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In this dissertation, we develop generalized hierarchical Bayesian ANOVA, to

assist experimental researchers in the behavioral and social sciences in the analysis of

the effects of experimentally manipulated within- and between-subjects factors. The

method alleviates several limitations of classical ANOVA, still commonly employed

in those fields. An accompanying R package for hierarchical Bayesian ANOVA is

developed. It offers statistical routines and several easy-to-use functions for esti-

mation of hierarchical Bayesian ANOVA models that are tailored to the analysis of

experimental research. Markov chain Monte Carlo (MCMC) simulation is used to

simulate posterior samples of the parameters of each model specified by the user.

The core program of all models is written in R and JAGS (Just Another Gibbs Sam-

pler) which is very similar to the famous software WinBUGS. After preparing the

data in the required format, users simply select an appropriate model, and estimate

it without any advanced coding. The main aim of the R package is to offer freely

accessible resources for hierarchical Bayesian ANOVA analysis, which makes it easy

to use for behavioral researchers. We also develop generalized Bayesian mediation

models for analysis of mediation effects. By using Bayesian analysis, inference is



straightforward and exact, which makes it appealing for experimental studies with

small samples. The Bayesian approach is also conceptually simpler for any model

with a complicated structure, especially for multilevel mediation analysis. Analysis

of several data sets are used to illustrate the proposed methods.
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Chapter 1: Introduction

1.1 Background and Motivation

Because of its computational attractiveness and the ease of interpretation of

its statistical tests and the corresponding tables of means, Analysis of variance

(ANOVA, Fisher, 1921, 1925) is implemented in most statistical packages and con-

tinues to garner tremendous popularity in applied research. As it is about to see

its centennial, especially the behavioral sciences still rely heavily on ANOVA for

the analysis of their data from experiments with human subjects (e.g. Cardinal

and Aitken, 2005). Yet, the standard approach to ANOVA is based on several as-

sumptions that often do not hold for the data typically collected in those fields of

research.

First, ANOVA assumes a continuous homoscedastic i.i.d. Normal distributed

dependent variable. Categorical variables, however, for which ANOVA has long

known not to be appropriate (Cochran, 1940), abound in the behavioral sciences.

These include measurements of perceptions, attitudes and intentions on categor-

ical rating and multiple choice scales, and binary and count measures of human

attention, memory and decision making (Nunnaly, 1967; Thorndike, 1971; Lord and

Novick, 1968). In addition, continuous measures such as response times, which often
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have high skewness or kurtosis, are commonly used as measures of human behav-

ior. The distributional properties of most of these variables violate the assumptions

underlying ANOVA, and extensive research into the effect of these violations has

shown that they may lead to both excess type-I and type-II errors in significance

testing (Ito, 1980; Tan, 1982; Tiku, 1971). Transformations of the data, such as

the log and square-root (for counts), logit and arcsine (for proportions), rank (for

ordered categorical variables), and Box-Cox transformations (for various measures)

have been used as a way to render the empirical distribution closer to the Normal

(Bartlett, 1947; Box and Cox, 1964; Draper and Hunter, 1969; Conover and Iman,

1976). These transformations, however, often do not provide a satisfactory solu-

tion, because they may cause the ANOVA tables of means to lose some of their

appealing interpretations, while significance levels of the transformed and original

data do not necessarily correspond. Modern statistical solutions are available in the

form of Generalized Linear Models (McCullagh and Nelder, 1989). The application

of GLMs capitalizes on the fact that ANOVA is a special case of linear regression

models, and GLMs extend those to a wide variety of distributions of the dependent

variable in the exponential family. However, for applied researchers a downside of

the use of GLM to analyze designed experiments that involve multiple factors and

interactions that need to be represented in the model through dummy variables,

is that the interpretation of estimates of coefficients of these dummy variables is

not as easy as interpreting the output of ANOVA, and indeed, may often be quite

cumbersome.

Second, in the behavioral sciences experiments often employ a combination of
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between- and within-subjects factors, leading to nested and repeated measurement

designs for which established (split-plot and repeated measures) ANOVA procedures

are available in most statistical packages. These mixed ANOVA models may have

both fixed and random effects (Hartley and Rao, 1967; Scheffé, 1957), but assume

a balanced design, a continuous dependent variable and categorical independent

variables. Unbalanced designs, unequally spaced measurements, and continuous

covariates such as encountered in ANCOVA, violate these assumptions. As a conse-

quence, in certain fields of behavioral science some experimental behavioral science

researchers have resorted to hierarchical linear models (Breslow and Clayton, 1993;

Longford, 1987; Raudenbusch, 1988; Raudenbush, 1999), in particular for the anal-

ysis of quasi experiments. These models, which take on a variety of forms and go

under different names in the literature, are special cases of hierarchical Bayes models

(Lindley and Smith, 1972; Press, 2003; Gelman et al., 2013). They allow for more

general covariance structures and data hierarchies than repeated measures ANOVA.

Gelman (2005) argued the importance of hierarchical Bayes formulations of ANOVA,

and showed how the principles of ANOVA are helpful in understanding hierarchical

linear models. In addition, hierarchical Bayes models can accommodate non-Normal

dependent variables that render the application of classical ANOVA and hierarchical

linear models problematic. The Bayesian approach in addition offers a number of

theoretical and pragmatic advantages as a framework for inference and testing that

have been widely acknowledged (Bernardo and Smith, 2000; Press, 2003; Savage,

1954). Indeed, in behavioral research several advantages of Bayesian inference are

increasingly recognized, in that it provides inferences based on finite samples, avoids
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pitfalls of classical hypothesis testing, and may not only reject but also support hy-

potheses (Kruschke, 2013; Rouder et al., 2009). Hierarchical Bayes models can now

be relatively easily be implemented using existing statistical software, such as BUGS

and JAGS (Lunn et al., 2000).

Nevertheless, applied experimental researchers in the behavioral sciences con-

tinue to resort to standard ANOVA in many cases in spite of these limitations

and in spite of the availability of these modern superior alternatives, because of its

ease of application and interpretation, widespread availability in standard statistical

packages, lack of familiarity with better alternatives, and/or the effort involved in

programming alternative methods or interpreting their output. The present disser-

tation attempts to help remedy this undesirable state of affairs by developing an R

package for hierarchical Bayes ANOVA that addresses the most salient limitations

of classical ANOVA, yet is easy to use and retains many of the familiar features

of the outputs of classical ANOVA. It deals with a wide range of distributions for

the dependent variable, with hierarchical data structures and between- and within-

subjects design factors, as well as continuous covariates.

One important application of hierarchical Bayes ANOVA is statistical me-

diation analysis in the social and behavioral sciences. The traditional statistical

mediation analysis consists of three linear regression models proposed by Baron and

Kenny (1986) which are introduced in Chapter 3 in detail. Thus, it inherits strong

assumptions of the linear regression such as the Normal distribution of the continu-

ous response and no heterogeneity among different populations. However, the same

situation is that researchers in mediation analysis continue to use the traditional re-
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gression models even though their data might violate the assumptions, for example,

a discrete response variable or a hierarchical data structure. In this dissertation,

we attempt to overcome these limitations by introducing single-level and multilevel

Bayesian mediation models in which the hierarchical Bayes ANOVA is a special

case. All these models we developed are based on Bayesian inference and simulated

by MCMC (Markov Chain Monte Carlo) methods which will be first reviewed in

following sections.

1.2 Brief Review of Bayesian Statistical Methods

1.2.1 Bayes’ Theorem

During the past decades, Bayesian inference has drawn great attention in the

social and behavioral sciences (Rossi et al., 2006). The Bayesian method which

was first introduced in scientific research has been widely accepted and applied to

problems in behavioral sciences because of the continuing development of more pow-

erful computational methods. Besides, more and more available experimental data

provides researchers and practitioners ample opportunities for Bayesian modeling.

The basic inference behind all Bayesian methods is intuitive: Bayes’ The-

orem. That is, after obtaining current data, knowledge on unknown parameters

are updated according to newly obtained data. Unlike the frequentists’ view, the

philosophy behind Bayesian inference is that, the incorporated prior knowledge of

unknown parameters also plays a very important role in estimations. In the Bayesian

framework, the prior knowledge of an unknown parameter θ is represented by a prior
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probability distribution, denoted by p(θ). The prior information is incorporated to

update the unknown parameter θ through Bayes theorem:

p(θ|data) =
p(θ, data)

p(data)
=
p(θ)p(data|θ)
p(data)

, (1.1)

where p(θ) denotes the prior distribution of the unknown parameter, p(data|θ) de-

notes the likelihood of the data given the parameter. p(data) is the prior or marginal

probability of data and considered as a normalizing factor. By using Bayes’ Theo-

rem, we obtain the probability distribution of the unknown parameter θ given the

data, p(θ|data), which is called the posterior distribution. Since p(data) is just a

normalizing factor, the above equation can also be written as follows,

p(θ|data) ∝ p(θ)p(data|θ) (1.2)

or using the following notation,

Posterior ∝ Prior× Likelihood (1.3)

Thus, the posterior distribution is proportional to the product of the likelihood and

the prior distribution up to a constant.

1.2.2 Bayes Estimates and Markov Chain Monte Carlo (MCMC)

As we can see from Bayes’ Theorem, all information about a parameter given

the data is contained in the posterior distribution. Thus the estimation result of

the parameter should not just be a point estimate but the whole distribution which

contains all necessary estimates of the parameters of the distribution, for example,

the mean and also the variance of a normal distribution. The most convenient and
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informative way to represent this information is to plot the posterior distribution

of the parameter, which provides a direct visual sense of the estimations. Based on

the estimated posterior distribution, we can also derive some statistics of interest,

such as the posterior mean and variance,

θ̂ = E(θ|data) =

∫
θp(θ|data)dθ, (1.4)

and,

V ar(θ|data) =

∫
(θ − θ̂)2p(θ|data)dθ. (1.5)

The other important information which can also be obtained from the posterior

distribution is the credible interval (CI). The (1 − α)% credible interval is defined

as [qα/2, q1−α/2], where qα/2 denotes the α/2 quantile of the posterior distribution. A

95% credible interval is [q0.025, q0.975], for instance.

However, if the integrals in Equations (1.4) and (1.5) don’t have closed forms,

it is not straightforward to obtain the posterior distribution. In this case, simulation

methods such as the Markov Chain Monte Carlo (MCMC) have been developed to

solve this problem. The basic idea of MCMC is to construct a Markov chain whose

limit distribution is exactly the posterior distribution that we are interested in.

Two popular MCMC methods are the Gibbs sampler and the Metropolis-Hastings

sampler:

The Metropolis-Hastings (M-H) algorithm produces a Markov chain, {θ(0), θ(1),

θ(2), ...}, of the parameter of interest θ, whose limiting equilibrium distribution is

the kernel of the posterior distribution of interest, π(θ). The algorithm is as follows:

1. Initial value: θ(0)
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2. Proposed move: θ∗ ∼ q(θ∗|θ(i−1))

3. Acceptance scheme:

θ(i) =


θ∗, with prob. α.

θ(i−1), with prob. 1− α.

(1.6)

where

α = min

{
1,

π(θ∗)

π(θ(i−1))

q(θ(i−1)|θ∗)
q(θ∗|θ(i−1))

}
. (1.7)

Different proposal functions q(θ∗|θ(i−1)) produce different Markov chains but

the same limiting distribution. Two typical proposal functions are the independence

function q(θ∗|θ(i−1)) = q(θ∗) and the random walk function q(θ∗|θ(i−1)) = q(|θ∗ −

θ(i−1)|).

The Gibbs sampler is a special case of the Metropolis-Hastings. In step 2 of the

M-H algorithm, if we let the proposal function be π(θ∗|θ(i−1)), then the acceptance

ratio in the above equation would be

α = min

{
1,

π(θ∗)

π(θ(i−1))

π(θ(i−1)|θ∗)
π(θ∗|θ(i−1))

}
= min

{
1,
π(θ∗, θ(i−1))

π(θ(i−1), θ∗)

}
= 1. (1.8)

Thus, if the conditional distributions of all components are standard, we can

easily apply the Gibbs sampler instead of M-H sampling. The general steps of the

Gibbs sampler are: given θ(t) = (θ
(t)
1 , ..., θ

(t)
p ), generate

1. θ
(t+1)
1 ∼ π1(θ1|θ(t)2 , ..., θ

(t)
p )

2. θ
(t+1)
2 ∼ π2(θ2|θ(t+1)

1 , θ
(t)
3 ..., θ

(t)
p )

...

p. θ
(t+1)
p ∼ πp(θp|θ(t+1)

1 , ..., θ
(t+1)
p−1 )
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where θ
(t)
i , i = 1, ..., p, are the parameters of interest at each iteration t. The πi, i =

1, ..., p, are conditional posterior distributions of parameters θi, i = 1, ..., p, given

remaining parameters. From the above steps, we can see that, at each iteration, the

Gibbs sampler samples one parameter conditioning on other updated parameters

sequentially until all distribution converge.

There are a lot of comprehensive reviews of MCMC simulation method (such

as Robert and Casella (2004)). Thus we do not include every detail here. The

MCMC sampling method is now widely used and considered as the solution for

Bayesian computation.

1.3 Overview

In our work presented in the following chapters, we first (in Chapter 2) intro-

duce a new R package called BANOVA developed by Dong and Wedel (2014b) which

combines hierarchical Bayesian linear regression and analysis of variance (ANOVA)

techniques. Several data sets (Etkin and Ratner (2012), Ferraro et al. (2013), Wedel

and Pieters (2014)) are used as examples to illustrate the applications of the models

we developed.

The hierarchical Bayesian ANOVA models in the R package deal with a wide

range of distributions for the dependent variable (including Normal, Student’s t,

Poisson, Bernoulli, Binomial, ordered and unordered Multinomial distributions),

with hierarchical data structures and between- and within- subjects design factors,

as well as continuous covariates. The combination of generalized linear models in
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subject-level (within subjects), ANOVA models in population-level (between sub-

jects), and Bayesian sampling methods can help to analyze any kind of multilevel

data and obtain the effects of all parameters in a very straightforward way.

In Chapter 3, we introduce new Bayesian models for mediation analysis (Dong

and Wedel, 2014a). By using Bayesian sampling methods, the models don’t require

sophisticated and strict assumptions to test the indirect effect, since its posterior

distribution can be directly obtained. We illustrate the applications of our Bayesian

mediation models using both single-level and multilevel data sets, for which similar

or even better statistical results are obtained.

Finally, we discuss potential extensions of our models and future research work

to be done in Chapter 4.
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Chapter 2: BANOVA: An R Package for Hierarchical Bayesian ANOVA

2.1 Introduction

In this chapter, we introduce an R package for hierarchical Bayes ANOVA

which combines both hierarchical Bayes and ANOVA naturally. The key insight

behind the approach is that ANOVA and ANOCOVA are special cases of linear

regression and that once an ANOVA model is formulated as a hierarchical linear

model, subject-level parameters become incidental and inference focuses entirely on

the population-level model, which is where main effects and interactions of within-

and between-subjects factors are represented and tested. Assuming that lower level

parameters describing subject heterogeneity follow Normal distributions, it follows

that significance tests of main effects and interactions, variance decompositions and

tables of means can be computed in a similar way as they would be in standard

ANOVA. This then allows for the analysis of dependent variables with a wide vari-

ety of distributional forms with hierarchical models, but at the same time retaining

much of the appealing output from standard ANOVA for experimental data. The

underlying estimation methods are Markov Chain Monte Carlo algorithms imple-

mented in the JAGS software. The user of the package needs to input the data and

set up a few parameters. The package then sets up a JAGS program and analyses
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the data with a hierarchical Bayes ANOVA, using MCMC estimation. JAGS was

chosen as an interface, because after calling the R package in addition to the estima-

tion results, the JAGS code will be available for inspection and modification by the

behavioral researcher. Importantly, although the underlying models are Hierarchical

Bayes models, the output of these models is presented in a form that is very familiar

to users of standard ANOVA, including (Bayesian) p-values and effect sizes, and

tables of means with confidence intervals.

The remainder of this chapter is organized as follows. In Section 2, we discuss

the hierarchical Bayesian approach to ANOVA. In Section 3, the architecture and

tutorial of the R package is discussed. Bayesian estimation of parameters and other

quantities of interest are introduced as well. We include examples in Section 4. The

last section gives the conclusion.

2.2 Bayesian ANOVA Models

We assume data are collected in an experiment in which a sample of subjects

have participated, and have been subjected to between-subject as well as within-

subject experimental manipulations. Repeated measurements of one or more depen-

dent variables are taken on each subject, while continuous or categorical covariates

may have been measured. The hierarchical Bayesian approach to ANOVA then

consists of two sub-models: level-1 –the subject level, and level-2 –the population

level. The subject-level model represents the effects of within-subject factors and co-

variates, and the population-level model represents the influence of between-subject
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level factors. The population-level model expresses the ANOVA of interest.

In the subject-level model, each outcome of the dependent variable, yi, with i

indexing data points, is assumed to be generated from a particular distribution in the

exponential family, f(yi|µi) (and even other distributions can be accommodated).

The mean, µi, of the distribution depends on the independent variables through a

suitable link function g(·) (McCullagh and Nelder, 1989). The within-subject factors

and their interactions are indexed by p (p = 1, 2, ..., P ). Each index p represents a

batch of Jp coefficients: βpj,s, j = 1, ..., Jp; s = 1, ..., S indexes subjects. Note that

if a subject-level covariate is continuous, Jp = 1, so that ANCOVA models are also

accommodated (but the formulation here relaxes their “constant slope”assumption).

The subject-level model is expressed as a generalized linear regression model, with

a design matrix X that contains all within-subject factors and their interactions, as

well as a constant term (p = 0):

E(yi) = g−1(ηi), (2.1)

ηi =
P∑
p=0

Jp∑
j=1

Xp
i,jβ

p
j,si
, (2.2)

where si is the subject index of data point i.

The population-level model allows for unobserved heterogeneity among sub-

jects, because the subject-level coefficients βpj,s are assumed to follow a multivariate

normal distribution. The between-subject factors and their interactions are indexed

by q(q = 1, 2, ..., Q); q = 0 denotes the constant term. Then, using the notation in
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Gelman (2005), the population-level ANOVA can be written as:

βpj,s =

Q∑
q=0

θp,q
j,kqs

+ δpj,s. (2.3)

Each q represents a batch of Kq coefficients: θp,qj,k , k = 1, ..., Kq; K
q
s indexes coefficient

k in batch q corresponding to the treatment of subject s. For example, in the simple

case of one 3-level within-subject factor D (P = 2, J1 = 1 and J2 = 3) and two 2-level

between-subject factors A and B, and the AB-interaction, Q = 3, equation (2.2)

and equation (2.3) reduce to (with the parameter of the last level of each factor set

to zero):

ηi = β0
1,s +

2∑
j=1

XD
i,jβ

D
j,si
, (2.4a)

β0
1,s = θ01 + θA1,kAs + θB1,kBs + θAB1,kABs

, (2.4b)

βD1,s = θD0
1 + θDA1,kAs

+ θDB1,kBs
+ θDAB

1,kABs
, (2.4c)

βD2,s = θD0
2 + θDA2,kAs

+ θDB2,kBs
+ θDAB

2,kABs
. (2.4d)

Here, equation (2.4b) contains the overall intercept (θ01) and the main effects of

the between-subject factors A (θA1,kAs ) and B (θB1,kBs ) and their interaction (θAB1,kABs
).

Equation (2.4c) contains the main effect of the (first level) of the within-subject

factor D (θD0
1 ), and its two- and three-way interactions with the between-subject

factors and B. Similarly, equation (2.4d) contains the main effect of the second level

of D, and its interactions with A and B.

The population-level ANCOVA model can be expressed as a linear model with

a design matrix Z that contains all between-subject factors and their interactions
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(and a constant term):

βpj,s =
K∑
k=1

Zs,kθ
p
j,k + δpj,s, (2.5)

where Zs,k is an element of Z, a S × K matrix of covariates, K is the number of

parameters. θpj,k is a hyper-parameter which captures the effects of between-subject

factor on the parameter βpj,s of within-subject factor p. The error δpj,s is assumed to

be normal: δpj,s ∼ N(0, σ−2p ). Proper, but diffuse priors are assumed: θpj,k ∼ N(0, s),

and σp ∼ Gamma(a, b), where s, a, b are hyper-parameters.

The Hierarchical Bayes ANOVA model is estimated capitalizing on the fact

that it is a special case of hierarchical generalized linear models, that is, using

equations (2.1), (2.2) and (2.5). We use effects coding of the factors in the matrices

X and Z (Overall et al., 1975). It is important to note that equation (2.3) is

the equation that is of key interest for inference. It contains the parameters that

specify the population-level ANOVA model. It is as if the subject-level coefficients

βpj,s are the (Normally distributed) “dependent variables” in an ANOVA, specified

by the between-subject factors in equation (2.3). Thus, inference focuses on the

parameters in equation (2.3). We first specify the specific outcome variables that

are accommodated in the R package below.

Continuous responses: To model continuous data, a normal distribution

can be assumed for yi:

yi = ηi + εi; εi ∼ N(0, σ−2), (2.6)

where ηi is defined in equation (2.2), and the scale parameter σ, σ ∼ Gamma(α, β).

To describe data with“outliers”or fatter tails than the normal, the distribution
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of εi is assumed to follow a t- distribution, with an unknown number of degrees of

freedom, assumed to follow a Poisson distribution:

εi ∼ t(0, φ−2, ν), φ ∼ Gamma(α, β), ν ∼ Poisson(λ), (2.7)

where α, β, λ are hyper-parameters.

Binary responses: To model data yi that take on the values 0 and 1, a

Bernoulli distribution is assumed,

yi ∼ Binomial(1, pi), pi = logit−1(ηi), (2.8)

where logit(x) = log[x/(1− x)] is the standard logit link-function.

If the data yi represent the number of successes in a sequence of B independent

Bernoulli experiments, then

yi ∼ Binomial(B, pi), pi = logit−1(ηi), (2.9)

Count responses: To model count data yi that can take on values in 0, 1, 2, ...,

the Poisson distribution is assumed:

yi ∼ Poisson(λi); λi = exp(ηi). (2.10)

Ordered categorical responses: To model data yi that are ordered cate-

gorical and can take on the values 1, ...,M, an ordered logistic model is used,

Pr(yi > m) = logit−1(ηi − cm−1);m = 1, ...,M − 1. (2.11)

The cut-point parameters ck are constrained: 0 = c1 < c2 < · · · < cK−1. We assume

c1 = 0, and the other cut-points are the order statistics of ĉ2, ĉ3, ..., ĉK−1 where each

follows a uniform distribution cm ∼ Uniform(0, 10).
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Multinomial responses: To model data yi that are categorical and can take

on the values 1, ..., K, a multinomial logistic model (MNL) is used,

Pr(yi = k) =
exp(ηi,k)∑K
k=1 exp(ηi,k)

(2.12)

where ηi,k =
∑P

p=0

∑Jp
j=1X

k,p
i,j β

p
j,si
, and Xk,p

i,j is the design matrix corresponding to

each response category k(k = 1, ..., K) of yi.

2.3 BANOVA R Package

2.3.1 Obtaining the Software

The BANOVA package is an add-on package to the statistical software R. It

is free and can be downloaded from the Comprehensive R Archive Network (CRAN,

http:// CRAN.R-project.org/). In addition, a web application based on this package

is also developed and introduced in Appendix C. The base of BANOVA package is

implemented in R and JAGS. Thus, an additional system requirement is the JAGS

software, which can be freely downloaded from(http://mcmc-jags.sourceforge.net).

The package also imports two other packages, runjags (Denwood, 2013) and coda

(Plummer et al., 2006) in order to connect R and JAGS and to perform convergence

diagnostics. Note that, the above two imported packages do not necessarily need

to be installed before installing BANOVA. They are automatically attached to the

package and loaded when the package BANOVA is loaded. However, the JAGS

software must be installed in order to estimate any of the models introduced above.

The package will automatically detect the location of JAGS software and connect it
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via runjags. Once R and JAGS have been installed, BANOVA can be loaded using

the following command,

R> library('BANOVA')

2.3.2 Functionality

BANOVA can fit the Bayesian hierarchical ANOVA models introduced in the

previous section. As explained there, the response data follows a wide variety of dis-

tributions including Normal, Student’s t, Poisson, binomial, ordered and unordered

Multinomial distributions. Each of the corresponding models can be fitted by a

specific function in the package. The names of these functions have the form of

'BANOVA.Bin', where the first part specifies the general name and the second part

after the ‘.’ specifies the form of the likelihood. Currently, there are seven models

included in the package.

1. BANOVA.Bern()—the model in which the response variable follows a Bernoulli

distribution (equation 2.8).

2. BANOVA.Bin()—the model in which the response variable follows a binomial

distribution (equation 2.9).

3. BANOVA.Multinomial()—the model in which the response variable follows

an unordered multinomial distribution (equation 2.12).

4. BANOVA.Normal()—the model in which the response variable follows a

normal distribution (equation 2.6).

5. BANOVA.ordMultinomial()—the model in which the response variable fol-
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lows an ordered categorical distribution (equation 2.11).

6. BANOVA.Poisson()—the model in which the response variable is considered

a count variable which follows a Poisson distribution (equation 2.10).

7. BANOVA.T()—the model in which the response variable follows a t distribu-

tion (equation 2.7).

The predictor for each Bayesian ANOVA model is specified as a regular R

object, which is similar to the lm() and glm() objects in R. This means that the

summary(), print() and predict() functions can be applied to the object in ques-

tion after fitting the model. In addition to the common R object functions, the

package also includes several useful functions such as conv.diag(), table.means(),

table.pvalues() and so on. Their use is illustrated in following sections. A com-

plete manual of the package is included in Appendix B.

2.3.3 Data Input

When the data is in ‘.csv’ or other formats, it can be loaded with the R function

read.csv() or other import functions. The package expects the data imported to

be in a long format where each row corresponds to one trail, replication, or time

point per subject. Thus, each subject will have data in multiple rows. Subject

ID values must be included in the data (see Figure 2.1), and the other columns

in the data set contain the dependent variable(s), the covariates, and the between-

and within-subject experimental factors. The between-subject variables, which are

constant within each subject, will have the same value in all rows containing the
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data for one subject. The attribute of each of the factors must be specified as one of

the following three classes: “integer”, “numeric” or “factor”. The function class()

in R can be used to check the classes of factors. For example,

R> class(x) # will display 'integer' number of classes in variable x

R> x <- as.factor(x) # class of x is changed to 'factor'

Figure 2.1: Example of the format of input data

For the multinomial response model (equation 2.12), the data format is some-

what more complex. The within- subject data for each subject must be stored in

one item of a ’list’ in R. For example, if there are 100 subjects, then the list must

contain 100 items where each item includes multiple rows that denote the values of
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the within-subject variables. The between-subject data is stored in a separate data

frame where each row corresponds to one subject. The order of the between-subject

data must match the order of within-subjects data. For example, although the

‘choicedata’ of BANOVA package is already in a long format, both within-subject

and between-subject data needs to be further manipulated. The following R code

can be used for that purpose:

R> data(choicedata)

R> #generate within-subject data(convert the within-subjects variables to a list)

R> dataX <- list()

R> for (i in 1:nrow(choicedata)){

R> logP <- as.numeric(log(choicedata[i,3:8]))

R> dataX[[i]] <- as.data.frame(logP) - mean(logP) #mean center logP

R> }

R> #generate between-subject data

R> dataZ <- choicedata[,9:13]

2.3.4 Estimation of the Coefficients

As explained above, the Hierarchical Bayes ANOVA model is estimated using

the fact that it is a special case of a hierarchical generalized linear model, that

is, using equations (2.1), (2.2) and (2.5). The conditional posterior distribution,

denoted by π(·), of the parameters βpj,s is obtained from the likelihood and priors:

π(βpj,s|·) ∝ π(yi|β1, ...,βp, xi)π(β1|θ1,Z) · · · π(βp|θp,Z)π(θ1) · · · π(θp), (2.13)

where π(yi|β1, ...,βp, xi) is the likelihood determined by equations (2.1), (2.2) and

(2.6) to (2.10); βp = (βp1, ...,β
p
Jp

), p = 1, ..., P , with βpj = (βpj,1, ..., β
p
j,s), j = 1, ..., Jp,
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are the coefficients of factor p; θp = (θp1j,k, θ
p2
j,k, ..., θ

pQ
j,k ), j = 1, ..., Jp, k = 1, ..., Kq

are the population-level parameters; π(θp), p = 1, ..., P is the prior of population-

level parameters θp; and π(βp|θp,Z), p = 1, ..., P , is the prior determined by the

population model in equation (2.3). We are interested in the effects of between-

subject level factors, captured by θpqj,k, k = 1, ..., Kq using the notation in equation

(2.3). The conditional posterior distribution of the parameters θpqj,k is:

π(θpqj,k|·) ∝ π(βpj |θ
p,Z)π(θp)

= π(βpj |θ
p,Z)

∏
jk

π(θp1j,k)
∏
jk

π(θp2j,k) · · ·
∏
jk

π(θpQj,k ). (2.14)

where each θpqj,k is assumed to follow a normal prior.

2.3.5 Starting Values and Burn-in Period

Successful implementation of MCMC algorithm requires proper starting values

and a sufficiently long burn-in period to make sure the convergence of chains. For

the burn-in period, typically the first 1000 to 5000 draws are discarded. Users can

easily adjust that number in the arguments of all BANOVA.*() functions. Because

the hierarchical Bayesian ANOVA models usually involves many hyper-parameters,

the starting values of all parameters are assigned by the R package. Specifically, the

random parameters without any constraint are assigned values drawn from a Nor-

mal distribution using the rnorm() function (the starting values of θpqj,k in equation

(2.14), for example). For those parameters with constraints, for instance, the hyper-

parameters α, β, ν in equation (2.7), are assigned fixed values (α = 1, β = 1, ν = 1).

These values can also be found through the corresponding JAGS code.
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2.3.6 JAGS Code

Based on equation (2.13) and (2.14), the models are built and estimated in

JAGS (Just Another Gibbs Sampler, Plummer (2003)). The BANOVA package

generates the JAGS code fully automatically, and runs it. The JAGS software

takes care of the work involved in estimating model parameters by constructing an

MCMC algorithm to sample from the posterior distributions. The JAGS program

allows users to write their own models and prior distributions and frees them from

dealing with the implementation details of different models and samplers. The JAGS

code is produced as part of the output of our package, so that users can inspect and

modify it. The following R command provides users with the JAGS code generated

for the model in question:

R> cat(res$JAGSmodel) #res is a list returned from the BANOVA.* function

2.3.7 Convergence Diagnostics

There is a large number of convergence diagnostics available (e.g. Gill, 2007).

In the output of the package, two convergence diagnostics are reported: the Geweke

diagnostic (Geweke, 1991), and the Heidelberg and Welch (Heidelberger and Welch,

1983) diagnostic. These two convergence diagnostics are calculated based on only

a single MCMC chain, which saves some computation time and is less cumbersome

for the applied user. Both diagnostics require a single chain and may be applied

with any MCMC method. The functions geweke.diag and heidel.diag in the R

package coda are incorporated in our package and used to compute the convergence
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diagnostics. If so desired the user can apply other diagnostics from the coda package

manually.

Geweke’s convergence diagnostic is calculated by taking the difference between

the means from the first mA iterations and the last mB iterations, where m is the

total number of iterations. If the ratios mA
m

and mB
m

are fixed and mA +mB < m, ,

then by the central limit theorem, the distribution of this diagnostic approaches a

standard normal as m tends to infinity. In our package, mA = 0.1m and mB = 0.5m.

The Heidelberg and Welch diagnostic is based on a test statistic to accept or

reject the null hypothesis that the Markov chain is from a stationary distribution.

The present package reports the Cramer-von Mises statistic to test for stationarity.

The hypothesis test is based on Brownian bridge theory where the sequence of

iterates is from a stationary process. The test is iteratively applied on batches of

draws from the posterior distributions. If the null hypothesis is rejected, the first

10% of the iterations are discarded and the stationarity test repeated. If the test

fails again, an additional 10% of the iterations are discarded and the test is repeated.

The process continues until 50% of the iterations have been discarded and the test

still rejects. Our package uses the function heidel.diag in the coda package and

sets the parameters ε = 0.1, pvalue = 0.5.

To obtain the convergence tests, the following R command is used:

R> conv.diag(res) // res is a fitted object from any of the models
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2.3.8 Tables of Means

One key output of the package is a table of means for the categories of the

factors at both level 1 and level 2. As explained above, we use effects coding to

estimate the parameters of categorical variables, using the last level of each factor

as the reference level. However, especially when there are multiple factors and

interactions, interpretation of the parameter estimates is cumbersome. Therefore,

posterior samples of each θpqj,k in equation (2.3) generated by MCMC are used in the

calculation of ’tables of means’, similar to those produced by standard ANOVA. The

advantage of doing this is that this output is familiar to behavioral researchers and

relatively easy to interpret. Because these statistics are computed for each draw

from the posterior distribution of the parameters, statistics from their posterior

distributions are readily available. Specifically, the package computes statistics of

interest such as 95% credible intervals and posterior standard deviations.

Let θpqj,k,m denote the posterior sample of θpqj,k in the mth iteration of the MCMC

chain. Then the grand mean is:

µ̄ =

∑
m g
−1(θ00m )

M
, (2.15)

where θ00m is the mth draw of the level-2 intercept corresponding to the level-1 inter-

cept, which is equal to the grand mean. The 95% credible interval is simply provided

by the 2.5% and 97.5% quantiles of the posterior distribution of {g−1(θ00i )}, and the

posterior standard deviation is also computed from the draws of the posterior dis-

tribution. Higher order tables are computed as illustrated below.
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For example, in computing the one-way table of means of a level-1 factor A,

the posterior mean of its level j is calculated as:

µ̄Aj =

∑
m g
−1(θ00m + XA′

j θA0m )

M
, (2.16)

where XA
j is the effects coded column vector of factor levels, corresponding to level

j of factor A, and in which all other factors and covariates are set to be 0; θA0m is

the estimated vector of level-2 intercepts corresponding to level-1 factor A.

For another example, in computing the one-way table of means of a level-2

factor B, the posterior mean of its level j is calculated as:

µ̄Bj =

∑
m g
−1(θ00m + Z′j,Bθ

0B
m )

M
, (2.17)

where Zj,B is the effects coded column vector of factor levels, corresponding to level

j of factor B, and in which all other factors and covariates are set to be 0; θ0B
m is

the estimated vector of level-2 coefficients of the effect of factor B on the level-1

intercept.

Continuing the example, the means of the two-way table classified by A and

B (level j of factor A and level k of factor B) is calculated as:

µ̄ABj,k =

∑
m g
−1(θ00m + XA′

j θABj,k,mZ′k,B)

M
, (2.18)

where θABj,k,m is the mth draw from the coefficient matrix, the kth row of which is a

vector of level-2 coefficients representing the effect of factor B on to the jth level of

level-1 factor A.

Based on the above formulas, the function table.means() computes the tables

of means (currently limited to two-way interactions at each level of the model) and
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their posterior quantiles.

R> table.means(res) // res is a fitted object from any of the models

2.3.9 Table of Sums of Squares and Effect Sizes

If the experimental design is balanced, a variance decomposition can be per-

formed at the level-2 equations (2.3) or (2.5) to produce information on sums of

squares and effect sizes. Both of these sets of statistics are important in inter-

preting the results of experiments in behavioral research. For this purpose, it is

convenient to consider the ANOVA as a regression as in equation (2.5), so that for

θpj = (θpj,1, θ
p
j,2, ..., θ

p
j,K), the total sum of squares can be represented as

SS(θpj) = θp
′

j Z′βpj . (2.19)

In the package, equation (2.19) is estimated as SS(θpj) = (1/M)
∑

θp
′

j,mZ′βpj,m where

m indexes the posterior samples of θp
′

j and Z′βpj . If the design matrix Z is orthogonal,

then the sum of squares attributable to each of the factors and their interactions

can be written in terms of the submatrix Zq of Z corresponding to each factor q and

its coefficients θpqj = (θpqj,1, ..., θ
pq
j,Kq

), q = 1, ..., Q. (e.g. Draper and Smith, 1998),

SS(θpqj ) = θpq
′

j Z′qβ
p
j , (2.20)

where θpqj is the vector of coefficients of the dummy variables corresponding to factor

or interaction q. Equation (2.20) is estimated as SS(θpqj ) = (1/M)
∑

θpq
′

j,mZ′qβ
p
j,m in

the package. For orthogonal designs it holds that

SS(θpj) = SS(θp1j ) + SS(θp2j ) + · · ·+ SS(θpQj ). (2.21)
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If the design is not balanced, type III sum-of-squares are computed. These

reflect the presence of a main effect after the other main effects and interactions are

accounted for, and are valid in the presence of significant interactions (Fox, 1997).

Effect sizes measure the degree of association between an effect (e.g., a main

effect, an interaction, a linear contrast) and the dependent variable, and are inter-

preted as the proportion of variance in the dependent variable that is attributable

to each effect. They are of eminent importance in applied research, where they

are used as additional information next to statistical significance levels. There are

several measures of effect size (Kirk, 1982; Tabachnick and Fidell, 1989). In the

R package, the most commonly used measure eta squared (η2p), is calculated. It is

defined as

η2 =
SSeffect
SStotal

, (2.22)

where SSeffect = the sum of squares for the effect of interest, SStotal = the total

sum of squares for all effects, interactions, and errors in the regression.

For example, the effect size of factor θpqj is, ηpqm =
SS(θpqj,m)

SS(θpj,m)
. Because the effect

sizes are calculated at each draw of the parameters, their posterior distributions

are obtained. In the package, the function BAnova() performs all computations

discussed above and outputs a table of sums of squares and effect sizes,

R> BAnova(res) // res is a fitted object from any of the models
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2.3.10 Table of P-values

The package computes Bayesian p-values for posteriors of each factor (Gill,

2007), which enables significance testing. The null hypotheses for the test concerning

θpqj,k in equation (2.3) are

H0 : θpqj,k = 0, versusH1 : θpqj,k 6= 0. (2.23)

The two-sided Bayesian P-value is obtained by first finding the one sided p-value,

min(P (θpqj,k < 0), P (θpqj,k > 0)) which is estimated from posterior samples as

min(

∑
m(I(θpqj,k,m < 0))

M
,

∑
m(I(θpqj,k,m > 0))

M
). (2.24)

Then, the two sided p-value is

Pθ(θ
pq
j,k) = 2×min(P (θpqj,k < 0), P (θpqj,k > 0)). (2.25)

If there are coefficients θpqj,k1 , θ
pq
j,k2
, ..., θpqj,kJ representing J levels of a factor with more

than two levels, we calculate a single p-value to represent the significance differences

among all levels, as in standard ANOVA. The null-hypothesis is:

H0 : θpqj,k1 = θpqj,k2 = · · · = θpqj,kJ = 0, versusH1 : some θpqj,kj 6= 0. (2.26)

We compute these Bayesian p-values in this case as follows. Let θpqj,kmin and θpqj,kmax

denote the coefficients with the smallest and largest posterior mean. Then the p-

value is defined as

min(Pθ(θ
pq
j,kmin

), Pθ(θ
pq
j,kmax

)). (2.27)

The function table.pvalues() in the package computes p-values for all factors and

outputs a table of p-values.
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R> table.pvalues(res) // res is a fitted object from any of the models

2.4 Applications

In this section, we provide three applications of the BANOVA package to the

analysis of previously published experimental studies. The first study by Etkin and

Ratner (2012) investigated how the perceived variety among products, as means to a

goal, affects peoples’ motivation to pursue that goal. In this application we illustrate

a between-subjects ANOVA, with dependent variables that are, respectively Normal

and ordered categorical. The second study, by Ferraro et al. (2013), examines the

effects of conspicuous brand usage on consumers’ attitudes toward a brand. In

this application, we illustrate hierarchical ANCOVA models, with Normal and t-

distributed dependent variables. The third study by Wedel and Pieters (2014),

investigates the effects of color on the rapid gist perception of advertising. In this

study, we illustrate the application of a hierarchical ANOVA with both within- and

between-subjects factors, and a binomial dependent variable.

2.4.1 Application 1: Impact of the Variety among Means on Motiva-

tion

In this examples we illustrate the application of the BANOVA package to data

from a study on goal attainment (Etkin and Ratner, 2012). The study investigated

how the perceived variety (high vs. low) among products, as means to a subjects’

goal, affects their motivation to pursue that goal. The hypothesis was that only
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when progress toward a goal is low, product variety increases motivation to pursue

the goal. In the study, one hundred and five subjects were randomly assigned to one

of four conditions in a 2 (goal progress: low vs. high) by 2 (variety among means:

low vs. high) between-subjects design. The final goal was a ”fitness goal”, and the

products used were protein bars; variety was manipulated by asking subjects to

think about how the products were similar (low) or different (high); goal progress

was primed by asking subjects questions regarding the frequency of their recent

workouts on low (0, 1,..., 5 or more) versus high (5 or less, 6, 7,..., 10) frequency

scales. Subjects were asked questions regarding the similarity of protein bars as a

manipulation check, and the bid they were willing to make for the bars, which are

used as dependent variables in the study.

The data can be loaded by the following R command:

R> data(goalstudy)

The structure of the data is shown below:

R> head(goalstudy)

id perceivedsim goalprogress varmeans bid

1 1 5 1 2 5

2 2 7 1 1 0

3 3 2 2 2 1

4 4 2 2 1 15

5 5 5 2 1 3

6 6 5 1 1 10

Table 2.1: Sample of the goalstudy data

The between-subjects variables are: goalprogress, which denotes the progress

toward a goal (1:low , 2: high ); varmeans, which denotes the amount of variety

within the means to goal attainment (1:low , 2:high); perceivedsim, which is a seven-

point scale dependent variable measuring the perceived similarity of the products
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(1 = not at all similar, 7 = very similar); and bid which denotes the amount that

subjects would be willing to pay for the products.

In the first analysis, we consider log transform of the bid amount (log(bid + 1))

as the dependent variable, assumed to follow a normal distribution. This analysis

comprises a 2 (goal progress: low vs. high) x 2(variety among means: low vs.

high) between-subjects hierarchical Bayesian ANOVA of the bid amount. Since the

study involves a between-subjects design, the within-subjects model only includes

an intercept. The function BANOVA.normal() is used to execute the analysis:

R> goalstudy$logbid <- log(goalstudy$bid + 1)

R> app_1 <- BANOVA.Normal(logbid~1, ~goalprogress*varmeans, goalstudy,

+ goalstudy$id, burnin = 5000, sample = 1000, thin = 20)

The posterior means and standard deviations of the hyper parameters are reported

from 1000 target samples, with a thinning factor of 20 to reduce autocorrelation,

and with 5,000 samples being discarded as the burn-in period, for a total of 25,000

samples. To confirm that the chain has converged after the burn-in, the follow-

ing R command outputs the Geweke’s and the Heidelberg and Welch convergence

diagnostics. The results are shown below.

R> conv.diag(app_1)

Geweke Diag.

Stationarity test Convergence p value

(Intercept) : (Intercept) Passed 0.3696

(Intercept) : goalprogress1 Passed 0.3833

(Intercept) : varmeans1 Passed 0.6585

(Intercept) : goalprogress1:varmeans1 Passed 0.283

32



Heidelberger and Welch's Diag.

stest start pvalue

(Intercept) : (Intercept) Passed 1 0.1488

(Intercept) : goalprogress1 Passed 1 0.2445

(Intercept) : varmeans1 Passed 1 0.073

(Intercept) : goalprogress1:varmeans1 Passed 1 0.0672

The result indicates that the chains converged well before the end of the burn-

in. The function trace.plot() provides visual diagnostics of convergence, some of

the results are shown below.

Figure 2.2: Trace plots of (selected) posterior distributions of the parameters of the
goalstudy application

The posterior means, standard deviations, 95% credible intervals and Bayesian

p-values of hyper parameters are computed as follows, and the results are shown

below. Following standard conventions, we will call an effect ’significant’ if the 95%
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posterior credible interval of the parameter does not cover zero.

R> summary(app_1)

Call:

BANOVA.Normal(l1_formula = logbid ~ 1, l2_formula = ~goalprogress *

varmeans, data = goalstudy, id = goalstudy$id, burnin = 5000,

sample = 1000, thin = 20)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

goalprogress varmeans goalprogress.varmeans Residuals Total

(Intercept) 0.641 (1.16%) 0.443 (0.8%) 7.584 (13.68%) 46.749 55.455

Table of p-values (Multidimensional):

(Intercept) goalprogress varmeans goalprogress:varmeans

(Intercept) 0 0.538 0.706 0.004

Table of coefficients:

mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 1.08841 0.09027 0.91787 1.26383 <2e-16 ***

(Intercept) : goalprogress1 0.056 0.09002 -0.12835 0.23335 0.538

(Intercept) : varmeans1 0.03147 0.08717 -0.14056 0.20189 0.706

(Intercept) : goalprogress1:varmeans1 -0.25917 0.08558 -0.42512 -0.08899 0.004 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Based on the table of p-values and coefficients in the results above, the inter-

action between variety among means (varmeans) and goal progress (goalprogress) is

significant. The table of means, produced with the command shown below, shows

that when goal progress was low (goalprogress = 1), participants bid more for the

products when perceived variety was high (varmeans = 2) versus low (varmeans

= 1). On the contrary, when goal progress was high, participants bid more when
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perceived variety was low versus high.

R> table.means(app_1)

Grand mean:

1.08841

2.5% 97.5%

0.91787 1.26383

Means for factors at level 2:

goalprogress mean 2.5% 97.5%

1 1.15012 0.88968 1.39588

2 1.02906 0.79407 1.27638

varmeans mean 2.5% 97.5%

1 1.12212 0.87387 1.35245

2 1.05696 0.7941 1.30155

Means for interactions at level 2:

goalprogress varmeans mean 2.5% 97.5%

1 1 0.92061 0.56703 1.23998

1 2 1.37114 0.99789 1.74485

2 1 1.3193 0.97855 1.67864

2 2 0.7477 0.406 1.07679

To predict specific values of the dependent variable, the function predict()

in R can be applied to the objects returned by BANOVA.*(). For example, to predict

the value of the dependent variable for the 3rd subject in the data set, respectively

a situation of low goal progress and a high variety among means, the following R

commands can be used:
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R> # predict the mean for the 3rd subject(id == 3)

R> predict(app_1, goalstudy[3,])

Median 2.5% 97.5%

[1,] 0.72486 0.3996 1.08537

To predict the value of the dependent variable for a situation of low goal

progress and a high variety among means, respectively the entire data set, the

following R commands can be used (the results are not shown):

R> # predict the mean corresponding to goalprogress:1 and varmeans:2

R> predict(app_1, c(0,0,1,2,0,0)) #all variables must have a value, but only

# the values of goalprogress and varmeans will be considered

R> # predict all training data

R> predict(app_1, goalstudy)

Since even the log-normal distribution may not describe the bid data very well,

it could also be analyzed assuming a Poisson distribution for the bid amounts (there

are ony a few non-integer values which are rounded). The following R commands

constructs the hierarchical Bayes ANOVA model and summarizes the results shown

below.

R> goalstudy$bid <- as.integer(goalstudy$bid + 0.5)

R> app_1a<-BANOVA.Poisson(bid~1, ~goalprogress*varmeans, goalstudy,

+ goalstudy$id, burnin = 5000, sample = 1000, thin = 20)

R> summary(app_1a)

Call:

BANOVA.Poisson(l1_formula = bid ~ 1, l2_formula = ~goalprogress *

varmeans, data = goalstudy, id = goalstudy$id, burnin = 5000,
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sample = 1000, thin = 20)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

goalprogress varmeans goalprogress.varmeans Residuals Total

(Intercept) 2.087 (1.82%) 1.692 (1.48%) 21.245 (18.56%) 89.227 114.455

Table of p-values (Multidimensional):

(Intercept) goalprogress varmeans goalprogress:varmeans

(Intercept) 0.002 0.53 0.672 0.002

Table of coefficients:

mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 0.57154 0.15489 0.25257 0.87931 0.002 **

(Intercept) : goalprogress1 0.08994 0.14916 -0.18453 0.39551 0.53

(Intercept) : varmeans1 0.06434 0.14453 -0.21212 0.34755 0.672

(Intercept) : goalprogress1:varmeans1 -0.43875 0.14365 -0.73404 -0.16503 0.002 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The next analysis is a manipulation check: the perceived similarity of the

products is the dependent variable, which is expected to depend upon the levels of

the varmeans factor. Since it is a seven-point scale variable, an ordered multino-

mial distribution is used. The 2 (goal progress: low vs. high) x 2 (variety among

means: low vs. high) hierarchical Bayesian ANOVA is executed using the function

BANOVA.ordMultinomial() in the BANOVA package. Since the study involves a

between-subjects design, the within-subjects model only includes an intercept. All

between-subjects factors are included in the level-2 model. The analysis is done with

the following commands, and the results are provided below.

R> app_2 <- BANOVA.ordMultinomial (perceivedsim~1, ~goalprogress*varmeans,
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+ goalstudy, goalstudy$id, burnin = 3000, sample = 1000, thin = 5)

R> summary(app_2)

Call:

BANOVA.ordMultinomial(l1_formula = perceivedsim ~ 1, l2_formula = ~goalprogress *

varmeans, data = goalstudy, id = goalstudy$id, burnin = 3000,

sample = 1000, thin = 5)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

goalprogress varmeans goalprogress.varmeans Residuals Total

(Intercept) 6.462 (1.05%) 195.668 (31.82%) 12.191 (1.98%) 406.159 614.945

Table of p-values (Multidimensional):

(Intercept) goalprogress varmeans goalprogress:varmeans

(Intercept) 0 0.51 0 0.332

Table of coefficients:

mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 4.66217 0.64226 3.40235 5.85443 <2e-16 ***

(Intercept) : goalprogress1 -0.1665 0.27006 -0.70745 0.39547 0.51

(Intercept) : varmeans1 1.34737 0.32153 0.71751 1.98923 <2e-16 ***

(Intercept) : goalprogress1:varmeans1 0.27778 0.28849 -0.29295 0.89242 0.332

Cutpoint[2] 2.197867 0.489979 1.328096 3.230276 <NA> <NA>

Cutpoint[3] 3.576643 0.600432 2.410282 4.794221 <NA> <NA>

Cutpoint[4] 4.900657 0.670827 3.524873 6.141887 <NA> <NA>

Cutpoint[5] 6.736383 0.826927 5.026151 8.111762 <NA> <NA>

Cutpoint[6] 8.741805 0.953105 6.546533 9.959254 <NA> <NA>

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The chain converged well within the burn-in period (the convergence statistics

are not shown here). The posterior means and standard deviations of the hyper

parameters are reported from a total of 8,000 samples, with 3,000 being discarded as
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the burn-in period, and the remaining 5,000 samples thinned by a factor 5. From the

Bayesian p-values, we can see that only the variety condition (intercept: varmeans)

has a significant effect on the perceived similarity of the products and the table of

sums of squares shows that the effect size is relatively large. The table of means is

produced with the following command, and the result is provided below.

R> table.means(app_2)

Table of means of the response

------------------------------

Grand mean:

4.23097

2.5% 97.5%

3.87904 4.57188

Means for factors at level 2:

goalprogress mean 2.5% 97.5%

1 4.1277 3.60441 4.5929

2 4.32479 3.85958 4.7886

varmeans mean 2.5% 97.5%

1 5.03269 4.56305 5.4397

2 3.35031 2.88525 3.87616

Means for interactions at level 2:

goalprogress varmeans mean 2.5% 97.5%

1 1 5.10153 4.41012 5.64914

1 2 3.08967 2.39879 3.80449

2 1 4.96424 4.37125 5.49808

2 2 3.64608 2.94386 4.35304
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From the table of means of the factor varmeans, we conclude that subjects

perceived the products as more similar when asked to think about how they were

similar versus different, which supports the experimental manipulation and is con-

sistent with Etkin and Ratner (2012). The function table.means() in the case of an

ordered categorical variable also provides a more detailed table with the probabili-

ties of each response category. For example, the table of probabilities corresponding

to response 1 (not at all similar) of the variable varmeans, is shown below (the re-

mainder of the output for the other six response categories is not shown). From the

table, we can see that subjects are more likely to provide the response value 1 when

perceived variety was high, which is in line with the results above.

Table of probabilities for each category of the response

-------------------------------------------------------

Response : 1

Grand mean:

0.00915

2.5% 97.5%

0.00284 0.03222

Means for factors at level 2:

goalprogress mean 2.5% 97.5%

1 0.01125 0.00297 0.04087

2 0.00807 0.00218 0.03081

varmeans mean 2.5% 97.5%

1 0.00232 0.00056 0.01304

2 0.03603 0.01011 0.10057
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Means for interactions at level 2:

goalprogress varmeans mean 2.5% 97.5%

1 1 0.00219 4e-04 0.0136

1 2 0.05444 0.0126 0.17123

2 1 0.00272 0.00053 0.01469

2 2 0.0236 0.0056 0.08551

To predict means corresponding to the first two data points in goalstudy, the

predict() command is used, which outputs the probabilities for each category of

each data point.

R> predict(app_2,goalstudy[1:2,])

Sample number Response Median 2.5% 97.5%

[1,] 1 1 0.05626 0.01281 0.18767

[2,] 1 2 0.27994 0.10976 0.50518

[3,] 1 3 0.30298 0.16622 0.46136

[4,] 1 4 0.20120 0.08078 0.37816

[5,] 1 5 0.09312 0.02778 0.24850

[6,] 1 6 0.01735 0.00352 0.07083

[7,] 1 7 0.00267 0.00045 0.02066

[8,] 2 1 0.00206 0.00043 0.01556

[9,] 2 2 0.01729 0.00368 0.07122

[10,] 2 3 0.05283 0.01322 0.14533

[11,] 2 4 0.15319 0.05419 0.30549

[12,] 2 5 0.39464 0.24039 0.54825

[13,] 2 6 0.27310 0.10555 0.47190

[14,] 2 7 0.07001 0.01975 0.20811

The JAGS code for the above model generated by the program can be easily

retrieved by the R command shown in Figure 2.3.
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R> cat(app_2$JAGSmodel)

model{

for (i in 1:n){

y[i] ~ dcat(P[i,])

P[i,1] <- 1 - Q[i,1]

for (i.cut in 2: n.cut) {

P[i,i.cut] <- Q[i,i.cut-1] - Q[i,i.cut]

}

P[i,n.cut+1] <- Q[i,n.cut]

for (i.cut in 1:n.cut){

logit(Q[i,i.cut]) <- z[i,i.cut]

z[i,i.cut] <-beta1[id[i]]*X[i,1]-cutp[i.cut]*(1-equals(i.cut,1))

}

}

for (i in 1:M){

beta1[i]~dnorm(mu.beta1[i],tau.beta1)

mu.beta1[i]<- beta1_1*Z[i,1]+beta1_2*Z[i,2]+beta1_3*Z[i,3]+beta1_4*Z[i,4]

}

tau.beta1<-pow(sigma.beta1,-2)

sigma.beta1~dgamma(1,1)

beta1_1~dnorm(0,0.0001)

beta1_2~dnorm(0,0.0001)

beta1_3~dnorm(0,0.0001)

beta1_4~dnorm(0,0.0001)

for (i.cut in 1: n.cut) {

cutp0[i.cut] ~ dunif(0,10)

}

cutp[1:n.cut] <- sort(cutp0)

}

Figure 2.3: JAGS code for the goalstudy application with perceivedsim as the
dependent variable

Note that for the convenience of generation of the JAGS code, the program

uses a uniform naming scheme for all level 1 and level 2 parameters which are

different from the names in the original data.

2.4.2 Application 2: Conspicuous Brand Usage

We next illustrate the BANOVA package on data from a study that examines

consumers’ attitudes toward a brand after seeing another consumer conspicuously

using it (Ferraro et al., 2013). Conspicuous brand usage occurs when a consumer

draws attention to a brand she uses by flaunting (Ferraro et al., 2013). One hundred

fifty-four subjects from an online panel participated in the study. Conspicuousness
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was manipulated as a between-subjects factor, by exposing subjects to a forty-five

second video in which the conspicuous usage of the brand (Apple ipad) was manipu-

lated (low vs high conspicuousness). In addition, the so called self-brand connection

was measured: this refers to the extent to which a consumers’ own self-concept

matches the image she has of a certain brand. Brand attitude was calculated as the

average of three seven-point scale questions (dislike/like, unfavorable/favorable and

bad/good). The relation between conspicuousness, self-brand connection, and brand

attitudes was investigated. The analysis aims to test the hypothesis that there are

negative effects of conspicuous brand usage on the attitudes toward the brand, only

for subjects that have a low self-brand connection.

This example illustrates a hierarchical Bayesian ANCOVA model. Brand at-

titude is treated as a continuous dependent variable, assumed to follow a Normal

distribution. Data from this study can be loaded by the following R command:

R> data(ipadstudy)

The data is displayed in the long format including only responses and between-

subjects variables.

R> head(ipadstudy)

id attitude owner age gender conspic selfbrand apple_dl

1 1 3.000000 0 19 0 0 -2.3042672 3

2 2 5.333333 0 33 0 1 1.6957328 6

3 3 5.666667 0 25 1 0 -0.1614100 6

4 4 5.333333 1 41 0 1 -0.4471243 5

5 5 6.000000 1 38 1 1 0.2671614 6

6 6 4.000000 0 33 1 0 0.6957328 4

Table 2.2: Sample of the ipadstudy data

The between-subjects variables are: selfbrand, which is a numerical variable

(mean centered) representing self-brand connection; and conspic, which is a two-
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level factor corresponding to the two levels of conspicuousness (0: low, 1: high).

There are a number of control variables: owner denotes whether participants owned

the product (1: yes, 0: no); age in years; and gender (1: female, 0: male). Finally

id is the identification number of the subjects.

The Bayes ANOVA uses as a dependent variable the attitude toward the brand,

measured by averaging answers on three seven-point scales. It can be executed using

the function BANOVA.Normal() in the BANOVA package. Since it is a between-

subjects design, the within-subjects model only includes an intercept. The between-

subjects covariates include owner, age, gender, selfbrand and the interaction between

conspic and selfbrand. The two-level factor conspic is effects coded and the one-way

between-subjects ANCOVA is specified as follows.

R> # mean center covariates

R> ipadstudy$age <- ipadstudy$age âĂŞ mean(ipadstudy$age)

R> ipadstudy$owner <- ipadstudy$owner - mean(ipadstudy$owner)

R> ipadstudy$gender <- ipadstudy$gender - mean(ipadstudy$gender)

R> app_3 <- BANOVA.Normal(attitude~1, ~owner + age + gender + selfbrand*conspic,

+ ipadstudy, ipadstudy$id, burnin = 5000, sample = 1000, thin = 10 )

The posterior means and standard deviations of the hyper parameters are

reported from a total 15,000 samples, with 5,000 being discarded as the burn-in pe-

riod, and the remainder thinned by a factor 10. The chain converged well within the

burn-in period (the convergence statistics are not shown here). The table of sums-of-

squares, effect sizes and Bayesian p-values, as well as the posterior means, standard

deviations, 95% credible intervals, and Bayesian p-values of hyper parameters are
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computed as follows, the results are shown below.

R> summary(app_3)

Call:

BANOVA.Normal(l1_formula = attitude ~ 1, l2_formula = ~owner +

age + gender + selfbrand * conspic, data = ipadstudy, id = ipadstudy$id,

burnin = 5000, sample = 1000, thin = 10)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

owner age gender selfbrand conspic

(Intercept) 10.922 (3.44%) 0.637 (0.2%) 0.659 (0.21%) 129.164 (40.73%) 8.982 (2.83%)

selfbrand.conspic Residuals Total

6.98 (2.2%) 86.923 317.133

Table of p-values (Multidimensional):

(Intercept) owner age gender selfbrand conspic selfbrand:conspic

(Intercept) 0 0.006 0.888 0.846 0 0.008 0.028

Table of coefficients:

mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 5.27773 0.0946 5.10565 5.47032 <2e-16 ***

(Intercept) : owner 0.60823 0.22316 0.18081 1.06966 0.006 **

(Intercept) : age -0.00117 0.00975 -0.0204 0.01868 0.888

(Intercept) : gender -0.0325 0.18076 -0.4091 0.31607 0.846

(Intercept) : selfbrand 0.62535 0.06329 0.49116 0.74733 <2e-16 ***

(Intercept) : conspic1 0.23208 0.09137 0.06009 0.41803 0.008 **

(Intercept) : selfbrand:conspic1 -0.12997 0.05908 -0.24961 -0.02326 0.028 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Based on the above estimates, conspicuousness, self-brand connection and the

interaction: conspicuousness x self-brand connection, significantly affect the attitude

towards the brand, consistent with Ferraro et al. (2013). Note that since we applied
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ANCOVA, a type III analysis of variance is used, so that the sum of squares (and

effect size) for each effect is computed conditional upon all other effects and thus

they do not add up to the total sum of squares.

In this application, the distribution of the dependent variable is continuous,

but it may not be Normal. The function BANOVA.T() can be applied to construct

an ANOVA model in which the response variable is assumed to follow a Student’s

t distribution. This permits (weakly) robust inference (Bernardo and Giron, 1992),

as it allows for fatter tails and outliers in the data. The results, shown below, are

similar to those in the results above which supports their robustness to distributional

assumptions, and are not discussed here.

R> app_4 <- BANOVA.T(attitude~1, ~owner + age + gender + selfbrand*conspic,

+ ipadstudy, ipadstudy$id, burnin = 3000, sample = 1000, thin = 5 )

R> summary(app_4)

Call:

BANOVA.T(l1_formula = attitude ~ 1, l2_formula = ~owner + age +

gender + selfbrand * conspic, data = ipadstudy, id = ipadstudy$id,

burnin = 5000, sample = 1000, thin = 10)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

owner age gender selfbrand conspic

(Intercept) 10.939 (3.03%) 0.34 (0.09%) 0.354 (0.1%) 126.2 (34.91%) 9.01 (2.49%)

selfbrand.conspic Residuals Total

6.251 (1.73%) 135.715 361.517

Table of p-values (Multidimensional):

(Intercept) owner age gender selfbrand conspic selfbrand:conspic

(Intercept) 0 0 0.942 0.94 0 0.01 0.028

Table of coefficients:
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mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 5.29064 0.08997 5.10989 5.4735 <2e-16 ***

(Intercept) : owner 0.61526 0.21369 0.21623 1.0569 <2e-16 ***

(Intercept) : age -0.00064 0.00956 -0.01811 0.01893 0.942

(Intercept) : gender -0.01146 0.18485 -0.36935 0.3533 0.94

(Intercept) : selfbrand 0.62077 0.06185 0.49873 0.73824 <2e-16 ***

(Intercept) : conspic1 0.23785 0.09262 0.0523 0.42045 0.01 **

(Intercept) : selfbrand:conspic1 -0.12541 0.05823 -0.23701 -0.00892 0.028 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

2.4.3 Application 3: Gist Perception of Advertising

We finally illustrate the application of the BANOVA package in a study into the

influence of color on advertising gist perception, which is the very rapid identification

of ads during brief exposures. Specifically, we analyze the effect of color on the

perception of the gist of advertising when the advertising exposure is blurred (Wedel

and Pieters, 2014). In the study, one hundred and sixteen subjects were randomly

assigned to one condition of a 5 (blur: normal, low, medium, high, very high) x 2

(color: full color, grayscale) between-participants, x 2 (image: typical ads, atypical

ads) within-participants, mixed design. Participants were exposed to 40 images, 32

full-page ads and 8 editorial pages. There were 8 ads per product category, with

4 typical and 4 atypical ones. Blur was manipulated by processing the advertising

images with Gaussian blur filters of varying radius. Subjects were asked to identify,

after being flashed an image for 100msec., whether the image was an ad or not.

The data included in the package can be loaded into R using the data()

function, i.e., using the following R code:
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R> data(colorad)

The structure of colorad is shown below using the head() function. It is in

long format including both within- subjects and between- subjects variables.

R> head(colorad)

id typic y blurfac color blur

1 1 0 8 2 1 3.6889

2 1 1 6 2 1 3.6889

3 2 0 12 4 0 4.7875

4 2 1 6 4 0 4.7875

5 3 0 11 2 0 3.6889

6 3 1 9 2 0 3.6889

Table 2.3: Sample of the colorad data

Here, the within-subject variable typic is a factor with 2 levels ‘0’ (typical

ads) and ‘1’ (atypical ads); between-subject variables are: blur, a numerical variable

representing the blur of the image (the log-radius of a Gaussian blur filter used

to produce the images), blurfac, a factor variable with the five levels of blur, and

color, a factor representing the color of the ads with 2 levels ‘0’ (full color) and ‘1’

(grayscale). id is the subject identification number. The dependent variable is the

number of times ads were correctly identified as an ad, out of the 16 ads, for each

subject for each level of typic.

We are interested in the effects of within- and between- subject factors typic,

and color, and the variable blur, as well as their interactions. The factor typic varies

within individuals; the factors blur, color and blur x color interaction vary between

individuals.

The analysis of this experiment is executed with the function BANOVA.Bin()

in the BANOVA package. First, the continuous covariate blur is mean centered.

The R code to implement the analysis is shown below.
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R> data(colorad)

R> # mean center Blur for effect coding

R> colorad$blur <- colorad$blur - mean(colorad$blur)

R> app_5 <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id,

+ as.integer(16), burnin = 3000, sample = 2000, thin = 5)

The posterior means and standard deviations of the hyper-parameters are re-

ported from a total of 13,000 samples, with 3,000 being discarded as the burn-in pe-

riod, and the remainder thinned by a factor 5 to reduce autocorrelation. To confirm

that the chain has converged after the burn-in, the conv.diag(app_5) command

outputs the convergence diagnostics and trace.plot(app_5) provides visual diag-

nostics of convergence (the results are not shown here, but indicates that the chains

converged well before the end of the burn-in).

The posterior means, standard deviations, 95% credible intervals and Bayesian

p-values of hyper parameters are computed with the following command, and the

results are shown below.

R> summary(app_5)

Call:

BANOVA.Bin(l1_formula = y ~ typic, l2_formula = ~color * blur,

data = colorad, id = colorad$id, num_trails = as.integer(16),

burnin = 3000, sample = 2000, thin = 5)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

color blur color.blur Residuals Total

(Intercept) 4.691 (2.85%) 26.344 (15.99%) 1.679 (1.02%) 131.733 164.733

typic1 1.55 (10.36%) 5.651 (37.76%) 1.403 (9.38%) 6.307 14.965
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Table of p-values (Multidimensional):

(Intercept) color blur color:blur

(Intercept) 0 0.011 0 0.166

typic 0 0.003 0 0.011

Table of coefficients:

mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 0.49476 0.05543 0.38737 0.60236 <2e-16 ***

(Intercept) : color1 0.13878 0.05526 0.03331 0.24904 0.011 *

(Intercept) : blur -0.17061 0.02893 -0.22741 -0.11583 <2e-16 ***

(Intercept) : color1:blur 0.04027 0.02917 -0.01769 0.09815 0.166

typic1 : (Intercept) 0.30226 0.02707 0.25178 0.35805 <2e-16 ***

typic1 : color1 0.07738 0.02668 0.02536 0.12885 0.003 **

typic1 : blur -0.07775 0.01485 -0.10618 -0.04917 <2e-16 ***

typic1 : color1:blur 0.03697 0.01441 0.00895 0.06458 0.011 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Based on the above estimates, ad identification is significantly influenced by

ad typicality (typic): typical ads are identified more accurately as ads as compared

to less typical ones. The accuracy of ad identification is also affected by the degree

of blur. The three-factor interaction (blur x color x typic) is also significant, which

reveals that color protects the identification of typical ads against blur (Wedel and

Pieters, 2014).

These results are based on the ANCOVA model with blur as a continuous

covariate. To further understand the effects of blur, we can use the discrete variable

blur (blurfac) in a two-way ANOVA at the between-subject level (and the factor

typic again within-subjects), using the following command:
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R> app_6 <- BANOVA.Bin(y~typic, ~color*blurfac, colorad, colorad$id,

+ as.integer(16), burnin = 20000, sample = 3000, thin = 5)

Since the above model involves more parameters, to ensure all parameters in

the models converge, a larger number of burn-in and target samples are used: a

total of 35,000. The table of sums of squares, effect sizes and p-values, as well as

the posterior means, standard deviations, 95% credible intervals and Bayesian p-

values of the parameters are produced with the function summary(), the results are

presented below.

R> summary(app_6)

Call:

BANOVA.Bin(l1_formula = y ~ typic, l2_formula = ~color * blurfac,

data = colorad, id = colorad$id, num_trails = as.integer(16),

burnin = 20000, sample = 3000, thin = 5)

Table of sum of squares and effect sizes (Bayesian ANOVA/ANCOVA):

color blurfac color.blurfac Residuals Total

(Intercept) 5.796 (3.43%) 31.149 (18.42%) 3.284 (1.94%) 128.956 169.139

typic1 2.808 (14.35%) 14.029 (71.68%) 1.753 (8.96%) 1.112 19.571

Table of p-values (Multidimensional):

(Intercept) color blurfac color:blurfac

(Intercept) 0 0.0087 0 0.1547

typic 0 0.0000 0 0.0140

Table of coefficients:

mean SD Quantile0.025 Quantile0.975 p.value Signif.codes

(Intercept) : (Intercept) 0.49252 0.05571 0.38637 0.60383 <2e-16 ***

(Intercept) : color1 0.15379 0.05712 0.04019 0.26625 0.0087 **

(Intercept) : blurfac1 0.55405 0.11197 0.33141 0.77124 <2e-16 ***
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(Intercept) : blurfac2 0.0506 0.11644 -0.18528 0.28439 0.6507

(Intercept) : blurfac3 0.01659 0.10501 -0.18748 0.22031 0.882

(Intercept) : blurfac4 -0.05149 0.10783 -0.25875 0.16721 0.6313

(Intercept) : color1:blurfac1 -0.15806 0.10887 -0.3719 0.05631 0.1547

(Intercept) : color1:blurfac2 0.12066 0.11757 -0.10787 0.34741 0.3073

(Intercept) : color1:blurfac3 -0.08139 0.10941 -0.29386 0.12871 0.4533

(Intercept) : color1:blurfac4 0.00974 0.10998 -0.21415 0.21614 0.9173

typic1 : (Intercept) 0.32106 0.02758 0.25963 0.35879 <2e-16 ***

typic1 : color1 0.1043 0.0323 0.04425 0.14222 <2e-16 ***

typic1 : blurfac1 0.17167 0.04963 0.06052 0.26182 0.002 **

typic1 : blurfac2 0.36932 0.04478 0.27415 0.46363 <2e-16 ***

typic1 : blurfac3 -0.05029 0.05149 -0.12272 0.05379 0.3847

typic1 : blurfac4 -0.17165 0.04197 -0.24914 -0.07217 0.002 **

typic1 : color1:blurfac1 -0.11062 0.0554 -0.22147 -0.03255 0.014 *

typic1 : color1:blurfac2 0.04417 0.05024 -0.06631 0.13594 0.3867

typic1 : color1:blurfac3 -0.03529 0.05048 -0.10884 0.07542 0.5107

typic1 : color1:blurfac4 0.09386 0.04141 0.00489 0.17845 0.032 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We first inspect the tables of sums of squares, effect sizes and p-values. In

this table, the columns denote between-subject factors and the rows denote the

within-subject factors. The values in the table present the sum-of-squares and effect

sizes of the effects of these between-subject factors on the within-subjects factors.

Again, the accuracy of ad identification is affected by blur, and to a lesser extent

by color. From the tables of p-values, ad typicality (the value corresponding to the

row name ‘typic’ and column name ‘(Intercept)’) and the degree of blur (the value

corresponding to the row name ‘(Intercept)’ and column name ‘blurfac’) are again

highly significant. There is also support for the main effect of color. The three-factor

interaction (blurfac x color x typic) is also significant, which again shows that color
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protects the identification of typical ads against blur (Wedel and Pieters, 2014). The

conclusions from the table of estimates are similar to those from the results of the

previous model, but this table allows us to inspect the effects of each level of blur,

and the interactive effects with color and typicality.

Through the tables of means for all factors and their interactions, we can in-

spect these effects in more detail. These are produced with the function table.means().

The results are provided below:

R> table.means(app_6)

Grand mean:

0.6206999

2.5% 97.5%

0.5954085 0.6465321

Means for factors at level 1:

typic mean 2.5% 97.5%

0 0.69313 0.66484 0.7188

1 0.54284 0.51437 0.5729

Means for factors at level 2:

color mean 2.5% 97.5%

0 0.65594 0.61981 0.69103

1 0.58403 0.54472 0.62252

blurfac mean 2.5% 97.5%

1 0.74044 0.68921 0.78352

2 0.63253 0.56918 0.69183

3 0.6244 0.56966 0.67767

4 0.60808 0.55263 0.66323
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5 0.48113 0.42043 0.53902

Means for interactions between level 1 and level 2 factors:

typic color mean 2.5% 97.5%

0 0 0.7451 0.70637 0.77987

0 1 0.63533 0.59554 0.67466

1 0 0.55473 0.51075 0.59889

1 1 0.53021 0.48991 0.5719

typic blurfac mean 2.5% 97.5%

0 1 0.82398 0.77602 0.86012

0 2 0.77421 0.71804 0.8217

0 3 0.68515 0.62832 0.737

0 4 0.64344 0.58566 0.69783

0 5 0.48101 0.41132 0.54899

1 1 0.63501 0.57172 0.69241

1 2 0.46266 0.39622 0.53239

1 3 0.55919 0.4989 0.61972

1 4 0.57217 0.51064 0.63336

1 5 0.48065 0.41256 0.54653

Means for interactions at level 2:

color blurfac mean 2.5% 97.5%

0 1 0.73962 0.66789 0.79778

0 2 0.69298 0.60684 0.76707

0 3 0.6415 0.56029 0.71427

0 4 0.64691 0.56745 0.71823

0 5 0.54569 0.46092 0.6329

1 1 0.74048 0.66902 0.80171

1 2 0.56669 0.47772 0.65084

1 3 0.60753 0.52846 0.6833

1 4 0.56849 0.48956 0.6494
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1 5 0.41635 0.33232 0.50044

Means for interactions between level 2 interactions and level 1 factors:

typic color blurfac mean 2.5% 97.5%

0 0 1 0.82222 0.74993 0.87523

0 0 2 0.83973 0.76968 0.89083

0 0 3 0.71491 0.6369 0.78504

0 0 4 0.7225 0.64393 0.78792

0 0 5 0.57343 0.47974 0.66626

0 1 1 0.82414 0.76026 0.87769

0 1 2 0.69055 0.60125 0.76846

0 1 3 0.65432 0.56975 0.73316

0 1 4 0.5565 0.47031 0.64192

0 1 5 0.38974 0.29817 0.48162

1 0 1 0.63516 0.54555 0.71833

1 0 2 0.49421 0.39296 0.59681

1 0 3 0.56118 0.47048 0.64477

1 0 4 0.56344 0.47597 0.65078

1 0 5 0.5185 0.42485 0.61034

1 1 1 0.63486 0.54185 0.71608

1 1 2 0.43197 0.3438 0.52187

1 1 3 0.55946 0.46972 0.64154

1 1 4 0.58095 0.49503 0.66564

1 1 5 0.44181 0.35091 0.54084

From the above tables, we can see that typical color ads (typic = 0, color =

0) are always more accurately identified than atypical color ads (typic= 1, color =

0). Typical grayscale ads (typic = 0, color = 1, blur = 1,...,5), however, are only

more accurately identified than atypical grayscale ads (Ttypic= 1, color = 1, blur

= 1,...,5) when there is no blur, or a low level of blur (Wedel and Pieters, 2014).
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2.5 Conclusion

This chapter has presented the R package BANOVA, which can be used to

analyze experimental data with a wide variety of hierarchical Bayesian ANOVA

models. The response variable can be normal, student’s t, binomial, multinomial or

Poisson and the between-subject model follows the traditional ANOVA or ANCOVA

structure that allows the estimation of sums of squares and effect sizes of each

experimental factor. In the behavioral sciences there is an abundance of research that

lends itself to the application of these types of analyses. We hope that the availability

of user-friendly software in the form of the BANOVA package will simulate the

analysis of these studies under more reasonable assumptions on the distribution of

the data and its hierarchical structure. This is expected to reduce both the type I

and type II errors made in this research.

There are a number of other R packages that can be used to fit hierarchical

Bayes models, including BACC (Geweke, 1999), bayesm (Rossi and McCulloch,

2006) and MCMCpack (Martin et al., 2011) as well as the WinBUGS, OpenBUGS

and JAGS software. However, all these either require the user to be familiar with

Bayesian statistical modeling and BUGS programming, while some are not suitable

for ANOVA analysis of experimental data. The motivation for the development

of the BANOVA package is therefore to overcome these limitations and to offer

user-friendly routines for the applied researcher. These were illustrated in three

applications : (1) models can be run by only a single function call, (2) only a small

number of settings are required to run each model, (3) outputs are included in
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summary tables, such as the table of effect sizes, table of p-values and tables of

means, which are easy to interpret for the applied researcher.
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Chapter 3: Bayesian Mediation Analysis

3.1 Introduction

Mediation analysis is a statistical method used to investigate the relationship

between an independent variable and a dependent variable via the inclusion of a

third explanatory variable, known as a mediator variable. In a mediational structure,

an independent variable might affect a dependent variable not directly but rather

through a third variable which plays an important role in governing the relationship

between the other two variables. For example, attitude toward an advertisement may

enhance attitude toward a brand, which in turn may positively impact likelihood to

purchase the brand.

Mediation has been of interest to many social science researchers, including

Baron and Kenny (1986), Iacobucci (2001), James and Brett (1984) and MacKinnon

et al. (2002). The researchers focus their studies on better understanding whether

the effect of the independent variable on the dependent variable is direct or indirect

via the mediator. A simple statistical mediation model is described in Figure 3.1.

As depicted in Figure 3.1, X is the independent variable; M , the hypothesized

mediator; and Y , the dependent variable. A simple mediation model is any causal

system in which at least one causal independent variable X is proposed as influenc-
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Figure 3.1: A diagram of a simple mediation model.

ing an outcome Y through a single or multiple mediators M . In studies in which

mediation is posited and tested, the question is whether the direct effect of X on Y ,

X → Y is significant or mediated through the mediator variable M , X →M → Y .

Regression based approaches are usually used by researchers to test these re-

lationships empirically. The most popular means of testing for mediation is the

procedure proposed by Baron and Kenny (1986) in which a series of three regular

regression models are fitted:

Y = β1 + τX + ε1, (3.1)

M = β2 + αX + ε2, (3.2)

Y = β3 + τ ′X + βM + ε3, (3.3)

where the intercepts β1, β2, β3 and the regression errors ε1, ε2, ε3 are usually ignored.

The regression coefficients α, β, τ and τ ′ capturing the relationships between the
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three focal variables are usually of interest. Evidence for mediation is said to be

likely if

1. The independent variable is a significant predictor of the dependent variable.

That is, the coefficient τ is significant in equation (3.1).

2. The independent variable is a significant predictor of the mediator. That is , the

coefficient α is significant in equation (3.2).

3. The mediator is a significant predictor of the dependent variable, while controlling

for the independent variable. That is, the coefficient β is significant and τ ′ should

be smaller in absolute value than the original effect τ in equation (3.3).

Based on these steps, considerable research has been conducted in mediation

analysis: MacKinnon and Dwyer (1993); MacKinnon et al. (2000, 2002); Kraemer

et al. (2002); Shrout and Bolger (2002); Zhao et al. (2010), as well as others. These

works mainly focus on the single-level mediation model in which variables are mainly

continuous. For mediation analysis with categorical variables, researchers have pro-

posed various solutions to working with categorical variables or a mix of categorical

and continuous variables. For example, Hayes and Preacher (2011) focus on X and

allow it to be multinomial, not just binary. Iacobucci (2012) has proposed a single

solution to all possible combinations of X, M , and Y being continuous or cate-

gorical. In the recent literature, there is growing interest in multilevel mediation

analysis that is useful for analyzing data sets with hierarchical structure or repeated

measures, for example, the research of Kenny et al. (1998), Krull and MacKinnon

(1999, 2001), Raudenbush and Sampson (1999), Kenny et al. (2003), Bauer et al.

(2006). However, all these researchers focus on mediation analysis from the frequen-
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tist perspective. To date, very little research has been based on Bayesian techniques.

For example, Yuan and MacKinnon (2009) proposed Bayesian analysis of mediation

effects in both single-level and multilevel models, but their work was limited to

continuous variables and subject-level models. Zhang et al. (2009) present the first

mediation analysis in marketing properly estimated using Bayesian techniques with

latent instrumental variables, to account for endogeneity.

In this chapter, we propose a Bayesian analysis of mediation effects which can

be considered as a single Bayesian solution to all possible combinations of X, M , and

Y being continuous or categorical in single-level or multilevel models. Compared

with conventional frequentist mediation analysis, the Bayesian approach has several

advantages. First, the MCMC estimation of Bayesian mediation models allows for

simulation and computation of the posterior distribution and the standard error of

a mediated effect. Based on posterior samples, credible intervals can be easily con-

structed and hypothesis testing can also be conducted in a straightforward manner.

Second, researchers can choose appropriate priors for the mediation analysis, which

may greatly improve the accuracy of estimations. Third, hierarchical Bayesian mod-

els introduced by (Gelman and Hill, 2007) and software, such as WinBUGS, can

be used to build and solve mediation multilevel models in an easy and natural way.

Using Bayesian methods, parameters in almost any multilevel model can be esti-

mated without much difficulty. On the other hand, classical methods used to solve

multilevel models often present difficulties in estimation (Kenny et al., 2003).
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3.2 Single Level Mediation Models

3.2.1 Conventional Mediation Analysis of Single-Level Models

The simple mediation model with one continuous independent variable X,

mediator M and dependent variable Y was introduced in equations (3.1) to (3.3)

and Figure 3.1. It is assumed that ε1, ε2 and ε3 follow normal distributions with mean

0 and variances σ2
1, σ

2
2 andσ2

3, respectively. For a mediated effect, it is clear that

τ − τ ′ = αβ. (3.4)

Thus, there are two ways to calculate the mediated effect. The first one uses the

term on the left, which is computed as the difference of two maximum-likelihood

estimates, τ̂ − τ̂ ′. The second one calculates the product of two estimated regression

coefficients α̂β̂ of α and β in equations (3.2) and (3.3). However, the Equation

3.4 only holds in the case of simple linear regressions in single level. When the

equations are generalized linear models, such as logistic regressions, or even the

structure is multilevel, the two estimators are not in the same scale, thus they

are generally different (MacKinnon et al., 1995; Iacobucci, 2012). The mediated

effect α̂β̂ is usually preferred as it is easier to compute and generalizes to more

complicated models. Sobel (1982) has proposed the following formula to estimate

the standard error and confidence interval for the mediated effect in models with

normally distributed variables.

σ̂α̂β̂ =
√
α̂2σ̂2

β̂
+ β̂2σ̂2

α̂, (3.5)
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where σ̂2
α̂ and σ̂2

β̂
are sampling variances of α̂ and β̂. A 95% CI can be approximated

by a Normal distribution and α̂β̂ ± 1.96σ̂α̂β̂. However, this solution relies on large

sample approximation and the skewed distribution of the product causes a loss of

power of the mediation test. MacKinnon et al. (2007) have proposed the bootstrap-

ping method to provide an empirical sampling distribution of the mediated effect

αβ by resampling the original data and applying mediation analysis to each one.

Zhang et al. (2009) show that the bootstrap and Bayesian posterior estimates are

close in the case of a simple mediation model.

If the mediator M and the dependent variable are dichotomous, GLM-based

mediation analysis can be applied,

E(Y ) = g−1Y (β1 + τX), (3.6)

E(M) = g−1M (β2 + αX), (3.7)

E(Y ) = g−1Y (β3 + τ ′X + βM), (3.8)

where gY and gM are link functions. For example, if Y follows a Bernoulli distribu-

tion, then gY can be a logit function. As proposed by Iacobucci (2012) , one possible

test for mediation is as follows,

1. For equation 3.6, if Y is continuous, fit a regression. If Y is categorical, fit

it via a logistic regression.

2. For equation 3.7, if M is continuous, fit a regression. If M is categorical, fit

it via a logistic regression. Collect the parameter estimate α̂, and its standard error

σ̂α̂.

3. For equaiton 3.8, if Y is continuous, fit a regression. If Y is categorical, fit
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it via a logistic regression. Collect the parameter estimate β̂, and its standard error

σ̂β̂.

4. Standardize the estimated coefficients,

zα = α̂/σ̂α̂,

zβ = β̂/σ̂β̂. (3.9)

Compute their product, zα×β = zαzβ, and the standard error:
√
z2α + z2β + 1.

5. Perform the z- test,

zmediation =
zαzβ
σzαβ

=

α̂
σ̂α̂
× β̂

σ̂β̂√
z2α + z2β + 1

. (3.10)

However, this z-test still shares the disadvantage of the test proposed by Sobel

(1982), since the product of coefficients can’t be assumed Normal or t distributed

in real data. We also argue that this approach couldn’t correctly test the mediated

effect when the link function gM is not an identity function, since in this case, Equa-

tion 3.4 doesn’t hold anymore. Thus the product of two standardized coefficients

doesn’t represent the mediated effect and we can’t considered it as a general solution

to all link functions. Then, empirical-based modeling techniques such as bootstrap

and the Bayesian approach receive more and more attention.

3.2.2 Bayesian Mediation Analysis of Single-Level Models

As mentioned above, one advantage of Bayesian inference is that it can esti-

mate mediation effect in a very straightforward way. That is, conditioning on the

observation and the priors of the unknown parameters, estimations of these param-

eters are based upon their posterior distributions.
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To apply the Bayesian method, normal priors are often used for parameters in

equations (3.6) to (3.8), that is

β1 ∼ N(µβ1 , σ1), β2 ∼ N(µβ2 , σ2), β3 ∼ N(µβ3 , σ3)

τ ∼ N(µτ , στ ), τ
′ ∼ N(µτ ′ , στ ′)

α ∼ N(µα, σα), β ∼ N(µβ, σβ) (3.11)

Here, µβi , σi, i = 1, 2, 3, µτ , µ
′
τ , µα, µβ, στ , στ ′ , σα andσβ are hyperparameters, which

are predefined reflecting prior information on these parameters.

If the equations are simple linear models, it is not difficult to derive the pos-

terior distributions of the important parameters α, β, τ and τ ′. However, in most

GLM approaches, such as equations (3.6) - (3.8), MCMC methods need to be used

to generate posterior samples. As discussed in Chapter 3, the WinBUGS or JAGS

software can be used to implement MCMC methods to obtain the posterior draws.

The JAGS code for the single-level mediation analysis is given in Appendix A.1.

Let α(t), β(t) denote the tth posterior draw of these parameters for t = 1, ..., T .

Point estimates of these parameters can be obtained as sample means of these pos-

terior draws. For example, the point estimate of α is given by

α̂ =
1

T

T∑
t=1

α(t). (3.12)

The posterior variance of α is given by

V ar(α|data) =
1

T − 1

T∑
t=1

(α(t) − α̂)2. (3.13)

For the estimation of the mediated effect, similar to conventional mediation

analysis, there are two ways to estimate it. One is based on equation 3.6 and 3.8 to
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compute the difference of the effects of the independent variable X before and after

the mediation(τ − τ ′). The other one is to compute the product of αβ. In Bayesian

perspective, all these parameters are random which means these two terms don’t

follow the same distribution in general. Although, we have E(τ − τ ′) = E(αβ). The

product estimation is usually preferred since it is very straightforward and easier to

compute in linear regression models and can be easily extended to generalized linear

models. We use the product as a measure of the mediation effect for all possible

combinations of X, M , and Y being continuous or categorical. For simple linear

regression models, the point estimate of the mediated effect is,

α̂β =
1

T

T∑
t=1

(α(t)β(t)). (3.14)

The posterior variance is,

V ar(αβ|data) =
1

T − 1

T∑
t=1

(α(t)β(t) − α̂β)2. (3.15)

For generalized linear models (Equations 3.6 – 3.8), instead of standardizing

the coefficients, we propose to use linear approximation of g−1M to obtain the first

order term of X and then use the product of the coefficient of this term and β to

estimate and test the mediated effect.

Assuming g−1M is twice continuously differentiable, the linear approximation at

point a is as follows,

g−1M (β2 + αX) ≈ g−1M (a) + (g−1M )′(a)(β2 + αX − a). (3.16)

The mediated effect is then defined as,

zα×β = (g−1M )′(a)α× β. (3.17)
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The point estimate of the mediated effect is,

ẑα×β =
1

T

T∑
t=1

(z
(t)
α×β). (3.18)

where z
(t)
α×β = (g−1M )′(a)α(t) × β(t). The posterior variance is,

V ar(zα×β|data) =
1

T − 1

T∑
t=1

(z
(t)
α×β − ẑα×β)2. (3.19)

The 95% credible interval of αβ and zα×β is given by [q∗0.025, q
∗
0.975], where q∗0.025

and q∗0.975 denote the 0.025 and 0.975 sample quantiles of the posterior draws of αβ

and zα×β, respectively. The Bayesian hypothesis test (2.25) can be applied to these

estimates.

3.3 Bayesian Mediation Analysis of Multilevel Models

As discussed in previous chapters, in many fields of research, the structure

of observational or experimental data often has two levels which typically include

individual (within-subject) and population/group (between-subject) variables. In-

dividuals in the same group or data samples from the same individual are assumed

to follow the same distribution which is different from that of other groups or in-

dividuals. Thus the single-level mediation model is not appropriate anymore since

the assumption of independent observations is violated.

In multilevel mediation, the mediator and independent variable may both oc-

cur in lower level (within-subject variables), upper level (between-subject variables)

or in different levels (Kenny et al., 1998, 2003; Krull and MacKinnon, 1999, 2001).

Estimation of multilevel models is much more complex than single-level models,
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since the correlation among parameters in multilevel models might be considered

and maximum likelihood usually involves many parameters that can cause a prob-

lem of convergence. Kenny et al. (2003) discussed these difficulties and introduced

a method to estimate the covariance among random effects. By using a selection

variable, Bauer et al. (2006) proposed a method to obtain consistent estimates of the

variance components by simultaneously fitting the two mediation regression equa-

tions. All these methods are reviewed and an general approach is summarized in

MacKinnon (2008).

As introduced before, hierarchical Bayesian methods has its unique advantages

in analyzing multilevel or hierarchical mediation models. First, in the Bayesian

framework, parameters are considered as random variables instead of fixed values

which naturally handle the case of multilevel models. That is, the lower (subject-

) level parameters are assumed to follow a distribution which involves the upper

(population-) level parameters that automatically constructs the upper level model.

Second, by using MCMC methods, estimation in multilevel modeling is relatively

straightforward under the Bayesian framework. Almost any model with various

distributions and any number of levels can be estimated simply by deriving the con-

ditional posteriors or using other MCMC sampling techniques and software. Third,

as mentioned earlier, for small data sets, Bayesian inference is relatively better than

others, since it does not assume the symmetry and normality of estimates. Yuan

and MacKinnon (2009) studied the multilevel mediation analysis from the Bayesian

perspective, but that study was limited to continuous variables. In this section, we

extend the multilevel model to even more complicated situation, that is the mediator
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and dependent variable can be either continuous or categorical in either the same or

different levels. The models are as follows (JAGS code is included in the Appendix

A.2 for each of the three cases),

1) Mediator (M) and independent variable (X) in subject-level

Subject-level model:

E(Mi,j) = g−1M (β2,j + αjXi,j), (3.20)

E(Yi,j) = g−1Y (β3,j + τ ′jXi,j + βjMi,j). (3.21)

Population-level model:

β2,j =
K∑
k=1

Zj,kθ1,k + µ1,j,

αj =
K∑
k=1

Zj,kθ2,k + µ2,j,

β3,j =
K∑
k=1

Zj,kθ3,k + µ3,j,

τ ′j =
K∑
k=1

Zj,kθ4,k + µ4,j,

βj =
K∑
k=1

Zj,kθ5,k + µ5,j, (3.22)

where i, i = 1, ..., n, indexes the number of observation, j, j = 1, ..., J, indexes the

subject or group and k, k = 1, ..., K, indexes the between-subject covariates. In the

subject-level model, gY , gM are link functions (if linear regressions are used, they

are replaced with identity functions and residuals are assumed to follow normal

distributions). β2,j and β3,j are random intercepts. τ ′j, αj and βj are random slopes.

All coefficients in this level are random in order to capture the heterogeneity in

higher level model. In the population-level model, θi,k, i = 1, ..., 5, denotes the
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coefficient for each between-subject covariate indexed by k. Zj,k is an element of Z,

a J ×K matrix of between-subject covariates. Here we assume the between-subject

residuals µj = (µ1,j, µ2,j, ..., µ5,j)
T , follow a multivariate normal distribution,

µj ∼ N(0,Σ). (3.23)

where 0 is a vector of 0s, and Σ is a 5× 5 covariance matrix.

In multilevel mediation, it is often of interest to investigate the average indirect

effect in the population level. Kenny et al. (2003) showed that the total effect in a

fully random, lower level mediated multilevel model is

c = E(τ ′j) + E(αjβj) + σαjβj , (3.24)

where σαjβj denotes the covariance between αj and βj. The average indirect effect

is,

ab = E(αjβj). (3.25)

For the case of subject-level generalized linear models, similar to the situation

in single-level mediation models, we propose to use the approximated product to

measure the indirect effect,

zα×β = E((g−1M )′(a)αjβj). (3.26)

To estimate the multilevel mediation models in Bayesian perspective, priors

need to be assigned to all parameters in the model including regression parameters

(θi,k, i = 1, .., 5 and the covariance matrix Σ). Independent normal prior distri-

butions with appropriate hyperparameters are often assigned on these regression
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parameters, as introduced in previous sections. We can also use noninformative

uniform priors to simplify the model,

p(θ1,k, θ2,k, ..., θ5,k, k = 1, ..., K) ∝ Unif(−∞,+∞). (3.27)

For the covariance matrix Σ, the inverse Wishart distribution is often used as the

prior distribution, which has two parameters: the degree of freedom parameter ν

and the scale matrix Ψ, a 5× 5 matrix.

Σ ∼ W−1(Ψ, ν). (3.28)

In Bayesian statistics, the inverse Wishart distribution is often used as the conjugate

prior for the covariance matrix of a multivariate normal distribution. To represent

the least informative prior knowledge, the degree of freedom is set to be as small

as possible (i.e., ν = 5), and a diagonal matrix with small values is assigned as

the scale matrix. After specifying the prior distributions of these parameters, the

hierarchical Bayesian generalized linear model can be easily fitted using MCMC

sampling software such as WinBUGS and JAGS.

Let α =
∑K

k=1 Zj,kθ2,k, β =
∑K

k=1 Zj,kθ5,k, denote the means of αj and βj.

Let α(t) and β(t), t = 1, ..., T, denote the tth posterior draws of these means and

σ
(t)
αjβj

denote the tth draw of the covariance. It is very straightforward to obtain the

inference of the average indirect effect. For the effect in 3.25, the tth posterior draw

of the mediated effect is,

ab(t) = α(t)β(t). (3.29)

71



Then the posterior mean and variance of the average indirect effect are given by

âb =
1

T

T∑
t=1

(ab(t)). (3.30)

The posterior variance is,

V ar(ab|data) =
1

T − 1

T∑
t=1

(ab(t) − âb)2. (3.31)

For the effect in 3.26, the tth posterior draw of the mediated effect is,

z
(t)
α×β = (g−1M )′(a)α(t)β(t). (3.32)

Then the posterior mean and variance of the average indirect effect are given by

ẑα×β =
1

T

T∑
t=1

(z
(t)
α×β). (3.33)

The posterior variance is,

V ar(zα×β|data) =
1

T − 1

T∑
t=1

(z
(t)
α×β − ẑα×β)2. (3.34)

2) Mediator (M) and independent variable (X) occur in population-level

Subject-level model:

E(Yi,j) = g−1Y (
P∑
p=0

βp2jZ
′
i,p). (3.35)

Population-level model:

βp2,j = θ2,p + βpMj + τ ′pXj + µp2,j,

E(Mj) = g−1M (θM + αXj). (3.36)

where i, i = 1, ..., n, indexes the number of observation, j, j = 1, ..., J, indexes the

subject or group and p, p = 1, ..., P, indexes the within-subject covariates. In the
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subject-level model, gY is a link function. Z ′i,p is an element of Z ′, a n×P matrix of

within-subject covariates.βp2,j are random coefficients for within-subject covariates.

If there is no within-subject covariate, then only intercepts are included in the

model (β0
2j). Note that, different from the multilevel model where the mediator

(M) and independent variable (X) are both at subject-level, here, for each within-

subject covariate p, p = 1, ..., P , there is one population-level model. θ2,p and θM are

intercepts. τ ′pand βp are coefficients for the mediator M and independent variable X

corresponding to each within-subject covariate indexed by p. α is the slope in the

regression of M on X. Here, we assume the between-subject residual corresponding

to each within-subject covariate µp2,j, follow a normal distribution,

µp2,j ∼ N(0, σp). (3.37)

Similar to the previous mediation model, priors are assigned to all unknown

parameters in the model including regression parameters including θ2,p, θM , τ
′
p, βp

and α. Independent normal prior distributions with appropriate hyperparameters

are assigned on these parameters. The noninformative uniform prior is also a choice

as introduced before.

We are interested in the indirect effect at the population level. As discussed

before, if the equation 3.36 is a ordinary least squares regression, for each within-

subject covariate indexed by p, the mediated effect is defined as,

(αβ)p = αβp. (3.38)

Let α(t) and βp(t) denote the tth draw of these parameters. Then the tth draw of
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the mediated effect is,

(αβ)(t)p = α(t)βp(t). (3.39)

The posterior mean and variance of the mediated effect are given by

ˆ(αβ)p =
1

T

T∑
t=1

((αβ)(t)p ). (3.40)

The posterior variance is,

V ar((αβ)p|data) =
1

T − 1

T∑
t=1

((αβ)(t)p − ˆ(αβ)p)
2. (3.41)

If the equation 3.36 is a generalized linear model, we again use the approxi-

mated product to estimate and test the mediated effect.

z
(t)
α×βp = (g−1M )′(a)α(t)βp(t), (3.42)

The point estimate of the mediated effect is,

ẑα×βp =
1

T

T∑
t=1

(z
(t)
α×βp). (3.43)

The posterior variance is,

V ar(zα×βp |data) =
1

T − 1

T∑
t=1

(z
(t)
α×βp − ẑα×βp)

2. (3.44)

3) Mediator (M) and independent variable (X) at different level

When the mediator is at the subject-level and the independent variable is at the

population-level, it is straightforward to use hierarchical Bayesian ANOVA models

introduced in the previous chapter to estimate parameters. That is,

Subject-level model:

E(Yi,j) = g−1Y (β0,j + βjMi,j),

E(Mi,j) = g−1M (γ0,j), (3.45)
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Population-level model:

β0,j = θ0 + α0Xj + µ0,j,

βj = θ1 + α1Xj + µ1,j,

γ0,j = θ2 + αXj + µ2,j. (3.46)

where i, i = 1, ..., n, indexes the number of observation, j, j = 1, ..., J, indexes the

subject or group. In the subject-level model, gY and gM are link functions. The

within-subject covariates include the intercept β0,j, γ0,j and the mediatorMi,j. βj is a

random coefficient for the mediator. Note that, different from the previous multilevel

models where the mediator (M) and independent variable (X) are both at the same

level, here, since the they are at different levels (regular regression doesn’t work),

we propose to use a second hierarchical regression of of M on X (Equation 3.45),

where the intercept γ0,j is the only within-subject variable. In the population-level

model, θ0, θ1 and θ2 are intercepts. α0 is the slope in the regression of the within

level intercept β0,j on X which represents the main effect of X (similar to τ ′ in

Equation 3.21). α1 is the slope in the regression of the within level coefficient βj on

X which represents the interaction effect of the mediator M and the independent

variable X. α represents the effect of X on M in a hierarchical way. We assume the

between-subject residual µ0,j, µ1,j and µ2,j follow Normal distributions. Compared

with Equations 2.1, 2.2 and 2.4a–d, we can see that the multilevel mediation model

we introduced in Equation 3.45 and 3.46 is exactly a hierarchical Bayesian ANOVA

model. Thus we can easily use the R package BANOVA to estimate all parameters.

Let β denote the expectation of βj, that is, β = E(βj) = θ1 + α1Xj. The
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average mediated effect is defined as,

ab = E(αβj) = αβ. (3.47)

For the case of subject-level generalized linear models, similar to the situa-

tion in previous mediation models, we propose to use the approximated product to

measure the indirect effect,

zα×β = E((g−1M )′(a)αβj) = (g−1M )′(a)αβ. (3.48)

Then following the methods introduced in previous models (Such as, Equations

3.29–3.34), we can compute several statistics of interest and test the mediated effect

based on posterior samples.

3.4 Applications

3.4.1 Application 1: Single-Level Mediation

In this section, we use the Morse et al. (1994) data that were reanalyzed by

Kenny et al. (1998). The independent variable, X is Treatment, a manipulated

variable with 42.2% Controls and 57.8% Treateds, the dependent variable, Y is

Days Housed, and the mediator or M is Housing Contacts. The causal relation is

described as follows: The variable Treatment is presumed to cause Housing Contacts,

which in turn is presumed to cause Days Housed (Morse et al., 1994). There are

a total of 109 observations. The means and standard deviations are presented in

Table 3.1.
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Variable Mean Standard Deviation

Treatment .422 .496
Days Housed 15.552 13.107

Housing Contacts 3.462 3.843

Table 3.1: Descriptive statistics of housing data

The results following standard procedure introduced by Baron and Kenny

(1986) are summarized in Table 3.2. From the result, we can see that the indirect

effect of Treatment on Days Housed (αβ) is equal to 2.560, and the direct effect

is equal to 3.998. The Sobel standard error (3.5) is equal to 1.157, which makes

the Z test of the indirect effect equal to 2.213 (p = .027). Because the Sobel test is

statistically significant, it is concluded that the indirect effect is significantly different

from zero.

Path Estimate 95% CI p-value

τ 6.558 1.654 to 11.462 0.009
α 1.831 .389 to 3.274 0.013
β 1.398 .801 to 1.995 < 0.001
τ ′ 3.998 -.625 to 8.621 0.089

Table 3.2: Conventional mediation analysis results of housing data

We began the single-level Bayesian mediation analysis using simple linear re-

gression, that is, in equations 3.6 to 3.8, the link functions are identity functions,

Yi = β1 + τXi + ε1i , (3.49)

Mi = β2 + αXi + ε2i , (3.50)

Yi = β3 + τ ′Xi + βM + ε3i . (3.51)

where independent normal prior information 3.11 are used for all parameters. The
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hyper-parameters are set as,

µβ1 = µβ2 = µβ3

= µτ = µ′τ = µα = µβ = 0,

σ1 = σ2 = σ3 = στ

= στ ′ = σα = σβ = 10−6. (3.52)

The residuals ε1, ε2 and ε3 are assumed to follow Normal distribution,

εi ∼ Normal(0, σ−2i ), i = 1, 2, 3. (3.53)

where priors for σi, i = 1, 2, 3, are assumed to follow Gamma(1, 1).

We use 5,000 iteration to burn-in and collected 5,000 posterior draws thinned

by a factor 5 to make inference. By using either visual or formal diagnostics intro-

duced before, we make sure the MCMC chains of all parameters converges well after

burn-in period. The estimation results are summarized in Table 3.3.

Path Estimate 95% CI Bayesian p-value

τ 6.56 1.603 to 11.45 0.009
α 1.84 .354 to 3.30 0.015
β 1.40 .797 to 2.00 < 0.001
τ ′ 3.98 -.702 to 8.68 0.097

Table 3.3: Bayesian mediation analysis results of housing data

As you can see from the above results, Bayesian estimations are very close

to conventional estimations. The posterior distribution of the mediated effect αβ

is displayed in Figure 3.2. The posterior mean and posterior standard error of

αβ are 2.58 and 1.203, respectively. The 95% credible interval for the mediated
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effect is [0.478, 5.17] which doesn’t include 0. Thus the mediated effect is considered

as significant. Moreover, Bayesian inference based on the posterior distribution

automatically take into account of the skewed distribution of the mediated effect

shown in Figure 3.2.

Figure 3.2: Posterior distribution of the mediated effect (left panel) and the cor-
responding normal quantile-quantile plot (right panel) for the Bayesian single-level
mediation analysis of the housing data.

Next, we assume the dependent variable Y and the mediator M to follow

Poisson distribution, since both of them are counting variables. The independent

variable X remains the same. The new model is as follows,

Yi ∼ Poisson(pY1i), p
Y
1i = exp(β1 + τXi),

Mi ∼ Poisson(pMi ), pMi = exp(β2 + αXi),

Yi ∼ Poisson(pY2i), p
Y
2i = exp(β3 + τ ′Xi + βMi). (3.54)

To conduct Bayesian analysis, the same independent normal priors (3.52) with the

previous example are assigned to parameters in Equation 3.54. We use 10,000 it-
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eration to burn-in and collected 2,000 posterior draws thinned by a factor 5 to

make inference. Convergence of the MCMC chains of all parameters are ensured by

diagnostics introduced before. The results are summarized in Table 3.4.

Path Conventional Analysis Bayesian Analysis

Estimate 95% CI p-value Estimate 95% CI p-value

τ 0.413 0.318 to 0.509 < 2e - 16 0.413 0.315 to 0.513 < 5e - 04
α 0.501 0.298 to 0.704 1.3e - 06 0.500 0.296 to 0.711 < 5e - 04
β 0.069 0.059 to 0.079 < 2e - 16 0.069 0.059 to 0.079 < 5e - 04
τ ′ 0.286 0.189 to 0.383 6.97e - 09 0.285 0.191 to 0.379 < 5e - 04

Table 3.4: Comparison of conventional and Bayesian mediation analysis of housing
data with dichotomous variables

Using the test proposed by Iacobucci (2012) (3.10), the mediated effect is

estimated as zmediation = 4.568, which makes the z-test p-value equal to 4.90e-06.

In this situation, the mediated effect is strongly significant. Compared with the

conventional z-test, Bayesian methods estimate the mediated effect (3.18), ẑα×β =

0.035 which yields the Bayesian p-value less than 5e-04. Note that, here we use

the linear approximation at 0 of the log link function (gM = ln, g−1M (β2 + αXi) =

exp(β2+αXi) ≈ 1+1·(β2+αXi)). Bayesian inference successfully captures the slight

non-normality of the mediated effect shown in Figure 3.3 and produces a reasonable

test of the indirect effect.

3.4.2 Application 2: Multilevel Mediation

In this section, we revisit the housing data analyzed in the previous section.

The data was originally designed as a between-subject data which has the person
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Figure 3.3: Posterior distribution of the mediated effect(left panel) and the corre-
sponding normal quantile-quantile plot (right panel) for the Bayesian single-level
mediation analysis of the housing data.

id information. Thus, we can apply the Bayesian multilevel mediation model in

which both the mediator and independent variable are between-subject variables

(see 3.36). The model is as follows,

Subject-level model:

Yi,j ∼ Poisson(pYi,j),

log(pYi,j) = β2,j. (3.55)

Population-level model:

β2,j = θ2 + βMj + τ ′Xj + µ2,j,

Mj ∼ Poisson(pMj )

log(pMj ) = θM + αXj. (3.56)
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Note that, in this case, only the intercept β2,j is included in the subject-level

model. The population-level residual is assumed to follow a normal distribution,

µ2,j ∼ Normal(0, σ−22 ), where the prior for σ2 is set as Gamma(1, 1). Priors for

other parameters in population-level are assumed to follow independent normal dis-

tributions, θ2, β, τ
′, θM , α ∼ Normal(0, 10−6). We use 5,000 iterations as burn-in

period to make sure the convergence (result not shown here) and collect 5,000 pos-

terior samples thinned by a factor 5 to make inference. The result of the Bayesian

analysis are reported in Table 3.5.

Effect Estimate 95% CI Bayesian p-value

α 0.502 0.300 to 0.708 < 0.001
β 0.206 0.100 to 0.316 < 0.001
τ ′ 0.774 -0.042 to 1.663 0.063

Table 3.5: Bayesian multilevel mediation analysis of housing data

We are interested in the test of the indirect effect in population level. By using

the linear approximation at 0 of the log link function and the estimation introduced

in Equation 3.42, the trace plot and density estimation of zα×β is shown in Figure

3.4, with mean equal to 0.103 (95% CI [0.043, 0.178]). Since the 95% credible interval

doesn’t contain 0, the result confirms the previous result that the mediated effect is

significant in the model with dichotomous dependent and mediators.

3.5 Conclusion

In this chapter, we propose a Bayesian approach to mediation analysis in

both single-level and multilevel models including either continuous or dichotomous
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Figure 3.4: Trace and density plot of the posterior distribution of the mediated effect
zα×β in between-subject level multilevel mediation model.

outcomes and mediators. The Bayesian approach is especially useful for single-

level mediation analysis with generalized linear regressions and multilevel mediation

analysis, which are not easily to handle through a conventional frequentist approach.

Bayesian mediation analysis has many advantages including the natural way of set-

ting up the model and computationally sampling the statistics of interest. By uti-

lizing well-developed MCMC methods, along with several powerful software, such

as WinBUGS and JAGS, researchers can easily build up any complex hierarchical

models with least constraint. Compared with the frequentist approach, Bayesian in-

ference based on posterior samples generated by MCMC methods does not depend

on large-sample approximation. The inference is exact for small samples. This fea-

ture makes the Bayesian approach especially appealing for studies with small sample
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sizes, which is the case in may experimental studies. Furthermore, Bayesian meth-

ods naturally incorporate prior research, allowing for the accumulation of knowledge

of mediated effects across research studies. However, this might also be an issue in

Bayesian inference. When the prior is inappropriately specified, estimates based

on Bayesian mediation models can be biased. Thus, it is very critical to chose an

appropriate prior to increase the accuracy of the estimation.
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Chapter 4: Future Work

In this dissertation, we introduced hierarchical Bayesian ANOVA models with

an accompanying R package to analyze experimental data including within- and

between- subject variables. The response variable follows a wide variety of distribu-

tions and the between-subject model follows the traditional ANOVA or ANCOVA

structure that allows the estimation of sums of squares and effect sizes of each ex-

perimental factor. The BANOVA package simulate the analysis under reasonable

assumptions on the distribution of the data and its hierarchical structure. It offers

several user-friendly routines for the applied researcher and makes the life easier. The

package can also be extended with many other models, for example using different

distributions of the dependent variable. As discussed before, the package utilizes the

JAGS software, which offers many advantages from a modeling perspective, while

in addition the JAGS code is produced as a by-product of the analysis and available

for the applied researcher to inspect and modify. However, a disadvantage of this

choice is that this decreases the computation efficiency. Future developments could

focus on reprogramming the MCMC code in languages such as C++ or Java. In

addition to the R package, the web application for hierarchical Bayesian ANOVA

is also introduced. Currently, there are six models included in the web. Users can
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easily use these models by just uploading a data set without installing any software.

In the future, more models included in the R package will be embedded into the web

application, so that researchers who are not familiar with R programming language

can easily access the models we developed.

We also introduced Bayesian mediation models in both single-level and multi-

level. The Bayesian approach shows its advantages in testing mediated effects using

generalize linear and multilevel mediation models. Bayesian approach is conceptu-

ally natural and easy to implement by using well-developed MCMC methods, which

enable researchers to easily fit very complex generalized linear and hierarchical mod-

els. Especially when a continuous mediator is included in a hierarchical model, the

computations can be done with the R package BANOVA. As discussed before, the

Bayesian inference does not depend on large-sample approximation. It is exact for

any size of samples. However, one important topic we have not covered in this

dissertation is the mediation models involving multiple continuous or categorical

mediators. If these mediators and the independent variable are at the same level,

we can use multiple regressions for these mediators to deal with this case. However,

if these mediators and the independent variable are at different levels, the hierar-

chical Bayesian models introduced before need to be modified to correctly represent

the mediated effect. It would be a reasonable future research topic in Bayesian

mediation analysis.
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Chapter A: JAGS Code for Bayesian Mediation Analysis

A.1 JAGS Code for Single-level Mediation

model{

# Single-level mediation model, in which the dependent

# variable and mediator assumed to follow the Normal distribution.

# y[i], m[i], and x[i] denote data vectors of dependent

# variable, mediating variable and independent variable

# , respectively. N is the number of observations,

# ydup[i] is the duplicate of y[i].

for (i in 1:N){

ydup[i] ~dnorm(mean.ydup[i], prec.ydup)

mean.ydup[i] <- beta1 + tau*x[i]

m[i] ~dnorm(mean.m[i], prec.m)

mean.m[i] <- beta2 + alpha*x[i]

y[i] ~dnorm(mean.y[i], prec.y)

mean.y[i] <- beta3 + beta*m[i] + tau.prime*x[i]

}

# specify priors

beta1 ~dnorm(0, 0.000001)
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beta2 ~dnorm(0, 0.000001)

beta3 ~dnorm(0, 0.000001)

alpha ~dnorm(0, 0.000001)

beta ~dnorm(0, 0.000001)

tau ~dnorm(0, 0.000001)

tau.prime ~dnorm(0, 0.000001)

prec.y ~dgamma(0.001, 0.001)

prec.ydup ~dgamma(0.001, 0.001)

prec.m ~dgamma(0.001, 0.001)

# specify the mediated effect

tau_m <- alpha*beta

}

model{

# Single-level mediation model, in which the dependent

# variable and mediator assumed to follow the Poisson distribution.

# y[i], m[i], and x[i] denote data vectors of dependent

# variable, mediating variable and independent variable

# , respectively. N is the number of observations,

# ydup[i] is the duplicate of y[i].

for (i in 1:N){

ydup[i] ~ dpois(mean.ydup[i])

log(mean.ydup[i]) <- beta1 + tau*x[i]

m[i] ~ dpois(mean.m[i])

log(mean.m[i]) <- beta2 + alpha*x[i]

y[i] ~ dpois(mean.y[i])
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log(mean.y[i]) <- beta3 + beta*m[i] + tau.prime*x[i]

}

# specify priors

beta1 ~dnorm(0, 0.000001)

beta2 ~dnorm(0, 0.000001)

beta3 ~dnorm(0, 0.000001)

tau ~dnorm(0, 0.000001)

alpha ~dnorm(0, 0.000001)

beta ~dnorm(0, 0.000001)

tau.prime ~dnorm(0, 0.000001)

# specify mediated effect

tau_m <- alpha*beta

}

A.2 JAGS Code for Multilevel Mediation

model

{

# specify the multilevel model, in which the dependent variable

# assumed to follow the Normal distribution. The mediator and the independent variable

# are both at the lower level. Proposed by Yuan and MacKinnon (2009)

# N1 and N2 are the number of first-level units and

# second-level units, respectively.

for (j in 1:N2){

for (i in 1:N1){

# Specify the first-level models

ydup[j,i] ~dnorm(mean.direc[j,i], prec.direc)
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mean.direc[j,i] <- Beta1[j] + Tau.direc[j] * x[j,i]

m[j,i] ~dnorm(mean.m[j,i], prec.m)

mean.m[j,i] <- Beta2[j] + AlphaBeta[j,1] * x[j,i]

y[j,i] ~ dnorm(mean.y[j,i], prec.y)

mean.y[j,i] <- Beta3[j] + AlphaBeta[j,2] * m[j,i] + Tau.p[j] * x[j,i]

}

# Specify the second-level models

Beta1[j] ~ dnorm(beta1, prec.beta1)

Tau.direc[j] ~ dnorm(tau.direc, prec.taudirec)

Beta2[j] ~ dnorm(beta2, prec.beta2)

Beta3[j] ~ dnorm(beta3, prec.beta3)

Tau.p[j] ~ dnorm(tau.p, prec.taup)

# bivariate normal distribution for alpha and beta

AlphaBeta[j, 1:2] ~dmnorm(alphabeta[], prec.ab[,])

}

alphabeta[1:2] ~ dmnorm(mean[], prec[,])

# ...

# some code are skipped, please refer to the original paper (Yuan and MacKinnon,2009)

# for more details.

# ...

# Wishart prior for the covariance matrix

prec.ab[1:2,1:2] ~ dwish(Omega[,], 2)

# ...

# some code are skipped, please refer to the original paper (Yuan and MacKinnon,2009)
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# for more details.

# ...

# specify the mediated effect

tau_m <- alphabeta[1]*alphabeta[2]

}

model{

# specify the multilevel model, in which the dependent variable

# and the mediator assumed to follow the Poisson distribution, and between-subject only

# N and M are the number of first-level units and second-level units, respectively.

# specify the first-level model

for (i in 1:N){

y[i] ~dpois(py[i])

log(py[i]) <- beta2[id[i]]

}

# specify the second-level models

for (i in 1:M){

m[i] ~dpois(pm[i])

log(pm[i]) <- thetam + alpha*x[i]

beta2[i] ~dnorm(mu.beta2[i], tau.beta2)

mu.beta2[i] <- theta2 + beta*m[i] + tau.prime*x[i]

}

thetam ~dnorm(0, 0.000001)

theta2 ~dnorm(0, 0.000001)

alpha ~dnorm(0, 0.000001)

beta ~dnorm(0, 0.000001)

tau.prime ~dnorm(0, 0.000001)
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tau.beta2 <- pow(sigma.beta2, -2)

sigma.beta2 ~dgamma(1,1)

# specify the mediated effect

tau_m <- alpha*beta

}
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Package ‘BANOVA’
June 10, 2014

Type Package

Title BANOVA: An R-Package for Hierarchical Bayesian ANOVA

Version 0.1

Date 2014-05-11

Author Chen Dong, Michel Wedel

SystemRequirements jags (see http://mcmc-jags.sourceforge.net)

Maintainer Chen Dong <chendong@umd.edu>

Depends R (>= 3.0.1)

Imports runjags, coda

Description BANOVA covers several Bayesian Analysis of Variance (BANOVA) models used in anal-
ysis of experimental designs in which both within- and between- subjects factors are manipu-
lated. They can be applied to data that are common in the behavioral sciences and re-
lated fields. The package includes: Hierarchical Bayes ANOVA models with normal re-
sponse, t response, Binomial(Bernoulli) response, Poisson response, ordered multinomial re-
sponse and multinomial response variables. All models accommodate unobserved heterogene-
ity by inclding a normal distribution of the parameters across individuals. Outputs of the pack-
age include tables of sums of squares, effect sizes and p-values, and tables of means, which are eas-
ily interpretable for behavioral researchers. BANOVA uses JAGS as a computational platform.

License GPL (>= 2)

R topics documented:
BANOVA-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
BAnova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   96
BANOVA.Bern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
BANOVA.Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
BANOVA.Multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
BANOVA.Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
BANOVA.ordMultinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
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BANOVA.Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   106
BANOVA.T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   108
bernlogtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
bpndata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
choicedata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
colorad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
colorad2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
conv.diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   116
goalstudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ipadstudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
table.means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
table.pvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
trace.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

BANOVA-package BANOVA: An R-Package for Hierarchical Bayesian ANOVA

Description

This package include several hierarchical Bayes Analysis of Variance models. These models are
suited for the analysis of experimental designs in which both within- and between- subjects factors
are manipulated, and account for a wide variety of distributions of the dependent variable.

Details

Package: BANOVA
Type: Package
Version: 0.1
Date: 2014-05-11
License: GPL (>= 2)

Model:
E(yi) = g−1(ηi)

where ηi =
∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id of data response i. The within-subject fac-
tors and their interactions are indexed by p(p = 1, 2, ., P ). Each index p represents a batch of Jp
coefficients: βpj,s, j = 1, ., Jp;s = 1, ., S indexes subjects. Note that if the subject-level covariate
is continuous, Jp = 1, so that ANCOVA models are also accommodated (relaxing their "constant
slope" assumption).

The population-level model allows for heterogeneity among subjects, because the subject-level co-
efficients βpj,s are assumed to follow a multivariate normal distribution.The between-subject factors
and their interactions are indexed by q, (q = 1, 2, ., Q), q = 0 denotes the constant term. The
population-level ANOVA can be written as:
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βpj,s =
∑Q
q=0 θ

pq
j,kqs

+ δpj,s

The population-level ANCOVA model can be expressed as a linear model with a design matrix Z
that contains all between-subject factors and their interactions and a constant term:
βpj,s =

∑Q
k=1 Zs,kθ

p
j,k + δpj,s

where Zs,kis an element of Z, a S × Q matrix of covariates. θpj,k is a hyperparameter which
captures the effects of between-subject factor q on the parameter βpj,s of within-subject factor p.
The error δpj,s is assumed to be normal: δpj,s ~ N(0, σ−2

p ). Proper, but diffuse priors are assumed:
θpj,k ~ N(0, s), and σp ~ Gamma(a, b), where s, a, b are hyper-parameters. The default setting is
s = 10−4, a = 1, b = 1.

Author(s)

Chen Dong; Michel Wedel

Maintainer: Chen Dong <chendong@umd.edu>

References

McCullagh, P., Nelder, JA. (1989) Generalized linear models, New York, NY: Chapman and Hall.

Gelman, A. (2005) Analysis of variance-why it is more important than ever, Ann. Statist. Vol. 33,
No. 1, 1-53.

Rossi, P., Allenby,G., McCulloch, R. (2005) Bayesian Statistics and Marketing, John Wiley and
Sons.

Gill, J. (2007) Bayesian Methods for the Social and Behavioral Sciences, Chapman and Hall, Sec-
ond Edition.

Gelman, A., Carlin, J., Stern, H. and Dunson, D. (2013). Bayesian Data Analysis, London: Chap-
man & Hall.

BAnova Function to print the table of effect sizes

Description

The analysis of variance is performed at level 2 equation of the Bayesian ANOVA see BANOVA-package.
This makes it possible to capture the effects of level-2 variables on the heterogeneity distribution of
subjects, and compute sums of squares and effect sizes.

Usage

BAnova(x)

Arguments

x the object from BANOVA.*
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Details

Measures of effect size in regression are measures of the degree of association between an effect
(e.g., a main effect, an interaction, a linear contrast) and the dependent variable. They can be con-
sidered as the correlation between a categorical factor(effect) and the dependent variable. They are
usually interpreted as the proportion of variance in the dependent variable that is attributable to each
effect. In the package, Eta squared is calculated and displayed. It is defined as follows,

η2 = (SSeffect)
(SStotal)

Where: SS_effect= the sums of squares for the effect of interest
SS_total= the total sums of squares for all effects, interactions, and errors in the regression.

If the design is not balanced, type II(if interactions are not included in the model) and type III sum
of squares are computed.

References

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.

Examples

## Not run:
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 3000, sample = 2000, thin = 5)
BAnova(res)

## End(Not run)

BANOVA.Bern Estimation of BANOVA with a Bernoulli dependent variable

Description

BANOVA.Bern implements a Bayesian ANOVA for binary dependent variable, using a logit link and
a normal heterogeneity distribution.

Usage

BANOVA.Bern(l1_formula = "NA", l2_formula = "NA", data,
id, burnin = 500, sample = 1000, thin = 1, jags = findjags())

## S3 method for class BANOVA.Bern
summary(object, ...)
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## S3 method for class BANOVA.Bern
predict(object, newdata = NULL,...)
## S3 method for class BANOVA.Bern
print(x, ...)

Arguments

l1_formula formula for level 1 e.g. ’Y~X1+X2’

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

data a data.frame in long format including all features in level 1 and level 2(covariates
and categorical factors) and responses

id subject ID of each response unit

burnin the number of burn in draws in the MCMC algorithm

sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.Bern (returned by BANOVA.Bern)

newdata test data, either a matrix, vector or a data.frame. It must have the same format
with the original data (the same number of features and the same data classes)

x object of class BANOVA.Bern (returned by BANOVA.Bern)

... additional arguments,currently ignored

Details

Level 1 model:
yi ~ Binomial(1, pi), pi = logit−1(ηi)

where ηi =
∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id of data record i. see BANOVA-package

Value

BANOVA.Bern returns an object of class "BANOVA.Bern". The returned object is a list containing:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues

dMatrice design matrices at level 1 and level 2
samples_l2_param

posterior samples of level 2 parameters

data original data.frame

mf1 model.frame of level 1

mf2 model.frame of level 2

JAGSmodel JAGS model



99 BANOVA.Bin

Examples

## Not run:
# use the data in bernlogtime
data(bernlogtime)
# model with the dependent variable : response
res <- BANOVA.Bern(response~typical, ~blur + color, bernlogtime,
bernlogtime$subject)
summary(res)
table.means(res)

## End(Not run)

BANOVA.Bin Estimation of BANOVA with a Binomial dependent variable

Description

BANOVA.Bin implements a Hierarchical Bayesian ANOVA for a binomial response variable using a
logit link and a normal heterogeneity distribution.

Usage

BANOVA.Bin(l1_formula = "NA", l2_formula = "NA", data,
id, num_trails, burnin = 500, sample = 1000, thin = 1, jags = findjags())

## S3 method for class BANOVA.Bin
summary(object, ...)
## S3 method for class BANOVA.Bin
predict(object, newdata = NULL,...)
## S3 method for class BANOVA.Bin
print(x, ...)

Arguments

l1_formula formula for level 1 e.g. ’Y~X1+X2’

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

data a data.frame in long format including all features in level 1 and level 2(covariates
and categorical factors) and responses

id subject ID of each response unit

num_trails the number of trails of each observation(=1, if it is bernoulli), the type is forced
to be ’integer’

burnin the number of burn in draws in the MCMC algorithm

sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned
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jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.Bin (returned by BANOVA.Bin)

newdata test data, either a matrix, vector or a data frame. It must have the same format
with the original data (the same column number)

x object of class BANOVA.Bin (returned by BANOVA.Bin)

... additional arguments,currently ignored

Details

Level 1 model:
yi ~ Binomial(ntrails, pi), pi = logit−1(ηi)

where ntrails is the binomial total for each record i, ηi =
∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id
of response i. see BANOVA-package

Value

BANOVA.Bin returns an object of class "BANOVA.Bin". The returned object is a list containing:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues

dMatrice design matrices at level 1 and level 2
samples_l2_param

posterior samples of level 2 parameters

data original data.frame

mf1 model.frame of level 1

mf2 model.frame of level 2

JAGSmodel JAGS model

Examples

## Not run:
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 3000, sample = 2000, thin = 5)
summary(res)
table.means(res)
# use the the first row of data to predict,
# only the in-model variables data will be used, the others will be ignored
predict(res, c(1, 0, 8, 2, 1, 0.03400759))

## End(Not run)
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BANOVA.Multinomial Estimation of BANOVA with a Multinomial dependent variable

Description

BANOVA.Multinomial implements a Hierarchical Bayesian ANOVA for multinomial response vari-
able using a logit link and a normal heterogeneity distribution.

Usage

BANOVA.Multinomial(l1_formula = "NA", l2_formula = "NA",
dataX, dataZ, y, id, burnin = 500, sample = 1000, thin = 1, jags = findjags())

## S3 method for class BANOVA.Multinomial
summary(object, ...)
## S3 method for class BANOVA.Multinomial
predict(object, Xsamples = NULL, Zsamples = NULL,...)
## S3 method for class BANOVA.Multinomial
print(x, ...)

Arguments

l1_formula formula for level 1 e.g. ’~X1+X2’, response variable must not be included

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

dataX a list of data frames(each corresponds to the choice set of each observation) that
includes all covariates and factors

dataZ a data frame(long format) that includes all level 2 covariates and factors

y choice responses, 1,2,3...

id subject id

burnin the number of burn in draws in the MCMC algorithm

sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.Multinomial(returned by BANOVA.Multinomial)

Xsamples new data samples in level one, must be a list( the same format with the traning
data), numeric variables must be mean centered.

Zsamples new data samples in level two( the same format with the traning data), numeric
variables must be mean centered.

x object of class BANOVA.Multinomial (returned by BANOVA.Multinomial)

... additional arguments,currently ignored
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Details

Level 1 model:
P (yi = k) = exp(ηik)∑K

k=1
exp(ηik)

where ηik =
∑P
p=0

∑Jp
j=1X

k,p
i,j β

p
j,si

, si is the subject id of response i, see BANOVA-package. Xk,p
i,j

is the design matrix corresponding to each class k(k = 1, .,K) of yi. The first level of the response
is the base level, thus the intercept corresponding to this level will not be included.

Value

BANOVA.Multinomial returns an object of class "BANOVA.Multinomial". The returned object is a
list containing:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues

dMatrice design matrices at level 1 and level 2
samples_l2_param

posterior samples of level 2 parameters

dataX original dataX

dataZ original dataZ

mf1 model.frame of level 1

mf2 model.frame of level 2

n_categories the number of categories of the response

JAGSmodel JAGS model

Examples

## Not run:
# see choicedata
data(choicedata)
# generate dataX(convert the within-subject variables to a list)
dataX <- list()
for (i in 1:nrow(choicedata)){

logP <- as.numeric(log(choicedata[i,3:8]))
# all numeric variables must be mean centered
dataX[[i]] <- as.data.frame(logP) - mean(logP)

}

dataZ <- choicedata[,9:13]
res <- BANOVA.Multinomial(~ logP, ~ college, dataX, dataZ, choicedata$choice, choicedata$hhid)

## End(Not run)
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BANOVA.Normal Estimation of BANOVA with a normally distributed dependent variable

Description

BANOVA.Normal implements a Hierarchical Bayesian ANOVA for linear models with normal re-
sponse and a normal heterogeneity distribution.

Usage

BANOVA.Normal(l1_formula = "NA", l2_formula = "NA", data,
id, burnin = 500, sample = 1000, thin = 1, jags = findjags())

## S3 method for class BANOVA.Normal
summary(object, ...)
## S3 method for class BANOVA.Normal
predict(object, newdata = NULL,...)
## S3 method for class BANOVA.Normal
print(x, ...)

Arguments

l1_formula formula for level 1 e.g. ’Y~X1+X2’

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

data a data.frame in long format including all features in level 1 and level 2(covariates
and categorical factors) and responses

id subject ID of each response unit

burnin the number of burn in draws in the MCMC algorithm

sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.Normal (returned by BANOVA.Normal)

newdata test data, either a matrix, vector or a data frame. It must have the same format
with the original data (the same column number)

x object of class BANOVA.Normal (returned by BANOVA.Normal)

... additional arguments,currently ignored

Details

Level 1 model:
yi ~ Normal(ηi, σ)
where ηi =

∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id of response i. see BANOVA-package
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Value

BANOVA.Normal returns an object of class "BANOVA.Normal". The returned object is a list contain-
ing:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues

dMatrice design matrices at level 1 and level 2

samples_l2_param

posterior samples of level 2 parameters

data original data.frame

mf1 model.frame of level 1

mf2 model.frame of level 2

JAGSmodel JAGS model

Examples

## Not run:
# Use the ipadstudy data set
data(ipadstudy)
# mean center covariates
ipadstudy$age <- ipadstudy$age - mean(ipadstudy$age)
ipadstudy$owner <- ipadstudy$owner - mean(ipadstudy$owner)
ipadstudy$gender <- ipadstudy$gender - mean(ipadstudy$gender)
res <- BANOVA.Normal(attitude~1, ~owner + age + gender + selfbrand*conspic, ipadstudy,
ipadstudy$id, burnin = 5000, sample = 1000, thin = 10 )

summary(res)

## End(Not run)

BANOVA.ordMultinomial Estimation of BANOVA with a ordered Multinomial response variable

Description

BANOVA.ordMultinomial implements a Hierarchical Bayesian ANOVA for ordered multinomial
responses, with a normal heterogeneity distribution.
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Usage

BANOVA.ordMultinomial(l1_formula = "NA",
l2_formula = "NA", data, id, burnin = 500, sample = 1000, thin = 1, jags = findjags())

## S3 method for class BANOVA.ordMultinomial
summary(object, ...)
## S3 method for class BANOVA.ordMultinomial
predict(object, newdata = NULL,...)
## S3 method for class BANOVA.ordMultinomial
print(x, ...)

Arguments

l1_formula formula for level 1 e.g. ’Y~X1+X2’

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

data a data frame

id subject ID of each response unit

burnin the number of burn in draws in the MCMC algorithm

sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.ordMultinomial (returned by BANOVA.ordMultinomial)

newdata test data, either a matrix, vector or a data frame. It must have the same format
with the original data (the same column number)

x object of class BANOVA.ordMultinomial (returned by BANOVA.ordMultinomial)

... additional arguments,currently ignored

Details

Level 1 model:
yi = 1, if li < 0
yi = 2, if 0 < li < c2
...
yi = k, if ck−1 < li <∞
li = ηi + εi where εi ~ logistic (0, 1), ck, (k = 2, ...k − 1) are cut points,
ηi =

∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id of response i. see BANOVA-package

Value

BANOVA.ordMultinomial returns an object of class "BANOVA.ordMultinomial". The returned
object is a list containing:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues
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dMatrice design matrices at level 1 and level 2

samples_l2_param

posterior samples of level 2 parameters

samples_cutp_param

posterior samples of cutpoints

data original data.frame

mf1 model.frame of level 1

mf2 model.frame of level 2

JAGSmodel JAGS model

Examples

## Not run:

data(goalstudy)
res <- BANOVA.ordMultinomial (perceivedsim~1, ~goalprogress*varmeans, goalstudy,
goalstudy$id, burnin = 3000, sample = 1000, thin = 5)
summary(res)
BAnova(res)
table.means(res)
predict(res, data[1:5,])

## End(Not run)

BANOVA.Poisson Estimation of BANOVA with Poisson dependent variables

Description

BANOVA.Poisson implements a Hierarchical Bayesian ANOVA for models with a count-data re-
sponse variable and normal heterogeneity distribution.

Usage

BANOVA.Poisson(l1_formula = "NA", l2_formula = "NA",
data, id, burnin = 500, sample = 1000, thin = 1, jags = findjags())

## S3 method for class BANOVA.Poisson
summary(object, ...)
## S3 method for class BANOVA.Poisson
predict(object, newdata = NULL,...)
## S3 method for class BANOVA.Poisson
print(x, ...)
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Arguments

l1_formula formula for level 1 e.g. ’Y~X1+X2’

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

data a data.frame in long format including all features in level 1 and level 2(covariates
and categorical factors) and responses

id subject ID of each response unit

burnin the number of burn in draws in the MCMC algorithm

sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.Poisson (returned by BANOVA.Poisson)

newdata test data, either a matrix, vector or a data frame. It must have the same format
with the original data (the same column number)

x object of class BANOVA.Poisson (returned by BANOVA.Poisson)

... additional arguments,currently ignored

Details

Level 1 model:
yi ~ Poisson(λi), λi = exp(ηi + εi)

where ηi =
∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id of response i, see BANOVA-package. εi is a
dispersion term.

Value

BANOVA.Poisson returns an object of class "BANOVA.Poisson". The returned object is a list con-
taining:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues

dMatrice design matrices at level 1 and level 2

samples_l2_param

posterior samples of level 2 parameters

data original data.frame

mf1 model.frame of level 1

mf2 model.frame of level 2

JAGSmodel JAGS model
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Examples

## Not run:

# use the bpndata dataset
data(bpndata)
# within-subjects model using the dependent variable : PIC_FIX
res1 <- BANOVA.Poisson(PIC_FIX ~ AD_ID + PIC_SIZE+ PAGE_NUM
+ PAGE_POS, ~1, bpndata, bpndata$RESPONDENT_ID)
summary(res1)

# use the goalstudy dataset
data(goalstudy)
goalstudy$bid <- as.integer(goalstudy$bid + 0.5)
res2<-BANOVA.Poisson(bid~1, ~goalprogress*varmeans, goalstudy, goalstudy$id,
burnin = 5000, sample = 1000, thin = 20)
summary(res2)

## End(Not run)

BANOVA.T Estimation of BANOVA with T-distributin of the dependent variable

Description

BANOVA.T implements a Hierarchical Bayesian ANOVA for linear models with T-distributed re-
sponse.

Usage

BANOVA.T(l1_formula = "NA", l2_formula = "NA", data, id,
burnin = 1000, sample = 1000, thin = 2, jags = findjags())

## S3 method for class BANOVA.T
summary(object, ...)
## S3 method for class BANOVA.T
predict(object, newdata = NULL,...)
## S3 method for class BANOVA.T
print(x, ...)

Arguments

l1_formula formula for level 1 e.g. ’Y~X1+X2’

l2_formula formula for level 2 e.g. ’~Z1+Z2’, response variable must not be included

data a data.frame in long format including all features in level 1 and level 2(covariates
and categorical factors) and responses

id subject ID of each response unit

burnin the number of burn in draws in the MCMC algorithm
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sample target samples in the MCMC algorithm after thinning

thin the number of samples in the MCMC algorithm that needs to be thinned

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system

object object of class BANOVA.T (returned by BANOVA.T)

newdata test data, either a matrix, vector or a data frame. It must have the same format
with the original data (the same column number)

x object of class BANOVA.T (returned by BANOVA.T)

... additional arguments,currently ignored

Details

Level 1 model:
yi ~ t(ν, ηi, σ−2)

where ηi =
∑P
p=0

∑Jp
j=1X

p
i,jβ

p
j,si

, si is the subject id of response i, see BANOVA-package. The
hyper parameters: ν is the degree of freedom, ν ~ Piosson(1) and σ is the scale parameter, σ ~
Gamma(1,1).

Value

BANOVA.T returns an object of class "BANOVA.T". The returned object is a list containing:

anova.table table of effect sizes BAnova

coef.tables table of estimated coefficients

pvalue.table table of p-values table.pvalues

dMatrice design matrices at level 1 and level 2
samples_l2_param

posterior samples of level 2 parameters

data original data.frame

mf1 model.frame of level 1

mf2 model.frame of level 2

JAGSmodel JAGS model

Examples

## Not run:

# Use the ipadstudy data set
data(ipadstudy)
res <- BANOVA.T(attitude~1, ~owner + age + gender + selfbrand*conspic, ipadstudy,
ipadstudy$id, burnin = 3000, sample = 1000, thin = 5 )
res
summary(res)

## End(Not run)
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bernlogtime Data for analysis of effects of typicality, blur and color on gist percep-
tion of ads

Description

Data from a mixed design experiment, where respondents were exposed to 32 ads, for 100 millisec.
The ads were either typical or atypical (typical: 1 or 2). Respondents were exposed to ads that were
either in full color or black-and-white (color: 1 or 2), and at different levels of blur (1=normal,5 =
very high blur). These are between-subjects factors. The dependent variables are the response 0/1,
and the response time. Typicality is a within-subjects variable.

Usage

data(bernlogtime)

Format

This R object contains within-subject variable: \$typical is a factor with 2 levels "0" (typical ads)
and "1"(atypical ads); between-subjects variables: \$blur is a factor with two levels (1=normal,5 =
very high blur). \$color denotes a factor with 2 levels "1"(full color) and "2"(grayscale). \$subject
is the ID of subjects. \$response denotes if the ad is correctly identified. \$logtime is the response
time.

\$bernlogtime: ’data.frame’: 3072 obs. of 6 variables:
. . . \$ subject : int 5 5 5 5 5 5 5 5 5 5 ...
. . . \$ typical : Factor w/ 2 levels "1","2": 1 2 1 1 1 2 2 2 2 1 ...
. . . \$ blur : Factor w/ 2 levels "1","5": 1 1 1 1 1 1 1 1 1 1 ...
. . . \$ color : Factor w/ 2 levels "1","2": 2 2 2 2 2 2 2 2 2 2 ...
. . . \$ response: int 1 1 1 1 1 1 1 1 1 1 ...
. . . \$ logtime : num 0.977 1.73 1.784 1 1.149 ...

References

Wedel, M. and Pieters, R. The Role of Color Schemes when Advertising Exposures are Brief and
Blurred. Working paper, Robert H. Smith School of Business, University of Maryland, May 2014.

Examples

## Not run:
data(bernlogtime)

# model using the dependent variable : log of the response time(logtime)
res1 <- BANOVA.Normal(logtime~typical, ~blur + color, bernlogtime,
bernlogtime$subject)
res1
summary(res1)
table.means(res1)
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# model using the dependent variable : response
res2 <- BANOVA.Bern(response~typical, ~blur + color, bernlogtime,
bernlogtime$subject)
summary(res2)
table.means(res2)

## End(Not run)

bpndata Eye-movement data for analysis of print ad designs

Description

Data were collected in an experimental study in which 88 participants freely paged through a mag-
azine at home or in a waiting room. While flipping through pages at their own pace, participants’
eye-movements were recorded with infra-red corneal reflection eye-tracking methodology. In a
subsequent memory task, participants were asked to identify the target brand in the ad as soon as
possible by touching the correct brand name on the screen. Accuracy (accurate=1, inaccurate =0)
of brand memory and response time were recorded for each ad and participant.

Usage

data(bpndata)

Format

This R object contains 3080 observations in the data (35 ads x 88 participants). The goal is to ex-
amine the effects of several ad design variables on both eye movements and memory. The variables
include:

1. RESPONDENT_ID: ID number of a respondent;
2. AD_ID: ID number of an ad;
3. PAGE_NUM: page number in the magazine where an ad appears (1,2,3,...);
4. PAGE_POS: the right-side vs. left-side position on a page, 1 = right, 0 = left;
5. PIC_FIX: fixation count of the pictorial element (0, 1, 2, 3, ...);
6. PIC_SIZE: surface size of the pictorial element, in inches2;
7. RECALL_ACCU: whether a respondent accurately recalls the brand name, 1= yes, 0 = no;
8. RECALL_TIME: the time it takes a respondent to answer the brand recall question, in seconds.

\$ bpndata: ’data.frame’: 3080 obs. of 8 variables:
. . . \$ RESPONDENT_ID: int 1 1 1 1 1 1 1 1 1 1 ...
. . . \$ AD_ID : int 1 2 3 4 5 6 7 8 9 10 ...
. . . \$ PAGE_NUM : int 2 5 6 11 13 14 17 18 21 22 ...
. . . \$ PAGE_POS : int 0 1 0 1 1 0 1 0 1 0 ...
. . . \$ PIC_FIX : int 0 2 1 1 1 2 0 3 3 8 ...
. . . \$ PIC_SIZE : num 74.2 52.6 77.6 71.4 52.4 ...
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. . . \$ RECALL_ACCU : int 0 0 0 0 0 0 1 1 0 0 ...

. . . \$ RECALL_TIME : num 2.56 1.04 2.76 2.8 2.28 2.32 2.04 2.04 2.48 0.6 ...

References

Wedel, M. and Pieters, R. (Autumn, 2000). Eye Fixations on Advertisements and Memory for
Brands: A Model and Findings, Marketing Science, Vol. 19, No. 4, pp. 297-312

Examples

## Not run:
data(bpndata)

# within-subjects model using the dependent variable : PIC_FIX
res1 <- BANOVA.Poisson(PIC_FIX ~ PIC_SIZE+ PAGE_NUM
+ PAGE_POS, ~1, bpndata, bpndata$RESPONDENT_ID)
res1

# within-subjects model using the dependent variable : RECALL_ACCU
res2 <- BANOVA.Bern(RECALL_ACCU~ RECALL_TIME + PAGE_NUM
+ PAGE_POS, ~1, bpndata, bpndata$RESPONDENT_ID)
res2

## End(Not run)

choicedata Household Panel Data on Margarine Purchases

Description

Panel data on purchases of margarine by 204 households. Demographic variables are included.

Usage

data(choicedata)

Format

This is an R object that contains within-subjects variables and between-subjects variables:

\$ choicePrice:‘data.frame’: 1500 obs. of 13 variables:
. . . \$ hhid : int 2100016 2100016 2100016 2100016
. . . \$ choice : int 1 1 1 1 1 4 1 1 4 1

Within-subject variables:

. . . \$ PPk\_Stk : num 0.66 0.63 0.29 0.62 0.5 0.58 0.29 ...

. . . \$ PBB\_Stk : num 0.67 0.67 0.5 0.61 0.58 0.45 0.51 ...
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. . . \$ PFl\_Stk : num 1.09 0.99 0.99 0.99 0.99 0.99 0.99 ...

. . . \$ PHse\_Stk: num 0.57 0.57 0.57 0.57 0.45 0.45 0.29 ...

. . . \$ PGen\_Stk: num 0.36 0.36 0.36 0.36 0.33 0.33 0.33 ...

. . . \$ PSS\_Tub : num 0.85 0.85 0.79 0.85 0.85 0.85 0.85 ...

Pk is Parkay; BB is BlueBonnett, Fl is Fleischmanns, Hse is house, Gen is generic, SS is Shed
Spread. \_Stk indicates stick, \_Tub indicates Tub form.

Between-subject variables:

. . . \$ Income : num 32.5 17.5 37.5 17.5 87.5 12.5 ...

. . . \$ Fam\_Size : int 2 3 2 1 1 2 2 2 5 2 ...

. . . \$ college : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

. . . \$ whtcollar: Factor w/ 2 levels "0","1": 0 0 0 0 0 0 0 1 1 1 ...

. . . \$ retired : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

Details

choice is a multinomial indicator of one of the 6 brands (in order listed under format). All prices
are in $.

Source

Allenby, G. and Rossi, P. (1991), Quality Perceptions and Asymmetric Switching Between Brands,
Marketing Science, Vol. 10, No.3, pp. 185-205.

References

Chapter 5, Bayesian Statistics and Marketing by Rossi et al.
http://www.perossi.org/home/bsm-1

Examples

## Not run:
data(choicedata)
# generate dataX(convert the within-subjects variables to a list)
dataX <- list()
for (i in 1:nrow(choicedata)){

logP <- as.numeric(log(choicedata[i,3:8]))
# Note: Before the model initialization, all numeric variables(covariates) must be mean centered
dataX[[i]] <- as.data.frame(logP) - mean(logP)

}

dataZ <- choicedata[,9:13]
res <- BANOVA.Multinomial(~ logP, ~ college, dataX, dataZ, choicedata$choice, choicedata$hhid)
summary(res)
predict(res,dataX[1:4], dataZ[1:4,])

## End(Not run)

http://www.perossi.org/home/bsm-1
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colorad Data for gist perception of advertising, study 1

Description

Data from an experiment in which one hundred and sixteen subjects (53 men; mean age 23, ranging
from 21 to 28) were randomly assigned to one condition of a 5 (blur: normal, low, medium, high,
very high) x 2 (color: full color, grayscale) between-participants, x 2 (image: typical ads, atypical
ads) within-participants, mixed design. Participants were exposed to 40 images, 32 full-page ads
and 8 editorial pages. There were 8 ads per product category, with 4 typical and 4 atypical ones,
the categories being car, financial services, food, and skincare. Subjects were asked to identify
each image being flashed for 100msec. as being an ad or not. The total number of correct ad
identifications, for typical and atypical ads, are used as a dependent variable.

Usage

data(colorad)

Format

This R object contains within-subject variable \$typic which is a factor with 2 levels "0" (typical ads)
and "1"(atypical ads); between-subjects variables: \$blur which is a numerical vairable denotes 5
different levels of blur (which must be mean centered), \$blurfac is a categorical data corresponding
to the levels of \$blur, \$color which is a factor with 2 levels "0"(full color) and "1"(grayscale). \$id
is the ID of subjects. \$y is the number of correct identifications of the 16 ads of each subject for
each level of \$typic.

\$ colorad:‘data.frame’: 474 obs. of 8 variables:
. . . \$ id : int 1 1 2 2 3 3 4 4 5 5 ...
. . . \$ typic : Factor w/ 2 levels "0","1": 0 1 0 1 0 1 0 1 0 1 ...
. . . \$ y : int 8 6 12 6 11 9 9 11 14 14 ...
. . . \$ blurfac : Factor w/ 5 levels "1","2","3","4",..: 2 2 4 4 2 2 3 3 1 1 ...
. . . \$ color : Factor w/ 2 levels "0","1": 1 1 0 0 0 0 0 0 1 1 ...
. . . \$ blur: num 3.69 3.69 4.79 4.79 3.69 ...

References

Wedel, M. and Pieters, R. (2014) The Role of Color Schemes when Advertising Exposures are Brief
and Blurred. Working paper, Robert H. Smith School of Business, University of Maryland.

Examples

## Not run:
data(colorad)
# mean center blur
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y ~ typic, ~ color + blur + color*blur, colorad, colorad$id, as.integer(16))
res
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summary(res)
table.means(res)
# use the the first row of data to predict,
# only the in-model variables data will be used, the others will be ignored
predict(res, c(1, 0, 8, 8, 2, 8, 1, 0.03400759))

## End(Not run)

colorad2 Data for gist perception of advertising, study 2

Description

Data from an experiment in which One hundred and forty eight subjects (71 men; age ranging from
21 to 28) were randomly assigned to one condition of a 2 (blur: normal, very high) x 2 (color: full
color, grayscale, inverted) between-participants design. Participants were exposed to 25 ads for five
brands in each of five categories. Ads were selected to be typical for the category, using the same
procedure as in colorad. The product categories used were cars, financial services, food, skincare
and fragrance. Images were flashed for 100 msec. and subjects were asked to identify whether the
image was an ad or not, and if they identified it correctly as an ad, they were asked to indicate which
category (out of five) was advertised. The total number of correct ad identifications and category
identifications are used as dependent variables.

Usage

data(colorad2)

Format

This R object contains between-subjects variables: \$B is a factor corresponding to the levels of blur
(normal = 0, very high = 1), \$C1 and \$C2 are dummy variables denote ’grayscale’ and ’inverted’
levels of color. \$C is the original factor denote the color with 3 levels. \$ID is the ID of subjects.
\$Y1 is the number of correct identifications of the 25 ads of each subject. \$Y2 is the number of
correct identifications of the category, given the number of correct ad identifications.

\$ colorad2:‘data.frame’: 148 obs. of 7 variables:
. . . \$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
. . . \$ C1 : int 0 1 1 0 0 0 0 0 1 1 ...
. . . \$ C2 : int 0 0 0 1 1 0 0 0 0 0 ...
. . . \$ B : Factor w/ 2 levels "0","1": 1 1 0 0 1 0 0 1 0 1 ...
. . . \$ Y1 : int 14 6 23 21 8 23 24 5 23 6 ...
. . . \$ Y2 : int 2 3 8 8 2 15 10 1 13 0 ...
. . . \$ C : Factor w/ 3 levels "1","2","3": 1 2 2 3 3 1 1 1 2 2 ...

References

Wedel, M. and Pieters, R. (2014) The Role of Color Schemes when Advertising Exposures are Brief
and Blurred. Working paper, Robert H. Smith School of Business, University of Maryland.
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Examples

## Not run:
data(colorad2)
# factor C is effect coded
res1 <- BANOVA.Bin(Y1 ~ 1, ~ C + B + C*B, colorad2, colorad2$ID, as.integer(25))
# or use dummy variables
# res1 <- BANOVA.Bin(Y1 ~ 1, ~ C1 + B + C2 + C1*B + C2*B, colorad2, colorad2$ID, as.integer(25))
res1
summary(res1)
table.means(res1)

# second model
res2 <- BANOVA.Bin(Y2 ~ 1, ~ C + B + C*B, colorad2, colorad2$ID, colorad2$Y1)
summary(res2)
table.means(res2)

## End(Not run)

conv.diag Function to display the convergence diagnostics

Description

The Geweke diagnostic and the Heidelberg and Welch diagnostic are reported. These two con-
vergence diagnostics are calculated based on only a single MCMC chain. Both diagnostics re-
quire a single chain and may be applied with any MCMC method. The functions geweke.diag,
heidel.diag in coda package is used to compute this diagnostic.

Geweke’s convergence diagnostic is calculated by taking the difference between the means from the
first nA iterations and the last nB iterations. If the ratios nA/n and nB/n are fixed and nA+nB <
n, then by the central limit theorem, the distribution of this diagnostic approaches a standard normal
as n tends to infinity. In our package, nA = .2 ∗ n and nB = .5 ∗ n.

The Heidelberg and Welch diagnostic is based on a test statistic to accept or reject the null hypothe-
sis that the Markov chain is from a stationary distribution. The present package reports the station-
ary test.The convergence test uses the Cramer-von Mises statistic to test for stationary. The test is
successively applied on the chain. If the null hypothesis is rejected, the first 10% of the iterations
are discarded and the stationarity test repeated. If the stationary test fails again, an additional 10%
of the iterations are discarded and the test repeated again. The process continues until 50% of the
iterations have been discarded and the test still rejects. In our package, eps = 0.1, pvalue = 0.05
are used as parameters of the function heidel.diag.

Usage

conv.diag(x)

Arguments

x the object from BANOVA.*
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Value

conv.diag returns a list of two diagnostics:

sol_geweke The Geweke diagnostic

sol_heidel The Heidelberg and Welch diagnostic

References

Plummer, M., Best, N., Cowles, K. and Vines K. (2006) CODA: Convergence Diagnosis and Output
Analysis for MCMC, R News, Vol 6, pp. 7-11.

Geweke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior mo-
ments, In Bayesian Statistics 4 (ed JM Bernado, JO Berger, AP Dawid and AFM Smith). Clarendon
Press, Oxford, UK.

Heidelberger, P. and Welch, PD. (1981) A spectral method for confidence interval generation and
run length control in simulations, Comm. ACM. Vol. 24, No.4, pp. 233-245.

Heidelberger, P. and Welch, PD. (1983) Simulation run length control in the presence of an initial
transient, Opns Res., Vol.31, No.6, pp. 1109-44.

Schruben, LW. (1982) Detecting initialization bias in simulation experiments, Opns. Res., Vol. 30,
No.3, pp. 569-590.

Examples

## Not run:
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 3000, sample = 2000, thin = 5)
summary(res)

conv.diag(res)

## End(Not run)

goalstudy Data for the study of the impact of the variety among means on moti-
vation to pursue a goal

Description

The study investigated how the perceived variety (high vs. low) among products, as means to a
subjects’ goal, affects their motivation to pursue that goal. The hypothesis was that only when
progress toward a goal is low, product variety increases motivation to pursue the goal. In the study,
one hundred and five subjects were randomly assigned to conditions in a 2 (goal progress: low vs.
high) by 2 (variety among means: low vs. high) between-subjects design. The final goal was a
"fitness goal", and the products used were protein bars; variety was manipulated by asking subjects
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to think about how the products were similar (low) or different (high); goal progress was primed
by asking subjects questions regarding the frequency of their recent workouts on low (0,1,...,5 or
more) versus high (5 or less, 6,7,..., 10) frequency scales. Subjects were asked questions regarding
the similarity of protein bars, and the bid they were willing to make for the bars, used as dependent
variables in the study.

Usage

data(goalstudy)

Format

This R object contains between-subjects variables: goalprogress, which denotes the progress toward
a goal (1:low , 2: high ); varmeans, which denotes the amount of variety within the means to
goal attainment (1:low , 2:high); perceivedsim, which is a seven-point scale dependent variable
measuring the perceived similarity of the set of products (1 = not at all similar, 7 = very similar);
and bid which denotes the amount that subjects would be willing to pay for the products .

\$ goalstudy: ’data.frame’: 105 obs. of 5 variables:
. . . \$ id : int 1 2 3 4 5 6 7 8 9 10 ...
. . . \$ perceivedsim : int 5 7 2 2 5 5 5 4 5 7 ...
. . . \$ goalprogress : Factor w/ 2 levels "1","2": 1 1 2 2 2 1 2 1 2 1 ...
. . . \$ varmeans : Factor w/ 2 levels "1","2": 2 1 2 1 1 1 1 2 1 1 ...
. . . \$ bid : num 5 0 1 15 3 10 5 4.5 3 0.75 ...

References

Etkin, J. and Ratner, R. (2012) The Dynamic Impact of Variety among Means on Motivation. Journal
of Consumer Research, Vol. 38, No. 6, pp. 1076 - 1092.

Examples

## Not run:
data(goalstudy)

res1 <- BANOVA.Normal(bid~1, ~goalprogress*varmeans, goalstudy, goalstudy$id,
burnin = 5000, sample = 1000, thin = 20)

conv.diag(res1)
trace.plot(res1)
summary(res1)

res2 <- BANOVA.ordMultinomial (perceivedsim~1, ~goalprogress*varmeans, goalstudy,
goalstudy$id, burnin = 3000, sample = 1000, thin = 5)

summary(res2)
table.means(res2)
# print JAGS code
cat(res2$JAGSmodel)

## End(Not run)
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ipadstudy Data for the study of relation between Conspicuous, Brand Usage,
Self-Brand Connection and attitudes toward the brand

Description

The study is a between-subjects experiment which has factor (conspicuousness: low vs. high)
and one measured variable (self-brand connection). The goal is to show that conspicuous brand
use negatively affects attitudes toward the user and the brand only for observers low in self-brand
connection. One hundred fifty-four participants were exposed to a video manipulating conspicuous
brand usage. Participants completed the study by answering several questions which are used to
measure the dependent (attitude) and independent (self-brand connection) variables in the model.

Usage

data(ipadstudy)

Format

This R object contains between-subjects variables: \$owner is an indicator variable. If the subject
owns iPad or iPhone, then owner = 1. It is equal to 0 otherwise. \$age denotes the age of subjects.
\$gender denotes the gender of subjects. gender = 1 if the subject is a female, 0 otherwise. \$conspic
is an indicator variable related to conspicuousness. conspic = 1 if conspicuousness is high. \$self-
brand denotes the self-brand connection for Apple. \$id is the id of subjects. \$attitude denotes the
attitudes towards the brand which is the continuous dependent variable. \$apple_dl is a seven-point
scale variable which denotes the attitudes (dislike = 1,..., like = 7)

\$ ipadstudy: ’data.frame’: 154 obs. of 9 variables:
. . . \$ id : int 1 2 3 4 5 6 7 8 9 10 ...
. . . \$ attitude : num 3 5.33 5.67 5.33 6 ...
. . . \$ owner : num 0 0 0 1 1 0 1 0 1 0 ...
. . . \$ age : int 19 33 25 41 38 33 37 46 41 55 ...
. . . \$ gender : num 0 0 1 0 1 1 1 0 1 1 ...
. . . \$ conspic : num 0 1 0 1 1 0 0 1 0 1 ...
. . . \$ selfbrand : num -2.304 1.696 -0.161 -0.447 0.267 ...
. . . \$ apple_dl : int 3 6 6 5 6 4 7 7 5 5 ...

References

Ferraro,R., Kirmani, A. and Matherly, T., (2013) Look at Me! Look at Me! Conspicuous Brand
Usage, Self-Brand Connection, and Dilution. Journal of Marketing Research, Vol. 50, No. 4, pp.
477-488.

Examples

## Not run:
data(ipadstudy)
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# mean center covariates
ipadstudy$age <- ipadstudy$age - mean(ipadstudy$age)
ipadstudy$owner <- ipadstudy$owner - mean(ipadstudy$owner )
ipadstudy$gender <- ipadstudy$gender - mean(ipadstudy$gender)

res <- BANOVA.Normal(attitude~1, ~owner + age + gender + selfbrand*conspic,
ipadstudy, ipadstudy$id, burnin = 3000, sample = 1000, thin = 5 )
summary(res)

# use apple_dl as the dependent variable
res <- BANOVA.ordMultinomial(apple_dl~1, ~owner + age + gender + selfbrand*conspic,
ipadstudy, ipadstudy$id, burnin = 3000, sample = 1000, thin = 5 )
summary(res)
table.means(res)

## End(Not run)

table.means Function to print the table of means

Description

Output of this function is a table of means for the categorical predictors at either level-1 or level-
2. Statistics of interest such as credible intervals and standard deviations of the means are also
computed.

Usage

table.means(x)

Arguments

x the object from BANOVA.*

Examples

## Not run:
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 3000, sample = 2000, thin = 5)
summary(res)
table.means(res)

## End(Not run)
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table.pvalues Function to print the table of p-values

Description

Computes the Baysian p-values for the test concerning the level 2 parameters:

For p = 1, ..., P
H0 : θp,qj,k = 0

H1 : θp,qj,k 6= 0

The two-sided P-value for the sample outcome is obtained by first finding the one sided P-value,
min(P (θp,qj,k < 0), P (θp,qj,k > 0)) which can be estimated from posterior samples. For example,
P (θp,qj,k > 0) = n+

n , where n+ is the number of posterior samples that are greater than 0, n is the
target sample size. The two sided P-value is Pθ(θ

p,q
j,k ) = 2 ∗min(P (θp,qj,k < 0), P (θp,qj,k > 0)).

If there are θp,qj,k1 , θ
p,q
j,k2

, ..., θp,qj,kJ representing J levels of a multi-level variable, we use a single P-
value to represent the significance of all levels. The two alternatives are:

H0 : θp,qj,k1 = θp,qj,k2 = · · · = θp,qj,kJ = 0

H1 : some θp,qj,kj 6= 0

Let θp,qj,kmin
and θp,qj,kmax

denote the coefficients with the smallest and largest posterior mean. Then
the overall P-value is defined as

min(Pθ(θ
p,q
j,kmin

), Pθ(θ
p,q
j,kmax

)).

Usage

table.pvalues(x)

Arguments

x the object from BANOVA.*

Source

It borrows the idea of Sheffe F-test for multiple testing: the F-stat for testing the contrast with
maximal difference from zero. Thank Dr. P. Lenk of the University of Michigan for this suggestion.

Examples

## Not run:
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 3000, sample = 2000, thin = 5)
summary(res)
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table.pvalues(res)

## End(Not run)

trace.plot Function to plot the trace of parameters

Description

Function to plot the trace of all level-2 parameters. The plots can be saved as a pdf file.

Usage

trace.plot(x, save = FALSE)

Arguments

x the object from BANOVA.*

save whether to save the trace plot as a pdf file, the default is FALSE

Examples

## Not run:
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Bin(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 3000, sample = 2000, thin = 5)
trace.plot(res)

## End(Not run)



Chapter C: BANOVA Web Application

In this appendix, we introduce a web application of Bayesian ANOVA (address:

http://chendong.physics.umd.edu/). The motivation for the development of the web

application is to offer user-friendly menu driven analysis of Bayesian hierarchical

ANOVA models introduced in Chapter 2.

To use the web application, user needs to first log in using a guest account

provided on the web page. Once logged in, user can start building a Bayesian

ANOVA model by uploading a data set first (see Figure C.1). The data set must be

in a CSV(comma-separated values) file which follows the long format introduced in

Figure 2.1. As introduced before, to successfully build a Bayesian ANOVA model,

the data set must include a column indicating the subject ID, a column indicating the

response variable, columns indicating within-subject and between-subject variables.

The web application automatically reads the data and then let users select

several in-model variables. Using the colorad data introduced in Table 2.3 as an

example, the whole process includes 6 steps:

1. Select the subject ID variable (Figure C.2). The subject ID variable is very

important to the Bayesian ANOVA model, since it contains the information related

to the heterogeneity within and between different subjects;

2. Select a dependent variable and the corresponding Bayesian ANOVA model
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Figure C.1: Data input

Figure C.2: Select subject ID

(Figure C.3). Currently, the web application contains 6 Bayesian ANOVA models

including (Normal, Bernoulli, Binomial, t, Poisson and ordered multinomial models).

The assumption of the distribution of the response variable must be checked by the

user before the selection. For example, if user selects the Bernoulli model but the

response variable actually follows a Normal distribution (continuous). The program

will report an error indicating this problem after starting the simulation.

3. Select between-subject variables and their interactions (Figure C.4 and
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Figure C.3: Select the dependent variable and a model

Figure C.5). If there is no between-subject variable, users can select ’No between

subjects data’. Variables that only contain few levels are considered as categorical

variables which should be specified by the user. The program will deal with these

variables using effect coding but not dummy coding. The choices of interactions

between categorical variables will be displayed next and let users to chose. The

interactions are currently limited to 3-way by the program. Note that, if users

select the Binomial model, the variable indicating the total number of trails must

be selected at this step.

4. Similar to the selections of between-subject variables, within-subject vari-

ables and their interactions (Figure C.6 and top part of Figure C.7) are selected at

this step.

5. After selections of all in-model variables, parameters for MCMC simulation
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Figure C.4: Select between-subject variables

Figure C.5: Select interactions among between-subject variables

must be selected before the simulation(Figure C.7). The parameters include the

burn-in steps (default 5000), the number of samples chosen (default 1000) and the

thin factor (default 10). When all parameters are set, the program will automatically

run by clicking the ’Analyze’ button. An error report will be generated if there is

any problem happening during the simulation. Otherwise, a report of the result will

be displayed below.

6. Access the simulation results (Figure C.8). The results include three parts
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Figure C.6: Select within-subject variables

displayed by three tabs: a summary, a table of means and trace plots.
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Figure C.7: Parameters setting

Figure C.8: Results display
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