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Authentication plays an important role in how we interact with computers,

mobile devices, the web, etc. The idea of authentication is to uniquely identify a

user before granting access to system privileges. For example, in recent years more

corporate information and applications have been accessible via the Internet and

Intranet. Many employees are working from remote locations and need access to

secure corporate files. During this time, it is possible for malicious or unauthorized

users to gain access to the system. For this reason, it is logical to have some

mechanism in place to detect whether the logged-in user is the same user in control

of the user’s session. Therefore, highly secure authentication methods must be used.

We posit that each of us is unique in our use of computer systems. It is this

uniqueness that is leveraged to “continuously authenticate users” while they use

web software. To monitor user behavior, n-gram models are used to capture user

interactions with web-based software. This statistical language model essentially

captures sequences and sub-sequences of user actions, their orderings, and temporal



relationships that make them unique by providing a model of how each user typically

behaves. Users are then continuously monitored during software operations. Large

deviations from “normal behavior” can possibly indicate malicious or unintended

behavior. This approach is implemented in a system called Intruder Detector (ID)

that models user actions as embodied in web logs generated in response to a user’s

actions. User identification through web logs is cost-effective and non-intrusive.

We perform experiments on a large fielded system with web logs of approximately

4000 users. For these experiments, we use two classification techniques; binary and

multi-class classification.

We evaluate model-specific differences of user behavior based on coarse-grain

(i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are

used to provide valuable insight into how each model performs. Intruder Detector

achieves accurate results when identifying legitimate users and user types. This tool

is also able to detect outliers in role-based user behavior with optimal performance.

In addition to web applications, this continuous monitoring technique can be used

with other user-based systems such as mobile devices and the analysis of network

traffic.
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Chapter 1: Introduction

Many web-based applications rely on authentication methods that are reliable, con-

venient and secure. Username and password have been universally accepted by most

applications to be the only form of authentication. Some systems require the use

of long passwords that need to be changed frequently. They can be difficult to

remember, create, and manage [1]. In addition to long passwords, passwords that

are too short or lack complexity also pose a significant risk. In a study of over

3.3 million leaked passwords from North America and Western Europe, SplashData

records “123456” and “password” as the top two passwords chosen by users [2].

Conventional authentication methods do not ask the user to verify their iden-

tity during their active log-in session, leaving the computer system vulnerable to

malicious or unintended use while the user is logged-in [3]. To improve the au-

thentication process for web-based applications, there must be a method to continu-

ously verify the identity of a user. Continuous User Authentication (CUA) has been

proven to solve this limitation. CUA techniques monitor, verify, and authenticate

users during their entire session. CUA generates user profiles and compares them to

the user’s stored profile. If user activity deviates from its normal pattern of usage,

the system generates an alarm. CUA systems have user profiles that are customized
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for every application. This makes it difficult for attackers to know which actions

will be detected as intrusive [4].

Several studies have used biometrics to continuously authenticate users by the

use of cognitive fingerprints, eye scans, color of user’s clothing, and face tracking [3]

[5] [6]. However, many of these techniques require additional hardware and cost to

operate efficiently. Behavioral modeling addresses these limitations by monitoring

how users interact with the system. Evaluating mouse movement, how users search

for and select information, and the habitual typing rhythm of users are measures

used to continuously observe a user’s behavior [7][8]. Although these approaches

do not require special hardware, most of them require the installation of specialized

monitoring software.

This research addresses challenges that occur when modeling the behavior of

users that interact with web-based organizational information system applications.

These applications run inside a Web browser-based front-end and are accessible via

hypertext transfer protocol (HTTP). It also includes middleware to implement busi-

ness logic and a back-end database. We categorize information system as organized

systems for the collection, organization, communication and storage of information

[9]. We develop a new tool, Intruder Detector (ID), to model unique behavioral foot-

prints for each user. Patterns of use for a specific user or group of users is captured

in this footprint and leveraged to “continuously” authenticate the user. ID performs

behavioral analysis for each user and builds a context of each user’s behavior, based

on a statistical language model, to verify the user’s identity. No additional hardware

is required to deploy this tool. Furthermore, we seek to provide a cost-effective and
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non-intrusive solution for web-based user authentication. Our preliminary work for

this research received the Best Paper Award at the Eighth International Conference

on Emerging Security Information, Systems, and Technologies [10].

We provide the following contributions from this research:

• We develop a novel keyword abstraction technique to pre-process large volumes

of web logs by eliminating incomplete, noisy and inconsistent data.

• We use statistical language models to capture the behavior of users while they

interact with organizational web-based applications.

• We develop a continuous user authentication framework with the ability to

categorize user sessions into a predefined set of roles or finer-grained user

profiles. This framework is also used to identify outliers in role-based user

behavior.

• We introduce a set of evaluation metrics to test the feasibility of our approach.

1.1 Continuous User Authentication Scenarios

This research explores how modeling user behavior affects system security and us-

ability when using data that is already available (e.g., web server logs). The following

two scenarios show how CUA may be used in typical settings.

Scenario 1: Alice uses her laptop to telework from a local coffee shop. She

uses her web browser to login to her corporate site and perform her daily tasks.

As she steps away from her laptop to get a refill of coffee, an unauthorized person
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accesses her laptop to perform actions on the corporate site, maliciously merging

and changing sensitive records. Unbeknownst to the “intruder,” the web-site is

equipped with our CUA system, called Intruder Detector, that automatically detects

deviations from normal behavior and subsequently locks her computer. ID works

as follows: It monitors all user actions and builds, for each user, an n-gram model1,

a mathematical representation of how the user typically interacts with the web

application. ID determines, in real time, whether the user is deviating from expected

behavior, signaling the possible presence of an intruder. Because this instance of

ID is based solely on analysis of web logs, it is extremely fast and it requires no

special hardware or changes to the web application.

Scenario 2: Bob’s office computer is used to perform illegal transactions via

the company’s web application. Because the computer is located in a “secure”

area, the forensics team concludes that the malicious transactions must have been

done by a co-worker. They retrieve the system’s web access logs and filter out

those that originated from Bob’s computer, thereby obtaining all the web requests

between Bob’s computer and the web server. They then use these logs and the

models stored in ID, which represent exactly how each user typically behaves when

using the web application, to pinpoint the co-worker who most closely resembles the

pattern of unauthorized accesses. In this scenario, there is some level of uncertainty

because the malicious sequences by the intruder may or may not match their stored

user model. At this point, ID is simply one tool in the investigative process and

1An n-gram representation models sequences using the statistical properties of n-grams (con-
tiguous sequences of n items/actions).
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additional forensic data is needed to pinpoint the person performing the malicious

transactions.

1.2 Thesis Statement

This work aims to obtain a unique behavioral footprint indicating patterns of use

for specific users or group of users of a web-based organizational information system

application using information that is naturally generated by the system (e.g., web

logs). Models are then constructed for any targeted group of sessions based on n-

grams. By leveraging this footprint, users are “continuously” authenticated. This

leads to the following thesis statement:

Sequences and subsequences of user action that is obtained from web log files

can be captured within statistical language models to continuously authenticate users

of web-based organizational information system applications.

1.3 Approach

To prove the above thesis statement, we analyze how log data from web-based

applications can be used to predict user behavior. Web server logs capture all

requests made to the server. For many systems, web server log files are not fully

utilized. These logs, also called access logs, include historical information about the

activities performed by users. There are several ways web server logs can be used to

present valuable information to a system administrator. For example, information

extracted from log files have been used by companies to provide better service to
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customers and improve the quality of their website.

In addition to improving user interaction, web logs can be used to trace pat-

terns of behavior. The patterns can then be used with statistical language models,

such as n-grams, to predict user behavior. n-gram models have performed surpris-

ingly well in the domain of natural language processing (NLP), where researchers

have found that a history of only one to two events is necessary to obtain opti-

mal predictive capabilities [11]. An n-gram model captures all sequences of a fixed

length, N , from previously observed user input, which allows prediction and evalu-

ation of future behavior based on frequencies. In the realm of NLP, these sequences

are words generated for sentences. Web-based user actions also have a grammar-like

sequential structure. If it is assumed that the event sequences carried out by users

of a software system are analogous to natural language, we would expect to find the

same predictive power in n-gram models of software event sequences as well.

There are several NLP models that could be used for this research. For ex-

ample, Hidden Markov Models (HMMs), are much more elaborate models with the

ability to track independent probability distributions, including those of hidden vari-

ables. We explore several NLP models and determine that n-gram language models

provide predictive power when modeling user behavior based on web logs. Under-

standing the behavior and utility of n-grams to build user profiles is a reasonable

prerequisite for using more advanced machine learning methods.

This work addresses the following challenges and makes the following corre-

sponding contributions to the realm of web-based user profile analysis:

Challenge 1: Several models exist for the analysis of user behavior.

6



Contribution 1: In this work, we explore several statistical language models.

We successfully identify a suitable model for web-based usage behavior.

Challenge 2: There is no straightforward method to identify the behavior of

users that interact with web-based applications.

Contribution 2: We develop a novel keyword abstraction process to identify

user activity for each system user.

Challenge 3: It is complex to monitor user behavior without the use of

specialized hardware.

Contribution 3: We develop new techniques to monitor user behavior of web-

based applications using information that is already available to a system adminis-

trator.

Challenge 4: There is a trade off in performance when developing a CUA

system.

Contribution 4: We test the performance of our implementation using a large

set of evaluation metrics to access the feasibility of our approach.

Our final contribution is an empirical analysis of the CUA technique. This

method is applied to a government fielded training support website. Over a period

of three years, approximately 4000 users, with one of four access levels, were captured

in the dataset.
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1.4 Research Scope

There are several types of web-based information systems. In this research, to

provide focus, we only consider web-based organizational information system ap-

plications described in Figure 1.12. These systems include executive, senior, mid-

dle, and worker-level access usage. To access these applications, employees must

use the organization’s network with an option to connect via virtual private net-

work (VPN). Modeling common websites without an organizational focus, such as

www.amazon.com, are beyond the focus of this research.

Figure 1.1: Organizational-level Information Management Systems

2https://en.wikipedia.org/wiki/Information_system
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1.5 Broader Impact

We believe the work presented in this research will provide an increased level of

security when combined with existing authentication techniques (e.g., passwords,

biometrics) to support many demands of today’s computing environment. While

conducting this research, we have witnessed how important it is to evaluate user be-

havior and provide a secure environment for our users to conduct their day-to-day

business. After reviewing the web logs for this study, we identified several IP ad-

dresses that were not indicative of the interaction of approved users. This prompted

the information assurance team to launch an investigation and put measures in place

to stop this activity. In this case, ID could have been utilized to identify and stop

interactions that do not closely resemble stored usage profiles.

Besides its importance to the realm of security, modeling user behavior, in

general, is an important process for the customization and adaptation of user-specific

needs3. Dynamic user modeling gives a current picture of how the user interacts with

the software. As a user’s interest and behavior changes over time, adaptive learning

can be applied to increase the predictive power of the models. This is needed

for CUA to be effective in this domain. We believe n-grams are highly effective

models that can be used to capture user interactions as sequences by aiding in the

identification of patterns that deviate from normal behavior.

3http://en.wikipedia.org/wiki/User_modeling
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1.6 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter 2, we present

background and related work for statistical language models and continuous user

authentication. Chapter 3 highlights the contributions of our work. Specifically,

we show how Intruder Detector is used in typical settings and the valued-added for

this approach. In Chapter 4, we provide a detailed empirical evaluation and present

results for our CUA implementation. Finally, Chapter 5 contains an overview of our

work and areas for future research.
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Chapter 2: Background and Related Work

In this chapter, we present classical forms of authentication and describe the need

for non-intrusive, continuous authentication methods. We define and review existing

approaches in the CUA domain. We also focus on the use of Statistical Language

Models (SLM) to capture sequential behavior of users that interact with web-based

organizational information systems. A survey of these techniques is outlined in the

following sections to add context to this research.

2.1 Classical Authentication Methods

Various authentication methods exist. Passwords, smart cards, digital certificates,

kerberos, and biometrics are among the many authentication methods currently

employed. There are three classical forms of authentication: (1) something the user

knows; e.g. password, pin, (2) something the user has; e.g. smart card, Yubikey

[12], and (3) something the user is; e.g. iris scan, fingerprint.

These authentication mechanisms are useful but have well known limitations.

A single point-of-failure exists if a user’s password is compromised and later ac-

cessed by a malicious user. In addition, the patterns used when creating a password

warrants some concern because keystroke analysis indicates that users often resort
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to special patterns [13]. If a device is found unlocked or hijacked during a user

session, the system becomes compromised. Many biometric techniques also require

additional hardware to collect data. Biometrics are not secret [14]. Intruders can ob-

serve a user’s features and attempt to manipulate the system. Many companies and

organizations use Multi-Factor Authentication (MFA) to mitigate this risk. MFA

uses two or more classical forms of authentication to gain access to the system. If

one form of authentication is cracked, guessed, or otherwise stolen, an attacker’s

access is still prohibited.

The use of MFA has become more complex over time. Many banks offer special

apps and web logins but do not require the same MFA method when a customer

accesses their account from an ATM. User productivity can also decrease because

of the time it takes to use multiple authentication methods. For example, if a

company requires two-step authentication for 1000 employees using a password and

smart card; there will be 8000 login transactions if each user logs in 4 times per day

(8 entries). This also adds overhead to the system and multiple points-of-failure. It

is difficult to identify an intruder when using this form of authentication.

Various research studies have explored the use of authentication. Kaminsky

et al. address challenges for user authentication in a global file system [15]. This

approach uses an authentication server to identify users based on local information.

Researchers of cloud computing security methods have developed implicit authenti-

cation to identify a user’s past behavior to authenticate mobile devices [16]. These

two studies have one major limitation worth noting. They lack the ability to con-

tinuously monitor a user’s behavior as they interact with the system.
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2.2 Defining Continuous User Authentication

Cybersecurity has become a key concern for many organizations and companies. For

example, the Office of Personnel Management (OPM) informed millions of govern-

ment and military employees that their personal information may be compromised

[17]. For many systems, the first line of defense is authentication. Google and

DARPA agree that elaborate password rules must be abandon and the use of strong

authentication should be used to avoid impersonations [18] [19].

Authentication techniques are usually performed at the beginning of a user

session. This form of one-time validation is ineffective in preventing malicious and

unintended use. For web applications, a password and username combination for

authentication has historically been used in the context of a person’s initial en-

counter with a computer system. Over twenty years ago, when e-commerce and

secure web was first introduced, passwords were mainly a stopgap measure. It was

expected that something better would replace it soon. As applications and devices

evolve, this means of authentication is becoming insufficient. CUA fills this gap

by transparently monitoring user activity in an effort to identify deviations from

normal workflow patterns. These patterns are stored usage profiles of each user of

the system. Figure 2.1 provides a simple description of how a system equipped with

CUA will work. The user is asked for traditional authentication credentials (i.e.,

username/password) to enter the application. After successful authentication, the

user begins interacting with the system. The user is asked to re-authenticated if cur-

rent interactions deviate from stored usage profiles. CUA adds an additional form
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of end-user authentication; something you do (e.g., typical patterns of behavior).

Figure 2.1: Flowchart for CUA

A robust CUA system has the following basic characteristics [20]:

• Continual: Re-authentication should be performed periodically to check if

the current user is the logged-in user.

• Non-intrusive: Intrusive authentication hinders usability and provides a neg-

ative experience for the user. Therefore, the system must provide a seamless,

non-intrusive user-friendly environment.

• Behavioral: The system must extract behavioral attributes from normal user

14



operations. These attributes should be cost-effective and have unique usage

profiles for each user.

2.3 Existing Continuous User Authentication Techniques

The realm of CUA has been extensively evaluated with the use of biometrics. One

study uses cognitive fingerprints to measure computational behavior by means of

computational linguistics and structural semantic analysis [19]. This study uses a

combination of metrics that include eye scans and keystrokes to evaluate how the

user searches for and selects information. In addition, a number of CUA research

studies use one or more hard and soft biometric traits to continuously authenticate

a user. Niinuma et al. propose a CUA framework to automatically register the color

of a user’s clothing and their face as soft biometric traits [3][5]. Results from this

study show that the system is able to successfully authenticate the user with high

tolerance to the user’s posture. Limitations to these studies exist because of the

additional hardware that is needed to implement this technique which can become

costly if an entire organization uses this feature to authenticate users.

Monrose et al. propose an authentication method that uniquely identifies users

based on the analysis of keystrokes [8]. Keystroke dynamics focuses on how you type

versus what you type. The habitual typing rhythm of a user is a function of the user

and their environment. Therefore, limitations to this approach occur when the user

is faced with environmental factors that affect their typing pattern. Altinok et al.

propose a continuous biometric authentication system that provides an estimate of
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authentication certainty at any given time, even in the absence of any biometric data

[21]. In this case, the authentication uncertainty increases over time which leads to

a decrease in system usability. In a similar study, Kang et al. introduce temporal

integration of biometrics and behavioral features to continuously authenticate users

[22].

A face tracking system that uses color and edge information is used to compute

behavioral features. Shen et al. use mouse dynamics when implementing continu-

ous user authentication [7]. This technique is used to observe behavioral features

in mouse operations to detect malicious users. However, there are some existing

limitations with this emerging approach. Behavioral variability occurs because of

human or environmental factors. For example, if the user switches software envi-

ronments or experiences biological or emotional change, the user’s behavior will be

modified significantly. Such changes could possibly identify the user as an impostor.

Xie et al. use a notable approach to identify legitimate users early when using

online services by implementing a vouching process without the use of biometrics

[23]. They introduce a system, Souche, to monitor vouching via social communities

(i.e., Twitter, Email). Souche is effective in identifying 85% of legitimate users and

denying admission of malicious users. Our research seeks to solve similar issues

without the presence of social communities.

In recent years, mobile devices have been used to learn user behavior. Re-

searchers introduced SenSec as a mobile framework to collect sensory data to con-

struct a gesture model of how a user interacts with a mobile device [24]. Similar to

our work, n-grams are used to capture user patterns. The SenSec system achieves
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over 70% accuracy in user classification and authentication tasks. In addition, Sae-

vanee et al. use multi-model biometric techniques with mobile devices using linguis-

tic profiling, keystroke dynamics and behavioral profiling for user authentication

[25]. Results from this study show a 91% reduction rate in the number of intrusive

authentication requests.

This body-of-work extends beyond the aforementioned research studies in the

following ways:

1. Instead of using traditional biometric traits, we explore the possibility of using

log information that is naturally generated by web applications to improve

usability through non-intrusive, transparent authentication.

2. This approach, integrated into a tool, uses a novel and simple n-gram language

model to capture user behavior.

3. Experiments are based on data from actual users of a fielded Department of

Defense (DOD) system who are completing day-to-day tasks.

2.4 Statistical Language Modeling (SLM)

In this research, we use SLM to classify users. This modeling technique has been

successfully implemented for a variety of language-based technologies. Document

classification [26], information retrieval [27], machine translation [28], and speech

recognition [29] all rely on this modeling technique. Many of these models decompose
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the probability of a sentence into a product of conditional probabilities [30].

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1...P (wn|w1w2...wn−1)

= P (w1)P (w2|w1)P (w3|w2
1)...P (wn|wn−1

1 )

=
n∏
k=1

P (wk|wk−1
1 ) (2.1)

where wk is the kth element in the sequence, and wk−1
1 {w1, w2, w3, ..., wn, ...} is the

history, h. Table 2.1 summarizes the SLMs explored in this research. The following

subsections provide more detail on each technique.

Model Technique Section

Statistical Language Models

Neural Networks 2.4.1
Maximum Entropy 2.4.2
Probabilistic Context-free Grammars 2.4.3
Decision Trees 2.4.4
n-grams 2.4.5
Hidden Markov Models 2.4.6

Table 2.1: Statistical Language Models.

2.4.1 Neural Networks

Neural networks, also referred to as artificial neural networks, for machine learning

and cognitive science, was inspired by biological neural networks. Neural network

models have demonstrated success in pattern recognition [31], financial modeling

[32], biomedicine [33], etc. This model uses interconnected neurons for communica-

tion. Each connection has adaptive weights that are tuned by a learning algorithm

(supervised and unsupervised). Continuous-valued features are used to automati-

cally learn as a function of the history [34]. Artificial neurons perform the following
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task:

1. Receive signals from other neurons in the network.

2. Multiply each signal by the corresponding connection strength (e.g., adaptive

weight).

3. Take the sum of the weighted signals and send them to an activation function.

4. Send output to other neurons in the network.

Topology and operational mode of neural networks vary in literature. However, the

most common configuration is to employ the use of an input layer, hidden layer

and output layer as shown in Figure 2.2. The number of input nodes at the input

layer is determined by feature values or independent variables. The output nodes

are dependent on the number of classes or values to predict. To date, there is no

optimal method to determine hidden nodes. If a network does not have enough

hidden nodes, the input and output mappings will not be learned well. On the

other hand, if there are too may hidden nodes, the network will generalize poorly on

unseen elements. When neural networks operate using probability, true incremental

learning is achieved. New training data can be added without retraining the entire

network model [35]. A novel neural network language model is described using the

following equation [36]:

P (w|h) =
e
∑N

i=1λifi(s,w)∑
w e

∑N
i=1λifi(s,w)

(2.2)
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Figure 2.2: Artificial Neural Network

where e is the entropy value, f is a set of features, λ is a set of weights, h is the

history and s represents the state of the hidden layer. n-grams, N , are used as the

learning algorithm for equation 2.2.

Jagadeesan et al. use a feed forward neural network with a backward prop-

agation method to continuously authenticate users. This implementation is based

on keyboard and mouse attributes. They use the k-nearest neighbor algorithm

for classification. Experiments with application-based user re-authentication per-

formed at 96.4% accuracy and 3.6% false alarms. For application-independent user

re-authentication, the system performed at 82%. All experiments were conducted

for relatively small data sets (i.e., 5 users).
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2.4.2 Maximum Entropy

Entropy represents the lack-of-order or predictability. The Principle of Maximum

Entropy is the correct distribution of P (a, b) which maximizes uncertainty, (i.e.,

entropy), based on constraints. By taking this approach, bias and assumptions are

eliminated. For example, if we examine the conditional probability distribution for

P (y|x), then the conditional entropy is as follows:

H(Y |X) = −
∑
x,y

P (x, y)log
P (x, y)

P (y)
(2.3)

H(Y |X) is the entropy of random variable Y , given the value of another random

variable, X, is known [37]. When using the Principle of Maximum Entropy, infor-

mation from many sources can be combined into one language model. Such sources

can originate from n-grams with history information or local information. Rosen-

feld et al. use maximum entropy to create a single, combined model which captures

information from various knowledge sources [38]. Each knowledge source represents

a particular constraint. After constraints have been identified, a set of functions are

created and the function with the highest entropy (i.e., uncertainty) is chosen. This

adaptive approach to maximum entropy language modeling shows approximately

39% perplexity1, when trained on the Wall Street Journal corpus.

1Perplexity measures how well a statistical language model predicts a sample set of data.
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2.4.3 Probabilistic Context-free Grammars

Context-free grammars consists of terminals (w1, w2, ..., wV ), non-terminals (N1, N2,

..., Nn), a start symbol (N1), and rules. Terminal symbols represent context that

appear in the strings generated by the grammar. Non-terminal symbols are place-

holders for patterns of terminal symbols that can be generated by non-terminals.

A start symbol must be used as a special non-terminal to appear during the initial

string generation. Rules are used to replace non-terminals in a string with other

terminals/non-terminals.

〈Start〉 =⇒ X = 〈expression〉

〈expression〉 =⇒ number

〈expression〉 =⇒ (〈expression〉)

〈expression〉 =⇒ 〈expression〉+ 〈expression〉

〈expression〉 =⇒ 〈expression〉 − 〈expression〉

〈expression〉 =⇒ 〈expression〉 ∗ 〈expression〉

〈expression〉 =⇒ 〈expression〉/〈expression〉

(2.4)

Expressions in 2.4 is an example of a context-free grammar. This grammar is used

to form a mathematical expression with five terminals as operators (+, -, *, /)

and numbers. 〈expression〉 is the start symbol and the only non-terminal for this
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grammar. Suppose we want to find the correct grammar to generate X = 45+98∗4

as a mathematical expression. The context-free string generation in Figure 2.3 can

be used.

Figure 2.3: Context-free String Generation
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Grammar Probability

〈Start〉 =⇒ X = 〈expression〉 1.0

〈expression〉 =⇒ number .2

〈expression〉 =⇒ (〈expression〉) .11

〈expression〉 =⇒ 〈expression〉+ 〈expression〉 .30

〈expression〉 =⇒ 〈expression〉 − 〈expression〉 .15

〈expression〉 =⇒ 〈expression〉 ∗ 〈expression〉 .18

〈expression〉 =⇒ 〈expression〉/〈expression〉 .06

(2.5)

Probabilistic Context-free Grammars (PCFG) assign probability estimates to

each rule such that the sum of the probabilities for all rules expanding the same non-

terminal is equal to one. For example, the grammar in 2.5 includes probabilities that

should be used to generate an equation. If more than one trace through the grammar

exists, the grammar with the highest probability is chosen. PCFGs can be learned

from positive data examples alone but grammar induction is very difficult. This

form of language modeling is robust and in some cases provides better predictive

power than Hidden Markov Models. PCFGs are biased toward smaller trees by

making them more probable than trees with many traces.
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2.4.4 Decision Trees

Decision trees were first applied to language modeling by Bahl et al. to estimate

the probability of spoken words [39]. A single node is the starting point followed

by binary questions that are asked as a method to arbitrarily partition the space

of histories. As the space is partitioned, “leaves” are formed and training data

is used to calculate the conditional probability of P (w|h) for the next element.

As the traversal continues, the questioning becomes more informative by the use

of information theoretic metrics. Such metrics include Kolomogorov Complexity,

entropy, relative entropy, etc [40]. For example, if a person wants to assess how

much it would cost to live in certain neighborhoods, the simplified decision tree

in Figure 2.4 could be used. The root node, Location, is evaluated with children

nodes (Neighborhood, price.isMod) representing values for locations. The output for

these logical test are usually boolean values [41]. From Figure 2.4, we derive: “If

location=city ∧ neighborhood=northside ∧ condition=excellent, then the price for

homes in this area are expensive.”

Decision tree algorithms are primarily composed of training data, test data,

a heuristic evaluation function, and a stopping criterion function. These models

use recursion from the divide and conquer data structure to induce data from the

root node downward. Ultimately, decision trees represent the “gold-standard” for

partition-based models. However, size, complexity and data sparseness lead to mis-

classification of elements when trees are large. To simplify the tree structure, Breslow

et al. provide five top-level categories for tree simplification as seen in Table 2.2 [41].
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Figure 2.4: Decision Tree

Simplification Approach Procedures

Tree Size Control
pre-pruning
post-pruning
incremental resizing

Modify Test Space
data-driven
hypothesis-driven

Modify Test Search
selection measures
continuous features
lookahead search

Database Restrictions
case selection
feature selection

Alternative Data Structures
decision graphs
rules

Table 2.2: Decision Tree Techniques.

Petrovskiy uses a combination of decision tree classification and time-dependent

features to learn user behavior for next-action prediction and anomaly detection

from database logs generated by a banking Intranet application [42]. Results show

that decision trees have fair performance for next-action prediction and very little

accuracy for anomaly detection.
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2.4.5 n-grams

Markov models have been heavily used for their predictive power. Markov models

assume that the probability of an occurring event is dependent only on the current

state of a system. As a simple example, imagine that we would like to track the

probability of a Sunny (S) day or Rainy (R) day of weather. To learn the probability

of a Sunny day, we could observe days for some period of time (e.g., 10 days), and

count the number of Sunny days observed, nSunny. Then, we could assign the

likelihood of a Sunny day occurring to be nSunny
10

. When waking up each morning,

we assume that the probability of a Sunny day is given by this same fixed rate. Under

this interpretation, to find P (SSSSS) (i.e., five Sunny days in a row), we would

simply solve P (S)5. Probabilities are computed based on a set of observations. The

observations can be mapped to a sequence of class labels {w1, w2, w3, ..., wn, ...}. In

this sequence, w1 represents the first observation, w2 the second, and so on. The

chain rule of probability theory computes the probability of an observation according

to some prior context available at each data point. When using this method, the

number of parameters grow exponentially with the number of observations in prior

context. Therefore, it is not feasible to accurately estimate conditional probabilities.

Instead of computing this type of probability, n-grams are used to approximate prior

history by looking at the last few observations.

In most cases, it is reasonable to apply the Markov assumption, which assumes

that the probability of observing wi is only dependent on a very small set of preceding

observations. Markov models make predictions on future elements without looking
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too far in the past. Therefore, n-gram models are Markov models which use (N−1)

elements of context to define the current state of the model [43]. These stochastic

process models are mostly stationary since we are assuming past behavior is a good

prediction of what will happen in the future. However, natural language is not

stationary because the probability of upcoming words can be dependent on events

that are arbitrarily distant and time dependent. Therefore, the statistical models

of n-grams only give an approximation of the correct distributions and entropies of

natural language. Constructing or training an n-gram model requires the ability

to observe example sequences occurring in the domain to be modeled. To train a

model well, single events from sequences in all relevant contexts must be observed.

Studies reveal that low-order Markov models do not make accurate predic-

tions because it does not look back far enough to past observations. Contrarily,

many limitations exist for higher order models. Reduced coverage, high state-space

complexity, and overall prediction accuracy are a few of the short comings of this

approach. In response, Desphande et al. introduce a technique to combine different

order Markov models to lower the state-space complexity while increasing coverage

and accuracy for web pages [44]. Their selective Markov model uses frequency, con-

fidence, and error pruning to discard certain states across different order Markov

models. Manavolglu et al. use a combination of maximum entropy mixture models

and Markov models to model behavior of web users [45]. Both models have various

strengths and weaknesses but when combined they are able to accurately identify

and visualize specific user behavior patterns. In this work, we seek to understand

the limitations that exist for high-order and low-order Markov (i.e., n-gram) models
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for user identification and the detection of outliers.

2.4.6 Hidden Markov Models

Hidden Markov Models (HMM) are Markov models whose process transitions be-

tween states in an unobservable path. However, output that is dependent on these

states are visible. Basic theory behind HMM was published in a series of classical

research papers [46] [47] [48]. HMMs have been conventionally applied to problems

that require the recovery of data sequences that are not immediately observable.

These models have been used for speech recognition, gene prediction, part-of-speech

tagging, activity recognition, etc.

An HMM is characterized by the following [49]:

1. N , represents the number of states, S, in the model. Individual states are

denoted as S = {S1, S2, S3, ..., Sn} and the state at time, t, is qt.

2. M , represents the number of distinct observation symbols per state (e.g., dis-

crete alphabet size). These symbols are denoted as V = {V1, V2, V3, ..., VM}

and correspond to the physical output of the modeled system.

3. Transition probability distribution for each state is denoted as A = {aij}.

4. B, represents the observation symbol probability distribution in state j, B =

{bj(k)}, where bj(k) = P [Vk at t|qt = Sj].

5. π, represents the initial state distribution where πi = P [q1 = Si].
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Figure 2.5: HMM for Weather Prediction

To illustrate this model, we consider the weather as a concrete example. In

Figure 2.5, observable conditions are rainy, sunny, or cloudy conditions. Factors that

influence theses outcomes are hidden states (e.g., high and low pressure). The start

state illustrates the initial probability of the model. On average, the model starts

with high pressure at 70%. Transition probabilities are represented by the change

in pressure in the underlying Markov chain. In this example, there is only a 40%

chance that tomorrow has low pressure, if today’s pressure is high. Probabilities for

observable states represent the likelihood of a particular weather condition occurring.

If we observe high pressure, there is a 40% chance it is sunny. To learn tasks, HMMs

must find the best set of transition states and output probabilities using a maximum

likelihood estimate.
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2.5 Summary

This chapter presented an overview of related work for existing continuous user

authentication implementations. We explored various statistical language modeling

techniques that can possibly be applied to CUA tasks. Table 2.3 presents a high-

level summary of the advantages and disadvantages of each SLM explored in this

research.

SLM Advantages Disadvantages
Neural

Networks

Fast training process with inher-
ent parallel structure. Training
samples can be added or removed
without extensive retraining.

Requires a large amount of mem-
ory resulting in slow execution of
the network.

Maximum

Entropy

Incorporates arbitrary knowledge
sources while avoiding data frag-
mentation.

Can be infeasible due to computa-
tional challenges. Needs explicit
normalization.

PCFG Good for grammar induction.
Can be learned from positive data
and deal with grammatical errors.

Worst at modeling language for
English than n-grams. Only ob-
serves structure not lexical co-
occurrence.

Decision

Trees

Ultimate partition-based model.
Implicit feature selection.

Computationally expensive be-
cause the space of histories and
space of possible questions can
grow very large even with smaller
data sets.

n-grams Reduces the dimensionality of the
estimation problem. Trigrams
(n=3) are often used for very
large training corpora and bi-
grams (n=2) for smaller sets.

Various smoothing techniques
must be used to battle the sparse
estimation problem.

HMM Able to construct a model of the
structure or process with observa-
tions only.

Requires annotated data for
training sets.

Table 2.3: Comparison of Statistical Language Models
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Chapter 3: Intruder Detector: A Tool for CUA

This chapter characterizes the application under evaluation (AUE). Specifically, we

show the significance of modeling user behavior with n-grams. We also describe key

contributions of this research. Each contribution provides the building blocks for

the Intruder Detector tool.

3.1 Web-based User Behavior Analysis

Modeling the behavior of users is an ongoing challenge in various application do-

mains [50]. In web applications, obtaining a better knowledge of the user and

purpose for the application is essential to provide an increased level of security.

Applications in this study are based on organizational information systems. Such

systems can be used for decision support, knowledge management, and e-learning.

It is important to continuously monitor users as they interact with these systems.

Insider threat, especially for decision support systems, can harm an organization’s

security practice, data, and computer system.

The web AUE for this research is a fielded government training support web-

site, User Productivity Enhancement, Technology Transfer and Training (PETTT)

Online Knowledge Center (OKC), for the high performance computing (HPC) com-
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munity. The PETTT activity is responsible for gathering the best ideas, algorithms,

and software tools emerging from the national HPC infrastructure and making them

available to the DOD and academic user community. This website is a repository

of PETTT programmatic and technical information. It provides training course

registration, course evaluation, information on several domain specific areas, and is

a general source of information for its community of users. The system is a Java-

based web application. Most pages are JavaServer Pages (JSP), with some servlets

handling various tasks. The primary database utilizes Oracle 11g enterprise edition.

Xwiki Framework and Apache Struts are leveraged to give users with elevated priv-

ileges the ability to manage their own content. This portion of the system runs over

a MySQL version 5.6.11 database. The operating system environment is Microsoft

Server 2008 R2.

Users have the option to authenticate via two methods: Common Access Card

(CAC) and Yubikey. The CAC is used to identify DOD civilian employees, Selected

Reserve, active duty uniform service personnel and government contractor personnel

[51]. This card can also be used to gain physical access to buildings, controlled

spaces, computer networks and systems. The Yubikey is a key-sized device that

is inserted into a user’s computer system USB slot to provide an added layer of

authentication. If users choose to login via Yubikey, they must enter a username

and password. Finally, they are directed to touch the Yubikey to generate a random

passcode to enter the web application. Figure 3.1 presents a subset of pages that

can be viewed by users of the AUE.

Each user account has one of the following associated roles; User, Administra-
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Figure 3.1: PETTT OKC Page View

tor (Admin), Management (Mgmt), Technologist (Tech). The User group has limited

read access as well as the ability to enroll, evaluate, and register for courses. There

are additional roles that provide access to areas of the system for administrative

purposes (Admin, Mgmt, Tech). The most prominent of these is the Technologist

role. These users interact with the system often as content administrators. Con-

tent administrators add updated data to the system, approve students for online

training, arrange content, etc. Therefore, while we have more individual sessions

available for the User role, the Tech role provides more keyword data. Users with

the Admin role focus on technology/information integration, and data management

as well as enhancements to the design and operation of PETTT OKC. The Mgmt
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role is reserved for those who provide oversight of the application. They are not

very active users of this web application. Tech and Admin roles pose the greatest

risk when access is unauthorized.

3.2 Feasibility Study

To provide an assessment of our approach, we analyze four preliminary models for

the classification of role-based user data by observing the accuracy of individual

actions (IA), frequency of individual actions (Freq-IA), pairs of actions (PA), and

frequency of pairs of actions (Freq-PA). This data is obtained from the OKC web

log files. It is our intuition that accuracy from these approaches will yield less than

optimal results and statistical language models, such as n-grams, must be used.

The data for each approach is partitioned into training and test set examples

using the 90/10, 80/20 and 70/30 data split technique (training/test) as shown

in Table 3.1. The data is sorted and placed into a training and test vector for

comparison and classification. We compare the four preliminary approaches to n-

gram models using the same partitioning. Section 4.1.1 provides more detail on the

n-gram implementation. We run each experiment 10 times. For the evaluation of IA,

we use binary numbers to identify matches in the vector. A “1” represents a keyword

match and a “0” represents a mismatch. The ones are added and normalized by the

size of the test set. Next, we evaluate PA. We would like to know if classification

accuracy increases when pairs of keywords are used. We group training and testing

sets as in the IA example using a Java HashMap data structure. If pairs are matched,
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the numerical key for the HashMap is increased until the entire set is evaluated.

Finally, we divide the total number of matched pairs by the total number of pairs

that exist in the test keyword dataset. Next, we observe classification accuracy for

Freq-IA and Freq-PA. For each individual or keyword pair, we use a HashMap to

count the number of times the keyword (or keyword pair) exist in the training and

test dataset. If the frequency counts of the training and testing keyword pairs are

within five, we classify the frequency as a match and add it to the classification

accuracy.

Data Split Role Sessions Keywords

90/10

Management-train 247 5045
Management-test 28 814
Technologist-train 421 31965
Technologist-test 47 3709

Admin-train 521 22645
Admin-test 58 3388
User-train 1735 24849
User-test 193 2808

80/20

Management-train 220 4643
Management-test 55 1216
Technologist-train 374 28629
Technologist-test 94 7045

Admin-train 463 20298
Admin-test 116 5735
User-train 1542 21949
User-test 386 5708

70/30

Management-train 192 3787
Management-test 83 2072
Technologist-train 327 24643
Technologist-test 141 11031

Admin-train 405 18122
Admin-test 174 7911
User-train 1349 19318
User-test 579 8339

Table 3.1: Number of Keywords and Sessions for Each Data Split
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Figures 3.2, 3.3 and 3.4 show role-based accuracy results for this feasibility

study. It was our intuition that the use of individual keywords would yield the

worst accuracy. In each data split this accuracy is less than 10%. Classification of

roles based on pairs of keywords produce the highest accuracy for each data split

with less than 50% accuracy for the 90/10 data split. The Technologist role has

a noticeable increase in accuracy when evaluating frequency of individual actions

based on the 70/30 data split. The 90/10 data split yields the least performance for

each preliminary classification technique.

Figure 3.2: Role Classification Based on 70/30 Data Split

From this study, we show the accuracy of classifying users of organizational

web-based systems based on four preliminary approaches and one SLM; individual

keywords, pairs of keywords, frequency of individual keywords, pairs of keywords, and

n-grams, using representative samples of data from pre-classified instances. Based

on each data split and model, n-grams significantly outperform preliminary models

with approximately 90% accuracy for many user roles. We hypothesize that the

use of statistical language models could offer more predictive power for sequences
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Figure 3.3: Role Classification Based on 80/20 Data Split

Figure 3.4: Role Classification Based on 90/10 Data Split

of web-based interactions. We address model-specific differences for n-grams in

Chapter 4.

3.3 CUA Paradigm for Web-based Applications

We now discuss key contributions of this work which serve as building blocks for the

Intruder Detector tool.
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3.3.1 Contribution 1: Model Selection

Natural Language Web Behavior Language Example
Word Link selection View profile
Phrase View Watch online training

video
Sentence Action Search for archived

files
Paragraph Activity Register for course
Document Event Prepare course

evaluation report

Table 3.2: Comparison of Natural Language and Web Behavior

It is important to understand individual and role-based behavior to detect

common patterns. Specifically, we would like to use web logs to build usage profiles

for each user. Grammars can be defined for human behavior and natural language

[52] [53]. Table 3.2 illustrates the commonalities between natural language and web-

based user behavior. Links or buttons in a web application represent a basic level

of vocabulary for web behavior. A series of link clicks give the user the ability to

view various portions of the website (e.g., course videos). Meaningful sequential

link selections may lead to various actions, activities, or events. Since web logs

represent sequential actions, they can be encoded as sequences of symbols and used

with a standard NLP technique to build computational usage models [54]. In this

research, we experiment with n-grams to model sequences of keywords, each of

which represent a user action. We use n-grams, derived from Markov models, to

understand similarity in user actions to classify the user’s identity. These generative

models can learn each category of users then classify the users based on the generated

knowledge. This method gives us the ability to perform user authentication task
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with only positive training samples.

Classification of data becomes more feasible after n-grams have been derived.

Let us illustrate how n-grams can be used for classification. Suppose a bi-gram

model, (i.e., N = 2), of user behavior that is captured after training is:

n = U1U2U1U3U1U4U1U5U2U3

where Ui is an observation from a user behavioral sequence. When a user’s test

sequence is read as {U1, U2, U3}, bi-grams are generated as {U1U2, U2U3}. The prob-

ability for this bi-gram to occur will be calculated using the following equation:

P =
# of valid observations

# of observations
(3.1)

The sequence is normal if P is greater than or equal to a preset threshold value, t.

After applying Equation 3.1, (i.e., P = 2
2

= 1), the observations will be identified as

normal if we select a threshold value of 0.6. We assume user activity is largely based

on role (i.e., access level). In our work, probabilities of n-grams are computed based

on a large web log dataset (see Table 3.1). We assume users with the same role are

likely to perform similar actions. System trust increases as the user interacts with

the system and no outliers are identified in the CUA user model.

40



Field name Value Description
Remote host address 134.164.78.20 IP address of client
Remote log name - Name is unavailable
User name rleonard@HPCMP.HPC.MIL User account that is

accessing application
Date, time, and GMT
offset

[08/April/2015:17:39:04
-0800]

Log file entry was cre-
ated April 8, 2015
at 5:39 P.M. The dif-
ference between the
GMT and local time is
eight hours.

Request and protocol
version

GET okc/admin reg
HTTP/1.0

GET command was
used for the admin reg
file using HTTP ver-
sion 1.0

Service status code 200 Request fulfilled suc-
cessfully

Bytes sent 3401 Number of bytes sent

Table 3.3: NCSA Common Log File Entry

3.3.2 Contribution 2: Keyword Abstraction

Web server logs are obtained for system users and are grouped into sessions of ac-

tivity by role. Access-level web-based systems have user roles already identified.

An entry from the web server log is shown in Figure 3.5. The format for web logs

was standardized by the National Center for Supercomputing Applications (NCSA),

founder of Mosaic browser, Apache HyperText Transfer Protocol (HTTP), and Com-

mon Gateway Interface (CGI). Table 3.3 describes the NCSA web log entry format.

Figure 3.5: NCSA Common Log File Format

We must pre-process the logs to remove unwanted entries. This helps validate

the data captured in a user’s session [55]. Pre-processing web log data can be difficult
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due to local caching and proxy servers. Web servers will not register repeated access

to pages that are locally cached. If a proxy server is used, all web access entries

will have the same identifier even though different users are accessing the website.

Therefore, pre-processing is a critical component of the usage behavioral process.

The following steps are used for this process:

1. Data Cleaning : The process of data cleaning is very important to generate

an accurate picture of user activity when navigating a web application. Re-

moving irrelevant request, data fields/columns, and system generated text are

essential. For web logs, various graphics and scripts are generated which add

several entries to the log file. However, in the web AUE, only JavaServer

Page (.jsp) entries show user behavior and are important for logging purposes.

Therefore, all entries are removed that are not related to user activity.

2. User Identification: We use heuristics to determine users. A user is a person

that interacts with the AUE. Once the data is clean, the remaining file entries

are grouped by individual user. Each interaction in the web log file has a

user-id association. Once the user-ids are captured, they are classified within

ID based on their pre-defined role in the system. We avoid identifying users

by IP address because the same IP address may be used by a group of users.

3. Session Identification: Session identification is used to divide user accesses

into individual sessions [55]. User sessions are pre-defined in the AUE web

log. After checking the database for the role of each user, sessions are then

grouped by role.
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4. Keyword Generation: For each relevant web log entry, a portion of the string

is captured as a keyword. We load keywords for all users/roles into a database

to build usage profiles. Figure 3.6 shows an example of keywords extracted

from a web log file. We do not consider parameters in this process because

user entries would be too unique to categorize in a model.

Figure 3.6: Keyword Generation.

3.3.3 Contribution 3: Tool Support

ID is a tool, created during this study, to abstract keywords from log files, build

n-grams, and categorize users based on observed behavior. We use customized ap-
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plication programming interfaces (API), described in Section 3.4, to load input data

and split the data based on pre-defined user roles or individual users. During the

test phase of the experiments, a probability is assigned to a sequence of events.

A probability alone does not provide continuous authentication. We use two ap-

proaches; binary and multi-class classification. Multi-class classification scores an

input sequence according to one of many user models. For the mth classifier, the

positive examples are all data points in class m and negative examples are all data

points not in class m. Sequences of activity are categorized as belonging to the

model which estimates the highest probability using the following equation:

u = arg max
m

P (K,m) (3.2)

A more complex scheme which can also be useful for continuous authentication is

binary classification [56] [57]. For effective evaluation, this classification method

requires more training and test data. This classification technique is used to judge a

sequence as having likely been generated by a specific model (PASS) or not (FAIL).

A probability threshold, t, is then used for this pass/fail type of judgment for a se-

quence. Any sequence whose probability exceeds this threshold should be considered

as a PASS, +1, and otherwise considered FAIL, −1.

A decision rule is used to predict the class membership of a given sequence of

behavioral keywords, K. When new samples are encountered, the following decision
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rule is used: 
P (K,m) > t, then y = +1

P (K,m) < t, then y = −1

(3.3)

where P (K,m) is the probability the behavioral keyword sequence is generated by

the mth user’s n-gram model. The probabilities are estimated using a training set

of labeled data,

(m0, y0), (m1, y1), (m2, y2), ..., (mn, yn)

where label yi = ±1 and depends on the class of mi. Binary classification is used by

a simple threshold and multi-class classification by comparing probabilities to trans-

late n-gram models’ estimations of sequence probability into decisions. The ability

to make accurate classifications is investigated as supported by these algorithms.

3.3.4 Contribution 4: Evaluation Criteria

There is a large variation in the evaluation metrics used for classification systems.

Metrics used for a research study must be appropriate for the problem domain. A

confusion matrix, also known as contingency matrix, can be used to describe the

performance of a classification system based on test data for which the positive (i.e.,

true) values are known. In Figure 3.7, a confusion matrix is used for the classification

of positive and negative examples. True positives, TP, represent cases in which the

prediction and actual value are correct (i.e., positive). True negatives, TN, are

captured when the actual and predicted value is negative. False negatives, FN,

represent cases where the prediction is negative and the actual category is positive.
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Finally, false positives, FP, capture cases where the prediction is positive and the

actual category is negative. False positives and false negatives are also known as

Type 1 errors and Type II errors, respectively.

Optimal performance of any classification system is to reduce false positives

and false negatives. Evaluation criteria, shown in Table 3.3.4, for a classifier can be

Figure 3.7: Confusion Matrix

Metric Formula
Accuracy (TP + TN)/(TN + TP +

FN + FP )
Recall (True Positive Rate) (TP )/(FN + TP )
False Positive Rate (FP )/(TN + FP )
Specificity (TN)/(TN + FP ) or 1 mi-

nus False Positive Rate
Precision (TP )/(FP + TP )
Prevalence (FN + TP )/(TN + TP +

FN + FP )
F-measure (2 xPrecision xRecall)/(Precision

+Recall)

Table 3.4: Metrics Computed from Confusion Matrix

obtained from statistical measures in Figure 3.7. To efficiently evaluate these metrics

the dataset must be partitioned. We take a dataset whose class label we already

know (i.e., actual data) and place them in a training set. To identify how well the
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classifier performs with unseen data, a testing set is used. This will indicate how well

the classifier generalizes. In this case, both sets contain previously classified data.

We would also like these datasets to be large. Larger training sets provide better

classifiers and larger test sets help build confidence in the evaluated metrics. We

perform a repeated holdout method for the partition by randomly selecting instances

for training and test sets. We use the 90/10, 80/20, and 70/30 training/test splits

in this research. We repeat the hold out method 10 times and average the results

to get an overall value for the metric being observed.

Accuracy is the simplest form of evaluation and is used to determine how

often the classifier is correct. If the classifier correctly labels half of the dataset,

then we say its accuracy is 50%. In many cases, it seems obvious that we have

better predictive power as the accuracy of a model increases. Suppose we have a

binary classifier to detect the presence of breast cancer in patients. From Figure 3.8,

Figure 3.8: Confusion Matrix Example

accuracy = (0 + 100)/(10 + 0 + 100 + 0) = 90.9%. This model is completely useless

with zero predictive power because the classifier is predicting only negative exam-

ples. However, the accuracy for this classifier is very high. This scenario represents
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an Accuracy Paradox which states that models with a given level of accuracy may

have greater predictive power than models with very high accuracy. In some cases,

accuracy alone can be misleading. This metric is better used together with other

measures. Precision and recall address the imbalance that can occur in a dataset.

Precision answers the following question: When the classifier predicts a positive ex-

ample, how often is it correct? On the other hand, recall answers: When evaluating

all the positive examples in a dataset, what fraction of the dataset did the classifier

identify? A perfect classifier will have 100% precision and recall. However, in real

world classification tasks, reaching this optimal performance is difficult to achieve.

If the classifier is tweaked to offer very high recall, then precision rates suffer. Alter-

natively, classifiers that are tweaked for high precision rates, suffer from poor recall

rates. To provide balance, the f-measure is used as the weighted harmonic mean of

precision and recall. There are many metrics for evaluating classification systems.

In this research, we consider a specific set of metrics for evaluation since various

metrics provide different and valuable insight into how each model performs. False

positive rates and prevalence are measured, in addition to, accuracy, recall, precision

and f-measure to provide additional analysis for each model.

3.4 Continuous User Authentication Infrastructure

We use several custom APIs for the continuous user authentication infrastructure.

The WeblogDataHandler is a front-end API that is used to load keyword data and

split it into training and test sets. Table 3.5 provides details for each method call.
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TestDataManager is a Java tool used for storing and retrieving keyword data (see

Table 3.6). We use a non-relational document database, MongoDB1, as a back-

end data store. MongoDB is a NoSql (i.e., non-relational) database structured in

favor of JavaScript Object Notation (JSON) documents. We serialize each keyword

document into JSON before adding them to the MongoDB for storage.

We use the BerkeleyLM N-gram Language Model Library to construct n-gram

models from keyword data. BerkeleyLM is a library for estimating and storing large

n-gram language models in memory [58]. This library also provides efficient access

to data. We extend this open source Java library with the TestDataManager and

Analyzer APIs. Tables 3.7 and 3.8 show all methods used for these extensions.

Specifically, we use the categorizeStoredSequence method for multi-class classi-

fication and the acceptRawSequenceGivenModel method for binary classification.

Each API is designed to handle large-scale experiments with keyword data. Figure

3.9 provides a detailed high-level view of the CUA framework. This figure outlines

the steps we follow to complete this task.

3.5 Intruder Detector in Action

We will now show, via an example, how ID works when web log data is present.

Assume that, over time, web logs have been collected for users of a web-based

system. ID has developed, for each user, an n-gram model, essentially representing

the user’s typical behavior. Alice, an administrator, typically starts from her user

profile page to connect to the admin page. From the admin page, she can perform a

1http://www.mongodo.org.
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Method Description
void splitLargeDataForScheme(

String scheme)

Split abstracted keyword data

boolean categorizeSessions(

String scheme, int modelOrder)

Categorize n-grams by role on the
same data that trained models

boolean ngramsAgainstOthers(

String scheme,

String myGroup,

int modelOrder,

int ngramOrder,

float threshold,

boolean mine)

Returns n-gram categories when
using training and test data
from various groups

float categorizeStrings(

(String scheme,

int modelOrder,

List<String> stringstoCategorize,

List<String> actualGroups,

String method,

float threshold,

String modelChoice)

Returns the n-gram probability
based on the binary or multi-class
categorization method

Table 3.5: WeblogDataHandler: Front-end API for Training and Test Data Catego-
rization

Method Description
boolean clearTestSuite(String dbId,

String suiteId)

Clear the suite before saving new
keywords

boolean addArtifactToTest(

String dbId,

String testId,

String artifactPath,

ArtifactProcessor

Save the keyword file for each
user/role to the database

boolean addTestToSuite(String

dbId,String testId,String suiteId)

Add keywords with a given ID to a
suite with given ID

Table 3.6: TestDataManager API: Storing and Retrieving Keyword Data
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Method Description
String categorizeStoredSequence(

String test, List<String> suiteId,

int order

ArtifactProcessor processorClass,

boolean useWrapperSymbols)

Categorizes stored sequence
for multi-classification approach

String acceptRawSequenceGivenModel(

String test, List<String> suiteId,

int order

ArtifactProcessor processorClass,

boolean useWrapperSymbols, float

threshold)

Categorizes stored sequence for
binary-classification approach
using threshold value

Table 3.7: Analyzer API: Intermediate n-gram Model Computation

Method Description
ArrayEncodedProbBackoffLm<String>

computeModel(

String dbId, String suiteId,

int maxOrder)

Compute an n-gram model from a
given test suite with a given order,
returning the result as a
BerkeleyLM object

ArrayEncodedProbBackoffLm<String>

getNgramModel(String dbId, String

suiteId)

Return the n-gram model
currently associated with a test
suite

Table 3.8: TestDataManager API: n-gram Models
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Figure 3.9: CUA Framework Description
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set of tasks associated with this role, namely submit new bugs, view existing bugs,

submit new change requests, view current change requests, etc.

Figure 3.10: n-gram Model of Alice.

Figure 3.10 represents an n-gram behavioral user-model for Alice. The nodes in

the model represent actions that Alice performs on the web pages. Edges represent

a workflow relationship between these actions; the numeric values represent the

probability that these actions will occur. For example, a probability of 1.0 from

“start” to “profile” implies that Alice always starts at the “profile” page; once in

the “admin” page, the user is likely to start a “new bug form” with the probability

of 0.2. Once in the “new bug form,” Alice has the option to go back to the “profile

page” or “admin page” (with equal probability); the user may then return to the
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“new bug form.” However, there is no option to go directly to the “show bugs filter”

page from a “new bug form.”

ID has a stored model for Alice since she has used the web application in

the past. However, ID is continuously monitoring her. As she interacts with the

software, a series of web requests, in the form of web log entries, are recognized by

the tool. These web log entries are translated into a sequence of keywords: 〈start,

profile, admin page, show bugs filter, show bugs, show bugs filter, admin page, end〉.

ID continuously checks all the stored models and matches the sequence to Alice’s

model. Alice is authenticated and allowed to continue using the application.

After some time, Alice decides to take a break and walks away from her com-

puter before logging out of the system. Bob, without authorization, takes control

of her session. Bob is a user with lower system privileges and has no idea how to

work the system as an Admin. The keywords generated from Bob’s interactions

are 〈admin page, show request filter, admin page, new bug form, admin page, end〉.

When comparing this sequence to the usage profile for Alice, ID identifies Bob as

a potential intruder and the session is ended (or Bob is asked to re-authenticate,

depending on how ID is configured).

There are several points to note regarding this overview scenario. First, we

deliberately keep the n-gram model very simple so as to be easily understandable.

This simple model represents N=2 with a history of zero. At this step, it is impor-

tant to understand that the n-gram model captures much more information than is

apparent with this simple example. Second, we show only one model (e.g., Alice’s

model). In general, ID will maintain multiple models, one for each user. Having a
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model for Bob may give ID the ability to capture his identity. However there are

some limitations to pinpointing Bob’s identity which will be discussed in this work.

Third, such models may be maintained for classes of users, not just individual users.

It is important to distinguish between multiple user types and their different behav-

iors (e.g., admin users typically access the “take tape backups” page; conventional

users do not).

Finally, ID can be configured to incrementally improve its models during exe-

cution. Consider that Alice executes a new sequence of actions not contained in her

n-gram model. ID will recognize the mismatch and ask for re-authentication (e.g.,

via a password or supervisor approval). If this transaction is successful, then the

sequence of actions that was not recognized is added to the n-gram model, thereby

improving its accuracy. This will also be the case if the user interface is updated.

Subsequently, if Alice performs the same sequence of actions, ID will recognize it

as legitimately belonging to Alice. When fielded, we envision ID to be used in a

training mode to build baseline models of all users; and then used in a deployment

mode.

3.6 Summary

In this chapter, we described the main contributions of this work. We used a prac-

tical implementation of the n-gram model to estimate the relative likelihood of a

sequence of web log keywords. We provided a typical use-case for the Intruder De-

tector tool. Novel techniques for keyword abstraction, statistical language modeling,
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and optimal classifier evaluation are the key building blocks of this web-based CUA

approach. In the next chapter, we provide details of an empirical evaluation of our

implementation.
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Chapter 4: Empirical Evaluation of Continuous User Authentication

This chapter provides a detailed description of a set of experiments using real-

world user data designed to investigate the utility of n-gram models for continuous

user authentication. Specifically, we answer three research questions using a set of

classification-based performance metrics.

4.1 Performance Assessment

We conduct performance assessments to evaluate the feasibility of our approach. A

variety of performance metrics are available for classification systems. We start our

analysis with the following metrics:

• Accuracy: How often is the classifier correct?

• Recall (i.e., True Positive Rate or Sensitivity): When it’s actually X,

how often does the classifier predict X?

• Precision:When the classifier predicts X, how often is the classifier correct?

• F-measure Harmonic mean of precision and recall.

• False Positive Rate: When its actually not X, how often does classifier

predict X?

57



• Specificity: When it’s actually not X, how often does the classifier not predict

X?

• Prevalence: How often does each role/user occur in the data set?

Based on these metrics, we will answer the following research questions:

• RQ1: Can discriminating user models be constructed to determine user types?

• RQ2: Can the model recognize various legitimate users who are operating in

the same user session?

• RQ3: Can usage profiles be used to identify outliers in the user’s behavior?

4.1.1 Experimental Setup

Once the keyword abstraction technique outlined in Section 3.3.1 is complete, we

begin predicting user behavior. When predicting individual and role-based user

behavior, web logs are filtered to abstract only those users who have at least two

sessions of activity. To ensure we have enough keyword data for individual user

behavior, we abstract only those users who have at least 800 keywords. Tables

4.1 and 4.2 provide the number of users and roles that were captured after the

keyword abstraction process. We also identify how often labeled data occurs in

our dataset using the prevalence metric. Experiments were conducted using various

configurations to better understand the strengths and weaknesses of our approach.

We split the data, based on sessions of activity, using the 90/10, 80/20, and 70/30

training/test data split for individual users and roles using the same number of

58



keywords and sessions described in Section 3.2, Table 3.1. Data splits help maintain

purity of the evaluation. Therefore, no model should be evaluated on its ability to

classify data which was used during its own training phase. The models for each data

split are based on N = 2 (bi-grams), N = 3 (tri-grams), N = 4 and N = 5. The use

of data splits with various n-gram models will identify which model performs better

for the continuous user authentication task. We use the repeated holdout method

to randomly select training and test sets. We run 10 iterations for each model and

provide an average value for each metric.

Role No. of Users Prevalence

User 3893 14%
Admin 9 18%
Management 41 9%
Technologist 2 59%

Table 4.1: Role-based Dataset

Role User ID Prevalence

User User3 11%

Admin

User9 6%
User6 13%
User10 7%
User8 8%
User4 9%

Management
User1 5%
User7 2%

Technologist
User5 22%
User2 17%

Table 4.2: User-based Dataset

Constructing, or training, an n-gram model requires the ability to observe

example sequences occurring in the domain to be modeled. To train a model well,

single events must be observed from sequences in all relevant contexts. This is the
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challenge that occurs when evaluating classifiers in the NLP domain. Conditional

probabilities are captured when evaluating n-gram models. The number of possible

parameters needed by the model grows not only according to events observed, but

also exponentially by the history being considered. For the best possible model,

our training phase requires observations of every possible event in every possible

context. Additionally, there is a need to observe each context multiple times to

have confidence that parameters are accurate. Without sufficient training, event

sequences may be encountered during the test phase for which there is no knowledge

to provide a probability estimate.

Researchers from the NLP domain have addressed this challenge of insufficient

or sparse data for n-gram models. A concept known as smoothing involves saving

some probability mass in an n-gram model’s probability distribution for unseen

events [59]. Several smoothing techniques exist for language models such as Addi-

tive, Good-Turing Estimate, Katz, Witten-Bell, and Kneser-Ney [59]. The models

in this experiment use the Kneser-Ney smoothing technique [60]. Smoothing has

significant effects on the probability of n-gram models. At a high level, Kneser-Ney

smoothing involves:

• Reserving probability mass for unseen events by reducing all probabilities by

a constant discounting percentage.

• Estimate missing higher-order conditional probabilities by incorporating the

observed frequencies of lower-order prefixes (a concept known as backoff).

• More precisely, combining the frequency of lower-order n-grams with a concept
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called continuation probability, which estimates the probability that an event

completes an n-gram, to estimate the probability of event sequences.

The original reference should be reviewed for a complete explanation of Kneser-

Ney smoothing [60]. Potential risks of applying Kneser-Ney to the domain of events

carried out on software are violations of key features above. For example, if very

few events are being performed by users, applying a constant discounting to every

probability may save too much probability mass for unseen events.

4.1.2 Experimental Results and Analysis

4.1.2.1 Multi-class Classification

For each metric, we compare ID’s recommended category to the actual category

of each test session. A percentage of keywords are reserved based on a data split

to represent the testing set, E, and use the remaining data as the training set, R,

to train an N order n-gram model for the specified class. P (K,m) is calculated

for each sample of keywords, K, from E. This represents the probability that the

keywords are generated by the mth users n-gram model. Finally, m is selected with

the highest probability for the behavioral keyword sequence, P (K,m), and used as

the prediction value.

We compute each metric for each class label and analyze the performance. We

also average these values to get an overall metric value. We first consider whether

unique profiles can indeed be constructed. Models are developed for each user and

role as described in Section 3.3.3. To evaluate role-based behavior for RQ1, we
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observe that a random model with no observations would achieve 25% accuracy

when categorizing users. If the models generated are effectively capturing unique

details about the behavior of users within roles, we would expect to see much greater

overall accuracy in multi-class classification.

(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.1: Role-based Accuracy

Instead of focusing on the four pre-defined user roles, RQ2 focuses on the

ability of n-gram models to capture the behavior of specific users regardless of role.

To evaluate this research question, the data is filtered to include only those users

which have at least two sessions of activity and at least 800 total keywords. For the

users meeting this criteria, we train models according to the n-gram approach. After
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.2: User-based Accuracy

(a) Overall Role-based Accuracy (b) Overall User-based Accuracy

Figure 4.3: Overall Accuracy

filtering the data, 3945 users are captured for role-based classification and ten users

are captured for user-based classification. Accuracy shows how often the classifier
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is correct when classifying roles or users.

accuracy =
(TP + TN)

total
(4.1)

where total is the total number of predictions made for a particular user/role. Accu-

racy results are shown for roles and users in Figure 4.1 and Figure 4.2. We average

the role and user based accuracies and present them in Figure 4.3.

(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.4: Role-based Recall Rate

There are 63,467 user-based and 95,223 role-based keywords generated for this

study. Based on our results, the 90/10 data split shows linear increase of accuracy for
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.5: User-based Recall Rate

(a) Overall Role-based Recall (b) Overall User-based Recall

Figure 4.6: Overall Recall

smaller training sets (individual users) with approximately 93-94% accuracy (Figure

4.3b). For larger datasets (i.e., role-based), accuracy is less than 90%. On average,
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the best role-based model of accuracy is N=2 at approximately 86% (Figure 4.3a).

Accuracy of the system generally decreases when classifying a large number of users

in the role-based experiment. Overall, each role-based model achieved above 78%

accuracy. The Tech role has the largest number of keywords used for training each

data split. Initially, we expected this role to have the highest accuracy for each

model and data split. However, the Tech role performed best (i.e., 90%) for bi-

grams with the 90/10 data split. Conversely, the User role has the largest number

of training sessions and lowest accuracy (less than 80%) for each model. The User

role has 3,893 users in the dataset with short sequences of interaction. Because these

sequences exist, the n-gram model may have difficulty learning behavior from this

category of users. From equation 4.1, we see that accuracy focuses more on the total

number of True Positives and True Negatives. From this metric, we are unable to

evaluate false classifications. We also observe a large class imbalance based on the

labeled dataset that can possibly lead to an Accuracy Paradox, described in Section

3.3.4. Therefore, we have minimum confidence in the accuracy metrics presented.

This leads to the evaluation of recall, precision, f-measure, and false positive rate.

Next, we evaluate each model’s recall. Recall measures the proportion of

positive examples that are correctly identified as positive. This measure of relevance

uses the True Positive and False Negative values for a class of users.

recall =
TP

TP + FN
(4.2)

Figures 4.4 and 4.5 show recall rates for roles and individual users, respectively. The
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.7: Role-based Precision Rate

Tech role’s recall increases approximately 10% as N increase from 2 to 3 through

5. The User model, with more users and less keywords, performs best for bi-grams

at approximately 75% (Figure 4.4). The Mgmt role has the least recall due to the

small number of sessions and keywords used for training and testing. However, we

observe higher recall for individual users within the Mgmt role (e.g., User1, User7)

using the bi-gram 90/10 data split (Figure 4.5-a). We assumed User5, from the Tech

role, would have the highest recall since this user has the largest number of training

keywords for each data split. Yet, we observed approximately 60% recall for 90/10

bi-grams and an increase to 80% recall as N increased to 5. This user is one of the
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.8: User-based Precision Rate

(a) Overall Role-based Precision (b) Overall User-based Precision

Figure 4.9: Overall Precision

most active web users. We consider the classification task performance struggles

due to a high variability in the daily task of this particular user. User-based models
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show a steady overall recall rate for each data split and model at approximately 60%

(Figure 4.6-b). However, this steady rate is not observed for larger session/keyword

data sets (i.e., role-based). In this case, the bi-gram 90/10 model has the highest

overall recall rate at approximately 65% (Figure 4.6-a).

Precision measures the fraction of predicted examples that are relevant. This

metric considers True Positive and False Positive values.

precision =
TP

TP + FP
(4.3)

We notice a shift in performance when evaluating precision. The User role consis-

tently has the highest precision rate for each model at approximately 90% with less

than 60% precision for the Tech role. This observation holds for individual users

within this role (e.g., User3) with approximately 90% precision for the 70/30 bi-gram

model. Therefore, the classifier is more precise when predicting roles that have more

per-session data available. The lack of precision for User7, from the Mgmt role, is

due to the small number of sessions and keywords captured for this user. Figures

4.7 and 4.8 show precision rates for roles and individual users, respectively.

Historically, precision and recall have been used as classification performance

metrics. In many machine learning research papers, precision is more informative

for non-binary classifiers. During our analysis, we determined which metric or com-

bination of metrics is most informative for the task of identifying users and roles.

In some cases, it is very difficult to assess the performance of precision and recall

separately. The f-measure, as described in Section 3.3.4, combine these into a single
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measure of classification effectiveness. Figures 4.10 and 4.11 show f-measure results

for roles and individual users, respectively.

f -measure = 2× precision× recall
precision+ recall

(4.4)

Next, we measure the false positive rate (FPR). This metric is used to deter-

mine the rate at which false alarms are generated. Optimally, we would like this

ratio to be very low. FPR becomes critical when users with lower privileges are

predicted to be users with higher privileges. This action can cause severe risk to a

system. Results for the FPR are shown in Figure 4.13 and Figure 4.14 for roles and

individual users.

FPR =
FP

TN + FP
(4.5)

The f-measure for the User role is 81% with 14% false positive rate (90/10 data

split only) for bi-grams and decreases to 60% for the rest of the models (N=3 through

N=5). Since this category of users has the largest number of training sessions, bi-

grams may have better performance when more per-session behavior from each user

is present in the dataset. Individual users with the User role have a high f-measure

(87%) with the same model (bi-gram 90/10 data split). In this case, recall and

precision are above 70% (precision=88%, recall=75%). User3, from the User role

category, has the highest f-measure among all users individually evaluated. If we

only rely on accuracy, our results would tell a different story. From the accuracy

perspective, the User role has the lowest accuracy for each model.
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.10: Role-based F-measure

The f-measure for the Tech role is approximately 83% for bi-grams with the

80/20 and 70/30 data splits (with 10% FPR) and holds at a steady rate of approxi-

mately 80% for other models and data splits. The Tech role has the largest number

of keywords used for training with 59% prevalence. Generally, the larger the train-

ing set, the better the classifier for this category of users. The Mgmt role has the

lowest f-measure for each model. All data splits for this category perform below

40%. This role has the smallest number of training sessions and keywords in our

dataset. The Mgmt user, User1, has a bi-gram, 90/10 data split, f-measure of 67%

and Mgmt user, User7, has a bi-gram, 90/10 data split, f-measure of 30%. After
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.11: User-based F-measure

(a) Overall Role-based F-measure (b) Overall User-based F-measure

Figure 4.12: Overall F-measure

carefully analyzing the data set, we find that User1 has more sessions of activity (6

sessions) than User7 (2 sessions). Even though, User7 passed the initial criteria of
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.13: Role-based False Positive Rate

having at least 2 sessions of activity and 800 keywords, this user’s f-measure is low.

In this case, it is necessary to capture more session data per user.

The Admin and User roles have approximately the same number of keywords

for training and their f-measure performance is approximately the same for data

models N=3 through N=5 (see Figure 4.10)1. This shows that there could be some

correlation in performance when classifying such models with the same range of

keywords. To train individual users and category of users well, there is a noticeable

difference in the number of keywords needed. For example, higher f-measure rates

1The difference in the number of keywords for Admin and User is approximately 2000. This is
the closest range for all categories observed in the dataset.
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(a) N=2 (b) N=3

(c) N=4 (d) N=5

Figure 4.14: User-based False Positive Rate

(a) Overall Role-based FPR (b) Overall User-based FPR

Figure 4.15: Overall FPR

were received for users with approximately 850 keywords and 120 sessions (90/10

data split) and roles with approximately 30,000 keywords and 400 sessions (80/20
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and 70/30 data split). The f-measure, on average, for role-based bi-grams perform at

the highest and approximately the same rate (62%) for each data split (Figure 4.12-

a). However, only the bi-gram 90/10 data split for user-based f-measure performs

the highest at 60% (Figure 4.12-b).

The User role has the highest FPR for bi-grams using each data split with

70/30 data split having a slightly higher FPR (approximately 16%). However, when

observing the classification of users with this role (i.e., User3), the 70/30 data split

performs best at approximately 1% FPR. As N increases to three, four, and five, the

Tech role has the highest FPR for each data split with the 90/10 data split having

the highest/worst FPR for each model. It is important to emphasize that this data

set has only 14% of keyword data labeled as User and 59% labeled as Tech. Since

the Tech role is more prevalent than all roles combined, we observed an increased

FPR for this role. Overall, we obtain less than 5% FPR for User-based models with

N = 5, 90/10 data split models having the least FPR (Figure 4.15-b).

4.1.2.2 Binary Classification

When addressing RQ3, we want to consider whether the role-specific profiles con-

structed as part of RQ1 are capable of detecting outliers in user behavior. To

evaluate this research question, we use the models generated from RQ1 indepen-

dently in a binary classification approach, as described in Section 3.3.3. Because

this task offers only two possible classes, a random model with no observation would

achieve 50% accuracy in categorizing user activity as PASS or FAIL according to
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each role-specific model. As in RQ1, we expect ID to outperform this random

baseline.

This task uses models independently. Specificity (i.e., 1 -FPR) and sensitivity

(i.e., recall) are statistical measures used for the performance of this classification

task. Both training and test data from the remaining three roles are used to evaluate

the model’s ability to reject uncharacteristic sequences (i.e., negative examples) by

measuring specificity. Only test data from the model’s own role is used to evaluate its

ability to accept valid sequences (i.e., positive examples) using sensitivity measures.

Additionally, we consider the affect of test sequence length on the performance of this

task by evaluating the number of keywords of an input sequence. Therefore, even

more test data for this task is obtained by separating user sessions into subsequences

of keywords of length two to length nine.

Finally, because we would like to track only a single threshold value for this

task even though sequence length varies, there is a compensation for the fact that

probability naturally tends to decrease as sequence length increases. In other words,

a threshold approach which might perform well for input sequences of length two

would likely overestimate the threshold for longer lengths. As an alternative, we

adapt the model’s output probability to be an indicator of entropy, a measure of

uncertainty in a system. This provides the ability to normalize by the length of the

input sequence. By doing so, a single threshold value for the binary classification

task is maintained. Binary classification results are show in Figure 4.16.
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(a) User n-gram model (b) Admin n-gram model.

(c) Technologist n-gram model. (d) Management n-gram model.

Figure 4.16: Role-based Binary Classification

RQ3 relates most directly to the CUA goal of ID. Efficient experimental results

are observed when accepting or rejecting snippets of user sessions based on role.

Each model was tested against every available subsequence of user keywords, from

lengths two to nine with a probability threshold of -0.6. Best performance was

observed when using N=9. Recall that backoff and smoothing in the model allow

for the assignment of probabilities to a sequence of any length, regardless of the

maximum history considered. Note that accuracy is plotted separately for positive

and negative test samples to analyze the models ability to reject uncharacteristic

sequences (i.e., specificity) and accept valid sequences (i.e., sensitivity).
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As expected, the length of sessions provided to models significantly affects the

ability to correctly classify the example. The effect of length was much greater on

negative examples, as failures due to rejecting a positive sample are rare after lengths

greater than four. The User model has the most sessions of activity and performs at a

level greater than 90% on all samples for lengths greater than three. When rejecting

uncharacteristic sequences, the Management model eventually achieved performance

of 92%, though this took sessions of length nine. With a 9% prevalence rate, it is

evident that this role needs more training/test data for the identification of outliers.

4.2 Discussion

It’s important to identify the prevalence of labeled data by determining how often

a particular label occurs in the dataset. The dataset under evaluation is heavily

populated with Tech-level keywords (approximately 59%). Therefore, the weighted

harmonic mean of precision and recall (i.e., f-measure) is highest for this particular

role at approximately 83% for each data split. For the multi-class approach, bi-

grams seem to have the most stability but its evident that more training data is

needed to reduce the false positive rate. We also conclude that individual user

identification requires less keywords and per-session data than role identification.

The parameters influencing the model grow exponentially with N and hence

a 5-gram model may not be practical in all cases. Having a larger value for N may

also require a larger training set since patterns tend to be more sparsely distributed

across keyword sessions. However, the parameters influencing a model, based on
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web logs, with a larger N value can be reduced by dropping high-frequency ‘noise’

such as Joint Expert Group (.jpg), Cascading Style Sheets (.css), JavaScript (.js),

Extensible Markup Language (.xml), and system generated text. Reducing this

‘noise’ gave us the ability to use a larger N value for the binary classification task.

However, we saw very little improvement for increased values of N when roles are

considered. From our results, one can conclude that binary classification proves

to be much more effective than a random baseline at detecting uncharacteristic

user behavior. Due to a large data set and elevated level of privileges for tasks, it

was expected that the Tech user role, for binary classification, would have one of

the strongest models but this was not observed. With the multi-class classification

approach, we observed below optimal classification rates for the User role model.

Conversely, the User model, in the binary approach, is stronger. This improvement

in performance could be due to the use of shorter sessions which are less likely to

contain unseen events. In this case, we rely on the validity of smoothing assumptions

for accurate probability estimation.

Throughout this study, it has been evident that many advantages and dis-

advantages exist for statistical language models. These machine learning models

contain flexible training and include test data that can be used to update execution

strategies. If appropriate training is available, our models are capable of detecting

malicious or unintended usage. In contrast, if relevant training is not available, poor

prediction performance is unavoidable. This approach is also highly dependent on

assumptions made by a system administrator. Therefore, detection performance can

be affected by slight changes in the keyword abstraction process.
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4.3 Threats to Validity

Intruder Detector is a user authentication tool that makes effective use of web logs

generated in a real-world setting. Keywords are captured over a period of three years.

Therefore, we train our n-gram classification models on realistic user behavior. We

attempt to limit the risk of over-fitting the model to specific sequences of training

data by selecting a diverse set of training examples for each test run. However,

threats to external, internal and construct validity still exist.

Threats to external validity. Threats to external validity are factors that

inhibit or reduce our ability to generalize our results. We validate our approach on

one web-based application, for which user behavior is abstracted into a model and

used to develop training and test sequences. Initially, the model was refined man-

ually, to identify keywords that are specific to user behavior (e.g., .jsp entries) for

this specific application. Some discrepancies may exist due to this action. If used in

a real-world setting, we expect system administrators to know enough about their

application to define instances in web log files that are indicative of user behavior.

However, we expect similar results for applications in this domain. We must note

that generalization beyond web-based organizational information system applica-

tions require additional experimentation and are not related to the results of this

research study.

Threats to internal validity. Threats to internal validity occur when alter-

native causes for experimental results are present. The dataset used has a large class

imbalance that may lead to an accuracy paradox for classification-based systems. We
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introduce several metrics to assess the performance of our approach to remedy this

concern. Since we use a real-world system with approximately 4000 registered users,

we were unable to provide active users with a list of tasks to perform. Therefore,

we depend on users to maintain consistency with their online behavior.

Threats to construct validity. Threats to construct validity are concerned

with the lack of compatibility or similarity between the concept measures used in

the study and the concepts intended to be measured. We use various performance

assessment techniques to understand the effectiveness of our approach. However,

metrics used to evaluate user behavior in this study may not be useful metrics in

other domains using the same CUA technique.

4.4 Summary

In this chapter, we presented an empirical evaluation of CUA for web-based orga-

nizational information system applications. We answered three research questions

with a custom set of evaluation metrics. Below is a high-level summary of our

results:

• RQ1: Role-based identification. Roles with the best f-measure performed

at 82% and approximately 10% FPR with bi-gram models. Overall, models

with more per-session data have higher precision rates and models with more

keyword data have higher recall rates. Training data plays a huge role in

obtaining an accurate result.

• RQ2: User-based identification. The role of each individual user has a signif-
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icant impact on user identification. Users that generated the most keywords

have the best f-measure at 88% and approximately 10% FPR. Overall, the

FPR is lower for these models when compared to role-based models.

• RQ3: Identification of outliers. From these experiments, binary classification

has the most promising results. Overall, we obtain above 90% accuracy when

accepting positive data and rejecting uncharacteristic data. Models with a

larger set of keyword data reject uncharacteristic data at a lower rate than

models with smaller sets of keyword data. Additionally, models that have

more training sessions reject negative data at a rate greater than 80%.
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Chapter 5: Conclusions

In this chapter, we present an overview of our research and discuss various oppor-

tunities for future work.

5.1 Research Overview

Many organizations are becoming increasingly aware of their security posture. It’s

important to identify cybersecurity-related risks and develop strategies to mitigate

them. Continuous user authentication is one approach that can be utilized to iden-

tify impersonations and misappropriation of authentication credentials [61]. Specif-

ically, this technique can be used with web applications to provide reliable and

secure authentication. In this work, we present challenges that occur when model-

ing the behavior of users that interact with web-based software. We then present

an approach to address the need for web-based continuous user authentication.

We obtain less than optimal results when conducting a feasibility study, us-

ing a real-world application, to assess the need for our approach. After exploring

various statistical language models, we employ the use of n-grams to capture user

interaction with web-based software. We use n-grams to model sequences and sub-

sequences of user actions, their orderings, and the temporal relationships that make
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them unique. After learning the behavior, we illustrate the ability to classify the

models using multi-class classification to identify role and/or individual user charac-

teristics. Results show model-specific differences in user behavior with performance

highly dependent on session and keyword size. We identify outliers in variable-

length keyword sequences using the binary classification technique. Results from

this approach show the rate at which each model rejects uncharacteristic sequences

and accepts valid sequences. Our CUA implementation is continual, non-intrusive,

and behavioral.

In summary, the contributions of this research include the following:

• We develop a novel keyword abstraction technique to pre-process large volumes

of web logs. This method helps reduce incomplete, noisy, and inconsistent

data.

• We explore various statistical language models to capture the behavior of users

as they interact with web-based organizational information systems.

• We develop a continuous user authentication framework, based on n-grams,

to classify user sessions into roles and individual usage profiles. We also use

this approach to identify outliers in role-based user behavior.

• We introduce a set of evaluation metrics to test the feasibility of our approach.
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5.2 Future Work

Our work in continuous user authentication is a foundational approach for web-

based user behavioral analysis. There are various ways our work can be extended

to explore this research domain. We conclude that with two of the four role-based

models considered, the correct identification of negative samples was above 90% as

well as a 100% correct acceptance of positive samples. These findings are promising,

and motivate future work to better understand model-specific differences which make

this task more difficult for some cases (e.g., Admin and Technologist roles) than

others. In particular, the finding that User sessions can so easily be protected

against uncharacteristic usage is promising.

Many web applications have different sensitivity levels for security threats.

Some systems must be protected at higher levels than other systems. There is

a need to investigate an adaptive scheme (i.e., tunable parameter) to determine

thresholds for different applications. The thresholds may be adjusted based on a

user’s role, application infrastructure, business logic, usage patterns, etc.

In many settings, statistical language models are computationally intensive.

Building n-grams over large datasets pose challenges to memory and speed [62].

The computational cost of running these models should be calculated in real time

to access the current usability performance. There may be a need to utilize a high

performance computing environment to increase prediction time in an effort to help

prevent or interrupt malicious web use. It will be useful to explore parallelization on

various platforms such as shared memory processor machines and Linux clusters with
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a high-speed network. Instead of starting with a parallel programming framework

such as MPI or OpenMP, many standard tools exist. Parallelization scripts from

the IRST Language Modeling Toolkit are an acceptable starting point to distribute

tasks to a cluster of machines [63].

There are various performance metrics available for classification tasks. The

performance metrics used in this work can be extended to include the time it takes

to identify legitimate and malicious use. When outliers are identified, it’s important

to detect this activity before the active session is complete. However, in some cases,

this time metric may allow some flexibility to help application forensics analyst

gather reliable evidence to use against perpetrators.

A combination of machine learning techniques for classification should be ex-

plored for continuous user authentication. In this research, we use supervised learn-

ing techniques to access the classification of user behavior. Exploring how semi-

supervised and unsupervised learning help make data-driven predictions or decisions

is an open area of research in this domain.

Finally, our work uses a single modality for CUA tasks. The use of a multi-

modal approach may prove to provide a more transparent authentication process

and help reduce false positive rates. Even though our models are able to detect

legitimate users and outliers, the false alarms can be annoying and decrease usability

dramatically. For example, a combination of web logs, database logs, and graphical

user interface (GUI) accesses can be used to obtain more information about a user’s

behavior. Keyboard and mouse interactions may also be integrated to provide a cost-

effective solution for continuous authentication. At any time, when one modality
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is not available, another one is able to capture such behavior and provide a highly

predictive system.

In summary, in this dissertation, we have shown how sequences and subse-

quences of user interactions are captured within statistical language models to con-

tinuously identify users, user types, and outliers in user behavior. To provide fo-

cus, we have limited our research to web-based organizational information systems.

However, the CUA domain can be extended to context-aware computing, Internet

of Things (IoT), and people-centric applications.
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Strategies for training large scale neural network language models. In Proceed-
ings of ASRU 2011, pages 196–201. IEEE Signal Processing Society, 2011.

[37] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A
maximum entropy approach to natural language processing. Comput. Linguist.,
22(1):39–71, March 1996.

[38] Ronald Rosenfeld. A maximum entropy approach to adaptive statistical lan-
guage modeling. Computer, Speech and Language, 10:187–228, 1996.

[39] Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and Robert L. Mercer. Read-
ings in speech recognition. chapter A Tree-based Statistical Language Model
for Natural Language Speech Recognition, pages 507–514. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990.

[40] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[41] Leonard A. Breslow and David W. Aha. Simplifying decision trees: A survey.
The Knowledge Engineering Review, 12:1–40, 1 1997.

[42] Mikhail Petrovskiy. A data mining approach to learning probabilistic user be-
havior models from database access log. In Joaquim Filipe, Boris Shishkov, and
Markus Helfert, editors, Software and Data Technologies, volume 10 of Com-
munications in Computer and Information Science, pages 323–332. Springer
Berlin Heidelberg, 2008.

[43] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob.
Comput. Commun. Rev., 5(1):3–55, January 2001.

[44] Mukund Deshpande and George Karypis. Selective markov models for pre-
dicting web page accesses. ACM Trans. Internet Technol., 4(2):163–184, May
2004.

91



[45] Eren Manavoglu, Dmitry Pavlov, and C. Lee Giles. Probabilistic user behavior
models. In Proceedings of the Third IEEE International Conference on Data
Mining, ICDM ’03, pages 203–, Washington, DC, USA, 2003. IEEE Computer
Society.

[46] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic func-
tions of finite state markov chains. Ann. Math. Statist., 37(6):1554–1563, 12
1966.

[47] Leonard E. Baum and J. A. Eagon. An inequality with applications to statistical
estimation for probabilistic functions of markov processes and to a model for
ecology. Bull. Amer. Math. Soc., 73(3):360–363, 05 1967.

[48] Leonard E. Baum, T. Petrie, G. Soules, and N. Weiss. Maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains.
The Annals of Mathematical Statistics, 41(6):360–363, 12 1970.

[49] L. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[50] L. Razmerita. An ontology-based framework for modeling user behavior;a case
study in knowledge management. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, 41(4):772–783, July 2011.

[51] CAC. Dod common access card: http://www.cac.mill/, 2015. [Online; accessed
11-September-2015].

[52] James V. Wertsch. Mind as Action. Oxford University Press, 1998.

[53] Kenneth Burke. Language as Symbolic Action. University of California Press,
1966.

[54] Jimmy Lin and W. John Wilbur. Modeling actions of pubmed users with n-
gram language models. Inf. Retr., 12(4):487–503, August 2009.

[55] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data preparation
for mining world wide web browsing patterns. Knowledge and Information
Systems, 1:5–32, 1999.

[56] Yiguang Liu, Zhisheng You, and Liping Cao. A novel and quick svm-based
multi-class classifier. Pattern Recogn., 39(11):2258–2264, November 2006.

[57] Paul Honeine, Zineb Noumir, and Cdric Richard. Multiclass classification ma-
chines with the complexity of a single binary classifier. Signal Processing,
93(5):1013 – 1026, 2013.

[58] Adam Pauls and Dan Klein. Faster and smaller n-gram language models. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 258–
267, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

92



[59] Stanley F Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In Proceedings of the 34th annual meeting on
Association for Computational Linguistics, pages 310–318, 1996.

[60] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling.
In International Conference on Acoustics, Speech, and Signal Processing, vol-
ume 1, pages 181–184 vol.1, 1995.

[61] Issa. Traore and Ahmed A.E. Ahmed. Introduction to continuous authentica-
tion. In IT Policy and Ethics: Concepts, Methodologies, Tools, and Applica-
tions.

[62] Lars Bungum and Bjorn Gamback. Efficient n-gram language modeling for
billion word web corpora. In Workshop on Challenges in the Management of
Large Corpora, LREC ’12, 2012.

[63] M. Federico, N. Bertoldi, and M. Cettolo. Irstlm: an open source toolkit for
handling large scale language models. In Proceedings of Interspeech, 2008.

93


	List of Tables
	List of Figures
	Introduction
	Continuous User Authentication Scenarios
	Thesis Statement
	Approach
	Research Scope
	Broader Impact
	Dissertation Outline

	Background and Related Work
	Classical Authentication Methods
	Defining Continuous User Authentication
	Existing Continuous User Authentication Techniques
	Statistical Language Modeling (SLM)
	Neural Networks
	Maximum Entropy
	Probabilistic Context-free Grammars
	Decision Trees
	n-grams
	Hidden Markov Models

	Summary

	Intruder Detector: A Tool for CUA
	Web-based User Behavior Analysis
	Feasibility Study
	CUA Paradigm for Web-based Applications
	Contribution 1: Model Selection
	Contribution 2: Keyword Abstraction
	Contribution 3: Tool Support
	Contribution 4: Evaluation Criteria

	Continuous User Authentication Infrastructure
	Intruder Detector in Action
	Summary

	Empirical Evaluation of Continuous User Authentication
	Performance Assessment
	Experimental Setup
	Experimental Results and Analysis

	Discussion
	Threats to Validity
	Summary

	Conclusions
	Research Overview
	Future Work

	Bibliography

