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Body sensor networks have the potential to become an asset for personalizing healthcare 

delivery to patients in need. A key limitation for a successful implementation of body 

sensor networks comes from the lack of a continuous, reliable power source for the body-

mounted sensors. The aim of this thesis is to model and optimize a micro-energy 

harvesting generator that prolongs the operational lifetime of body sensors and make 

them more appealing, especially for personalized healthcare purposes. It explores a 

model that is suitable for harvesting mechanical power generated from human body 

motions. Adaptive optimization algorithms are used to maximize the amount of power 

harvested from this model. Practicality considerations discuss the feasibility of 

optimization and overall effectiveness of implementing the energy harvester model with 

respect to body sensor power requirements and its operational lifetime.   
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Chapter 1: A Systems-Level Background on Body Sensor Networks 

 Before delving into details about body sensors and energy harvesting architectures 

that could assist them to make their usage practical, this chapter takes a step back to 

introduce the body sensor networks on a system-level scale. Benefits of body sensor 

networks are discussed, as well as their potential impact to the future of healthcare 

systems and current limitations for reaching this potential. 

 
1.1: A Shift in Healthcare Delivery 
 

The future of healthcare is moving towards a shift in the patient-healthcare provider 

relationship, with an emphasis towards safer, more efficient, higher quality personalized 

patient care [2,4]. This is essential to meet the needs of deteriorating cardiac health and 

soaring healthcare costs [1]. However, due to recent technological advances, personalized 

healthcare delivery has only recently been seen as a viable realization. Specifically, these 

technological advances can be attributed to improved wireless technology, miniaturized 

sensors, and greater processing power [3].  

In [4], 6 areas for improving current healthcare practices are outlined with the 

following properties: 

• Patient-centeredness: providing compassion, empathy, and responsiveness to 

needs, values, and expressed preferences of the individual patient. 

• Effective: providing services based on scientific knowledge to all who could 

benefit, and refraining from providing services to those not likely to benefit. 

• Safe: avoiding injuries to patients from care that is intended to help them. 
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• Timely: reducing waiting-time for the patient to see the healthcare provider and 

minimizing potentially harmful delays for both those who receive and provide 

healthcare. 

• Efficient: avoiding wastefulness, including waste of equipment, supplies, ideas, 

cost, and energy. 

• Equitable: providing care that does not vary in quality because of personal 

characteristics such as gender, ethnicity, geographic location, and socioeconomic 

status. 

The same report [4] cites the need for a systems approach to improve the complex 

healthcare delivery system. The report outlines 10 rules for the future redesign of 

(personalized) healthcare systems with the aim to improve healthcare delivery 

implementations with respect to the 6 areas outlined above. The 10 rules for the redesign 

of healthcare delivery are as follows [4]: 

• Care is based on continuous healing relationships: Patients should receive care 

whenever they need it, and not limited to face-to-face visits. This implies that the 

health care system must be responsive at all times, and access to care should be 

provided over the Internet, by telephone, and by other means in addition to in-

person visits. 

• Care is customized according to patient needs and values: The system should be 

designed to meet the most common types of needs, but should have the capability 

to respond to individual patient choices and preferences.  

• The patient is the source of control: Patients should be given the necessary 

information and opportunity to exercise the degree of control they choose over 
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health care decisions that affect them. The system should be able to accommodate 

differences in patient preferences and encourage shared decision-making. 

• Knowledge is shared and information flows freely: Patients should have 

unfettered access to their medical information and to clinical knowledge. 

Clinicians and patients should communicate effectively and share information.  

• Decision-making is evidence-based: Patients should receive care based on the best 

available scientific knowledge. Care should not vary illogically from clinician to 

clinician or from place to place.  

• Safety is a system property: Patients should be safe from injury caused by the care 

system. Reducing risk and ensuring safety require greater attention to systems that 

help prevent and mitigate errors.  

• Transparency is necessary: The system should make available to patients and their 

families information that enables them to make informed decisions when selecting 

a health plan, hospital, or clinical practice, or when choosing among alternative 

treatments. This should include information describing the system’s performance 

on safety, evidence-based practice, and patient satisfaction.  

• Needs are anticipated: The system should anticipate patient needs, rather than 

simply react to events.  

• Waste is continuously decreased: The system should not waste resources or 

patient time.  

• Cooperation among clinicians is a priority: Clinicians and institutions should 

actively collaborate and communicate to ensure an appropriate exchange of 

information and coordination of care.  
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1.2: Personalized Healthcare and Body Sensor Networks 
 

 

   
Figure 1.1: Illustration of a typical Body Sensor Network deployed for mobile health [9] 

 
 Up-and-coming technologies are explored to look for solutions that can help 

implement the redesign of the improved healthcare delivery system. Body Sensor 

Networks (BSN) is a technology that can be integrated with mobile healthcare delivery 

(see Figure 1.1), in order to ensure quick, accurate, safe, transparent, and personalized 

healthcare for the patient.  

 In the context of using body sensor networks for improving healthcare delivery, it 

is insightful to define the structure of a body sensor network that is integrated with a 

mobile healthcare delivery system. This way, a clearer picture is given prior to discussing 

the benefits of utilizing this technology for improved mobile healthcare delivery. The 

following are the three structural subsystems that may make up the architecture and 

devices needed for this application of body sensor networks: 

• Sensor Nodes: These are the nodes applied on or inside the human body in order 

to collect the physiological data needed to make a medical decision about the 
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patient. They should be able to communicate to the Hub, and also communicate 

between other body sensor nodes. Each sensor node is capable of incorporating a 

stack of sensors that can read information or take in data from the patient.  

• Hub: This device collects all the data coming from the sensor nodes, and relays 

them to the server. It also acts as an interface to the patient to provide them with 

information regarding their health status, the system status, or communications 

with healthcare providers (such as physicians or nurses).  

• Server: This subsystem stores and analyzes all data coming from different patients 

(each with their own hub device). The server database can be accessed with the 

patient hub, a healthcare provider/physician device, or potentially through the 

internet with a secure interface.  

 In addition to the structural make-up of a BSN, the bounds in which the 

technology interacts with can further elaborate on the context of using BSN’s for 

healthcare monitoring. The system boundary that encompasses these 3 subsystems can be 

defined in 3 different scopes: a solution space, a design space, and a problem space [7]. 

The solution space, or the components that are directly designed by stakeholders, is the 

body sensor network integrated with mobile healthcare delivery. That is the Sensor 

Nodes, Hub, and Server. The solution space is embedded within the design space. The 

design space includes the patient body, healthcare provider (physicians, nurses, etc) 

medical decisions, and maintenance staff in addition to the solution space. The problem 

space is even broader, and also includes all the components in the design space. The 

problem space may also include legal processes and institutions, system hackers and 
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intruders, and also the environmental conditions that affect communications and 

hardware structure.  

With the given structural and system boundary context, body sensor networks 

have the potential to improve healthcare delivery systems according to the 

aforementioned 10 rules for healthcare redesign (which are in turn aiming to achieve the 

6 areas of improvements identified for healthcare systems). A discussion is presented 

below for laying out the six benefits and outcomes of implementing body sensor 

networks for healthcare delivery. The relationships of these six outcomes with improving 

healthcare delivery, by referring to the aforementioned 10 rules for healthcare delivery 

redesign, are also discussed.  

1. Educate patients about their disease with a personal profile [5]. 

a) Relation to redesigning an improved healthcare delivery system: 

Knowledge is shared and information flows freely. By educating patients 

about their disease and allowing them access to their personal health 

profiles, the patients gain access to knowledge and information about their 

health.   

2. Ensure communication of patient’s health status between patient and physician, 

especially feedback and communications for medical decision-making on behalf 

of the healthcare provider to the patient [5, 6]. 

a. Relation to redesigning an improved healthcare delivery system: Care is 

based on continuous healing relationships; Care is customized according 

to patient needs and values; Decision-making is evidence-based; Waste 

(and time) is continuously decreased. This system-level goal insures that 
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the patient is in constant, continuous communication with the physician or 

medical healthcare provider through the BSN, integrated with the 

healthcare delivery system. Since the healthcare provider has access to 

continuous records of the patient’s health, they can assess a more 

customized remedy for the patient rather than analyzing their health based 

off a “snapshot” of time during a face-to-face visit. Not only does this 

larger array of information allow the healthcare provider to make a more 

customize-able conclusion for the patient’s health, but their diagnosis and 

remedy will be more evidence-based. Fortunately, this larger array of 

information does not cut out from the patient’s time. They should be able 

to do their daily activities as the BSN obtains and retains information from 

them. This is in contrast to check-ups and face-to-face visits where the 

patient and healthcare provider have to schedule a certain amount of time 

a day to meet each other.  

3. Provide patients with tools/treatments to manage their disease [5]. 

a. Relation to redesigning an improved healthcare delivery system: The 

patient is the source of control; Needs are anticipated. By giving the 

patient access to tools that can help manage their disease, it becomes 

possible to give them a source of control, or rather the perception of a 

source of control. The patient will be able to receive real-time updates 

about their health, and then be able to react accordingly. It heightens their 

sense of responsibility on their own anticipated health needs. 

4. Ensure accessible communication of patient’s health status to patient device [5]. 
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a. Relation to redesigning an improved healthcare delivery system: The 

patient is the source of control; Transparency is necessary. Body Sensor 

Networks enable the patient with access to a device that will allow them to 

see their health data records and diagnoses. Having convenient access to 

such data gives the patient a sense of control over their own health status, 

and provides transparency to their physiological information. 

5. Efficient, comprehensive, and transparent information management for BSN data, 

including electronic medical records [4, 6]. 

a. Relation to redesigning an improved healthcare delivery system: 

Knowledge is shared and information flows freely; Transparency is 

necessary. The goal is to have efficient and transparent data management 

of the BSN for healthcare delivery purposes. With the patient records 

accessible to the patient at all times, their physiological data and electronic 

health records is shared with them and also provides more transparency to 

diagnoses done by physicians and healthcare providers.  

6. Empower patient privacy with informed consent, legal protection, and proper 

regulations [6]. 

a. Relation to redesigning an improved healthcare delivery system: Safety is 

a system property. Privacy is a major concern for using BSN, as is 

security. For a BSN to be widely available and widely used by patients, it 

must first build a trust with them in order to ensure that all their health 

records and data are secure and private. Without this sense of comfort, the 

BSN will either come across as unsafe to use, prone to identity-theft. By 
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ensuring legal rights and protection of BSN users (both patients and 

physicians), it will become both more suitable and much safer for 

widespread use. 

 

1.3: Stakeholders, Actors, and Use Cases for Healthcare Delivery with BSN 

 An insight on the benefits of using BSN for healthcare delivery is gained with 

exploring the details in the BSN system boundary. This includes the interactions between 

the BSN, and the stakeholders and actors within its system boundaries. The stakeholders 

identified for an implementation of body sensor networks for healthcare delivery will 

drive the body sensor network development process. There are possibly three categories 

of stakeholders: Users, System Architects, and System Designers.  

Users include patients and healthcare providers (physicians, nurses, and such). 

These are the primary customers who will use the body sensor network system for the 

purpose of healthcare provisions. Requirements are derived from these users for the 

System Designers to develop the system. System Designers include systems scientists 

and engineers who design a platform for the body sensor network, depending on what 

requirements they see the Users need. System Architects include engineering and 

Information Technology firms. These stakeholders implement the systems that are 

designed by System Designers. They construct the structure and architecture of the body 

sensor network for the Users. It should be noted that there is no single ideal design for all 

BSN implemented in a healthcare delivery system, and as a result a platform utilized by 

the System Architects can help perform trade-off on parameters to give a customized, 

balanced solution to a specific medical condition [8]. 
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 Furthermore, six possible actors have been identified in using the body sensor 

network. These include the following:  

• Maintenance 

• Legal System 

• Patient 

• Healthcare Provider 

• BSN Provider (Manufacturer) 

• Intruder 

The maintenance actors include the technology specialists who are in charge of 

making sure all the communications are secure. These include technicians necessary to 

set-up the system and fix any component failure in case any part of body sensor network 

becomes faulty. Also, the legal system comes into play to make sure that patients are 

given their security and privacy. The healthcare providers include physicians or nurses 

who are assigned to patients in order to make sure their health status are okay. They also 

provide feedback that the patient may need or request. BSN providers include any 

manufacturers or distributors of Servers, Hubs, and Sensor Nodes. The intruder plays a 

role in trying to breach the security of the body sensor network.  These actors and their 

relationship to possible body sensor network use cases are depicted in Figure 1.2.  

           Six major use cases are identified through looking at relevant literature [1, 3-4, 6] 

and the six outcomes of implementing body sensor networks as a means of healthcare 

delivery (described in section 1.2). They involve putting together the system, maintaining 

component usability, providing patients with health monitoring and data protection, 
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allowing storage of health records, and allowing communication between the patient and 

physician. These use cases are as follows: 

1. System Setup 

2. Maintain Components 

3. Provide User-Data Protection 

4. Monitor Health  

5. Store Accessible Health Records 

6. Allow Patient-Healthcare Provider Communication  

 

Figure 1.2: Use Case Diagram for Healthcare Delivery with BSN 

The use case diagram in Figure 1.2 illustrates the associations of each of the system’s use 

cases with its primary actors. Secondary actors are also signified in the use case 

descriptions (Appendix A).  
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 The choice of these use cases comes from the intended behaviors and 

functionalities of the BSN-integrated healthcare delivery system. After the system is 

setup (Use Case 1), the patient’s health is monitored (Use Case 4), where their health 

records are stored in an accessible manner (Use Case 5). Simultaneously, components in 

the BSN are being maintained (Use Case 2) and security is enabled for data protection 

(Use Case 3). If needed, the physician and patient can also come into communication 

with each other (Use Case 6). The use case descriptions can be found in Appendix A. 

 It should be noted that the purpose of the use cases is to look for requirements and 

see if there are any limitations or challenges to meet system goals (such as ensure 

seamless provision of healthcare to the patient). For body sensor networks, this includes 

looking for requirements and challenges needed to make them a driving force for the 

personalization of healthcare. Use cases are broken down into use case descriptions, use 

case goals, behavioral diagrams, and traceability measures in order to ensure that the use 

case effectively finds requirements, limitations, or challenges that need to be refined in 

the system. 

Use case descriptions are made for each use case scenario. They allow stepping 

through and exploring each scenario, looking for goal-driven behaviors among the 

system actors. The use case descriptions include the post-conditions and pre-conditions, 

goals of the use case, primary actors, derived requirements, a primary flow of events, 

and alternative flow of events. Pre-conditions entail the conditions that must hold for 

the use case to begin. Post-conditions take into account the conditions that hold once the 

flow of events has been completed [10].  

The goals of each use case lay out the objectives that the BSN, integrated with 
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the healthcare delivery system, is expected to meet for the primary system actors in 

each use case. The derived requirements are higher-level functionality requirements. 

They are derived from behaviors or requirements that are meant to accomplish goals for 

a use case.  

Activity diagrams, sequence diagrams, and state machine diagrams are used to 

assist the development of the primary flows, as these diagram types do aid in the 

generation of behavioral and structural requirements and structure interface 

requirements, respectively [10]. A major benefit gained from using these diagrams 

stems from making it easier to catch logical flaws in the primary flow’s statements, and 

thus helping to refurnish the primary flow.  

 

1.4: Conclusion of Systems Analysis of Body Sensor Networks & Necessity of 

Prolonging Their Operational Lifetime 

 The focus of this thesis isn’t to give a detailed system-wide outlook on body 

sensor networks, but to focus on a particular aspect of body sensor networks that may 

enable these systems to become an asset to personalizing and improving healthcare. For 

this reason, traceability measures are omitted and use case descriptions are laid out in 

Appendix A. Instead, the focus is on the resulting challenges and limitations of body 

sensor networks that were realized at the conclusion of the use case descriptions and 

system-to-component requirements traceability. 

 One of the outcomes that result from exploring use case descriptions is becoming 

aware of the dire needs and limitations of the BSN. In this regard, use case descriptions 

show that it is important to maintain a reliable, continuous stream of energy in order to 
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seamlessly power the body sensor networks. In order to make the body sensor network 

operable, low consumption power and long battery time is key for use [11]. The rest of 

the thesis shows a novel way to prolong the operational lifetime of a body-mounted 

sensor node by utilizing a micro-energy harvesting power generator. Physical geometric 

and design parameters of this micro-generator device are presented, along with the 

relationship of the device’s architecture with the ambient environment of the device. 

Conclusions are then made about the energy harvesting devices and their effectiveness 

for prolonging the operational lifetime of a sensor node. 



!
!

15!

 

Chapter 2:  Energy Harvesting Mechanisms from the Human Body 

!
 The main goal of the remainder of this thesis is to focus on finding a way to 

prolong the operational lifetime of a body sensor. As a consequence, this would 

potentially enable the successful commercial application of such devices. It would 

minimize the cost and convenience penalty associated with sensor replacements, 

recharging batteries, or even system failures due to a dying power source. Once a suitable 

method that would be able to prolong the operational lifetime of a body sensor is found, 

the maximum harvested power from this method is investigated through optimizing the 

device architecture. The end goal is to use energy-harvesting methods, also known as 

energy-scavenging, to meet a substantial portion of the power consumption levels needed 

by body sensor applications.  

 

2.1: Harvesting Energy from Ambient Environment of Sensors  

 Without attempting to alter the battery size on the wearable sensors, the aim is to 

prolong the operational lifetime of sensor networks by harvesting energy from the 

ambient environment of body sensors. This entails the process of capturing and storing 

energy from the environment surrounding the human body. The sources of energy 

available to power the sensor nodes include: far-field electromagnetic radiation, near-

field coupling, light (solar cells), radio-frequency (RF), thermal gradients, and human 

kinetic motion. There are advantages and disadvantages with respect to each of these 

energy harvesting methods.  
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 Far-field electromagnetic radiation [12] and near-field coupling [13] can be 

effective power sources, however the major problem with these sources is that they 

require building new infrastructures as they are methods that deliver power to the device. 

The infrastructure issue and its associated costs are the key reason why it is advantageous 

to look at the other four sources of energy.  

 Using a light source with solar cells is a more commercially established energy 

harvesting solution [3], and due to this may be more desirable for use as an energy 

source. The major problem with relying on light as an energy source is that reliance on a 

light source to be available to a body-mounted sensor is very unreliable as the availability 

of a light source to the solar cells would be unpredictable. As for utilizing RF radiation as 

a source of energy to be harvested for the body sensor, studies [15] have shown that there 

is a lack of availability of energy to be harvested with current extraction methods. 

Harvesting energy from human body thermal gradients, on the other hand, have been 

proven to be successful with some watches [16], but are not a feasible option for 

harvesting energy on a miniature-scaled size that reflect the size of the microgenerators 

[17].  

 Harvesting energy from the human body, on the other hand, seems to be one of 

the most convenient and attractive solutions for wearable wireless sensors in healthcare 

applications [18]. However, energy harvesting from the human body still has its own 

challenges due to the random nature of human kinetic motion. Contemplating kinetically 

energy harvesting microgenerators as a feasible solution to prolong body sensor node 

operational lifetime requires the following considerations: the typical power consumption 
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of the device, usage pattern, and device size.  These considerations may limit the power 

density that a micro-generator is capable of harvesting. 

 Power consumption levels of a body-mounted sensor depend on the 

functionalities present on the sensor node. A sensor node will typically use power for the 

following 3 functions [19]: the sensor itself, signal processing circuitry, and the wireless 

data link. The signal data rates for a sensor node would be used for collecting heart rates, 

blood pressure, temperature, and other bodily characteristics. Monitoring health does not 

require a high clock rate. A rate between 1 and 10 samples per minute may be enough to 

collect necessary information to understand the human body’s status. Considering that 

each sample needs no more than 16 bits to store its value, data rates between 16 and 80 

bits per minute sound like a feasible option for relaying the human body signals. Without 

going into the details in [19], it is possible that these very low data rates will not burden 

the sensor, signal processing circuitry, and wireless data links to require total power 

levels of more than 1 W. 

 Usage patterns depend on the human body motions that affect the sensor node. 

The human body produces motions that are variable and unpredictable, and an efficient 

body-mounted, kinetic micro-generator needs an architecture that adheres to the nature of 

this type of motion.   

 The size of the energy harvester influences the kinetic energy harvester’s 

transducer mechanism. Depending on the transducer mechanism, the efficiency of 

converting mechanical work to power changes with the microgenerator size. Since the 

sensor node is itself miniaturized, the architecture of the energy harvester must be on the 

millimeter-scale. The literature [17, 19-21] shows that transducer mechanisms for such 
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small-scaled kinetic energy harvesting architectures are efficient for implementation and 

thus feasible to construct.   

 

2.2: Architecture of Kinetic Energy Harvesters Effective for Harvesting Energy from 

Human Body Motions 

 Different architectures for kinetic energy harvesters exist, and the goal of this 

section is to narrow down to architectures that would be most efficient to use on wearable 

or body-mounted sensor nodes. The overall generic structure of an energy harvester, 

depicted in the figure below [22], provides a more organized view to study the energy-

harvester characteristics and design parameters ideal for human kinetic motions.  The 

generic electromechanical block diagram of an energy-harvesting micro-generator 

consists of a mass-spring-damper (MSD) system, a transducer, and an interfacing power-

processing circuit.      

    

 

Figure 2.1 Generic(Electromechanical(Block(Diagram(of(an(Inertial(Micro.generator([22] 



!
!

19!

 
 The type of transducer model affects the type of (electrical) damping force that is 

incorporated into the MSD system. Although there will be mentions of interfacing the 

mechanical generated power from the MSD model to the power processing circuitry, the 

remainder of this section intends to focus on the MSD model and its transducer-

dependent damping force. Both viscous and nonlinear parasitic damping forces could also 

be incorporated into the MSD and transducer design. An example of where these 

nonlinear affects arise from is the collisions that the proof mass has as it springs from one 

end of the MSD structure to the other. For simplicity, considering these effects are 

neglected in this thesis as they have minimal effect on the overall dynamics of the MSD 

& transducer systems. In fact, assuming that no mechanical power yields from collisions 

between the mass and MSD architectural frame in turn leads to an underestimated 

amount of generated power [27].  

 The design of a kinetic microgenerator architecture suitable for extracting power 

from human body motion depends on its MSD model, the spring, the damping factor, and 

the transducer mechanism (affecting the operation of the damping force). As for the MSD 

model, two main mechanical models for kinetic micro-generators are known as direct-

force and inertial.  

 The MSD model for the direct-force method can be seen in Figure 2.2, from [17]. 

It makes use of a direct application of force on the MSD model to drive the proof mass, 

m, with a force fdr(t) strong enough to displace the mass with a distance z(t). Though 

displaced, the proof mass stays in between the upper and lower bounds of its 

displacement area, denoted with +/- Zl.  The spring constant k affects the mobility of the 
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proof mass against the opposing force of the transducer’s damper, and thus produces the 

mechanical power from this MSD model.  

 
Figure 2.2: Generic model of a direct-force micro-generator [17] 

 
  The MSD model for the inertial method can be seen in Figure 2.3, from [17]. The 

inertial forces from the acceleration and deceleration of human kinetic motion causes the 

proof mass m to bounce up and down, with respect to the spring constant k, from one 

end-stop +/- Zl  to another. These end-stops, +/- Zl, represent the upper and lower bounds 

of the path of the proof mass within the MSD architectural framework. The displacement 

of the proof mass from its rest position relative to the frame is denoted by z(t). The 

absolute motion of the frame is y(t) and that of the proof mass is x(t) = y(t) + z(t). Energy 

is converted when work is done against the transducer’s damping force f(z’), opposing the 

motion based on the direction of proof mass velocity, z’(t) [23]. 
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Figure 2.3: Generic model of an inertial micro-generator [17] 

 
 Unlike micro-generators that utilize a direct application of force, their inertial 

counterparts require only one point of attachment to the moving proof mass structure. 

This allows for a greater mounting flexibility and also a greater degree of miniaturization 

that is more ideal for wearable, body-mounted sensors [17]. The direct-force MSD 

model, though, does have its own unique applications with human body motions. For 

example, they are ideal for being placed at the heel of a shoe as they can make use of the 

mechanical contact between the foot and ground to apply force on its damper. 

 

2.3: Effective Transduction Mechanisms for Harvesting Energy from Human Body 

Motion 

 In addition to the kinetic microgenerator’s MSD model, its transduction method is 

important for determining the amount of generated mechanical power from the model. 
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The transduction method determines the characteristic and operating principles of the 

damping force in the MSD model. Typical transduction methods for energy harvesting 

micro-generators include: electromagnetic, electrostatic, and piezoelectric transductions 

[17]. The damping force characteristic of these 3 main transduction methods are as 

follows [24]: 

• Electromagnetic transduction: the damping force can be altered by the resistance 

of a sensor load connected to the electromagnetic coil. 

• Electrostatic transduction: the damping force can be set by the electric field 

between two capacitor electrodes. 

• Piezoelectric transduction: the damping force can be altered by the tuning 

impedance between the terminals of the piezoelectric material.  

 The transduction mechanism depends on the source of motion from which energy 

is being harvested as well as the size of the energy-harvesting generator. Since the micro-

generators that would be useful for wearable applications are miniaturized, 

electromagnetic transduction methods become inefficient at harvesting energy from milli- 

or micro-scaled energy harvester sizes [17]. On the other hand, piezoelectric materials are 

more suitable for MSD models that make use of a direct application of force on the 

device rather than inertial forces (use of piezoelectric transduction with direct force of 

heel strikes is explored in [25]).   

 Electrostatic transduction does not have these aforementioned issues, and instead 

it has advantages with respect to optimizing its damping force. Optimizing the damping 

force for electrostatic devices is more straightforward than the other transduction 

methods. But furthermore, the electrostatic damping force can be dynamically optimized 
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which is important for operating under highly variable sources of motions such as a 

human body [24].   

 Specifically, electrostatic transduction makes use of mechanically-variable 

capacitors. The capacitive plates are formed between each side of the proof mass and the 

corresponding end-stop that it moves into or away from. The plates are separated by a 

source of motion (human body motion), and opposite charges across the capacitor plates 

attract each other to form the moving variable-capacitor [17]. Work is done and energy is 

generated when the capacitor plates (proof mass relative to the fixed end-stops) pull apart 

with respect to each other. The mechanical work done to separate the plates converts into 

electric power when interfaced with power-processing circuitry. 

 Switched electronic circuitry connections between the transducer and circuitry 

involve a reconfiguration of the microgenerator through operation of switches, at 

different parts of the power generation cycle (generally known as pre-charge, generate, 

and dis-charge stages of the cycle [26]). With switched electrostatic transducers, the 

variable capacitors between the proof mass and the end-stops may be realized with two 

different motions: sliding motion or a perpendicular motion between the capacitive 

plates. Three possible electronic transduction architectures [20, 22] that utilize sliding 

and perpendicular motions between capacitive plates is depicted in Figure 2.4. 

• In-plane overlap type: the proof mass moves vertically with respect to the end-

stops, where the capacitive plates are formed between the fingers of the end-stops 

and fingers of the proof mass. These capacitive plates slide parallel with respect to 

each other. 
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• In-plane gap closing: the proof mass moves horizontally with respect to the end-

stops, where the capacitive plates are formed between the fingers of the end-stops 

and fingers of the proof mass. These capacitive plates move perpendicularly with 

respect to teach other. 

• Out-of-plane gap closing: A proof mass with a capacitive side moves to and from 

(perpendicularly) a fixed end-stop. 

 

 
Figure 2.4: Three architectures for implementing electrostatic micro-generators [22] 
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 With the perpendicular motion, there is steady overlap between the two capacitive 

plates. The capacitive plates have constant charge, but are not connected to any voltage 

source. Because the same amount of charges are held as separation increases (during 

perpendicular motion), the energy density and electric field strength decrease while the 

volume of the electric field and the (potential) energy in the electric field increases. As 

separation further increases, additional potential energy is stored in the increased volume 

of the electric field (voltage increases faster than capacitance decreases and thus potential 

energy increases) [22]. Once the energy is generated, the capacitor is discharged and the 

charge on the capacitors is restored to restart the cycle. The Q-V graph (based on the 

relationship Charge=Capacitance*Voltage) in Figure 2.5 shows the charge and voltage 

relationships for a perpendicular motion (i.e. constant charge) variable capacitance, as it 

goes through the following 3 stages to generate power [26]: 

• First, the device is pre-charged to a low voltage in the first part of the cycle by 

making a connection to a voltage source. 

• Then, the plates are disconnected from the source and separated under constant 

charge during the generation part of the cycle. 

• Finally, the capacitor is discharged and the capacitance is increased, ready for the 

cycle to restart. 
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Figure 2.5: Q-V graph for a switched, constant charge electrostatic micro-generator [26] 

 
 With the sliding motion on the electrostatic device’s capacitive plates, there is 

steady perpendicular gap between the two capacitive plates. Typically, the capacitive 

plates have constant voltage on them as they are connected to a fixed voltage source. The 

voltage and plate separation is constant, therefore the electric field is constant, which in 

turn means the energy density is constant. Since the volume of the field decreases, the 

current is forced to flow into the source. Since the capacitance decreases (fewer charges) 

and voltage is constant, the potential energy is being transferred to the voltage source 

circuitry as the charges are flowing there. Switches disconnect the capacitor from the 

voltage before the capacitance is increased at constant charge, ready for the cycle to 

restart [22]. The Q-V graph in Figure 2.6 shows the charge and voltage relationships for a 

sliding motion (i.e. constant voltage) variable capacitance, as it goes through the 

following 3 stages to generate power [26]: 
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• First, the capacitor is pre-charged to a set voltage whilst at high capacitance. 

• Then, whilst connected to a voltage source, the capacitance is reduced, forcing charge 

back into the voltage source (generation). 

• Switches then disconnect the capacitor from the voltage source before the capacitance 

is increased at constant charge, ready to restart the cycle.  

 

 
Figure 2.6: Q-V graph for a switched, constant-voltage electrostatic micro-generator [26] 

 
It should be noted that the areas of the triangles formed in the Q-V graphs in Figures 2.5 

and 2.6 represent the energy that is generated with each switched cycle. 

 It should be noted that the capacitive plates in either case (sliding or perpendicular 

motion) can assume double-sided or single-sided operation. Single-sided operation is 

when energy is only being extraction in one direction of the proof mass motion (and thus 

is not being extracted on the proof mass’s return stroke), whereas double-sided operation 



!
!

28!

extracts energy from both directions of motion [23]. In the remainder of this paper, the 

models and simulation assume double-sided operation. 

 Analyses show that the maximum effectiveness of these harvesters [31] are 

dependent on whether the capacitive plates are operating by perpendicularly moving to 

and from each other or by sliding past each other. It is apparent that capacitive plates that 

are moving past each other with a sliding motion (i.e. operating with a fixed, constant 

voltage) operate with an acceptable effectiveness over a much wider envelope than 

perpendicularly moving plates (i.e. operating with constant charge). This makes the 

choice of sliding motion/constant voltage a preferred implementation for switched 

electrostatic transducer.  

 Although switched electrostatic transducer designs have so far seemed to be the 

most suitable for applications involving energy harvesting from human body motions, it 

should be noted that they do have their limitations. These electrostatic transducers require 

a pre-charge in order to start their energy generation cycles. This means that an active 

pre-charge circuitry system or electret device must supplement the switched electrostatic 

transducer. This comes with extra control circuitry complexity [17].  

 Yet, the miniaturized, millimeter-scaled device size required of the human body-

mounted micro-generator leads to the conclusion that a switched, electrostatic transducer 

is the most suitable to harvest energy.  Furthermore, the usage patterns of an energy 

harvester mounted to a wearable device also leads to the conclusion that an inertial MSD 

framework is most efficient to extract energy.  

 However, the unpredictable usage patterns of a wearable device or body-mounted 

sensor also has implications on the spring constant k of the MSD model. An energy 
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harvester making use of a spring has an internal resonant frequency and generates power 

by characterizing the vibrations that are inflicted on the device. Vibration energy 

harvesters are employed in resonant systems as they generate maximum power when the 

device’s characteristic, resonant frequencies are tuned to match the ambient vibration 

frequency [21].  

 Therefore, energy harvesters are not efficient when used to generate power from 

non-resonant acceleration/deceleration forces inflicted on the device, i.e. human kinetic 

motion.  This non-resonant, unpredictable human kinetic motion makes tuning the 

resonant frequency of the spring or spring-like structure to the frequency of the human 

body motion very difficult. As a result, an effective micro-generator that harvests energy 

from human body motion should avoid making use of a spring or spring-like structure 

and adhere to effectively extracting energy from non-resonant sources with other 

architectural structures [27]. 

 

2.4: A Non-resonant, Electrostatic, Kinetic, Inertial Micro-Energy Harvester 

  A non-linear, non-resonant, snap-action energy harvesting micro-generator 

architecture is introduced in [28]. This model, known as the Coulomb-Force Parametric-

Generator (CFPG), makes use of a MSD model where no spring exists. With no spring, 

the model no longer has an intrinsic resonant frequency. Instead, this architecture makes 

the proof mass snap away from an end-stop towards the opposite side of the frame only if 

the (externally-induced) acceleration of the frame is greater than the electrostatic, 

Coulombic damping (or holding) force that holds on the proof mass to an end-stop.  The 

Coulombic damping force must be less than the product of the mass and external 
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acceleration for the proof mass to break away from the frame. This implies that the 

maximum energy can be obtained if the proof mass only moves during the peak of 

external acceleration exerted on the CFPG device [29, 30].  

 The CFPG MSD (or MD) model utilizes the inertial operating principle and the 

electrostatic Coulombic damping force. The transducer (damping force) can be 

implemented as the force between parallel capacitor plates moving perpendicularly to 

each other with a constant charge or between parallel sliding plates fixed with a constant 

voltage [30]. This implies that the CFPG dampers make use of switched, electrostatic 

transduction. In [23], a study compares power generated by a CFPG with 2 other 

resonant, linear architectures, Velocity-damped resonant generators (VDRG) and 

Coulomb-damped resonant generators (CDRG). Subject to a harmonic source motion 

with frequency w and external source motion amplitude Yo, the figure below [23] 

illustrates that the CFPG is superior to the other 2 architectures when the source 

frequency is relatively low (as in the infrequent human body motions) and the source 

amplitude is relatively high. This makes CFPG devices more ideal for small devices 

operating in larger ranges of motions. 
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Figure 2.7: Generator architecture power harvested comparison with respect to input acceleration frequency 

and ratio between distance of proof mass full flight and input acceleration motion amplitude  [23] 

!
 As a result, it can be concluded that the CFPG model’s use of an inertial, non-

resonant, non-linear, spring-less MSD model in conjunction with a switched, electrostatic 

transducer (or damper) makes it suitable for generating power from the human body. For 

the remainder of this thesis, the CFPG architectural framework is used to develop a 

Matlab/Simulink model that can study the temporal behavior of the generated mechanical 

power, have a more accurate estimation of the amount of power generated from various 

human movements, and optimize the design parameters of the energy harvesting micro-

generator. 

 Details about the Coulomb-Force Parametric-Generator architecture and its 

energy harvesting capabilities compared to other types of micro-generators can be found 

in [21-13, 28]. Fabrication and testing of these device structures are discussed in [19, 20, 
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22, 30]. Interfacing the micro-generator’s MSD model and transducer models with the 

power processing circuitry is discussed in [19, 22, 24, 31].  

 Studies to simulate and optimize the architectural parameters of energy harvesting 

micro-generators and prolong the operational lifetime of sensor nodes using these 

optimized architectures are discussed in [19-20, 27, 32-34].  

 In [27], the authors point out that the CFPG device only has one parameter to 

optimize, the electrostatic Coulombic damping force (or holding force). They point out 

that the maximum power achieved for the CFPG can be found by sweeping this 

parameter across a range of values. The Coulomb force is essentially decreased to a point 

where the damping force just allows displacement of the proof mass from the MSD 

frame.  

 In [33], the authors describe methods for estimating harvested energy from 

acceleration traces. Although they use a resonating inertial harvester model, they attempt 

to optimize their harvester parameters. Relevant to the discussion of harvesting energy 

from kinetic human body motions, they use their model to examine a dataset of 

acceleration traces from various common motions and activities, as well as long-term 

human mobility.  

 In [32, 54], the authors provide statistical analysis of measurements taken from 40 

test subjects over a period of 8 hours during the day, and use this information, along with 

the operational architecture of a CFPG device, to determine the distribution of 

harvestable energy. The aim of this study was to observe whether kinetic energy 

generated by typical human forearm motion could be a source of energy to prolong the 

lifetime of wearable medical sensors.  
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 The study in [18] aims to utilize the acceleration traces from [32] to build a 

simulation-based CFPG model to further study this device. An enhanced Simulink model 

of the CFPG device was shown to examine the temporal behavior of the generated power. 

Such a dynamic model provides a more accurate estimate of the amount of power 

generated from various human motions. It also allows for further optimization of the 

micro-generator’s design parameters and the characterization of the input acceleration. 

The contribution in this thesis expands on the methods and results introduced in [18]. 

 Chapter 3 discusses the details regarding the mathematical modeling and 

Simulink implementation of the CFPG device. Chapter 4 describes an optimization 

problem that relates the input acceleration, the electrostatic Coulombic damping force, 

and output generated power. Power gains between the optimized and non-optimized 

models are compared. Finally, chapter 5 concludes the thesis and remarks on future work 

that remains for understanding the effectiveness of energy harvesting to benefit the use of 

wearable medical devices and body-mounted sensor nodes. 
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Chapter 3: CFPG Modeling and Simulation 
 

3.1: A Mathematical Model for the CFPG Device 

 A mathematical model is necessary to accurately simulate the temporal behavior 

of the CFPG device’s MSD model as well as the amount of mechanical power the model 

is capable of generating. As mentioned in the previous chapter, parasitic damping and 

proof mass collision effects of the MSD model dynamics are not taken into account, 

despite reason to believe that they could result in more power generated by the energy 

harvester. The following non-linear differential equation has been specified as a model to 

capture the dynamics of the MSD system in a CFPG micro-generator [28]: 

                             (1) 

In this equation, m represents the proof mass, y(t) represents the motion of the generator 

frame with respect to the inertial frame (y’’t) is the second derivate of y(t) and indicates 

the input acceleration), z’’(t) is the proof mass acceleration, F represents the electrostatic 

Coulombic damping (or holding) force, and sign(z’(t)) represents the sign, or equivalently 

the direction, of the proof mass velocity (i.e. z’(t)). The sign function in this equation 

makes sure that the Coulombic damping force takes on the opposite sign of the proof 

mass velocity. This indicates that work is done when the transducer’s Coulombic 

damping force opposes the motion based on the direction of proof mass velocity, z’(t), as 

the damping force attempts to hold the proof mass to an end-stop. It should be noted that 

the proof mass position, z(t), is limited between the MSD frame’s end-stops, at distances 

+Zl and –Zl.  
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 Values from previous studies on the CFPG structure [32, 35] determine the length 

and thickness of the MSD model. The length is set at 10 mm, with a cross-sectional area 

of 100 mm2. The thickness of the MSD module depends on an alpha coefficient. This 

coefficient is set to have a value of 0.1, and the thickness itself is equal to the product, 

alpha*length. The proof mass takes roughly half the volume of the MSD module, with 

the other half allowing for the movement of the proof mass between the module’s end-

stops [17]. As a result, given the chosen length, the distance between the two end-stops in 

the MSD frame is 5 mm. This means that the two end-stop limits are +Zl  = 2.5 mm and -

Zl = -2.5 mm. Using the same studies for consistency [17, 32, 35], the mass density is set 

at 19.3*103 kg/m3, giving the model a total proof mass of 0.965 g. 

 From the discussion in the previous chapter, it is known that no power is 

generated while the proof mass is stuck to an end-stop, and that power is only generated 

when the proof mass makes a full-flight from one end-stop to the other. When this 

occurs, the dynamic model represented by Equation 1 generates power. Equation 2 can 

compute mechanical power, as follows: 

.                                 (2) 

P(t) represents the instantaneous generated mechanical power from the MSD module, F 

represents the same electrostatic Coulombic damping (or holding) force as in Equation 1, 

and z’(t) represents the velocity of the proof mass.  

 

3.2: Simulink Representation of CFPG Mathematical Model 

 Simulating the dynamics of Equations 1 and 2 into Simulink requires handling a 

few more considerations about the physical CFPG dynamics. Although Equation 1 
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mathematically captures the phenomena occurring in the CFPG’s MSD system, a few 

constraints on the physics behind the proof mass motion and resulting power generation 

complicates the direct implementation of this equation.  

 Direct implementation of Equation 1 does not guarantee that power is only 

generated when the proof mass makes a complete flight between the end-stops of the 

MSD frame. If the proof mass makes an incomplete flight, that is the proof mass goes 

back to the end-stop that it had last been released from, the sign of the Coulombic 

electrostatic damping force component in Equation 1 should not change. Otherwise, a 

sign change would mean that real power is still being generated for the incomplete flight. 

Instead, at the point where the proof mass is changing directions to head back to the end-

stop that it had become released from, the simulations require to generate negative, 

reactive power [28]. This requirement cancels out the positive, real power that had been 

generated when the proof mass had departed its end-stop up until the point it started 

turning back. The end result of an incomplete flight is a net power of zero. The sign(z’(t)) 

component in Equation 1 should only change when the proof mass reaches an end-stop.  

It should not be able to switch signs in the case of an incomplete proof mass flight.  

 Replacing the sign(z’(t)) function in Equation 1 with the relay function in 

Equation 3 makes sure the model represents the proper sign changes as the Coulombic 

electrostatic damping force opposes the proof mass motion. This function is a typical 

Preisach model of hysteresis based on the position of the proof mass.  

 relay(z( ,            (3) 
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In Equation 3, k=1 if the proof mass position z(t) was last outside the range 

 when  Likewise, k=-1 if the proof mass position z(t) was 

last outside the range  when . Figure 3.1 shows a graphical 

representation of Equation 3.  

           

Figure 3.1: Relay Function 

 
 Note that, unlike the sign function in Equation 1, the relay function depends on the 

position of the proof mass rather than depending on the proof mass velocity. However, the 

output sign of this relay function still depends on the proof mass velocity direction. In 

Equation 3, it is the position of the proof mass that indicates the proof mass’s direction of 

its velocity. Once the proof mass reaches an end-stop, it may only depart to one direction, 

towards the other end-stop. Thus the proof mass direction of velocity is clearn when it is 

about to depart from its end-stop position. 
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 To understand exactly how Equation 3 meets the requirement for the sign of the 

Coulombic damping force to only change when the proof mass meets end-stops, consider 

orientations chosen for the negative and positive directions for the proof mass velocity. 

Moving downwards away from the upper end-stop +Zl is considered the negative direction 

and moving upwards away from the lower end-stop -Zl is considered the positive direction. 

Whenever the proof mass position z(t) reaches the upper end-stop, +Zl, the relay function 

will output a -1. Replacing the sign function in Equation 1 with the relay in Equation 3 

causes the sign of the Coulombic damping force in Equation 1 to be +1. This is because 

the mass will only depart this upper end-stop to go downwards, a negative velocity 

direction, and the Coulombic damping force works against the direction of proof mass 

motion. The sign of the Coulombic damping force will remain the same until the mass 

reaches the lower end-stop, -Zl. Once the proof mass position z(t) reaches -Zl, the relay 

function will output a +1. Replacing the sign function in Equation 1 with the relay in 

Equation 3 causes the sign of the Coulombic damping force in Equation 1 to be -1. This is 

because the proof mass will depart this lower end-stop only to go upwards, a positive 

direction of velocity. This results in the Coulombic damping force to work against the 

direction of proof mass motion. This cycle continues as the proof mass moves between the 

two end-stops. Details of the implemented Simulink “Relay” block function is depicted in 

Figure 3.2. 
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Figure 3.2: Relay Function Simulation Specifications 

!
 Equation 1 is modified with the relay function in Equation 3. The resulting 

Equation 4 is used for simulating the CFPG’s MSD system. 

             (4) 

The Simulink implementation of Equation 4 is depicted in Figure 3.3. The input of this 

diagram is the external acceleration y’’(t) exerted on the CFPG device. Each input runs 

through this model for a range of Coulombic damping force values. For each damping 

force value, a temporal instantaneous power output is generated as well as plots for the 

proof mass position, velocity, and acceleration. It should be noted that the integrator’s 

limits specify the end-stop boundary limits allowed by the device geometry. Observations 

of the average power generated for each damping force value can be made, as well as 

observing the damping force value that yields the highest power output for a given 
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external acceleration input. The Matlab code that runs the Simulink diagram in Figure 3.3 

is provided in Appendix B. 

 

 

Figure 3.3: Simulink block-diagram implementation of CFPG model 

 
 Several test scenarios are used to verify the modified differential equation and the 

Simulink model. Section 3.3 discusses these verification test scenarios in greater detail. 

 

3.3: Functional Operation of CFPG Model   

 The CFPG model should only generate power when the proof mass makes a 

complete flight between the MSD frame’s end-stops. To test the model for this, the 

temporal behavior of generated mechanical powers and proof mass positions are 

considered for the following cases:  
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• Proof mass makes complete flight between two end-stops. 

• Proof mass makes incomplete flight, and it returns back to end-stop it had just 

been released from. 

 These two cases are investigated by using artificially-generated sinusoidal 

acceleration inputs. Using an artificially-generated sinusoidal acceleration input allows 

control over the amplitude and frequency of the sinusoidal inputs. This in turn allows 

tweaking the signal’s magnitude and frequency and having control over when the input 

signal allows the proof mass to snap away from an end-stop. An example artificially-

generated sinusoidal acceleration input is depicted in Figure 3.4. Inputting sinusoidal 

acceleration signals into the CFPG model in Figure 3.3 gives insight onto the power 

generated with respect to different input acceleration magnitudes and frequencies.  

 

 

Figure 3.4: Input Sinusoidal Acceleration 
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 The sinusoidal acceleration input and the Coulombic electrostatic damping force 

are tweaked so that the proof mass completes a full flight from one end-stop to the other. 

This requires the sinusoidal acceleration input to be just strong enough to break away 

from the Coulombic damping force and snap away in the direction of the opposite end-

stop. Positive, real instantaneous power is generated as the proof mass is travelling 

between one end-stop to the other. By the time the proof mass reaches the opposite end-

stop, average positive energy is generated over the time interval that the proof mass was 

travelling between the two end-stops. This phenomenon is portrayed in Figure 3.5, where 

the generated mechanical power and proof mass position traces are shown when the 

sinusoidal acceleration input has an amplitude of 4 m/s2, frequency of 6 Hz, and the 

Coulombic electrostatic damping force is set constant at F=0.9 mN (milli-Newtons). This 

matches the expectation for the correct functional operation of the MSD in a CFPG 

device.   
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Figure 3.5: Proof mass full flight between device end-stops and resulting generated instantaneous power 

 
 It is possible to either tweak the sinusoidal acceleration input or the Coulombic 

damping (or holding) force so that the proof mass does not complete a full end-to-end 

flight across the MSD frame’s end-stops. Compared to the previous case where the proof 

mass makes a complete flight between the two end-stops, the Coulombic damping force 

is increased to oppose the sinusoidal acceleration input and prohibit the proof mass to 

make a complete flight across the MSD frame. As a result of this incomplete flight, it is 

expected that the instantaneous output power will have equal positive and negative 

components (the negative components being reactive power) through the duration of this 

incomplete flight. Consequently, no average power is generated across the time interval 

where the proof mass makes the incomplete flight. This phenomenon is depicted in 

Figure 3.6, where the generated mechanical power and proof mass position traces are 
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shown when the sinusoidal acceleration input has an amplitude of 4 m/s2, frequency of 6 

Hz, and the Coulombic electrostatic damping force is set constant at F=2.7 mN (milli-

Newtons). This confirms that a zero net average power will be generated for incomplete 

proof mass flights.  

 

Figure 3.6: Proof mass incomplete flight between device end-stops and resulting generated instantaneous power 

 
 

3.4: Relationship Between Sinusoidal Acceleration Input and CFPG Electrostatic 

Damping Force 

 In addition to making sure power is only generated when the proof mass makes a 

complete flight between the two end-stops and that no power is generated otherwise, a 

few more aspects of the simulations are tested to verify the validity of the CFPG model. 

With sinusoidal acceleration inputs, it is expected that increasing the CFPG’s Coulombic 
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damping force increases the amount of generated power while still maintaining a constant 

number of flights that the proof mass makes between the two end-stops [28]. However, 

increasing the Coulombic damping force too far causes the damping force to become too 

strong for the sinusoidal acceleration input to overcome. As a result, because the damping 

force is too strong to allow any proof mass movement, both the average generated power 

and the number of flights between the two end-stops drops to zero. 

To verify the CFPG model’s behavior, a series of simulations are performed to 

keep track of the relationships between the external sinusoidal acceleration, the 

Coulombic damping force, and the generated mechanical power. Using the same-length 

time interval of sinusoidal acceleration data, this input is characterized with an amplitude 

and frequency in order to input into the simulations model. This way, the following 

relationships are explored: 

• Relationship between average power generated and sinusoidal acceleration inputs 

of varying amplitudes. The sinusoidal acceleration data’s frequencies are kept 

constant, as well as the CFPG model’s damping force.  

• Relationship between average power generated and sinusoidal acceleration inputs 

of varying frequencies. The sinusoidal acceleration data’s amplitudes are kept 

constant, as well as the CFPG model’s damping force.  

• Relationship between average power generated and the CFPG’s Coulombic 

damping forces.  

• Exploring the relationships that exist between Coulombic damping force values 

that attempt to maximize output generated powers with respect to a range of 

sinusoidal acceleration input amplitudes and frequencies.  
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A summary of the results obtained from exploring these relationships is discussed below.  

First, an investigation is done to explore the impact of the sinusoidal acceleration 

input’s amplitude on the output generated power when the sinusoidal input’s frequency 

and the CFPG model’s damping force are kept constant. For weak (i.e. low) sinusoidal 

amplitudes that are not greater than the damping force, the proof mass sticks to an end-

stop and does not move. As a result, no mechanical power is generated. However, the 

model generates power once a sinusoidal acceleration input’s amplitude is strong enough 

to allow the proof mass to make a full flight from one end-stop to the other.  

The average power generated stays the same even as the input’s amplitude 

increases. This is because the motion of the proof mass is bounded by the end-stops. The 

bounds limit the acceleration inputs from displacing the proof mass beyond the end-stops, 

instead adhering all the acceleration points to travel the same distance in the CFPG 

device. For example, increasing the amplitude of the input acceleration signal results in 

having the proof mass travel a fixed distance (between the end-stops) with a higher 

velocity but for a shorter time interval. Higher proof mass velocity means more 

instantaneous power has been generated (power is a product of velocity and damping 

force), but for a shorter time interval. Comparing power generated between a high input 

amplitude and a lower one, equal average power is harvested across the same-length time 

interval that encompasses the full flight of the proof mass between the end-stops. 

Furthermore, a constant sinusoidal acceleration input frequency maintains the same 

number of flights that the proof mass makes between the two end-stops. Power is 

generated every time a proof mass makes a flight between the two end-stops, and a 
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constant number of flights corresponds to the same number of times that which power is 

generated within a length of time. 

 Figure 3.7 demonstrates this phenomenon when sinusoidal acceleration input’s 

frequency is held constant at 3 Hz and the Coulombic damping force is constant at 

=2mN. There exists a threshold for the input amplitude, above which the amount of the 

average generated power is constant, while below that threshold there is no output power. 

Similar behavior is observed for other combinations of constant sinusoidal input 

frequencies and damping force values. 

 

Figure 3.7: Average harvested power versus amplitude of sinusoidal acceleration input 

!
 The sinusoidal acceleration input’s frequency impacts the average generated power. 

Keeping the sinusoidal input’s amplitude and MSD module’s Coulombic damping force 

constant, the average generated power monotonically increases with increasing the input’s 
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frequency. However, the harvested power drops to zero once the frequency reaches high 

threshold.  Higher frequencies translate to faster oscillation of the proof mass. This results 

in higher generated power. However, at some point, the frequency would be too high for 

the proof mass to make complete end-to-end flights and consequently the generated power 

drops to zero.   

As the frequency of the sinusoidal input within a specified time interval increases, 

so do the number of flights between the CFPG frame’s end-stops. With more flights 

between the end-stops, the CFPG device generates more power. At some point, the 

frequency becomes too high and the proof mass is unable to make complete flights from 

one end-stop to the other. The power output drops to zero, and remains zero for higher 

sinusoidal acceleration input frequencies as well. 

Figure 3.8 demonstrates this phenomenon when the sinusoidal acceleration 

input’s amplitude is held constant at 4 m/s2 and the Coulombic damping force is constant 

at =2mN. There exists a threshold where increasing the sinusoidal input’s frequency 

does not further monotonically increase the amount of generated power, but instead the 

MSD model does not yield any more generated power. Similar behavior is observed for 

other combinations of constant sinusoidal input amplitudes and Coulombic damping 

force values. 
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Figure 3.8: Average harvested power versus frequency of sinusoidal acceleration input 

 
 Next, the effect of the electrostatic Coulombic damping force on the average 

generated power is examined for when sinusoidal acceleration input parameters 

(amplitude and frequency) are kept constant. The average generated power sharply drops 

to zero after increasing the damping force beyond a certain threshold. In addition, the peak 

average power (which in Figure 3.9 around 80 ) occurs at a damping force value just 

below this threshold.  

Physically,!this!indicates!that!a!strong!electrostatic!damping!force!( )!

prevents!the!proof!mass!from!moving,!resulting!in!zero!output!power![28].!Further 

increasing the damping force values makes no difference, as it is already too strong of an 

opposing force to allow the proof mass any movement. Also, it should be noted that with 

no damping force, the proof mass is able to move between the frame’s end-stops, 
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however it does not generate power since there is no force doing work to oppose to the 

proof mass movements. Therefore,!by!judiciously!choosing!the!value!of!F,!one!can!

affect!the!average!generated!power!depending!on!the!acceleration!input.! 

 Figure 3.9 demonstrates this phenomenon when the sinusoidal acceleration input 

maintains a frequency of 3 Hz and an amplitude of 4 m/s2. This input is simulated for a 

range of various damping force values. There exists a threshold where increasing the MSD 

model’s damping force value (F=2.7mN) that does not further monotonically increase the 

amount of generated power, and instead the MSD model does not yield any more 

generated power. Similar behavior is observed for simulating a range of damping force 

values across other combinations of constant input sinusoidal acceleration frequencies and 

amplitudes.  
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Figure 3.9: Average harvested power versus damping (or holding) force tuned to sinusoidal acceleration input 

 
 The relationship between the average generated power and the damping force, 

while the external sinusoidal acceleration input remains the same, points to the existence 

of an optimal value for the electrostatic force  that which maximizes the generated 

mechanical power. As discussed previously, the Coulombic damping force must be less 

than the product of the mass and external acceleration for the proof mass to break away 

from the frame. That is, tuning the Coulombic damping force to be just less than this 

product means the proof mass snaps away from an end-stop and does maximum work 

against the damping force to make a full flight to the opposite end-stop. This yields the 

maximum amount of mechanical power possible with the given input. Simulations are set 

up to further explore the relationship between the optimal damping forces, their 
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corresponding maximum generated power values, and sinusoidal acceleration excitations 

inputs.  

An evaluation is done to find the maximum power output and optimal damping 

forces for distinct sinusoidal acceleration inputs, each characterized by a different 

combination of signal amplitude and frequency. A series of simulations ran every 

possible sinusoidal input frequency and amplitude combination for frequencies between 

0.2 and 10 Hz (frequencies simulated in increments = 0.2Hz) and amplitudes between 0.2 

and 6.4 m/s2 (amplitudes simulated in increments = 0.2 m/s2). Each series of simulations 

ran each acceleration input, characterized by a particular combination of the sinusoidal 

frequency and amplitude, for a range of values of the damping force between the values 0 

and 50 mN (F simulated in increments = 62.5 ). The!optimal!damping!force!values!

that!give!the!maximum!generated!power!output!for!each!sinusoidal!acceleration!

input!is!depicted!in!Figures!3.10!and!3.11.! 
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Figure 3.10: Optimal value of the electrostatic force for sinusoidal acceleration inputs with varying amplitudes 
and frequencies 

 

 

Figure 3.11: Maximized average harvested power for sinusoidal acceleration inputs with varying amplitudes and 
frequencies 
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 Figures 3.10 and 3.11 indicate that stronger sinusoidal acceleration input 

amplitudes correspond to higher optimal damping forces and to increased resulting 

maximized generated power values. However, the generated power also depends on the 

acceleration input’s frequency. If the signal’s frequency is too high (i.e. over 7Hz), then 

the maximized power output is relatively small. Likewise, if the frequency is too low (i.e. 

less than 2Hz), the maximized power outputs are still low. The signals with the highest 

optimized generated power outputs have amplitudes that are as high as possible but with a 

frequency that isn’t too high or too low (4-5 Hz). Examination of Figures 3.10 and 3.11 

shows that up to 0.25 mW (and more, if even higher amplitude values were included in 

this study) of mechanical power can be harvested by the CFPG devices, which may be 

suitable for many low-power body sensor node applications [19]. 

 These plots verify the behaviors of the CFPG device when experiencing external 

sinusoidal acceleration excitations as described in [28]. Furthermore, these plots indicate 

that the damping force can be a design parameter in the MSD component of a CFPG 

device and that, if carefully selected, the efficiency of the energy harvesting 

microgenerator device can be greatly improved. This brings to question if whether it is 

possible to tune the damping force values depending on the amount of human motion 

inflicted on the CFPG device.  
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Chapter 4: Maximizing CFPG Harvested Power 
 

In this chapter, a novel approach is described which aims to adaptively optimize 

the Coulombic damping force with time. This is the first time such adaptive optimization 

approach is being applied to maximizing the power output from a CFPG micro-energy 

harvester. Nonetheless, previous studies have shown methodologies used in order to 

optimize the power generated from energy harvesting microgenerators.  

In [33], the authors optimize an inertial microgenerator’s design parameters to 

maximize the power harvested from the device. Their optimization efforts require the 

resonant frequencies of their devices (e.g. the spring) to match the dominant frequency of 

the ambient environment that the devices are situated in. This is not ideal for harvesting 

energy from the human body since human body limb motions do not undergo vibratory 

motions that can be characterized by a consistent frequency. In [20], the authors pick a 

micro-energy harvester that utilizes Coulombic-force to harvest power and optimize it 

with respect to the geometrical features of the energy harvester’s architecture. The main 

conclusion from this study was that the power converted from the energy harvester is 

unavoidably linked to the mass of the device. In [27], the authors aim to show 

optimization results for CFPG micro-energy harvesting generators when applied to 

human walking motion. Their optimization method involves sweeping the value of the 

Coulomb-force parameter across a range of values to find the Coulombic-force value that 

yields the most power for the device. Among the compared micro-generator architectures 

and the given constraints on the miniaturized size of the architectures, their results 

suggest that the CFPG architecture achieves the highest power density [27]. 
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4.1: Optimization Problem Formulation 

The purpose of this chapter is to adaptively optimize the transducing parameter 

(the Coulombic, electrostatic damping or holding force) of a CFPG energy harvesting 

microgenerator with respect to acceleration input from real human body motion. An 

important objective is to characterize the amount of harvested mechanical power with the 

Coulombic electrostatic damping force. The end goal is to show that by judiciously 

choosing the value of the Coulombic electrostatic damping force, F, with respect to time, 

one can maximize the average generated mechanical power. 

The following optimization problem in Equation 5 has been formulated by 

utilizing Equations 2 and 4 as constraints:  

                                                            (5) 
 
such that 

 
and 

 
 
The objective aims to maximize the average harvested power during the time interval ! 

by choosing the optimal value of the design parameter, electrostatic force F. The choice 

of ! translates to how quickly the value of the electrostatic force should be adapted to the 

input in order to maximize the output power. This interval of time can be treated as 

another parameter and this study considers interval sizes of 40, 5, 2, 1, 0.5, 0.2, and .125 

seconds for adaptively tuning the damping force. This optimization formulation utilizes 

acceleration traces collected from real human body motions [18, 32] and runs this data 

through programs that implement Equation 5, with chosen optimization algorithms. 



!
!

57!

 

4.2: Source of Input Acceleration Traces 

The human body motion acceleration data used in this thesis makes use of 

acceleration traces from a previous study  [32], where forearm and leg acceleration data 

were measured with an X6-1 USB tri-axial accelerometer [37]. The accelerometer was 

either placed on the calf or forearm of an individual. The acceleration traces were time-

stamped and stored on-board, and the accelerometer had a sampling rate of 32 Hz with an 

amplitude range of +/- 12 g for the acceleration measurements. In [32], the accelerometer 

collects up to 8 hours of acceleration traces during the day from 40 different individuals, 

obtaining a total of 320 hours of data. The test subjects were between 20 and 55 years of 

age, with the same number of males and female, and various body types. Figure 4.1 

depicts the accelerometer mounted on the forearm of one of the test subjects. 

Although the accelerometer measured all 3 axes of data from the human limb 

motions, only the z-axis from the acceleration traces were taken into account. The 

reluctance to use the magnitude of all 3 axes means that the estimates for harvested 

energy are conservative. Future studies will aim to see the differences between using one 

axis of the acceleration trace inputs and using the magnitude of all 3 axes. 
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!
Figure(4.1:(The(accelerometer(mounted(on(the(forearm([32] 

To implement the optimization algorithm, seven different sets of data were 

accessed by random from the database [32]. From each of these seven sets of data, 40-

second samples were randomly selected in order to use as acceleration input traces for the 

optimization scheme. Seven of these 40-second samples came from data obtained by 

harnessing the accelerometer on an individual’s arm, and 2 of them came from harnessing 

the accelerometer on an individual’s leg.  

A few difficulties and challenges come from the acceleration traces being used as 

inputs into the implementation of the optimization formulation, Equation 5. First, it is 

important to note that the acceleration input into the Simulink model is in the form of 

discrete data. The (time) steps taken by the Simulink solver are different from the ones 

specified in the accelerometer’s input time vector. As a result, running the accelerometer 

data through the Simulink model may output inaccurate results if the input accelerometer 

data is not aligned with steps taken by the Simulink solver [42]. The input accelerometer 
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datapoints that are not aligned with the steps taken by the Simulink solver are skipped 

and not taken into account in the simulation output. To avoid this, the solution is to not 

provide the time vector of the accelerometer data when inputting these datapoints as 

discrete data into the simulation. This way, the sampled data will take on the time-steps 

from the fixed-step Simulink solver. However, this was followed up by another problem 

arising from the mechanism in which the accelerometer would record data. 

Although the accelerometer operated at 32 Hz, it did not record data at 32 Hz 

unless it detected the presence of acceleration on the device. As a result, one-second 

samples from the acceleration database did not necessarily have 32 data-points. Inputting 

the data into the simulations without a time-stamp would lose the sense of time in which 

the accelerometer actually recorded data. The solution to this is to interpolate the 

accelerometer datapoints with a piecewise cubic Hermite interpolating polynomial [43] 

and upsample the data to 32 Hz. Setting the time-steps from the Simulink solver at 32 Hz, 

it became possible to input the interpolated acceleration data of the same frequency 

without the time vector, and know that the output data stream has linearly spaced points 

with a frequency of 32 Hz. 

 

4.3: Implementation of Optimization Formulation 

The goal is to implement the optimization formulation described in Section 4.1 

(Equation 5) using computer simulations. Each of the seven 40-second acceleration traces 

described in Section 4.2 runs through the implementation of the optimization formulation 

in Equation 5. The program takes each of the 40-second acceleration traces and runs it 

through the optimization algorithm for each of the damping force-tuning interval sizes of 
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40, 5, 2, 1, 0.5, 0.2, and .125 seconds. The damping force is tuned for successive window 

frames of input acceleration, where the window frame lengths are specified by the 

interval of time. 

A Pattern Search optimization algorithm [36] is implemented using Matlab’s 

Global Optimization Toolbox [38] and the Simulink Design Optimization Toolbox [39]. 

With the Simulink Design Optimization Toolbox, it is possible to use a Simulink diagram 

as a custom objective function, in this case a non-linear differential equation implemented 

in Simulink (see diagram in Figure 3.3). The toolbox enables the user to specify design 

variables, design requirements, and constraint functions. Once the optimization problem 

has been formulated, the user is allowed to pick an optimization algorithm from Matlab’s 

Optimization and Global Optimization toolboxes. Of the optimization algorithms available 

to implement from the Simulink Design Optimization Toolbox, the Pattern Search 

algorithm was chosen because it does not require a gradient to find an optimum point. 

This is important as the objective function (the Simulink block diagram) is a non-linear 

differential equation and the available gradient-based solvers are ineffective for such 

problems. Furthermore, a pattern search algorithm allows for running the optimization in a 

parallel setting and distributing the computational load across multiple Matlab workers, as 

it is shown that parallel computing for pattern-search algorithms may accelerate 

optimization up to 2.81 times [55]. The Matlab and Simulink implementation of this 

optimization algorithm can be found in Appendix B.  

The implementation of Equation 5 starts with selecting an acceleration trace for the 

input, an initial value for the proof mass position and velocity, an initial value for the 

Coulombic damping force F, and a time interval size for how often F is adaptively 
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optimized. Once these are specified, windows of the acceleration data with a window-

length defined by the chosen interval size are selected to run through the optimization 

algorithm, one window frame of the acceleration data at a time. For each successive 

window of acceleration input, the Simulink Optimization Toolbox is used to specify the 

Simulink block diagram of Equation 5 as the optimization’s constraint function, set the 

design variable to be the parameter F, utilize a customized objective function that assigns 

the optimization algorithm to find the maximized average harvested power from the 

current acceleration window frame, and finally runs the pattern search algorithm to find 

the optimal damping force. 

Limits on the design variable are also specified in the algorithm. From [30, 35], it 

is known that the maximum Coulombic damping force value that allows the proof mass to 

snap away from an end-stop and generate mechanical power is equal to the product of the 

proof mass and the peak acceleration magnitude. Observing the collected acceleration 

database, there exists a peak acceleration around 10 m/s2 for the arm-mounted 

accelerometer traces and a peak acceleration is around 20 m/s2 for the leg-mounted 

accelerometer traces. Since the proof mass is set at 0.965 g, the maximum values for the 

Coulombic electrostatic damping force are set at 10 mN and 20 mN for the arm and leg 

input acceleration traces, respectively. 

Next, the optimization algorithm verifies the validity of the optimization 

formulation in Equation 5. With validity of the model, the Simulink Design Optimization 

toolbox optimizes the design with respect to the selected Pattern Search algorithm. Once a 

design parameter damping force F has been found to maximize the average power 

generated by the current interval window of acceleration, the optimization algorithm 
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updates the initial proof mass position and velocity values. This update initializes the next 

successive acceleration window frame (with a window frame length specified by the 

chosen interval of time for that optimization run) that which runs through the optimization 

algorithm. 

The pattern search algorithm finds a sequence of points that approach an optimal 

point without needing to calculate the gradient of the objective function or its constraints 

[41]. The pattern search algorithm iteratively searches a set of points, called a mesh, to 

find a design parameter point, a damping force value, that improves the objective value 

(harvested power). The algorithm finds the points in the current mesh by polling design 

parameter points that surround the current most optimal design parameter point with a 

specified mesh size. The objective values of these polled points are then computed. If a 

point yields an objective value greater than the current most optimal design parameter 

value, this new point is selected as the new most optimal design parameter value. In the 

next iteration of the algorithm, the mesh size expands to poll points within a wider range 

of the new optimal design parameter value. However, if no polled points yield any 

objective values greater than the current most optimal design parameter value, the current 

most optimal design parameter value does not change in the next iteration but the mesh 

size contracts and searches a range of design parameter values closer to the current most 

optimal point.  

The criteria for stopping the pattern search could be a time limit, a maximum 

number of iterations, a tolerance on how small the mesh size contracts to, or a tolerance on 

the change in objective function in 2 consecutive successful iterations (where the mesh 

size is also less than this tolerance). For the purposes of maximizing power yielded by 
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each interval window of acceleration input, the algorithm terminates its search for an 

optimal design value for the electrostatic damping force when the mesh size polling 

around an optimal damping force value is less than a specified mesh tolerance. 

One of the challenges of this optimization was finding the optimization settings 

that accurately find a window frame’s optimal electrostatic damping force. Many tweaks 

were necessary to find such settings, as it is very possible for the pattern search algorithm 

to skip or miss the optimal damping value that yields maximized power for a particular 

interval window of acceleration inputted into the system. Choosing maximum and 

minimum design parameter values have thus far been described but the other optimization 

settings and their definitions are laid out in Table 4.1.  

Table(4.1:(Pattern(Search(Optimization(Settings(

Name of Optimization Setting Description 
F-maximum Maximum value of F allowed in 

optimization 
F-minimum Minimum value of F allowed in 

optimization 
Mesh Tolerance Tolerance on the mesh size. If the mesh size 

is less than this value, the solver will stop 
Initial Mesh Size Initial mesh size for pattern algorithm 
Mesh Contraction Mesh contraction factor, used when 

iteration is unsuccessful 
Mesh Expansion Mesh expansion factor, expands mesh when 

iteration is successful 
Maximum Iterations Maximum number of iterations before 

termination for expanding/contracting the 
mesh size on current window of 

optimization 
Cache Tolerance When cache is set to ‘on’, patternsearch 

keeps a history of the mesh points it polls 
and does not poll points close to them again 

at subsequent iterations 
The Cache Tolerance specifies how close 

the current mesh point must be to a point in 
the cachesize history for patternsearch to 

avoid polling it 
Cache Size Size of cache history 
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 The mesh size tolerance has been set so that the closest polled points to the 

optimal electrostatic damping force are within acceptable accuracy. The optimal 

electrostatic damping force values are on the scale of a few milliNewtons, and the mesh 

size tolerance has been set at 10-5 so that the optimal electrostatic damping force that the 

algorithm finds is within a few microNewtons of the actual optimal electrostatic damping 

force. The initial mesh size for the pattern algorithm is set to be equal to the maximum 

value of the electrostatic damping force allowed by the optimization algorithm. The 

reasoning for this is so that the mesh size covers the entire range of acceptable 

electrostatic damping force values. The mesh contraction factor is set at 0.99 and the 

mesh expansion factor is set at 1.03. With a high contraction factor and low expansion 

factor, the algorithm polls many design parameter values without having to needlessly 

recalculate similar values if being run with a high expansion factor. For the maximum 

iterations, an unrealistically high value of 5000 was chosen so that the algorithm doesn’t 

terminate due to excessive terminations rather than terminate due to surpassing the mesh 

size tolerance. The cache tolerance and cache size specify how close the current mesh 

point must be to a point in the cache history in order for the pattern search optimization 

algorithm to avoid polling it. A cache tolerance of 10-5 helps speed up the optimization 

algorithm by avoiding to poll mesh points that are close to previous points that have been 

polled. 

 Previous difficulties showed that with certain settings, the electrostatic damping 

force would stop updating from window to window or the proof mass would be stuck to 

an end-stop for a prolonged amount of time. There were also instances where the 
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optimization algorithm would not converge due to the mesh size tolerance, but instead 

terminate after reaching the maximum iterations allowed. The settings mentioned above 

helped overcome all these challenges and difficulties. Lastly, the main sanity check to see 

if whether the optimization settings mentioned above are valid involved using sinusoidal 

acceleration traces as inputs into the optimization algorithm. Comparing the maximized 

output power of the optimization algorithm with the maximized power for the sinusoidal 

acceleration input study in the previous chapter confirmed that both methods yield the 

same amount of maximized power. This indicates that the optimization algorithm that 

implements Equation 5 is valid and can be used on human body motion acceleration trace 

inputs.  

 

4.4: Optimization Results 

As mentioned, the goal is to run each of the seven 40-second acceleration traces 

described in Section 4.2 runs through the implementation of the optimization formulation 

in Equation 5 for all cases where the Coulombic damping force F is adaptively optimized 

at various interval sizes of 40, 5, 2, 1, 0.5, 0.2, and .125 seconds. The aim of this section 

is to lay out and compare the optimized harvested power from these simulations against a 

non-optimized scenario. In other words, this section describes the optimization gains 

yielded against when having held the electrostatic damping force F to a constant value.  

It is natural to believe that the maximized harvested power (after optimization) 

will increase with smaller interval sizes that which the value of the electrostatic force is 

adaptively tuned. However, optimizing the damping force with small-enough window 

sizes should not yield any more gains. This is because typically the input, being human 
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body motions, changes very little between successive small intervals of acceleration data 

frames. One thing to note is that, in order for the simulations to reflect prototype CFPG 

architectures, one final physical constraint is implemented on the simulation model in 

that the value of the electrostatic damping force only changes when the proof mass is 

held steady at an end-stop.  

Two of the seven 40-second acceleration traces come from natural leg motion and 

the rest come from natural arm motions. The acceleration traces used as input to the 

Matlab/Simulink simulation model are laid out in the plots below. 

!
Figure(4.2:(40.second(acceleration(trace(from(source(Arm(1(
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!

(a)

!

(b)!

!

(c)!

Figure(4.3:(40.second(acceleration(traces(from(different(sources,(denoted(by:((a)(Arm(2,((b)(Arm(3,((c)(
Arm(4 
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!

(a)

!

(b)

!

(c)!

Figure(4.4:(40.second(acceleration(traces(from(different(sources,(denoted(by:((a)(Arm(5,((b)(Leg(1,(and((c)(
Leg(2 
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These acceleration traces were used as the optimization model’s inputs and their 

maximized power outputs were obtained. The maximized harvested powers and gains 

with respect to different interval sizes that which F is adaptively optimized with respect 

to the input acceleration traces are laid out in the Tables below. The gains were obtained 

by looking at the ratio of the optimized maximized power value to the power yielded 

when setting the CFPG device to have a constant electrostatic damping force value of 

F=0.81mN. A value of F = 0.81 mN is chosen as the constant Coulombic electrostatic 

damping force since this particular value has also been used in literature [27] to simulate 

and optimize CFPG architectures. Matlab Code that implements this optimization can be 

found in Appendix B. 

 

Table(4.2:(Energy(harvested(from(different(input(acceleration(datasets(with((respect(to(different(
damping(force.tuning(intervals(

Optimization 
Interval ! (Sec) 

40 s 5 s 1 s ½ s ¼ s 1/8 s Constant 
F=0.81 

mN 
Leg 1 Optimal 

Average 
Harvested 

Power (!W) 

3.1143 4.8636 5.1711 5.6167 6.0348 5.1110 2.1284 

Leg 2 Optimal 
Average 

Harvested 
Power (!W) 

33.623 31.277 41.302 39.938 35.420 33.013 14.148 

Hand 1 Optimal 
Average 

Harvested 
Power (!W) 

18.4073 18.555 18.849 22.790 26.148 23.427 11.865 

Hand 2 Optimal 
Average 

Harvested 
Power (!W) 

3.4331 5.3671 5.6622 5.1126  3.8192 2.9474 2.1417 



!
!

70!

Hand 3 Optimal 
Average 

Harvested 
Power (!W) 

0.65180 1.9410 1.4581 0.84301 0.62011 0.32440 0.30238 

Hand 4 Optimal 
Average 

Harvested 
Power (!W) 

4.5444 5.0670 4.5905 4.4505 3.7032 2.3178 1.4222 

Hand 5 Optimal 
Average 

Harvested 
Power (!W) 

0.3873 0.4113 0.7115 0.1229 0.1576 0.1029 0.1090 

 
 
Table(4.3:(Power(gains,(ratio(of(energy(harvested(from(different(input(acceleration(datasets(at(different(

damping(force.tuning(intervals(to(energy(harvested(with(a(constant(damping(force(F=0.81mN(

Optimization 
Interval ! (Sec) 

40 s 5 s 1 s ½ s ¼ s 1/8 s 

Leg 1 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

1.46 2.29 2.43 2.64 2.84 2.40 

Leg 2 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

2.38 2.21 2.92 2.82 2.50 2.33 

Hand 1 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

1.55 1.56 1.59 1.92 2.20 1.97 

Hand 2 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

1.60 2.51 2.64 2.39 1.78 1.38 

Hand 3 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

2.16 6.41 4.82 2.78 2.05 1.07 

Hand 4 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

3.19 3.56 3.23 3.13 2.60 1.63 

Hand 5 Ratio of 
Optimization/No
n-Optimization 
in Power Gain 

3.55 3.77 6.51 1.13 1.44 No gain 
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The results show that gains of between 2 to 6 times can be achieved when using 

the optimization algorithm to find maximized power harvested from CFPG by adaptively 

tuning the value of the electrostatic damping force instead of maintaining a constant 

value for the damping force. There are two instances where tuning the damping force at 

5-second intervals of time yields the maximized power, 3 instances with 1-second 

intervals of time, and 2 instances with quarter-second intervals of time. It is obvious that 

when the interval is too big, it encompasses too much activity to harvest as much power 

as possible from the ambient environment. On the other hand, when the interval size is 

too small, the optimization algorithm does not yield more power because the input, being 

human body motions, changes very little between successive small intervals of 

acceleration data frames.  

One possible hypothesis is that the amount or type of activity in the acceleration 

traces affects the interval sizes of tuning the Coulombic electrostatic damping force that 

yields the maximized average power harvested from the trace. One possible property of 

the acceleration traces to look at is the dominant frequency of motion and corresponding 

amplitude of the dominant frequency. This is determined by looking at the maximum 

spectral component of the Fourier transform of the acceleration trace [33]. This property 

points to the acceleration amplitude that most effectively generates power from the 

energy harvester [32].  Specifically, after taking the Fourier transform of the input 

acceleration data, the product of the acceleration amplitude and the corresponding 

frequencies is taken to look for the dominant frequency for which the product of the 

acceleration amplitude and corresponding frequency is maximized. The table below 
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shows the dominant frequency and amplitude of that dominant frequency for each 

acceleration trace. 

Table(4.4:(Acceleration(input(characteristics(

Acceleration Trace 

 

Dominant Frequency of 

Motion (Hz) 

Acceleration amplitude of 

Dominant Frequency (m/s2) 

Leg 1 15.1  0.1752 

Leg 2 3.82  1.71 

Arm 1 2.67  3.14 

Arm 2 2.01 0.33 

Arm 3 10.95 0.06 

Arm 4 3.33 0.24 

Arm 5 3.61 0.07 

 

Generally, a higher acceleration amplitude of the dominant frequency corresponds 

to more power yielded from the optimized energy harvester, with also smaller intervals of 

time where the damping force parameter is adaptively tuned. However, these measures 

are not conclusive. An expansive study needs to be done to explore the relationship 

between the acceleration input and the interval sizes of tuning the damping force that 

which yields the maximized harvested average power output. This expansive study 

should also utilize other statistical properties and parameters, such as average absolute 

deviation of the acceleration, to characterize the amount or type of activity in the 

acceleration input that affects the interval sizes.  
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These results point to the potential impact of using the optimal value of the 

electrostatic force in the harvested power. As observed, a significant gain (at least up to 

2 times higher) is achieved for the sample data compared to the non-optimized scenario.  

 

4.5: Maximizing Harvested Power by Tuning Damping Force Parameter with Delay 

 It is not realistic to implement real-time optimization as in the previous section as 

there is only a fraction of a second available to tune the electrostatic damping force 

parameter to obtain maximum harvested average power output. The previous section 

showed that it is possible to optimize the architecture of the micro-generator in order to 

maximize harvested power. To realistically implement this in hardware, it is instead 

possible to tune the value of the electrostatic damping force of a future input acceleration 

window frame, specified by an interval of time. It is natural to believe that the human 

body motion does not substantially change over short intervals of time, and so optimal 

damping force of one frame of acceleration will be similar to the optimal damping force 

of the subsequent interval’s frame of acceleration. Therefore, this section explores a 

hypothetical model that tunes the damping force at a future, subsequent window frame of 

input acceleration with the current window’s optimal damping force. The gains in the 

harvested power are also compared to holding the damping force at a constant value. 

 Tuning the damping force at a future, subsequent window frame of input 

acceleration with the current window’s optimal damping force possibly entails 

characterizing the current input acceleration window frame. A statistical characterization 

of the current acceleration window frame may provide insight to the frame’s optimal 

electrostatic damping force value. Instead of performing optimization in real-time, a 



!
!

74!

database of previously-computed optimal damping force values corresponding to 

different acceleration input statistical characterizations may be used. The database would 

allow doing a simple search to find an optimal electrostatic force value for the next 

window frame based on the characterization of the current acceleration window frame. In 

other words, a model is built to adaptively tune the CFPG’s electrostatic damping force 

value for the next subsequent window frame, specified by the same interval of time of the 

current window frame, given a characterization of the current acceleration frame. As 

such, the optimal electrostatic force is implemented with a delay of a window frame 

(specified by an interval of time). This model, named the delayed-damping force model, 

is depicted in Figure 4.5.  

 

Figure(4.5:(Delayed.damping(force(model(block(diagram 

 
 The effectiveness of the model’s power generation determines the practicality of 

using such a model. The power harvested from this model is compared to the energy 

harvested when using the optimization formulation in the previous section and also 

compared to the case when the CFPG device uses a constant value for the electrostatic 

damping (for which a value of F=0.81 mN has been chosen). From the previous section’s 
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seven 40-second acceleration traces that have been used to adaptively optimize the value 

of the damping force over various time interval sizes, it is possible to see if whether the 

delayed-damping force model can be effective. The CFPG model is again simulated with 

the same seven acceleration traces but with optimal damping force values that are being 

implemented on the acceleration window frames (of a specified interval length) that 

succeed the window frames for which the optimal damping force had been obtained. The 

Matlab code that implements this test for the delayed-F model can be found in Appendix 

B. 

 The power yielded from the optimization implementation in the previous section 

and the implementation with the delayed-F model are compared in Table 4.5, as well as 

the power yielded when the CFPG model is being simulated with a constant electrostatic 

force of F=0.81 mN. The gains of these two implementations against the CFPG model 

simulations with the constant electrostatic force are also laid out. 

 

Table(4.5:(Energy(harvested(from(delayed.dampoing(force(model,(and(comparison(to(real.time(adaptive(
optimization(and(constant.damping(force(implementation(

Dataset(and(
optimal(parameter.
tuning(interval(size(

Maximized!power!
yields!for!
Optimization!
Implementation!of!
Equation!5!(!W)!

Maximized!power!
yields!for!delayedY
damping!force!
predictor!model!
(!W)!

Power!yields!with!
constant!
electrostatic!
damping!force!value!
F=0.81mN!(no!
adaptive!tuning)!
(!W)!

Leg 1, optimized by 
adaptively tuning F at 
intervals of 1/4s  

6.0348 5.8606! 2.1284 

Leg 2, optimized by 
adaptively tuning F at 
intervals of 1 s 

41.302 27.596! 14.148 

Hand 1, optimized by 
adaptively tuning F at 
intervals of ¼ s  

26.148 16.555! 11.865 
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Hand 2, optimized by 
adaptively tuning F at 
intervals of 1 s  

5.6622 4.8073! 2.1417 

Hand 3, optimized by 
adaptively tuning F at 
intervals of 5 s  

1.9410 0.08585! 0.3024 

Hand 4, optimized by 
adaptively tuning F at 
intervals of 5 s  

5.0670 2.4502! 1.4222 

Hand 5, optimized by 
adaptively tuning F at 
intervals of 1 s !

0.7115 0.35960! 0.1090 

 

Table(4.6:(Ratio(of(Optimization/Non.optimization(in(power(gain(yields(for(delayed.damping(force(
model(against(constant.damping(force(implementation(

Dataset(and(
optimal(parameter.
tuning(interval(size(

Ratio of Optimization/Non-
Optimization in Power Gain!for!
Optimization!Implementation!
of!Equation!5!

Ratio of Optimization/Non-
Optimization in Power Gain!yields!
for!delayedYdamping!force!model!

Leg 1, optimized by 
adaptively tuning F at 
intervals of 1/4s 

2.84 2.75!

Leg 2, optimized by 
adaptively tuning F at 
intervals of 1 s 

2.92 1.95!

Hand 1, optimized by 
adaptively tuning F at 
intervals of ¼ s  

2.20 1.40!

Hand 2, optimized by 
adaptively tuning F at 
intervals of 1 s  

2.64 2.24!

Hand 3, optimized by 
adaptively tuning F at 
intervals of 5 s  

6.41 No!gain!

Hand 4, optimized by 
adaptively tuning F at 
intervals of 5 s  

3.56 1.7228!

Hand 5, optimized by 
adaptively tuning F at 
intervals of 1 s !

6.51 3.30!

 

 In all but one case, the model where the optimal damping force value was applied 

with one frame of delay showed significant gains over the case where the CFPG’s 

damping value remains constant at 0.81mN. Also, as expected, the model with the 
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delayed-damping force values showed less harvested power gain than the real-time 

optimization from Section 4.4. However, there may be a possible trade-off between 

computational time and power gain. Optimizing the damping force in real time produces 

the most power gain but requires a higher computation time to actually be implemented 

in real-time. The case where the damping force is held at a constant value (F=0.81mN in 

the experiments above) yields the least harvested power, but requires little computation 

time in regards to tuning the damping force value. The delayed-damping force model 

requires more exploration to see how it would be implemented on the CFPG, but from the 

initial results it is intuitive to believe that this model requires less computational time 

than real-time optimization, yet gives higher power gains over the case where the 

damping force is held at a constant value.  

 More research into the delayed-damping will give a better idea on the feasibility 

of implementing such a model for CFPG micro-energy harvesting generators. The basic 

issues for implementing such a model involve the representativeness of the data, 

statistical characterization of the data, validity of the model, rate of adaptation, validity of 

the prediction, and implementation aspects such as numerical robustness, computational 

stability, and real-timeliness [47].  

 It should be noted that in the literature, there have been several energy harvesting 

adaptive algorithms that assumed that the energy harvesting process is Markov or has 

independent identically distributed properties [44-46]. However, these assumptions do 

not necessarily hold for all motion energy traces and Markov processes may result in very 

different performance trends depending on the input [33].  
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Chapter 5: Conclusion 
 
 This paper first presents the potential for body sensor networks in regards to 

making personalized healthcare a commercial reality. Through exploring use cases of 

body sensor networks, a key limitation for a large-scale implementation of body sensor 

networks is that they heavily rely on batteries that need frequent recharge. This reliance is 

a deterrent for using these sensors. Therefore, the aim of this paper is to find a method or 

technology that prolongs the operational lifetime of body sensors, and as a result makes 

them more appealing to use for personalized healthcare purposes.  

 An energy-harvesting technology suitable for body-mounted sensors is the 

Coulomb Force Parametric Generator (CFPG) kinetic microgenerator architecture. This 

architecture consists of a Mass-Spring-Damper (MSD) system, a transducer and power-

processing circuitry. This thesis focuses on the MSD and transducer models. A modified 

model of the non-linear differential equation is presented for the MSD component. This 

model can be used to measure the amount of mechanical power generated. The 

conversion to electrical power is done through an electrostatic transducer module. 

Optimizing the architectural and design parameters of the harvester device based on the 

characteristics of the input acceleration increases the amount of the generated mechanical 

power. Different adaptive optimization models were also presented, and coming to any 

conclusive remarks about the power generated necessitates going back and comparing the 

power that could potentially be harvested with the power requirements of the body 

sensors.   
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 The CFPG model simulation and optimization results show that the energy 

harvested by this device can reach up to 10’s of micro-Watts in mechanical power. As for 

power consumption requirements of body-mounted sensors, there is a possibility to 

require no more than 1 !W for a body-mounted sensor node, including power required by 

the signal processing circuitry, wireless communication, and the sensor itself [19]. 

However, certain low-power applications may require as much as 100 !W [48]. 

Regardless, the energy harvested from the CFPG model simulations is sufficient and 

significant enough to make it a worthwhile endeavor for prolonging the operational 

lifetime of a body-mounted sensor node. Yet there are still limitations and challenges that 

need to be overcome. 

To facilitate the adoption of energy-harvesting microgenerators, both progress is 

being made with newer technologies of body-powered applications having lowered their 

power requirements [19], as well as newer micro-generator trends showing significant 

improvement with the amount of energy they are capable of harvesting [49]. However, an 

absolute limitation on the power requirements is the size of the energy harvesters 

themselves [23]. For device sizes of interest in this paper, with a maximum volume of 1 

cm3, it is unlikely for a harvester to generate more than 1 mW from body motions [48].   

Other limitations include adding an energy storage mechanism to the energy 

harvesting device since body motions that power energy harvesting vary substantially 

with time, and that these variations are unlikely to correspond with the varying demands 

of the body-mounted sensor node [19].  To elaborate, over 95% of total energy from the 

human body is collected only from 4-7% of a day [33]. In addition, models for predicting 
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future consumption and power availability may aid in managing the variability of power 

harvested from the human body [50].  

 Effectiveness of coupling the energy harvesting transducers with power-

processing interface circuit is another challenge of the energy harvesters. The transducers 

generate mechanical power, but power-processing circuitry is required to convert that 

into electric power that can be used by the sensor node. However, substantial power may 

be lost in this interface for power conversion, affecting the amount of power that can be 

delivered to the sensor node from the energy harvesters described in this paper [31]. In 

addition to the practical challenges and limitations with the energy harvester, more 

accurate models of the energy harvester will also aid in the optimization and simulation 

of these devices [32, 34]. 

It should be noted that this project is a Cyber-Physical System and highlights how 

joint design of the cyber and physical components can improve system efficiency. By 

adaptively tuning the electrostatic force F for various human body motions, one can 

expect an improved efficiency in harvesting kinetic energy for wearable sensors. 

Physically, this can be accomplished by tuning the electric field between the CFPG’s 

capacitive electrodes [28]. Mathematical formulation of the adaptive optimization problem 

can be solved by adding appropriate computational algorithms in the micro-generator 

architecture [18]. 

The plan for future works includes an exploration of the limitations and challenges 

discussed above, as well as improving the optimization algorithms and adaptive tuning 

models in Chapter 4 for higher accuracy and lower computational complexity. As 

mentioned, the ultimate goal is to develop an accurate model of the CFPG micro energy-
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harvester device and optimize the amount of generated power for various human body 

motions. This in turn prolongs the operational lifetime of body sensors. On a higher 

systems-level view, this research in turns aims to aid body sensor network systems in 

becoming a feasible asset for making personalized healthcare delivery a realization [18]. 

As a result, it is believed that integration of micro energy harvesting technology with 

wearable sensors is a promising approach in prolonging the operational lifetime of 

wearable medical sensors. 
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Appendix A: Use Case Descriptions of Medical Body Sensor Networks 

Use Case 1: System Setup 
Goals 1 

1. Provides the user with data protection, maintenance, and monitoring health. 
2. Allows patient to adjust the setup themselves [51]. 

Primary Actors 
Healthcare Provider, Patient, BSN Provider,  
 
Secondary Actors 
Maintenance, Legal System 
 
Pre-Conditions 
Healthcare Provider diagnoses or indicates that Patient needs a body sensor network to 
monitor their health. 
 
Primary Flow 

1. Patient is educated about their privacy rights from (Legal System). Patient gives 
informed consent. 

a. If informed consent is not given, then the patient cannot receive the BSN. 
2. Healthcare Provider determines exactly what signals and sensors he wants to look 

at. 
3. Senor nodes and hub received from BSN Provider 
4. Qualified Healthcare Provider or technicians from Maintenance crew set-up the 

sensor nodes and hub on the Patient’s body. BSN Provider configures 
communications to Server and access to records for Patient and Healthcare 
Provider. 

5. Patient is educated about how the nodes/hub work (positioning, hub interface, 
etc). 

Alternate Flow 
Not Available 
 
Activity Diagram 
An activity diagram was chosen to depict the flow of activities required to perform this 
use case. 
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Figure A.1: Use Case 1 Activity Diagram 

Post-Conditions 
Patient has BSN setup properly. They know how to use it and adjust it.  
Use Cases 2-6.  
 
Derived Requirements  
1. Legal framework allows legal privacy protection, informed consent, and protection of 

minorities. 
2. Sensor Nodes and Hub do not interfere with natural Patient postures. 



!
!

84!

3. Patients are capable of adjusting Nodes if necessary without disrupting the Nodes 
sensing capabilities or communication. 

4. Sensor Nodes can be added or removed with ease. 
 

Use Case 2: Maintain Components 
Goals 2 

1. Maintain Hub components 
1.1. Alert patient, healthcare provider, and maintenance crew in case of defective 

Hub (autonomic sensing) [19]. 
2. Maintain Server components 

2.1. Alert patient, healthcare provider, and maintenance crew in case of defective 
Server (maintenance and autonomic sensing) [19]. 

3. Maintain BSN components 
3.1. Alert patient, healthcare provider, and maintenance crew in case of defective 

BSN [19]. 
4. Make sure all system components are reliable. 

Primary Actors 
Maintenance 
 
Secondary Actors 
Patient, Environmental factors, Healthcare Provider 
 
Pre-Conditions 
Use Case 1 
 
Primary Flow 

1. Autonomous sensing techniques running through the BSN detect a problem at a 
communication link or component node. Faults include a lack of component 
function or lack of connectivity. 

2. Problem is diagnosed using belief network techniques that run through the 
system. A lack of component function can be caused by a destroyed component, 
inconsistent sensing, a depleted power source, or a lack of communication. 

a. Note: to look at Sensor Node failures, the multi-sensor complementary 
data fusion needs to be taken into consideration.  

3. Self-organization and sensor routing algorithms are used to engage in managing 
its performance in the presence of sensor failures.  

4. Notification is given to relevant maintenance staff (e.g. technology specialists 
contacted for connectivity problems) for the diagnosed problem. 

5. Relevant maintenance specialists fix the problem. 
6. Self-organization and routing accommodates new fixes. 

Alternate Flow 
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No faults are found; continue with Use Case 4 
 
State Machine Diagram 
A state-machine diagram was chosen for this use case to indicate the different states that 
the body sensor network system goes through when maintaining its nodes and links and 
detecting faults.  

 
Figure A.2: Use Case 2 State Machine Diagram 

Post-Conditions 
System components and communication is reliable/normal.  
 
Derived Requirements 

1. Fault-detection includes all nodes (Hub, Sensor Nodes, and Server) and all the 
communication links between the nodes [19, 52]. 

2. Fault diagnosis is sophisticated and accurate [19]. 
3. Multi-sensor data fusion process brings together mutually correlated information 

(such as from ECG and haemodynamic signals for cardiac monitoring) [19] in 
order to enhance reliability in the event of sensor failure. 

4. Sensors nodes and hub are resistant to different environmental conditions. 
5. Self-organization and routing algorithms find the most efficient way to deal with 

energy consumption and communication paths [19]. 
6. All BSN components are given sufficient power. 
7. Maintenance staff are specialized in solving different faults and failures.  
8. User interface of patient’s hub device or healthcare provider’s device (or any 

device with access to internet) is practical for receiving information regarding 
fault detection 
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Use Case 3 Provide User-Data Protection 
Goals 3 

1. Ensure secure Server 
1.1. Alert maintenance in case of Server security breach (some algorithm) [19] 

which is basically anyone (hackers, other patients) getting access to other 
patients. 

2. Ensure secure Hub 
2.1. Alert maintenance in case of Hub security breach (some algorithm) [19]. 

3. Ensure secure BSN 
3.1. Alert maintenance in case of BSN security breach (some algorithm) [19]. 

4. Keep intact legal protection and patient privacy [6]. 

Primary Actors 
Intruder, Maintenance 
 
Secondary Actors 
Patient, Healthcare Provider 
 
Pre-Conditions 
Use Case 1 
 
Primary Flow 

1. Scenario 1: An intruder is sending malicious packets to the server,  
a. The server blocks it with very secure cryptographic network protocol 
b. Server signals to Maintenance crew about malicious attack. Also, signals 

to patient and healthcare provider. 
c. Maintenance specialists intervene to fix any issues. 
d. Server notifies patient and healthcare provider about fix. 

2. Scenario 2: An intruder is sending malicious packets to the sensor nodes/hub by 
being within a few meters of sensor nodes 

a. The node/hub blocks packets with secured network protocol. 
b. Hub signals to maintenance, patient, and healthcare provider through the 

server about malicious attack. 
c. Maintenance specialists intervene to fix any issues. 
d. Server notifies patient and healthcare provider(s) about fix. 

3. Scenario 3: An intruder is sending malicious packets to the sensor nodes/hub, and 
gets past the network protocols. 

a. If data is extracted, intruder is unable to identify hard-to-understand sensor 
data. 

b. Node with malicious packets signals other nodes that it has been hacked 
into. 

c. Other sensor nodes and hub isolate the node with malicious packets, 
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d. Hub signals to maintenance, patient, and healthcare provider through the 
server about malicious attack. 

e. Maintenance specialists intervene to fix any issues. 
f. Server notifies patient and healthcare provider about fix. 

 
Alternate Flow 
User data is protected, so continue with Use Case 4. 
 
Activity Diagram 
An activity diagram was used to go through the logical flow of actions in this use case. 

 
Figure A.3: Use Case 3 Activity Diagram 

Post-Conditions 
Security threats have been avoided and any security/privacy breaches have been 
thwarted. 
 
Derived Requirements  

1. Since the server has higher computational resources than the sensor nodes or hub, 
it should be capable of handling stronger cryptographic network protocol keys. 
1.1. Interface between the hub and the server isn’t difficult to use. 



!
!

88!

2. Signals sent to maintenance about malicious attacks should have different levels 
of malicious attack severity. 

3. Network protocol keys for sensor nodes and hub should be computationally 
resourceful. 

4. User interface of patient’s hub device or healthcare provider’s device (or any 
device with access to internet) or maintenance devices is practical for receiving 
information regarding malicious activity and fixes. 

5. Use of anonymity and transmitting raw sensor data will thwart off intruders 
because it will take significant amount of effort and time to understand the 
context of the raw data [19]. 

6. Signal from infected node should let the others know that it has been intruded. 

 
Use Case 4: Monitor Health 
Goals 4 

1. Provide patient with feedback. 
1.1. Provide patient and healthcare provider with health status [40]. 
1.2. Provide standard of care for the general health condition or disease of the 

patient. 
2. Analyze patient health at all times. 

2.1. Provide reliable analysis [53]. 
2.2. Have enough power for analysis [9]. 

Primary Actors 
Healthcare Provider, Patient 
 
Secondary Actors 
Not Available 
 
Pre-Conditions 
Use Case 1 
 
Primary Flow 

1. Raw physiological data, data important for contextual awareness [19], and any 
data required for multi-sensor data fusion [19], is captured by body sensor nodes. 

2. Sensor nodes send their collected data to the hub.  
3. Hub sends the collected data to the medical records server. 
4. The medical records server collects all the data, and uses detection and decision-

making algorithm to process it. 
5. The server stores the data for each patient. 
6. Based off of results of processed data, the server sends notification to patient hub 

and healthcare provider device. 
7. Healthcare provider and patient view the patient’s health status, and may consider 

communicating with each other (Use Case 6). 
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Alternate Flow  
• If, at step 7 of the primary flow, the patient or healthcare provider considers 

communicating each other for feedback, information, check-up requests, etc, then 
perform the primary flow actions from Use Case 6.  

• For specifics of storing accessible data (step 5 of this primary flow), look at flow 
of actions in Use Case 5. 

• If security breached, perform actions in Use Case 3. 
• If component fault detected, perform actions in Use Case 2. 

Activity Diagram 
An activity diagram was chosen as it helps represent the flow of activities that the actors 
perform on the data objects.  

 
Figure A.4: Use Case 4 Activity Diagram 

Post-Conditions 
Health of patient is being monitored by patient and healthcare provider.  
 
Derived Requirements 

1. The hub has storage capability to receive the raw physiological data. 
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2. Communication channel between the sensor nodes and hub is capable of 
transferring raw data (bandwidth-wise and interfacing). 

3. Appropriate sensors can be selected to allow for multi-sensor data fusion. 
4. Appropriate contextual awareness sensors can be selected for each node. 
5. Communication channel between the hub and server is capable of transferring 

data (bandwidth-wise and interfacing). 
6. Communication channel is secure between sensor nodes and hub. 
7. Communication channel is reliable between sensor nodes and hub. 
8. The server has storage capability to receive, store, and analyze incoming data. 
9. Detection and decision-making algorithms are in place at the server to make 

conclusions about incoming data. 
10. Capability of server to send notifications to patient hub and healthcare provider 

device (email/text message to cell phone/etc) based on conclusions from analysis, 
and store the timing and contents of the notification into that patient’s database. 

11. User interface of patient’s hub device or healthcare provider’s device (or any 
device with access to internet) is practical for use to view notifications. 

12. User interface of patient’s hub device or healthcare provider’s device (or any 
device with access to internet) is practical for viewing their data and diagnosis. 
 

 
Use Case 5: Store Accessible Health Records 
 
Goals 5 

1. Store data in integrative database. 
2. Allow access to stored data via internet. 

Primary Actors 
Patient, Healthcare Provider 
 
Secondary Actors 
Not Available 
 
Pre-Conditions 
From Use Case 4, the data is from sensors and subsequently the hub is being sent to the 
server. 
 
Primary Flow 

1. Healthcare provider or patient requests to access stored data (through hub device 
or internet). 

2. If the request is accepted (through something such as a username/password), then 
access to the health records is granted. 
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3. Healthcare provider or patients are capable of viewing the patient data stored in 
the server. 

Alternate Flow 
For the 2nd step of the primary flow: if the request to the stored data in the server is not 
authorized, then access to the health records is denied. 
 
Activity Diagram 
The following activity diagram depicts the flow of Use Case 5. 

 
Figure A.5: Use Case 5 Activity Diagram 

Post-Conditions 
Health records are stored and easily accessed by the patient and healthcare provider. 
 
Derived Requirements  
1. Server allows to securely store data coming from a patient into that specific patient’s 

database. 
2. User interface of patient or healthcare provider allows to securely access the patient’s 

database server (username/pw encryption) from the hub or any device that has access 
to internet. 

3. Access to server database for each particular patient is possible through a commonly 
used communication platform (such as the internet). 

 
Use Case 6: Allow Patient-Healthcare Provider Communication 
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Goals 6 

1. Maintain communication between healthcare provider and patient  (patient can 
ask questions and the physician can give feedback, track progress). 

2. Provide mechanism to acknowledge states of temporary lack of communication 
3. Provide reliable communications [53] 

 
Primary Actors 
Patient, Healthcare Provider 
 
Secondary Actors 
Not Available 
 
Pre-Conditions 
BSN \ communication is set up and confirmed to be in operation.  
From use case 4: the server sends a health status notification to the patient’s hub (which 
has a graphic user interface) and the healthcare provider’s device. 
 
Primary Flow 

1. Scenario 1: Healthcare provider provides feedback.  
a. Healthcare provider submits their feedback to the server via internet. 
b. Once submitted, the feedback is sent to the patient’s hub graphical user 

interface.  
c. Patient reads the feedback off of the hub. 

2. Scenario 2: Patient asks for feedback. 
a. Patient request feedback in hub. 
b. Hub transfers this request to the server. 
c. The server sends notification about this request to the healthcare 

provider’s device. 
d. Healthcare provider submits response through his device to the server. 
e. Server sends this response back to the patient’s hub. 
f. Patient reads the response off of the hub. 

3. Scenario 3: Healthcare provider requests a checkup. 
a. Healthcare provider sends a request for a checkup with the patient, along 

with all time & date options for this checkup, to the server through their 
device.  

b. Server sends this request to the patient’s hub. 
c. Patient sees the response off of the hub, and confirms a checkup time/date. 
d. Hub sends this confirmation to the server. 
e. Server relays a confirmation notification to the healthcare provider’s 

device. 
4. Scenario 4: Patient requests a checkup. 



!
!

93!

a. Patient sends a request for a checkup with the healthcare provider from 
their hub. 

b. The hub relays this request to the server. 
c. The server sends this request to the healthcare provider’s device. 
d. The healthcare provider provides a response through their device to the 

server. 
e. Server sends this response to the patient’s hub. 
f. Patient reads the response off of the hub. 

 
Alternate Flow 

Each of these scenarios is optional, can be looped, and any scenario can lead to 
another one. For example, once a patient asks for feedback and received it from the 
healthcare provider, they may want to request a checkup.  

In scenarios 1-4, the hub can be replaced by any device with internet access, 
which would give the patient access to the server itself. 
 
Sequence Diagram 
The communication involved in this use case was best depicted by the sequence diagram 
below. 
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Figure A.6: Use Case 6 Sequence Diagram 

 
 
Post-Conditions 
Patient and healthcare provider are able to communicate back and forth between each 
other. 
 
Derived Requirements 
1. User interface of patient’s hub device or healthcare provider’s device (or any device 

with access to internet) is practical for use for communication between patient and 
healthcare. 
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2. Communication channel is secure between hub and server. 
3. Communication channel is reliable between hub and server. 
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Appendix B: Matlab Sources Code for CFPG Models 

 In this appendix, 6 source codes model, simulate, and analyze the CFPG device 

and their power generating capabilities. Appendix B.1 gives the code that implements the 

(real-time) optimization formulation in Equation 5 of this thesis. Appendix B.2 lays out a 

function utilized by the real-time optimization formulation. This function evaluates the 

objective function and design parameters of the optimization algorithm. Appendix B.3 

lays out the code that implements the delayed-damping force adaptive tuning model 

described in this paper. Appendix B.4 is a piece of code that was written to aid in 

processing the accelerometer acceleration traces, and Appendix B.5 plots the 

optimization results. All three Matlab codes that simulate the CFPG model utilize the 

Simulink model in the diagram below. All code has been published with Matlab 2014a: 

Student Version. 

!
Simulink(Model(of(CFPG,(referred(to(code(as(CFPG_Simulink_Model(
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!
Appendix(B.1:(Source(Code(for(Real7Time(Damping(Force(Optimization(
(
(
%%This code implements the REAL-TIME DAMPING FORCE OPTIMIZATION algorithm 

%Inputs: Prior to running, check variables: 

%csv_filenames, fdata, startt, endtt, windowsize, filename, filename2 

close all; clear all; clc %clear data 

m=19300*(.1*(10e-3)^3)/2;   %9.65*10^-4 grams is the proof-mass 

Zl=10e-3/4;                  %upper limit is a quarter the length of the 

                             %cube; assuming proof mass takes half the 

                             %space and the other half lies between the 

                             %bounds of Zl and -Zl 

%maximum), prof mass position, and proof mass velocity 

          lastrelayoutput=1; % initialized relay output 

          FF.Value=.005; %damping force for optimization 

          F=.005; %damping force 

          xt=Zl; %proof mass position 

          Q=F; 

          dxt=0; %proof mass velocity 

 

%%Selecting the acceleration input 

maxtime=0;  %used to keep together timestamps 

Time = []; %will come from acceleration data excel sheets 

aZ = [];   %will come from acceleration data excel sheets 

csv_filenames = ls('hand/7/data*.csv'); %all the filenames of type .csv within 

                                          %a certain directory 

   for k=1:size(csv_filenames,1) %size(csv_filenames,1) gives the number of 

                                %files in the directory we checked above 

       fdata = csvread(strcat('hand/7/',csv_filenames(k,:)));  %read data 

       %from the kth csv file 

       % Generate [time value] column. 

       % third column is Z axis; scale to G, then to MKS 

       Time =[Time; fdata(:,1)+maxtime];%1st column of kth csv file is time 

       aZ = [aZ; 9.81*(fdata(:,4)-8192)*15/16384]; 

       %fourth column of kth csv file is aZ: acceleration, z-direction 

       maxtime = maxtime+max(fdata(:,1)); %set maxtime to be the largest 

                                        %timestamp of the last kth csv file, 

                                        %cuz this new maxtime will become 

                                        %the starting timestamp of the next 

                                        %csv file for-loop iteration 

   end 

   clear fdata; 

   startt=2060;%Starting point (time, in seconds) from selected accel. file 

   endt=2165; %Ending point from selected acceleration fle 

   ind=find(Time>=startt & Time<endt); 

   Time=Time(ind)-Time(ind(1)); 

   aZ=aZ(ind); 

 

%%Selecting interval size for tuning F, and interpolating+upsamping selected 

%acceleration data 
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windowsize=[1]; %Interval size for adaptive tuning of damping force 

maxtime=windowsize; %now maxtime is equal to the windowsize 

[pts, maxlength]=maximumlength(Time,aZ,1); %(up)samples for interpolation, 

% third input is 1 (for windowsize) because we want to interpolate by 

% looking for the maximum number of points in 1-second windows across 

% our data...our accelerometer gave us a value of Hz it samples as in we 

% should expect a certain max number of points in each one second window 

pts=pts*4; %Upsampling 

maxlength=maxlength*4; %Upsampling 

Timediff=Time(end); 

Timeint=linspace(0,Timediff,pts); %Linearly-spaced interplation 

aZ=interp1(Time,aZ,Timeint,'pchip','extrap')'; %Interpolation method: PCHIP 

 

Time=Timeint'; 

clear Timeint; 

ind=find(Time<=max(Time)); 

daytime=Time(ind(end)); 

 

Time=Time(ind)-Time(ind(1)); %Interpolated Time, selected from acceleration 

%file, shifted to start at Time=0 

aZ=aZ(ind); %Interpolated acceleration z-axis 

 

step=Timediff/pts; %make sure step size (time, in seconds) between 

%discrete data points is accurate 

 

 

%%While loop for optimization. Every iteration in the while loop 

%%corresponds to optimizing one window frame (of pre-specified interval 

%%size, 'windowsize') by tuning F and maximizing output power 

 

%Initialize counters used in optimization while loop 

count=0; 

i = 0; 

remF=[]; 

 

while (i<daytime) %As long as the while-loop is still going thru selected 

                  %acceleration data 

     if (i+windowsize)>daytime; 

         ind = find(Time>=i & Time<=daytime); 

         % Finds all the indices of the current window of length windowsize 

         maxtime=daytime-i; 

     else 

         ind=find(Time>=i & Time<i+windowsize); 

     end 

     i = i+windowsize; %shift i index to start the next window for the next 

     %iteration of the while loop 

 

 

     alpha = Time(ind)-Time(ind(1)); %Setting time input for simulation 

     %(arbitrarily called alpha) 

     a.time=[];%Don't put in time series for optimization 

     aZindic= aZ(ind); %acceleration input into simulation 
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     a.signals.values=aZindic; 

     a.signals.dimensions=1; 

     simin=[aZindic]; 

 

     starttime=(ind(1)*step)-step-(count*windowsize); %Simulink start-time 

     %of current window frame 

     maxtime=step*length(alpha)-step; %Simulink end-time of current 

     %window frame 

 

     count=count+1; %frame or while-loop counter 

 

 

 

     if length(remF)==0; %remF is an indicator for whether proof mass was 

         %midflight in previous acceleration windowframe. if length(remF)=0 

         %then it was not midflight and F is allowed to be optimized. 

         %otherwise F remains constant 

 

         %upload initial points from previous acceleration window frame (or 

         %initial settings) 

         filename=strcat('june10/current',num2str(count+num),... 

             'hand 7 one s.mat'); %Change directory and name 

         save(filename,'a','Zl','FF','xt','dxt','m','lastrelayoutput'); 

         hws=get_param('CFPG_Simulink_Model','modelworkspace'); 

         hws.clear; 

         hws.DataSource='MAT-File'; 

         hws.FileName=filename; 

         hws.reload; 

         delete(filename); 

         clear filename; 

 

 

         %Call CFPG Simulink Model, specify bounds for optimization 

         %design variable F 

         sys='CFPG_Simulink_Model'; 

         open_system(sys); 

         FF=sdo.getParameterFromModel('CFPG_Simulink_Model','FF.Value'); 

         FF.Minimum=1e-5; 

         FF.Maximum=.01; 

 

         %Log following power signal models from CFPG Simulink Model 

         Powers=Simulink.SimulationData.SignalLoggingInfo; 

         Powers.BlockPath='CFPG_Simulink_Model/Mean'; 

         Powers.OutputPortIndex=1; 

         simulator=sdo.SimulationTest('CFPG_Simulink_Model'); 

         simulator.LoggingInfo.Signals=[Powers]; 

 

         %Specify bounds on objective (power output) 

         MaxPowers=sdo.requirements.SignalBound; 

         set(MaxPowers,... 

             'BoundTimes', [0 20],... 

             'BoundMagnitudes', [1000 1000],... 

             'Type', '<='); 
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         requirements = struct(...%specify req'ments for the logged signals 

             'MaxPowers', MaxPowers); 

 

        %Calls function that evluates CFPG model design 

         evalDesign2=@(p) CFPG_Simulink_Model_Design(p,... 

             simulator,requirements); 

         initDesign=evalDesign2(FF); %After evaluation, this calls 

         %objective function to simulate model and evaluate design req's 

         initDesign.Cleq; 

         initDesign.F; 

 

 

         opts=sdo.OptimizeOptions; %Set optimization 

         opts.Method='patternsearch';%Select optimization method: 

                                     %Pattern Search Algorithm 

         opts.MethodOptions.TolFun=1e-7;%Termination Tol on Objective Fun 

         opts.MethodOptions.TolX=1e-10; %Termination Tol on constraint(n/a) 

         opts.MethodOptions.TolMesh=1e-5;%Termination Tol on Obj Fun + Mesh 

         opts.MethodOptions.CompletePoll='on'; %Complete Point Polling 

         opts.MethodOptions.CompleteSearch='on'; %Complete Point Searching 

         opts.MethodOptions.MeshContraction = .99; %Mesh Contraction 

         opts.MethodOptions.InitialMeshSize=.01; %Initial mesh size 

         opts.MethodOptions.MeshExpansion=1.03; %Mesh expansion 

         opts.MethodOptions.MaxIter=5000;%Termination by maximum iterations 

         opts.MethodOptions.MaxFunEval=20*5000;%Termination by max Fun. Evals. 

         opts.MethodOptions.Cache='on'; %Use cache to compare current 

         %damping force value to see if they are close to previously 

         %computed F value...if within tolerance, computation skipped 

         opts.MethodOptions.CacheTol=1e-5; %Cache Tolerance 

         opts.MethodOptions.CacheSize=1000; %Cache Size 

 

         %Starts optimization 

         [pOpt,optInfo]=sdo.optimize(evalDesign2,FF,opts); 

 

         if optInfo.F==0 %If no power was produced, then the code 

               pOpt.Value=Q;%keeps F value of previous window frame 

         end 

 

         sdo.setValueInModel('CFPG_Simulink_Model',pOpt); %Updates model 

                                                          %variable values 

 

         numofiterraw=optInfo.iterations; %used if we want to see # of 

                                          %iterations it took pattern 

                                          %search to find an optimal value 

                                          %for current window frame F 

         reasonfortermination=optInfo.exitflag;%used if we want to check 

                                    %exit flag for reason of termination 

         avgpower=optInfo.F; %Maximized average power (after optimzation 

                             % of current window frame) 

         F=pOpt.Value; %Optimal value of F (after optimization) 

 

     else %proof mass was midflight in previous window frame, i.e. 

         %F remains the same as in the previous window frame 
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         F=remF; %remF is an indicator for whether proof mass was 

         %midflight in previous acceleration windowframe. 

         avgpower=777; %Arbitrary number indicating optimization was skipped 

                       %for current window frame 

         numofiterraw=777; 

         reasonfortermination=777; 

     end 

 

 

     sim('CFPG_Simulink_Model'); %Simulate our model to see output 

                                        %with optimal value of F 

     %Saving values of current window 

     fsim=Forcesim.signals.values; %Save damping force value 

     v=V.signals.values; %Save prof mass velocity 

     x=X.signals.values; %Save proof mass positions 

     ptime=P.time; %Save time series of simulaitons 

     pp=P.signals.values; %Save instantaneous power values 

     simaccel=theaccel.signals.values; %Save input acceleration values 

     lastrelayoutput=LWO.signals.values(end); %Save relay output 

     filename2=strcat('june10/',num2str(count+num),'hand 7 one s'); 

     save(filename2,'fsim',... 

                  'v','alpha','aZindic','x','simaccel','ptime','step',... 

                  'pp','avgpower','starttime','numofiterraw',... 

                  'lastrelayoutput','reasonfortermination'); 

 

     %Discrete data means that we have to make sure initial position and 

     %velocity of next window frame has changed with next step size 

     xt=x(end)+(v(end)*step); 

     if v(end)==0 

         dxt=v(end); 

         remF=[]; 

     else 

         dxt=v(end)+((-simaccel(end)-(fsim(end)/m))*step); 

         remF=abs(fsim(end)); 

     end 

     F=abs(fsim(end)); %Initialize F value of next window frame with current 

     %window frame 

     FF.Value=abs(fsim(end)); 

     Q=abs(fsim(end)); 

end 

"
!
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(
Appendix(B.2:(Source(Code(for(Evaluation(of(Real7Time(Damping(Force(
Optimization(Formulation(
(
%function that evluates CFPG model design 

function design = CFPG_Simulink_Model_Design(p,simulator,requirements) 

 

%Simulate model using the simulator input argument to simulate the model 

%and log model signals. Ensure model is simulated with chosen parameters 

simulator.Parameters=p; 

simulator=sim(simulator); %simulates 

%Simulation signal log defined by SignalLoggingName porperty 

logName=get_param('CFPG_Simulink_Model','SignalLoggingName'); 

simLog=get(simulator.LoggedData,logName); 

%Evaluate design requirements and add design objective to minimize negative 

%of power (so maximize positive) 

Powers=find(simLog,'Powers'); 

cPowers=evalRequirement(requirements.MaxPowers,Powers.Values); 

design.Cleq=[cPowers(:)]; 

temp=permute(Powers.Values.Data,[3 2 1]); 

design.F=-temp(end); 

end 

 

"
!
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(
Appendix(B.3:(Source(Code(for(Delayed7Damping(Force(Adaptive(Tuning(
(
%%This code implements the DELAYED DAMPING FORCE ADAPTIVE TUNING algorithm 

%Inputs: Prior to running, check variables: 

%F, windowsize, count, A, c, startt, endtt, csv_filenames, fdata 

close all; clear all; clc %clear data 

m=19300*(.1*(10e-3)^3)/2;   %9.65*10^-4 grams is the proof-mass 

Zl=10e-3/4;                  %upper limit is a quarter the length of the 

                             %cube; assuming proof mass takes half the 

                             %space and the other half lies between the 

                             %bounds of Zl and -Zl 

%maximum), prof mass position, and proof mass velocity 

lastrelayoutput=1; %initialized relay output 

F=[0.005]; %Choose .005 if looking at hand/arm data or .01 if leg data 

xt=Zl; %proof mass position 

dxt=0; %proof mass velocity 

 

%%Interval length of window frames, should be consistent with interval of 

%window frames of 

windowsize=[1]; 

num=1/windowsize; 

 

%%Opens optimized M-files from real-time optimization, stores optimal F #'s 

%Choose files and make sure names for variables 'A' and 'c' match 

for count=200:1:239 %Number of windows with interval length windowsize 

                    %that wants to be looked at 

    A=exist(strcat('june10/',num2str(count+1),'hand 33 one s.mat')); 

    if A~=0; 

        c=open(strcat('june10/',num2str(count+1),'hand 33 one s.mat')); 

         F=[F; c.fsim(1)]; 

    else 

    end 

end; 

allF=F(1:length(F)-F);%Iteratively store values of optimal F with a delay 

%So second value of allF would be the optimal value of F for the first 

%window frame 

allF=abs(allF); 

 

 

 

 

%%Selecting the acceleration input 

maxtime=0;  %used to keep together timestamps 

Time = []; %will come from acceleration data excel sheets 

aZ = [];   %will come from acceleration data excel sheets 

csv_filenames = ls('hand/7/data*.csv'); %all the filenames of type .csv within 

                                          %a certain directory 

   for k=1:size(csv_filenames,1) %size(csv_filenames,1) gives the number of 

                                %files in the directory we checked above 

       fdata = csvread(strcat('hand/7/',csv_filenames(k,:)));  %read data 
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       %from the kth csv file 

       % Generate [time value] column. 

       % third column is Z axis; scale to G, then to MKS 

       Time =[Time; fdata(:,1)+maxtime];%1st column of kth csv file is time 

       aZ = [aZ; 9.81*(fdata(:,4)-8192)*15/16384]; 

       %fourth column of kth csv file is aZ: acceleration, z-direction 

       maxtime = maxtime+max(fdata(:,1)); %set maxtime to be the largest 

                                        %timestamp of the last kth csv file, 

                                        %cuz this new maxtime will become 

                                        %the starting timestamp of the next 

                                        %csv file for-loop iteration 

   end 

   clear fdata; 

   startt=2060;%Starting point (time, in seconds) from selected accel. file 

   endt=2165; %Ending point from selected acceleration fle 

   ind=find(Time>=startt & Time<endt); 

   Time=Time(ind)-Time(ind(1)); 

   aZ=aZ(ind); 

 

%%Having selected interval size for tuning F, Over here the code 

%interpolates and upsamples the chosen acceleration data 

[pts, maxlength]=maximumlength(Time,aZ,1); 

pts=pts*4; %Upsampling 

maxlength=maxlength*4; %Upsampling 

Timediff=Time(end); 

Timeint=linspace(0,Timediff,pts); %Linearly-spaced interplation 

aZ=interp1(Time,aZ,Timeint,'pchip','extrap')'; %Interpolation method: PCHIP 

 

Time=Timeint'; 

clear Timeint; 

ind=find(Time<=max(Time)); 

daytime=endt-startt; 

 

Time=Time(ind)-Time(ind(1)); %Interpolated Time, selected from acceleration 

%file, shifted to start at Time=0 

aZ=aZ(ind); %Interpolated acceleration z-axis 

 

step=Timediff/pts; %make sure step size (time, in seconds) between 

%discrete data points is accurate 

 

%%While loop for delayed adaptive tuning. Every iteration in the while loop 

%%corresponds to optimizing one window frame (of pre-specified interval 

%%size, 'windowsize') by using the optimal value of F from the previous 

%%frame 

 

%Initialize counters used in optimization while loop 

count=0; 

i = 0; 

avgp=[]; 

while (i<daytime) %As long as the while-loop is still going thru selected 

                  %acceleration data 

 

        % Finds all the indices of the current window of length windowsize 
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        ind=find(Time>=i & Time<i+windowsize); 

        i = i+windowsize; %shift i index to start the next window for the next 

        %iteration of the while loop 

         alpha = Time(ind)-Time(ind(1)); %Setting time input for simulation 

         %(arbitrarily called alpha) 

         a.time=[];%Don't put in time series for optimization 

         aZindic= aZ(ind); %acceleration input into simulation 

         a.signals.values=aZindic; 

         a.signals.dimensions=1; 

         simin=[aZindic]; 

 

         starttime=(ind(1)*step)-step-(count*windowsize); %Simulink start-time 

         %of current window frame 

         maxtime=step*length(alpha)-step; %Simulink end-time of current 

         %window frame 

 

        count=count+1; 

        F=allF(count); %choose F-value 

        sim(CFPG_Simulink_Model); 

        pp=P.signals.values; %instantaneous power from simulation 

        lastrelayoutput=LWO.signals.values(end); %last relay output 

 

 

        avgp=[avgp;mean(pp)];%store avg harvested power for each interval 

end 

mean(avgp)%Average harvested power for selected acceleration data 

 

"
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(
Appendix(B.4:(Source(Code(for(Constant(Damping(Force(
(
%%This code implements the Constant F on CFPG Using Specified Acceleration 

%%trace 

%Inputs: Prior to running, check variables: 

%F, csv_filenames, fdata, startt, endtt, windowsize 

close all; clear all; clc %clear data 

m=19300*(.1*(10e-3)^3)/2;   %9.65*10^-4 grams is the proof-mass 

Zl=10e-3/4;                  %upper limit is a quarter the length of the 

                             %cube; assuming proof mass takes half the 

                             %space and the other half lies between the 

                             %bounds of Zl and -Zl 

%maximum), prof mass position, and proof mass velocity 

 

lastrelayoutput=1; 

F=.00081; %.81mN used for walking leg motion CFPG in prior literature 

xt=Zl; 

dxt=0; 

 

%%Selecting the acceleration input 

maxtime=0;  %used to keep together timestamps 

Time = []; %will come from acceleration data excel sheets 

aZ = [];   %will come from acceleration data excel sheets 

csv_filenames = ls('hand/7/data*.csv'); %all the filenames of type .csv within 

                                          %a certain directory 

   for k=1:size(csv_filenames,1) %size(csv_filenames,1) gives the number of 

                                %files in the directory we checked above 

       fdata = csvread(strcat('hand/7/',csv_filenames(k,:)));  %read data 

       %from the kth csv file 

       % Generate [time value] column. 

       % third column is Z axis; scale to G, then to MKS 

       Time =[Time; fdata(:,1)+maxtime];%1st column of kth csv file is time 

       aZ = [aZ; 9.81*(fdata(:,4)-8192)*15/16384]; 

       %fourth column of kth csv file is aZ: acceleration, z-direction 

       maxtime = maxtime+max(fdata(:,1)); %set maxtime to be the largest 

                                        %timestamp of the last kth csv file, 

                                        %cuz this new maxtime will become 

                                        %the starting timestamp of the next 

                                        %csv file for-loop iteration 

   end 

clear fdata; 

startt=2060;%Starting point (time, in seconds) from selected accel. file 

endt=2165; %Ending point from selected acceleration fle 

ind=find(Time>=startt & Time<endt); 

Time=Time(ind)-Time(ind(1)); 

aZ=aZ(ind); 

 

%%Selecting interval size for tuning F, and interpolating+upsamping selected 

%acceleration data 
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windowsize=[1]; %Interval size for adaptive tuning of damping force 

maxtime=windowsize; %now maxtime is equal to the windowsize 

[pts, maxlength]=maximumlength(Time,aZ,1); %(up)samples for interpolation, 

% third input is 1 (for windowsize) because we want to interpolate by 

% looking for the maximum number of points in 1-second windows across 

% our data...our accelerometer gave us a value of Hz it samples as in we 

% should expect a certain max number of points in each one second window 

pts=pts*4; %Upsampling 

maxlength=maxlength*4; %Upsampling 

Timediff=Time(end); 

Timeint=linspace(0,Timediff,pts); %Linearly-spaced interplation 

aZ=interp1(Time,aZ,Timeint,'pchip','extrap')'; %Interpolation method: PCHIP 

 

Time=Time(ind)-Time(ind(1)); %Interpolated Time, selected from acceleration 

%file, shifted to start at Time=0 

aZ=aZ(ind); %Interpolated acceleration z-axis 

 

step=Timediff/pts; %make sure step size (time, in seconds) between 

%discrete data points is accurate 

 

 

 

alpha = Time(ind)-Time(ind(1)); %Setting time input for simulation 

%(arbitrarily called alpha) 

a.time=[];%Don't put in time series for optimization 

aZindic= aZ(ind); %acceleration input into simulation 

a.signals.values=aZindic; 

a.signals.dimensions=1; 

simin=[aZindic]; 

 

starttime=(ind(1)*step)-step-(count*windowsize); %Simulink start-time 

%of current window frame 

maxtime=step*length(alpha)-step; %Simulink end-time of current 

%window frame 

 

 

sim('CFPG_Simulink_Model'); 

pp=P.signals.values; %Instantaneous Power signals from model simulation 

mean(pp) %Average harvested power from simulation 

"
!
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(
Appendix(B.5:(Source(Code(for(Data(Up7sampling(and(Interpolation(
(
%%Function that upsamples for interpolation, 

% third input is 1 (for windowsize) because we want to interpolate by 

% looking for the maximum number of points in 1-second windows across 

% our data...The accelerometer gave us a value of Hz it samples as in we 

% should expect a certain max number of points in each one second window 

function [pts maxlength]=maximumlength(Time,aZ,windowsize) 

 

maxlength=0; 

i=0; 

indic=find(Time<=max(Time)); 

daytime=Time(indic(end)); 

count=0; 

while(i<daytime)%Looks for 1-secondwindow with highest # of sampled points 

     if (i+windowsize)>daytime; 

         ind = find(Time>=i & Time<daytime);% Find all the indices of the 

                                    %current window of length windowsize 

     else 

         ind=find(Time>=i & Time<i+windowsize); 

     end 

     i = i+windowsize; %shift i index to start the next window for 

                       %the next iteration of the while loop 

 

     windleng=length(aZ(ind)); 

     if windleng>maxlength 

         maxlength=windleng; 

     else 

     end 

     count=count+1; 

end 

numofwinds=count;%Number of 1-second windows in selected acceleration trace 

pts=numofwinds*maxlength; %Maximum number of points in each window 
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(
Appendix(B.6:(Analyzing(Optimization(M7Files(and(Plotting(Results(
(
%%Read and plot saved optimization M-files. Each M-file represents a window 

%frame of certain interval length 

%Inputs: Prior to running, look at variables: 

%num, count, A, and c 

clear all; close all; clc 

K=[]; 

L=[]; 

M=[]; 

firstiter=[]; 

seconditer=[]; 

thirditer=[]; 

reas=[]; 

num=1/40; %change denominator to windowsize 

for count=200 %change this so that it reflects number of M-files 

    A=exist(strcat('june10/',num2str(count+1),'hand 33 forty s.mat')); %change name 

    if A~=0; 

        c=open(strcat('june10/',num2str(count+1),'hand 33 forty s.mat')); %change name 

          reas=[reas; c.reasonfortermination c.lastrelayoutput]; 

        c.ptime=c.ptime+(count/num)+c.starttime-(8*25*(1/num))+25; % 

         if length(L)==0; 

         elseif abs(c.fsim(1))==abs(L(end,3)); 

                 thirditer=[thirditer; count+1, mean(c.pp)]; 

         else 

         end 

         L=[L;c.ptime, c.pp, c.fsim, c.x, mean(c.pp)*ones(size(c.pp)), c.v]; 

        c.alpha=c.alpha+(count/num)-(8*25*(1/num))+25; % 

         M=[M;c.ptime, c.simaccel]; 

         end 

 

    else 

    end 

end; 

 

%Plots below, labels describe type of plot 

a=L(:,2); %or L(:,5) for avg power instead of instantaneous power 

for i=1:1:length(a); 

    b(i)=sum(a(1:i)); 

end 

figure; 

subplot(3,2,1); 

plot(M(:,1),M(:,2)); 

ylabel('acceleration'); 

xlabel('time (s)') 

subplot(3,2,2); 

plot(L(:,1),L(:,2)); 

title('instantaneous power'); 

xlabel('time (s)') 

subplot(3,2,3); 

plot(L(:,1),abs(L(:,3))); 
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xlabel('time (s)') 

title('F'); 

subplot(3,2,4); 

plot(L(:,1),L(:,4)); 

xlabel('time (s)') 

title('position'); 

subplot(3,2,5); 

plot(L(:,1),L(:,5)); 

xlabel('seconds') 

title('avg power'); 

subplot(3,2,6); 

plot(L(:,1),b); 

xlabel('seconds'); 

title('energy'); 

 

figure; 

plot(L(:,1),L(:,4)); 

xlabel('time (s)') 

title('position'); 

 

figure; 

plot(L(:,1),L(:,5)); 

xlabel('seconds') %change name 

title('avg power'); 

 

figure; 

plot(L(:,1),L(:,2)); 

title('instantaneous power'); 

xlabel('time (s)') 

 

figure; 

plot(L(:,1),abs(L(:,3))); 

xlabel('time (s)') 

title('F'); 

figure; 

plot(L(:,1),(L(:,6))); 

xlabel('time (s)') 

title('speed'); 

 

M(:,1)=M(:,1)-25; 

figure; 

plot(M(:,1),M(:,2)); 

ylabel('Acceleration (m/s^2)'); 

xlabel('Time (s)') 

title('Arm 5'); 

 

  mean(L(:,2))%Average Harvested Power 

(
(
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