u
n+1
i + a2u

n
i + a3u

n−1
i =

Umax
2∆x

(
buni−1 + cun−1

i−1 − buni+1 − cun−1
i+1

)
+

ν

∆x2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
, (2.29)

where the coefficients a1, a2, a3, b, and c are defined as they were originally. By

assuming that

un+m
i+h = eat

n+m

eikm(x+h∆x), (2.30)

Equation 2.29 can be simplified to

ea(∆tn+∆tn−1)

[
a1 +

2ν

∆x2
− 2ν

∆x2
cos (km∆x)

]
+ ea∆tn−1

[
a2 +

Umaxbi

∆x
sin (km∆x)

]
+

[
a3 +

Umaxci

∆x
sin (km∆x)

]
= 0. (2.31)

Since this relationship must be true for all km and ∆x, regardless of the sign of Umax,

the sine functions can be replaced by -1. To avoid canceling the viscous terms, the

cosine function is also replaced by -1, instead of 1. Also, define r = ∆tn−1

∆tn
. With

these two substitutions, Equation 2.31 can be simplified to

ea∆tn(r+1)
(
a1 +

4ν

∆x2

)
+ ea∆tnr

(
a2 −

Umaxbi

∆x

)
+
(
a3 −

Umaxci

∆x

)
= 0. (2.32)

Replacing the growth factor, ea∆tn , by Θ in Equation 2.32 as well as multiplying by

∆tn gives

Θr+1
(
a1∆tn − α

)
+ Θr

(
a2∆tn − βbi

)
+
(
a3∆tn − βci

)
= 0, (2.33)
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where

α =
−4ν∆tn

∆x2
(2.34)

and

β =
Umax∆t

n

∆x
. (2.35)

Note that −4β
α

represents the Reynolds mesh number, Rem. Equation 2.33 represents

the characteristic polynomial of the BDEX2 scheme. Ascher et al. considered the

case of a constant timestep, r = 1, and in this case, Equation 2.33 matches the

characteristic polynomial presented in [1].

In order for BDEX2 to be stable, all of the roots of Equation 2.33 must have

a magnitude less than or equal to 1, |Θ|≤ 1. As far as we know, Equation 2.33

does not have an analytical solution for general r. Thus, three basic regimes of r

are investigated. The regimes correspond to a constant timestep, r = 1, a shrinking

timestep, r = 1.1, and a growing timestep, r = 0.9. With the value of r specified,

the α− β plane is discretized and the roots of Equation 2.33 are solved numerically

on each discretized node. Finally, the magnitude of the roots are taken.

Figure 2.1 depicts the stability region of BDEX2 for r = 1. The stability

regions for r = 1.1 and r = 0.9 differ from that of r = 1, but only minimally. Because

the differences are slight, the results for r = 1.1 and r = 0.9 will not be discussed

further in this manuscript. Ascher et al. presented a figure similar to Figure 2.1,

but the range of β was limited. By increasing the scope on the α − β plane, an

important feature of the BDEX2 scheme can be seen that was not recognized in [1].

As α and β become large, the ridge separating the stability regions becomes linear.
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Figure 2.1: Stability region for BDEX2 according to Equation 2.33 with r = 1. Red
denotes stability and blue denotes instability.

This implies that −4β
α

remains constant along that linear ridge. This means that

BDEX2 is stable for all Rem ≤ Recritm , where Recritm is determined by the slope of the

ridge. According to our analysis, Recritm is slightly larger than 1.6 for r = 1. Thus,

when the quantity Umax∆x is less than 1.6ν, BDEX2 is guaranteed to be stable for

any timestep size.

2.5 Grid Deformation

One aspect of this work that has not yet been discussed is the grid velocity

~W and how the grid is moved. The basis of the ALE method is that points on

a moving interface move with that interface while points on stationary boundaries

remain stationary. These restrictions result in the constraints that ~W = ~U on

moving interfaces and ~W = ~0 on stationary boundaries. Thus, the grid behaves in a
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Lagrangian fashion in the immediate vicinity of moving interfaces and an Eulerian

fashion in the immediate vicinity of stationary boundaries. Meanwhile, the interior

grid points move at an arbitrary velocity.

The literature provides several methods for specifying the arbitrary interior

velocity. One of the earliest reported methods was introduced by Donea et al. [6].

They specified ~W at the next timestep by using an algebraic expression designed

to calculate ~W n+1
i as the mean of its neighboring nodes with an additional correc-

tion term included. Since then, simpler and more attractive methods have been

created, one of which is the employment of a time dependent geometric transfor-

mation [20]. However, this method can only be used when the grid velocity can be

found analytically.

When an analytical solution for ~W cannot be found, Laplacian smoothing is

typically used. Laplacian smoothing involves solving the Laplacian equation, or

some variation of it, over Ω such that ~W smoothly transitions from ~U to ~0. The

Laplacian equation was used by Soulaimani and Saad [24], but was later modified by

Hu et al. to include a function controlling the mesh deformation [16]. The modified

Laplacian equation is

∇ · (ke∇ ~W ) = 0, (2.36)

where ke is the function controlling mesh deformation [16]. The function that Hu et

al. used was ke = A−1 where A represents the element’s area (volume) in 2D (3D).

By using ke = A−1, elements with smaller areas are forced to move rigidly while

those with larger areas absorb the majority of the deformation due to the variations
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in ~W . This has the effect of preserving the quality of elements in refined regions,

thus maintaining accuracy where needed. Moreover, it reduces the frequency of

remeshing because larger elements can withstand more deformation than smaller

elements before the element quality becomes too low.

We propose and utilize an alternate, more efficient formulation for ke. Define

a 2D element’s quality, Q, as

Q = 4
√

3

(
A

l21 + l22 + l23

)
, (2.37)

where A is the element’s area and li is the length of side i [22]. Then the formulation

for ke is

ke = (QA)−1 (2.38)

and its purpose is to force low quality elements with small areas to remain rigid

while forcing high quality elements with large areas to absorb the deformation from

the variations in ~W . This limits the deformation of small, low quality elements.

When a remesh is determined by element quality dropping below a fixed threshold,

we have found that up to 30% fewer remeshes are required when using ke = (QA)−1

instead of ke = 1, ke = A−1, or ke = Q−1. We have also found that the error in the

final solution changes minimally between simulations run with these four different

versions of ke, meaning that no version of ke results in higher accuracy than another.

2.6 Grid Movement

To solve for ~W n+1, Equations 2.36 and 2.38 are utilized along with boundary

conditions of un+1 and vn+1. First, Equation 2.36 is split into its component form,
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multiplied by φi, and integration by parts is performed over Ω. Then the spatial

discretization substitutions

wu =
∑
j

wu,h,jφj (2.39)

and

wv =
∑
j

wv,h,jφj (2.40)

are made, which result in a linear system of equations governing wu,h and wv,h. From

this point on, the subscript h will be assumed to be understood and dropped. Once

wn+1
u and wn+1

v are found, the grid is moved utilizing

dL

dt

∣∣∣
χ

= ~W ≈ ~̂W , (2.41)

where L represents the moving grid’s node locations and ~̂W is the extrapolated

approximation for ~W . Note that Ln+1, and thus Ωn+1, are already known when

un+1, vn+1, Pn+1, wn+1
u , and wn+1

v are being found. Thus, Ln+2 is found from

Equation 2.41 and the quantities wn+1
u and wn+1

v . In order to stay consistent with

the grid velocity reported in Equations 2.22 and 2.23 at time tn+2, Ln+2 is solved

for using BDEX2. This results in

a1L
n+2 + a2L

n+1 + a3L
n = b ~W n+1 + c ~W n, (2.42)

with wn+2
u and wn+2

v being approximated by ŵn+2
u and ŵn+2

v .

When using Equation 2.42 to move Taylor-Hood elements, a difficulty arises

since we assume triangular elements. Let a Taylor-Hood element be exposed to the

grid velocity seen in Figure 2.2a. Using Equation 2.42 to solve for all Ln+2 points

results in the element seen in Figure 2.2b. Although the grid movement has been
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exaggerated for demonstrative purposes, Figure 2.2b makes it clear that a nonlinear

grid velocity can distort a triangular Taylor-Hood element (dashed black line) into

a non-triangular element (solid red line in Figure 2.2b). This holds true for any

triangular element that utilizes nodes other than the vertex points.

(a) (b)

Figure 2.2: (a) Taylor-Hood nodes (hollow black points) exposed to a grid velocity
(blue arrows). (b) Taylor-Hood nodes moved from original location to new location
(red points) according to the grid velocity and Equation 2.42. Grid point movement
is specified by green arrows.

We ensure that the elements remain triangular by implementing the following

procedure. First, the vertex nodes are moved using Equation 2.42. The movement

of the element’s vertices is shown by the green arrows in Figure 2.3a. Next, the mid-

points of the edges on the moved element are found, Figure 2.3b. Because using the

grid velocity in Equation 2.42 to move the midpoints will result in a non-triangular

element, the grid velocity must be adjusted to reflect the new midpoint locations.

This adjusted grid velocity only applies to the midpoints and it is illustrated by the

orange displacement arrows in Figure 2.3b. This method is allowable on interior

points because the grid velocity is arbitrary and the process does not involve the

modification of ~U . Edge midpoints on interfaces will be artificially moved, however
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no additional error is introduced when compared to using linear elements on inter-

faces. The adjusted grid velocity is then used in the solution of Equations 2.22,

2.23, and 2.24 at time tn+2.

(a) (b)

Figure 2.3: (a) Movement of the vertex points (solid black circles). Vertices’ move-
ment is specified by green arrows. (b) Placement of the edge midpoints (black
squares) on the moved element. Resulting displacement of the midpoints from their
original locations is shown by orange arrows.

2.7 Algorithm Overview

For each timestep, the steps of our algorithm are as follows:

1.) Check the quality of the grid. This is done locally by using Equation

2.37. Equation 2.37 will calculate the element quality such that Q ∈ [0, 1], with 1

being the measure of an ideal element and 0 representing an undesirable element.

If the quality is below a specified threshold in any location, the grid is remeshed,

and the threshold can be chosen as any value between 0 and 1. However, if the

threshold is fixed too high, then a significant portion of the simulation’s time is

spent remeshing the grid. Alternatively, if the threshold is fixed too low, then the
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low quality elements cause errors to accumulate. We chose our threshold to be

between 0.4 and 0.5, depending on the type of simulation. A threshold within this

range avoids errors due to low quality elements, while not being too restrictive with

regards to time spent remeshing. Once the grid is remeshed, or if no remesh is

required, the algorithm proceeds to its next step.

2.) Find Ωn+1. At this point in the simulation, wnu and wnv have previously

been found by using Equations 2.36 and 2.38, with the known quantities un and

vn as boundary conditions. To find Ωn+1 and Ln+1, Equation 2.41 is solved using

BDEX2 and ~W n+1 is extrapolated using the known quantities ~W n and ~W n−1. Note

that ~̂W
n+1

is modified when moving the grid’s midpoint nodes (i.e. finding Ln+1)

to ensure that the Taylor-Hood elements remain triangular.

3.) Reassemble the finite element matrices on Ωn+1. Since the grid was

moved in the second step, it is necessary to reassemble to finite element matrices over

Ωn+1. This is the only time that reassembly will be necessary during this timestep

because the combined accuracy of the Taylor-Hood elements and BDEX2 scheme

negates the need to iteratively find Ωn+1.

4.) Solve Equations 2.22, 2.23, and 2.24 for un+1, vn+1, and Pn+1.

When solving for un+1, vn+1, and Pn+1, the adjusted ~̂W
n+1

from step 2 is used in

Equations 2.22 and 2.23. This step does not require any additional measures when

the stress or velocity profile on the boundaries is known a priori. However, when

boundary profiles are unknown and Equations 1.1, 1.2, and 1.3 are used instead, it

is necessary to divide the process of finding un+1, vn+1, and Pn+1 into the following

substeps:
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a.) First, calculate ~V n+1 and ~ωn+1 by using Pn and τp within

Equations 1.2 and 1.3. The quantity τp is defined as

−µ
(
∇~̂u

n+1
+ (∇~̂u

n+1
)T
)

.

b.) Using ~V n+1 and ~ωn+1 in Equation 1.1, define the velocity of the

moving interfaces. Then, solve Equations 2.22, 2.23, and 2.24 for

~un+1 and Pn+1.

c.) Recalculate ~V n+1 and ~ωn+1 by using Pc and τc within

Equations 1.2 and 1.3. The quantities Pc and τc are defined as

0.5
(
Pn+Pn+1

)
and−0.5µ

[(
∇~̂u

n+1
+∇~un+1

)
+
(
∇~̂u

n+1
+∇~un+1

)T]
,

respectively.

d.) Using ~V n+1 and ~ωn+1 in Equation 1.1, define the velocity of the

moving interfaces. Then, resolve Equations 2.22, 2.23, and 2.24 for

~un+1 and Pn+1.

e.) Repeat steps c and d until the solutions converge to within a

specified tolerance. This constitutes a predictor-corrector method,

PE(CE)∞, and it is important to remember that its purpose is not

to iterate upon Ωn+1, but Pn+1, τn+1, ~V n+1, and ~ωn+1 for the

purpose of mitigating the stiffness that can arise from (ρB)−1 terms.

5.) Solve Equation 2.36 for wn+1
u and wn+1

v using un+1 and vn+1 as

boundary conditions. At this point in time, ~̂W
n+1

is already known, but ~W n+1

is required for extrapolating ~W at the next timestep.

6.) Set n + 1 to n and repeat steps 1 through 6. Continue this process

until the final simulation time has been reached.
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2.8 Chapter Conclusions

The algorithm used within our ALE simulations to solve the two-dimensional,

incompressible Navier-Stokes equations has been discussed. The discussion began

with a translation of the conservation equations into the referential frame and a

derivation of their weak formulation. The BDEX2 scheme that we use to solve the

weak formulation for un+1, vn+1, and Pn+1 was then analyzed. Two important

conclusions were made as a result of this analysis. First, when coupled with Taylor-

Hood elements, the BDEX2 scheme accurately predicts Ωn+1 with one step. This

means that iterative methods are not required when finding Ωn+1, which significantly

reduces the reassembly cost within our simulations compared to other ALE works.

Second, it was shown that when the quantity Umax∆x is less than 1.6ν, BDEX2 is

guaranteed to be stable for any timestep size, which was a previously unrecognized

result.

Next, the grid deformation function that we constructed was presented. Com-

pared to other forms (ke = 1, ke = A−1, and ke = Q−1), ke = (QA)−1 reduces the

frequency of remeshing by up to 30% by forcing low quality elements with small

areas to remain rigid. This rigidity and reduction of remeshing played a significant

role in the success of some of the simulations that were run. In addition to discussing

ke, we addressed how triangular Taylor-Hood elements need to be moved. Finally,

a detailed description of our algorithm was provided. This description included an

overview of how we use the predictor-corrector method PE(CE)∞ to solve Equations

2.22, 2.23, and 2.24 when Equation 1.1 is used as a boundary condition.
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In the next chapter, the algorithm, its implementation, and its capabilities are

tested and validated. This is achieved through comparison to an analytical solution

for the two-dimensional, incompressible Navier-Stokes equations as well as empirical

approximations for drag coefficients and terminal velocities. After validation is

discussed, foam bubble coarsening and the limits of the code are investigated within

Chapters 4 and 5, respectively.
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Chapter 3: Validation Studies

Validation of the algorithm and its implementation can be separated into two

different categories. The first category of tests focuses on an analytical solution to

Equations 2.7, 2.8, and 2.9 [21, 23]. The analytical solution tests are utilized not

only to provide confirmation that the correct solutions for u, v, and P are being

found, but they are also employed to study error convergence and interface tracking

accuracy. Within these analytical solution tests, the boundary conditions used are

a priori velocity and stress profiles. This is done so that the complex dynamics of

Equations 1.2 and 1.3 do not have to be considered at this point.

Once the first category of tests is concluded, our focus turns towards these

complex dynamics and validating the implementation of Equations 1.2 and 1.3.

This category of tests includes investigations into the accuracy of predicted drag

coefficients for stationary and moving cylinders as well as investigations into the

accuracy of predicted terminal velocities for buoyant cylinders submerged in a fluid.

Accuracy is determined by comparing the predicted drag coefficients and terminal

velocities against empirical approximations [2, 5, 25].
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3.1 Analytical Solution Validation

3.1.1 Stationary Grid Tests

The analytical solution used in the first category of tests is

u = 1 + 2 cos
(

2π(x− t)
)

sin
(

2π(y − t)
)
e−8π2µρ−1t, (3.1)

v = 1− 2 sin
(

2π(x− t)
)

cos
(

2π(y − t)
)
e−8π2µρ−1t, (3.2)

and

P = −ρ
[

cos
(

4π(x− t)
)

+ cos
(

4π(y − t)
)]
e−16π2µρ−1t, (3.3)

which is slightly modified from the equations presented in [21]. We fix ρ = 5 kg/m3

and µ = 0.5 kg/m·s to ensure a low Reynolds number flow is maintained. The tests

begin with an error convergence study for several timestep and grid spacing values,

∆t and ∆x respectively. To ensure that ∆t and ∆x decrease at the same rate,

the forward Euler timestep restriction is utilized during error convergence testing.

Within this first error convergence study, the computational domain is a simple 1

meter by 1 meter square with Dirichlet boundary conditions on all sides. The grid

is kept stationary because the grid spacing, ∆x, can change arbitrarily on a moving

grid.

Figure 3.1 shows the solution error plotted against the reciprocal of the grid

spacing, ∆x−1. From Figure 3.1, it is clear that both the velocity and pressure

solution behave with second order accuracy, O(∆x2), as indicated by the slopes

of the lines. The second order accuracy is expected with regards to the velocity
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Figure 3.1: Solution error plotted against the reciprocal of the grid spacing, ∆x−1.
Velocity and pressure errors are defined as the maximum of ||~UALE − ~U ||2 and
|PALE −P|.

solution, however, the pressure solution was expected to be first order accurate due

to the use of Taylor-Hood elements. We are unsure why this occurred, but having

second order accuracy on P as well as ~U is certainly beneficial.

3.1.2 Moving Grid Tests

The second benchmark test within the first category consists of two parts and

uses a moving mesh test similar to that proposed in [23]. First, the algorithm’s

ability to accurately track a moving interface is investigated. Because remeshing

can affect the point distribution along an interface, the accuracy of the interface’s

location is investigated immediately prior to a remesh. In the second part of this

test, the algorithm’s error convergence is tested again, this time on a moving grid

and accounting for the additional errors that arise during the remeshing process.

31



The same analytical solution and domain used in the first test are used in

this test except a ‘dyed droplet’, with the same µ and ρ as the surrounding fluid, is

inserted into the domain. Dirichlet boundary conditions are placed on the side walls,

while the stress on the droplet’s interface is specified using the analytical forms of

u, v and P in Equations 2.13 and 2.14. A stress boundary condition is used on the

droplet’s interface so that the droplet is mobile and deformable without having to

explicitly enforce the interfacial velocity. This allows the coupling of the interface

tracking and ALE equation algorithms to be tested. The simulation’s initial setup

and mesh, with ∆x−1 ≈ 64, can be seen in Figure 3.2a.

(a) (b)

Figure 3.2: Sample mesh for ‘dyed droplet’ error convergence test: (a) Mesh at time
0 seconds. (b) Mesh before remesh at time 0.115 seconds.

Figure 3.2b shows the deformation of the droplet and mesh before remeshing.

To determine whether the predicted interface position is accurate, the analytical

solutions for velocity are integrated in time using a fifth order Runge-Kutta solver.

The Runge-Kutta solution for interfacial position is assumed to be exact and it is

compared to the ALE-BDEX2 solution. Figure 3.3 is a plot of that comparison
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corresponding to an initial grid spacing of ∆x−1 ≈ 64. Despite not employing an

iterative solver to find Ωn+1, one can see that the interface location is accurately

captured. As expected, the error in the interface’s location is proportional to the

product of ||~UALE − ~U ||2 and the simulation time.

Figure 3.3: Interfacial location error for ‘dyed droplet’ test plotted against 80 inter-
face nodes at time 0.115 seconds from an initial ∆x−1 value of approximately 64.
Position error is defined as ||LALE−L||2 with L defined from Equations 3.1 and 3.2.

After investigating the accuracy of the interface’s location, the algorithm is

allowed to continue, with remeshes taking place over the course of the simulation.

Figures 3.4 and 3.5 are plots of ||~UALE − ~U ||2 and |PALE −P|, respectively, at the

end of the simulation. At this point it needs to be mentioned that despite an initial

grid density corresponding to ∆x−1 ≈ 64, very little control can be exerted upon

∆x−1 once this ALE simulation begins. This goes for any ALE simulation and it

is due to the grid deformation that takes place as well as the removal and addition

of nodes that occurs during a remesh. Even with a fluid ∆x−1, it is clear from
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Figures 3.4 and 3.5 that the errors are lower than those seen in the stationary test

case for the same initial ∆x−1. This decrease in error is especially interesting for

two reasons. First, the simulation time was decreased compared to the stationary

tests. This led to a larger exponential term in the analytical solutions and it follows

that this would result in larger errors. Second, and more importantly, remeshing

introduces additional errors.

Figure 3.4: Error in solution of ~U at the end of the ‘dyed droplet’ test from an
initial ∆x−1 value of approximately 64. Error is defined as ||~UALE − ~U ||2 where ~U
is defined by Equations 3.1 and 3.2. Regions of red signify high error and regions of
blue signify little or no error.

We believe that this decrease in error is due to the mesh density near the

interface. Initially, the mesh near the interface is denser than the rest of the grid,

which necessitates an overall smaller timestep. Then, as the droplet deforms, regions

of large curvature develop. Once a remesh is called for, the meshing routine inserts

points on the surface as it sees fit. This leads to an even denser discretization near

the interface and the timestep further decreases. The decreased timestep leads to a
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Figure 3.5: Error in solution of P at the end of the ‘dyed droplet’ test from an
initial ∆x−1 value of approximately 64. Error is defined as |PALE −P| where P
is defined by Equation 3.3. Regions of red signify high error and regions of blue
signify little or no error.

smaller error, but this decrease in error is irrelevant if second order accuracy isn’t

maintained in moving grid simulations. To investigate whether ~U and P will exhibit

second order accuracy again, this test is repeated for two other values of ∆x−1.

Figure 3.6 is a plot of the error convergence for this test. Note that the error

results are plotted against the initial values of ∆x−1. The values of ∆x change

over the course of the simulations, but the majority of nodes maintain a spacing

approximately equal to the initial ∆x spacing. By comparing Figure 3.6 to Figure

3.1, two things become immediately apparent. First, all of the errors in Figure 3.6

are smaller than their counterparts in Figure 3.1. Again, we believe that this is due

to the increase in grid density in the vicinity of the interface. Second, the order of

accuracy observed in Figure 3.1 is also present in Figure 3.6 despite the additional

errors that are introduced in moving grid simulations.
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Figure 3.6: ALE solution error plotted against the reciprocal of the initial grid
spacing, ∆x−1. Velocity and pressure errors are defined as the maximum of ||~UALE−
~U ||2 and |PALE −P| where ~U and P are defined by Equations 3.1, 3.2, and 3.3.

3.2 Buoyant Cylinder Validation

3.2.1 Free Stream Flow Tests

As was previously mentioned, the models we are interested in building require

the ability to accurately resolve flow fields and the capability to handle free body

motion. After validating our ability to accurately resolve flow fields, our attention

turns towards investigating the complex dynamics that Equations 1.2 and 1.3 intro-

duce when Equation 1.1 is used as a boundary condition. To simplify the process,

the surface stress forces of Equations 1.2 and 1.3 are investigated first through a

drag coefficient study. Then, both the surface stress buoyancy forces are considered

in the final validation stage. All tests consider a cylinder placed along a fluid filled
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container’s centerline.

We begin our drag coefficient studies by exposing a 2D cylinder, of radius

10−4m, to an infinite, free stream flow, which has a unidirectional velocity of (0, V∞).

The drag coefficient, CD, is governed by

CD =
FD

ρV 2
∞rB

(3.4)

with the drag force, FD, defined as

FD = −
∫
Γ

(P~n+ τ · ~n) dΓ. (3.5)

There are several analytical expressions and empirical data sets for CD at steady

state as a function of Reynolds number. Within this study, we compare our results

to the empirical data published in [5]. To mimic the infinite, free stream flow studied

by Dennis et al., the model considers a container wide and tall enough such that the

boundary effects are minimized. The container walls are given Dirichlet boundary

conditions of (0, V∞) and the fluid inside of the channel is taken to be water, with

ρ = 103 kg/m3 and µ = 10−3 kg/(m·s).

Within the model, different values of CD are explored by varying the magnitude

of V∞. This allows us to compare our results to those of Dennis et al. for several

representative values of Re. Figure 3.7 shows the results of this comparison. From

Figure 3.7, it is clear that there is excellent agreement between our results and the

values presented in [5]. In fact, we are able to reproduce Dennis et al.’s results

for Re values well outside of the range we would expect to encounter within liquid

channels of micro-foams and micro-emulsions. This is an encouraging result, but CD
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Figure 3.7: Comparison of the drag coefficients of a stationary cylinder in free stream
flows as a function of Reynolds number against the work of [5].

is comprised of two components, the viscous drag coefficient (CF ) and the pressure

drag coefficient (CP ). The viscous drag coefficient, CF , is governed by

CF =
Fµ

ρV 2
∞rB

(3.6)

with the viscous drag force, Fµ, defined as

Fµ = −
∫
Γ

τ · ~n dΓ (3.7)

and the pressure drag coefficient, CP , is governed by

CP =
FP

ρV 2
∞rB

(3.8)

with the pressure drag force, FP , defined as

FP = −
∫
Γ

P~n dΓ. (3.9)
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Can CF and CP be captured with the same accuracy as CD? To answer that,

we repeat the drag coefficient study, monitoring CF and CP rather than CD, and

compare the results to the values published in [5].

Figure 3.8: Comparison of the viscous and pressure drag coefficients of a stationary
cylinder in free stream flows as a function of Reynolds number against the work
of [5].

Figure 3.8 shows the results of this comparison. From Figure 3.8, excellent

agreement between our results and the values from [5] can be seen. In fact, CF and

CP were captured with the same accuracy as CD. Most importantly, the divergence

of CF and CP that takes place at Re > 1 was reproduced. With these results,

we consider our free stream drag coefficient tests complete and we move towards

incorporating wall effects into these calculations.

39



3.2.2 Wall Effects Tests

When walls are in the near vicinity of an object, their presence can add sig-

nificant drag to the surface of the object. To understand why this occurs, consider

a fluid filled channel with a cylinder placed inside. As the fluid approaches and

passes the cylinder, the fluid must accelerate in the area between the side walls

and cylinder in order to conserve mass. This accelerated fluid velocity causes the

cylinder’s surface to experience increased stresses compared to the stresses that the

incoming velocity would cause. If the side walls are moved closer to the cylinder,

the surface stresses will increase because the passing fluid would have to undergo a

larger acceleration. Similarly, if the side walls are moved away from the cylinder, the

surface stresses will decrease until the walls reach a distance at which the cylinder

cannot feel their effects. Thus, CD is a function of Re and ξ, the ratio of the channel

width to droplet diameter.

The effects of walls, and neighboring objects, will play an important role within

our micro-foam and micro-emulsion studies. Therefore, it is critical to validate the

additional stresses within the model. The validation process consists of two separate

types of simulations involving a cylinder within a water filled container. The first

type considers the position of the cylinder to be fixed and the fluid is specified to en-

ter and exit the container with a fixed velocity of (0, V∞). The second type considers

the cylinder moving at a fixed velocity of (0, V∞) within a closed container. For both

cases, the position of the cylinder is such that the top and bottom boundaries do

not affect the drag forces experienced by the cylinder’s surface. In addition, Re and
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V∞ are fixed within these simulations and ξ is varied so that different values of CD

can be explored. Theoretically, there should exist no differences in CD between the

moving cylinder and stationary cylinder simulation results. However, it is important

to test and confirm this in order to validate the moving body simulations.

There are several steady state analytical expressions and empirical data sets

for CD within the literature that take wall effects into account. The two sources that

will be used for comparison within this work are [25] and [2]. Takaisi presented an

analytical expression for CD as a function of Reynolds number and ξ, but it is only

valid for small Reynolds numbers and large values of ξ. This is due to the Stokes

flow assumption that Takaisi employed. Within [2], numerical and experimental

data points are presented for CD as a function of ξ. However, these numerical and

experimental results diverge when ξ decreases below 2. For this reason, values of

ξ < 2 will not be considered here.

Figure 3.9 contains the comparison between Takaisi’s analytical approxima-

tion, Bouard et al.’s numerical data, and the results from both the stationary and

moving cylinder simulations. First and foremost, we can see from Figure 3.9 that

the stationary and moving cylinder results are in total agreement, as expected. As

for the comparison with published data, it is clear that there is a good consensus

between the results of this work and Takaisi’s analytical expression for the values

of ξ when the Stokes flow assumption is valid. Once Takaisi’s expression becomes

invalid, for ξ < 4, comparisons must continue against the results of [2]. From Figure

3.9, we can see that the consensus between our results and those of Bouard et al. is

excellent for all values of ξ. The results from this test, as well as the free stream test
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Figure 3.9: Comparison of the drag coefficient of a stationary cylinder and a moving
cylinder as a function of ξ against the works of [2, 25].

results, give us total confidence in the algorithm’s ability to calculate the surface

stresses.

3.2.3 Terminal Velocity Tests

With confidence in the surface stresses, the focus of validation turns towards

the terminal velocity, VT , of a buoyant cylinder. For these tests, a buoyant cylinder

is placed inside a container with no-slip conditions on all four walls. The height of

the container and position of the cylinder are such that the top and bottom of the

container do not effect the motion of the droplet. The results from this model at

steady state will be compared to

VT =
[

ln(ξ)− 0.9156 + 1.7243ξ−2
](r2

B(ρ− ρB)gy
4µ

)
(3.10)
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where gy is the vertical component of ~g. This expression for VT can be derived by

balancing Takaisi’s expression for FD with the buoyancy force. The model takes ρ

and ρB to be fixed at 103 kg/m3 and 930 kg/m3, respectively, and several values of VT

are explored by varying µ. It is important to remember that inherent to Equation

3.10 is the Stokes flow assumption. This means that Equation 3.10 can only be used

to calculate VT when ξ ≥ 4 and Re remains small. Thus, the container width is set

such that ξ = 10 and µ is kept in a range such that Re ≤ 0.5.

The results of this testing can be seen in Figure 3.10. Figure 3.10 shows that

the numerical results match with the analytical approximation, Equation 3.10. In

fact, the differences are less than 2%. Smaller differences could have been achieved

by letting the simulations run for a longer period of time, however, they would have

been extremely expensive. With these results, as well as our drag coefficient testing

results, we can conclude our free body problem validation testing.

3.3 Chapter Conclusions

Within this chapter, we have validated our algorithm and its implementation.

Two types of studies were considered during this validation. The first consisted

of comparing an analytical solution for u, v, and P to our code’s results for sta-

tionary and moving grids. For both types of grids, error convergence tests were

performed and second order accuracy was evidenced each time. The moving grid

test also included an investigation into interface tracking accuracy. It was shown

that the BDEX2 algorithm is capable of accurately tracking an interface, despite
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Figure 3.10: Comparison of the terminal velocities of a cylinder as a function of µ
against Equation 3.10.

not employing iterative methods to find Ωn+1.

The second type of study focused on the free body problem by testing predicted

drag coefficients and terminal velocities. Since Equations 1.2 and 1.3 introduce com-

plex dynamics through the boundary condition Equation 1.1, it was important to

validate each aspect of Equations 1.2 and 1.3. Testing began with drag coefficient

studies in free stream flows to ensure that the surface stresses were being accu-

rately calculated. Agreement between our drag coefficients and those from [5] were

excellent. Drag coefficient testing continued by moving the walls of the container

inwards such that the wall effects could be studied. An analytical expression for

CD from [25] and numerical results for CD from [2] were used for comparison. Our

results were again in excellent agreement with the published results. Finally, the

terminal velocities of a buoyant cylinder were investigated and we compared our
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results to a derived approximation for VT , Equation 3.10. The differences between

our numerical results and Equation 3.10 were less than 2%.

The results from this series of tests validate our algorithm and its implemen-

tation. In the next chapter, foam coarsening is investigated on the local scale.

Within the literature, there exist multiple, global studies on coarsening. However,

questions can be raised regarding the assumptions that these global studies make.

These questions suggest that there remain some fundamental misunderstandings

about the coarsening process. In an attempt to gain a better understanding, we

create a local model of coarsening. After coarsening is investigated, the capabilities

of the algorithm are thoroughly tested.

45



Chapter 4: Foam Coarsening

Coarsening is a well recognized phenomenon that takes place in aging foams. It

is the process by which a foam’s average bubble size increases over time (see Figure

4.1). Theory attributes this increase in average bubble size to the diffusion of gas

from small bubbles to large bubbles. Since coarsening depends on the rate at which

dissolved gas diffuses through the liquid phase, the timescales for coarsening can be

larger than those of drainage. However, there are situations where drainage does

not occur until coarsening takes place. An example of this is drainage in shaving

cream.

(a) (b) (c) (d)

Figure 4.1: Time series depiction of a coarsening foam from experiments conducted
by Kennedy et al.: (a) 30 seconds, (b) 100 seconds, (c) 300 seconds, (d) 1000 seconds.

There are multiple works within the current literature where the coupling of

drainage and coarsening is investigated [13,17,26]. These works have utilized global
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continuum models to study coarsening and have explained the rate at which a foam’s

average bubble size grows over time in a satisfactory manner. However, within these

models, the foam’s bubbles are assumed to be mono-disperse. In addition, the film

thicknesses, defined as the distances between bubbles across which gas diffuses, are

assumed to be constant.

From a physical perspective, questions can be raised about the relevance of

these assumptions. First and foremost, if all of the bubbles within a foam were

mono-disperse, coarsening would not take place. This is because bubble size dif-

ferences cause gas solubility gradients in the liquid adjacent to the bubbles. These

solubility gradients drive the exchange of gas between bubbles, which causes coars-

ening. Second, it is not unreasonable to expect the film thicknesses to change as the

bubbles themselves change over time. Changes in film thicknesses would affect the

diffusion of gas, which would directly affect how bubbles coarsen.

Even with the success of previous models, the questions about their assump-

tions suggest that there remain some fundamental misunderstandings with regards

to coarsening. In hopes of gaining a better understanding, we study coarsening lo-

cally. Specifically, we want to investigate the effects of changing film thicknesses on

foam coarsening and drainage, without assuming mono-disperse bubbles.

We investigate these effects by studying an idealized, poly-disperse foam with

our 2D incompressible, Navier-Stokes ALE model. Within our model, we allow the

bubbles to coarsen according to their size and film thicknesses and we assume that

the gravity and capillarity forces are balanced at all times. Without considering

coarsening, the assumption of balanced gravity and capillarity forces would result
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in the foam not draining. However, that is not to say that this assumption is

unreasonable (e.g. shaving cream). Coarsening, and the interstitial fluid flow it

causes, is captured in the model by relating the velocity of each bubble’s interface

with an expression governing the rate of coarsening for that bubble.

Our 2D incompressible, Navier-Stokes ALE model is perfectly suited for this

problem since our ALE model is capable of accurately tracking the moving bubble

interfaces while resolving the interstitial flow fields caused by the bubble’s interfa-

cial movement. Our model’s capabilities enable us to study this highly nonlinear

coupling of coarsening and fluid flow and we compare our model’s results to the ex-

perimental drainage data from [17] in order to determine the effects of changing film

thicknesses. This comparison is made by calculating our foam’s drainage velocity

as the interstitial fluid’s average vertical velocity along a horizontal cross section of

the domain.

4.1 The Drainage Model

Our idealized foam is comprised of three bubbles that remain circular for all

times. This idealized foam is not meant to simulate a real foam per se, but rather its

purpose is to give us the ability to qualitatively understand the physics governing

the individual bubble sizes and the local liquid drainage. After the local physics are

understood, the model can be made more comprehensive through geometric scaling

and by including additional phenomena.

The bubble’s radii are chosen such that our foam is poly-disperse and the
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bubbles are on the same scale as the bubbles observed by Kennedy et al.. The

bubbles are stacked one on top of another within a rectangular container. The

largest bubble is placed on top of the stack, the smallest bubble on the bottom of the

stack, and the three centers are fixed. The distances between the bubble interfaces

are initially specified to be equal, however, they are chosen with the simulation’s

run time and the bubble’s circularity in mind. As is explained later in this work, the

distances themselves are almost immaterial because of how the coarsening equations

take film thicknesses into account. However, the distances chosen still correspond

to values one could expect to find in an actual foam.

Figure 4.2: Depiction of the idealized foam with the rectangular container. The red
line represents the line along which the drainage velocity is calculated.

Figure 4.2 depicts the idealized foam and its setup, as well as the line across

which the foam’s drainage velocity is calculated. Drainage is not calculated at the

bottom of our foam because we enforce conservation of mass upon the system. No

slip boundary conditions are placed on the top and sides of the container. Even
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with mass being conserved, it is necessary to place a no stress boundary condition

on the bottom of the container due to the effects that numerical round off errors

have on the incompressibility restraint. The bottom of the container is placed far

enough away such that the no stress condition does not affect the drainage results.

We allow our poly-disperse foam to coarsen by tracking the flux of gas that

occurs between different sized bubbles. As the bubbles grow (shrink), the bubbles

push (pull) upon the surrounding interstitial fluid, which causes local fluid flow. We

specify the velocity of the interstitial fluid immediately surrounding the bubbles by

implementing Dirichlet boundary conditions of

ui = cos(θi)

(
dRi

dt

)
(4.1)

and

vi = sin(θi)

(
dRi

dt

)
(4.2)

on Bubble i’s surface. Within Equations 4.1 and 4.2, θi is a vector of the polar

angles formed by all of the boundary nodes on Bubble i, ui is the horizontal velocity

of those boundary nodes, vi is the vertical velocity of those boundary nodes, Ri is

the radius of Bubble i, and dRi

dt
is the rate of coarsening for Bubble i.

The velocities ui and vi are not known a priori, but they are specified during the

simulation according to our coarsening equations and the θi values. Our coarsening

equations govern dRi

dt
for each bubble and they are derived such that the local,

diffusive transport of gas between bubbles (according to their differences in size) is

taken into account. The benefits of treating coarsening and the bubble interfaces

in this fashion are twofold. First, the equations for dRi

dt
and their use in Equations
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4.1 and 4.2 allow us to couple coarsening to drainage. Without coarsening in our

model, drainage would not occur, which makes this coupling an important physical

mechanism in our simulations. Second, these equations enable us to investigate the

effects of changing film thicknesses and constant film thicknesses on coarsening, and

thus drainage.

It is this ability to accommodate changing film thicknesses within our coars-

ening equations that forms the crux of our study. Yet, it isn’t obvious how these

rates of coarsening should be specified on the local scale. Within global coarsening

works, see [26], the accepted coarsening equation is

dR

dt
= D

F (κ)

R
(4.3)

where D is a constant, effective diffusion coefficient for the dissolved gas in the liquid

phase, R is the foam’s average bubble radius, and F (κ) is a function that relates

the rate of coarsening to the foam’s liquid fraction, κ. Please see Appendix A for

how D is defined within [17]. Typically, the dry foam limit, F (κ) = 1, is assumed

within coarsening studies [17]. Despite their wide acceptance, the dry foam limit

and Equation 4.3 only allow coarsening to be captured on the global scale. They

are not applicable on the local scale.

For the local scale, as was mentioned previously, separate equations must be

derived for each bubble and the differences between the bubble’s interior pressures

must be taken into account. The derivation of the two sets of equations we use to

specify R1, R2, and R3 as functions of time can be seen in Appendix A. The first
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set of equations considers constant film thicknesses and is represented by

dR1

dt
= D

(sin−1
(
R2

R1

)
π

)(
1

R2

− 1

R1

)
, (4.4)

dR2

dt
= −R1

R2

dR1

dt
− R3

R2

dR3

dt
, (4.5)

and

dR3

dt
= D

(sin−1
(
R3

R2

)
π

)(
1

R3

− R2

R2
3

)
. (4.6)

The second set of equations considers varying film thicknesses and is represented by

dR1

dt
=

(
Dλ0

a

λa

)(sin−1
(
R2

R1

)
π

)(
1

R2

− 1

R1

)
, (4.7)

dR2

dt
= −R1

R2

dR1

dt
− R3

R2

dR3

dt
, (4.8)

and

dR3

dt
=

(
Dλ0

b

λb

)(sin−1
(
R3

R2

)
π

)(
1

R3

− R2

R2
3

)
. (4.9)

Figure 4.3 shows the changes in bubble sizes when Equations 4.4, 4.5, and

4.6 are used and Figure 4.4 shows the changes in bubble sizes when Equations 4.7,

4.8, and 4.9 are used. From Figures 4.3 and 4.4, qualitative differences between the

resulting bubbles can easily be seen. Simply put, Equations 4.4, 4.5, and 4.6 cause

two large bubbles and one small bubble to develop over the course of 200 seconds.

On the other hand, one large bubble and two smaller bubbles develop by the end of

200 seconds when Equations 4.7, 4.8, and 4.9 are used.

Local dynamics of this type cannot be captured with a global model. How-

ever, it isn’t obvious which set of coarsening equations better represents the local
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(a) (b) (c) (d)

Figure 4.3: Time series depiction of the foam when constant film thicknesses are
assumed: (a) 50 seconds, (b) 100 seconds, (c) 150 seconds, (d) 200 seconds. For
reference, we include the line across which the drainage velocity is calculated.

(a) (b) (c) (d)

Figure 4.4: Time series depiction of the foam when varying film thicknesses are
allowed: (a) 50 seconds, (b) 100 seconds, (c) 150 seconds, (d) 200 seconds. For
reference, we include the line across which the drainage velocity is calculated.

dynamics that were observed in the experiments of Kennedy et al. Based on how

coarsening is coupled to the foam’s interstitial fluid within our model, the differences

between the two sets of coarsening equations will manifest themselves in the calcu-

lated drainage velocities. To determine which set of equations is more representative
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of what occurs on the local scale during coarsening, the drainage profiles that each

set of coarsening equations causes is compared to experimental data from [17].

4.2 Drainage Velocity Comparison

To determine which set of equations best describes coarsening on a local scale,

we compare the drainage that results from using Equations 4.4, 4.5, and 4.6 in

Equations 4.1 and 4.2 and the drainage that results from using Equations 4.7, 4.8,

and 4.9 in Equations 4.1 and 4.2 against drainage data published by [17]. The

drainage data published by Kennedy et al. is in the form of grams versus time. We

translate the data from grams versus time to velocity versus time by taking the time

derivative of the drained liquid’s measured height, H.

Due to the nature of the experiment’s data collection, the time derivative data

is extremely noisy. To mollify the noise, the time derivative of H is approximated by

using centered differencing at representative data points with timesteps much larger

than the data collection frequency. The results of this approximation are represented

by the black line in Figure 4.5. It is clear from Figure 4.5 that some noise still remains

in the drainage velocity approximation. To remove this remaining noise, arithmetic

mean filtering is used and the results of this smoothing are represented by the red

line shown in Figure 4.5.

When Equations 4.4, 4.5, and 4.6 are used within Equations 4.1 and 4.2, the

fluid flow they cause at 200 seconds can be seen in Figure 4.6a. Similarly, the

fluid flow at 200 seconds that Equations 4.7, 4.8, and 4.9 cause when used within
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Figure 4.5: Experimental drainage velocity [17]. The velocity derived from changes
in H is seen with the black line. The smoothed velocity is seen with the red line.

Equations 4.1 and 4.2 can be seen in Figure 4.6b. By averaging the vertical velocity

of the interstitial fluid for all times along the (red) cross section in Figures 4.6a

and 4.6b, Figure 4.7 is created. Within Figure 4.7, the green line represents the

drainage caused by Equations 4.4, 4.5, and 4.6 and the blue line represents the

drainage caused by Equations 4.7, 4.8, and 4.9. In addition, Figure 4.7 contains the

smoothed drainage velocity data from Kennedy et al..

There are several factors within our model that will not allow us to make

quantitative comparisons to experimental data. For example, the specific values of

Vm, Df , He, and γ that we chose, along with the dimensions of our initial setup,

could alter the drainage velocity that we experienced. More importantly, our model

is 2D and the data from Kennedy et al. is 3D. Yet, important conclusions can be

drawn from the qualitative aspects of Figure 4.7. Namely, the drainage caused by
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(a) (b)

Figure 4.6: Interstitial flow field at 200 seconds caused (a) when constant film
thicknesses are assumed (b) when varying film thicknesses are allowed.

Figure 4.7: Drainage velocities produced by our ALE models with the smoothed
experimental data from Kennedy et al. (red) included for reference. The constant
film thicknesses (F.T.) model produced the velocity depicted by the green line and
the varying film thicknesses model produced the blue line.
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Equations 4.7, 4.8, and 4.9 is almost identical in nature to the experimental data.

Both curves exhibit a period of acceleration in drainage velocity as well as a period

of deceleration. In fact, the timescales and magnitudes of this acceleration and

deceleration are comparable between the curves. The drainage caused by Equations

4.4, 4.5, and 4.6 accelerates over the entire time period and its curve does not mimic

the experimental data. Thus, it is clear that coarsening is best captured on the local

scale when film thicknesses are allowed to vary within the model.

4.3 Bubble Size Study

With the comparison between the model results and experimental data sug-

gesting that changing film thicknesses better represent the local dynamics of coarsen-

ing and drainage, we looked back at Figure 4.4, specifically Figure 4.4d. Originally,

Bubble 2 was larger than Bubble 3, but Figure 4.4 shows the shrinking of Bubble 2,

with Bubbles 2 and 3 appearing to be equal in size in Figure 4.4d. This is in direct

contrast to the dynamics that Equations 4.4, 4.5, and 4.6 enforce, as seen in Figure

4.3.

Current coarsening theory says that larger bubbles grow at the expense of

smaller bubbles. However, with Bubble 2 approaching the size of Bubble 3, is it

possible for Bubble 2 to become smaller than Bubble 3? This would cause the flux

of gas from Bubble 3 to Bubble 2 to change direction and gas would instead flux

from Bubble 2 to Bubble 3. To investigate whether this switch in size will occur, we

solve Equations 4.7, 4.8, and 4.9 for R1, R2, and R3 over the course of 300 seconds,
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without taking drainage into account.

There are two side effects of modeling beyond the 200 seconds considered in

the drainage study; one of which is expected. First, Bubble 1 outgrows the original

container over the course of 300 seconds. Thus, the original container can not be

used here. Second, Bubble 2 does indeed become smaller than Bubble 3. This switch

of R2 > R3 to R3 > R2 causes the direction of the gas flux to change and invalidates

Equation 4.9. It becomes necessary to replace Equation 4.9 with

dR3

dt
=

(
Dλ0

b

λb

)(sin−1
(
R2

R3

)
π

)(
1

R2

− 1

R3

)
. (4.10)

Equation 4.10 can be derived by simply replacing the view factor within Equation

4.9 with a view factor that reflects the transfer of gas from Bubble 2 to Bubble 3.

Figure 4.8 contains a plot of R1, R2, and R3 when Equations 4.7, 4.8, 4.9,

and 4.10 are used. From Figure 4.8, it can be seen that despite R2 initially being

larger than R3, Bubbles 2 and 3 become identical in size at approximately 225

seconds. After that point in time, R2 continues to decrease until Bubble 2 disappears

completely (not shown). At the same time, Bubble 3 increases in size slightly, which

can be explained by the transport of gas from Bubble 2 to Bubble 3. In order to

put the results of Figure 4.8 into perspective, Figure 4.9 contains snapshots of the

bubbles in a fashion similar to that of Figures 4.3 and 4.4.

Although the disappearance of Bubble 2 before Bubble 3, as foreshadowed

by Figures 4.8 and 4.9, is surprising with respect to current coarsening theory, the

dynamics of Bubble 2 can be explained by considering the film thicknesses, λa and

λb. Figure 4.10 shows λa and λb over time. The gap between Bubbles 1 and 2 and
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Figure 4.8: Radii over the course of 300 seconds when varying film thicknesses are
allowed.

the gap between Bubbles 2 and 3 are initially the same, but they soon diverge. The

quantity λa quickly becomes smaller than λb, meaning that the rate of gas diffusion

from Bubble 2 to Bubble 1 is faster than that from Bubble 3 to Bubble 2. Bubble

2 begins to shrink, as evidenced around 100 seconds in Figure 4.8, due to the gas

supply deficit. To the benefit of Bubble 1, Bubble 2 continues to shrink until it and

Bubble 3 are the same size. After 225 seconds, Bubbles 1 and 3 grow at the expense

of Bubble 2, which quickly causes Bubble 2’s gas supply to become exhausted.

4.4 Chapter Conclusions

We have constructed an idealized foam for the purpose of studying local coars-

ening and drainage with our ALE model. The rate of coarsening was derived on a

bubble by bubble basis according to differences in interior pressures and these coars-
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(a) (b) (c) (d)

Figure 4.9: Time series depiction of the foam when varying film thicknesses are
allowed: (a) 0 seconds, (b) 100 seconds, (c) 200 seconds, (d) 300 seconds. For
reference, we include the line across which the drainage velocity is calculated.

Figure 4.10: Film thicknesses over the course of 300 seconds when varying film
thicknesses are allowed.

ening equations were used to specify the velocity of the moving bubble interfaces.

Comparisons between our model’s drainage results and experimental data suggest

that allowing film thicknesses to vary within the coarsening equations results in a

more accurate representation of local coarsening and drainage dynamics than con-
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stant film thicknesses. Using our varying film thickness coarsening equations, we

have also shown that both bubble size and position are important. Current coarsen-

ing theory would have Bubble 3, the smallest, disappearing first, but we have shown

that Bubble 2 is the first to disappear. This suggests that bubble position needs to

be accounted for in coarsening studies, both local and global.

In the next chapter, the algorithm’s free body capabilities are investigated.

Specifically, we are interested in the range of ρB values that can be captured by

the model. Previous rigid particle, ALE works have been limited by the range of

ρB values that can be explored. This investigation is based off of two tests, which

are similar in nature to the terminal velocity validation test performed in Chapter

3. A cylinder, of density ρB, is submerged in water and the cylinder’s dynamics

are modeled using Equation 1.1 as the cylinder’s boundary condition. After each

successful simulation, ρB is changed such that the difference between ρB and ρ

becomes progressively larger. This testing allows us to discern whether or not our

algorithm has improved ρB capabilities over those of previous rigid particle ALE

works. More importantly, this testing allows us to conclude whether or not we can

reasonably expect the algorithm to be able to capture the free body dynamics of

the droplets and bubbles that comprise micro-emulsions and micro-foams.
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Chapter 5: Algorithm Capabilities

After successfully modeling the coarsening of an idealized foam and studying

the local drainage that coarsening induces, we turn our attention to the modeling

of free bodies. Our model captures the dynamics of free bodies by using Equations

1.1, 1.2, and 1.3 on the surfaces of the bodies. When using these equations, is our

algorithm capable of treating the droplets and bubbles within micro-emulsions and

micro-foams as free bodies? Our algorithm’s ability to do so depends on its ability

to capture a wide range of ρB values.

Looking at Equations 1.2 and 1.3, one can see that the density difference term

is the driving force behind the motion of the free bodies. However, the ρ−1
B coefficient

attached to all of the terms in Equations 1.2 and 1.3 is just as important. When ρB

becomes small, these coefficients can become large, which causes Equations 1.2 and

1.3 to become stiff in comparison to the incompressible Navier-Stokes equations.

The effects of this stiffness have limited the range of ρB values that have been

captured with a rigid particle ALE treatment. To determine whether our algorithm

has increased ρB capabilities compared to those of previous rigid particle ALE works,

we utilize two capability studies that are similar in nature to the final validation

test.
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Within the first capability study, a free body cylinder of fixed radius is sub-

merged in a container of water and the fluid dynamics are modeled until the buoyant

cylinder reaches its terminal velocity. After the completion of each simulation, the

cylinder is given a smaller ρB value. This process of decreasing ρB continues until

finding the cylinder’s terminal velocity becomes prohibitively expensive. Once the

simulation’s cost becomes too large, the study is concluded and the algorithm’s ρB

limit, with respect to today’s computing resources, is declared. Let the ρB limit of

the first study be denoted as ρ∗B.

The second capability study presumes that running the first study’s simula-

tions with ρB < ρ∗B will become cheaper to run with increased computing power

in the future. The study begins where the first study concluded and its computing

expenses are reduced by using a smaller domain than the first capability study. In

addition, the second capability study’s simulations are only run for several hundred

timesteps. Similar to the first study, ρB is decreased after each successful simula-

tion. Once an instability due to a decrease in ρB cannot be avoided, the overall

limit of the algorithm, with respect to ρB and the study’s domain, is declared. The

limit results of these two capability studies are then used to answer the question

of whether or not we will be able to model micro-foams and micro-emulsions as a

collection of free bodies.
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5.1 Capability Study I

The domain in this first study is identical to the one used in the terminal

velocity validation test within Chapter 3. A cylinder, of radius 10−4 m, is placed

along the centerline of the container and the container’s width is such that ξ = 10.

No-slip boundary conditions are placed on all four sides of the container. The height

of the container and position of the cylinder are such that the container’s top and

bottom no-slip boundary conditions do not significantly affect the motion of the

droplet. Equation 1.1 is applied to the buoyant cylinder’s surface and after each

successful simulation, the cylinder’s density is decreased. The fluid’s dynamic vis-

cosity and density remain fixed at 10−3 kg/m·s and 103 kg/m3, respectively, throughout

the entirety of the study.

No leaden cylinders are considered in this study because of our interest in

determining whether or not we have an algorithm capable of capturing micro-foams

and micro-emulsions as a collection of free bodies. In addition, unlike the previous

terminal velocity study, there is no restraint placed upon the Re values that can

be explored. Figure 5.1 is a plot of this test’s results. Within Figure 5.1, the VT

predicted by Equation 3.10 is included for reference.

For ρB ∈ [930, 1000]kg/m3, the numerical results for VT match those predicted

by Equation 3.10, as expected. Once ρB becomes less than 930kg/m3, the flow within

the container exits the Stokes regime and the two VT profiles diverge. The Stoke’s

assumption in Equation 3.10 leads to an under-prediction of the surface stress,

see [3], which leads to Equation 3.10 over-predicting VT . This over-prediction is
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Figure 5.1: Terminal velocities of the buoyant cylinders we were able to capture
within the restraints of our first capability study.

evident in Figure 5.1, however, Equation 3.10 remains an excellent estimate of VT .

The largest density difference that we captured within this study was 400 kg/m3,

corresponding to ρB = 600kg/m3. To put things in perspective, vegetable oil has

a density of approximately 920kg/m3, diesel fuel has a density of approximately

800kg/m3, and butane has a density of approximately 550kg/m3 [8]. Modeling larger

density differences required smaller ∆t values, which would have necessitated smaller

∆x values for the model’s results to remain reliable. With this study’s domain, a

decrease in ∆x would have led to computer memory issues. Regardless, these re-

sults are encouraging because many buoyant liquids, with respect to water, have

ρB ∈ [600, 1000]kg/m3. Of particular interest to us are the oils and fuels that are

immiscible in water and form an emulsion with water in the presence of a stabi-

lizer. The results of this first study suggest that our model is capable of studying
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micro-emulsions of this type as a collection of free bodies.

5.2 The PE(CE)∞ Scheme and Equation 1.2

Densities smaller than 600 kg/m3 were not possible in the first capability study

because ± oscillations surfaced in the solution for ~V and smaller ∆t values were

not possible. Naturally, we question why these ± oscillations appeared and what

restricted us from exploring larger density differences. To answer these questions,

we analyze how the PE(CE)∞ scheme treats Equation 1.2.

We begin our analysis by focusing on a free body starting from rest, a condition

that carries the utmost importance. When starting from rest, the stress term in

Equation 1.2 is equivalent to zero in the first iteration of the PE(CE)∞ scheme.

This is because there is no previous, nonzero velocity field upon which the algorithm

can base its stress prediction. This results in ~V being predicted solely from the

acceleration term within Equation 1.2. If ∆t is not small enough, the cylinder’s first

predicted velocity can be large enough such that it is over-corrected in the following

iteration. By over-correcting, we mean that the deceleration term is large enough

that its magnitude outweighs that of the acceleration term.

When this over-correction occurs, ~V becomes negative. A series of alternat-

ing, ever increasing, positive and negative predictions for ~V occurs in the following

iterations. To remove the ± oscillation, ∆t must be decreased, but as we learned

in the previous study, this is not always possible. If ∆t cannot be decreased, the

simulation cannot recover from these ± oscillations. However, that is not to say
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that the PE(CE)∞ scheme is a poor choice for our algorithm.

To put the previous capability study’s limit of ρB = 600 kg/m3 into perspective,

Figure 5.2 contains the limits of previous rigid particle ALE fluid simulations. Since

our reasoning indicates that Equation 1.2’s acceleration term is the restriction term,

the limits are plotted as a function of
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣. Figure 5.2 was made by

assuming a ρ of 1000 kg/m3 and taking the maximum values of ρB that were explicitly

mentioned within the literature. Only the results for Newtonian fluid simulations

were considered so that comparisons can be made between our limits and those of

published works. The maximum
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ value previously captured in a rigid

particle, Newtonian fluid ALE simulation was that mentioned by [16], 0.5. Our

successful simulation of ρB = 600 kg/m3 corresponds to a
∣∣∣(ρB−ρ)ρ−1

B

∣∣∣ value of 0.667,

which means that we have already extended the limits of
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ in the first

capability study.

We hope to achieve larger
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ values in the next study, but before

we attempt to do so, we turn our focus back to Figure 5.2. Interestingly enough,

no buoyant particle simulations were carried out in [14–16]. With our previous

reasoning showing that (ρB−ρ)ρ−1
B is the restricting quantity, can the sedimentation

results of [14], [15], and [16] be reflected about ρ into the buoyant regime? To answer

this, we further analyze the PE(CE)∞ scheme’s treatment of Equation 1.2.

Consider two cylinders with identical areas, one with ρB = 600 kg/m3 and an-

other with ρB = 3000 kg/m3. These values were chosen because ρB = 600 kg/m3 was

the limit of our previous capability study and ρB = 3000 kg/m3 corresponds to the
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Figure 5.2: The |(ρB − ρ)ρ−1
B | limits of previous rigid particle ALE fluid simulations

assuming ρ = 1000 kg/m3. The letters next to the marks signifying values from
published works (a, b, and c) refer to [15], [14], and [16] respectively.

same
∣∣∣(ρB−ρ)ρ−1

B

∣∣∣ value, 0.667. After starting from rest, the initial predicted veloc-

ities of the cylinders will be identical in size because of their matching acceleration

terms. Thus, their stress forces will be identical in the following corrector step, but

their deceleration terms will differ. This is because the deceleration term is calcu-

lated as the product of the stress force and (ρBAB)−1. This means that compared

to the simulation with ρB = 600 kg/m3, the ρB = 3000 kg/m3 simulation will have a

damped deceleration.

A damped deceleration decreases the possibility of over-correction and this al-

lows for density ratios larger than 0.667 to be captured in leaden simulations without

having to change ∆t. This implies that while (ρB − ρ)ρ−1
B remains the primary re-

stricting quantity with regards to our algorithm’s capabilities, the (ρBAB)−1 term

causes the (ρB−ρ)ρ−1
B restriction to be asymmetric about ρ. Because the (ρB−ρ)ρ−1

B

68



restriction is asymmetric about ρ, the results of [14], [15], and [16] cannot be trans-

lated to the buoyant regime.

Since the previous study’s domain was essentially arbitrary and computer re-

sources are ever increasing, we choose to run another capability study. In it, we test

our algorithm’s abilities with regard to ρB values smaller than 600 kg/m3 and we test

its stability when running simulations with these ρB values. The previous study’s

computer memory issues are avoided by using a smaller domain. In addition, this

study’s simulations are only run for 250 timesteps. When it comes to determining

the stability of the algorithm, 250 timesteps are sufficient because ± oscillations

make themselves present well before even 50 timesteps have elapsed. Both of these

changes make this investigation more economical when using our current computing

resources.

5.3 Capability Study II

For this study, ξ, ρ, µ, and the cylinder’s radius remain unchanged from the

previous study. This is done for two reasons. First, when it comes to ρ, µ, and

rB, we want to remain in the range of values that one would expect to encounter

in micro-foams and micro-emulsions. Second, and more importantly, we want to be

able to compare this study’s results to those of the previous study as well as those of

previous works. If the wall effects or area of the cylinder were to differ, comparison

would not be possible. Unlike the previous study, both leaden and buoyant cylinders

are modeled in this study to explore the asymmetry of
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣.
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Figure 5.3: The |(ρB−ρ)ρ−1
B | limits of this work. The results from the first capability

study are included for reference.

Figure 5.3 contains the results of this study, the results of the previous study,

and the range of limits from the literature. Several aspects of Figure 5.3 need men-

tioning. To begin, the lowest value of ρB we were able to capture with our algorithm

was 530 kg/m3, which corresponds to a
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ value of approximately 0.887.

This means that treating a micro-foam as a collection of free body bubbles is not

feasible with our algorithm unless smaller cylinders are considered and computing

power is significantly increased. However, this does not mean that micro-foams

cannot be studied with this model (e.g. coarsening of an idealized foam).

Second, our leaden restrictions are less severe than the buoyant regime’s re-

striction of
∣∣∣(ρB−ρ)ρ−1

B

∣∣∣ = 0.887. With our algorithm, a maximum ρB of 15000 kg/m3

was explored. This ρB value is close to the density of mercury, see [8], and it approx-
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imately corresponds to a
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ value of 0.93. In terms of
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣, this

means that our algorithm’s capabilities extend 86% beyond the capabilities of previ-

ous works. In terms of ρB, this equates to an almost 15 times larger range of values

when ρ = 1000 kg/m3. The difficulties encountered when simulating ρB = 530 kg/m3

were not encountered during the ρB = 15000 kg/m3 simulations. In fact, the sim-

ulations became relatively easy for these large values of ρB. Larger values of ρB

could have been explored, but were not because we felt that ρB = 15000 kg/m3 suf-

ficiently demonstrated our algorithm’s potential when it comes to leaden cylinder

simulations.

The discrepancy in the maximum
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ values we captured on either

side of ρ are indicative of the asymmetry that the (ρBAB)−1 term causes. To support

our previous reasoning, we devise a simple numerical experiment to test whether or

not the (ρBAB)−1 term is responsible for restricting the algorithm’s ρB capabilities

instead of the (ρB − ρ)ρ−1
B term. If (ρBAB)−1 were the restricting term, the algo-

rithm’s ρB limits would be contingent upon the magnitude of (ρBAB)−1. This would

imply that as long as (ρBAB)−1 remained the same or decreased in size, we should

be able to explore smaller values of ρB by increasing AB. For our algorithm’s limit

of ρB = 530 kg/m3, with rB = 10−4 m, the quantity (ρBAB)−1 is approximately equal

to 60058 m/kg. When rB = 1.02∗10−4 m2 and ρB = 520 kg/m3, the quantity (ρBAB)−1

is approximately 60013. Since 60058 > 60013, ρB = 520 kg/m3 could be captured if

rB = 1.02 ∗ 10−4 m2 and (ρBAB)−1 were the restricting term. Testing this setup

within the model proved otherwise. Despite a smaller (ρBAB)−1, ± oscillations ap-
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peared in the ~V solution for ρB = 520 kg/m3. This confirms the importance of the

(ρB − ρ)ρ−1
B term as our algorithm’s restricting term.

5.4 Chapter Conclusions

Within this chapter, we have investigated the free body capabilities of our al-

gorithm. Specifically, we have investigated the range of ρB values that our algorithm

can capture. Our investigation showed that our algorithm is capable of modeling

the free body dynamics of cylinders with densities between 530 kg/m3 and 15000 kg/m3

when ρ = 1000 kg/m3. Analysis showed that the limits encountered by our rigid

particle ALE algorithm are caused by the magnitude of the (ρB − ρ)ρ−1
B term in

Equation 1.2. In addition, analysis showed that the (ρBAB)−1 term in Equation 1.2

is responsible for the asymmetry of the algorithm’s
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ limit about ρ.

Even though our algorithm is limited by today’s computing power, it is ca-

pable of capturing an 86% larger range of
∣∣∣(ρB − ρ)ρ−1

B

∣∣∣ values than previous rigid

particle, Newtonian fluid ALE works. When ρ = 1000 kg/m3, this equates to an al-

most 15 times larger range of ρB values than was previously possible. We attribute

our algorithm’s capabilities to the PE(CE)∞ scheme. While we have significantly

extended the capabilities of rigid particle ALE simulations with respect to ρB > ρ,

we are more interested in our algorithm’s capabilities with respect to the buoyant

regime.

Our testing has shown that we will be unable to capture micro-foams as a

collection of free bodies. This is due to our algorithm’s lowest current ρB limit of
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530 kg/m3. However, these results indicate that we should be able to capture micro-

emulsions as a collection of free bodies. When it comes to micro-emulsions, we are

interested in studying water and liquid fuel mixtures. Since most liquid fuels have

densities in the range of 700 kg/m3 to 950 kg/m3 and because these densities lie within

our algorithm’s capabilities, we hope to be able to study drainage from micro-

emulsions with our algorithm in the future. From these micro-emulsion drainage

studies, we may be able to extend their results to include drainage in micro-foams.

In the next and final chapter, we will conclude this dissertation.
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Chapter 6: Conclusions

We have created an ALE model and algorithm for the purpose of studying

multiphase flows. Unlike many of the algorithms and models within the current

multiphase literature, our algorithm takes a heterogeneous approach, which allows us

to resolve the local flows that homogeneous media models ignore. The ALE method’s

ability to easily handle the heterogeneous treatment’s moving interfaces made it

an obvious choice for our model, however, ALE simulations are more expensive

to run than their fixed grid counterparts. To reduce simulation costs, without

jeopardizing the ALE method’s ability to handle moving interfaces, we based our

algorithm on a second order accurate, semi-implicit-explicit time integration scheme.

Timestep analysis of this scheme and the scheme’s application to the weak form of

the incompressible, Navier-Stokes ALE equations were presented in Chapter 2. In

addition, Chapter 2 discussed a novel function designed for controlling the grid

deformation that takes place during Laplacian smoothing.

In Chapter 3, we validated our algorithm and its implementation against an-

alytical and empirical expressions in several studies. These validation studies not

only confirmed our algorithm’s ability to accurately resolve flow fields and predict

the dynamics of free bodies, but they also confirmed our algorithm’s second order
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accuracy. After thoroughly validating our algorithm, we studied the coarsening of

an idealized micro-foam in Chapter 4. The idealized micro-foam was designed to be

similar to those studied by Kennedy et al. and equations governing the coarsening

rate of each of its bubbles, dRi

dt
, were derived. With this study, it was shown that

varying film thicknesses need to be taken into account in future coarsening models

and it was also shown that a bubble’s position is as important as its size when it

comes to the process of coarsening.

Our investigations ended with a series of algorithm capability studies in Chap-

ter 5. These studies showed that our model is capable of capturing an 86% larger

range of
∣∣∣(ρB−ρ)ρ−1

B

∣∣∣ values than previous rigid particle ALE models, which equates

to an almost 15 times larger range of ρB values. Although the capability studies

showed that treating a micro-foam as a collection of free body bubbles is not within

our algorithm’s abilities, they did indicate that treating a micro-emulsion as a col-

lection of free body droplets is within our model’s abilities.

In the near future, we hope to use this ALE model to study global drainage

from micro-emulsions. We believe that global drainage, or the liquid that escapes

from the bottom of a foam or emulsion, is due to an imbalance of the buoyancy

and capillarity forces. Our drainage study in Chapter 4 only investigated a foam’s

internal drainage, but the increases in film thickness and decreases in surface area

depicted by Figures 4.9d and 4.10 suggest that such an imbalance does occur. Study-

ing the effects of this imbalance requires the model to be capable of capturing a

collection of free bodies. Although micro-foams are out of our reach, the results of

Chapter 5 suggest that a study of a micro-emulsion’s global drainage is possible with
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our ALE model. Furthermore, it may be possible to extend the micro-emulsion’s

global drainage results to include global drainage from a micro-foam. However, if

that is not possible, algorithm modifications may be considered so a ρB smaller than

530 kg/m3 can be captured by the model.
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Appendix A: Derivation of Local Coarsening Equations for Poly-

Disperse Bubbles

To determine the coarsening equations for Bubbles 1, 2, and 3, we begin with

Bubble 2. From conservation of mass,

πR2
1LB + πR2

2LB + πR2
3LB = constant, (A.1)

it can be shown that

dR2

dt
= −R1

R2

dR1

dt
− R3

R2

dR3

dt
, (A.2)

where R1, R2, and R3 are the radii of Bubbles 1, 2, and 3, respectively. Equation

A.2 represents the coarsening equation for Bubble 2. To determine the equations

for Bubbles 1 and 3, we employ the well accepted assumption that gas is only

transported between neighboring bubbles by means of diffusion. Thus, gas cannot

be transported from Bubble 1 to Bubble 3 without first moving through Bubble 2

and the change in a bubble’s volume with respect to time can be equated to the

volumetric, diffusive flux.

Starting with Bubble 1, which has area A1 and constant length LB in our 2D

model, we write

d(A1LB)

dt
= AaVmDf

dca
dλa

(A.3)
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where Aa is the apparent area between Bubbles 1 and 2, Vm is the molar volume

constant, Df is the diffusion coefficient for dissolved gas in water, ca is the concen-

tration of dissolved gas in the water between Bubbles 1 and 2, and λa is the distance

between Bubbles 1 and 2. In Equation A.3 we have already specified the diffusive

flux to be one dimensional. We further simplify matters by using the common

coarsening approximation of

Df
dca
dλa
≈ Df

∆ca
λa

. (A.4)

The quantity λa is now understood to be the minimum distance between Bub-

bles 1 and 2 and ∆ca is specified to be the change in the concentration of dissolved

gas from Bubble 2’s interface, c2, to Bubble 1’s interface, c1. Henry’s law states

that the ratio of the dissolved gas’s concentration to the bubble’s interior pressure,

P , is a constant, He. This implies that c2 = HeP2 and c1 = HeP1. The interior

pressures can be specified as P1 = γR−1
1 and P2 = γR−1

2 by using the Young-Laplace

equation, where γ represents surface tension. This means that we have

c1 =
Heγ

R1

(A.5)

and

c2 =
Heγ

R2

, (A.6)

as well as

c3 =
Heγ

R3

(A.7)

by following similar logic for Bubble 3. From Equations A.5 and A.6, it can be seen

that since R1 > R2, we have c1 < c2. This implies that gas diffuses from Bubble 2
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to Bubble 1 according to

Df
dca
dλa
≈ Df

λa

(Heγ
R2

− Heγ

R1

)
. (A.8)

This phenomenon of larger bubbles growing at the expense of smaller bubbles has

been recognized in previous coarsening works and it forms the basis of coarsening

theory [13,17,26].

Figure A.1: Apparent area, Aa, according to Bubble 1’s view factor of Bubble 2.

The second feature of Equation A.3 we wish to discuss is Aa. The apparent

area, Aa, is related to the theory of view factors and it governs the area through

which gas can be accepted by Bubble 1 from Bubble 2. Aa is determined by the

projection of Bubble 2 onto Bubble 1 and it can be seen in Figure A.1 as the

red portion of Bubble 1’s surface. Figure A.1 is a 2D depiction and it should

be understood that the area implied by Aa is calculated as the product of the

highlighted arc length with the length of the cylinder, LB. This leads us to the

expression

Aa = 2θR1LB, (A.9)
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where θ can be written in terms of R1 and R2 using the arcsin function. The final

expression for Aa is

Aa = 2R1LB sin−1

(
R2

R1

)
. (A.10)

By inserting Equations A.8 and A.10 into Equation A.3, the equation

dR1

dt
=

(
VmDfHeγ

λa

)(sin−1
(
R2

R1

)
π

)(
1

R2

− 1

R1

)
(A.11)

can be derived. It is important to remember that within the derivation of Equation

A.10, and thus Equation A.11, the relationship R1 > R2 was utilized.

The equation governing the rate of change in Bubble 3’s volume with respect

to time is very similar to that of Bubble 1’s and is written as

d(A3LB)

dt
= AbVmDf

dcb
dλb

. (A.12)

The diffusive flux for Bubble 3 is written as

Df
dcb
dλb
≈ Df

λb

(Heγ
R2

− Heγ

R3

)
, (A.13)

where cb is the concentration of dissolved gas in the water between Bubbles 2 and

3 and λb is understood to be the minimum distance between Bubbles 2 and 3. For

R2 > R3, the apparent area governing the transport of gas between Bubbles 2 and

3, Ab, can be written as

Ab = 2R2LB sin−1

(
R3

R2

)
(A.14)

by using a similar derivation to that of Aa. By inserting Equations A.13 and A.14

into Equation A.12, the equation

dR3

dt
=

(
VmDfHeγ

λb

)(sin−1
(
R3

R2

)
π

)(
1

R3

− R2

R2
3

)
(A.15)
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results. It is important to remember that within the derivation of Equation A.14,

and thus Equation A.15, the relationship R2 > R3 was utilized.

Now, within current coarsening literature, it is assumed that the film thick-

nesses are equal to 3.5 ∗ 10−8m for all times [17]. On the local scale, there is little

evidence suggesting that the film thicknesses should be 3.5 ∗ 10−8m, let alone con-

stant, and it is not unreasonable to expect them to change with time as the bubble

sizes change with time. To determine whether constant film thicknesses or varying

film thicknesses are more appropriate, two sets of equations are built from Equations

A.2, A.11, and A.15.

The first set of equations corresponds to constant film thicknesses and is built

by replacing the film thicknesses λa and λb in Equations A.11 and A.15 with ε.

Then, the quantities VmDfHeγ(ε)−1 in Equations A.11 and A.15 are collapsed into

a constant, effective diffusion coefficient, D [17]. Thus, the first set of coarsening

equations are

dR1

dt
= D

(sin−1
(
R2

R1

)
π

)(
1

R2

− 1

R1

)
, (A.16)

dR2

dt
= −R1

R2

dR1

dt
− R3

R2

dR3

dt
, (A.17)

and

dR3

dt
= D

(sin−1
(
R3

R2

)
π

)(
1

R3

− R2

R2
3

)
. (A.18)

When calculating D, the values used for Vm, Df , He, γ, and ε are 0.0245 m3/mol, 2.6∗

10−9 m2/s, 6.2∗10−6 mol/m3·Pa, 0.03 N/m, and 3.5∗10−8m, respectively [17]. When these

values are used, D is comparable to the effective diffusion coefficients determined
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empirically by Kennedy et al..

For the second set of equations, we consider time dependent λa and λb by

multiplying D with the ratio of the initial film thicknesses, λ0
a and λ0

b , to the time

dependent film thicknesses, λa and λb. Our simulations are obviously not on the

nanometer scale and it is almost absurd for us to have fixed ε to be 3.5 ∗ 10−8m

within the first set of equations. However, by modifying D in this fashion, changes

in λa and λb can be reflected without having to simulate on the nanometer scale.

The resulting set of equations are

dR1

dt
=

(
Dλ0

a

λa

)(sin−1
(
R2

R1

)
π

)(
1

R2

− 1

R1

)
, (A.19)

dR2

dt
= −R1

R2

dR1

dt
− R3

R2

dR3

dt
, (A.20)

and

dR3

dt
=

(
Dλ0

b

λb

)(sin−1
(
R3

R2

)
π

)(
1

R3

− R2

R2
3

)
. (A.21)

There are no differences between Equations A.17 and A.20, the equations that en-

force mass conservation within our system.

Now, remember that when deriving Equation A.21, it was assumed that R2 >

R3. We have found that this is not always the case in our simulations. When varying

film thicknesses are considered, it is possible for Bubble 3 to become larger than

Bubble 2 despite being initially smaller than Bubble 2. When R3 > R2, Equation

A.21 must be replaced by

dR3

dt
=

(
Dλ0

b

λb

)(sin−1
(
R2

R3

)
π

)(
1

R2

− 1

R3

)
. (A.22)

Equation A.22 can be found using a derivation similar to that of Equation A.11.
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