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Anomaly detection is a classical problem in Statistical Learning with wide-

reaching applications in security, networks, genomics and others. In this work, we

formulate the anomaly classification problem as an extension to the detection prob-

lem: how to distinguish between samples from multiple heterogenous classes that

are anomalies relative to a well-defined, homogenous, normal class. Our formulation

of this learning setting arises from studies in cancer genomics, where this problem

follows from prognosis and diagnosis applications. Anomaly classification is also a

natural model for applications in electronic health record data, network intrusion-

detection, and other areas.

Standard binary and multi-class classification schemes are not well suited to

the anomaly classification task since they attempt to directly model these highly

unstable, heterogeneous classes. In this work, we show that robust classifiers can

be obtained by modeling the degree of deviation from the normal class as a stable

characteristic of each anomaly class. To do so, we formalize the anomaly classifica-

tion problem, characterize it statistically and computationally via kernel methods



and propose a class of robust learning methods, anti-profiles, specifically designed

for this task.

We focus on an open area of research in cancer genomics which motivates this

project: the classification of tumors for prognosis and diagnosis. We provide experi-

mental results obtained by applying the anti-profile method to gene expression data.

In addition we extend the anti-profile approach to use kernel functions, and develop

a support-vector machine (SVM) based method for classification of anomalies based

on their deviation from a stable normal class. We provide experimental results ob-

tained by applying this method to genetic data to classify different stages of tumor

progression, and show that this method provides much more stable classifiers than

the application of regular classifiers. In addition we show that this approach can be

applied to anomaly classification problems in other application domains.

We conclude by developing an SVM for censored survival information and

demonstrate that the anti-profile method can produce stable classifiers for modeling

the clinical outcome of clinical studies of cancer.
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Preface

Portions of the material presented here have either been published in peer-

reviewed journals or are being prepared for submission to peer-reviewed journals.

Chapter 3 of this thesis has been published in Cancer Informatics under the title

”Gene Expression Signatures Based on Variability can Robustly Predict Tumor

Progression and Prognosis” [15]. Chapters 2 and 5 are currently under preparation

for submission.
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Chapter 1: Introduction

Anomaly detection is a classical problem in Statistical Learning with wide-

reaching applications in security, networks, genomics and others. In this dissertation,

we formulate the anomaly classification problem as an extension to the detection

problem: how to distinguish between samples from multiple heterogenous classes

that are anomalies relative to a well-defined, homogenous, normal class. Our for-

mulation of this learning setting arises from studies in cancer genomics, where this

task is a natural application. It is also a natural model for applications in electronic

health record data, network intrusion-detection, and other areas.

Anomaly classification remains a largely unfocused area of research. Usually

an ad-hoc approach is taken resulting in solutions specific to the problem domain

that are not generalized to multiple domains. These approaches usually consist of

either applying a standard classification method, e.g., Support Vector Machines,

to directly distinguish the anomalous classes, or applying an anomaly detection

technique [13]. The former approach does not integrate relevant information that

could be obtained from the normal class while the latter approach makes it difficult

to incorporate differences between the anomalous classes themselves. Attempts to

combine both approaches have usually resulted in bootstrapping; while this might
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provide good solutions for the problem at hand, it cannot be considered as a general

approach to anomaly classification [34].

In this dissertation we present an approach that provides an alternative to the

above methods. We formalize the anomaly classification problem as a general learn-

ing setting and characterize it statistically and computationally using kernel learning

methods. Since kernel functions can be interpreted as pairwise similarity functions

(satisfying certain conditions), they serve as a natural framework to measure within

normal class similarity and anomalous deviation from this class. We also develop

kernel-based classification approaches specifically designed for the anomaly classi-

fication task and show that they produce accurate classifiers with higher stability

than standard classification methods.

The main inspiration behind this approach comes from a widely studied prob-

lem in cancer genomics: the development of microarray-based methods for diagnosis

and prognosis of cancer [37]. The main difficulty in developing such techniques have

been the lack of stable markers in cancer gene expression profiles. Apart from a few

exceptions, many gene signatures developed have provided poor results when tested

on independently obtained data, indicating that the signature is not adequately

robust to be deployed in a clinical setting.

We suggest that more robust analyses can be performed by taking gene expres-

sion variability into account. While variability in gene expression has traditionally

been ignored or discarded from consideration for biological relevance, recent studies

have demonstrated that variability analyses can yield important biological insights.

In the first chapter we present a survey of recent studies that analyze variability in
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gene expression and methylation.

In particular, recent work by Corrada-Bravo et al. [11] demonstrates that by

modeling the increased gene expression variability in cancer, a statistical method can

be developed which provides a stable and robust universal predictor of cancer. The

underlying observation behind this approach is that certain genes will consistently

show higher across sample variability in cancer as compared to normal samples. The

hyper-variability among these genes can be leveraged to measure deviation from a

stable profile of healthy samples, resulting in a cancer anti-profile.

Here we further advance this approach by demonstrating that it can be used as

a prognosis predictor of cancer survival. We demonstrate that using the same genes

that universally exhibit hyper-variability in cancer, the degree of heterogeneity in

tumor gene expression as measured with respect to healthy samples can be used as

a measurement of potential malignancy or risk of relapse.

These insights form the principle behind the anomaly classification approach

presented here: that by primarily modeling the solution based on a stable, cohesive

non-anomalous class while incorporating the deviations of the anomaly classes for

discrimination results in a more robust and stable classifier. To demonstrate this, we

present the anomaly SVM (aSVM), a kernel method based on the same principles

as the anti profile method for classification of tumor prognosis. We compare this

method with other SVM methods: the regular SVM and the one-class SVM which

is generally used for anomaly or novelty detection. These are applied to genomic

datasets consisting of gene expression and DNA methylation levels, as well as other

classification problems to demonstrate their broad utility.
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An important facet of bioinformatic study of diseases is the analysis of sur-

vival information of patient obtained through clinical trials. Since a number of data

sources analyzed in this dissertation contain such information, and the usual formu-

lation of the SVM being unsuitable for a thorough analysis of such data, we examine

the survival SVM. The survival SVM is an SVM formulation designed for censored

survival data. We demonstrate how the anti-profile approach can be applied to

derive a survival SVM for anomaly classification. We present two SVM formula-

tions for utilizing both normal and anomalous survival data, and demonstrate their

efficacy.

In summary, the contributions of this dissertation are the following: 1) for-

malization of the anomaly classification task and its statistical and computational

characterization based on kernel methods, 2) compiling a literature survey of recent

advances in gene expression variability analysis 3) the development of classification

methods designed specifically for the anomaly classification task, 4) application of

this methodology to produce stable prognosis and diagnosis tools for cancer ge-

nomics, 5) the application of this methodology to censored survival data to make

efficient predictions of prognosis.
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Chapter 2: Gene Expression Variability Analysis: A Survey

2.1 Introduction

It is common for gene expression studies to limit their focus to quantifying and

characterizing gene expression levels without paying significant attention to charac-

terizing variability. In some instances studies may make assumptions regarding the

variability of gene expression levels that may be found to be unsustainable under

scrutiny, or any patterns observed in variability may be discarded as a confounding

noise factor introduced solely by error [33].

However, in the last decade a number of researchers have sought to make gene

expression variability a central focus of a study. These studies present intriguing new

avenues for research in gene expression analysis. Given that certain patterns of gene

expression variability have been linked to a diseases, deriving new methods and

techniques for estimating and characterizing, and performing differential analysis

with regard to variability can provide considerable insight into characterizing the

behavior of diseases. EV is already known to be related HIV susceptibility [39] and to

a number of neurological diseases; for certain genes EV is decreased in Schizophrenia

and increased in Parkinson’s [46]. Cancer research in particular, as we will see below,

have much to gain from understanding how to model and account for expression
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variability (EV), as it may increase the potential for developing successful targeted

therapeutics.

In this survey we explore some recent studies that have made significant contri-

butions to EV analysis. We present how researchers have quantified and estimated

EV in gene expression data, how the correlation of EV with certain gene level factors

has been characterized, and how differential analysis with regard to EV has been

carried out by different research groups. In addition we present how similar analysis

can be performed with respect to expression variability in methylation as well. We

also discuss some of the conclusions resulting from these studies and assess their

biological implications.

2.2 Estimating variability

The recent study by Alemu et al. [3] forms a significant starting point for ex-

ploring gene expression variability. The main aim of this study was to deduce what

can be established as general characterizations of expression variability (EV) with

respect to a number of genomic and epigenomic features. The authors argue that

tissue specific expression variability of a gene can be considered a property of a gene,

and provide a number of reasons as to why this is justifiable. Among these are the

known relationships between expression variability and genes associated with certain

biological functions or diseases. For example, low expression variability has been

observed in transporters, channels and metabolizing enzymes [70], whereas the con-

verse has been observed in certain genes associated with diabetes [68]. An additional
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justification for the authors’ reasoning would be the evidence provided by previous

studies on Lymphoblastoid cell gene expression levels, which have been shown to

have significantly correlated EV levels, even when the actual gene expression levels

were not.

Alemu et al. follow this with a comprehensive statistical analysis demonstrat-

ing how gene expression variability can be estimated and can be analyzed with

respect to various gene level characteristics, yielding a number of interesting biolog-

ical insights.

Afsari, Geman and Fertig [2] have demonstrated a different route for exploring

EV, where the main focus is the detection of signaling pathways in relation to cancer.

The value behind such a study is based on possibility that certain chains of protein-

protein interactions occurring within a patient may be indicative of malignant tumor

activity. Then primary motivation for discovering such molecular pathways is that

a drug targeted at such a pathway would yield an effective treatment.

However, detection of tumor activity in this manner is a significantly difficult

task that needs careful consideration in such an approach. The authors point out

that despite the advances in methods that directly detect phosphorylation changes

in a protein network, any studies that utilize the large collections of existing tran-

scriptional data need to design statistical techniques to yield useful and interesting

results. Thus a key step in their approach is the selection of genes that are differ-

entially expressed as a result of tumor activity. The authors asses and comment on

the suitability of a number of exiting techniques for this task, which we shall explore

further below.
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Alemu et al. have used microarray data for their analysis of EV. They curated

a set of 688 microarray samples from Gene Expression Omnibus (GEO). This set

was obtained by filtering out undesirable samples from an initial repository of 7741

samples spanning over 175 studies. In addition to consideration of batch effects in

such experiments, when assembling such a large collection from diverse sources it

is imperative that appropriate pre-processing steps be taken so that comparisons

across samples can be made. For this the authors used fRMA, a single chip normal-

ization procedure, followed by employing the Gene Expression Barcode procedure

for calculation of standardizes gene expression measurements. Further filtering of

samples was carried out by detecting and removing samples that were too similar

to each other (via computing Euclidean distance between two given samples) and

removing samples with extremely large GNUSE values. The final pre-processing

step was to remove disease samples, as the focus of the analysis was to characterize

the gene EV of normal human tissue. Since many diseases are linked to changes

in EV, the inclusion of disease samples would have made it extremely difficult to

separate changes in EV due to any disease conditions apart from changes in EV due

to other factors considered. After these steps the samples were deemed ready for

analysis by measuring correlation between a tissue specific EV measure and a given

feature associated with a gene. This collection was comprised of 74 tissues of which

41 were the primary focus of the analysis as these tissues contained five or more

samples.

For estimating gene EV, the mean and standard deviation was calculated for

each probeset and tissue, where consideration was limited to probesets that were
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considered to be expressed for each tissue. This latter condition was applied through

selecting probesets that yielded a standardized expression value greater than 2.54.

Following this, a local likelihood estimation method is used for modeling variance

as a function of the mean. This would allow the measurement of excess variance

after accounting for variance that would be expected for a given mean, which the

authors utilize to form a measurement of EV.

Alemu et al. justify their use of such a modeling procedure by demonstrating

the inadequacy of standard noise measurements for their purpose. A standard ap-

proach to measuring the extent of variability present with respect to the mean is

to measure the coefficient of variation (CV), defined as the ration of the standard

deviation to the mean. Computing CV for this data demonstrates that the CV is

biased towards low mean expressions, making it unsuitable for EV analysis.

A gamma model was used to estimate the expected variability of a probeset in

each tissue given the overall expression. After computing the expected variance given

the mean, EV is measured as the ratio of observed variance to expected variance.

Unlike CV, this estimate was not found to have any biases with respect to the

mean expression level. This EV measurement obtained for each probeset and tissue

was aggregated to form a gene specific measurement of EV by taking the median

probeset specific EV from probesets mapped to a gene. Following this, the gene

specific EV estimate was used to assessing to what extent it correlated with the

various genetic and epigenetic determinants that were considered in the study. The

following types of properties of genes were considered:
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1. genomic properties (gene size, gene structure, regulatory elements in the gene’s

vicinity)

2. epigenomic marks such as DNAse hypersensitivity

3. interacting partners of the gene’s protein product

4. pathways and biological functions

5. disease associations

6. regions of natural structural variations in human populations

While Alemu et al. have retained their focus to assessing EV under normal

(i.e. healthy) conditions, other researchers have sought to explore EV under diseases

conditions. While a number of diseases are known to be exhibit certain patterns of

gene expression variability, the most widely studied among these is cancer. Recently,

Irizzary and Feinberg [19] have explored the possibility that increased variability

within a given phenotype might lead to increased fitness. They hypothesize that

increased variance in the genotype may increase fitness via increased variability of

the phenotype, regardless of any significant change of the mean phenotype. This

avenue of research has been further continued by Hansen et al. [30]. Both studies

extend their exploration to exploring epiegenetic variability in addition to gene EV.

Irizzary and Feinberg have used CHARM microarrays for estimating DNA

methylation levels. After quantile normalization and age correction, the raw data

from the arrays were translated into methylation percentages which were used to

obtain a methylation profile. This was accomplished by smoothing the individual
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probe level methylation percentages across genomic regions. In addition they also

carried out whole genome bisulfite sequencing for three colon cancer samples, their

matched normal mucosa, and two colon adenomas.

Hansen et al. used a custom Illumina array for methyation where 151 cDMRs

(cancer-specific DNA methylated regions) were analyzed over 290 samples from both

matched normal and cancer tissues for colon, breast, lung, thyroid and Wilms’ tu-

mor. The Illumina array consisted of 384 probesets over 139 regions, with 111

normal samples, 122 cancers, 20 colon premalignant adenomas and 27 additional

normal samples. Similar to Irizzary and Feinberg, this study also used smoothing

of individual probe level methylation percentages to obtain a comprehensive methy-

lation profile for a given samples over a genomic region. This allowed the authors

to compare the shifting of highly methylated region boundaries between cancer and

normal samples. They further supplement this analysis by making comparisons be-

tween the variability in methylation levels and variability in gene expression levels

via publicly available microarray data.

2.3 Differential analysis of variability

A significant aspect of exploring gene expression level or methylation level

variability consists of carrying out a differential analysis to gain insight into how

EV can be characterized under disease conditions.

In their analysis of methylation level variability in tumors across multiple

cancer types, Hansen et al. first carried out comparisons between the normal and
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cancer variance based on the differentially methylated regions previously observed

by Irizzary and Feinberg. For each cancer type, they plotted the standard deviation

of methylation percentage of cancer samples against that of normal samples, for each

probeset. This provided an initial assesment of the amount of variability observed

in each of cancer and normal states. They observed that in all cancers, the majority

of probesets demonstrated higher variability than in normals.

Cellular heterogeneity, age of the individual, and genetic heterogeneity were

ruled out as causes of the observed hypervariability of methylation in cancers. By

examining the normal methylation profile obtained from publicly available methy-

lation data for normal samples the authors were able to conclude that their choice

of CpG sites did not fully account for the hypervariability observation, suggesting

that it is rather a general property of cancer methylation.

As mentioned above, in the next stage of the study Hansen et al. estimated

methylation profiles are each samples by smoothing individual methylation levels

across nearby CpG sites. A comparison of such profiles obtained via whole genome

bisulfite sequencing enabled to authors to locate discrepancies in the boundaries

of highly-methylated or highly-unmethylated regions between normal, cancer and

adenoma samples.

In the final step of the study, a complementary analysis was carried out for

gene level expression variability between normal and cancer. Using microarray gene

expression data from both normal and cancer samples, the authors were able to

map 6869 genes to the differentially methylated regions identified in previous steps.

A gene ontology enrichment analysis for differentially expressed genes revealed a
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number of cell cycle genes as being associated with methylation region boundary

shifts between cancer and normal. We examine these conclusions further in the next

section.

Afsari et al. [2] have provided a different route for differential analysis of gene

expression variability. The main focus of their analysis is pathway regulation for

which they utilize EV analysis. They point out that the detection of differentially

expressed pathway regulation based on transcription data falls into two major ap-

proaches: over-representation methods and enrichment methods. The former in-

volves detection of genes that are annotated to pathways and also differentially

expressed to a significant degree. The latter usually involves obtaining a statistic

that characterizes the differential expression of genes in a pathway relative to a null

distribution.

However, while both approaches can yield robust results, given that individual

gene expression can be highly variable in tumors these methods may not be adequate

to fully characterize these complex changes in variability. The main contribution

of this study is to review solutions that can be applied to this issue, particularly

Differential Rank Conservation (DIRAC) and expression variation analysis (EVA).

These solutions - collectively referred to as differential variability analysis, form a

third approach in addition to over-representation methods and enrichment analysis.

The curated databases that contain gene levels annotations for pathways play

a crucial role in identifying significantly perturbed pathways (which is expected as

a result of tumor heterogeneity) in gene level comparisons between phenotypes.

Over-representation:
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1. Select a set of genes that are differentially expressed (DE) between two phe-

notypes.

2. Calculate a gene set statistic for each pathway that compares each set of

pathway genes to the set of DE genes identified in step 1.

3. Pathways whose members are significantly expressed for DE genes are consid-

ered significant.

Enrichment:

1. Calculate differential expression of genes between two phenotypes (e.g. t-

statistic or Z-statistic).

2. Calculate a cumulative statistic from the values in step 1 to characterize differ-

ential activity of a pathway which allows comparison with a null distribution

(e.g. Kolmogorov-Smirnov test, sum, mean, maxmean). The null hypothesis

may be implemented using an alternative set of genes or by permuting sample

labels.

Both methods infer coordinated, average expression changes between pheno-

types in sets of genes annotated to a pathway. Since enrichment methods look at

cumulative changes rather than using hard thresholds as in over-representation, en-

richment methods are more sensitive to detection of coordinated expression changes,

albeit at the cost of yielding more false positives. However, both methods are best

suited when the changes in the pathways occur consistently within a given phe-

notype, and this assumption may not hold for certain cases, especially in cancer
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which is known for its highly heterogeneous nature. This makes the third family

of methods - analysis of differential variability in gene expression, a relatively novel

but extremely important contribution. This approach is characterized by assessing

the variability for a given pathway and compares it between phenotypes to deter-

mine whether the given pathway as a whole is differentially expressed between the

phenotypes in terms of variability.

Since heterogeneous alterations that occur in tumors can increase variability of

expression of genes, over-representation and enrichment methods can also be applied

using variability statistics. However, complex methods that employ multivariate

statistics may be more robust in detecting alterations in expression that depend on

interactions among the genes in a pathway.

The first differential variability expression method published was by Zhang et

al. [89], which computed correlation between all pairs of genes for a given pathway,

and then calculated a z-score to assess the difference in pairwise interactions for

this pathway between two phenotypes. This method was later improved upon by

Watkinson et al. [87]. A recently method published by Liu et al. [41] follows a similar

but more complex approach, where instead of simply correlation sum, difference,

max and min are used respectively to measure gene pair cooperation, competition,

redundancy and dependency. This is followed by applying a maxmean statistic over

all pairs, which is the same procedure as followed by Zhang et al. Ochs et al. [54] in

contrast provides a method for measuring pathway dysregulation via outlier analysis.

Afsari et al. argue that rank based techniques are superior to techniques that

use normalized gene expression values in the following ways:
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• They are more robust to the preprocessing and normalization of data.

• They can perform as efficiently as other classification methods for distinguish-

ing between phenotypes.

• They are simpler to explain and interpret in biological terms.

The DIRAC method proposed by Eddy et al. [16] is one of the variability

methods that is rank-based. For a given pathway and phenotype, DIRAC generates

a binary template for the ordering of the expression values for the genes in the

pathway, and then the distance between the training samples and the template is

calculated as the Hamming distance over the gene pairs. Permutation of labels

are used to estimate a p-value for estimating the significance of the difference in

variability. Eddy et al. have shown that highly dysregulated pathways revealed by

this method are associated with bad prognosis.

Afsari et al. propose an alternative to DIRAC in order to increase compu-

tational feasibility, EVA. For a given pathway and phenotype, EVA calculates the

Kendall-tau distance between the rank vectors corresponding to two randomly cho-

sen expression profiles. Averaging the Kendal-tau distance between each pair of

samples from that phenotype provides a variability statistic the phenotype. A p-

value is computed analytically from the difference between the empirical Kendall-tau

statistics.

In addition they provide an R package, GSReg where the EVA method is

implemented. They analyze the same data that had been previously analyzed using

DIRAC to show that the results given by both methods are highly similar, and show
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that the EVA method is more computationally efficient.

So far the methods explored have all carried out their analysis in a supervised

setting; i.e. the phenotypical labels of the relevant data has been fully known.

Ghosh and Li [22] have proposed a further addition to these procedures: a method

by which these tests can be applied in the absence of group labels (e.g. healthy

vs. diseased). Their testing approaches are based on the C(α) principle, originally

proposed by Neyman and Scott [53] and applied for rare variant detection.

In discovering genes that are differentially expressed between two conditions,

typically finding genes that are up-regulated or down-regulated in diseased tissue

with respect to non-diseased tissue is the goal. The test of differential expression

used is usually mean-based, such as the t-test. However it has been observed that

other patterns of differential expression may exist as well. For example, Tomlins

et al. [79] have observed that only a fraction of samples in one group were over-

expressed relative to those in the other group. Based on this line of research Tomlins

et al. have developed a ranking method for outlier analysis using gene expression

data, and further Tibshirani et al. [75] have provided a statistical method for calcu-

lating a p-value for assessing significance for this model. Ghosh and Chinnaiyan [21]

have adapted these ideas to develop a similar framework which is non-parametric.

The basic model considered by Ghosh and Chinnaiyan is as follows:

Ygi|Zi = 0indF0g(y)

Ygi|Zi = 1indπ0gF0g(y) + (1− π0g)F1g(y)

where for gene g and sample i, Ygi is the expression measurement and Zi is
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a binary indicator for the group. F0g and F1g denote the gene-specific distribution

functions for the expression in the non-differential and differentially expressed genes,

and π0g is the proportion of samples that show no differential expression for gene g.

When Z is available this can be considered as supervised outlier profile anal-

ysis. To apply this for a situation where Z is not available, Ghosh and Li first

integrate the model to remove Z:

Y ind
gi F0g(y) + cgF1g(y)

Here cg = (1− π0g)(1−P (Zi = 0)). This can be generalized for infinite subtypes as

follows:

Y ind
gi

∞∑
k=0

ckFk(ygi; θgk, σ
2
gk)

where Fk is a normal distribution.

With this model the null hypothesis is that there are no subtypes for gene g,

while the alternative hypothesis is that there exists one or more subtypes. Therefore

this model can be used for the detection of overdispersion. The C(α) test method

can now be applied, which in fact corresponds to calculating the overdispersion

score, which in turn is the second derivative of the probability density of the data

divided by the density.

The authors applied three tests for each gene to calculate a set of gene specific

test statistics: a test based on skewness, a test based on kurtosis, and the K2 test,

which combines both skewness and kurtosis. If multiple types of information were

available for the same data (e.g. gene expression and copy number) are available, a

bivariate extension was developed based a similar extension for the B-H procedure
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developed by Philips and Ghosh [59]. Here two sets of p-values are calculated for the

samples for the two data platforms. These p-values are placed on a two-dimensional

grid and a Voronoi tessellation is calculated. The area of the Voronoi cell of each

sample, together with the location of the point on the grid is used for assessment,

as samples that show evidence against the null hypothesis are expected to cluster

near the origin and be enclosed in small Voronoi cells.

These methods were tested by the authors first with simulated data and then

with prostate cancer with copy number and transcript mRNA microarray data. The

data contains both samples labeled as cancer and non-cancer, and using all these

samples does not yield useful results due to large differences in expression patterns

between the two labels. By limiting the analysis only to cancer samples, using the

gene expression data revealed about 20% of the genes as statistically significant (out

of 7534 genes) based on an outlier transcript profile, and using the copy number data

revealed about 45% of the genes to be significant. Combining both types of data

jointly yielded more useful results.

This study demonstrates that higher order moment based tests are useful for

identifying biologically releveant signals in high throughput genomic data, especially

when significant differential expression between phenotypes are variability based.

2.4 Biological insights derived from modeling variability

As discussed previously, Alemu et al. followed a statistical approach to analyze

EV accounting for batch effect, multi-experiment comparisons and expression level
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of a gene. Their analysis provided a number of useful biological insights.

Overall, EV showed positive correlation with gene size associated features

(gene length, number of exons, longest transcript length), number of TF clusters cis

elements represented in promoter, miRNA, and disease genes. Other features such

as number of transcripts, CG ratio in 2kb promoter, DHS (hypersensitivity), number

of interacting partners and inherent disorder showed a negative correlation. While

the positive correlation between gene length related features may be attributed

to the higher noise level expected with longer transcripts (length bias has already

been shown to affect differential expression [56]), further analysis carried out by the

authors has shown that this is not the case. The number of transcripts for a gene was

found to be negatively correlated with EV. To further verify this, the top, bottom,

and middle level genes with respect to variability were selected for each tissue and

Wilcoxon tests were used to compare the selected genes with the background. This

revealed that the length related features exhibited a non-monotonic relationship

with EV. Genes with top and bottom levels of variability (hyper-variable and hypo-

variable respectively) have shorter genes and transcripts and fewer exons relative to

the background genes.

With regard to features associated with the proximal (2kb) promoter, evolu-

tionary conservation, GC fraction and number of nonredundant regulatory motifs

were tested. This has shown that EV is probably not an evolutionarily conserved

property, since it was not significantly associated with evolutionary conservation.

Genes with GC-rich promoters were more likely to show less EV (hypo-variable),

which is consistent with the fact that GC-rich promoters correspond to genes that are
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usually expressed and are usually related to house-keeping functions. These genes

tend to have constrained levels of expression due to greater number of interactions

and other homeostasis requirements.

For assessing the relationship between EV and epigenetic features, DHS (DNase

hypersensitive sites) and three histone modifications were selected (H3K4me3, H3K27me3,

H3K36me3 - these histone modifications have been shown to be associated with ex-

pression [7, 8]). H3K4me3 was shown to have a positive correlation with EV, while

the other features showed a negative correlation. Since the expected EV was quan-

tified as a function of average expression, this finding is not biased by the absolute

expression level. This suggests that transcriptionally active loci tend to have lower

EV.

For characterizing the relationship between chromatin state and EV, promoters

characterized as strong or weak according to ChromHMM were selected. Comparing

genes with high or low EV (hyper-variable and hypo-variable respectively) that

were annotated strong or weak relative to the background using a Fisher exact test

showed that genes with high EV are under weak regulatory control (i.e. significantly

depleted for strong promoters) and vice versa. Further, a linear regression analysis

revealed that in 19 tissues, EV was negatively correlated with inherent disorder

score. This is expected, since inherently disordered proteins lack its own stable

structure and their structure is highly dependent on their partners. An analysis of

9692 genes known to be related to human diseases revealed that EV was positively

correlated with disease for 32 out of 41 tissues. Since EV is related to phenotypical

plasticity which is a molecular basis in many diseases, this relationship is expected.
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Alemu et al. provide the following reasons for considering EV as an inher-

ent property of a gene: it has been previously shown through eQTL analysis that

the amount of EV accounted for by genetic variability is less than 5% [63], and

intra-population EV remains similar even when inter-population EV is significantly

different [39]. Further, high levels of EV are rare even when consideration is limited

to tissues it is expressed in. Finally, gene regulation has been eliminated as a case

of EV in general since genes encoding transcription factor regulators have not been

shown to be associated with high levels of EV. These factors, as well as the relat-

edness of EV across various contexts and the heritability of EV together support

the idea that EV is an inherent property of a gene encoded wither in the genome or

heritable epigenome.

From their analysis Alemu et al. arrive at some general conclusions. From

the evidence derived through analyzing correlation of EV with epigenetic features

they conclude that the EV of a gene is partially encoded by the its epigenomic

context. Since genes with GC-rich promoters tended to be correlated with hypo-

variability, promoters that elicit high expression are more likely to transcribe genes

which demonstrate low EV. In addition, discovery genes with low EV becomes less

likely in regions of high degrees of structural polymorphism, and in turn such genes

are more likely to encode inherently disordered proteins. Another conclusion is that

genes with high EV are more likely to be associated with diseases.

The authors also state two general characterizations of genes regarding low

EV and high EV: that the former are more likely to be involved in house-keeping

functions while the latter are more likely to be involved in extracellular processes
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(i.e. signaling and response functions).

The studies carried out by Irizzary and Feinberg, and by Hansen et al. have

provided significant insights into how gene EV and methylation EV can be charac-

terized between tumor and normal samples. Almost all the cDMRs (cancer-specific

DNA methylated regions) tested by Hansen et al. showed alteration among cancer,

where increased stochastic variation was noticed for the methylation levels. This

suggested a disruption of the mechanisms that maintain epigenetic integrity.

Hansen et al provide a comprehensive set of evidence for the existence of differ-

entially methylated regions among multiple cancer types. It has been observed that

DNA methylation at CpG dinucleotides demonstrate hypo-methylation and hyper-

methylation in cancer for certain genes. However, while many studies on cancer

epigenetics focus on high density CpG islands and gene promoters, the research by

Hansen et al includes regions with lower CpG density as well. These lower density

regions are named ’shores’, in contrast with the high CpG density regions referred

to as ’islands’. The study reveals that these shores strongly correspond to the same

regions that show methylation variation among tissue-specific DNA Methylated Re-

gions(DMRs) - i.e. regions where a substantial variation of methylation levels exist

between different types of tissue.

While a difference in mean methylation levels were observed between the nor-

mal and cancer samples, the increase in across-sample variability of the cancer

samples with respect to the variability among the normal samples was even more

striking. A binomial distribution model of methylation level distributions was used

to account for the increased level of variability that could be expected with the
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mean shifts. While the CpG sites had been initially selected for differences in mean

methylation among colon cancer, the increased variability was a novel observation.

Of these CpG sites, 157 showed significant hyper-variability among all the cancer

types tested. These sites belong to not only islands, but shores and regions much

further from islands as well. Increased cellular heterogeneity and the age of the

patients were accounted for as possible artifactual causes for the hyper-variability,

and ruled out.

Another possible explanation for the increased variability is that the selected

CpG sites naturally demonstrate increased variability of cytosine methylation levels.

To verify that this observation was linked to cancer, a different publicly available

methylation dataset was used as a control. Comparing colorectal cancer to matched

normal mucosa on the Illumina Human Methylation 27K BeadChip array demon-

strated that 81% of the sites showed hyper-variability among in the custom array,

while only 42% contained a significant increased of variability in the control. Thus

the methylation stochasticity can be considered a general property of cancer.

As mentioned previously, to further observe the behavior of methylation levels

among the lower density CpG regions which are not usually examined by array based

method, shotgun bisulfite genome sequencing was performed on three colorectal

cancers and matched normal colonic mucosa. This revealed the presence of large

contiguous blocks of hypo-methylation in cancer compared to normals. 13540 Such

regions of lengths between 5kb to 10Mb were identified.

In totality the hypo-methylated blocks accounted for more than half of the

genome. A small fraction of hyper-methylated regions were found as well. Thus the
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predominant change in block methylation was a loss in methylation levels, where the

mean of 73% among all samples decreased to levels between 50-61% in cancer. In

addition, it was noted that these blocks were common across all three cancer samples.

From the 157 CpG sites that were identified as being hyper-variable across all cancer

types tested, 63% of the hypo-methylated CpGs were within hypo-methylated blocks

and 37% of the hyper-methylated CpGs were within the above mentioned hyper-

methylated blocks.

The study further observed the relationship between the hyper-variable methy-

lation regions and gene expression levels. It is generally observed that there is an

inverse relationship between gene expression levels and methylation. Publicly avail-

able microarray gene expression data of colon normal and cancer samples were used.

Testing for the expected inverse relationship between gene expression and methyla-

tion for each category of small DMRs, the strongest relationship was observed for

the hypo-methylated shores caused by methylation boundary shifts. A subsequent

gene ontology enrichment analysis for differentially expressed genes categorized by

their relation to the small DMRs revealed a number of strongly enriched categories

for mitosis, and enrichment for a number of cell-cycle related genes.

Another striking observation from the study was that the degree of hyper-

variability between the adenoma samples and the cancer samples. When projected

to a lower dimensional space using PCA, the normal samples clustered tightly to-

gether with the cancer samples dispersed, and the adenoma samples demonstrated

an intermediate degree of variability and an intermediate distance to the normal

cluster. Out of the 30 adenoma samples used in the custom array, two samples,
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a premalignant colon adenoma with a small methylation based distance from the

normals, and another adenoma with a large distance, were used for whole-genome

bisulfite sequencing. Using average block-level methylations to compute pairwise

Euclidean distances between the samples confirmed the existence of genome wide

hyper-variability among adenomas, with the degree of variability being less than

that of cancer.

Substantial enrichment of genes with increased expression variability in cancer

was found, in comparison to the normal samples when tested for genes in the hypo

methylated blocks. The possibility of high cellular heterogeneity as the driving cause

behind this observation was ruled out, revealing a statistically significant association

between the hyper-variability of gene expression and the placement of the gene

within a hypo-methylated block. 52% Of the genes with the largest increase in

expression variability were inside these blocks, whereas only 17% could be expected

by chance. 25 Out of these 26 genes (out of a total of 50), showed stochastic levels

of expression among the cancer samples, while they were never expressed among the

normal samples.

These observations suggest increased epigenetic plasticity caused by a varying

environment where the cancer cell grows in an environment where it is subjected to

a number of variable forces such as varying oxygen tension or through metastasis

to a distant site. The results obtained from this study has far reaching conclusions,

which we will explore subsequently. From a methodology perspective, this study

stands as a useful demonstration of carrying out differential EV analysis, where

EV that can be explained due to causes other than the disease in consideration are
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eliminated prior to reaching conclusions.

Based on these findings, Corrada-Bravo et al [11] introduce anti profiles as

a stable method for screening multiple types of cancer. The principle underlying

this model of cancer screening is that certain genes will consistently show higher

across samples variability among cancer samples as compared with normal samples.

In this study these genes are identified and the hyper-variability is used to predict

outcome, where the model is referred to as an anti-profile as it measures variation

from normal behavior. The observation by Hansen et al that there are consistently

hypo-methylated regions of varying lengths (between 5kb and 10Mb) is utilized

here for the selection of genes. The same study also demonstrated that the genes

corresponding to epigenetic hyper-variability in cancer are also generally tissue-

specific genes, an observation which is utilized to develop a universal anti profile.

Using two independent colon cancer studies, training and testing sets, both

containing normal and cancer samples were constructed. Genes that lie inside the

differentially methylated blocks were considered to select those genes showing con-

sistent hyper-variability among cancers compared to normals. Using the anti profile

scoring method with these genes resulted in AUC (Area Under ROC Curve) values

of 0.94 and 1.0 respectively for the two datasets. In addition, it was noted that the

normal ranges of expression calculated for two datasets were quite consistent.

By compiling a large cancer dataset consisting of cancer and normal microarray

samples from many types of tumors, the study developed a universal cancer anti-

profile by restricting the anti profile to tissue specific genes; tissue-specific genes here

were considered to be genes which were expressed among at least 95% of samples for
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at most three tissues. This anti-profile was verified via cross validation analysis to

provide high AUC values. This research forms a significant part of the background

for the anti-profile analysis carried out in this thesis (see Chapter 3), where we use

the probesets included in the universal anti profile for our applications of predicting

and classification of tumors according to relapse risk and progression level.

2.5 Conclusion

We have examined a number of studies which have carried out estimation

and differential analysis with gene expression level variability. In addition we have

presented how the same ideas can be extended for methylation level analysis as well.

These studies, and the important biological insights gained from them, demon-

strate that differential variability analysis has an important role to play in biostatis-

tical research. Further they suggest that complementing an expression level analysis

focusing on mean differences with a parallel analysis examining variance differences

should be an important consideration in many studies of genomic and epigenomic

level gene expression or methylation studies.

Variability based analysis is a complicated task. However the studies we have

discussed demonstrate how to overcome some of the potential challenges to derive

informative conclusions. For example, there are many factors that influence gene

EV, and generally an analysis should be carried out to rule out potentially infringing

causes of variability other than the hypothesized cause.

The research presented here by Hansen et al., and followed upon by Corrada-
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Bravo et al., form an important part of the background research for this thesis. We

discuss the anti-profile method in more detail and examine it’s further utilization

for cancer prognosis in the next chapter.
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Chapter 3: Anti-Profiles for Cancer Progression Analysis

3.1 Background

Despite many advances in cancer treatment, early detection remains the most

promising avenue in terms of patient survival [4, 43, 52, 72, 84]. While there have

been many attempts at devising early cancer screening techniques, many approaches

remain inefficient in clinical settings, or are not pragmatic due to lack of cost effec-

tiveness or due to requirement of invasive procedures [31,36,38]. Genomic screening

techniques are a promising approach in this area. Continuing advances in high-

throughput technology make these approaches both cost and time effective. Certain

types of genomic data, such as gene expression derived from peripheral blood are

minimally invasive as well.

The main difficulty in developing such techniques has been the lack of stable

markers in cancer gene expression profiles. Apart from a few exceptions [24, 80],

many gene signatures have failed to reproduce their results when tested on indepen-

dently obtained data [37], indicating that the signature is not adequately robust to

be deployed in a clinical setting.

However, recent work by Corrada-Bravo et al. [11] demonstrates that by mod-

eling consistent increased gene expression variability across cancer types, a statistical
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model can be developed which provides a stable and robust predictor of cancer that

works well across multiple cancer types. The underlying observation behind this ap-

proach is that certain genes will consistently show higher across sample variability

in cancer as compared to normal samples. Hyper-variability in these genes can be

leveraged to measure deviation from a stable profile of normal expression, resulting

in a cancer anti-profile.

Here we further advance this approach by demonstrating that it can also be

used as a predictor of survival or relapse. We demonstrate that using genes that

show consistent, or universal, hyper-variability across cancer types, their degree of

deviation in gene expression from normal tissue can be used as a measurement of

potential malignancy (measured as risk of relapse or death). The results indicate

that the anti profile approach can be used as a more robust and stable indicator of

tumor malignancy than traditional classification approaches.

3.2 Methods

We extend the observation of consistent hyper-variability in cancer with re-

spect to the normal samples to include tumor progression. Our hypothesis here was

that the degree of hyper-variability as measured with respect to the normal samples

would increase with tumor progression.

Corrada-Bravo et al. demonstrate how to derive a colon-cancer anti-profile for

screening colon tumors by measuring deviation from normal colon samples in [11].

Briefly, to create an anti-profile a set of normal samples and tumor samples are se-
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lected; probsets are then ranked by the quantity
σj,tumor

σj,normal
(where σj,tumor and σj,normal

are the standard deviations among the tumor samples and normal samples respec-

tively for probeset j) in descending order and a certain number of probesets(typically

100) with the highest value are selected. Normal regions of expression are calculated

for each probeset, and an anti-profile score for a sample is calculated by counting

the number of probesets for which expression lie outside the normal region.

We used a number of publicly available microarray datasets and one methy-

lation dataset. The microarray datasets were either Affymetrix Human Genome

U133 Plus 2.0 (GPL570) or Affymetrix Human Genome U133A (GPL96). The raw

data were collected and processed using fRMA normalization [49] and the barcode

algorithm [50] to obtain z-scores. A detailed description of the datasets used and

the selection of samples can be found in the supplementary file.

For anti-profile analysis, a variance ratio statistic across multiple tissues is

calculated [11]. This statistic is computed as ug = log2
meancsgc
meantsgt

where sgc and sgt

are the standard deviations of cancer type c and tissue t, and g being the probeset.

Probesets are ranked according to ug. We used the 100 probesets with the highest ug

values for our experiments with anti-profile scores. This calculation was available for

the GPL570 platform by Corrada-Bravo et al., and we used a number of cancer and

normal samples of many tissue types from GPL96 microarray platform experiments

to obtain a similar universal set of probesets for our GPL96 experiments.

The normal regions of expression are calculated based on median and median

absolute deviation(mad) statistics as mg ± 5 ×madg for a probeset g. Here mg =

mediant(mediangt) for tissue t and madg = mediant(madgt). For most of our
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experiments our computations were limited to a single tissue type(colon, breast,

lung, thyroid or adrenocortical).

The normalized expression values and the selected probesets can be supplied

to the apCount method of the AntiProfiles Bioconductor package [10], which counts

the number of probesets for which the expression of the given tumor sample lies

outside the normal range of expression. This count is used as the anti-profile score.

The AntiProfileStats object from the package and the buildAntiProfile method were

used to compute and use the universal anti-profile signature.

For comparing the anti-profile scoring method against classifiers that do not

take into account the hyper-variability of cancer, we compared our approach with

PAM, a popular shrunken centroid classifier [77]. PAM extends the regular cen-

troid based classification by computing a standardized centroid for each class. The

shrunken centroid represents the class using the average gene expression of that

class divided by the within-class standard deviation for that gene. The amount of

shrinkage is determined via a threshold parameter which affects the classification by

reducing the effects of features that are determined to be noisy.

For shrunken centroid classifications, we used pamr, an R package which im-

plements the PAM algorithm. The methods pamr.train, pamr.cv, pamr.predict were

used for training, cross validation and testing respectively. For any given dataset,

a binary classification was attached to the data (either a high risk vs. low risk

classification based on patient survival information or a carcinoma vs. adenoma

classification based on tumor progression information) which was used for fitting

the PAM model, and after cross validation on the training dataset, the threshold
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parameter was selected to minimize both training error and the number of probesets

used for classification.

3.3 Results and discussion

Anti-profiles capture tumor progression

Figure 3.1: Among probes that exhibit higher variability among cancers
than among normals, degree of hyper-variability observed is related to
level of progression.
(A)Distribution of variance ratio statistic(log2[σ

2
tumor ÷ σ2

normal]) for colon
dataset(Gyorffy et al.; GSE4183) from anti-profile computed using another colon
dataset(Skrzypczak et al.; GSE20916). (B)Distribution of variance ratio statis-
tic for Skrzypczak et al. colon dataset from anti-profile computed using Gyorffy
et al. colon dataset. (C)Distribution of variance ratio statistic for adrenocortical
data(Giordano et al.; GSE10927) for universal anti-profile probesets.

In our experiments we first extended the anti-profile approach by using colon-

cancer anti-profiles for differentiation between tumors according to their progression

level. To test our hypothesis we obtained two publicly available microarray datasets

with normal, adenoma and cancer colon samples [29,65].

Based on the finding that consistent decreases in methylation are observed
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along large genomic blocks [30], probesets were selected in [11] by selecting genes

that lie inside such blocks to create a colon cancer anti-profile. From those probesets

we selected the 100 probesets that showed most hyper-variability among cancer

samples in comparison to the normal samples. We then plotted the distribution of

variance of cancer/adenoma samples to variance of normal samples ratio (in log2

scale) for these probesets on the other dataset (Figures 3.1A, 3.1B). Both adenomas

and cancers show higher variability than normals(region to the right of x = 0) while

cancers show higher hyper-variability than adenomas. This demonstrates that the

hyper-variability property is a stable marker between experimental datasets, and it

validates our hypothesis that the hyper-variability measurement can be extended to

model tumor progression. A Kolmogorov-Smirnov test between the two distributions

with the alternative hypothesis being that the distribution for adenoma samples is

less than that of cancer samples yields p = 1 for the first dataset. For the second

dataset we see that the distribution for cancer samples exhibit both higher and

lower degrees of hyper-variability compared to the adenomas. Nevertheless, further

experiments with anti-profile scoring demonstrate that these probesets can be useful

for differentiating between adenoma and cancer samples (see below).

Next we performed the same analysis using the universal anti-profile signature

computed in [11]. We obtained an adrenocortical microarray dataset [25] contain-

ing normal, adenoma and cancer samples. For the most hyper-variable 100 probe-

sets from the universal anti-profile, we plotted the distribution of variance of can-

cer/adenoma samples to variance of normal samples ratio (Figure 3.1C). The same

observations as before could be seen: a majority of these probesets show greater
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variability among cancer and adenoma samples than among normal samples, and

this degree of variability is higher among cancer samples in comparison with ade-

noma samples (A Kolmogorov-Smirnov test between the two distributions with the

alternative hypothesis being that the distribution for adenoma samples is less than

that of cancer samples yields p = 1). This extends the validation of our hypothesis

regarding hyper-variability and tumor progression level to the universal anti-profile

signature.

In the next stage of our experiments we applied the anti-profile scoring method.

As discussed in [11], the anti-profile scoring method counts the number of hyper

variable probesets for which the expression of tumor samples lie beyond the normal

region of expression. It has been shown to be an effective measurement in differen-

tiating between tumor samples and normal samples, and our aim was to apply the

same scoring method for differentiating between different stages of tumor progres-

sion. With the two colon cancer datasets used to derive colon-cancer anti-profiles,

we used the hyper-variable probesets and the normal regions of expression for those

probesets derived from one dataset to calculate anti-profile scores for the normal,

adenoma and cancer samples in the other dataset. The distribution of these scores

are plotted in Figures 3.2A and 3.2B: for both datasets, the average anti-profile

score increases from the normal group to the adenoma group to the cancer group:

for the first dataset [29], the mean scores for these groups are 18.88, 27.93 and 35.33

respectively and for the second dataset [65] the respective mean scores are 32.2, 51.4

and 58.9. Comparing the adenoma scores against the cancer scores yield an area

under the receiver operating characteristic curve(AUC) of 0.711 and a p-value of
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0.05 from the Wilcoxon rank-sum test for the first dataset; the same comparison

for the second dataset yields an AUC value of 0.97 and a p-value < 103 from the

Wilcoxon rank-sum test.

Figure 3.2: Anti-profile scores calculated for tumors and normals.
(A)Anti-profile scores for colon dataset(Gyorffy et al.) from anti-profile computed
using another colon dataset(Skrzypczak et al.); Carcinoma vs. adenoma area under
ROC(AUC) = 0.711, Wilcoxon rank-sum test p-value = 0.05. (B)Anti-profile scores
for Skrzypczak et al. colon dataset from anti-profile computed using Gyorffy et
al. colon dataset; Carcinoma vs. adenoma AUC = 0.97, Wilcoxon rank-sum test
p-value < 10−3. (C)Anti-profile scores for adrenocortical data(Giordano et al.)
from universal anti-profile probesets; AUC = 0.997, Wilcoxon rank-sum test p-value
< 10−4.

Similarly we applied the anti-profile scoring method for the adrenocortical

dataset with the universal anti-profile probesets(Figure 3.2C). The cancer samples

have higher anti-profile scores than the adenoma samples: the mean anti-profile

scores are 2.5 and 16.84 for the adenoma and cancer groups respectively. The

comparison of the two score groups give an AUC value of 0.997 and a Wilcoxon

rank-sum test p-value < 104. In addition we also performed the same experiment

on 10 Follicular Thryoid adenomas and 13 Follicular Thyroid carcinomas obtained
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from GSE27155 [26], where we used the 100 most hyper-variable probes from a

universal anti-profile signature for the GPL96 platform(see ’Application to Breast

cancer’ section below). This provided an AUC of 0.808 and a Wilcoxon rank-sum

test p-value of 0.01. However, only 4 normal samples were available in this dataset,

thus limiting the confidence in the experimental result.

Increased expression variability is associated with clinical outcome in

colon, lung and breast cancer

Based on the observation that increased expression variability and anti-profile

scores in probesets with hyper-variable expression is associated with tumor pro-

gression, we hypothesized that it will also be associated with clinical outcomes for

tumors: aggressive tumors exhibiting poor clinical outcome would be associated

with increased hyper-variability in these specific genes and vice versa.

Application to Colon cancer

We first experimented with a colon-cancer anti-profile as discussed in the pre-

vious section. We obtained a microarray dataset of colon tumor samples supplied

with survival information(indicating the relapse of a patient within a certain num-

ber of years) [47]. Using the other colon cancer microarray datasets used in the

previous section [29,65], we constructed a colon-cancer anti-profile using the normal

and cancer samples, limiting the probesets to the colon cancer hyper-variable genes

from [11]. A set of 100 probesets with the highest variability among cancer samples
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with respect to normal samples were selected from this anti-profile. These probesets

and the normal regions of expression calculated for them using the normal colon

samples from the above mentioned datasets together constituted the colon cancer

anti-profile used.

We stratified the samples into high risk and low risk as follows: patients that

relapsed within 1 year after diagnosis were classified as high risk, and those that

did not relapse within 1 year were classified as low risk. For the selected probe-

sets we calculated the distribution of variance of high/low risk samples to variance

of normal samples ratio (Supplementary Figure 3.6A). The hyper-variability of the

colon cancer anti-profile probesets is reflected in these results, given that the ma-

jority of the probesets have a log2 variance ratio > 0. We can also see that the high

risk samples exhibit slightly higher variability than the low risk samples when com-

pared against the normals, affirming that the hyper-variability observation extends

to tumor prognosis as well.

Further, we calculated anti-profile scores for the colon tumor samples. Since

the high risk and low risk grouping is not a well defined classification that only

tentatively captures tumor progression, we used Kaplan-Meier survival curves to

measure the effectiveness of the anti-profile scores. We ordered the tumor samples

according to the anti-profile score and stratified them to three equal sized groups

and observed the rate of survival in each group using Kaplan-Meier curves. This

demonstrated to us that the anti-profile scores clearly correlate with the prognosis

of the tumors, with higher anti-profile scores showing higher chances of relapse and

vice versa (Figure 3.3A; logrank test score 9.452, p-value 0.008). We also noticed
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that the high risk samples have a higher score on average than the low risk samples

(Supplementary Figure 3.6B) : mean anti-profile scores for low risk and high risk

groups are 41.85 and 48.87 respectively (Wilcoxon rank-sum test p-value of 0.0078

between the two groups).

Application to Lung cancer

Next we applied the anti-profile method to analyze lung cancer survival. Here

we tested the universal anti-profile from [11] with two microarray lung cancer datasets

containing patient survival information based on patient relapse; the primary dataset

containing both normal and tumor samples [55], the second containing only tumor

samples [9].

As with the colon dataset, we stratified the samples into high risk and low risk

based on patient relapse within 5 years. For the universal anti-profile probesets,

we plotted the distribution of variance of high and low risk samples to variance of

normal samples ratio (Supplementary Figure 3.7). The majority of the universal

anti-profile probesets show higher variability among the tumor samples than the

normal samples, indicating that the universal anti-profile manages to capture the

hyper-variability property of these datasets.

We used normal lung samples to calculate anti-profile scores for the tumor

samples for both datasets. Ordering the tumor samples by anti-profile score, for

each dataset we stratified them to three equal sized groups and plotted Kaplan-

Meier survival curves (Figure 3.3B). For the first dataset, the tumor samples with the
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Figure 3.3: Anti-profile scores correspond to tumor prognosis.
(A)Kaplan-Meier survival curves for colon tumor samples ranked by anti-profile
scores are grouped to three equal sized groups; Logrank test score 9.452, p-value
0.008. (B)Survival curves for first lung dataset(Okayama et al.) - samples ranked by
anti-profile scores are grouped to three equal sized groups; Logrank test score 15.44,
p-value < 10−4. (C)Survival curves for second lung dataset(Botling et al.); Logrank
test score 0.611, p-value 0.73. (D)Survival curves for first breast dataset(Sotiriou et
al.); Logrank test score 3.971, p-value 0.137. (E)Survival curves for second breast
dataset(Pawitan et al.); Logrank test score 10.467, p-value 0.005.
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highest anti-profile scores show greatest relapse among the three groups, while the

tumor samples with lowest scores show the least relapse (logrank statistic for the first

dataset 15.44, p-value < 103). For the second dataset we obtained a logrank statistic

0.611 and a p-value 0.73 from the same procedure. The distribution of the scores

for the high risk and low risk samples (Supplementary Figure 3.8) indicate that for

both datasets the low risk samples have lower anti-profile scores and vice versa (for

the first dataset, mean score for low risk and high risk groups are respectively 14.32

and 19.81 with a Wilcoxon rank-sum test p-value < 103; for the second dataset,

mean score for low risk and high risk groups are respectively 31.64 and 33.32 with

a Wilcoxon rank-sum test p-value of 0.58).

The results obtained for the second lung dataset did not show a thorough sep-

aration in the Kaplan-Meier survival curves when sorted into 3 groups. Comparing

the generalized normalized unscaled standard error (GNUSE) values, a standard

metric of microarray quality, to compare the quality of the microarray data for the

two lung cancer datasets (Supplementary Figure 3.9), we noticed that this second

dataset has a higher GNUSE value distribution in comparison to the first dataset,

which might explain the poor performance. However stratifying the samples as top

50% of scores and lower 50% of scores did show some separation of the two groups

in terms of survival(logrank statistic 1.418, p-value 0.22). The survival curves show

the expected survival difference between the groups for the first 8 years, suggesting

that the prognosis predicted by the anti-profile scores may become less relevant over

time. In addition with increasing age, there is increased possibility that the health

of a patient may deteriorate more aggressively. Further, it should be noted here
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that the normal samples came from the first dataset (a Japanese cohort), whereas

the second dataset only contained tumors (a Swedish cohort). In an ideal scenario

we would compute a population dependent normal profile.

The first dataset also contained information about death of patients. A similar

analysis as before with patient death instead of relapse showed a logrank statistic

of 8.342 with p-value 0.015 when the samples were ranked by anti-profile scores and

stratified to 2 groups (Supplementary Figure 3.10).

These results demonstrate that the universal anti-profile probesets can be used

to explore the hyper-variability in lung microarray data and further validate the use

of using deviation from normal samples as a measurement of tumor prognosis.

Application to Breast cancer

We next applied the methodology to breast cancer microarray data on Affymetrix

Human Genome U133A platform (GPL96). Since the universal anti-profile signa-

ture had been derived from Affymetrix Human Genome U133 Plus 2.0 (GPL570)

microarray data, we used a number of publicly available GPL96 platform cancer and

normal samples (1207 cancer samples and 773 normal samples) of multiple tissue

types to re-calculate an anti-profile signature for the GPL96 platform(see ’Meth-

ods’). We used the most significant 100 probesets from this signature for our breast

cancer anti-profile experiments.

After obtaining two publicly available breast cancer microarray datasets [51,

58], we selected lymph node negative and ER positive samples and verified that
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these probesets were able to capture the hyper-variability of cancer samples (Sup-

plementary Figure 3.11). Since relapse information was not available for majority

of the samples, we used death within 5 years as our criteria for obtaining a high risk

- low risk classification.

We collected breast normal samples from publicly available datasets and cal-

culated anti-profile scores for the two datasets. We drew Kaplan-Meier survival

curves by ranking the samples by score and grouping them to 3 equal sized classes

(Figure 3.3C). Similar to our observation with colon and lung cancer data, the anti-

profile scores showed a correlation with survival of patients(logrank statistic for the

first dataset 3.971, p-value 0.137, logrank statistic for the second dataset 10.467,

p-value 0.005). The distribution of the scores for the high risk and low risk samples

(Supplementary Figure 3.12) demonstrate that high risk samples have higher scores

on average, and vice versa (for the first dataset, mean score for low risk and high

risk groups are respectively 10.13 and 17.12 with a Wilcoxon rank-sum test p-value

of 0.0061; for the second dataset, mean score for low risk and high risk groups are

respectively 11.41 and 16.91 with a Wilcoxon rank-sum test p-value < 103).

The second breast dataset also contained information about patient relapse.

Performing a similar analysis using relapse instead of death provided a logrank

statistic of 10.755 (p-value 0.004) when the samples were grouped by anti-profile

score (Supplementary Figure 3.13).

In addition Supplementary Figure 3.14 show similar results obtained for a

third breast cancer dataset with patient death information. With only 9 deaths

being recorded, our method of stratifying samples into high risk and low risk classes
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was not appropriate for this dataset. However we observed a trend of samples with

high anti-profile scores exhibiting a higher rate of relapse and vice versa, as with

the other datasets.

In summary, these results obtained for lung and breast cancer data further

show the utility of the anti-profile approach as a robust and effective method for

modeling tumor prognosis, and validates our hypothesis that deviation from the

normal group can be considered a measure of the risk level associated with a tumor.

The anti-profile approach is more stable than standard classification

methods

We compared the anti-profile method with PAM using lung cancer data. For

this, using the high risk and low risk stratification of samples previously described,

we constructed a binary classification problem between low and high risk, and

trained the PAM classifier on one dataset and tested the classifier on the other

dataset. We used cross validation on the training dataset to determine the thresh-

old parameter which minimizes the misclassification error on the training data. The

same experiment was performed between the two breast cancer datasets, and also

the two colon cancer datasets used for our analysis based on tumor progression (here

the adenoma/carcinoma status was used as the binary stratification). The posterior

probabilities obtained for the testing dataset were used to calculate area under the

ROC curve values and Wilcoxon rank-sum test p-values.

To compare against this, we applied the anti-profile method to the same train-
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Tested Training Anti-Profile scores PAM

Dataset Dataset Training set Universal

hypervariable probesets hypervariable probesets

AUC Wilcoxon AUC Wilcoxon AUC Wilcoxon

p-value p-value

Lung1 Lung2 0.739 0.00002 0.716 0.0001 0.66 0.004

Lung2 Lung1 0.44 0.571 0.558 0.584 0.56 0.55

Breast1 Breast2 0.712 0.08 0.788 0.017 0.831 0.004

Breast2 Breast1 0.707 0.0021 0.729 0.0006 0.719 0.001

Colon1 Colon2 0.8 0.0054 0.455 0.692 0.603 0.339

Colon2 Colon1 0.97 0.00042 0.915 0.0018 0.92 0.0007

Table 3.1: Comparison of prediction results obtained using the anti-profile
scoring method and PAM. For each tissue type of lung, breast and colon, two
datasets with tumor samples were obtained and both the anti-profile method and
the PAM model were fitted on one dataset and tested on the other dataset. For a
binary stratification of samples by risk level, the area under the ROC curve(AUC)
and the p-value from the Wilcoxon rank-sum test were calculated from the deci-
sion values resulting from each method. Datasets used are: Lung1 (GSE31210),
Lung2 (GSE37745), Breast1 (GSE2990), Breast2 (GSE1456), Colon1 (GSE4183) and
Colon2 (GSE15960).

ing and testing dataset pairs. For each tissue type we used normal and the tumors

of one dataset to select 100 probesets and calculate anti-profile scores for the other

dataset. In addition we also calculated the anti-profile scores using the universally

hypervariable probesets (100 probesets). A comparison of these results can be seen

in Table 1.

From the comparison of area under the ROC curves and the Wilcoxon rank-
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sum test p-values, we see that while the shrunken centroid classifier performed at

a similar level with the breast cancer datasets, it did not perform as well as the

anti-profile method with the other datasets. Particularly with the lung cancer data,

in comparison with the anti-profile scoring the PAM classifications failed to obtain

high levels of differentiation between the high risk and low risk samples of the testing

data. These results show that taking into account the stochastic hyper-variability

of cancers with regard to normals can produce more stable classifiers when building

predictors across datasets.

Anti-profiles based on DNA methylation also capture tumor progres-

sion

Figure 3.4: Anti-profiles applied to methylation data.
(A)First two principal components of thyroid methylation data. (B)First two prin-
cipal components of colon methylation data.

DNA methylation is one of the primary epigenetic mechanisms by which gene

expression is regulated, and is believed to play a particularly important role in

cancer. High levels of methylation in promoter regions are usually associated with
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low transcription [71], and therefore globally methylation and gene expresison are

seen to have an inverse relationship [40]. Abnormal methylation patterns have been

observed in cancer, with loss of sharply delimitted methylation levels (in comparison

with normal methylation levels) in regions associated with tissue differentiation [30].

This is believed in part to give rise to the aberrant gene expression profiles that are

typically associated with cancer. Given these observations, we expected that the

anti-profile method would be applicable to methylation data as well.

We applied the anti-profile scoring method to DNA methylation data from

thyroid and colon samples [30], where for each tissue type normal, adenoma and

cancer samples were available. Using 384 probesets available in their custom Illu-

mina methylation array data, for each cancer type we used the normal samples to

define the normal regions of methylation and calculated anti-profile scores by sum-

ming the number of features that fell outside the normal methylation region for each

cancer sample.

Figure 3.4 shows the distribution of adenoma and carcinoma samples against

normal samples on a principal component plot, showing the presence of the hyper-

variability pattern in methylation data: the normal samples cluster tightly while the

adenomas show some dispersion, and the carcinomas show even greater dispersion.

Since these behaviors are present for both colon and thyroid data, it again reinforces

our notion that the anti-profile approach has wide application for classification in

cancer.

Supplementary Figure 3.15 shows the results obtained with the anti-profile

scores. As with the gene expression data, the methylation data also shows that
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adenomas tend to have lower anti-profile scores than the carcinomas: for the thy-

roid tumors the median anti-profile score for the adenoma class is 10 while for the

carcinoma class it is 17, and for the colon tumors the median score for the ade-

noma class is 75.5 while for the carcinoma class it is 121.5. We also obtained an

Illumina HumanMethylation450 experimental dataset containing DNA methylation

levels for normal, adenoma and cancer samples comprised of Thyroid, Breast, Colon,

Pancreas and Lung tissues (see Supplementary table S2) [78]. Given the extremely

large number of methylation sites available in the dataset, we first used the minfi

Bioconducter package to aggregate nearby CpG sites and calculate a mean methy-

lation level for each cluster. This produced about 220k clusters, which we then used

for our experiment.

For each selected tissue type, we followed a two-stage feature selection pro-

cess before applying anti-profile scoring. We obtained a list of hypo-methylated

blocks for Thyroid, Colon, and Lung cancer from. In the first stage we computed

the interesection of hypo-methylated regions as follows: to test Thyroid samples,

we computed the intersection of Colon and Lung blocks. For testing Colon sam-

ples, we computed the intersection of Thyroid and Lung blocks. For testing Breast

and Pancreas samples the intersection of Thyroid, Lung and Colon blocks was com-

puted. For each tissue type, collapsed CpG site clusters lying within the respective

intersections were selected. Following this, in the second stage, we selected the nor-

mals and cancers of the remaining tissue types and selected the 20 most significant

clusters. Using these selected features we built an anti-profile using the normals of

the selected tissue and used it to calculate anti-profile scores for the adenoma and
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cancer samples of that tissue group. This was repeated for Thyroid, Breast, Colon

and Pancreas tissue groups (the Lung tissue group could not be used due to lack

of adenoma samples). The results, presented in Supplementary Figure 3.16 show

higher anti-profile scores in cancers than in adenomas for all tissues.

The anti-profile approach may be used for prognostic prediction

Figure 3.5: Anti-profiles applied to Cox proportioanl hazard models for
survival prediction.
Cox proportional hazard models with significant clinical covariates and anti-profiles
were used to predict patient survival at 5 years for the second breast caner dataset
(Pawitan et al.) with (A)patient death and (B)patient relapse. The plots show
accuracy of prediction calculated for 100 training and testing subsets randomly
selected.

To further examine the prognostic ability of the anti-profile score, we used

the anti-profile scores as a covariate for modeling patient survival for some of the

datasets. We obtained clinical covariates for the microarray datasets when publicly
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available, and fitted each covariate separately to a Cox proportional hazard model

to ascertain their prognostic significance. The Cox proportional hazards model is

a widely used statistical model for assessing censored survival information [67]. It

provides a way for modeling the effect of a particular factor (such as age, severity of

disease, etc) on the time taken by a patient to relapse (from the time of entering the

clinical trial), or the time at which a patient dies. Here we treated the anti-profile

score in the same manner as the other clinical factors.

For the first lung cancer dataset [55], we tested age, sex, smoking status,

pathological stage. After fitting each covariate individually to a Cox proportional

hazards model (assuming constant covariates) with patient relapse information, only

pathological stage provided a p-value < 0.05 from a Wald test. In addition we also

fitted the anti-profile score as a covariate, which also yielded p < 0.05. Using patient

death information instead of relapse, once again both pathological stage and anti-

profile score showed significant association with survival (Wald test p < 0.05).

For the second breast cancer dataset [51], we tested pathological stage and sub-

type (Basal, ERBB2, Luminal A, Luminal B, Normal Like) for prognostic relevance

with relapse, and found that only pathological stage was significant when fitted to a

Cox model (Wald test p < 0.05). The anti-profile scores provided p < 0.05 as well.

Using patient death information instead of survival produced similar results with

pathological stage and anti-profile score both showing prognostic significance when

fitted independently (Wald test p < 0.05).

For the colon cancer dataset with survival information (patient relapse) [47], we

tested age, pathological stage, chemotherapy (treatment or lack of it) and location
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(distal vs. proximal). Pathological stage and chemotherapy status proved to be

significant (Wald test p < 0.05, with pathological stage yielding p < 10−5) when

fitted independently to a Cox model. The anti-profile scores proved to be significant

as well (p < 0.05).

For these datasets, we also tested the predictive ability of a Cox model fitted

with these covariates selected above by predicting whether a given patient would

live upto a given time t (we used t = 5 years). For this we predicted the survival

curve for that patient using a model fitted with a training set and compare the

predicted survival curve to the rate of survival for training group patients that did

not survival at time t against training group patients that did survive upto time t.

The dataset is split randomly into training(70%) and testing(30%) sets and

three Cox models are fitted to the training data: (a) a model with only selected

clinical covariates, (b) a model with only anti-profile scores, and (c) a model with

both clinical covariates and the anti-profile score. For each model, the mean survival

at time t is calculated for training set patients surviving and not-surviving at that

time point. For each patient in the testing set, the predicted survival probability

at time t is compared to the surviving group mean and not-surviving group mean

and the closest group chosen to predict whether the patient will survive or not.

These predictions are compared to actual survival to calculate an accuracy rate

(patients censored by the time t are not used for the calculation). This process is

repeated for a 100 training and testing subsets created from the main dataset, and

the distribution of accuracy values were plotted.

For the second breast cancer dataset [51], a Cox model fitted with pathological
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stage proved to be less accurate than a model fitted with the anti-profile score (Figure

3.5A) for predicting patient death at 5 years. The mean accuracy level for the model

with pathological stage was 0.619, for a model with anti-profile score was 0.726, and

for a model with both covariates it was 0.655. A Wilcoxon test between the results

from the first and third models yielded p < 0.005, showing that the anti-profile

score can significantly increase predictive power of a model. A similar test based on

patient relapse (Figure 3.5B) showed all three model choices performing at a similar

accuracy level, with the anti-profile score based model providing a slightly higher

accuracy rate.

We used a similar experiment on the lung and colon cancer datasets men-

tioned above, but found that adding anti-profile scores to survival models including

significant clinical covariates did not improve their performance significantly (Sup-

plementary Figure 3.17).

GO analysis of the universal anti-profile signature

We carried out a gene ontology (GO) enrichment analysis for the 100 most

hypervariable probesets used in many of our experiments. We used the GOstats

package to conduct a hyper-geometric test for these genes and explored the relevant

GO terms which yielded p < 0.001 from the test (Table 3.2). We observed that a

number of terms related to morphogenesis were present in our results, as well as cell

differentiation. Other terms included extracellular matrix disassembly; this process

of breaking down the extracellular matrix is known to be related to embryonic de-
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velopment and tissue remodeling, and in addition is also known for being associated

with cancer progression.

GOBPID Pvalue OddsRatio ExpCount Count Size Term

1 GO:0018149 0.00 54.07 0.09 4 30 peptide cross-linking

2 GO:0022617 0.00 14.91 0.39 5 125 extracellular matrix disassembly

3 GO:0007492 0.00 19.20 0.24 4 77 endoderm development

4 GO:0090596 0.00 9.13 0.76 6 245 sensory organ morphogenesis

5 GO:0043062 0.00 7.01 1.17 7 376 extracellular structure organization

6 GO:0060235 0.00 134.38 0.02 2 7 lens induction in camera-type eye

7 GO:0048562 0.00 8.00 0.86 6 278 embryonic organ morphogenesis

8 GO:0048593 0.00 13.85 0.33 4 105 camera-type eye morphogenesis

9 GO:0035987 0.00 25.72 0.13 3 43 endodermal cell differentiation

10 GO:0048705 0.00 8.89 0.64 5 205 skeletal system morphogenesis

11 GO:0045596 0.00 5.09 1.85 8 595 negative regulation of cell differentiation

12 GO:0008593 0.00 20.16 0.17 3 54 regulation of Notch signaling pathway

13 GO:0021879 0.00 20.16 0.17 3 54 forebrain neuron differentiation

14 GO:0001503 0.00 6.35 1.08 6 347 ossification

15 GO:0050910 0.00 55.97 0.04 2 14 detection of mechanical stimulus involved

in sensory perception of sound

16 GO:0010629 0.00 3.62 3.70 11 1193 negative regulation of gene expression

17 GO:0048513 0.00 2.82 8.56 18 2761 organ development

Table 3.2: Gene ontology enrichment analysis. Results of a hyper geometric
test performed for association between universal hypervariable genes and GO terms;
terms with p-value < 0.001 from the test have been selected.

Stability of feature selection methods

To ascertian the stability of variance based probeset selection further, we com-

pared feature selection using the t-statistic (as a mean-difference based method) and
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the ratio of variances which we have utilized for the anti-profile approach. We used

the primary lung microarray dataset and created subsets of it, with each subset

containing 50% of high risk samples. For each subset, we computed the t-statistic

between the high risk samples and the normals, and also the ratio of high risk vari-

ance to normal variance. Following this, we noted which 100 probesets provided the

largest mean or variance based statistic. For 10 subsets selected in this way, Figure

3.6 shows the number of probesets that were selected by each method. A similar

analysis with the primary breast cancer dataset is seen in Figure 3.7.

Figure 3.6: Comparison of feature selection methods: Probeset selection using
the t statistic and the ratio of variances between high risk samples and normal
samples from 10 subsets of data for lung microarray data.

Probesets that were selected for only subset do not signify stability in the

feature selection method, and we observed that the t-statistic contained a larger

share of probesets that were selected only once in comparison with the variance

based method. While the t-statistic also showed slightly higher number of probesets

that were selected in all the subsets, when we considered the probestes that were
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Figure 3.7: Comparison of feature selection methods: Probeset selection using
the t statistic and the ratio of variances between high risk samples and normal
samples from 10 subsets of data for breast microarray data.

Figure 3.8: Feature selection with Lung data: Aggregating the number of
probesets selected by (A) the t statistic and (B) variance ratio.

selected 5 or more times in total (Figures 3.8 and 3.9), we obsedved that the variance

based selection was more likely to select the same probesets from multiple subsets.

These results demonstrate that variance based feature selection can be more stable

than mean based feature selections.
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Figure 3.9: Feature selection with Breast data: Aggregating the number of
probesets selected by (A) the t statistic and (B) variance ratio.

Correlation between universal signature probesets

Figure 3.10: Correlation between features: Distribution of pairwise correlations
for 100-probeset blocks of lung microarray data.

To examine the correlation between the probesets of the universal signature,

we ranked the probesets by the hypervariability statistic of the universal signature
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and selected successive 100-probeset blocks. This generated 546 blocks, the very

first block being the universal signature we have utilized for experiments. For each

block, we calculated the pairwise Pearson’s correlation values for the probesets.

Figure 3.10 shows the distribution of these values for the first block and a set of

randomly selected blocks. While the first block has a mean correlation greater

than zero, we observed that various other blocks regardless of their position in the

hypervariability ranking alsow showed higher means. In addition we observed that

the blocks with higher hypervariability (i.e. blocks close to 1), are more likely to

contain some outlier pairs with high levels of correlation.

From the top 100 probeset universal signature we used, we selected the pairs

that show high levels of correlation by selecting the pairs in the 98th percentile and

removing the probeset with lesser hypervariability in those pairs. This reduced the

size of the top 100 signature from 100 to 61 probesets. From this reduced signature

we calculated anti-profile scores for the lung, colon and adrenocortical microarray

datasets used previously. We observed some changes in the results obtained for

the lung data: for the first lung dataset, the AUC calculated from the anti-profile

scores changed from .716 with the 100 probeset signature to .699 with the reduced

signature, while for the second lung dataset the AUC reduced from .558 to .515. For

an adenoma against carcinoma classification from a colon dataset, the AUC changed

only slightly, from .91 to .9. A similar test for adreoncortical dataset showed no

change in the results, where with both signatures the AUC remained at .99.

These observations suggest that for datasets that perform quite well with re-

gard to classification (in particular adenoma against carcinoma classification), the
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highly correlated probesets of the universal signature contains superflous information

which ultimately do not affect the performance of the anti-profile method negatively.

However, these probesets do provide useful information for other classification tasks

that are not easily separable, thus we believe our use of the full 100 probeset signa-

ture is an optimal choice under these considerations.

3.4 Conclusions

Our aim has been to develop a robust and stable approach for classification of

tumor samples. We have demonstrated that the anti-profile scoring method which

was initially applied for classification between tumor and normal samples can be

extended to classification between tumor samples as well. This method has the

particular advantage that tumor samples are only used to select probesets, but

given that, the anti-profile score is based strictly on normal tissue samples. The

ability of the anti-profile score to successfully provide a ranking of tumor samples

which correspond to their risk of relapse (or death), and the robustness of the

method across experimental datasets demonstrate that the universal anti-profile

signature provides a robust basis to develop feature selection methods for tumor

prognosis and diagnosis related microarray experiments. In addition it confirms our

hypothesis behind the extension of the anti-profile approach to tumor prognosis:

that the measurement of deviation from a set of normal samples which are likely

to be more cohesive, is a more stable and robust indicator of the risk level of a

tumor sample as opposed to direct comparisons between the highly variable tumor
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samples.

High-throughput technologies for gene expression measurements, especially

microarrays, have progressed to the point that the use of gene expression data

to develop gene expression based cancer signatures is quite common in cancer re-

search [69]. However, despite a number gene expression profile based signatures

being published and even commercially utilized, in many instances the developed

signature has performed inadequately under subsequent validations. Validations of

such signatures should ideally be carried out on populations completely independent

from the population selected for the derivation of the signature. Only a few gene

signatures produced, such as the Amsterdam 76-gene signature [86], have proven to

be reliable for clinical use.

Heterogeneity among multiple types of tumors have been a well known obser-

vation [37]. While the proliferating ability of tumor cells is a widely used principle

behind many prognostic gene signatures, this is usually measured via a mean-shift

based differential expression measurement. However, Irizarry and Feinberg [19]

demonstrate that increased variance in the genotype may increase fitness via in-

creased variability of the phenotype, regardless of any significant change of the

mean phenotype. This shifts the focus of measuring tumor heterogeneity from a

mean shift to a variance shift.

As part of a comprehensive study of the colon cancer methylome, the degree of

hyper-variability in DNA methylation between the adenoma and the cancer samples

was observed to increase significantly [30]. When projected to a lower dimensional

space using PCA, the normal samples clustered tightly together with the cancer
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samples dispersed, and the adenoma samples demonstrated an intermediate degree

of variability and an intermediate distance to the normal cluster. Based on these

findings, Corrada-Bravo et al [11] introduced anti profiles as a stable method for

screening multiple types of cancer. The principle underlying this model of cancer

screening is that certain genes will consistently show higher across samples variabil-

ity among cancer samples as compared with normal samples. In this study these

genes are identified and the hyper-variability is used to predict outcome, where the

model is referred to as an anti-profile as it measures variation from normal behav-

ior. The same study also demonstrated that the genes corresponding to expression

hyper-variability in cancer are also generally tissue-specific genes, an observation

which is utilized to develop a universal anti-profile. Recent studies have looked at

gene expression variability in the context of geneset and pathway discovery [1] and

unsupervised construction of profiles in prostate cancer based on outlier analysis [23].

The anti-profile methods developed are applications and extensions to the

predictive setting of ideas in existing statistical methods developed to identify and

model outliers in gene expression due to cancer [42,76], and other extensions are in

active development [85]. These ideas have are in increasingly used in the analysis

of epigenetic data [12, 73]. The general idea of using deviation from a stable class

to classify between groups of anomalies is underdeveloped in the Machine Learning

field, but should prove to be fertile ground for the development of general method-

ology [14].

The results presented here confirm that an anomaly classification based ap-

proach to gene expression and methylation based experiments of tumor prognosis
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and diagnosis can be highly valuable. In summary, our work shows by application

to lung cancer, breast cancer, colon cancer and adrenocortical tumor gene expres-

sion datasets, and also to thyroid and colon methylation data, that the anti-profile

approach does in fact produce models that are accurate, robust and stable.
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3.5 Supplementary Information

3.6 Methods and implementation

3.6.1 Microarray dataset analysis

We used the following publicly available microarray datasets and one methyla-

tion datasets: for colon cancer anti-profile analysis of carcinoma vs. adenoma com-

parisons, we used two microarray datasets with GEO access numbers GSE4183 [29](8

normals, 15 adenomas, and 15 carcinomas) and GSE20916 [61](10 normals, 10 ade-

nomas, and 10 carcinomas). Here we used each dataset to generate a colon cancer

anti-profile and used it to analysis the hyper-variability of cancer and adenoma

samples of the other dataset and to calculate anti-profile scores for those samples.

For carcinoma vs. adenoma comparisons with the universal anti-profile probe-

sets, we used an adrenocortical dataset: GSE10927 [25](10 normals, 22 adenomas,

and 33 carcinomas). For this dataset we used the universal anti-profile signature

from [11] and the normals in the dataset to calculate anti-profile scores for the

adenoma and carcinoma samples. We also used Thyroid data from GSE27155 [26]

which is a GPL96 platform microarray dataset for a similar experiment(4 normals,

10 Follicular adenomas, 13 Follicular carcinomas).

Colon tumor data with patient survival information was obtained from GSE39582

[47] for analysis of anti-profiles as tumor prognosis using anti-profiles. For stratify-

ing the samples into low risk and high risk classes we determined whether any given
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sample exhibited relapse(instead we used death of patient for some of the other ex-

periments) within a given time period, in which case it was classified as high risk,

or if no relapse(or death) was observed within the given period it was classified as

low risk. We used a cutoff period of 12 months for the colon dataset and applied

an age cutoff of 55 years. This yielded 112 samples, out of which 23 were high risk

samples and 74 were low risk samples. We used Kaplan-Meier curves generated from

the survival R package to analysis the relationship between anti-profile scores and

survival of patients.

For a similar analysis using the universal anti-profile probesets with lung can-

cer, we used two lung datasets: GSE31210 [55] containing both normals and tumors,

and GSE37745 [9], containing tumor samples. Both datasets contained patient re-

lapse information and we used relapse within 5 years for high risk and low risk

classification. Applying an age cutoff of 65, the first dataset contained 14 normals

and 176 tumor samples (42 high risk and 73 low risk), and the second dataset

contained 102 tumor samples (19 high risk and 14 low risk).

Similarly we used two breast cancer datasets for prognosis analysis: GSE2990

[66] and GSE1456 [58]. Since patient relapse information was not available for a

large number of samples we used death within 5 years to obtain a low risk - high

risk classification. In addition we selected only lymph node negative and ER positive

samples, leaving 43 samples from the first(8 high risk and 23 low risk) dataset and

156 samples from the second(22 high risk and 120 low risk). We used four datasets

with normal breast samples, GSE15852 [57], GSE16873 [17], GSE20437 [27] and

GSE21947 [28] which provided 85 samples in total. We also obtained an additional
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breast cancer dataset, GSE3494 [51] which contained survival information regarding

death of patients. However, almost all the patients were censored within a small

time window(10-12 years), thus we could not obtain any useful categorization of

the samples which assigned a risk level to each patient; as a result we were unable

to obtain any useful analysis from this dataset(the dataset contains 59 samples; a

stratification based on patient death or survival within 8 years provides 48 low risk

samples, but only 6 high risk samples).

In addition we used DNA methylation data obtained by Hansen et al [30].

The experiment was performed using a custom nucleotide-specific bead array on

the Illumina GoldenGate platform to analyze 151 colon cancer-specific differentially

DNA-methylated regions (cDMRs). The data contains DNA methylation levels for

384 probesets and 36 cancer, 29 adenoma and 26 normal thyroid tissue samples, and

the colon data consist of 28 normal samples, 12 adenoma samples, and 10 cancer

samples.

A summary of the datasets used are provided in tables S1 and S2.

3.6.2 Software

We used the R language (version 3.0.2) for our statistical analysis [60]. For

anti-profile probeset selection and score calculation, we used the antiProfiles [11]

package(version 1.2.0) for the R platform. Other R packages used include ROCR(version

1.0.5) [64], survival(version 2.37.7) [74], Biobase(version 2.22.0) [20], minfi(version

1.13.8) [5], and pamr(version 1.54.1) [77].
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Name GEO Tissue Normals Adenomas Cancer Survival

Reference information

Gyorffy et al. GSE4183 Colon 8 15 15 No

Skrzypczak et al. GSE20916 Colon 10 10 10 No

Marisa et al. GSE39582 Colon 0 0 566 Yes

Giordano et al. GSE10927 Adrenocortical 10 22 33 No

Okayama et al. GSE31210 Lung 20 0 226 Yes

Botling et al. GSE37745 Lung 0 0 196 Yes

Sotiriou et al. GSE2990 Breast 0 0 101 Yes

Pawitan et al. GSE1456 Breast 0 0 156 Yes

GSE15852 Breast 43 0 0 No

GSE16873 Breast 12 0 0 No

GSE20437 Breast 12 0 0 No

GSE21947 Breast 18 0 0 No

Table 3.3: A summary of the gene expression microarray datasets used.

3.7 Supplementary figures
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Name GEO Tissue Normals Adenomas Cancer

Reference

Hansen et al. Thyroid 26 29 36

Hansen et al. Colon 28 12 10

Timp et al. GSE53051 Thyroid 12 21 14

Timp et al. GSE53051 Colon 18 10 9

Timp et al. GSE53051 Breast 10 4 10

Timp et al. GSE53051 Pancreas 12 6 23

Timp et al. GSE53051 Lung 12 6 23

Table 3.4: A summary of the DNA methylation datasets used.

Figure 3.11: Colon cancer survival analysis based on patient relapse.
(A)Distribution of variance ratio statistic for high risk and low risk samples from
colon dataset(Marisa et al.; GSE39582) from an anti-profile computed using another
colon data. (B)Distribution of anti-profile scores among low risk and high risk
samples; AUC = 0.684, Wlcoxon rank-sum test p-value = 0.0078.
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Figure 3.12: Lung cancer survival analysis based on relapse.
(A)Distribution of variance ratio statistic for high risk and low risk samples from
first lung dataset(Okayama et al.; GSE31210) for 100 universal anti-profile probests
with the highest hyper-variability.(B)Distribution of variance ratio statistic for high
risk and low risk samples from second lung dataset(Botling et al.; GSE37745) for
100 universal anti-profile probests with the highest hyper-variability.

Figure 3.13: Lung cancer prognosis is related to the anti-profile score.
(A)Anti-profile scores for first dataset(Okayama et al.) high and low risk samples
from universal anti-profile probesets; AUC = 0.716, Wlcoxon rank-sum test p-value
< 10−3. (B)Anti-profile scores for second dataset(Botling et al.) high and low risk
samples; AUC = 0.558, Wlcoxon rank-sum test p-value = 0.58.
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Figure 3.14: GNUSE value comparison.
Distribution of generalized normalized unscaled standard error values for the two
lung cancer datasets, GSE31210 (Okayama et al.), and GSE37745 (Botling et al.).
The second dataset has a higher standard error profile.
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Figure 3.15: Additional lung cancer survival results.
(A)Kaplan-Meier survival curves based on patient death for first lung
dataset(Okayama et al.); samples ranked by anti-profile scores are grouped to three
equal sized groups; Logrank test score 8.342, p-value 0.015. (B)Distribution of same
anti-profile scores for high and low risk classification based on patient death within
5 years; AUC = 0.685, Wlcoxon rank-sum test p-value 0.01.

Figure 3.16: Breast cancer analysis based on patient death.
(A)Distribution of variance ratio statistic for high risk and low risk samples from
first breast dataset(Sotiriou et al.; GSE2990) for 100 universal anti-profile probests
with the highest hyper-variability.(B)Distribution of variance ratio statistic for high
risk and low risk samples from second breast dataset(Pawitan et al.; GSE1456) for
100 universal anti-profile probests with the highest hyper-variability.
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Figure 3.17: Breast cancer prognosis is related to the anti-profile score.
(A)Anti-profile scores for first dataset(Sotiriou et al.) high and low risk samples
from universal anti-profile probesets; AUC = 0.832, Wlcoxon rank-sum test p-value
0.0061. (B)Anti-profile scores for second dataset(Pawitan et al.) high and low risk
samples; AUC = 0.743, Wlcoxon rank-sum test p-value < 10−3.

Figure 3.18: Additional breast cancer survival results.
(A)Kaplan-Meier survival curves based on relapse for second breast cancer
dataset(Pawitan et al.); samples ranked by anti-profile scores are grouped to three
equal sized groups; Logrank test score 10.755, p-value 0.004. (B)Distribution of
same anti-profile scores for high and low risk classification based on relapse within
5 years; AUC = 0.703, Wlcoxon rank-sum test p-value < 10−3.
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Figure 3.19: Additional breast cancer survival results.
(A)Kaplan-Meier survival curves based on patient death for an additional breast
cancer dataset(Miller et al.; GSE3494); samples ranked by anti-profile scores are
grouped to three equal sized groups; Logrank test score 0.696, p-value 0.706.
(B)Anti-profile scores obtained for the third breast cancer dataset for a risk clas-
sification based on patient death or survival within 8 years(48 low risk and 6 high
risk samples); AUC = 0.694, Wlcoxon rank-sum test p-value 0.1257. Our method
of stratifying samples into risk groups was not well applicable for this dataset.

Figure 3.20: Anti-profiles applied to methylation data.
(A)Distribution of anti-profile scores for adenoma and carcinoma for thyroid tumor
samples from methylation data(AUC = 0.784, Wilcoxon rank-sum p value < 10−5);
(B)Distribution of anti-profile scores for adenoma and carcinoma for colon tumor
samples from methylation data(AUC = 0.717, Wilcoxon rank-sum p value = 0.093).
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Figure 3.21: Anti-profiles applied to Illumina HumanMethylation450 data.
Distribution of anti-profile scores for adenoma and carcinoma for (A)Thyroid (AUC
= 0.682, Wilcoxon rank-sum p value = 0.068) (B)Colon (AUC = 0.816, Wilcoxon
rank-sum p value = 0.018) (C)Pancreas (AUC = 0.840, Wilcoxon rank-sum p value
= 0.011) and (D)Breast (AUC = 0.837, Wilcoxon rank-sum p value = 0.058) tissue
samples.

Figure 3.22: Anti-profiles applied to Cox models for survival prediction.
Cox proportional hazard models with significant clinical covariates and anti-profiles
were used to predict patient survival at 5 years for (A)first lung cancer dataset
(Okayama et al.) with patient relapse, (B)first lung cancer dataset with patient
death, and (C)colon cancer dataset (Marisa et al.) with patient relapse. The plots
show accuracy of prediction calculated for 100 training and testing subsets randomly
selected. Model M0 only contains significant clinical covariates, model M1 contains
only the anti-profile score, and model M2 contains both selected clinical covariates
and the anti-profile score.
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Chapter 4: Support Vector Machines

4.1 Introduction

We begin out discussion on support vector machines (SVMs) by introducing

kernel functions. We follow it up with a derivation of the SVM and then present how

SVMs are generally used for anomaly detection by presenting the one class SVM.

4.2 Kernels

For measuring the similarity between normal and anomalous samples, we use

kernel functions. Kernels functions provide an efficient way to compute similarities

between vectors and have a wide range of applications in statistical learning. The

overview of kernel methods presented here is based on the material presented by

Scholkopf and Smola in [62].

If we are given a set of vectors x ∈ X where X ∈ RN , then rather than applying

a learning technique in a two dimensional feature space, we can augment the feature

space by creating artificial features which are the products of various monomials.

For example, for N = 2, we can construct a mapping Φ which transforms the two
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dimensional feature space to a higher dimensional feature space as follows:

Φ : R2 → R3

([x]1, [x]2)→ ([x]21, [x]22, [x]1[x]2)

Figure 4.1 provides an example for a mapping from R1 to R2. While the points

belonging to the two classes(red and blue) on the line cannot be separated by a

single point, when projected to a two dimensional space using the map x→ (x, x2),

they can indeed be separated by a single line.

Figure 4.1: Seperation of classes through projection to a higher dimen-

sionality.

A one-dimensional set of points that cannot be separated(A) can be made separable

by a straight line when mapped to a two-dimensional space(B).

However, for large N , creating all possible feature products and using these in

the learning application can be extremely computationally expensive. This is where

the kernel trick comes to be applied.

For certain cases, dot products in high dimensional spaces can be computed

without explicitly constructing the mapping and then applying multiplication. For
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these functions, if the learning method relies solely on dot products of the sample

vectors, then replacing the dot products with the value of the kernel function would

be equivalent to mapping the vectors to a high dimensional space and applying

vector multiplication, without the additional computing cost.

Given the implicit mapping in the kernel to be Φ, we can write the kernel

function k as:

k(xi, xj) =< Φ(xi),Φ(xj) >

If we consider the mapping given above, we can write the dot product of the mapping

as follows:

< Φ(xi),Φ(xj) >= [xi]
2
1[xj]

2
1 + [xi]

2
2[xj]

2
2 + 2[xi]1[xj]1[xi]2[xj]2 =< xi, xj >

2

Therefore the mapping is performed implicitly by using the kernel function

k(xi, xj) =< xi, xj >
2

For a given symmetric kernel function k : X2 → R, for patterns x1, x2, ..xm ∈

X, we can define a matrix K with elements

[K]ij = k(xi, xj)

which is referred to as the Gram matrix of the functionk for x1, x2, ..xm. If the Gram

matrix has the property

m∑
i

m∑
j

cicj[K]ij ≥ 0 ∀ci, cj ∈ R

then the kernel function is considered to be positive semi-definite. Therefore for a

given function k on X ×X which induces a positive semi-definite Gram matrix for
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all x1, x2, ..xm ∈ X (and for any m ∈ N), the kernel function is said to be positive

semi-definite.

The positive semi-definite property of the Gram matrix implies that all the

eigenvalues of the matrix are non-negative. In addition, this implies that the di-

agonal values of the Gram matrix are non-negative as well - i.e. for any x ∈ X,

k(x, x) ≥ 0. In general usage a given kernel function is assumed to be positive

semi-definite.

For a given kernel function, we can construct an equivalent dot product space

as follows: the implicit mapping Φ can be denoted as a function of the following

form:

Φ : X → RX

x→ k(., x) ∀x ∈ X

Φ(x)(.) = k(., x)

Figure 4.2: Mapping data via kernel functions.

The mapping Φ() transforms a point to a function k(., x) via the associated kernel.

Here Φ(x) can be thought of as a function which, for a given input from X,

measures the similarity of the given input to x (Figure 4.2).
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k Is also referred to as the representer of evaluation:

< k(., x), k(., x′) >= k(x, x′)

Considering these properties, k can be said to be a reproducing kernel [83].

The dot product space constructed in this manner is also referred to as a pre-

Hilbert space. By adding a norm operation to this space, it can be turned into a

reproducing kernel Hilbert space. This can be formally defined as follows [62]:

Let X be a non-empty set and H a Hilbert space of functions f : X → R.

Then H is called a reproducing kernel Hilbert space endowed with the dot product

< ., . > if there exists a function k : X ×X → R with the following properties:

1. k has the reproducing property:

< f, k(x, .) >= f(x) ∀f ∈ H

2. k spans H.

In particular, the reproducing property implies that < k(., x), k(., x′) >= k(x, x′).

4.3 The Support Vector Machine

Support Vector Machines(SVMs) are one of the most widely used classification

tools available today. Here we present an overview of the derivation of the SVM

method for binary classification. In section 3 we present a modification to the SVM

which can be used for anomaly classification.

SVMs provide the advantage that little or no prior knowledge about the par-

ticular problem is required for its effective application. This follows from the theo-
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retical underpinning of SVMs, where the SVM is formulated as a maximum margin

classifier( [81]): if a set of points belonging to two classes in Euclidean space are

given(though SVMs can be used for categorical datasets as well), the goal of the

SVM is to obtain the hyperplane that separates the two classes with the largest pos-

sible margin, irrespective of the underlying statistical properties of the set of points.

If the classes are not linearly separable, then the hyperplane that separates the two

classes to the best possible extent with the minimum amount of misclassification is

selected, in which case we say that the SVM is a soft margin classifier. An outline

of the derivation of the SVM method is presented in the following, based on Hastie,

Tibshirani and Friedman [32]:

Consider a data set consisting of N pairs (x1, y1), (x2, y2), ..., (xN , yN) with

xi ∈ Rp and yi ∈ {−1, 1}. If the given two classes are class A and class B, then for

any data point i, yi = −1 indicates that the point belongs to class A and yi = 1

indicates that the point belongs to class B. Define a hyperplane by f(x) as follows:

f(x) = xTw + b = 0

Here w is a vector of length p with ||w|| = 1, and b is a constant. It can be shown

that for a given point x, |f(x)| is equal to the perpendicular distance from that

point to the hyperplane defined by f(x) = 0. The sign of f(x) indicates which side

of the hyperplane the given point lies in. Therefore, if the two classes are separable,

there should exist a function f(x) such that yif(xi) > 0 for all the points.

Let us consider the simpler scenario in which the two classes are separable. For

a given hyperplane f(x) = 0, let M be the margin between the two classes and the
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hyperplane which separates the two classes. Here the distance from the hyperplane

to each class is defined as the shortest distance from the hyperplane to any point in

that class. Then the calculation of the hyperplane becomes an optimization problem

of the form

minimize
w,b

1

2
||w||2

subject to yi(x
T
i w + b) ≥M, i = 1..N.

Now consider the case in which the two classes are not separable by a hyper-

plane. In this scenario, we have no other recourse but to allow some amount of

error - i.e. we must allow a certain number of points to lie on the incorrect side of

the margin. Thus the optimization problem becomes one of maximizing M while

minimizing the sum total of error generated by each misclassified point. For a given

point xi, let ξi be the error generated. The magnitude of the error is the distance

from the point to the hyperplane, measured positively, with the exception that for

a point that is correctly classified (i.e. the point lies on the correct side of the

hyperplane) the error is zero. Hence for correctly classified points ξi = 0.

Using the former constraint expression, we can proceed as before. To minimize

the error induced, we need to bound the error by adding the minimization of
∑

i ξi

to the optimization problem. If, we before we use M = 1
||w|| then the constraint

becomes

yi(x
T
i w + b) ≥ 1− ξi , ξi ≥ 0 , ∀i

At this point, yi(x
T
i w + b) measures the positive distance from the point to the

hyperplane, and therefore when ξi > 1, a misclassification has occured.
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Then the final optimization problem is as follows:

minimize
w,b

1

2
||w||2 + C

N∑
i=1

ξi

subject to yi(x
T
i w + b) ≥ 1− ξi, ξi ≥ 0 i = 1..N.

Here C ∈ R is a constant that measures how lenient we would like to be with the

amount of error allowed. Large C implies that we would like the minimize the error

to much larger degree while sacrificing the margin size, and vice versa. As C →∞,

the problem approximates the separable scenario.

Now it is possible to form the Lagrangian of the optimization to obtain an

unconstrained problem:

L =
1

2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i w + b)− (1− ξi)]−

N∑
i=1

µiξi

where αi and µi are the Langrange multipliers. Then the optimization is

maximize
w,b,ξi

L

This is referred to as the primal problem.

Commonly, from this point onwards the focus shifts to forming the dual prob-

lem and its optimization. The Wolfe dual can be derived by differentiating the

Langrangian with respect to variables w, b and ξi. This provides the following:

w =
N∑
i=1

αiyixi

N∑
i=1

αiyi = 0

αi = C − µi ∀i
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Applying these, the dual problem can be written as

L′ =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj < xi.xj >

Thus the optimization problem is

maximize
αi

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj < xi.xj >

subject to 0 ≤ αi ≤ C i = 1..N.

N∑
i=1

αiyi = 0

In addition, the Karush-Kuhn-Tucker conditions can be applied to obtain further

constraints the describe the dual problem.

What provides the SVM with its true effectiveness is not simply the ability

to obtain a maximum margin separating hyperplane, but the ability to use kernel

functions with very little additional cost. Since the given data points only appear as

products in the dual problem, we can augment this formulation to obtain a classifier

that functions effectively in a different feature space.

As discussed in the previous section, if the given data is not separable in its

original space, say Rp, then we can project the data to a higher dimensionality Rq

where q > p, such that the two classes might become separable. Consider a mapping

φ(.) which performs this operation: i.e. for xi ∈ Rp, φ(xi) = zi where zi ∈ Rq. Then

If we were to map all the given data using φ, then dual problem would be

L′ =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjφ(xi)φ(xj)

If there is a kernel function k(., .) such that k(x, y) = φ(x)φ(y), then we do not need

to do the computational work to project each data point, nor do we need to perform
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any costly vector operations in high dimensional spaces. Therefore, assuming that k

performs more efficiently than performing the actual vector projection and product

calculation, we can obtain the same effectiveness of performing the classification in

a higher dimension with a much lower cost.

To decide which class a new point (say x̂) belongs to, we need to evaluate

f(x̂). Depending on whether the function value is positive or negative, we can

predict which class it belongs to. Since w =
∑N

i=1 αiyixi, we can write the decision

function g() as

g(x̂) = sign(
N∑
i=1

αiyik(xi, x̂) + b)

where sign(x) = 1 if x >= 0 and −1 otherwise. b Can be calculated by solving

yif(xi) = 1 for any point with 0 < αi < C. The hyperplane is solely defined by the

points for which αi > 0 and these points are called support vectors.

In our experiments we mainly use the Gaussian Radial Basis function, one

of the most commonly used kernel functions:k(x, y) = exp(− ||x−y||
2

2σ2 ), or more com-

monly written as k(x, y) = exp(−γ||x − y||2). Therefore in addition to the C pa-

rameter, the kernel parameter γ also has to be selected. Usually these parameters

are selected via cross validation over a set of data specifically set aside(i.e. not used

for for testing). Cross validation involves dividing the given dataset into a number

of equal sized portions (in the simplest case 2 groups) and leaving out one group

for testing while fitting the SVM to the other remaining groups. Alternatively, a

separate dataset can be kept aside apart from the training and testing set, and the

parameters that best perform on this set can be selected. Both approaches have
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been used in the experiments described here. In both cases, a large number of pre-

selected parameters are used, and the SVM is fitted and tested over all possible

parameter combinations.

It can be shown that a solution to the problem of the following form, where

h ∈ HK

minimize
∑
i

(1− yifi(x)) + λ||h||2HK

can be written in the form of [83]:

f(x) = b+
∑
i

αik(x, xi)

Thus the SVM belongs to a larger class of classifiers which can be generally repre-

sented using reproducing kenrel Hilbert spaces.

4.4 The Single-Class SVM

The single class SVM is a particular formulation of the SVM problem designed

to address anomaly detection. While we provide a modified SVM for anomaly

classification in section 3, here we present the single class SVM for comparison, and

discuss why the single class SVM is difficult to use directly for anomaly classification.

The objective of the single class SVM is to obtain a hyperplane such that

all the given training data provides a positive value from the resulting decision

function [62]. It is assumed that the training data is free of anomalies, and hence

any novel or anomalous instances will be identified by being placed on the opposite

side of the hyperplane.
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The one class SVM formulation is as follows: let x1..xm ∈ RN be the samples

that we are using for fitting the SVM model, m being the number of samples, with

dimensionality N . Let φ be a function mapping the samples from RN to H. Here H

is the dot-product space of φ. Then the dot products lying in H can be computed

via a kernel function k as

k(xi, xj) =< φ(xi), φ(xj) >

To obtain the one class SVM, we formulate a function f which provides positive

value within the region containing the normal samples, and a negative value outside

this region. As with the regular SVM, the strategy is to map the samples from

the input space to the feature space of the kernel and and then separate them

from the origin with a maximum margin. This is possible because in the kernel

space, the mappings for the normal samples should lie close to each other and close

to the margin while the mappings for the outliers would be farther away. For a

new observation x, the value of f(x) is determined by evaluating which side of the

hyperplane it falls on. Due to the mapping through φ, these regions may correspond

to various non-linear estimators in the input space.

To obtain the separation the following quadratic maximization problem has

to be solved [62]:

maximizew∈H,ξ∈Rm,ρ∈R
1

2
||w||2 +

1

νm

m∑
i=1

ξi − ρ

s.t. < w, φ(x) >≥ ρ− ξi, ξi ≥ 0, ∀i

The ξi are non-zero slack variable that are penalized in the objective function.
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Using Lagrange multipliers αi ≥ 0 and βi ≥ 0 we can write the Lagrangian

L =
1

2
||w||2 +

1

νm

m∑
i=1

ξi − ρ−
m∑
i=1

αi(< w, φ(xi) > −ρ+ ξi)−
m∑
i=1

βiξi

By setting derivatives with respect to w, ξ and ρ to zero we obtain the following

dual problem:

minimizeα∈Rm

1

2

m∑
i=1

m∑
j=1

αiαjk(xi, xj)

s.t. 0 ≤ αi ≤
1

νm
,

m∑
i=1

αi = 1

The decision function can now be written as

f(x) = sign

(
m∑
i=1

αik(xi, x)− ρ

)

Thus the single class SVM requires all the points given for defining the bound-

ary. To calculate ρ, use any of the αi values as:

ρ =
∑
j

αik(xj, xi)

In general usage, the single class SVM is used when only one group of labeled

data is available. The other classes, which are usually anomalous classes, are either

completely unavailable or not labeled reliably enough for training a classifier. Khan

and Madden [35], in a survey of the usage of one class learning, classifies them under

three broad categories:

1. Learning with positive examples only

2. Learning with positive examples and some amount of poorly distributed neg-

ative examples
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3. Learning with positive and unlabeled data

Scholkopf et al [62] demonstrate the efficacy of the single class SVM by using it for

classification of handwritten digits. The data is available from the US Postal Services

and contains a set of images with handwritten digits; the goal of classification is to

differentiate between the relatively legible handwriting and the illegible writing.

Manevitz and Yousef [44] formulate a different one class classification method by

designating the outliers as a single class; the classifier is trained to learn the outliers.

However, the results presented seem to indicate that such an approach performs

poorly compared to learning the non-outlier class. Yu et al [88] use an SVM based

method to classify Web pages with positive and unlabeled pages, using an iterative

scheme of SVMs. However, this method is sensitive to the number of normals and

requires large number of samples to learn well. Since availability of labeled negative

data is rare, the usage of single class SVMs for classification of anomalies as presented

here is a relatively novel approach.
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Chapter 5: An Anomaly Support Vector Machine

5.1 Introduction

The task of anomaly, or outlier, detection is to identify data samples that

deviate significantly from a class for which training samples are available. We explore

anomaly classification as an extension to this setting, where the goal is to distinguish

data samples from a number of anomalous and heterogeneous classes based on their

pattern of deviation from a normal stable class. Specifically, presented with samples

from a normal class, along with samples from 2 or more anomalous classes, we want

to train a classifier to distinguish samples from the anomalous classes. Since the

anomalous classes are heterogeneous using deviation from the normal class as the

basis of classification instead of building a classifier for the anomalous classes that

ignores samples from the normal class may lead to classifiers and results that are

more stable and reproducible.

Anomaly classification remains a largely unfocused area of research. Some-

times an ad-hoc approach may be taken resulting in solutions specific to the prob-

lem domain that are not generalized to multiple domains. These approaches usually

consist of either applying a standard classification method, e.g., Support Vector

Machines, to directly distinguish the anomalous classes, or applying an anomaly de-
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tection technique [13]. The former approach does not integrate relevant information

that could be obtained from the normal class while the latter approach makes it diffi-

cult to incorporate differences between the anomalous classes themselves. Attempts

to combine both approaches can result in bootstrapping; while this might provide

good solutions for the problem at hand, it cannot be used as a general approach to

anomaly classification [34].

In this chapter we present an approach that provides an alternative to the

above methods. We first formalize the anomaly classification problem as a general

learning setting. We next characterize it statistically and computationally using a

similarity measurement, and further demonstrate how to use kernel learning meth-

ods for this task. Since kernel functions can be interpreted as pairwise similarity

functions (satisfying certain conditions), they serve as a natural framework to mea-

sure within normal class similarity and anomalous deviation from this class. We also

develop kernel-based classification approaches specifically designed for the anomaly

classification task and show that they produce accurate classifiers with higher sta-

bility than standard classification methods.

The main inspiration behind this approach comes from a widely studied prob-

lem in cancer genomics: the development of microarray-based methods for diagnosis

and prognosis of cancer [37]. Genomic data obtained from tumor samples from pa-

tients with cancer demonstrate that cancer makes genomic markers highly unstable,

which has come to be the main barrier to developing stable method of developing

statistical methods for screening cancer. Apart from a few exceptions, many gene

signatures developed have provided poor results when tested on independently ob-
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tained data, indicating that the signature is not adequately robust to be deployed

in a clinical setting.

However, recent work by Corrada-Bravo et al [11] demonstrate that since this

instability is not present in healthy people, it is possible to take advantage of the

increased gene expression variability in cancer to develop a statistical model which

provides a stable and robust universal predictor of cancer prognosis. Further re-

search based on this principle has shown that deviation from a stable, healthy pop-

ulation can be used as a stable marker of cancer prognosis [cite].

These insights form the principle behind the anomaly classification approach

presented here: that by primarily modeling the solution based on a stable, cohesive

non-anomalous class while incorporating the deviations of the anomaly classes for

differentiation results in a more robust and stable classifier. To demonstrate this, we

present the anomaly SVM (aSVM), a kernel method based on the same principles

as the anti-profile method for classification of tumor prognosis. We compare this

method with other SVM methods, the regular SVM and the one-class SVM (OC-

SVM) which is generally used for anomaly or novelty detection. Applicaiton of

these SVM methods to mutiple datasets including genomic data for cancer prognosis

demonstrate that the anomaly SVM can yield more robust and stable classifiers

for the classification of anomalies. We further use the same kernel method for

performing anomaly regression via the anomaly SVM as well.
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5.2 Anomaly Classification

As a general formulation of the anomaly classification problem, we develop

the case for two anomalous classes as follows: assume we are given training samples

in Rp from three classes: m data points from a normal class Z, and n training

data points < x1, y1 >, ..., < xn, yn > where xi ∈ Rp are the training data vectors

and yi ∈ {−1, 1} are the labels indicating the respective anomalous classes A−

and A+. Furthermore, we assume that samples xi from the anomalous classes are

heterogeneous relative to the normal class Z under some measure of deviation s such

that E[s(zi, zj)] << E[s(xi, xj)] for zi, zj ∈ Z and xi, xj in A−, and similarly for A+.

For the standard binary classification setting, a training set X of xi data

points and the yi class labels are assumed to obtain a set of parameters or weights

w that parameterize a classification function f(x;w) to distinguish classes A− and

A+. Parameters are estimated as the optimal weights w∗ that minimize regularized

loss under some loss function ε that measures generalization performance:

ε(f, w,X) =
1

n

n∑
i=1

ε(f(xi, w), yi)

w∗ = argminwε(f, w,X)

Once the optimal choice of weights have been identified, for a new given data

point x̂ we obtain the value of the decision function for the new point, f(x̂, w∗),

Usually the decision function includes a bias term which can move the cutoff between

the two classes to zero. Then the predicted class label for the new point becomes
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sign(f(x̂, w∗)).

The aim in standard anomaly detection is to determine if data points x̂ do

not belong to some given class Z, in which case we say that the data points x̂ are

anomalous with respect to class Z. In anomaly detection, anomalies are not assumed

to belong to distinct classes, nor are they assumed to be available during training.

Therefore, a function f is learned that can decide whether a given data point belongs

in class Z or not. The standard anomaly detection setting does not apply directly

here since we consider situations where samples are obtained for anomalies from

multiple classes and the class with respect to which they become anomalies. In this

case, optimization should be over ε(f, w,X, Z), where X is the matrix of anomalies

from multiple classes.

Another option is to label samples using yi = {−1, 0, 1} and incorporate the

normal(0) class along with the anomalous classes(−1, 1) in a multi-class classification

problem. However, in the applications we are targeting, anomalous behavior is

defined with respect to the normal class and a standard multi-class classification

method does not incorporate this knowledge. In principle, normal samples (Z)

should be treated as an additional parameter for choosing optimal w:

w∗ = argminwε(f, w,X, Z)

In summary, standard methods for anomaly detection and multi-class clas-

sification are insufficient in the anomaly classification setting: anomaly detection

methods are not capable of modeling distinct classes of anomalies, while standard

classification methods do not incorporate the underlying anomalous and heteroge-
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neous assumptions in this setting. Classifiers suitable for this task should define a

boundary between the two anomalous classes based on measurements of the anoma-

lous behavior of the anomalous samples with respect to the normal samples. In

this thesis we use kernel methods to incorporate similarity measures that capture

anomalous behavior. Kernel functions have the advantage that in addition to be-

ing a measure of similarity, it can be applied to obtain class separators in high

dimensional spaces. Among the many different methods using kernel functions for

learning, here we focus on support vector machines(SVM).

5.3 The anomaly Support Vector Machine

This approach to anomaly detection begins with the formulation of the anomaly

detection problem based on similarity measurements. To incorporate this approach

into binary classification, we modify the binary SVM classifier to derive the anomaly

SVM (aSVM) which we believe would function as a more stable anomaly classifier.

While the regular SVM involves measuring the similarity between the samples, the

aSVM measures these similarities through comparing them to a third group which

we call the normal class. The anomalous behavior of the samples are defined with

respect to this third group of data(i.e. the normal class), and when the normal class

is more cohesive and stable across experiments and across samples, the measurement

of similarity between anomalous samples(i.e. tumors) by measuring their deviation

from the normal class will be stable as well.

A binary classification problem can be seen as a problem of measuring a novel
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point against two existing classes to decide to which class the point shows more

similarity towards. Then, the anomaly detection problem can be stated as a problem

of measuring the dissimilarity of a novel point against a given normal class. We

can then further extend this approach to anomaly classification via scoring the

dissimilarity and deciding the appropriate anomalous class based on the score.

Let k(xi, xj) be a similarity function which compares the two points xi and

xj ∈ Rp . Weighing the similarity of a new observation against each existing obser-

vation, the difference of the sum of weighted similarities for the two groups will be a

cumulative measure of the similarity difference against the two groups, and the sign

of this sum can hence be taken as a class indicator for classification and prediction.

With the added condition that the similarity function be positive definite, the

above formulation becomes analogous to the decision function of an SVM with the

similarity function being the kernel function. The decision function can be written

as

g(x) = sign

(
n∑
i=1

cik(xi, xj) + d

)

where ci ≥ 0 ∀i is the weight associated with each point, and d is a bias term.

For this anomaly detection method, while approaching the learning problem

using a similarity based method will be useful to understand the principles involved,

the main focus will be on kernel functions and kernel based learning techniques.

Here we review SVMs from a function approximation perspective: consider a

set of n observations, each observation being drawn from X × Y , where X ∈ Rp,

and Y ∈ {−1, 1}. Here p is the number of features in each observation, or the
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dimensionality of the feature space. Thus each observation consists of a pair 〈xi, yi〉,

xi ∈ Rp and yi ∈ {−1, 1}, for i = 1..n; here yi indicates which of the two classes

the observation belongs to. If we introduce a new observation x′ which needs to be

classified, then the classification problem amounts to comparing x′ to the existing

set of points and combining the comparisons to make a decision.

Let k(xi, xj) be a positive-definite similarity function. Usually in SVMs func-

tion k is further assumed to have the reproducing property in a Reproducing Kernel

Hilbert Space H associated with k: 〈f, k(x, ·)〉H = f(x) for all f ∈ H, and in par-

ticular 〈k(x, ·), k(y, ·)〉H = k(x, y). In this case, the basis functions in the classifier

correspond to representers k(x, ·). In the standard SVM, the representers of all

training points are potentially used as basis functions in the classifier, but effec-

tively only a small number of representers are used as basis functions, namely the

Support Vectors. However, for a given problem, we may choose a different set of

points for the derivation of the set of basis functions; the basis functions determine

how the similarities are measured for a new point.

The core idea in the anomaly SVM (aSVM) is to make use of this charac-

terization of the Support Vector Machine as a linear expansion of basis functions

defined by representers of training samples. In order to address the heterogeneity

assumption underlying the anomaly classification problem we define basis functions

only using samples from the stable normal class.

Formally, we restrict the set of functions available to define the subspace of

H spanned by the representers of samples z1, . . . , zm from normal class Z: f(x) =

d +
∑m

i=1 cik(zi, x). To estimate coefficients ci in the basis expansion we apply the
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usual regularized risk functional based on hinge loss

Rreg(f) =
1

n

n∑
j=1

(1− yif(xi))+ +
λ

2
‖h‖2H,

where (·)+ = max(0, ·), f(x) is defined as f(x) = d + h(x), and λ > 0 is a

regularization parameter. By the reproducing kernel property, we have in this case

that ‖h‖2H = c′Knc where Kn is the kernel matrix defined on the m normal samples.

The minimizer of the empirical risk functional is given by the solution of a

quadratic optimization problem, similar to the standard SVM, but with two kernel

matrices used: Kn, defined in the previous paragraph, and Ks, which contains the

evaluation of kernel function k between anomalous samples x1, . . . , xn and normal

samples z1, . . . , zm:

min
d,c,ξ

eT ξ + nλ
2
cTKnc (5.1)

s.t. Y (Ksc+ de) + ξ ≥ e, ξ ≥ 0

Here we use slack variables ξ = (ξ1, ξ2, ..., ξn)′, denote the unit vector of size

n as e (i.e. e1×n = [1, 1, ...., 1]T ), and define matrix Y as the diagonal matrix such

that Yii = yi.

The Lagrangian of problem 5.1 is given by

L(c, d, ξ, α, β) = eT ξ +
nλ

2
cTKnc− αT [Y (Ksc+ de) + ξ − e]− βT ξ

where αn×1 = (α1, ..., αn)T and βn×1 = (β1, ..., βs)
T are the Lagrangian multipliers.
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Minimizing with respect to z, c and d, we obtain the Wolfe dual as follows:

∂Lp
∂z

= 0⇒ eT − αT − µT = 0

∂Lp
∂d

= 0⇒ αTY = 0

∂Lp
∂c

= 0⇒ λ

2
2cTKn − αTY KT

s = 0

cT =
1

λ

(
αTY KT

s K
−1
n

)
c =

1

λ

[
(K−1n )T (Y KT

s )Tα
]

c =
1

λ

[
K−1n KT

s Y α
]

Applying these results to Lp, we get

Ld = eTα +
λ

2
.
αTY KT

s K
−1
n

λ
.Kn.

K−1n KsY α

λ
− αTY KT

s

K−1n KsY α

λ

Ld = eTα− αTY KT
s K

−1
n KsY α

2λ

Thus the dual problem is:

max
α

eTα− 1
2nλ

αTY K̃Y α (5.2)

s.t. 0 ≤ α ≤ e, eTY α = 0

where K̃ = KsK
−1
n KT

s . Here we assume K−1n represents a pseudo-inverse in

the case where Kn is not positive definite.

For a standard SVM, the objective of the Wolfe dual is eTα − 1
2nλ

αTY KY α,

with K the kernel matrix the training datapoints. Thus the dual problem of the

aSVM has the same form as the standard SVM dual problem with the exception that

kernel matrix K is replaced by induced kernel matrix K̃ in the aSVM. Kernel matrix
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K̃ essentially represents an indirect kernel between anomalous samples induced by

the set of basis functions determined by the samples from the normal class. Since the

essential form of the SVM solution is unchanged by the modification, this provides

the additional advantage that the modified SVM can be solved by the same tools

that solve a regular SVM, but with a different kernel matrix provided. For our

particular problem domain, we use the indirect kernel to represent deviation from

the profile of normal samples, and thus refer to this classifier as the anti-profile

SVM.

We see above that the aSVM can be solved as a standard SVM with induced

kernel K̃ = KsK
−1
n KT

s . In this section we characterize this indirect kernel, and state

a general result that elucidates how the aSVM can produce classifiers that are more

robust and reproducible that a standard SVM in this setting.

Let the matrix Z contain the normal samples z1, ..., zm. Then for a given

anomalous sample xi we can obtain the projection of xi to the space spanned by Z

by obtaining a vector β that provides the necessary projection via minimizing the

residual sum of squares(RSS).

RSS(β) = (xi − Zβ)T (xi − Zβ)

∂RSS

∂β
= −2ZT (xi − Zβ)

∂RSS
∂β

= 0 gives

ZTxi = ZTZβ̂

β̂ = (ZTZ)−1ZTxi
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Then the required projection is

x̂i = Z(ZTZ)−1ZTxi

If we obtain the projection for another anomalous sample xj, we can calculate the

product

< x̂i, x̂j >=
[
Z(ZTZ)−1ZTxi

]T [
Z(ZTZ)−1ZTxj

]
< x̂i, x̂j >= xTi Z(ZTZ)−1

T
ZTZ(ZTZ)−1ZTxj

< x̂i, x̂j >= xTi Z(ZTZ)−1ZTxj

To transform this using a kernel k, we simply replace xi and zi with the representers

k(., xi) and k(., zi) respectively. Then xTi Z = Kxi,z, Z
Txj = KT

xj ,z
and ZTZ = Kn.

< x̂i, x̂j >= Kxi,zKn
−1KT

xj ,z

This result states that the indirect kernel is the inner product in Reproducing

Kernel Hilbert Space H between the representers of anomalous samples projected

to the space spanned by the representers of normal samples. Given our assumptions

regarding the heterogeneity among anomalies, the space spanned by any subset of

anomalous samples will be smaller after the projection onto the normal samples,

which are less heterogenous. In particular, the smallest sphere enclosing the pro-

jected representers will be smaller, and from results such as the Vapnik-Chapelle

support vector span rule [82], classifiers built from this projection will be more

robust and stable.
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5.4 Results

5.4.1 Classification with cardiotocogram data

We obtained a popular machine learning benchmarking dataset from the UCI

machine learning repository. This is a portugese cohort of 2126 fetal cardiotocograms

(CTGs) that were automatically processed and the respective diagnostic features

measured. The CTGs were also classified by three expert obstetricians and a con-

sensus classification label assigned to each of them. There are 23 features, out of

which two features can be used as target classes: fetal state and fetal heart rate

pattern code. The former takes three possible values: normal, suspect and patho-

logic, which makes it a suitable target for anomaly classification. The latter feature

takes an interget value from 1 to 10, and we use this to demonstrate the utility of

the aSVM for support vector based regression (see ’Regression with cardiotocogram

data’ section below). The remaining 21 features are used for training the SVM.

For classification using the fetal state, we selected the ’normal’ category as

the normal class (n = 1655) and selected the ’suspect’ (n = 295) and ’pathologic’

(n = 176) as the anomaly classes.

We used two support vector based classifiers for comparison with the aSVM:

the regular SVM classifier (used for binary classification) which does not use normal

data, and the one-class SVM, which uses only normal data for training the SVM. The

linear kernel was used for all three SVM methods. With each method we performed

five-fold cross validation over the anomalous data and calculated the area of the
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receiver operating characteristic curve (AUC). This process was repeated five times,

where for each iteration the data was randomly divided into five folds. The AUC

values obtained by each classifier for each iteration and each fold are shown in figure

5.1. While the regular binary SVM classifier provides a higher AUC than the one-

class SVM for almost all of the tests, for a majority of test cases the aSVM provides

an even higher AUC than the regular SVM.

Figure 5.1: SVM classification of cardiotocogram data.
Distribution of AUC values from five randomized five fold cross-validations of the
cardiotocogram data.

5.4.2 Classification with connect-4 data

We also obtained another dataset from the UCI machine learning repository,

the connect-4 game dataset. The samples in this dataset represent states of a game

board with 42 squares, with each position being either blank or being held by one of
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two players, thus making the state of each square a categorical variable with three

possible values. The target value for each board state indicates the winning state

for one of the players: i.e. the targets are ’win’, ’loss’ and ’draw’. Thus we can use

the ’draw’ (n = 6449) state as the normal class and apply the anti-profile method to

perform classification between the ’win’ (n = 44473) and ’loss’ (n = 16635) states.

For testing the svm methods, we randomly sampled training and testing sub-

sets with resampling from both the normals and the anomalous classes. From each

class, we sampled subsets of size 500 and 1000. This process was repeated for a 100

samplings of training and testing subsets. For each sampling, the regular SVM, the

aSVM and the one-class SVM was fitted to the training data and the AUC values

were calculated from the decision values obtained for the testing data. The results,

show in Figure 5.2 indicate that the aSVM performs better than the regular SVM

and the one-class SVM performs much poorly in comparison with the other two

methods. The results hold well irrespective of the number of samples drawn from

each class.

5.4.3 Regression with cardiotocogram data

The fetal cardiotocogram dataset mentioned above also contains a fetal heart

rate attribute, ranked from 1 to 10. This attribute can also be considered an anomaly

indicator, and therefore we select samples with fetal heart rate code 1 as the normal

class (n = 384) while the remaining samples (codes 2 to 10, n = 1742) are selected

as anomalies.
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Figure 5.2: SVM classification of Connect-4 game data.
Distribution of auc values for 100 test cases from the regular SVM, the apSVM,
and the one class SVM. Number of samples randomly selected for a test case are:
(Left)500 from each anommaly class, 500 normals. (Middle)1000 from each anomaly
class, 500 normals. (Right)1000 from each anomaly class, 1000 normals.

Further performed SVM based regression with the regular SVM and the aSVM

with the fetal heart rate code as the target variable. The radial basis kernel was used

for these experiments, and 20% of the anomalous data was used for selecting the

kernel parameter and the cost parameter for each SVM method via cross-validation.

From the remaining anomalous data, 100 training and testing subsets were selected

with resampling, with 60% of the data being used for training and the remaining

40% for testing. Figure 5.3 shows the distribution of the root mean squared error

(RMSE) of the decision values obtained for the testing data from each method. The

aSVM demonstrates better performance than the regular SVM, with the former

producing a lower RMSE for all test cases.

5.4.3.1 Lung cancer survival data

We applied the aSVM to analyze lung cancer survival. Here we tested the

universal anti-profile from [11] with a microarray lung cancer dataset containing
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Figure 5.3: SVM Regression analysis with cardiotocogram data.
Distribution of root mean squared error from SVM based regression performed on
cardiotocogram data.

patient survival information based on patient relapse; the primary dataset containing

both normal and tumor samples [55].

We stratified the samples into high risk and low risk based on patient relapse

within 5 years. We used the 100 most significant genes obtained from the universal

anti profile with a radial basis kernel for the aSVM. The kernel function used by the

aSVM uses the normal samples along with a randomly selected set of high risk and

low risk tumor samples as training data. The training and testing process was run
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100 times and the results were aggregated.

With the different SVM formulations, we ran experiments to compare it with

the results obtained from the anti profile scoring method. For each SVM, we used

the decision values provided for the tumors of the testing set to rank the tumors and

divide them to two equal sized groups, with one group containing the upper half

of the decision values. Using the survival information available, we used a log-rank

test to calculate the survival difference between the two groups based on patient

relapse. The aggregated results are shown in Figure 5.4. The single class SVM

and the aSVM provide higher survival differences than the regular SVM, indicating

that the incorporation of normal samples leads to results that are more relevant

biologically. The highest log-rank statistic is provided by the anti profile scoring

method, indicating that the methodology provided by the anti profile scoring is of

high biological relevancy.

To evaluate the generalization and robustness of the classifiers, we used the

SVM decision values and the true classifications to obtain an AUC(Area Under

ROC Curve) value for all SVMs (Figure 5.4). Given the unbalanced class sizes, and

considering that the sensitivity of the classifier is more important than accuracy, the

AUC provides a better criteria for evaluating the different classifiers. In addition,

the ROC curve is an evaluation of the robustness of the generalization ability of a

classifier as well, and therefore the AUC functions as an evaluation of the robustness

of the SVM as well.
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Figure 5.4: Binary classification between high risk and low risk tumors

using three SVM formulations.

Results for a 100 test cases. (Left) Distribution of logrank scores. (Right) Distribu-

tion of AUC values.

5.4.4 Thyroid methylation data

We applied the aSVM for DNA methylation data obtained by Hansen et al [30].

The experiment was performed using a custom nucleotide-specific bead array on

the Illumina GoldenGate platform to analyze 151 colon cancer-specific differentially

DNA-methylated regions (cDMRs). The data contains DNA methylation levels

for 384 probesets and 36 cancer, 28 adenoma and 15 normal thyroid tissue samples.

Plotting the two primary principal components show the expected dispersion pattern

of the cancers and the adenomas(figure 5.5).

We used F-tests and t-tests to select probesets; for the regular SVM we calcu-

lated t-statistics between cancer and adenoma groups, and for the single class SVM

and aSVM we used F-statistics between normals and tumors to select probesets.

We ran each SVM multiple times, each time dividing the tumors to two groups as
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the training and testing set. Due to the small class sizes, the hyper parameters for

the SVMs were chosen by using a 2-fold cross validation over the training set to

maximize AUC. After training, we tested the predictive ability of the classifier by

calculating the AUC over the testing set.

The aSVM was able to provide a better fit in terms of both accuracy and AUC

in comparison with the regular SVM, and in particular the use of F-tests between

tumors and normals proved to be a better method of probeset selection rather

than the use of t-tests between the adenoma and cancer tumor classes. In addition,

similar to previous experiments, the aSVM used a smaller number of support vectors

in comparison with the regular SVM, indicating that the projection of the tumor

samples onto the space of normals provides a more stable boundary that can be

defined by a smaller number of tumors.

Figure 5.5: Thyroid methylation data classification.

Results obtained from a 100 test cases.
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5.5 Methods

We used the R packages svmpath and kernlab for running experiments. For sin-

gle class SVM experiments, the kernlab packaged was used where the ksvm method

was used for training the SVM with the type parameter set to “one-class” for single

class SVM fititng. For selecting the cost parameter and the gaussian kernel pa-

rameter(sigma), we used a grid search: for a large number of pre-selected cost and

sigma values the single class SVM was trained, while a small sample of randomly

selected normals was set aside without being used for fitting the SVM. For a trained

SVM for a particular combination of parameters, the sum of the decision values

obtained for the normals set aside was calculated, and the parameter combination

that produced the largest sum was selected. For initial comparisons with the anti

profile scoring method, we did not use tumor samples in the process of fitting the

single class SVM. This allowed us to make a full comparison between the results

obtained for all the tumor samples from the single class SVM. In the subsequent

experiments, for comparisons between the single class SVM, regular SVM and the

aSVM, we used a separate, randomly selected set of low and high risk tumors were

used to calculate a cutoff decision value using this fitted SVM - i.e. once the single

class SVM was fitted, the decision values for these tumor samples were obtained,

and the mean decision value for each of the high and low risk groups were calculated,

and the mid point between those two values was used as the cutoff decision value

between the high risk and low risk groups.

For the comparisons between the different SVM formulations, we used different
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methods for probeset selection. While the aSVM used the universal anti profile

probeset, the single class SVM used a t-test between the tumor and normal samples

used for training and tuning, while the regular SVM used a t-test between the two

tumor classes. All methods selected the 100 highest ranked probesets.

The svmpath tool provides a fitting for the entire path of the SVM solution

to a model at little additional computational cost. For the regular SVM and aSVM

experiments, the svmpath packaged was used, with a new kernel function coded for

the aSVM. The training data was divided to two sets, one of which was used for

fitting the SVM and the other used for tuning the cost and kernel parameters. Using

a grid search, the SVM was fitted for a number of parameter combinations, and the

fitted SVM was tested on the tuning set. The parameters that produced the largest

AUC value for the tuning set was selected, and this fitting was subsequently used

on the testing set. In addition, the percentage of the training data which become

the support vectors was obtained as well.

5.6 Conclusion

We have introduced the anomaly SVM as a novel algorithm to address the

anomaly classification problem. We have shown that under the assumption that

the classes we are trying to distinguish with a classifier are heterogeneous with

respect to a third stable class, we can define a Support Vector Machine based on

an indirect kernel using the stable class. We have shown that the dual of the aSVM

optimization problem is equivalent to that of the standard SVM with the addition of
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an indirect kernel that measures similarity of anomalous samples through similarity

to the stable normal class. Furthermore, we have characterized this indirect kernel as

the inner product in a Reproducing Kernel Hilbert Space between representers that

are projected to the subspace spanned by the representers of the normal samples.

This led to the result that the aSVM will learn classifiers that are more robust and

stable than a standard SVM in this learning setting. We have shown by simulation

and application to cancer genomics datasets that the anomaly SVM does in fact

produce classifiers that are more accurate and stable than the standard SVM in this

setting.

While the motivation and examples provided here are based on cancer ge-

nomics we expect that the anomaly classification setting is applicable to other areas.

The characterization of the indirect kernel through projection to the normal

subspace also suggests other possible classifiers suitable to this task. For instance,

by defining a margin based on the projection distance directly. Furthermore, con-

nections to kernel methods for quantile estimation will be interesting to explore.
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Chapter 6: Anomaly Based SVM Regression for Survival Analysis

6.1 Introduction

Clinical trials are an essential aspect of medical research, and therefore the

analysis of the data that is obtained from such data forms an integral part of medical

and healthcare research [48]. A core feature of many clinical trials is the analysis

of disease related characteristics of a patient during a certain time period following

the enrollment in the trial by the patient. In trials studying the effect of a drug

aimed at life-threatening diseases this may involve recording the time period each

patient survives while being treated with a certain drug (or alternatively a placebo).

This is a common feature of oncology research trials, and for diseases such as cancer,

apart from this information trials also typically record whether the patient exhibited

relapse of the disease after surgery and medication.

We refer this type of data as time-to-event data, where the event usually is

taken to be either death of the patient or relapse of the disease after initial treatment.

However, given the multitude of logistical issues that are an inherent part of such

research, it is almost always the case that the recorded data will be partial - i.e. it

can be expected that there will be many instances of incomplete records. It is quite

common for a patient to terminate his or her involvement with the trial at any point
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during its course, and therefore in lieu of a record indicating the death or disease

recurrence of the patient there may simply be a record that the patient is no longer

under observation. Such incomplete data is referred to as censored data, where the

censored information is the the survival or disease status of the patient. It may be

that the patient exhibited recurrence soon after withdrawing from the trial, or it

may be that the patient remained healthy for a significantly long time period after

the withdrawal - any number of such scenarios are possible, but we cannot know

this information. Since the censoring of information has taken place at the end of

our observation period, this is more specifically referred to as right-censored data.

It is obvious that the analysis of such data cannot be performed using the

same methods and techniques that are commonly used to analyze complete (i.e.

non-censored) data. Given the unique challenges presented, the development of

specific methods for analyzing such data has been an important part of Biostatistics

and Computational Biology research. Here we take up one such method, the survival

SVM proposed by Evers and Messow [18], and extend it to employ support vector

machine based anomaly classification methods we have introduced previously. We

demonstrate that by utilizing normal data in addition to patient data, it is possible

to produce more robust predictive tools for the analysis of right censored data.

6.2 Background

Right censored data is typically available in the form of a number of clinical

covariates that characterize the health condition of the patient with regard to the
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disease in question, and in addition there are two variables that indicate the time-to-

event information. Whereas in an uncensored information setting this information

may be indicated with a single real value (e.g. time to death) or a binary indicator

(e.g. diseased or not) with right-censored data this information is indicated with a

non-negative real time variable and a binary event variable. The former indicates

the time taken to observe the event mentioned, and the latter indicates the censored

or uncensored status of said event. For example if the event in question is relapse

of cancer, then event = 1 indicates that the patient relapsed at the time indicated

by the corresponding time variable, and event = 0 indicates that the patient was

no longer under observation after this time.

The simplest method for analyzing such data is to stratify the data in such a

manner that it conforms to the same format as uncensored data, an approach we

have employed in past chapters. This allows the data to be analyzed with any regular

statistical and computational tool available following this transformation. Usually,

a certain cutoff time value is decided upon, and the data is stratified as either high

risk level or low risk level based on the cutoff. Suppose the event considered is an

adverse condition such as recurrence of cancer or death of the patient. If we select

5 years as our cutoff time period, patients that survived beyond 5 years without

exhibiting said event are considered to be in the ’low risk’ category, while patients

that exhibited relapse, or patient that died within 5 years considered to be in the

’high risk’ category. Thus the trial data have now been transformed into a regular

binary classification setting where each patient is simply described as high risk or

low risk. If the event observed is a desirable one, such as a patient returning to fully
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healthy condition or the complete eradication of disease indicators, then in a similar

scenario patients that are fully cured within 5 years would be considered low risk

while patients who are not cured within 5 years would be considered high risk.

It is obvious that there are a number of drawbacks to such a stratification,

which are a result of the significant loss of information involved in such a transfor-

mation. The stratification does not assign one of the risk level labels to all patients.

Patients that were censored within the cutoff time period cannot be assigned either

the low risk label or the high risk label, and therefore have to be removed from fur-

ther consideration in the analysis. In addition, the stratification treats patients that

exhibit different disease characteristics as being similar. For example, considering

relapse of cancer under a 5 year cutoff would mean that a patient that relapsed at

4.9 years and a patient that relapsed at 5.1 years would be considered as being in

different categories, while a patient that relapsed at 5.1 years and a patient that

was censored at 12 years would be considered to be in the same category. If the

cutoff is chosen at a late time period within the timeline of the clinical trial, more

observations can be included in the final labeling from the stratification but would

include a large number of patients in one category, resulting in a highly imbalanced

categorization. Thus the choosing of the cutoff period entails a number of consid-

erations as well. Overall, such a stratification is only reasonable if a large number

of patients that exhibited the event did so within the cutoff while a a large number

of patients that were censored are located after the cutoff. These are unrealistic

assumptions for most clinical trials. It is for these reasons that methods specifically

designed for analyzing right censored data need to to be developed.
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Support vector machines (SVMs) have been introduced in the previous chap-

ters of this dissertation. As a short recapitulation, we note that SVMs are one of

the most common off-the-shelf machine learning tools employed at present. Usually

employed as a binary classifier, SVMs are considered maximum margin classifiers

since they are designed to compute the hyperplane which separates two classes in

the best possible manner. However SVMs present two advantages that are not typ-

ically found in other classifiers: the ability to kernelize, and the ability to produce

a sparse solution to the learning problem. The former allows the projection of the

data to a higher dimensionality before computing the separating hyperplane with no

additional cost via utilizing kernel functions, this producing more efficient classifiers

in comparison with many other learning methods that cannot be kernelized are thus

limited to be used in the feature space of the problem domain. The latter feature is

derived from the fact that usually the separating hyperplane is dependent on a few

data points (which are referred to as the support vectors).

While the most common form of the SVM is aimed at binary classification,

other forms of SVMs have been devised for regression and one-class detection. We

have presented the derivation of these SVMs in previous chapters. As mentioned

previously, SVMs have been used successfully in many domains within Computa-

tional Biology. However, similar to many other off-the-shelf classifiers it cannot be

used to directly analyze right-censored survival information and it is for this reason

that a SVM directly aimed at performing survival regression of such data, the sur-

vival SVM has been developed. In the next section we present the survival SVM and

how to extend it to function as an anomaly based survival regression tool according

115



to the principles discussed in previous chapters.

6.3 Derivation

We briefly re-state the derivation of the binary SVM classifier as follows: con-

sider a data set consisting of N pairs (x1, y1), (x2, y2), ..., (xN , yN) with xi ∈ Rp and

yi ∈ {−1, 1}. If the given two classes are class A and class B, then for any data

point i, yi = −1 indicates that the point belongs to class A and yi = 1 indicates that

the point belongs to class B. Then the primal optimization function for computing

the maximum margin classifier can be written as:

minimize
β,β0

1

2
||β||2 + C

N∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi, ξi ≥ 0 i = 1..N.

Here ξi are the slack variables added to handle non-separability and C is

the penalty imposed to limit the amount of error allowed via the slack variables.

The hyperplane derived from this optimization function can be written as f(x) =

xTβ + β0 = 0.

The dual of this optimization problem is

maximize
αi

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj < xi.xj >

subject to 0 ≤ αi ≤ C i = 1..N.

N∑
i=1

αiyi = 0

It is obvious that this formulation in its current form cannot be used for

censored survival data. In order to derive an SVM for such data, rather than use
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individual data points (i.e. patients), Evers and Messow [18] transform the data to

use pairs of samples between which a survival based relationship can be established.

Following the same principles used in the Cox proportional hazards model, we choose

a patient who exhibits the observed event at a given time t (say patient p1) with

a patient who survives beyond that time (say patient p2) to form a pair. It is now

possible to obtain survival relationship between these two patients: p1 < p2. That

is, patient p1 is at a higher risk level than patient p2.

To form all such pairs possible from a survival dataset, we can choose all

patients who exhibited the event as p1. If the corresponding survival time for p1 is

t1, then for each such patient, all other patients who either exhibited the event or

were censored at a time t > t1 can be chosen for p2. We can alternatively state this

as: let D be the set of all patients who have died (or relapsed). For all i ∈ D, we

can derive a set R+
ti comprising of individuals who are at risk at time of death of

patient i (time ti).

Figure 6.1: Survival regression formulation.
Selection of sample pairs between which a survival based relationship can be estab-
lished.

For every (i, j) pair constructed from J = (i, j) : i ∈ D ∧ j ∈ R+
ti , xi is at
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higher risk and xj (Figure 6.1). If the decision function we aim to obtain from our

SVM is f(x) = xTβ + β0 = 0, we require f(xi) ≥ f(xj) - i.e. xTi β − xTj β ≥ 0.

Therefore for each (i, j) pair we can add a constraint

xTi β − xTj β ≥ 1 ∀(i, j) : i ∈ D ∧ j ∈ R+
ti

for our primal optimization problem. With the addition of slack variables this

becomes:

xTi β − xTj β ≥ 1− ξi,j ξi,j ≥ 0

Then our main optimization problem is:

minimize
β,β0

1

2
||β||2 + C

∑
i∈D

∑
j∈R+

ti

ξi,j

subject to βTxi − βTxj ≥ 1− ξi,j, ξi ≥ 0 i = 1..N, j ∈ R+
ti
.

Similar to the regular SVM derivation (see chapter 3), we can derive the dual

of this problem:

maximize
αi

∑
(i,j)∈J

αij −
1

2

∑
(i,j)∈J

∑
(k,l)∈J

αijαklKij,kl

subject to 0 ≤ αij ≤ C (i, j) ∈ J

Here Kij,kl is the kernel function evaluated between the sample pair (i, j) and

the pair (k, l), and the αij, αkl are the Lagrangian multipliers introduced similar

to the regular SVM formulation. Since Kij,kl is obtained through the product of

(i, j) and (k, l) pairs, we can write the linear kernel expression of Kij,kl as follows:
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Kij,kl = xTi xk − xTi xl − xTj xk + xTj xl. Thus Kij,kl can be computed from the kernel

matrix of the individual sample data, and thus no additional step is necessary for

kernelization.

Since the survival SVM (SSVM) can be computed using any kernel matrix

used for the regular SVM, we can also utilize the anomaly kernel previously derived

for this purpose, where Kij,kl is simply calculated from the gram matrix computer

according to the anomaly kernel. We refer to such a formulation as the anomaly

survival SVM (A-SSVM).

It is also possible to formulate a survival SVM for anomaly regression by includ-

ing normal samples directly in the data. Considering the constraint formulation of

the survival SVM, since forming a pairwise constraint of the form xTi β−xTj β ≥ 1−ξi,j

where a risk level ordering can be established between samples i and j, normal sam-

ples can also be included since it is possible to formulate a risk level ordering between

any normal sample and any non-normal (i.e. censored or un-censored survival data)

sample (Figure 6.2). Since the (i, j) pair consists of a sample i which is of higher risk

than sample j, if we consider a tumor sample i and a normal sample k the relevant

constraint would be as follows:

xTi β − xTk β ≥ 1− ξi,k ξi,k ≥ 0

Here i could either be censored or uncensored. We refer to inclusion of both

normals and anomalies in the survival SVM in this way as the ordinal anomaly SVM

(OA-SSVM).
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Figure 6.2: Survival regression formulation with normals included.
Inclusion of normals in the selection of sample pairs between which a survival based
relationship can be established.

6.4 Results

6.4.1 Application to microarray data

We applied the different survival SVM methods to lung cancer and breast

cancer microarray data utilized previously (identification numbers GSE31210 and

GSE1456 respectively) [55, 58]. The samples were selected from the same curated

datasets that were used in the anti-profile experiments discussed in chapter 3. Along

with the microarray samples, this data also contained survival data: the event

considered was relapse for lung cancer data and patient death for breast cancer

data. In addition we also utilized the universal anti-profile signature used with the

anti-profile experiments; we selected the 100 most hypervariable probesets from the

universal anti-profile signature corresponding to the two microarray platforms from

which the lung and breast cancer data were obtained from (GPL570 and GPL96

respectively). In the following experiments, the feature space for our genomic data

consisted of these probesets unless otherwise mentioned. To assess the performance

of the SVM methods, we utilize the Concordance index (C-index) [6] and the logrank
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test [45], which are standard tools for analyzing survival data.

6.4.2 Selection of samples

Given that the optimization contains a kernel matrix which can become quite

large from the pairwise inclusion of samples, we experimented with multiple methods

of selecting subsets of data that may yield comparatively good performance levels.

To select such data, we arrange our samples in increasing order of survival time t.

We refer to samples with event = 0 as the censored group and samples with event

= 1 as the un-censored group, and select n samples from each. For a given n where

n < N , N being the total number of samples available, we chose samples in the

following ways:

1. Method 1: Select n samples at highest risk (i.e. n un-censored samples with

the lowest survival times) and n samples with lowest risk (i.e. n censored

samples with the highest survival times).

2. Method 2: Select n un-censored samples and n censored samples randomly.

3. Method 3: From un-censored samples, select n
2

samples with the highest

survival times and n
2

samples with the lowest survival times. Select n samples

from the censored group in the same manner.

4. Method 4: Select n samples from each group that are evenly distributed

when ranked along survival times.
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Figure 6.3: Sample selection with lung cancer microarray data.
Effect of selection of samples on the survival SVM performance, Methods 1-4 (left
to right).

We chose lung cancer and breast cancer microarray datasets to examine the

behavior of the survival SVM with respect to sample selection. At this stage of

our analysis we limited our experiments to the regular survival SVM and did not

include normal samples. We generated a set of training and testing subsets from

each dataset with resampling, where the training vs. testing sample distribution

was 75%-25% from the total dataset. For each sample selection method we fitted

a regular survival SVM for increasing n where n ∈ {5, 10, 15, 20, 25, 30, 35}. Figure

6.3 shows the results obtained, where the C-index was measured for the decision

values obtained for the testing data from each fitted SVM. We saw that all sample

selection methods except for method 1 perform increasingly well with n, though

beyond the n = 20 boundary increasing the number of samples selected did not

yield any increase in performance. Random sampling produces a slightly higher

variability in performance with low values of n, which is expected, though with

increasing n the performance behaves similarly to the other methods. Method 1

performs quite efficiently even with low levels of n.
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Figure 6.4: Sample selection with breast cancer microarray data.
Effect of selection of samples on the survival SVM performance, Methods 1-4 (left
to right).

A similar analysis was conducted with the breast cancer data. The results ob-

tained (Figure 6.4) show a similar characterization of performance with respect to

sample selection method and size. The effect of low values of n is more pronounced

in this dataset, as all methods show increasing performance with increasing n. How-

ever, similar to our observations with the lung cancer data, we see that beyond the

n = 20 boundary there is little variation in performance, both in terms of varying

n and varying method. The first method seems to perform most consistently.

These observations suggest that the survival profile we seek from the survival

SVM optimization is largely determined by samples exhibiting the highest and the

lowest risk levels, as these samples are selected from start by Method 1, and we have

observed the most consistent performance from Method 1 with respect to n. This

particularly seems to be the case for the lung cancer data, whereas for the breast

cancer data additional samples are necessary for fully characterizing this survival

regression function. Based on these observations, we limited further analysis to

Method 1 in terms of sampling selection.
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6.4.3 Survival analysis with normals included

In the next stage of our analysis, we compared the performance of the regular

survival SVM (SSVM) with the two anomaly classification survival SVMs we derived

in the previous section. We refer to the survival SVM with the anomaly kernel

included as the anomaly survival SVM (A-SSVM) and we refer to the derivation

of the survival SVM provided in the previous chapter with normal-anomaly pairs

included as the ordinal anomaly survival SVM (OA-SSVM).

We compared the performance of these three SVMs based on the lung cancer

and breast cancer microarray datasets mentioned in the previous section. We applied

the different SVMs to the lung cancer microarray data referred to above. We formed

100 randomly selected subsets of training and testing data with resampling, using a

60% - 40% division of training and testing subsets respectively. A similar experiment

was carried out with the aforementioned breast cancer dataset as well.

Figure 6.5: Cancer microarray data analysis.
Comparison of performance of different survival SVM methods on (Left)Lung and
(Right)Breast gene expression data.

Figure 6.5 shows the mean C-index obtained over the training and testing
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subset pairs curated from the main dataset. From all three SVM formulations we

see that the C-index yields better predictive performance with increasing n for the

breast cancer dataset while for the lung cancer dataset even a small number of

samples is adequate. However, even for the breast cancer data, this behavior is

less pronounced for the anomaly SVM formulations; in particular the OA-SSVM is

able to provide a high level of C-index even with very small n. In addition we see

that both anomaly SVMs provide a higher C-index than the regular survival SVM,

regardless of the choice of n. Between the two anomaly SVMs, we see that the OA-

SSVM in particular performs better than both other SVMs. These characterizations

hold for both lung cancer and breast cancer data, and it demonstrate that the

inclusion of normals can yield more efficient survival regression machines.

Figure 6.6: Comparison of SVM performance with the anti-profile method.
Comparison of performance of different survival SVM methods on (Left)Lung and
(Right)Breast gene expression data with the anti-profile scoring method.

In addition to comparing the regular survival SVM with the anomaly survival
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SVMs we also compared the results obtained with the anti-profile scores calculated

previously for this data. Treating the anti-profile scores in the same manner as we

would the decision values obtained from an SVM, we calculated the C-index for each

training and testing subset pair. A comparison of these results against the SVMs

are shown in Figure 6.6 for the lung cancer data and for the breast cancer data. For

both the lung cancer data and the breast cancer data we selected n = 30 sample

size for all the SVM formulations.

For both datasets, while the SSVM slightly underperforms in comparison with

the anti-profile method, the anomaly SVMs perform better with respect to the C-

index. In the breast cancer data, the A-SSVM has a similar level of performance

in comparison with the anti-profile scores, but for both datasets the OA-SSVM

performs well above the other methods (Lung cancer data: A-SSVM against Anti-

Profiles, rank-sum test p = 0.18, OA-SSVM against Anti-Profiles, p = 0.001; Breast

cancer OA-SSVM against Anti-Profiles, p = 0.05). This further validates our obser-

vations from the one-class SVM in previous chapters. In addition to the C-index we

caluclated the logrank statistic and associated p-value as well. These results can be

seen in Figure 6.7 and Figure 6.8.

6.5 Conclusion

In this chapter we have presented how anomaly classification and regression

can be utilized for analysis of survival data. In particular, we have developed two

anomaly regression SVMs for censored survival regression by extending the survival
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Figure 6.7: Lung cancer microarray data: performance comparison.
Comparison of SVM performance and anti-profile scores using the logrank statistic
for lung cancer data.

Figure 6.8: Breast cancer microarray data: performance comparison.
Comparison of SVM performance and anti-profile scores using the logrank statistic
for breast cancer data.

SVM. We have compared the predictive performance of these SVMs with lung and

breast cancer microarray data.

The results presented here suggest that the two anomaly regression based
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survival SVMs derived in this chapter can be an important tool for analyzing survival

data. Our comparison of the SVM results with the previously analyzed anti-profile

scoring method demonstrate that the anomaly survival SVMs have higher predictive

potential than the anti-profile method.
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Chapter 7: Conclusion

In this dissertation we have provided a comprehensive overview of how anomaly

classificationa and regression can be utilized to address classification and regression

problems arising in gene expression and methylation data, as well as censored sur-

vival data arising from clinical trials.

In the first chapter we carried out a thorough survey of recent advances made

in statistical and computational analysis of gene expression and methylation vari-

ability analysis. We explored the methods used in a number of studies and discussed

the biologically relevant novel results obtained by carrying out expression variability

analysis. In particular we states how stochastic variability observed in gene expres-

sion and methylation data in cancer can be considered a stable characteristics, and

how this has been utilized to develop a statistical cancer screening method from

gene expression data: the anti-profile method.

Next, we extended the anti-profile approach devised from these principles to

cancer prognosis and progression prediction. We demonstrated how the anti-profile

scoring method can efficient classify between stages of tumor progression from gene

expression data. By application of this methodology to data of multiple cancer

types, we showed how the anti-profile method can be used for predicting the risk
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levels associated with cancer prognosis. We similarly demonstrated the applicability

of this technique to methylation data as well.

Following this we demonstrated how more complex machine learning methods

can be adapted to perform anomaly classification and regression by focusing on

support vector machines (SVMs). A novel SVM method was introduced which

utilizes the same principles observed with regard to the anti-profile method. The

application of this SVM method showed that by considering the deviation from a

stable normal class, efficient and stable classifiers and regressors can be built for

classification and regression of relatively more unstable anomaly groups.

In the final section we further advanced these techniques by application to

censored survival data. Since such data is common in studies of statistical analysis

of cancer, we derived two novel SVM methods for modeling survival regression

with kernels as an anomaly regression problem. The utility of these methods were

demonstrated by application to lung and breast cancer gene expression data.

Thus we can summarize the contributions made in this dissertation as follows:

1. Carry out a survey of recent developments in gene expression variability anal-

ysis.

2. Extend the anti-profile method for cancer progression and prognosis prediction

with application to survival data.

3. Derive a novel SVM technique for classification and regression of anomalies.

4. Apply anomaly classification and regression models to derive an SVM for an-

alyzing censored survival data.
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It it our aim that anomaly classification and regression methods become more

widely used in computational biology research. We hope that the ideas and methods

presented here will be of assistance to further this aim.
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